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This symposium volume is dedicated to
Dr. Gang Zheng for his passion in statistics



Preface

The 22nd annual Applied Statistics Symposium of the International Chinese Statisti-
cal Association (ICSA), jointly with the International Society for Biopharmaceutical
Statistics (ISBS) was successfully held from June 9 to June 12, 2013 at the Bethesda
North Marriott Hotel & Conference Center, Bethesda, Maryland, USA. The theme
of this joint conference was “Globalization of Statistical Applications,” in recogni-
tion of the celebration of the International Year of Statistics, 2013. The conference
attracted about 500 attendees from academia, industry, and governments around the
world. A sizable number of attendees were from nine countries other than the USA.
The conference offered five short courses, four keynote lectures, and 90 parallel
scientific sessions.

The 29 selected papers from the presentations in this volume cover a wide range
of applied statistical topics in biomedicine and clinical research, including Bayesian
methods, diagnostic medicine and classification, innovative clinical trial designs and
analysis, and personalized medicine. All papers have gone through normal peer-
review process, read by at least one referee and an editor. Acceptance of a paper was
made after the comments raised by the referee and editor were adequately addressed.

During the preparation of the book, a tragic event occurred that saddened the
ICSA community. Dr. Gang Zheng of the National Heart, Lung, and Blood Institute
(NHLBI) of the National Institutes of Health (NIH) lost his battle with cancer on
January 9, 2014. An innovative and influential statistician, Dr. Zheng was also a
dedicated permanent member of the ICSA, a member of many ICSA committees,
including the ICSA Board of Directors from 2008 to 2010. We would like to dedicate
this entire volume to Dr. Gang Zheng, a great colleague and dear friend to many of
us!
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viii Preface

The completion of this volume would not have been possible without each of the
contributing authors. We thank them for their positive responses to the volume, their
willingness to contribute, and their persistence, patience, and dedication. We would
also like to thank many referees for spending their valuable time to help review
the manuscripts. Last, but not least, we thank Hannah Bracken of Springer for her
wonderful assistance throughout the entire process of completing the book.

Zhen Chen
Aiyi Liu

Yongming Qu
Larry (Liansheng) Tang

Naitee Ting
Yi Tsong



In Memoriam: Gang Zheng
(May 6, 1965–January 9, 2014)

Nancy L. Geller and Colin O. Wu

(Reprinted from Statistics and Its Interface 7: 3–7, 2014, with
permission)

The statistical community was deeply saddened by the
death of our colleague, Gang Zheng, who lost his battle
with head and neck cancer on Thursday, January 9th.
Gang received his BS in Applied Mathematics in 1987
from Fudan University in Shanghai. After serving as
a teaching assistant at the Shanghai 2nd Polytechnic
University, he emigrated to the USA in 1994 and re-
ceived a master’s degree in mathematics at Michigan
Technological University in 1996. He then gained ad-
mission to the Ph.D. program in statistics at The George
Washington University and received his P h.D. in 2000.

Dr. Gang Zheng Immediately, he joined the Office of Biostatistics
Research at the National Heart, Lung, and Blood Institute (NHLBI) of the National
Institutes of Health (NIH), where he remained until his death. From his interview
seminar in early 2000, it was clear that the topic of his thesis, Fisher information
and its applications, was an area in which he could pursue research for many years.
What was not obvious then was how prolific his research would become.

Over the past 13 years since he got his Ph.D., Gang collaborated with many
researchers in developing statistical methods, including his colleagues at NHLBI,
statisticians from other NIH institutes, and statistical faculty from universities in
the USA and other countries. He was one of the most productive researchers in
biostatistics and statistics at NIH.

N. L. Geller ( ) · C. O. Wu
Office of Biostatistics Research, National Heart, Lung and Blood Institute, 6701 Rockledge Drive,
Bethesda, MD 20892–7913, USA
e-mail: gellern@nhlbi.nih.gov

C. O. Wu
e-mail: wuc@nhlbi.nih.gov
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Gang developed new statistical procedures, which were motivated from his
consultations at NHLBI, and published methodology papers, in which principal
investigators (PIs) of NHLBI or NHLBI-funded studies became his co-authors. One
example is Zheng et al. (2005), in which he developed new methods for sample size
and power calculations for genetic studies, taking into account the randomness of
genotype counts given the allele frequency (the sample size and power are functions
of the genotype counts). Dr. Elizabeth Nabel, the former director of NHLBI, and her
research fellow were co-authors on that paper. Another example is his consultation
with Multi-Ethnic Study ofAtherosclerosis (MESA) and GeneticAnalysis Workshop
(GAW16) with his colleagues Drs. Colin Wu, Minjung Kwak, and Neal Jeffries. The
studies contain data with outcome-dependent sampling and a mixture of binary and
quantitative traits; for example, the measurements of a quantitative trait of all con-
trols were not available. He developed a simple and practical procedure to analyze
pleiotropic genetic association with joint binary (case-control) and continuous traits
(Jeffries and Zheng 2009; Zheng et al. 2012; Zheng et al. 2013).

Most of Gang’s research focused on three subject areas: (1) robust procedures
and inference with nuisance parameters with applications to genetic epidemiology;
(2) inference based on order statistics and ranked set sampling; and (3) pleiotropic
genetic analysis with mixed trait data. Although he only started working on the last
subject area in late 2012, he had already jointly published four papers in genetic and
statistical journals (Li et al. 2014; Yan et al. 2013; Wu et al. 2013; Xu et al. 2013),
and these results built a foundation for evaluating genetic data from combined big
and complex studies.

His first paper in genetics dealt with applying robust procedures to case-control
association studies (Freidlin et al. 2002). This paper has been cited over 160 times,
according to the ISIWeb of Science (Jan, 2014). It has become the standard robust test
for the analysis of genetic association studies using a frequentist approach. The SAS
JMP genomics procedure outputs the p-value of a robust test of Freidlin et al. (2002)
(JMP Life Science User Manual 2014). Stephens and Balding (2009) mentioned the
lack of an analogous robust test of Freidlin et al. (2002) for a Bayesian analysis. In
2010, an R package, RASSOC, for applying robust and usual association tests for
genetic studies was developed by him and his co-authors (Zang et al. 2010).

In addition to novel applications of existing robust procedures to case-control
genetic association studies, he developed several new robust procedures for genetic
association studies. In Zheng and Ng (2008), he and his co-author used the infor-
mation of departure from Hardy-Weinberg proportions to determine the underlying
genetic model and incorporated genetic model selection into a test of association.
Other robust procedures that he developed include Zheng et al. (2007) on an adaptive
procedure, Joo et al. (2009) on deriving an asymptotic distribution for the robust test
used by the Wellcome Trust Case-Control Consortium (The Welcome Trust Case
Control Consortium (WTCCC) 2007), and Kwak et al. (2009) on robust methods in
a two-stage procedure, so that the burden of genotyping can be reduced. Gang and
his collaborators wrote an excellent tutorial on robust methods for linkage and asso-
ciation studies with the three most common genetic study designs (Joo et al. 2010).
Kuo and Feingold (2010) discussed several robust procedures developed by Gang
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and his collaborators, including Freidlin et al. (2002) and Zheng and Ng (2008), and
compared the power of robust tests with other tests under various situations. So and
Sham (2011) reviewed and discussed many robust procedures developed by Gang,
and also extended some of his procedures by allowing adjustment for covariates.

Gang developed an adaptive two-stage procedure for testing association using
two correlated or independent test statistics with K. Song and R.C. Elston (Zheng
et al. 2007). His adaptive procedure was used by other researchers to design optimum
multistage procedures for genome-wide association studies (e.g., Pahl et al. 2009;
Won and Elston 2008). His use of two independent test statistics sequentially in
Zheng et al. (2007) was also used by others as one of the methods to replicate
genetic studies (Murphy et al. 2008; Laird and Lange 2009). Gang also wrote an
important review article with R.C. Elston and D.Y. Lin on multistage sampling in
human genetics studies (Elston et al. 2007).

In 2012, Dr. Zheng and his collaborators published a book entitled “Analysis of
GeneticAssociation Studies” with Springer (Zheng et al. 2012). It has over 436 pages
with 40 illustrations. In the preface it states that “. . . both a graduate level textbook
in statistical genetics and genetic epidemiology, and a reference book for the analysis
of genetic association studies. Students, researchers, and professionals will find the
topics introduced in Analysis of Genetic Association Studies particularly relevant.
The book is applicable to the study of statistics, biostatistics, genetics, and genetic
epidemiology.” Unlike other books in statistical genetics, Zheng et al. (2012) also
covers technical details and derivations that most other books omitted. In 13 years,
Gang made a vast number of important contributions to statistical genetics.

In his early research (originating from on his Ph.D. thesis but extended consid-
erably), Gang made important and extensive contributions to the computation and
applications of Fisher information in order statistics and ordered data. In Zheng
(2001), he characterized the Weibull distribution in the scale-family of all life time
distributions in terms of Fisher information contained Type II censored data and
a factorization of the hazard function, which motivated further investigations by
other researchers. For example, Hofmann et al. (2005) extended his results using
the Fisher information contained in the smallest order statistic. In a discussion pa-
per by N. Balakrishnan (2007), these results were also reviewed. Some of his work
on Fisher information in order statistics has been extended to Fisher information in
record values (e.g., Hofmann and Nagaraja 2003) and progressive censoring (e.g.,
Balakrishnan et al. 2008).

Gang studied where most Fisher information is located in samples from a location-
scale family of distributions, and provided theory and insight which explain why the
tail and middle portions of the ordered data are most informative for the scale and
location parameters, respectively. This added insight into an area initiated by the late
John Tukey in the later part of the 1960s. Interestingly, this is not true for the Cauchy
distribution (Zheng and Gastwirth 2000, 2002). The latest version of the classical
book “Order Statistics” 3rd ed. by H. A. David and H. N. Nagaraja (2003) added
a new section on Fisher information in order statistics (Sect. 8.2), which cites six
papers Gang wrote on Fisher information in order statistics.
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Applying his results, Sen et al. (2009) proposed a novel study design for quanti-
tative trait locus by oversampling the informative tails of the distribution identified
in Zheng’s papers. Ranked set sampling is a very useful alternative to random sam-
pling, and still an active research area, but lacked applications beyond field studies
or agriculture. Gang and his collaborators applied ranked set sampling to genetics
association and linkage studies, which led to two important papers (Chen et al. 2003;
Zheng et al. 2006). Their work motivated many further contributions from others,
including David Clayton (Wallace et al. 2006) and Danyu Lin (Huang and Lin 2007).

A very important editorial contribution by Gang is his guest editorship for a
special issue on statistical methods of genome-wide association studies for Statistical
Science, co-edited with Prof. Jonathan Marchini and Dr. Nancy Geller (Zheng et al.
2009). The special issue, which was published in November 2009, consists of 12
contributions from leading statisticians in the area. An introduction of this special
issue appeared in the March 2010 IMS Bulletin (Zheng et al. 2010). The three
editors were responsible for writing the proposal to the Editors of Statistical Science,
identifying suitable contributors, and getting their agreement to participate. The
executive editor, David Madigan, of Statistical Science, assigned Dr. Zheng to be
the editor to handle the review process for all the submissions, except his own.

From the time of his arrival, Dr. Zheng was a statistical consultant on the de-
sign and analysis of many NHLBI-sponsored studies of cardiovascular diseases and
asthma. One important project was the genetic study of in-stent restenosis, which
started in 2004. With his colleagues Drs. Jungnam Joo (now at Korean National
Cancer Center) and Nancy Geller, he designed this study, which was later expanded
to the first genome-wide association study (GWAS) carried out by NHLBI in 2005,
before NHLBI started funding GWAS. The original paper was published in Pharma-
cogenomics (Ganesh et al. 2004). In this study, he determined statistical procedures
for quality control and developed methods for the analysis of the data. His early
research in GWAS earned him invitations to present his work at the 2007 JSM, at a
seminar series of the Washington Statistical Society (2007), and at a seminar series
at the Department of Biostatistics at the University of Pennsylvania (2008).

In 2004, Dr. Zheng became a statistical consultant for an NHLBI study: “A Case-
Control Etiologic Study of Sarcoidosis” (ACCESS). A paper of ACCESS Research
Group claimed that there was no association between immunoglobulin gene poly-
morphisms and sarcoidosis amongAfricanAmericans (Pandey et al. 2002). A routine
two-degree-of-freedom test built in SAS was applied by ACCESS investigators to
analyze the data. He and his colleague developed a new efficiency robust procedure
with constrained genetic models for the ACCESS data and re-analyzed the genetic
association. They found that it was statistically significant with the new procedure.
The improvement came after incorporating the constraints on the genetic models but
the routine chi-squared test ignores the restriction of the genetic model space. This
research brought attention not only from the original PIs but also from the Steering
Committee and the Data Safety and Monitoring Board of ACCESS. After more than
6 months of discussions in several Steering Committee meetings and consultation
with a medical researcher outside of ACCESS, also under the pressure and objection
from the original authors, the Steering Committee members finally voted to clear
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submission of Dr. Zheng’s research for publication, which appeared in Statistics in
Medicine (Zheng et al. 2006). The ACCESS Research Group also decided to include
this paper as an ACCESS publication. Dr. Lee Newman (Ex Officio of ACCESS and
Professor of Medicine at Colorado School of Public Health) later invited Dr. Zheng
to give a presentation based on his research findings.

When analyzing the data from his consultation for medical publications at NHLBI,
Dr. Zheng not only developed more powerful statistical methods for the unique data,
but also applied more appropriate tests to the data analysis. In one ongoing NHLBI
intramural research to analyze association of candidate markers in osteoprotegerin
with clinical phenotypes and its effects on cell biology in lymphangioleiomyomato-
sis, the original analyses were done by a staff scientist using some statistical tools
built in Excel. Associations were tested using an allele-based test by comparing
allele frequencies, and a genotype-based test by comparing genotype frequencies.
Both results are reported. Although this is fine after correcting for multiple testing
for two tests, Gang employed a method newly developed by him and his colleagues
(Joo et al. 2009) to this dataset with the same allele-based and genotype-based tests,
but instead of applying the Bonferroni correction for the two tests, he applied a more
powerful approach to find p-values using the joint distribution of the two tests.

In addition to research contributions, Gang served as an associate editor of Statis-
tics and Its Interface and co-edited several issues of the journal, the current one and
an earlier one in honor of his thesis adviser Joe Gastwirth. He served as a referee
for 43 journals and volumes, including JASA, Biometrics, Biometrika, Annals of
Human Genetics, American Journal of Human Genetics, and Statistics in Medicine.

Gang’s degree of productivity was extremely rare and unusually versatile. He was
honored for his work by election in 2005 as Fellow of the International Statistical
Institute. He also gave a large number of invited talks, demonstrating the appreciation
of his work by others.

One might think that such a productive researcher would be highly competitive. In
fact, the opposite was true for Gang. He was an intellectually generous and nurturing
colleague. He mentored new members of the Office of Biostatistics Research at
NHLBI both in research and collaboration. He also mentored predoctoral fellows
and served as a Ph.D. advisor to six students (two in China and four at George
Washington University). In each case, he published joint papers with these students.
There was an old e-mail about one of them in which he said, “This is one of the
things that makes me happy. This was a fine Ph.D. student. I gave him three topics
for his Ph.D. thesis and he worked out five papers. I actually turned down authorship
on the last two papers because I wanted him to come into my world and come out of
it independently.”

He has been equally generous to his other colleagues. We learned very quickly
that if Gang asked you to collaborate with him on a research paper, to just say yes
and be prepared to rearrange your own priorities so that you had time to work on
it immediately, for the paper he was proposing would get written quickly, with or
without your input. Indeed, Gang collaborated with almost all of his colleagues in the
Office of Biostatistics Research. It was our pleasure to collaborate with him on nearly
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20 papers between us. His efficiency and creativity were marvelous and inspiring.
He was truly an intellectual leader in the Office of Biostatistics Research.

Gang also contributed admirably to the statistical profession by undertaking sig-
nificant editorial responsibilities, serving on organizing and program committees of
many meetings as well as organizing many sessions at various statistical meetings.
He was also a member of the ASA Noether Award Committee. These activities illus-
trate Gang’s generosity as a colleague and his dedication to the profession. Despite
the setback of his illness, he continued to be highly productive and published seven
new papers in 2013.

Gang’s efficiency, creativity, and generosity were truly inspiring. Those of us who
have been his colleagues and collaborators will always remember the experience. He
will be sorely missed.
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Chapter 1
An Application of Bayesian Approach for Testing
Non-inferiority Case Studies in Vaccine Trials

G. Frank Liu, Shu-Chih Su and Ivan S. F. Chan

Abstract Non-inferiority designs are often used in vaccine clinical trials to show a
test vaccine or a vaccine regimen is not inferior to a control vaccine or a control regi-
men. Traditionally, the non-inferiority hypothesis is tested using frequentist methods,
e.g., comparing the lower bound of 95 % confidence interval with a pre-specified non-
inferiority margin. The analyses are often based on maximum likelihood methods.
Recently, Bayesian approaches have been developed and considered in clinical tri-
als due to advances in Bayesian computation such as Markov chain Monte Carlo
(MCMC) methods. Some of the advantages of using Bayesian methods include
accounting for various sources of uncertainty and incorporating prior information
which is often available for the control group in non-inferiority trials. In this chapter,
we will illustrate the use of Bayesian methods to test for non-inferiority with real
examples from vaccine clinical trials. Consideration will be given to issues including
the choice of priors or incorporating results from historical trial, and their impact
on testing non-inferiority. The pros and cons on using Bayesian approaches will be
discussed, and the results from Bayesian analyses will be compared with that from
the traditional frequentist methods.

1.1 Introduction

The purpose of a non-inferiority test is to show that a test treatment is “similar”
to an active control for which effectiveness has been established. It is known that
non-inferiority cannot be concluded from a non-rejection of a null hypothesis of
superiority between test treatment and active control (Blackwalder 1982). To test
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for non-inferiority, we need to show that the effect of the test treatment is within a
certain pre-specified amount of the effect of the active control. This pre-specified
quantity, called the non-inferiority margin, has to be determined and agreed upon by
the sponsor and regulatory agencies.

For a continuous response, suppose θT and θC are the treatment effects for test
and control, respectively. Assuming a large value represents a better efficacy, a
non-inferiority hypothesis can be formulated as follows:

Null hypothesis H0 : θT − θC ≤ −δ versus
Alternative hypothesis H1 : θT − θC > −δ

where −δ is a pre-specified non-inferiority margin. This fixed margin is often
chosen such that by rejecting the null hypothesis, we can conclude that the test
treatment will preserve certain amount of the treatment effect of the control, or the
effect of the test treatment is not worse than the active control by the amount of δ.
It may be difficult and sometimes controversial on how to choose the margin, but
in general, the margin should be a negligible difference in clinical benefit between
the two treatment groups. There are many researches and discussions on how to
choose a non-inferiority margin in the literature. Some general guidelines and related
references can be found in the regulatory guidance documents for non-inferiority
studies (EMEA 2005 and US FDA 2010).

The non-inferiority hypothesis is conventionally tested using frequentist methods,
where p value and confidence intervals for treatment difference (test treatment minus
control) are calculated based on the observed data from the study. Some commonly
used frequentist methods for non-inferiority tests can be found in Wang et al. (2006).
For example, maximum likelihood methods are commonly used to obtain the estimate
of the treatment difference and its 95 % confidence interval. The null hypothesis is
rejected if the lower bound of the confidence interval for the treatment difference is
greater than the pre-specified non-inferiority margin, −δ. In the frequentist methods,
prior information besides the current study is not utilized.

Recently, Bayesian approaches have been developed and considered in clinical
trials due to advances in Bayesian computation such as Markov chain Monte Carlo
(MCMC) methods. With a non-informative prior, the Bayesian approaches often
produce similar results as that from the frequentist methods. One of the important
advantages for Bayesian methods is the ability to incorporate prior information which
is often available for the control group in non-inferiority trials. Gamalo et al. (2011)
showed that the incorporation of prior information through the use of Bayesian
methods may improve the power for non-inferiority tests. Here, we will illustrate the
use of Bayesian methods to test non-inferiority with two real examples from vaccine
clinical trials.

This chapter is organized as follows: Section 1.2 describes the vaccine studies and
frequentist statistical methods and results. Section 1.3 presents Bayesian approaches
including how to construct the prior distributions from a historical study, and dis-
cusses the impact of the choice of prior on the analysis results. Section 1.4 provides
conclusions and discussions.
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1.2 Vaccine Studies and Results from Frequentist Methods

We consider two vaccine clinical trials. To maintain some confidentiality, we will
simply call them study I and study II without disclosing the names of studies and the
test vaccine. Both studies are phase III double-blind, randomized multicenter trials
to evaluate the safety, tolerability, and immunogenicity of a test vaccine administered
concomitantly versus non-concomitantly with an influenza virus vaccine (in study
I), or with PNEUMOVAXTM 23 (in study II).

In each of these studies, subjects were randomly assigned to either the concomi-
tant use group (receiving the test vaccine and the concomitant vaccine together) or
non-concomitant use group (receiving the test vaccine and the concomitant vaccine
separately, approximately a month apart). We will consider the non-concomitant
group as the control group in the following discussions. Antibody titers were mea-
sured at baseline and approximately 4 weeks postvaccination. One of the primary
objectives was to show that the antibody response to the test vaccine in the concomi-
tant use group was non-inferior to that in the control group. The statistical hypothesis
is H0: GMT1/GMT2 ≤ 0.67 versus H1: GMT1/GMT2> 0.67, where GMT1 and
GMT2 are the geometric mean titer (GMT) for the test vaccine in concomitant use
group and that in the control group, respectively. The value of 0.67 is the pre-specified
non-inferiority margin, which corresponds to a no more than 1.5-fold decrease in
the GMT of the concomitant use group compared with the control group (Kerzner
et al. 2007). In the statistical analyses, a natural log transformation was applied to
the antibody titer. Therefore, the non-inferiority test was based on treatment mean
difference in log antibody titer with a fixed margin of log(0.67).

1.2.1 Traditional Frequentist Methods

In the original trial designs, both studies were analyzed using a frequentist ap-
proach. For the primary analysis, a constraint longitudinal data analysis (cLDA)
model proposed by Liang and Zeger (2000) was used. The model included natural
log transformed baseline and postvaccination antibody titers as response variables.
The covariates in the analysis model included treatment indicator, age at random-
ization, visit, and treatment by visit interaction. For study I, an indicator for region
(USA vs. EU) was also included to designate the sites in the USA and European
countries.

The cLDA model assumes that baseline and postvaccination values have a joint
multivariate normal distribution. An unstructured covariance matrix was used to ac-
count for within subject correlation between baseline and postvaccination responses.
The baseline means were constrained to be the same between two treatment groups
in this cLDA model, which is reasonable due to randomization. Specifically, suppose
Yi0 and Yi1 are the log titers observed at baseline and postvaccination for subject i,
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then the cLDA model under a bivariate normal distribution may be formulated as
⎛
⎝Yi0

Yi1

⎞
⎠∼N

⎛
⎝
⎛
⎝μi0

μi1

⎞
⎠,Σ

⎞
⎠

μi0 = β0 + β1
∗agei + β2

∗regioni

μi1 = β0 + β1
∗agei + β2

∗regioni + γ0 + γ1
∗trti

(1.1)

where agei represents the age of subject at randomization, trti represents the treat-
ment indicator (1 for the concomitant group and 0 for the control group), regioni

represents the region indicator (1 for the USA and 0 for Europe), and Σ is an un-
structured covariance matrix. The factor region is used for study I only. To make
parameterization simpler, we used the centralized values for age and region in the
analysis. So β0 is the mean baseline response for study population, γ0 is the change
from baseline at postvaccination for control group, and γ1 is the treatment difference
between treatment and control group. All these parameters are on the log-transformed
titer scale.

This cLDA model will compare the postvaccination antibody titers between the
two treatment groups while adjusting for baseline antibody titer in the presence of
incomplete data. In the event that there were no missing data, the estimated treatment
difference from the cLDA model would be identical to that from a traditional analysis
of covariance (ANCOVA) model (Liu et al. 2009). This cLDA model can be fit using
the MIXED procedure in statistical analysis system (SAS Institute Inc. 2012).

1.2.2 Analysis Results from Frequentist Method

Suppose γ̂1 and (γ̂1L, γ̂1U ) are the point estimate and 95 % confidence interval for γ1,
then we will claim non-inferiority if the lower bound of the 95 % confidence interval
(CI) is larger than the non-inferiority margin, i.e., γ̂1L > log (0.67), or the lower
bound CI of the GMT ratio, i.e., exp (γ̂1), is greater than 0.67.

Table 1.1 presents the analysis results for both studies based on the cLDA model.
The conclusions from the analyses are that: Study I met the non-inferiority criterion
and concluded that the antibody response induced by the test vaccine when adminis-
tered concomitantly with influenza vaccine was similar (non-inferior) to that induced
by the test vaccine administered alone. However, study II did not meet the non-
inferiority criterion, which indicated that the antibody response in the concomitant
use group would be inferior to that in the non-concomitant use group.

It will be interesting to investigate how Bayesian analysis may help and/or alter
the analysis results for these two vaccine trials. Here, we apply Bayesian methods
retrospectively for illustration in these two studies, recognizing that the frequentist
cLDA model was the pre-specified analysis method in the protocol.
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1.3 Bayesian Approach

1.3.1 Non-informative Prior

We first consider a non-informative prior for all parameters in the cLDA model (1.1).
To have better mixture in the MCMC sampling, we use conjugate prior distributions
for all parameters. That is, for location parameters β0,β1,β2,γ0, and γ1, we use normal
priors with a mean of 0 and a large variance to reflect uncertainty (variance = 10,000
is used in the analysis models presented below). For the variance matrix Σ , we use
an inverse Wishart prior with a degrees of freedom of 2 and a very small precision
parameter (0.0001 is used in the analysis models below).

The results from 5000 MCMC samples (SAS PROC MCMC with the number of
MCMC iterations (nmc) = 50,000 and thin = 10 options; SAS Institute Inc. 2012)
are presented in Table 1.2. It can be seen that the results are almost identical to that
from the frequentist method (Table 1.1). This is as expected because the posterior
distribution under the non-informative prior is essentially the likelihood function.
So the estimates and credible intervals from the Bayesian analysis would be very
similar to that from the frequentist analysis.

1.3.2 Prior Based on Historical Data

At the time these two trials were conducted, a historical placebo controlled trial
was completed in which the test vaccine was given non-concomitantly with other
vaccines. Therefore, the antibody responses from this historical trial can provide
good prior information for the control group in study I and study II.

Based on the historical trial, we construct prior distributions for the baseline
mean β0, the change from baseline at postvaccination γ0 for the control group, and
the variance covariance matrix Σ for the log titers at baseline and postvaccination.
Using the data from the historical trial, we obtained

β0 ∼N (mean = 5.6400, sd = 0.04051),

γ0 ∼N (mean = 5.228, sd = 0.02937),

Σ ∼ invWishart

⎛
⎝df = 2, S =

⎛
⎝ 1.91 −1.50

−1.50 2.27

⎞
⎠
⎞
⎠.

(1.2)

Table 1.1 Non-inferiority analysis results from cLDA models

Study β̂0(SE) γ̂0(SE) GMT ratio (CI) Conclusiona

I 5.557 (0.041) 0.833 (0.041) 0.93 (0.84, 1.03) Similar

II 5.134 (0.045) 1.059 (0.052) 0.70 (0.61, 0.80) Not similar

SE standard error, cLDA constraint longitudinal data analysis, GMT geometric mean titer, CI
confidence interval
aSimilar (i.e., non-inferior) if the lower bound CI is greater than 0.67
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Table 1.2 Non-inferiority analysis results from Bayesian models with different prior

Prior β̂0(SE)a γ̂0(SE)a GMT Ratio (CI)a Conclusionb

Study I

Non informative
(a = 0, b = 0)

5.557 (0.041) 0.833 (0.040) 0.93 (0.84, 1.03) Similar

Informative
(a = 1, b = 1)

5.640 (0.029) 0.625 (0.024) 1.11 (1.01, 1.21) Similar

Power prior
(a = 0.98, b = 0.12)

5.611 (0.029) 0.763 (0.036) 0.97 (0.88, 1.08) Similar

Power prior
(a = 0.52, b = 0.03)

5.591 (0.033) 0.805 (0.040) 0.94 (0.85, 1.04) Similar

Study II

Non informative
(a = 0, b = 0)

5.134 (0.045) 1.060 (0.053) 0.70 (0.61, 0.80) Not similar

Informative
(a = 1, b = 1)

5.478 (0.031) 0.610 (0.026) 0.92 (0.82, 1.04) Similar

Power prior
(a = 0.06, b = 0.03)

5.184 (0.043) 0.996 (0.051) 0.72 (0.63, 0.83) Not similar

Power prior
(a = 0.02, b = 0.01)

5.151 (0.044) 1.035 (0.052) 0.71 (0.62, 0.81) Not similar

The parameters a and b for power priors are defined in formula (1.3)
SE standard error, CI credible interval
aPosterior mean, SE, and credible interval
bSimilar (i.e., non-inferior) if the lower bound CI is greater than 0.67

Because the historical trials were conducted with subjects in different ages and re-
gions, no prior information is available for β1and β2. There is no prior information
for the concomitant use group. Thus, we use non-informative prior for β1,β2, and γ1.

The results from 5000 MCMC samples (SAS PROC MCMC with nmc = 50,000 and
thin = 10 options) are presented in Table 1.2.

With the informative prior, the conclusion for study I is similar to that from the
frequentist method or the Bayesian method with non-informative prior. It can be seen
that the estimated GMT ratio and its 95 % credible interval are numerically larger
than those from the frequentist method, which implies that the power for testing
non-inferiority would be higher after incorporating the prior information.

For study II, the conclusion from the Bayesian analysis with informative prior
is different from that using the frequentist method or Bayesian method with non-
informative prior. The non-inferiority criterion is met as the lower bound of the 95 %
credible interval for the GMT ratio is greater than 0.67.

The quite different results based on informative prior distributions made us to
further investigate on how the prior distribution constructed from the previous study
significantly altered the results. It may imply that the prior information overwhelms
the evidence from the current study data. To examine the impact of prior distributions,
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we plotted the prior density functions of β0 and γ0 obtained from the historical
study, and compare that to the density functions obtained from the current study data
(likelihood function).

Figure 1.1 plots the informative prior density-obtained from the historical trial
and the likelihood function–from study I. For β0, it shows that these two curves have
a good amount of overlap, which implies that the prior distribution from historical
trial is compatible with the current study data on the log-transformed baseline titers.
However, the informative prior density for γ0, the change from baseline in log-titers,
is totally separated from the likelihood function, which implies that the specified
prior may not have good compatibility with the current study data.

Figure 1.2 gives a similar plot for study II. The informative prior density functions
for both β0 and γ0 show clear incompatibility with the current study data. Using the
historical results as the informative prior may have big impact on the Bayesian
analysis in this case. This may explain the significant difference of the Bayesian
analysis results from the frequentist analysis results.

Note that there were some differences between the historical study and the current
studies I and II. First, the antibody titers were measured at about 6 weeks postvaccina-
tion in the historical trial while they were measured at about 4 weeks postvaccination
in studies I and II. So the mean changes from baseline in the studies I and II were
higher than that in the historical study (see Figures 1.1B and 1.2B). For study I, the
subjects were aged 50 or above, while the subjects were aged 60 or above in study
II and in the historical trial. The historical trial was conducted in the USA alone,
while study I was conducted in the USA and European countries, and study II was
conducted in Canada, Australia, and European countries. All these and other uniden-
tified factors may contribute to the differences in the responses. We should consider
the potential differences from the historical trial in constructing prior distributions,
so the resulted prior distributions can be more compatible with the current studies.

1.3.3 Power Prior

Several methods have been proposed in the literature to construct prior distributions
with discounting from historical data, including meta-analytic approach (Neuen-
schwander 2011), power prior (Ibrahim and Chen 2000), and commensurability
priors (Hobbs et al. 2011). Here, we consider a power prior approach because there
is only one historical study for these case studies. Specifically, the power prior for
β0 and γ0 is taken as

β0 ∼f (β0|D0)a

γ0 ∼f (γ0|D0)b
(1.3)
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Fig. 1.1 Likelihood versus prior density plots for study I

where f (β0|D0) and f (γ0|D0) are the prior density functions for β0 and γ0 obtained
from the historical data D0. For the two case studies mentioned above, we have

f (β0|D0)∼N (mean = 5.6400, sd = 0.04051)

f (γ0|D0)∼N (mean = 0.5228, sd = 0.02937).

The power parameters, 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1, are selected to control how much
discount will be applied to the prior density directly obtained from the historical data.
When a = 0 or b = 0, the power prior corresponds to a non-informative prior. When
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Fig. 1.2 Likelihood versus prior density plots for study II

a = 1 or b = 1, the power prior corresponds to using the entire likelihood from the
historical data (i.e., the informative prior in Figures 1.1 and 1.2).

It is challenging to determine the optimum power parameters to discount the
amount of previous data in constructing the prior for the current study. Chen et al.
(2011) proposed to use a beta prior for the power parameter. For example, the joint
prior for β0 and a can be

f (β0, a|D0)∼f (β0|D0)aaω−1(1 − a)υ−1 (1.4)
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where ω and υ are the hyper-parameters for power parameter a. Similarly, for γ0 and
b, we consider

f (γ0, b|D0)∼f (γ0|D0)bbκ−1(1 − b)ψ−1 (1.5)

where κ and ψ are the hyper-parameters for power parameter b.
However, there is no simple clinical interpretation for this random power param-

eter model, which poses further challenge in application to clinical trials. It has been
suggested to consider multiple values for the power parameters in order to evaluate
the sensitivity of the analyses to their values (e.g., Ibrahim et al. 2003; De Santis
2006). Here, we obtain certain fixed values for the power parameters based on the
posterior distributions of a and b using the joint prior distribution modeling (1.4)
and (1.5).

Without any prior information for the power parameters a and b, we assumed
a non-informative prior beta(1,1) distribution for a and b. Using the joint density
functions (1.4) and (1.5), we can obtain the posterior distributions for the power
parameters giving the historical data D0 and the current study data from study I or
study II. The estimated posterior mean and 95 % credible intervals for the power
parameters a and b from the two studies are as follows:

Study Mean (CI) for a Mean (CI) for b

I 0.521 (0.055, 0.974) 0.034 (0.0023, 0.118)

II 0.021 (0.0017, 0.068) 0.010 (0.0007, 0.033)

We considered two scenarios for choosing power parameters: one is to take the mean
values and another is to select the upper bound of the credible interval. The former
uses the central values from the posterior distribution as possible choices, which may
still be conservative. This is because the estimated mean value may tend to discount
the historical data to make the resulting prior distribution like that of the current
study data. The later uses a relatively larger value for the power parameter (i.e.,
less discounting) which corresponds to allow more contribution from the historical
data to the prior distribution and yet still maintain some minimum credibility for
compatibility.

Figures 1.1 and 1.2 provide a visual display for the power prior distributions
under these two scenarios for studies I and II, respectively. We can see that the power
prior density with the power parameters at their mean value does have more overlap
with the likelihood density of the current study, while the density with the power
parameters at their upper credible interval value still provides certain amount of
overlap with the likelihood density.

The Bayesian analysis results under these two power prior parameter scenarios
are provided in Table 1.2. In general, the conclusions from these two power prior
models are the same as that from the frequentist method. As expected, the results
using the power parameter at the mean level are very close to that of the frequentist
method. When we take the power parameter at the upper credible interval, the results
numerically show more evidence of non-inferiority for study I, which again implies
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that the power may be higher after incorporating prior information in the Bayesian
analysis. For study II, the results from different power parameters are fairly similar
because the power parameters were very small in both scenarios. This also indicates
that the data in study II may be quite different from the historical trial.

Considering that the study design and data collection in study I was more similar
to that of study II, we also looked at the Bayesian analysis for study II using the
control group data from study I to construct the prior. We first used the joint power
prior models (1.4) and (1.5) as we did above but here the priors

f (β0|D0)∼N (mean = 5.5573, sd = 0.0412)

f (γ0|D0)∼N (mean = 0.8330, sd = 0.04125)

were taken from the results of the control group in study I. From the posterior
distributions, we have the estimated mean and 95 % credible interval for the power
parameters a: 0.035 (0.002, 0.120) and b: 0.204 (0.011, 0.807), respectively. If we
take the upper bound values, i.e., a = 0.12 and b = 0.81, to construct the power priors
in the Bayesian analysis, we obtain the Bayesian analysis results: β̂0 = 5.222, γ̂0 =
0.919, and estimated GMT ratio = 0.772 with a 95 % CI = (0.683, 0.872). Because
the lower bound CI is greater than 0.67, this analysis shows the non-inferiority
criterion is met for study II.

1.4 Conclusions and Discussions

A Bayesian approach provides an alternative method for testing non-inferiority. As
compared to the frequentist methods, the Bayesian analysis can incorporate prior
information, which is often available for control groups in non-inferiority studies.
With non-informative priors, the results from Bayesian analysis are very similar
to that from the frequentist methods. When informative prior is constructed from
historical trials and applied to the non-inferiority test, the impact may depend on
the consistency of the historical data with the current study data. A power prior may
be considered to discount the historical data in constructing the prior distribution.
We illustrate the application of Bayesian methods and compared the results with
frequentist methods in two vaccine studies.

The results from the two studies showed that:

1. For study I, the estimated GMT ratios with the informative prior are closer to
1.0 compared to that from the frequentist method or Bayesian method with
non-informative prior. Therefore, the Bayesian analysis with informative prior
strengthened the non-inferiority test. Overall, the results are robust and the con-
clusions for the non-inferiority testing are the same with different choices of prior
distributions.

2. For study II, however, the conclusion varied depending on the choice of prior dis-
tribution. Using the informative prior from the entire historical study data without
discounting, the Bayesian analysis concluded non-inferiority for this study. How-
ever, the frequentist analysis or the Bayesian analysis with non-informative prior
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or power prior (with several selected power parameters) cannot conclude a non-
inferiority for the study. If we used the control group in study I to construct a
power prior, the non-inferiority for study II can also be achieved. Therefore, the
conclusion of the study II clearly depended on the choice of prior distribution.

These two examples show that Bayesian method has potential advantages when using
informative prior constructed from previous completed trials. When the historical
data for the control group are “consistent” with the current study data, the Bayesian
analysis can improve testing power and show robust results. However, when there is
a clear difference between the historical data and the current study data, the Bayesian
analysis may conclude differently depending on the choice of prior. Therefore, the
choice of prior distribution can be critical and can significantly impact the analysis
results. In real clinical trials, it can be quite challenging to prespecify the informative
prior because it is very difficult to assess consistency or compatibility assumptions
before the study data are available.

Many factors may contribute to the difference between a historical trial and the
current study under consideration. Some examples include study design, patient pop-
ulation, cohort effect, medical practice, etc. Because the consistency assumption is
critical for Bayesian analysis, some visual display of the prior distribution densi-
ties and likelihood functions is recommended for assessing the consistency. When
there are multiple historical trials, Neuenschwander et al. (2010) and Neuenschwan-
der (2011) suggested assessing the between-trial heterogeneity to find a proper
discounting of historical data in constructing prior distributions.

The power prior approach provides a reasonable tool to discount historical data
for a prior distribution. As illustrated in the two examples in this chapter, it can be
challenging to select a specific power parameter value. It is suggested to consider
multiple values for the power parameters in order to evaluate the sensitivity of the
analyses (e.g., De Santis 2006). To help selecting values for the power parameters,
we considered a full Bayesian model proposed by Chen et al. (2011) including the
power parameter as a random variable. The resulted posterior distribution of the
power parameter provides some guidance for us to choose the values. To maxi-
mize the contribution from the historical data while still maintaining some minimum
credibility for compatibility, a relatively larger value, such as the upper bound of the
credible interval for the power parameter, may be used. Alternatively, the mean value
for the power parameter could also be considered, which provides a more conserva-
tive analysis by taking less information from historical data into the construction of
priors.

While Bayesian method may provide advantages, it still has many concerns.
First, prespecify prior distributions for clinical trials is always challenging. Even if
all settings between historical and current trials are very similar, there is no guarantee
that the historical and current study data will have good agreement. Another concern
on using Bayesian analysis in clinical trials is the overall versus independent evidence
obtained from the trials. With informative prior from historical studies, the Bayesian
analysis is similar to a meta-analysis which combines data from the historical and
current studies for inference, while the frequentist method makes inference using the
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current study data only. Therefore, the Bayesian analyses for a few studies using the
same historical data to construct prior may not be totally independent to each other.
The details in this topic are out of the scope for this chapter (see Soon et al. 2013).
Nevertheless, the Bayesian approach may serve as a reasonable sensitivity analysis
rather than as a primary analysis method.
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Chapter 2
Bayesian Design of Noninferiority Clinical Trials
with Co-primary Endpoints and Multiple Dose
Comparison

Wenqing Li, Ming-Hui Chen, Huaming Tan and Dipak K. Dey

Abstract We develop a Bayesian approach for the design of noninferiority clinical
trials with co-primary endpoints and multiple dose comparison. The Bayesian ap-
proach has the potential of power increase and hence sample size reduction due to
the incorporation of the historical data and the correlation structure among multiple
co-primary endpoints while it still maintains the family-wise type I error control
without additional multiplicity adjustment. In this chapter, we compare the Bayesian
method to the conventional frequentist method with or without Bonferroni multiplic-
ity adjustment resulting from the multiple dose comparison. The proposed method
is also applied to the design of a clinical trial, in which the study drug at a low dose
level and at a high dose level is compared with the active control in terms of the
bivariate co-primary endpoints.

2.1 Introduction

A noninferiority clinical trial is often designed to demonstrate that a test treatment
is not worse than an active control or the current standard of care (SOC). Phase
III confirmatory clinical trials are recently seen to be conducted via noninferior-
ity trials in comparison with an active comparator for various reasons, including
ethic compliance, comparison effectiveness, benefit and risk assessment. Details
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of medical reasons and the inherent issues of the conduction of a non-inferiority
trial have been discussed extensively (CPMP 2000). A number of health authorities
guidelines, including the draft guidance from the US Food and Drug Administration
(FDA), have been released to guide the pharmaceutical industry to conduct non-
inferiority trials (CPMP Working Party on Efficacy of Medicinal Products Note for
Guidance III/3630/92-EN 1995, CHMP 2005, FDA Guidance for industry 2010, ICH
Harmonised tripartite guideline 1998, ICH Harmonized tripartite guideline 2000).

There is a substantial literature on both the frequentist design and the Bayesian
design for a simple noninferiority clinical trial to compare a test treatment with a
control in terms of one primary endpoint, including Liu and Chang (2011) and Chen
et al. (2011). Often there is only one primary endpoint involved in the hypothesis
testing in a clinical trial. But sometimes multiple endpoints are simultaneously tested
in a trial even though the formulation of hypotheses may be different depending
on the study objectives, the study design, and the nature of multiplicity. Several
corresponding statistical methods have been proposed. Sugimoto et al. (2012) present
a convenient formula for sample size calculation in clinical trials with multiple co-
primary continuous endpoints. Laska et al. (1992) extend the well-known optimality
of the min test in the univariate case to the multivariate case and apply to superiority
hypothesis testing on multiple endpoints. Kong et al. (2004) adopt the min test to
non-inferiority hypothesis testing for multiple endpoints following a multivariate
normal distribution.

The clinical trial with multiple co-primary endpoints is a special case of the one
with multiple endpoints, in which all endpoints are equally important clinically.
The conventional frequentist approach for a clinical trial with multiple co-primary
endpoints is via the intersection–union testing (IUT; Eaton and Muirhead 2007).
Recently, new statistical approaches have been developed to achieve a higher power
while the family-wise type I error rate is still controlled. For example, Chuang-Stein
et al. (2007) propose an approach based on the notion of controlling the average type I
error rate over a restricted null space rather than over the conventional full null space.
The other Bayesian approaches include Gonen et al. (2003) and Scott and Berger
(2006). While most clinical trials compare two treatments, some trials compare three
or more medications, multiple doses of medications, or medical devices against each
other or against the standard treatment, which often leads to the multiplicity issue.
If the global hypothesis involves multiple comparisons, an appropriate multiplicity
adjustment method is required in order to control the family-wise type I error rate.
Dmitrienko et al. (2010) give a comprehensive review on the multiple testing pro-
cedures widely used in clinical studies, including procedures based on univariate
p values (e.g., Bonferroni, Holm, fixed-sequence, Simes, Hommel, and Hochberg
procedures), parametric procedures, and resampling-based procedures. A noninferi-
ority clinical trial involving multiple dose levels for a study drug is often designed to
demonstrate the noninferiority of the study drug under at least one dose level; hence,
it is a typical multiple testing problem and an appropriate multiplicity adjustment
method is required in a frequentist design. By now, there is a rich literature on the
frequentist design of a noninferiority trial with multiple tests, including Ng (2003),
Hung and Wang (2004), Tsong and Zhang (2007), and Röhmel and Pigeot (2010).
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In this chapter, we develop a Bayesian approach for noninferiority clinical trials
with co-primary endpoints and multiple dose comparison by incorporating historical
data. One of the advantages of the Bayesian approach is that it has the potential
of increasing power and reducing sample size due to the incorporation of historical
data and the correlation structure among the multiple co-primary endpoints. Another
advantage of the proposed Bayesian approach is to control the family-wise type I error
automatically without an additional multiplicity adjustment. The Bayesian method
is also demonstrated and compared with the conventional frequentist method with
or without Bonferroni multiplicity adjustment via the design of a clinical trial.

The rest of the chapter is organized as follows. A motivation example of a non-
inferiority clinical trial with co-primary endpoints and multiple dose comparison is
described in Sect. 2.2. In Sect. 2.3, firstly the statistical settings of the noninferiority
clinical trial with co-primary endpoints and multiple dose comparison are introduced.
Then the conventional frequentist approach is briefly reviewed, and the Bayesian
method using the commonly used conjugate prior and the power prior with fixed
power parameter(s) to incorporate historical data for the control group is proposed
and described. In Sect. 2.4, the proposed Bayesian method is applied to the non-
inferiority clinical trial described in Sect. 2.2 in comparison with the conventional
frequentist method. Finally, the chapter ends with the conclusion and discussion in
Sect. 2.5.

2.2 Design of a Noninferiority Clinical Trial with Two
Co-primary Endpoints and Multiple Dose Comparison

An experiment agent is currently in mid to the late-stage development as a treatment
of signs and symptoms of benign prostatic hyperplasia or hypertrophy (BPH). BPH
is a chronic and progressive condition that adversely affects health-related quality
of life (HRQoL) by interfering with normal daily activities and sleep patterns. The
International Prostate Symptom Score (IPSS) ranging from 0 to 35, also known
as the American Urologic Association Symptom Score (AUA-SS), is collected in
a questionnaire. The change of IPSS from the baseline score (denoted by ΔIPSS
thereafter) is one of the primary endpoints for all drug trials in the treatment of BPH.
Although it is not mandatory, the change from baseline maximum urinary flow rate
(denoted by ΔQmax thereafter) is recommended as another co-primary endpoint
by European regulatory authority. In addition, the smaller ΔIPSS is and the bigger
ΔQmax is, the better the treatment effect of the test drug is.

A non-inferiority clinical trial design demonstrating that at least one dose regime
of 15 mg QD or 30 mg QD of the experiment compound is non-inferior to the
active comparator, Tamsulosin, the SOC for BPH, is explored to support further
development of the experiment compound.

Based on the above consideration, a hypothetical study will be a multicenter,
double-blind, three-arm parallel trial. The patients will be on placebo for 4 weeks
before they are randomized to one of the three arms: 15 mg QD and 30 mg QD of
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Table 2.1 Summary statistics (n, mean ± standard deviation and correlation) ofΔIPSS andΔQmax
for Tamsulosin

Correlation
coefficient between

Study n ΔIPSS ΔQmax (ml/s) ΔIPSS and ΔQmax

1 244 −5.1±6.4 1.52±3.59 N/A

2 34 −7.03±5.84 1.68±4.08 −0.29
IPSS International Prostate Symptom Score

the experiment compound, and Tamsulosin 0.4 mg QD dose group, for 12 weeks.
After the 12-week double-blind treatment period, the patients who are randomized
to the experiment compound will remain on the same treatment, and the patients
who are on Tamsulosin will be re-randomized at the end of 12-week treatment to one
of the dose groups of the experiment compound for another 40 weeks to assess the
safety and tolerability of the compound. The two co-primary endpoints are ΔIPSS
and ΔQmax at the end of the 12-week double-blind treatment period.

Historical data are available from the two previous studies on Tamsulosin capsule
0.4 mg QD regime. The first study was a multicenter, randomized, double-blind,
placebo-controlled, parallel group, phase III trial to evaluate the efficacy and safety
of Tamsulosin for the treatment of patients with symptoms of moderate to severe
BPH (Narayan and Ashutosh Tewari 1998). This study was conducted by Boehringer
Ingelheim Pharmaceuticals, Inc. in 1993. The second study was a multicenter, ran-
domized, double-blind, placebo-controlled, parallel group, phase II trial to evaluate
the efficacy and safety of an experiment compound in the treatment of patients with
lower urinary tract symptoms (LUTS), in which Tamsulosin was an active compara-
tor (Tamimi et al. 2010). This study was conducted by Pfizer Inc. in 2007. Summary
statistics for ΔIPSS and ΔQmax for the active comparator of Tamsulosin from these
two studies are shown in Table 2.1. The pooled standard deviations (SD) for ΔIPSS
and ΔQmax are 6.34 and 3.70 ml/s, respectively. In addition, clinically meaningful
non-inferiority margins for ΔIPSS and ΔQmax are chosen to be 1 and −0.6 ml/s,
respectively, to design the noninferiority trial. The historical data in Table 2.1 is
incorporated in the Bayesian design developed in the subsequent sections.

2.3 Methodology

2.3.1 Assumption and Notation

We assume that there are three treatments in a clinical trial, including the study drug
at a high dose level, the study drug at a low dose level, and the (active) control
treatment, denoted by the h, l, and c (treatment) groups, respectively. The objective
of the study is to show non-inferiority of the study drug at a (high or low) dose level
compared to the control group.
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Let {ygi , i = 1, 2, . . . , ng} be a J -dimensional random sample of size ng collected
for the gth group. Furthermore, given μg and Σ , we assume that ygi follows a
multivariate normal NJ (μg ,Σ) distribution, where μg is the mean vector for the gth
group, and Σ is the common variance covariance matrix for all the groups with the
dimension of J × J . Let θ = (μh,μl ,μc,Σ) denote the collection of parameters.

Without loss of generosity, we assume there are two co-primary endpoints, i.e.,
J = 2, where a smaller value of the first co-primary endpoint is better and a larger
value of the second co-primary endpoint is better. Assume μg = (μg1,μg2)′, where
μg1 and μg2 are the true means for the two co-primary endpoints for the gth group,
respectively. The noninferiority hypotheses comparing the gth study drug group,
g = h, l, with the control group can be formulated as H0g: μg1 − μc1 ≥ δg1 or
μg2 − μc2 ≤ δg2 versus H1g: μg1 − μc1 < δg1 and μg2 − μc2 > δg2, where δg1 and
δg2 are the noninferiority margins of the co-primary endpoints. Let δg = (δg1, δg2)′ for
g = h, l. The noninferiority margins should be the same for both high and low doses
in the comparison and, hence, we assume that δh = δl = δ, where δ = (δ1, δ2)′, in
the subsequent sections. The objective of the study is to demonstrate non-inferiority
of the study drug at a dose level after the noninferiority margin is chosen based on
both clinical and statistical considerations.

We assume that {ygi , i = 1, . . . , ng}, g = h, l, c, are independent across the
groups. The likelihood function of the data can be written as

f (θ |D) ∝ Πg=h,l,c|Σ |− ng
2 exp

(
−1

2

ng∑
i=1

(ygi − μg)′Σ−1(ygi − μg)

)

= Πg=h,l,c|Σ |− ng
2 exp

(−1

2
tr

(
ng∑
i=1

(ygi − ȳg

)
(ygi − ȳg)′Σ−1

+ ng(μg − ȳg)(μg − ȳg)′Σ−1)
)
,

where ȳg = (
∑ng

i=1 ygi)/ng , and the data D = {(ygi , ylj , yck), i = 1, . . . , nh, j =
1, . . . , nl , k = 1, . . . , nc}.

2.3.2 Preliminary: The Frequentist Design

Under the multivariate normal assumption, (ȳh, ȳl , ȳc, S) are the sufficient statistics,
where S denotes the pooled matrix of sums of squares and cross products: S =∑

g (ng − 1)Sg , g = h, l, c, and Sg = (∑ng

i=1 (ygi − ȳg)(ygi − ȳg)′
)
/(ng − 1).

Let Wh = (nhnc/(nh + nc))1/2(ȳh − ȳc − δ), and Wl = (nlnc/(nl + nc))1/2(ȳl −
ȳc − δ). Then Wh and S are independent, and Wl and S are independent, with Wh ∼
N ((nhnc/(nh+nc))1/2(μh−μc−δ),Σ), Wl ∼ N ((nlnc/(nl+nc))1/2(μl−μc−δ),Σ),
and S ∼ Wishart(n,Σ), where n = nh + nl + nc − 3.

In the conventional frequentist design, an appropriate multiplicity adjustment
method due to the multiple dose comparisons must be adopted in order to control the
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family-wise type I error rate. Let α denote the desired overall one-sided significance
level, and assume Bonferroni multiplicity adjustment is used to assign significance
levels to comparisons of the study drug at the high and the low dose levels to the
control group. Suppose that we consider the comparison of the study drug at ei-
ther the high or the low dose level with the control group first. The standard test
involves testing the two endpoints separately at the same significance level of α/2
using the one-sided t tests, and rejecting the null hypothesis H0g (in favor of the
alternative hypothesis H1g) if and only if the two separate t test statistics are signifi-
cant. Specifically, let Wg = (Wg1,Wg2)′, g = h, l, and define Tg1 = Wg1(s11/n)−1/2

and Tg2 = Wg2(s22/n)−1/2, where s11 and s22 are the diagonal elements of S. Tgd

has a standard t distribution with degrees of freedom of n when the dth element
of μg − μc − δ is zero (d = 1, 2). The standard test rejects H0g if and only if
maxdTgd ≤ cα/2, where cα/2 is the (α/2)th quantile of the t distribution with degrees
of freedom of n. Eaton and Muirhead (Eaton and Muirhead 2007) show that the stan-
dard test is an IUT and the size of the test is α/2. Moreover, the standard test may
be conservative because the two statistics Tgd , d = 1, 2, are assumed independent.
The type I error rate approaches to α/2 as the correlation coefficient of the two end
points approaches to one.

Note that the assumption of the equal variance covariance for all groups could be
relaxed if necessary. For example, Welch’s t test (Welch 1947) is an adaptation of the
Student’s t test when the two samples have possibly unequal variances. Specifically,
the test statistic is given by T = (X̄1 − X̄2)(S2

1/n1 + S2
2/n2)−1/2, where X̄i , S2

i , and
ni , i = 1, 2, are the ith sample mean, sample variance, and sample size, respectively.
The degrees of freedom ν associated with the test can be approximated by

ν = (S2
1/n1 + S2

2/n2)2/[S4
1/{n2

1(n1 − 1)} + S4
2/{n2

2(n2 − 1)}].

2.3.3 The Proposed Bayesian Design

Following Chen et al. (2011), let π (f )(θ ) be the fitting prior and also let π (s)(θ )
be the sampling prior. The fitting prior is used to perform Bayesian analysis once
data are collected. The sampling prior is the distribution for the parameters which
we believe the future data would follow, and it is used to generate psuedo-data for
the design evaluation, i.e., the type I error and power assessment. We assume the
hypotheses: H0g: ηg(θ ) ≥ η∗(δ) versus H1g: ηg(θ ) < η∗(δ), where η∗ = (δ1, −δ2)′,
ηg(θ ) = (μg1 − μc1, −(μg2 − μc2))′, the subscript g = h is for the comparison
between the high dose group of the study drug and the control group, and g = l is
for the comparison between the low dose group of the study drug and the control
group.

Define the key quantity:

βs = Es

[
1{∪g=h,l{P (ηg(θ ) < η∗(δ)|D) ≥ γg}}

]
, (2.1)

where 1(·) is the indicator function, and γg is a prespecified credible level in (0, 1),
e.g., 0.95. It is reasonable to assume that γh = γl = γ for our scenario since
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there is no differentiation for the high and low dose group comparisons with the
control group in terms of γg . Therefore, we use the same credible level γ in βs in
the subsequent sections. The probability in (2.1) is calculated with respected to the
posterior distribution of θ , given the data D and the fitting prior π (f )(θ ), and the
expectation is taken with respect to the marginal distribution of the data under the
sampling prior π (s)(θ ).

We use the same Bayesian sample size determination algorithm from (Chen et
al. 2011). Let Θ0 and Θ1 denote the parameter spaces corresponding to the null and
alternative hypothesis, respectively, and let Θ̄0 and Θ̄1 be the closure of Θ0 and Θ1.
Further, let π (s)

0 (θ ) be the sampling prior with support ΘB = Θ̄0 ∩ Θ̄1 and let π (s)
1 (θ )

be the sampling prior with support Θ∗
1 ⊂ Θ1. For given α0 > 0 and α1 > 0, we

compute

nα0 = min{n : βs0 ≤ α0}; nα1 = min{n : βs1 ≥ 1 − α1}, (2.2)

where βs0 and βs1 in (2.2) are the βs’s in (2.1) by letting π (s)(θ ) be π
(s)
0 (θ ) and

π
(s)
1 (θ ), respectively, and they are the Bayesian type I error and power, respectively.

The Bayesian sample size is given by nB = max{nα0 , nα1}. One possible choice of γ
is 0.975, which is comparable to a significant level of 0.05/2 used for the individual
hypothesis test under the frequentist design with multiplicity adjustment. Common
choices of α0 and α1 include α0 = 0.05 and α1 = 0.2 so that in a Bayesian design
with sample size nB , the family-wise type I error rate is less than or equal to 0.05
and the power is at least 0.8. The choice of Θ∗

1 is often related to the design margins
δd’s. For example, for a continuous endpoint, a typical choice of μgd in Θ∗

1 for the
noninferiority hypothesis testing is μcd .

Historical data can be incorporated via the different forms of the fitting prior,
including the power prior with a fixed or random or mixture power parameter, the
hierarchical prior, and the hierarchical commensurate and power prior. In this chapter,
for simplicity, we consider the commonly used conjugate prior and the power prior
with a fixed power parameter. Often the historical data are only available for the
control group; hence, a noninformative fitting prior is assumed for the study drug.

2.3.4 The Conjugate Prior

The conjugate priors for the unknown parameters θ = (μh,μl ,μc,Σ) are given as

Σ ∼ Inv–Wishartν0 (Λ0),

μg|Σ ∼ N (μg0,Σ/κg0),

where ν0, Λ0, μg0, and κg0 are known constants. The posterior distributions for
(μg ,Σ), g = h, l, c, are in the same families as the prior distributions but with updated
parameters. Specifically, the marginal posterior distribution for μg is a multivariate
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t distribution:

μg|D ∼ tνn−J+1

(
μgn,

Λn

κgn(νn − J + 1)

)
,

the marginal distribution of Σ is an Inverse–Wishart distribution:

Σ |D ∼ Inv–Wishartνn (Λn),

and the conditional distribution of μg given Σ is a multivariate normal:

μg|Σ ,D ∼ N (μgn,Σ/κgn),

where J = 2, μgn = κg0

κg0+ng
μg0 + ng

κg0+ng
ȳg , κgn = κg0 +ng , νn = ν0 +nh+nl +nc,

Λn = Λ0 +∑g=h,l,c

{
Sgn + κg0ng

κg0+ng
(ȳg − μg0)(ȳg − μg0)′

}
, and Sgn = ∑ng

i=1 (ygi −
ȳg)(ygi − ȳg)′.

Samples from the joint posterior distribution for (μg ,Σ), g = h, l, c, can be
obtained using the following procedure:

Step 1. Draw Σ |D ∼ Inv–Wishartνn (Λn)
Step 2. Independently draw μg|Σ ,D ∼ N (μgn,Σ/κgn), g = h, l, c.

The following is a computation algorithm to compute the study type I error or
power for given ng , δ, γ , M (number of Monte Carlo samples), and N (number
of simulations):

Step 1. Generate θ from the sampling prior, i.e., θ ∼ π (s)(θ ).
Step 2. Generate data from the multivariate normal distribution, i.e., yg ∼

N (μg ,Σ), g = h, l, c.
Step 3. Generate M samples θ (m), m = 1, . . . ,M , from the joint posterior

distribution using the algorithm shown above.
Step 4. Compute P̂g = M−1∑M

m=1 1{ηg(θ (m)) < η∗(δ)}, and check whether P̂g ≥ γ

or not.
Step 5. Repeat steps 1–4 N times, then calculate the proportion of {∪g=h,l P̂g ≥ γ }

among those N times, which gives an estimate of βs , i.e., the type I error or power.

For the sample size determination, we need to repeat the above procedure for other
scenarios of different combinations of ng’s and then choose the optimal combination
of ng’s as the desired sample size under which both the type I error and power satisfy
the design requirement.

A Special Case: The Noninformative Prior. In order to facilitate the comparison
between the Bayesian approach and the frequentist approach, it is desirable to specify
a noninformative prior in the Bayesian approach. A commonly used noninformative
prior is the multivariate Jeffreys prior, π (μg ,Σ) ∝ |Σ |− J+1

2 , which is the limit of
the conjugate prior as κg0 → 0, ν0 → −1, and |Λ0| → 0, g = h, l, c. Consequently,
the corresponding posterior distribution can be obtained by

Σ |D ∼ Inv–Wishartnh+nl+nc−1(Shn + Sln + Scn),
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μg|Σ ,D ∼ N (ȳg ,Σ/ng).

The computational algorithm to determine the sample size is exactly same as that
described above except for the Monte Carlo sampling steps, where the samples of
parameters are drawn from a different posterior distribution. In addition, the marginal
distribution for μg is a multivariate t distribution:

tnh+nl+nc−J (ȳg , Sgn/(ng(nh + nl + nc − J ))),

where J = 2.

2.3.5 The Power Prior

We extend the power prior of (Ibrahim and Chen 2000) to construct the fitting prior
for μc and Σ . In general, we assume that there are a total of K sets of historical
data available for the control group, denoted by yc0k = (yc0ki , i = 1, 2, . . . , n0k)′,
k = 1, 2, . . . ,K , where n0k is the number of samples collected in the kth historical
dataset. Furthermore, we let yc0 = ((yc01)′, (yc02)′, . . . , (yc0K )′)′ denote all the K

historical datasets.
We consider the power prior with a fixed power parameter a0 for μc and Σ as

π (μc,Σ |yc0, a0)

∝
K∏

k=1

[
|Σ |− n0k

2 exp

(
−1

2

n0k∑
i=1

(yc0ki − μc)
′Σ−1(yc0ki − μc)

)]a0k

π0(μc,Σ), (2.3)

where a0 = (a01, . . . , a0K )′, 0 ≤ a0k ≤ 1, for k = 1, . . . ,K , and π0(μc,Σ) is an
initial prior. When π0(μc,Σ) ∝ |Σ |−(d+1)/2, i.e., the noninformative Jeffreys prior,
(2.3) can reduce to the conjugate prior

Σ |yc0, a0 ∼ Inv–Wishartν0 (Λ0),

μc|Σ , yc0, a0 ∼ N

(
K∑

k=1

(a0kn0kȳc0k)/n0(a0),Σ/κc0

)
,

where

Λ0 =
K∑

k=1

a0kS0k +
K∑

k=1

(a0kn0kȳc0kȳ
′
c0k)

−
K∑

k=1

(a0kn0kȳc0k)
K∑

k=1

(a0kn0kȳc0k)′/n0(a0),

S0k = ∑n0k
i=1 (yc0ki − ȳc0k)(yc0ki − ȳc0k)′, ȳc0k = (∑n0k

i=1 yc0ki
)
/n0k , ν0 = n0(a0) −

1, κc0 = n0(a0) = ∑K
k=1 a0kn0k . Then, the computational algorithms developed in

Sect. 2.3.4 for the conjugate prior can be applied here correspondingly.
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2.4 Application to the Design of a Non-inferiority Trial

In this section, we apply the proposed Bayesian approach to the design of the
non-inferiority trial described in Sect. 2.2. We use simulations to investigate the
performance of the proposed approach in terms of the type I error and power, and
compare the Bayesian approach with the conventional frequentist approach with or
without the Bonferroni multiplicity adjustment. We assume the data corresponding
to the high dose group of the study drug, the low dose group of the study drug, and
the control group have the distributions ygi |μg ,Σ ∼ N2(μg ,Σ), where μg is the
mean vector for the gth group, Σ is the common variance covariance matrix for all
groups, and i = 1, 2, · · · , ng . Let μg = (μg1,μg2)′, where μg1 and μg2 are the true
means for the two co-primary endpoints, respectively, for the gth group. We choose
the point mass sampling priors as commonly used in the frequentist trial design and
trial analysis. That is, we let

π (s)(μg) =
⎧⎨
⎩

1 if μg = μ(s)
g

0 otherwise
and π (s)(Σ) =

⎧⎨
⎩

1 if Σ = Σ (s)

0 otherwise,

where μ(s)
c and Σ (s) are prespecified values. The sample size is also allowed to

change in the simulations, which can be used for the sample size determination
during the design stage. The design strategy is to find a minimum total size n, i.e.,
n = nh + nl + nc, so that the power is at least 80 % and the type I error is controlled
at 5 %.

Figure 2.1 shows mean vectors of the two co-primary endpoints for the control
group from the two historical data as well as the pooled mean vector. We assume
that the mean vector for the co-primary endpoints for the control group for the
future data is a linear combination of the mean vector from the first historical data,
ȳc01 = c(−5.1, 1.52)′, and the mean vector from the pooled historical data, ȳc0· =
c(−5.34, 1.54)′. That is, μ(s)

c is chosen to be any point on the line interval of AC in
Fig. 2.1. Moreover, Σ (s) is chosen to be that the variance components are the pooled
variances for the two co-primary endpoints from the two historical trials, i.e., 6.342

and 3.702, respectively, and the correlation coefficient to be −0.29, estimated from
the second historical study. The design value of μ(s)

g , g = h, l is chosen according to
the type I error or power evaluation.

Let δ = (δ1, δ2)′ = (1, −0.6)′. For the type I error evaluation, we simulate the
data from the sampling priors with parameters of μ

(s)
h = μ(s)

c + δ, μ(s)
l = μ(s)

c + δ,
or μ

(s)
h = μ(s)

c + (δ1, 0)′, μ
(s)
l = μ(s)

c + (δ1, 0)′, or μ
(s)
h = μ(s)

c + (0, δ2)′, μ
(s)
l =

μ(s)
c + (0, δ2)′, and define the type I error for the design as the maximum type I

error. For the power evaluation, we let the sampling prior parameters be μ
(s)
h = μ(s)

c ,
μ

(s)
l = μ(s)

c , or μ(s)
h = μ(s)

c + (δ1, 0)′, μ(s)
l = μ(s)

c , or μ(s)
h = μ(s)

c + (0, δ2)′, μ(s)
l = μ(s)

c ,
or μ

(s)
h = μ(s)

c + (δ1, δ2)′, μ
(s)
l = μ(s)

c , and define the power for the design as the
minimum power.

We use the power prior in Sect. 2.3.5 to incorporate the two historical data for
the control group and use a power prior with an approximately noninformative prior
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Fig. 2.1 The means of the two co-primary endpoints for the control group from the historical data,
where points A, B, and C represent the mean vector of the two co-primary endpoints from the
historical data 1, the historical data 2, and the pooled historical data, respectively

for the high and low dose groups. Specifically, we assume the fitting priors for μg ,
g = h, l, c, and Σ as

Σ (f )
g ∼ Inv–Wishartν0 (Λ0),

μ(f )
g |Σ ∼ N (μg0,Σ/κg0),

where ν0 = n0(a0) − 1, Λ0 = ∑K
k=1 a0kS0k + ∑K

k=1 (a0kn0kȳc0kȳ
′
c0k) −∑K

k=1 (a0kn0kȳc0k) ×∑K
k=1 (a0kn0kȳc0k)′/n0(a0), S0k = ∑n0k

i=1 (yc0ki − ȳc0k)(yc0ki −
ȳc0k)′, ȳc0k = (∑n0k

i=1 yc0ki
)
/n0k , κc0 = n0(a0) = ∑K

k=1 a0kn0k , κh0 = κl0 = 0.1,

μc0 = ∑K
k=1 (a0kn0kȳc0k)/n0(a0), K = 2. As κh0 and κl0 are very small, the choices

of μh0 and μl0 would not matter much. For simplicity, we chose μh0 = μl0 = μ(s)
c .

As the sample correlation coefficient for the first historical trial was not reported,
we use the following Bayesian approach to impute the sample correlation coefficient
based on the two historical datasets. Suppose the variance–covariance matrix Σ =(

σ11 σ12
σ12 σ22

)
. Then, S01 = (n − 1)S1 ∼ Wishartn01−1(Σ), where S1 denotes the

sample variance covariance matrix for the two co-primary endpoints from the first
historical trial, and Wishartn01−1(Σ) denotes the Wishart distribution with n01 − 1
degrees of freedom and a positive definite 2 × 2 scale matrix Σ . Thus, the density
function of S1 is

p(S1|Σ) ∝ |Σ |− n−1
2 |(n01 − 1)S1|

n01−4
2 exp{−(1/2)tr((n01 − 1)Σ−1S1)}. (2.4)
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Suppose the sample variance–covariance matrix is written as S1 = S01
n01−1 =

(
s11 s12
s12 s22

)
. For the first historical dataset, the off-diagonal elements of S1 are un-

known. We combine the two historical trials together to recover the missing sample
correlation coefficient. Denote the sample correlation coefficient for the first his-
torical data as r1 = s12(s11s22)−1/2. If we can derive the distribution of r1 given
Σ , s11, and s22, say, f (r1|Σ , s11, s22), we can use the Bayesian sampling technique
to draw r1 based on the samples of Σ from the posterior distribution of Σ |yc0, a0,
and f (r1|Σ , s11, s22).

For the case of two co-primary endpoints, the density of r1 can be written explicitly
as

f (r1|Σ , s11, s22) ∝ (1 − r2
1 )

n01−4
2

× exp

⎧⎨
⎩− (n01 − 1)

2
tr

⎛
⎝
⎛
⎝ σ11 σ12

σ12 σ22

⎞
⎠

−1⎛
⎝ s11 r1

√
s11s22

r1
√
s11s22 s22

⎞
⎠
⎞
⎠
⎫⎬
⎭

= (1 − r1
2)

n01−4
2 exp

{
− (n01 − 1)

2

σ22s11 + σ11s22 − 2σ12
√
s11s22r1

σ11σ22 − σ12
2

}
.

The normalizing constant of the above density can be computed numerically.
However, this normalizing constant does not need to be evaluated if we use the
Metropolis algorithm. We further take the Fisher transformation for r1, i.e, let
z1 = (1/2) log{(1 + r1)/(1 − r1)}, then sample z1, and finally back-transform to
r1. Moreover, for the Bayesian approach, we allow γ to vary to examine how the
choice of γ does impact the performance of the proposed approach. Specifically, we
set γ to be either 0.97 or 0.975.

For the frequentist approach, within a specific high dose level or low dose level
(of the study drug) comparison with the control, we consider the conventional IUT
approach for the co-primary endpoints where no multiplicity adjustment is needed.
We use the Bonferroni multiplicity adjustment to account for the multiplicity issue
resulting from the two dose level (of the study drug) comparison with the control with
the overall type I error rate of α = 0.05. With the Bonferroni multiplicity adjustment
method, a significant level of α/2 is used for the individual hypothesis test of the
comparison between the high (or low) dose level group of the study drug and the
control group. At the same time, we also evaluate the frequentist approach without
the multiplicity adjustment for comparison with the other approaches considered in
this chapter.

The simulation results for nh = nl = 800, and nc = 500 are reported in Table 2.2.
The results in the top three panels are for μ(s)

c = ȳc0·, and those in the bottom three
panels are for μ(s)

c = ȳc01. We can see from Table 2.2 that among the frequentist
approaches, the method without multiplicity adjustment inflates type I error for all
scenarios while the method with Bonferroni multiplicity adjustment controls the type
I error below 5 %. For the cases with noninformative priors, the Bayesian approach
with γ = 0.97 controls the family-wise type I error rate, and it has a similar power
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Table 2.2 Powers and type I errors for nh = nl = 800, and nc = 500

Bayesian approach Frequentist approach

Power or γ Without With

μ(s)
c a0 Type I error 0.97 0.975 adjustment adjustment

ȳc0· 1 Power 0.8424 0.8202 0.7888 0.6712

1 Type I error 0.0326 0.0254 0.0792 0.0398

0.5 Power 0.7698 0.7410 0.7740 0.6638

0.5 Type I error 0.0388 0.0308 0.0798 0.0428

0 Power 0.6738 0.6434 0.7896 0.6692

0 Type I error 0.0462 0.0374 0.0784 0.0386

ȳc01 1 Power 0.7880 0.7616 0.7846 0.6704

1 Type I error 0.0308 0.0232 0.0842 0.0440

0.5 Power 0.7408 0.7108 0.7832 0.6666

0.5 Type I error 0.0306 0.0252 0.0764 0.0356

0 Power 0.6768 0.6444 0.7870 0.6698

0 Type I error 0.0472 0.0392 0.0816 0.0426

as the frequentist approach. From Table 2.2, we also see that γ = 0.975 is overly
conservative for type I error and γ = 0.97 is sufficient to ensure that the family-
wise type I error is controlled at 5 %. Moreover, the Bayesian approach allows for the
incorporation of the historical data from the pervious studies. The Bayesian approach
with the informative fitting priors has a higher power compared with the approach
with the noninformative priors, which leads to the potential sample size reduction.
For the Bayesian approach with γ = 0.97, as a0 increases from 0 to 1, the type I
error is always controlled at 5 % and the power is maximized when a0 = 1 and μ(s)

c

is in an appropriate range such as on the line interval of AC in Fig. 2.1. In this case,
we fully borrow the historical data for the control group.

If the mean vector for the co-primary endpoints for the control group for future
data is on the line interval of CE as shown in Fig. 2.1, little historical data or no
historical data at all should be borrowed so that the type I error is still controlled. If
the mean vector for the co-primary endpoints for the control group for future data
is on the line interval of CF as shown in Fig. 2.1, the full historical data can be
borrowed and the type I error is still under control. However, the closer to point F
the mean vector is, the less power the study has, hence a larger sample size is needed
for the study. Therefore, practically an appropriate narrower range for μ(s)

c should be
considered, such as the line interval of AC as in Fig. 2.1.

Finally, we examine the performance of the type I error and power under different
total sample sizes (n’s) by incorporating the two full historical data. The correspond-
ing results are given in Table 2.3 and Fig. 2.2 under a0 = 1 and μ(s)

c = ȳc0·, and we
see that the total sample size of n = 2100 is the minimal total sample size for the
study, under which the type I error is at most 5 % and the power is at least 80 %.
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Table 2.3 Powers and type I
errors under a0 = 1 and
μ(s)

c = ȳc0.

n nh = nl nc Type I error Power

1500 600 300 0.0242 0.6962

1800 700 400 0.0320 0.7670

2100 800 500 0.0326 0.8424

2400 900 600 0.0354 0.8982

2700 1000 700 0.0418 0.9264

Fig. 2.2 Plot of the power and type I error versus the total sample size n under a0 = 1 and
μ(s)

c = ȳc0.

Furthermore, if we believe that μ(s)
c can be any value on the line interval of AC as

shown in Fig. 2.1, the corresponding type I error and power are given in Table 2.4
and Fig. 2.3, and we see that the total sample size of n = 2400 is the minimal total
sample size for the study, under which the type I error is at most 5 % and the power
is at least 80 %.

2.5 Discussion

In this chapter, we develop a Bayesian approach for non-inferiority clinical trials with
co-primary endpoints and multiple dose comparison incorporating historical data.
The proposed Bayesian approach can potentially increase the study power and reduce
the sample size, due to the incorporation of historical data and automatically taking
account of the correlation structure among the multiple co-primary endpoints while it
controls the family-wise type I error rate. In addition, the Bayesian approach does not
require any additional multiplicity adjustment method as it automatically controls the
family-wise type I error compared with the conventional frequentist approach, and
it also performs better than the conventional frequentist approach considered in this
chapter regardless of the use of the informative prior or the noninformative prior. The
Bayesian methodology can be used not only to choose an appropriate sample size at
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Table 2.4 Powers and type I
errors under a0 = 1 and
μ

(s)
c = ȳc01

n nh = nl nc Type I error Power

1500 600 300 0.0202 0.5986

1800 700 400 0.0236 0.7028

2100 800 500 0.0308 0.7880

2400 900 600 0.0314 0.8524

2700 1000 700 0.0330 0.9014

Fig. 2.3 Plot of the power and type I error versus the total sample size n under a0 = 1 and
μ

(s)
c = ȳc01

the design stage but also to analyze the clinical trial data and facilitate the decision
making. Using the historical data, the Bayesian analysis can be carried out and the
probability Pg ≡ P (ηg(θ ) < η∗(δ)|D) can be computed and compared with γ for
g = h, l. If Ph ≥ γ and Pl < γ , we can only claim that the study drug at the high
dose level is not worse than the control group, but we cannot claim the non-inferiority
for the study drug at the low dose level. One limitation of the proposed Bayesian
approach is the choice of γ in order to control the family-wise type I error since the
closed form expression of βs in (2.1) in terms of γ is not available. However, for
the case with two co-primary endpoints, γ ≥ 0.97 may be sufficient to guarantee a
family-wise type I error at 5 % as demonstrated in Sect. 2.4.

Other frequentist approaches have recently been developed for multiple dose com-
parisons to improve the performance of the frequentist design by allowing a more
flexible and efficient α allocation at the first testing stage using the prior information.
For example, in a fixed sequence procedure we can assign full α to the comparison
of the study drug at the high dose level to the control group first because we know
that in most therapeutic areas, the study drug at the high dose level tends to be more
effective than that at the low dose level. Actually the similar prior information can be
borrowed in the Bayesian approach to improve the performance of the Bayesian de-
sign via appropriate setting(s) of the key quantity βs in (2.1) and/or the fitting priors.
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For the same example, one might want to increase the power parameter in the fitting
power prior for the study drug at the high dose level, if possible, i.e., incorporating
more historical data for the high dose group. In addition, the comparison of the pro-
posed Bayesian approach to more complex frequentist multiple testing procedures
such as the partitioning method and the gatekeeping method (e.g., Liu et al. 2007;
Dmitrienko et al. 2006; Xu et al. 2009) has not been carried out and discussed in this
chapter since these frequentist procedures are design specific and more appropriate
for other sophisticated multiple comparison scenarios and they are not necessarily
more powerful for the scenarios considered in this chapter. Although only the con-
jugate prior and the power prior with fixed power parameters are considered in this
chapter, the proposed Bayesian approach can be easily extended to other types of
priors, such as hierarchical priors or power priors with random power parameters.
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Chapter 3
Bayesian Functional Mixed Models for Survival
Responses with Application to Prostate Cancer

Veerabhadran Baladandayuthapan, Xiaohui Wang, Bani K. Mallick
and Kim-Anh Do

Abstract In this chapter, we propose a flexible approach to model functional
measurements for survival outcomes. Often the class of models for functional ob-
servations are assumed to be linear, which may be too restrictive in some cases.
We propose an alternative model, in which the simple linear mixed model has been
modified by a more flexible semiparametric spline-based functional mixed model,
wherein the usage of splines simplifies parameterizations and the joint modeling
framework allows synergistic benefit between the regression of functional predictors
and the modeling of survival data. We explicitly model the number and location of
change points such that our formulation allows for an unknown set of basis functions
characterizing the population-averaged and patient-specific trajectories. In addition,
we propose a novel auxiliary variable scheme for a fully Bayesian estimation of
our model, which not only allows dimension reduction of the parameter space but
also allows efficient sampling from the conditional distributions. We illustrate our
approach with a recent prostate cancer clinical trial study.

3.1 Introduction

Metastatic prostate cancer is the second most common cancer-related cause of death
in North American men (Greenlee et al. 2000). Hormonal treatments such as andro-
gen ablation (AA) have been preferred treatments for metastatic prostate cancer for
more than 50 years. Such therapies work by altering the natural history of the dis-
ease by specifically disrupting the growth-promoting effects mediated by androgen
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receptor signaling. Regardless of the mode of administration of AA, most patients
with clinically detectable metastatic disease will eventually progress to androgen-
independent prostate cancer (AIPC) with a median of 12–18 months (Eisenberger
et al. 1986). After progression to AIPC, only symptoms are treatable and patients
survive with a median of less than a year (Tannock et al. 1996). Despite major
efforts, most studies with various cytotoxic drugs have provided little hint of the
disease-altering activity for AIPC. However, in a recent phase II study at the Uni-
versity of Texas M.D. Anderson Cancer Center, a regimen based on chemotherapy
demonstrated a survival advantage over historical results (Ellerhorst et al. 1997).
This regimen of ketoconazole and doxorubicin alternating with vinblastine and es-
tramustine, termed KA/VE, produced obvious palliation in the majority of treated
patients.

Based on these results, a phase III trial (Millikan et al. 2008) was conducted at
M.D. Anderson Cancer Center to compare conventional hormonal therapy (AA) to
chemohormonal (CH) therapy combined with three 8-week cycles of KA/VE (AA +
CH) in patients with metastatic androgen-driven prostate cancer. The hypothesis of
interest was that early intervention of KA/VE to standard, sustained AA would delay
the emergence of AIPC and ultimately prolong survival. The primary end point of
interest was the time to progression to AIPC.

In addition to the time to progression, the longitudinal measurements of prostate-
specific antigen (PSA) level from each patient over time were recorded. PSA, a
glycoprotein produced by the prostate gland, is considered a useful biomarker for
prostate cancer since significant positive correlation has been observed between the
levels of PSA and the volume of the prostate (Catalona et al. 1991). Monitoring PSA
levels has not only been established as a good diagnostic tool but is also considered
an important indicator of response to treatment, with low levels indicating good
prognosis. PSA measures are easy to collect via a routine laboratory assay of the
blood samples. Thus, given the two sets of measurements: PSA profiles and time
to progression (to AIPC), and since the measurements are inherently correlated, our
main goal of this chapter is to investigate methods for the joint analysis of both end
points.

In practice (and as in our case), the latent functional process is often unobservable
due to measurement error and is not available at all times, especially when failure
occurs. It is well known that conventional partial likelihood approaches for the Cox
model cannot avoid biased inference by using imputation of the latent functional
process, such as last value carried forward method (Prentice 1982), smoothing tech-
niques (Raboud et al. 1993), and any other generic two-stage approaches (Bycott and
Taylor 1998; Tsiatis et al. 1995). This invoked the consideration of using functional
and event processes simultaneously via joint modeling, a subject that has recently
attracted substantial interest (see Ibrahim et al. 2001; Tsiatis and Davidian 2004 for
an overview).

Suppose the data are comprised of a vector of observations {Ti , Li , Y(ti), ti ≥ 0}
for the ith subject, where Ti is an event time (possibly censored), Li is a vector
of baseline covariates, and {Y(ti), ti� ≥ 0, i = 1, · · ·, n, � = 1, · · ·,pi} is the
functional marker trajectory for all times ti� ≥ 0, wherepi is the number of functional
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Fig. 3.1 Prostate-specific antigen (PSA) profiles for patients in arm androgen ablation (AA; upper
panel) and arm chemohormonal (CH; lower panel)

measurements for subject i. One simple strategy is to introduce subject-specific
random effects and then subsequently couple this model with a model on the survival
process such as a proportional hazards model (Wulfsohn andTsiatis 1997; DeGruttola
and Tu 1994; Hogan and Laird 1997). A similar Bayesian method was explored
by Faucett and Thomas (1996). Wang and Taylor (2001) introduced an integrated
Orstein–Uhlenbeck (IOU) process into the functional modeling. Brown and Ibrahim
(2003) started with a model similar to the ones in Wulfsohn and Tsiatis (1997) and
Faucett and Thomas (1996) for their Bayesian semiparametric joint model; however,
they used a quadratic form for the functional part and introduced a nonparametric
specification for the distribution of the random effects, θ i’s. Recent works include
Zhang et al. (2009) proposing a semiparametric model based on Pólya trees and Guo
and Carlin (2004) comparing separate and joint modeling of functional and event
time data.

In most of these approaches, the form of the functional process or the trajectory
function is assumed to be a simple parametric form. Although conceptually simple
and easily implementable, this is a rather rigid assumption and may not hold in some
cases such as the one we describe here. Figure 3.1 shows the overlapping PSA levels
for the two treatment arms (AA and CH) posttreatment. The horizontal axes present
the time (in logarithm of months) and the vertical axes present the log(PSA+1)
measurements.
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There are three key aspects of the PSA trajectories which need to be considered for
any downstream analysis. First, there seems to be a definite overall pattern in the PSA
trajectories for both treatment arms. The PSA levels decrease from time units 0 to
1, then stabilize and finally increase again (around 2.5) after the effect of treatment
wears off. The patients have been normalized such that all patients receive their
treatment at time 0. Thus, the profiles exhibit a nonlinear characteristic with definite
change points at both the subject-specific and population levels—hence the need for
flexible models for the functional process. Second, a further complication occurs
since the number of PSA measurements for each patient are taken at different times,
which causes them to be sparse and irregular. Third, there seems to be considerable
heterogeneity among the patients in both treatment groups.

Due to these characteristics, the above mentioned parametric models might not
be suitable for modeling such data. Specific to joint modeling of PSA and survival
outcomes, Pauler and Finkelstein (2002) used a joint Bayesian model that consisted
of piecewise linear functional model and Cox proportional hazard model. Their
piecewise linear regression model adopted single unknown change point for each
patient and implied independence assumption over functional measurements from
the same patient. Ye et al. (2008) gave likelihood-based two-stage regression cali-
bration methods to study the dependence of the risk of prostate cancer recurrence
on the PSA level as well as time-independent covariates. Ye et al. (2008) provided
a Bayesian-based joint modeling approach with added mixture structure to predict
individual disease progression that results in either cure by treatment or susceptible
to recurrence. The Ye et al. method models the PSA level with a nonlinear expo-
nential decay and exponential growth model. We propose an alternative model in
which the simple linear (or polynomial) model has been modified by a more flexible
nonparametric model that cannot only capture nonlinear complex processes but also
adopt unknown number of change points at both patient and population levels. We
compare two different treatments, explore the effects of PSA level as well as several
covariates on the survival outcome, and identify the PSA trajectory change points as
patient disease progresses.

There has been an increasing interest in functional data analysis (FDA), analysis
of data that are in the form of a (smooth) sample of curves or functions (Ramsay
and Silverman 2005; Ngo and Wand 2004; Yao 2007; and Brown et al. 2005),
in which the functions form the basic unit of data. Most functional data analyses
focus on data which are frequently and regularly sampled across individuals and
are not applicable here due to “sparseness and irregularity” of our data. We focus
on methods for sparse functional data where not only the number and timing vary
across subjects but also some subjects may be sampled at very few time points.
Our mixed model uses a flexible spline basis; the usage of this basis simplifies
the parameterizations and the joint modeling framework, thus allowing synergistic
benefits between the regression of functional and survival data. Further, we explicitly
model the number and location of change points such that our formulation allows
for an unknown set of basis functions characterizing the population-averaged and
patient-specific trajectories. We set up the spline-based model without the assumption
of independence over functional measurements from the same patient. Meanwhile,
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the novelty of the proposed Bayesian model lies in its ability to draw information
from the functional data as well as from the associated event time data by unifying
the spline-based functional regression and survival models. In addition, we propose a
novel auxiliary variable scheme for a fully Bayesian estimation of our model, which
not only allows for dimension reduction of the parameter space but also allows
for efficient sampling from the conditional distributions and greatly reduces the
computational burden.

The rest of the chapter is organized as follows. Section 3.2 discusses our Bayesian
joint hierarchical model, where we set up the functional regression model and the Cox
proportional hazards model in an unified framework. Section 3.3 concerns elicitation
of prior distributions for the proposed model. Section 3.4 compares our model with
other joint models with parametric regression segments based on various model
selection criteria. The novel proposed model is illustrated by a motivating example,
prostate cancer data set, in Sect. 3.5. The chapter is concluded with a discussion in
Sect. 3.6. All technical details are collected into the Appendix.

3.2 Probability Model

In this section, we propose a joint survival and functional model in which the func-
tional curves are modeled nonparametrically via splines. In addition, we explicitly
model the change points present in the profiles via a functional variable selection ap-
proach, which results in a more flexible and robust model. For ease of exposition, we
assume a univariate functional outcome, although our method is easily generalizable
to multiple functional outcomes, as we show in Sect. 3.6.

3.2.1 Regression Model for the Functional Covariates

Suppose our data construct for n subjects consists of the following: {Ti, Ci, Li, Yi(t)},
where for the ith subject we observe a time-independent baseline covariates vector
Li of dimension m and time-dependent covariates Yi(t) measured at time points t.
In addition, each individual has a lifetime Ti and a (right) censored time Ci. Thus,
one observes Ti = min(Ti, Ci) and the failure indicator δi , defined as

δi =
⎧⎨
⎩

1 if Ti ≤ Ci,

0 if Ti > Ci.

We further assume that the censoring mechanism is independent of all other sur-
vival and covariates information. For the functional covariate predictor Yi(t), we
posit the following functional regression model:

Yi(t) = μ(t) + bi(t) + εi(t) 0 ≤ t ≤ T , 1 ≤ i ≤ n,
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where μ(•) is the overall mean profile and bi(•) is the ith subject’s deviation from the
mean profile, measured intermittently between times [0, T ] for an individual i with
measurement error εi(•). We also assume that the error process εi(•) is independent of
true functional process and follows a Gaussian process with mean zero and constant
variance σ 2

ε . Other forms of correlations such as an autocorrelation process can be
used for the errors, but to keep the exposition simple we do not consider that case
here.

Our focus is on modeling μ(•) and bi(•) in a flexible manner. We achieve this via
a basis function projection:

μ(t) = X(t)β, bi(t) = X(t)β i ,

where X(t) is any generic basis function and the associated regression coefficients are
denoted by β for the overall mean and β i for subject i. In practice, we only observe
the latent functional process on a finite number of time points ti = (ti1, . . ., tipi

) for
the ith subject with pi as the number of measurements, which varies from subject to
subject. The discretized version of the model for the observed PSA measurements
Yij for subject i and time tij is of the form:

Yij = Yi(tj ) = X(tij )β + X(tij )β i + εij , (3.1)

where X(tij ) is the basis function evaluated at tij , i = 1, . . ., n, j = 1, . . .,pi . There
are various basis functions that one could potentially use for modeling the func-
tional predictors, such as smoothing splines, B-splines, and wavelets, among others,
depending on the application. For our model exposition, we use a truncated power
series basis function (Ruppert et al. 2003) given its nice connections to mixed models
(Ngo and Wand 2004).

Let dimension K = 1 + p + K∗, where p is the degree of the spline and K∗ is
the number of interior knots. We rewrite (3.1) in matrix notation as

Yi = Xiβ + Xiβ i + εi , (3.2)

where Yi = (Yi1, . . .,Yipi
)′, Xi is the pi × K basis matrix for the ith subject, β =

(β1, . . ., βK )′ and β i = (β i1, . . ., β iK )′ are the K-dimensional regression coefficient
vectors. The j th row of Xi can be written as

Xij = [1 tij t2
ij · · · t

p

ij (tij − t1)p+ · · · (tij − tK∗ )p+],

where {t1, · · ·, tK∗ } are the interior knots. We assume that the subject level regres-
sion coefficients follow a Gaussian distribution, β i ∼ MVN(0, �), which are the
random effects corresponding to the systematic deviation from the population mean
β with a variance–covariance matrix �. This distribution implicity makes two key
assumptions. First, it induces the same basis function and hence the same amount of
smoothing for both the subject-specific and population level functions. This might
seem a little restrictive in some sense, since the individual curves could be assumed
to be more spatially heterogeneous than the population level curve. But for sparse



3 Bayesian Functional Mixed Models for Survival Responses . . . 41

functional data (as in our case), the assumption of the same degree of smoothness
at both the population and subject level is a reasonable one given the low number of
observations per individual. Second, conditional on the choice of basis function and
treating the basis matrix as fixed, the model in (3.2) is essentially a semiparameteric
random effects model, with the prior on β i admitting the within-subject covariance
V (Yi) = X′

i�Xi + σ 2
ε Ipi

. Hence, the within-subject independence assumption is
relaxed to allow within-subject correlation for the observed curve Yi .

Having posited the above model on the functional (PSA) profiles, conditional
on the basis matrix X, we can proceed with estimation using a variety of Bayesian
or frequentist techniques. However, two related issues remain. First, the number
and position of the knots or breakpoints need to be chosen, and second, conditional
on the number of knots, the dimension of �, if left unstructured, is of dimension
K ×K; thus, we need to estimate K(K + 1)/2 unique parameters. From a practical
and methodological point of view, it is useful to reduce dimensionality. This is
essentially a model selection problem. Various approaches to solving this problem
include using model selection procedures such as conditional predictive ordinate
(CPO) or deviance information criteria (DIC), as proposed by Brown et al. (2005),
or a fully Bayesian framework using free-knot spline methodology (Denison et al.
1998; Holmes and Mallick 2003). For our application, it is of interest to model the
exact location and number of change points in the PSA profiles since drastic changes
in PSA might directly impact on the survival of the patient. This is also evident in
Fig. 3.1, where one notices a sharp drop in PSA levels initially and then an increase
in PSA levels in the later stages of the disease.

We handle the problem of choosing the number of change points in a Bayesian
framework via latent indicators (Smith and Kohn 1996; Thompson and Rosen 2008).
Essentially, we start with a large pool of potential breakpoints and an associated latent
indicator vector, which we denote as γ . The elements of the latent indicator vector
equal 1 if the corresponding change point is included in the model and 0 otherwise—
this implies keeping or deleting one basis function in (3.2). Thus, conditional on
γ = (γ1, . . ., γK∗ ), where K∗ is the number of the set of potential change points, our
model in (3.2) can be written as

Yi = Xi,γ βγ + Xi,γ β i,γ + εi , εi ∼ MVN(0, σ 2
ε Ipi

), (3.3)

where each Xi,γ is the basis matrix corresponding to change points for the ith individ-
ual, and βγ and β i,γ are the corresponding regressed coefficients of size 1+p+K∗

i,γ ,
where p is the degree of the spline and K∗

i,γ is the number of ones in the vector γ

and within the span of the ith individual curve. Conditional on the latent indicator
parameter γ (and basis function), model (3.3) is still essentially a Bayesian linear
model for which an attractive conjugate prior distribution for parameters exists for
efficient Gibbs sampling. Since this model is only a component of our joint functional
survival model, we defer our discussion of appropriate priors to Sect. 3.3, after we
present our joint modeling framework. Note that we have not included any covariate
affecting the functional process in our model above; this is easy to handle in our
framework by adding a term corresponding to the covariate in the regression model
(3.3).
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3.2.2 Joint Survival Model

Having specified our functional submodel above, we now proceed to model the
relationship between the functional measures Y and event time T . We do so by con-
structing the likelihood in a prospective manner, P (T , Y) = P (T |Y)P (Y), rather
than a retrospective manner using reverse factorization by conditioning on the sur-
vival process. The probability model for P (Y) is as specified in (3.3). In this section,
we describe how we characterize the distribution P (T |Y).

We model the failure time via a proportional hazards model. Following Cox
(1972, 1975), and under the conditions discussed by Kalbfleisch and Prentice (2002),
we use the original Cox model formulation, in which the hazard depends on the
(true) functional process Yi(t) through its current value (and/or other time-dependent
covariates) and time-independent covariates Li . The framework for characterizing
associations among the functional and survival processes, as well as other covariates,
is then given by

h(t) = lim
dt→0

P {t < Ti < t + dt |Ti ≥ t , YH
i (t), Li}

= h0(t) exp{θ1Yi(t) + θ2Li},
where the coefficients (θ1, θ2) reflect the association of interest and YH

i (t) = {Yi(u) :
0 < u < t} is the history of the functional process Yi up to time t . Note here that
this implementation is complicated by two facts. First, the functional covariate is
subject to measurement error and is observed only intermittently for each subject at
ti = (ti1, . . ., tipi

). Second, and more important, plugging in the entire (smoothed)
functional profile leads us to a high-dimensional integral in the likelihood:

f (Ti , δi |Yi) = {h0(Ti) exp [θ1Yi(Ti) + θ2Li]}δi ×

exp

{
−
∫ Ti

0
h0(t) exp [θ1Yi(t) + θ2Li]dt

}
.

The high-dimensional integral in the likelihood does not have an analytical solution
for the functional profile specified via a spline representation. Brown et al. (2005) use
a trapezoidal rule to approximate the above integral. We present an exact Bayesian
analysis via the use of auxiliary variables. To this effect, define a latent auxiliary
variable wi as

wi = β ′
γ (i)θ1γ + L′

iθ2 + ei , ei ∼ N (0, τ 2), (3.4)

where βγ (i) = βγ + β i,γ represents the ith PSA trajectory, θ1γ , θ2 are the regres-
sion coefficient vectors corresponding to the time-dependent and time-independent
covariate information, and ei is an error term. The auxiliary variables summarize the
time-dependent covariate effects via a simple projection. The functional submodel is
then coupled with the survival model via these latent auxiliary variables by imputing
the wi into the proportional hazards model via the hazard function as:

h(t | Yi , Li) = h0(t) exp (wi), (3.5)
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where Yi is the ith individual time-dependent covariates vector, Li is the time-
independent covariates, and h0(t) is the baseline hazard function at time point t , free
of the covariates.

The introduction of latent auxiliary variables not only eases the high-dimensional
integration in the likelihood but also serves three purposes. The first concerns di-
mension reduction, wherein the information from the potentially high-dimensional
regression coefficient β is passed along to the survival model via a simple projection
into a lower dimensional subspace. Second, in adopting this Gaussian residual effect,
many of the conditional distributions for the model parameters are now of a standard
form, which greatly aids in the computations. To be specific, conditional on wi’s,
model (3.3) is independent of the event time model (3.5) and can be written as a
standard Bayesian linear regression on the basis space defined by X, as we show
in Sect. 3. The use of the residual component ei is consistent with the belief that
there may be unexplained sources of variation in the data, perhaps due to the lack of
a linear relationship. Finally, the latent auxiliary variable formulation allows us to
easily generalize our model to handle multiple functional covariates (Sect. 3.6).

We assume that the baseline hazard is a piecewise function as:

h0(t) = λj (sj−1 ≤ t < sj ), j = 1, . . ., J. (3.6)

In theory, increasing J approximates semiparametric methods. Other nonparametric
priors (such as the gamma process and the beta process) can be easily incorporated
within our framework. Based on (3.5) and (3.6), we write the cumulative hazard
function for the ith individual as

∫ Ti

0
h0(t)exp(wi)dt =

J∑
j=1

I (Ti > sj−1)
∫ min(sj ,Ti )

sj−1

exp(wi)λjdt ,

where the indicator function I (Ti > sj−1) yields 1 if the survival time is within or
later than the j th interval and 0 otherwise.

3.3 Prior Distributions

The parameters and random variables to estimate in our model are

M = {β, σ 2
ε , μγ , �γ , γ , θγ , τ 2, λ}.

We shall discuss each of the priors and distributions for the regression and survival
models, respectively.

3.3.1 Priors for The Regression Model

We assign a Gaussian prior distribution, MVN(0, �i,γ ), to the subject level regres-
sion coefficients β i,γ . Based on the fact that the ith curve may not span the complete
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set of selected change points, we use �i,γ to denote the subject-specific realizations
of parameter �γ that respectively represent the population curve covariance corre-
sponding to the latent variable γ . In the implementation of our methodology for our
particular example, the number of basis functions K is relatively small. At least in
principle, we can then allow the covariance matrices �γ to be general. However,
from both a practical and methodological point of view, it is crucial to lower the
dimensionality of �γ . There are a variety of approaches available to this end. For
example, Shi et al. (1996) achieve parsimony using a principal component decom-
position of the covariance matrix of random effects. In a different context, Daniels
and Pourahmadi (2002) provide a Bayesian method based on Cholesky decomposi-
tion. Since in our application we work with truncated power series basis functions,
dimension reduction has a natural form that exploits the mixed model representation
of such basis functions (Ruppert et al. 2003; Baladandayuthapani et al. 2008). The
essential idea is to take the coefficients at the knots to be independent while allowing
the polynomial part to have an unstructured covariance matrix. Thus, if p is the
degree of the regression splines and K∗

γ is the number of selected knots, then we take
�γ = diag(�, σ 2IK∗

γ
), where � is an unstructured p×p matrix. Further, we specify

a Gaussian prior distribution on the population level profile or the fixed effects, βγ ,
as βγ ∼ MVN(0, cIKγ

), where we set c to be 100, and Kγ = 1+p+K∗
γ . We adopt an

Inverse–Wishart prior distribution for � and an inverse-gamma prior distribution for
σ 2. For the regression model (3.3), we assume an inverse-gamma prior distribution
for the constant variance σ 2

ε .
The selected change points are identified by the vector γ . We use a Bernoulli

prior for each element of this indicator vector, γk ∼ Bernoulli(πk), and let πk = π

for all k. The hyperprior for the probability of being a change point is specified as
a beta prior, π ∼ Beta(aπ , bπ ). Kohn et al. (2001) pointed out a flexible approach
specifying beta prior hyperparameters according to a certain expectation or prior
knowledge.

3.3.2 Priors for The Survival Model

We use conjugate prior distributions for the parameter pair θγ and τ 2, defined as
θγ ∼ MVN(0, τ 2Vγ ) and τ 2 ∼ IG(aτ , bτ ), where Vγ = diag(h). The hyperprior
for the vector h = {h�} is specified elementwise as inverse-gamma distribution,
h� ∼ IG(c�, d�). For the survival model, the prior distribution for a piecewise baseline
hazard functions, λ = {λj } is λj ∼ IG(aj , bj ), where aj and bj can be specified for
each interval.

We proceed with the estimation of the above model setup via Markov chain Monte
Carlo (MCMC) methods. The full conditional distributions are presented for the re-
gression and survival models in the Appendix. We use the Gibbs sampler (Gelfand
and Smith 1990) to obtain samples from the posterior distribution. Two parame-
ters, wi and γk , do not have close forms in their conditionals. Therefore, we use
Metropolis–Hastings algorithm (Metropolis et al. 1953; Hastings 1970) to sample
those two parameters.
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3.4 Model Selection Criteria

For model selection and comparison, we use two comparison statistics: the DIC and
the CPO (Gelfand et al. 1992). The DIC is the sum of the deviance estimated using
posterior estimates of the parameters and twice the effective number of parameters
(Spiegelhalter et al. 2002). A better fit will have a smaller DIC. The DIC for our joint
models can be expressed as

DIC = 2
1

Q

Q∑
q=1

n∑
i=1

logf (Ti , δi , Yi | �(q)) −
n∑

i=1

logf (Ti , δi , Yi | �̄),

where �(q) denotes the parameter samples at the qth iteration of the MCMC method
and �̄ represents the means of the posterior samples. Chen et al. (2000) showed that
a Monte Carlo approximation of the integral in the CPO calculation can be used. For
our joint models, we have

̂CPOi =
⎛
⎝ 1

Q

Q∑
q=1

1

f (Ti , δi , Yi | �(q))

⎞
⎠

−1

.

Models with greater
∑n

i=1 log( ̂CPOi)’s indicate a better fit.

Computing DIC and
∑n

i=1 log( ̂CPOi) is straightforward based on the samples
from the MCMC method and the joint likelihood function:

f (Ti , δi , Yi) = f (Ti , δi | Yi)f (Yi)

∝ [
h0(Ti) exp (wi)

]δi exp

{
−
∫ Ti

0
h0(u) exp (wi)du

}
|2πσ 2

ε I|− 1
2

× exp

{
− 1

2σ 2
ε

(Yi − Xi,γ βγ − Xi,γ β i,γ )′(Yi − Xi,γ βγ − Xi,γ β i,γ )

}
.

3.5 Application to Prostate Cancer Data

We now consider a data set from a phase III trial of prostate cancer patients conducted
at M.D. Anderson Cancer Center (Millikan et al. 2008). The clinical trial studied 286
patients with metastatic or locally advanced prostate cancer who were randomized
and treated with either AA alone (arm AA) or chemo/hormonal therapy plus AA
(arm CH) between August 1996 and March 2003. A complete medical history was
obtained from each patient. All patients also underwent a physical examination. For
each patient, we have a record of the time (in days) between the trial starting day
and progression to AIPC or end of study, an indicator of censoring, which treatment
the patient received, day of each visit measured from registration, and PSA level
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measured on that day. The functional laboratory results of PSA, the leading diagnostic
marker for prostate cancer, is considered a predictor variable in our application. The
failure time variable, the time to progression of AIPC, is a right-censored variable.
Four time-independent covariates are also considered in the analysis. Their age at
diagnosis, prior local treatment, stratification via bone volume, and pretreatment
PSA doubling time (PSADT). For prior local treatment, patients either did or did
not receive definitive treatment. Patients were also stratified as follows: high-volume
bone or visceral disease, low-volume bone disease (one or two spots on bone scan),
local/nodal disease with prior definitive local therapy, or local/nodal disease without
prior definitive therapy. For simplicity, the three low-volume groups of patients were
combined into one category yielding two categories: high-volume disease or low-
volume disease. Since we have (intermittent) PSA measurements from the patients
before therapy, we include pretreatment PSADT as a time-independent covariate in
our survival model. It is a categorical variable stratified, as 0 if data are not available
to determine a doubling time, as 1 if doubling time is less than 3 months, and as 2 if
doubling time is greater than 3 months.

The number of PSA observations for each patient varied from 1 to 65. We use
the data set after a screening procedure removes those patients with fewer than four
observations. We transform the PSA levels into a log scale after adding 1. This trans-
formation is usually done so that residuals satisfy the assumption of homoscedasticity
and also to reduce the influence of outliers. We also transform the time axis, via a
one-to-one function, onto a log scale after dividing by 30 (the change from day to
month) and adding 1. Figure 3.1 depicts the overlapping PSA levels for 134 patients
in arm AA (upper panel) and 132 patients in arm CH (lower panel). The sparsity
of the profiles is suggested by the percentage of patients who have measurements
at or spanning the particular time point. More than 50 % of patients do not have
measurements before day 18 (equal to 0.47 in the unit of log(month+1)) and after
day 1210 (equal to 3.72 in the unit of log(month+1)).

We use a quadratic truncated power series basis function (Ruppert et al. 2003) to
model the subject and population PSA profiles. To construct the candidate pools of
change points we use 11 equally spaced knots for each arm, since it suffices for this
application. For the baseline hazard step function in the proportional hazards model,
we include ten-step intervals starting from day 0 to the last day. For the proposed
unified Bayesian model, we wish to impose proper but weak prior information. For
inverse-gamma priors, we let the shape hyperparameter to be larger than 1, allowing
existence of the expectation of the inverse-gamma distribution. For Inverse–Wishart
priors, we choose to use the degrees of freedom that are the smallest integers such that
the expectation of the distribution exists. The scale matrix is specified as the identity
matrix. We employ the following hyperparameter settings: (aσ , bσ ), (cσ , dσ ), (aτ , bτ ),
(c�, d�), and (aj , bj ) are specified as (2, 2), and (A, b) is specified as identity matrices
and 4. The hyperparameter c is specified as 100 to produce a non-informative prior
for βγ . We found that the results are insensitive to moderate modifications of these
priors. For the hyperparameter pair (aπ , bπ ), we use the method by Kohn et al.
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Fig. 3.2 The posterior probabilities of change points for arm chemohormonal (CH; top panel) and
arm androgen ablation (AA; bottom panel). The vertical axes are the posterior probabilities and the
horizontal axes are the location of the change points

(2001) to calculate the priors aπ = 1.077 and bπ = 4.846, with E(K∗
γ ) = 2 and

std(K∗
γ ) = 2 so that the number of selected knots, K∗

γ , is likely to range from 0
to 8. We run the MCMC chain for 60,000 iterations with 20,000 burn-in iterations.
To verify the stability of the algorithm, we run several different chains with various
starting knot vectors; the results show that the change point identification is quite
stable. Figure 3.2 shows the posterior probabilities of 11 equally spaced change
points for the treatment arms CH and AA.

Our results suggest that arm CH has two change points located at 0.86 (day 41)
and 1.71 (day 136), while arm AA has one change point that is located at 2.14 (day
225) with posterior probabilities very close to 1. Thus, our model seems to correctly
identify the change points of PSA trends for both arms, as suggested by Fig. 3.1.
The PSA levels usually decrease sharply due to the effect of the therapy, since the
therapy directly affects the prostate gland; but over time their effect wears off and
the PSA levels remain constant before increasing and causes prostate cancer.
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Fig. 3.3 Based on our proposed unified Bayesian model, the estimated trends of prostrate-specific
antigen (PSA) levels for arm chemohormonal (CH; red line) and arm androgen ablation (AA; green
line) with their 95 % credible intervals

Since it has been established that the volume of the prostate has a significant
positive correlation with the level of PSA found by a blood test, we want to esti-
mate the true trends of PSA levels over time for both arms. Figure 3.3 gives the
estimated population-level PSA trajectory for both the arms along with the 95 %
credible interval obtained using our proposed joint model, showing an L-shaped
pattern.

The population profiles intersect for the most part except between time units 1–2.
The difference in change points can explain the slight separation of the trends in the
two arms, as depicted by Fig. 3.3. Because an increasing PSA level usually indicates
prostate malfunction, we see the patients in arm AA deteriorating a bit at the end of
the time period as compared to arm CH. We also see evidence that the drop in PSA
levels is higher for arm CH than for arm AA. However, near the end of the study
(with log(month+1) ≥ 4.5), the PSA difference between the two arms needs careful
interpretation. This is because less than 10 % of patients have PSA observations at
or spanning this period and some of those patients have extremely high PSA levels
that may impose a larger influence on the estimation. Figure 3.4 shows the estimated
individual PSA trajectories with 95 % posterior credible intervals for four randomly
selected patients treated with CH.



3 Bayesian Functional Mixed Models for Survival Responses . . . 49

0 1 2 3 4

−4

−2

0

2

4

6

log(Month+1)

lo
g(

PS
A+

1)

0 1 2 3 4

−4

−2

0

2

4

6

log(Month+1)

lo
g(

PS
A+

1)

0 1 2 3 4

−4

−2

0

2

4

6

log(Month+1)

lo
g(

PS
A+

1)

0 1 2 3 4

−4

−2

0

2

4

6

log(Month+1)

lo
g(

PS
A+

1)

Fig. 3.4 Estimated individual prostrate-specific antigen (PSA) trajectories with 95 % posterior
credible intervals for four patients treated in arm chemohormonal (CH). Circles are actual PSA
measurements, dashed lines indicate the overall mean trend for arm CH

The figure reveals how we can borrow strength across subjects through our
Bayesian model to estimate the PSA trajectories when there is little or no infor-
mation. It is not surprising that the parts of the trajectories with little or no data have
wider pointwise intervals.

For prostate cancer data, the effectiveness of treatment on time to AIPC is of
interest. We apply our model to each of the two arms and compare the estimated
time-to-event survival curves. The upper panel of Fig. 3.5 shows two superimposed
survival curves based on our model and the Kaplan–Meier method with 95 % credible
intervals for the two arms.

The lower panel depicts two superimposed cumulative hazard curves for the two
arms based on our model, with 95 % credible intervals. The close approximation of
estimated survival curves to the Kaplan–Meier curves indicates a fair fit of the model
to the observed data. There is no apparent improvement for those in arm CH, but
there is some evidence that arm CH may perform marginally better than arm AA
because the estimated survival curve for arm AA is a little lower than the one for arm
CH. On the other hand, the estimated time-to-AIPC expectancy is 1249 days for arm
AA and 1527 days for arm CH. The 95 % credible bands are (881, 1768) and (1157,
2011) for arms AA and CH, respectively. The overlapping of the two credible bands
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Fig. 3.5 Upper panel: Survival curves for arms androgen ablation (AA; green lines) and chemo-
hormonal (CH; red lines), Kaplan–Meier curve (thick dotted line), our estimated survival curves
(solid lines), and their 95 % credible intervals (thin dashed lines). Lower panel: Cumulative hazard
curves for two arms and their 95 % credible intervals

means that there is no significant difference in time-to-AIPC expectancy between
the two arms. The hazard curves exhibit a similar pattern.

In our model setup, the auxiliary variable w serves as a bridge parameter between
the functional regression model and the survival model and captures the relationship
between the functional predictor and the survival time. Figure 3.6 shows the box
plots of the estimated w’s and the observed PSA levels with high or low w’s. The top
two plots are for arm AA.

The top left plot overlaps ten observed PSA levels (dotted lines) that are for patients
with the highest estimated w’s, and ten other levels (solid lines) that are for patients
with the lowest estimated w’s. The mean observed survival time for the patients with
the highest and lowest w’s are 1.95 and 4.46, respectively. The separation of PSA
levels for two groups of patients shows that long-survived patients have PSA levels
that drop to very low levels and remain low after treatment, while short-survived
patients have PSA levels that drop slightly yet bounce back quickly. Therefore, we
conclude that the mostly nonzero w’s reveal the validity of our joint model for these
data based on the fact that the functional PSA levels have a (negative) effect on the
progress to AIPC. The effect of informative scalar w is further illustrated by the top
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Fig. 3.6 Left: observed prostrate-specific antigen (PSA) trajectories for 20 patients. Ten patients
with the highest estimated w’s are plotted in dotted lines, and ten patients with the lowest estimated
w’s are plotted in solid lines. Right: box plots for posterior means of scalar w. For both arms, “_S”
means patient’s time to progression of androgen-independent prostate cancer (AIPC) is short than
or equal to 32 months, and “_L” means patient’s time to progression of AIPC is longer than 32
months

Table 3.1 The estimation of coefficients for time-independent covariates. The values in parentheses
are the estimated standard deviations

Age at Rx Definitive Stratification PSADT

Arm AA −0.020(0.038) −0.628(2.151) 0.595(1.984) −0.569(1.308)

Arm CH −0.056(0.033) −1.397(1.733) 0.455(1.740) −0.636(1.015)

PSADT prostrate-specific antigen doubling time, AA androgen ablation, CH chemohormonal

right plot in Fig. 3.6, where two box plots are stratified by long-term and short-term
survivors according to the threshold of 32 months. We see that the w’s are negatively
associated with survival time. The bottom two plots in Fig. 3.6 are for arm CH, and
the findings on w are the same as those for arm AA.

Table 3.1 gives the estimates of coefficients, which are the last four elements
of vector θ , corresponding to the four time-independent covariates. The estimation
shows that, for both arms, elder age at diagnosis, definitive treatment, low volume of
stratification, and pretreatment PSADT longer than 3 months lead to lower hazards.
However, there is only one significant covariate for arm CH: age at diagnosis.
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Table 3.2 The model
comparison measurements for
both arms

Model DIC
∑n

i=1 log( ̂CPOi )

Change point model 2362.7 −2652.7

Arm AA Quadratic model 2402.4 −2706.0

Linear model 2616.3 −3033.6

Change point model 2129.5 −2405.5

Arm CH Quadratic model 2326.3 −2490.3

Linear model 2859.9 −2951.0

AA androgen ablation, CH chemohormonal,
DIC deviance information criteria

For comparison, we also consider two other models without the change points.
The model setups are similar to that in Sect. 3.2, except that any term with the
indicator vector γ is dropped. One model uses the linear basis:

XLinear
i (t) =

⎡
⎢⎢⎢⎣

1 ti1
...

...

1 tipi

⎤
⎥⎥⎥⎦ ,

and the other uses the quadratic basis

XQuad
i (t) =

⎡
⎢⎢⎢⎣

1 ti1 t2
i1

...
...

...

1 tipi
t2
ipi

⎤
⎥⎥⎥⎦ .

The model comparison measures DIC and
∑n

i=1 log( ̂CPOi) are reported in Table 3.2
for both arms.

The change point model is a joint model using the change points selected by our
proposed model (as shown in Fig. 3.2), two change points included for arm CH,
and one change point included for arm AA. For both arms, the joint change point
model is the best fit to the data with the largest CPO and smallest DIC. This result
is consistent with the outcome in Fig. 3.2, where our flexible change point selection
model identifies those significant change points.

3.6 Discussion

Motivated by the analysis of the data from a prostate cancer phase III clinical trial
data, we present a joint modeling approach for functional and survival data using a
nonparametric regression model and a proportional hazards model. Further, we allow
random change points in the functional observations, both in terms of locations and
number, to capture the important curvatures of the trajectory. This unified framework
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combines the information from both functional predictors and time to progression
to generate reliable results for regression and survival analysis. Moreover, a novel
auxiliary variable scheme for a fully Bayesian estimation of our model is proposed.
This novel scheme reduces the dimension of the parameter space, and greatly eases
the computations in Bayesian estimation. Our results indicate that this scheme aids
in the understanding or interpretation of the linkage between the functional predictor
and time to progression.

Our model can also benefit from several refinements and extensions. We propose
to model the survival end point via Cox’s proportional hazards model, mainly due
to its ease of implementation and interpretability. Other survival models, such as
accelerated failure time models and cure rate models, can easily be accommodated
in our framework. In some situations one may want to consider the effect of time-
independent covariates, such as age at diagnosis, on the progress of the disease. In
the joint model, allowing interaction between θ1 and θ2 could address such concerns.
Further, one may observe multiple functional predictors and may want to assess their
impacts on survival. Suppose that for the ith individual we observe the κth functional
covariate Yiκ , the basis matrix can be denoted by Xi,γ κ

, and the fixed and random
regressed coefficients can be denoted by βγ κ

and β i,γ κ
. Then one can express the

regression model as

Yiκ = Xi,γ κ
βγ κ

+ Xi,γ κ
β i,γ κ

+ εiκ , εiκ ∼ MVN(0, σ 2
κ Ipiκ

).

The information from multiple functional predictors can be easily absorbed into the
survival segment via our novel proposed linear model for the auxiliary scalar wi ,

wi =
K∑

κ=1

Bi,γ κ
θγ κ

+ ei , ei ∼ N (0, τ 2),

where B′
i,γ κ

= [(βγ κ
+ β i,γ κ

)′, L′
i]. The rest of the model setup, including prior and

posterior distributions, are analogous to the univariate case. Therefore, we conclude
that the auxiliary scalar scheme is not only enabling feasible computing in the joint
modeling framework but also exhibiting the potential for generalization to a more
complex model.
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3.7 Appendix

3.7.1 The Model Summary with Specified Prior Distributions

To summarize the hierarchical model setup, we define

Random function Yi ∼ MVN(Xi,γ β i,γ , σ 2
ε Ipi

),

σ 2
ε ∼ IG(aσ , bσ ),

β i,γ ∼ MVN(βγ i
, �i,γ ),

βγ i
= Jiβγ ,

�i,γ = Ji�γ J′
i where �γ = diag(�, σ 2IK∗

γ
),

βγ ∼ MVN(0, cIKγ
),

� ∼ IW (A, b),

σ 2 ∼ IG(cσ , dσ ),

γk ∼ Bernoulli(πk), where πk = π for all k,

π ∼ Beta(aπ , bπ ),

Linear predictor wi ∼ N(B′
i,γ θγ , τ 2), where B′

i,γ = [β ′
i,γ , L′

i],

θγ , τ 2|γ , Vγ ∼ NIG(0, Vγ , aτ , bτ ), where Vγ = diag(h),

h� ∼ IG(c�, d�),

Hazard function h(t | Yi) = h0(t) exp (wi),

h0(t) = λj (sj−1 ≤ t < sj ),

λj ∼ IG(aj , bj ),

for i = 1, . . ., n, j = 1, . . . , J , k = 1, . . .,K , and � = 1, . . ., (Kγ + m).
The fourth and fifth lines in the above model need special attention. Based on the

fact that the ith curve may not span the complete set of selected change points, βγ i

and �i,γ are the subject-specific realizations of parameters βγ and �γ , where they
respectively represent the population curve and its covariance corresponding to the
latent variable γ . The relationship can be expressed via a rectangular indicator matrix
Ji as βγ i

= Jiβγ and �i,γ = Ji�γ J′
i with �γ = diag(�, σ 2IK∗

γ
). For example,

suppose there are five change points for the population curve, and the ith individual
only spans the first two change points (i.e., does not have measurements beyond the
third change point). Because the basis has the quadratic polynomial segment and the
change points segment, the dimensions of βγ and �γ will be 8 and 8 by 8. However,
for the ith individual, the dimensions of βγ i

and �i,γ are 5 and 5 by 5. Therefore,
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βγ i
is linked to βγ via a 5 by 8 rectangular index matrix:

Ji =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.7)

The same Ji is used to link �γ and �i,γ . These expressions with Ji enable the
derivation of the posterior distributions below.

3.7.2 Posterior Distributions

The conditional distribution for the ith regressed covariates vector β i,γ is updated
using regression likelihood

β i,γ | Xi,γ , Yi , σ
2
ε , �γ , wi , τ

2, θγ , γ ∼ MVN(β∗
i,γ , τ 2�∗

i,γ ),

where �∗
i,γ = (τ 2(�−1

i,γ + X′
i,γ Xi,γ /σ

2
ε ) + θ1i,γ θ ′

1i,γ )−1 and β∗
i,γ = �∗

i,γ ×
(τ 2(X′

i,γ Yi/σ
2
ε + �−1

i,γ μi,γ ) + (wi − L′
iθ2)θ1i,γ ). The notation θ1i,γ is the part of the

coefficients corresponding to time-dependent covariates β i,γ , while θ2 is the part of
the coefficients corresponding to time-independent covariates Li in later posteriors.
The model variance σ 2

ε is updated by

σ 2
ε |β i,γ , Yi , Xi,γ ∼ IG(a∗

σ , b∗
σ ),

where a∗
σ = aσ + (

∑n
i=1 pi)/2 and b∗

σ = bσ + [
∑n

i=1 (Yi − Xi,γ β i,γ )′(Yi −
Xi,γ β i,γ )]/2. The indicator vector γ can be updated elementwise using the
Metropolis–Hastings algorithm with marginal posterior γk | γ −k , Yi , Xi,γ , σ 2

ε ,
�, σ 2, θγ , Vγ proportional to

π (γk)π (θγ )π (Vγ )

[ |	−1
γ |

|cIγ |
∏n

i=1

|τ 2M−1
i,γ |

|�i,γ |

]1/2

exp

{
1

2τ 2

∑n

i=1
α′

i,γ M−1
i,γ αi,γ

}

× exp

{
1

2

(∑n

i=1
α′

i,γ M−1
i,γ �−1

i,γ Ji

)
	−1

γ

(∑n

i=1
Ji�

−1
i,γ M−1

i,γ αi,γ

)}
,

where αi,γ = τ 2X′
i,γ Yi/σ

2
ε + (wi − L′

iθ2)θ1i,γ , Mi,γ = τ 2(X′
i,γ Xi,γ /σ

2
ε + �−1

i,γ ) +
θ1i,γ θ ′

1i,γ and 	γ = (
∑n

i=1 J′
i�

−1
i,γ Ji) − τ 2(

∑n
i=1 J′

i�
−1
i,γ M−1

i,γ �−1
i,γ Ji) + (1/c)IKγ

. It
is worth to point out that the generation of a candidate γ is done by changing one
element at a time in fixed sequencing order within each iteration. The conditional
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distribution for the informative scalar wi follows the combination of information
from both the regression and proportional hazards models. The likelihood of the PH
model leads to its nonstandard form

wi | Ti , δi ,h0(t), Bi,γ , θγ , τ 2 ∝ exp

{
− (w2

i − 2wiB′
i,γ θ i,γ )

2τ 2

}

× [h0(Ti) exp (wi)]
δi exp

{
−
∫ Ti

0
exp (wi)h0(t)du

}
,

which can be updated by a Metropolis step.
The following layer includes the regression coefficient as population mean βγ ,

which can be updated as

βγ | β i,γ , �i,γ ∼ MVN(β∗
γ , cM),

where M = (c
∑n

i=1 J′
i�

−1
i,γ Ji + IKγ

)−1 and β∗
γ = cM(

∑n
i=1 J′

i�
−1
i,γ β i,γ ). The un-

structured covariance matrix of the polynomial part for quadratic spline coefficients,
�, is updated as

�|βγ , β i,γ ∼ IW (A∗, b∗),

where A∗ = [A−1+∑n
i=1 (αi1α

′
i1)]−1, αi = β i,γ −βγ i

= [α′
i1, α′

i2]′, and b∗ = b+n.
Here, the dimensions of αi1 and αi2 are 3×1 and K∗

γ i
×1. Linking to the covariance

of the change points part for the quadratic spline coefficients, σ 2, is updated as

σ 2 | β ′
i,γ s, βγ ∼ IG(c∗

σ , d∗
σ ),

where c∗
σ = cσ + (

∑n
i=1 K

∗
γ i

)/2 and d∗
σ = dσ + (

∑n
i=1 α′

i2αi2)/2. The probability
of being change point π can be updated as

π | γ ∼ Beta(a∗
π , b∗

π ),

where a∗
π = aπ + Kγ and b∗

π = bπ + K + Kγ . The common coefficient vector θ in
the linear predictor model is updated as

θγ | w, B, τ 2, Vγ ∼ MVN(θ∗, τ 2V∗),

where V∗ = (V−1
γ +∑n

i=1 J′
iBi,γ B′

i,γ Ji)−1 and θ∗ = V∗(
∑n

i=1 wiJ′
iBi,γ ). Here the

definition of Ji is similar to its definition in (7.2) with a dimension adjustment to
match Bi,γ . The conjugate inverse gamma prior for variance τ 2 leads to its conditional
distribution:

τ 2 | θγ , Vγ , w, B ∼ IG(a∗
τ , b∗

τ ),

where a∗
τ = aτ + (n + Kγ + m)/2 and b∗

τ = bτ + [θ ′
γ V−1

γ θγ + ∑n
i=1 (wi −

B′
i,γ θ i,γ )2]/2.
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The next layer includes scale parameters hk , which is updated by

h� | θγ , τ 2 ∼ IG(c∗
� , d∗

� ),

where c∗
� = c� + 1/2 and d∗

� = d� + θ2
� /2τ 2.

The parameters of baseline hazard step function h0(t), λj ’s, can be updated using
the proportional hazards model:

λj | T, w ∼ IG(a∗
j , b∗

j ),

where a∗
j = aj +∑n

i=1 δiI (sj−1 ≤ Ti < sj ) and b∗
j = bj +∑n

i=1

[
I (Ti > sj−1) ×∫ min(Ti ,sj )

sj−1
exp(wi)du

]
.
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Chapter 4
Bayesian Predictive Approach to Early
Termination for Enriched Enrollment
Randomized Withdrawal Trials

Yang (Joy) Ge

Abstract When assessing chronic pain, in certain settings the enriched enrollment
randomized withdrawal (EERW) design may offer advantages over traditional trial
designs in characterizing the treatment effect in a clinically relevant way. The EERW
design by definition includes two distinct phases: an enriched enrollment phase
during which subjects initially receive open-label treatment with the test drug, and
a double-blind randomized withdrawal phase during which apparent responders are
randomized to receive test drug or placebo. The response rate during the enriched
enrollment phase provides useful information on the effectiveness of the test drug,
and interim monitoring of the response rate during the enriched enrollment phase
can help terminate the trial early when evidence accumulates to demonstrate that
the treatment is ineffective. This article reviews the method of Bayesian predictive
probability for observing a sufficient magnitude of response rate at the end of enriched
enrollment phase given the observed data at an interim look. The method is applied
to derive futility stopping rules, and the sensitivity of the futility stopping rules is
examined based upon the choice of prior distributions. The operating characteristics
of these stopping rules are compared to those based on observed response rate using
simulated examples.

4.1 Introduction

When designing clinical trials, one would like to show the benefit of the treatment
if there truly is one, and to characterize the treatment effect. In a chronic pain study,
the usual efficacy measure is subject-reported pain intensity scores, and treatment
effect is characterized by the mean change from baseline in pain intensity scores.
It is often difficult to demonstrate the beneficial effect of a drug in a traditional
randomized study design, since it is conducted on a population, including subjects
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who are unlikely to respond to treatment. Inclusion of such nonresponders may
prevent us from showing the drug benefit and from characterizing the treatment
effect since the mean change from baseline will be calculated over both responders
and nonresponders.

The enriched enrollment randomized withdrawal (EERW) design provides a so-
lution to the challenge mentioned above by selecting a cohort of subjects who are
likely to respond to and tolerate the test drug. Katz (2009) discussed the EERW trial
design as a methodology for assessing the drug effect on analgesics pain, and Hewitt
et al. (2011) discussed how enriched enrollment strategy increases assay sensitivity
in a proof-of-concept (POC) study in neuropathic pain.

An EERW design for a chronic pain study is shown in Fig. 4.1. First, subjects
will enter into a screening period during which a subject’s pain intensity scores, on
a scale from 0 to 10 (with 0 representing “no pain” and 10 representing “worst pain
you can imagine”), will be recorded without taking any drug. Then those who meet
the baseline entry criteria will continue into the single-blind active run-in period.
The baseline entry criteria can be subjects must have daily pain intensity scores ≥ 5
and < 10 over the last 3 days prior to single-blind run-in period, as well as ≥ 75 %
compliance with daily pain intensity score reporting. The single-blind run-in period
is the enriched enrollment phase, during which subjects will take the active test drug
and continue reporting daily pain intensity scores for 2 weeks. Next, at the end of
the run-in period, pain improvement will be calculated as compared to the baseline
of run-in, which defines “responders.” For example, those with at least 20 or 30 %
improvement as compared to run-in baseline scores will be identified as responders.
Then responders will continue into the double-blind treatment period, which is the
randomized withdrawal phase, to be randomized to receive test drug or placebo. The
drug effect will be assessed by the “withdrawal” effect: If the drug is effective, a
subject’s pain experience shall be maintained (assuming a steady-state response) if
randomized to the test drug group, but worsened or even return to the screening level
if randomized to the placebo group; therefore, treatment effect is characterized by
pain worsening in the placebo group relative to the test drug group.

It has been argued that the EERW design may cause the issue of generalizability.
In December 2012, Food and Drug Administration (FDA) published a daft guidance:
Enrichment Strategies for Clinical Trials to Support Approval of Human Drugs and
Biological Products, which points out that enriched enrollment is the prospective
use of any subject characteristic to select a study population in which detection of a
drug effect (if one is in fact present) is more likely than it would be in an unselected
population; and the selected responder population is in fact the population in which
one would like to demonstrate the drug benefit and characterize treatment effect.

One potential issue with the EERW trial design is that the number of subjects who
enter the enriched enrollment phase in order to achieve the desired number required
for randomization is dependent upon the response rate. If the response rate during
the enriched enrollment phase is much lower than expected, more subjects will need
to be enrolled to achieve the number desired for randomization.

To minimize the number of subjects exposed to ineffective drugs, interim mon-
itoring of the response rate during the enriched enrollment phase can be used to
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Fig. 4.1 Trial design of an enriched enrollment randomized withdrawal trial

terminate the trial early when evidence accumulates that suggests the treatment is in-
effective, as compared to historical data assuming the same population. In an EERW
trial, the active run-in enriched enrollment phase not only helps us identify respon-
ders but also provides useful information on the percentage of responders (i.e., drug
effect): the smaller the proportion of subjects that respond to the test drug during the
enriched enrollment phase, the less effective the drug. The futility rule can simply
be based on the observed percentage of responders. If the observed percentage is
lower than the prespecified futility bar, then the trial can be terminated early due to
futility. However, given the relatively small sample sizes at interim looks, especially
for POC studies with smaller sample sizes than phase IIb and phase III trials, the
futility stopping rules based on observed response rate can be sensitive to outliers.

Bayesian methods have been a growing area of application in clinical trials. Gould
(2005) described how the timing of interim evaluation based on predictive probability
(PP) affects the ability to reach a decision to stop or continue. Dmitrienko and Wang
(2006) reviewed Bayesian strategies with a focus on Bayesian PP for monitoring
clinical trial data. Both reviewed the Bayesian methods for two-arm trial designs
with normal continuous data as well as binary data. Herson (1979) discussed the
early termination plans based on PP for phase II, single-arm trials with dichotomous
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outcome, by testing a simple null hypothesis on the Bernoulli parameter against a
one-sided alternative:

H0 : θ = θ0;H1 : θ < θ0.

The same idea can be implemented in the early termination plan during the single-
arm, enriched enrollment phase of an EERW trial. But unlike a phase II single-arm
trial, significance level and power are not a concern for the interim monitoring of the
enriched enrollment phase of an EERW study; therefore, in this chapter, a simplified
Bayesian PP approach for interim monitoring is described without specifying a hy-
pothesis. The method of the Bayesian predictive approach is discussed in Sect. 4.2. In
Sect. 4.3, the introduced stopping rules based on the PP approach are illustrated via
simulated examples, and operating characteristics are examined. Finally, concluding
remarks are provided in Sect. 4.4.

4.2 Bayesian Predictive Probability Approach

To construct the PP method, consider an EERW trial with a total sample size of
N subjects in the single-blind active run-in period. Let θ denote the probability
that a subject will respond to the test drug, and assume individual subjects respond
independently to the test drug. The futility bar is set to θ0, which is dependent on
information regarding a clinically meaningful effect, insight into the true response
rate, or alternatives that exist on market. An interim analysis is conducted after n
subjects have completed the run-in period, and X responders are observed among
those n subjects. A reasonable question to ask is “Given X responders were observed
out of the first n subjects, what is the probability of observing a response rate that
would be greater than θ0 at the end of the single-blind run-in period?” This probability
is called the PP:

Prob.(Response Rate > θ0|X responders were observed out of first n subjects).

If the PP is low, that is, given the interim results, it is unlikely to observe a response
rate greater than θ0 upon completion of the single-blind run-in period, then the trial
can be stopped for futility.

Note that the criterion described above includes both the interim data and future
observations. Let Y denote the number of responders observed out of N−n new sub-
jects after the interim look. Since Y is not observable at the interim look, calculation
of PP will require replacing it with its predicted value. To construct the Bayesian
framework for the calculation of PP, assume a priori that θ follows a β distribution
B(a, b). Given X = x responders observed at the interim look, the posterior for θ

is also a β distribution B(a + x, n − x + b), and the predicted value of Y follows a
β-binomial distribution, which is the predictive distribution for Y :

Pr (Y = y|X = x) =
⎛
⎝N − n

y

⎞
⎠ �(a + b)

�(a)�(b)
· �(a + y)�(b + N − n − y)

�(a + b + N − n)
.
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The Bayesian PP is given by summing over all possible future event counts that lead to
a successful outcome upon completion of the single-blind run-in period, conditional
on the data observed up to the interim look, i.e.,

PP=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, x > Nθ0

N−n∑
y=Nθ0−x+1

⎛
⎝N − n

y

⎞
⎠ � (a + b)

� (a) � (b)
· � (a + y) � (b + N − n − y)

� (a + b + N − n)
, x ≤ Nθ0

.

As mentioned above, a futility stopping rule is constructed by comparing the
computed PP to an appropriate threshold γ .

The next questions for consideration are: What is the timing of the first interim
analysis? How does the choice of the prior affect PP? How does the choice of
threshold γ impact futility stopping? Those questions will be explored in the next
section.

4.3 Simulation Study

The proposed approach was applied via simulation to determine the optimal timing
of futility analysis and to derive stopping rules.

For the simulations, a trial with N = 180 subjects is assumed to be enrolled in
the single-blind active run-in period. The futility bar of the observed response rate
is predetermined to be 20 %, i.e., θ0 = 0.2. The scenarios considered are:

• Stopping scenarios: true response rate θ = 0.10 and 0.15
• Continuing scenarios: true response rate θ = 0.25 and 0.30
• Borderline scenario: true response rate θ = 0.20

Prior beliefs concerning the magnitude of the response rate, θ , have an impact on
the performance of futility stopping rules. To examine the relationship between the
assumed priors and the behavior of stopping rules, four types of priors are considered
in this article: uniform, weak, strong right, and strong wrong, with strong right/wrong
indicating correct/wrong prior belief of the magnitude of θ . Quantification of prior
beliefs about θ is achieved through specifying parameters a and b in the β distribution:

• a = 1 and b = 1 for uniform prior
• a and b such that the mean of the prior distribution is equal to the prior belief of

the true response rate, and the coefficient of variation is equal to 0.1 for the weak
prior

• a and b such that the mean of the prior distribution is equal to the prior belief
of the true response rate, and the coefficient of variation is equal to 0.05 for the
strong prior

It is also of interest to study the impact of the criterion based on the choice of γ .
Operating characteristics such as stopping probability and average sample size are
examined under different choices of γ .
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All results are based on 10,000 simulation runs per scenario. Please note that
because the results are quite similar between scenarios θ = 0.10 and 0.15, and be-
tween scenarios θ = 0.25 and 0.30, the results for scenarios θ = 0.10 and 0.30 are
not displayed in this chapter.

4.3.1 Timing of Interim Analysis

Deciding to continue or terminate a trial based upon a small proportion of the planned
sample size is challenging due to uncertainty about the true treatment effect. It is
advisable to explore the PP under different prior beliefs as a function of the proportion
of planned sample size to facilitate the decision on the timing and number of interim
looks.

In Fig. 4.2, PP was calculated and plotted as a function of interim sample pro-
portion. Data for the upper plot were simulated from a binomial distribution with
θ = 0.15, and for the lower plot, θ = 0.25. The upper plot shows that a small threshold
(γ < 0.15) and a small sample size at interim (< 30 % of planned sample size) can
lead to insensitivity of the stopping rule to a negative finding at interim, especially
when the prior belief of θ is not strong or is wrong. A small threshold is not a concern
when the true response rate is higher than the futility bar θ0, as can be seen from the
lower plot of Fig. 4.2.

In an EERW study, during the enriched enrollment phase, the trial will never
be stopped for overwhelming efficacy and the focus is stopping for futility only;
therefore, a small threshold is desirable (γ < 0.3). If stopping for efficacy is also
desired in a single-arm study, then a larger threshold is needed. Plotting the PP as a
function of interim sample proportion will provide help to determine the threshold
for the efficacy stopping rule and for the timing of an interim analysis.

4.4 Operating Characteristics

The operating characteristics of the stopping rules based on observed response rate
and based on Bayesian PP approach under different prior beliefs are examined for
the EERW trial with two equally spaced interim looks during the run-in period, i.e.,
when 60 subjects and 120 subjects have completed the run-in period, respectively.
The PP stopping threshold is investigated from 0.1 through 0.3.

Tables 4.1, 4.2, 4.3 display the results of stopping probabilities and average sam-
ple sizes for the stopping scenario (θ = 0.15), borderline scenario (θ = 0.20), and
continuing scenario (θ = 0.25), respectively.

It can be seen from Table 4.1 that a very small PP threshold (γ <0.2) results in
a lack of sensitivity of the corresponding futility stopping rule to negative interim
findings, especially at earlier interim looks under uniform and weak priors. A larger
PP threshold (γ > 0.2) increases the chance of stopping the trial early. Even though
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Fig. 4.2 Predictive probability under different prior distributions as a function of proportion of the
planned sample size at an interim stage. Data were simulated with true response rates of 0.15 and
0.25 for the upper and lower plots, respectively. For the weak and strong right (S-RT) priors, the
means of the prior distributions are equal to the true response rates, and the mean of the strong
wrong (S-WR) prior distribution is set to 0.20

uniform and weak priors may fail to stop the trial at earlier interim looks, the chance
of stopping the trial at later looks increases when evidence accumulates. Note that
under strong wrong prior, the stopping rule exhibits a lower probability of terminating
the trial. The performance is even worse than that based on observed response rate,
and as a result, the average sample size is higher.

Table 4.2 implies that, when lacking evidence to determine trial continuation or
termination, stopping rules based on Bayesian PP approach under uniform, weak,
and strong right priors can decrease the chance of early futility termination compared
to the rule based on observed response rate. Strong wrong prior belief does have an
impact on the performance of stopping rules as a substantial amount of evidence
needs to be accumulated at interim looks to overcome its impact.

As mentioned in Sect. 3.1, a small threshold is not a concern when the true response
rate is higher than the futility bar θ0, as confirmed by results from Table 4.3. Table 4.3
also suggests that when the true response rate is 25 %, i.e., only slightly higher than
the futility bar, the stopping rule based on the observed response rate has a fairly
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Table 4.1 Operating characteristics of stopping rules based on observed response rate and based
on Bayesian PP (true response rate θ ue res)

Operating characteristics

PP Prior Stopping probability (%) Average

Approach Threshold Distribution First IA Second IA Sample
size

Observed – – 81.42 93.83 74.85

Bayesian γ = 0.10 Uniform 0.00 71.53 137.08

Weak 1.46 76.93 132.97

Strong-RT 58.27 84.95 94.07

Strong-WR 1.46 74.09 134.67

γ = 0.15 Uniform 0.00 76.86 133.88

Weak 30.08 81.78 112.88

Strong-RT 81.42 90.14 77.06

Strong-WR 9.41 80.03 126.34

γ = 0.20 Uniform 0.00 81.09 131.35

Weak 58.27 85.49 93.74

Strong-RT 93.90 95.57 66.32

Strong-WR 30.08 83.44 111.89

γ = 0.25 Uniform 0.00 84.73 129.16

Weak 88.95 91.88 71.50

Strong-RT 96.89 97.42 63.41

Strong-WR 44.65 86.51 101.30

γ = 0.30 Uniform 0.00 84.93 129.04

Weak 96.89 97.07 63.62

Strong-RT 98.48 98.66 61.72

Strong-WR 58.27 89.27 91.48

PP predictive probability, strong-RT strong right prior belief with mean equal to 0.15, strong-WR
strong wrong prior belief with mean equal to 0.20, IA interim analysis

good chance (> 15 %) of terminating the trial, while the Bayesian approach, even
under uniform, weak, and strong wrong priors, decreases the chance of early futility
stopping.

4.5 Discussion

EERW design has gained more attention and acceptance in the pharmaceutical in-
dustry. There is precedence for regulatory acceptance of the EERW design for pivotal
trials. The FDA draft guidance refers the approval of nifedipine for vasospastic angina
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Table 4.2 Operating characteristics of stopping rules based on observed response rate and based
on Bayesian PP (true response rate θ ue res)

Operating characteristics

PP Prior Stopping probability (%) Average

Approach Threshold Distribution First IA Second IA Sample
size

Observed – – 45.13 57.65 118.33

Bayesian γ = 0.10 Uniform 0.00 22.12 166.73

Weak 0.00 23.69 165.79

Strong-RT 0.12 22.79 166.25

Strong-WR1 87.08 87.10 75.49

Strong-WR2 0.00 3.66 177.80

γ = 0.15 Uniform 0.00 26.33 164.20

Weak 0.00 28.40 162.96

Strong-RT 1.36 28.23 162.25

Strong-WR1 97.86 97.86 62.57

Strong-WR2 0.00 5.49 176.71

γ = 0.20 Uniform 0.00 31.19 161.29

Weak 0.12 32.70 160.31

Strong-RT 6.71 32.36 156.56

Strong-WR1 98.99 98.99 61.21

Strong-WR2 0.00 7.65 175.41

γ = 0.25 Uniform 0.00 36.68 157.99

Weak 1.36 37.52 156.67

Strong-RT 12.89 37.62 149.69

Strong-WR1 99.41 99.41 60.71

Strong-WR2 0.00 10.14 173.92

γ = 0.30 Uniform 0.00 36.91 157.85

Weak 6.71 41.99 150.78

Strong-RT 21.49 43.72 140.87

Strong-WR1 99.78 99.78 60.26

Strong-WR2 0.00 12.04 172.78

Strong-RT strong right prior belief with mean equal to 0.20, strong-WR1 strong wrong prior belief
with mean equal to 0.10, Strong-WR2 strong wrong prior belief with mean equal to 0.30

as an example to illustrate the utility of the EERW design. The unique single-arm
active run-in design of the enriched enrollment phase makes it possible to identify
stopping rules to facilitate early detection of a futility signal and trigger an early trial
termination when a very small treatment effect is demonstrated. This may help re-
duce subject exposure to an ineffective investigational product, and correspondingly
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Table 4.3 Operating characteristics of stopping rules based on observed response rate and based
on Bayesian PP (true response rate θ ue res)

Operating characteristics

PP Prior Stopping probability (%) Average

Approach Threshold Distribution First IA Second IA Sample size

Observed – – 14.70 17.57 160.64

Bayesian γ = 0.10 Uniform 0.00 2.50 178.50

Weak 0.00 1.71 178.97

Strong-RT 0.00 0.73 179.56

Strong-WR 0.00 2.44 178.54

γ = 0.15 Uniform 0.00 3.67 177.80

Weak 0.00 2.45 178.53

Strong-RT 0.00 1.18 179.29

Strong-WR 0.14 3.76 177.66

γ = 0.20 Uniform 0.00 4.95 177.03

Weak 0.00 3.51 177.89

Strong-RT 0.00 1.68 178.99

Strong-WR 0.95 5.16 176.33

γ = 0.25 Uniform 0.00 6.51 176.09

Weak 0.00 4.52 177.29

Strong-RT 0.00 2.19 178.69

Strong-WR 2.27 6.83 174.54

γ = 0.30 Uniform 0.00 6.61 176.03

Weak 0.00 5.64 176.62

Strong-RT 0.00 3.03 178.18

Strong-WR 4.81 9.31 171.53

Strong-RT strong right prior belief with mean equal to 0.25, Strong-WR strong wrong prior belief
with mean equal to 0.20

limit a sponsor’s investment in an ineffective product. This chapter discusses the
futility stopping rules based on the Bayesian PP: When the probability of observing
a response rate higher than the prespecified futility bar at the end of the enriched
enrollment phase given the interim findings is below a critical minimum value, the
trial can be terminated for futility.

When planning the interim analyses, timing of interim analyses must be consid-
ered. Reaching a decision to terminate with less than 30 % of the planned sample size
requires substantially negative findings, and still involves much uncertainty about
the true treatment effect; therefore, early evaluation of data is not recommended to
provide the basis for trial go/no go decisions.
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A stopping rule based on Bayesian PP accounts for the trade-off between the
relative strength of accumulated data and prior information. Although a decision
about futility termination in practice will depend on only one prior, different prior
distributions provide a way to balance the assumptions about the true response rate
with the one actually observed when the interim analysis is carried out. The findings
under different priors provide a useful perspective about the sensitivity of the stopping
rule to the choice of priors. Strong priors give the prior more weight and would be
expected to reduce the chance of early futility termination if the prior belief of the
magnitude of true response rate is above the futility bar. Misspecified strong priors
decrease the likelihood of terminating the trial in the face of negative interim findings,
so the interim data would need to be very strongly negative to overcome the strong
prior impact. Uniform and weak priors give the interim data more weight, and hence,
unless the interim findings are particularly unpromising, make futility termination
less likely when the interim occurs fairly early in the trial; however, termination of
the trial for futility becomes more likely as interim negative findings accumulate.

There are various trade-offs in choosing γ . A weaker criterion (larger γ ) allows
the trial to stop for futility sooner, but this possibility must be balanced against
the increased risk of terminating a truly effective treatment. A stronger criterion
(smaller γ ) causes the futility stopping rule to be less sensitive to negative interim
findings, which decreases the likelihood of stopping the trial. The choice of γ does
depend on considerations such as trial objective, prior beliefs, planned sample size,
and futility bar, with a corresponding impact on the timing of the interim analysis,
as discussed in Sect. 3.1.
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Chapter 5
Estimation of ROC Curve with Multiple
Types of Missing Gold Standard

Danping Liu and Xiao-Hua Zhou

Abstract In evaluating the diagnostic accuracy of a test, the gold standard might
be missing because of high cost or harmfulness to the patient. The estimation of the
diagnostic accuracy could be biased if the missingness is not handled appropriately. In
this chapter, we propose a likelihood-based approach to jointly estimate the selection
model and disease model when the missing data mechanism is a mixture of ignorable
and nonignorable missingness. The receiver operating characteristic (ROC) curve
and its area are estimated empirically using imputation and reweighting techniques.
The proposed method extends the results of Liu and Zhou (2010, Biometrics, 66,
1119–1128), as the latter assumes a single source of nonignorable missingness. We
perform simulation studies to compare the performance of the proposed method and
the existing approaches in the literature. This methodology is motivated from and
applied to a study in Alzheimer’s disease (AD), where two reasons of missingness
are modeled separately.

5.1 Introduction

A medical diagnostic test is often evaluated by its sensitivity, specificity or the receiver
operating characteristic (ROC) curve. Many methods to estimate the ROC curve
require the true disease status to be verified without error, which is called “ gold
standard.” However, the gold standard could be subject to missingness, because
of high cost or harmfulness to the patient. Deleting the subjects with missing gold
standard results in biased estimates of the ROC curve, known as “verification bias.”
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Under ignorable missingness, or missing at random (MAR) assumption, existing
methods to adjust for the verification bias include but are not limited to Begg and
Greenes (1983), Begg (1987), Zhou (1996), Zhou (1998), Rodenberg and Zhou
(2000), Alonzo and Pepe (2005), and Liu and Zhou (2011). The verification of
gold standard may also be associated with some unobserved covariates related to the
missing disease status. Hence, the MAR assumption may not hold. The nonignorable
(NI)verification bias was first discussed by Baker (1995), and later developed by Zhou
(1998), Kosinski and Barnhart (2003), Zhou and Castelluccio (2003), Zhou and
Castelluccio (2004). Rotnitzky et al. (2006) proposed a “doubly robust” estimator
for the area under ROC curve (AUC), but they specified a NI parameter (the log odds
ratio of verification for diseased vs. healthy subject). Liu and Zhou (2010) considered
a likelihood-based approach to estimate the NI parameter. Then the empirical AUC
estimators were constructed using imputation or reweighting techniques.

Modeling missingness mechanism by a selection model is a key step in many
existing methods for ROC analysis. As the NI missingness assumption is not testable
from the data without specifying a parametric model, a good understanding of the
reason of missing data facilitates the selection model setup. All the above literature
assume a single model of missingness, which is either ignorable or NI. However,
missing data in practice may come from multiple sources. Different variables may
account for each source of missingness, which may be either ignorable or NI. The
mixture of ignorable and NI missingness was first discussed by Harel and Schafer
(2009). They separately modeled the ignorable and NI missingness mechanism, and
proposed a general framework of partially MAR and latently MAR models.

In this chapter, we assume the missing gold standard come from multiple sources,
part of which are ignorable and part of which are not. When there are only two types
of missingness, our setting of the selection models resembles the partially MAR
model in Harel and Schafer (2009). But we also allow for more than two sources of
missingness. We propose a two-step procedure to adjust for the verification bias: the
first step estimates the verification probability and disease probability by maximizing
the likelihood; the second step constructs empirical estimators for the AUC. This
extends the results of Liu and Zhou (2010), in which the NI missingness was described
by a single selection model. A more plausible missingness model would result in
a more accurate estimator for the selection probability, and consequently a more
accurate AUC estimator.

The methodology is motivated by the same Alzheimer’s disease (AD) data set as
in Liu and Zhou (2010). Since the gold standard of AD requires brain autopsy, it is
automatically missing for the alive patients. Another reason of missingness may be
that the the patients or their family opt not to have brain autopsy. Due to the fact that
living people may have better health status and hence are less likely to have AD, the
former type of missingness is probably NI, while the latter type can be assumed as
ignorable. The data set includes the information of whether a patient is dead or not,
so it could be used to improve the previous selection model in Liu and Zhou (2010).

The chapter is organized as follows. Section 5.2 discusses the framework of
the selection models for the missingness mechanism, as well as the maximum
likelihood estimator. We construct several empirical estimators for AUC in Sect. 5.3.
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Fig. 5.1 Illustration of the
simultaneous selection
process—single source of
missingness Removal 1 Removal 3

Removal 2

Cohort

Selection

Fig. 5.2 Illustration of the
sequential selection process
in C steps—multiple sources
of missingness

Cohort

Selection 1

Selection C

Selection 2

…

Removal 1

Removal 2

Removal 3

The simulation results are reported in Sect. 5.4, followed by analysis of the AD data
set in Sect. 5.5. Finally, the concluding remarks are made in Sect. 5.6.

5.2 Multiple Types of Missingness

We assume that the disease verification process could go through C steps: at each
step, a portion of the sample are selected to go through the next step, while the
others are removed from gold standard verification. This process is illustrated in
Fig. 5.2. As a comparison, the NI selection model in Liu and Zhou (2010) assumes
that all the selection steps take place simultaneously, which is illustrated in Fig. 5.1.
Therefore, the selection model in Liu and Zhou (2010) actually models the “ overall”
selection probability. In practical applications, different sources of missingness may
indeed occur sequentially. For example, a survey may have NI unit nonresponse and
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ignorable item nonresponse (Harel and Schafer 2009), where the unit nonresponse
apparently happens earlier. When there is no evident temporal order for the sources
of missingness, the sequential assumption still provides a convenient way to model
the missingness, by factoring out each of the sources.

Denote Ti , Di , and Xi to be the test result, disease status and the covariates for the
ith patient. Denote Vci to be the selection indicator at the cth step (c = 1, 2, · · · ,C),
with 1 indicating selection and 0 indicating removal. Denote Wci to be the variables
that are associated with the cth type of missingness, which may include covariates
Xi , test result Ti , and their interactions. For notation simplicity, suppose there are
only two types of missingness in Di (C = 2). This could be easily extended to
more than two types. The selection model is specified by the following conditional
probabilities:

π1i ≡ Pr (V1i = 1|Di , Ti ,Xi) = expit(WT
1i β1 + α1Di), (5.1)

π2i ≡ Pr (V2i = 1|Di , Ti ,Xi ,V1i = 1) = expit(WT
2i β2 + α2Di). (5.2)

Note that Pr (V2i = 1|V1i = 0) = 0, which implies that, subjects removed in the
first step cannot re-enter the verification sample. Then a total of three groups of
verification status are defined by V1i and V2i : (1) verified sample (V1i = V2i = 1);
(2) missing at step one (V1i = V2i = 0); (3) missing at step two (V1i = 1, V2i = 0).
The NI parameters α1 and α2 could be 0, indicating the missingness at the first
or the second step is ignorable. We can easily write out the “ overall” verification
probability:

πi ≡ Pr (V1i = V2i = 1|Di , Ti ,Xi)

= π1iπ2i

= expit(WT
1i β1 + α1Di)expit(WT

2i β2 + α2Di).

In addition, we also need to specify a disease model:

ρi ≡ Pr (Di = 1| Ti ,Xi) = expit(ZT
i γ ), (5.3)

where Zi is the design matrix of variables associated with the disease status.
Define

π1i(d) ≡ Pr (V1i = 1|Di = d , Ti ,Xi)

π2i(d) ≡ Pr (V2i = 1|Di = d , Ti ,Xi ,V1i = 1).

For a subject with disease verification, we observe V1i = V2i = 1, Di , Ti and Xi ,
and the contribution to the likelihood is

li = ρ
Di

i (1 − ρi)
1−Diπ1iπ2i .

For a subject missing at step one, we observe V1i = V2i = 0, Ti and Xi , and its
contribution to the likelihood is

li = ρi(1 − π1i(1))(1 − π2i(1)) + (1 − ρi)(1 − π1i(0))(1 − π2i(0)).
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For a subject missing at step two, we observe V1i = 1, V2i = 0, Ti and Xi . The
likelihood contribution is

li = ρiπ1i(1)(1 − π2i(1)) + (1 − ρi)π1i(0)(1 − π2i(0)).

Hence, the log likelihood is L = ∑
i log li . Note that if αc = 0, πci(1) = πci(0) =

πci , and the parameterβc is separated with other parameters in the likelihood function.
The estimated verification and disease probabilities, denoted by π̂i = π̂1i π̂2i and ρ̂i ,
are then obtained by substituting the estimated parameters.

5.3 ROC Curve and Its Area

With the gold standard observed, the true and false positive rates at threshold s can
be estimated as

T PR(s) =
∑

i I (Ti > s)Di∑
i Di

FPR(s) =
∑

i I (Ti > s) (1 − Di)∑
i (1 − Di)

The AUC is the probability of correctly ordering a case and a control’s test result,
which is estimated by the Wilcoxon statistic:

ν̂ =
⎧⎨
⎩
∑
i �=j

IijDi(1 − Dj )

⎫⎬
⎭

/⎧⎨
⎩
∑
i �=j

Di(1 − Dj )

⎫⎬
⎭ .

Similar to Alonzo and Pepe (2005), Liu and Zhou (2010), we replace the unobserved
Di with some estimated version.

The full imputation (FI) estimator replaces every Di with the estimated disease
probability ρ̂i regardless of its missingness. Hence, the TPR(s), FPR(s), and AUC
are given as follows:

TPR(s) =
∑

i I (Ti > s)ρ̂i∑
i ρ̂i

, FPR(s) =
∑

i I (Ti > s)(1 − ρ̂i)∑
i (1 − ρ̂i)

,

ν̂FI =
⎧⎨
⎩
∑
i �=j

Iij ρ̂i(1 − ρ̂j )

⎫⎬
⎭

/⎧⎨
⎩
∑
i �=j

ρ̂i(1 − ρ̂j )

⎫⎬
⎭ .

Denote ρ
(1)
i ≡ Pr (Di = 1|V1i = 0,V2i = 0, Ti ,Xi) and ρ

(2)
i ≡ Pr ( Di = 1|V1i

= 1,V2i = 0, Ti ,Xi) to be the disease probability given the verification indicator.
Note that by Bayes rule,

ρ
(1)
i = ρi(1 − π1i(1))(1 − π2i(1))

ρi(1 − π1i(1))(1 − π2i(1)) + (1 − ρi)(1 − π1i(0))(1 − π2i(0))
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ρ
(2)
i = ρiπ1i(1)(1 − π2i(1))

ρiπ1i(1)(1 − π2i(1)) + (1 − ρi)π1i(0)(1 − π2i(0))
.

Both probabilities could be estimated by replacing ρi , π1i(d), π2i(d) with their max-
imum likelihood estimators. The second approach, mean score imputation (MSI)
only replaces the missing Di’s with ρ̂

(1)
i or ρ̂

(2)
i , depending on the source of miss-

ingness for subject i. Let DMSI ,i = I (V1i = V2i = 1)Di + I (V1i = V2i = 0)ρ(1)
i +

I (V1i = 1,V2i = 0)ρ(2)
i , and D̂MSI ,i be the estimated version with ρ

(·)
i replaced by

ρ̂
(·)
i . The estimated TPR(s), FPR(s), and AUC are

TPR(s) =
∑

i I (Ti > s)D̂MSI ,i∑
i D̂MSI,i

, FPR(s) =
∑

i I (Ti > s)(1 − D̂MSI ,i)∑
i (1 − D̂MSI,i)

,

ν̂MSI =
⎧⎨
⎩
∑
i �=j

Iij D̂MSI ,i(1 − D̂MSI ,j )

⎫⎬
⎭

/⎧⎨
⎩
∑
i �=j

D̂MSI ,i(1 − D̂MSI ,j )

⎫⎬
⎭ .

The third method is inverse probability weighting (IPW). We only make use of the
verified subset (V1iV2i = 1), but weight each subject with inverse of the selection
probability. The corresponding TPR, FPR, and AUC estimators are

TPR(s) =
∑

i I (Ti > s) ViDi

/
π̂i∑

i ViDi

/
π̂i

, FPR(s) =
∑

i I (Ti > s) Vi (1 − Di)
/
π̂i∑

i Vi (1 − Di)
/
π̂i

,

ν̂IPW =
⎧⎨
⎩
∑
i �=j

Iij
I (V1iV2i = 1)Di(1 − Dj )

π̂i π̂j

⎫⎬
⎭

/⎧⎨
⎩
∑
i �=j

I (V1iV2i = 1)Di(1 − Dj )

π̂i π̂j

⎫⎬
⎭ .

The forms of the AUC estimators are analogous to those in Liu and Zhou (2010).
The difference is in the likelihood function of the model parameters. Hence, the
asymptotic variance of the AUC estimators can be proved using similar arguments
as in the Theorem 3 of Liu and Zhou (2010). We briefly state the results here. Denote
θ to be the parameters in the selection and disease models. The estimating function
for the complate data is U ∗

ij (ν, θ ) ≡ Di(1 − Dj )(Iij − ν). The estimating functions
for FI, MSI, and IPW estimators are

UFI
ij (ν, θ ) ≡ ρi(1 − ρj )(Iij − ν), (5.4)

UMSI
ij (ν, θ ) ≡ DMSI ,i(1 − DMSI ,i)(Iij − ν), (5.5)

U IPW
ij (ν, θ ) ≡ I (Mi = Mj = 0)Di(1 − Dj )

πiπj

. (5.6)

We denote these estimating functions by Uij (ν, θ ) for the notation simplicity. Let

Qi(ν, θ ) ≡ Ej

[
Uij (ν, θ ) + Uji(ν, θ )

]+
[
E

∂

∂θ
Uij (ν, θ )

]
I (θ )−1 l̇i(θ ),

where Ej is the expectation with respect to (Vj ,Dj , Tj ,Xj ), l̇i(θ ) is the ith subject’s
contribution to the score function, and I (θ ) ≡ −E ∂

∂θ
l̇i(θ ) is the information matrix
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for θ . Let

Q̂i ≡ n−1

⎡
⎣

n∑
j=1

Uij (ν̂, θ̂ ) + Uji(ν̂, θ̂ )

⎤
⎦− n−1

⎡
⎣

n∑
i=1

n∑
j=1,j �=i

∂

∂θ
Uij (ν̂, θ̂ )

⎤
⎦

×
[

n∑
i=1

∂

∂θ
l̇i(θ̂ )

]−1

l̇i(θ̂ ),

We have
√
n(ν̂ − ν)

d→ N (0,Ω), where Ω = var(Qi (ν,θ ))
[Pr (Di=0) Pr (Di=1)]2 . The variance of the

AUC estimator contains two sources of variabilities, one from using the U-statistic as
an estimator of AUC, the other from estimating the disease and verification models.
We note that the variance estimator is different from that of Liu and Zhou (2010),
since the likelihood function and the estimated θ̂ are both different.

5.4 Simulation

In this section, we compare the finite sample performance of the proposed estimators
with (1) the doubly robust (DR) estimator in Rotnitzky et al. (2006), and (2) the FI,
MSI, and IPW estimators in Liu and Zhou (2010) under NI missingness assumption,
denoted by NI method. Both DR and NI methods assume the one-step verification
process.

We generate two covariates X1 and X2 from standard normal distribution and
binary distribution, respectively, and the test result from uniform distribution U (−
1, 1). The disease status is generated from a Bernoulli(ρ) distribution with

ρ ≡ Pr (D = 1| T ,X1,X2) = expit(X1 + 0.5X2 + 2T ).

Two types of missingness (C = 2) are simulated under the following cases A and B.
Case A: The first step verification V1 is NI and the second step verification V2 is

ignorable:

Pr (V1i = 1|Di , Ti ,Xi) = expit(1 + 0.8X1 + 0.7X2 + T + 1.2D),

Pr (V2i = 1|Di , Ti ,Xi ,V1i = 1) = expit(2 + 0.5X1 + 0.2X2 + 0.8T ).

Case B: Both steps of verification, V1 and V2, are ignorable:

Pr (V1i = 1|Di , Ti ,Xi) = expit(1.6 + 0.8X1 + 0.7X2 + T ),

Pr (V2i = 1|Di , Ti ,Xi ,V1i = 1) = expit(2 + 0.5X1 + 0.2X2 + 0.8T ).

The sample size was taken to be 5000. In both cases, we modeled the first step
verification with a NI selection model, and the second step with an ignorable model.
The simulation was repeated for 500 times. The results are shown in Table 5.1. We
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Table 5.1 Comparison of the proposed method with the NI and DR methods for estimating AUC

Bias SD SE RMSE Coverage (%)

Case A Proposed FI −0.16 8.72 8.78 8.80 94.6

MSI −0.36 8.51 8.49 8.92 93.4

IPW −0.23 9.20 9.16 9.35 95.0

NI FI −0.45 9.10 9.02 9.69 93.6

MSI −0.60 8.66 8.55 9.73 91.6

IPW −0.82 9.77 9.64 11.50 90.0

DR α = 1.2 0.20 7.79 7.71 7.91 94.6

α = 0 −1.05 8.60 8.58 11.60 85.6

α = −0.3 −1.72 8.93 8.91 15.63 71.4

Case B Proposed FI −0.19 8.84 8.91 8.93 94.0

MSI −0.06 8.14 8.21 8.15 95.2

IPW −0.27 9.22 9.32 9.42 94.8

NI FI −0.24 9.13 9.18 9.29 95.0

MSI −0.11 8.34 8.34 8.37 95.0

IPW −0.47 9.63 9.59 10.26 92.6

DR α = 1.2 0.48 7.62 7.52 8.55 90.6

α = 0 0.01 8.08 8.01 8.08 95.4

α = −0.3 −0.42 8.29 8.21 8.85 94.4

SD standard deviation, SE standard error, RMSE root mean square error, FI full imputation, MSI
mean score imputation, IPW inverse probability weighting, NI nonignorable, DR doubly robust,
AUC area under ROC curve

report the bias (in percentage of the true AUC), 1000 times the empirical standard
deviation (SD) of the estimates, 1000 times the average standard error (SE) estimates,
the root mean square error (RMSE) and the 95% confidence interval (CI) coverage.

For both cases A and B, the bias for the proposed method is generally the smallest.
The NI method treats the two types of missingness as a whole, and uses one single
selection model to describe the verification process. In case A, the bias for NI method
is still relatively small compared to the variance. In case B, as the verification process
is truly ignorable, the disease model could still be estimated consistently regardless
of the misspecified verification model. Therefore, the performance of FI and MSI
estimators is good, while the IPW estimator is a bit biased. Although the NI method
is not biased seriously, it is less efficient than the proposed method, especially for the
IPW estimator. This is because a better understanding of the missingness mechanism
adds information to estimating the selection probability. The bias for DR method is
small only with approximately correct NI parameter specification (α = 1.2 for case
A and α = 0 for case B), and substantial if the specified parameter is far from the
truth. In case B, it is likely that the DR estimator is not very sensitive to α, which
explains the good coverage rates even with incorrect α. Although the DR estimator
has the smallest variance, it is hard in practice to specify the correct NI parameter.
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The SE of all three proposed methods are close to the SD, indicating that the variance
estimators capture the true variability. As for the comparison of FI, MSI, and IPW
estimators, imputation based estimators (FI and MSI) are more efficient than the
IPW estimators, and hence are recommended in practice.

5.5 NACC Data Example

The National Alzheimer’s Coordinating Center (NACC) was established in 1999
to facilitate the collaborative research among the 34 past and present Alzheimer’s
Disease Centers (ADCs) in the USA. We extracted the NACC Minimum Data Set
containing over 70,000 patients who made visit to ADCs between January 1984 and
November 2005. The mini-mental state examination (MMSE) is a brief 30-point
questionnaire test used to screen for cognitive impairment. Our interested scientific
question is how well the MMSE score classifies patients with and without AD.

The data set analyzed by Liu and Zhou (2010) consists of 53,063 patients in total,
only 11 % of which received gold standard verification. The verification process has
two natural steps: in step one, all the alive patients automatically missed the disease
status; in step two, a subsample of the dead patients were chosen to undergo the brain
autopsy and to verify their AD status. Hence, we denote V1i = 1 if a subject was
dead, and denote V2i = 1 if a dead subject finally received the disease verification.
Assume that the first step of missingness is NI and the second step is ignorable. We
use the verification model (5.1) and (5.2) and the disease model (5.3), where T is the
MMSE test, D is the true AD status, and X are the patient covariates. The covariates
that might be associated with the verification or the disease include age at the MMSE
test, gender, race, marital status, clinical diagnosis of AD, other disease conditions
(i.e., stroke, Parkinson’s disease, depression). The proposed method treats the case
nonfatality as a source of missingness and models its probability separated from
other missingness. As a comparison, the NI method pools two types of missingness
together and directly models Pr( V1iV2i = 1|Di , Ti ,Xi).

In Tables 5.2 and 5.3, we compare the NI method and the proposed method in
estimating the verification and disease models. For the two-step verification model,
the covariate’s effect on the first-stage missingness are quite different from that on the
second-stage missingness. For example, stroke may increase the chances of death, but
does not significantly affect the verification probability for a dead patient; patients
with lower MMSE score are more likely to be dead, but among those who died,
higher MMSE score is associated with greater probability of verification. Therefore,
if we pool the two sources of missingness together and use the one-step NI model
instead, the estimated covariate’s effect is probably an “ average” effect of the two
stages. The disease models generally agree with each other for NI and the proposed
methods. The comparison of NI estimates and our proposed estimates are shown in
Table 5.4. The proposed method gives higher AUC estimates than the NI method.
The FI, MSI, and IPW estimators are 0.760 (95 % CI: 0.747, 0.773), 0.759 (95 % CI:
0.745, 0.773), and 0.738 (0.721, 0.755), respectively. Furthermore, Fig. 5.3 shows
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Table 5.2 The parameter estimation (log odds ratios) for the verification model using the proposed
and NI methods

Proposed NI

Step 1 Step 2

Intercept −2.945 (0.055) −1.465 (0.079) −4.527 (0.089)

Age (per 10 years increasing) 0.247 (0.013) −0.174 (0.019) 0.086 (0.017)

Gender (M vs. F) 0.617 (0.029) 0.214 (0.037) 0.587 (0.037)

Race (white vs. others) 0.802 (0.038) 1.350 (0.071) 1.696 (0.070)

Marital status (married vs. others) −0.094 (0.027) −0.191 (0.039) −0.195 (0.035)

Stroke (yes vs. no) 0.390 (0.034) 0.033 (0.047) 0.305 (0.043)

Parkinson’s disease (yes vs. no) 0.703 (0.051) 0.264 (0.064) 0.641 (0.058)

Depression (yes vs. no) −0.438 (0.034) 0.119 (0.050) −0.202 (0.044)

Clinical AD (yes vs. no) 0.195 (0.058) −0.211 (0.039) 0.079 (0.083)

T : MMSE (per 15 points decreasing) 0.839 (0.032) −0.444 (0.035) 0.203 (0.040)

D: the gold standard (AD vs non-AD) 1.016 (0.127) — 0.718 (0.178)

NI nonignorable, AD Alzheimer’s disease, MMSE mini-mental state examination

Table 5.3 The parameter estimation (log odds ratios) for the disease model using the proposed and
NI methods

Proposed NI

Intercept −1.370 (0.195) −1.101 (0.252)

Age (per 10 years increasing) 0.192 (0.033) 0.134 (0.034)

Gender (M vs. F) −0.415 (0.074) −0.468 (0.075)

Race (white vs.others) 0.055 (0.159) −0.025 (0.175)

Marital status (married vs. others) 0.124 (0.078) 0.129 (0.080)

Stroke (yes vs. no) −0.042 (0.094) −0.100 (0.095)

Parkinson’s disease (yes vs. no) 0.265 (0.115) 0.234 (0.122)

Depression (yes vs. no) 0.063 (0.098) 0.110 (0.099)

Clinical AD (yes vs. no) 1.891 (0.069) 1.881 (0.070)

T : MMSE (per 15 points decreasing) 1.063 (0.075) 0.784 (0.071)

NI nonignorable, AD Alzheimer’s disease, MMSE mini-mental state examination

the estimated ROC curve using FI approach under the proposed and the NI method.
Under the two-stage verification assumption, the ROC curve is slightly higher than
that assuming one-stage verification.

In this example, the proposed selection model does not change the 95 % CI width
substantially, but it does change the point estimates of the AUC. Even though the FI
and MSI estimators do not directly use the selection probability, these imputation-
based estimators could still be affected. This is because the selection and disease
probabilities are not distinct in the likelihood function, and we have to specify both
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Table 5.4 The AUC
estimates using NI method
and our proposed method

AUC 95 % CI

NI FI 0.735 (0.722, 0.748)

MSI 0.736 (0.724, 0.747)

IPW 0.716 (0.698, 0.734)

Proposed FI 0.760 (0.747, 0.773)

MSI 0.759 (0.745, 0.773)

IPW 0.738 (0.721, 0.755)

FI full imputation, MSI mean score imputation,
IPW inverse probability weighting, NI nonignor-
able, AUC area under ROC curve

models correctly to get the unbiased estimators. The NACC example implies that an
unrealistic selection model could obviously lead to biased results. In this data set,
about 89 % of the patients missed the AD status, so it does not suffice to use a single
selection model to account for all the missing data.
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Fig. 5.3 Full imputation (FI) estimation of the receiver operating characteristic (ROC) curve under
the proposed two-stage verification model and the one-stage nonignorable (NI) model
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5.6 Discussion

In this chapter, we discussed multiple types of missing gold standard in estimating
the ROC curve area to extend the results of Liu and Zhou (2010). We assume that
different types of ignorable or NI missingness occur sequentially, which are reflected
by separate selection models. The overall missingness mechanism might be a mixture
of ignorable and NI missingness. The selection and disease probabilities are obtained
by maximizing the likelihood. Then the empirical estimators are constructed using
imputation or reweighting techniques. The simulation study shows the proposed
estimator works well in terms of consistency and CI coverage.

Theoretically, the proposed estimator is generally not robust to model mis-
specifications, because the likelihood function involves the joint distribution of the
disease and verification indicator, and their parameter estimation cannot be sepa-
rated. That being said, our experience is that mild model misspecification does not
create too much bias in the AUC estimators, which is seen in the simulation studies
of our previous work (Liu and Zhou 2010). For example, if the true model has a
probit link while we specify the logit link, we would expect little bias in the AUC es-
timators as logit function approximates probit function quite closely. We also found
that MSI estimator has slightly better performance than FI and IPW estimators under
mild model misspecification. With more severe misspecification, all estimators could
have large bias.

As the NI missingness is not nonparametrically testable from the data, we recom-
mended to build up plausible models based on scientific knowledge. In the stages of
study design and data collection, careful thoughts about potential missing data are
necessary. Then additional information on the reason of missingness can be collected.
However, it is quite difficult to gather all the relevant information on the missingness,
especially if the missing proportion is high. The missingness may come from quite
different sources that could not be explained by a single ignorable or NI selection
model. Thus, the heterogeneity of the missingness should be taken into consider-
ation. Stratifying the missingness into several major sources is helpful to remove
the heterogeneity, and hence leads to better estimation of the interested parameters.
Therefore, the key message of this chapter is that, in practice, if the missingness is
known to come from difference sources, it is better to model them separately. When
designing new studies, investigators should try their best to collect the information on
the reasons of missing data, which could greatly facilitate the model specification. A
referee mentioned that machine learning techniques, such as tree-based methods or
neural network algorithms are potentially useful to improve the disease and verifica-
tion models, which is a very interesting extension on the proposed method. However,
the difficulty is that, under NI missingness, the disease and verification models need
to be estimated jointly, and the model training should be done for both models too,
which may be computationally challenging. We leave it as future exploration.

The verification indicator can be also viewed as having more than two categories,
indicating different reasons of missingness. Hence, an alternative approach could
be directly modeling the verification by a multinomial logistic regression. But the
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parameters are hard to interpret, and could not explicitly distinguish ignorable versus
NI missingness. Our proposed selection models are easy to interpret and implement.
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Chapter 6
Group Sequential Methods for Comparing
Correlated Receiver Operating
Characteristic Curves

Xuan Ye and Liansheng Larry Tang

Abstract Receiver operating characteristic (ROC) curves are commonly used to
measure the performance of diagnostic tests. The ROC curve can be estimated em-
pirically without assuming the distributions of the underlying diagnostic test data.
Comparison of the accuracy of two diagnostic tests using ROC curves from the two
tests are often conducted using fixed sample designs. However, to address the ethics
and efficiency concerns of clinical trial studies, there is a need to employ a group
sequential design (GSD) and periodically monitor and analyze the accruing data. In
this chapter, we incorporate group sequential methods into the design of compara-
tive diagnostic study with respect to the ROC curves. First, we study the difference
between sequential empirical ROC curves on the process level. Then we derive the
asymptotic distribution theory for the difference between sequential empirical ROC
curves and derive the asymptotic covariance structure for comparative ROC statis-
tics. Relating the difference between empirical ROC curves to the Kiefer process,
we also show these results can be used to conduct a GSD using standard software.

6.1 Introduction

Diagnostic testing is important in medical decision making. It provides reliable in-
formation about a patient’s condition. The health care provider can make plans for
managing the patient with the information (Sox et al. 1989) and possibly better un-
derstand the disease mechanism through research (McNeil and Adelstein 1976). An
early diagnosis can possibly save a patient’s life. Diagnostic test accuracy is the abil-
ity of the test to discriminate alternative states of health (Zweig and Campbell 1993).
A diagnostic test may have binary, ordinal, or continuous results, and the accuracy
is measured by comparing the test results to the disease status. For binary results,
the accuracy is evaluated using sensitivity and specificity, where sensitivity is the
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probability of a positive test result given that the patient has the disease, and speci-
ficity is the probability of a negative test result given that the patient is non-diseased.
For ordinal or continuous results, the receiver operating characteristic (ROC) curve
is commonly used. Here, sensitivity and specificity depend on how well the test
separates the two groups and which threshold we choose. Given a diagnostic test,
we can let the threshold vary from −∞ to ∞, an ROC curve plots all possible pairs
of the false positive rate (FPR, i.e., 1-specificity) and the true positive rate (TPR,
i.e., sensitivity). Many statistical methods for ROC curves are based on the summary
statistic such as the area under the curve (AUC), partial area under the curve, and
weighted area under the curve (Zhou et al. 2011). The diagnostic accuracy can be
evaluated with a fixed sample design, or a group sequential design GSD. With a
fixed sample design, the ROC statistics are estimated after tests are measured on
all subjects. And with a GSD, the ROC statistics are estimated at interim analysis
points as subjects are accrued. In contrast to its counterpart, the group sequential
method allows researchers to terminate the study early, if a candidate diagnostic
test is clearly superior or non-inferior to the established diagnostic test under com-
parison (Jennison and Turnbull 2000). Group sequential method also allows early
termination for futility based on conditional estimation of sensitivity and specificity
(Pepe et al. 2009). Hence, it addresses the ethical and cost issues in diagnostic trials.
Methods have been proposed to apply group sequential methodology to diagnostic
test studies (Tang et al. 2008; Tang and Liu 2010; Pepe et al. 2009; Liu et al. 2008;
Mazumdar and Liu 2003). The nonparametric sequential methods for the AUC or
the weighted AUC (wAUC) statistics in sequentially comparing ROC curves have
been introduced, as well as the sample size recalculation. Asymptotic properties of a
single sequential empirical ROC curve has been rigorously studied in Koopmeiners
and Feng (2011). Understanding the joint asymptotic properties of two sequential
empirical ROC curves, as well as the sequential differences of two empirical ROC
curves at any FPR, will help us conduct group sequential study on the process level
instead of the point level. It is shown in this chapter that they asymptotically follow
special Kiefer processes. This implies that for example the sequential differences
at different FPRs are also asymptotically jointly normal. Furthermore, the existing
results on the summary ROC statistics can be obtained from our findings.

6.2 Method

6.2.1 Group Sequential Method for Comparing ROC Curves

Many diagnostic trials involve the comparison of summary measures of ROC curves.
The summary measure of the ROC curve can be in the forms of the AUC, partial
AUC, or sensitivity at a given specificity, and they are all special cases of the wAUC
(Tang et al. 2008). A fixed sample diagnostic trial can be designed to compare
the ROC measures, in which a hypothesis test will be conducted after all sample
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data are collected. However, to address the cost and ethics issues related to hu-
man experimentation, a GSD can be implemented. In a GSD, we conduct interim
analyses of accumulating data and the hypothesis is tested at each interim analy-
sis. This method addresses the concerns and is supposed to be more efficient in
terms of expected sample sizes since it is possible to end the trial earlier. In a group
sequential method, how to control the type I error is important and affects the calcu-
lation of the rejection bounds at each interim point. Stopping boundaries proposed by
Pocock, O’Brien and Fleming, Kim and Demets (Pocock 1977; O’Brien and Fleming
1979; Kim and Demets 1992) are commonly used to control the overall type I er-
ror rate. The Pocock method uses repeated significance tests with constant nominal
significance levels. The O’Brien and Fleming method is a test in which the nom-
inal significance levels at each interim analysis increase as the study progresses.
In clinical trials, the O’Brien and Fleming’s approach is commonly used, as it has
wider boundaries initially and narrower ones at later analyses. And the error spending
method by Kim and Demets uses a function of the observation information for the
type I error spent at each interim analysis, with the maximum of the function being
the nominal type I error rate. This approach allows flexibility in deciding the number
of interim analyses.

Some research has been done in asymptotic sequential property of a single ROC
curve (Koopmeiners and Feng 2011). They derived the asymptotic theory for the
sequential empirical ROC curve under the case-control sampling. In this chapter, we
study the properties of the difference between two empirical ROC curves and present
a method to sequentially compare the empirical curves.

In a comparative diagnostic trial, let Xi,D and Xi,D̄ denote the outcome of the ith
diagnostic test for cases and controls, respectively, with i = 1, 2. Suppose a larger
value is more likely to indicate the disease. The cumulative distribution functions of
Xi,D and Xi,D̄ are Fi,D and Fi,D̄ for the case and control populations, respectively.
Si,D and Si,D̄ are the survival functions for the case and control populations. The
sensitivity and specificity are given by Si,D(c) and Fi,D̄(c) for a given cutoff value,
c. The ROC curve for the ith diagnostic test is defined by

ROCi(t) = Si,D(S−1
i,D̄

(t)), t ∈ [0, 1], (6.1)

where S−1(t) = inf {x : F (x) ≥ (1 − t)}. The ROC curve is a plot of sensitivity
(TPR) against 1-specificity (FPR), as the threshold value c varies. Assume that there
are a total of nD case subjects and nD̄ control subjects in the study. Suppose that
we observe Xi,D,j ∼ Fi,D , j = 1, ..., nD , representing the measurements of the ith
diagnostic test fromnD subjects, andXi,D̄,j ∼ Fi,D̄ , j = 1, ..., nD̄ , the measurements
of the ith diagnostic test from nD̄ subjects, for i = 1, 2. Assume that measurements
from different subjects are independent, and measurements of tests 1 and 2 within
the same subject are possibly correlated. The survival functions, Si,D , Si,D̄ , can be
empirically estimated to yield the empirical ROC curve:

̂ROCi(t) = Ŝi,D(Ŝ−1
i,D̄

(t)), i = 1, 2, (6.2)
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where Ŝi,D(t) = ∑nD

j=1 I (Xi,D,j > t)/nD and Ŝi,D̄(t) = ∑nD̄

j=1 I (Xi,D̄,j > t)/nD̄ .

Also, Ŝ−1
i,D̄

(t) = inf {x : F̂i,D̄(x) ≥ (1− t)}, where F̂i,D̄(t) = ∑nD̄

j=1 I (Xi,D̄,j ≤ t)/nD̄ .

6.2.2 Asymptotic Property

Suppose we have measurements from two diagnostic tests on nD case subjects and
nD̄ control subjects, where all subjects are independent. Throughout the chapter, we
make the following assumptions:

(A1) Fi,D(x) and Fi,D̄(x) are continuous distribution functions with continuous
densities fi,D(x) and fi,D̄(x), respectively,

(A2) fi,D(x) > 0 for x ∈ (sup{x : Fi,D(x) = 0}, inf {x : Fi,D(x) = 1})
(A3) fi,D̄(x) > 0 for x ∈ (sup{x : Fi,D̄(x) = 0}, inf {x : Fi,D̄(x) = 1})
(A4) nD

nD̄
→ λ > 0 as nD → ∞ and nD̄ → ∞, i.e., the ratio of cases to controls

converges to a constant.

Let Δ(t) = ROC1(t) − ROC2(t), Δ̂(t) = ̂ROC1(t) − ̂ROC2(t), and at an interim
analysis in a GSD when the proportion of accrued cases among all cases and the
proportion of controls among all controls are rD and rD̄ , respectively. We define
Δ̂rD ,rD̄ (t) = ̂ROC1,rD ,rD̄ (t) − ̂ROC2,rD ,rD̄ (t). For the sequential empirical Δ(t) at two
different analysis points (rD , rD̄) and (r ′

D , r ′
D̄

), we let

Y =
⎛
⎝n

−1/2
D [nDrD](Δ̂rD ,rD̄ (t) − Δ(t))

n
−1/2
D [nDr ′

D](Δ̂r ′
D ,r ′̄

D
(t) − Δ(t))

⎞
⎠ ,

which can be expressed in terms of the empirical ̂ROC and true ROC curves as

⎛
⎝1 −1 0 0

0 0 1 −1

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎝

n
−1/2
D [nDrD](̂ROC1,rD ,rD̄ (t) − ROC1(t))

n
−1/2
D [nDrD](̂ROC2,rD ,rD̄ (t) − ROC2(t))

n
−1/2
D [nDr ′

D](̂ROC1,r ′
D ,r ′̄

D
(t) − ROC1(t))

n
−1/2
D [nDr ′

D](̂ROC2,r ′
D ,r ′̄

D
(t) − ROC2(t))

⎞
⎟⎟⎟⎟⎟⎠

.

We also let

X =

⎛
⎜⎜⎜⎜⎜⎝

n
−1/2
D [nDrD](̂ROC1,rD ,rD̄ (t) − ROC1(t))

n
−1/2
D [nDrD](̂ROC2,rD ,rD̄ (t) − ROC2(t))

n
−1/2
D [nDr ′

D](̂ROC1,r ′
D ,r ′̄

D
(t) − ROC1(t))

n
−1/2
D [nDr ′

D](̂ROC2,r ′
D ,r ′̄

D
(t) − ROC2(t))

⎞
⎟⎟⎟⎟⎟⎠

.
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Assume (A1)–(A4) hold, and let
fi,D (S−1

i,D̄
(t))

fi,D̄ (S−1
i,D̄

(t))
be bounded on the interval of [a,b] for

some 0 < a < b < 1. As nD → ∞ and nD̄ → ∞, for any diagnostic test i, i = 1, 2,

n
−1/2
D [nDrD](̂ROCi,rD ,rD̄ (t) − ROCi(t)) (6.3)

= n
−1/2
D [nDrD](Ŝi,D,rD (Ŝ−1

i,D̄,rD̄
(t)) − Si,D(Ŝ−1

i,D̄,rD̄
(t))) (6.4)

+ n
−1/2
D [nDrD](Si,D(Ŝ−1

i,D̄,rD̄
(t)) − Si,D(S−1

i,D̄
(t))). (6.5)

By applying partial sum process results of vander Vaart and Wellner (1996), we have

n
−1/2
D [nDrD](Ŝi,D,rD (Ŝ−1

i,D̄,rD̄
(t)) − Si,D(Ŝ−1

i,D̄,rD̄
(t)))

d−→Ki,1(ROCi(t), rD), (6.6)

and

n
−1/2
D̄

[nD̄rD̄](Ŝi,D̄,rD̄
(t) − Si,D̄(t))

d−→Ki,2(Si,D̄(t), rD̄),

where Ki,1 and Kj ,2 are independent Kiefer processes, for i, j = {1, 2}. A Kiefer
process, K(t,r), is a two-parameter zero-mean Gaussian process in t and r with
covariance: Cov(K(t1, r1),K(t2, r2)) = (t1 ∧ t2 − t1t2)(r1 ∧ r2), where ∧ represents
the minimum of two operands. It behaves like a Brownian bridge in t and a Wiener
process (Brownian motion) in r. From the equation and the compact differentiability
of the inverse function, we have

n
−1/2
D [nDrD](Ŝ−1

i,D̄,rD̄
(t) − S−1

i,D̄
(t))

d−→−λ1/2 rD

rD̄
· 1

fi,D̄(S−1
i,D̄

(t))
Ki,2(t , rD̄).

Applying the functional delta method,

n
−1/2
D [nDrD](Si,D(Ŝ−1

i,D̄,rD̄
(t)) − Si,D(S−1

i,D̄
(t)))

d−→ λ1/2 rD

rD̄
·
fi,D(S−1

i,D̄
(t))

fi,D̄(S−1
i,D̄

(t))
Ki,2(t , rD̄).

(6.7)

Then we rewrite the random vector components as sums of two terms as of Eq. 6.3:
⎛
⎜⎜⎜⎜⎜⎝

n
−1/2
D [nDrD](̂ROC1,rD ,rD̄ (t) − ROC1(t))

n
−1/2
D [nDrD](̂ROC2,rD ,rD̄ (t) − ROC2(t))

n
−1/2
D [nDr ′

D](̂ROC1,r ′
D ,r ′̄

D
(t) − ROC1(t))

n
−1/2
D [nDr ′

D](̂ROC2,r ′
D ,r ′̄

D
(t) − ROC2(t))

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

n
−1/2
D [nDrD](Ŝ1,D,rD (Ŝ−1

1,D̄,rD̄
(t)) − S1,D(Ŝ−1

1,D̄,rD̄
(t)))

n
−1/2
D [nDrD](Ŝ2,D,rD (Ŝ−1

2,D̄,rD̄
(t)) − S2,D(Ŝ−1

2,D̄,rD̄
(t)))

n
−1/2
D [nDr ′

D](Ŝ1,D,r ′
D

(Ŝ−1
1,D̄,r ′̄

D

(t)) − S1,D(Ŝ−1
1,D̄,r ′̄

D

(t)))

n
−1/2
D [nDr ′

D](Ŝ2,D,r ′
D

(Ŝ−1
2,D̄,r ′̄

D

(t)) − S2,D(Ŝ−1
2,D̄,r ′̄

D

(t)))

⎞
⎟⎟⎟⎟⎟⎟⎠
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+

⎛
⎜⎜⎜⎜⎜⎜⎝

n
−1/2
D [nDrD](S1,D(Ŝ−1

1,D̄,rD̄
(t)) − S1,D(S−1

1,D̄
(t)))

n
−1/2
D [nDrD](S2,D(Ŝ−1

2,D̄,rD̄
(t)) − S2,D(S−1

2,D̄
(t)))

n
−1/2
D [nDr ′

D](S1,D(Ŝ−1
1,D̄,r ′̄

D

(t)) − S1,D(S−1
1,D̄

(t)))

n
−1/2
D [nDr ′

D](S2,D(Ŝ−1
2,D̄,r ′̄

D

(t)) − S2,D(S−1
2,D̄

(t)))

⎞
⎟⎟⎟⎟⎟⎟⎠

,

using Eqs. 6.6, 6.7, and Cramér–Wold device (Karr 1993). The summation above
converges weakly to

⎛
⎜⎜⎜⎜⎜⎝

K1,1(ROC1(t), rD)

K2,1(ROC2(t), rD)

K1,1(ROC1(t), r ′
D)

K2,1(ROC2(t), r ′
D)

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1/2 rD
rD̄

(
f1,D (S−1

1,D̄
(t))

f1,D̄ (S−1
1,D̄

(t))

)
K1,2(t , rD̄)

λ1/2 rD
rD̄

(
f2,D (S−1

2,D̄
(t))

f2,D̄ (S−1
2,D̄

(t))

)
K2,2(t , rD̄)

λ1/2 r ′
D

r ′̄
D

(
f1,D (S−1

1,D̄
(t))

f1,D̄ (S−1
1,D̄

(t))

)
K1,2(t , r ′

D̄
)

λ1/2 r ′
D

r ′̄
D

(
f2,D (S−1

2,D̄
(t))

f2,D̄ (S−1
2,D̄

(t))

)
K2,2(t , r ′

D̄
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

uniformly for t ∈ [a, b], rD ∈ [c, 1], and rD̄ ∈ [d, 1] for 0 < c < 1, 0 < d < 1.
Thus, the random vector X is approximately multivariate normal with the covariance
matrix given by

� =

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

⎞
⎟⎟⎟⎟⎟⎠

.

See appendix for the derivation of elements aij .
Hence, the random vector Y is approximately normal with the covariance matrix

derived approximately in the following:

⎛
⎝1 −1 0 0

0 0 1 −1

⎞
⎠�

⎛
⎜⎜⎜⎜⎜⎝

1 0

−1 0

0 1

0 −1

⎞
⎟⎟⎟⎟⎟⎠

=
⎛
⎝a11 + a22 − 2a12 a13 + a24 − 2a14

a13 + a24 − 2a14 a33 + a44 − 2a34

⎞
⎠ .

Without the loss of generality, let r ′
D ≥ rD and r ′

D̄
≥ rD̄ , that is, the proportions

(r ′
D , r ′

D̄
) occur in a later time than (rD , rD̄). Approximately,

Cov(Δ̂rD ,rD̄ (t), Δ̂r ′
D ,r ′̄

D
(t)) = Cov(Δ̂rD ,rD̄ (t) − Δ(t), Δ̂r ′

D ,r ′̄
D

(t) − Δ(t))
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= nD

1

nDrD

1

nDr ′
D

(a13 + a24 − 2a14).

And the variance,

Var(Δ̂r ′
D ,r ′̄

D
(t)) = Var(Δ̂r ′

D ,r ′̄
D

(t) − Δ(t))

= nD

1

nDr ′
D

1

nDr ′
D

(a33 + a44 − 2a34).

Applying the formulas of aij to the equations above, we have

Cov(Δ̂rD ,rD̄ (t), Δ̂r ′
D ,r ′̄

D
(t)) = Var(Δ̂r ′

D ,r ′̄
D

(t)) (6.8)

= 1

nDr ′
D

(ROC1(t) − ROC2
1(t)) + 1

nD̄r ′
D̄

(
f1,D(S−1

1,D̄
(t))

f1,D̄(S−1
1,D̄

(t))

)2

(t − t2)

+ 1

nDr ′
D

(ROC2(t) − ROC2
2(t)) + 1

nDr′
D

(
f2,D(S−1

2,D̄
(t))

f2,D̄(S−1
2,D̄

(t))

)2

(t − t2)

− 2
1

nDr ′
D

(SD(S−1
1,D̄

(t), S−1
2,D̄

(t)) − ROC1(t)ROC2(t))

− 2
1

nD̄r ′
D̄

f1,D(S−1
1,D̄

(t))

f1,D̄(S−1
1,D̄

(t))

f2,D(S−1
2,D̄

(t))

f2,D̄(S−1
2,D̄

(t))
(SD̄(S−1

1,D̄
(t), S−1

2,D̄
(t)) − t2)

for r ′
D ≥ rD and r ′

D̄
≥ rD̄ .

The estimated ROC curves have interesting joint asymptotic properties at the
process level as indicated above. We then would be able to analyze ROC curves at
different FPRs, say ROC1(t1), ROC2(t2). And we can do analysis of two ROC curves
at multiple points, since they all follow multivariate normal distribution with the
variance–covariance stated before.

Furthermore, we can compare multiple points of ROC curves based on weighted
average. It can be shown that the sequential weighted average of Δ̂(t) on several
FPRs has asymptotic multivariate normality and its asymptotic covariance matrix

can be calculated by Cov(
K∑
i=1

ωiΔ̂rD ,rD̄ (ti),
K∑
i=1

ωiΔ̂r ′
D ,r ′̄

D
(ti)) = Var(

K∑
i=1

ωiΔ̂r ′
D ,r ′̄

D
(ti)),

where ωi is the weight on Δ̂rD ,rD̄ (ti) with
∑K

i=1 ωi = 1. This is due to the fact that

Cov(Δ̂rD ,rD̄ (ti), Δ̂r ′
D ,r ′̄

D
(tj )) = Cov(Δ̂r ′

D ,r ′̄
D

(ti), Δ̂r ′
D ,r ′̄

D
(tj )) for r ′

D ≥ rD and r ′
D̄

≥ rD̄ .

6.2.3 Group Sequential Method

To carry out a group sequential test, we analyze the accumulating data in groups
rather than after an additional observation as in a fully sequential test or after all data
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are collected as in a fixed sample test. A GSD is convenient to conduct and provide
an opportunity for stopping the trial earlier than planned. It achieves the goals of
lower expected sample sizes and shorter average study lengths. GSD methods utilize
different strategies of allocating the overall type I error probability.

From the previous theorem, we know that the sequential empirical difference of
two ROC curves is also a Gaussian process. The sequential empirical difference
at any finite set of analysis points follow a multivariate normal distribution. And
the sequential score statistic has an “independent increment” covariance structure
(Jennison and Turnbull 2000), which facilitates the sequential comparison of ROC
curves and any standard GSD software can be readily applied.

Suppose we are interested in a two-sided test with the hypothesis of H0 :
ROC1(t0)−ROC2(t0) = 0 on a particular FPR t0, andHa : ROC1(t0)−ROC2(t0) �= 0.
Let Δ(t0) = ROC1(t0) − ROC2(t0), and Δ̂(t0) = ̂ROC1(t0) − ̂ROC2(t0). Then under
H0, we can do the Z-test with the statistic Z = Δ̂(t0)√

Var(Δ̂(t0))
. And for a fixed sample test

we reject H0 if |Z| > Zα/2. However, suppose we will do the GSD with a sampling
plan of J interim analyses. At the jth analysis, test results are available on the first
nDr

(j )
D case subjects and the first nD̄r

(j )
D̄

control subjects, where nD and nD̄ are the

maximum case and control sample size, respectively, and r
(j )
D and r

(j )
D̄

are the ratios
of the case and control subjects accrued so far at jth analysis. Given type I error
rate α and power 1 − β at Δ(t0) = ±δ, the fixed sample size is calculated based
on α,β, δ, and Var(Δ̂(t0)). The maximum sample size for the GSD are proportional
to the fixed sample size, and this ratio R(J ,α,β) depends only on J ,α,β and the
particular GSD method used.

Consider a GSD plan involving up to J analyses of sample data. At the time
of the jth analysis, let Ij = 1/σ 2

Δ̂j (t)
, τj = Ij /IJ = σ 2

Δ̂J (t)
/σ 2

Δ̂j (t)
. Define

B(τj ) = √
τj Ij Δ̂j (t). For j < k, Cov(B(τj ),B(τk)) = τj . This can be proved

using the previous finding of Eq. 6.8. Thus, B(τj ) behaves asymptotically like a
Brownian motion process. Then the standard GSD software like R package gs-
Design can be readily applied. Similarly, we can apply the transformation on the
sequential weighted average of Δ̂(t) on several FPRs and come up with the same
conclusion. The transformation used is Ij = 1/Var(

∑K
i=1 ωiΔ̂j (ti)), τj = Ij /IJ =

Var(
∑K

i=1 ωiΔ̂J (ti))/Var(
∑K

i=1 ωiΔ̂j(ti)). Define B(τj ) = √
τj Ij (

∑K
i=1 ωiΔ̂j (ti)).

Then for j < k, again we have Cov(B(τj ),B(τk)) = τj .
The GSD needs to be specified and the maximum sample sizes need to be deter-

mined before conducting the trial. At the first interim analysis, we calculate the Z test
statistic based on the empirical estimation of ROC1(t0), ROC2(t0), and Var(Δ̂(t0)).
We compare the Z statistic to the boundaries of Pocock, O’Brien–Fleming, or error
spending method that are calculated to control type I error rate. The boundaries aj

are defined to control the overall type I error rate: Pr(|Zj | > aj | Δ(t0) = 0) for
some j = 1...J . If this Z statistic falls in the rejection boundaries, we then reject the
null hypothesis, and the clinical trial is stopped with null hypothesis rejection and
no more subjects will be accrued. Otherwise, we will continue accruing sufficient
subjects to be able to proceed to the next analysis point. At the jth analysis, the first
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Table 6.1 The values of elements (×10−3) in observed and theoretical covariance matrix

Observed covariance matrix Theoretical covariance matrix

nD = 200, nD̄ = 200

Δ0.2,0.3(0.5) 3.718 1.850 1.458 0.755 3.720 1.898 1.499 0.782

Δ0.4,0.5(0.5) 1.927 1.490 0.773 1.898 1.499 0.782

Δ0.5,0.7(0.5) 1.529 0.790 1.499 0.782

Δ1,1(0.5) 0.787 0.782

nDr
(j )
D case subjects and the first nD̄r

(j )
D̄

control subjects are used to compute the
interim statistic Zj . We will repeat the process until the last Jth analysis point. At
the last analysis, we will either reject the null hypothesis or accept it and stop the
clinical trial.

The previous findings and method can also be used to obtain the properties of the
sequential wAUC or AUC statistics. Such an extension can be done in comparing
summary statistics of two ROC curves through the integration ofΔ(t) from 0 to 1 with
regard to any given weight probability measure function. TheAUC and pAUC statistic
become special cases, as indicated in Tang et al. (2008). More importantly, because
of the results in Eq. (6.8), we can compare a wide range of ROC summary measures,
including curves at different FPRs or their weighted averages of the ROC curves.

6.3 Simulation Studies

6.3.1 Covariance Matrix

We conduct a simulation study to assess the finite sample properties of the results
in Theorem 6.8. Diagnostic test data are drawn from bivariate normal distributions.
For a case, the bivariate normal model is (X1,X2)T ∼ N{(10, 6)T ,Σ1}, and for a
control, the bivariate normal model is (Y1,Y2)T ∼ N{(0, 4)T ,Σ2}, where

Σ1 =
⎛
⎝ 2 ρ2

√
2

ρ2
√

2 4

⎞
⎠ and Σ2 =

⎛
⎝1 ρ

ρ 1

⎞
⎠ , with ρ = 0.5 .

We conduct 5000 simulation with nD = 200, nD̄ = 200, and for the simulated data,
we calculate the variance–covariance of the Δ(t) at various combinations of rD , rD̄
with t = 0.5. Here, the ROC curves are estimated with the empirical functions. Then
we compare the simulated covariance matrix to the theoretical covariance matrix
derived using the results of Theorem 6.8.
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6.3.2 Simulated Type I Error Rate in GSDs

To investigate finite sample performance of the GSD procedure, we conduct a simu-
lation study in a two-group sequential test (J = 2), and a five-group sequential test
(J = 5). The null hypothesis of equal ROC(t) is set to be true and the nominal type
I error was set to be α = 0.05 for two-sided tests. Two set of diagnostic test data are
simulated from bivariate normal (binorm) and bivariate lognormal(bilognorm) mod-
els. The bivariate normal models is (X1,X2)T ∼ N{(1, 10)T ,Σ1} for case data. And
for control data, the bivariate normal model is (Y1,Y2)T ∼ N{(0, 8)T ,Σ2}, where

Σ1 =
⎛
⎝ 1 2ρ

2ρ 4

⎞
⎠ Σ2 =

⎛
⎝ 1 2ρ

2ρ 4

⎞
⎠ with ρ = (0, 0.25, 0.5, 0.75, 0.9).

In this case, the ROC curves are identical from the formula of ROC curve under binor-
mal models (Zhou et al. 2011): ROC(t) = Φ(a+bΦ−1(t)), where a = (μ1 −μ0)/σ1

and b = σ0/σ1, (μ1, σ1), and (μ0, σ0) are the normal parameters in case and con-
trol groups. The bivariate lognormal data are generated by taking exponential of the
simulated bivariate normal data. Because the ROC curves are invariant to a mono-
tone transformation, the ROC curves under the bivariate lognormal models are also
identical. Different numbers of case and control subjects, nD , nD̄ = (50, 250, 500),
are considered in our simulation study.

For each simulation setting, 5000 random datasets are generated and the GSD
method applied to the simulated data. The Z statistics at each interim analysis point
are then calculated based on the empirical ROC difference and estimated variances.
The GSD test procedure compares the Z statistics with corresponding test boundaries
of design, and the decision of rejection or failing to rejection is obtained for each
simulated dataset. We then calculate the overall rejection rates for all simulated
datasets. Table 6.3 gives the rejection rates of all different model and sample size
combinations with a nominal α level 0.05 under the O’Brien and Fleming’s criterion.
And Table 6.1 is the results for the Pocock’s criterion. As we can see, the simulated
type I error rates are close to the nominal rate and tend to be closer as the overall
sample sizes increase.

We take the same two identical ROC curves as mentioned above and the null hy-
pothesis of H0:

∑
t={0.2,0.5,0.8} Δ(t)/3 = 0 as an example for the sequential weighted

average test. For the simulation with nD = 250, nD̄ = 250, and J = 5, we get the
type I error rates as following. When ρ = 0, error = 0.0526 for binormal distri-
bution, error = 0̇.0768 for bilognormal distribution. When ρ = 0.25, error = 0.053
and 0.0694 for binormal and bilognormal distributions, respectively. When ρ = 0.5,
error = 0.0514 and 0.07 for binormal and bilognormal distributions, respectively.
When ρ = 0.75, error = 0.0546 and 0.0654; when ρ = 0.9, error = 0.062 and
0.0668 for binormal and bilognormal distributions, respectively. More results are
shown in Table 6.4.
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Table 6.5 Interim test
statistics

Interim Z statistic

FPR 1 2 3 4 5

0.2 1.562 2.174 3.544

0.4 1.632 2.364 3.386

0.5 2.202 1.247 2.637

0.6 1.424 2.019 2.557 2.791

0.8 1.472 1.692 1.885 2.269 2.218

Boundaries ±4.56 ±3.23 ±2.63 ±2.28 ±2.04

FPR false positive rate

6.4 Example

In this section, we illustrate the GSD in a hypothetical lung cancer diagnostic trial.
Both computed tomography (CT) and positron emission tomography (PET) can be
used for diagnosing the staging of non-small cell lung cancer. The AUC for staging
non-small cell lung cancer is between 52 and 85 % for CT and between 81 and 96 %
for PET (Lardinois et al. 2003; Silvestri et al. 2003). In our example, we choose
the AUCs to be 75 % for CT and 90 % for PET from the reasonable range. Consider
testing the null hypothesis of Δ(t) = 0 for t = {0.2, 0.4, 0.5, 0.6, 0.8} and correlation
between two diagnostic tests’ data as ρ = 0.5 and are binormally distributed. Our
example is a possible case under the alternative hypothesis condition, with Δ(t) =
{0.289, 0.182, 0.135, 0.094, 0.032} for t = {0.2, 0.4, 0.5, 0.6, 0.8}, respectively. In
Table 6.5, we show the interim looks of one simulation data with statistics and
corresponding boundaries (O’Brien–Fleming) displayed at the bottom.

Suppose nD = 250, nD̄ = 250, FPR = 0.5, and the number of looks is 5. At
the first endpoint, with nD = 50, nD̄ = 50 subjects recruited and tested, the Z
statistic is 2.202, which is within the rejection boundaries for the null hypothesis.
Thus we fail to reject the null hypothesis, and continue to recruit 50 additional cases
and 50 additional controls. The difference between the ROC curves at FPR = 0.5
and its variance can be estimated using the derived formula on the accruing data
from the 100 cases and controls. The statistic of 1.247 is calculated and is smaller
than the boundary 3.23. Again, we fail to reject the null hypothesis, and continue to
recruit another 50 cases and controls. At the third interim analysis with overall 150
cases and controls, we calculate the Z statistic to be 2.637, which is greater than the
boundary 2.63. Therefore, we reject the null hypothesis of Δ(0.5) = 0 at this step,
and conclude that the two imaging tests are significantly different in their accuracy
at the FPR of 0.5.

We also experiment with an example of comparing the average of three ROC
points at different FPRs. Suppose FPR = (0.2, 0.5, 0.8) are of interest, and nD =
250, nD̄ = 250. All other settings remain the same as the previous example. The
AUCs are set to be 75 % for CT and 90 % for PET with Δ(t) = {0.289, 0.135, 0.032}
for t = {0.2, 0.5, 0.8}, respectively. The average of theΔ(t) at the three FPRs is 0.152.
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We also reject the null hypothesis, H0 :
∑

t={0.2,0.5,0.8}
(ROC1(t)/3 − ROC2(t)/3) = 0,

with the expected sample size to be 111 for either cases or controls.

6.5 Discussion

In this chapter, we have derived asymptotic properties of the sequential differences of
two empirical ROC curves at the process level. We then used these results to develop
distribution theory for the sequential difference of two empirical ROC curves at
an FPR. We also extended the work to the asymptotic properties of the sequential
difference of weighted ROC averages at several FPRs. Our approach not only enables
us to investigate the difference of two correlated ROC curves but also enables us
to investigate the joint behavior of multiple points of two correlated ROC curves’
differences and their weighted averages. Based on this, standard GSD software can
be readily applied to design group sequential comparative diagnostic tests studies.

Based on the theorems developed, we conducted a simulation study to assess the
finite sample properties of the results in Theorem 6.8. The simulation study verified
the asymptotic variance–covariance matrix by comparing the theoretical covariance
matrix to the observed covariance matrix from the simulated data. We verified that
they match each other closely when sample size n is sufficiently large. We also
conducted simulation studies, both for one point and for average of multiple points
on ROC curves. With α level set to 0.05, the test type I error rate is approximately
0.05 and tend to be closer to the number as we increase the sample sizes.

We further applied the GSD to a lung cancer diagnosis example, and our results
clearly illustrate the advantage of sequentially monitoring the comparative diagnostic
trial based on our theorem. The example shows that we are able to reject the null
hypothesis under the alternative hypothesis with a substantially smaller expected
sample size.

In our study, we used empirical cumulative distribution functions and Kernel den-
sity estimation to generate an estimate of σΔ̂(t). Due to the limitation of Kernel density
estimation, it will be desirable if we can develop a new nonparametric estimation
method for variance without involving density estimation. Currently, we mainly deal
with two correlated ROC curves and provide the variance–covariance formula. We
will extend the research to more general cases like clustered ROC curves and their
differences. We can also apply a similar approach to compare multiple ROC curves.

Appendix

Derivation of the elements aij in Σ :

a11 = Var(K1,1(ROC1(t), rD)) + Var

(
λ1/2 rD

rD̄

(
f1,D(S−1

1,D̄
(t))

f1,D̄(S−1
1,D̄

(t))

)
K1,2(t , rD̄)

)
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= rD(ROC1(t) − ROC2
1(t)) + λ

r2
D

rD̄

(
f1,D(S−1

1,D̄
(t))

f1,D̄(S−1
1,D̄

(t))

)2

(t − t2),

a12 = Cov
(
n

−1/2
D [nDrD](Ŝ1,D,rD (Ŝ−1

1,D̄,rD̄
(t)) − S1,D(Ŝ−1

1,D̄,rD̄
(t))),

n
−1/2
D [nDrD](Ŝ2,D,rD (Ŝ−1

2,D̄,rD̄
(t)) − S2,D(Ŝ−1

2,D̄,rD̄
(t)))

)

+ Cov
(
n

−1/2
D [nDrD](S1,D(Ŝ−1

1,D̄,rD̄
(t)) − S1,D(S−1

1,D̄
(t))),

n
−1/2
D [nDrD](S2,D(Ŝ−1

2,D̄,rD̄
(t)) − S2,D(S−1

2,D̄
(t)))

)

= Cov
(
n

−1/2
D

[nDrD ]∑
i=1

(
I (X1,D,i > Ŝ−1

1,D̄,rD̄
(t)) − S1,D(Ŝ−1

1,D̄,rD̄
(t))
)

,

n
−1/2
D

[nDrD ]∑
i=1

(
I (X2,D,i > Ŝ−1

2,D̄,rD̄
(t)) − S2,D(Ŝ−1

2,D̄,rD̄
(t))
) )

+ Cov
(
n

−1/2
D [nDrD](S1,D(Ŝ−1

1,D̄,rD̄
(t)) − S1,D(S−1

1,D̄
(t))),

n
−1/2
D [nDrD](S2,D(Ŝ−1

2,D̄,rD̄
(t)) − S2,D(S−1

2,D̄
(t)))

)

= rD(SD(S−1
1,D̄

(t), S−1
2,D̄

(t)) − ROC1(t)ROC2(t))

+ λ
r2
D

rD̄

f1,D(S−1
1,D̄

(t))

f1,D̄(S−1
1,D̄

(t))
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(t))

f2,D̄(S−1
2,D̄

(t))
(SD̄(S−1

1,D̄
(t), S−1

2,D̄
(t)) − t2).

The last step is derived by applying the results of sequential empirical process, the
compact differentiability of the inverse function and delta method in vander Vaart
and Wellner (1996).

a13 = Cov
(
K1,1(ROC1(t), rD),K1,1(ROC1(t), r ′
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+ Cov
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1,D̄,rD̄
(t)) − S1,D(S−1

1,D̄
(t))),



6 Group Sequential Methods for Comparing Correlated Receiver . . . 107

n
−1/2
D [nDr ′

D](S2,D(Ŝ−1
2,D̄,r ′̄
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(t)) − S2,D(S−1
2,D̄
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The last step is again derived by applying the results of sequential empirical process,
the compact differentiability of the inverse function and delta method in vander Vaart
and Wellner (1996). Similarly, we can get the following elements of the covariance
matrix:

a22 = rD(ROC2(t) − ROC2
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Chapter 7
Nonparametric Covariate Adjustment
for the Youden Index

Haochuan Zhou and Gengsheng Qin

Abstract The receiver operating characteristic (ROC) curve has been widely applied
to evaluate the accuracy of a diagnostic test. The Youden index (YI) is a popular
summary index of the ROC curve. In some diagnostic studies, it is believed that the
impact of covariates might influence the accuracy of the diagnostic test. In regards
to this consideration, we propose nonparametric estimates for the YI with covari-
ate adjustment for the test results under heteroscedastic regression models. We also
investigate the asymptotic properties of the covariate-adjusted YI estimators under
normal error and non-normal error model assumptions. Extensive simulation studies
are conducted to illustrate the effectiveness and the robustness of the proposed meth-
ods. A diabetes data set from a diagnostic study is used to demonstrate the application
of the new methods.

7.1 Introduction

Over the past three decades, Receiver Operating Characteristic (ROC) curve analysis
has drawn attention and gained reputation as a statistical methodology for the eval-
uation of the discriminating efficiency of medical diagnostic tests. For a diagnostic
test with continuous or ordinal outcomes, the ROC curve describes the ability of the
test to suitably diagnose for a variety of test cutoff points (Pepe 2003). ROC curves
offer a graphical method for statisticians to compare the diagnostic efficiencies of
medical tests at various special levels of false positive rates.

Continuous diagnostic test outcomes would be the focus of this research. For a
certain disease, let X represent the test result of the control group and Y represent
the test result of the case group. Without losing generality, further assume that the
larger the test outcome is, the more evidences of abnormality. The sensitivity and the
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specificity of the test at a given cutoff point of the diagnose are defined as:

sensitivity(c) = P (Y ≥ c) = 1 − G(c), specificity(c) = P (X ≤ c) = F (c),

respectively, where G and F are the respective cumulative distributions of the dis-
eased test result X and the non-diseased test result Y . The ROC curve is constructed
via plotting 1 − specificity versus sensitivity for all possible cutoff point c.

The area under the ROC curve (AUC) is a commonly used global index of diag-
nostic accuracy. With the above assumptions, the AUC would range from 0.5 to 1,
where value 0.5 indicates a useless diagnostic test, and value 1 indicates a perfect
diagnostic test. Alternatively, Youden (1950) introduced another global index (called
the Youden index, YI) for the ROC curve:

J = sup
c

{sensitivity(c) + specificity(c) − 1}. (7.1)

The YI is ranged between 0 and 1, where 0 indicates that a test cannot discriminate
between non-diseased and diseased groups, and 1 indicates that a test perfectly
discriminates between the two groups. The optimal cutoff point is the threshold
leading to the maximum summation of sensitivity and specificity of a diagnostic test.
Since the optimal cutpoint may not be unique, let C = {c : supc (1 − G(c) + F (c))}
represent the collection of all possible optimal cutpoints. For simplicity, we define
the optimal cutpoint as follows:

co,1 = inf
c

C, co,2 = sup
c

C.

Evidently, co,1 is the unique optimal cutpoint maximizing the sensitivity, and co,2 is the
unique optimal cutpoint maximizing the specificity. If co,1 = co,2, co ≡ co,1 = co,2 is
the unique optimal cutpoint. In practice, if the sensitivity is believed to be more
important than the specificity, co,1 is suggested as the classifying threshold. In
some medical screening applications, co,2 might be preferred under the consider-
ation of controlling false positives. The YI is also frequently used in practice (See
Aoki et al. 1997; Grmec and Gasparovic 2001; Demir et al. 2002; Schisterman et al.
2008). For instance, Demir et al. (2002) applied the YI to identify the most reliable
indices in distinguishing between thalassemial trait and iron deficiency anemia, and
Schisterman et al. (2008) used the YI to analyze a data set on the coronary calcium
score, a marker for atherosclerosis. The YI has one advantage over the AUC; by
evaluating the YI, one can explore the information of the associated optimal cutoff
point. This optimal cutoff point is required in real-world applications because an in-
dividual can be classified to be either diseased or healthy by comparing the test value
with the optimal cutoff point. The optimal cutoff point has the desirable property of
maximizing the overall correct diagnosis rate and therefore minimizing the overall
misdiagnosis rate (Kim 2008).

YI is a function of sensitivity and specificity that depends on the unknown dis-
eased and non-diseased population distributions. Under the assumption that the
distributions belong to a specific parametric family such as binormal distributions,
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Fluss et al. (2005) and Schisterman and Perkins (2007) provided statistical inferences
for the YI. Fluss et al. (2005) also suggested some nonparametric methods for the YI
and the corresponding cutoff point. Recently, Zhou and Qin (2012) proposed new
nonparametric confidence intervals for the YI.

Diagnostic tests often include covariates information, such as patients’ age, gen-
der, or race, and such information is known to influence the accuracy of a test. It
may be that the definition of testing positive (or negative) should depend on the
covariates, or it may be that the accuracy of the test is less than optimal in certain
settings (see Pepe 2003). Covariate-adjustment for the summary measures of the
ROC curve has thus become necessary in many diagnostic applications. Tosteson
and Begg (1988) and Toledano and Gatsonis (1995) used a latent variable ordinal re-
gression to model the distribution of the test results in the diseased and non-diseased
populations. Thompson and Zucchini (1989) and Obuchowski (1995) calculated the
ROC curve and AUC for a number of distinct combinations of covariates and then
applied a general regression model. Pepe (1997, 2000), Dodd and Pepe (2003) pro-
posed a general regression framework and semi-parametric methods to model the
dependence of the ROC curve and AUC on the covariates. Zhou et al. (2002) and
Pepe (2003) gave a wonderful introduction to why and how to adjust for covariate
effects for the ROC curves and a detailed review of the existing methods in estimating
a covariate-specific ROC curve.

While the covariate adjustment has been extensively studied for the ROC curve
and the AUC in the literature, not much work has been focused on the YI. Faraggi
(2003) proposed normal regression models to adjust the AUC and YI for covariates.
Schisterman et al. (2006) proposed mixture models for test outcomes with mass
at value zero for adjusting the ROC curve and AUC. Yang and Qin (2012) devel-
oped empirical likelihood-based inferences for the AUC with covariates. Yao et al.
(2010) generalized the approaches of Faraggi (2003) and Schisterman et al. (2006)
to construct a covariate-adjusted Mann–Whitney estimator for the AUC. They also
mentioned that the methods can be extended to other measures related to ROC curves,
but they did not give the details. Since theYI is very important in practice, we believe
it is necessary to extend Yao et al.’s work (2010) to inferences on the YI.

This chapter is organized as follows. In Sect. 7.2, we propose covariate-adjusted
estimators for the YI under heteroscedastic regression models with normal errors
and non-normal errors. In Sect. 7.3, we investigate the asymptotic properties of the
estimators. In Sect. 7.4, simulation studies are conducted to evaluate the finite sample
performance of the new methods. In Sect. 7.5, a real example is used to illustrate the
application of the proposed methods. We give a final remark in Sect. 7.6. The proofs
of the main theorems are put in the Appendix.
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7.2 Models and Methods

7.2.1 Heteroscedastic Regression Models for the Test Results

There are two approaches in the literature to model the relationship between the ROC
curve and covariates. The first one is to model the dependence of the ROC curve
directly on the covariates. Yao et al. (2010) indicated that this approach loses the
connection with the cut-off value and does not allow the prediction of the sensitivity
and specificity at a given cutoff conditional on covariates. The second one is to directly
model the covariate effects on the test results and obtain the covariate-adjusted ROC
curve and its related summary measures through the modeling process. Faraggi
(2003) employed the second approach by using a simple linear regression model
with normal error. Yao et al. (2010) extended Faraggi’s work (2003) by using a
nonparametric heteroscedastic regression model. Here we utilize the same models
as in Yao et al. (2010). Assume the following nonparametric models for X and Y :

X|(Z = z) = μ1(z) +√
ν1(z)ε1, (7.2)

Y |(Z = z) = μ2(z) +√
ν2(z)ε2, (7.3)

where Z represents the covariate vector, ε1 and ε2 are independent standard errors
having mean zero and standard deviation one, the range of the variance functions
ν1(z) and ν2(z) is restricted in �+ and finite for all z ∈ �. In addition, let FZ

and GZ denote the cumulative distribution functions (c.d.f.) of X and Y at given Z

respectively, fZ and gZ denote the probability density functions (p.d.f.) of X and Y at
given Z, respectively; F ∗(·) and G∗(·) denote the c.d.f. of ε1 and ε2 respectively; and
f ∗(·) and g∗(·) denote the p.d.f. of ε1 and ε2 respectively. Here, the error distributions
F ∗ and G∗ are assumed to be independent of Z. We further assume that for a given
covariate value Z = z, P (Y (z) > X(z)) ≥ 0.5, which is equivalent to μ1(z) < μ2(z)
if F ∗ and G∗ are symmetric distributions about 0. This assumption ensures that the
value of the YI with given covariate information is between 0 and 1 inclusive.

7.2.2 Covariate-Adjusted YI Under Normal Error Assumption

With the covariate Z, both YI and the optimal cutoff point actually are dependent on
Z. Let C(z) = {c : supc [P (Y ≥ c|Z = z)) + P (X ≤ c|Z = z) − 1]} represent the
collection of possible optimal cutoff points when Z = z, co,1(z) = infc C(z), and
co,2(z) = supc C(z). The YI at given Z = z is

J (z) = sup
c

{P (Y ≥ c|Z = z) + P (X ≤ c|Z = z) − 1}

= P (Y ≥ co(z)|Z = z) + P (X ≤ co(z)|Z = z) − 1

= P (X ≤ co(z)|Z = z) − P (Y ≤ co(z)|Z = z)

= FZ(co(z)) − GZ(co(z)), (7.4)
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where co(z) = co,1(z), or co,2(z). If the errors ε1 and ε2 are assumed to be normally
distributed in models (7.2) and (7.3), the YI at Z = z can be expressed as

JN (z) = Φ

(
μ2(z) − co(z)√

ν2(z)

)
− Φ

(
μ1(z) − co(z)√

ν1(z)

)
, (7.5)

where JN (z) stands for J (z) under normal error. With normality and the assumption
that μ2(z) > μ1(z), co(z) has the following closed form:

co(z) = μ1(z)(b2 − 1) − a + b
√
a2 + (b2 − 1)ν1(z)ln(b2)

(b2 − 1)
, (7.6)

where a = μ2(z) − μ1(z), b = √
ν2(z)/

√
ν1(z). When b = 1, we have

co(z) = μ1(z) + μ2(z)

2
. (7.7)

Under models (7.2–7.3), the mean and variance functions μ1, μ2, ν1, and ν2 can be
consistently estimated via some nonparametric techniques such as the local polyno-
mial regression technique. Let μ̂1, μ̂2, ν̂1, and ν̂2 be the local polynomial estimates
for μ1, μ2, ν1, and ν2 by using local polynomial method (see Fan and Gijbels 1996),
and ĉo(z) be the plug-in estimate of co(z). Then the covariate-adjusted estimator for
the YI can be defined as follows:

ĴN (z) = Φ

(
μ̂2(z) − ĉo(z)√

ν̂2(z)

)
− Φ

(
μ̂1(z) − ĉo(z)√

ν̂1(z)

)
. (7.8)

7.2.3 Covariate-Adjusted YI Without Normal Error Assumption

The covariate-adjusted YI in Sect. 7.2.2 is a semi-parametric estimator for the YI
based on regression models with normal error distribution assumption for test results.
However, this method may be sensitive to departures from the distributional assump-
tion. Therefore, it is necessary to provide a fully nonparametric covariate-adjustment
for the YI.

In this section, ε1 and ε2 in models (7.2–7.3) are assumed to be distribution free,
i.e., both F ∗(·) and G∗(·) are unknown distributions. Let {(zi,x , xi) : i = 1 . . . m}
and {(zj ,y , yj ) : j = 1 . . . n} be random samples of “non-diseased” subjects and
“diseased” subjects from models (7.2–7.3), where zi,x and zj ,y are the corresponding
observed covariate values in the “non-diseased” and “diseased” samples. Our goal
is to estimate J (z) at given z based on these samples.

To estimate J (z) at given z, we have to estimate test values at given Z = z
since the mean functions μi(z)’s and the variance functions νi(z)’s as well as the
error distributions F ∗(·) and G∗(·) are unknown. Estimating the mean and variance
functions can be easily implemented by modern nonparametric methods (e.g., local
polynomial method). However, producing a good estimate for the error distribution is
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a difficult task in nonparametric heteroscedastic regression models. Instead of using
the complex estimation of the error distributions, we employ the following procedure
which has been applied in Yao et al. (2010):

1. Find nonparametric estimates μ̂1, μ̂2, ν̂1, and ν̂2 for μ1, μ2, ν1, and ν2 by using
local polynomial method (see Fan and Gijbels 1996).

2. Find the standardized residuals:

ε̂i,x = xi − μ̂1(zi,x)√
ν̂1(zi,x)

, ε̂j ,y = yj − μ̂2(zj ,y)√
ν̂2(zj ,y)

.

3. Estimate test values at given Z = z as follows:

x̂i,z = μ̂1(z) +√
ν̂1(z)̂εi,x , ŷj ,z = μ̂2(z) +√

ν̂2(z)̂εj ,y.

Then, the nonparametric covariate-adjusted estimator for the YI can be defined as
follows:

ĴE(z) = sup
c

⎡
⎣m−1

m∑
i=1

I (̂xi,z ≤ c) − n−1
n∑

j=1

I (̂yj ,z ≤ c)

⎤
⎦

= m−1
m∑

i=1

I
(̂
xi,z ≤ ĉoE(z)

)− n−1
n∑

j=1

I
(
ŷj ,z ≤ ĉoE(z)

)

where I (·) is the indicator function, ĉoE(z) = ĉ
(1)
oE (z) or ĉ (2)

oE (z) with

ĉ
(1)
oE (z) = inf

c

⎧⎨
⎩c : sup

c

⎡
⎣m−1

m∑
i=1

I (̂xi,z ≤ c) − n−1
n∑

j=1

I (̂yj ,z ≤ c)

⎤
⎦
⎫⎬
⎭ , (7.9)

ĉ
(2)
oE (z) = sup

c

⎧⎨
⎩c : sup

c

⎡
⎣m−1

m∑
i=1

I (̂xi,z ≤ c) − n−1
n∑

j=1

I (̂yj ,z ≤ c)

⎤
⎦
⎫⎬
⎭ . (7.10)

ĉ
(i)
oE (z)’s are empirical estimates for the optimal cutoff point. In practice, ĉ (i)

oE (z)
can be estimated via numerically searching on a grid of combined samples from X

and Y . It is noted that, while ĉ
(i)
oE (z) lead to the empirical estimate of the YI, ĉ (1)

oE (z)
maximizes the empirical sensitivity, and ĉ

(2)
oE (z) maximizes the empirical specificity.

Remark 1. It should be indicated that one advantage of the proposed nonparametric
approach is that the estimated covariates-specificYI is invariant to monotone transfor-
mation of test results. On the contrary, a parametric procedure forces the covariates to
affect the test in a certain scale, and hence the resultingYI is not transformation-free.

Remark 2. In general, the proposed procedure can be used with multi-covariates
scenarios. When more than one covariates need to be adjusted, the multivariate
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smoothing becomes challenging with slower convergence rates and much more in-
tensive computation burden, and it might face the curse of dimensionality problem.
However, existing methods for dimension reduction (e.g., additive models) could be
a valuable solution in such situation.

7.3 Asymptotic Properties of the Covariate-Adjusted Estimators
for the YI

We present the asymptotic properties of the covariate-adjusted estimators for the
YI in this section. Firstly, we explore the asymptotic properties of ĴN (z) under the
normal error assumption. Then we discuss the properties of ĴE(z) when there is no
specific assumptions for the underlying error distributions.

7.3.1 Asymptotic Properties of ĴN (z)

Under the normal error assumption, Yao et al. (2010) obtained the asymptotic nor-
mality of the covariate-adjusted AUC estimator under models (7.2–7.3) for a given
z, and its strong uniform convergence rate. Applying the same arguments, we can
derive similar asymptotic properties for ĴN (z).

Some notations are presented below for better presenting the asymptotic properties
of ĴN (z).

ζ1(z) = E(ε3
1|Z = z), ζ2(z) = E(ε3

2|Z = z),

π1(z) = Var(ε2
1|Z = z), π2(z) = Var(ε2

1|Z = z),

Mj (K) =
∫

μjK(μ)dμ, for all integer j ≥ 0,

R(K) =
∫

K2(μ) < ∞, Sp = (
mj+l(K)

)
0≤j ,l≤p

K∗(μ) = vT
1 S−1

p (1,μ, . . . ,μp)T K(μ),

R(K∗, ρ) =
∫

K∗(μ)K∗(μ/ρ)dμ, for any 0 < ρ < ∞,

where K(·) is a symmetric kernel density function, p is the order of local polynomial
methodology. vk is the (p + 1) × 1 vector with the kth element being 1 and 0 others.

Under some assumptions, for a given z, the local polynomial estimators of the
mean and variance functions in models (7.2) and (7.3) are asymptotically normal in
distribution, namely,

√
mhμ1

(
μ̂1(z) − μ1(z), ν̂1(z) − ν1(z)

)τ d−→ N (β1(z),Ξ1(z)),
√
nhμ2

(
μ̂2(z) − μ2(z), ν̂2(z) − ν2(z)

)τ d−→ N (β2(z),Ξ2(z)),
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where hμ1 and hμ2 are the bandwidths for estimating μ1 and μ2, respectively, and

β1(z) = {β11(z),β12(z)}τ , Ξ1(z) = ξx,ij (z)1≤i,j≤2,

β11 = Mp+1K∗

(p + 1)
d1μ

p+1
1 (z), β12 = Mp+1K∗

(p + 1)
d1ρ

p+1
1 ν

p+1
1 (z),

ξx,11(z) = R(K∗)ν1(z)

θ (z)
, ξx,22(z) = R(K∗)π1(z)

θ (z)ρ1
,

ξx,12(z) = ξx,21(z) = R(K∗, ρ1)ζ1(z)

θ (z)ρ1
, d1 = lim

(
mh2p+3

μ1

)1/2

β2(z) = {β21(z),β22(z)}τ , Ξ2(z) = ξy,ij (z)1≤i,j≤2,

β21 = Mp+1K∗

(p + 1)
d2μ

p+1
2 (z), β22 = Mp+1K∗

(p + 1)
d2ρ

p+1
2 ν

p+1
2 (z),

ξy,11(z) = R(K∗)ν2(z)

θ (z)
, ξy,22(z) = R(K∗)π2(z)

θ (z)ρ2
,

ξy,12(z) = ξy,21(z) = R(K∗, ρ2)ζ2(z)

θ (z)ρ2
, d2 = lim

(
mh2p+3

μ2

)1/2
,

ρi = lim hνi /hμi
, i = 1, 2, and hνi is the bandwidth for estimating νi ,

Based on above asymptotic properties, applying the Cramer–Wald device and
Slusky’s theorem, we obtain the following theorems for ĴN (z).

Theorem 1 Under assumptions (A1–A5) stated in Appendix, for a given Z = z, we
have that

(i) if n
m

→ ∞,
√
mhμ,1(ĴN (z) − JN (z))

d−→ N (M1(z),V1(z)), where

M1(z) = ∂JN (z)

∂μ1(z)
β11(z) + ∂JN (z)

∂ν1(z)
β12(z),

V1(z) =
(
∂JN (z)

∂μ1(z)

)2

ξx,11(z) +
(
∂JN (z)

∂ν1(z)

)2

ξx,22(z)

+ ξx,12(z)

(
∂JN (z)

∂ν1(z)

∂JN (z)

∂μ1(z)
+ ∂JN (z)

∂μ1(z)

∂JN (z)

∂ν1(z)

)
.

(ii) if n
m

→ 0,
√
nhμ,2(ĴN (z) − JN (z))

d−→ N (M2(z),V2(z)), where

M2(z) = ∂JN (z)

∂μ2(z)
β21(z) + ∂JN (z)

∂ν2(z)
β22(z),

V2(z) =
(
∂JN (z)

∂μ2(z)

)2

ξy,11(z) +
(
∂JN (z)

∂ν2(z)

)2

ξy,22(z)

+ ξy,12(z)

(
∂JN (z)

∂ν2(z)

∂JN (z)

∂μ2(z)
+ ∂JN (z)

∂μ2(z)

∂JN (z)

∂ν2(z)

)
,
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(iii) if n
m

→ ρ, 0 < ρ < ∞,
√
mhμ,1(ĴN (z) − JN (z))

d−→ N (M3(z),V3(z)), where

M3(z) = M1(z) + ρ
− p+1

2p+3 M2(z), V3(z) = V1(z) + ρ
− 2p+2

2p+3 V2(z).

The forms of partial derivatives in above equations are given in Appendix.

Theorem 2 Under assumptions (A1†–A5†) and (A6–A8) stated in Appendix, we
have

sup
z∈�Z

|ĴN (z) − JN (z)| = O(Tm + Wn), (7.11)

where Tm = h
p+1
μ1 + √

log(1/hμ1 )/(mhμ1 ), Wn = h
p+1
μ2 + √

log(1/hμ2 )/(nhμ2 ),
hμi

’s are bandwidths for estimating μi(z)’s (i= 1, 2), and �Z is the domain of Z.

7.3.2 Asymptotic Properties of ĴE(z)

Now, we explore the asymptotic properties of the empirical estimate ĴE(z) of J (z)
without normality assumption.

Let

εi,x = xi − μ1(zi,x)√
ν1(zi,x)

, εj ,y = yj − μ2(zj ,y)√
ν2(zj ,y)

.

and
xi,z = μ1(z) +√

ν1(z)εi,x , yj ,z = μ2(z) +√
ν2(z)εj ,y.

J̃E(z) = sup
c

⎡
⎣m−1

m∑
i=1

I (xi,z ≤ c) − n−1
n∑

j=1

I (yj ,z ≤ c)

⎤
⎦

= m−1
m∑

i=1

I (xi,z ≤ c̃oE(z)) − n−1
n∑

j=1

I (yj ,z ≤ c̃oE(z)),

where c̃oE(z) = c̃
(1)
oE (z) or c̃ (2)

oE (z), and

c̃
(1)
oE (z) = inf

c

⎧⎨
⎩c : sup

c

⎡
⎣m−1

m∑
i=1

I (xi,z ≤ c) − n−1
n∑

j=1

I (yj ,z ≤ c)

⎤
⎦
⎫⎬
⎭ , (7.12)

c̃
(2)
oE (z) = sup

c

⎧⎨
⎩c : sup

c

⎡
⎣m−1

m∑
i=1

I (xi,z ≤ c) − n−1
n∑

j=1

I (yj ,z ≤ c)

⎤
⎦
⎫⎬
⎭ . (7.13)

J̃E(z) can be treated as a “hypothetical” estimator for J (z) because the mean
functions μi(z)’s and the variance functions νi(z)’s need to be estimated in practice.
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If μi(z)’s and νi(z)’s are known, J̃E(z) is asymptotically an unbiased estimator for
J (z).

Theorem 3 If n/m → ρ for some 0 < ρ < ∞, then

E
[
J̃E(z)

]−→J (z), for a given z. (7.14)

Theorem 4 Under assumptions (A1†), (A2†), (A4†), (A3∗), (A5∗), (A6–A8) and
(A9) stated in Appendix, if n/m → ρ for some 0 < ρ < ∞, then

E
[(

ĴE(z) − J̃E(z)
)2
]
−→0, for a given z. (7.15)

The asymptotic unbiasness property of ĴE(z) can be obtained from Theorem 3
and Theorem 4. But the asymptotic normality of the empirical estimator ĴE(z) has
eluded us so far. It still is an open research problem.

7.4 Confidence Intervals for the YI and Simulation Study

7.4.1 Confidence Intervals for the Covariate-Adjusted YI

Under the normal error assumption for models (7.2) and (7.3), using the asymptotic
distribution of ĴN (z), we can construct a normal approximation (NA)-based confi-
dence interval (NA interval) for the YI at given Z = z. To avoid plugging in many
estimates listed in Theorem 1, we apply the bootstrap method to estimate the bias
and variance of the covariate adjusted ĴN (z). At given z, resample the original data
B times to calculate B bootstrap replications of ĴN (z), denoted as {Ĵ ∗b

N (z) : b = 1, 2,
. . . ,B}, then the bias can be estimated by

M̂∗
3 (z) = 1

B

B∑
b=1

(Ĵ ∗b
N (z) − ĴN (z)),

and the variance can be estimated by

V̂ ∗
3 (z) = 1

B − 1

B∑
b=1

(Ĵ ∗b
N (z) − ĴN (z))2.

Therefore, at given z, we can construct a (1 − α)100 % NA confidence interval for
JN (z) as:

(
ĴN (z) − M̂∗

3 (z) − z1−α/2

√
V̂ ∗

3 (z), ĴN (z) − M̂∗
3 (z) + z1−α/2

√
V̂ ∗

3 (z)

)
, (7.16)

where z1−α/2 is the (1 − α/2)th quantile of the standard normal distribution.
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Without the normal error assumption, the confidence interval for the YI at given
Z = z should be based on the nonparametric estimate ĴE(z). Since the asymptotic
distribution of ĴE(z) is still unknown, we propose a nonparametric interval for J (z)
by using bootstrap method. Let

ĴAC(z) =
∑m

i=1 I (̂xi,z ≤ ĉoE(z)) + z2
1−α/2/2

m + z2
1−α/2

−
∑n

j=1 I (̂yj ,z ≤ ĉoE(z)) + z2
1−α/2/2

n + z2
1−α/2

.

ĴAC(z) is inspired by Agresti and Coull’s (1998) interval estimate for a bino-
mial proportion which has very good small sample performance. Since z1−α/2 is
approximately equal to 2 when α = 0.05, ĴAC(z) may be regarded as an adjusted
estimate for the difference between two proportions (i.e., P (X ≤ co(z)|Z = z)
and P (Y ≤ co(z)|Z = z)) by adding two successes and two failures to the pseudo
Bernoulli observations. We summarize the bootstrap procedure in the following steps:

(i). Resample of size m, x̂∗
i,z’s, with replacement from x̂i,z’s and a resample of size

n, ŷ ∗
j ,z’s, with replacement from ŷj ,z’s.

(ii). Calculate the bootstrap version of ĴAC(z)

Ĵ ∗
AC(z) =

∑m
j=1 I (̂y∗

j ,z ≤ ĉ∗
oE(z)) + z2

1−α/2/2

m + z2
1−α/2

−
∑n

i=1 I (̂x∗
i,z < ĉ∗

oE(z)) + z2
1−α/2/2

n + z2
1−α/2

,

where ĉ ∗
oE(z) is the bootstrap version of ĉoE(z).

(iii). Repeat step (i) and step (ii) B times to obtain the set of bootstrap replications
{Ĵ ∗b

AC(z) : b = 1, 2, . . . ,B} (it is suggested that B ≥ 200).
Then, the bootstrap variance estimator V ∗(ĴAC(z)) is defined as

V ∗(ĴAC(z)) = 1

B − 1

B∑
b=1

(Ĵ ∗b
AC(z) − J̄ ∗

AC(z))2

where J̄ ∗
AC(z) = 1

B

∑B
b=1 Ĵ

∗b
AC(z).

Now the new bootstrap (Agresti and Coull normal approximation, ACNA) interval
for J (z) is defined as follows:

(
ĴAC(z) − z1−α/2

√
V ∗(ĴAC(z)), ĴAC(z) + z1−α/2

√
V ∗(ĴAC(z))

)
. (7.17)

7.4.2 Simulation Study

In this section, we conduct simulation study to examine the finite sample perfor-
mances of the proposed methods for estimating theYI with adjustment for covariates.
In the study, we utilize two sets of models to evaluate the efficiency of our methods.
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Fig. 7.1 Simulation normal error setting: true receiver operating characteristic (ROC) curve,Youden
index and optimal cutoff point at different covariate values

In the first situation, we consider the following models for the healthy population
and the diseased population:

X|Z = 6 + 1.5Z + 1.5 sin (Z) +√
0.4 + Φ(2Z − 6)ε1,

Y |Z = 7.2 + 1.5Z + 1.5 sin (Z) + √
Z − 0.8 +√

1.2 + Φ(2Z − 6)ε2,

where both ε1 and ε2 follow the standard normal distribution, and Φ is the c.d.f. of
standard normal distribution. The simulated observations {xi , zi,x} and {yj , zj ,y} for
the two populations are generated by drawing Z values from uniform distribution
on 1–5 independently, and drawing the errors from N (0, 1) independently, where
i = 1, . . . ,m and j = 1, . . . , n. We choose the sample sizes to be n = m = 50
and n = m = 100 to compare performances of the methods at smaller sample size
and larger sample size. Figure 7.1 provides an example on how the covariate value
impacts the diagnostic accuracy based on the above settings.

In the second situation, we assume the models for the non-diseased and the
diseased populations as follows:

X|Z = 6 + 1.5Z + 1.5 sin (Z) +√
0.4 + Φ(2Z − 6)ε1,

Y |Z = 8 + 1.5Z + 1.5 sin (Z) + √
Z − 0.5 +√

1.5 + Φ(2Z − 6)ε2,

where ε1, ε2 follow heavy tail symmetric distribution, namely, the student
t-distribution with degree of freedom 4. The purpose of using this setting is to
evaluate the performances of the methods when the underlying distributions are
missspecified.

Simultaneously selecting the four bandwidths for estimating J (z) here faces the
similar issues as in Yao et al. (2010). First, the computational cost is expensive.
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Fig. 7.2 The mean square errors (MSE) of the estimators when ε1 and ε2 follow the standard normal
distribution: solid line for ĴN , dashed line for ĴE , and dotdash line for ĴAC

Second, it is too complicated in practice if the criterion for bandwidth selection
is based on the asymptotic bias and variance of the estimated YI which involve in
complex unknown functions. Lastly, if we apply cross-validation for J (z), there
is no observed YI at given Z = z. Alternatively, we selected a reasonable path
to access the “optimal” bandwidth by the standard leave-one-out cross-validation
targeting on minimizing the mean square errors (MSE) of the estimated mean and
variance functions. Namely, for given {(zi,x , xi) : i = 1 . . . m}, we select hμ1 ,
which minimizes

∑m
i=1 (xi − μ̂1,−i(zi,x))2/m, where μ̂1,−i(z) is the local polynomial

estimate for μ1(z) obtained by leaving (zi,x , xi) out. Similarly, we can choose hμ2 ,
hν1 and hν2 .

With the generated data, we evaluate the performances of the estimator ĴN (z)
under normal assumption and the nonparametric estimators ĴE(z) and ĴAC(z) by
reporting the MSE at given covariate values. We repeat the simulation for each
setting 500 times to calculate MSE at different value of z. From Fig. 7.2, we observe
that ĴAC(z) has the smallest MSE among the three estimators. When sample size
increases, the MSE of all estimators decrease as expected, shown in Fig. 7.2 (right).
For the second model, which assumed the t-distribution for the errors, the MSE of
ĴN (z) is significantly larger than those of ĴE(z) and ĴAC(z) (see Fig. 7.3), as expected.

We also examine the 95 % level pointwise NA and ACNA confidence intervals for
J (z). The usual bootstrap percentile (BP) confidence interval based on the empirical
estimator ĴE(z) is also included in the comparisons. In the simulation study, we
calculate the average upper bounds and the average lower bounds of these confidence
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Fig. 7.3 The mean square errors (MSE) of the estimators when ε1 and ε2 follow t-distribution with
degree of freedom 4: solid line for ĴN , dashed line for ĴE , and dotdash line for ĴAC

intervals at given z from 500 Monte Carlo runs. In the resampling procedure, we
chose B = 999 to pursue a better performance. For each Monte Carlo run, we select
hμ1 , hμ2 , hν1 , and hν2 via leave-one-out cross-validation, and apply the selected
bandwidths in the bootstrap procedure.

When the underlying error distribution is normal, from Fig. 7.4, we can see that
the ACNA and NA intervals are competitive. The BP pointwise confidence band
shows the highest lower band among all three methods, such over estimate of the YI
leads to low coverage probability; therefore, its performance is not desired. Overall,
the empirical coverage probabilities are lower than the nominal confidence level,
specially when z is near the lower and upper bounds of the covariate. When sample
size increases, the empirical coverage probabilities of NA and ACNA intervals are
closer to the nominal confidence level. When the underlying distribution is a t-
distribution, from Fig. 7.5, we observe that ACNA interval performs robustly. Since
the underlying distribution is missspecified, the NA interval with the t-distribution
error is not competitive to the ACNA interval. Above all, we recommend the ACNA
interval in practice.

In another comparative simulation study not reported here, we select the band-
widths as we know the true mean and variance functions. Namely we select hμ1 ,
which minimizes the true integrated error:

∫
[μ̂1(z;hμ1 ) − μ1(z)]2dz, and choose

hμ2 , hν1 , and hν2 similarly. Via this approach, we obtained slightly smaller MSE of
ĴN (z), ĴE(z), and ĴAC(z); also higher empirical pointwise coverage probabilities of
J (z), under both simulation settings. Nevertheless, the performance patterns of the
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Fig. 7.4 ε1 and ε2 follow the standard normal distribution. Left panels: the pointwise confidence
bands for J (z): normal approximation (NA) band (dashed), bootstrap percentile (BP) band (dotted),
and Agresti and Coull normal approximation (ACNA) band (dotdash). Solid line is the curve for
the true values of J (z); right panels: the pointwise empirical coverage probability for the proposed
confidence intervals, solid line is the benchmark, other line types are the same as in left panel

ĴN (z), ĴE(z), and ĴAC(z) are similar to the results reported above. Overall, we would
like to recommend the ACNA estimate and ACNA interval for the YI in practice.

7.5 Real Application

In this section, we consider the Pima Indians Diabetes Study data set originally
discussed by Smith et al. (1988). In the data set, nine variables are recorded: number
of times pregnant (V1), plasma glucose concentration in an oral glucose tolerance
test (OGTT; V2), diastolic blood pressure (mmHg; V3), triceps skin fold thickness
(mm; V4), 2-h serum insulin (mu U/ml; V5), body mass index (weight (kg)/(height
(m))2; V6), Diabetes pedigree function (V7), Age (years) (V8), Disease Status (0 or



124 H. Zhou and G. Qin

1 2 3 4 5

0.
4

0.
6

0.
8

1.
0

Sample size n=m=50

z

J(
z)

1 2 3 4 5

0.
70

0.
80

0.
90

1.
00

Sample size n=m=50

z

J(
z)

1 2 3 4 5

0.
4

0.
6

0.
8

1.
0

Sample size n=m=100

z

J(
z)

1 2 3 4 5

0.
70

0.
80

0.
90

1.
00

Sample size n=m=100

z

C
ov

er
ag

e 
P

ro
ba

bi
lit

y 
at

 z

Fig. 7.5 ε1 and ε2 follow the t distribution. Left panels: the pointwise confidence bands for J (z):
NA band (dashed), BP band (dotted), and ACNA band (dotdash). Solid line is the curve for the
true values of J (z); right panels: the pointwise empirical coverage probability for the proposed
confidence intervals, solid line is the benchmark, other line types are the same as in left panel

1; V9). There are 268 cases and 500 controls. Two individuals in the case group
have OGTT value 0 and three individuals have OGTT value 0. We deleted these
five observations in the data analysis. The OGTT is a standard diagnostic test for
diabetes. Smith and Thompson (1996) considered the age as a potential covariate
that could influence the OGTT results.

First, we consider the situation without covariate adjustment. The OGTT results
from case and control groups are not normally distributed based on the Pearson
chi-square test for normality (p-value = 0.001, 0.023 respectively). The empirical
estimate for the YI is JE = 0.446. This estimated YI value indicates that the ability
of the OGTT for distinguishing diabetes is mediocre.

Now we consider the effect of age in estimating the YI. The scatter plots of the
OGTT results versus age among non-diseased and diseased groups (see Fig. 7.6) do
not indicate a strong linear relationship between OGTT and age. It also indicates
that the variations in OGTT results over age is non-constant. Consequently, the
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Fig. 7.6 The scatter plot of oral glucose tolerance test (OGTT ) versus age, left for cases, right for
controls. Solid lines are local polynomial estimates for the mean functions

linear regression models employed in Faraggi (2003) cannot be directly applied
here. However, the heteroscedastic regression models (7.2) and (7.3) could work for
this data set. Figure 7.7. presents the local polynomial regression on the mean and
variance functions for both cases and controls, in which, the bandwidth for hμ1 , hμ2

hν1 , and hν2 are selected via standard leave-one-out cross validation.
Here, we use the OGTT results of subjects aged between 21 and 66, and produce

three covariate-adjusted estimates ĴN (z), ĴE(z) and ĴAC(z) for the YI, with 95%
pointwise BP band and ACNA band. We also include the YI estimate (denoted as
ĴL(z)) via linear model for comparison. From Fig. 7.8, by heteroscedastic model, it
is noticeable that the accuracy of diagnosing diabetes by testing the glucose level
in blood varies by age. The diagnostic accuracy of OGTT for younger individuals
(age < 30 years) is observed to be more precise than that for individuals aged from 30
years to 35 years. There is a small spike which shows a slightly increasing accuracy for
38-year to 40-year-old individuals, and then the accuracy decreases slowly to about
50 years. When testing individuals are getting older (age > 50 years), the accuracy
of OGTT increases, and the confidence bands become wider as age increases. This



126 H. Zhou and G. Qin

20 30 40 50 60

10
5

11
5

12
5

Local Polynomial Fit for Control Test Mean

Age

E
st

im
at

e 
O

G
TT

 M
ea

n

20 30 40 50 60

14
0

15
0

16
0

Local Polynomial Fit for Case Test Mean

Age

E
st

im
at

e 
O

G
TT

 M
ea

n

20 30 40 50 60

45
0

55
0

65
0

75
0

Local Polynomial Fit for Control Test Variance

Age

E
st

im
at

e 
O

G
TT

 V
ar

ia
nc

e

20 30 40 50 60

82
0

86
0

90
0

Local Polynomial Fit for Case Test Variance

Age

E
st

im
at

e 
O

G
TT

 V
ar

ia
nc

e

Fig. 7.7 Local polynomial estimates for the mean and variance of oral glucose tolerance test (OGTT )
results of both case and control

probably is due to the sparseness of observations with age larger than 50. ĴL(z)
shows an attenuate trend of diagnostic accuracy on OGTT test as varied by age.
On the other hand, comparing the estimated age-specific optimal cutoff point to the
golden standard (value = 126 mg/dl), the newly proposed method suggests that
optimal threshold increases as age increases. This can be interpreted as, for general
population, when age increases, the functionality of pancreas decays; therefore,
the OGTT test result is expected to be higher since less insulin is secreted from
the pancreas. The differences among the three proposed estimates are not obvious.
However, we recommend the nonparametric covariate-adjusted estimates for the YI
to this data set because it is more flexible and robust than the one with normal error
assumption.

7.6 A Final Remark

In this chapter, we have proposed nonparametric covariate-adjusted estimates for
the YI. The simulation study conducted here has demonstrated the robustness and
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Fig. 7.8 Left panel: Estimates for J (Age): ĴN (solid), ĴE (dashed), ĴAC (dot), and ĴL(z) (dotdash).
Pointwise confidence bands for J (Age): BP band (dashed), ACNA band (dot); right panel: estimate
for optimal cutoff: Golden standard (solid), estimate under normality error (dash), and empirical
estimate (dot)

effectiveness of the proposed method. Accordingly, we suggest applying the non-
parametric approach in real applications. Although some asymptotic properties of
the nonparametric covariate-adjusted estimator for the YI have been obtained, its
asymptotic distribution is still an open question. While the discussion is limited to
the case of theYI in this chapter, the proposed method will be extended to the partial
AUC in the future. Global test of covariates effects on the YI is another interesting
topic and has not been discussed in literature. Huang and Chen (2008) provided a
unified framework for local polynomial regression-based analysis of variance. Their
method can be applied to the nonparametric heteroscedastic models for testing global
effects of covariates on test outcomes. We will study this topic in the future.

Appendix

Denote the neighborhood of z by N (z) for given Z = z. Following the same argu-
ments in Yao et al. (2010) could lead to the Theorems presented in Sect. 7.3. Here,
we first list assumptions applied in Theorems 1–4.

(A1) ϕ(z) is the probability density function of Z. ϕ(·) is continuous in N (z) and
ϕ(z) > 0.

(A2) ν1(z) > 0, μ(p+1)
1 (·), ν(p+1)

1 (·), ζ1(·), and π1(·) are continuous in N (z).
(A3) hμ1 → 0, mhμ1 → ∞, mh

2p+3
μ1 → d2

1 for some d1 > 0, hν1/hμ1 → ρ1 for
some 0 < ρ1 < ∞, as m → ∞.

(A4) ν2(z) > 0, μ(p+1)
2 (·), ν(p+1)

2 (·), ζ2(·), and π2(·) are continuous in N (z).
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(A5) hμ2 → 0, nhμ2 → ∞, nh2p+3
μ2 → d2

2 for some d2 > 0, hν2/hμ2 → ρ2 for
some 0 < ρ2 < ∞, as n → ∞.

(A6) K∗ is uniform continuous, absolutely integrable with respect to Lebesgue
measure on � and of bounded variation, K∗(μ) → 0 as |μ| → ∞,∫ {|μlog(|μ|)|}1/2|dK∗(μ)| < ∞.

(A7) E(|X|s) < ∞, supz∈�Z

∫ |x|sP (Z,X)dy < ∞ for some s ≥ 2, where
P (Z,X) is the joint density of (Z,X).

(A8) E(|Y |s) < ∞, supz∈�Z

∫ |y|sP (Z,Y )dy < ∞ for some s ≥ 2, where
P (Z,Y ) is the joint density of (Z,Y ).

The following assumptions are modifications of (A1–A5) which are used in the
proof of Theorem 2:

(A1†) ϕ(·) > 0 and ϕ(p+1)(·) is bounded and continuous on �Z .
(A2†) On the domain �Z , ν1(·) > γ1 for some γ1 > 0 and is bounded, μ1(·) is

bounded, μ(p+1)
1 (·), ν(p+1)

1 (·), ζ1(·) and π1(·) are bounded and continuous.
(A3†) Ξmh

Δ1
μ1

< ∞ for some Δ1 > 0, m2ρ1−1hμ1 → ∞ for some ρ1 < 1 − s−1,
where s > 2 satisfies (A7).

(A4†) On the domain �Z , ν2(·) > γ2 for some γ2 > 0 and is bounded, μ2(·) is
bounded, μ(p+1)(·)

2 , ν(p+1)(·)
2 , ζ2(·) and π2(·) are bounded and continuous.

(A5†) Ξnh
Δ2
μ2

< ∞ for some Δ2 > 0, n2ρ2−1hμ2 → ∞ for some ρ2 < 1 − s−1,
where s > 2 satisfies (A8).

(A∗3) hμ1 → 0, mρ1hμ1 → ∞ for some ρ1 ≤ 1 − s−1, where s satisfies (A7).
(A∗5) hμ2 → 0, nρ2hμ2 → ∞ for some ρ2 ≤ 1 − s−1, where s satisfies (A8).
(A9) F ∗(·) and G∗(·) are continuous and monotone increasing on their domains.

Proof of Theorem 1. Theorem 1 directly follows from lemma 1 inYao et al. (2010)
and a simple application of the Cramér-Wald device. The partial derivatives of JN (z)
with respect to the mean and variance functions in Theorem 1 are:

∂JN (z)

∂μ1(z)
= − 1√

ν1(z)
φ

(
co(z) − μ1(z)√

ν1(z)

)

+ ∂co(z)

∂μ1(z)

[
1√
ν1(z)

φ

(
co(z) − μ1(z)√

ν1(z)

)
− 1√

ν2(z)
φ

(
μ2(z) − co(z)√

ν2(z)

)]

∂JN (z)

∂μ2(z)
= 1√

ν2(z)
φ

(
μ2(z) − co(z)√

ν2(z)

)

+ ∂co(z)

∂μ2(z)

[
1√
ν1(z)

φ

(
co(z) − μ1(z)√

ν1(z)

)
− 1√

ν2(z)
φ

(
μ2(z) − co(z)√

ν2(z)

)]

∂JN (z)

∂ν1(z)
= −1

2
(co(z) − μ1(z))ν−3/2

1 φ

(
co(z) − μ1(z)√

ν1(z)

)

+ ∂co(z)

∂ν1(z)

[
1√
ν1(z)

φ

(
co(z) − μ1(z)√

ν1(z)

)
− 1√

ν2(z)
φ

(
μ2(z) − co(z)√

ν2(z)

)]

∂JN (z)

∂ν2(z)
= −1

2
(μ2(z) − co(z))ν−3/2

2 φ

(
μ2(z) − co(z)√

ν2(z)

)
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+ ∂co(z)

∂ν2(z)

[
1√
ν1(z)

φ

(
co(z) − μ1(z)√

ν1(z)

)
− 1√

ν2(z)
φ

(
μ2(z) − co(z)√

ν2(z)

)]
,

and the partial derivatives of co(z) with respect to the mean and variance functions
are
∂co(z)

∂μ1(z)
= b2 ± ab(rad)−1/2(− 1)

b2 − 1

∂co(z)

∂μ2(z)
= −1 ± ab(rad)−1/2

b2 − 1

∂co(z)

∂ν1(z)
= − (μ2(z) − μ1(z))ν2(z)

(ν2(z) − ν1(z))2
±

⎡
⎣

1
2 ν

1/2
2 (z)ν−1/2

1 (z)rad1/2 + 1
2 (ν1ν2)1/2rad−1/2

(
−ln

ν2(z)
ν1(z) − ν2(z)

ν1(z) + 1
)

(ν2(z) − ν1(z))

(ν2(z) − ν1(z))2

+ (ν1(z)ν2(z))rad1/2

(ν2(z) − ν1(z))2

]

∂co(z)

∂ν2(z)
= (μ2(z) − μ1(z))ν1(z)

(ν2(z) − ν1(z))2
±

⎡
⎣

1
2 ν

1/2
1 (z)ν−1/2

2 (z)rad1/2 + 1
2 (ν1ν2)1/2rad−1/2

(
−ln

ν2(z)
ν1(z) + (ν2(z) − ν1(z) 1

ν2(z) )
)

(ν2(z) − ν1(z))

(ν2(z) − ν1(z))2

+ (ν1(z)ν2(z))rad1/2

(ν2(z) − ν1(z))2

]
,

where rad = a2 + (b2 − 1)ν1(z)ln(b2), a and b are defined in Sect. 7.2.2. �

Proof of Theorem 2. Theorem 2 follows from Slusky’s theorem and lemma 2 in
Yao et al. (2010).

Proof of Theorem 3. Let

J (c; z) = F (X ≤ c|Z = z) − G(Y ≤ c|Z = z) ≡ F (c; z) − G(c; z)

J̃E(c; z) = F̃m(c; z) − G̃n(c; z)

where F̃m(c; z) =
∑m

i=1 I (xi,z≤c)
m

, and G̃n(c; z) =
∑n

j=1 I (yj ,z≤c)

n
.

By the law of the iterated logarithm (LIL) for empirical process, we have that
supc |F̃m(c; z) − F (c; z)| = O(

√
loglogm/2m) a.s., and supc |G̃n(c; z) − G(c; z)| =

O(
√
loglogn/2n) a.s.. If n/m → ρ, then

sup
c

|J̃E(c; z) − J (c; z)| ≤ sup
c

|F̃m(c; z) − F (c; z)| + sup
c

|G̃n(c; z) − G(c; z)|

= O
(√

log logm/2m +√
log log n/2n

)
, a.s.

which indicates the strong convergence of J̃E(c; z) to J (c; z) uniformly on c for
a given z. Consequently, for a given z, c̃oE(z) converges to co(z) almost surely.
Straightforwardly, applying the Lebesgue dominated convergence theorem, E[J̃E(z)]
converges to J (z) for a given z. �
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Proof of Theorem 4. Let

ĴE(c; z) = F̂m(c; z) − Ĝn(c; z),

where F̂m(c; z) =
∑m

i=1 I (̂xi,z≤c)
m

, and Ĝn(c; z) =
∑n

j=1 I (̂yj ,z≤c)

n
.

First of all we need to show the uniform consistency of Ĵ (c; z) on c for a given
z. From the strong uniform consistency of μ̂i(z)’s and ν̂i(z)’s, it follows that for a
given z,

I (̂xi,z ≤ c) − I (xi,z ≤ c) −→ 0, a.s.

I (̂yi,z ≤ c) − I (yi,z ≤ c) −→ 0, a.s.

uniformly on c for all i. Therefore, for a given z,

|ĴE(c; z) − J̃E(c; z)| ≤
∣∣∣∣∣m

−1
m∑

i=1

(
I (̂xi,z ≤ c) − I (xi,z ≤ c)

)
∣∣∣∣∣

+
∣∣∣∣∣m

−1
m∑

i=1

(
I (̂yi,z ≤ c) − I (yi,z ≤ c)

)
∣∣∣∣∣

−→ 0, a.s.

uniformly on c. Hence, for given Z = z,

sup
c

|ĴE(c; z) − J (c; z)|≤sup
c

|ĴE(c; z) − J̃E(c; z)| + sup
c

|J̃E(c; z) − J (c; z)|−→ 0, a.s.

Consequently, for a given z, ĉoE(z) converges to co(z) almost surely.
Now define δ̂i,z = x̂i,z − ĉoE(z), δi,z = xi,z − c̃oE(z), ω̂j ,z = ŷj ,z − ĉoE(z), and

ωj ,z = yj ,z − c̃oE(z). We have

E[{ĴE(z) − J̃E(z)}2] =E

[
m−1

m∑
i=1

(
I (̂δi,z ≤ 0) − I (δi,z ≤ 0)

)

−n−1
n∑

j=1

(
I (ω̂j ,z ≤ 0) − I (ωj ,z ≤ 0)

)
⎤
⎦

2

≤ 2
[
E(T 2

1 ) + E(T 2
2 )
]

,

where T1 = m−1∑m
i=1

(
I (̂δi,z ≤ 0) − I (δi,z ≤ 0)

)
, and T2 = n−1∑n

j=1

(
I (ω̂j ,z ≤ 0)

−I (ωj ,z ≤ 0)
)
. Let us explore ET 2

1 first.

ET 2
1 = 1

m2
E

[
m∑

i=1

(
I (̂δi,z ≤ 0) − I (δi,z ≤ 0)

)2

+
∑
i �=i′

(
I (̂δi,z ≤ 0)I (̂δi′,z ≤ 0) + I (δi,z ≤ 0)I (δi′,z ≤ 0)
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−I (̂δi,z ≤ 0)I (δi′,z ≤ 0) − I (δi,z ≤ 0)I (̂δi′,z ≤ 0)
) ]

≤ 1

m
+ 1

m2

∑
i �=i′

[
P (̂δi,z ≤ 0, δ̂i′,z ≤ 0) + P (δi,z ≤ 0, δi′,z ≤ 0)

− P (̂δi,z ≤ 0, δi′,z ≤ 0) − P (δi,z ≤ 0, δ̂i′,z ≤ 0)
]

By the strong uniform consistency of μ̂i(z)’s and ν̂i(z)’s and the strong consistency
of ĉoE(z) and c̃oE(z), we have that for a given z,

δ̂i,z −→ xi,z − co(z) a.s., δi,z −→ xi,z − co(z) a.s., for all i.

So,

P (̂δi,z ≤ 0, δ̂i′ ,z ≤ 0) + P (δi,z ≤ 0, δi′ ,z ≤ 0) − P (̂δi,z ≤ 0, δi′ ,z ≤ 0) − P (δi,z ≤ 0, δ̂i′ ,z ≤ 0) −→ 0

for all i �= i ′. Therefore, ET 2
1 −→ 0 as m −→ ∞. Similarly, we can show

ET 2
2 −→ 0 as n −→ ∞. Hence, E

[
ĴE(z) − J̃E(z)

]2 −→ 0. �
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Chapter 8
Comparative Effectiveness Research Using
Meta-Analysis to Evaluate and Summarize
Diagnostic Accuracy

Kelly H. Zou, Ching-Ray Yu, Steven A. Willke, Ye Tan and Martin O. Carlsson

Abstract According to the Agency for Healthcare Research and Quality, “compara-
tive effectiveness research is designed to inform health-care decisions by providing
evidence on the effectiveness, benefits, and harms of different treatment options. The
evidence is generated from research studies that compare drugs, medical devices,
tests, surgeries, or ways to deliver health care.” Since it is difficult to systematically
review each study to generate the best evidence and practice based on the overall
diagnostic accuracy, it is useful to conduct a meta-analysis of such studies. Our main
aim is to synthesize and to combine studies that yield proportions in a two-sample
setting according to a reference standard. Statistical methods for combining sensitiv-
ities, specificities, and log diagnostic odds ratios are compared. A summary receiver
operating characteristic curve is constructed. Monte Carlo simulation studies are
conducted under both homogeneity and heterogeneity assumptions. For illustration
purposes, a publically available example in urology is provided.

8.1 Introduction

The Agency for Healthcare Research and Quality (AHRQ) defines that compara-
tive effectiveness research (CER) is “designed to inform health-care decisions by
providing evidence on the effectiveness, benefits, and harms of different treatment
options,” and “the evidence is generated from research studies that compare drugs,
medical devices, tests, surgeries, or ways to deliver health care” (see AHRQ 2014).

Meta-analysis is a quantitative method for combining the results of independent
studies and for systematically synthesizing summaries and conclusions. The overall
results may be used to evaluate therapeutic effectiveness and to plan for new studies.
See, e.g., Zou et al. (2004) on the evidence-based medicine and meta-analysis, with
a special focus on medical imaging and diagnostic trials. It is typical to use either
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a fixed or a random effects model to conduct a meta-analysis. Appropriate meta-
analytic methods help display and visualize the summary measures across individual
studies. Such analysis is a critical tool to assess complex information with or without
heterogeneity across studies.

According to Cappelleri et al. (2010), in a well-conducted meta-analysis, the
following steps are imperative: (1) formulate the study question and establish a
protocol; (2) literature search and retrieval; (3) paper selection per protocol; (4) data
extraction and quality assessment; (5) analysis and interpretation, weighted average,
meta-regression, sensitivity, and subgroup analysis.

In this investigation, we aim to synthesize and to combine outcomes from diag-
nostic studies based on a reference standard (RS). We also evaluate meta-analytic
methods to illustrate and to compare fixed and random effects methods for the follow-
ing purposes: to display the sensitivities and specificities, to combine the diagnostic
odds ratio (DOR) or the log of DOR (LDOR), along with confidence intervals (CI),
and to generate a summary receiver operating characteristic (sROC) curve.

A number of seminal papers and textbooks on ROC analysis have been available
in the literature (e.g., Metz et al. 1986; Alemayehu and Zou 2012; Swets and Pickett
1982; Zhou et al. 2002; Pepe 2003; Gönen 2007; Krzanowski and Hand 2009; Zou
et al. 2011, etc.).

A general tutorial on meta-analysis was published by Normand (1999). In specific
applications in combining diagnostic tests, several authors have developed methods
and published in the statistical literature (e.g., Walter and Irwig 1988; Moses et al.
1993; Walter et al. 1999; Rutter and Gatsonis 2001; Miller et al. 2009; Dendukuri
et al. 2012; Menten et al. 2013). A review article was by Jones and Athanasiou
(2009).

This chapter is organized as follows. In Sect. 8.2, we provide notations and as-
sumptions for synthesizing and combining accuracy measures and for generating
the sROC curve. Section 8.3 presents a publically available example in urology. In
Sect. 8.4, Monte Carlo simulation studies are conducted to compare the meta-analytic
methods based on fixed effects versus random effects modeling. Finally, conclusions
and discussions are presented in Sect. 8.5.

8.2 Notations, Assumptions, and Summary Measures

We introduce notations and assumptions for combining results from a set of published
diagnostic studies. Graphical display, heterogeneity assessment, and meta-analytic
methods using univariate and bivariate approaches are described.
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Table 8.1 A 2 × 2 table of counts within study k

Binary Dk Binary RSk Marginal count

0 (Healthy) 1 (Diseased)

0 (Negative) TNk FNk TNk + FNk

1 (Positive) FPk TPk FPk +TPk

Marginal count mk = TNk + FPk nk = FNk +TPk Nk = mk + nk

RS reference standard, D diagnosis, TN true negative, FN false negative, FP false positive, TP
true positive

8.2.1 Notations and Assumptions

A 2 × 2 table of diagnostic accuracy, as shown in Table 8.1, may be formed in each
of the kth study (k = 1, . . ., K), first by stratifying the diagnostic results according
to the binary reference standard, RSk (e.g., healthy vs. diseased).

The total sample size Nk (e.g., number of patients) based on binary RSk and
binary diagnosis (Dk) may be decomposed as true positives (TPk), true negatives
(TNk), false positives (FPk), and false negatives (FNk).

8.2.2 Forest Plot and Heterogeneity Assessment

In a forest plot as found in Lewis and Clarke (2001), the results of K individual
studies are displayed as squares centered on the point estimate of the result of each
study. A horizontal line runs through the square to show each 95 % CI.

The I2statistic measures the heterogeneity, with low, moderate, and high corre-
spond to the benchmark values, I2 = 25, 50, and 75 %, respectively. This measure
is calculated as in Higgins et al. (2003) and is derived as a typical meta-analysis,
such that I2 = 100 % × (Q -df )/Q, where Q is Cochran’s heterogeneity statistic and
df the degrees of freedom.

8.2.3 Univariate Modeling of Sensitivity, Specificity, or LDOR

Furthermore, there are two independent and mutually exclusive groups, stratified
by the binary RSk into x and y samples in a two-sample setting. Traditionally, the x
sample represents the healthy subjects, while the y sample represents the diseased
subjects.

Within the kth study, for the healthy sample of size mk among subjects with
RSk = 0, the ith subject-level diagnosis (Dx, k) is generated by an independent and
identical (i.i.d.) distribution, F( · ):

Xk, i ∼ i.i.d.F (xk), i = 1, . . .,mk.
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The specificity for the kth study is

Spk = TNk/mk.

Similarly and independently, for the diseased sample of sizenk among subjects whose
RSk = 1, the jth subject-level diagnosis (Dy,k) is generated by an i.i.d. distribution
G( · ):

Yk,j ∼ i.i.d.G (yk), j = 1, . . ., nk.

The sensitivity for the kth study is

Sek = T Pk/nk.

For subjects pooled between both the x and y groups, the index for all of the
observations is given by

l = 1, . . .,Nk , where Nk = mk + nk.

Diagnostic reviews start with a set of individual studies presenting estimates of sen-
sitivity and specificity. One intuitive approach is to do separate pooling of sensitivity
and specificity using standard methods for proportions. However, sensitivity and
specificity are often negatively correlated within studies.

The ratio of the odds of the test being positive if the subject has a disease against
the odds of the test being positive if the subject does not have the disease is

DORk = (T Pk/FNk) / (FPk/T Nk).

After a log transformation, the LOR is as given by:

LDORk = ln (DORk) = ln (T Pk) − ln (FNk) + ln (T Nk) − ln (FPk).

The standard error (SE) of the estimated LDORk is straightforward,

[1/ (T Pk) + 1/ (FNk) + 1/ (T Nk) + 1/ (FPk)]
1/2,

along with the associated 95 % CIs constructed accordingly.
Univariate fitting may be conducted using the R function “mada” or “madauni”

within the R package named “mada.”
To synthesize across all k = 1, . . ., K studies, both the fixed effects Mantel–

Haenszel (MH) found in Robins et al., (1986) and the random effects DerSimonian–
Laird (DSL) methods were developed by the authors DerSimonian and Laird (1986).

The sROC curve plots (1–Spk , Sek) across all possible thresholds. One way of
constructing an sROC is by assuming that overall Se = (1-Sp)θ , where θ is an accuracy
parameter within a Lehman family for fitting (see, e.g., Holling et al., 2012).
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8.2.4 Bivariate Joint Modeling of Sensitivity and Specificity

Although it appears to be intuitive and straightforward to analyze sensitivity and
specificity separately, it is more appropriate to assume that sensitivity and specificity
values are negatively correlated due to the different thresholds (i.e., cutoff points)
used across different studies.

A possible cause for this negative correlation between sensitivity and specificity
is that studies may have used different thresholds to define positive and negative
test results. In some cases, this may have been done explicitly due to studies using
different cutoff points to classify a continuous biochemical measurement as either
positive or negative. In other situations, there may have been implicit variations in
thresholds between studies due to differences in observers, laboratories, or equip-
ment. Unlike other sources of variation, a difference in threshold leads to a particular
pattern between sensitivity and specificity.

Therefore, it is more appropriate to employ bivariate joint modeling of sensitivity
and specificity. See recent developments by Reitsma et al. (2005), which, according
to Harbord et al. (2007), is equivalent to the hierarchical sROC (HSROC) analysis
proposed by Rutter and Gatsonis (2001).

For model fitting in SAS, see Macaskill (2004) and Reitsma et al. (2005). For
model fitting in R, a linear mixed model with known variances is available under
the “reitsma” function within the R package “mada.” Variance components may
be estimated using fixed, restricted maximum likelihood (REML, as the default) or
maximum likelihood (ML) methods.

Furthermore, meta-regression based on other transformation methods beyond
logit may be conducted, as in Doebler et al. (2012). Additional relevant publications
are byArends et al. (2008), Trikalinos et al. (2012), Dehabreh et al. (2012), Trikalinos
et al. (2013), and Leeflang et al. (2013). The sROC curves may be formed based on
the above bivariate or multivariate models, accordingly.

8.3 An Illustrative Example in Urology

We illustrate our methods on a publically available example on computed tomog-
raphy (CT) scans of urolithiasis, published by Niemann et al. (2008). Prospective
and retrospective studies from 1995 to 2007 are based on comprehensive literature
searches via PubMed, Medline, and Cochrane Library.

Low-dose CT scan (with< 3 mSv dose applied for the entire CT examination) is
the diagnostic test for the detection of urolithiasis, i.e., a stone located in the ureter.
There are a total of K=7 studies, and each study provides the counts of urolithiasis
from low-dose CT to determine urolithiasis. See Table 8.2 for extracted study-level
data from these studies.

The R packages “rmeta” developed by Lumley (2012) and “mada” developed by
Doebler (2013) are used to conduct all analyses described below and to generate
tables and figures.
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Table 8.2 Classifications in each of the seven studies on low-dose CT to detect urolithiasis

Study
(k)

#Healthy
(mk)

TNk FPk #Diseased
(nk)

TPk FNk Spk Sek DORk LDORk

1 23 22 1 37 36 1 0.957 0.973 792.000 6.675

2 29 28 1 80 77 3 0.966 0.962 718.667 6.577

3 62 61 1 147 142 5 0.984 0.966 1732.400 7.457

4 14 12 2 102 96 6 0.857 0.941 96.000 4.564

5 40 38 2 102 99 3 0.950 0.971 627.000 6.441

6 24 23 1 101 98 3 0.958 0.970 751.333 6.622

7 142 133 9 158 154 4 0.937 0.975 568.944 6.344

TN true negative, FP false positive, TP true positive, FN false Negative, Sp specificity, Se
sensitivity, DOR diagnostic odds ratio, LDOR log diagnostic odds ratio, CT computed tomography

Fig. 8.1 A forest plot of the specificity and sensitivity measures

The estimated correlation of sensitivities and false positive rates is − 0.778, with
a 95 % CI of (− 0.965, − 0.061). Because of such a wide CI, both univariate and
bivariate analyses are conducted for the purpose of comparisons.

The heterogeneity across studies is assessed, and the corresponding I2 ≈ 0, which
is low across all studies. In Figs. 8.1 and 8.2, the forest plots of Spk , Sek , and LDORk

are displayed. Table 8.3 compares results based on the fixed effects (MH) and random
effects (DSL) models.

Figure 8.3 demonstrates the sROC curve, where the full area under the curve
(AUC) under the sROC curve is 0.991. In comparison, by using bivariate modeling
(see Reitsma, 2005), which is equivalent to the HSROC approach (see Rutter and
Gatsonis, 2001), the estimated AUCs under the sROC curves are 0.922 via REML
and 0.932 via ML estimation methods.
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Fig. 8.2 Forest plot of log diagnostic odds ratios via the fixed effects and random effects models
using two methods. The combination methods used are as follows: panel 2a (left), fixed effects
(MH = Mantel–Haenszel); panel 2b (right), random effects (DSL = DerSimonian–Laird)

Table 8.3 Combined results based on seven studies on low-dose CT to detect urolithiasis by the
fixed effects and random effects models

Meta-analytic method Combined LDOR 95 % CI of the LDOR

Fixed effects (MH) 6.312 (5.629, 6.995)

Random effects (DSL) 6.244 (5.545, 6.942)

LDOR log diagnostic odds ratio, CI confidence interval, MH Mantel–Haenszel, DSL
DerSimonian–Laird, CT computed tomography

8.4 Monte Carlo Simulations

In each setting, we assume either homogeneity or heterogeneity across K = 10 stud-
ies. The true accuracy is predetermined to compare fixed (MH) and random (DSL)
effects methods. Variations in terms of the underlying sensitivity and specificity are
considered using realistic and extreme scenarios.

We generate k = 1, . . ., K (K = 10) sets of study-level data with either small or
large sample sizes, mk = nk = {25, 50}, with a total sample size of Nk = {50, 100}.
To investigate the performances, either homogeneity or heterogeneity is assumed
across all studies.

For simplicity, specificity and sensitivity have independent binomial distributions,
where

Xk ∼ Binomial(mk , Spk),

with Spk = {0.5, 0.7, 0.9} for the health subjects, and

Yk ∼ Binomial(mk , Sek),

with Sek = {0.5, 0.7, 0.9} for the diseased subjects.
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Fig. 8.3 The summary of ROC curve in a restricted ROC space. ROC receiver operating
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With MC = 10,000 replicates for each scenario, Tables 8.4 and 8.5 show the mean
bias, mean squared errors (MSE), and coverage probability (with 95 % as the nominal
level) for small and large study sample sizes, respectively.

We have found that the random effects model tends to yield higher coverage with
comparable MSE. Nevertheless, the choice of method may depend on heterogeneity
across all studies and the correlation between sensitivities and specificities due to the
different thresholds used across studies.

8.5 Conclusions and Discussions

According to principles of evidence-based medicine in Sackett et al. (1996), we
must strive to achieve “the conscientious, explicit, and judicious use of current
best evidence in making decisions about the care of individual patients.” The CER
must be applied appropriately and correctly. For example, as Normand (1999) has
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suggested, systematically combining complex information across individual studies,
the overall results have greater power than that of an analysis conducted study by
study. If several studies have conflicting conclusions, a meta-analysis can better
identify those associated with an overall effect (e.g., an accurate diagnosis for a
beneficial treatment).

In this research, we have compared the synthesis methods to display and combine
individual diagnostic accuracy (e.g., Sp and Se), LDOR, and to use both univariate
and bivariate approach to model sensitivity and specificity, as well as to generate a
single sROC curve. We have illustrated these methods on an example in urology. We
have also compared the performances of the fixed and the random effects models by
Monte Carlo simulations. We have only shed some light on the performances of fixed
effects versus random effects models, as well as the impact of underlying parameters
and sample sizes.

Further research is needed to examine issues arising from the prevalence of the
disease, systematic publication biases, and various combinations of Sp and Se values.
For example, since sensitivity and specificity measures tend to be negatively corre-
lated, a bivariate approach should be considered, rather than a marginal univariate
analysis.

It is worth emphasizing that several other best practices such as using a checklist
under the Standards for Reporting of Diagnostic Accuracy Studies (2008), in short,
“STARD” and in Bossuyt et al. (2003), towards complete and accurate reporting of
studies of diagnostic accuracy may be conscientiously applied when conducting a
meta-analysis of diagnostic studies. A quality assessment tool for diagnostic accuracy
studies (QUADAS), byWhiting et al. (2003; 2004; 2011) and the University of Bristol
(2014), may also be utilized.
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Chapter 9
Some Characteristics of the Varying-Stage
Adaptive Phase II/III Clinical Trial Design

Gaohong Dong

Abstract Conventionally, adaptive phase II/III clinical trials are carried out with
a strict two-stage design. Dong (Stat Med 33(8):1272–1287) recently proposed a
varying-stage adaptive phase II/III clinical trial design, in which the number of fur-
ther investigational stages is determined based upon data accumulated to the interim
analysis. In this design, following the first stage, an intermediate stage can be adap-
tively added to obtain more data, so that a more informative decision could be made.
This design considers two plausible study endpoints with one of them initially des-
ignated as the primary endpoint. Based on the interim results, another endpoint can
be switched as the primary endpoint. Dong (Stat Med 33(8):1272–1287) has showed
relations of design parameters (e.g., thresholds and percent of alpha allocated in
the two-stage setting) as well as the trial design properties under the alternative
hypotheses for both plausible endpoints. Here, we explore characteristics of the de-
sign when the alternative hypothesis for only one of the two endpoints is true, and
the treatment effect for another endpoint is null (an extremely worst case) or lower
than what was anticipated per trial design. The simulations show that the statistical
power of the varying-stage adaptive phase II/III clinical trial design (Dong, Stat Med
33(8):1272–1287) is less sensitive to a low realized treatment effect.

9.1 Introduction

Different from conventional separate phase II and phase III clinical trials, a seamless
phase II/III trial design addresses study objectives of phase II and phase III within
a single trial. This uninterrupted adaptive design has advantages of combining con-
ventional phase II and phase III operationally and inferentially into a single study
(e.g., Bretz et al. 2006; Gallo et al. 2006; Jennison and Turnbull 2006), particularly
to (1) accelerate drug development process by reducing “white space” between the
two clinical trial phases, (2) gain statistical efficiency by using first-stage data on the
patients treated with the new therapy with the dose selected for the second stage, thus
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reduce the sample size needed for the second stage, and (3) get long-term safety data
earlier since the patients in stage I are followed longer as compared to conventional
phase II study. Adaptive phase II/III clinical trial designs have been extensively stud-
ied (e.g., Bauer and Köhne 1994; Cui et al. 1999; Müller and Schäfer 2001; Todd
and Stallard 2005; Bischoff and Miller 2009; Bretz et al. 2009). More recently, in
2010, the US Food and Drug Administration (FDA) released the draft guidance of
adaptive design clinical trials for drugs and biologics (FDA 2010).

Frequently, there are situations in which researchers are in dilemma to make “go
or no-go” decision and/or to select “best” dose arm(s), since interim data from the
first stage may not provide sufficient data for their decision making. In this case, it is
challenging to follow a strict two-stage plan. Therefore, we proposed a varying-stage
adaptive phase II/III clinical trial design, in which we consider whether there is a need
to have an intermediate stage to obtain more data, so that a more informative decision
could be made regarding whether the trial can be advanced to the final confirmatory
stage (Dong 2014). In our proposed design, two study endpoints are considered
plausible. The endpoint 1 is initially designated as the primary study endpoint. The
endpoint 2 can be switched as the primary study endpoint if the endpoint 1 does
not seem sensitive to show treatment effect, whereas the endpoint 2 appears a better
measure of clinical benefit for the study.

Dong (2014) has showed relations of design parameters (e.g., thresholds and
percent of alpha allocated in the two-stage setting) as well as the trial design properties
under the alternative hypotheses for both plausible endpoints. Here, we explore
characteristics of the design when the alternative hypothesis for only one of the two
endpoints is true, and the treatment effect for another endpoint is null or low compared
to what was anticipated per the trial design. In Sect. 2, we briefly introduce the
varying-stage adaptive phase II/III clinical trial design as presented in Dong (2014),
then show some characteristics of this design in Sect. 3. In Sect. 4, we summarize
the findings of this chapter and discuss some future research with the varying-stage
adaptive phase II/III clinical trial design.

9.2 Varying-Stage Adaptive Phase II/III Clinical Trial Design

Consider a clinical trial that is initially planned with two study endpoints, up to three
stages, K dose arms of the study treatment and one control arm. Let D = {1, 2, . . ., K}
be the full index set of dose arms of the study treatment, and θik be the parameter of
interest with respect to the ith endpoint for the kth dose arm (k = 0 for the control
arm). The elementary null hypothesis for the comparison between the kth dose arm
of the study treatment and the control arm is:

H0ik : θik = θi0, vs H1ik : θik > θi0, where, i = 1, 2 for endpoint; k ∈ D (9.1)

The global null hypothesis with respect to the ith endpoint is

H0i :
⋂
k∈D

H0ik = H0i1

⋂
H0i2

⋂
. . .

⋂
H0iK , where i = 1,2 for endpoint (9.2)
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Let pijk be the p-value of the elementary null hypothesis (H0ik) testing for the differ-
ence between the kth dose arm (k ∈ D) and the control arm with respect to the ith
endpoint (i = 1, 2) at the jth stage (j = 1, 2, 3), and pij be the p-value of the global
null hypothesis (H0i) testing at the jth stage with respect to the ith endpoint. The
p-values pijk and pij are based on the data from the jth stage only. Let α(j )

i be the
prespecified threshold parameter for the ith endpoint at the jth stage.

9.2.1 Initial Learning Stage (Phase II)

Figure 9.1 shows the flow chart of the varying-stage adaptive phase II/III clinical trial
design. The initial stage is considered as a learning stage (phase II). Following this
stage, the first interim analysis is performed. As shown in Fig. 9.1a, if p11 < α

(1)
1 ,

the endpoint 1 is kept as the primary study endpoint as initially planned. Following
this, inefficacious/harmful dose arm(s) will be dropped and sample size adjustment
for the final stage will be performed (path A1). If p11 ≥ α

(1)
1 and p21 < α

(1)
2 , then

the endpoint 2 will be chosen as the primary study endpoint. With respect to the
new primary study endpoint (endpoint 2), inefficacious/harmful dose arm(s) will be
dropped, and sample size adjustment will be performed for the next stage (path A2).
Otherwise, the primary endpoint cannot be decided based on the current interim data.
Therefore, two further study stages need to be planned: one is intermediate stage;
another one is confirmatory stage (path A3). The intermediate stage is considered
as an extension of phase II, from which more data will be obtained, so that more
informative decisions can be made.

9.2.2 Intermediate Stage (Extended Phase II)

The second interim analysis is conducted following the intermediate stage. For this
interim analysis, a combination test is performed to incorporate data obtained from
the initial stage and the intermediate stage. The combined p-values are based on a
combination function C(pi1, pi2), wherepi1 andpi2 are p-values from the two disjoint
stages—initial stage and intermediate stage, respectively, for the ith endpoint (i = 1,
2). We use Fisher’s product combination method (Fisher 1932; Bauer and Köhne
1994) to combine p-values. Hence C(pi1, pi2) =pi1pi2. One should note that Fisher’s
p-value combination method requires the independence of the two p-values. As the
two disjoint stages comprise two separate cohorts of patients (or two independent
samples in another word), the p-values pi1 and pi2 are independent and fulfill the
independence requirement of Fisher’s p-value combination method.

Corresponding to the combined overall p-value C(p11, p12) < α
(2)
1 , or

C(p11, p12) ≥ α
(2)
1 and C(p21, p22) < α

(2)
2 , similar design flows (path B1 and

path B2, respectively) to the first interim analysis can be followed to switch primary
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Fig. 9.1 Flow chart of the varying-stage adaptive phase II/III clinical trial design
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study endpoint, drop inefficacious/harmful dose arm(s), and perform sample adjust-
ment for the final confirmatory stage. Otherwise, the trial will be stopped for futility
(path B3).

9.2.3 Final Confirmatory Stage (Phase III)

The final stage is considered as a confirmatory phase III stage. Following the com-
pletion of the final stage, the final analysis will be performed. Similar to the second
interim analysis, the final analysis incorporates data from previous stage(s) via a
combination test. The statistical significance will be demonstrated by comparing the
combined p-value against a critical value with respect to the primary study endpoint.

The parameters α(1)
1 and λ play important roles in the varying-stage adaptive phase

II/III clinical trial design. These parameters can be determined based on the feasibil-
ity of sample size, statistical power, and anticipated alpha allocation. The parameter
λ mainly impacts alpha allocation and thus the expected sample size. The threshold
probability α

(1)
1 mainly contributes to the chance to have a trial follow A1 path. In the

current setting, we select the most effective dose(s) (with the smallest p-value(s) or
combine p-value(s)) from the early stage(s) for the final stage. See Dong (2014)
for details on the prespecified threshold parameters α

(1)
1 , α

(1)
2 , α

(2)
1 , and α

(2)
2 ;

multiplicity; and sample size re-estimation.

9.2.4 Combined p-Values and Critical Values for the Final
Analysis

For a phase II/III clinical trial, based on interim results, usually one or two doses of
the study treatment are chosen for the final confirmatory stage. However, without loss
of generality, let S be the index set of the dose arms chosen for the final confirmatory
stage, S ⊆ D. Following the closed testing procedure (Marcus et al. 1976), to
reject the elementary null hypothesis H0is for the dose arm s, s ∈ S and i = 1, 2
for study endpoint, all intersection null hypotheses H0i,J :

⋂
k∈J H0ik(s ∈ J ⊆ D =

{1,2, . . .,K}) including the dose arms dropped from an interim analysis have to be
rejected as long as these intersection null hypotheses contain H0is.

Let D1 be a closed set for the first stage, such that s ∈ D1. For a three-stage
setting, the same D1 applies to the second stage as there are no dose arm changes
from interim I. For the final stage, since some dose arms would have been dropped,
the set D1 is reduced to S1 and the intersection null hypothesis H0i,D1:

⋂
k∈D1

H0ik is
reduced to H0i,S1:

⋂
k∈S1

H0ik , such that s ∈ S1 ⊆ D1 ⊆ D = {1,2, . . .,K}. Let pi1,D1

and pi2,S1 be p-values corresponding to H0i,D1 and H0i,S1 for a two-stage setting, and
pi1,D1 , pi2,D1 , and pi3,S1 be corresponding p-values for a three-stage setting. To reject
the null hypothesis H0is for the selected dose arm s with respect to the ith endpoint,
the combined p-values and corresponding critical values for the final analysis are
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Table 9.1 Combined p-values and critical values for the final analysis to reject H0is for the selected
dose arm s

Trial path Final analysis

Combined p-value, for any S1 and D1such that
s ∈ S1 ⊆ D1 ⊆ D and s ∈ S1 ⊆ S ⊆ D

Critical value

A1 p11,D1p12,S1 α
(1)
1 cα∗

A2 p21,D1p22,S1 α
(1)
2 cα∗

A3B1 p11,D1p12,D1p13,S1 α
(2)
1 cα∗

A3B2 p21,D1p22,D1p23,S1 α
(2)
2 cα∗

listed in Table 9.1, where cα∗ = exp (−0.5χ2
α∗,4) and χ2

α∗,4 is the (1−α*) quantile of
the χ2 distribution with four degrees of freedom. For α*, see the next section; for
the distributions of conditional p-values and combined p-values, see Dong (2014).

9.2.5 Type I Error Rate and Alpha Allocation

To achieve family-wise type I error controlled at α level, the final analysis is per-
formed at the significance level of α*. Following a closed testing procedure (Marcus
et al. 1976), to reject the null hypothesis H0is for the selected dose arm s, all intersec-
tion null hypotheses containing H0is have to be rejected at the significance level α*.
Following Dong (2014), the type I error rate for the two-stage setting is as follows:

ERII = α∗ [α1
(1) + (

1 − α1
(1)
)
α2

(1)
] = λα (9.3)

where λ is the percent of alpha allocated for the two-stage setting. The type I error
rate for the three-stage setting is

ERIII = α∗
{
−α

(2)
1

(
1 − α

(1)
2

)
ln
(
α

(1)
1

)
− α

(2)
2 ln

(
α

(1)
2

) [
1 − α

(1)
1 + α

(2)
1 ln

(
α

(1)
1

) ]}

= (1 − λ) α (9.4)

To control the overall Type I error rate at α, we require that α* satisfies

ER = ERII + ERIII ≤ α (9.5)

9.3 Characteristics of the Varying-Stage Adaptive Phase II/III
Clinical Trial Design

For the varying-stage adaptive phase II/III clinical trial design, Dong (2014) has
showed statistical power, probabilities of trial paths, and expected sample size (EN)
under the alternative hypotheses for both plausible endpoints. Here, we explore
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Table 9.2 Distribution of the two endpoints for simulations

Study endpoint Distribution

Control Dose 1 Dose 2 Dose 3

1 N(40, 202) N(45, 202) N(47, 202) N(49, 202)

2 N(10, 152) N(14, 152) N(15, 152) N(17, 152)

characteristics of the design when the alternative hypothesis for only one of the two
endpoints is true, and the treatment effect for another endpoint is null or lower than
what was anticipated per trial design. Same as Dong (2014), we control the family-
wise type I error rate at the level of α = 0.05 (two-sided), apply 80 % conditional
power to re-estimate the sample size for the final stage, and assume the two endpoints
are normally distributed (Table 9.2). Following Bretz et al. (2009), we use a closed
Dunnett test procedure. For simplicity and simulation purpose, we set the sample size
for the first stage n1 = 35/arm, which could detect the maximal assumed treatment
effect τ = 0.45 for the dose arm 3 at the significance level of α1 = 0.20 with the
power = 70% approximately. We set the sample size for the intermediate stage in
the same way as the initial stage, but considered the data from the first two stages.

9.3.1 Simulation Under the Alternative Hypothesis
for the Endpoint 1

Tables 9.3 and 9.4 present the simulation results under the alternative hypothesis
for the endpoint 1 and the null hypothesis for the endpoint 2. Given λ, as α

(1)
1

increases, the condition for the trial to follow the trial path A1 is relaxed; therefore,
the probability of the path A1 and the power for the path A1 increase. With a relaxed
condition to the path A1, an increased sample size is needed to obtain a stronger
evidence in path A1. Consequently, the trial has a higher overall statistical power,
which results in a decreased probability of trial early stop due to futility (path A3B3).
As α

(1)
1 increases, there is not much change in the power for the path A3B1 and the

probability of the trial following the path A3B1.
Given α

(1)
1 , as λ increases, there is not much change in the power and probability

of the trial path A1. However, as more alpha is allocated to the two-stage setting (with
an increased λ), sample size is reduced and overall statistical power is decreased.
Consequently, the probability of trial early stop due to futility (path A3B3) increases.

The total power for the endpoint 2 (paths A2 and A3B2), which is the type I error
rate under the null hypothesis H02 for the endpoint 2, is less than 0.015. Therefore,
type I error rate under H02 is well controlled at the nominal level of α = 0.05.
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Table 9.3 Simulated power under the alternative hypothesis for the endpoint 1

λ α
(1)
1 Trial path Total power

A1 A2 A3B1 A3B2

50 % 0.05 0.3802 0.0065 0.3198 0.0035 0.7100

0.06 0.4129 0.0069 0.3075 0.0023 0.7296

0.07 0.4291 0.0057 0.3065 0.0013 0.7426

0.08 0.4441 0.0061 0.3051 0.0024 0.7577

0.09 0.4714 0.006 0.2972 0.0024 0.7770

0.10 0.4941 0.0053 0.2890 0.0013 0.7897

60 % 0.05 0.3815 0.0083 0.2792 0.0029 0.6719

0.06 0.4080 0.0078 0.2929 0.0027 0.7114

0.07 0.4202 0.0076 0.2798 0.0024 0.7100

0.08 0.4539 0.0084 0.2711 0.0024 0.7358

0.09 0.4688 0.0076 0.2635 0.0013 0.7412

0.10 0.4711 0.0066 0.2722 0.0024 0.7523

70 % 0.05 0.3873 0.0101 0.2417 0.0022 0.6413

0.06 0.4164 0.0096 0.2348 0.0028 0.6636

0.07 0.4289 0.0092 0.2457 0.0013 0.6851

0.08 0.4522 0.0100 0.2404 0.0023 0.7049

0.09 0.4676 0.0097 0.2291 0.0022 0.7086

0.10 0.4711 0.0085 0.2380 0.0018 0.7194

9.3.2 Simulation Under the Alternative Hypothesis
for the Endpoint 2

The simulated statistical power, sample size, and trial path probability under the
alternative hypothesis for the endpoint 2 and the null hypothesis for the endpoint 1
are provided in Tables 9.5 and 9.6. The simulation results are very similar to those
under the alternative hypothesis for the endpoint 1, but for the parameters related to
the endpoint 2 instead.

9.3.3 Comparison to the Simulation Results Under the Alternative
Hypotheses for Both Endpoints

In general, these simulation results under an alternative hypothesis for either
endpoint are consistent with those under the hypotheses for both endpoints as re-
ported in Dong (2014). For example, given λ, as α

(1)
1 increases, the probability and

statistical power of the two-stage setting as well as the overall power increase. Since
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Table 9.4 Simulated probability and sample size for each trial path under the alternative hypothesis
for the end point 1

λ α
(1)
1 Trial path EN

A1 A2 A3B1 A3B2 A3B3

Prob n Prob n Prob n Prob n Prob n

50 % 0.05 0.4169 78 0.0281 101 0.3478 116 0.0106 147 0.1966 84 93.8

0.06 0.4539 83 0.0337 109 0.3340 123 0.0110 159 0.1674 84 98.2

0.07 0.4723 88 0.0362 115 0.3348 126 0.0129 166 0.1438 84 102.1

0.08 0.4844 93 0.0416 123 0.3345 129 0.0141 168 0.1254 84 106.2

0.09 0.5142 98 0.0431 127 0.3216 131 0.0145 173 0.1066 84 109.5

0.10 0.5422 100 0.0452 134 0.3146 135 0.0113 181 0.0867 84 112.1

60 % 0.05 0.4195 71 0.0295 91 0.3021 112 0.0094 139 0.2395 84 87.7

0.06 0.4487 80 0.0338 103 0.3187 120 0.0108 151 0.1880 84 95.0

0.07 0.4628 81 0.0373 108 0.3042 121 0.0102 155 0.1855 84 95.5

0.08 0.4949 85 0.0397 113 0.2959 125 0.0106 163 0.1589 84 98.6

0.09 0.5147 89 0.0428 118 0.2896 129 0.0104 173 0.1425 84 102.0

0.10 0.5233 94 0.0472 124 0.2972 132 0.0111 167 0.1212 84 106.3

70 % 0.05 0.4236 65 0.0292 82 0.2621 110 0.0070 131 0.2781 84 83.0

0.06 0.4578 71 0.0314 92 0.2553 114 0.0076 137 0.2479 84 86.4

0.07 0.4681 75 0.0364 98 0.2680 118 0.0066 147 0.2209 84 89.8

0.08 0.4952 80 0.0399 106 0.2615 123 0.0079 147 0.1955 84 93.6

0.09 0.5159 84 0.0429 110 0.2497 125 0.0076 155 0.1839 84 95.9

0.10 0.5184 86 0.0461 111 0.2598 125 0.0090 160 0.1667 84 97.6

a priori of the simulations is to re-estimate the sample size for the final stage based on
80 % conditional power, and the two endpoints are assumed independent and equally
plausible with similar treatment effect, the sample sizes for the three scenarios under
the alternative hypothesis (hypotheses): (a) for the endpoint 1, (b) for the endpoint 2,
and (c) for both endpoints are very similar for each pair of parameters λ and α

(1)
1 . As

expected, when the treatment effect for an endpoint is lower than what was antici-
pated per trial design, the overall statistical power becomes lower. For example, when
λ = 70% and α

(1)
1 = 0.1, power = 0.7194, 0.6864, and 0.8869 for the three scenarios,

respectively. One should note that the scenarios (a) and (b) may be extremely worst
cases as one endpoint is assumed as expected but a null treatment effect is assumed
for another endpoint. When the treatment effect is 80 % of the anticipated effect in
another endpoint, the power is 0.8025 and 0.8308 for the first two scenarios, respec-
tively (Table 9.7), which are not too far to the power of 0.8869 under the alternative
hypotheses for both endpoints. As a reference but not a head-to-head comparison,
for a single-stage trial designed with a similar primary endpoint to those described
in Table 9.2 and with two-sided α = 0.05 and power = 90 %, statistical power can
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Table 9.5 Simulated power under the alternative hypothesis for the endpoint 2

λ α
(1)
1 Trial path Total power

A1 A2 A3B1 A3B2

50 % 0.05 0.0125 0.3764 0.0080 0.3072 0.7041

0.06 0.0141 0.4003 0.0070 0.2873 0.7087

0.07 0.0136 0.4147 0.0061 0.2904 0.7248

0.08 0.0126 0.4313 0.0078 0.2802 0.7319

0.09 0.0123 0.4417 0.0081 0.2643 0.7264

0.10 0.0127 0.4433 0.0083 0.2667 0.7310

60 % 0.05 0.0155 0.3763 0.0068 0.2782 0.6768

0.06 0.0140 0.4010 0.0054 0.2845 0.7049

0.07 0.0138 0.4123 0.0039 0.2703 0.7003

0.08 0.0165 0.4312 0.0054 0.2581 0.7112

0.09 0.0157 0.4439 0.0046 0.2471 0.7113

0.10 0.0169 0.4509 0.0039 0.2394 0.7111

70 % 0.05 0.0186 0.3777 0.0036 0.2452 0.6451

0.06 0.0164 0.4073 0.0047 0.2314 0.6598

0.07 0.0188 0.4238 0.004 0.2309 0.6775

0.08 0.0170 0.4267 0.0040 0.2224 0.6701

0.09 0.0182 0.4460 0.049 0.2185 0.6876

0.10 0.0180 0.4435 0.0042 0.2207 0.6864

be reduced to 73 % if treatment effect is reduced to 80 %; and statistical power can
be reduced to 5 % if treatment effect is down to null. Therefore, the simulations
show that the statistical power of the varying-stage adaptive phase II/III clinical trial
design (Dong 2014) is less sensitive to a low realized treatment effect compared to
the anticipated treatment effect per trial design. This finding is due to an advantage of
the varying-stage adaptive phase II/III clinical trial design with two plausible study
endpoints.

9.4 Discussion

In the varying-stage adaptive phase II/III clinical trial design (Dong 2014), following
the first stage, an intermediate stage can be adaptively added to obtain more data, so
that a more informative decision could be made regarding whether the trial can be
advanced to the final confirmatory stage. Therefore, this design is a two-stage setting
or three-stage setting depending on whether there is an intermediate stage added as
an extended learning stage between the initial learning stage (phase II) and the con-
firmatory stage (phase III). This design considers two plausible study endpoints with
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Table 9.6 Simulated probability and sample size for each trial path under the alternative hypothesis
for the end point 2

λ α
(1)
1 Trial path EN

A1 A2 A3B1 A3B2 A3B3

Prob n Prob n Prob n Prob n Prob n

50 % 0.05 0.0529 111 0.4115 77 0.0288 149 0.3307 115 0.1761 84 94.6

0.06 0.0617 108 0.4367 83 0.0372 157 0.3094 122 0.1550 84 99.6

0.07 0.0694 115 0.4512 86 0.0376 164 0.3107 125 0.1311 84 102.8

0.08 0.0793 123 0.4629 91 0.0426 172 0.2995 129 0.1157 84 107.6

0.09 0.0882 127 0.4807 96 0.0491 177 0.2848 131 0.0972 84 111.5

0.10 0.0978 132 0.4798 98 0.0494 179 0.2858 132 0.0872 84 113.8

60 % 0.05 0.0479 89 0.4101 70 0.0222 140 0.3006 112 0.2192 84 88.2

0.06 0.0568 103 0.4362 78 0.0258 155 0.3043 118 0.1769 84 94.6

0.07 0.0687 106 0.4472 81 0.0235 158 0.2909 121 0.1697 84 96.7

0.08 0.0814 113 0.4673 84 0.0268 161 0.2783 125 0.1462 84 99.8

0.09 0.0886 119 0.4846 88 0.0320 169 0.2656 129 0.1292 84 103.7

0.10 0.1048 121 0.4870 92 0.0330 176 0.2601 129 0.1151 84 106.5

70 % 0.05 0.0480 83 0.4084 64 0.0117 132 0.2640 109 0.2679 84 82.9

0.06 0.0584 92 0.4423 70 0.0140 139 0.2500 115 0.2353 84 86.8

0.07 0.0713 98 0.4606 74 0.0159 148 0.2484 119 0.2038 84 90.1

0.08 0.0808 105 0.4658 79 0.0179 156 0.2396 122 0.1959 84 93.8

0.09 0.0918 110 0.4815 82 0.0201 157 0.2351 124 0.1715 84 96.3

0.10 0.1046 114 0.4840 86 0.0228 166 0.2379 127 0.1507 84 100.2

Table 9.7 Powers when only 80 % of anticipated treatment effect for an endpoint (λ = 70 % and
α

(1)
1 = 0.1)

Scenario Under alternative hypothesis
for endpoint 1

Under alternative hypothesis
for endpoint 2

Under
alternative
hypotheses
for both
endpoints

No (0 %)
treatment
effect for
endpoint 2

80 %
treatment
effect for
endpoint 2

No (0 %)
treatment
effect for
endpoint 1

80 %
treatment
effect for
endpoint 1

Total power 0.7194 0.8025 0.6864 0.8308 0.8869

one of them initially designated as the primary endpoint, and controls family-wise
type I error rate in a strong sense. This chapter additionally explores characteristics
of the design when the alternative hypothesis for only one of the two endpoints is
true, and the treatment effect for another endpoint is null (an extremely worst case)
or lower than what was anticipated per trial design. Since two plausible endpoints are
considered in the varying-stage adaptive phase II/III clinical trial design, as shown in
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our simulations, the statistical power of the design is less sensitive to a low realized
treatment effect compared to the anticipated treatment effect per the trial design. As
also discussed in Dong (2014), the parameters λ and α

(1)
1 have a great impact to the

design. The parameter λ mainly impacts alpha allocation and thus expected sample
size, and the threshold probability α

(1)
1 mainly contributes to the chance to have a

trial follow A1 path.
For the simulations presented in this chapter, we assume that the two endpoints

are independent. When the two endpoints are correlated, there is a power loss at a
certain degree (Dong 2014). Other areas that can be improved in the future were
discussed in Dong (2014), of which it is worth noting that the dose arm(s) with
smallest p-value(s) or combined p-value(s) is(are) selected for the final stage in the
current form of the proposed design.

Point estimate and confidence interval have been proposed and studied more for
two-stage designs. For some two-stage designs (e.g., one with O’Brien Fleming
boundary), the regular confidence interval without adjusting for interim looks may
still provide good information for the medical researchers and reviewers for proper
decision making. However, as of today, a satisfactory method to construct point esti-
mate and confidence interval for phase II/III clinical trials has not been established,
which is mainly due to: (a) Some methods have a good bias reduction for point
estimate, but their variance are unfortunately substantially increased (Kimani et al.
2013); (b) some methods are only developed for point estimate or confidence inter-
val, but not for both. Recently, Bowden and Glimm (2008) and Bretz et al. (2009)
discussed uniformly minimum variance conditional unbiased estimate (UMVCUE);
Carreras and Brannath (2013) developed a new method of shrinkage estimator; Ki-
mani et al. (2013) published a uniformly minimum variance unbiased estimator by
considering futility stopping; and Bowden and Glimm (2014) proposed point esti-
mate for a K:L:1 three-stage setting phase II/III design. We are currently evaluating
what point estimators are suitable for the varying-stage adaptive phase II/III clinical
trial design. In addition, a reviewer and an editor pointed out that the proposed de-
sign is quite complex with the adaptive features. We have simplified this design to
consider one study endpoint only, as in many therapeutic areas, the primary study
endpoint is well established. This simplified design will be reported in a future paper.
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Chapter 10
Collective Evidence in Drug Evaluation

Qian H. Li

Disclaimer: The views presented in this chapter are the author’s
own views.

Abstract Multiple doses, endpoints, and tests are used in several clinical studies
to establish drug efficacy. Statistical evaluation relies heavily on multiplicity ad-
justments within one study to control the type I error rate. The use of multiplicity
adjustment procedures (MAPs) sometimes leads to conclusions that may not seem
logical. As drug efficacy evaluation involves aspects such as assessing efficacy, se-
lecting optimal doses, and labeling claims, incorporating all the aspects under the
umbrella of controlling type I error may not be an optimum strategy. Alternatively,
a practical approach that uses collective evidence is proposed to evaluate multiple
studies, doses, endpoints, and tests. Instead of controlling the type I error, specific
types of errors are controlled, such as the error of wrongly approving an ineffective
drug and the error of labeling false information. With the collective evidence ap-
proach, the need of MAPs in individual studies is debated when multiple studies are
available.

10.1 Introduction

Drug efficacy evaluation usually is based on evidence from multiple clinical studies
that assess multiple doses using multiple endpoints and tests. The multiplicity issues
arising from the clinical studies are classic problems in drug evaluation and have been
heavily studied by the regulatory agencies, pharmaceutical and biotech industries,
and research institutes (Chuang-Stein et al. [3]; Committee for Proprietary Medical
Products (CPMP) by EMEA [4]; Pocock [16]; Proschan andWaclawiw [17]; Shih and
Quan [18]). The majority of statistical methods, such as the closed testing procedure
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(Marcus et al. [12]), Bonferroni correction, and Hochberg procedure (Hochberg [7]),
referred to as multiplicity adjustment procedures (MAPs), have been developed based
on the logic that multiplicity, such as multiple doses, endpoints, or tests, increases
the chance of detecting a statistically significant result from an ineffective drug.
Commonly used analogies of the multiplicity issues have been situations such as
betting on a horse race or buying lottery tickets, where increasing the number of
horses that one bets on, or the number of tickets that one purchases, would increase
chances of winning.

These horse race and lottery analogies have, at times, misled the understanding
of multiplicity issues in drug evaluation and disguised rudimentary differences be-
tween drug evaluation and such games of chance. In a race, the determination of the
winning horse does not depend upon the distance between the winner and the losing
horses. That is, the relative speeds of the losing horses do not matter. However, in
drug evaluation, the efficacy determination of the drug depends upon the collective
performance of individual doses, endpoints, and studies. If only one dose shows a
statistically significant treatment effect while none of the other doses show any trend
of efficacy, the evidence is less convincing for an efficacious drug than the case where
multiple doses show trend of efficacy. Therefore, multiplicity in drug evaluation may
not necessarily increase the chance to claim that an ineffective drug is efficacious
when information is evaluated collectively.

In this chapter, a practical approach to evaluate evidence collectively is proposed.
This method controls the specific types of errors encountered in drug evaluation, such
as the error rate of wrongly approving an ineffective drug and the error rate of labeling
false information. Moreover, it controls the consistency of evidence. Sect. 10.2
discusses the problems of applying MAPs. Section 10.3 presents the concept of
the collective evidence and describes the practical approach. Section 10.4 covers
the application of collective evidence in cases of multiple studies, doses, endpoints
(including co-primary endpoints and secondary endpoints) and tests. Two cases are
discussed in Sect. 10.5 to illustrate the use of collective evidence in understanding the
effect of drugs. Throughout this chapter, one-sided p values and one-sided statistical
significant levels are used unless otherwise specified.

10.2 Problems of Applying MAPs

Prespecification is vital in the protocol development to ensure careful planning in
study design, experiment procedures, endpoint selection, and statistical analysis
plans, etc. However, it can be problematic to prespecify decision rules, which are
MAPs, in the individual study protocols. The intention of the prespecified decision
rule is to reduce the chance of claiming success, yet the selection of the decision rules
appears somewhat arbitrary. The same study results may reach different conclusions
depending upon the choice of the decision rules. For instance, p values 0.040 and
0.012 were observed for high and low doses, respectively, in a study. If the closed
testing procedure using high dose to protect low dose was prespecified, the results
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Table 10.1 P values of two studies with two doses in each study

1-sided p values

High dose Low dose

Study 1 0.028 0.015

Study 2 0.025 0.013

would not pass the decision rule and would yield an inconclusive conclusion. How-
ever, if either the Hochberg procedure or Bonferroni correction was prespecified, the
low dose would be considered to be efficacious. Clearly, these distinct conclusions
are the result of the prespecified decision rules, which are inflexible and, to a certain
extent, arbitrary.

Another problem is that the MAPs may overvalue the isolated effect. To illustrate
this, consider a study with three parallel doses and a control arm. If both high
and medium doses yielded p values of 0.500 and the low dose yielded 0.001, both
the Hochberg and Bonferroni procedures would conclude that the low dose was
efficacious, despite the fact that there was no sign of efficacy in the other doses.
Unless other information supported that this drug had narrow therapeutic window,
the evidence would not be considered convincing. Whereas if three doses from high
to low yielded p values of 0.028, 0.025, and 0.015, respectively, some MAPs would
consider such evidence inconclusive. Thus, only looking at the performance of the
individual doses rather than the totality evidence may not lead to useful conclusions.

The problem can be more confusing when data from more than one study are
available. In fact, two phase 3 studies have been the requirement by the US Food
and Drug Administration (FDA) for the purpose of establishing substantial evidence
(US FDA [19]; US FDA [20]). Suppose that two phase 3 studies were conducted
to support a claim. Also, suppose that two doses, high and low, were included in
both studies and a closed testing procedure using high dose to protect low dose was
placed in each study. The p values of the two doses from both studies were listed in
Table 10.1. Following the closed testing procedure, study 1 would be concluded as
a “failed” study since it failed to pass the closed testing procedure, whereas study 2
would be considered a successful study. However, the fundamental question of the
efficacy of the drug has not been answered.

The application of the MAPs is to protect the type I error. However, the meaning
of the type I error is not clear since it covers different types of errors that may occur
in various aspects and stages of drug evaluation. Errors can occur when deciding if a
drug works, selecting the optimal doses, and labeling drug information with selective
endpoints, etc. When deciding if a drug is efficacious, it is necessary to control the
error rate of wrongly approving an ineffective drug. When selecting the optimal
doses, it is necessary to reduce the error rate of selecting suboptimal doses. When
labeling drugs, it is necessary to limit the error rate of providing false information.
These different types of errors play different roles in the drug evaluation process and
may not necessarily be controlled simultaneously. It is easy to understand that the
error of selecting suboptimal doses, or the error of false labeling information would
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not occur if the drug is concluded to be ineffective. On the other hand, the error
made in efficacy decisions should not be impacted by the decision of selecting the
optimal doses and the decision of drug labeling. Therefore, it may be less confusing
to differentiate the types of errors in drug evaluation and control the different types
of error rates separately.

10.3 Concept of Collective Evidence

10.3.1 The Two Types of Logic

In preparation for discussing the alternative approach proposed, two types of logic are
considered. Mathematically, the “OR” logic is the union of all events and represented
as E1∪E2∪. . .∪EK ; the “AND” logic is the intersection of all events and formulated
as E1 ∩ E2 ∩ . . . ∩ EK , where Ek , k = 1, 2, . . ., K , are events. The K events can
be the number of bets that is put down in a horse race for example, or K doses, K
endpoints, or K individual studies in drug evaluation. The “OR” logic is the basis
for most of the MAPs where success is claimed if one event out of the K events is
true. On the contrary, the success definition with the “AND” logic requires that all
events are true. The main feature of the collective evidence approach is to include
the “AND” logic.

A discussion of Fig. 10.1 illustrates the concept of collective evidence. In
Fig. 10.1, the blue area represents the rejection region of Bonferroni correction to
control the error rate at the level of 0.025 for two independent p values p1 and p2. The
Bonferroni correction can be written as P (p1 ≤ 0.0125 ∪ p2 ≤ 0.0125) < 0.025 or
can be written as P (p(1) ≤ 0.0125 ∩ p(2) ≤ 1.000) < 0.025 where p(1) and p(2) are
ordered p values of p1 and p2. Notice that the Bonferroni correction is rewritten
using the AND logic, although it can be simplified to P (p(1) ≤ 0.0125) < 0.025 as
the event of a p value less than 1 is always true. Using γ1, γ2 to denote the p value
cut points for the ordered p values, respectively, the decision rule for the Bonferroni
correction can be written as (γ1, γ2) = (0.0125,1.000). This rejection region allows
the success claim if one of the p values is 0.0125 or less. It is important to understand
that the Bonferroni correction is not the only way of controlling the error rate at
the level of 0.025. The green area represents another rejection region that controls
error rate at the level of 0.025, that is, P (p(1) ≤ 0.025 ∪ p(2) ≤ 0.5125) ≤ 0.025.
The decision rule is (γ1, γ2) = (0.025,0.5125). This green rejection region supports
the success claim if the smaller p value is less than or equal to 0.025 and the larger
p value is less than 0.5125. The orange area represents yet another rejection region
that controls the same error rate with decision rule (γ1, γ2) = (0.050,0.275). This
decision rule covers the rejection region that allows the smaller p value to be 0.050
or less and the larger one has to be 0.275 or less. Notice that both the orange and
green rejection regions use the AND logic.
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Fig. 10.1 Rejection regions that control the error at the level of 0.025 under different decision rules

10.3.2 The Formulation of the Collective Evidence Approach

The concept of collective evidence was originally proposed by Li and Huque (Li and
Huque [10]) for the purpose of evaluating multiple studies and was extended to the
evaluation of co-primary endpoints by Li (Li [9]). The concept of collective evidence
approach can be described as follows:

1. Similar to a single hypothesis testing scenario, individual null and alternative
hypotheses, H0k and HAk , are used to test each individual event Ek and the test
yields p valuepk , k = 1, 2, . . ., K . Null represents no effect, while the alternative
is the complement. The K p values are ranked as p(1) ≤ p(2) ≤ . . . ≤ p(K).

2. Next is to formulate the overall hypothesis to test if a drug works. An overall null
hypothesis represents the case that all the individual null hypotheses H0k , k =
1, 2, . . ., K , are true, i.e., an ineffective drug. The corresponding alternative is that
at least one of the individual alternatives is true. The overall null and corresponding
alternative are denoted as H

1/K
0 and H

1/K
A , respectively, and formulated as

H
1/K
0 :

⋂K

k=1
H0k versusH 1/K

A :
⋃K

k=1
HAk
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The error of wrongly rejecting the overall null is defined as

P
H

1/K
0

(p(1) ≤ γ1 ∩ p(2) ≤ γ2 ∩ . . . ∩ p(K) ≤ γK ),

where γ1 ≤ γ2 ≤ . . . ≤ γK is a set of the decision rule. The error rate is controlled at
the level of α(H 1/K

0 ) under H 1/K
0 . When the events are independent studies, α(H 1/K

0 )
represents the error rate of wrongly approving an ineffective drug. For two studies,
the error rate α(H 1/2

0 ) is usually controlled at the level of 0.0252 = 0.000625 (Li
and Huque [10]). This level of error rate arises from the requirement of two statis-
tically significant studies as the substantial evidence for drug approval. When the
events are correlated endpoints within one study, α(H 1/K

0 ) represents the error rate
of wrongly claiming an ineffective drug to be efficacious. For two co-primary end-
points in one study, the error rate α(H 1/2

0 ) is controlled at the level of 0.025 (Li
[9]).

To further illustrate the point discussed here, Fig. 10.2 presents two rejection
regions for two independent studies in the coordinates p1 and p2, representing re-
sults of the two studies. Both rejection regions control the error rate at the level
of 0.000625. The orange area represents the rejection region for decision rule
(γ1, γ2) = (0.025,0.025) and the green area represents the rejection region for de-
cision rule (γ1, γ2) = (0.010,0.036). Therefore, if two studies yielded p values of
(0.010,0.030), this could be considered as convincing evidence for an efficacious
drug.

3. In addition, another set of overall hypotheses is formulated to test if all events
present efficacy—a reflection of consistency among all events. The overall alter-
native requires that all events show efficacy. The overall null is therefore that at
least one event does not have efficacy. The overall null and alternative are denoted
as H

K/K

0 and H
K/K

A , respectively, and formulated as

H
K/K

0 :
⋃K

k=1
H0k versus H

K/K

A :
⋂K

k=1
HAk

The level of the error should be controlled at the level of α(HK/K

0 ) under the overall
null hypothesis H

K/K

0 . It has been shown (Li [9]) that the error rate α(HK/K

0 ) of
rejecting the null is

P
H

K/K
0

(p(1) ≤ γ1 ∩ p(2) ≤ γ2 ∩ . . . ∩ p(K) ≤ γK ) ≤ γK ,

where γK is the largest p value cut point of the decision rule γ1 ≤ γ2 ≤ . . . ≤ γK .
For the decision rule (γ1, γ2) = (0.010,0.036) presented in Fig. 10.2, α(H 2/2

0 ) is
controlled at the level of 0.036 while α(H 1/2

0 ) is controlled at the level of 0.000625.

4. It is important to emphasize that α(HK/K

0 ) has different meaning from α(H 1/K
0 ).

Take multiple studies as an example, where the error rate of wrongly approving
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Fig. 10.2 Rejection regions that control the error rate at the level of 0.000625 for two independent
studies

an ineffective drug is controlled at the level of α(H 1/K
0 ). The error rate of accept-

ing the hypothesis that all studies present consistent evidence when it is false is
controlled at the level of α(HK/K

0 ). It makes common sense that α(H 1/K
0 ) should

be more stringent in comparison to (HK/K

0 ), as the error of approving an inef-
fective drug is more serious than the error of claiming consistent evidence when
in fact that efficacy is not consistently presented among studies. For two studies,
α(H 1/2

0 ) is controlled at the level of 0.000625, while α(H 2/2
0 ) is controlled at the

level of 0.025 for a decision rule (0.025, 0.025). For two co-primary endpoints,
α(H 1/2

0 ) is controlled at the level of 0.025, while α(H 2/2
0 ) can be controlled at the

level of 0.030 for a decision rule (0.023, 0.030).

The calculation of the decision rules has been described in detail in papers by Li
and Huque (Li and Huque [10]) and Li (Li [9]) and various sets of decision rules
can be calculated. The original approach of collective evidence requires that the
decision rule be prespecified. Since prespecifying a decision rule can be arbitrary
and can cause trouble, a practical approach is proposed to reduce the burden of the
prespecifying decision rule.
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10.3.3 The Practical Approaches to Evaluate Evidence
Collectively

To reduce the burden of selecting and prespecifying decision rules, the practical
approach uses only one set of decision rules for each K. The following set of deci-
sion rules can be considered for independent studies: (γ1, γ2) = (0.025, 0.025),
(γ1, γ2, γ3) = (0.025, 0.025, 0.100), and (γ1, γ2, γ3, γ4) = (0.025, 0.025, 0.100,
0.150) for K = 2, 3, and 4, respectively. The ideal evidence for K = 2 is to have
two studies demonstrate statistical significance at the same level of 0.025, therefore,
the decision rule (γ1, γ2) = (0.025, 0.025) should be considered for K = 2. The
decision rule (γ1, γ2, γ3) = (0.025, 0.025, 0.100) for K = 3 is developed from K = 2
by adding γ3 = 0.100. The choice of γ3 is primarily driven by controlling α(H 3/3

0 ),
the error rate of wrongly rejecting the overall null H 3/3

0 , at the level of 0.100. The
decision rule for K = 4 is similarly derived. Note that, the larger the K is, it is
reasonable to accept higher levels of error rates of wrongly rejecting the null HK/K

0 .
In cases of co-primary endpoints, doses, or tests within one study, the decision

rules that are recommended are formed with γk = 0.025, k = 1, 2, . . ., K . This
choice will conservatively control the error rate α(H 1/K

0 ), wrongly rejecting H
1/K
0

in one study, at the level of 0.025. This level of error rate can only be reached when
correlation among the co-primary endpoints, doses, or tests is 1. A more realistic level
of error rate can be calculated when the range of the correlation can be estimated.
The error rate α(HK/K

0 ) is also controlled at the level of 0.025 in one study for the
recommended decision rule.

If the p values of the study results satisfy the decision rules, all error rates are
adequately controlled. However, it may not be reasonable to require all study results to
satisfy the decision rules for drug approval. For example, if the p values of two studies
are (0.020, 0.028), this may be considered as convincing evidence for an effective
drug. It is therefore necessary to establish the standard of convincing evidence. To
address this, two quantities are proposed, one to measure the worst inflation and the
other for consistency.

The worst inflation is the maximum possible error that could be observed and is
defined in (10.1) below. It is the probability of observing the kth p value p(k) that
equals to max(γk ,pv(k)) or less, where pv(k), k = 1, 2, . . ., K , are the ordered
observed p values. The relative inflation is calculated using formula (10.2).

Max. Inf lated error = P
(⋂K

k=1
p(k) ≤ max

(
γk ,pv(k)

))
(10.1)

% of Inflation =
P
(⋂K

k=1 p(k) ≤ max(γk ,pv(k))
)

− P
(⋂K

k=1 p(k) ≤ γk

)

P
(⋂K

k=1 p(k) ≤ γk

) (10.2)

For example, if the observed p values of two independent studies are (0.020, 0.028),
the inflation is
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Table 10.2 Examples of max. inflation and consistency using decision rule (0.025, 0.025)

Observed p values Max. inflated error (%) Consistency

0.020, 0.026 0.000675 (8.0 %) 17.0 %

0.021, 0.026 0.000675 (8.0 %) 14.1 %

0.026, 0.026 0.000676 (8.2 %) 0.0 %

0.027, 0.027 0.000729 (16.6 %) 0.0 %

0.025, 0.028 0.000775 (24.0 %) 8.4 %

0.020, 0.030 0.000875 (40.0 %) 28.3 %

0.030, 0.030 0.000900 (44.0 %) 0.0 %

0.010, 0.036 0.001175 (88.0 %) 73.5 %

0.025, 0.036 0.001175 (88.0 %) 31.1 %

0.030, 0.036 0.001160 (101.6 %) 17.0 %

Max. Inf lated error = P
(
p(1) ≤ 0.025 ∩ p(2) ≤ 0.028

) = 0.000775

% of Inf lation =
P
(
p(1) ≤ 0.025 ∩ p(2) ≤ 0.028

)− P
(
p(1) ≤ 0.025 ∩ p(2) ≤ 0.025

)

P
(
p(1) ≤ 0.025 ∩ p(2) ≤ 0.025

) = 24%.

The consistency is another measure that helps assess the variation of the observed
results against the decision rule (γ1, γ2, . . ., γK ). There can be several ways of as-
sessing the consistency. The measure introduced here is the sample variance of the
relative ratio of the ordered observed p value pv(k) versus the corresponding com-
ponent of decision rule γk , for k = 1, 2, . . ., K . The ratios are considered as the
normalized observed p values by the components of the decision rule. The calculation
can be written as (10.3):

Consistency =
√√√√ 1

K − 1

K∑
k=1

(
pv(k)

γk
− 1

K

K∑
k=1

pv(k)

γk

)2

(10.3)

For the same example above, the consistency is calculated as:

Consistency =
√(

0.028

0.025
− 0.96

)2

+
(

0.020

0.025
− 0.96

)2

= 22.6%.

Table 10.2 lists the calculation of the inflation and consistency of some observed p
values for the case of two independent studies using decision rule (0.025, 0.025).

The collective evidence approach uses one set of predetermined criteria which
control the desired level of error rates. To make the decision flexible and evidence
based, the evidence obtained from the study calculated as the maximum inflation
and consistency are also taken into consideration. An inflation of 24 % with less than
22.6 % consistency for two studies (p values are 0.020, 0.028) may be considered
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as convincing evidence. However, the approval decision should be determined in
conjunction with the disease indication, drug safety profiles, and availability of other
drugs for the same indication in the market. Other factors such as the selection of
outcome measures and the similarity of study design among the studies included for
evaluation may also be factored in for the decision making.

10.4 Collective Evidence in Drug Evaluation

As discussed earlier, it can be helpful to divide the error into different types, i.e.,
the error of wrongly approving an ineffective drug, the error of wrongly choosing
the optimal doses, and the error of false labeling drug information. The first logical
step in drug evaluation is to evaluate if a drug is efficacious by controlling the error
rate of wrongly approving an ineffective drug. Once it is concluded that the drug
is efficacious and reasonably safe, the next step is to identify the optimal doses.
Selection of optimal drug doses is not discussed, as it involves evaluating the risk–
benefit ratio and possibly pharmacokinetic information which is beyond the scope of
this chapter. The discussion of the multiple doses is focused on the efficacy evaluation
here. The next step is the labeling decision by controlling the error rate of labeling
false information. The error rates are discussed in this section for cases of multiple
studies, doses, endpoints, and tests.

10.4.1 Multiple Studies

The total evidence from multiple studies can be obtained by conducting a meta-
analyses or using the collective evidence approach. For either approach, the first step
is to decide which studies are to be included in the evaluation, since diversely designed
studies may not always be informative when evaluating evidence collectively. The
studies should be selected based on the study population, design, and the conduct
of the studies, rather than the results of studies. It is also important to select studies
based on a well-defined patient population. Study design factors, such as blinding,
treatment duration, endpoints, and usage of concomitant medications, are important
considerations as well. The conduct of the studies, such as the time period and
condition of implementation, can be crucial too. For example, studies of seasonal
allergic rhinitis may need to be conducted during allergy seasons when high levels of
pollen are apparent in the air. If heavy rain occurs, the participants may not be exposed
to sufficient allergen to develop allergic reactions. Inadequate exposure could be a
legitimate reason to exclude the study, whereas, certain design differences may not
be a valid reason to exclude studies. For instance, study endpoints may be evaluated
differently among studies in allergic conjunctivitis studies. The redness of the eyes
can be evaluated either by study subjects themselves or by practitioners. This may
not be a valid reason to exclude studies even though it can be argued that the self
evaluation may inherit larger variability than that from the practitioners. To obtain
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an unambiguous analysis, a good practice is to develop an integrative analysis plan
to prespecify criteria for study selection.

The following step is to select a statistical method to evaluate the evidence col-
lectively. Patient-level meta-analyses to poll studies have been popular approaches
and are desirable if the number of studies is large and all studies are similarly de-
signed. The collective evidence approach can be desirable in situations when it is
important to understand the individual study results and consistency among them;
also when differences in study design prohibit study pooling and cause difficulties
in interpretation for meta-analyses.

The collective evidence approach for independent studies is relatively easy to
use and interpret. To illustrate, take another hypothetical example of a set of p
values from three independent studies. The evaluation could be simple if the results
satisfy the decision rule for K = 3, (γ1, γ2, γ3) = (0.025,0.025, 0.100). The error
rate should be controlled at the level of 0.000156 based on P (

⋂3
k=1 p(k) ≤ γk) =

6γ1γ2γ3−3γ3γ
2
1 −3γ 2

2 γ1+γ 3
1 . If the observed p values were 0.001, 0.020, and 0.120,

it would be necessary to calculate the inflation and consistency using Formulas (10.2)
and (10.3). The % inflation and consistency is 24.0 and 58.9 %, respectively. Suppose
that the results were obtained from three studies used to support allergic conjunctivitis
and redness was the primary endpoint. Further, assume that the endpoint was assessed
by the patients in the study yielding the p value of 0.120 and the other two were
assessed by physicians. If patients were less trained, the reporting variability could
be larger than the clinician reported outcomes. Hence, the level of inflation and
consistency could be considered reasonable for recommending approval. Even if the
endpoints were assessed consistently in all three studies, such results might reflect
a possible situation that the drug worked for certain patients that were included in
the studies, perhaps not consistently. Depending upon the consistency level and the
observed maximum p value, it might be useful to further investigate who were more
likely to benefit from the drug and who were not.

10.4.2 Multiple Doses to Support Efficacy Evaluation

The evaluation of multiple doses may serve two different purposes: the efficacy
evaluation and the selection of the optimal doses. Discussion in this chapter is focused
on the efficacy evaluation only.

A typical multiple dose study design includes parallel arms of several doses and
placebo where MAPs are traditionally applied. As a result of the stringent significance
levels by controlling the type I error, the sample sizes for each arm need to be
increased. The application of MAPs could limit the enthusiasm and feasibility to
include multiple doses, which are imperative for better understanding of the efficacy
as well as dose–response relationship.

It could be suggested that the MAPs for multiple doses in individual studies do not
appear to be useful in either efficacy evaluation or the identification of the optimal
doses. The fact that all doses show the trend of efficacy is strong evidence against an
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Table 10.3 Illustration of strategies of evaluating two doses in two studies using the practical
collective evidence approach

p values Strategy 1 Strategy 2

Study High dose Low dose Trend
test

Inflate error
for studies

Inflated error
for dose

Inflated error
for studies

1 0.028 0.015 0.023 0.000625 (0 %) 0.028 0.000775 (24 %)

2 0.024 0.013 0.021 0.025

ineffective drug. It can be even stronger evidence if a reasonable dose–response re-
lationship is demonstrated consistently in multiple studies. Some believe that MAPs
are necessary for identifying the effective doses. The counter argument could be
made that if a drug is efficacious, many of the dose levels should be efficacious.
Whether the dose levels can reach statistical significance is a matter of sample size
and treatment difference. Instead of identifying the efficacious doses by the signif-
icance, a helpful strategy is to determine the optimal doses, which should be based
on the risk–benefit profiles, effect sizes, and other information. If p values play any
roles in the identification of the optimal doses, the rank of the p values is usually
sufficient. It is unnecessary to use any adjusted p values because the rank of either
adjusted or unadjusted p values is the same.

An exception to keep in mind is that certain drugs may have a narrow therapeutic
window where many doses may not support the efficacy. In those cases, the under-
standing of the dose–response relationship is more important than adjusting p values.
The efficacy can then be established by a consistent dose–response relationship in
multiple studies.

Evaluation of multiple doses should depend upon the study design. For a typical
phase III study, two or three doses that are likely to be the optimal doses are selected
based on information from early phase studies. It is expected that all doses would
demonstrate efficacy to a certain degree. Two strategies are discussed to evaluate
multiple doses collectively. The first one is to use directional tests to establish the
efficacy by modeling the dose–response trend. This requires a good understanding
of the true dose–response which could be obtained from early phases of clinical
studies. Guidance on the directional tests, also referred to as the trend tests, is
discussed by Li and Lagakos (Li and Lagakos [11]). When multiple studies are
available, the trend tests should be first performed within individual studies. Then
the p values obtained from the trend tests should be evaluated using the practical
collective evidence approach. The second strategy is to evaluate the multiple doses
within the individual studies first by using the practical collective evidence approach,
then to evaluate the evidence across studies. The two strategies are illustrated in the
following hypothetical example, using two studies with two doses in each study. The
p values of high and low doses of the two studies as well as the results of the two
strategies are listed in Table 10.3.

• To illustrate strategy 1, assume from early phase studies that decreased trend
was observed as the dose increased. The pseudo-dose indicators were coded as
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2 for the low dose and 1 for the high dose. The p values of the trend tests were
hypothetical values, 0.023 and 0.021 for studies 1 and 2, respectively. The results
satisfied the two-study decision rule (γ1, γ2) = (0.025,0.025).

• To illustrate strategy 2, the worst inflated error for multiple doses for each
study was calculated first. The decision rule used for two doses was (γ1, γ2) =
(0.025,0.025). The worst inflated error due to two doses for study 1 was 0.028,
a result by assuming the worst possible correlation between two doses (a very
conservative approach). Similarly, the worst inflation for study 2 was 0.025. The
worst inflation for two studies was then calculated as 0.000775 with 24 % infla-
tion. The consistency was 8.4 %. If the correlation between two doses was known
or can be estimated, the inflated error could be calculated relatively accurately
and should be smaller than that presented in Table 10.3. It can be concluded that
the evidence of efficacy is convincing.

If MAPs are applied to this example, depending upon the choice of the procedure, it
is likely that results in study 1 are considered inconclusive. The statistical decision
rules across studies are unavailable.

Strategy 1 should also be considered when many doses are included in a single
study, such as phase II dose ranging studies. Strategy 1 should be particularly useful
for drugs with narrow therapeutic windows where a nonlinear dose–response trend
could be specified.

10.4.3 Multiple Endpoints

Diseases are multifaceted entities where one endpoint is usually insufficient to de-
scribe a certain aspect of a disease or reflect disease changes. Therefore, multiple
endpoints are used in clinical studies. Endpoints are chosen based on the study ob-
jectives, usually the indications for drugs. For example, a drug approved for chronic
obstruction pulmonary disease (COPD) can have indications as a bronchodilator,
to reduce exacerbation, or to prolong survival. Each indication is evaluated by a
set of prespecified endpoints. The endpoints are usually organized as the primary,
secondary, and exploratory endpoints in the study protocols. The primary endpoints
are defined by the medical communities, including the FDA, and are crucial for the
approval of drug indications. The selection of the secondary endpoints is relatively
flexible and may depend upon the secondary objectives or features relevant to the
primary endpoints and a particular drug. The exploratory endpoints may be less
relevant to the indication and often are included in the study for other purposes.

In efficacy evaluations, the primary endpoints must demonstrate clinically and
statistically significant benefits in order for the indication to gain approval. The
secondary endpoints should be supportive of the primary endpoints by showing trend
of treatment benefit. Clearly, the primary and secondary endpoints play different roles
and have different expectations in efficacy evaluation. The natural hierarchical order
among the different types of endpoints implies that the secondary endpoints would
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not contribute any additional error in the efficacy evaluation for a specific indication.
Hence, no MAPs are needed because of the hierarchical structure of the different
types of endpoints for evaluating a specific indication.

In the labeling process, the primary endpoints of the approved indication are
always described in the label. What is less clear is the selection of the secondary
endpoints. Again, because of the natural hierarchical order, MAPs are not needed
for the different types of endpoints in labeling process. However, MAPs may be
considered for the multiple secondary endpoints in labeling. This is discussed in
detail in a later section.

10.4.4 Co-Primary Endpoints

Often more than one primary endpoint is used to evaluate a disease condition. Eu-
ropean Medicines Agency (EMEA) (Committee for Proprietary Medical Products
(CPMP) by EMEA [4]) requires all co-primary endpoints to be statistically sig-
nificant at the level of one-sided 0.025. The limitation of this approach is that as
more co-primary endpoints are used, it becomes more difficult to show all end-
points statistically significant. The ordinary least squares (OLS) and generalized
least squares (GLS) tests proposed by O’Brien (O’Brien [15]) consider consoli-
dating all co-primary endpoints into one test. Another practice is to develop one
composite primary endpoint by combining all co-primary endpoints. The problems
of the composite endpoints are widely discussed in the literature (Kip et al. [8];
Montori et al. [13]). The main problem of the O’Brien’s OLS and GLS tests as well
as the composite endpoints is that they may disguise the heterogeneity in treatment
responses among the co-primary endpoints.

The approach of collective evidence is similar to EMEA’s approach which em-
phasizes the understanding of individual performance of all co-primary endpoints.
The collective evidence approach simply recognizes the room of flexibility when
controlling the error rate of wrongly rejecting the null hypotheses. When there are
multiple studies, similar to the case of multiple doses, the collective evidence of the
co-primary endpoints is to first calculate the maximum inflated error within each
study. Using the maximum inflated error of the individual studies, the maximum in-
flated error for all studies is then calculated as well as the consistency index. Again, a
hypothetical example is used to illustrate the application in a scenario of two studies
using two co-primary endpoints. The p values as well as the results of applying the
practical collective evidence approach are listed in Table 10.4.

10.4.5 Secondary Endpoints

This section focuses on the discussion of controlling the error rate of labeling false
information due to multiple secondary endpoints. Often, the statistically significant
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Table 10.4 Illustration of evaluating two co-primary endpoints using the practical collective
evidence approach

Study Primary 1 Primary 2 Inflated error of
co-primary endpoints at
the level of 0.025

Inflated error of two
studies at the level of
0.000625

1 0.023 0.030 0.030 0.000875 (40 %)

2 0.018 0.025 0.025

secondary endpoints are labeled. With such practice, the more endpoints that are
evaluated, the higher chance to show statistical significance. For this reason, it may
be necessary to use MAPs to control the error rate of labeling false information,
however, not within individual studies when multiple studies are available.

Without loss of generality, the case of two studies is illustrated. Suppose that both
studies evaluate Endpoints A and B. Let A1 and A2 represent the results of Endpoint
A from study 1 and study 2, respectively, and B1 and B2 for Endpoint B from study 1
and study 2, respectively. If a MAP is used in the individual studies, the logic should
be written as

(A1 ∪ B1) ∩ (A2 ∪ B2) = A1A2 ∪ A1B2 ∪ A2B1 ∪ B1B2

The logic controls the error rate for four possible outcomes A1A2,A1B2,A2B1,
and B1B2 that have the potential to become statistically significant or positive, when
they are in fact false. With a close look of the four possible outcomes, it is only
possible to claim A1A2 or B1B2, as they represent the situations where the same
endpoint is significant in both studies. The outcomes A1B2 and A2B1 would never
be considered in the label in reality as they represent the cases that endpoint A is
significant in one study as well as B is significant in the other. Thus, it is unnecessary
to control the error that would never be committed.

Alternatively, if each endpoint is first evaluated across studies collectively, the only
possible outcomes are A1A2 or B1B2. Then it makes sense to apply MAPs to control
error due to the two possible outcomes to make claim. For instance, if the error rate
of labeling false information should be controlled at the level of 0.025 and there are
ten secondary endpoints, applying the Bonferrion correction, each endpoint should
be controlled at α(H 1/K

0 ) = 0.0025 for K studies. Notice that it is not recommended
that the level of error rate for the secondary endpoints be as stringent as the error
rate of wrongly approving an ineffective drug. The mistake of wrongly approving
an ineffective drug is a more serious matter than that of labeling a false endpoint. In
practice, p values that are significant at level of 0.025 consistently across studies are
labeled, which is more stringent than necessary. Hence, the adjustment with MAPs
may not be necessary unless the number of secondary endpoints is in the scale of
hundreds and more.

Often, it is useful to order the secondary endpoints based on the clinical importance
in the integrative statistical analysis plan. This is equivalent to using the closed testing
procedure on the secondary endpoints. So, the clinically more relevant endpoints are
labeled if there is consistently convincing evidence across studies.
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It can be further debated whether only placing the significant secondary endpoints
in drug labels is an efficient way of communicating drug information. For clinically
important secondary endpoints, the statistically insignificant results may be as im-
portant to share as the significant ones with patients and practitioners. Insignificant
results may inform practitioners that the drug has not shown convincing evidence on
certain clinically important secondary endpoints.

10.4.6 Multiple Tests

In this chapter, multiple tests are referred to as performing multiple analyses on the
same endpoint and using the same set of data, which is different from the multiple
tests for different endpoints, such as gene analyses. Multiple tests are commonly
used in clinical studies and usually structured as the primary analysis and secondary
analyses (or sensitivity analyses). The primary endpoints are often analyzed using
multiple methods, usually with the prespecified primary analysis in an intent-to-
treat (ITT) population and several secondary analyses. The multiple tests are used to
ensure a good understanding of the treatment benefit from the primary analysis and
relatively consistent evidence across all tests.

It is important that all the primary and secondary analyses should be valid and
reasonable analyses. Valid analyses are unbiased under null. Reasonable analyses
are those that the power under alternative is not seriously distorted and the treatment
benefit is not overly underestimated or exaggerated. For example, baseline-carry-
forward is sometimes used in missing data imputation and a valid analysis under
null. However, this approach may not be a reasonable analysis as it could be overly
conservative and the test result would be biased towards null if the treatment is to
prevent disease from deterioration. In other scenarios, the approach could exaggerate
the treatment difference if the disease symptoms can be improved over time without
treatment. The worst-case-carry-forward approach is another valid test under null;
however, it is not considered reasonable, as it could overly exaggerate the treatment
differences under alternatives in certain scenarios. Another valid test is the test for
proportions. It may not be a reasonable test when there are differential dropouts
between treatment arms, perhaps due to toxicities.

It may not be equitable that the primary analysis is the most powerful analysis or
the only important analysis in making conclusion. This is particularly true when han-
dling missing outcome data. Often missing outcome data are missing-not-at-random
and there is not one imputation approach that is better than others. The good practice
is to prespecify one imputation method for the primary analysis. Multiple methods,
served as sensitivity analyses, are used to confirm that the result of the primary anal-
ysis does not deviate from other imputation methods too much and that the impact
of the missing data is small. In addition, the totality of evidence obtained from mul-
tiple tests may enhance the understanding of treatment difference. For example, the
family of weighted log-rank tests and the proportional hazard model are all similarly
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structured (Harrington and Fleming [6]) and are valid tests under null, but can be sen-
sitive to different types of treatment differences revealed in the data. The commonly
used log-rank test, the unweighted test, is more sensitive to differences manifested
later than the Wilcoxin log-rank test which is more sensitive to differences exhibited
earlier. The discussion here is not to undermine the importance of prespecifying the
primary analysis. Prespecifying one primary analysis is particularly important when
reporting the results in publications and drug labels. The rule of thumb is to report
the primary analysis, rather than by picking the best results among all analyses,
while all analysis results should be taken into consideration for decision making and
interpretation.

It can also be argued that multiple tests may not necessarily inflate the type I error
rate, given that all tests are reasonable and valid. A valid test has a 0.025 chance to
reach statistical significance under null. The chance for the majority of the tests to
show statistical significance together cannot be larger than 0.025 under null. Follow-
ing the principle of collective evidence, it would not be convincing evidence if only
one test shows a significant result, while other analyses lack statistical significance.
Conversely, the evidence would be considered convincing if the majority of the tests
reveal statistically significant (or close to) results.

10.5 Case Studies

10.5.1 Case 1: The Primary Endpoint Failed

All relevant information discussed in this case can be found in the FDA advisory
briefing package (US [21]). Spiriva Handihaler (tiotropium) was first approved for
maintenance treatment of COPD based on forced exploratory volume in 1 second
(FEV1). In 2009, the sponsor submitted the results of a study titled understanding the
potential long-term impacts on function with tiotropium (UPLIFT) seeking several
usage indications, among them, COPD exacerbation. UPLIFT was a randomized,
double-blinded, and placebo-controlled multicenter study. A total of 5993 COPD
patients were randomly assigned to tiotropium or placebo in a 1:1 ratio, 2987 to
tiotropium and 3006 to placebo. The patients were treated over a 4-year period. An-
other 6-month study that was conducted in approximately 2000 COPD veterans (VA)
was also available. The exacerbation results of the two studies are summarized in
Table 10.5. As can be seen from Table 10.5, the primary endpoint for exacerbation,
the time from randomization to the first exacerbation episode, was statistically signif-
icant in both studies. The average risk reduction over time in both studies was about
15 % in tiotropium in comparison to placebo. All the secondary endpoints listed in
Table 10.5 were statistically significant at the two-sided level of 0.050. Despite the
statistically significant results shown in two studies, the approval of the exacerba-
tion indication was debated among FDA’s statistical reviewers and in the advisory
committee meeting.
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Table 10.5 Summary of exacerbation results in the UPLIFT and VA studies

UPLIFT VA study

Tio
N = 2986

Placebo
N = 3006

Ratio (p val) Tio
N = 914

Placebo
N = 915

Ratio (p val)

Median time
(month)

16.7 12.5 0.86
(< 0.001)

– – 0.83 (0.034)

Total # of
events

6691 7183 – 376 446 –

Rate (#/p-y) 0.73 0.85 0.86
(< 0.001)

0.71 0.88 0.81 (0.037)

# of
exacerbation
days/p-y

12.1 13.6 0.89 (0.001) 10.0 12.6 0.79 (0.056)

The complication was that the primary endpoint of the UPLIFT study was the rates
of decline in FEV1. UPLIFT failed to show any difference in rates of decline in FEV1.
Exacerbation was a secondary endpoint in the UPLIFT study. Furthermore, the study
prespecified a closed testing procedure requiring that the primary endpoints show
statistically significant treatment differences before testing the secondary endpoints.

Following the prespecified decision rule, it was argued that because the primary
endpoint failed, the secondary endpoints should no longer be tested for the reason
of protecting type I error. Consequently, there was no sufficient evidence for the
exacerbation indication.

An opposing view stated that overly emphasizing the prespecified statistical de-
cision rules could be problematic, and the fact that multiple studies were available
could have reduced the need to use the decision rule. The prespecified decision rule
was not necessarily scientifically valid as it was based on the expectation to the study,
which was a hypothesis to be tested. The gambling nature of the prespecified deci-
sion rule made the selection appear to be arbitrary. In UPLIFT, the study allowed
patients to take any COPD treatments available in the market. The expectation of
tiotropium slowing down the deterioration of pulmonary function at the design stage
may no longer be valid over the course of the study as COPD treatments evolved over
time. Furthermore, when multiple studies were available, the error rate of wrongly
approving an indication could be tightly protected.

The advisory committee voted to approve the exacerbation indication. This case
exemplified the arbitrary nature of the prespecified decision rules. If the Bonferroni
procedure was prespecified, no one would question the efficacy on exacerbation for
the exact same study results. The lesson learned is that the evidence-based drug eval-
uation should not rely on the prespecified decision rule, particularly when multiple
studies are available. The collective evidence approach can be useful in post hoc eval-
uation. In this case, when applying the practical approach proposed in this chapter,
as both the UPLIFT and VA studies were statistically significant at the 2-sided level
of 0.050, there was no error inflation with the decision rule (γ1, γ2) = (0.025,0.025).
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Fig. 10.3 Cumulative CV events curves observed in APPROVe

The error rate of wrongly approving an ineffective drug was indeed tightly protected
at the level of 0.000625. The fact that all secondary endpoints were highly significant
in both studies further supported the efficacy of tiotropium for treating exacerbation.

10.5.2 Case 2: Dispute on Vioxx (rofecoxib) Cardiovascular Risk

Rofecoxib is a COX-2 agent that was first approved by the FDA in 1999 and with-
drawn from market in 2004 due to cardiovascular risk findings in the adenomatous
polyp prevention on Vioxx (APPROVe) study (Bresalier et al. [1]). The APPROVe
study was a randomized, double-blinded, parallel-grouped, and placebo-controlled
study to evaluate the occurrence of neoplastic polyps in patients with a history of
colorectal adenomas. Eligible patients were randomized to rofecoxib 25 mg daily or
placebo in a 1:1 ratio; 1287 receiving rofecoxib 25 mg and 1299 receiving placebo. At
a planed interim analysis, 46 patients developed at least 1 confirmed thrombotic event
over 3059 patient-year in the rofecoxib group, and 26 events over 3327 patient-year
in the placebo group. The hazard ratio was 1.92 (p value = 0.008) and the cardio-
vascular risk (CV) risk in rofecoxib was statistically significantly greater compared
with placebo. The cumulative incidence curves of the confirmed thrombotic events
of the two groups were shown in Fig. 10.3 (Bresalier et al. [1]).

The APPROVe results were published in 2005 in the New England Journal of
Medicine (NEJM) (Bresalier et al. [1]). In the paper, it was stated that a test of
the proportional-hazard (PH) assumption, evaluating the interaction between the
treatment and a time logarithm, was specified in the statistical analysis plan for
analyzing the cardiovascular risk. Based on this test, the p value of the interaction
was statistically significant (two-sided p value = 0.010). It was therefore concluded
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that the CV risk between the two groups was not proportional over time. Additional
post hoc analyses indicated that the CV risk was evident after 18 months of rofecoxib
treatment, whereas the CV risk was similar between rofecoxib and placebo for the
first 18 months of treatment.

Later, the investigation team reported to NEJM that an error had been identified
when reporting the test for the PH assumption (Business Wire [2]) in the original
publication (Bresalier et al. [1]). The reported result used linear time rather than the
time logarithm that was specified in the analysis plan. The test using the time loga-
rithm yielded a 2-sided p value of 0.07, which failed to reach statistical significance
at the 2-sided level of 0.05. However, Merck insisted that using linear time was an
appropriate analysis based on their diagnostic tests. Therefore, their conclusion of
CV risk after 18 months would be unchanged (Business Wire [2]).

NEJM issued a correction (NEJM [14]) in 2006 indicating that the prespecified test
using a time logarithm should be the correct analysis. As this analysis did not reach
statistical significance, the PH assumption was not rejected. Therefore, a conclusion
about the CV risk of rofecoxib should not be made for treatment after 18 months.

An important lesson learned from this case is the interpretation of multiple tests
of the PH assumption. Both tests, using linear time or logarithm of time, are valid
and reasonable tests. The prespecified test is not necessarily the best test. On the
other hand, it is a good statistical practice to report data using the prespecified test.
In disputing the PH assumption, although the test using a time logarithm does not
reach statistical significance at the two-sided level of 0.05, a p value of 0.07 was
considered marginally significant. Adding the evidence from the test using linear
time, which was statistically significant, the totality of evidence demonstrated that
the CV risk ratio was not constant over time. However, the fact that risk ratio was not
constant over time did not infer the absence of the CV risk in the first 18 months of
the rofecoxib treatment. The interaction tests simply could not answer if rofecoxib
caused harm in the first 18 months of treatment.

It is important to reemphasize that the collective evidence approach is not to
abandon the prespecification and planning. On the contrast, careful planning and
designing experiments, prespecifying the experiment procedures, hierarchy of end-
points, the primary analyses, and all other secondary or sensitivity analyses, as well
as safety measures and evaluation are imperative for achieving scientific rigor. How-
ever, throughout the discussion of the chapter, prespecifying a decision rule in a
study appears to add more confusion in drug evaluation.

10.6 Remarks

Drug evaluation is a complex process that involves multidisciplines including medi-
cal, drug safety, statistical, clinical pharmacology, chemistry, and preclinical reviews.
The decision is based on collective evidence from all disciplines, a different level of
synthesizing evidence collectively. Still, drug efficacy is the key element, as none
of the other evaluations would be necessary if a drug was ineffective. This explains
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why there have been significant efforts to develop statistical methodologies to define
systematic approaches to control the error of wrongly approving an ineffective drug.
The collective evidence approach is an effort to enrich and improve the systematic
approaches.

The collective evidence approach reintroduces the “AND” logic which has been
overlooked in drug evaluation. With this foundation, the approach takes all available
evidence in decision making, controls various errors occurring in drug evaluation,
balances the need for consistency among evidence, and allows reasonable variation.
The proposed practical approach may reduce the burden of arbitrarily selecting pre-
specified decision rules in the individual study protocols. It is noteworthy that this
approach does not relax the standard of drug approval; rather it provides an alternative
way of evaluating evidence with proven scientific rigor.

Rigidly using the collective evidence approach can also be problematic. As dis-
cussed earlier, drugs having narrow therapeutic windows may not have multiple
doses supporting the efficacy. However, the collective evidence approach can be ap-
plied to examine if a consistent dose–response relationship is exhibited in multiple
studies. The application of the collective evidence approach may need special care in
drug safety evaluation as well. The safety evaluation usually takes a less conservative
approach. On one hand, the risk signal that occurred in one study or one dose can
be valuable information for practitioners and patients. On the other hand, a trend of
risks consistently occurring in multiple studies, albeit statistically insignificant, can
raise serious concerns.

This discussion does not cover the multiplicity issues occurring in subgroup
analyses, multiregion studies, and interim analyses. The problems noted in such
situations may not all be simple multiplicity problems. Nevertheless, the principles
of the collective evidence approach can be applied in evaluating evidence when these
multiplicity issues occur.

For future research in the area of collective evidence, utility function can be an
alternative approach to summarizing evidence collectively. Eriksen and Keller (Erik-
sen and Keller [5]) proposed a quantitative way of combining evidence from clinical
efficacy and safety data to preclinical safety data of drugs using utility function. This
idea can be extended to combine multiple endpoints, multiple doses, and multiple
studies. More research needs to be done to further develop this approach.
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Chapter 11
Applications of Probability of Study Success
in Clinical Drug Development

Ming-Dauh Wang

Abstract The dominant approach to sample size determination for a clinical trial
in regulatory review-driven pharmaceutical research has long been by assuming
fixed values of parameters under competing hypotheses, i.e., null versus alternative
representing futility and desired efficaciousness of a tested drug. A sample size is then
determined to ensure sufficient statistical power for differentiating between the null
and alternative hypotheses, while controlling the probability of wrongly rejecting
the null. This approach bears the criticism of ignoring the variability inherent with
the unknown parameters. To improve sample size determination, accounting for
variability of parameters has recently been gaining application in pharmaceutical-
conducted clinical trials. The common intent of this increased interest is to better
predict the probability of a successful trial, which is often termed probability of
study success (PrSS) or probability of success (POS). We discuss the important role
that PrSS can play in clinical trial design and decision making throughout medical
product development. A few examples are given for illustration.

11.1 Introduction

The dominant approach to sample size determination (SSD) for a clinical trial in
regulatory review-driven pharmaceutical research has long been by assuming fixed
values of parameters under the competing hypotheses. Although the approach is
straightforward, and in many cases a formula can be readily applied for a quick
sample size calculation, it bears the criticism of oversimplifying assumptions by
overlooking the inherent uncertainty of the assumptions. This would inevitably bias,
either over or under, the sample size needed for providing the expected power for
achieving the study goal. Along with other statistical measures to improve efficiency
of drug development (O’Neill 2006), this long-recognized issue has now emerged
as a topic for a serious consideration.
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As alternatives to the conventional approach, methods that incorporate variability
of parameters in SSD are gaining popularity in pharmaceutical research. A natural
approach to consideration of parameter variability in SSD is incorporating it through
a Bayesian framework, which in the clinical trial setting has been recently termed
probability of study success (PrSS) (Wang et al. 2013), probability of success (POS)
(Chuang-Stein 2006), or assurance (O’Hagan et al. 2005; Bobbs and Carlin 2008).
Although its use in drug development, especially in registration studies, has only hap-
pened recently (Wang et al. 2013; Chuang-Stein 2006), Bayesian SSD has been a
topic of research for decades (Raiffa and Schlaifer 1961; Spiegelhalter and Freedman
1986; Adcock 1988; Weiss 1997; Wang and Gelfand 2002). The growing application
of PrSS in the pharmaceutical industry is also encouraged by the increasing openness
of regulators toward the use of Bayesian methods in pharmaceutical research (Price
and LaVange 2014). Despite the fact that Bayesian analysis for confirmatory trials
intended for drug approval is still controversial, Bayesian SSD for designing con-
firmatory trials has been found acceptable. Moreover, information-based Bayesian
SSD for exploratory trials not intended for registration tends to foster efficiency in
preregistration drug development.

Bayesian SSD or PrSS is considered in this chapter for the case of hypothesis
testing. The Bayesian perspective of the sample size of a trial is in the probability
that the trial is predicted to achieve the intended hypothesis with the given sample
size, not conditional on fixed parameter values, but based on prior-based Bayesian
inference. For a registration trial that uses a frequentist test of hypothesis for analysis
of the primary endpoint, the interest is in the predictive probability of the trial giving a
statistically significant test result. Thus, it is a Bayesian–frequentist mixed prediction,
which can also be applied to designing exploratory trials in lieu of a conventional
frequentist sample size calculation. Alternatively, a purely Bayesian approach to SSD
employs Bayesian inference also in the final analysis. An inferential framework of
Bayesian SSD is developed in Sect. 11.2. The Bayesian approaches are illustrated
with some clinical trial applications in Sect. 11.3. Concluding remarks are given in
Sect. 11.4.

11.2 Bayesian Inference of PrSS

11.2.1 Hypothesis Testing as the Objective of a Clinical Trial

Consider a clinical trial that is conducted to test the effect of an experimental drug
(treatment 1) on an endpoint of interest in comparison with another treatment (treat-
ment 2), with the measurement of the endpoint denoted by Xi for treatment i, i = 1, 2.
The distribution of Xi is assumed to be defined by parameter θi , i = 1, 2, where both
Xi and θi could be multidimensional. Suppose the trial is designed to test a null hy-
pothesis H0 : M(θ1, θ2) ∈ R against the alternative Ha : M(θ1, θ2) ∈ Rc, where M
is a metric that measures the distance between θ1 and θ2, R is a subspace in the Eu-
clidean space, and Rc is the complement of R in the space. With ni patients enrolled
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Fig. 11.1 Illustration of probability of study success (PrSS)

to receive treatment i, let Xi = {Xi1, . . .,Xini
}, i = 1, 2 be data observed at the end

of the study. For ease of presentation denote X = {Xi , i = 1, 2}, θ = {θi , i = 1, 2},
and n = {ni , i = 1, 2}.

Suppose a test statistic T (X) is prespecified in the statistical analysis plan for the
test statistic to test Ha against H0 at the end of the trial, given α as the level of type 1
error rate typical of regulatory requirement. Usually, fixed values of θ under H0 and
Ha are assumed for sample size calculation without consideration of their variability.
For example, the difference Δ = θ1 −θ2 (assumed univariate) is often of interest, and
H0 : Δ = Δ0 is tested again Ha : Δ = Δa. A conventional method of SSD would
calculate the n that gives at least a probability of 1 − β (or power) for exhibiting
T (X) > tα under Ha, where tα is the 100(1 −α)th percentile of T under H0. To note,
Δ0 is often a pre-set value agreed upon by the sponsor and the regulatory agency, and
Δa is commonly chosen as representing the clinically desired value. The power thus
calculated is highly dependent on the assumed value of Δa. Figure 11.1 illustrates
the dependence.

11.2.2 Prediction of PrSS for Determination of Sample Size

Instead of assuming fixed values, a distribution (red curve in Fig. 11.1) that reflects
up-to-date knowledge of θ can be assumed. Then the mean of the power (blue curve
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in Fig. 11.1) over the distribution is more representative of what the trial can offer,
which is the PrSS. Using the more general notation, let the prior distribution of θ

be denoted as π (θ ). At the time of designing a trial, the data X is yet unobserved,
which is predicted given the prior π (θ ) and the assumed density f (x|θ ). That is, the
predictive density of X is derived by

f̃ (x) ∞
∫

f (x|θ )π (θ )dθ.

Then the PrSS is defined as

PrSS =
∫

I {T0(x) > tα|x}f̃ (x)dx, (11.1)

where T0 is the statistical test under H0, and I is the indication function. The sample
size is then selected to ensure PrSS is greater than a minimum accepted threshold γ .

By considering uncertainty of assumptions, the PrSS is typically lower than the
power that would result from a conventional power calculation for a given sample
size. It indicates that conventional SSD tends to over-estimate the power of a trial, and
the PrSS approach would better reflect the ability of a trial in achieving the intended
objective. Notwithstanding the downward adjustment by PrSS, our recommendation
is to keep the same standards for the PrSS approach as would be for a conventional
calculation, e.g., γ = 0.9 for a registration trial and γ = 0.7 for a phase 2 trial.

The PrSS concept has been earlier proposed and applied to conducting interim
analysis of an ongoing trial (Spiegelhalter et al. 2004; Dmitrienko and Wang 2006;
Wang 2007), which is called the “predictive power” approach, as an alternative to
the “conditional power” approach (Posch and Hunsberger 1995). Application of the
methodology to clinical trial design could be seen as a special case of its use for
interim analysis, as no interim data are available for update and the prediction of
needed sample size is purely based on pre-study prior knowledge. This frequentist
and Bayesian mixed approach is more appropriate for registration-oriented clinical
trials because frequentist analysis for the primary endpoint is usually required. As
long as control of type 1 error is shown to be adequately maintained and measures for
guarding patient safety are well addressed, this approach for determining the sample
size for a registration trial is not opposed by regulatory agencies (Wang et al. 2013).

Though a frequentist test and its resulting p value are still generally required for
judging the success of a trial intended for regulatory approval, for preregistration drug
development, p values are often not conducive to decision making. An alternative is to
also conduct Bayesian analysis at the end of the study that would provide a statement
about θ in terms of probability, which is easier to use in deciding on subsequent steps
for the drug in development. In our notation, this posterior probability is Pr(θ ∈
Ha|X), which is the updated probability of the alternative hypothesis at the end of the
trial and would indicate success of the trial if it is higher than another pre-specified
threshold η > 0. Upon observing X = x at the end of the trial, Pr(θ ∈ Ha|X) is
realized as

Pr(θ ∈ Ha|x) =
∫

I {θ ∈ Ha}g(θ |x)dθ ,
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where

g(θ |x) ∝ f (x|θ )π∗(θ )

if another prior π∗(θ ) is used for the final analysis. Then SSD is made by the
calculation of PrSS expressed by

PrSS =
∫

I {Pr(θ ∈ Ha|x) > η}f̃ (x)dx, (11.2)

so as to meet the preselected threshold probability γ . For differentiation π (θ ) used
for pre-study design is called the design prior and π∗(θ ) assigned for final analysis is
called the analysis prior (Brutti et al. 2008). Different opinions are held for whether
the two priors should be assumed different. We recommend that for a registration
trial the sponsor utilizes the most objective knowledge about θ to form the prior
at the design stage. Meanwhile, to avoid concern about too much subjectivity, a
non-informative prior is suggested for the analysis.

Returning to the previous comment on the downward adjusting property of PrSS
by the predictive power approach in comparison with conventionally calculated
power, the statement still holds true if the analysis prior is non-informative. However,
more informative and optimistic priors for analysis could swing PrSS upward.

Although analytical formulas may be derived for simple cases, PrSS can generally
be approximated by simulation. For the predictive power approach in (11.1), the
algorithm for a given sample size n is:

1. Simulate a value of θ from π (θ ).
2. Conditioned on the value of θ , simulate n observations from f (x|θ ).
3. Given the observations, examine if T0(x) > tα as a success.
4. Repeat the above steps many times; the proportion of successes is an estimate of

PrSS.

For the fully Bayesian approach in (11.2), the simulation procedure would be

1. Simulate a value θ from the design prior π (θ ).
2. Conditioned on the value of θ , simulate n observations from f (x|θ ).
3. Given the observations and the analysis prior π∗(θ ), calculate the posterior

probability Pr(θ ∈ Ha|x) and examine if it is greater than η as a success.
4. Repeat the above steps many times; the proportion of successes is an estimate of

PrSS.

The number of simulations needed in step 4 of the simulation procedures would
depend on the complexity of sampling from the distribution of the test statistic T0(X)
in the predictive power approach or computing Pr(θ ∈ Ha|x) in the fully Bayesian
approach. In particular, Markov chain Monte Carlo (MCMC) is often applied in
the latter case, and thus it requires convergence check to ensure well-performed
calculation of PrSS.
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11.3 Applications

In this section, several examples of PrSS are presented.

11.3.1 Example 1

One phase 2 study was designed to compare a few doses of an experimental drug
with placebo as the primary objective. As a secondary objective, it also included a
marketed comparator arm for comparison with placebo as a benchmark. The primary
endpoint was the change in a vital sign from baseline to 6 weeks. The conventional
approach was used for calculating the sample size needed for comparing the drug
with placebo at a 2-sided 0.1 significance level, which resulted in a group sample size
of 29 for the experimental drug doses and placebo to give a power of 0.8. At the same
time, we applied PrSS to determine the sample size needed for the comparator group,
by utilizing study results of the comparator available in the literature. Of a similar
idea, there is a recent promotion for borrowing historical data to enrich controls in
clinical trials (Neuenschwander et al. 2010 ; Viele et al. 2014).

The endpoint was assumed normally distributed as N (μ1, σ 2
1 ) for the comparator

and N (μ2, σ 2
2 ) for placebo, and the tested hypotheses were H0 : μ1 −μ2 ≤ 0 against

Ha : μ1 − μ2 > 0. We employed the fully Bayesian approach defined in (11.2) to
calculate the PrSS. For the design prior π (θ ), normal-gamma priors were applied for
the comparator and placebo as

1

σ 2
i

= τ ∼ Gamma(ν,β),E(τ ) = νβ

μi |τ ∼ N

(
μi0,

1

ni0τ

)
,

where ni0’s can be viewed as prior numbers of subjects contributing to the PrSS
calculation. The actual values used in the PrSS calculation were n10 = n20 = 10,
μ10 = 6, μ20 = 0, ν = 9, and β = 1/(9 × 81). A more stringent 0.9 was chosen for
the posterior probability threshold η. In this application, the analysis prior π∗(θ ) was
assigned the same as the design prior π (θ ). PrSS was calculated based on 10,000
simulated trials for a range of sample sizes. The curve of PrSS versus sample size is
graphed in Fig. 11.2.

To attain a PrSS of 0.8 for the comparison of the comparator with placebo, a sample
size of 15 for the comparator was selected, while the sample size for placebo was
maintained at 29 as determined by the frequent calculation for its comparison with the
experimental drug doses. Still given 29 for placebo, a conventional calculation would
yield 16 for the comparator at the 1-sided 0.1 significance level as corresponding to
η = 0.9. Although there was almost no difference in the determined sample size
made by using the PrSS approach in this case, variability in the parameters had been
appropriately considered. A more appreciable reduction in sample size would result
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Fig. 11.2 Probability of study success

from application of a stronger analysis prior. In addition, the specified Bayesian
analysis at the end of the trial was intended for providing a summary in terms of
posterior probability to better facilitate decision making.

Regarding the choice of the analysis prior being the same as the design prior, we
adopted the more prevalent practice in the earlier Bayesian SSD literature (Adcock
1988; Raiffa and Schlaifer 1961). This was a phase 2 study not intended for supporting
label application, but to inform the company’s decision on whether or not to move
forward to investing on phase 3 registration trial phase. Thus, the use of informative
prior in this application of PrSS received no regulatory concern.

11.3.2 Example 2

Another phase 2 trial was to compare three doses of a drug with placebo on an
efficacy endpoint, and simultaneously to compare with a marketed agent on a safety
endpoint. Both endpoint were changes from baseline in the corresponding efficacy
and safety measures. In other words, the objective was to show that at least one of
the tested drug doses was not only more efficacious than placebo but also not worse
than the active comparator in terms of the known safety concern.



192 M.-D. Wang

Denote the efficacy and safety responses at dose level d(d = 0 for placebo) as
Y E(d) and Y S(d), which have μE(d) and μS(d) as their means, respectively. For
the active comparator, the safety response was assumed to be N (μC , σ 2

C). Then the
specific hypotheses were:

Ha : {μE(d) − μE(0) > 8} and {μS(d) − μC < 0} for at least one d > 0,

H0 : Otherwise.

For this case, existing data suggested that both the efficacy and safety effects are
dose dependent, showing improved efficacy response and worse safety response with
increasing dose. Thus, we assumed the following Emax-model based dose response
curves for Y E(d) and Y S(d):

YE(d) ∼ EmaxE × d

ED50E + d
+ eE = μE(d) + eE

YS(d) ∼ EmaxS × d

ED50S + d
+ eS = μS(d) + eS ,

where EmaxE and EmaxS are maximum achievable efficacy and safety effect sizes
at the infinite dose, ED50E andED50S are the doses at which half sizes of EmaxE

and EmaxS are achieved, respectively, and eE ∼ N (0, σ 2
E ) and eS ∼ N (0, σ 2

S ) are
normally distributed random errors. Also, according to existing data, Y E(d) and
Y S(d) are negatively correlated, with the correlation coefficient denoted by ρ, which
was assumed fixed at −0.3 in this example, but can be assumed random as well.

With the available in-house and literature data, the design prior π (θ ) was assigned
as:

EmaxE ∼ N (−16, 42), log(ED50E) ∼ N (2.08, 0.52), σ 2
E = 7.52

EmaxS ∼ N (0.6, 0.152), log(ED50S) ∼ N (3.6, 0.92), σ 2
S = 0.32

μC ∼ N (0.3, 0.12), σ 2
C = 0.32.

Variances of the random errors σ 2
E , σ 2

S , σ 2
C were assumed fixed, which could also

be relaxed to be random. Despite the use of informative priors for the design of the
trial, the study team felt the final analysis should be fully driven by the trial data
instead of the prior information. Therefore, the analysis prior π∗(θ ) was assumed
fairly non-informative:

EmaxE ∼ N (0, 1002), log(ED50E) ∼ N (0, 1002), σ 2
E ∼ IGamma(0.5, 0.0005)

EmaxS ∼ N (0, 1002), log(ED50S) ∼ N (0, 1002), σ 2
S ∼ IGamma(0.5, 0.0005)

μC ∼ N (0, 1002), σ 2
C ∼ IGamma(0.5, 0.0005).

Following the simulation procedure for the fully Bayesian approach with η = 0.5,
PrSS was calculated for different scenarios, each based on 1000 simulated trials.
Given the richer information on the safety endpoint of the active comparator, the
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Fig. 11.3 Outcome of a simulated trial

Table 11.1 Probability of
study success (PrSS)

Posterior probability Group sample sizea

threshold η 30 40 50 60 70

0.5 0.67 0.68 0.69 0.71 0.73

0.6 0.62 0.66 0.67 0.69 0.70

0.7 0.58 0.60 0.61 0.62 0.64

0.8 0.55 0.57 0.59 0.61 0.62

a Half the size for the active comparator

sample size for the active comparator was set as half that of the other groups. One
simulated trial is shown in Fig. 11.3, where nonlinear least squares fits for the efficacy
and safety endpoint are presented. The simulation results are summarize inTable 11.1.
For this trial, the expectation was to have a PrSS greater than 0.70, so it was decided
to enroll and complete 60 patients for each of placebo and the tested drug doses and
30 patients for the active comparator.

On the selection of η = 0.5, there was discussion of its appropriate level among
the study team. A consensus was reached that a lower hurdle as η = 0.5 be adopted
to avoid terminating a potential effective drug with a high probability in early phase
drug development. One alternative was to lower the superiority cutoff for efficacy
in Ha, e.g., from 8 to 6, and allow for an η > 0.5. Nevertheless, targeting 8 had its
clinical significance and thus was not compromised for other considerations.

11.3.3 Example 3

This example concerns an ongoing phase 3 major adverse cardiovascular events
(MACE) registration trial. One dose of a drug is being tested against placebo on top
of background therapies to show a hazard reduction in a composite of cardiovascular
events, such as cardiovascular death, stroke, etc. The trial was designed by the
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Fig. 11.4 Probability of study success (PrSS) and sample size of a major adverse cardiovascular
events (MACE) trial

conventional frequentist approach, but is being monitored using a Bayesian approach
for event and enrollment prediction in a blinded manner. In the middle of the trial,
a Bayesian analysis was conducted to reassess the number of subjects needed to be
enrolled. This reassessment of power was based on published information of the
correlation between reduction in the MACE event rate and decrease in a particular
biomarker.

A 13.75% of patients receiving placebo was estimated to experience a MACE
event during exposure to study treatment. At the end of the trial, a log-rank test will
be performed to see if the log hazard ratio of the drug to placebo is significantly less
than 0, with a 2-side significance level of 0.05. Along with other assumptions, the
initial power calculation determined 11, 000 patients were to be enrolled to the trial
with a 1 : 1 ratio between the drug and placebo.

The predictive power version of PrSS in (11.1) was applied to reassess the study
power. Given the biomarker data from a previous phase 2 study of the drug and
publications of certain similar MACE trials, it was estimated that at the tested dose
of the drug the relative risk reduction would be normally distributed as N (0.85, 0.03),
which was employed as the design prior. With 10, 000 simulated trials, simulation
results are summarized in Fig. 11.4. The left panel of Fig. 11.4 shows the power
curve as a function of the hazard ratio given the elicited distribution, where the blue
dotted line indicates PrSS = 0.86. This suggested the need of an increased sample
size should a PrSS = 0.9 be desired. From another perspective, if a power of 0.9
is expected, the right panel of Fig. 11.4 depicts the needed sample size given an
assumed hazard ratio.
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11.4 Discussion

The information-based PrSS approach to SSD in drug development was described
in this chapter, where variability of parameters is considered in power assessment
as opposed to the fixed-value approach conventionally employed. We laid out two
PrSS inferential paradigms, the predictive power and fully Bayesian approaches.
The former is a more widely accepted option for registration trials under current
regulatory view of a successful trial, while the latter is preferred for preregistration
trials for more effective facilitation of early drug development. A few examples were
given for illustration of PrSS implemented using the two paradigms.

We suggest prior elicitation, particularly for the design prior, for the application
of PrSS be conducted in a most objective manner possible. At the same time, extra
caution needs to be exercised as it has been shown that early-phase drug effect tends
to be biased upward (Wang et al. 2006; Kirby et al. 2012; Chuang-Stein et al. 2010).
Thus, appropriate adjustment of prior knowledge against inflation of effect size is
a wise measure. Though PrSS has been our present focus, a more comprehensive
perspective concerning overall correct (true negative or positive) or wrong decision
(false negative or positive) has been promoted (Wang et al. 2006). Furthermore,
the PrSS approach herein considered can be extended to trials with an adaptive
design nature, such as seamless phase 2/3 trials (Inoue et al. 2002) or those allowing
mid-course sample size reestimation (Wang 2007).

Increasing application of Bayesian statistics in regulatory approval-driven clinical
trials was long foretold (Geisser 1992), which has come true in the area of medical
devices (Campbell 2011). There is no reason not to believe that Bayesian meth-
ods, such as PrSS, applied in registration trials for drugs and biologics should only
continue to gain ground for improvement of drug development efficiency.

Acknowledgments The author thanks Paul Berg, Grace Li, and Karen Price of Eli Lilly and
Company and the two anonymous referees for their helpful reviews and valuable comments that
resulted in the improved quality of the chapter.
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Chapter 12
Treatment Effect Estimation in Adaptive Clinical
Trials: A Review

Ying Yang and Huyuan Yang

Abstract Adaptive design has been increasingly widely discussed and accepted in
the community of clinical trials. Currently, statisticians and clinicians are focusing
more on the hypothesis testing of the adaptive clinical trials. Since adaptive design
allows adaptation or modification to some aspects of clinical trials in the middle
course of the trial, it is still not clear whether and how treatment effect estimation
may be affected at the end of study as this research area has not been widely explored.
In this chapter, we would like to discuss the impact of adaptation on the treatment
effect estimation and compare some adjustment techniques in the adaptive trials
based on simulation results.

12.1 Introduction

Adaptive design has received a great deal of attention. According to Food and Drug
Administration (FDA) guidance (2010), an adaptive design clinical study is defined
as a study that includes a prospectively planned opportunity for modification of one
or more specified aspects of the study design and hypotheses based on analysis of
data (usually interim data) from subjects in the study. The range of possible study
design modifications that can be planned in the prospectively written protocol is
broad, for example, randomization procedure, study eligibility criteria, total sample
size of the study, primary endpoint, etc. It is well known that bias from analyses
can be introduced when there are choices made based on unblinded analyses of data.
An adaptive design approach that can adjust the study sample size to avoid both an
underpowered study (because of an overly optimistic parameter estimate such as low
variance or large treatment-effect size) and an excessively large study (because of
an overly conservative estimate of variance or effect size) might increase the study
efficiency and the ability to achieve the study goal.
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There are two issues related to adaptive design methods. One is the potential type
I error inflation due to the adaption process in design, analysis, or conduct flaws. The
other is the positive study results that are difficult to interpret irrespective of having
control of type I error. The size of the potential bias and the possible solutions
to eliminate the bias are not yet well understood. Adjustments that appropriately
control the type I error rate are not directed at controlling the bias that has been
introduced into the effect estimate. Because there is limited experience with the less
well-understood adaptive design methods, the size of this bias and the conditions
that may influence the size are not yet generally well understood.

Bauer and Einfalt (2006) conducted a literature review and found that sample size
reestimation is most commonly used in practice. Most researches focus on how to
control type I error. However, how the data from multiple stages (before adaption and
after adaption) are combined to estimate the treatment effect and how the estimation
bias due to adaption process is eliminated are not well understood. In this chapter,
we will focus on this issue.

Sample size reestimation has two types. One is based on nuisance parameter with-
out breaking the treatment codes. It has little effect on standard statistical inference.
The other type is based on the observed estimate of treatment effect, which may
inflate the type I error rate of the traditional test statistic, compromise the statistical
power, and bias the sample mean estimate of parameter and its confidence interval in
the trial end. In this chapter, we will investigate how big the bias is and what adjust-
ment or adaptation is available to perform valid statistical inference if the observed
treatment effect at the interim time of the trial is used to increase sample size to test
a smaller worthwhile effect size.

12.2 Confidence Interval and Point Estimation

An important issue besides hypothesis testing is the estimation of treatment effect
upon completion of the study. Subjects are equally assigned to the new treatment or
the control. Assume that the observations are normally distributed with means μe

and μc respectively for the two arms and a common variance σ 2. Let δ = μe − μc

be the true treatment difference. Consider the following two-sided hypotheses:
H0: δ = 0 vs. Ha: δ �= 0.
Let n0 be the originally planned sample size per arm. Without loss of generality,

we assume that only one interim analysis is performed when n1(n1 < n0) subjects
in each arm have completed the study (called first stage). Denote t1 = n1/ n0 as
the information time. A new sample size N = n1 + K per arm, where K ≥ 0, is
calculated based on the first n1 observations.

At the end of the study, the usual maximum likelihood estimates of δ based on all
the data is the natural estimate of δ.

δ̂ = n1

N
δ̂1 + K

N
δ̂2
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where δ̂1 and δ̂2 are estimators of δ based on data before and after interim analysis,
respectively. In other words, δ̂ is a weighted linear combination of δ̂1 and δ̂2, with
weighs depending on n1 and K. If the study is stopped at the time of interim analysis
for futility or significant efficacy, we may have K = 0 and δ̂ = δ̂1. Since E(δ̂2|δ̂1) =
δ,E(δ̂|δ̂1) = n1

N
δ̂1 + K

N
δ

and we have

E(δ̂) = E(E(δ̂|δ̂1)) = δ + E
{n1

N
(δ̂1 − δ)

}

Obviously, the maximum likelihood estimate is biased. The second term is the bias
and we denote this by b(δ).

Proschan et al. (2003) used Bayesian ideas to combine prior information with
the first-stage data to determine the final sample size. But the analysis of the final
data does not require specification of prior distribution. To combine the data from
the two stages, they proposed a weighted estimate similar to δ̂ with weight inversely
proportional to standard deviation of each stage. They further modified the estimate
by using the pooled variance based on all data from each arm. Finally, the final
estimate and confidence interval for δ are written as

δ̂P =
√
t1n1δ̂1 + √

(1 − t1)Kδ̂2√
t1n1 + √

(1 − t1)K

and (
δ̂P −

√
2zα/2s√

t1n1 + √
(1 − t1)K

, δ̂P +
√

2zα/2s√
t1n1 + √

(1 − t1)K

)

respectively, where s2 is the pooled variance based on all N observations per arm.
Lawrence et al. (2003) constructed point estimation and a confidence interval

based on an adaptive test statistic, which is a generalization form of Cui et al. (1999).
Let t∗ = N/n0 denote the information time based on the new total sample size. The
point estimate is written as

δ̂L = t1δ̂1 + √
(1 − t1)

√
t∗ − t1δ̂2

t1 + √
(1 − t1)

√
t∗ − t1

The upper and lower limits of the confidence intervals are

t1δ̂1 + √
(1 − t1)

√
t∗ − t1δ̂2 ± zα/2λ

−1

t1 + √
(1 − t1)

√
t∗ − t1

where λ−1 =
√

2σ 2

n0
is the drift parameter.

If we replace t1 = n1/n0 and t∗ = N/n0 in the formulas calculating δ̂P and δ̂L,
we find

δ̂P =
√

n1
n0
n1δ̂1 +

√
(1 − n1

n0
)(K − n1)δ̂2

√
n1
n0
n1 +

√
(1 − n1

n0
)(K − n1)

= n1δ̂1 + √
(n0 − n1)(N − n1)δ̂2

n1 + √
(n0 − n1)(N − n1)
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and

δ̂L =
n1
n0
δ̂1 +

√
(1 − n1

n0
)( N

n0
− n1

n0
)δ̂2

n1
n0

+
√

(1 − n1
n0

)( N
n0

− n1
n0

)
= n1δ̂1 + √

(n0 − n1)(N − n1)δ̂2

n1 + √
(n0 − n1)(N − n1)

Therefore, δ̂P and δ̂L are the same. So are the confidence intervals.
Both δ̂P and δ̂L give conservative estimate of treatment effect. They do not require

a sample size adjustment rule to be prespecified in advance. The important feature
of both estimators is that the final sample size is restricted to be at least as large as
originally planned. In other words, early stopping for either futility or benefit is not
allowed.

12.3 Numerical Computation and Simulation Results

In this section, we will further understand the bias of the estimators discussed in
the above section: the usual maximum likelihood estimate (MLE), Lawrence esti-
mator (LHE), and Proschan estimator (PLH). A simulation study is performed to
compare their biases and the actual coverage probability of confidence intervals. In
this simulation, we set the intended type 1 error rate α = 0.05, intended type-2 error
rate β = 0.1, the assumed true treatment effect δ0 = 0.4, and the standard deviation
σ = 1 under a fixed study design; 132 subjects per arm are required to reject the null.

The total sample size is reestimated after observing the treatment improvement
with a sample of n1 according to the following rule:

• If δ̂1 ≤ 0 or δ̂1 > 0.4, N = n0

• If 0 < δ̂1 ≤ 0.4, N = n0 × (δ0/δ̂1)2

Due to limited resources, the final sample size for each arm cannot go beyond the
maximum number of patients being allowed. The maximum number of patients per
arm is set at 300 in the simulation.

First, we simulate the case of an interim look which is performed after 43 subjects
are observed in each group with the true difference δ = 0, 0.1, 0.2, 0.3, and 0.4. The
mean additional sample size, coverage probability, 95 % confidence interval, mean
bias, and mean square error are presented in Table 12.1 based on 20,000 replicated
samples. Results show that the coverage probability of the confidence interval is very
close to 95 % in each of the scenarios assessed. Both Lawrence et al. and Proschan
et al. estimators have smaller bias than MLE.

Second, we simulate the cases for various timing of the interim analyses, with
20,000 replicated samples. Results (not shown here) also show that the biases of
all estimators are close to zero. Mean square errors (MSE) of the estimators are
summarized in Table 12.2. It is noticed that the maximum likelihood estimate does
not behave very badly. It fluctuates depending on the true difference. When the initial
guess is closer to the truth, MSE of MLE is almost same as that obtained by Lawrence
et al. and Proschan et al. methods.



12 Treatment Effect Estimation in Adaptive Clinical Trials: A Review 201

Table 12.1 Mean additional sample size, coverage probability, 95 % confidence interval, mean
bias, and mean square error

True
difference

Mean additional
sample size

Coverage Bias Mean square error

MLE LHE/PHL MLE LHE/PLH MLE LHE/PHL

0 73 0.9457 0.9488 −0.0104 −0.0056 0.0119 0.0119

0.1 88 0.9416 0.9485 −0.0053 −0.0028 0.0120 0.0117

0.2 90 0.9436 0.9499 0.0028 0.0018 0.0120 0.0116

0.3 77 0.9449 0.9492 0.0087 0.0048 0.0120 0.0117

0.4 55 0.9493 0.9492 0.0113 0.0062 0.0121 0.0121

Table 12.2 Mean square
errors of δ̂ Time of interim look True δ MLE LHE/PHL

t1 = 0.25 0.1 0.0124 0.0121

0.2 0.0124 0.0121

0.3 0.0123 0.0120

0.4 0.0126 0.0126

t1 = 0.5 0.1 0.0123 0.0119

0.2 0.0123 0.0117

0.3 0.0120 0.0117

0.4 0.0120 0.0122

t1 = 0.75 0.1 0.0124 0.0120

0.2 0.0126 0.0120

0.3 0.0121 0.0120

0.4 0.0112 0.0119

12.4 Discussion

Sample size determination is an essential part of clinical trial design. An adaptive
procedure allows the study to be extended based on the observed data so that a
significant result may be obtained on the basis of additional data which may otherwise
end with an inconclusive result. However, the final sample size in a clinical trial with
an adaptive procedure is a random variable due to its dependence on the interim
data. The usual maximum likelihood estimate of treatment effect is biased and the
confidence interval based on the normal distribution is not valid.

In this chapter, we show that Lawrence et al. (2003) and Proschan et al. (2003)
provide the same treatment effect and confidence interval. Although estimates using
both methods are biased, confidence interval has correct coverage probability. The
coverage probability of adaptive confidence interval is very close to 0.95 for each
scenario.
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Simulation studies also show that the maximum likelihood estimate does not
behave very badly. However, the maximum likelihood estimate and its confidence in-
terval are not encouraged in the analysis of adaptive clinical trials because confidence
intervals that use normal distribution are not valid.

Although it is not covered here, it will be more desirable to further explore the
estimation of treatment effect in adaptive designs with early stopping rules. For exam-
ple, Denne (2000) proposed a bias-adjusted estimate when sample size is reestimated
using Proschan and Hunsberger (1995) method. However, Denne’s bias-adjusted es-
timate depends on the exact strategy choosing K. Confidence intervals were not
discussed in Denne’s paper. Rosenberger and Hu (1999) proposed nonparametric
bootstrap confidence intervals in the adaptive design that can modify allocation
probability to favor the treatment performing better during the study. Since the final
sample size is a random variable and the distribution of conventional test statistic
is no longer normal, developing a nonparametric confidence interval would be an
interesting topic of research.
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Chapter 13
Inferiority Index, Margin Functions,
and Hybrid Designs for Noninferiority Trials
with Binary Outcomes

George Y. H. Chi

Abstract In the design of noninferiority (NI) trials with binary outcomes, two basic
problems are invariably present. The first problem pertains to the appropriateness of
a fixed margin. The two-step fixed margin approach recommended in the Food and
Drug Administration (FDA) guidance to industry on NI trials (US FDA, Guidance
to industry: non-inferiority clinical trials, 2010) relies on the availability of relevant
historical data and expert clinical knowledge and experience to provide the assurance
that the derived fixed margin is appropriate. Nonetheless, it still needs an objective
measure for assessing its stringency. The FDA approach has its merit in that the fixed
margin is determined empirically using the best control response rate and control
effect estimates and the best clinical judgment. This feature should be retained in
a new design. However, once this fixed margin has been determined, one is faced
with the second problem of what appropriate margin to use when the control rate
from the NI trial differs from the estimated control response rate. This question
was raised by the FDA Anti-infective Division at the November 2011 Anti-infective
Advisory Committee meeting. A hybrid design for NI trials with binary outcomes is
proposed here that integrates the FDA’s fixed margin approach with a variable margin
by applying the theory of inferiority index developed for Bernoulli distributions. The
inferiority index is an objective measure of the relative stringency of a margin, and
it can be used to define a special margin function that retains the empirical nature of
the fixed margin but also allows the margin to vary.

13.1 Introduction

In the late 1980s, Food and Drug Administration’s (FDA’s) Anti-infective Division
received submissions that include many active control studies. The Division was
wrestling with the difficult issue of how to set the noninferiority (NI) margin. Its ef-
forts resulted in the 1992 FDA Anti-infective Points-to-Consider Guidance (US FDA
1992) which reflects the Division’s best thinking at the time. The guidance recog-
nized that the nature of the problem lies in the fact that the margin is depended upon
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the true control response rate which is generally unknown. Therefore, the guidance
provided the following margin function to be used for guiding the selection of the NI
margin for the rate difference (RD) measure δRD = pT −pC , where pT and pC are
the response rates for treatment and control, respectively, in a parallel randomized
active control trial. The margin function is actually a step function defined to take
the value of − 0.20, for pC ≤ 0.80, the value of − 0.15, for 0.80 < pC ≤ 0.90, and
the value of − 0.10, for pC > 0.90. However, since the control response rate pC is
not known ahead of time, it is estimated from the NI trial data. The margin function
is then applied retrospectively using the estimate p̂C obtained from the NI trial. Var-
ious authors, including Weng and Liu (1994), Bristol (1996), Röhmel (1998, 2001),
and Senn (2000) had discussed problems associated with the discontinuous nature
of this function and the retrospective nature of its application. Röhmel and Senn
also proposed different continuous margin functions. Munk, Skipka and Stratmann
(2005) and Zhang (2006) considered NI hypotheses with variable margins that are
defined by general margin functions with some regularity properties. However, the
concept of a margin function did not receive its due attention from the regulatory
authority, probably due to a lack of justification for the choice of margin function
and a lack of an accompanied methodology.

In the FDA Guidance to Industry on NI Trials (US FDA 2010), a two-step fixed
margin approach is recommended. In this approach, an estimate of the control re-
sponse rate pC and an estimate of the control effect (CE) are obtained first from
available and relevant historical data. Then from the knowledge and experience of
clinical experts, a fraction of the CE estimate is determined as the fixed margin which
represents the amount of CE loss that can be tolerated or deemed clinically irrele-
vant. This two-step fixed margin approach is empirically based and reflects the best
clinical judgment as to the degree of stringency required. This is the current practice
for most NI trials. However, this two-step fixed margin approach cannot address the
question as to what would be the appropriate margin to use in the event the true
control response rate pC from the current NI trial appears to differ from the empiri-
cally based estimate of the control response rate pC . Indeed, at the November 2011
FDA Anti-Infective Advisory Committee meeting discussing the design of hospital-
acquired and ventilation-associated bacterial pneumonia (HABP/VABP) NI trials,
the FDA Anti-Infective Division posed the following questions among others to the
Committee. First, is the fixed margin derived using the two-step procedure for the
HABP/VABP trials appropriate? Second, what margin should one use in the event the
control response rate pC from the NI trial appears to deviate from the empirically
based estimate? However, the Committee did not provide an answer to this question.

In this chapter, a hybrid NI design for the RD measure that is defined by a special
linear margin is presented to address the above two questions raised by the FDA
Anti-Infective Division. In Sect. 13.2, the convergence theorem for the test statistic
associated with a general fixed margin NI hypothesis is established for the RD mea-
sure. This test statistic is more efficient than the classical Wald test and comparable
to the likelihood ratio test because it captures the heterogeneity of variance at the
boundary of the inferiority null hypothesis. This convergence theorem is used later to
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establish the convergence theorem for the test statistic associated with hybrid NI hy-
pothesis. In Sect. 13.3, it is shown that there is an index function linking the standard
inferiority index under the normal distributions to the RD measure and the control
response rate. Upon setting the index at a specific value in its inverse function, one
derives a margin function with a degree of stringency specified by that index. This
margin function also accommodates the potential heterogeneity of variance through
the variance ratio. Then, in Sect. 13.4, through an application of the index and mar-
gin function in tandem, it is shown how one can integrate a given fixed margin into
a linear margin that can be used to define a variable margin NI hypothesis which
will be termed a hybrid NI hypothesis. This hybrid design has the explicit degree
of stringency as measured by the index function at the empirically determined fixed
margin and control response rate. In addition, it can accommodate the adjustment of
the margin in the event the control response rate from the NI trial deviates somewhat
from the empirically based estimate of the control response rate. This hybrid design
therefore can address both questions posed by the FDA Anti-Infective Division dis-
cussed earlier and is consistent with the spirit stated in the Investigational New Drug
(IND)Application Format and Content (US FDA 2013) which mentions among other
things that “a protocol for a phase 2 or 3 investigation should be designed in such a
way that, if the sponsor anticipates that some deviation from the study design may
become necessary as the investigation progresses, alternatives or contingencies to
provide for such deviation are built into the protocols at the outset.” The performance
of the test statistic associated with the hybrid NI hypothesis is investigated and its
results discussed, and an application to the design of HABP/VABP trials is given.
The chapter concludes with a discussion.

13.2 The Scaled Relative Difference Measure and the Relative
Difference Measure

In this section, the scaled rate difference (SRD) measure for Bernoulli distributions
is first introduced and the related convergence theorem for the test statistic associated
with its fixed margin NI hypothesis is proved. The corresponding convergence the-
orem for the test statistic associated with the fixed margin NI hypothesis for the RD
is then deduced. The reason the scaled difference measure is important is because
it takes into account potential differences in the variance through the variance ratio.
This property is then passed to the RD measure through its relationship with the SRD
measure. The reason this is important is because under Bernoulli distributions, at the
boundary of the inferiority null, the variances are different since the treatment and
control have different response rates. Furthermore, the slope of the variance function
of Bernoulli distributions changes dramatically outside the range of (0.30, 0.70) as
the response rate approaches 0 or 1 (Chi and Koch 2012). This property is then also
captured in the hybrid design for the RD measure.
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13.2.1 The Scaled Relative Difference Measure

The scaled rate difference (SRD) measure plays an interesting and important role
in the development of the hybrid design which will become evident later. Consider
an active control trial with a treatment T , a control C and a clinical outcome X
of interest. Assume that the smaller the value of X, the worse is the outcome. Let
XT and XC denote outcomes on subjects treated with T and C, and FXT

(t) and
FXC

(t) denote their distributions with means μT and μC and variances σ 2
T and σ 2

C

respectively.
Let δSRD = μT −μC

σC
denote the SRD measure and δSRD, o denote a fixed NI margin

for δSRD. The adjective “relative” is used to emphasize the fact that the measure is
defined relative to the control C. However, for simplicity, it may henceforth simply
be referred to as the scaled difference measure. Then, an NI hypothesis for the scaled
difference measure δSRD defined by the margin δSRD, o is given by Eq. 13.1.

HSRD, o : δSRD ≤ δSRD, o vs .HSRD,a : δSRD > δSRD, o. (13.1)

Now, if furthermore, the distribution FXT
and FXC

have finite third and fourth
central moments denoted, respectively, by μ

(3)
T and μ

(3)
C , and μ

(4)
T and μ

(4)
C , then Li

and Chi (2011) proved Theorem 1.
For simplicity, it suffices for the purpose of this chapter to assume that the variance

ratio σ 2 = σ 2
T

σ 2
C

is known and σ 2 = σ 2
o for some fixed number σ 2

o . In the general

setting where the variance ratio σ 2 = σ 2
T

σ 2
C

is not known, the forthcoming discussion

can be similarly developed with an appropriate adjustment to the asymptotic variance
given in Eq. 13.2 resulting in a correspondingly larger variance. This general case
will be discussed elsewhere.

Theorem 1 Assuming that the variance ratio σ 2 = σ 2
T

σ 2
C

is known and σ 2 = σ 2
o

for some fixed number σ 2
o . Then at the boundary of the inferiority null hypothesis

in Eq. 13.1, the test statistic defined by T̂SRD = √
n(δ̂SRD − δSRD, o ) converges

asymptotically to a normal distribution N (0,�2
SRD, o), where the asymptotic variance

�2
SRD, o is given by Eq. 13.2,

�2
SRD, o = (

1 + σ 2
o

) + δ2
SRD, o

16

[
μ

(4)
T − σ 4

T

σ 4
T

+ μ
(4)
C − σ 4

C

σ 4
C

]
− δSRD, o

2

[
μ

(3)
T

σCσ
2
T

+ μ
(3)
C

σ 3
C

]
.

(13.2)

The following two corollaries follow directly from Theorem 1.

Corollary 1 When XT ∼ N
(
μT , σ 2

T

)
and XC ∼ N

(
μC , σ 2

C

)
are normally dis-

tributed, then assuming that the variance ratio σ 2 = σ 2
T

σ 2
C

is known and σ 2 = σ 2
o

for some fixed number σ 2
o then at the boundary of the inferiority null hypothesis in

Eq. 13.1, the test statistic T̂SRD = √
n(δ̂SRD − δSRD, o ) converges asymptotically to
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a normal distribution N (0, �2
SRD, o) where the asymptotic variance �2

SRD, o is given
by Eq. 13.3,

�2
SRD, o = (

1 + σ 2
o

)+ δ2
SRD, o

4
. (13.3)

Proof The proof follows from Theorem 1 by noting that for normal distributions,
their third central moments are μ

(3)
T = 0 and μ

(3)
C = 0 and their fourth central

moments are μ
(4)
T = 3σ 4

T and μ
(4)
C = 3σ 4

C respectively. �
Corollary 2 When XT ∼ Bernoulli(pT ) and XC ∼ Bernoulli(pC) are Bernoulli

distributed, assuming that the variance ratio σ 2 = σ 2
T

σ 2
C

is known and σ 2 = σ 2
o

for some fixed number σ 2
o then at the boundary of the inferiority null hypothesis in

Eq. 13.1, the test statistic T̂SRD = √
n(δ̂SRD − δSRD, o) converges asymptotically to

a normal distribution N (0, �2
SRD, o) where the asymptotic variance �2

SRD, o is given
by Eq. 13.4,

�2
SRD, o = (

1 + σ 2
o

) [
1 + δ2

SRD, o

16σ 2
Cσ

2
o

]
+ δ2

SRD, o

2
. (13.4)

Proof The proof follows from Theorem 1 by noting that for the Bernoulli distribu-
tions, their third central moments μ

(3)
T = pT (1 − pT )(1 − 2pT ) and μ

(3)
C =pC(1 −

pC)(1−2pC), and their fourth central moments μ(4)
T = pT (1 − pT )(1 − 2pT )2 +σ 4

T

and μ
(4)
C = pC(1 − pC)(1 − 2pC)2 + σ 4

C , respectively. �
Now for obvious reason, under Bernoulli distributions, the scaled difference mea-

sure δSRD will be called the SRD measure. The importance of the SRD measure under
normal distributions or the SRD measure under the Bernoulli distributions is that by
definition, it accommodates for potential differences between the variance of the
treatment and the variance of the control through their variance ratio. Hence, it is the
natural parameter to consider if one cannot assume homogeneity of variance. This
property is captured in the asymptotic variance of their test statistics associated with
the fixed margin NI hypothesis in Eq. 13.1. In the next section, it will be shown how
this property can be transferred to the RD measure under the Bernoulli distributions,
which is a measure that is more commonly used in practice. Analogous derivation
can be done for all other binary effect measures as discussed in Chi and Koch (2012),
but will not be discussed here.

13.2.2 The Rate Difference Measure

The rate difference (RD) measure δRD = μT − μC under normal distributions has
been discussed in Chi (2012) within the context of the Behrens–Fisher problem under
the NI hypothesis. It will be further dealt with elsewhere in the context of design of
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bioequivalence study for highly variable drugs. For the purpose of this chapter, the
focus is on the RD measure δRD = pT − pC under the Bernoulli distributions.

Under the Bernoulli distributions, the relationship between the SRD measure δSRD

and the RD measure δRD is given by Eq. 13.5,

δRD = fRD(δSRD,pC) = σCδSRD = √
pC(1 − pC) δSRD. (13.5)

Let δSRD, o be a fixed NI margin for δSRD associated with a given control response
rate pC,o Then, Eq. 13.5 indicates that

δRD,o = √
pC,o(1 − pC,o) δSRD, o (13.6)

is the corresponding NI margin for the RD measure δRD at the same control response
rate pC,o.

Let the NI hypothesis for the RD measure δRD corresponding to the NI hypothesis
in Eq. 13.1 for the SRD measure δSRD be defined by

HRD,o : δRD ≤ δRD,o vs HRD,a : δRD > δRD,o. (13.7)

Then, using the test statistic T̂SRD = √
n(δ̂SRD − δSRD, o ) in Corollary 2 for the SRD

measure as the pivoting statistic, one can derive Theorem 2 for the RD measure δRD .

Theorem 2 When XT ∼ Bernoulli(pT ) and XC ∼ Bernoulli(pC) are Bernoulli

distributed, assuming that the variance ratio σ 2 = σ 2
T

σ 2
C

is known and σ 2 = σ 2
o

for some fixed number σ 2
o then at the boundary of the inferiority null hypothesis

in Eq. 13.7, the test statistic defined by T̂RD = √
n(δ̂RD − δRD,o ) asymptotically

converges to a normal distribution N (0, �2
RD,o), where the asymptotic variance

�2
RD,o is given by Eq. 13.8,

�2
RD,o =

[(
σ 2
C,o + σ 2

T ,o

) (
1 + δ2

RD,o

16σ 2
C,oσ

2
T ,o

)
+ δ2

RD,o

2

]
− [(

1 − 2pC,o
)
δRD,o

]
,

(13.8)

where σ 2
C,o = pC,o(1 − pC,o) and σ 2

T ,o = σ 2
C,oσ

2
o .

Proof The result follows from an application of the Taylor theorem to the function
δRD = fRD(σC , δSRD) given by Eq. 13.5 and the test statistic T̂SRD of Corollary 2,
and calculating the product term. �

It is of interest to point out that the asymptotic variance of T̂RD takes into consid-
eration the variance differences through the relationship between δRD and δSRD as
given by Eq. 13.7 to arrive at Theorem 2. Equation 13.8 shows that the asymptotic
variance adjusts for the rate of change of the variance function for the Bernoulli
distribution at pC,o, since (1 − 2pC,o) = d

dpC
pC(1 − pC)|pC=pC,o . This is impor-

tant because as discussed in Chi and Koch (2012), the variance of the Bernoulli
distribution decreases to 0 as response rate approaches 1 and the rate of change
in the variance function of Bernoulli distributions begins to accelerate when the
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response rate exceeds 0.7 and dramatically so as the response rate approaches 1
(or 0). As shown in Chi and Koch (2012), Theorem 2 for the test statistic T̂RD is
already an improvement over the corresponding classical Wald test for control re-
sponse rate in the range (0.5, 1). This improvement is quite substantial for control
response rate pC that approaches 1 due to the fact that the difference in the variance
at the boundary of the inferiority null has been taken into account in the test statistic
T̂RD . As just noted, this difference in variance at the boundary of the inferiority
null needs to be accounted for since the rate of change of the variance function
of the Bernoulli distribution changes dramatically as the control response rate pC

approaches 1. One can show that this improvement is a result of the fact that the

inequality

[(
σ 2
C,o + σ 2

T ,o

) δ2
RD,o

16σ 2
C,oσ

2
T ,o

+ δ2
RD,o
2

]
<
[(

1 − 2pC,o
)
δRD,o

]
holds for 0.5<

pC,o < 1 at the boundary of the inferiority null. In addition, within this range of
(0.5, 1), the performance of the test statistic T̂RD is comparable to the likelihood
ratio test as shown in Chi and Koch (2012).

Remark 1 It should be pointed out that similar results can be established for other
binary effect measures, including odds ratio, log odds ratio, relative risk and relative
risk reduction by utilizing the corresponding relationship between the SRD measure
δSRD, and each of these binary effect measures analogous to that given by Eq. 13.5

between δSRD and δRD . Details of these derivations may be found in Chi and Koch
(2012). They are outside the scope of this chapter and is not discussed further here.

In the above derivation thus far, the fixed margins δSRD, o or δRD,o are assumed to
have been given and are associated with a given assumed control response rate pC,o.
For example, δSRD, o or δRD,o could have been determined through the FDA’s two-step
fixed margin approach (US FDA 2010). But the fixed margins δSRD, o and δRD,o are
generally not given by an explicit margin function of the control response rate. The
desire to have such a function is apparent in the 1992 FDA Anti-Infective Guidance
(US FDA 1992), where it was suggested that a step function, as mentioned earlier,
linking the control response rate pC to the RD measure δRD should be used, albeit
it was retrospectively implemented. Since then, other continuous margin functions
have been proposed by various authors as discussed in Chi and Koch (2012). Can an
explicit margin function be derived between δRD and pC in a natural way that has
all the desired properties? The answer is yes, and it is shown in Sect. 13.3 that the
SRD measure δSRD again plays a critical role in establishing such an explicit margin
function through its relationship to the inferiority index and the control response rate.
Then, in Sect. 13.4, it is shown how to use the empirically derived fixed margin δRD,o

and control response rate pC,o to define a special margin functions for δRD with
an empirically based degree of stringency. This special margin function for δRD is
then used to integrate the given empirically derived fixed margin into a linear margin
called the hybrid margin.
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13.3 The Inferiority Index and Margin Function

The definition of an inferiority index between two distributions was defined in Li
and Chi (2011) as follows. Again consider an active control trial with a treatment
T , a control C, and a clinical outcome X of interest. Assume that the smaller the
value of X, the worse is the outcome. Let XT and XC denote outcomes on subjects
treated with T and C, and FXT

(t) and FXC
(t) denote their cumulative distributions,

respectively.

Definition The inferiority index of the distribution FXT
relative to the distribution

FXC
is the quantity

ρ = ρ(FXT
, FXC

) = Sup−∞<t<∞ [ FXT
(t) − FXC

(t)]. (13.9)

The inferiority index ρ(FXT
, FXC

) measures the one-sided maximum separation
between the distributions FXT

and FXC
and represents the excess proportion of

subjects under treatment T compared to that under treatment C that responded prior
to some point t∗ at which the maximum separation occurs. Since 0 ≤ ρ < 1 is
a probability, it can be viewed as an index measuring the degree of inferiority of
FXr

relative to FXC
. The inferiority index defined in Eq. 13.9 is simply the one-

sided distributional analogue of the Kolmogorov–Smirnov statistics. It reflects the
distributional differences resulting from various moment differences between the two
distributions. For other related distributional concepts, one may refer to the discussion
in Li and Chi (2011). An important and useful property of ρ(FXT

, FXC
) is that it is

invariant under parallel location and scale transformations, i.e., if a and b > 0 are

constants, then ρ
(
FXT −a

b

,FXC−a

b

)
= ρ(FXT

,FXC
).

13.3.1 The Standard Index and Margin Functions Under Normal
Distributions

First consider the inferiority index under normal distributions. Let XT ∼N (μT , σ 2
T )

and XC ∼N (μC , σ 2
C) be normally distributed with μT , μC and σ 2

T , σ 2
C denoting

the respective means and variances of their distributions FXT
and FXC

. Let X∗
T =

(XT − μC)/σC and X∗
C = (XC − μC)/σC denote the parallel location and scale

transformation of XT and XC relative to XC , respectively. Then, X∗
T ∼N (δSRD, σ 2)

and X∗
C ∼N (0,1), where δSRD = (μT −μC)/σC is the scaled difference measure and

σ 2 = σ 2
T /σ

2
C is their variance ratio. It then follows from the invariance property that

ρ = ρ(FXT
, FXC

) = ρ(FX∗
T

, FX∗
C

) = Sup−∞<t<∞ [&((t − δSRD)/σ ) − &(t)],
(13.10)

where & denotes the standard normal distribution. In light of Eq. 13.10, the
inferiority index between two normal distributions will be called the standard
inferiority index and denoted by ρS = ρ(FXT

, FXC
) for short. From Eq. 13.10, one
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can see that ρS is linked naturally to the scaled difference measure δSRD and the
variance ratio σ 2 by the function gS(δSRD, σ ) as defined by Eq. 13.11.

ρS = gS(δSRD, σ ) =
⎧⎨
⎩

[2&(−δSRD/2) − 1], −∞ < δSRD ≤ 0, if σ 2 = 1

&((t∗ − δSRD)/σ ) − &(t∗), −∞ < δSRD ≤ 0, if σ 2 �= 1
,

(13.11)

where t∗ = − δSRD σ−2 −
√

δ2
SRD σ−2 + (1−σ−2) logσ 2

(σ−2−1) denote the point at which the
supremum in Eq. 13.10 is attained. The function ρS = gS(δSRD, σ ) is called the
standard inferiority index function, or simply the standard index function for short.
For any value δSRD, o of the scaled difference measure δSRD and any value σ 2

o of
the variance ratio σ 2, the standard inferiority index function gS(δSRD, o, σo) assigns
an inferiority index value ρS,o indicating the degree of stringency of δSRD, o at the
given variance ratio σ 2

o .
Conversely, for a specified level of the standard inferiority index ρS = ρS,o, there

is a standard margin function δSRD(σ |ρS,o), which is defined by Eq. 13.12.

δSRD(σ |ρS,o) =
⎧⎨
⎩

−2&−1
(

ρs,o+1
2

)
< 0, for σ = 1, 0 ≤ ρS,o < 1

g−1
S (ρS,o, σ ), σ ε (σ1(ρS,o), σ2(ρS,o)) & σ �= 1, 0 ≤ ρS,o < 1

.

(13.12)

For a given inferiority index value of ρS,o, the interval (σ1(ρS,o), σ2(ρS,o)) in
Eq. 13.12 is determined by setting δSRD = 0 under the second alternative in Eq. 13.11
when σ 2 �= 1 as shown by Eq. 13.13.

ρs = &

(
tmax (0, σ (ρs))

σ

)
− &(tmax (0, σ (ρs))

= &( −√
(1 − σ−2)logσ 2/(1 − σ−2)σ ) − &( −√

(1 − σ−2)logσ 2/(1 − σ−2)).

(13.13)

In Eq. 13.12, when the variance ratio σ = 1, the margin function δSRD(σ |ρS,o) is

given by −2&−1
(

ρs,o+1
2

)
, which is derived from the first alternative in Eq. 13.11. For

variance ratio σ ε (σ1(ρS,o), σ2(ρS,o)) and σ �= 1, the inverse function g−1
S (ρS,o, σ )

is solved implicitly from the second alternative in Eq. 13.11.
For a specified value of the inferiority index ρS = ρS,o, the standard margin

function δSRD(σ |ρS,o) in Eq. 13.12 has the same degree of stringency given by ρS,o

throughout the interval (σ1(ρS,o), σ2(ρS,o)). Then, for any given variance ratio σ 2
o ,

the margin function defines a fixed margin δSRD, o = δSRD(σo|ρS,o) that can be used
to define a fixed margin NI hypothesis for δSRD as given in Eq. 13.14 with the degree
of stringency ρS,o.

HSRD, o : δSRD ≤ δSRD, o = δSRD(σo|ρS,o) vs.

HSRD,a : δSRD > δSRD, o(σ ) = δSRD(σo|ρS,o). (13.14)
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Therefore, if the fixed NI margin δSRD, o = δSRD(σo|ρS,o) happens to be derived from
the margin function defined by Eq. 13.12 at a specified standard inferiority index
level ρS,o and a given variance ratio σ 2

o , then Corollary 1 would be applicable and
the NI hypothesis in Eq. 13.14 may be rejected at the α = 0.025 level of significance
if the test statistic T̂SRD, o = √

n (̂δSRD − δSRD(pC,o|ρS, o) )/�SRD, o > 1.96.

13.3.2 The Standard Index and Margin Functions Under the
Bernoulli Distributions

Now let XT ∼ Bernoulli (pT ) and XC ∼ Bernoulli (pC) be two independent
Bernoulli random variables with distributions FXT

(t) = 1 − pT , at t = 0 and =
pT , at t = 1, and FXC

(t) = 1 − pC , at t = 0 and = pC , at t = 1. Assuming
pT < pC , then from the definition of the inferiority index given in Eq. 13.9, it fol-
lows that ρ(FXT

,FXC
) = [FXT

(0) − FXC
(0)] = −(pT − pC) = −δRD . Thus, based

on the definition given by Eq. 13.9, the inferiority index between two Bernoulli dis-
tributions is simply equal to the negative of the RD measure δRD and is not a function
of the variance ratio σ 2. What this implies is that the index ρ(FXT

,FXC
) = −δRD

cannot account for any potential difference in the variance between the treatment
and control. This is important because as discussed in Chi and Koch (2012), for
Bernoulli distributions, the slope of the variance function changes dramatically out-
side the range (0.3, 0.7) when the response rate moves towards 1 (or 0). This is the
precise reason why one needs to adjust the margin for the RD measure by σC if one
wants to be able to define a margin function that properly accounts for the anticipated
differences in the rate of change of σT and σC at the boundary of the inferiority null
hypothesis. This is especially relevant when the control response rate is outside the
range of (0.30, 0.70). This is consistent with the intuition that as the control response
rate pC moves closer to 1 (or 0), then the NI margin should become tighter and
tighter. Therefore, the inferiority index as defined in Eq. 13.9 would not be useful
under Bernoulli distributions and a different strategy is needed. The alternative strat-
egy is to use the standard index function ρS given in Eq. 13.11 under the normal
distributions for the Bernoulli distributions. This strategy is possible on account of
Theorem 3.

13.3.2.1 Linking the Standard Inferiority Index to the Scaled Rate Difference
Measure δSRD

Theorem 3: Let
{
XT ,i

}n
i=1 and

{
XC,i

}n
i=1 be two independent random Bernoulli

samples, where XT ,i ∼Bernoulli ( pT ) and XC,j ∼Bernoulli ( pC). Let p̂T =∑n
i=1 XT ,i/n and p̂C = ∑n

j=1 XC,j /n denote the sample means of XT and XC ,
respectively, and p̂∗

T ,n = √
n[(p̂T − pC)/σC] and p̂∗

C,n = √
n[(p̂C − pC)/σC]

denote their parallel location and scale transforms. Let ρn = ρ(Fp̂∗
T ,n

, Fp̂∗
C,n

) denote
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the inferiority index between the distributions of the two transformed statistics. Then,

lim
n→∞ ρ(Fp̂∗

T ,n
, Fp̂∗

C,n
) = ρS(&(δSRD, σ 2), &) (13.15)

where ρS(&(δSRD, σ 2), &) is the standard inferiority index between the cumu-
lative normal distribution &(δSRD, σ 2) and the standard normal distribution &,
where δSRD = (pT − pC)/σC with σC = √

pC(1 − pC) and σ 2 = σ 2
T /σ

2
C with

σT = √
pT (1 − pT ).

Proof: It follows from the central limit theorem that p̂T ∼N (pT , σ 2
T /n) and

p̂C ∼N (pC , σ 2
C/n), where σ 2

T = pT (1 − pT ) and σ 2
C = pC(1 − pC). Then, one has

p̂∗
T ,n = √

n[(p̂T −pC)/σC]∼N (δSRD, σ 2) and p̂∗
C,n = √

n[(p̂C−pC)/σC]∼N (0, 1),
where δSRD = (pT − pC)/σC and σ 2 = σ 2

T /σ
2
C . Then, Eq. 13.15 follows from

the definition of inferiority index, its invariance property under parallel location and
scale transformation and an application of the Berry–Esseen theorem (Berry 1941,
Esseen 1942) on the uniform convergence of the central limit theorem. Details are
omitted. �

Then, from Eqs. 13.11 and 13.15, one has

ρS = ρS(&(δSRD, σ 2), &) = gS(δSRD, σ ). (13.16)

Therefore, Theorem 3 and Eq. 13.16 show that the SRD measure δSRD = (pT −
pC)/σC and the variance ratio σ 2 = σ 2

T /σ
2
C under the Bernoulli distributions are

asymptotically linked to the standard inferiority index ρS by the standard index
function gS. Now, by substituting the functional relationship between pT , pC , and
δSRD as given by πT (pC , δSRD) in Eq. 13.17,

pT = πT (pC , δSRD) = pC + σCδSRD = pC +√
pC(1 − pC) δSRD, (13.17)

into the variance ratio σ 2 = pT (1 − pT )/pC(1 − pC) in Eq. 13.16, one derives the
index function g∗

SRD,

ρS = g∗
SRD (δSRD,pC)

= gS

(
δSRD,

√
πT (pC , δSRD) (1 − πT (pC , δSRD))

pC (1 − pC)

)
, for δSRD < 0 and 0 <pC < 1.

(13.18)

Equation 13.18 shows that the standard inferiority index ρS is now asymptotically
linked to SRD measure δSRD and the control response rate pC by the function g∗

SRD
which is defined through the composition of the standard index function gS and
the variance ratio as a function of δSRD and pC given by σ 2 = γ (δSRD, pC) =
πT (pC , δSRD)(1−πT (pC ,δSRD))

pC (1−pC ) , where πT is defined in Eq. 13.17. The key point here is

that the index function g∗
SRD has now incorporated the variance ratio σ 2 into its

relationship, even though it now appears to be only a function of δSRD and pC . This
index function g∗

SRD then allows one to use the standard inferiority index ρS as an
objective measure for assessing the degree of stringency for any value of the SRD
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measure δSRD = δSRD, o at any control response rate pC = pC,o. Conversely, upon
setting the standard inferiority index ρS at a specific level ρS,o in its inverse function
g*−1

SRD, which is derived from the inverse function g−1
S through Eq. 13.18, one derives

a margin function δSRD (pC |ρS, o) for the SRD measure δSRD as given by Eq. 13.19,

δSRD (pC |ρS, o) = g*−1
SRD(ρS, o,pC). (13.19)

This specific indexed margin function corresponds to a level curve of the surface of
the index function g∗

SRD given in Eq. 13.18 by setting the index level ρS = ρS, o.
Thus, in a given application, if the control response rate pC is thought to be equal to
pC,o, then Eq. 13.20

δSRD, o = δSRD(pC,o|ρS, o) = g∗−1
SRD(ρS, o,pC,o) (13.20)

defines a fixed margin at the control response rate pC,o with the degree of stringency
ρS, o. With this fixed margin δSRD, o, the NI hypothesis for δSRD can then be stated as

HSRD, o : δSRD ≤ δSRD, o = δSRD(pC,o|ρS, o) vs.

HSRD,a : δSRD > δSRD, o = δSRD(pC,o|ρS, o) (13.21)

and Corollary 2 would be applicable. It shows that the test statistic T̂SRD, o at the
boundary of the inferiority null of Eq. 13.21 for the SRD measure δSRD converges
asymptotically to a normal distribution. The inferiority null hypothesis in Eq. 13.21
may be rejected at the α = 0.025 significance level if the test statistic T̂SRD, o =√
n (̂δSRD − δSRD(pC,o|ρS, o) )/�SRD, o > 1.96.

13.3.2.2 Linking the Standard Inferiority Index to the Rate Difference
Measure δRD

The relationship between δSRD and δRD is given by δSRD = fRD(δRD ,pC) = δRD/σC .
Upon substituting this relationship into Eq. 13.18, one obtains the index function g∗

RD

given in Eq. 13.22,

ρS = g∗
RD(δRD , pC) = g∗

SRD(fRD(δRD ,pC), pC) , for 0 < pC < 1, (13.22)

which links the standard inferiority index ρS to δRD and pC . From Eq. 13.22, one can
derive the margin function given by Eq. 13.23 that links ρS and pC to δRD given by

δRD = g∗−1
RD (ρS ,pC), for 0 < ρS < 1 and 0 < pC < 1. (13.23)

Analogous to the case for the SRD measure δSRD, one can use the index function
g∗
RD defined by Eq. 13.22 to assess the degree of stringency of any value of the RD

measure δRD = δRD,o at any given control response rate pC = pC,o. Similarly, by
setting the standard index ρS = ρS,o in Eq. 13.23, one can define a specific indexed
margin function for δRD given by Eq. 13.24

δRD(pC |ρS,o) = g∗−1
RD (ρS , o,pC), for 0 < pC < 1 (13.24)
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Fig. 13.1 Margin functions δRD(pC |ρS ) for inferiority index ρS = 0.10, 0.105, and 0.125. RD rate
difference

with a degree of stringency given by ρS,o. Now, for a given pC = pC,o, the indexed
margin function Eq. 13.24 defines a fixed margin δRD,o = δRD(pC,o|ρS,o) =
g∗−1
RD (ρS,o, pC,o) for the RD measure δRD . Note that the fixed margin δRD,o has

now been adjusted for σC via δSRD through fRD in Eq. 13.22. One can then use
this fixed margin δRD,o to define a NI hypothesis relative to δRD with the degree of
stringency ρS, o as given by Eq. 13.25,

HRD, o : δRD ≤ δRD,o = δRD(pC,o|ρS,o) vs.

HRD,a : δRD > δRD,o = δRD(pC,o|ρS,o). (13.25)

Theorem 2 shows that the test statistic T̂RD,o at the boundary of the inferiority null of
Eq. 13.25 for the RD measure δRD converges asymptotically to a normal distribution.
The inferiority null hypothesis in Eq. 13.25 may be rejected at the α = 0.025 signifi-
cance level if the test statistic T̂RD,o = √

n (̂δRD − δRD(pC,o|ρS, o) )/�RD,o > 1.96.
It is of interest to note that the inverse function defined by Eq. 13.23 defines a

family of margin functions given by Eq. 13.26

{δRD(pC |ρS) = g∗−1
RD (ρS , pC), for 0 < ρS < 1 and 0 < pC < 1} (13.26)

as illustrated in Fig. 13.1.
By setting the standard index ρS equal to a specific value ρS,o, then δRD(pC |ρS,o)

defines an indexed margin function with a stringency level of ρS,o for δRD as a
function of the control response rate pC . This entire margin function δRD(pC |ρS,o)
will have the same degree of stringency ρS,o at every control response rate pC ,
for 0 < pC < 1. Furthermore, at the given index level ρS, o, the margin func-
tion δSRD (pC |ρS, o) defined by Eq. 13.19 and the margin function δRD (pC |ρS, o)
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defined by Eq. 13.24 are equally stringent with the same degree of stringency ρS,o.
At a given control response rate pC,o, these margin functions define equally strin-
gent NI hypotheses as given by Eqs. 13.21 and 13.25. However, the performance of
the test statistics T̂SRD, oand T̂RD,ofor their respective NI hypotheses, Eqs. 13.21 and
13.25, may differ. Similar derivations can be done for other binary effect measures
by using their corresponding functional relationship with the SRD measure δSRD or
the RD measure δRD to arrive at equally stringent margin functions for these binary
effect measures. These equally stringent margin functions can then be used to define
equally stringent NI hypotheses. The relative performance of the test statistics for
these equally stringent NI hypotheses can then be investigated. One may refer to
Chi and Koch (2012) for a discussion of such an investigation comparing the RD
measure and the log odds ratio measure.

13.4 A Hybrid Design for the Rate Difference Measure

It has been shown in Sect. 13.2 how to improve the efficiency of the test statistic for
testing the fixed margin NI hypothesis in Eq. 13.7 by incorporating the information on
the variance ratio at the boundary of the inferiority null of Eq. 13.7 into its asymptotic
variance. In Sect. 13.3, an index function g*

RD has been derived in Eq. 13.22 that
links the RD measure δRD and control response rate pC to the standard inferiority
index ρS . Furthermore, its inverse function g*−1

RD in Eq. 13.23 links the standard
inferiority index ρS and control response rate pC to the RD measure δRD so that by
setting the standard inferiority index ρS at a specified level ρS,o, the inverse function
then defines a margin function δRD(pC |ρS,o) given by Eq. 13.24 which has the degree
of stringency ρS,o.

In this section, these results are combined to produce a hybrid design for NI trials
with binary outcomes intended to address the question of how to set a margin and
what margin to use in the event the true control response rate appears to deviate from
the assumed control response rate.

13.4.1 An Empirically Based Margin Function for the Rate
Difference Measure

How to set the NI margin is a problem that has been around for quite a while. The
FDA’s proposed two-step empirically based fixed margin approach is really a very
good approach. However, it needs to be supplemented by an objective measure of
the degree of stringency of the empirically derived fixed margin, and in addition, the
fixed margin design needs to be modified to be able to accommodate variability in the
margin in the event the true control response rate actually deviates from the assumed
rate. It is the purpose of this section to show how the index function g∗

RD defined by
Eq. 13.22 and the margin function g∗−1

RD defined by Eq. 13.23 can be used in tandem
to address both issues in a hybrid design that preserves the empirical nature of FDA’s
fixed margin approach.
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Now consider the problem of designing an NI trial with binary outcomes using
the RD measure δRD . Assume that relevant historical studies involving the active
control and placebo are available. Using the FDA’s two-step fixed margin approach
described above, one can derive an estimate pC,o for the control response rate pC

and a conservative estimate of the CE. Furthermore, with input from clinical experts,
an NI margin δRD,o is derived which represents the maximum amount of loss of the
CE that can be tolerated.

Then, from the pair of empirically based estimates (δRD,o,pC,o), one can derive
the degree of stringency of the margin δRD,o at pC,o from the index function g∗

RD

defined by Eq. 13.22, which is given by

ρS,o = g∗
RD(δRD,o,pC,o). (13.27)

Now, the index ρS,o given by Eq. 13.27 is empirically based because it is derived
from the empirically based estimates (δRD,o,pC,o) through the index function g∗

RD

as defined by Eq. 13.27.
Using this empirically based index ρS,o, one can define an empirically based

margin function through the inverse function g∗−1
RD given by Eq. 13.24, or Eq. 13.28,

δRD(pC |ρS,o) = g∗−1
RD (ρS,o,pC), for 0 < pC < 1. (13.28)

It is obvious that when this margin function is evaluated at the estimate pC,o, it should
yield the empirically based margin δRD,o, i.e., one has

δRD(pC,o|ρS,o) = δRD,o. (13.29)

Thus, from the empirically based pair of estimates (δRD,o,pC,o), one is able to derive
the corresponding empirically based standard inferiority index ρS,o through the index
function g∗

RD as given by Eq. 13.27. Then, using empirically based index ρS,o, one
can define an empirically based margin function δRD(pC |ρS,o) given by Eq. 13.28 that
has the degree of stringency given by ρS,o. Thus, out of the family of possible margin
functions defined by Eq. 13.26, one identifies a special indexed margin function
δRD(pC |ρS,o) that is based on the empirically based pair of estimates (δRD,o,pC,o).

Hence, it has now been shown that from the empirically based pair of estimates
δRD(pC |ρS,o), one can derive its implicit degree of stringency ρS,o through the index
function g∗

RD(δRD ,pC) given by Eq. 13.22. In actual practice, based on the degree
of stringency ρS,o, one may opt to further tighten or relax the empirically derived
fixed margin δRD,o as deemed appropriate. Now assume that such adjustment has
been done if needed. Then, one can simply define the NI hypothesis in Eq. 13.25
using this empirically based margin δRD,o and test the inferiority null hypothesis
using Theorem 2. This approach without the link to the standard index function ρS is
essentially what has routinely been done. But as noted earlier, the FDAAnti-Infective
Division has posed the question as to what margin to use in the event the control
response rate from the current NI trial appears to deviate from the estimated control
response rate pC,o? Obviously, by simply defining an NI hypothesis (Eq. 13.25)
based on an empirically derived fixed margin, one will not be able to address this
question. So, further work is needed and is discussed in the next section.
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13.4.2 A Hybrid Design with a Linear Margin

Now consider the NI hypothesis in Eq. 13.30

HRD,o : δRD ≤ δRD(pC |ρS,o) vs HRD,a : δRD > δRD(pC |ρS,o), 0 < pC < 1.
(13.30)

Unlike the NI hypotheses in Eq. 13.25, the NI hypothesis in Eq. 13.30 is actually
defined by a margin function, and not by a fixed margin. But it is not just any margin
function. It is a natural and empirically derived margin function with the empirically
determined degree of stringency ρS,o. In Zhang (2006), the author starts off with
a given margin function and develops his method for a general variable margin.
In Sect. 13.4.1, a natural and special indexed margin function is derived with the
empirically determined degree of stringency. In this section, this empirically based
margin function will be used to integrate the fixed margin into a linear margin for
the hybrid design to be proposed.

Figure 13.1 displays the graphs of margin function δRD(pC |ρS) at three selected
degrees of stringency. From these graphs, one can see that the power for testing
the NI hypothesis in Eq. 13.30 will be low if the true control response rate pC is
considerably larger (or smaller) than the empirically based estimate pC,o because the
margin is getting tighter as pC approaches 1 (or 0).

Since the index function g∗
RD is continuously differentiable, it follows from the

implicit function theorem that the margin function δRD(pC |ρS,o) given by Eq. 13.28
is continuously differentiable and its derivative is given by

∂δRD(pC |ρS,o)

∂pC

= ∂g∗−1
RD (ρS,o,pC)

∂pC

= −
∂g∗

RD

∂pC

∂g∗
RD

∂δRD

. (13.31)

Now consider the first-order Taylor approximation of the margin function
∂δRD(pC |ρS,o) expanded around the point pC,o given in Eq. 13.32 as illustrated by
Fig. 13.2:

L(pC |ρS,o,pC,o) = g∗−1
RD (ρS,o,pC)|pC=pC,o + ∂g∗−1

RD (ρS,o,pC)

∂pC

|pC=pC,o (pC − pC,o)

= δRD(pC,o|ρS,o) + ∂g∗−1
RD (ρS,o,pC,o)

∂pC

(pC − pC,o) = δRD,o

+ ∂g∗−1
RD (ρS,o,pC,o)

∂pC

(pC − pC,o). (13.32)

The expression in the linear approximation L(pC |ρS,o,pC,o) in Eq. 13.32 is equal

to the fixed margin δRD,o plus the linear term
∂g∗−1

RD (ρS,o ,pC,o)
∂pC

(pC − pC,o). If the
true control response rate pC from the NI trial turns out to be equal to pC,o,
then L(pC,o|ρS,o,pC,o) = δRD,o. But if pC deviates from pC,o, then the margin
is equal to the given fixed margin L(pC |ρS,o,pC,o) = δRD,o plus the deviation term
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Fig. 13.2 First-order Taylor approximation to the margin function δRD(pC |ρS,o = 0.10) at pC,o =
0.80. RD rate difference

∂g∗−1
RD (ρS,o ,pC,o)

∂pC
(pC − pC,o), which represents a first-order adjustment to the margin

δRD,o for the deviation.
The linear margin L(pC |ρS,o,pC,o) is called a hybrid margin because it explicitly

integrates the given empirically derived pair (δRD,o,pC,o) based on FDA’s two-step

fixed margin approach with a variable term
∂g∗−1

RD (ρS,o ,pC,o)
∂pC

(pC −pC,o) that can accom-
modate the possibility that the true control response rate pC may deviate somewhat
from the best empirically based estimate of the control response rate pC,o.

Now a natural question to ask is how stringent is the linear margin
L(pC |ρS,o,pC,o)? The empirically based margin function δRD(pC |ρS,o) has the strin-
gency ρS,o, so the linear margin function L(pC |ρS,o,pC,o) cannot be at this same
stringency level except at pC = pC,o. But the important point to note is that this
linear margin has approximately the same degree of stringency ρS,o as the mar-
gin function δRD(pC |ρS,o) in a certain interval around pC,o. For example, with
(δRD,o,pC,o) = (−0.10, 0.80), this interval is approximately (0.75, 0.90) as shown in
Table 13.1.

Therefore, now one may consider the following hybrid NI hypothesis as approx-
imately equivalent to the NI hypothesis in Eq. 13.30 within a certain interval of pC :

HRD,o : δRD ≤ L(pC |ρS,o,pC,o) vs

HRD,a : δRD > L(pC |ρS,o,pC,o),po,L < pC < po,R. (13.33)
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Table 13.1 Comparing the
margin functions
δRD(pC |ρS,o) and L(pC |ρS,o,pC,o)
with Taylor expansion at
pC,o = 0.80

True control Margin function

Response ate pC δRD(pC |ρS,o) L(pC |ρS,o,pC,o)

0.50 − 0.1228 − 0.1859

0.55 − 0.1246 − 0.1706

0.60 − 0.1239 − 0.1553

0.65 − 0.1207 − 0.1399

0.70 − 0.1146 − 0.1246

0.75 − 0.1058 − 0.1093

0.80 − 0.0939 − 0.0939

0.85 − 0.0789 − 0.0767

0.90 − 0.0601 − 0.0614

0.95 − 0.0360 − 0.0460

The hybrid NI hypothesis (Eq. 13.32) can be equivalently written as the NI
hypothesis in Eq. 13.33,

HRD,o : δRD − L(pC |ρS,o,pC,o) ≤ 0 vs

HRD,a : δRD − L(pC |ρS,o,pC,o) > 0,po,L < pC < po,R. (13.34)

13.4.3 The Test Statistic for the Hybrid Design NI Hypothesis

Now consider a binary outcome trial and let
{
XT ,i

}n
i=1 and

{
XC,i

}n
i=1 be two in-

dependent random Bernoulli samples, where XT ,i ∼ Bernoulli(pT ) and XC,j ∼
Bernoulli(pC). Let p̂T = ∑n

i=1 XT ,i/n and p̂C = ∑n
j=1 XC,j /n denote the sample

means of XT and XC , respectively.
Consider the statistic

'̂RD = [δ̂RD − L(p̂C |ρS,o,pC,o)]. (13.35)

Then,

E('̂RD) = E[δ̂RD − L(p̂C |ρS,o,pC,o)] = δRD − L(pC |ρS,o,pC,o).

Let

'̂RD,o = ['̂RD − E('̂RD|Ho)]. (13.36)

The asymptotic normality of the test statistic '̂RD,o at the inferiority null of the
hybrid NI hypothesis (Eq. 13.33 or Eq. 13.34) is established in Theorem 4.
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Theorem 4 The statistic
√
n'̂RD,o is asymptotically normal N (o,

∑
(pC |Ho)) at

the boundary of the inferiority null of Eq. 13.33 or Eq. 13.34, where
∑

2(pC |Ho) =
∑

2
RD,o(pC |Ho)

+
⎡
⎣2

(
∂g∗−1

RD (ρS,o,pC,o)

∂pC

)
+
(
∂g∗−1

RD (ρS,o,pC,o)

∂pC

)2
⎤
⎦pC(1 − pC),

(13.37)

and

�2
RD,o

(
pC,o|Ho

) =
[(
σ 2
C,o + σ 2

T ,o

) (
1 + δ2

RD,o

16σ 2
C,oσ

2
T ,o

)
+ δ2

RD,o

2

]
− [(1 − 2pC,o

)
δRD,o

]

is the variance of the statistic under the fixed margin NI hypothesis (Eq. 13.25) with

the fixed margin δRD,o = δRD(pC,o|ρS,o), σ 2
o = σ 2

T ,o

σ 2
C,o

, where σ 2
C,o = pC,o(1 − pC,o),

σ 2
T ,o = pT ,o(1 − pT ,o), and pT ,o = pC,o + δRD,o.

Proof The proof follows from the central limit theorem and a derivation of the
asymptotic variance of
√
nΔ̂RD,o = √

n
[̂
δRD − δRD

(
pC,o|ρS,o

)]

−
[
∂g∗−1

RD (ρS,o,pC,o)

∂pC

(p̂C − pC) + ∂g∗−1
RD

(
ρS,o,pC,o

)

∂pC

(
pC − pC,o

)]

by applying Eq. 13.8 of Theorem 2. �
Hence, the hybrid test statistic,

T̂ HB
RD,o =

√
n '̂RD, o√
�(pC |Ho)

∼N (0,1), (13.38)

where the unknown true pC may be substituted by the sample proportion p̂C . The
hybrid inferiority hypothesis in Eq. 13.33 or Eq. 13.34 may be rejected at the α =
0.025 significance level if T̂ HB

RD,o = √
n

[̂δRD−L(p̂C |ρS,o ,pC,o)]
�(p̂C |Ho) > 1.96.

13.4.4 The Performance of the Hybrid Test Statistic T̂ HB
RD,o

It should be pointed out that the focus of the hybrid NI design is still on the fixed
margin δo = δRD(pC,o|ρS,o) at the assumed control response rate pC = pC,o, even
though one has added the flexibility in the event the true control response rate pC

may deviate somewhat from pC,o. Therefore, it would be of interest to investigate
the performance of the test T̂ HB

RD,o at pC,o.
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Fig. 13.3 Simulated overall type I error rate for hybrid design with the linear margin
L(pC |ρS,o,pC,o), where ρS,o = 0.10, Pc,o = 0.80, and α = 0.025

13.4.4.1 Simulation of the Type I Error Rate

The type I error rate of T̂ HB
RD,o is given by

α(pC) = 1 − &

( √
n'̂RD,o√

� (pC |Ho)

)
. (13.39)

Figure 13.3 displays the simulated type I error rate as a function of the true control
response rate pC . It shows that at the one-sided nominal significance level of 0.025,
the type I error rate will be somewhat inflated when the true control response rate
pC ≤ pC,o. This should be expected because the true pC is unknown and is being
estimated by p̂C . Furthermore, for pC < pC,o, the margin becomes more liberal,
whereas for pC > pC,o, the margin becomes tighter. Therefore, by using a piecewise
linear margin as discussed in Remark 3 should improve the type I error control
substantially for pC < pC,o.

In light of the type I error rate inflation when pC = pC,o, one may wish to control
this by lowering the significance level α. Table 13.2 and Fig. 13.4 show that if the
overall significance level is lowered to approximately α = 0.020, then the simulated
type I error rate when pC = pC,o is roughly controlled at 0.025.

However, instead of lowering the significance levelα = 0.025 to 0.020, it might be
more preferable to consider replacing the linear margin L(pC |ρS,o,pC,o) by a piece-
wise linear margin constructed by joining together two or more (if necessary) linear
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Table 13.2 Simulated
unadjusted and adjusted type
I error rates for hybrid design
with Taylor expansion at the
point pC,o = 0.80

True control Significance level

Response rate pC 0.025 0.020

0.50 0.0448 0.0398

0.55 0.0473 0.0383

0.60 0.0472 0.0415

0.65 0.0436 0.0370

0.70 0.0378 0.0376

0.75 0.0358 0.0302

0.80 0.0298 0.0248

0.85 0.0217 0.0167

0.90 0.0096 0.0082

0.95 0.0020 0.0011

margins L(pC |ρS,o,pC,o,1) and L(pC |ρS,o,pC,o,2) at their point of intersection. For ex-
ample, by piecing together L(pC |ρS,o,pC,o,1) with pC,o,1 = 0.65 and L(pC |ρS,o,pC,o)
with pC,o = 0.80 would improve substantially the approximation by the linear mar-
gin L(pC |ρS,o,pC,o) alone as illustrated in Fig. 13.5. This would further improve the
type I error control for pC < pC,o.

Fig. 13.4 Simulated overall type I error rate for hybrid design with the linear margin
L(pC |ρS,o,pC,o), where ρS,o = 0.10, Pc,o = 0.80, and α = 0.020
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Fig. 13.5 Constructing piecewise linear margin for hybrid design with linear margin
L(pC |ρS,o,pC,o) expanded around pC,o = 0.65 and 0.80. RD rate difference

13.4.4.2 Power Function

To derive the power function for the test statistic T̂RD,o, one notes that under the
specific alternative hypothesis Hsa : δRD(pC) ≡ 0, it follows from Eq. 13.35 that

E('̂RD|Hsa) = E [̂δRD − L(p̂C |ρS,o,pC,o)|Hsa] = −L(pC |ρS,o,pC,o). (13.40)

Now, let

'̂RD,a = '̂RD − E
(
'̂RD|Hsa

) = '̂RD + L
(
pC |ρS,o,pC,o

)

=
[
δ̂RD − ∂g∗−1

RD (ρS,o,pC,o)

∂pC

(p̂C − pC)

]
. (13.41)

Then, it follows that under the specific alternative Hsa: δRD(pC) ≡ 0,√
n '̂RD,a ∼N (0,�(pC |Hsa)), where the asymptotic variance�(pC |Hsa) is given by

�(pC |Hsa) =
⎡
⎣2 + 2

(
∂g∗−1

RD (ρS,o,pC,o)

∂pC

)
+
(
∂g∗−1

RD (ρS,o,pC,o)

∂pC

)2
⎤
⎦pC(1 − pC).

(13.42)
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Fig. 13.6 Power functions for hybrid design with linear margin L(pC |ρS,o,pC,o) at expansion points
pC,o = 0.75, 0.80, 0.85, and 0.90 and n = 386, α = 0.025

Thus,

T̂ HB
RD,sa =

√
n '̂RD, a√

�(pC |Hsa)
∼N (0,1). (13.43)

Now, from Eqs. 13.32 and 13.41, one has

T̂ HB
RD,o = T̂ HB

RD,sa

√
�(pC |Hsa)√
�(pC |Ho)

−
√
n[L(pC |ρS,o,pC,o)]√

�(pC |Ho)
. (13.44)

Therefore, it follows that the power function is given by,

1 − β = 1 − &

(
1.96

√
� (pC |Ho) + √

nL(pC |ρS,o,pC,o)√
� (pC |Hsa)

)
. (13.45)

Now for the power function plot in Fig. 13.6, n = 386 was selected because it corre-
sponds to an 80 % power for the hybrid design with a linear margin L(pC |ρS,o,pC,o),
where ρS,o = 0.10 and pC,o = 0.80. Similarly, for Fig. 13.7, n = 516 corresponds
to a 90 % power for the hybrid design with a linear margin L(pC |ρS,o,pC,o), where
ρS,o = 0.10 and pC,o = 0.80. Both power plots in Figs. 13.6 and 13.7 show that the
power drops off quickly when pC > pC,o due to the dramatic change in variance
as pC → 1. The deflation in type I error rate for pC > pC,o might be a desirable
feature since it raises a natural barrier to prevent ejection of the inferiority null of
Eq. 13.33 or 13.34 when the true control response rate pC is much greater than the
assumed control response rate pC,o.

The powers for selected true control response rate pC in the plots in Figs. 13.6
and 13.7 are given in Table 13.3.
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Fig. 13.7 Power functions for hybrid design with linear margin L(pC |ρS,o,pC,o) at expansion points
pC,o = 0.75, 0.80, 0.85, and 0.90 and n = 516, α = 0.025

Table 13.3 Pointwise power across pC at a significance level of α = 0.025 and different expansion
point pC,o

Expansion point pC,o

Sample size for hybrid design pC pC 0.75 0.80 0.85 0.90

375 0.70 0.895 0.917 0.946 0.975

(80 % Power for pC,o = 0.80) 0.75 0.855 0.869 0.902 0.943

0.80 0.803 0.803 0.832 0.883

0.85 0.738 0.712 0.725 0.779

0.90 0.651 0.581 0.564 0.604

0.95 0.515 0.369 0.305 0.312

500 0.70 0.959 0.969 0.983 0.994

(90 % Power for pC,o = 0.80) 0.75 0.936 0.943 0.961 0.981

0.80 0.905 0.901 0.918 0.949

0.85 0.863 0.836 0.840 0.877

0.90 0.807 0.733 0.703 0.729

0.95 0.726 0.549 0.446 0.428
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Fig. 13.8 Plots of sample size per group at α = 0.025 and 80 % power for hybrid design with linear
margin L(pC |ρS,o,pC,o) at ρS,o = 0.10 and expansion points pC,o = 0.75, 0.80, 0.85, and 0.90

13.4.4.3 Sample Size Calculation

From Eq. 13.44, the sample size formula is derived by setting

−z1−β = 1.96
√
�(pC |Ho) + √

n L(pC |ρS,o,pC,o)√
�(pC |Hsa)

.

Solving for n, one obtains,

n = (1.96
√
�(pC |Ho) + z1−β

√
�(pC |Hsa))

2

L2(pC |ρS,o,pC,o)
. (13.46)

Figures 13.8 and 13.9 display the sample size plots for the hybrid design with linear
margin L(pC |ρS,o,pC,o) at the expansion points pC,o = 0.75, 0.80, 0.85, and 0.90
(Table 13.4).

As discussed in Sect. 13.4.3.1, if one also wishes to control the type I error rate
at pC = pC,o at α = 0.025, then one needs to increase the sample size accordingly.
Table 13.5 shows the sample size needed for such adjustment.

13.4.5 An Application to the Design of HABP/VABP Trials

The FDAAnti-infectiveAdvisory Committee convened in November 2011 to discuss
issues related to the design of NI trials for HABP and VABP [US FDA (2011)]. In



228 G. Y. H. Chi

Fig. 13.9 Plots of sample size per group at α = 0.025 and 90 % power for hybrid design with linear
margin L(pC |ρS,o,pC,o) at ρS,o = 0.10 and expansion points pC,o = 0.75, 0.80, 0.85, and 0.90

Table 13.4 Selected sample
size per group at α = 0.025
for hybrid design with linear
margin L(pC |ρS,o,pC,o) at
ρS,o = 0.10 and expansion
points pC,o = 0.75, 0.80, 0.85,
and 0.90

Power

Taylor expansion pointPC,o 80 % 90 %

0.75 323 435

0.80 386 516

0.85 450 605

0.90 593 798

Table 13.5 Unadjusted and
adjusted sample size per
group for hybrid design with
Taylor expansion at the point
pC,o = 0.80

Significance level

Power 0.025 0.020

0.80 386 400

0.90 516 529

the briefing book provided to the Committee members, FDA presented the following
data based on two historical placebo-controlled studies and five recent active control
studies (Table 13.6).

The estimated control survival rate is equal to 80 %. An estimate of the CE is given
by CE = [(0.52 − 0.23) − 0.09] = 0.20, which is obtained by taking the difference
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Table 13.6 Estimated
mortality rates and 95 %
confidence intervals

Mortality rate 95 % CI

Placebo 62 % (52 %, 71 %)

Control 20 % (18 %, 23 %)

Table 13.7 Sample size
calculated by FDA for the
rate difference measure δRD

Power HABP VABP

80 % 834 714

90 % 1114 894

HABP hospital-acquired bacterial pneumonia,
VABP ventilation-associated bacterial pneumonia

between a conservative estimate of the mortality rate under placebo (52 %) and a
conservative estimate of the mortality rate under control (23 %) and then subtract 9 %
to account for factors that may impact on the underlying assumptions of constancy
and assay sensitivity. The proposed NI margin was then set at δRD, o = −CE × 1

2 =
−0.20 × 1

2 = −0.10, where the fraction of one half is based on clinical judgment
regarding the size of the margin. FDA posed to the Committee several questions,
including the following: What margin should one use in the event the control survival
rate from the NI trial appears to deviate from the estimated control survival rate of
80 %?

For the RD measure δRD , FDA calculated the sample sizes required for 80
and 90 % power at a significance level of 0.025 after an adjustment of 60 %/70 %
microbiologic evaluability rate for HABP/VABP trials, respectively, as given in
Table 13.7.

Thus, with the given fixed margin of δRD,o = − 0.10 at an estimated survival
rate of pC,o = 0.80 (equivalent to a 20 % mortality rate), the degree of stringency
for the empirically derived pair (δRD,o, pC,o) = (− 0.10, 0.80) can be assessed using
the standard index function in Eq. 13.22 and is equal to ρS,o = g∗

RD(δRD,o,pC,o) =
g∗
RD(−0.10, 0.80) = 0.1057. Now, for simplicity of discussion, consider rounding it

to an index level of ρS,o = 0.10 instead of the actual index level of 0.1057, since type
I error simulations, power plots, and sample size calculations presented previously
used the index level of 0.10. This is equivalent to considering a margin of δRD,o =
− 0.0939 instead of the margin of δRD,o = − 0.10, at pC,o = 0.80. Now upon setting
the inferiority index level to ρS,o = 0.10 in the margin function given by Eq. 13.24,
one obtains the special indexed margin function δRD(pC |0.10) = g∗−1

RD (0.10, pC)
with the degree of stringency specified by ρS,o = 0.10. After applying the Taylor ex-
pansion around the point pC,o = 0.80, one finds the linear margin function is equal to

L(pC |ρS,o, pC,o) = L(pC |0.10, 0.80) = δRD(pC |0.10)

+ ∂g∗−1
RD

∂pC

(0.10, 0.80)(pC − 0.80)

= −0.0939 + 0.3066 (pC − 0.80).
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The hybrid NI hypothesis is then defined by

Ho : δRD − [−0.0939 + 0.3066 (pC − 0.80)] ≤ 0

vs.

Ha : δRD − [−0.0939 + 0.3066 (pC − 0.80)] > 0. (13.47)

Based on the hybrid design that has just been discussed in Sect. 13.4, to test the hybrid
NI hypothesis (Eq. 13.47) at the expansion point pC,o = 0.80 with a significance
level of α = 0.025 and a power of 80 %, a sample size of n = 386 subjects per
group would be needed (see Table 13.3, Table 13.4 or Table 13.5). Now the sample
size per group needed for an HABP/VABP trial is given by 643/551, reflecting an
adjustment for a 60 %/70 % microbiologic evaluability rate, or for a total sample size
of 1286/1102. On the other hand, for the fixed margin NI hypothesis, the sample size
per group is n = 283. After adjusting for 60 %/70 % microbiologic evaluability rate,
this gives rise to a sample size per group of 472/404 or a total sample size of 944/809
for HABP/VABP trials (see Chi and Koch 2012), reflecting a 36.2 %/36.4 % increase.

Thus, one can see that at a significance level of α = 0.025 and a power of 80 %,
the flexibility realized in a hybrid NI design with a linear margin L(pC |ρS,o, pC,o)
derived at the empirically based inferiority index value of ρS,o = 0.10 and the ex-
pansion point pC,o = 0.80, which is the estimated control response rate, is gained at
the cost of about a 36 % increase in the size over that required for a corresponding
fixed margin NI design.

Now the hybrid design with its NI hypothesis given by Eq. 13.33 or 13.34 has
a linear margin L(pC |ρS,o,pC,o) that allows the true control response rate pC to
deviate somewhat from the assumed control response rate of 0.80 at the design
stage. If the true control response rate pC > 0.80, then from the type I er-
ror simulations, one knows that the probability of rejecting the null of Eq. 13.33
or Eq. 13.34 is low and very low when pC > 0.90. However, with the given
sample size, the test still has about 60 % power in rejecting the margin given by
L(0.90|0.10, 0.80) = −0.0614 at pC = 0.90, which is very comparable to the mar-
gin δRD(0.90|ρS,o) = g∗−1

RD (0.10, 0.90) = −0.0601 based on the margin function
in Eq. 13.24 as shown in Table 13.1. The power of the test also decreases rapidly
as pC moves away from 0.80 towards 1. However, if the true pC < 0.80, then
there is inflation in the type I error rate despite the adjustment. Without adjustment
by lowering the nominal significance level from α = 0.025, one may consider
a better alternative discussed earlier by constructing a piecewise linear margin by
joining another linear margin L(pC |ρS,o,pC,1) derived from first-order Taylor ex-
pansion of the same indexed margin function δRD(pC |ρS,o) at another point pC,1,
where 0.50 < pC,1 < pC,o, with the original linear margin L(pC |ρS,o,pC,o). Phillips
(2003) has actually constructed piecewise linear margin based on consensus opin-
ions of clinical experts. It is not linked to any index function and is unrelated to the
piecewise linear margin as discussed in this chapter. The theoretical properties of an
NI design with a piecewise linear margin has been investigated by Zhang (2006) for
the likelihood ratio test. The method developed there may be applicable to the hybrid
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design with a piecewise linear margin. It should be of practical interest to investigate
this matter further for the RD measure along the line as suggested in Sect. 13.5.

13.5 Summary Discussion

At the November 2011 FDA Anti-Infective Advisory Committee (US FDA 2011)
meeting discussing the design of HABP or VABP trials, the agency posed several
questions to the Committee. This chapter attempts to address two of the questions.
The first question concerns the appropriateness of the empirically derived fixed
margin associated with an estimated control response rate using FDA’s two-step
procedure. The second question pertains to what margin one should use when the
expected control response rate pC from the NI trial appears to deviate from the
estimated control response rate pC,o. Should one use the same margin or a different
margin? If one is to use a different margin, then what should that margin be? Is there
a prospective strategy that one can use to address this problem?

The hybrid NI hypothesis proposed in this chapter is defined by a special linear
margin, L(pC |ρS,o,pC,o), which is the first-order Taylor expansion of a specific
indexed margin function around the estimated control response ratepC,o. The specific
indexed margin function is defined as follows. First, derive the index value ρS,o =
g∗
RD(δRD,o,pC,o) from the index function given in Eq. 13.22 at the empirically derived

pair (δRD,o,pC,o). Therefore, ρS,o is an empirically derived inferiority index value.
Next, set the index ρS in the margin function δRD = g∗−1

RD (ρS , pC) given in Eq. 13.23
equal to this empirically derived index value ρS,o which defines the specific margin
function δRD(pC |ρS,o) = g∗−1

RD (ρS,o, pC) given by Eq. 13.24. Now define the linear

margin given by L(pC |ρS,o,pC,o) = δRD(pC,o|ρS,o) + ∂g∗−1
RD (ρS,o ,pC )

∂pC
(pC − pC,o) as

the first-order Taylor approximation to the margin function δRD(pC |ρS,o) expanded
around pC = pC,o. Clearly, L(pC,o|ρS,o,pC,o) = δRD(pC,o|ρS,o) = δRD,o when
pC = pC,o.Thus, if the true control response rate pC = pC,o, then the hybrid margin
reduces to the given fixed margin, but if the true control response rate pC �= pC,o,
then the hybrid margin adjusts the given fixed margin δRD(pC,o|ρS,o) = δRD,o by the

quantity
∂g∗−1

RD (ρS,o ,pC )
∂pC

(pC −pC,o). Hence, the linear margin integrates the empirically
derived pair δRD,o, pC,o) with a variable component that adjusts for the deviation
(pC − pC,o). Thus, the NI hypothesis defined by such a linear margin is called a
hybrid design. Such a hybrid design conveys the stringency of the margin through
the empirically derived index value ρS,o and at the same time also has the flexibility
to adjust for the margin in the event the control response rate from the trial deviates
from the estimated control response rate pC,o. Of course, this flexibility of a hybrid
design is gained at the cost of a 33 % increase in sample size compared to that required
for a fixed margin design for the example considered.

The linear margin L(pC |ρS,o,pC,o) tends to be more liberal if the true con-
trol response rate is in the range of 0.50< pC < pC,o. For example, with
(δRD,o,pC,o) = (−0.10, 0.80), the linear margin closely approximates the margin
function δRD(pC |ρS,o) only for pC over the range (0.75, 0.90). One may try to
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minimize this type I error rate inflation by lowering the overall significance level.
But this approach would be too drastic and still would not fully resolve the problem.
An alternative strategy is to construct a piecewise linear margin by joining two
linear margins L(pC |ρS,o,pC,1) and L(pC |ρS,o,pC,o) at their point of intersection,
where 0.50< pC,1 < pC,o along the line of Phillips (2003) and Zhang (2006) who
demonstrated the asymptotic convergence of the likelihood ratio test statistic for
the NI hypothesis defined by a piecewise linear margin. However, an even better
strategy is to define a spline function that joins the two linear margins by smoothing
out the corner where they intersect [Reinsch (1967), Byrne and Chi (1972), De
Boor (2001)]. Such a spline margin would have the regularity property required
for the estimate as well as for the asymptotic convergence of the test statistic
associated with such hybrid NI hypothesis. The idea of a hybrid design with an
empirically determined spline margin based on the special indexed margin function
δRD(pC |ρS,o) deserves further investigation because it can provide margins closely
matching those from the margin function δRD(pC |ρS,o) throughout the interval (0.50,
1) and has sufficient regularity properties required for the convergence theorem to
hold. All of these hybrid designs are of special appeal because they integrate the
FDA’s two-step fixed margin approach with the flexibility of a variable margin and
their associated test statistics have reasonable performance characteristics by taking
advantage of the improvement made by the convergence theorem (Theorem 2) under
fixed margin for the RD measure. However, these positive attributes come with a
36 % increase in sample size over those required under a fixed margin NI hypothesis.

Looking beyond binary outcome trials, some of the ideas used in this chapter can
be extended to normal distributions to provide a natural framework for handling prob-
lems involving heterogeneity of variance, such as in establishing bioequivalence of
highly variable drugs. Unlike the case under Bernoulli distributions, where for a given
index value, the margin is simply a function of the control response rate pC , under
normal distributions, for a given index value, the margin would be a function of the
variance of the control σC and the variance ratio σ 2 when not assumed to be known.

Post Note: In this chapter, the author has corrected an error that appeared in the
original paper by Li and Chi (2011). Specifically, in Eq. 13.7 on page 293 of the Li
and Chi (2011) paper, the number “4” appearing in the denominator of the third term
should be replaced by the number “2” as shown in Eq. 13.2 in the present chapter.
This correction has no impact under normal distributions. But under Bernoulli dis-
tributions, the impact of this correction is to increase the variance S in Corollary 2
of Li and Chi (2011) on page 298 by an amount δ2(ρ,σ )

1+σ 2 and thus the variance there

should be S =
{

1 + δ2(ρ,σ )
16σ 2

Cσ 2

}
+ δ2(ρ,σ )

1+σ 2 . It should also be pointed out that at the end

of this same corollary, the variance estimate σ̂ 2
C is missing by a factor of ½ and it

should be given by σ̂ 2
C = 1

2

[
p̂T (1−p̂T )

σ 2 + p̂C(1 − p̂C)
]
.

This same error also appears in Chi and Koch (2012). Specifically, at the end
of Theorem 2 of Chi and Koch (2012), the variance �2

SRD, o should be given by

�2
SRD, o = (

1 + σ 2
o

) (
1 + δ2

SRD, o

16σ 2
Cσ 2

o

)
+ δ2

SRD, o
2 as given in Eq. 13.4 of the present chapter.



13 Inferiority Index, Margin Functions, and Hybrid Designs for Noninferiority . . . 233

Hence, it follows that Eq. 13.24 in Theorem 4 of Chi and Koch (2012) should be

replaced by �2
RD,o =

[(
σ 2
C,o + σ 2

T ,o

) (
1 + δ2

RD,o

16σ 2
C,oσ

2
T ,o

)
+ δ2

RD,o
2

]
− (1 − 2pC,o)δRD,o

which is given by Eq. 13.8 of the present chapter. In addition, in Theorem 4 of Chi
and Koch (2012), in the expression for the variance � 2

LOR,o given by Eq. 13.26, the
variance �2

SRD, o in the first term should be as given above which is given by Eq. 13.4
of the present chapter.

Similarly, the same error appears in Chi (2013). In Theorem 1 of Chi (2012), the
variance term �2

RD,o(pC,o|Ho) in Eq. 13.15 should be replaced by�2
RD,o

(
pC,o|Ho

) =[(
σ 2
C,o + σ 2

T ,o

) (
1 + δ2

RD,o

16σ 2
C,oσ

2
T ,o

)
+ δ2

RD,o
2

]
− (1 − 2pC,o)δRD,o which is given by

Eq. 13.8 of this chapter.
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Chapter 14
Group-Sequential Designs When Considering
Two Binary Outcomes as Co-Primary Endpoints

Koko Asakura, Toshimitsu Hamasaki, Scott R. Evans, Tomoyuki Sugimoto
and Takashi Sozu

Abstract We discuss group-sequential designs with two binary endpoints as co-
primary. We derive the power and required sample size within two decision-making
frameworks: (i) to evaluate whether superiority of a test intervention relative to con-
trol has been shown for both endpoints at any interim time point, not necessarily
simultaneously and (ii) to evaluate whether superiority has been demonstrated for
both endpoints at the same interim time point of the trial. We evaluate the utility of
the method in practice using Monte Carlo simulation and investigate the behavior
of the sample sizes with varying design characteristics. We provide a real example
to illustrate the method. We also discuss sample size recalculation based on ob-
served interim data. Lastly, we discuss a method for hierarchical hypothesis testing
with adaptive type I error allocation in group-sequential designs with co-primary
endpoints in order to improve the power of the methods.

14.1 Introduction

Clinical trials are often conducted with the objective of comparing a test intervention
with a standard intervention based on several binary outcomes. For example, irri-
table bowel syndrome (IBS) is one of the most common gastrointestinal disorders
and is characterized by symptoms of abdominal pain, discomfort, and altered bowel
function (American College of Gastroenterology 2013; Grundmann andYoon 2010).
The comparison of the interventions to treat IBS is based on the proportions of par-
ticipants with adequate relief of abdominal pain and discomfort, and improvements
in urgency, stool frequency, and stool consistency. Traditionally, one important and

T. Hamasaki ( ) · K. Asakura
National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
e-mail: toshi.hamasaki@ncvc.go.jp

S. R. Evans
Harvard School of Public Health, Boston, Massachusetts, USA

T. Sugimoto
Hirosaki University, Aomori, Japan

T. Sozu
Kyoto University School of Public Health, Kyoto, Japan

© Springer International Publishing Switzerland 2015 235
Z. Chen et al. (eds.), Applied Statistics in Biomedicine and Clinical Trials Design,
ICSA Book Series in Statistics, DOI 10.1007/978-3-319-12694-4_14



236 K. Asakura et al.

clinically relevant outcome is selected as the primary endpoint and is then used as the
basis for the trial design, including sample size determination, interim monitoring,
and final analyses. However, many recent clinical trials have utilized more than one
endpoint as co-primary. “Co-primary” in this setting means that the trial is designed
to evaluate whether the new intervention is superior to the control on all endpoints,
thus evaluating the intervention’s multidimensional effects. For example, the US
Food and Drug Administration recommends the use of two endpoints for assess-
ing IBS signs and symptoms: (1) pain intensity and (2) stool frequency (Food and
Drug Administration 2012). The Committee for Medicinal Products for Human Use
(2013) recommends the use of two endpoints for assessing IBS signs and symptoms:
(1) global assessment of symptoms and (2) assessment of symptoms of abdominal
discomfort/pain. Offen et al. (2007) provide other examples.

The resulting need for new approaches to the design and analysis of clinical trials
with co-primary endpoints has been noted. Controlling the type I and type II error
rates when the multiple co-primary endpoints are potentially correlated is nontrivial.
When designing the trial to evaluate the joint effects on all of the endpoints, no
adjustment is needed to control the type I error rate if each endpoint is tested at
the same prespecified significance level. However, the type II error rate increases
as the number of endpoints to be evaluated increases. Thus, sample size adjustment
is needed to maintain the overall power. This often results in large and impractical
sample sizes. In order to reduce the sample size, methods for clinical trials with co-
primary endpoints have been discussed for fixed-sample designs by many authors
(Chuang-Stein et al. 2007; Eaton and Muirhead 2007; Hamasaki et al. 2013; Julious
and Mclntyre 2012; Kordzakhia et al. 2010; Offen et al. 2007; Senn and Bretz 2007;
Sozu et al. 2010, 2011, 2012; Sugimoto et al. 2012, 2013; Xiong et al. 2005).
These methods incorporate the correlations among the endpoints into sample size
calculations. In practice, the correlations are usually unknown. The correlations may
be estimated based on external or pilot data but such data are often unavailable.

Hung and Wang (2009) proposed a group-sequential design for clinical trials
with co-primary endpoints because it offers the possibility to stop a trial early when
evidence is overwhelming, thus offering efficiency (i.e., potentially fewer patients
than the fixed-sample designs). The method also allows recalculation of the sample
size based on the observed interim effect sizes. Recently, Asakura et al. (2014) discuss
two decision-making frameworks associated with hypothesis testing in clinical trials
with two continuous endpoints as co-primary in a group-sequential setting.

We extend the methods in Asakura et al. (2014) and discuss group-sequential
designs in clinical trials with two binary outcomes as co-primary. As a foundation
case, we consider a two-arm parallel-group trial designed to evaluate whether an
experimental intervention is superior to a control based on two binary endpoints. The
methods in Asakura et al. (2014) consist of prespecifying the type I error allocation
for both endpoints, using any α-spending function methods. In order to improve
the power, we discuss a method for hierarchical hypothesis testing with adaptive
type I error allocation, which was proposed by Tsong et al. (2004). They discussed
a three-arm clinical trial for the assessment of the efficacy and equivalence of a
generic drug. This chapter is structured as follows: In Sect. 14.2, we describe the
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decision-making frameworks for group-sequential designs in clinical trials using two
correlated binary outcomes evaluated as co-primary and define the corresponding
power and sample size calculations based on the normal approximation method. In
Sect. 14.3, we evaluate the practical utility of the normal approximation method
by Monte Carlo simulation, and investigate the behavior of the required sample
size with varying design parameters. In Sect. 14.4, we describe methods for sample
size recalculation based on the observed interim effects. In Sect. 14.5, we discuss a
method for hierarchical hypothesis testing with adaptive type I error allocation. In
Sect. 14.6, we summarize the findings.

14.2 Group-Sequential Designs with Co-Primary Endpoints

14.2.1 Statistical Settings

Consider a randomized clinical trial designed to compare the test intervention
with control intervention, with two binary outcomes being evaluated as co-
primary endpoints (k = 1,2). n and rn participants are recruited and randomly
assigned to the test intervention group (T) and the control intervention group (C),
respectively, where r is the sample ratio (r > 0). Then, we have n binary out-
comes YTki(i = 1, . . ., n; k = 1,2) for the test intervention group and rn outcomes
YCkj (j = 1, . . ., rn; k = 1,2) for the control group. Suppose YTki and YCkj are in-
dependently binomial distributed with probabilities of success pTk and pCk , i.e.,
B(1,pTk) and B(1,pCk), but the observations within pairs for the two interventions
are correlated with a common correlation corr [YT1i ,YT2i] = corr [YC1j ,YC2j ] = ρ.
The range of the correlation ρ is restricted, depending on the marginal probabilities
(Prentice 1988; Le Cessie and Houwelingen 1994).

Let YTk = ∑n
i=1 YTki and YCk = ∑rn

j=1 YCkj denote the number of successes under
the test and the control interventions, then YTk ∼ B(n,pTk) and YCk ∼ B(rn,pCk).
We now have the two (observed) differences in proportions δ̂k = p̂Tk − p̂Ck , where
p̂Tk = n−1YTk and p̂Ck = (rn)−1YCk . We are interested in conducting a hypothesis
testing on the difference in proportions δk = pTk −pCk (k = 1, 2) to evaluate whether
the intervention is superior to the control intervention, where a positive value of δk
indicates a treatment benefit. Thus, the hypotheses are H0 : δ1 ≤ 0 or δ2 ≤ 0 versus
H1 : δ1 > 0 and δ2 > 0. The H0 is rejected if and only if both of the null hypotheses
associated with each of the two primary endpoints are rejected at significance level
α. Let (Z1,Z2) be the test statistics given by

Zk =
√
nδ̂k√

ˆ̄pk

(
1 − ˆ̄pk

)
(1 + r)/r

,
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where ˆ̄pk = (p̂Tk + rp̂Ck)/(1 + r). The rejection regions of H0 are [{Z1 > zα} ∩
{Z2 > zα}], where zα is the 100(1 − α)th percentile of the standard normal distri-
bution. For large samples, using the delta method, the distribution of (Z1,Z2) is
approximately bivariate normal with correlation matrix ρZ , where its off-diagonal
element is

ρZ = ρ
r
√
pT1qT1pT2qT2 + √

pC1qC1pC2qC2√
rpT1qT1 + pC1qC1

√
rpT2qT2 + pC2qC2

,

where qTk = 1 − pTk and qCk = 1 − pCk . Note that ρZ is not free to range over
(−1,1). For large samples, as p̂Tk → pTk , p̂Ck → pCk , and ˆ̄pk → p̄k , therefore, the
power function for the joint effect is approximately

1 − β = Prob

[
2⋂

k=1

{Zk > zα}| H1

]
≈ Prob

[
2⋂

k=1

{
Z∗

k > ck
}∣∣H1

]
, (14.1)

where

Z∗
k =

√
rn(p̂Tk − p̂Ck − δk)√
rpTkqTk + pCkqCk

and ck =
√
p̄kq̄k(r + 1)zα − √

rnδk√
rpTkqTk + pCkqCk

·

The power (14.1) is, in general, referred as to complete power or conjunctive
power (Senn and Bretz 2007). The power can be simply calculated by using the
cumulative distribution function of the bivariate normal distribution, i.e., 1 − β =
&2(−c1, −c2|ρZ). The sample size required for achieving the desired power 1 − β

at the significance level α is given by the smallest integer not less than n satisfying
the power (14.1). An iterative procedure is required to solve for the power and to cal-
culate the sample size as no closed-form expression for the calculation is available.
For details of the calculation, and extension to more than two endpoints, see Sozu
et al. (2010, 2011) and Sugimoto et al. (2012).

14.2.2 The Decision-Making Frameworks, Stopping Rules,
and Power

Now consider a randomized, group-sequential clinical trial comparing the test inter-
vention with the control intervention based on two binary outcomes as co-primary
endpoints. Suppose that a maximum of L analyses are planned, where the same
number of analyses with the same information space are selected for both endpoints.
Let nl and rnl be the cumulative number of participants on the test and the control
intervention groups at the lth analysis (l = 1, . . .,L), respectively. Hence, up to nL

and rnL participants are recruited and randomly assigned to the test and the control
intervention groups, respectively.

When evaluating the joint effects on both of the endpoints within the context
of group-sequential designs, Asakura et al. (2014) discuss two decision-making
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frameworks associated with hypothesis testing. One is to reject H0 if superiority
is achieved for the two endpoints at any interim time point (i.e., not necessarily
simultaneously) (DF-A). The other is to reject H0 if and only if superiority is achieved
for the two endpoints simultaneously (i.e., at the same interim time point of the trial)
(DF-A’). We outline the two decision-making frameworks, and the corresponding
stopping rules and powers as follows:

DF-A: If superiority is demonstrated on one endpoint at the interim, then the trial
will continue but subsequent hypothesis testing is repeatedly conducted only for the
previously nonsignificant endpoint until superiority is demonstrated. The stopping
rule for DF-A is formally given as follows:

At the lth analysis (l = 1, . . .,L − 1)
If Z1l > c1l and Z2l′ > c2l′ for some 1 ≤ l′ ≤ l, then reject H0 and stop the
trial,
if Z2l > c2l and Z1l′ > c1l′ for some 1 ≤ l′ ≤ l, then reject H0 and stop the
trial,
otherwise, continue to the (l + 1)th analysis,
at the Lth analysis
if Z1L > c1L and Z2l′ > c2l′ for some 1 ≤ l′ ≤ L, then reject H0,
if Z2L > c2L and Z1l′ > c1l′ for some 1 ≤ l′ ≤ L, then reject H0,
otherwise, do not reject H0.

where Z1l and Z2l are the test statistics at the lth analysis, given by

Zkl =
√
nlδ̂kl√

ˆ̄pkl

(
1 − ˆ̄pkl

)
(1 + r)/r

with δ̂kl = p̂Tkl − p̂Ckl , p̂Tkl = n−1
l

∑nl

i=1 YTki and p̂Ckl = (rnl)−1∑rnl

j=1 YCkj , and
ˆ̄pkl = (p̂Tkl + rp̂Ckl)/(1 + r). Also, c1l and c2l are the critical values at the lth
analysis, and they are prespecified separately, using any group-sequential methods
such as the Lan–DeMets (LD) α-spending method (Lan and DeMets 1983) to control
an overall type I error rate of α, as if they were a single primary endpoint, ignoring
the other co-primary endpoint. The testing procedure for co-primary endpoints is
conservative. For example, if a zero correlation between the two endpoints is assumed
and each endpoint is tested at the one-sided significance level of 2.5 %, then the
type I error rate is 0.0625 %. As shown in Sect. 14.3, the maximum type I error rate
associated with the rejection region of the null hypothesis increases as the correlation
goes toward one, but it is not greater than the targeted significance level.

Therefore, the power is

1 − β = Pr

[{
L⋃

l=1

A1l

}
∩
{

L⋃
l=1

A2l

}∣∣∣∣∣H1

]
, (14.2)
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where Akl = {Zkl > ckl} (k = 1,2; l = 1, . . .,L). The power (14.2) can be numeri-
cally assessed by using multivariate normal integrals as for large samples. The joint
distribution of (Z11,Z21, . . .,Z1L,Z2L) is approximately multivariate normal with
their correlations given by corr [Zkl ,Zk′l′ ] = √

nl′/nl if k = k′; ρZ

√
nl′/nl and if

k �= k′. For the detailed calculation, see Asakura et al. (2014).
DF-A offers the option of stopping measurement of an endpoint for which superi-

ority has been demonstrated. Stopping measurement may be desirable if the endpoint
is very invasive or expensive, although stopping measurement may also introduce
operational difficulties into the trial. To avoid operational difficulties, a restriction
on the condition of when H0 is rejected and the trial is stopped, may be imposed.

DF-A′: is a special case of DF-A representing a restriction on the condition of
when H0 is rejected and the trial is stopped: If superiority is demonstrated on only one
endpoint at an interim, then the trial continues, and the hypothesis testing is repeated
for both endpoints until the joint significance for the two endpoints is established
simultaneously. The stopping rule for DF-A’ is formally given as follows:

At the lth analysis (l = 1, . . .,L − 1)
If Z1l > c1l and Z2l > c2l , then reject H0 and stop the trial,
otherwise, continue to the (l + 1)th analysis,

at the Lth analysis
if Z1L > c1L and Z2L > c2L, then reject H0,
otherwise, do not reject H0.

Therefore, the power is

1 − β = Pr

[
L⋃

l=1

{A1l ∩ A2l}
∣∣∣∣∣H1

]
, (14.3)

Similarly as in the power (14.2), the power can be calculated by using multivariate
normal integrals. For the details, see Asakura et al. (2014).

As discussed in Asakura et al. (2014), the probability of making an inconsis-
tent decision between DF-A and DF-A’ is quite low, so that there is little practical
difference in the power and sample size determinations for DF-A and DF-A’.

14.2.3 Sample Sizes

We discuss two sample size concepts, i.e., the maximum sample size (MSS) and the
average sample number (ASN) based on the two decision-making frameworks, and
the corresponding powers discussed in the previous section.

The MSS is the sample size required for the final analysis to achieve the desired
power 1−β. The MSS is given by the smallest integer not less than nL satisfying the
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power (14.2) or (14.3) for a group-sequential design at the prespecified pTk and pCk ,
and ρ, with Fisher’s information time for the interim analyses, nl/nL(l = 1, . . .,L).
To find a value of nL, an iterative procedure is required to numerically solve for
the power (14.2) or (14.3). This can be accomplished by using a grid search to
gradually increase nL until the power under nL exceeds the desired power, although
this often requires considerable computing resources. To reduce the computational
resources, the Newton–Raphson algorithm in Sugimoto et al. (2012) or the basic
linear interpolation algorithm in Hamasaki et al. (2013) may be utilized.

The ASN is the expected sample size under a specific hypothetical reference. For
example, given these prespecifications, for equally sized groups, i.e., r = 1, the ASN
per intervention group for DF-A is

ASN = nL

(
1 +

∑L−1

l=1
Pr
[{

Ā11 ∩ · · · ∩ Ā1l
} ∪ {Ā21 ∩ · · · ∩ Ā2l

}])/
L,

and then for DF-A’,

ASN = nL

(
1 +

∑L−1

l=1
Pr
[{

Ā11 ∪ Ā21
} ∩ · · · ∩ {Ā1l ∪ Ā2l

}])/
L,

where nl = ln1(l = 1, . . .,L). The MSS and ASN will depend on the design pa-
rameters including differences in proportions, the correlation structure between the
endpoints, the testing procedure (e.g., O’Brien–Fleming (OF) testing procedure
(O’Brien and Fleming 1979), Pocock (PC) testing procedure (Pocock 1977), the
number of analyses, and the information time.

14.3 Evaluation of the Method Utility

14.3.1 Behavior of Empirical Power and Evaluation of the Type I
Error Rate

The normal approximation discussed in the previous sections may not work well
in the occurrence of extremely small event rates or small sample sizes as the joint
distribution is not fully specified in the first- and second-order moments. There are
more direct ways of calculating sample size without using a normal approximation.
However, such methods are computationally difficult, particularly for a large number
of analyses and outcomes, and thus can be impractical. In this section, we evaluate
the utility of using the normal approximation.

In order to evaluate the utility of using the normal approximation, the power and
type I error rate were evaluated by Monte Carlo simulation since no closed-form
expression is available. The total numbers of 100,000 replications and 1,000,000
replications were selected for the assessments of power and type I error rate re-
spectively, under given sample sizes (equally sized groups: r = 1) with two binary
outcomes being evaluated as co-primary. Bivariate Bernoulli data for Monte Carlo
simulation were generated by the method in Emrich and Piedmonte (1991). As there
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is no major difference in behaviors of the empirical powers and type I error rates
between DF-A and DF-A’, we only describe the result for DF-A’.

Figs. 14.1, 14.2 and 14.3 display behaviors of the empirical powers and the type
I error rates for DF-A’ under a given sample size using the normal approximation
method with L = 2, 3, 4, and 5, in the cases of δ1 = δ2 = δ and pC1 = pC2 = pC,
and ρ = 0.0 and 0.8. The required sample size per group ( r = 1) was calculated to
detect a joint effect on both endpoints with the desired overall power of 1−β = 80 %
for a one-sided test at the significance level of α = 2.5 %, where the critical values
are determined by the three testing procedure combinations, i.e., (i) the OF for both
endpoints (OF–OF), (ii) the OF for δ1 and the PC for δ2 (OF–PC), and (iii) the PC
for both endpoints (PC–PC), with the LD α-spending method with equally spaced
information level. For the type I error evaluation, two situations are considered, i.e.,
δ1 ≤ 0 and δ2 ≤ 0 (Fig. 14.2) and, i.e., δ1 ≤ 0 and δ2 > 0 (Fig. 14.3). For all three
testing procedure combinations, the empirical power achieves the targeted power of
80 %, but it is larger than the targeted power as δ is larger and pC is higher. Especially
when δ ≥ 20 % withpC = 70 % or 80 %, the empirical power is greater than 90 %. For
these situations, Cochran’s condition regarding small expected frequencies (Cochran
1952) was not satisfied for each endpoint under the given sample size. The empirical
power does not greatly vary with the number of analyses.

When δ1 ≤ 0 and δ2 ≤ 0, for all three testing procedure combinations, in case
of ρ = 0.0, the type I error rate is not greater than the nominal significance level of
2.5 %, but it is quite small. In the case of ρ = 0.8, the type I error rate is increased
compared with those of ρ = 0.0, but is still not greater than the nominal significance
level. On the other hand, when δ1 ≤ 0 and δ2 > 0, the type I error rate is around the
nominal significance level in both cases of ρ = 0.0 and 0.8.

In addition, the sample sizes derived by the Monte Carlo simulation-based
approach were compared with the sample sizes calculated using the normal ap-
proximation, where 100,000 replications were selected for the power evaluation.
Figure 14.4 displays the ratio of the sample sizes calculated by the normal approx-
imation to that determined by the Monte Carlo simulation-based approach. For all
three testing procedure combinations, the ratio is roughly equal to 1 when δ is small,
but it is larger than 1 when δ is larger, especially in pC = 0.8. When Cochran’s condi-
tion is not satisfied for each endpoint under the given sample size, the ratio is larger
than roughly 1.2. As discussed in Landau and Stahl (2013), this result suggests that
the use of the Monte Carlo simulation approach may be considered as an alternative
to the normal approximation method because the Monte Carlo simulation approach
in this instance leads to a saving in sample size. However, the Monte Carlo simulation
approach requires expensive computation costs and technical programming skills.
It is important to consider an appropriate number of replications for simulations to
control simulation error in calculating the empirical power when using the Monte
Carlo simulation approach.
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Fig. 14.1 Behaviors of the empirical powers for DF-A’with difference in proportions (test–control),
based on the normal approximation method when L = 2, 3, 4, and 5, and ρ = 0.0 and 0.8, in the
cases of δ1 = δ2 and pC1 = pC2. The sample size (equally sized groups) was calculated to detect a
joint effect on both endpoints with the desired overall power of 1−β = 80 % for a one-sided test at
the significance level of α = 2.5 %. The critical values are determined by the three testing procedure
combinations, i.e., (i) the OF for both endpoints (OF–OF), (ii) the OF for δ1 and the PC for δ2 (OF–
PC), and (iii) the PC for both endpoints (PC–PC), with the LD α-spending method with equally
spaced information level. DF-A’ at the same interim time point of the trial, OF O’Brien–Fleming,
PC Pocock, LD Lan–DeMets
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Fig. 14.2 Behaviors of the actual type I error rates ( δ1 ≤ 0 and δ2 ≤ 0) for DF-A’, with difference
in proportions (test–control) based on the normal approximation method when L = 2, 3, 4, and 5,
and ρ = 0.0 and 0.8, in the cases of δ1 = δ2 and pC1 = pC2. The sample size (equally sized groups)
was calculated to detect a joint effect on both endpoints with the overall power of 1−β = 80 %
for a one-sided test at the significance level of α = 2.5 %. The critical values are determined by the
three testing procedure combinations, i.e., (i) the OF for both endpoints (OF–OF), (ii) the OF for δ1

and the PC for δ2 (OF–PC), and (iii) the PC for both endpoints (PC–PC), with the LD α-spending
method with equally spaced information level. DF-A’at the same interim time point of the trial, OF
O’Brien–Fleming, PC Pocock, LD Lan–DeMets
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Fig. 14.3 Behaviors of the actual type I error rates ( δ1 ≤ 0 and δ2 > 0) for DF-A’, with difference in
proportions (test–control) based on the normal approximation method when L = 2, 3, 4, and 5, and
ρ = 0.0 and 0.8, in the cases of δ1 = δ2 and pC1 = pC2. The sample size (equally sized groups) was
calculated to detect a joint effect on both endpoints with the desired overall power of 1−β = 80 %
for a one-sided test at the significance level of α = 2.5 %. The critical values are determined by the
three testing procedure combinations, i.e., (i) the OF for both endpoints (OF–OF), (ii) the OF for δ1

and the PC for δ2 (OF–PC), and (iii) the PC for both endpoints (PC–PC), with the LD α-spending
method with equally spaced information level. DF-A’at the same interim time point of the trial, OF
O’Brien–Fleming, PC Pocock, LD Lan–DeMets
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Fig. 14.4 The ratio of the sample size for DF-A’ with difference in proportions (test–control), by
the normal approximation method to that by the Monte Carlo simulation-based approach, when
L = 2, 3, 4, and 5, and ρ = 0.0 and 0.8, in the cases of δ1 = δ2 and pC1 = pC2. The sample size
(equally sized groups) was calculated to detect a joint effect on both endpoints with the desired
overall power of 1−β = 80 % for a one-sided test at the significance level of α = 2.5 %. The critical
values are determined by the three testing procedure combinations, i.e., (i) the OF for both endpoints
(OF–OF), (ii) the OF for δ1 and the PC for δ2 (OF–PC), and (iii) the PC for both endpoints (PC–PC),
with the LD α-spending method with equally spaced information level. DF-A’ at the same interim
time point of the trial, OF O’Brien–Fleming, PC Pocock, LD Lan–DeMets
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14.3.2 Illustration

We provide an example to illustrate the sample size methods discussed in the previous
sections. Consider a double-blind, randomized, parallel group, placebo-controlled
trial evaluating lactobacilli and bifidobacteria in the prevention of antibiotic-
associated diarrhoea (AAD) in older people admitted to hospital (the PLACIDE
study) (Allen et al. 2012, 2013). The study was designed to demonstrate that the
administration of a probiotic comprising two strains of lactobacilli and two strains
of bifidobacteria alongside antibiotic treatment prevents AAD. The co-primary out-
comes were (1) the occurrence of AAD within 8 weeks and (2) the occurrence of
Clostridium difficile diarrhoea (CDD) within 12 weeks of recruitment. The original
sample size per intervention group of 1239 participants provided a power of 80 % to
detect a 50 % reduction in CDD, in the probiotic group compared with the placebo
group, by using a two-sided Fisher’s exact test at 5 % significance level, assuming
CDD frequencies of 4 % in placebo group and 2 % in probiotic group. Although
Cochran’s condition seems to be hold for this setting, the normal approximation
method was not used for the sample size calculation, resulting in conservatively-
calculated sample size. This sample size would provide a power of more than 99 %
to detect a 50 % reduction in AAD, by using a two-sided Fisher’s exact test at 5 %
significance level, assuming AAD frequencies of 20 % in placebo group and 10 %
in probiotic group as the normal approximation. The correlation between the two
outcomes was not incorporated into the original sample size calculation.

Table 14.1 displays the MSS and ASN per intervention group (equally sized
groups: r = 1) for DF-A and DF-A’. The sample size was derived using an alterna-
tive hypothesis of differences in proportions for AAD (pT1 = 0.2 and pC1 = 0.4)
and CDD (pT2 = 0.02 and pC2 = 0.04) with the overall power of 80 % at the sig-
nificance level of 2.5 % by one-sided test, using the normal approximation method
discussed in the previous section, where ρ = ρT = ρC = 0.0, 0.3, 0.5, and 0.8;
L = 1, 2, 3, 4, and 5. The critical values are determined by the four testing proce-
dure combinations, i.e., (i) the OF for both endpoints (OF–OF), (ii) the OF for AAD
and the PC for CDD (OF–PC), (iii) the PC for AAD and the OF for CDD (PC–OF),
and (iv) the PC for both endpoints (PC–PC), with the LD α-spending method, with
equally spaced information level.

Based on the selected parameters described in Allen et al. (2012), i.e., L = 1 and
ρ = 0.0, the sample size per intervention group is calculated as 1143. If four interims
and one final analysis are planned (i.e., L = 5) with DF-A’, and conservatively
assuming a zero correlation between the endpoints, then the MSS is 1170 for OF–
OF, 1399 for OF–PC, 1170 for PC–OF, and 1387 for PC–PC, and the ASN is 943.5
for OF–OF, 975.5 for OF–PC, 941.2 for PC–OF, and 921.4 for PC–PC. On the other
hand, even if the correlation is incorporated into the calculation, the MSS and ASN
do not change as the correlation varies. This means that when one standardized effect
size is relatively larger than the other, i.e., δ1 > δ2 or δ1 < δ2 with pC1 �= pC2, then
there is little benefit in incorporating the correlation into sample size calculation.
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Table 14.1 The MSS and ASN (equally sized groups). The MSS was calculated to detect the joint
effect for both endpoints with the overall power of 1 − β = 80 % at the one-sided significance level
of α = 2.5 %, based on the assumption from the PLACIDE study. The critical values are determined
by the four testing procedure combinations, i.e., (i) the OF for both endpoints (OF–OF), (ii) the
OF for AAD and the PC for CDD (OF–PC), (iii) the PC for AAD and the OF for CDD (PC–OF),
and (iv) the PC for both endpoints (PC–PC), with the LD α-spending method with equally spaced
information level.

(i) OF–OF (ii) OF–PC (iii) PC–OF (iv) PC–PC

DF ρ L MSS ASN MSS ASN MSS ASN MSS ASN

DF-A 0.0 1 1143 1143 1143 1143

2 1146 1055.7 1282 982.2 1146 1052.7 1282 977.0

3 1156 991.4 1336 978.1 1156 988.6 1336 939.4

4 1164 959.8 1366 972.1 1164 958.1 1366 925.4

5 1170 943.4 1385 956.0 1170 941.1 1385 917.8

0.3 1 1143 1143 1143 1143

2 1146 1055.6 1282 982.2 1146 1052.7 1282 977.0

3 1156 991.4 1336 977.8 1156 988.6 1336 939.3

4 1164 959.7 1366 971.8 1164 958.1 1366 925.3

5 1170 943.3 1385 955.9 1170 941.1 1385 917.7

0.5 1 1143 1143 1143 1143

2 1146 1055.6 1282 982.2 1146 1052.7 1282 977.0

3 1156 991.4 1336 977.8 1156 988.6 1336 939.3

4 1164 959.7 1366 971.8 1164 958.1 1366 925.3

5 1170 943.3 1385 955.9 1170 941.1 1385 917.7

0.8 1 1143 1143 1143 1143

2 1146 1055.6 1282 982.2 1146 1052.7 1282 977.0

3 1156 991.4 1336 977.8 1156 988.6 1336 939.3

4 1164 959.7 1366 971.8 1164 958.1 1366 925.3

5 1170 943.3 1385 955.9 1170 941.1 1385 917.7

DF-A’ 0.0 1 1143 1143 1143 1143

2 1146 1055.7 1283 982.8 1146 1052.7 1282 977.0

3 1156 991.5 1346 986.6 1156 988.6 1337 940.2

4 1164 959.8 1380 989.4 1164 958.2 1368 927.6

5 1170 943.5 1399 975.5 1170 941.2 1387 921.4

0.3 1 1143 1143 1143 1143

2 1146 1055.0 1283 982.0 1146 1052.6 1282 976.9

3 1156 991.0 1345 982.3 1156 988.5 1337 939.5

4 1164 959.4 1380 986.7 1164 958.1 1368 925.9

5 1170 943.0 1398 973.3 1170 941.1 1387 919.7

0.5 1 1143 1143 1143 1143

2 1146 1055.0 1283 982.0 1146 1052.6 1282 976.9
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Table 14.1 (continued)

(i) OF–OF (ii) OF–PC (iii) PC–OF (iv) PC–PC

DF ρ L MSS ASN MSS ASN MSS ASN MSS ASN

3 1156 991.0 1345 982.3 1156 988.5 1337 939.5

4 1164 959.4 1380 986.7 1164 958.1 1368 925.9

5 1170 943.0 1398 973.3 1170 941.1 1387 919.7

0.8 1 1143 1143 1143 1143

2 1146 1055.0 1283 982.0 1146 1052.6 1282 976.9

3 1156 991.0 1345 982.3 1156 988.5 1337 939.5

4 1164 959.4 1380 986.7 1164 958.1 1368 925.9

5 1170 943.0 1398 973.3 1170 941.1 1387 919.7

DF-A at the interim time point not necessarily simultaneously, DF-A’ at the same interim time
point of the trial, MSS maximum sample size, ASN average sample number, AAD antibiotic-
associated diarrhoea, CDD Clostridium difficile diarrhoea, OF O’Brien–Fleming, PC Pocock, LD
Lan–DeMets

When comparing DF-A to DF-A’, there are no major differences in MSS and ASN
for all of the testing procedure combinations, although DF-A provides a slightly
smaller MSS and ASN than DF-A’. However, if the endpoint is very invasive, and
thus stopping measurement may be ethically desirable, there is a benefit of using
DF-A as DF-A offers the option of stopping measurement of an endpoint for which
superiority has been demonstrated. For example, whenL = 5 with DF-A, the average
total numbers of measurements for two endpoints for each intervention group are
2887.1 for OF–OF, 2948.0 for OF–PC, 2493.0 for PC–OF, and 2486.4 for PC–PC
when ρ = 0.0. They are relatively smaller than those for DF-A’ as the average total
numbers of measurements for DF-A’ are 3260.5 for OF–OF, 2966.4 for OF–PC,
2493.0 for PC–OF and 2488.4 for PC–PC.

Figure 14.5 illustrates the probability of rejecting/not rejecting the null hypothesis
for DF-A’ and DF-A when ρ = 0.0 and L = 5. The figure shows that the method
offers the possibility to stop a trial early if evidence is overwhelming, and thus offers
potentially fewer patients than the fixed-sample designs. The expected analysis of
stopping for DF-A’ is 4.03 for OF–OF, 3.49 for OF–PC, 4.02 for PC–OF, and 3.32
for PC–PC, and, for DF-A, 4.03 for OF–OF, 3.45 for OF–PC, 4.02 for PC–OF, and
3.31 for PC–PC. In the OF–OF and PC–OF testing procedure combinations, it is
more difficult to reject the null hypothesis at the earliest analyses, but easier later on.
On the other hand, in the PC–PC and OF–PC testing procedure combinations, it is
easier to reject the null hypothesis at the earliest analysis.

Table 14.2 displays the Monte Carlo simulation-based MSS and ASN per inter-
vention group (equally sized groups: rr = 1) for DF-A and DF-A’. The sample size
was derived based upon an alternative hypothesis of differences in proportions for
AAD (pT1 = 0.2 and pC1 = 0.4) and CDD (pT2 = 0.02 and pC2 = 0.04) with
the overall power of 80 % at the significance level of 2.5 % by one-sided test, where
100,000 replications were selected for the empirical power evaluation and Bivariate
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Fig. 14.5 The probability of rejecting/not rejecting the null hypothesis when four interim and one
final analyses are planned with ρ = 0.0. The MSS were calculated to detect the joint effect for both
endpoints with the overall power of 1 −β = 80 % at the one-sided significance level of α = 2.5 %,
based on the assumption from the PLACIDE study. The critical values are determined by the four
testing procedure combinations, i.e., (i) the OF for both endpoints (OF–OF), (ii) the OF for AAD
and the PC for CDD (OF–PC), (iii) the PC for AAD and the OF for CDD (PC–OF), and (iv) the
PC for both endpoints (PC–PC), with the LD α-spending method with equally spaced information
level. DF-A’ at the same interim time point of the trial, OF O’Brien–Fleming, PC Pocock, LD
Lan–DeMets, AAD antibiotic-associated diarrhoea, CDD Clostridium difficile diarrhoea

Bernoulli data for Monte Carlo simulation were generated by the method in Em-
rich and Piedmonte (1991). The Monte Carlo simulation approach always provides
smaller sample size (roughly 20 to 30 smaller) than the sample sizes by the normal
approximation methods.

14.4 Sample Size Recalculation

14.4.1 Test Statistics and Conditional Power

Clinical trials are designed based on assumptions often constructed based on prior
data. However, prior data may be limited, or an inaccurate indication of future data,
resulting in trials that are over/underpowered. Interim analyses provides an opportu-
nity to evaluate the accuracy of the design assumptions and potentially make design
adjustments (i.e., to the sample size) if the assumptions were markedly inaccu-
rate. Group-sequential designs allow for decreasing the sample size when observed
treatment effects are much larger than assumed. In this section, we discuss sample size
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Table 14.2 The Monte Carlo simulated-based MSS and ASN (equally sized groups), where MSS
was calculated to detect the joint effect for both endpoints with the overall power of 1 − β = 80 %
at the one-sided significance level of α = 2.5 %, based on the assumption from the PLACIDE study.
The critical values are determined by the four testing procedure combinations, i.e., (i) the OF for
both endpoints (OF–OF), (ii) the OF for AAD and the PC for CDD (OF–PC), (iii) the PC for AAD
and the OF for CDD (OF–PC), and (iv) the PC for both endpoints (PC–PC), with the LD α-spending
method with equally spaced information level, where 100,000 replications were selected for the
empirical power evaluation.

(i) OF–OF (ii) OF–PC (iii) PC–OF (iv) PC–PC

DF ρ L MSS ASN MSS ASN MSS ASN MSS ASN

DF-A 0.0 1 1109 1115 1114 1113

2 1115 1037.6 1261 968.2 1122 1040.0 1257 961.2

3 1129 974.1 1308 962.7 1128 971.7 1311 928.5

4 1139 945.8 1336 956.7 1142 946.7 1335 914.6

5 1151 932.9 1365 947.3 1146 928.3 1364 912.6

0.3 1 1114 1116 1114 1116

2 1115 1035.8 1266 968.1 1115 1034.7 1266 966.3

3 1125 968.9 1312 950.6 1130 973.4 1310 923.3

4 1138 943.1 1343 951.8 1138 943.0 1339 910.8

5 1153 932.5 1361 938.4 1150 931.0 1363 905.3

0.5 1 1114 1113 1112 1117

2 1116 1035.3 1260 963.6 1114 1034.4 1259 962.1

3 1128 972.3 1305 939.6 1129 973.1 1313 924.1

4 1139 943.8 1340 945.8 1138 943.5 1343 911.3

5 1152 932.6 1367 939.3 1149 929.1 1364 904.1

0.8 1 1110 1116 1115 1113

2 1117 1036.6 1265 967.2 1113 1032.7 1258 961.2

3 1127 971.9 1312 943.0 1130 973.4 1312 919.9

4 1139 944.1 1340 945.8 1142 945.7 1341 910.9

5 1154 932.8 1364 936.8 1154 932.3 1368 906.3

DF-A’ 0.0 1 1113 1115 1113 1112

2 1119 1040.8 1258 966.3 1114 1034.4 1265 966.4

3 1129 974.1 1314 969.3 1130 973.3 1309 925.0

4 1126 938.4 1353 976.5 1137 942.5 1339 917.9

5 1148 931.2 1380 966.0 1150 930.5 1363 914.0

0.3 1 1115 1113 1115 1113

2 1115 1035.0 1262 966.2 1116 1035.1 1264 963.0

3 1128 972.2 1321 956.5 1130 973.2 1314 925.4
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Table 14.2 (continued)

(i) OF–OF (ii) OF–PC (iii) PC–OF (iv) PC–PC

DF ρ L MSS ASN MSS ASN MSS ASN MSS ASN

4 1144 948.3 1358 967.7 1142 945.4 1337 909.8

5 1152 932.4 1378 958.3 1151 930.4 1367 909.7

0.5 1 1114 1116 1116 1116

2 1113 1032.5 1263 964.7 1120 1037.9 1264 965.0

3 1128 972.0 1319 951.1 1131 974.7 1309 921.3

4 1143 946.9 1350 957.1 1139 942.1 1343 912.5

5 1153 932.4 1380 954.9 1149 929.4 1368 906.9

0.8 1 1116 1112 1112 1111

2 1117 1036.6 1262 966.2 1114 1032.2 1261 962.7

3 1124 969.9 1325 952.8 1130 972.7 1311 922.1

4 1142 945.9 1353 957.3 1141 944.4 1341 912.2

5 1150 929.7 1377 952.5 1149 929.4 1363 906.5

DF-A at the interim time point not necessarily simultaneously, DFA’at the same interim time point
of the trial, MSS maximum sample size, ASN average sample number, AAD antibiotic-associated
diarrhea, CDD Clostridium difficile diarrhea, OF O’Brien–Fleming, PC Pocock, LD Lan–DeMets

recalculation based on the observed intervention’s effects at an interim analysis with
a focus on control of statistical error rates.

Suppose that the MSS is recalculated to n′
L based on the interim data at the Rth

analysis. Suppose that n′
L is subject to nR < n′

L ≤ λnL, where λ is a prespecified
constant for the maximum allowable sample size. Let (δ̃1, δ̃2) and (δ∗

1 , δ∗
2 ) be the

differences in proportions used for planned sample size and for recalculated sample
size, respectively. Note that the value of correlation assumed at the design stage is
retained for the sample size recalculation, i.e., without updating based on observed
correlation at the interim as the correlation is a nuisance parameter in hypothesis
testing.

To preserve the overall type I error rate at a prespecified significance level even
when the sample size is increased and conventional test statistics are used, we con-
sider an extension of the Cui–Hung–Wang (CHW) statistics (Cui et al. 1999) for
sample size recalculation in group-sequential designs with two co-primary endpoints.

Z′
km =

√
nR

nm
ZkR +

√
nm − nR

nm

∑n′
m

i=nR+1 YTki −∑n′
m

j=nR+1 YCkj√
2(n′

m − nR) ˆ̄p′′
km(1 − ˆ̄p′′

km)
,

where r = 1, n′
m = (nm − nR)(n′

L − nR)/(nL − nR) + nR and ˆ̄p′′
km = (p̂′′

Tkm + p̂′′
Ckm)/2

with p̂′′
Tkm = (n′

m − nR)−1∑n′
m

i = nR+1 YTki and p̂′′
Ckm = (n′

m − nR)−1∑n′
m

j = nR+1 YCkj

(k = 1,2;R = 1, . . .,L − 1;m=R + 1, . . .,L). The same critical values utilized for
the case without sample size recalculation are used.
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The sample size is increased or decreased when the conditional power evaluated
at the Rth analysis is lower or higher than the desired power 1−β. Under the planned
MSS and a given observed value of (Z1R ,Z2R), for DF-A’, the conditional power is
defined by

CP = Pr

[
L⋃

m=R+1

{A1m ∩ A2m} |a1R , a2R

]
(14.4)

if Z1l ≤ c1l or Z2l ≤ c2l for all l = 1, . . .,R, where (a1R , a2R) is a given observed
value of (Z1R ,Z2R). On the other hand, the conditional power for DF-A is given by

CP =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr

[
L⋃

m=R+1

A1m |a1R , a2l′

]

ifZ1l ≤ c1l for all l = 1, . . .,R andZ2l′ > c2l′ for some l′ = 1, . . .,R,

Pr

[
L⋃

m=R+1

A2m |a2R , a1l′

]

ifZ2l ≤ c2l for all l = 1, . . .,R andZ1l′ > c1l′ for some l′ = 1, . . .,R,

Pr

[{
L⋃

m=R+1

A1m

}
∩
{

L⋃
m=R+1

A2m

}
|a1R , a2R

]

ifZ1l ≤ c1l andZ2l ≤ c2l for all l = 1, . . .,R.

(14.5)

Since (δ1, δ2) is unknown, it is customary to substitute (δ∗
1 , δ∗

2 ), the estimated mean
differences at the Rth analysis (δ̂1R , δ̂2R) or the assumed mean differences during trial
planning (δ̃1, δ̃2). We consider the conditional power based on (δ∗

1 , δ∗
2 ) = (δ̂1R , δ̂2R),

which allows evaluation of behavior of power independent of (δ̃1, δ̃2).
When recalculating the sample size, three options are possible: (a) only allowing

an increase in the sample size, (b) only allowing a decrease in the sample size,
and (c) allowing an increase or decrease in the sample size. For all the cases, we
assign Z′

km and n′
m instead of Zkm and nm in the conditional powers (14.4) and

(14.5) for the conditional power with sample size recalculation. Consider the rule for
determining the recalculated sample size n′

L, when the sample size may be increased
only, which is:

n′
L =

⎧⎨
⎩
nL, if CP ≥ 1 − β or min(δ̂1R , δ̂2R) ≤ 0,

min(n′′
L, λnL), otherwise,

where n′′
L is the smallest integer n′

L(> nR), where the conditional power achieves the
desired power 1 − β. When the sample size may be decreased only, the recalculated
sample size n′

L is:

n′
L =

⎧⎨
⎩
n′′
L, if CP > 1 − β,

nL, otherwise.
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When the sample size may be increased or decreased, then the recalculated sample
size n′

L is:

n′
L =

⎧⎪⎪⎨
⎪⎪⎩

n′′
L, if CP > 1 − β,

nL, if CP = 1 − β or min(δ̂1R , δ̂2R) ≤ 0,

min(n′′
L, λnL), otherwise.

14.4.2 Illustration

In this section, we provide an example to illustrate the sample size recalculation
discussed in the previous section, using the PLACIDE study. For illustration, we
consider a two-stage group-sequential design with one interim and final analyses.
The test statistics based on independent samples at the interim and final analyses Zk1

and Z′′
k2 are given by

Zk1 =
√
n1δ̂k1√

2 ˆ̄pk1(1 − ˆ̄pk1)
and Z′′

k2 =
√
n′

2 − n1δ̂
′′
k2√

2 ˆ̄p′′
k2(1 − ˆ̄p′′

k2)
,

where δ̂′′
k2 = (n′

2 − n1)−1
(∑n′

2
i=n1+1 YTki −∑n′

2
i=n1+1 YCkj

)
. Therefore, the CHW

statistics are Z′
k2 = w1Zk1 +w2Z

′′
k2, where w1 = √

n1/n2 and w2 = √
(n2 − n1)/n2.

As mentioned in Sect. 14.3.2, the MSS for DF-A and DF-A’ is given as 1146
per intervention group, based on an alternative hypothesis of a difference for both
AAD (δ1 = −0.10 with pC1 = 0.20) and CDD (δ2 = −0.02 with pC2 = 0.04),
ρ = 0.0, 0.3, 0.5, and 0.8, with an alternative hypothesis of differences in propor-
tions for AAD (pT1 = 0.2 and pC1 = 0.4) and CDD (pT2 = 0.02 and pC2 = 0.04)
with the overall power of 80 % at the significance level of 2.5 % by one-sided test,
using the normal approximation method, where the critical values are determined
by the OF for both endpoints, with the LD α-spending method with equally spaced
information level.

Table 14.3 displays the recalculated sample sizes, conditional powers, and empir-
ical conditional powers for DF-A and DF-A’ under the five scenarios, i.e., (i) both
differences in proportions, at the interim, are the same as those at the planning, (ii)
both differences in proportions, at the interim, are smaller than those at the plan-
ning, (iii) both differences in proportions at the interim are larger than those at the
planning, (iv) only the difference in proportions for AAD at the interim is smaller
than that at the planning, and (v) only the difference in proportions for CDD at the
interim is smaller than that at the planning. The sample size is recalculated when
the conditional power evaluated at the interim analysis is lower or higher than the
desired power 1 − β under the three options of (a) only decreasing the sample size,
(b) only increasing the sample size, and (c) increasing or decreasing the sample size,
with a prespecified constant for the maximum allowable sample size λ = 1.5 and
ρ = 0.0, where the critical values are determined by the OF for both endpoints, with
the LD α-spending method with equally spaced information level.
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Table 14.3 The recalculated sample sizes, conditional powers (CPs) and empirical conditional
powers (ECP) for DF-A’ and DF-A under the five scenarios, i.e., (i) both differences in proportions,
at the interim, are the same as those at the planning, (ii) both differences in proportions, at the
interim, are smaller than those at the planning, (iii) both differences in proportions, at the interim,
are larger than those at the planning, (iv) only the difference in proportions for AAD at the interim
is smaller than that at the planning, and (v) only the difference in proportions for CDD at the interim
is smaller than that at the planning. The sample size is recalculated when the CP evaluated at the
interim analysis is lower or higher than the desired power 1 −β, under the three options of (a) only
decreasing the sample size, (b) only increasing the sample size, and (c) increasing or decreasing
the sample size, with a prespecified constant for the maximum allowable sample size λ = 1.5
and ρ = 0.0, where the critical values are determined by the OF for both endpoints, with the LD
α-spending method with equally spaced information level.

Scenario-observed
effect at the interim

Before recalculation After recalculation

DF # δ1 δ2 Options CP(%) ECP(%) n′
2 CP(%) ECP(%)

DF-A (i) 0.1 0.02 (a) 88.2 88.7 1146 88.2 88.7

(b) 88.2 88.7 967 80.2 80.5

(c) 88.2 88.7 967 80.2 80.5

(ii) 0.05 0.01 (a) 54.8 55.2 1719 82.8 83.3

(b) 54.8 55.2 1146 54.8 55.2

(c) 54.8 55.2 1719 82.8 83.3

(iii) 0.15 0.025 (a) 96.3 96.2 1146 96.3 96.2

(b) 96.3 96.2 669 73.1 72.6

(c) 96.3 96.2 669 73.1 72.6

(iv) 0.05 0.02 (a) 88.2 88.8 1146 88.2 88.8

(b) 88.2 88.8 1074 85.5 85.9

(c) 88.2 88.8 1074 85.5 85.9

(v) 0.10 0.01 (a) 54.8 55.3 1719 82.8 83.6

(b) 54.8 55.3 1146 54.8 55.3

(c) 54.8 55.3 1719 82.8 83.6

DF-A’ (i) 0.1 0.02 (a) 88.2 88.8 1146 88.2 88.8

(b) 88.2 88.8 968 80.2 80.8

(c) 88.2 88.8 968 80.2 80.8

(ii) 0.05 0.01 (a) 54.8 55.2 1719 82.8 83.3

(b) 54.8 55.2 1146 54.8 55.2

(c) 54.8 55.2 1719 82.8 83.3

(iii) 0.15 0.025 (a) 96.3 96.2 1146 96.3 96.2

(b) 96.3 96.2 669 73.1 72.7

(c) 96.3 96.2 669 73.1 72.7



256 K. Asakura et al.

Table 14.3 (continued)

Scenario-observed
effect at the interim

Before recalculation After recalculation

DF # δ1 δ2 Options CP(%) ECP(%) n′
2 CP(%) ECP(%)

(iv) 0.05 0.02 (a) 88.2 88.8 1146 88.2 88.8

(b) 88.2 88.8 1074 85.5 85.9

(c) 88.2 88.8 1074 85.5 85.9

(v) 0.10 0.01 (a) 54.8 55.3 1719 82.8 83.6

(b) 54.8 55.3 1146 54.8 55.3

(c) 54.8 55.3 1719 82.8 83.6

DF-A at the interim time point not necessarily simultaneously, DFA’ at the same interim time
point of the trial, AAD antibiotic-associated diarrhoea, CDD Clostridium difficile diarrhoea, OF
O’Brien–Fleming, LD Lan–DeMets

There is no major difference in conditional powers for sample size recalculation
between DF-A and DF-A’. In all scenarios of observed effects at the interim, when
only allowing an increase in the sample size, the conditional power (and empirical
conditional power) is always higher than the desired power of 80 %. When allow-
ing an increase or a decrease in the sample size, except for scenario (iii) of both
differences in proportions at the interim are larger than those at the planning—the
conditional powers are always larger than desired power of 80 %. On the other hand,
when only allowing a decrease in the sample size, the conditional powers are al-
ways lower than the desired power. In this example, the sample size recalculation is
supposed to be conducted at 50 % information time. As Asakura et al. (2014) dis-
cuss, the timing of sample size recalculation is important. The power is much lower
than desired power if the sample size recalculation is conducted early in the study,
especially when allowing for a decrease in the sample size.

14.5 Hierarchical Hypothesis Testing with Adaptive Type I
Error Allocation

One limitation in the methods discussed in Sect. 14.2 is the requirement that the
allocation of type I error to each interim analysis for both endpoints is prespecified,
using an α-spending function. Tsong et al. (2004) discuss a method for hierarchical
hypothesis testing with adaptive type I error allocation in group-sequential three-arm
clinical trials for the assessment of equivalence and efficacy of a generic product,
where the co-primary objectives of the study are to assess whether the generic and
reference product are effective relative to placebo and whether it is equivalent to the
reference product using a prespecified equivalence limit. One of their methods is to
evaluate equivalence only after both the null hypotheses of efficacy are rejected and
then to specify the type I error allocation, just before the equivalence evaluation is
performed.
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In this section, we discuss an extension to the hierarchical hypothesis testing
with adaptive type I error allocation strategy. In this method, first, the order of the
hypothesis testing, i.e., which endpoint is first tested, is determined, and then the type
I error allocation for the first-tested endpoint is prespecified. If superiority has been
established for the first-tested endpoint at lth analysis (l = 1, . . .,L), then the type I
error allocation for the second-tested endpoint is specified just before the hypothesis
testing for the second-tested endpoint is performed, where L is a maximum of planned
analyses. If superiority has been established for the second-tested endpoint at l∗th
analysis (l∗ = l, . . .,L), then the null hypothesis H0 is rejected and study is stopped.
The stopping rule is formally given as follows:

For the first-tested endpoint, at the lth analysis (l = 1, . . .,L − 1),
if Z1l > c1l and then evaluate the second-tested endpoint,
otherwise, continue to the (l + 1) th analysis,

at the Lth analysis,
if Z1L > c1L and then evaluate the second-tested endpoint,
otherwise, do not reject H0.

For the second-tested endpoint, at the l∗th analysis (l∗ = l, . . .,L − 1),
if Z2l∗ > c2l∗ , then reject H0 and stop the trial,
otherwise, continue to the (l∗ + 1) th analysis,

at the Lth analysis
if Z2L > c2L, then reject H0,
otherwise, do not reject H0.

We provide an example to illustrate the method using the PLACIDE study. Table 14.4
displays the MSS andASN per intervention group (equally sized groups: rr = 1) with
the two hypothesis-testing orders, i.e., (1) AAD is first tested, then CDD is tested
and (2) CDD is first tested and then AAD is tested. The sample size was derived
using an alternative hypothesis of differences in proportions for AAD (pT1 = 0.2
and pC1 = 0.4) and CDD (pT2 = 0.02 and pC2 = 0.04) with the overall power
of 80 % at the significance level of 2.5 % by the one-sided test, using the normal
approximation method discussed in the previous section, where ρ = ρT = ρC =
0.0, 0.3, 0.5 and 0.8; L = 1, 2, 3, 4, and 5. The critical values are determined by the
four testing procedure combinations, i.e., (i) the OF for both endpoints (OF–OF),
(ii) the OF for AAD and the PC for CDD (OF–PC), (iii) the PC for AAD and the
OF for CDD (PC–OF), and (iv) the PC for both endpoints (PC–PC), with the LD
α-spending method, with equally spaced information level.

There is no major difference in MSS and ASN between the two hypothesis-testing
orders, (1) first AAD, then CDD and (2) first CDD and then AAD when the same
testing procedure is selected for both endpoints. The smallest MSS is given by when
the AAD is first tested, or when the CDD is first tested, with the OF–OF or PC–
OF testing procedure combination. The smallest ASN is given by when the AAD is
first tested, or the CDD is first tested, with PC–PC testing procedure combination.
Comparing the method to the methods with the prespecified type I error allocation,
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Table 14.4 The MSS and ASN (equally sized groups). The MSS was calculated to detect the joint
effect for both endpoints with the overall power of 1 − β = 80 % at the one-sided significance level
of α = 2.5 %, based on the assumption from the PLACIDE study. The critical values are determined
by the four testing procedure combinations, i.e., (i) the OF for both endpoints (OF–OF), (ii) the
OF for AAD and the PC for CDD (OF–PC), (iii) the PC for AAD and the OF for CDD (PC–OF),
and (iv) the PC for both endpoints (PC–PC), with the LD α-spending method with equally spaced
information level.

Order of
testing

(i) OF–OF (ii) OF–PC (iii) PC–OF (iv) PC–PC

ρ L MSS ASN MSS ASN MSS ASN MSS ASN

AAD
→ CDD

0.0 1 1143 1143 1143 1143

2 1146 1052.3 1281 975.8 1146 1052.3 1281 975.8

3 1156 988.2 1336 936.4 1156 988.2 1336 936.1

4 1164 957.8 1363 920.7 1164 957.7 1366 918.4

5 1170 940.6 1377 913.3 1170 940.6 1384 908.7

0.3 1 1143 1143 1143 1143

2 1146 1052.3 1281 975.8 1146 1052.3 1281 975.8

3 1156 988.2 1336 936.3 1156 988.2 1336 936.1

4 1164 957.7 1363 919.3 1164 957.7 1366 918.4

5 1170 940.6 1376 910.4 1170 940.6 1384 908.6

0.5 1 1143 1143 1143 1143

2 1146 1052.3 1281 975.8 1146 1052.3 1281 975.8

3 1156 988.2 1336 936.3 1156 988.2 1336 936.1

4 1164 957.7 1363 919.3 1164 957.7 1366 918.4

5 1170 940.6 1376 910.4 1170 940.6 1384 908.6

0.8 1 1143 1143 1143 1143

2 1146 1052.3 1281 975.8 1146 1052.3 1281 975.8

3 1156 988.2 1336 936.3 1156 988.2 1336 936.1

4 1164 957.7 1363 919.3 1164 957.7 1366 918.4

5 1170 940.6 1376 910.4 1170 940.6 1384 908.6

CDD 0.0 1 1143 1143 1143 1143

→ AAD 2 1146 1052.3 1281 975.8 1146 1052.3 1281 975.8

3 1156 988.2 1336 936.4 1156 988.2 1336 936.1

4 1164 957.8 1366 923.9 1164 957.7 1366 918.4

5 1170 940.6 1384 924.4 1170 940.6 1384 908.6

0.3 1 1143 1143 1143 1143

2 1146 1052.3 1281 975.8 1146 1052.3 1281 975.8

3 1156 988.2 1336 936.3 1156 988.2 1336 936.1

4 1164 957.7 1366 922.7 1164 957.7 1366 918.4

5 1170 940.6 1384 922.3 1170 940.6 1384 908.6
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Table 14.4 (continued)

Order of
testing

(i) OF–OF (ii) OF–PC (iii) PC–OF (iv) PC–PC

ρ L MSS ASN MSS ASN MSS ASN MSS ASN

0.5 1 1143 1143 1143 1143

2 1146 1052.3 1281 975.8 1146 1052.3 1281 975.8

3 1156 988.2 1336 936.3 1156 988.2 1336 936.1

4 1164 957.7 1366 922.7 1164 957.7 1366 918.4

5 1170 940.6 1384 922.3 1170 940.6 1384 908.6

0.8 1 1143 1143 1143 1143

2 1146 1052.3 1281 975.8 1146 1052.3 1281 975.8

3 1156 988.2 1336 936.3 1156 988.2 1336 936.1

4 1164 957.7 1366 922.7 1164 957.7 1366 918.4

5 1170 940.6 1384 922.3 1170 940.6 1384 908.6

MSS maximum sample size, ASN average sample number, AAD antibiotic-associated diarrhoea,
CDD Clostridium difficile diarrhoea, OF O’Brien–Fleming, PC Pocock, LD Lan–DeMets

the method provides savings (i.e., 10 to 30 smaller) of the ASN than DF-A or DF-
A’, depending on the testing procedure combinations, although there is no major
difference in MSS for all of the testing procedure combinations. Although the use
of the method may be attractive in practice, however, further investigation of the
method regarding the behavior of type I error rate is needed as discussed by Hung
et al. (2007).

14.6 Summary

The determination of sample size and the evaluation of power are fundamental and
critical elements in the design of a clinical trial. If a sample size is too small, then
important effects may not be detected, while a sample size that is too large is wasteful
of resources, and unethically puts more participants at risk than necessary. Recently,
many clinical trials were designed with more than one endpoint considered as co-
primary. Co-primary endpoints offer an attractive design feature as they capture
a more complete characterization of the effect of an intervention. The effects of
interventions are multidimensional requiring the measurement of several important
clinical endpoints. However, co-primary endpoints create challenges in the evaluation
of power and the calculation of sample size during trial design. Current methods often
result in large and impractical sample sizes.

In this chapter, we discuss group-sequential designs in clinical trials with co-
primary endpoints, where both endpoints are binary outcomes. To provide the
fundamental foundation, we consider a two-arm parallel-group trial designed to
evaluate whether an experimental intervention is superior to a control. We describe
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two decision-making frameworks for evaluating joint effects in group-sequential de-
signs, and define the corresponding power and sample size calculations based on
the normal approximation method. We evaluate the utility of using the normal ap-
proximation method in practice using Monte Carlo simulation, and investigate the
behavior of the required sample size with varying design assumptions. We also dis-
cuss sample size recalculation based on the observed interim effects. Furthermore,
we discuss a hierarchical hypothesis testing with adaptive type I error allocation for
clinical trials with co-primary endpoints in order to improve power.

The Monte Carlo simulation results suggest that the normal approximation works
well in most situations. However, in the occurrence of extremely small event rates
or small sample sizes, the Monte Carlo simulation-based method or more direct
methods may be more appropriate although this occurs at the expense of considerable
computational resources.

As with group-sequential trials involving a single primary endpoint, designing
group-sequential trials with co-primary endpoints can provide efficiencies by detect-
ing trends prior to planned completion of the trial. It may also be prudent to evaluate
design assumptions, at the interim, and potentially make design adjustments (i.e.,
sample size recalculation) if design assumptions were dramatically inaccurate.

The main objective of this chapter is to provide the fundamental foundation in
group-sequential designs for co-primary endpoints. Our discussion is restricted to
a superiority clinical trial comparing two interventions. The design allows for early
stopping when large intervention differences are observed, i.e., rejecting a null hy-
pothesis only. The PLACIDE study, mentioned in Sect. 14.3.2, failed to demonstrate
a beneficial effect of probiotic on bothAAD and CDD. The observed treatment effects
were smaller than the assumed effects. Stopping a clinical trial, when the interim
results suggest effect sizes are smaller than those deemed as clinically important, can
also save resources that could be used on more promising research. The methodol-
ogy discussed here can be extended to other situations such as evaluating futility or
simultaneously evaluating both efficacy and futility.

Acknowledgments Research reported in this publication was supported by JSPS KAKENHI
under Grant Number 26330038 and the National Institute of Allergy and Infectious Diseases of
the National Institutes of Health under Award Numbers UM1AI104681 and UM1AI068634. The
content is solely the responsibility of the authors and does not necessarily represent the official
views of the National Institutes of Health.

References

Allen SJ, Wareham K, Bradley C, Harris W, DharA, Brown H, FodenA, Cheung WY, Gravenor MB,
Plummer S, Phillips CJ, Mack D (2012) A multicentre randomised controlled trial evaluating
lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea in older people
admitted to hospital: the PLACIDE study protocol. BMC Infect Dis 12:108



14 Group-Sequential Designs When Considering Two Binary Outcomes . . . 261

Allen SJ, Wareham K, Wang D, Bradley C, Hutchings H, Harris W, Dhar A, Brown H, Foden A,
Gravenor MB, Mack D (2013) Lactobacilli and bifidobacteria in the prevention of antibiotic-
associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a
randomised, double-blind, placebo-controlled, multicentre trial. The Lancet 382:1249–1257

American College of Gastroenterology website (2013) Understanding irritable bowel
syndrome. www.patients.gi.org/gi-health-and-disease/understanding-irritable-bowel-syndrome
leaving site icon. Accessed 4 Dec 2013

Asakura K, Hamasaki T, Sugimoto T, Hayashi K, Evans SR, Sozu T (2014) Sample size de-
termination in group-sequential clinical trials with two co-primary endpoints. Stat Med
33:2897–2913

Chuang-Stein C, Stryszak P, Dmitrienko A, Offen W (2007) Challenge of multiple co-primary
endpoints: a new approach. Stat Med 26:1181–1192

Cochran WG (1952) The χ2 test of goodness of fit. Ann Math Stat 25:315–345
Committee for Medicinal Products for Human Use (2013) Guideline on the evaluation of medicinal

products for 4 the treatment of irritable bowel syndrome. CPMP/EWP/785/97 Rev. 1
Cui L, Hung HMJ, Wang SJ (1999) Modification of sample size in group sequential clinical trials.

Biometrics 55:853–857
Eaton ML, Muirhead RJ (2007) On multiple endpoints testing problem. J Stat Plan Inference

137:3416–3429
Emrich LJ, Piedmonte MR (1991) A method for generating high-dimensional multivariate binary

variates. Am Stat 45:302–304
Food and Drug Administration (2012) Guidance for industry. Irritable bowel syndrome: clinical

evaluation of products for treatment. Center for Drug Evaluation and Research, Food and Drug
Administration, Rockville

Grundmann O, Yoon SL (2010) Irritable bowel syndrome: epidemiology, diagnosis, and treatment:
an update for health-care practitioners. J Gastroenterol Hepatol 25:691–699

Hamasaki T, Sugimoto T, Evans SR, Sozu T (2013) Sample size determination for clinical trials
with co-primary outcomes. Exponential event-times. Pharm Stat 12:28–34

Hung HMJ, Wang SJ (2009) Some controversial multiple testing problems in regulatory applica-
tions. J Biopharm Stat 19:1–11

Hung HMJ, Wang SJ, O’Neill R (2007) Statistical considerations for testing multiple endpoints in
group sequential or adaptive clinical trials. J Biopharm Stat 17:1201–1210

Julious S, Mclntyre NE (2012) Sample sizes for trials involving multiple correlated must-win
comparisons. Pharm Stat 11:177–185

Kordzakhia G, Siddiqui O, Huque MF (2010) Method of balanced adjustment in testing co-primary
endpoints. Stat Med 29:2055–2066

Lan KKG, DeMets DL (1983) Discrete sequential boundaries for clinical trials. Biometrika 70:659–
663

Landau S, Stahl D (2013) Sample size and power calculations for medical studies by simulation
when closed form expressions are not available. Stat Methods Med Res 22:324–345

Le Cessie S, van Houwelingen JC (1994) Logistic regression for correlated binary data. Appl Stat
43:95–108

O’Brien PC, Fleming TR (1979) A multiple testing procedure for clinical trials. Biometrics 35:549–
556

Offen W, Chuang-Stein C, Dmitrienko A, Littman G, Maca J, Meyerson L, Muirhead R, Stryszak
P, Boddy A, Chen K, Copley-Merriman K, Dere W, Givens S, Hall D, Henry D, Jackson JD,
Krishen A, Liu T, Ryder S, Sankoh AJ, Wang J, Yeh CH (2007) Multiple co-primary endpoints:
medical and statistical solutions. Drug Inf J 41:31–46

Pocock SJ (1977) Group sequential methods in the design and analysis of clinical trials. Biometrika
64:191–199

Prentice RL (1988) Correlated binary regression with covariates specific to each binary observation.
Biometrics 44:1033–1048



262 K. Asakura et al.

Senn S, Bretz F (2007) Power and sample size when multiple endpoints are considered. Pharm Stat
6:161–170

Sozu T, Sugimoto T, Hamasaki T (2010) Sample size determination in clinical trials with multiple
co-primary binary endpoints. Stat Med 29:2169–2179

Sozu T, Sugimoto T, Hamasaki T (2011) Sample size determination in superiority clinical trials
with multiple co-primary correlated endpoints. J Biopharm Stat 21:1–19

Sozu T, Sugimoto T, Hamasaki T (2012) Sample size determination in clinical trials with multiple
co-primary endpoints including mixed continuous and binary variables. Biometrical J 54:716–
729

Sugimoto T, Sozu T, Hamasaki T (2012) A convenient formula for sample size calculations in
clinical trials with multiple co-primary continuous endpoints. Pharm Stat 11:118–128

Sugimoto T, Sozu T, Hamasaki T, Evans SR (2013) A logrank test-based method for sizing clinical
trials with two co-primary time-to-events endpoints. Biostatistics 14:409–421

Tsong Y, Zhang J, Wang SJ (2004) Group sequential design and analysis of clinical equivalence
assessment for generic nonsystematic drug products. J Biopharm Stat 14:359–373

Xiong C, Yu K, Gao F, Yan Y, Zhang Z (2005) Power and sample size for clinical trials when
efficacy is required in multiple endpoints: application to an Alzheimer’s treatment trial. Clin
Trials 2:387–393



Chapter 15
Issues in the Use of Existing Data: As Controls
in Pre-Market Comparative Clinical Studies

Lilly Q. Yue

Abstract Randomized, well-controlled clinical trials have been viewed as the gold
standard in the evaluation of medical products, and observational comparative clin-
ical studies also play an important role in the evaluation in both premarket and
postmarket settings. Such observational comparative studies could be concurrent or
nonconcurrent depending on the timing when patients get treated. A nonconcurrent
control group could be formed from patients with existing data, when indeed appro-
priate. For example, a control group could come from patients with historical data
collected from earlier investigational device exemption (IDE) studies of previously
approved medical products or selected from a well-designed and executed registry
database. However, the construction of a control group from existing data presents
extra challenges compared to the formation of a concurrent control group. In this
chapter, some of the design challenges, such as validity of study design, historical
control group selection and treatment group comparability, and identification of a
control group from an applicable registry database, are discussed and illustrated with
examples from regulatory perspectives.

15.1 Introduction

Carefully designed and well-conducted randomized controlled trials (RCTs) provide
the highest level of evidence in the safety and effectiveness evaluation of medical
products, but may not be feasible in some circumstances due to practical or ethi-
cal reasons. As an alternative, observational (nonrandomized) comparative studies
play an important role in the medical product evaluations, in both premarket and
postmarket regulatory settings. A comparator (control) used in such an observational
comparative study could be concurrent or nonconcurrent in terms of timing when
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patients get treated, and the patients in the control group could be enrolled in the
current investigational study or obtained from existing data. For example, when
deemed appropriate, a control group could be formed from patients with existing
data collected from earlier investigational device exemption (IDE) studies of previ-
ously approved medical products or may be selected from an applicable high-quality
registry database. The potential benefits in using existing data for controls include
saving in cost or time of conducting clinical studies. However, statistical and regula-
tory issues also arise regarding the validity of study design and the interpretability of
study results. In this chapter, some study design considerations will be given to the
issues such as study design process, historical control selection and treatment group
comparability, and control group construction from a registry database, illustrated
with examples.

15.2 Study Design Process and Validity

One key advantage of RCT is that with randomization, the distributions of all base-
line covariates, observed and unobserved, tend to be balanced across two treatment
groups, and another critical feature of RCT is that the study is “prospectively” de-
signed, i.e., it is designed without access to any outcome data from either treatment
group. Rubin (2001, 2007, 2008) advocates that observational studies can and should
be designed to approximate randomized experiments as closely as possible without
access to any outcome data at the design stage. To do so, there are some matching
methods developed to design observational study and perform outcome analysis.
One example of such methods is propensity score methodology, introduced by
Rosenbaum and Rubin (1983, 1984). Propensity score is the probability of receiving
treatment rather than control, conditional on observed baseline covariates, and the
methodology could be used to design observational studies in a way analogous to
the way RCT is designed: without seeing any outcome data, and then to conduct
outcome analysis based on the resulting study design. The design part refers to em-
ploying propensity scores to help create distributional balance of covariates between
the two treatment groups, including propensity score modeling and covariate bal-
ance assessment, and to specifying statistical analysis plan (SAP) for the treatment
comparison on outcomes. These activities have to be accomplished without access to
any outcome data, as is the case in RCT. The analysis part refers to making treatment
comparison on outcome data, adjusting for propensity scores.

In practice, however, sufficient attention has not been paid to the prospective
design as it should. Oftentimes, an observational study is designed as if it were
an RCT—prior to enrolling patients, selecting a control group, determining sample
size, specifying covariates, etc., and after completing patient follow-up, perform-
ing outcome analysis adjusted for baseline covariates using traditional regression or
propensity score methods with both outcome and covariate data in sight. Under such
a practice, arguments in the statistical modeling and concerns with type I error arise,
as the model-based analyses may be repeated to produce desired answers. Without
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a prospective design, Rubin (2001) points out that “It is essentially impossible to be
objective when a variety of analyses are being done, each producing an answer, fa-
vorable, neutral, or unfavorable to the investigator’s interests.” Indeed, such a study
design resulted in debates in the objectivity of study design and the concerns with
the reliability and interpretability of outcome analyses. For example, Yue (2012) de-
scribes a premarket study with a historical control, in which, without a prospective
study design, two fitted propensity score estimation models were submitted to the
Food and Drug Administration (FDA)—one with 10 out of 35 covariates leading to
a so-called significant outcome result and the other with 15 covariates but “insignif-
icant” outcome result. As the propensity scores were estimated with both covariates
and outcomes data in sight, it was hard to tell how many propensity score models
had been tried, and therefore, there was no way to control for the type I error. An-
other problem encountered in a number of premarket observational studies is that the
treatment group incomparability was discovered at the final outcome analysis stage,
which left no time to identify a more appropriate control group for replacement.
All of these issues led to challenges in the interpretation of study results and then
difficulties in regulatory decision making.

To solve the problems discussed above, it is critical to follow the principle of
prospective design: approximate RCT and balance covariates; design study without
access to any outcome data; and, moreover, communicate with FDA and get agree-
ment on the study design prospectively. In doing so, the following two-stage design
is recommended for premarket observational comparative studies.

Stage I: Initial Study Planning by a Sponsor Stage I involves initial study plan-
ning performed by a sponsor, and begins before the investigational study starts. The
tasks performed in this stage include, but are not limited to (1) identify a potential
control group; (2) prespecify the inclusion/exclusion criteria so that the similar pa-
tient populations are being compared; (3) prespecify an appropriate set of baseline
covariates to be collected in the study and utilized in propensity score modeling,
based on prior clinical knowledge but not outcomes under consideration; (4) based
on previous knowledge, make sure all clinically important covariates are measured
similarly in the two treatment groups; (5) specify propensity score method(s) to be
used and provide related details; and (6) perform preliminary sample size estimation.
Some commitments are needed to: (1) identify an independent statistician, who is
masked to the outcome data of treatment and control groups and will perform the
study design in the stage II, and (2) establish firewalls to protect outcomes of treat-
ment and control groups from leaking. There may be a need to change the control
group if the treatment group incomparability is identified at the design stage II, or to
increase the sample size if lower study power is noticed.

Stage II:Approximating RCT by the Independent Statistician Identified in Stage
I The design stage II involves utilizing the propensity scores to create distributional
balance of covariates between the two treatment groups (referring to propensity score
modeling and covariates balance assessment) and specifying a SAP for the treatment
comparison on outcome data. This design stage should start as soon as all patients
are enrolled, and the design should be accomplished by the independent statistician
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identified in the design stage I, without access to any outcome data of either treatment
group. In details, if some control patients were to be excluded from the study, provide
the justification on the exclusion and information on how to exclude control patients;
revisit sample size estimation and power; develop SAP on outcome data analysis,
based on the resulting study design; communicate with the FDA and provide detailed
information on the propensity score modeling and covariate balance assessment; and
reach an agreement with the FDA on the final study design.

In the regulatory environment, the expected benefits of such a prospective study
design include: (1) avoid arguments regarding “study design” at the final outcome
analysis stage; (2) increase the integrity of study design and creditability of study
results; (3) increase the consistency, transparency, and predictability of regulatory
decision making; and (4) increase flexibility of study design, in terms of control
group selection, sample size estimation, and propensity score method(s) to be used.
In addition, there is saving in time for a sponsor to complete the study and submit
it to the FDA for evaluation, as the design stage II takes place during the subject
follow-up, and for the FDA to make regulatory decisions, as the number of review
cycles is expected to be decreased.

15.3 Historical Control Selection and Treatment Group
Comparability

One of the major benefits for utilizing a historical control is the potential saving in
time or cost. However, the usage of historical control may present great challenges
for the study design and interpretation of study results. Due to the change of medical
practice and the rapid evolution of device technology, there may be significant dif-
ferences between the two treatment groups in terms of patient population, definition
and adjudication of clinical outcomes, treatment management, timing and length
of patient follow-up, and collection of important baseline confounding covariates.
Another challenge particularly involved in the study design is that the outcomes of
historical control group are already available in designing the current investigational
study, and therefore extra efforts would be needed to mask the outcomes to the
study designers. In selecting a historical control for an investigational study, these
challenges need to be carefully considered.

As discussed above, one major issue encountered in a number of device evalu-
ations is the lack of treatment comparability, even after covariate adjustment. Yue
(2007) provides an example where the enrollment time between the two treatment
groups was minimally overlapped (Fig. 15.1) and some important patient charac-
teristics were imbalanced between the two treatment groups. Two propensity score
stratification models were fitted—one with the enrollment time and the other with-
out, but neither of the models presented a reasonable overlap of propensity score
distribution as indicated in Figs. 15.2 and 15.3. Particularly, it was noticed that the
fifth propensity score quintile contained 30 % of the treated patients but did not have
any control patients to compare with (Table 15.1). The findings led to a conclusion
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Fig. 15.1 Patient enrollment
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Fig. 15.3 Estimated propensity scores (without time)

and search for a more acceptable one. In doing so, the objectivity of study design is
maintained as long as the outcome data are not involved.

15.4 Control Group Selection from Registry Database

A well-designed and implemented registry database may provide valuable real-world
resources and could be used to form a control group in the evaluation of a new in-
vestigational device. However, a study design with such a control group not only
proposes the similar challenges discussed in the previous section but also introduces
additional ones unique to the use of registry database. The challenges include regu-
latory issues such as informed consent and ethics (not discussed here), and statistical
study design issues, for example, the quality of registry database and the formation
of control group from the registry database, sample size, and power consideration.

For a registry database to serve as an acceptable control for an investigational med-
ical device, the registry data should be of high quality, comprehensive, complete,
and reliable. The clinical comparability between registry database and investiga-
tional study needs to be demonstrated with respect to patient population, treatment
management, patient follow-up, definition of endpoints, and the event adjudication.
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To identify an appropriate control group from a registry database, a good selection
strategy is needed. Unlike the sample size in a historical control obtained from a pre-
viously approved device, the number of available control patients may not be clear
in the study design stage I, and sometimes not all of the potential control patients are
comparable with the patients treated with a new device in the investigational study.
As the first step, the same patient inclusion/exclusion criteria proposed for the inves-
tigational device could be used to identify potential control patients from the registry
database, with the hope that the selected potential control group is comparable to
the treated group with respect to baseline covariate distributions. And then, some
matching methods, for example, propensity score matching or stratification, can be
utilized to finalize control group selection. In doing so, some control patients may
be reasonably discarded if they look nothing like any treated patients, with respect to
propensity scores and then baseline covariates. However, any attempt of excluding
treated patients could lead to a danger of changing the intended use of the device,
and therefore the practice should be discouraged in premarket settings. A hard lesson
has been learned as shown in the following example.

A new device was evaluated through the comparison to a control group obtained
from a registry database, using propensity score matching. Fifteen baseline covariates
were identified and a sample size of 250 was proposed for the investigational device.
Using the same inclusion/exclusion criteria specified for the investigational device,
1000 potential control patients were initially selected from the registry. And then, 1:1
propensity score matching was performed with 12 out of 15 covariates included in
the propensity score model, leading to a selection of 150 matched pairs—150 out of
1000 potential control patients and 150 out of 250 treated patients. The results raised
concerns by excluding 40 % treated patients: (1) the target patient population may
be changed. What patient population do the 60 % treated patients left in the study
represent? (2)The patient population parameters being estimated may be changed. (3)
What is the new indication for use with the device? (4) How to label the product? (5)
How reliable are the study results with the post hoc selected target patient population?

The following hypothetical example provides a simple illustration on how a con-
trol group could be appropriately selected from a registry. A sample size of 250 for
an investigational device was proposed and 15 covariates were specified at stage I.
Using the same inclusion/exclusion criteria, 1000 potential control patients were se-
lected. As preplanned, a propensity score stratification model with all 15 covariates
was fitted in stage II, leading to a possible study design indicated in Table 15.2. How-
ever, in the first propensity score quintile, there were no treated patients, indicating
the 250 potential control patients do not match any treated patients and therefore
could be reasonably removed from the consideration. Based on the remaining 750
potential control patients and 250 treated patients, a repeated propensity score strati-
fication model was fitted and the distribution of subjects by treatment group is listed
in Table 15.3. This repeated modeling process may lead to an appropriate control
group, if the covariate distribution balance between the two groups could be demon-
strated. However, the iterative propensity score modeling process is valid if and only
if outcome-free.



270 L. Q. Yue

Table 15.1 Distribution of patients in propensity score quintiles

1 2 3 4 5 Total

W/time Ctl 39 (58 %) 19 (28 %) 8 (12 %) 1 (2 %) 0 (0 %) 67

Trt 1 (0 %) 21 (16 %) 33 (25 %) 38 (29 %) 40 (30 %) 133

W/o time Ctl 30 (45 %) 25 (37 %) 8 (12 %) 4 (6 %) 0 (0 %) 67

Trt 11 (8 %) 14 (11 %) 32 (24 %) 36 (27 %) 40 (30 %) 133

Ctl control patients; Trt treated patients

Table 15.2 Distribution of patients at the five propensity score quintiles (1000 in control, 250 in
investigational device)

1 2 3 4 5 Total

Ctl 250 244 234 186 86 1000

Trt 0 6 16 64 164 250

Table 15.3 Distribution of patients at the five propensity score quintiles (750 in control, 250 in
investigational device)

1 2 3 4 5 Total

Ctl 196 193 172 128 61 1000

Trt 4 7 28 72 139 250

15.5 Summary

Premarket comparative studies using existing data need to be carefully and prospec-
tively designed to approximate RCT. It is crucial to design such studies without access
to any outcome data for the integrity and interpretability of study results. Propensity
score methodology can play an important role in the study design and outcome data
analysis.

Clinical comparability between the existing database and investigational study
is essential. For a registry to serve as an acceptable control population for a new
investigational product, the registry data must be of high quality, comprehensive,
complete, and reliable. A good strategy is critically needed for the selection of
control group from the registry database.
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Chapter 16
A Two-Tier Procedure for Designing
and Analyzing Medical Device Trials Conducted
in US and OUS Regions for Regulatory Decision
Making

Nelson Lu, Yunling Xu and Gerry Gray

Abstract The number of clinical trials conducted simultaneously in the USA and
outside of the US (OUS) for medical device development has been increasing over
the last decade. However, the presence of inherent regional differences in treatment
effects poses a great challenge to the US regulatory agency’s decision making. In this
chapter, we propose a two-tier procedure for analyzing data from such trials for the US
regulatory agency’s decision making, allowing treatment effects to vary from region
to region. We differentiate direct evidence from supporting evidence while using
both to exemplify the advantage of such trials for the US regulatory agency’s decision
making. The contribution of the supporting evidence can be adjusted according to the
expectation of the magnitude of regional differences and the statutory requirements
in the USA. Examples are presented to illustrate the design and analysis based on
our proposed procedure. Using the proposed two-tier procedure with an upfront
explicit decision tree can increase the predictability and transparency of the regulatory
decision making.

16.1 Introduction

In the past decade, more and more medical device sponsors have begun conducting
clinical trials simultaneously in the USA and outside of the US (OUS) to support
regulatory approval of their products in the USA. Such trials are referred as multi-
regional clinical trials (MRCTs) in this chapter. Lu et al. (2011) reported that from
2006 to 2010, about 21 % (17/81) of approved premarket applications (PMAs) for
therapeutic devices at the Center for Device and Radiological Health (CDRH) are
based on MRCTs conducted in the USA and OUS. Both sponsors and the Food and
Drug Administration (FDA) are embracing such a concept, hoping to speed up med-
ical device development, and thus to provide earlier availability of effective medical

Y. Xu ( ) · N. Lu · G. Gray
Division of Biostatistics, Center for Devices and Radiological Health, Food and Drug
Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
e-mail: Yun-Ling.Xu@fda.hhs.gov

© Springer International Publishing Switzerland 2015 273
Z. Chen et al. (eds.), Applied Statistics in Biomedicine and Clinical Trials Design,
ICSA Book Series in Statistics, DOI 10.1007/978-3-319-12694-4_16



274 N. Lu et al.

devices to patients in the USA. Nonetheless, statistical issues for design, conduct,
monitoring, and analysis of medical device MRCTs are very challenging, especially
in a regulatory setting. Such challenges may not be the same as the ones encoun-
tered in drug MRCTs due to the fundamental differences in the characteristics of the
products and the regulatory requirements among regions.

In Sect. 2 of this chapter, we present the issues associated with the current frame-
work for analyzing MRCTs for regulatory decision making regarding the US medical
device approval. In Sect. 3, a two-tier procedure is proposed for analyzing MRCTs for
regulatory decision making with close alignment with the US statutory requirements.
Examples for analyzing medical device trials are presented in Sect. 4, followed by
design considerations in Sect. 5. The chapter concludes with discussion in Sect. 6.

16.2 Issues with Current Practice in Analyzing Medical Device
MRCTs for Regulatory Decision Making in the USA

The statutory requirements for medical devices’ premarket approval may vary sig-
nificantly in different jurisdictions. For example, in the European Union (EU), the
demonstration of the device effectiveness is not required for the CE (Conformité Eu-
ropéenne or Communauté Européenne) marking (CE Mark 2012). For the approval
of a Class III medical device in the USA, a reasonable assurance of safety and effec-
tiveness has to be demonstrated as indicated by Section 513(a)(1)(C) of the Federal
Food, Drug, and Cosmetic Act (FD and C Act). As set forth in the US FD & C Act
513(a)(2), the safety and effectiveness of a medical device should be determined:
(A) with respect to the persons for whose use the device is represented or intended
and (B) with respect to the conditions of use prescribed, recommended, or suggested
in the labeling of the device (Food, Drug and Cosmetic Act 2012). These statutory
provisions specify that a finding of reasonable assurance of safety and effectiveness
must be supported by data relevant to the target population, and evaluated in light
of the device labeling (Guidance on the Collection of Race and Ethnicity Data in
Clinical Trials 2012).

Following the US statutory requirement, if a study is intended to eventually sup-
port a premarket submission in the USA, selected study subjects should adequately
reflect the target population for the device. This means, ideally the study should
be conducted in the USA. Apparently, not all subjects in an MRCT are from USA.
Regardless of where a study is conducted, it should be relevant to understanding the
safety and effectiveness of the device when used in US subjects with regard to subject
demographics, standard of care, practice of medicine, and any cultural differences
in terms of expectations regarding medical care. “The Secretary shall accept data
from clinical investigations conducted outside of the United States, including the
European Union, if the applicant demonstrates that such data are adequate under
applicable standards.”(FADASIA 2014)

Currently, statistical inference on the global estimate of treatment effect based on
pooled data is often used for regulatory decision making in approval of a medical
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device in the USA based on an MRCT. Following International Conference on Har-
monization (ICH) E5 Q&A #11 (2012), data from all regions are pooled together for
analysis through prespecified hypothesis testing with a formal decision rule, and the
treatment effect consistency across regions is assessed in a post hoc manner without a
formal decision rule. There are notable difficulties associated with this current prac-
tice in analyzing MRCTs for regulatory decision making. To facilitate the discussion
of these issues, let us set up a cell-mean model as follows:

For a randomized controlled superiority MRCT, let k index region: 1, 2, . . ., K ; l
index treatment (t) and control (c); nk

l be the sample size in region k for treatment
l; and Nk be the size of the intended population in region k; μl

k be the cell mean for
the population in region k with treatment l; δk ( =μk

t −μk
c) be the treatment effect

in region k. In a cell-mean model, the inference on the global mean of treatment
effect in an MRCT is essentially to test the following hypothesis, where a larger μ

indicates a better result:

H0 : (n1
t /n.t )μ1

t + . . . + (nK
t/n.t )μK

t ≤ (n1
c/n.c)μ1

c + . . . + (nK
c/n.c)μK

c

i.e., a test of treatment effect averaged across regions with a weight of nk
l /n.l ; where

n.l = nl
1 + . . . + nK

l attached to the region k. Please observe that:

1. If nk
l is not proportional to Nk within the MRCT and δ1 = . . . = δK does not

hold, the inference on the global estimate by the above test is based on a sample
that does not match the population in any local region.

2. If nk
l is proportional to Nk within the MRCT and δ1 = . . . = δK does not hold,

the inference on the global estimate by the above test is for an intended population
in the whole area covered by all the participated regions, which, however, does
not match the population for any local region.

3. If δ1 = . . . = δK holds, the inference on the global estimate by the above test is
for an intended population, which matches the intended population in each of the
local regions.

From the above observation, current practice in analyzing MRCTs for a local regula-
tory decision making is valid for that region only if the treatment effect is consistent
across regions. There have been several papers discussing statistical methods for as-
sessing treatment effect consistency across regions, for example, Chen et al. (2010),
Hung et al. (2010), Quan et al. (2010), and Chen et al. (2012). Nonetheless, in
a traditional hypothesis testing framework, it is inherently difficult to prove that
δ1 = . . . = δK . The power for detecting treatment effect inconsistency among re-
gions is generally fairly low when a study is only powered for testing the overall
treatment effect.

A challenging regulatory issue is that, under the current framework, the regulatory
decision becomes less predictable and less transparent when facing an observed state
of heterogeneity in treatment effects. We believe that such an issue could be addressed
with a prespecified decision tree, and our proposed statistical procedure in the next
section should be able to serve this purpose.
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16.3 A Two-Tier Procedure

For regulatory decisions regarding medical devices in the USA, the statutory re-
quirement is that effectiveness be evaluated for the intended population identified in
the labeling (Food, Drug and Cosmetic Act 2012). The intended population is usu-
ally characterized by its unique intrinsic and extrinsic factors, such as demographics,
standard of care, practice of medicine, and any cultural differences in terms of expec-
tations regarding medical care. As some of the intrinsic and extrinsic factors could be
treatment effect modifiers, the effectiveness of a medical device should be evaluated
as an estimate of efficacy for the intended population in the USA conditional on its
unique intrinsic and extrinsic factors. In other words, potential regional difference
must be taken into account when a regulatory decision in the USA on a medical
device approval is made using MRCT data.

For medical devices, it is well known that physician’s skill and accessibility of
high-tech equipment contribute significantly to the effectiveness of a device in use,
and this varies from region to region (Campbell 2008; Rothwell 2005). Tanaka (2010)
discusses several US regulatory examples where regional treatment differences exist,
and Tsou et al. (2010) discuss treatment effect differences from country to country
in Asia. A similar pattern is observed in drug applications, as Hung et al. (2010)
commented that “We have seen that many MRCTs suggest that there are regional
differences in effect estimates.”

To account for potential regional difference into an upfront decision tree, we here
attempt to recast the issue of assessment on consistency of treatment effects across
regions to an issue of information borrowing. The task is to incorporate effectiveness
information from the OUS regions into the US regulatory decision making with
acknowledgment that treatment effects may vary among regions. We propose a two-
tier procedure for decision making in the US medical device approval based on
MRCTs. The procedure is outlined in the following and displayed in Fig. 16.1. For
convenience, region 1 is designated as the USA, the region of interest.

Step 1: Using data solely from region 1, test for H01: δ1 = 0.
If the p value (p1) is less than a critical value c1, declare a tier 1 success in region 1;
otherwise,
if p1 is less than a threshold value π (π ≥ c1), go to step 2;
otherwise, declare a failure in region 1.

Step 2: Using data from all regions, test for the effect of the variable treatment in
the model, which has main effects treatment and regions, and the interaction term of
treatment by region.

If the p value (p2) is less than a critical value c2, declare a tier 2 success in region 1;
otherwise, declare a failure in region 1.
In the proposed two-tier procedure, direct evidence for the effectiveness of the

product is evaluated in step 1 using data from region 1 only; and if warranted,
supporting evidence is provided in step 2 using data from all regions. The null
hypothesis listed in step 2 is that there is no treatment effect for the medical device
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Test H01 at level c1

Is p1 < c1? Declare Tier 1 Success

Is p1 < π? Test H0All at level c2

Declare failure Is p2 < c2? Declare Tier 2 Success

Declare failure

Yes

Yes

Yes

No

No

No

Fig. 16.1 Flow diagram of the two-tier procedure

based on a model that takes regions into consideration. For example, when testing a
normally distributed endpoint, the null hypothesis is equivalent to H0all: δ1 +δ2 + . . .

δK = 0 when using type 3 sum of squares. In this case, the treatment effect is expressed
as the average effectiveness across regions. Other statistical models may also be
considered. Note that the distribution of the outcome measures can be of any type
such as normal, binary, and censored failure time. A tier 1 success carries the most
direct effectiveness evidence taking into account all the intrinsic and extrinsic factors
associated with the intended population in the labeling; a tier 2 success is a synthesis
of direct and supporting evidence from all regions by taking regional differences into
account.

Note that the two-tier procedure (Fig. 16.1) is a decision procedure with an explicit
decision tree, which can help the predictability of regulatory decision making in
region 1. The false approval rate in region 1 is controlled at a level of c1 (for testing
H01 in tier 1) plus PH01,H0all (c1< p1<π, p2< c2) (for testing H0all in tier 2). A
desirable false approval rate in region 1 could be controlled by appropriately chosen
c1, π, c2, and group sample size in all regions (nk

l). In analyzing and designing an
MRCT with the two-tier procedure, these choices are of paramount importance to
interpretation of the trial result and should be based on the totality of considerations
from both statistical and local regulatory perspectives. In the following sections, the
choices of these parameters will be discussed.

The CDRH often has certain requirements for a minimal US sample size for some
products to ensure the applicability of the study conclusion to the USA. In general,
substantial expected regional differences would warrant a substantial proportion of
the total sample size allocated to the local region. Oncenk

l /n l
. is decided, one possible

alpha allocation to the direct evidence is (nk
l /n l

. ) α, where α is the probability of false
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Table 16.1 Average infarct
size for treatment and control
across regions

Treatment Control

Region US Europe US Europe

Average 30 33 40 31

Standard deviation 19 18 18 20

Sample size 77 132 24 48

approval in region 1. This reflects the extent of importance of direct evidence needed
in the regulatory decision making. A small c1 implies using supporting evidence
through the global test for H0all unless the direct evidence is quite strong, whereas a
larger c1 implies emphasizing direct evidence from the local region unless supporting
evidence is necessary. Given the choice of c1, the critical value c2 could then be
conservatively set equal to α−c1. Alternatively, c2 can be obtained by simulation; the
task is to find c2* such that the equation (c1 +PH01,H0all (c1< p1<π, p2< c2*)) = α

is satisfied. If the derived c2* is greater than α, c2 can be set at α and c1* can be
derived by satisfying (c1* +PH01,H0all (c1*< p1<π, p2< α)) = α. The threshold
π specified in two-tier procedure is a design parameter, which determines when to
use the supporting evidence. If π is set equal to c1, supporting evidence will never
be used in the local regulatory decision making. If π is set equal to 1, supporting
evidence will always be used in local regulatory decision making. Note that, when
π is set equal to 0.5, supporting evidence can be used as long as the point estimate
of treatment effect of the local region exhibits the desired direction. Depending on
the expectation of the magnitude of regional difference and the willingness to use
supporting evidence, π should be set between c1 and 0.5, say 0.15. This relatively
small value for π means that supporting evidence will only be used if the result from
tier 1 is “marginally” significant. This allows for the use of supporting evidence when
warranted, while ensuring that a negative or poor outcome in a local region will not
be overcome by results from other regions.

16.4 Examples for Analyzing Medical Device Trials

In this section, we illustrate how to analyze MRCTs data using the two-tier procedure
with two hypothetical medical device premarket applications (by regulatory policy,
we are not allowed to use real cases here). The first was an example of a cardiovascular
interventional trial, and the primary endpoint was infarct size. The trial was a two-
arm, randomized controlled study, and it was conducted in two regions: USA and
Europe. Randomization was stratified by region. The descriptive result of the trial is
shown in Table 16.1.

Suppose that the proposed two-tier procedure served as the decision rule in the
USA with the rate of false approval (α) being set at 0.025. Based on the sample
size within each region (Table 16.1), the critical value c1 is set at 0.009 ( = (nl

i /n
l
.)α)
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Table 16.2 Observed clinical success rate for treatment and control across regions

Treatment Control

Region USA Europe USA Europe

Clinical success rate 54.4 % (35/65) 52.4 % (37/71) 35.7 % (12/34) 26.7 % (10/36)

according to the prespecified rule. The threshold value π is set at 0.15 as suggested
above.

A two-sample t-test for the null hypothesis δus ( =μt
usμ

c
us) ≥ 0 resulted in a p value

(p1) of 0.0073, which is less than 0.009. Therefore, a tier 1 success is claimed; the
direct evidence is strong enough for claiming a study success.

The second was an example of an ablation catheter to treat atrial fibrillation,
and the primary endpoint was clinical success at 12 months. The trial was a two-
arm, randomized controlled study with a treatment to control ratio of 2:1, and it was
conducted in two regions: USA and Europe. Randomization was stratified by region.
The descriptive result of the trial is shown in Table 16.2.

Suppose that the proposed two-tier procedure served as the decision rule in the
USA with the rate of false approval (α) being set at 0.025. Based on the sample size
within each region (Table 16.2), set critical value c1 = 0.012 ( = (nl

i /n
l
.)α) according

to the prespecified rule. The threshold value π is set at 0.15.
A two-sample t-test for the null hypothesis δus ( =pt

us−pc
us) ≥ 0 using the US

data only resulted in a p value (p1) of 0.041. As p1 is greater than c1 (0.012) but
less than π (0.15), H0all: δUS + δEU = 0 is tested using both the US and EU data.
The resulting p value (p2) is 0.002, which is less than 0.013 (α-c1). Therefore, a
tier 2 success was claimed. That is, the marginally significant direct evidence plus
significant supporting evidence would lead to the US approval for the device.

16.5 Design Considerations: Sample Size Planning
and Operating Characteristics

With the traditional two-sample test assuming constant treatment effect across re-
gions, the design for an MRCT is relatively straightforward. Instead, using the
proposed two-tier procedure as a tool, the design for an MRCT requires careful
considerations and extensive simulations. In this section, we first discuss the
paradigm of sample size planning. Then, we illustrate the process with a hypothetical
example.

Fig. 16.2 is a diagrammatic display of the process for planning the sample size of
an MRCT.

Step 1: Define regulatory decision context The regulatory decision context is
device specific, mainly considering the intended population and its public health
impact in the USA. From our review experience, for some devices, the clinical
performance may be highly dependent on surgeon skills, health care system, medical
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Step 1:
Define 
regulatory 
decision 
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Step 2:
Specify 
sample size 

Step 3: 

Determine design 
parameters & check 
opera�ng characteris�cs

Step 4:
Finalize the 
design 

Fig. 16.2 Flow diagram of study design/sample size planning with the two-tier procedure

practice, and available ancillary surgical equipment in the country/region. In such
cases, a larger sample size (or higher proportion) has often been called for with a
consideration of the size of target population in the USA. Following our proposed
paradigm, the direct evidence should be more valuable in the approval decision and
thus the design parameter π should be set smaller. Considering that it is possible
that the device works in other regions but has minimal effect in the USA, the false
approval probability in the USA needs to be carefully considered.

Step 2: Specify sample size Within the defined regulatory decision context, the
sample size can be specified with consideration of the sponsor’s preference for the
possible allocation of resources to the OUS regions.

Step 3: Determine design parameters and check operating characteristics
Based on preliminary sample size allocation from step 2, the operating characteris-
tics, such as the approval rates in the USA under different scenarios of true treatment
effect in each region, δk , are examined via simulation. Meanwhile, the values of c1
and c2 (or c1* and c2*) will be determined per description in Sect. 3.

Step 4: Finalize the design There could be an iterative process between step 3 and
step 2. When the statistical properties of the design, especially the false approval rate
in the USA, are in alignment with the regulatory decision context and all stakeholders
are in agreement, the sample size and all the design parameters are finalized.

In this hypothetical example, suppose that a two-arm, randomized controlled
superiority MRCT is planned to be conducted in three regions (USA, region A, and
region B) with a randomization ratio of 1:1 within each region. The clinical endpoint
response follows a N(δk , 1) in the treatment arm and a N(0, 1) in the control arm. A
positive value of δ indicates a desirable outcome. Also, suppose that our proposed
procedure is agreed upon between the CDRH and the sponsor.

A conventional way of designing such a trial serves as a good starting point.
Assuming that the true treatment effect δ is 0.3 for all regions and that the data will
be analyzed by pooling across regions, 174 subjects per arm are needed to have a
power of 80 % with one-sided α of 0.025, using a two-sample t-test.

For illustration purpose, suppose that the CDRH calls for at least half (per regu-
latory decision context as discussed earlier in this section) of the sample size being
from the USA. It is decided that the sample size is split roughly evenly in the other
two OUS regions. Therefore, the sample size is allocated according to a 2:1:1 ratio,
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or roughly 87, 44, and 43 subjects per arm in the USA, region A, and region B,
respectively.

The two-tier procedure is implemented as the following. In tier 1, the two-sample
t-test is performed using the data in the USA only. The analysis of variance (ANOVA)
model is used in tier 2. The model includes main effects of region and treatment,
along with the treatment × region interaction term. The p value of the Wald test for
main effect term of treatment is obtained by PROC GENMOD of statistical analysis
system (SAS), using type 3 sum of squares.

Please note that the operating characteristics are multifaceted due to the fact
that the regional treatment effects are allowed to differ by region. For this allocated
sample size, the design operating characteristics are examined based on nine different
scenarios of δi’s via simulation for illustration purpose here. (In practice, as many
scenarios as desired should be evaluated). In the first five scenarios (A–E), the true
treatment effect exists in the USA, while in the remaining scenarios (F–I), the true
treatment effect is 0 in the USA. For each scenario, eight cases of values (c1, π, c2)
are specified. These parameters are selected such that the false approval rate (in the
USA) of scenario F is controlled at 0.025. The parameter π is set to range from 0.1 to
0.5. In cases b through g, the parameters are derived following our recommendation
in Sect. 3. The value π is set at 0.1 in both cases a and b. Unlike case b where c1*
and c2* are derived to control the false approval probability at 0.025, in case a, the
c2 is conservatively set equal to α−c1 (Table 16.3).

Several observations can be made by examining the simulation results. First, the
approval rate based on t-test is fairly consistent at around 80 % when the overall
average of the treatment effect is around 0.3, regardless of whether δ1 = 0, by
comparing cases A, B, D, and E. This means that the t-test tends to inflate the false
approval rate in the USA above the nominal alpha. Second, in scenarios G, H, and
I, it is indeed shown that the false approval rate in the USA using t-test is higher
than that using our proposed method. Third, when the device does work in the USA,
the approval rate is generally getting larger with increasing π, except for scenario C.
Meanwhile, with increasing π, the false approval rates in scenarios G, H, and I are
increasing relatively rapidly than in other scenarios. This suggests that a smaller π

may work better in controlling the false approval rate in the USA. Finally, the result
in scenario D indicates that the proposed two-tier procedure has a higher approval
rate than the t-test when the device is hardly effective in OUS regions.

Another set of simulation was done to investigate the impact of varying c1 (and
thus c2) with a fixed value of π (π = 0.15, 0.2, and 0.3). The results, which are not
presented here, indicate that the approval probabilities do not vary much.

Let us further examine some details from the extensive simulation for (c1, π,
c2*) = (0.015, 0.15, 0.025). Note that the approval probability in scenario A based
on the two-tier procedure is reduced from 80 to 71.6 % comparing to the conven-
tional two-sample t-test, in which the treatment effect is assumed to be constant
across regions. Taking into account of the potential differences in treatment effect
across regions, the assumption of δ1 = . . . = δK is relaxed in our proposed two-tier
procedure. The reduction in the approval probability is mainly due to this relaxation.
If it is desired to maintain the probability of approval at 80 % under the assumption of
consistent treatment effect δ of 0.3, the sample size needs to be increased. Certainly,



282 N. Lu et al.

Table 16.3 Simulation results on design operating characteristics based on t-test and two-tier
procedure

Sample size (87:44:43) Approval probability

t-test Parameter set# of two-tier procedure

Scenario (δUS,δA,δB) a b c d e f g

A (0.3, 0.3, 0.3) 0.801 0.626 0.678 0.716 0.738 0.750 0.748 0.744

B (0.3, 0.4, 0.2) 0.795 0.617 0.663 0.698 0.716 0.730 0.728 0.724

C (0.3, 0.0, 0.0) 0.278 0.414 0.477 0.455 0.433 0.427 0.423 0.421

D (0.6, 0.0, 0.0) 0.785 0.956 0.969 0.964 0.958 0.957 0.957 0.957

E (0.3, 0.6, 0.0) 0.800 0.555 0.597 0.613 0.618 0.634 0.639 0.640

F (0.0, 0.0, 0.0) 0.025 0.017 0.025 0.025 0.025 0.025 0.025 0.025

G (0.0, 0.3, 0.3) 0.284 0.070 0.082 0.116 0.145 0.185 0.219 0.244

H (0.0, 0.3, 0.6) 0.535 0.093 0.097 0.143 0.187 0.266 0.337 0.408

I (0.0, 0.0, 0.6) 0.270 0.068 0.080 0.112 0.143 0.186 0.215 0.270

#:
a: c1 = 0.025/2, π = 0.1, c2 = 0.025/2
b: c1* = 0.018,π = 0.1, c2* = 0.025
c: c1* = 0.015,π = 0.15, c2* = 0.025
d: c1 = 0.025/2,π = 0.2, c2* = 0.025
e: c1 = 0.025/2, π = 0.3, c2* = 0.02
f: c1 = 0.025/2, π = 0.4, c2* = 0.017
g: c1 = 0.025/2, π = 0.5, c2* = 0.015

there are numerous ways to allocate the extra needed subjects, based on the require-
ment of the regulatory agency and the resources of the sponsor. Suppose that all extra
subjects are determined to be assigned to the USA. Through a trial-and-error process
of simulations, it can be found that a total of 118 subjects per arm are required in the
USA to achieve a probability of approval of 80 %, when the design parameters (c1*,
π, c2*) = (0.016, 0.15, 0.025).

In summary, evaluation of operating characteristics for a design with the two-tier
procedure is inherently multifaceted as there are many ways to construct treatment
effects varying across regions. A thorough exploring over many scenarios is of
paramount importance to help understand the impact of anticipated and unexpected
regional differences on the approval rate in the USA and to reach an agreement
among stakeholders.

16.6 Discussion

Our proposed framework is devised to fit the situations that are common or relatively
unique in the medical device trials. First, regulatory requirements for premarket
approval may be different across regions, as discussed in Sect. 2. Consequently, the
decision rule or the success criteria of a trial may be different across regions. Second,
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the number of regions in many medical device MRCTs is relatively small. This may
be due to the overall smaller sample size resulting from generally larger effect size
of medical devices (as compared to drugs). In some cases, the number of regions
is limited due to the accessibility of high-tech equipment and the requirement of
innovative or delicate surgical techniques. Third, the consistency of the treatment
effect may be suspicious even in the design stage.

While the proposed two-tier procedure provides an explicit decision tree upfront,
it requires increased rigor to demonstrate effectiveness in the local region of interest,
which can lead to a greater sample size. As the direct and supporting evidence
are defined in terms of p values from statistical tests, the proposed procedure is
perhaps more meaningful and works better when the sample size in the local region
is relatively large. Motivated by our regulatory review experience, in this chapter,
we attempt to develop a procedure for use in the USA by closely following the
US medical device law and we have noticed that a large proportion of the sample
size are from the USA in many submissions to the CDRH. Note that this two-tier
procedure does not need to be adopted in every region even within the same MRCT
as the medical device laws vary significantly from region to region. Alternatively,
the proposed two-tier procedure can also work with relatively small sample size in a
local region by setting π close to 1. Considering judiciary independence in medical
device approvals across regions, each region could adopt its own statistical analysis
plan.

In a regulatory setting, it is necessary to predefine the regions in an MRCT and
ideally to have randomization stratified by region to facilitate the all-region analysis.
The geographic area under the US FDA jurisdiction would form the main region for
effectiveness evaluation; OUS regions could be predefined by various criteria. One
is to be formed according to judicial areas. Another is to be formed across judicial
boundaries according to similarity in intrinsic and extrinsic factors, such as medical
practice and healthcare policy in particular, as discussed by Binkowitz (2010).

An important design feature with the two-tier procedure is the adjustability of ac-
ceptable levels of direct versus supporting evidence to meet regulatory expectations.
When less regional treatment effect difference is expected, a regulatory decision
could be based more on significant supporting evidence through setting the design
parameter π closer to 0.5 from below; when substantial regional treatment effect
difference is expected, a regulatory decision should be based less on significant sup-
porting evidence through setting the design parameterπ closer to alpha from above. In
an MRCT with the two-tier procedure, the false approval rate for a region (say region
A, δA = 0) is evaluated upfront at design stage under many scenarios (δother-region
be any plausible values) to understand the impact of plausible regional difference
on regulatory decision making and subsequently help all the stakeholders reach an
agreement on a study design.

In summary, our proposed two-tier procedure represents a new paradigm in
which an explicit decision tree is generated upfront to increase the transparency and
predictability for regulatory decision making in contrast to the current paradigm
in which there is no explicit decision tree for regulatory decision making when
the consistency of regional treatment effects is in doubt. We feel that it is better
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aligned with the statutory requirements for medical device approval in the USA
to have a regulatory decision making from analyses based on a careful evaluation
to account for undesirable regional differences in treatment effect at the design stage.

Disclaimer No official support or endorsement by the Food and Drug Administration of this

article is intended or should be inferred.
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Chapter 17
Multiplicity Adjustment in Seamless Phase II/III
Adaptive Trials Using Biomarkers for Dose
Selection

Pei Li, Yanli Zhao, Xiao Sun and Ivan S. F. Chan

Abstract In seamless phase II/III adaptive trials, multiple doses are often evaluated
in the phase II part of the study and one or two doses are selected to continue into
the phase III part. This setup introduces complicated multiplicity issues on the final
efficacy analyses, especially when different endpoints are used in the two phases,
such as biomarkers used in phase II for dose selection, and efficacy endpoints used in
phase III. In addition, subjects in the dropped arms may not have efficacy follow-up
in phase III. Potential type I error inflation on the final efficacy endpoint may arise
due to various causes, such as the correlation between the biomarker and the efficacy
endpoint. We first investigate the multiplicity issues related to such two-stage designs
by assessing the potential factors for type I error inflation in various scenarios. Then,
we propose two multiple testing methods (level-α test and first-stage Šidák procedure)
that control the family-wise type I error rate for trials observing biomarkers in phase
II and efficacy endpoints in phase III. Their performances are evaluated through
simulations for different types of biomarker and efficacy endpoints.

17.1 Introduction

In recent years, adaptive designs have received widespread attention due to their
potential to bring novel medicines to patients in a more expeditious and cost effective
way. New statistical methodologies have been developed to allow for adaptation of
some aspects of a trial design while the trial is still ongoing without compromising
the integrity and validity of the drug development process.

A seamless phase II/III clinical trial is one type of adaptive designs where objec-
tives traditionally addressed in separate phase II and phase III trials are evaluated in
one single trial. It is carried out in two stages: Stage 1 is a phase II part, also called a
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Fig. 17.1 Seamless phase II/III design with dose-selection for the human papilloma virus vaccine
trial

learning phase, where multiple doses are often evaluated. An interim analysis is usu-
ally performed at the end of stage 1 in order to select a dose to carry forward. Stage
2 is a phase III part, also called a confirming phase, where the efficacy and safety of
the selected dose are compared to a control group for the primary hypothesis testing.
This type of design eliminates the time delay that would have occurred between the
phase II and phase III trials had they been conducted separately, and it also allows for
combining data from both phases for formal statistical testing in the final analyses.
Therefore, it has potential advantages over separate phase II and phase III trials.

One such example is a recently completed Merck second-generation human pa-
pillomavirus (HPV) vaccine trial (Fig. 17.1). In the phase II part of this seamless
phase II/III clinical trial, approximately 1200 subjects were randomized in a 1:1:1:1
ratio to one of three vaccine dose groups (low, medium, or high) or the control group.
A dose was selected at an interim decision point based on the immunogenicity and
tolerability results from phase II (efficacy endpoint remained blinded) and continued
into phase III. The two nonselected dose groups were stopped at the end of phase
II (month 7). In the phase III part, approximately 13,400 additional subjects were
randomized in a 1:1 ratio to the selected dose group or the control group and followed
for any occurrence of HPV-related high-grade cervical lesions, which is the primary
efficacy endpoint. At the end of the trial, the formal assessment of vaccine efficacy
was to test the reduction of the incidence rate of HPV-related high-grade cervical
lesions. The subjects enrolled in the phase II part who received the selected dose or
in the control arm would be combined with all subjects enrolled in the phase III part
for the assessment of vaccine efficacy.

This kind of seamless phase II/III design may introduce complicated multiplicity
issues on the final analysis, especially when different study endpoints are used in the
two phases. For example, a biomarker (or a surrogate endpoint) may be used in phase
II and a clinical disease endpoint may be used in phase III. The use of correlated
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biomarker and disease endpoints can increase the efficiency of study design and
help guide the interpretation of the results from the entire trial. In the HPV vaccine
trial example, since the disease endpoint, HPV-related high-grade cervical lesions,
takes a long time to develop, it is only feasible to use the immunogenicity endpoint
(biomarker for efficacy) for dose selection at the interim timepoint. Although the
disease endpoint was never looked at in the interim analysis, a potential type I error
inflation for the final efficacy analysis using aggregated phase II and III data might
arise due to various reasons such as the correlation between the biomarker and the
disease endpoint, the number of dose groups to choose from, the decision rules for
dose selection, the relative sample size of phase II to phase III, and the choice of
statistical test.

The majority of statistical literature for multiplicity adjustment in seamless phase
II/III trials focuses on the trials where the same efficacy endpoint is used for both
phase II and phase III and assumes the endpoint is observed for all subjects from all
selected and dropped treatment groups in both phase II and III. Posch et al. (2005)
described a general two-stage adjustment method which guarantees strong control
of type I error and therefore is becoming an important regulatory consideration. The
method utilizes two principles: (1) combining p values from different stages and (2)
adopting a closed testing procedure to ensure strong control of the overall type I
error.

In a two-stage design, the p values from the two stages are combined to yield a
single global test for the final hypothesis. Examples of combination tests include:
(1) the inverse χ2 method proposed by Bauer (1989) and Bauer and Kohne (1994)
and (2) the weighted inverse normal combination test proposed by Lehmacher and
Wassmer (1999). Formula (17.1) shows the weighted inverse normal combination
test, where p1 and p2 are the p values for the efficacy endpoint and N1 and N2 are the
sample sizes on the selected dose or control group in phase II and III, respectively:

p12 = C(p1,p2) = 1 − Φ(b1Φ
−1(1 − p1) + b2Φ

−1(1 − p2))

b1 =
√

N1

N1 + N2
, b2 =

√
N2

N1 + N2
(17.1)

where Φ() is the cumulative distribution function of the standard normal distribution.
To ensure strong control of type I error, a closed testing procedure is often utilized
on the combined p values. Closed testing procedures require testing of intersection
hypotheses of those single hypotheses. Any valid significance test can be used to test
intersection hypotheses as long as its size does not exceed α at the hypothesis level.

In some settings such as the aforementioned Merck HPV vaccine trial, the above
methodologies cannot be easily applied as different endpoints are used in phase II
and phase III. In addition, the efficacy endpoint may not be observed for the phase II
subjects in the dropped treatment arms of which follow-up was discontinued before
phase III, which will make it difficult to apply the Simes test. The Bonferroni-adjusted
p value described in Posch et al. (2005) provided a potential way to adopt. However,
it can be ultraconservative for correlated endpoints.
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In this chapter, we first evaluate the potential factors for type I error inflation
in seamless phase II/III trials using biomarkers for dose selection and then propose
two multiple testing methods to control the type I error. In Sect. 17.2, we examine
the potential factors that are related to type I error inflation in such designs through
simulations. In Sect. 17.3, we propose two testing methods to control the family-wise
type I error rate in such setting. Their performances are evaluated by simulations in
Sect. 17.4. Some discussions and concluding remarks are offered in Sect. 17.5.

17.2 Simulations to Examine the Potential Factors for Type
I Error Inflation in Seamless Phase II/III Design Using
Biomarkers for Dose Selection

In order to examine the potential type I error inflation in seamless phase II/III adaptive
trials using biomarkers for dose selection, the following simulations were conducted.
In the phase II stage, X is the biomarker endpoint measurement in m active treatment
groups (each corresponding to a dose level) and one control group. Let Y be the
clinical efficacy endpoint. Without loss of generality, we assume equal number of
patients, N1, in each group in phase II. Only one dose level with the maximum
biomarker effect compared to control group will be selected to enter phase III. The
other nonselected (m-1) treatment arms in phase II will be dropped at the end of
phase II, and no efficacy endpoint (Y ) will be observed in these dropped arms. In
phase III, N2 additional patients in the selected arm and the control group will be
enrolled and followed for the efficacy endpoint (Y ). The biomarker (X) and the
efficacy endpoint (Y ) are assumed to be correlated with the correlation parameter
ρ. Let r denote the proportion of phase II sample size out of the total sample size
combining phases II and III, i.e., r = N1/(N1 +N2). The studies are simulated under
different scenarios regarding distributions of X andY. Each simulation study is based
on 100,000 simulation runs. The nominal type I error α is 0.025. The empirical type
I error is defined as the percentage of simulation counts having Zy > Z1−a out of
100,000 runs.

17.2.1 Continuous Biomarker and Continuous Efficacy Endpoint

Let observations of the phase II biomarker endpoint X be normally distributed with
the means for the control and m dose arms be mx0,mxi , i = 1, . . . , m, and a common
variance across groups σx

2. The dose arm with the maximum effect is defined as the
dose with the largest Zx test statistic out of m pairwise Zx test statistic comparing
different doses versus the control. Suppose that a dose arm μx1 is selected to enter
phase III. Let observations of the phase III efficacy endpointY be normally distributed
with the means for the control and the selected dose arm be (μy0,μy1), and a com-
mon variance σy

2: As noted previously, X and Y are correlated with the correlation
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Table 17.1 Empirical type I error rate by correlation of normal biomarker and normal clinical
endpoint, number of doses, and proportion of phase II in seamless phase II/III study with dose
selectiona

ρ = 0.95 ρ = 0.8 ρ = 0.5 ρ = 0.2 ρ = 0.1 ρ = 0

Three dose arms
+ control in
phase II

N2 = 0
(r = 1)

0.061 0.055 0.044 0.032 0.028 0.025

N2 = 200
(r = 1/2)

0.050 0.046 0.039 0.030 0.028 0.025

N2 = 1000
(r = 1/6)

0.039 0.036 0.033 0.027 0.027 0.025

N2 = 2000
(r = 1/11)

0.035 0.034 0.030 0.027 0.026 0.025

Six dose arms +
control in
phase II

N2 = 0
(r = 1)

0.098 0.085 0.059 0.038 0.030 0.025

N2 = 200
(r = 1/2)

0.074 0.063 0.048 0.032 0.028 0.025

N2 = 1000
(r = 1/6)

0.049 0.046 0.038 0.030 0.027 0.025

N2 = 2000
(r = 1/11)

0.041 0.039 0.034 0.029 0.027 0.025

aThe simulation setup: μx0 = μx1 = . . . = μxm = 2, μy0 = μy1 = 10, σ 2
x = σ 2

y = 1, N1 = 200,
α = 0.025, r =N1/(N1 + N2)

parameter ρ. At the end of the study, the selected dose is claimed to be effective if
Zy > Z1−a , where Zy is the Z-test statistic for comparing the treatment difference
between the selected dose and the control based on all the patients with observed Y,
i.e., N1 + N2 patients for each of the selected dose and control groups. For type I
error investigation, the simulations are set up such that μx0 = μx1 = . . . = μxm,
and μy0 = μy1. The simulation results by different correlations of X and Y (i.e., ρ),
number of dose candidates, and proportion of phase II (r) are illustrated in Table 17.1
and Fig. 17.2.

At fixed r, the proportion of phase II sample size out of total study size, as cor-
relation ρ increases, type I error inflation increases in a nearly linear fashion. The
degree of type I error inflation also depends on the number of dose candidates and
the proportion of phase II sample size. The larger the number of dose candidates and
the higher proportion of phase II sample size, the larger the inflation. At ρ = 0, i.e.,
the biomarker and efficacy endpoints are independent, the type I error is not inflated
and remains at one-sided 0.025 level. With high correlation, type I error can inflate
greatly if there is a large number of dose candidates and the size of the phase II stage
dominates the study. For example, the type I error inflates from 0.025 to 0.098 at
ρ = 0.95 for a study with six doses and no phase III stage (extreme case). Similarly,
at fixed correlation ρ, as the proportion of phase II sample size increases, type I error
inflation increases. At fixed correlation ρ and proportion of phase II stage r, as the
number of dose candidates in phase II increases, type I error inflation increases.
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Fig. 17.2 Empirical type I error by correlation, number of doses, and proportion of phase II sample
size

17.2.2 Continuous Biomarker and Binary Efficacy Endpoint

We also examined type I errors when the biomarker is continuously distributed and
the efficacy endpoint is a binary variable. This occurs in practice when the efficacy
endpoint in phase III stage is the incidence of a clinical event of interest, while the
biomarker in phase II (such as antibody titer) is a continuous variable. The simulation
setting for type I error investigation is that the efficacy outcome (Y ) in phase III for
both the selected dose and control groups follows binomial (N2,p), where p is the
incidence of clinical event at the end of phase III. The biomarker (X) in phase II is
simulated from a normal distribution under the condition that μx0 = μx1 = . . . =
μxm = μ1ifY = 1 (event); otherwise, μx0 = μx1 = . . . = μxm = μ0ifY = 0
(no event). The common variance across groups at phase II is still σ2

x. Therefore, the
correlation ρ between X and Y is a closed form function on μ1,μ0,p, σ2

x (Appendix
A). In our simulation, μ1 = 2,μ0 = 0, σx

2 = 1.44. The dose selection criterion in
phase II is the same as for normal/normal scenario described in Sect. 17.2.1. At the
end of phase III, the unconditional asymptotic method by Miettinen and Nurminen
(1985) was used to test the treatment effect based on the binary endpoint. The selected
dose is claimed to be effective if Zy > Z1−a , where Zy is the asymptotic Z statistic
comparing the selected dose and the control based on N1 + N2 patients for each
group. The results based on 100,000 simulation runs are included in Table 17.2.

At fixed r, the type I error inflation generally increases as the correlation ρ

increases, except for the small incidence rates (p), which may be due to the in-
sensitiveness of Miettinen and Nurminen method in dealing with small incidence
rates. Similarly, at fixed correlation ρ, as the proportion of phase II size r increases,
type I error inflation increases.
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Table 17.2 Empirical type I error rate by correlation of normal biomarker and binary clinical
endpoint and proportion of phase II in seamless phase II/III study with dose selectiona

p = 0.01
(ρ = 0.16)

p = 0.1
(ρ = 0.45)

p = 0.2
(ρ = 0.55)

p = 0.5
(ρ = 0.64)

p = 0.9
(ρ = 0.45)

Three dose
arms +
control in
phase II

N2 = 0
(r = 1)

0.051 0.048 0.049 0.049 0.043

N2 = 200
(r = 1/2)

0.031 0.039 0.039 0.042 0.036

N2 = 1000
(r = 1/6)

0.028 0.028 0.033 0.034 0.033

N2 = 2000
(r = 1/11)

0.031 0.028 0.030 0.031 0.029

a The simulation setup: μx0 = μx1 = . . . = μxm = 2 (if Y = 1), μx0 = μx1 = . . . = μxm = 0 (if
Y = 0),σ 2

x = 1.44, N1 = 200, α = 0.025, r =N1/ (N1 + N2)

17.2.3 Continuous Biomarker and Binary Efficacy Endpoint
at Rare Incidence Using Exact Test

Since the incidence rate for the disease endpoint—HPV-related high-grade cervical
lesions in the motivating vaccine trial is expected to be very low (e.g., p = 0.004),
for the continuous/binary scenario, we also examined the type I error rates in the
situation where the disease endpoint at phase III is rare. The simulation setup is the
same as in Sect. 17.2.2, except that σx

2 is not fixed, but rather changes from setting to
setting to keep p and ρ fixed. The proportions of phase II sample size are also set to be
small (N1 = 300, N2 = 3000, 6000, or 9000) to mimic the real-world situation. At the
end of phase III, the exact method proposed by Chan and Bohidar (1998) was used
to test for vaccine efficacy based on the rare binary endpoint, as in the HPV vaccine
study. The empirical type I error is defined as the percentage of simulation counts
having the exact p value ≤ α out of 100,000 simulations. The results are summarized
in Table 17.3.

Overall, the results show that the type I error rate was not inflated under the
scenarios studied. At a fixed incidence p, the type I error increases as the correlation
ρ increases, but in a small scale, the absolute type I errors are all less than or equal to
0.025 even at a high correlation ρ of 0.8. There is no obvious relationship between
incidence and type I error change at a fixed correlation. The control of type I error
may be a result of a combination effect of low incidence, very small proportion of
phase II sample size, and the conservatism of the exact testing method.
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Table 17.3 Empirical type I error rate by correlation of normal biomarker and binary clinical
endpoint at rare incidence in seamless phase II/III study with dose selection using exact testa

p = 0.2 p = 0.1 p = 0.01 p = 0.004

Three dose
arms +
control in
phase II

N2 = 3000
(r = 1/11)

ρ = 0.8 0.018 0.024 0.025 0.021

ρ = 0.5 0.017 0.022 0.022 0.018

ρ = 0.1 0.013 0.018 0.019 0.015

Three dose
arms +
control in
phase II

N2 = 6000
(r = 1/21)

ρ = 0.8 0.016 0.023 0.025 0.022

ρ = 0.5 0.016 0.022 0.023 0.021

ρ = 0.1 0.014 0.019 0.021 0.019

Three dose
arms +
control in
phase II

N2 = 9000
(r = 1/31)

ρ = 0.8 0.016 0.023 0.025 0.023

ρ = 0.5 0.016 0.021 0.023 0.021

ρ = 0.1 0.014 0.019 0.021 0.018

a The simulation setup: μx0 = μx1 = . . . = μxm = 2 (if Y = 1), μx0 = μx1 = . . . = μxm = 0 (if
Y = 0), N1 = 300, α = 0.025, r = N1/(N1 + N2)

17.3 Two Proposed Testing Methods for Multiplicity Adjustment

We propose the following two adjustment methods to control the overall type I error
in seamless phase II/III trials using biomarkers for dose selection.

17.3.1 Level-α Test

As shown in Sect. 17.2, using Z1−α = 1.96 for testing the final hypothesis at one-
sided α of 0.025 will inflate the type I error. The critical cutoff value c for the
rejection region needs to be adjusted upward. Proschan and Hunsberger (1995) and
Li et al. (2002) gave a closed form expression for the worst-case type I error rate for
indiscriminately extending a study when the sample size is reestimated during the
midcourse of a clinical trial. The critical cutoff value c is properly adjusted to protect
the type I error rate.

We apply an analogous strategy in the seamless phase II/III adaptive design where
the sample size is predetermined, and the selected dose level to phase III is based on
the maximum observed treatment effect of the biomarker in phase II.

The type I error α was derived as follows (details in Appendix B):

α = Pr (Zs > c) = Ew( Pr (Zs > c)|W )

=
∫

Φ(
−c + √

rρw√
r(1 − ρ2) + (1 − r)

)f (w)dw,
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where w is the maximum of m standard normal statistics, m is the number of treatment
arms in phase II, ρ is the known correlation between the two continuous endpoints,
r = N1/(N1 + N2), N1 and N2 are sample sizes (per group) in phase II and III,
respectively, and c is the critical cutoff value. Note α is a monotone function for
both parameters ρ and r at fixed c, as is shown in Fig. 17.3. Table 17.4 gives the
critical cutoff value c that is obtained via Monte Carlo integration approximation and
numerical search to attain the test level at α of 0.025 for known values of ρ and r.

17.3.2 First-Stage Šidák Method

Šidák test is another common adjustment method where the adjusted p value is
defined as

psidak = 1-(1-min(pi))
m, i = 1, . . . ,m,

where m is the number of hypotheses. Šidák (1967) demonstrated that the size of this
test does not exceed α when the individual test statistics are either independent or
are absolute statistics of multivariate normal distribution. Holland and Copenhaver
(1987) described that as long as the test statistics exhibit positive orthant dependence,
the Šidák test controls the family-wise error rate.

We incorporate this procedure into seamless phase II/III design with dose selection
in the following steps:

Step 1: Compute the p value p1,s testing the difference between the selected
treatment group and the control group regarding the efficacy endpoint for the 2*N1

population enrolled in phase II.
Step 2: Conduct the multiplicity adjustment by the Šidák test and compute the

first-stage (phase II)-adjusted p value as follows:

p1 = 1-(1-p1,s)
m,

where p1,s is the long-term efficacy p value between the selected treatment arm and
the control among the subjects enrolled in phase II, and m is the number of treatment
groups at phase II.

Step 3: Combine the p values from both stages using formula (17.1) in Sect. 17.1
and compare the global p value with the prespecified error level α.

This procedure is a bit more conservative than the general Šidák-adjusted p value,
since the p values for the long-term efficacy endpoint in the dropped treatment arms
may not be available and p1 may not be the minimum among all groups. Therefore,
the first-stage Šidák method can control the family-wise error rate in seamless phase
II/III designs, as long as the test statistics are independent or exhibit positive or-
thant dependence. Note that the proposed first-stage Šidák method does not require
assumptions on endpoint distributions and their correlation. As a result, it can be
applied in general situations with different types of endpoints.
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Fig. 17.3 Type I error rate α as a function with respect to r and ρ for the level-α test

Table 17.4 Critical cutoff value c associated with ρ and r to attain the level- α test at α = 0.025
based on the maximum effective selection criterion

ρ = 0.95 ρ = 0.8 ρ = 0.5 ρ = 0.2 ρ = 0.1 ρ = 0

r = 1 2.338 2.304 2.205 2.071 2.018 1.96

r = 1/2 2.267 2.232 2.144 2.040 2.001 1.96

r = 1/6 2.160 2.132 2.073 2.007 1.985 1.96

r = 1/11 2.113 2.092 2.046 1.995 1.977 1.96

As an alternative to the two proposed adjustment method, one might consider the
simple Bonferroni adjustment on the pooled efficacy data in the end. The adjusted
final p value will be calculated as the raw p value for the selected dose and control on
the pooled efficacy data across phase II and III multiplied by the number of treatment
arms for dose selection in phase II. Although the Bonferroni procedure protects
the overall false positive rate, it may become too conservative when the number of
treatment arms or the correlation between biomarker and efficacy endpoint increases.

17.4 Performance of Proposed Methods by Simulations

Simulations were conducted to evaluate the performance of our proposed methods
relative to the naive approach without adjustment and the simple Bonferroni adjust-
ment method. The simulation is set up where both the biomarker and the efficacy
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Table 17.5 Type I error rate associated with naı̈ve method and the proposed adjustment methods
under scenario 1 X, Y are both continuous, N1 = 200, α = 0.025

ρ = 0.95 ρ = 0.5 ρ = 0.1

N2 Naı̈ve Level-
α

First-
stage
Šidák

Naı̈ve Level
α

First-
stage
Šidák

Naı̈ve Level-
α

First-
stage
Šidák

200 0.0502 0.0253 0.0204 0.0385 0.0256 0.0150 0.0280 0.0249 0.0101

1000 0.0387 0.0244 0.021 0.0325 0.0244 0.0148 0.0269 0.0244 0.0118

2000 0.0353 0.0251 0.0204 0.0301 0.0241 0.0162 0.0256 0.0254 0.0132

Table 17.6 Power associated with the proposed adjustment methods and the simple Bonferroni
adjustment under scenario 1 X, Y are both continuous, N1 = 200, α = 0.025

ρ = 0.95 ρ = 0.5 ρ = 0.1

N2 Bonferroni Level-
α

First-
stage
Šidák

Bonferroni Level-
α

First-
stage
Šidák

Bonferroni Level-
α

First-
stage
Šidák

1000 0.6091 0.7008 0.6654 0.5715 0.6887 0.6242 0.5343 0.6865 0.5777

2000 0.8623 0.9157 0.9028 0.846 0.9125 0.8834 0.8256 0.9144 0.8669

3000 0.9599 0.9806 0.9793 0.9532 0.9789 0.9718 0.9485 0.9802 0.9650

endpoints are continuous, μx0 = μx1 = . . . = μxm = 2,μy0 = μy1=10, σx
2 =

σy
2=1,N1=200,α = 0.025, r = N1/(N1 + N2), same as in Sect. 17.2.1. The naive

approach refers to the approach ignoring the multiplicity issue and using the usual
Z1−α critical cutoff for the final hypothesis. The unnegligible and undesirable type I
error inflation by the naive approach has been demonstrated in Sect. 17.2.1. Table 17.5
shows the level-α test controls the type I error rate exactly at α up to some simulation
errors, as expected. The first-stage Šidák approach can also effectively protect the
type I rate at level α, especially when the naive approach leads to a significant type
I error inflation when the between endpoints correlation is high. Table 17.6 shows
both of the level-α test and the first-stage Šidák method that improved the statistical
power over the simple Bonferroni adjustment. Due to the strict conservativeness of
the Šidák test for treatment comparisons, the first-stage Šidák has slightly less sta-
tistical power than the level-α test. However, the level-α test requires the knowledge
of the between endpoints correlation and the assumption of normal and constant
variance assumption across groups. In contrast, the first-stage Šidák is statistically
valid as long as the test statistics meet the broad set of assumptions needed by Šidák
multiple test approach (Holland and Copenhaver 1987).
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17.5 Discussion

Our research addressed some aspects of the complicated multiplicity issues arising in
the seamless phase II/III trials using biomarkers for dose selection. The source of type
I error inflation on the final efficacy endpoint analyses comes from various sources,
such as the correlation between the biomarker and the efficacy endpoint, the number
of dose groups, the decision rules for dose selection, the relative sample size of the
subjects in phase II relative to phase III, and the statistical analysis methodology.

For the setting of continuous biomarker and binary efficacy endpoint for rare
incidences where the exact test (Chan and Bohidar 1998) was used, the absolute type
I errors tend to be small. Results from Table 17.3 show that for a four-arm dose-
selection phase II/III trial, the type I errors were controlled at the 0.025 level even
at a high correlation (ρ) of 0.8 across a range of disease incidence rates (0.004–0.2).
This may be attributed to the low disease incidence rate, relatively small proportion
of patients in phase II versus phase III, and importantly the already conservatism of
the exact testing method. Such settings are common in vaccine trials of rare diseases,
as in the motivating HPV vaccine trial, for which the simulations demonstrate that
the overall type I error is not inflated in the final pooled analysis.

For other settings where potential type I error inflation may occur, two methods are
proposed for adjustment. Among the two proposed methods, the level-α test is more
powerful, but it is computationally complex and requires stronger assumptions on
the endpoint distributions and known correlation between the biomarker and efficacy
endpoints. In practice, the correlation is usually unknown. One could consider using
a conservative upper bound estimate of the correlation from relevant historical data;
however, it may not guarantee the strict control of type I error rate. In contrast, the
first-stage Šidák method does not require assumptions on endpoint distributions and
their correlation, and hence it can be used in general situations. Both of these two
methods control the type I error rate and are more powerful than the simple Bonferroni
method in seamless phase II/III trial designs with short-term continuous biomarkers
for dose selection in phase II and long-term continuous efficacy endpoints in phase
III.

The proposed multiplicity adjustment methods and simulations studies apply to
settings where the dose selection at phase II is based on the maximum dose response
of a biomarker and the efficacy endpoint is not available in subjects in the dropped
treatment arms. In reality, other criteria such as safety may also be used in the dose
selection, and the treatment arm with the maximum biomarker effect may not be
selected. In this case, the overall type I error should be smaller and the proposed
methods would still be valid.

We also examined the setting where the continuous biomarker is used in phase II
for dose selection and the time to event survival endpoint is collected in phase III.
The overall p value combines the adjusted p value on the survival endpoint in phase
II between the selected treatment group and the control group using the Šidák test
and the p value on the survival endpoint in phase III subjects. If survival endpoints
in all subjects including those in the dropped arms are observed during phase III, the
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Dunnett test (1955) can be used in place of the Šidák test to calculate the adjusted p
value in the first stage. We conducted a simulation study (result not shown to save
space) where all treatments including the dropped treatment groups had complete
phase III endpoint measurements, and compared the performance of the Dunnett test
and the first-stage Šidák method. The simulation results suggested that both methods
adequately controls the overall type I error, and that Dunnett test is slightly more
powerful than the first-stage Šidák method, but the difference is very small.

In trials such as the motivating vaccine study where the dropped treatment groups
do not have phase III endpoint measurements, Dunnett’s test cannot be easily im-
plemented. This is because the critical values of the Dunnett test are computed from
a multivariate normal or t distribution where the marginal statistics on the phase III
endpoint for all pairs of active treatments versus control are needed for estimation
of the covariance matrix. Friede et al. (2011) proposed that the test statistics corre-
sponding to comparisons with treatment groups for which no data are available be
set to − ∞ and then apply the Dunnett method and the closure principle to obtain the
combination test. Their testing strategy controls the family-wise type I error rate in
the strong sense but is often conservative with the level of conservatism depending
on the correlation between the endpoints, effect size on the phase II endpoint, and
the selection rule at phase II. Our simulation results suggested this adaptive Dunnett
test is slightly less powerful than the classical Dunnett test assuming all treatment
groups have efficacy data in phase III, but the power loss is minimal in our simulation
settings. In general, the power of the adaptive Dunnett test is similar to that of the
first-stage Šidák method.

Jenkins et al. (2011) proposed an adaptive seamless phase II/III design with sub-
population selection using correlated survival endpoints in an oncology setting. Their
methodology allows the trial to continue in all patients but with both the subgroup
and the full population as co-primary populations. While their adaptation is on sub-
population selection with different flexible decision rules rather than dose selection
as in our research, both approaches control the type I error rate raised from adaptive
selections by incorporating the correlation between early and final outcomes in the
adjustment.

Posch et al. (2011) described two approaches to control the type I error rate in
adaptive designs with sample size reassessment and/or treatment selection: (1) a
simulation-based approach adjusts the critical value by Monte Carlo simulation and
the type I error rate is controlled only when the underlying assumptions are not
violated and (2) an adaptive Bonferroni–Holm test procedure (1979) based on con-
ditional error rates of the individual treatment–control comparisons which controls
the type I error rate even if under the deviation from a preplanned adaptation rule or
the time point of such a decision.

Not all clinical development programs may be candidates for seamless phase
II/III adaptive designs for dose selection. The decision as to whether such design
is appropriate requires input from multiple functional areas, such as statistics, clin-
ical research, regulatory, marketing, data management, drug supply, and clinical
operations. The required technical details need to be carefully evaluated, including
simulation studies to verify operating characteristics, specifically to demonstrate that



298 P. Li et al.

the type I error is preserved at the intended level. In addition, it is important to make
every effort to maintain blinding and minimize the chance of potential bias intro-
duced by information leakage. Finally, it is equally important that the study team
communicates with health authorities as clearly and as early as possible to ensure
that regulatory agencies are in support of such adaptations in a phase III registration
trial.

17.6 Appendix A

Correlation ρ between continuous biomarker X and binary efficacy endpoint Y

Y ∼ Bernouli(p)

X|Y ∼
⎧⎨
⎩

N (u1, σ 2) y = 1

N (u2, σ 2) y = 0

⎫⎬
⎭

E(Y ) = p;V ar(Y ) = p(1 − p)

E(X) = pu1 + (1 − p)u2

V ar(X) = E( var (X) |Y )+ ( var (E(X) |Y )

= σ 2 + u1
2p + u2

2(1 − p) − (pu1 + (1 − p)u2)2

ρ = Cor(X,Y ) = Cov(X,Y )√
var (X) var (Y )

= E(XY ) − EXEY√
var (X) var (Y )

= pu1 − (pu1 + (1 − p)u2)p√
p(1 − p)

√
σ 2 + u1

2p + u2
2(1 − p) − (pu1 + (1 − p)u2)2

17.7 Appendix B

Type I error derivation of the level-α test

W = max(w1, w2, w3), W ∼ f (w)

F (W < w) = Pr (w1 < w, w2 < w, w3 < w)

=
∫∫∫

−∞<w1,w2,w3<w
g(w1, w2, w3)dw1dw2dw3

g(w1, w2, w3) = MVN

⎛
⎜⎜⎝

⎛
⎜⎜⎝

0

0

0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

1 0.5 1

0.5 1 0.5

0.5 0.5 1

⎞
⎟⎟⎠

⎞
⎟⎟⎠
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T =
√

N1

N1 + N2
Z1i +

√
N2

N1 + N2
Z2i

Z1i

∣∣W ∼ N (ρW , 1 − ρ2),Z 2i ∼ N (0,1) ⇒ T |W ∼ N

(√
N1

N1 + N2
ρW ,

N1(1 − ρ2) + N2

N1 + N2

)

Pr (T > c) = Ew( Pr (T > c) |W )

= Ew

⎛
⎜⎝Pr

⎛
⎜⎝

T −
√

N1
N1+N2

ρW
√

N1(1−ρ2)+N2
N1+N2

>
c −

√
N1

N1+N2
ρW

√
N1(1−ρ2)+N2

N1+N2

⎞
⎟⎠ |W

⎞
⎟⎠

= Ew

⎛
⎜⎝Φ

⎛
⎜⎝

−c +
√

N1
N1+N2

ρW
√

N1(1−ρ2)+N2
N1+N2

⎞
⎟⎠
∣∣∣W

⎞
⎟⎠ =

∫
Φ

(
−c + √

rρW√
r(1 − ρ2) + (1 − r)

)
f (w)dw
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Chapter 18
Empirical Likelihood for the AFT Model Using
Kendall’s Rank Estimating Equation

Yinghua Lu and Yichuan Zhao

Abstract The accelerated failure time (AFT) model, also called censored linear
regression has played a central role in survival analysis. Motivated by (Zhao, Stat
Probab Lett 81:603bab, 2011), we make an empirical likelihood (EL) inference for
the model using the monotone censored Kendall’s rank-estimating equation. The
limiting distribution of the EL ratio follows the Wilks theorem. In addition, we carry
out extensive simulation studies to compare the EL for the Kendall’s rank-regression
estimator with Wald-type and EL interval estimators. The simulation shows the
benefit of the proposed method for small sample sizes in most cases.

18.1 Introduction

In survival analysis, there are two very popular approaches for modeling of covariate
effects on survival time. One of them is the accelerated failure time (AFT) model,
which is also called censored linear regression. This model utilizes the natural loga-
rithm of survival time Y = ln(T) to convert positive survival time to observations on
entire real line. Fygenson and Ritov (1994) proposed censored monotone Fygenson–
Ritov (i.e., Gehan-type) estimating equations for right censored data, which produce
a unique set of estimators for the regression parameters.

Owen (1988, 1990) proposed empirical likelihood (EL), which is one kind of
nonparametric statistical inference method. Recently, Zhou (2005) proposed the
censored EL based on Log-rank and Gehan estimators. Zhou and Li (2008) demon-
strated that the censored EL based on Buckley–James estimator for the AFT model is
better than the adjusted empirical likelihood (AEL) and empirical likelihood based
on synthetic data (ELSD) in terms of coverage probability, where AEL is Li and
Wang (2003)’s adjusted EL method and ELSD refers to the EL method of Li and
Wang (2003) based on synthetic data.
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As Jing et al. (2008) did, Zhao (2011) applied the EL to the AFT model based on
Fygenson–Ritov estimating equation. Although the performance of Zhao’s method
is better than Wald-type methods in terms of coverage probability, it still encoun-
ters under-coverage problem. We note that the Fygenson–Ritov estimating equation
and the Kendall’s rank-estimating equation are very similar. But the Kendall’s
rank-regression estimator has excellent properties compared to the Fygenson–Ritov
regression estimator. For example, “it is very robust against covariate outliers in
contrast to other estimates” (see Heller 2007). In this chapter, we propose the EL
method with a monotone Kendall’s rank-estimating equation. The new EL method
can produce better or comparable interval estimate to existing methods for the AFT
model in terms of coverage probability most of the time.

The rest of the chapter is organized as follows. In Sect. 18.2, the empirical likeli-
hood ratio statistic is constructed, and the EL confidence interval for the regression
parameter is constructed. In Sect. 18.3, we conduct a simulation study to compare the
EL-based method and other existing methods. The conclusion is given in Sect. 18.4.

18.2 Main Procedure

In this section, we first review the normal approximation (NA) method, which is very
similar to Fygenson and Ritov (1994) and Zhao (2011). We adopt the same notations
as in Zhao (2011) for convenience. Let T1, . . . Tn be positive i.i.d. random variable.
Suppose that Z1, . . . ,Zn are their corresponding (p×1 ) covariates vectors, the AFT
model is defined as follows:

logTi = β ′Zi + εi , i = 1, . . . , n (18.1)

Where β is a (p × 1)I ( · ) regression parameter and εi are errors. Consider the
censoring times Ci , and denote Xi = min (Ti ,Ci ),'i = I (Ti ≤ Ci ), where I (·) is
an indicator function.

Denote ei(β) = logXi−β ′Zi , 1 ≤ i ≤ n.The censored Kendall’s rank-estimating
equation can be written as a U-Statistic,

S (β) = n−3/2
n∑

i=2

i−1∑
j=1

sgn(Zi − Zj )['iI
{
ej (β) > ei(β)

}− 'jI {ei(β) > ej (β)}],

(18.2)

where sgn(×) is a sign function, which is equal to1 when the argument is positive, −1
when the argument is negative, and 0 when the argument is zero. ReplacingZi−Zj in
the Fygenson–Ritov estimating equation in Zhao (2011) with sgn(Zi −Zj )we obtain
Kendall’s rank estimating equation. Let β̂ be the solution of the equation S(β) =
0, and β0 be true parameter of β. Like Zhao (2011), we can prove E[S(βO)] = 0.
Similar to Fygenson and Ritov (1994), n

1
2 (β̂−β0) satisfies the asymptotic normality.

As Zhao (2011), we can obtain a Wald-type confidence interval for β0. We adopt
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the same notations as in Zhao to denote Ui = (Zi ,Xi ,'i) and k(Ui ,Uj ;β) =
sgn (Zi −Zj )

{
'iI (ej (β) > ei(β)) − 'jI (ei(β) > ej (β))

}
. Like Zhao (2011), one

can define

Mi(β) = 1
n−1

n∑
j=1, j �=i

{
k(Ui ,Uj ;β)

}
for i = 1, . . . , n. The EL ratio R(β) at the

value β is defined. We get the following standard formula like Owen (1988, 1990,
2001).

l̂(β) = −2log R(β) = −2
n∑

i=1

log

{
1

1 + λT Mi(β)

}
,

where λ satisfies the following nonlinear equation

n∑
i=1

Mi(β)

1 + λT Mi(β)
= 0.

Replacing Zi − Zj with sgn (Zi − Zj ) in each term Wi(β0) of Zhao (2011), we
obtain Mi(β0). Thus, along the same lines of proof in Theorem 1 of Zhao (2011), we
have the following result since S(β0) is a U statistic with a kernel of 2 degrees.

Proposition 1 Under the regularity conditions as in p.735 of Fygenson and Ritov
(1994) and Zhao (2011), l̂(β0) converges to 4χ2

p, where χ2
p is a chi-square distribution

with p degrees of freedom.
An asymptotic 100(1 − α)% confidence region for β is as follows

RE =
{
β : l̂ (β0) ≤ 4χ2

p (α)
}

, (18.3)

where χ2
p(α) is the upper α-quantile of χ2

p .

We are interested in constructing confidence region for the q-dimensional vector

β (1) of β = (β(1)
′
,β(2)

′
)
′
. Define β0 = (β(1)

′
,β(2)

′
)
′
.As Zhao (2011), one can define

the profile EL ratio l̂prof ile(β (1))at β (1). The corresponding proposition is valid along
the same lines of Zhao (2011).

Proposition 2 Under the regularity conditions as in p. 735 of Fygenson and Ri-
tov (1994) and Zhao (2011), l̂prof ile(β

(1)
0 ) converges to 4χ2

q . Thus, we obtain an
asymptotic 100(1 − α)% confidence region for β(1):

Rp =
{
β(1) : l̂prof ile(β

(1) ≤ 4χ2
q (α)

}
, (18.4)

where χ2
q (α) is the upper α-quintile of χ2

q .

18.2.1 Simulation Study

In this section, we will do two comparisons. The first one is to compare the EL
confidence interval with the normal approximation confidence interval, based on the
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Kendall’s rank-estimating equation. The second one is to compare the EL based on
Kendall’s rank-estimating equation with the EL based on Buckley–James, Log-rank,
and Gehan estimating equations proposed by Zhou (2005) and Zhou and Li (2008).

18.2.2 EL CI Versus Wald-Type CI Based on Kendall’s
Rank-Estimating Equation

In this subsection, we compare performance of the empirical likelihood procedure
and the Wald-type based (i.e., normal approximation) approach by using Monte Carlo
simulation study in terms of coverage accuracy and average length of confidence
intervals. For the model, logTi = βZi +εi , we consider two different models which
have skewed error distribution and symmetric error distribution respectively. Both
of them assume that there is only one covariate Z and that the true parameter β0 = 2.
They are the same models as those in Zhao (2011). We discuss the two models in
settings with four different censoring rates (CR), 15 , 30, 45, and 60 %. We also
consider the two models in the settings with three different sample sizes 30, 50, and
100. In order to make the results to be reliable, there are 10,000 repetitions for each
of the data settings. The simulation was done with Matlab.

All the results of comparison between the Wald-type based methods and the EL
methods are shown in Table 18.1 and Table 18.2. CP stands for the value of coverage
probabilities. From the two tables, we find that, in general, both the Wald-type based
method and the EL methods have improved coverage probabilities for 90, 95, and
99 % as the sample size increases. The heavy censoring rate means high information
loss. Having more information lost, the accuracy of coverage probabilities will be
reduced.

From the tables, we find that proposed EL method outperforms Zhao (2011)’s
method in terms of coverage probability. A comparison between these two methods
is the main purpose of our work. When the sample size is large, the two methods have
very close performance in model 1, while in model 2, the EL method is better than
the Wald-type method when the censoring rate is moderate or heavy. For moderate
sample size (n = 50), the EL method works well under censoring rate 15, 30, and
45 %, respectively (except for CR = 60 % in model 1), while the Wald-type-based
method shows some problems of under-coverage. For an even smaller sample size of
n = 30, the under-coverage issue in theWald-type methods becomes more significant.
Because the Wald-type confidence interval needs to estimate the variance as well as
the regression coefficients β, the EL based confidence region RE has more accurate
coverage probability than that of the Wald-type confidence region when the censoring
rate is less or equal to 45 % and the sample size is relatively small most of time. From
the tables, we find that the average length for the EL method is slightly longer than
that for the Wald-type (normal approximation) based method.
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Table 18.1 Coverage probability (CP) and average length (AL) of confidence intervals for the
regression parameter β with model 1

1 − α = 0.90 1 − α = 0.95 1 − α = 0.99

CR (%) n Wald EL Wald EL Wald EL

0.15 30 CP 0.8686 0.8986 0.9221 0.9427 0.9731 0.9736

AL 1.4354 1.5751 1.7102 1.9030 2.2477 2.4332

50 CP 0.8856 0.9084 0.9338 0.9516 0.9796 0.9869

AL 1.0857 1.1840 1.2936 1.4138 1.7001 1.9051

100 CP 0.8937 0.9152 0.9425 0.9607 0.9871 0.9916

AL 0.7520 0.8065 0.8960 0.9793 1.1776 1.2976

0.3 30 CP 0.8669 0.8946 0.9163 0.9366 0.9702 0.9712

AL 1.6870 1.8175 2.0101 2.1739 2.6418 2.6881

50 CP 0.8768 0.8984 0.9272 0.9452 0.9804 0.9853

AL 1.2694 1.3635 1.5124 1.6253 1.9878 2.1632

100 CP 0.8911 0.9108 0.9418 0.9594 0.9852 0.9904

AL 0.8810 0.9479 1.0497 1.1352 1.3796 1.4878

0.45 30 CP 0.8494 0.8720 0.9081 0.9188 0.9625 0.9629

AL 2.0324 2.1770 2.4216 2.5976 3.1826 3.2799

50 CP 0.8699 0.8846 0.9233 0.9333 0.9726 0.9759

AL 1.5241 1.5961 1.8160 1.9005 2.3867 2.4899

100 CP 0.8879 0.9041 0.9394 0.9470 0.9832 0.9865

AL 1.0555 1.1255 1.2576 1.3275 1.6529 1.7333

0.6 30 CP 0.8136 0.8382 0.8760 0.8865 0.9383 0.9350

AL 2.6101 2.7787 3.1099 3.2616 4.0873 4.1763

50 CP 0.8482 0.8492 0.9008 0.9028 0.9575 0.9568

AL 1.9459 1.9870 2.3186 2.3588 3.0472 2.9894

100 CP 0.8738 0.8807 0.9284 0.9275 0.9761 0.9760

AL 1.3462 1.3824 1.6040 1.6210 2.1081 2.1143

18.2.3 Comparison Among Kendall, Buckley-James, Log-Rank,
and Gehan Methods

In this subsection, we compare the Kendall’s rank regression with the Buckley–James
(B-J; Zhou and Li 2008), Gehan, and Log-rank methods (Zhou 2005) in terms of
coverage probability and average length of confidence interval. We consider the third
censored linear regression model that is specified as follows:

Model 3

• The covariate Z follows N(1, 0.52).
• The C follows N(μ, 42), where μ = 6.1, 3.1, 1 and − 1.8 respectively, which

produce samples with censoring rate equal to 10, 30, 50, and 75 %, respectively.
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Table 18.2 Coverage probability and average length of confidence intervals for the regression
parameter β with model 2

1 − α = 0.90 1 − α = 0.95 1 − α = 0.99

CR (%) n Wald EL Wald EL Wald EL

15 30 CP 0.8539 0.9082 0.912 0.9504 0.9667 0.9797

AL 2.3067 2.4421 2.7485 2.8872 3.6123 3.5427

50 CP 0.8753 0.9162 0.9293 0.9612 0.9775 0.9918

AL 1.7432 1.8874 2.077 2.251 2.7298 2.9642

100 CP 0.888 0.9122 0.9409 0.9626 0.9837 0.9926

AL 1.2158 1.2851 1.4486 1.5596 1.9039 2.0844

30 30 CP 0.852 0.9002 0.9065 0.9458 0.9632 0.9788

AL 2.4348 2.5429 2.901 2.9912 3.8127 3.6071

50 CP 0.876 0.9063 0.9238 0.9514 0.9777 0.989

AL 1.843 1.9749 2.196 2.3563 2.8861 3.0619

100 CP 0.8832 0.9091 0.938 0.9587 0.9855 0.9933

AL 1.2805 1.3528 1.5257 1.6343 2.0052 2.1774

45 30 CP 0.8434 0.8828 0.8985 0.9328 0.9582 0.9675

AL 2.669 2.8711 3.1801 3.4428 4.1795 4.4189

50 CP 0.8698 0.8959 0.9207 0.9415 0.9741 0.9838

AL 2.0308 2.1348 2.4197 2.5526 3.1802 3.3567

100 CP 0.8875 0.9077 0.9367 0.9543 0.9837 0.9893

AL 1.4077 1.4885 1.6773 1.7755 2.2044 2.3341

60 30 CP 0.8319 0.8634 0.8869 0.9093 0.9482 0.9501

AL 3.016 3.1968 3.5935 3.7967 4.7229 4.8916

50 CP 0.8705 0.8783 0.9179 0.9222 0.9697 0.9715

AL 2.277 2.3433 2.713 2.7909 3.5657 3.5854

100 CP 0.8808 0.8995 0.933 0.9422 0.9795 0.9825

AL 1.5662 1.6452 1.8661 1.9422 2.4526 2.5333

• The error term has a normal distribution N(0, 0.52).
• We used sample size of n = 50, 100, and 200. The coverage probabilities are based

on 5000 simulation runs. Note that this setting for the AFT model is defined as
• Yi = βZi + εi , i = 1, . . . , n, and the true value for the coefficient β0 = 1.

Therefore, in this setting, we observe Xi = min(Yi ,Ci), 'i = I (Yi ≤ Ci) and
Zi , i = 1, . . . , n.

The results in Table 18.3 suggest a good performance of the EL based on Kendall’s
rank-estimating equation, especially when the sample size is small and the censoring
rate is heavy. Specifically, for the sample size of n = 50, in most cases, it is better than
the Buckley–James (B–J) method in terms of coverage probability. Compared to the
log-rank and the Gehan methods, it still shows advantages for small sample size data.
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Table 18.3 Coverage probability of confidence intervals for the regression parameter β with model
3 based on the EL method

Confidence level = 90 %

CR (%) n B–J Log-rank Gehan Kendall

10 50 0.8924 0.8879 0.8832 0.9110

100 0.8888 0.8909 0.8904 0.9212

200 0.8810 0.9059 0.8938 0.9012

30 50 0.8866 0.8869 0.8804 0.9078

100 0.8936 0.8889 0.8870 0.9212

200 0.8922 0.9139 0.8958 0.9108

50 50 0.8838 0.8798 0.8650 0.8978

100 0.8926 0.8939 0.8820 0.9090

200 0.8952 0.8929 0.8968 0.9142

75 50 0.8420 0.8350 0.8030 0.8556

100 0.8818 0.8740 0.8536 0.8856

200 0.8928 0.8860 0.8788 0.9012

Confidence level = 95 %

CR (%) n B–J Log-rank Gehan Kendall

10 50 0.9406 0.9399 0.9356 0.9516

100 0.9404 0.9479 0.9446 0.9630

200 0.9458 0.9500 0.9446 0.9506

30 50 0.9374 0.9359 0.9290 0.9522

100 0.9472 0.9410 0.9382 0.9596

200 0.9468 0.9619 0.9440 0.9592

50 50 0.9324 0.9319 0.9226 0.9370

100 0.9414 0.9519 0.9370 0.9538

200 0.9482 0.9469 0.9424 0.9604

75 50 0.9042 0.8910 0.8628 0.8866

100 0.9344 0.9300 0.9118 0.9340

200 0.9438 0.9440 0.9358 0.9490

Also, we note that there are some over-coverage problems when the sample size is
large and the censoring rate is low. The EL based on the Kendall’s rank regression
is still a competitive method.

In terms of the average length of confidence interval, the Kendall’s rank method
outperforms Gehan and log-rank methods when the number of observations is large
(n = 200) and the censoring rate is from light to heavy (10, 30 or 50 %). In other cases,
the Kendall’s rank method generates slightly longer average length of confidence
intervals. It is clear that the B–J method outperforms any other alternatives in all
cases (Table 18.4).
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Table 18.4 Average length of confidence intervals for the regression parameter β with model 3
based on the EL method

Confidence level = 90 %

CR (%) n B–J Log-rank Gehan Kendall

10 50 0.1973 0.5464 0.5000 0.5424

100 0.1411 0.3535 0.3192 0.3139

200 0.0975 0.2448 0.2255 0.1847

30 50 0.2289 0.6235 0.5482 0.6415

100 0.1587 0.4022 0.3706 0.3812

200 0.1110 0.2798 0.2615 0.2303

50 50 0.2742 0.7420 0.6485 0.7802

100 0.1881 0.4861 0.4370 0.4820

200 0.1321 0.3243 0.2907 0.2593

75 50 0.4569 1.0413 0.8697 1.2357

100 0.2966 0.7139 0.6357 0.7569

200 0.2024 0.4748 0.4360 0.4516

Confidence level = 95 %

CR (%) n B–J Log-rank Gehan Kendall

10 50 0.2361 0.6526 0.6008 0.6735

100 0.1687 0.4227 0.3825 0.3959

200 0.1164 0.2922 0.2697 0.2307

30 50 0.2741 0.7476 0.6585 0.7765

100 0.1898 0.4804 0.4440 0.4936

200 0.1325 0.3344 0.3125 0.2834

50 50 0.3288 0.8919 0.7776 0.9626

100 0.2252 0.5833 0.5246 0.6034

200 0.1579 0.3875 0.3478 0.3391

75 50 0.5469 1.2519 1.0480 1.6786

100 0.3570 0.8607 0.7629 0.9404

200 0.2426 0.5687 0.5219 0.6002

18.3 Conclusion

In the simulation studies, we compare two methods that estimate the confidence
intervals of regression parameters based on Kendall’s rank-estimating equation.
The coverage probabilities of the EL are closer to the nominal levels than their
counterparts in most cases. We also compare the proposed EL based on Kendall’s
rank-estimating equation with several other popular empirical likelihood methods.
The simulation studies indicate that the proposed method is better than the
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Buckley–James method in terms of the coverage probability when the sample size
is very small, say n = 50, or the censoring rate is very heavy in most cases, while it
still provides a competitive interval estimator when the sample size becomes larger
and the censoring rate becomes lower.

In addition, Zhou (2005) proposed the censored EL based on log-rank and Gehan
estimators. The log-rank method outperforms the Gehan method with better coverage
probabilities most of the time. In the second part of our simulation study, the proposed
method performs better than the log-rank method when the sample size is small and it
is comparable in other cases most of the time. As for the average length of confidence
intervals, the B–J method is the best in all the cases. The Kendall’s rank method does
the better job than the log-rank and Gehan methods do for the large number of
observations (n = 200).

In conclusion, the proposed EL confidence intervals based on Kendall’s rank-
estimating equation have advantages over other approaches in terms of the coverage
probability for the small sample size most of the time. And it has no clear advantages
in terms of the average length of confidence intervals compared to the Buckley–James
method.
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Chapter 19
Analysis of a Complex Longitudinal
Health-Related Quality of Life Data by a Mixed
Logistic Model

Mounir Mesbah

Abstract We consider the context of a longitudinal study, where participants are
interviewed about their health-related quality of life (HRQOL), at regular dates of
visit, previously established. The interviews consist, to fulfill a questionnaire in
which they are asked multiple choice questions, built in order to measure, at the time
of the visit, the latent trait. We assume here unidimensionality of the latent trait.
The issue of choosing a longitudinal model can be considered as one of the most
important issue in latent regression models. In this work, we take the opportunity
of a real longitudinal study of quality of life to present in detail the stages of the
construction of a mixed logistic model. As, HRQOL is a latent variable, not directly
observable, we use in this study, a measurement model from Rasch family to link
the latent with item responses. We discuss the appropriate choice of interactions to
include in the latent regression model.

19.1 Introduction

We consider the context of a longitudinal study, where participants are interviewed
about their quality of life, at regular dates of visit, previously established. The inter-
views consist to fulfill a questionnaire in which patients are asked multiple choice
questions, chosen in order to measure, at the time of the visit, the latent (unob-
served) trait (quality of life). We focus here on one unidimensional latent trait. We
suppose that the unique effect of time on the observations (evolution) occurs through
latent components. So, we assume that measurement properties of the instrument
(questionnaire) are not changing.

In this work, we are not building a longitudinal measurement model, i.e., a model
built to evaluate longitudinal measurement properties of the instrument (as respon-
siveness for instance), but a longitudinal model to analyze change of the latent patient
quality of life, not to analyze change of the instrument (questionnaire) used to observe
the latent variable.
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The main motivation of this work was a real study, where two different instruments
were sequentially used: the short form twelve (SF-12), a shortened version (12 items)
of the medical outcomes study 36-items short-form health survey (SF-36), a generic
well-known questionnaire and then, the World Health Organization quality of life
(WHOQOL) HIV brief (WHB), which is a shortened version of the WHOQOL HIV,
an HIV-specific questionnaire developed by the WHO.

The switch to a different instrument in the middle of the study was decided because
the study investigators hoped that the second instrument, an HIV-specific instrument,
was more responsive.

Despite this particular study, one can imagine many situations where, one needs
to use two “different” instruments to measure the same latent trait. One of them, easy
to understand, in a longitudinal context, is to prevent against memory bias. When a
subject is asked a question at visit t, he or she, remembers the answer to the same
question given at the previous visit t − 1. So, using different questions at time t − 1
and time t avoids such bias. Another context could be the context of meta-analyze of
health-related quality of life (HRQOL) studies, where different instruments are used
in each study, to measure the same latent trait. Our method applies, if, a subsample
is available, with individual’s responses to all questionnaires.

In Sect. 2, we explain how the backward reliability curve (BRC, REF) can be
used, (i) to identify an unidimensional subset of items, and (ii) then, in Sect. 3, we
develop a mixed longitudinal logistic model to describe the evolution of the latent
component underlying the identified unidimensional subset of items. In our setting,
the longitudinal aspect of our model is mainly described by the latent process.

In this work, we suppose that this latent component θt follows an autoregressive
AR(1) process:

θ (t) = c + ρLθ (t − 1) + ε(t),

where ε(t) is gaussian random variable with zero mean and unknown constant vari-
ance σ 2, ρL an unknown autocorrelation parameter and c a real unknown parameter.
In Sect. 4, we derive the marginal likelihood of the latent regression model. In Sect. 5,
we discuss the practical resolution of the maximum likelihood equations, presenting
different possibilities offered by major statistical software, or the option of writing
an ad hoc program. Finally, we devote the last section to the discussion of our choice
over other choices, and possible extensions of the current work.

19.2 The BRC to Identify Unidimensional Set of Items

In this work, we focus on: (i) the twelve items of the SF-12 and (ii) on five items
of the psychological subdimension of the WHB. We assume that each of the two
instruments include respectively a subset of items, S1 and S2, that constitute, when
combined, a unidimensional set of items, i.e., the set S of items included in S1 or S2
is unidimensional.
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Table 19.1 The questionnaires

Questions Label Contents

WHB Wq1 How much do you enjoy your life?

WHB Wq2 How satisfied are you with your ability to learn new information?

WHB Wq3 Are you able to accept your bodily appearance?

WHB Wq4 How much do you value yourself?

WHB Wq5 How often do you have negative feelings, such a blue mood, despair, anxiety,
depression?

SF12 sf1 In general, would you say your health is excellent, very good, good, fair,
or poor?

SF12 sf2 How much did pain interfere with your normal work, including both work
outside the home and housework?

SF12 sf3 Has your physical health or emotional problems interfere with your social
activities?

SF12 sf4 Does your health now limit you in moderate activities such as moving a
table, pushing a vacuum cleaner, ...

SF12 sf5 Climbing several flights of stairs. Does your health now limit you a lot,
limit you a little, or not limit you at all?

SF12 sf6 During the past 4 weeks, have you accomplished less than you would like?

SF12 sf7 During the past 4 weeks, were you limited in the kind of work or other
regular activities you do?

SF12 sf8 During the past 4 weeks, have accomplished less than you would like?

SF12 sf9 During the past 4 weeks, did you not do work or other regular activities as
carefully as usual?

SF12 sf10 How much time during the past 4 weeks have you felt calm and peaceful?

SF12 sf11 How much of the time during the past 4 weeks did you have a lot of energy?

SF12 sf12 How much time during the past 4 weeks have you felt down?

WHB World Health Organization quality of life (WHOQOL) HIV brief, SF12 short form twelve.
The significance of bold entities is given in section 19.2.4

The unidimensionality is the first requirement in latent variable models. It is the
most important property. When it is reached, it is possible to target other. In this
work, we focused on unidimensionality.

The text of the questions are presented in Table 19.1 below. The SF-12 is a short-
ened version (twelve items) of the medical outcomes study SF-36. From the WHB,
which is a shortened version of the WHOQOL HIV, an HIV-specific questionnaire
developed by the WHO, we focus on the psychological subdimension. So, we start
with seventeen (17) items. In this section, we present the theoretical motivations un-
derlying the BRC and we explain how it can be used to find among the 12 questions
SF12 and 5 Questions WHB, a unidimensional subset of questions. At the end of the
section, we present our results, using the BRC methodology.
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19.2.1 Classical Unidimensional Models for Measurement

Latent variable models involve a set of observable variables A = {X1, X2, . . ., Xk}
and a latent (unobservable) variable θ of dimension d ≤ k. In such models, the
dimensionality of A is captured by the dimension of θ , the value of d. When d = 1,
the dimensionality of set A is called as unidimensional.

In a HRQOL study, measurements are taken with an instrument: the questionnaire,
which consists of questions (or items). In such cases, the Xij represents the random
response of the j th question by the ith subject and the Xj denotes the random variable
generating responses to the j th question.

The parallel model is a classical latent variable model describing the unidimen-
sionality of a set A = {X1, X2, . . ., Xk} of quantitative observable variables. Let Xij

be the measurement of subject i, given by a variable Xj , i = 1, . . ., n, j = 1, . . ., k,
then:

Xij = τij + εij, (19.1)

where τij is the unknown true measurement corresponding to the observed measure-
ment Xij and εij a measurement error. The model is called as a parallel model if the
τij can be divided as

τij = βj + θi ,

where βj is an unknown fixed parameter (non-random) representing the effect of j th
variable, and θi is an unknown random parameter effect of the ith subject.

It is generally assumed that θi has zero mean and unknown standard deviation
σθ . It should be noted that the zero-mean assumption is an arbitrary identifiability
constraint with consequence on the interpretation of the parameter: its value must be
interpreted comparatively to the mean population value. In HRQOL setting, θi is the
true latent Health Related Quality Of Life that clinician or health scientist want to
measure and analyze. It is a zero mean individual random part of all observed subject
responses Xij, the same whatever is the variable Xj (in practice, a question j of a
HRQOL questionnaire). It is also generally assumed that εij are independent random
errors with zero mean and standard deviation σ corresponding to the additional
measurement error. Moreover, the true measure and the error are assumed to be
uncorrelated, i.e., cov(θi , εij) = 0. This model is known as the parallel model,
because the regression lines relating any observed item Xj , j = 1, . . ., k and the true
unique latent measure θi are parallel.

The model (1) can be obtained in an alternative way through modeling the condi-
tional moments of the observed responses. Specifically, the conditional mean of Xij

can be specified as:

E[Xij|θi ;βj ] = βj + θi . (19.2)

where βj , j = 1, . . ., k, are fixed effects and θi , i = 1, . . ., n are independent random
effects with zero mean and standard deviation σθ . The conditional variance of Xij is
specified as:

Var[Xij|θi ;βj ] = Var(εij) = σ 2. (19.3)
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The assumptions (2) and (3) are classical in experimental design. The model
defines relationships between different kinds of variables: the observed score Xij,
the true score τij , and the measurement error εij. It is interesting to make some
remarks about the assumptions underlying this model. The random part of the true
measure given by response by the ith individual does not vary with the question
number j as the θi does not depend on j , j = 1, . . ., k. The model is unidimensional
in the sense that the random part of all observed variables (questions Xj ) is generated
by the common unobserved variable (θi). More precisely, let X∗

ij = Xij − βj be the
calibrated version of the response to the j th item by the ith subject, then the model
(2) and (3) can be rewritten as:

E[X∗
ij|θi ;βj ] = θi , for ∀j , (19.4)

along with the same assumptions on β and θ and the conditional variance model (3).
When both θi and εij are normally distributed, then we have so-called conditional

independence property: whatever j and j ′, two observed items Xj and Xj ′ are
independent conditional to the latent θi .

19.2.2 Reliability of an Instrument: Cronbach Alpha Coefficient

A measurement instrument yields values that we call observed measure. The relia-
bility ρ of an instrument is defined as the ratio of two variances of the true over the
observed measure. Under the parallel model, one can show that the reliability of any
variable Xj (as an instrument to measure the true value) is given by

ρ = σ 2
θ

σ 2
θ + σ 2

. (19.5)

This coefficient is also known as the intra-class coefficient. The reliability coefficient,
ρ, can be easily interpreted as a correlation coefficient between the true and the
observed measure. When the parallel model is assumed, the reliability of the sum of
k variables is

ρ̃k = kρ

kρ + (1 − ρ)
. (19.6)

This formula is known as the Spearman–Brown formula (Brown 1910; Spearman
1910).

The Spearman–Brown formula shows a simple relationship between ρ̃k and k, the
number of variables. It is easy to see that ρ̃k is an increasing function of k.

The maximum likelihood estimator of ρ̃k , under the parallel model with normal
distribution assumptions, is known as Cronbach’s alpha coefficient (CAC) (Cronbach
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1951; Bland and Altman 1997), which is denoted as α:

α = k

k − 1

⎛
⎜⎜⎜⎝1 −

k∑
j=1

S2
j

S2
tot

⎞
⎟⎟⎟⎠ , (19.7)

where

S2
j = 1

n − 1

n∑
i=1

(
Xij − Xj

)2

and

S2
tot = 1

nk − 1

n∑
i=1

k∑
j=1

(
Xij − X

)2
.

Under the parallel model, the variance–covariance matrix of the observed items
Xj and the latent trait θ is

VX,θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
θ + σ 2 σ 2

θ · · · · · · σ 2
θ σ 2

θ

σ 2
θ σ 2

θ + σ 2 σ 2
θ · · · σ 2

θ σ 2
θ

: : : : :

σ 2
θ · · · σ 2

θ σ 2
θ + σ 2 σ 2

θ

σ 2
θ · · · · · · σ 2

θ σ 2
θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the corresponding correlation matrix of the observed items Xj and the latent trait
θ is

RX,θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ · · · · · · ρ √
ρ

ρ 1 ρ · · · ρ √
ρ

: : : : :

ρ · · · ρ 1
√
ρ

√
ρ · · · · · · √

ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The marginal covarianceVX and correlation matrixRX of the k observed variables
Xj , under the parallel model, are

VX =

⎛
⎜⎜⎜⎜⎜⎝

σ 2
θ + σ 2 σ 2

θ · · · · · · σ 2
θ

σ 2
θ σ 2

θ + σ 2 σ 2
θ · · · σ 2

θ

: : : :

σ 2
θ · · · σ 2

θ σ 2
θ + σ 2

⎞
⎟⎟⎟⎟⎟⎠
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and

RX =

⎛
⎜⎜⎜⎜⎜⎝

1 ρ · · · · · · ρ
ρ 1 ρ · · · ρ
: : : :

ρ · · · ρ 1

⎞
⎟⎟⎟⎟⎟⎠

.

This structure is known as compound symmetry type. It is easy to show that the
reliability of the sum of k items given in (7) can be expressed as:

ρ̃k = k

k − 1

[
1 − trace(VX)

J
′
VXJ

]
. (19.8)

with J a vector with all components being 1, and

α = k

k − 1

[
1 − trace(SX)

J
′
SXJ

]
. (19.9)

where SX is the observed variance, empirical estimation of SX. There is, in the
literature, even recent, a comprehensible confusion between Cronbach alpha as
a population parameter (theoretical reliability of the sum of items) or its sample
estimate.

In addition, it is easy to show a direct connection between the CAC and the
percentage of variance of the first component in principal component analysis (PCA)
which is often used to assess unidimensionality. The PCA is mainly based on the
analysis of the latent roots of VX or RX (or, in practice, their sample estimate). The
matrix RX has only two different latent roots, the greater root is λ1 = (k − 1)ρ + 1,
and the other multiple roots are λ2 = λ3 = λ4 = · · · = 1 − ρ = k−λ1

k−1 . So, using
the Spearman–Brown formula, we can express the reliability of the sum of the k

variables as ρ̃k = k
k−1 (1 − 1

λ1
).

This clearly indicates a monotonic relationship between ρ̃k , which can be consis-
tently estimated by the CAC and the first latent root λx, which in practice is naturally
estimated by the corresponding observed sample correlation matrix and thus the per-
centage of variance of the first principal component in a PCA. So, CAC can also be
considered as a measure of unidimensionality.

Nevertheless, such a measure is not very useful, because, it is easy to show, using
the Spearman–Brown formula (Brown 1910; Spearman 1910) that, under the parallel
model assumption, the reliability of the total score is an increasing function of the
number of variables.

Therefore, if the parallel model is true, increasing the number of items will
increase the reliability of a questionnaire. Moreover, the coefficient lies between
0 and 1. Zero value indicates a totally unreliable scale, while unit value means that
the scale is perfectly reliable. Of course, in practice, these two scenarios never occur!

The Cronbach α-coefficient is an estimate of the reliability of the raw score (sum
of item responses) of a person if the model generating those responses is a parallel
model.
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In Hamon and Mesbah (2002), the conclusion of intensive simulations shows
that “the classical Cronbach alpha seems nevertheless to remain a good reliability
coefficient under Rasch model assumptions.”

The result can be used as a criterium for checking the unidimensionality of such
responses when those item responses are generated by a parallel model.

In the next section, we show how to build and to use a more operational and more
valid criterium to measure the unidimensionality of a set of items: the BRC (the
α-curve).

19.2.3 Unidimensionality of an Instrument: BRC

Statistical validation of unidimensionality can be performed through a goodness
of fit test of the parallel model or Rasch model. There is a great literature on the
subject, see the review by Mesbah (2012). The goodness of fit tests generally do
not have power because their null hypothesis are not focusing on unidimensionality:
it includes indirectly other additional assumptions (for instance, the normality for
parallel models, local independence for Rasch models, etc.) As a result, the departure
from the null hypotheses is not necessarily an indication of the departure from a
unidimensionality.

In the following, we describe a graphical tool, which is helpful for checking the
unidimensionality of a set of variables. It draws a curve in a stepwise manner, using
estimates of reliability of sub scores (total of a sub set included in the starting set).

In the first step, the CAC will be calculated with all the variables. Then, at every
successive step, CAC will be calculated by deleting one variable each time, and the
variable which deletion yields the maximum CAC value among those CAC values
will be removed. This procedure is repeated until only two variables remain. If the
parallel model is true, increasing the number of variables increases the reliability
of the total score which can be consistently estimated by Cronbach’s alpha. The
number of variables and the CAC values can be plotted which would yield a curve.
This procedure is named as BRC. If there is a decrease of such a curve after adding
a variable, it would indicate strongly that the added variable does not constitute a
unidimensional set with variables already in the curve.

Drawing the BRC of a set of unidimensional items is an essential tool in the valida-
tion process of a HRQOL questionnaire. When one develop a HRQOL questionnaire,
the main goal is generally to measure some unidimensional latent subjective traits
(such as sociability, mobility, etc). The use of the BRC in empirical data are very
helpful for detection of non-unidimensional subsets of items. When the BRC is not
an increasing curve, one can remove one or more items to obtain an increasing curve
(Mesbah 2013). If the reduced set gives an increasing curve, it is in some sense, more
valid in term of unidimensionality than the previous one.

There is often a big misunderstanding of our method: The goal of the proposed
method is not to “maximizes Cronbachs alpha to derive the best model.” The goal of
the proposed method is to check an underlying fundamental property of the parallel
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model: “increasing the number of variables, increases the reliability of the total score,
which can be consistently estimated by the Chonbach’s alpha!” The consequence
of this fundamental property is the “Spearman–Brown formula,” which is a formula
derived under the parallel model and characterizing it. The Spearman–Brown formula
shows a simple relationship between the reliability of the sum of k variables and k,
the number of variables. It is easy to see that this reliability is an increasing function
of k, under the parallel model (i.e., if the parallel model holds!).

This relationship between the reliability of the sum of k variables and k, the
number of variables, is deterministic. This result is derived using only underlying
properties of the parallel model. The BRC is a “statistics curve” estimate of the
theoretical Spearman–Brown curve. For each k, it is a consistent estimate of the true
Spearman–Brown curve. For each k, it is possible to draw a confidence interval for
the true reliability, under normal assumption of the errors (see Mesbah 2012), and
then to test the null hypothesis, that the curve is nondecreasing.

19.2.4 Use the BRC to Identify an Unidimensional Subset of Items

The final set of items include eleven (11) items: four (4) from the WHB questionnaire
and seven (7) from the SF-12 questionnaire. Figure 19.1 shows the final BRC of the
original set of items. Six items (wq3, sf1, sf2, sf3, sf5, sf8) must be excluded to
obtain a unidimensional set. The SF-12 psychological dimension is based on all the
12 items of the SF-12 form. A score is derived as a weighted sum of the 12 items. The
psychological dimension of the WFB is built in order to measure some underlying
psychological trait. Our method finds a set of unidimensional items chosen (by the
BRC) from the two sets. It is interesting to note that the only WFB item excluded
from the list is the more specific item to the HIV disease (are you able to accept your
bodily appearance) and is close to the physical dimension. Items sf 1, sf 2, sf 3,
sf 5, and sf 8 are obviously more related to the physical than to the psychological
dimension. There is some coherence in the contents of the final set of questions
obtained.

In this step of the analysis, we did not use data from the main study (see Table 19.2).
Only data from the pilot study were used. A direct consequence is that estimation of
the parameters in the main analysis model will not be noised by the measurement
instrument.

19.3 Choice of the Components of the Latent Regression Model

Specification of a latent variable model is usually done by the choice of two
components:

• The measurement model:A measurement model is a conditional probability model
linking the observed variables to the latent variables.

• The probability distribution for the latent variables.
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Fig. 19.1 The backward reliability curve (BRC) start with all 17 items. Items from the right must
be excluded to obtain an increasing curve

In our setting,

• At a fixed time, the latent variable is a scalar.
• At a fixed time, the joint distribution of the observed items and the unobserved

latent variable is described by its independence graph in Fig. 19.2.
• We assume that the instrument parameters, i.e., the parameters of the measurement

model, are not changing over time.

The longitudinal aspect of our family of models is completely described by the
independence graph of Fig. 19.3, the choice of the measurement model and the joint
distribution of the latent process (Θ(1), ...,Θ(T )).
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Table 19.2 The study design

Population and time Questionnaires Study type Study size

Population A SF12 and WHB Pilota 233

Population B, time M0 SF12 Mainb 324

Population B, time M28 SF12 Mainb 274

Population B, time M44 SF12 Mainb 255

Population B, time M72 SF12 and WHB Mainb 263

Population B, time M84 WHB Mainb 258

Population B, time M96 WHB Mainb 269

Population B, time M108 WHB Mainb 215

a This is the pilot study done by INSERM in Marseille (France)
b This is the main study, done French ANRS (France). It is a multicentric cohort study, setup in
1997, aimed at describing clinical, immunological, virological and social-behavioral characteristics
of HIV-1-infected patients who where beginning combination anti retro-viral therapy (HAART) that
included a protease inhibitor (PI)
WHB World Health Organization quality of life (WHOQOL) HIV brief, SF12 short form twelve

19.3.1 Choice of the Measurement Model

A large number of measurement models are possible. Item response theory is the
field of psychometry devoted to that purpose. When the responses are ordinal, two
reasonable choices could be the partial credit model (PCM) or the graded response
model (GRM):

• Both are unidimensional models from the Rasch family of measurement models.
• Both own the nice property of independence of observed variables conditional to

the latent (Fig. 19.2).
• Both are logistic model.
• The raw score (sum of item responses) of an individual is a sufficient statistic for

the latent parameter under the PCM.
• The raw score of an individual is not a sufficient statistic for the latent parameter

under the graded response mode.

19.3.1.1 The PCM

Let Xj = x with x = 0, . . .,m, the modalities of item j , and βjx the parameter of
modality x of item j . The PCM (Masters 1982) is defined as

πjxθ = Prob(Xj = x | θ ) = exp
(∑x

l=0 (θ − βjl)
)

∑m
k=0 exp

∑k
l=0 (θ − βjl)

.

Constraints on the parameters are necessary to ensure the identifiability of parameters.
This model is also known as model PCM at one parameter or polytomous Rasch
model.
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Fig. 19.2 Independence
graph of a Rasch-type model
at a fixed time

19.3.1.2 The GRM

The GRM (Samejima 1969) is defined as:

Prob(Xj ≥ x | θ ) = exp
[
(θ − βjx)

]

1 + exp
[
(θ − βjx)

] ,

with βj1 ≤ βj2 ≤ . . . ≤ βjm. For x = 0 and x =m, by definition Prob(Xj ≥ 0 |
θ ) = 1 and Prob(Xj ≥ m+ 1 | θ ) = 0, respectively. The probability of having item
score x is given by the difference:

πjxθ = Prob(Xj = x | θ ) = Prob(Xj ≥ x | θ ) − Prob(Xj ≥ x + 1 | θ )

= exp [(θ − βix)]

1 + exp [(θ − βix)]
− exp

[
(θ − βi(x+1))

]

1 + exp
[
(θ − βi(x+1))

]

19.3.2 Choice of the Latent Process Model

In this work, we suppose that this latent component θ (t) follows a Markovian process
of order 1. A consequence is that: ∀t , t > 0, Θ(t − 1), and Θ(t + 1) are independent
conditional to the current θ (t), the latent value at time t. Let us precise the distribution
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Fig. 19.3 Independence graph of a the longitudinal latent regression model

of Θ in such context:

Θ(t) = c + ρLΘ(t − 1) + ε(t),

where ε(t) is a gaussian white noise of variance σ 2 and ρL and c two real constants.
It is easy to verify that this process is gaussian and defines a Markov chain of first
order. Moreover, if | ρL |< 1, this process is stationary at the second order, of initial
law the normal law with mean c

1−ρ
and variance σ 2

1−ρ2
L

and the conditional probability

of Θ(t) knowing Θ(t − 1) = θ (t − 1) is gaussian of mean c + ρL × θ (t − 1) and
variance σ 2. The joint law of variables Θ(1), ...,Θ(T ) is deduced easily:

g(θ) =
√

1 − ρ2
L√

(2π )T .σ T
exp

{
− 1

2σ 2
[
(
1 − ρ2

L

) (
θ (1) − c

1 − ρ

)2

+
T∑

t=2

(θ (t) − c − ρLθ (t − 1))2]

}
(19.10)

where θ = (θ (1), ..., θ (T )).
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19.4 The Marginal Likelihood of the Latent Regression Model

Let (x(1), ..., x(T )) be a trajectory of the observation process (X(t) : 1 ≤ t ≤ T )
relative to one individual only.

The process of observations
{
Xi,j (t)}

}
is supposed to have values in

{1, 2, 3, ...,m}. The subscript i correspond to the patient, while j correspond to the
item. The latent variable Θi (t) depends on the i patient only, it measures his level
of HRQOL.

We note Xi (t) = (
Xi,1 (t) , ...,Xi,q (t)

)′
, the answer vector of the patient i

at time t and by π
(
xi,j /θi (t)

)
the conditional probability P

(
Xi,j (t) = xi,j (t)/

Θi(t) = θi(t)), i = 1, n, j = 1, q and t = 1, T . Let us note Xi , the answer vector of
the patient i for the whole period.

The probability of the answer vector of the patient i, in view of the observation
during the whole period {1, ..., T }, can be written as:

p
(
Xi

) =
∫

...

∫ q∏
j=1

πjxθ × g (θ (1), ..., θ (T )) dθ (1)...dθ (T ), (19.11)

where g is the probability density of the latent vector (Θ(1), ...,Θ(T ))′ chosen in
the previous section and given by equation 10 and πjxθ could indifferently chosen
as the probability function of a PCM (Sect. 3.1) or a GRM (Sect. 3.2).

The formula 11, as a function of the unknown parameters is the likelihood function.
Its maximization will let us to obtain estimates with optimal inferential properties.
The design of the study is complex. In the analysis step, only data from the main
study (population B) is used. In Table 19.2, we can see that seven time of visits were
scheduled. At each visit, he patient is examined by a doctor, and asked to answer
a HRQOL questionnaire. One of the main complexity is that the questionnaire that
patients had to fulfill was not always the same in all these visit. The reason was that
the clinicians decided to move to a more specific HRQOL after the third visit. This
decision was taken because they were convinced, after analyzing data available at
that time, that the HRQOL instrument (SF36) used until that visit was not sensitive
enough to detect change. So, they decided to propose a new questionnaire, more
specific (to the disease).

In this work, the main objective was to identify a unidimensional subset of items
from the original two sets of questions, and then to build and analyze the following
longitudinal latent model. The statistical analysis plan that we applied is a direct
consequence of that goal.

The likelihood derived from formula (11) will be function of all available data.
Only available observations will be used. Maximization of the likelihood will allow
us, in a first step, to get consistent estimation of all item parameters, the auto-
correlation parameter of theAR(1) latent process, and the constant c. Then, consistent
prediction of the latent parameters will be obtained in a second step.
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19.5 Practical Resolution of Maximum Likelihood Equations

The marginal likelihood function obtained from formula (11) is a nonlinear func-
tion of the vector of parameters (β11, ...,β1m, ...,βqm, c, σ 2, ρL)′. There is no closed
form for the exact maximum likelihood estimates (mles). The exact mles must be
determined by numerically maximizing the exact log-likelihood function. More-
over, The expression of the exact log-likelihood function, contains integrals not
analytically computable, which is often the case for similar latent variable model.
Newton–Raphson-type algorithm with Gauss–Hermitte approximations of the in-
tegrals or Monte-Carlo Markov chain (MCMC) algorithm are the most commonly
used solutions.

For the practical resolution of our problem, several solutions are possible,
depending on the measurement model specified:

• (1) If this model is the GRM model, it is possible to use the GLIMMIX procedure
of SAS which is an interesting generalization of the mixed procedure of SAS.

• (2) When the measurement model is the PCM model, it is not possible to use
the GLIMMIX procedure, because the corresponding logit is not available in the
link option. Another procedure of SAS is available, the NLMIXED procedure,
which also use Gauss–Hermitte approximations, but need development of specific
programming statements.

• (3) Another option is to develop an ad hoc program using Fortran or R language.
With this this option, we can fit any model: GRM or PCM for the measurement
model, and more complex AR model for the latent process.

19.6 Conclusion

In this work, the main objective was to identify a unidimensional subset of items
from the original two sets of questions, and then to build and analyze the following
longitudinal latent model. The statistical analysis plan that we applied is a direct
consequence of that goal.

The likelihood derived from formula (11) will be function of all available data.
Only available observations will be used. Maximization of the likelihood will allow
us, in a first step, to get consistent estimation of all item parameters, the auto-
correlation parameter of theAR(1) latent process, and the constant c. Then, consistent
prediction of the latent parameters will be obtained in a second step.

Choice of the measurement model is an important step in the development of
a HRQOL latent regression model. GRM or PCM for ordinal data? GRM-type
models based on cumulative logits link were preferred by Mac Cullagh (1980), while
PCM and Rasch-type models based on adjacent logits were preferred by Anderson
(1984), mainly because they satisfy the sufficiency property for the latent parameter
(Andersen 1977).
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All these measurement models assume unidimensionality of the set of items.
CAC is the maximum likelihood estimate of the reliability of the sum of k items if
the true model underlying the data are the parallel model, which is a strong model
for unidimensionality. In such case, it can be used as a measure of the reliability. But,
if the true model underlying the data are not the parallel model, the CAC is a bad
estimate of the reliability. The BRC allow us to check graphically the Spearman–
Brown formula which is a consequence of the parallel model, then to confirm that a
subset of items is unidimensional.

Choice of the latent process model is another challenge. Of course, the proposed
model is adaptable to when the latent component does not follow an AR(1)! The
AR(1) model is, apart from the model of mutual independence of the latent compo-
nents, the simplest model that we can specify. This model is interesting because it
is a model of short individual memory. The correlation between Θ(t) and Θ(t + s)
will go to zero when s increase. One can imagine other kind of individual memory.
Another work in progress, where the latent process is assumed to be a long memory
process. The complexity of the model is due to the fact that for each specification of
the latent distribution, one need to write the likelihood and to develop and adapted
numerical program to get the estimates.

Longitudinal HRQOL belongs to the family of real data that must be analyzed by
latent variable models. In this work, we have proposed some ways of thinking and
some models that we have applied to a complex real trial.
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Chapter 20
Goodness-of-Fit Tests for Length-Biased
Right-Censored Data with Application
to Survival with Dementia

Pierre-Jérôme Bergeron, Ewa Sucha and Jaime Younger

Abstract Cross-sectional surveys are often used in epidemiological studies to iden-
tify subjects with a disease. When estimating the survival function from the onset of
disease, this sampling mechanism introduces bias, which must be accounted for. If
the onset times of the disease are assumed to be coming from a stationary Poisson
process, this bias, which is caused by the sampling of prevalent rather than incident
cases, is termed length bias. One-sample goodness-of-fit tests are proposed for right-
censored length-biased data based on Kolmogorov and Cramér–von-Mises criteria.
Approximate critical values, power, and behavior are investigated using Weibull,
lognormal, and log-logistic models through simulation. Algorithms detailing how
to efficiently generate right-censored length-biased survival data of these parametric
forms are given. Finally, the test is used to evaluate the goodness of fit using length-
biased survival data of patients with dementia from the Canadian study of health and
aging. Evidence for different parametric forms between men and women is found,
suggesting course of disease to vary between genders.

20.1 Introduction

The sampling of prevalent cases is common in epidemiological studies as logistical
constraints often prevent the recruitment of incident cases. The ideal setting for
survival data are studies in which individuals are observed at the initiation of the
event, or immediately after, and subsequently followed until the event or censoring
occurs. These studies can be termed incident studies. Due to issues such as time and

P.-J. Bergeron ( ) · E. Sucha
Department of Mathematics and Statistics, University of Ottawa,
585 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
e-mail: pbergero@uottawa.ca

E. Sucha
e-mail: ewa.sucha1@gmail.com

J. Younger
Toronto General Research Institute, University Health Network,
7-504, 610 University Avenue, Toronto, ON Canada M5G 2M9
e-mail: Jaime.Younger@uhnresearch.ca

© Springer International Publishing Switzerland 2015 329
Z. Chen et al. (eds.), Applied Statistics in Biomedicine and Clinical Trials Design,
ICSA Book Series in Statistics, DOI 10.1007/978-3-319-12694-4_20



330 P.-J. Bergeron et al.

cost, it is not always possible to capture individuals in this manner. Oftentimes, the
subjects have experienced the initiation of the event prior to the initiation of the study,
and these lifetimes are said to be left truncated. When subjects are identified cross-
sectionally, the onset of disease (initiation of event) has already occurred. Under this
type of sampling scheme, individuals who are longer lived have a higher probability
of being selected into the study, and hence the recruited sample is not representative of
the incident population. Sampling from a prevalent cohort is a form of selection bias
that leads to an overestimation of the survival function if the truncation of lifetimes
is not properly taken into account. When there has been no epidemic of disease, the
incidence rate of the disease can be assumed to be constant over time. Under this
scenario, the probability of sampling a subject is directly proportional to the disease
duration, and the sampled lifetimes are said to be length-biased.

A one-sample goodness-of-fit test is one in which the discrepancy between a
nonparametric estimator and some hypothesized parametric distribution is quantified.
For length-biased survival data subject to right-censoring, a nonparametric estimator
has been developed by Vardi (1989), which provides the nonparametric maximum
likelihood estimator (NPMLE) of the survival function correcting for length bias. In
order to test several specific parametric models for a particular set of data, we seek a
versatile one-sample test, one that is adaptable to numerous distributions. The choice
of a parametric model allows the use for simulations, aids in ease of interpretation,
and for the development of regression models, and thus, choosing the best-adapted
parametric model requires a proper test. In this chapter, we present two one-sample
goodness-of-fit tests for length-biased right-censored data that can be applied to any
suitable parametric model. The first is based on the Kolmogorov criterion, the second
on Cramér–von-Mises criterion (Anderson 1962).

This chapter is organized as follows: Sect. 20.2 introduces notation and some
preliminary remarks. The goodness-of-fit tests for length-biased data are constructed
in Sect. 20.3. Section 20.4 provides the necessary algorithms to implement the tests,
as well as power simulations. In Sect. 20.5, the methods are illustrated with survival
data on dementia collected as part of the Canadian study of health and aging (CSHA)
using Weibull, lognormal, and log-logisitic distributions. Finally, discussion of the
results is offered in Sect. 20.6.

20.2 Preliminaries and Notation

20.2.1 Length Bias

Suppose we have a random variable, X, with corresponding cdf FU (x). X represents
the true, unbiased event times. The length-biased distribution ofX, FLB(x), is defined
as (Cox 1969)

FLB(x) = 1

μ

∫ x

0
ydFU (y) (20.1)



20 Goodness-of-Fit Tests for Length-Biased Right-Censored Data 331

where μ = ∫∞
0 ydFU (y) < ∞. FLB arises when a X, with cdf FU , is observed

with probability proportional to its length. In the case where FU has a density fU the
length-biased density can be written as

fLB(x) = xfU (x)

μ
x ≥ 0. (20.2)

Suppose we obtain a sample from FLB , X1, . . .,Xn. The Xi’s can be thought of as
sampled prevalent (i.e., already diseased) cases, where incidence follows a stationary
Poisson process and thus the truncation distribution is uniform over lifetime. An
informal test for stationarity was investigated by Asgharian et al. (2006), and the
first formal test for stationarity of the incidence rate in prevalent cohort studies was
proposed by Addona and Wolfson (2006).

Lifetimes can be split into two segments: the time from disease onset until re-
cruitment into the study (truncation time, T ) and the time from study recruitment
until the event occurs (residual lifetime, R). Since it is not always possible to follow
every individual under study until the event occurs, define Ci to be random residual
censoring variables with cdf FC(c). The observed residual lifetime is such that only
the minimum of Ri and Ci is observed, and therefore the ith observed or censored
lifetime, Xi , can be represented as

Xi = Ti + Ri ∧ Ci. (20.3)

δ, the censoring variable can be written as

δi =
⎧⎨
⎩

1 if Ri ≤ Ci

0 if Ri > Ci.
(20.4)

Suppose the goal is to nonparametrically estimate SU = 1 − FU , using a set
of full observations (the (Xi , δi = 1) pairs) and censored observations (the pairs
(Xi , δi = 0)). The likelihood for this setting, derived in Vardi (1989) is

L(fU ) =
n∏

i=1

(
fU (xi)

μ

)δi
(∫

w≥xi

fU (w)

μ

)1−δi

, (20.5)

where μ is the mean of fU . An expectation–maximization (EM) algorithm is used
to obtain nonparametric point masses at each unique observed time (censored or
not), correcting for length bias, which in turn, properly summed, give the NPMLE
of SU (x) (equivalently FU (x)), namely ŜV (x) (F̂V (x)). Unlike the Kaplan–Meier
estimator, it is defined over the entire real line and provides something closer in
behavior to the empirical distribution for the purposes of estimation and testing. The
same likelihood can be adapted to parametric estimation, by including a family with
parameter θ and maximized numerically to obtain θ̂ .

For real data analysis, the maximum likelihood estimators arising from length-
biased data with right-censoring ŜV (x) and θ̂ can be obtained through the R package
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lbiassurv (Bergeron et al. 2013). As the nonparametric estimator is consistent for
the true distribution (Asgharian et al. 2002) and the parametric estimator is consistent
for a correctly specified model (Bergeron et al. 2008), they can be used together to
assess goodness of fit of a parametric model.

20.3 Methods

The hypotheses of interest for the goodness-of-fit tests are

H0 : SU (x) = S∗(x)

H1 : SU (x) �= S∗(x), (20.6)

where SU (x) is the true (unbiased) survival function from which the data arise and
S∗(x) is the hypothesized distribution. In this chapter, we do not assume that S∗(x) is
fully specified, only to belong to a particular family but with unspecified parameters,
thus S∗(x) = S∗

θ (x) with θ unknown, though fitting a fully specified distribution is
trivially implementable.

The one-sample goodness-of-fit tests we propose can use any suitable parametric
model, and three models will be assessed here for the purpose of illustration and
implementation: Weibull, lognormal, and log-logistic. The Weibull distribution has
survival function:

Sλ,α(x) = exp (− (λx)α), x, λ,α > 0. (20.7)

The lognormal distribution survival function:

Sμ,σ 2 (x) = 1 − Φ

[
log x − μ

σ

]
, x, σ 2 > 0, (20.8)

where Φ(x) is the standard normal cdf. Finally, the log-logistic distribution has
survival function:

Sλ,α(x) = 1

1 + (λx)α
, x, λ,α > 0. (20.9)

20.3.1 Kolmogorov Criterion

The Kolmogorov criterion is based on the maximum distance between two distri-
bution functions, and provides a mathematical basis for a graphical assessment: the
point of maximum distance can be evaluated visually. With length-biased data, the
idea is simply to extend the Kolmogorov statistic, which is defined as the maximum
absolute distance between empirical and hypothesized cdf, to length-biased data
using survival functions.
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The proposed Kolmogorov statistic is expressed as

D = sup
x

|ŜV (x) − S∗
θ̂
(x)|. (20.10)

Obtaining an approximate distribution for D under the null hypothesis becomes
a matter of simulating from the length-biased distribution associated with S∗

θ̂
, taking

into account the truncation and censoring mechanisms.

20.3.2 Cramér–von-Mises Criterion

The Cramér–von-Mises criterion is based on integrated squared distance between
two curves, in our context yielding the variable:

W = n

∫ ∞

−∞

[
F̂V (x) − F ∗

θ̂
(x)
]2

dF ∗
θ̂

(x). (20.11)

Equation 20.11 cannot be simplified using order statistics, but it has explicit
form for observed data. Suppose the observed times can be expressed as the unique
points x1 < x2 < · · · < xh, with NPMLE point masses p̂j > 0, j = 1, . . .,h,∑h

j=1 p̂j = 1. Then we can express the nonparametrically estimated cumulative
distribution function by

F̂V (x) =
∑

j :xj≤x

p̂j , (20.12)

and let F̂j = F̂V (xj ). The Cramér–von-Mises statistic reduces to

W = n

⎛
⎝1

3
+ F ∗2

θ̂
(xh) − F ∗

θ̂
(xh) +

h−1∑
j=1

F̂j

(
F ∗

θ̂
(xj+1) − F ∗

θ̂
(xj )

) (
F̂j − F ∗

θ̂
(xj+1) − F ∗

θ̂
(xj )
)⎞⎠

(20.13)

20.4 Approximating the Distributions of D and W

To find critical values for D and W and assess the power of the tests under different
conditions, some simulations are necessary.
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20.4.1 Algorithms

Efficient simulation of length-biased distributions can be done using transformations
for a number of models. For the models of Sect. 20.3, the length-biased Weibull
distribution can be obtained through a gamma distribution (Correa and Wolfson
1999), the length-biased lognormal distribution can be obtained through a normal
distribution (Patil and Rao 1978), and the length-biased two-parameter log-logistic
distribution can be obtained through a beta distribution.

Correa and Wolfson (1999) show how to generate length-biased log-logistic
samples, under a one-parameter form reciprocal to (20.9). Below is the algorithm
generated from (20.9).

Algorithm 1 Generating Length-Biased Log-Logistic Data

• Generate a beta(1 − 1
α

, 1 + 1
α

) random variable, Z.

• Take Y = (
1−Z
λαZ

)1/α
.

The random variable Y follows a length-biased log-logistic distribution with
parameters α and λ.

See Appendix for details of the proof of this result.
Generating length-biased left-truncated and right-censored data require more

steps. As in Asgharian et al. ( 2002), length-biased sampling is equivalent to uniform
left truncation. Generating censoring times can be done in various ways, particularly
to match real data. Three different approaches are considered here to investigate how
censoring may affect the goodness-of-fit tests. The first is fixed censoring, which
takes C = c for some given c, and for NPMLE of SU (x) this is enough (Vardi 1989).
A second approach is to use some known (essentially positive) distribution. In the
application of the methods to the CSHA data, the choice taken was a normal distri-
bution with parameters chosen to avoid negative values. The third censoring scheme
used relies on nonparametric estimation of the distribution of residual censoring
times from the real data set, using Kaplan–Meier estimator.

Algorithm 2 Generating Uniformly Left-Truncated, Right-Censored Data

• Use the data to obtain θ̂ , depending on the chosen model. Let n be the original
data sample size.

• Generate n length-biased times, y1, . . . , yn, from the chosen model.
• For each yi , generate a truncation time ti from a U (0, yi).
• Compute the residual lifetime, ri , for each observation as ri = yi − ti .
• Generate the residual censoring times, c1, . . . , cn, using the desired method. Note:

this step can be done in parallel to the previous ones.
• Let xi = ti + ri ∧ ci and δi = I [ri ≤ ci].

During analysis, it is not necessary to keep track of ti and ri , and so the generated
data can be reduced to the form (xi , δi).

Note that, under fully specified H0 with θ = θ0 known, one can reduce the length-
biased variable generation to a beta (2, 1) (the length-biased distribution associtated



20 Goodness-of-Fit Tests for Length-Biased Right-Censored Data 335

Table 20.1 Approximated critical values

Model Weibull Lognormal Log-logistic

Sample size α =
0.10

α =
0.05

α =
0.01

α =
0.10

α =
0.05

α =
0.01

α =
0.10

α =
0.05

α =
0.01

30 0.290 0.345 0.479 0.186 0.203 0.237 0.198 0.220 0.269

100 0.199 0.227 0.369 0.117 0.130 0.151 0.121 0.135 0.170

250 0.136 0.162 0.261 0.074 0.081 0.096 0.077 0.087 0.107

500 0.106 0.125 0.203 0.052 0.058 0.066 0.056 0.063 0.079

1000 0.080 0.092 0.130 0.038 0.042 0.050 0.040 0.044 0.055

with the uniform(0,1)) via the probability integral transform. For large samples, as
censoring appears to have negligible effect, using constant censoring giving the de-
sired censoring rate will reduce computation time. Also, for fully specified models,
the smaller D or W , the better the fit. With unspecified parameters, the null distribu-
tions of these statistics are no longer distribution free and require simulations based
on θ̂ fitted from the data.

20.4.2 Critical Values

Using algorithm 2, ŜV (x) and S∗
θ̂
(x) (equivalently, F̂V and F ∗

θ̂
for W ) and thus dj

or wj for j = 1, . . .,K for some large K , can be obtained. One can then pick the
appropriate critical value based on the order statistic of d1, . . . , dK (w1, . . ., wK ) and
compare with the data.

Note that the critical values will depend not only on sample size (and theoretically
censoring scheme) but also on θ̂ if θ is estimated, and will vary from model to model
and from different data sets. This may affect power, as it is shown for different shape
parameters of the Weibull in Sect. 20.6.

20.4.2.1 Kolmogorov Test

To illustrate this, Table 20.1 gives approximate critical values for different signif-
icance levels for Weibull, lognormal, and log-logistic distributions, using samples
with approximately 20 % of censored observations and θ̂ taken from the CSHA data.
Sample sizes of 30, 100, 250, 500, and 1000 were considered.

Censoring schemes giving 5 and 50 % censored observations were implemented,
but it seemed to have little effect on the critical values; thus, the tables are omitted. It
can be noted that the Weibull distribution has the largest critical values for all sample
sizes which would reduce the power of the test.
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Table 20.2 Approximate critical values for W

Sample size Weibull data Lognormal data

α = 0.10 α = 0.05 α = 0.01 α = 0.10 α = 0.05 α = 0.01

30 0.495 0.696 1.407 0.171 0.208 0.327

100 0.719 1.049 4.131 0.177 0.215 0.280

250 0.883 1.384 3.474 0.170 0.208 0.309

500 1.000 1.518 3.334 0.181 0.223 0.332

1000 1.085 1.658 4.870 0.179 0.214 0.316

20.4.2.2 Cramér–von-Mises Test

For Weibull and lognormal models (log-logistic skipped, see Remarks), Table 20.2
approximated critical values for the Cramér–von-Mises statistic under similar
scenarios.

We notice here that, since the statistic is normalized by sample size, the critical
values increase with sample size with the Weibull distribution. For lognormal distri-
bution, they appear quite stable. Again, the Weibull critical values are much larger,
so a worse visual fit may not translate to a worse actual fit.

20.4.3 Power Computations

To obtain power estimates, one needs to obtain θ̂ and the critical values from the
null hypothesis, but generate data from an alternative distribution. Simulations were
performed using θ̂ from the CSHA data and the sample size and critical values from
the previous section. The following tables give power estimates at different signif-
icance levels for chosen null distributions against “true” alternatives. Since these
tables are not distribution free, they are constrained to scenarios with approximately
20 % censoring, though scenarios with light and heavy censoring were implemented
as well. Generally, power decreases with amount of censoring.

20.4.3.1 Kolmogorov Test

Tables 20.3–20.5 provide some approximated power levels at different sample sizes
for Kolmogorov test.

20.4.3.2 Cramér–von-Mises Test

Table 20.6 gives approximate power for the Cramér–von-Mises test for Weibull and
lognormal null hypothesis when the true distributions are lognormal and Weibull.
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Table 20.3 Power of Kolmogorov test when H0 is Weibull

Weibull H0 Lognormal data Log-logistic data

Sample size 1 − β0.10 1 − β0.05 1 − β0.01 1 − β0.10 1 − β0.05 1 − β0.01

30 0.675 0.608 0.462 0.866 0.822 0.680

100 0.966 0.953 0.901 0.998 0.996 0.994

250 1.000 1.000 0.998 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000

Table 20.4 Power of Kolmogorov test when H0 is lognormal

Lognormal H0 Weibull data Log-logistic data

Sample size 1 − β0.10 1 − β0.05 1 − β0.01 1 − β0.10 1 − β0.05 1 − β0.01

30 0.116 0.067 0.018 0.234 0.150 0.068

100 0.198 0.113 0.014 0.447 0.327 0.143

250 0.443 0.241 0.024 0.780 0.647 0.383

500 0.731 0.474 0.045 0.960 0.902 0.666

1000 0.983 0.991 0.336 0.999 0.996 0.979

Table 20.5 Power of Kolmogorov test when H0 is log-logistic

Log-logistic H0 Weibull data Lognormal data

Sample size 1 − β0.10 1 − β0.05 1 − β0.01 1 − β0.10 1 − β0.05 1 − β0.01

30 0.200 0.121 0.033 0.179 0.122 0.048

100 0.454 0.274 0.034 0.253 0.170 0.067

250 0.860 0.643 0.075 0.571 0.464 0.212

500 0.990 0.939 0.224 0.848 0.753 0.569

1000 1.000 1.000 0.965 0.986 0.957 0.849

Table 20.6 Approximate power of Cramér–von-Mises test

Weibull H0, lognormal data Lognormal H0, Weibull data

Sample size 1 − β0.10 1 − β0.05 1 − β0.01 1 − β0.10 1 − β0.05 1 − β0.01

30 0.625 0.538 0.392 0.077 0.044 0.012

100 0.951 0.931 0.888 0.164 0.084 0.011

250 0.999 0.998 0.994 0.437 0.215 0.021

500 1.000 1.000 1.000 0.798 0.504 0.043

1000 1.000 1.000 1.000 0.995 0.970 0.276
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The simulation results are generally as expected. Power increases with sample
size, and a Weibull survival curve will not fit log-logistic and lognormal data well at
any sample size. Both tests appear to have similar power under the same scenarios.
However, the tests have low power for testing a lognormal distribution againstWeibull
data, even at large sample size, and distinguishing between lognormal and log-logistic
is difficult for even relatively large sample sizes. Fortunately, power appears to be
satisfactory for sample sizes similar to that of the phase 1 CSHA data.

20.5 CSHA Data Analysis

The CSHA was a longitudinal study of the epidemiology of dementia and other health
problems affecting the elderly across Canada. The CSHA had many aims, including
estimating the prevalence and incidence of dementia among the elderly, investigating
the risk factors forAlzheimer’s disease, as well as estimating the survival distribution
from onset of those with dementia. The study has undergone three phases, with the
first phase beginning in 1991 (CSHA-1), the second phase in 1996 (CSHA-2), and
the third phase in 2001 (CSHA-3).

During the first phase, 10,263 individuals aged 65 and above were recruited cross-
sectionally. Those who screened positive for dementia were included in the final
sample of prevalent cases and then followed until the second phase of the study in
1996. The final sample included 816 possibly censored survival times. The phase
1 portion of the CSHA was used here. The approximate date of onset of dementia,
date of death or censoring, as well as the death indicator were used in estimating
the survival function. Stationarity assumption was verified by both Asgharian et al.
(2006) and Addona and Wolfson (2006), neither could reject length bias. Wolfson
et al. (2001) reported an adjusted median survival of 3.3 years when correcting
for length bias (this was done using Kaplan–Meier for truncated data, the NPMLE
yields a median survival of 3.95 years correcting for length bias, and more in line
with incident studies of dementia such as Xie et al. (2008), contrasted with median
survival times varying from 5 to 9.3 years as suggested by previous studies.

Figure 20.1 shows both the unbiased and length-biased nonparametric survival
estimates, using Vardi’s algorithm. The importance of correcting for length bias is
readily observed.

Weibull, lognormal, and log-logistic models were fitted for the CSHA data. Ta-
ble 20.7 contains the d and w values, estimated model parameters, along with their
standard deviation and confidence intervals, for each model. The graph of the survival
curves is in Fig. 20.2.

Note that the median lifetimes are 3.57, 3.97, and 4.22 years for the Weibull, log-
normal and log-logistic models, respectively. Figure 20.2 shows the nonparametric
estimate for the CSHA data with each fitted parametric curve, for survival up to 15
years.

From a pure, Kolmogorov distance or Cramér–von-Mises criterion point of view,
the lognormal model is the closest to the nonparametric curve with the smallest values
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Fig. 20.1 Biased and unbiased nonparametric estimates of S(x)

Table 20.7 Canadian study of health and aging (CSHA) parameter estimates

Model d w Estimate SD CI

Weibull 0.096 1.956 λ = 0.207 0.009 (0.189, 0.225)

α = 1.215 0.046 (1.125, 1.305)

Lognormal 0.065 0.744 μ = 1.378 0.033 (1.313, 1.443)

σ = 0.679 0.018 (0.644, 0.715)

Log-logistic 0.124 3.044 λ = 0.237 0.007 (0.223, 0.250)

α = 2.808 0.075 (2.660, 2.955)

SD standard deviation, CI confidence interval

of D and W . Here, estimated p values are presented using 10,000 simulated data sets
for each model and censoring scheme using five different censoring schemes. Two
simulations used a fixed censoring scheme with values of c1 = 5.2 and c2 = 5.8 years
representing a constant follow-up from beginning of study. The next two scenarios
used a random normal censoring with μ1 = 5.2, σ1 = 0.3 and μ2 = 5.8, σ2 = 0.6,
respectively. This reflects actual variation in recruitment date and end of follow-up



340 P.-J. Bergeron et al.

Fig. 20.2 Nonparametric and parametric survival curves

Table 20.8 p Values estimated by simulation for Kolmogorov test

Censoring approach Weibull Lognormal Log-logistic

Fixed C=5.2 0.0556 0.0015 0.0000

Fixed C=5.8 0.0576 0.0008 0.0000

Normal (5.2,0.3) 0.0550 0.0011 0.0000

Normal (5.8,0.3) 0.0544 0.0010 0.0000

KM 0.0550 0.0007 0.0000

KM Kaplan–Meier

of the CSHA. The mean values were based on the data, where 5.2 is closer to average
follow-up, but yields higher censoring proportion in simulated samples, while 5.8
years provides censoring proportion similar to that of CSHA-1. The fifth censoring
scheme samples values from the real residual censoring times in the CSHA data
based on Kaplan–Meier estimate of the residual censoring distribution. Results are
given in Table 20.8.



20 Goodness-of-Fit Tests for Length-Biased Right-Censored Data 341

Fig. 20.3 Nonparametric and parametric survival curves by gender

Table 20.9 Canadian study of health and aging (CSHA) parameter estimates for men only
subsample

Model d w Estimate SD CI

Weibull 0.222 3.799 λ = 0.265 0.026 (0.215, 0.315)

α = 1.053 0.071 (0.913, 1.192)

Lognormal 0.033 0.039 μ = 1.244 0.063 (1.120, 1.369)

σ = 0.692 0.034 (0.626, 0.758)

Log-logistic 0.076 0.268 λ = 0.277 0.015 (0.248, 0.307)

α = 2.756 0.129 (2.503, 3.009)

SD standard deviation, CI confidence interval

From Table 20.8, lognormal and log-logistic models do not fit the data. However,
at a 5 % significance level the Weibull model cannot be rejected, but it is a borderline
result. It is also clear from the simulation results that the different approaches to cen-
soring have negligible effects. Similarly, for Cramér–von-Mises, estimated p values
are approximately 0.077 for Weibull and < 0.0001 for lognormal. The paradoxical
result of closest visual fit for lognormal, but Weibull having the largest p value de-
mands further investigation. As data on the gender of each patient was available, it
was decided to perform separate analyses for men and women. There were 237 men
and 579 women in CSHA-1. Fitting all three models on each, the best fit (smallest
distance and largest p value) were Weibull for women (approximate p value 0.57)
and lognormal for men (p ≈ 0.97). The survival curves for each group are given in
Fig. 20.3, while the parameter estimates are in Tables 20.9 and 20.10.

There are two different distributions, the mixture of which could explain the
paradoxical results for the full sample: women outnumber men, which would pull the
overall survival curve towards the Weibull model, but the shorter lived lognormal men
better capture the early part of the survival curve, thus giving the closer Kolmogorov
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Table 20.10 Canadian study of health and aging (CSHA) parameter estimates for women only
subsample

Model d w Estimate SD CI

Weibull 0.049 0.216 λ = 0.187 0.009 (0.169, 0.204)

α = 1.313 0.059 (1.196, 1.429)

Lognormal 0.094 0.999 μ = 1.440 0.038 (1.365, 1.516)

σ = 0.668 0.021 (0.626, 0.709)

Log-logistic 0.155 3.087 λ = 0.220 0.007 (0.205, 0.234)

α = 2.871 0.090 (2.694, 3.048)

SD standard deviation, CI confidence interval

distance and smaller Cramér–von-Mises statistic of the lognormal fit on the whole
sample. Seeing different distributions by gender also falls within epidemiological
conventional wisdom of treating men and women separately, and would suggest
further investigation of how dementia affects the different genders.

20.6 Remarks

1. The proposed one-sample goodness-of-fit tests for length-biased survival data
are based on simple extensions of the Kolmogorov test and Cramér–von-Mises
statistic. They rely heavily on computational techniques and simulations which
are easily implemented using statistical software, particularly the lbiassurv
package in R. The illustration using the CSHA data carries one main message: a
good visual fit is not sufficient. While Bergeron et al. (2008) had used a Weibull
model based on visual fit, the new proposed test suggests that further investigation
was required, and performing separate analyses for different genders may be
warranted. It should be noted, however, for the CSHA, that separating by gender
made two smaller samples out of the original large sample, and that for the
subsample of men, the power to distinguish between lognormal curve on Weibull
data is quite low. However, testing for a Weibull model gives an approximate p

value of 0.022; thus, the power issue may no bet so essential in this case. A larger
sample size would be needed to confirm.

2. It should be noted that simulating from the length-biased log-logistic distribution
can sometimes yield unrealistically small observations that result in two prob-
lems. First, the NPMLE for such a sample is no longer representative of the true
distribution as the length-bias correction makes the survival function’s first step
to be a large drop close to time zero. Second, in the presence of such outlying
observations, maximizing the parametric likelihood may not work using standard
numerical optimization, and will result in crash of the null distribution simulation
program if not accounted once the simulated data are generated. A simple remedy
to that is to always check for tiny outliers in simulated data sets and to resample



20 Goodness-of-Fit Tests for Length-Biased Right-Censored Data 343

them before estimation. This correction will influence approximated quantities
making them less volatile than the truth, but a slightly flawed approximation is
better than none.

3. The flexibility of the Weibull model for the tests brings its own issues, mainly with
respect to power and sampling from the left-hand tail of the distribution. When the
shape parameter α is close to (or below) 1, there is constant (or decreasing) hazard
that results in a fast-dropping survival function which may be well below the
NPMLE, or have an NPMLE well below the fitted parametric curve for simulated
data sets as short even times are possible even with length-biased sampling due
to the shape of the hazard. This translates to more volatility of the Kolmogorov
and Cramér–von-Mises statistics under the null. For example, for a sample size
of 100 with 20 % censoring, at a given rate and significance level of 0.05, the
approximate critical value for the Kolmogorov test goes from 0.51 to 0.27 and
0.14 as the shape parameter doubles from 0.5 to 1.0 and 2.0. Doubling the rate at
a fixed shape, however, raises the critical value on the order of 0.01 instead. Since
the CSHA data have estimated Weibull shape parameter in the upper vicinity of
1, not quite an exponential distribution but not that far from constant hazard, it
is not surprising that we observe large deviation between the NPMLE and the
Weibull estimated curve.

4. That separate parametric forms are obtained for men and women from the CSHA
data suggests that one should be careful in implementing regression models, as
it suggests nonproportional hazard between the two groups. Weibull naturally
conforms to both proportional hazards (PH) and accelerated failure time (AFT)
models, the former allowing elimination of the parametric assumption on the
baseline in favor of a semiparametric Cox model adapted for length-biased data
as in Qin and Shen (2010). The lognormal model only works well with AFT.
Further discussion of how AFT models are naturally suited for length-biased data
can be found in Mandel and Ritov (2010).

5. Development and extensions of the tests are possible. Using a mixture model with
a fixed covariate, taking into account covariate bias (Bergeron et al. 2008), could
perhaps improve performing separate analyses for the gender subsamples. Devel-
opment of an Anderson–Darling test (Anderson and Darling 1954) using Vardi’s
NPMLE would be straight forward, but including a weight of [F (x)(1 − F (x))]−1

that increases in the tails should be carefully considered with length-biased data,
as the left-hand tail will be subject to more variability than the right-hand tail,
where most of the data will be, as short observed times have more impact on the
bias correction. Adaptation of weights similar to Harrington–Fleming (Harrington
and Fleming 1982) may yield better results.
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20.7 Appendix

20.7.1 Length-Biased Log-Logistic

The two parameter log-logistic has the following pdf and mean:

f (x) = αλαxα−1

[1 + (λx)α]2
. (20.14)

μ = πcsc
(
π
α

)

αλ
. (20.15)

The mean, μ, can be represented using the gamma function if α > 1:

μ = πcsc
(
π
α

)

αλ
= π

αλ sin
(
π
α

) =
1
α
Γ
(

1
α

)
Γ
(
1 − 1

α

)

λ
= Γ

(
1 + 1

α

)
Γ
(
1 − 1

α

)

λ
.

(20.16)

The length-biased density for a log-logistic random variable is given by

FY (t) =
∫ t

0

αλ exp [α log (λx)]

Γ
(
1 + 1

α

)
Γ
(
1 − 1

α

)
(1 + exp [α log (λx)])2 dx (20.17)

Taking z = α log (λx), we obtain

FY (t) =
∫ α log (λt)

−∞

exp
(
z(1 + 1

α
)
)

Γ (1 + 1
α

)Γ (1 − 1
α

)(1 + exp (z))2
dz (20.18)

Letting u = (1 + ez)−1, we obtain

FY (t) =
∫ 1

(1+exp [α log (λt)])−1

u−1/α(1 − u)1/α

Γ
(
1 + 1

α

)
Γ
(
1 − 1

α

) du (20.19)

FY (t) can be written asFZ(h(t)), whereFZ is the distribution of a beta(1− 1
α

, 1+ 1
α

)
random variable and h(t) = (1 + exp [α log (λt)])−1 = 1

1+(λx)α . h(t) is nonnegative,
strictly decreasing, and continuous. Its inverse is given by

g(s) =
(

1−s
s

)1/α

λ
. (20.20)
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Chapter 21
Assessment of Fit in Longitudinal Data
for Joint Models with Applications
to Cancer Clinical Trials

Danjie Zhang, Ming-Hui Chen, Joseph G. Ibrahim, Mark E. Boye,
and Wei Shen

Abstract Joint models for longitudinal and survival data have now become increas-
ingly popular in clinical trials or other studies for assessing a treatment effect while
accounting for longitudinal measures such as patient-reported outcomes or tumor
response. Most studies in the existing literature primarily focus on reducing the bias
and improving efficiency in the estimate of the treatment effect in the joint model-
ing of survival and longitudinal data. Global fit indices such as Akaike information
criterion (AIC) or Bayesian information criterion (BIC) can be used to assess the
overall fit of the joint model. However, these indices do not provide separate as-
sessments of each component of the joint model. In this chapter, we develop new
model assessment criteria using a novel decomposition of AIC and BIC (i.e., AIC
= AICSurv + AICLong|Surv and BIC = BICSurv + BICLong|Surv) to assess the contri-
bution of the survival data to the model fit of the longitudinal data. We apply the
proposed methodology to the analysis of a real dataset from a cancer clinical trial in
mesothelioma.
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21.1 Introduction

Joint modeling of longitudinal and survival data has now established a long history
and is becoming a well-accepted standard in analyzing time to event data with longi-
tudinal outcomes that are potentially associated with a time to event such as overall
survival (OS) or progression-free survival in oncology studies, for example. Lon-
gitudinal outcomes such as patient reported outcomes (PROs) in oncology studies
(Rothman et al. 2009) are now routinely collected to help assess a patient’s quality
of life (QOL), especially when toxic chemotherapies are administered. Such infor-
mation is crucial in helping to assess the QOL versus efficacy benefit in such studies.
Longitudinal and survival data are also collected in vaccine trials, where patients are
administered a vaccine longitudinally and the goal is to determine the relationship
between the immune response and the time to event such as OS (Brown and Ibrahim
2003a; Brown and Ibrahim 2003b; Chen et al. 2004; Ibrahim et al. 2004). Such data
are also collected in HIV vaccine trials, where the focus is on jointly modeling of
survival data and univariate or multivariate longitudinal CD4 counts (Pawitan and
Self 1993; DeGruttola and Tu 1994; LaValley and DeGruttola 1996). Often in these
joint modeling settings, the longitudinal outcome is viewed as a surrogate and the
hope is that it will be highly associated with the time to event in order to reduce bias
and yield higher efficiency in the estimate of the treatment effect.

There has been a substantial literature on joint models in which the goal is to
incorporate the longitudinal marker in order to assess the association between the
longitudinal marker and a time to event for the purposes of planning future trials,
to develop a better understanding of the biology of the disease, and to also help
reduce bias and yield greater efficiency in assessing the treatment effect. See the
papers by Hsieh et al. (2006), Ibrahim et al. (2010), Chen et al. (2011), Hatfield et
al. (2011), Wang et al. (2012), and Hatfield et al. (2012) for a discussion of this.
However, very little has been done in assessing the goodness of fit of a joint model,
which is a crucial issue in joint modeling, since there are so many assumptions and
modeling components in these models. First, there is the assumption of the form of the
longitudinal mixed model along with assumptions about its error distribution, random
effects structure, and the covariates. Second, there is the crucial assumption regarding
the form of the survival model: (i) whether it is parametric or semiparametric, (ii)
the form of the hazard, whether it is proportional or nonproportional hazards, (iii)
the choice of random effects and covariate structure in the survival model, and (iv)
the form of the association parameters between the longitudinal and survival model.
Related to all this, there are also the important issues of assessing the goodness of
fit for the individual contributions of the joint model, that is, assessing the fit of the
longitudinal and survival components separately, as well as assessing the gain in fit
of the survival component given the longitudinal component and vice versa. All of
these issues need to be carefully examined through the development of appropriate
goodness of fit statistics and model diagnostic measures. Such model diagnostic
measures have been proposed in Zhu et al. (2012).
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There has been very little development on goodness-of-fit statistics for joint mod-
els addressing the above-mentioned issues. In this chapter, we use the well-known
criteriaAkaike information criterion (AIC) and Bayesian information criterion (BIC)
to help assess the fit of a joint model. To help assess the individual components
in a joint model, we employ a novel decomposition of these measures by appro-
priately factoring the joint density of the longitudinal and survival outcome in
such a way that allows us to assess the contribution of the survival data to the
model fit of the longitudinal data. This will yield a decomposition of AIC (BIC)
as AIC = AICSurv + AICLong|Surv (BIC = BICSurv + BICLong|Surv). These decompo-
sitions are novel and quite useful in assessing the contributions of each component
in a joint model. This type of decomposition is most useful in the setting where the
main goal is to make inferences on the parameters in the longitudinal model while
using the information in the survival model. Thus, in this context, the hope is that
the inclusion of the survival model may improve the inferences and result in a better
goodness of fit in the longitudinal model compared to fitting the longitudinal model
alone. Similarly, one can also perform the decomposition the other way in which
AIC = AICLong + AICSurv|Long and BIC = BICLong + BICSurv|Long, and in this case,
the main goal is to make inferences about the parameters in the survival model while
using the information in the longitudinal model. Thus, in this context, the hope is
that the inclusion of the longitudinal data may improve the inferences and result in
better goodness of fit in the survival model compared to fitting the survival model
alone (see Zhang et al. 2014).

The rest of this chapter is organized as follows. In Sect. 21.2, we give the general
layout of the joint model by giving general forms of the longitudinal and survival
components of the model, and also give the form of the likelihood function of the
joint model. In Sect. 21.3, we derive the novel decompositions of AIC and BIC and
discuss their advantages and their use in practice. In Sect. 21.5, we present a detailed
analysis of a randomized lung cancer clinical trial in mesothelioma where the goal is
to assess several PRO measures and their association with progression-free survival.
A detailed analysis of these data helped us identify which PRO measures yield the
most improved fit in the longitudinal model when the survival data are included in
the model. We conclude the chapter with some discussion in Sect. 21.6.

21.2 The Joint Models of Longitudinal and Survival Data

LetY (a) denote the longitudinal measure at time a for a ≥ 0, whereY (0) corresponds
to the baseline value. Let T denote the failure time. In addition, let z denote the
treatment indicator with z = 1 for the treatment and z = 0 for the control, and let
x denote the p-dimensional vector of covariates. We consider the joint model for
(Y (a), T ), which consists of the longitudinal component and the survival component
presented in following subsections.



350 D. Zhang et al.

21.2.1 The Longitudinal Component of the Joint Model

We assume a mixed effects regression model for the longitudinal outcome Y (a),
which is given by

Y (a) = θ ′
Rg(a) + γ1z + γ ′

2x + ε(a), (21.1)

where g(a) = (1, a, a2, . . . , aq)′ is a polynomial vector of order q, θR is a (q+1)-
dimensional vector of random effects, and γ2 is a p-dimensional vector of regression
coefficients. In (21.1), we further assume

θR ∼ N (θ ,Σ),

where θ is the (q+1)-dimensional vector of overall effects, Σ is a (q+1)×(q+1)
positive definite covariance matrix, ε(a) ∼ N (0, σ 2), and θR and ε(a) are indepen-
dent. We note that in (21.1), if q = 1, g(a) = (1, a)′ and θ ′

Rg(a) represents a linear
trajectory, and if q = 2, g(a) = (1, a, a2)′ and θ ′

Rg(a) leads to a quadratic trajectory.

21.2.2 The Survival Component of the Joint Model

For the failure time T , the hazard function is assumed to be of the general form:

λ(t |λ0,β,α, θR , g(t), γ , z, x)

= λ0(t) exp{h(β, θR , g(t), γ1z, γ ′
2x) + α1z + α′

2x}, (21.2)

where λ0(t) is the baseline hazard function, h( · ) is a linear function of θR , g(t),
γ1z, and γ ′

2x with β being a vector of the corresponding regression coefficients,
γ = (γ1, γ ′

2)′, and α = (α1,α′
2)′. Note that in (21.2), θR , g(t), γ1, and γ2 are the

parameters or the functions from the longitudinal component of the joint model in
(21.1), and λ0, β, α1 and α2 are the fixed effects parameters pertaining to the survival
component. When

h(β, θR , g(t), γ1z, γ ′
2x) = h∗(β, θ ′

Rg(t), γ1z, γ ′
2x), (21.3)

where h∗( · ) is a linear function of θ ′
Rg(t), γ1z, and γ ′

2x, (21.2) leads to the tra-
jectory model (TM). In this case, the hazard function depends on θR and g only
through θ ′

Rg. When h does not depend on g(t), that is, h(β, θR , g(t), γ1z, γ ′
2x) =

h∗(β, θR , γ1z, γ ′
2x), where h∗(·) is a linear function of θR , γ1z, and γ ′

2xi , (21.2)
reduces to the shared parameter model (SPM).

In (21.2), we take λ0(t) to be piecewise constant, i.e.,

λ0(t) = λk , t ∈ (sk−1, sk] for k = 1, . . . ,K , (21.4)

where 0 = s0 < s1 < s2 < . . . < sK−1 < sK = ∞ is a finite partition of the time
axis.
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21.2.3 The Likelihood Functions

Suppose there are n subjects. For the ith subject, the observed longitudinal measures
are denoted by Yi = (Yi(ai1), . . . ,Yi(aimi

))′, where ai1 = 0 < ai2 < · · · < aimi

and mi > 1. Let ti and δi denote the failure time and the censoring indicator, re-
spectively, where δi = 1 if ti is a failure time and 0 if ti is right censored for the ith
subject. In addition, let zi , xi , and θRi be the treatment indicator, the p-dimensional
vector of covariates, and the (q + 1)-dimensional vector of random effects. Write
Wi = ((g(aij )′, zi , x ′

i)
′, j = 1, . . . ,mi)′. Then, given θRi , the complete data likelihood

function of the longitudinal outcomes can be written as

L(γ , σ 2|Yi ,Wi , θRi)

= 1

(2πσ 2)
mi
2

exp
{− 1

2σ 2
(Yi − Wi(θ

′
Ri , γ

′)′)′(Yi − Wi(θ
′
Ri , γ

′)′)
}

(21.5)

and the complete data likelihood function for the survival component is given by

L(λ,β,α|ti , δi , zi , xi , θRi , g, γ ) = [λ(ti |λ0,β,α, θRi , g(ti), γ , zi , xi)]
δi

× exp

{
−
∫ ti

0
λ(u|λ0,β,α, θRi , g(u), γ , zi , xi)du

}
, (21.6)

where λ = (λ1, . . . , λK )′ and λ(t |λ0,β,α, θRi , g(t), γ , zi , xi) is given in (21.2). The
density of θRi takes the form

f (θRi |θ ,Σ) = |Σ |− 1
2

(2π )
q+1

2

exp
{− 1

2
(θRi − θ )′Σ−1(θRi − θ )

}
. (21.7)

Let ϕ = (γ , σ 2, θ ,Σ , λ,β,α) denote the collection of parameters in the longitu-
dinal and survival components of the joint model. Using (21.5), (21.6), and (21.7),
the observed data likelihood function for (Yi , ti , δi , zi , xi) for the ith subject is given
by

L(ϕ|Yi , ti , δi , zi , xi ,Wi , g)

=
∫

L(λ,β,α|ti , δi , zi , xi , θRi , g, γ )L(γ , σ 2|Yi ,Wi , θRi)f (θRi |θ ,Σ)dθRi , (21.8)

for i = 1, . . . , n. Letting Dobs = {(Yi , ti , δi , zi , xi), i = 1, . . . , n} denote the observed
data, the joint likelihood function for all n subjects is given by

L(ϕ|g,Dobs) =
n∏

i=1

L(ϕ|Yi , ti , δi , zi , xi ,Wi , g). (21.9)

Let ϕ̂ = (γ̂ , σ̂ 2, θ̂ , Σ̂ , λ̂, β̂, α̂) denote the maximum likelihood estimate (MLE) of ϕ
from the joint model. Then the AIC (Akaike 1973) for the joint model is given by

AIC = −2logL(ϕ̂|g,Dobs) + 2dim(ϕ), (21.10)
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and the BIC (Schwarz 1978) is defined as

BIC = −2logL(ϕ̂|g,Dobs) + dim(ϕ) log n. (21.11)

21.3 Criteria for Assessing Model Fit in Longitudinal Data
Using Decompositions of AIC and BIC

21.3.1 Decompositions of AIC and BIC

To assess the contribution of the survival data to the fit of the longitudinal data, we de-
composeAIC in (21.10) into two parts: one part for the survival data and the other part
for the longitudinal data conditional on the survival data. Write ϕ1 = (γ , σ 2, θ ,Σ)
and ϕ2 = (λ,β,α). Let ϕ̂1 and ϕ̂2 denote the MLEs of ϕ1 and ϕ2, respectively, so
that ϕ̂ = (ϕ̂1, ϕ̂2). Recall that the likelihood function corresponding to the distribu-
tion of (ti , δi) conditional on the random effects θRi and the marginal distribution of
the random effects are given by (21.6) and (21.7), respectively. Let [A|B] denote
the conditional distribution of A given B and let [B] denote the marginal distribu-
tion. Then, the joint distribution [(ti , δi), θRi] can be expressed as [ti , δi |θRi][θRi] or
[θRi |ti , δi][ti , δi]. Mathematically, we have the identity

L(ϕ2|ti , δi , zi , xi , θRi , g, γ )f (θRi |θ ,Σ)

= L(λ,α|ti , δi , zi , xi , g, γ , θ ,Σ ,β)f (θRi |ti , δi , g, γ , θ ,Σ ,ϕ2), (21.12)

where L(λ,α|ti , δi , zi , xi , g, γ , θ ,Σ ,β) = ∫
L(ϕ2|ti , δi , zi , xi , θRi , g, γ )f (θRi |θ ,Σ)

dθRi is the likelihood function corresponding to the marginal distribution of (ti , δi),
and f (θRi |ti , δi , g, γ , θ ,Σ ,ϕ2) = L(ϕ2|ti , δi , zi , xi , θRi , g, γ )f (θRi |θ ,Σ)/L(λ,α|ti ,
δi , zi , xi ,g, γ , θ ,Σ ,β) is the conditional density of the random effects θRi given
the survival data (ti , δi). The key identity in (21.12) leads to a useful likelihood
factorization for L(ϕ|g,Dobs) given in (21.9). Specifically, we have

L(ϕ|g,Dobs) =
n∏

i=1

∫
L(ϕ2|ti , δi , zi , xi , θRi , g, γ )L(γ , σ 2|Yi ,Wi , θRi)f (θRi |θ ,Σ)dθRi

=
n∏

i=1

L(λ,α|ti , δi , zi , xi , g, γ , θ ,Σ ,β)

×
n∏

i=1

∫
L(γ , σ 2|Yi ,Wi , θRi)f (θRi |ti , δi , g, γ , θ ,Σ ,ϕ2)dθRi.

(21.13)

The above likelihood factorization is the key step towards establishing the de-
compositions of AIC and BIC. We formally state the results in the following
theorem.
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Theorem 1 AIC in (21.10) has the following decomposition:

AIC = AICSurv + AICLong|Surv, (21.14)

where AICSurv = −2
∑n

i=1 logL(λ̂, α̂|ti , δi , zi , xi , g, γ̂ , θ̂ , Σ̂ , β̂) + 2dim(λ,α) and

AICLong|Surv = − 2
n∑

i=1

log
∫

L(γ̂ , σ̂ 2|Yi ,Wi , θRi)f (θRi |ti , δi , g, γ̂ , θ̂ , Σ̂ , ϕ̂2)dθRi

+ 2dim(ϕ1,β).

The proof of Theorem 1 directly follows the likelihood factorization in (21.13).
BIC in (21.11) has a similar decomposition which is stated in the following corollary.

Corollary 1 BIC in (21.11) can be decomposed as

BIC = BICSurv + BICLong|Surv, (21.15)

where BICSurv = AICSurv + dim(λ,α)(log n−2), and BICLong|Surv = AICLong|Surv+
dim(ϕ1,β)( log n − 2).

AICSurv in (21.14) (BICSurv in (21.15) measures the contribution of the total AIC
(BIC) due to the survival data while AICLong|Surv (BICLong|Surv) quantifies the con-
tribution of the total AIC (BIC) due to the longitudinal data with the additional
information from the survival data.

Remark 1 Zhang et al. (2014) consider an alternative likelihood factorization of
L(ϕ|g,Dobs) as

L(ϕ|g,Dobs) =
n∏

i=1

L(ϕ1|Yi ,Wi)
n∏

i=1

∫
L(ϕ2|ti , δi , zi , xi , θRi , g, γ )

× f (θRi |Yi ,Wi ,ϕ1)dθRi ,

where L(ϕ1|Yi ,Wi) = ∫
L(γ , σ 2|Yi ,Wi , θRi)f (θRi |θ ,Σ)dθRi and f (θRi |Yi ,Wi ,ϕ1)

= L(γ , σ 2|Yi ,Wi , θRi)f (θRi |θ ,Σ)/L(ϕ1|Yi ,Wi). Using the above likelihood fac-
torization, Zhang et al. (2014) propose an alternative decomposition of AIC given
by

AIC = AICLong + AICSurv|Long, (21.16)

where AICLong = −2
∑n

i=1 logL(ϕ̂1|Yi ,Wi) + 2dim(ϕ1) and

AICSurv|Long = − 2
n∑

i=1

log
∫

L(ϕ̂2|ti , δi , zi , xi , θRi , g, γ̂ )f (θRi |Yi ,Wi , ϕ̂1)dθRi

+ 2dim(ϕ2).

In addition, Zhang et al. (2014) develop the decomposition of BIC as

BIC = BICLong + BICSurv|Long, (21.17)
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where BICLong = AICLong + (ϕ1)(log n − 2), and

BICSurv|Long = AICSurv|Long + dim(ϕ2)(log n − 2).

Remark 2 The decompositions of AIC and BIC given by (21.14) and (21.15) are
most useful in the setting where the main goal is to make inferences on the parameters
in the longitudinal model using the information in the survival model. Similarly, if
the primary goal is make inferences on the parameters in the survival model using
the information in the longitudinal model, then the decompositions of AIC and BIC
given by (21.16) and (21.17) are better suited for this goal.

21.3.2 ΔAICLong and ΔBICLong Criteria

We are interested in how much the survival data can contribute to the fit of the
longitudinal component in the joint model. Towards this goal, we let (γ̂L, σ̂ 2

L, θ̂L, Σ̂L)
denote the MLE of (γ , σ 2, θ ,Σ) with respect to the likelihood function,

n∏
i=1

∫
L(γ , σ 2|Yi ,Wi , θRi)f (θRi |θ ,Σ)dθRi ,

for the longitudinal data alone. Then, AIC and BIC based on the longitudinal data
alone can be written as

AICLong,alone = −2
n∑

i=1

log
∫

L(γ̂L, σ̂ 2
L|Yi ,Wi , θRi)f (θRi |θ̂L, Σ̂L)dθRi + 2dim(ϕ1)

and

BICLong,alone = − 2
n∑

i=1

log
∫

L(γ̂L, σ̂ 2
L|Yi ,Wi , θRi)f (θRi |θ̂L, Σ̂L)dθRi

+ dim(ϕ1) log n.

Based on the decomposition of AIC in (21.14) and BIC in (21.15), we propose new
model assessment criteria ΔAICLong and ΔBICLong as

ΔAICLong = AICLong,alone − AICLong|Surv,

ΔBICLong = BICLong,alone − BICLong|Surv.
(21.18)

ΔAICLong (ΔBICLong) in (21.18) quantifies the trade-off between improvement of
fit in the longitudinal component due to the survival data and the dimension penalty
for the additional parameters in the longitudinal component of the joint model. A
model with a large value of ΔAICLong(ΔBICLong) is more preferred.
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To make the ΔAICLong’s or ΔBICLong’s more comparable across different lon-
gitudinal datasets, we introduce the relative ΔAICLong and the relative ΔBICLong,
which are defined as

RΔAICLong = ΔAICLong

AICLong,alone
,

RΔBICLong = ΔBICLong

BICLong,alone
.

(21.19)

We illustrate the application of RΔAICLong and RΔBICLong in the next sections.

21.4 A Simulation Study

The objective of this simulation study is to evaluate the empirical performance of
ΔAICLong and RΔAICLong in identifying the longitudinal measure that the survival
data are most related to. We independently simulate 500 datasets with n = 400
subjects each. For each subject, seven time points (aij , j = 1, . . . , 7) for the lon-
gitudinal measures are chosen to be (0, 21, 42, 63, 84, 105, 126)/(365.25/12), and
the treatment indicator zi is generated from a Bernoulli (0.5) distribution. The de-
sign values of the parameters are given as Σ00 = 0.7, Σ10 = −0.03, Σ11 = 0.06,
σ 2 = 0.3, θ0 = 0.2, θ1 = 0.1, γ = −0.1, β1 = 0.3, β2 = 1.2, α = −0.4,
and λ = 0.18. The longitudinal data are simulated from a N (μi(aij ), σ 2) distri-
bution with linear trajectory μi(aij ) = (θ0 + θ0i) + (θ1 + θ1i)aij + γ zi . For the
survival data, we generate t∗i = [−λ exp{β1θ0i +β2θ1i +αzi}]−1 log (1−U ), where
U ∼ U (0, 1), and the censoring time Ci is sampled from an exponential distribu-
tion with mean 20. Then the failure time and censoring indicator are computed as
ti = min{t∗i ,Ci} and δi = 1 if t∗i ≤ Ci and 0 otherwise. The resulting censoring
percentage is about 25%. The above longitudinal and survival datasets sampled from
the true model are denoted by DLong and DSurv, respectively, and the joint dataset is
written as DLong + DSurv. Two additional sets of longitudinal data are generated by
adding different amounts of noise to the true longitudinal measures. More specifi-
cally, they are simulated from a N (μ�i(aij ), σ 2) distribution with linear trajectories
μ�i(aij ) = (θ0+θ0i+τ�0i)+(θ1+θ1i+τ�1i)aij +γ zi , where (τ�0i , τ�1i)′ ∼ N (0, κ2

� I2),
κ1 = 0.5, and κ2 = 1. Combining these two longitudinal datasets with the survival
dataDSurv leads to two additional datasets, namely, DLong1+DSurv andDLong2+DSurv.

We fit shared parameter model with linear trajectory (SPML) to each of the three
joint datasets DLong + DSurv, DLong1 + DSurv, and DLong2 + DSurv, and the corre-
sponding results are denoted as Long, Long1, and Long2, respectively. The means
of ΔAICLong and RΔAICLong as well as the frequencies of ranking each dataset as
best are reported in Table 21.1. Note that RΔAICLong is multiplied by 1000. From
Table 21.1, we see that Long has the largest means of ΔAICLong and RΔAICLong,
which are 29.83 and 4.77, and gets ranked as number one with 497 and 500 times out
of 500 by ΔAICLong and RΔAICLong, respectively. We also observe that the mean
and frequency corresponding to Long1 are higher than those of Long2, which is
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Table 21.1 Means of
ΔAICLong and RΔAICLong

and frequencies of ranking
each dataset as best based on
ΔAICLong and RΔAICLong

ΔAICLong RΔAICLonga

Data Mean Frequency Mean Frequency

Long 29.83 497 4.77 500

Long1 9.89 3 1.42 0

Long2 3.26 0 0.43 0

aR ΔAICLong is multiplied by 1000
AIC Akaike information criterion

Fig. 21.1 Boxplots of the ΔAICLong’s and RΔAICLong’s for Long, Long1, and Long2. AIC Akaike
information criterion

expected as κ2 is greater than κ1. Figure 21.1 shows the boxplots of the ΔAICLong’s
and RΔAICLong’s for Long, Long1, and Long2. We see from these boxplots that
Long has the largest medians of ΔAICLong and RΔAICLong, while Long2 has the
smallest medians of ΔAICLong and RΔAICLong. These results empirically show that
both ΔAICLong and RΔAICLong can correctly identify the true longitudinal data that
the survival data are most highly associated with.

21.5 Application to the EMPHACIS Data

21.5.1 The EMPHACIS Data

We consider a subset of the dataset from a multicenter, randomized, single-blind, EM-
PHACIS lung cancer clinical trial (Evaluation of Multi-Targeted Antifolate (MTA)
in Mesothelioma in a Phase III Study with Cisplatin). The study drug was MTA
pemetrexed (PEM) given in combination with cisplatin (Cis) (the PEM/Cis arm),
and the active-treatment comparator was cisplatin alone (the Cis arm). The treatment
for both arms was structured as six 21-day cycles of therapy. Patients receiving the
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treatment benefit could receive additional cycles based on investigator discretion. In
our analysis, the time to event is the progression-free survival (PFS) time, which is
defined as the time from randomization to the time until documented progression or
death from any cause. A detailed description of this study can be found in Vogelzang
et al. (2003).

This phase 3 first-line registration study of PEM in malignant pleural mesothe-
lioma (MPM) included evaluation of PROs throughout the course of treatment. Most
studies that incorporate the Lung Cancer Symptom Scale (LCSS) questionnaire (Pa-
tricia et al. 2006) use a single assessment to evaluate one or more cycles, over a
period of 3 or more weeks, whereas this study balanced the limited span of the 24-h
instrument recall period with more frequent PRO assessments; PRO administration
was scheduled for each week versus, for example, once every 6 weeks (Hollen et
al. 1997). The PROs considered here are five items, i.e., anorexia, cough, dyspnea,
fatigue, and pain, from the disease-specific patient-reported LCSS, which were col-
lected in the EMPHACIS trial. Our study cohort consists of 425 patients with at least
one post-baseline value of each longitudinal measure and seven binary covariates,
including race (xi1 = 1 if white), gender (xi2 = 1 if male), age (xi3 = 1 if age ≥ 65),
Karnofsky status (xi4 = 1 if Karnofsky status is high), baseline stage of disease
(xi5 = 1 if stage I/II), vitamin supplementation (xi6 = 1 if full vitamin supplemen-
tation), and treatment assignment (zi = 1 if the ith patient is in the PEM/cisplatin
arm). In all of the computations, we standardized these five LCSS measures to make
them more comparable to each other and at the same time to improve numerical
stability. The LCSS original-scaled item means (standard deviations) were 30.79
(27.19), 11.48 (17.93), 31.41 (26.33), 39.38 (27.06), and 24.64 (24.90) for anorexia,
cough, dyspnea, fatigue, and pain, respectively. The total numbers of longitudinal
measures (i.e.,

∑n
i=1 mi) including the baseline measures were 5504, 5544, 5553,

5530, and 5546 for anorexia, cough, dyspnea, fatigue, and pain, respectively.

21.5.2 Analysis of the EMPHACIS Data

LetDanorexia, Dcough, Ddyspnea, Dfatigue, andDpain denote the five observed longitudinal
datasets and also let DSurv denote the observed PFS data. Then the five different
datasets are denoted by Danorexia +DSurv, Dcough +DSurv, Ddyspnea +DSurv, Dfatigue +
DSurv, and Dpain + DSurv.

We first fit the joint models with linear and quadratic trajectories to each of the
five longitudinal datasets, Danorexia, Dcough, Ddyspnea, Dfatigue, and Dpain, to obtain the
corresponding AICLong,alone’s. We then fit the SPMs as well as the TMs with linear
and quadratic trajectories denoted by SPML, SPMQ, TML, and TMQ, respectively,
to each of Danorexia + DSurv, Dcough + DSurv, Ddyspnea + DSurv, Dfatigue + DSurv, and
Dpain + DSurv. We computed the corresponding quantities under the decomposition
of AIC and BIC given in Sect. 21.3 to quantify the contribution of the PFS data to
the fit of the longitudinal data. The results are summarized in Table 21.2. For all the
models, we used the piecewise constant hazard model given in (21.4) with K = 2 for
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Table 21.2 AICs and BICs

Model Anorexia Cough Dyspnea Fatigue Pain

SPML AIC 14205.13 14451.48 12101.25 13184.26 13030.38

AICSurv 2208.54 2206.75 2208.91 2209.82 2214.45

AICLong|Surv 11996.60 12244.74 9892.34 10974.44 10815.93

AICLong,alone 12017.59 12248.25 9911.72 11004.89 10867.45

ΔAICLong 20.99 3.51 19.38 30.45 51.52

RΔAICLonga 1.75 0.29 1.95 2.77 4.74

BIC 14302.38 14548.73 12198.50 13281.52 13127.63

BICSurv 2245.00 2243.22 2245.38 2246.29 2250.92

BICLong|Surv 12057.38 12305.52 9953.12 11035.22 10876.71

BICLong,alone 12070.27 12300.93 9964.39 11057.57 10920.12

ΔBICLong 12.89 −4.59 11.27 22.34 43.41

RΔBICLongb 1.07 −0.37 1.13 2.02 3.98

SPMQ AIC 14123.05 14250.06 11908.16 13058.62 12778.40

AICSurv 2208.24 2206.79 2207.70 2208.84 2212.27

AICLong|Surv 11914.81 12043.28 9700.45 10849.78 10566.12

AICLong,alone 11933.19 12046.45 9713.88 10873.74 10609.10

ΔAICLong 18.38 3.18 13.42 23.97 42.98

RΔAICLong 1.54 0.26 1.38 2.20 4.05

BIC 14240.56 14367.57 12025.67 13176.13 12895.91

BICSurv 2244.71 2243.25 2244.17 2245.31 2248.74

BICLong|Surv 11995.85 12124.32 9781.50 10930.82 10647.17

BICLong,alone 12002.08 12115.34 9782.76 10942.63 10677.99

ΔBICLong 6.23 −8.98 1.26 11.81 30.82

RΔBICLong 0.52 −0.74 0.13 1.08 2.89

TML AIC 14204.92 14449.26 12106.26 13185.81 13038.62

AICSurv 2205.43 2207.63 2204.57 2205.37 2208.92

AICLong|Surv 11999.49 12241.64 9901.68 10980.44 10829.71

AICLong,alone 12017.59 12248.25 9911.72 11004.89 10867.45

ΔAICLong 18.09 6.61 10.04 24.45 37.74

RΔAICLong 1.51 0.54 1.01 2.22 3.47

BIC 14298.12 14542.46 12199.45 13279.01 13131.82

BICSurv 2241.90 2244.10 2241.04 2241.84 2245.39

BICLong|Surv 12056.22 12298.36 9958.41 11037.17 10886.44

BICLong,alone 12070.27 12300.93 9964.39 11057.57 10920.12

ΔBICLong 14.04 2.56 5.98 20.40 33.69

RΔBICLong 1.16 0.21 0.60 1.84 3.08
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Table 21.2 (continued)

Model Anorexia Cough Dyspnea Fatigue Pain

TMQ AIC 14118.40 14244.30 11904.93 13049.48 12773.67

AICSurv 2205.73 2208.05 2204.73 2205.32 2208.74

AICLong|Surv 11912.67 12036.25 9700.20 10844.16 10564.92

AICLong,alone 11933.19 12046.45 9713.88 10873.74 10609.10

ΔAICLong 20.53 10.20 13.67 29.59 44.18

RΔAICLong 1.72 0.85 1.41 2.72 4.16

BIC 14227.80 14353.70 12014.34 13158.88 12883.07

BICSurv 2242.20 2244.52 2241.20 2241.79 2245.21

BICLong|Surv 11985.60 12109.19 9773.14 10917.10 10637.86

BICLong,alone 12002.08 12115.34 9782.76 10942.63 10677.99

ΔBICLong 16.48 6.15 9.62 25.53 40.13

RΔBICLong 1.37 0.51 0.98 2.33 3.76

a RΔAICLong is multiplied by 1000
b RΔBICLong is multiplied by 1000
BIC Bayesian information criterion, AIC Akaike information criterion, SPML shared parame-
ter model with linear trajectory, SPMQ shared parameter model with quadratic trajectory, TML
trajectory model with linear trajectory, TMQ trajectory model with quadratic trajectory

the baseline hazard, and the partition intervals were constructed based on the median
of the PFS times. Note that K = 2 gave the best fit of the PFS data according to AIC
for all five longitudinal and survival datasets. As discussed in Sect. 21.5.2, the total
numbers of observations for these five PROs were different, implying that ΔAICLong

and ΔBICLong were not directly comparable for the EMPHACIS data. Therefore, we
consider the relative ΔAICLong and ΔBICLong defined in (21.19). In Table 21.2, the
values of RΔAICLong and RΔBICLong were multiplied by 1000. From Table 21.2, we
see that pain had the largest relative improvement in terms of both RΔAICLong and
RΔBICLong under all four joint models, namely, SPML, SPMQ, TML, and TMQ.
We also see from Table 21.2 that pain had the largest ΔAICLong and ΔBICLong under
SPML, SPMQ, TML, and TMQ. In addition, fatigue had the second largest values of
ΔAICLong and ΔBICLong as well as RΔAICLong and RΔBICLong, while cough had the
smallest values of ΔAICLong and ΔBICLong as well as RΔAICLong and RΔBICLong

under SPML, SPMQ, TML, and TMQ. Thus, for the EMPHACIS data, ΔAICLong and
ΔBICLong yielded results consistent with RΔAICLong and RΔBICLong. These results
indicate that the PFS data led to the most gain in fitting the longitudinal data Dpain

while the same PFS data had the least contribution to the fit of the longitudinal data
Dcough. These results also imply that the PFS time was most highly associated with
the LCSS pain symptom and was least associated with the LCSS cough symptom.

Finally, we mention that AIC and BIC were not able to determine the contribution
of the PFS data in fitting these five sets of LCSS longitudinal measures under the
joint modeling framework. We observe from Table 21.2 that the smallest values of
AIC and BIC were attained by dyspnea under SPML, SPMQ, TML, and TMQ. After
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examining AICLong|Surv and BICLong|Surv, we found that dyspnea had the smallest
values of AICLong|Surv and BICLong|Surv. Thus, AICLong|Surv and BICLong|Surv were the
main contributions to the small values of AIC and BIC for dyspnea. These results
indicate that AIC, BIC, AICLong|Surv, and BICLong|Surv cannot be used to quantify the
contribution of the survival data to the fit of the longitudinal data.

The parameter estimates (Ests), the standard errors (SEs), and the p values are
shown in Table 21.3 for the longitudinal component of TMQ and Table 21.4 for the
survival component of TMQ, respectively. From these tables, we see that treatment
had a large p value in the longitudinal submodel for each of the five LCSS symptoms,
indicating that treatment was not statistically significant at the 0.05 level in the
longitudinal submodel. However, for the survival submodel, the treatment effect was
highly significant with a p value of < 0.0001 for each LCSS symptom. We note that
the parameter β captures the association between the survival time and the PRO
measure under TMQ. From Table 21.4, we see that β was highly significant for all
five LCSS symptoms. From Tables 21.2 and 21.4, we observe that the order of the
estimates of β was also consistent with the order of the values of ΔAICLong and
RΔAICLong for five LCSS symptoms.

21.6 Discussion

In this chapter, we developed a novel decomposition of AIC and BIC to individually
assess the contributions of each component in joint models of longitudinal and sur-
vival data, and used RΔAICLong and RΔBICLong, as well as ΔAICLong and ΔBICLong

to determine the contribution of the survival data to the fit of the longitudinal data.
We conducted a simulation study to examine the empirical performance of ΔAICLong

and RΔAICLong and carried out a detailed analysis of the EMPHACIS data from a
cancer clinical trial in mesothelioma. The empirical results shown in Sect. 21.5.2
are quite promising since the proposed model assessment criteria ΔAICLong and
ΔBICLong were able to determine the contribution of the survival data to the fit of
the longitudinal data.

All of the computations in Sects. 21.4 and 21.5 were done in SAS and Fortran 95
software with double precision and IMSL subroutines. SAS macros were developed
to fit the joint models. We use the Monte Carlo method to calculate AICSurv, and then
AICLong|Surv is given by AIC − AICSurv. Macros are available upon request.

There are several potential extensions of the proposed method. The proposed
methodology would be quite useful in situations where we wish to simultaneously
jointly model a longitudinal marker and several time-to-event outcomes such as PFS
and OS. The proposed ΔAICLong and ΔBICLong can be very useful in this context
as they can tell us about the overall contribution of the multivariate survival data to
the fit of the longitudinal data. Although the proposed model assessment criteria are
developed under the joint model in Sect. 21.2, they can be easily extended to models
for other types of data such as longitudinal binary/ordinal response or count data
as well as other types of survival models such as cure rate models, nonproportional
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Table 21.3 Parameter estimates (longitudinal component) of TMQ

Parameter (Variable) Anorexia Cough Dyspnea Fatigue Pain

Σ00 Est 0.473 0.655 0.598 0.480 0.624

SE 0.045 0.057 0.048 0.042 0.052

p value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Σ10 Est −0.081 −0.142 −0.095 −0.070 −0.139

SE 0.031 0.040 0.030 0.029 0.037

p value 0.0085 0.0005 0.0017 0.0155 0.0003

Σ11 Est 0.231 0.384 0.294 0.278 0.440

SE 0.034 0.048 0.034 0.036 0.050

p value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Σ20 Est 0.006 0.008 0.010 0.006 0.019

SE 0.006 0.009 0.006 0.006 0.008

p value 0.37 0.3902 0.134 0.2805 0.0194

Σ21 Est −0.039 −0.078 −0.056 −0.050 −0.088

SE 0.007 0.011 0.007 0.008 0.011

p value < 0.0001 < 0.0001 <0.0001 < 0.0001 < 0.0001

Σ22 Est 0.008 0.019 0.012 0.010 0.020

SE 0.002 0.003 0.002 0.002 0.003

p value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

σ 2 Est 0.373 0.352 0.220 0.290 0.257

SE 0.008 0.008 0.005 0.006 0.006

p value < 0.0001 < 0.0001 <0.0001 < 0.0001 < 0.0001

θ0 Est 0.371 0.710 0.260 0.179 0.615

SE 0.156 0.168 0.172 0.160 0.176

p value 0.0177 < 0.0001 0.1297 0.2637 0.0005

θ1 Est 0.135 −0.069 0.093 0.163 0.023

SE 0.035 0.040 0.034 0.035 0.040

p value 0.0001 0.0862 0.0062 < 0.0001 0.5625

θ2 Est −0.026 0.009 −0.014 −0.027 0.001

SE 0.007 0.009 0.008 0.007 0.009

p value 0.0004 0.3438 0.0731 0.0004 0.8926

γ1 (treatment) Est 0.105 0.036 −0.106 0.008 −0.080

SE 0.068 0.073 0.075 0.070 0.077

p value 0.1211 0.6249 0.1566 0.9129 0.2992

γ2 (race) Est 0.273 −0.362 0.211 0.408 −0.092

SE 0.125 0.135 0.138 0.129 0.141

p value 0.0293 0.0075 0.1268 0.0016 0.5125
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Table 21.3 (continued)

Parameter (Variable) Anorexia Cough Dyspnea Fatigue Pain

γ3 (gender) Est −0.418 −0.067 0.011 −0.338 −0.191

SE 0.087 0.094 0.096 0.090 0.098

p value < 0.0001 0.480 0.9076 0.0002 0.0529

γ4 (age) Est 0.130 0.022 −0.006 0.154 −0.048

SE 0.070 0.076 0.077 0.072 0.079

p value 0.0657 0.7708 0.9351 0.0342 0.542

γ5 (Karnofsky) Est −0.569 −0.265 −0.779 −0.651 −0.581

SE 0.069 0.074 0.076 0.070 0.077

p value < 0.0001 0.0004 <0.0001 < 0.0001 < 0.0001

γ6 (stage) Est −0.152 −0.188 −0.042 0.007 −0.102

SE 0.082 0.087 0.090 0.084 0.092

p value 0.0642 0.0314 0.6382 0.9345 0.2688

γ7 (vitamin) Est −0.088 −0.024 0.057 −0.066 0.116

SE 0.078 0.084 0.085 0.080 0.087

p value 0.2619 0.7784 0.5049 0.4088 0.1853

Est estimate, SE standard error, TMQ trajectory model with quadratic trajectory

hazards models, and competing risks models discussed in (Ibrahim et al. 2001; Klein
et al. 2013). Oncology applications of these modeling extensions would provide
robust evidence to support the use of PFS as a surrogate end point for patient-reported
measures as well as OS (Booth and Eisenhauer 2012).



21 Assessment of Fit in Longitudinal Data for Joint Models . . . 363

Table 21.4 Parameter estimates (survival component) of TMQ

Parameter (Variable) Anorexia Cough Dyspnea Fatigue Pain

α1 (treatment) Est −0.500 −0.443 −0.420 −0.468 −0.422

SE 0.104 0.103 0.103 0.103 0.103

p value < 0.0001 <0.0001 <0.0001 <0.0001 < 0.0001

α2 (race) Est 0.002 0.221 0.057 −0.069 0.202

SE 0.192 0.193 0.191 0.194 0.191

p value 0.9898 0.2523 0.7639 0.724 0.2894

α3 (gender) Est 0.214 0.087 0.088 0.202 0.158

SE 0.139 0.136 0.136 0.137 0.137

p value 0.1232 0.5232 0.5148 0.1413 0.2496

α4 (age) Est −0.086 −0.068 −0.070 −0.121 −0.006

SE 0.107 0.106 0.106 0.107 0.107

p value 0.4176 0.5241 0.5118 0.2565 0.9561

α5 (Karnofsky) Est −0.180 −0.266 −0.152 −0.121 −0.178

SE 0.109 0.105 0.111 0.110 0.107

p value 0.0986 0.0113 0.1695 0.2722 0.0957

α6 (stage) Est −0.391 −0.416 −0.464 −0.463 −0.406

SE 0.132 0.132 0.131 0.131 0.131

p value 0.0031 0.0017 0.0004 0.0004 0.0021

α7 (vitamin) Est −0.034 −0.085 −0.116 −0.059 −0.156

SE 0.116 0.115 0.115 0.115 0.116

p value 0.7679 0.4611 0.3139 0.6069 0.179

λ1 Est 0.172 0.169 0.186 0.183 0.150

SE 0.041 0.040 0.044 0.044 0.037

p value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

λ2 Est 0.299 0.285 0.313 0.322 0.274

SE 0.073 0.069 0.075 0.079 0.068

p value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

β Est 0.344 0.214 0.257 0.397 0.408

SE 0.072 0.064 0.062 0.071 0.060

p value < 0.0001 0.0009 < 0.0001 < 0.0001 < 0.0001

Est estimate, SE standard error, TMQ trajectory model with quadratic trajectory
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Chapter 22
Assessing the Cumulative Exposure Response
in Alzheimer’s Disease Studies

Jianing Di, Xin Zhao, Daniel Wang, Ming Lu and Michael Krams

Abstract To assess long-term cumulative benefit of a treatment, relationship between
cumulative drug exposure and outcomes could be explored to understand the dose
response. However, cumulative exposure corresponds to the longitudinal profile of
an outcome, which is often heavily confounded with natural disease progression and
missing data. A model-based approach is developed to account for the confounding
factors. In particular, the observed measures are adjusted by the projected disease
progression at the corresponding time points before exposure response is assessed.
The proposed approach introduces new insights to the interpretation of exposure
data. In the presented case study, the proposed method identified various degrees of
potential efficacy trend favoring higher level of cumulative exposure in active drug.

22.1 Introduction

During drug development, two of the most typical questions are “how high” the dose
and “how long” the treatment duration need to be. These questions are naturally
answered by assessing the relationship between cumulative drug exposure and cu-
mulative treatment effect (Lee 2003; Hutmacher et al. 2007). However, in clinical
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trials, understanding the real cumulative treatment effect is often difficult because the
longitudinal profile of the observed outcome is always a mixture of multiple factors:

• Drug effect: The actual treatment difference over naïve treatment.
• Natural disease progression: The deterioration observed under naïve treatment.
• Missing data impact: Greater deterioration observed in early dropouts.

This complexity is particularly clear for a clinical trial of the neurodegenerative
disease. For example, clinical trials for the Alzheimer’s disease (AD) are usually
conducted with elderly patients and last for years. During the course of a lengthy
AD trial, the disease condition of the trial participants, who often have complex
concomitant medical conditions, deteriorates dramatically. Consequently, there is
often a large portion of early dropouts that invalidates the direct interpretation of the
cumulative exposure. As a result, when assessing the effect of cumulative exposure,
it is critical to adjust for the impact of these confounding factors.

We have proposed a model-based approach to account for the confounding factors.
This approach provides a way to adjust for the impact of the confounding factors
and undercover the true treatment benefit associated with the drug exposure. This
method introduces important new insights to the interpretation of study exposure
data. In particular, in the presented case study, the proposed modeling approach
suggests that there are various degrees of potential efficacy trend favoring higher
level of cumulative exposure in active drug, based on selected clinical and biomarker
end points.

The rest of the chapter is organized as follows: in Sect. 22.2, the proposed approach
is introduced with details; in Sect. 22.3, a case study is presented to illustrate its use;
Sect. 22.4 concludes and offers some discussion.

22.2 Method

The rationale of the proposed approach can be illustrated using an example of two
hypothetical subjects who have received active treatment in an AD clinical trial.
The trial plans to record six consecutive post-baseline cognitive measurements, but
only one of these two subjects finished the trial (the other early terminated after the
fifth measurement). The observed longitudinal outcomes of these two subjects are
displayed by the solid curves in Fig. 22.1. As a piece of evidence for informative
dropout, subject 2 exhibited slightly faster deterioration as compared to subject 1. In
addition, assume the real disease progression for these two subjects without treatment
is given by the dashed lines of the corresponding color, then the real drug response
is represented by the distance between the observation and the potential disease
progression under naïve treatment. This formulates the observed outcome as

RObserved(t) = E(t) + P (t), t = 1, 2, ..., T , (22.1)

where R is the response, E is the real effect of cumulative exposure, and P is the
natural disease progression. It should be noted that, while the observed responses are
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Fig. 22.1 Subject level response adjustment

also impacted by dropout, the missing data effect should be used to more accurately
describe the disease progression and thus is not formulated as a separate component
outside P . By Eq. 22.1, the true effect of drug exposure is given by

E(t) = RObserved(t) − P (t) = RAdjusted(t), t = 1, 2, ..., T . (22.2)

This leads to the proposed three-step approach in evaluating the real effect of
cumulative exposure:

1. A disease progression model is constructed to represent the natural disease pro-
gression over the time course of the trial, where subject-level characteristics and
dropout timing are taken into consideration.

2. The observed outcome measures are adjusted by the projected disease progression
at the corresponding time points.

3. The resulting model-adjusted outcome measures are linked with the level of cu-
mulative exposure (i.e., total area under the pharmacokinetics (PK) concentration
curve).

22.2.1 Disease Progression Model

A disease progression model reflects the amount of deterioration over time under
naïve treatment. Being used as the basis of the adjustment made to the observed
data, the disease progression model is a critical part of the proposed approach. While
a disease progression model can be established following multiple approaches, a
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good choice that can be used for the purpose of this exposure response analysis
needs to satisfy several requirements.

First, the model should characterize the longitudinal profile of the progression.
This means, regardless of the actual structure of the disease progression model, it
needs to have a term that reflects the time course of the measurements.

Second, the model should differentiate patients with distinct characteristics. This
means, in addition to the time component, the disease progression model needs
to incorporate subject-level variables (e.g., age, baseline disease severity, etc.) that
might impact the rate of progression. By doing this, the projected disease progression
for subjects with different characteristics would be different and the model can be
used to provide subject-level projection of the disease progression.

Third, the model should recognize dropout effect. Due to informative dropouts,
subjects who early terminated from the study usually demonstrate higher level of
deterioration as compared to those who stayed longer in the study. By recognizing
the dropout effect, the dropout model should be able to differentiate the path of
disease progression between a study early terminator and a study completer. With
that, consider two patients with identical characteristics but one completed the study
and one early terminated before completion, the dropout model should give different
projected disease worsening paths for these two subjects.

The disease progression model we considered is a mixed-effect model for repeated
measures (MMRM). In any study with longitudinal measurements, such model can
be established by using all observed response of the placebo-treatment subjects. In
particular, our MMRM includes the observed response as the dependent variable,
and a set of model covariates such as subject demographics (e.g., age), baseline
disease severity, time (visit) corresponding to each observed response, and several
interaction terms as appropriate. It should also be noted that, to recognize the different
progression trajectory of subjects with different disposition profile, the model also
includes time to dropout as a covariate.

22.2.2 Subject-Level Model-Based Adjustment

After a disease progression model is constructed, all observed response could be ad-
justed by subtracting the model-projected disease progression. Several points should
be noted to ensure that the adjusted responses are interpretable.

First, the model-projected disease progression should be calculated at the subject
level. That means, for a given subject, the disease progression should be estimated by
considering that particular subject’s information as required by the disease progres-
sion model. With that, subjects are compared with their own path of natural disease
progression.

Second, while the disease progression model provides the entire path of the disease
progression for any given subject, the adjustment should be made only at the matching
time point.
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Third, although the main interest of exposure response analysis focuses on sub-
jects treated by the active drug, it is important that observations from placebo-treated
subjects are adjusted in the same way. There are at least two reasons for this. First of
all, without including placebo data in the analysis, the performance of the exposure
response at lower end of the exposure level can be overly impacted by responses
at higher level of exposure. In particular, depending on the method used to es-
tablish the relationship between cumulative exposure and adjusted responses (see
Sect. 22.2.3), the result might imply hard-to-interpret effect of low exposure level.
Second, by including placebo data, the method will fully appreciate the variability in
placebo-treated subjects. In this case, because the disease progression model itself is
constructed using the placebo data, the adjusted response of placebo-treated subjects
should represent a set of random noise that centers at 0.

22.2.3 Exposure Response Modeling

The relationship of interest is the one between adjusted response and corresponding
cumulative exposure level. Once every single observed response has been adjusted, an
analysis that links the cumulative exposure and adjusted response at corresponding
time point could be performed. Such analysis could be as simple as a correlation
analysis utilizing only a single data point from each subject, or as complicated as
a model that includes all information (i.e., multiple records provided by the same
subject) as an analysis for repeated measures.

However, it is worth to point out that, since the adjustment is made based on
the matching time point, the adjusted response is no longer impacted by time. In
other words, an adjusted response at visit five can now be compared to an adjusted
response at visit six, and the only factor that differentiates these two records would
be the cumulative exposure level. For example, as we will further discuss in the
case study in Sect. 22.3, the final exposure–response analysis is performed by using
each subject’s last available measurement, even though those observations could
be collected at different time points due to early dropouts. Also, if multiple records
from the same subject are included in the analysis, the underlying correlation between
those repeated measurements should not be described using a time series structure
(e.g., AR(p)).

22.3 A Case Study

As a case study, we considered data from two recently finished phase 3 clinical
studies in testing the safety and efficacy of bapineuzumab IV in patients with mild
to moderate AD.
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Fig. 22.2 Sample size in bapineuzumab IV phase 3 studies

22.3.1 Bapineuzumab

While the real cause of AD is yet to be confirmed, the most commonly accepted ex-
planation is given by the amyloid hypothesis which suggests that the disease develops
when clumps of abnormal proteins (beta amyloid) grow in the brain. Bapineuzumab
is a humanized monoclonal antibody, which binds to and clears beta amyloid peptide,
and is designed to provide antibodies to beta amyloid directly to the patient.

Two phase 3 placebo-controlled clinical trials were conducted to evaluate the
safety and efficacy of bapineuzumab in patients with mild to moderate AD. The
first study (study ELN115727-301 or simply study 301) enrolled only patients who
are apolipoprotein E ε4 gene noncarriers. Patients were to receive six quarterly IV
injections of placebo or bapineuzumab at 0.5 or 1.0 mg/kg dose levels. The second
study (study ELN115727-302 or simply study 302) enrolled only patients who are
apolipoprotein E ε4 gene carriers. Enrolled patients followed the same dosing scheme
as study 301 patients, but only 1 bapineuzumab dose (0.5 mg/kg) was tested. An open-
label extension study (study ELN115727-351 or simply study 351) was conducted
where completers of the double-blind parent studies (study 301 or study 302) might
be enrolled to receive only bapineuzumab. A diagram is given in Fig. 22.2 to illustrate
the sample size in each study.

The co-primary clinical end points were lost of cognitive and functional abilities as
measured byAlzheimer’s DiseaseAssessment Scale-Cognitive (ADAS-Cog)/11 total
score and disability assessment for dementia (DAD) total score. In addition, brain
amyloid load was also assessed via positron emission tomography (PET) imaging.
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Fig. 22.3 Observed response Alzheimer’s Disease Assessment Scale-Cognitive (ADAS-Cog)/11
total score versus cumulative exposure area under the curve (AUC)

Finally, compared to placebo, tested doses of bapineuzumab did not demonstrate
statistically significant treatment effect based on co-primary clinical end points, but
statistically significant treatment effect on brain amyloid in ApoE ε4 carriers was
observed.

22.3.2 Cumulative Exposure Analysis

The proposed cumulative exposure analysis was performed as a post hoc analysis
to explore whether or not higher level of cumulative exposure has potentially larger
treatment benefit. Fig. 22.3 shows a simple scatter plot of cumulative drug exposure
in area under the curve (AUC; ug/mL × day) and the observed response, defined as
change from baseline in ADAS-Cog/11 total score at the last visit. Two trend lines
are superimposed to indicate the clear upward trend in both ApoE ε4 carriers and
noncarriers. For ADAS-Cog/11 total score, larger value means greater impairment,
therefore Fig. 22.3 seems to suggest that higher level of exposure causes greater
amount of deterioration.

Such counter-intuitive observation is a direct consequence of confounding factors
discussed in Sect. 22.1. To see this, it should be noted that subjects with high level of
cumulative exposure are generally those who stayed longer in the study. However,
due to natural disease progression, subjects who stayed longer in the study had
a longer time period for disease deterioration. This natural disease progression is
strong enough to offset the drug effect and cause an apparent upward trend when
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looking at the responses without adjusting for the confounding factors. Therefore,
this dataset serves as a good example to apply the proposed three-step cumulative
exposure response analysis method, which is illustrated in detail in the next three
subsections.

22.3.2.1 Disease Progression Model and Subject Level Projected Disease
Progression

A MMRM was used to build the disease progression model that measures the change
from baseline in the target end point. The model used only placebo data (with slight
modification for study 351) and included a random subject effect and the following
fixed effects:

• Scheduled visit
• Baseline age
• Randomization strata

– Baseline mini mental state examination (MMSE; low or high)
– Use of baseline AD medication (yes or no)
– Number of ApoE ε4 allele (1 or 2, carrier study only)

• Baseline value of the corresponding end point
• Time to dropout
• Baseline value versus visit interaction

In addition, to appreciate the difference in disease progression between different
patient populations, the model was constructed separately for ApoE ε4 carriers and
ApoE ε4 noncarriers, and then for the double-blind period and open-label extension
period. Thus, the final model is a combination of 4 submodels.

To illustrate the structure of the model, the estimated terms for the double-blind
period based on ADAS-Cog/11 total score are given in Table 22.1. It is worth to
note that, while not always being statistically significant, the coefficients for the
term “time to dropout” were negative for both the noncarrier and carrier populations.
This intuitively reflects the fact that subjects who early terminated from the study
often demonstrated greater amount of deterioration (for ADAS-Cog/11, larger score
means greater impairment).

With the fitted disease progression models, each subject’s own projected disease
progression is estimated by plugging in the subject level values of the fixed effect
terms.

22.3.2.2 Adjusted Response

Based on the MMRM-based disease progression model specified in Sect. 22.3.2.1,
each subject’s last observed outcome is adjusted by subtracting the model projected
disease progression at the corresponding time point. For example, subject 1 was a
study completer, therefore his projected disease progression at the sixth post-baseline
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Fig. 22.4 Adjusted response Alzheimer’s Disease Assessment Scale-Cognitive (ADAS-Cog)/11
total score versus cumulative exposure area under the curve (AUC)

visit was subtracted from his last observed response. On the other hand, subject 2
early terminated after the fourth dose, therefore her projected disease progression at
the third post-baseline visit was subtracted from her last observed response.

Figure 22.4 illustrates a scatter plot of cumulative drug exposure in AUC (ug/mL
× day) and the adjusted response. Similar to Fig. 22.3, two trend lines are also
superimposed. However, this time it is easy to see there is a downward trend in both
ApoE ε4 carrier and noncarrier populations.

22.3.2.3 Cumulative Exposure Response Modeling

Based on the scatter plot (Fig. 22.4), for simplicity, a linear regression was performed
to demonstrate the relationship between cumulative drug exposure and the adjusted
response:

RAdjusted = α + β · E. (22.3)

However, other approaches might be preferred under various considerations. For
example, from a typical dose-response point of view, an EMax type of model might
be fit to recognize the potential “ceiling effect” of high exposure level

RAdjusted = α + β · E
γ + E

. (22.4)

Also, a nonparametric approach (e.g., LOESS) might be applied if specific parametric
shapes of the dose response cannot be identified at priori.
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Fig. 22.5 Adjusted response in Alzheimer’s Disease Assessment Scale-Cognitive (ADAS-Cog)/11
by cumulative area under the curve (AUC)

Figure 22.5 shows the exposure response for ADAS-Cog/11 total score based
on simple linear regression. The two trend lines are identical to the trend lines in
Fig. 22.4 but, to better illustrate the trend signal, scatter plot is not provided. Sev-
eral vertical reference lines are provided to show the cumulative exposure level of
a study completer from each treatment group with typical body weight. The expo-
sure response in both patient populations exhibit certain level of downward trend,
suggesting stronger treatment effect associated with higher level of cumulative drug
exposure. Also, the left tail of both trend lines are at the zero level, suggesting no
treatment effect of placebo.

Similarly, Fig. 22.6 shows the exposure response for PET amyloid load (Florbe-
tapir PET global cortical average SUVr). Similar to that of the ADAS-Cog/11 total
score, the exposure response for PET amyloid load also exhibits a downward trend
for both patient populations, with the signal in the ApoE e4 carrier population a bit
stronger.

22.4 Summary and Discussion

In this chapter, we introduced a model-based approach to assess the treatment effect
of cumulative drug exposure. Such approach accounts for several confounding factors
that are typically experienced in longitudinal studies of chronic neurodegenerative
disease. The proposed approach has three steps: first, a disease progression model is
constructed to represent the natural disease progression over the time course of the
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Fig. 22.6 Adjusted response in positron emission tomography (PET ) global cortical average
standard uptake value ratio (GCA SUVr) by cumulative area under the curve (AUC)

trial, where subject-level characteristics and dropout timing are taken into consid-
eration; then, the observed outcome measures are adjusted by the projected disease
progression at the matching time points; finally, the model-adjusted outcome mea-
sures are linked with the level of cumulative exposure (AUC). In the case study, the
proposed method seems to suggest various degrees of efficacy trend favoring higher
level of cumulative exposure in active drug, based on selected clinical and biomarker
end points.

While this approach is demonstrated for analyzing the effect of cumulative drug
exposure, it can be in principle applied in all situations where the confounding im-
pacts of time course need to be adjusted. The key component of the approach is
the construction of disease progression model. Such a model can be established us-
ing different approaches, but in all cases its appropriateness needs to be validated
via methods such as visual predictive checking (VPC). Figure 22.7 compares the
observed ADAS-Cog/11 total score mean placebo response during parent and exten-
sion periods with that is suggested by the proposed disease progression model. The
VPC suggests that the MMRM-based disease progression model well captures the
natural disease deterioration in the overall population and in subpopulations defined
by baseline disease severity.

Finally, despite of its potentially wide application, the proposed approach has
certain limitations that need to be emphasized

• Interpretation of cumulative exposure. The cumulative exposure (AUC) is jointly
impacted by multiple factors (e.g., dose level, number of doses, clearance, body
weight, etc.); therefore, it is difficult to identify the marginal effect of a single
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Fig. 22.7 Visual predictive check: disease progression model Alzheimer’s Disease Assessment
Scale-Cognitive (ADAS-Cog/11)

factor. For example, when higher level of cumulative exposure is beneficial, unless
additional control is applied, it is impossible to determine if the benefit comes
from higher dose level or longer treatment duration.

• Due to the purpose and hence the design of the study, subjects’ allocation to
different exposure levels is generally not random. For example, low cumulative
exposure is to some extent confounded with early dropouts, while the efficacy
performance of the early terminated subjects is almost always observed to be
worse than the general population.

• The adjustment of natural disease progression is performed based on a specific
disease progression model. Therefore, the results could be sensitive to model
misspecification. For example, informative dropouts may create bias in modeling
the disease progression. Although related factors (e.g., time to dropout) could
be included in the disease progression model, this might not be sufficient in
completely capturing the missing data impact, especially when missing data are
missing not at random (Rubin 1976).

• The exposure–response is modeled using specific parametric functions, which
assume particular curve shapes and add certain restrictions and limitations in
representing the relationship.

Acknowledgement This work was sponsored by Janssen Alzheimer Immunotherapy Research &
Development, LLC, and Pfizer Inc.
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Chapter 23
Evaluation of a Confidence Interval Approach
for Relative Agreement in a Crossed Three-Way
Random Effects Model

Joseph C. Cappelleri and Naitee Ting

Abstract We specify a three-factor random effects model from a reliability study,
where the effects of subjects, raters, and items are random. The reliability measure
of interest is an intraclass correlation coefficient that measures the relative agree-
ment of a single measurement on an individual from a randomly selected rater on a
randomly selected item. Our objective is to evaluate and illustrate an approximate
confidence interval for this intraclass correlation coefficient based on Satterthwaite’s
approximation (Wong and McGraw, Educational and Psychological Measurement,
59:270–288, 1999). In doing so, we perform Monte Carlo simulations and provide an
illustration. Overall, the actual coverage of one-sided 95 % lower bounds and upper
bounds, along with two-sided 90 % confidence intervals, for this particular intraclass
correlation coefficient aligns with the nominal coverage for the commonly applied
settings evaluated. This methodological evaluation is, to our knowledge, the first to
validate the method.

23.1 Introduction

Reliable measurements are fundamental to medical research, especially when judg-
ments are made by humans. Unreliable or imprecise measurement may have serious
undesirable consequences (Fleiss 1986). Because measurement error can impair an
analysis and its interpretation, it is important to quantify the amount of measure-
ment error by reliability coefficients such as intraclass correlation coefficients. The
intraclass correlation coefficient (ICC) may be defined as the proportion of some
overall variance that is attributable to the variance of interest (e.g., between-subject
variance; Armitage and Berry 1994). Several versions of the intraclass correlation
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exist for different models and objectives (Müller and Büttner 1994; McGraw and
Wong 1996; St. Laurent 1998; Perisic and Rosner 1999). The appropriate version
is dictated by the specific situation defined by the experimental design and concep-
tual intent of the reliability study. This chapter concentrates on a particular type of
intraclass correlation that measures reliability of measurements for quantitative data.

Specifically, we consider a reliability study of a randomly selected rater on a
randomly selected item, in which each of K raters assesses each of J subjects on
each of I items. For example, each of four raters could assess the muscle strength on
each of eight subjects with rotator cuff dysfunction by using four items on a manual
muscle test (which assess elevation, external rotation, internal rotation, and hand
behind back lift-off maneuver; Hayes et al. 2002), with each item graded from 1 to 5
in terms of muscle strength, in order to assess the reliability of a single measurement
made by a rater on an item.

For the balanced two-factor random design with one observation per subject–
rater cell, in which the interaction term cannot be separated from the error term,
confidence intervals for interrater reliability have been presented by several authors
including Fleiss and Shrout (1978), Shrout and Fleiss (1979), Arteaga et al. (1982),
McGraw and Wong (1996), Zou and McDermott (1999), Cappelleri and Ting (2003),
Rousson et al. (2003), and Tian and Cappelleri (2004). In a general discussion of
ICCs, Adamec and Burdick (2003) propose a Satterthwaite approach and Hamada
and Weerahandi (2000) propose a generalized confidence interval approach.

This chapter centers on assessing the confidence interval for a particular ICC—
specifically, the relative agreement of a single measurement on a subject made by a
randomly selected rater on a randomly selected item, thereby giving the degree of
consistency or relative standing or ranking among measurements made on the same
person. Raters, subjects, and items are assumed to be randomly selected from their
respective populations. Given this, and given that all subjects are rated by the same
set of raters on the same set of items, the experimental design involves a crossed and
balanced three-way random effects model with one observation per subject–rater–
item cell. The set of items is assumed to be measuring different aspects of the same
concept (such as items on the extent of bathing, walking, and running for measuring
the concept of physical functioning).

Limited work has been performed on constructing a confidence interval on three-
way random effects models in general (Adamec and Burdick 2003; Wong and
McGraw 1999). In extending on the work of Fleiss and Shrout (1978) and Shrout and
Fleiss (1979), which used Satterthwaite’s method, Wong and McGraw (1999) con-
structed a confidence interval for ICC to measure relative agreement (consistency)
among measurements, as well as to measure other types of ICCs. Because little re-
search has been performed on evaluating the extent of the actual or true coverage
(relative to the stated or nominal coverage) for this confidence interval, this chapter
investigates such an assessment as it relates to ICC as a measure of reliability in a par-
ticular context: relative agreement of measurements from a randomly selected rater
evaluating a randomly selected item on the same individual, with subjects, raters,
and items taken as random factors in a crossed and balanced three-way analysis of
variance model with one observation per cell. Section 23.2 provides a review of
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Table 23.1 Data matrix for the crossed three-way random effects model (one observation per cell)

Table 23.2 Analysis of variance table for the three-way random effects model

Source of
variation

Sum of
square

Degrees of freedom Mean
square

Expected mean square

Subject SSS n1 = J − 1 S2
1 θ1 = σ2

e + I σ2
SR + K σ2

TS + IK σ2
S

Item SST n2 = I − 1 S2
2 θ2 = σ2

e + K σ2
TS + J σ2

TR + JK σ2
T

Rater SSR n3 = K − 1 S2
3 θ3 = σ2

e + J σ2
TR + I σ2

SR + IJ σ2
R

T × S SSTS n4 = (I − 1)(J − 1) S2
4 θ4 = σ2

e + K σ2
TS

T × R SSTR n5 = (I − 1)(K − 1) S2
5 θ5 = σ2

e + J σ2
TR

S × R SSSR n6 = (J − 1)(K − 1) S2
6 θ6 = σ2

e + I σ2
SR

Error SSe ne = (I − 1)(J − 1)(K − 1) S2
e θe = σ2

e

the methodology. Section 23.3 describes the Monte Carlo simulation procedure to
examine the degree of coverage on the confidence intervals. Section 23.4 presents
the results. Section 23.5 presents an illustration. Section 23.6 provides a discussion
and Sect. 23.7 concludes with a summary.

23.2 Methodology

Table 23.1 contains the data layout. Table 23.2 contains the analysis of variance
table for the three-way random effects model being considered, which includes three
two-way interactions among the three factors. In this model, the score on the ith item
from the jth rater on the kth subject may be represented as

Yijk = μ + Sj + Ti + Rk + STij + SRjk + T Rik + εijk, (23.1)
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where i = 1, . . . , I; j = 1, . . . , J; k = 1, . . . , K ; S, ∼ T, and R symbolize variation
due to subjects, items and raters, respectively; μ is the overall mean; Sj ∼ N(0, σ 2

S );
Ti ∼ N(0, σ 2

T ); Rk ∼ N(0, σ 2
R); ST ij ∼ N(0, σ 2

ST); SRjk ∼ N(0, σ 2
SR); TRik ∼ N(0, σ 2

TR);
and εijk ∼ N(0, σ 2

e ).
It can be shown that, as a measure of reliability, the intraclass coefficient

ρ = σ 2
S

σ 2
S + σ 2

SR + σ 2
TS + σ 2

e

= θ1 − θ4 − θ6 + θe

θ1 + (I − 1)θ4 + (K − 1)θ6 + (I − 1)(K − 1)θe
(23.2)

(with the θs defined Table 23.2) gives the population reliability of a single mea-
surement on a subject made by a randomly selected rater on a randomly selected
item—specifically, the degree of consistency or relative agreement among measure-
ments on a single subject (Wong and McGraw 1999). The corresponding sample
estimator (based on the analysis of variance framework in Table 23.2) becomes

ρ̂ = S2
1 − S2

4 − S2
6 − S2

e

S2
1 + (I − 1) + S2

4 + (K − 1)S2
6 + (I − 1)(K − 1)S2

e

. (23.3)

Wong and McGraw (1999) derived a one-sided 100(1 − α) % lower confidence limit
LWM and a one-sided 100(1 − α) % upper confidence limit UWM using Satterthwaite’s
method (Satterthwaite 1946; Kirk 1995) as follows:

LWM = S2
1 − Fα;n1,υ(S2

4 + S2
6 − S2

e )

S2
1 + Fα:n1,υ[(I − 1)S2

4 + (K − 1)S2
6 + (I − 1)(K − 1)S2

e ]
(23.4)

and

UWM = S2
1 − F1−α;n1,υ(S2

4 + S2
6 − S2

e )

S2
1 + F1−α:n1,υ[(I − 1)S2

4 + (K − 1)S2
6 + (I − 1)(K − 1)S2

e ]
, (23.5)

where

υ = (aS2
4 + bS2

6 + cS2
e )

2

a2S4
4

n1n2
+ b2S4

6
n1n3

+ c2S4
e

n1n2n3

, (23.6)

With n1 = J − 1, n2 = l − 1, and n3 = K − 1 (from Table 23.2); ρ̂ is defined in
Eq. 23.3; a = 1 + (l − 1)ρ̂; b = 1 + (K − 1)ρ̂; and c = −1 + (l − 1)(K − 1)ρ̂. In
addition, for LWM ,Fα;n1,υ represents the F-value with n1 and ν degrees of freedom
that has α to the right; for UWM ,F1−α;n1,υrepresents the F-value with n1 and νdegrees
of freedom that has (1 − α) to the right.

Bounds on the two-sided 100(1 − 2α)% interval correspond exactly to bounds
on the two one-sided 100(1 − 2α)% intervals. As such, the same F critical values
(Fα;n1,υ and F1−α;n1,υ) are used also for the two-sided 100(1 − 2α)% interval.
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23.3 Simulation Procedure

An empirical study using Monte Carlo simulation was undertaken to examine the
coverage probabilities of the confidence bounds for ρ. Several designs on the sam-
ple size mix were considered: 2, 5, and 10 raters evaluating 10, 25, 50, and 100
subjects on 2, 3, 5, 7, and 10 items. Nominal significance levels were 0.05 for a
one-sided lower confidence interval (one-sided 95 % lower bound) and 0.10 for a
two-sided confidence interval (two-sided 90 % bounds). Interval widths for the two-
sided interval are calculated as the difference between the upper limit and the lower
limit.

In the simulation procedure, we defined r1 = θ1/(θ1 + θ4 + θ6 + θε), r4 =
θ4/(θ1 + θ4 + θ6 + θε), r6 = θ6/(θ1 + θ4 + θ6 + θε), and rε = 1 − r1−r4−r6. Without
loss of generality, we defined θ1 + θ4 + θ6 + θε = 1 so that r1 = θ1, r4 = θ4, r6 = θ6,
and rε = θε. The distributional assumptions were S2

1 ∼ r1Q1/df 1, S2
4 ∼ r4Q4/df 4,

S2
6 ∼ r6Q6/df 6, and S2

ε ∼ rε Qε/df ε where Q1, Q4, Q6, and Qε represented a
set of jointly independent chi-square random variables with df 1, df 4, df 6, and
df ε degrees of freedom, respectively. (In the context of the analysis of variance
model, note that df 1 = J − 1, df 4 = (I − 1)(J − 1), df 6 = (J − 1)(K − 1), and
df ε = (I − 1)(J − 1)(K − 1) represented the degrees of freedom, respectively, for
between-subject, item by subject, subject by rater, and residual variation.) These
four chi-square random variables were generated using the RANGAM function in
Statistical Analysis System (SAS; SAS Institute Inc. 2011).

For each possible combination of (r1, r4, r6, rε), a total of 25,000 sets of (S2
1 ,

S2
4 , S2

6 , S2
ε ) were simulated for each design. Simulated values for the mean squares

were substituted into the appropriate formulas (from Sect. 23.2) and intervals were
computed. Confidence coefficients were determined by counting the number of in-
tervals that contained ρ and then dividing by 25,000. Mean percent coverage across
the parameter space of all possible parameter value combinations were computed
for one-sided intervals and two-sided intervals. In addition, mean interval widths
were calculated across these combinations for two-sided intervals, where each com-
bination had an average interval width that was computed as the sum of the 25,000
interval widths divided by 25,000.

All computations throughout were performed in SAS (SAS Institute Inc. 2009).

23.4 Results of Simulation: Coverage Probabilities and Interval
Widths

Based on the simulation procedure described in Sect. 23.3, the results for coverage
of the one-sided 95 % lower bound, one-sided 95 % upper bound, and two-sided
90 % intervals appear in Tables 23.3, 23.4, and 23.5, respectively. Regarding the
one-sided 95 % lower bound (Table 23.3), the true or actual coverage of the Wong–
McGraw approach aligned with the purported or nominal coverage of 95 % or gave
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Table 23.3 Mean percent coverage of approximate lower 95 % confidence bounds of relative
agreement reliability (ρ) across parameter sets (25,000 simulations)

Raters Subjects Items

2 3 5 7 10

2 10 94.30 94.28 94.35 94.36 94.32

25 94.59 94.56 94.59 94.53 94.52

50 94.63 94.69 94.70 94.67 94.68

100 94.80 94.78 94.82 94.71 94.74

5 10 93.16 94.44 94.81 94.90 94.94

25 93.98 94.69 94.93 94.88 94.95

50 94.27 94.76 94.86 94.94 94.99

100 94.49 94.83 94.96 94.96 95.03

10 10 93.04 94.30 94.76 94.90 94.97

25 93.88 94.62 94.89 94.95 94.94

50 94.19 94.74 94.94 94.98 94.99

100 94.50 94.78 94.96 94.98 94.92

Table 23.4 Mean percent coverage of approximate upper 95 % confidence bounds of relative
agreement reliability (ρ) across parameter sets (25,000 simulations)

Raters Subjects Items

2 3 5 7 10

2 10 95.70 95.80 95.87 95.90 95.99

25 95.55 95.48 95.51 95.56 95.55

50 95.40 95.33 95.34 95.35 95.41

100 94.80 94.78 94.82 95.28 95.26

5 10 96.23 95.48 95.20 95.13 95.15

25 95.75 95.30 95.09 95.10 94.99

50 95.61 95.23 95.05 95.09 95.05

100 95.46 95.17 95.03 95.07 95.02

10 10 96.34 95.53 95.21 95.08 95.10

25 95.88 95.33 95.10 95.06 95.06

50 95.62 95.21 95.10 94.99 95.02

100 95.51 95.20 95.03 95.04 95.02

slightly liberal coverage (< 94.73 % after accounting for simulation error). Mild
liberal coverage was most evident for two raters or two items, whose actual coverage
approached and eventually converged to the nominal coverage as the number of
subjects increased.
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Table 23.5 Mean percent coverage (and mean interval width) of approximate 90 % two-sided
intervals of relative agreement reliability (ρ) across parameter sets with two, five, and ten raters
(25,000 simulations)

Raters Subjects Items

2 3 5 7 10

2 10 90.00
(0.55)

90.01
(0.48)

90.23
(0.43)

90.27
(0.43)

90.31
(0.40)

2 25 90.14
(0.39)

90.04
(0.33)

90.10
(0.28)

90.08
(0.27)

90.07
(0.25)

2 50 90.03
(0.30)

90.02
(0.24)

90.04
(0.20)

90.02
(0.19)

90.08
(1.7)

2 100 90.09
(0.22)

90.03
(0.18)

90.05
(0.14)

89.99
(0.13)

89.99
(0.12)

5 10 89.39
(0.47)

89.92
(0.42)

90.01
(0.38)

90.04
(0.36)

90.09
(0.34)

5 25 89.73
(0.33)

89.99
(0.28)

90.02
(0.24)

89.98
(0.22)

89.99
(0.21)

5 50 89.88
(0.24)

89.99
(0.20)

89.90
(0.17)

90.03
(0.16)

90.04
(0.15)

5 100 89.95
(0.18)

90.00
(0.14)

89.98
(0.12)

90.03
(0.11)

90.05
(0.10)

10 10 89.38
(0.45)

89.83
(0.40)

89.97
(0.36)

89.98
(0.34)

90.07
(0.33)

10 25 89.76
(0.31)

89.96
(0.26)

89.99
(0.23)

90.01
(0.21)

90.00
(0.20)

10 50 89.88
(0.24)

89.99
(0.20)

89.90
(0.17)

89.97
(0.15)

90.01
(0.14)

10 100 90.01
(0.16)

89.98
(0.13)

89.99
(0.11)

90.02
(0.10)

89.95
(0.10)

Regarding the one-sided 95 % upper bound (Table 23.4), the actual coverage of
the approach maintained the nominal coverage or gave slightly conservative coverage
(> 95.27 % after accounting for simulation error). Mild conservative coverage was
most evident for two raters or two items, whose actual coverage approached and
eventually converged to the nominal coverage (95 %) as the number of subjects
increased.

Regarding the two-sided 90 % intervals (Table 23.5), the actual coverage was
largely congruent with the nominal coverage. After accounting for simulation error
(< 89.69 % for lower limit, > 90.31 % for upper limit), slight underestimation was
found with ten subjects and two items having five raters and ten raters. Otherwise, the
actual coverage gave the nominal coverage. The average interval width decreased, as
expected, with an increase in the number of items (for a fixed number of raters and
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Table 23.6 Data layout for illustrative example with 40 persons measured on eight items by three
raters

Table 23.7 Sum of squares and mean squares for illustrative example

Source Sum of squares Degrees of freedom Mean square

Persons 439.96 39 11.28

Items 68.57 7 9.80

Raters 89.75 2 44.88

Persons × items 336.30 273 1.23

Persons × raters 118.42 78 1.52

Items × raters 14.35 14 1.02

Residual 666.15 546 1.22

subjects), number of subjects (for a fixed number of raters and items), and number
of raters (for a fixed number of subjects and items).

23.5 Illustrative Example

Consider a study with 40 persons being evaluated on eight items by three raters
or judges. The resulting three-way random effects analysis of variance model can
also be considered a three (raters)-by-eight (items) repeated measures analysis of
variance model on 40 individuals. The data layout is presented in Table 23.6 and
the complete data are provided in Wong and McGraw (1999). Table 23.7 gives
the corresponding sum of squares, degrees of freedom, and mean squares for the
seven sources of variation. Based on the information given in this chapter, relative
agreement reliability and confidence intervals for it can be calculated for these data.
Relative agreement reliability of 0.24 was estimated for a single measurement made



23 Evaluation of a Confidence Interval Approach . . . 389

by a randomly selected rater on a randomly selected item; the limit of the approximate
lower one-sided 95 % confidence interval was 0.16; the limit of the approximate upper
one-sided 95 % confidence interval was 0.36; and the approximate two-sided 90 %
interval was therefore between 0.16 and 0.36.

23.6 Discussion

In this chapter, attention is focused on a crossed design having every person to
be evaluated on each item by each rater, where all three sources of variation are
considered random. Interest centered on evaluating the actual or true coverage of
a confidence interval on a particular intraclass correlation: relative agreement of a
single measurement from a randomly selected rater on a randomly selected item
taken on the same person. In what follows, several worthy points of distinction are
made (for more details, see Shavelson and Webb 1991; Brennan 2001).

First, it should be emphasized that a reliability coefficient (and its confidence
interval) is not restricted to the three particular sources of variation highlighted. For
example, instead of items, occasions (time) can be used in order to estimate the
reliability of a single measurement on an individual from a randomly selected rater
at a randomly selected occasion.

Second, a reliability coefficient (and its confidence interval) is not restricted to
all sources of variation being random (only variation due to subjects need be ran-
dom). For instance, items can be taken as a fixed source of variation (analogous to
a fixed factor in an analysis of variance model) when interest centers only on the
particular items selected, which are not considered exchangeable with other items
in the population. Confidence intervals for ICCs—including for relative agreement
in a three-way crossed design—based on three-way mixed effects models, with one
fixed factor and two random factors, are provided elsewhere (Zhou et al. 2011).

Third, a reliability coefficient (and its confident interval) is not restricted to a
single measurement. In the special case of the three-way random effects design, for
example, reliability of a person’s average score (and its confidence interval) can be
obtained by averaging scores across a random sample of multiple raters and multiple
items (not necessarily the same number of raters and items given in the study). As
the number of raters and items that go into the average score increase, so does the
reliability. For the illustrative example given in the chapter, the relative agreement
coefficient was 0.86 (with 95 % confidence interval from 0.76 to 0.93) when a person’s
score is averaged across three raters who each used eight items, compared with 0.24
(0.16–0.26) for a single measurement.

Fourth, the reliability coefficient (and its confidence interval) used in this chapter
concerns relative agreement or consistency of scores grounded in relative interpre-
tations that address how much better one individual performed than another. For
relative decisions, measurement error is defined as all variance components that in-
fluence the relative standing of individuals. For the three-way design in this chapter,
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these components are the interactions of the item source of variation and the rater
source of variation with persons, the object of measurement, as well as residual error.

An alternative reliability coefficient (and its confidence interval) involves absolute
agreement, which addresses decisions about how well an individual can perform, re-
gardless of the performance of others. For absolute decisions, not only do changes
in the ranking of individuals contribute to error but the actual levels of their perfor-
mance also depend on the characteristics of the factors such as whether the items
are easy or difficult and whether the raters are lenient or strict. Thus, all variance
components except the person variance component contribute to error (e.g., variance
components from items, raters, and items by raters, as well as from patient by items,
patient by raters, and residual error). Absolute agreement generally implies relative
agreement, but the reverse is not true. As such, absolute agreement reliability is gen-
erally less than relative agreement reliability. In the illustrative example, absolute
agreement reliability of a single measurement was 0.22, compared with 0.24 for
relative agreement reliability.

Fifth, the formula for a reliability coefficient (and its confidence interval construc-
tion) depends on the type of research design. In addition to the crossed design where
every person is evaluated on each item by each rater, several other types of three-
way random factor designs are available. Among them is the design where items are
nested within raters, as would occur when different items are used by different raters,
with persons crossed with both items and raters, and the design where each person
is measured by each rater but that the items are both person and rater specific (i.e.,
for each person–rater combination, a different set of items is used).

Using Satterthwaite’s method, Wong and McGraw (1999) actually provided
construction of confidence intervals for the relative agreement coefficient and the
absolute agree coefficient for a single measurement score and average score in dif-
ferent types of three-way random effects designs. This chapter is limited to the
evaluation of a confidence interval for the relative agreement coefficient for a single
measurement score from the fully crossed (and balanced) three-way random effects
designs. Although it is beyond the current scope of this chapter to evaluate all of
the confidence intervals derived in Wong and McGraw (1999), further research is
encouraged in assessing the coverage of other confidence intervals. While only one-
sided 95 % bounds and two-sided 90 % confidence intervals were investigated in this
chapter, there is no reason to believe that the results and conclusions would differ
for other confidence intervals such as one-sided 99 % bounds.

23.7 Summary

Overall, the actual coverage probability of one-sided 95 % lower bounds and up-
per bounds, along with two-sided 90 % confidence intervals, for relative agreement
reliability aligns with the nominal coverage within most of the commonly applied
settings. Any understated (liberal) coverage probability for the one-sided 95 % lower
bound is only slight and likely to be inconsequential in most circumstances. The
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same can be said about the slightly overstated (conservative) coverage of the one-
sided 95 % upper bound. This methodological evaluation is, to our knowledge, the
first to validate the coverage probability of this particular confidence interval and to
show that its actual coverage is close or equal to the stated coverage.
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Chapter 24
Assessment of Methods to Identify Patient
Subgroups with Enhanced Treatment Response
in Randomized Clinical Trials

Richard C. Zink, Lei Shen, Russell D. Wolfinger and H. D. Hollins Showalter

Abstract In contrast to the “one-size-fits-all” approach of traditional drug develop-
ment, the need to identify subjects with an enhanced treatment effect is a critical
component for tailored therapeutics or personalized medicine. Typically, the goal is
to determine which patient receives additional benefit from the treatment in terms of
an efficacy response. Alternatively, finding subgroups based on the important safety
endpoints could be considered to identify those individuals experiencing a reduced
risk of key adverse events, or to identify subjects for whom the new therapy may
be inappropriate. A number of methods for identifying subgroups with enhanced
treatment response have been developed recently, and it is natural to expect many
more in the coming years. In order for the development programs for tailored thera-
peutics to be successful, it is imperative to identify the best method(s) for subgroup
identification to be applied in practice. Further, it is likely that no single method
will be optimal across all scenarios, so fully characterizing the properties of each
methodology is of the utmost importance. To accomplish these goals, the researchers
who develop every new and existing method should ideally make use of the same
set of simulated data scenarios and report their findings using the same performance
measures. We outline and describe the key attributes and scenarios for simulated data
as well as the performance measures to enable consistent and rigorous assessment
of subgroup identification methods.
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24.1 Introduction

Drug development has traditionally focused on comparing the average response of
patients on an experimental treatment to the average response of patients receiving
either placebo or standard of care. Assuming no meaningful changes in the safety
profile, should the treatment effect based on these average responses meet the criteria
for clinical and statistical significance, the trial would be deemed a success with the
experimental treatment being interpreted as the “better” choice for the patient popu-
lation. However, this interpretation is often an oversimplification of what has actually
occurred within the clinical trial. If one were to examine the data further, there are
usually instances where patients on the experimental treatment failed to respond, and
where patients on the standard of care (and sometimes even placebo!) exhibited a
preferential response to their treatment. When it comes to the treatment response for
these individuals, the “mean doesn’t mean as much anymore” (Ruberg et al. 2010).
The goal for tailored therapeutics or personalized medicine is to identify the best
treatment for each patient based upon their personal and disease characteristics.

Understanding this heterogeneity of treatment response is itself no easy task—
after all, human beings are extraordinarily complex! Response to treatment may be
influenced by demographic characteristics, medical and treatment history, genetic
factors, local environment, or other co-occurring disease. The disease itself may be
extremely complex; there may be variations or characteristics of the disease that
can impact the level of treatment response. One oft-cited example in oncology is
trastuzumab which has been shown to be an effective treatment for breast cancer
only when the tumor is HER2 positive (Baselga et al. 2006). Cystic fibrosis patients
with at least one G551D mutation in the cystic fibrosis transmembrane conductance
regulator protein have been shown to receive benefit from ivacaftor (Ramsey et al.
2011). Diseases collectively known as “dry eye” have varying mechanisms of action;
the tear film may be unstable or produced in insufficient quantities (evaporative versus
aqueous deficient) (Bron 2001). Identifying biomarkers that influence response is
necessary to tailor an appropriate treatment for each individual patient.

For the present discussion, it is important to draw a distinction between prognos-
tic and predictive biomarkers. Prognostic biomarkers are those characteristics that
impact an outcome independent of the treatment received. In a regression model,
this can be interpreted as a shift in the intercept for marker-positive patients (left
panel of Fig. 24.1). These biomarkers help us determine the prognosis of patients,
but are not related to any additional benefit of the drug compared to the standard of
care for marker-negative patients. In other words, the treatment effect is the same for
either marker group. Predictive biomarkers, on the other hand, indicate an enhanced
outcome that is specific to the particular treatment being received. In terms of a
regression model, this can be interpreted as a treatment by marker interaction (right
panel of Fig. 24.1). Such biomarkers may be reported in the drug label, and could
potentially be codeveloped with a companion diagnostic. Within the remainder of
this manuscript, the term biomarker refers to predictive biomarkers.
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Fig. 24.1 Graphical presentation of prognostic versus predictive biomarkers. Prognostic biomark-
ers have enhanced effect independent of the treatment, but predictive biomarkers show enhanced
effect with a particular treatment, i.e., interact with the treatment

Treatment response can be summarized within subgroups defined by important
patient and disease characteristics (biomarkers), and this exercise is often performed
as part of the secondary objectives of single trials or the integrated summary of
efficacy (ISE) for new drug applications within the USA. However, there are some
drawbacks with this approach. First, based on the emerging understanding of the
disease, covariates that may be predictive of enhanced response could go overlooked.
Second, waiting until the ISE to understand the treatment response within subgroups
fails to take advantage of any efficiency that could be gained in the development
process by enriching trials with responsive subpopulations.

Identifying these responsive subpopulations early in the development process
has numerous benefits. Enriching studies with these patients could result in smaller
clinical trials either through a larger possible treatment effect or through a reduced
variability of response. Further, responsive patients may require smaller doses of
drug to illicit a beneficial response which could benefit the safety profile. Finally,
understanding which subjects may respond negatively to the novel treatment has
benefits for the safety profile, as well as being ethical for maintaining these patients
on their current or alternate treatment regimes.

The literature for biomarker subgroup identification (BSID) methods typically
falls within one of two camps. Recursive partitioning methods are a natural way to
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analyze a large number of covariates and assess potentially complex interactions of
these variables. BSID methods extend this straightforward application of recursive
partitioning to an endpoint since the quantity of interest is the treatment effect, that
is, the mean difference in that endpoint between two groups (Battioui et al. 2013;
Foster et al. 2011; Loh 2011; Lipkovich and Dmitrienko 2014; Lipkovich et al.
2011; Negassa et al. 2005). The other set of methods involves tests of treatment by
biomarker interactions in regression models, often testing each biomarker separately
from the others (though adjustment for other covariates is possible) (Su et al. 2008;
Su et al. 2009; Radcliffe and Surry 2011; Dusseldorp and Mechelen 2014). Similar
to recursive partitioning methods, binary splits of continuous biomarkers are often
used in the interaction models for the purposes of defining a subgroup. An illustrative
example is presented in Sect. 24.2.

The BSID problem is closely related to, but not the same as, the optimal treatment
regime (OTR) problem, as described, for example, in (Zhang et al. 2012; Zhao
et al. 2012). The latter focuses on finding the best treatment assignment for each
patient, whereas the former tries to find a subset of patients with enhanced treatment
response. One difference between the two problems is illustrated in Fig. 24.1. If we
assume a larger response is more desirable and that all plotted mean responses are
clinically meaningful with sharp differences, then the OTR solution for all patients
would be the experimental arm (blue line), regardless of whether the left panel
or right panel represents the truth, because the blue line is always above the red
line. However, for BSID, the left panel is a case in which there are no subgroups
identified by the biomarker, but the right panel is a case in which the biomarker
does identify a subgroup. BSID is effectively a search for biomarker-by-treatment
interactions, whereas OTR typically builds on a full response model and does not
need to distinguish between prognostic and predictive biomarkers. While this chapter
focuses on BSID, many of the proposals discussed can be applied or extended to OTR
as well.

With increasing interest in personalized medicine, it is natural to expect that the
literature for BSID (and OTR) methods will proliferate over time. Given the inherent
problems in subgroup analysis and the tendency of researchers to over-interpret
findings (Rothwell 2005), it is of paramount importance to outline a strategy to
determine the best method(s) for subgroup identification to be used in practice.
An important part of any method is to minimize the likelihood of a false-positive
finding—identifying subgroups based on apparently predictive biomarkers that fail to
bear fruit with further testing. Further, it is likely that no single method will be optimal
across all scenarios, so fully characterizing the properties of each methodology is
vital.

The purpose of this chapter is to describe a strategy to (1) determine the best BSID
method(s) to be used in practice for tailored therapeutics and (2) fully characterize the
properties of these methods so that they are used appropriately in practice based on
the characteristics of the clinical trial and disease under investigation. In Sect. 24.2,
we present an illustrative example of an interaction-based BSID method to motivate
the discussion. In Sect. 24.3, we describe the Predictive Biomarker Project (PBP)
which details a prospective approach to rigorously and consistently assess new BSID
methods as they are developed. We summarize our insights in Sect. 24.4.
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All 
Randomized 

Subjects

X1 ≤ 5

X6 Absent X6 Present

X5 ≤ 1.2 X5 >1.2

X1 > 5

X7 ≤ 30 X7 > 30

X6 Absent X6 Present

Fig. 24.2 Example of a subgroup tree based on binary splits from an interaction model

24.2 Illustrative Example

Here, we describe an example BSID method to motivate the proposal described in
Sect. 24.3. Figure 24.2 presents a subgroup tree based on binary splits of a population
of randomized subjects from a hypothetical clinical trial. Such a tree is the natural
result of recursive partitioning; subsets are produced based on the ability to best
predict the continuous or categorical endpoint of interest. However, in recursive
partitioning, splits are not based on the treatment effect of the endpoint of interest.
To generate a tree when trying to find enhanced treatment effects, the following
model could be fit at a node for each covariate to determine whether splitting was
appropriate:

f
(
yi

) = β0 + β1xi + β2Treatmenti + β3Treatmenti ∗ xi. (24.1)

Here, xi represents a binary covariate, which could refer to the presence or absence
of an allele for a particular genetic biomarker, or value exceeding a meaningful
threshold (or not) for a continuous biomarker. In general, a single biomarker could
generate multiple variables to review (e.g., a continuous covariate could be split
at each of the three quartiles), though the number of splits is often limited based
on the sample sizes of the resulting subgroups. A significant interaction for β3 in
model (1) implies differential treatment effects between subgroups defined by the
binary covariate xi. At a given node, the split is made based on the most “significant”
interaction term present across all covariates, should such an interaction exist. This
general description applies to the interaction trees methodologies (Su et al. 2008; Su
et al. 2009; Radcliffe and Surry 2011; Dusseldorp and Mechelen 2014).
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Fig. 24.3 Example of a
subgroup tree using the
PAYGO algorithm. PAYGO
prune as you go

Zink, Shen, Wolfinger, Showalter

All 
Randomized 

Subjects

X1 > 5

X7 > 30

X6 Absent

Treatment effect:  Δ

Treatment effect: Δ1 > Δ

Treatment effect: Δ2 > Δ1 > Δ

Treatment effect: Δ3 > Δ2 > Δ1 > Δ

Completed trees require “pruning” to prevent a model that over-fits the data. One
potential simplification to the above algorithm is to prune the tree as each split occurs
(prune as you go, PAYGO). This suggestion is based on the idea that the significant
interaction for β3 in model (1) produces one subgroup with an enhanced treatment
response compared to the parent node, while the other subgroup produces a weaker
or potentially negative treatment effect compared to the parent node. From this point
on, the “weaker” subgroup can be “ignored” resulting in a tree with reduced effort
in terms of computation. A similar approach was implemented in (Lipkovich and
Dmitrienko 2014) using recursive partitioning methodologies. Further, the treatment
effects are necessarily larger at each subsequent level (Fig. 24.3). An additional
benefit is that the subgroup problem is now sequential. Once a nonsignificant level
is reached, no further splitting is performed.

The best way to handle what is “significant” at each level is up for debate. A
large number of comparisons may be performed to assess the strongest split. Strict
application of Bonferroni correction could be applied to these tests, though this could
greatly affect the power for finding significant interactions. More powerful methods
for control of type I error rate such as Hochberg (Hochberg 1988) can be used in
practice. Alternatively, with a large number of covariates, the false discovery rate
(FDR) method of Benjamini and Hochberg (Benjamini and Hochberg 1995) could
be applied, though this method does not strongly control for the family-wise error
rate. When a large number of continuous biomarkers are analyzed, many of these
tests will be highly correlated with one another, so more stringent adjustment may be
needed. One possibility is to permute the treatment assignment and re-perform the
splitting exercise a large number of times to generate a distribution of the “best-split”
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p values. Then, the p value from the original data can be compared to this distribution
to assess how extreme the resulting interaction test truly was.

We shall make one final point about this example. The interaction models above
are fit using one covariate at a time. Other possible predictive models allow one to
fit a number of covariates greater than the number of observations in the data (e.g.,
LASSO, elastic net). However, final estimates of the treatment effect within the sub-
group(s) of interest are necessary for planning future studies. After each split, the
distribution of covariates could differ substantially between treatments, and these dif-
ferences could contribute to the observed treatment effect. Without accounting for the
distribution of the other covariates within the model, treatment effects within the sub-
groups could be biased. One possibility is to apply propensity-scoring methodologies
(Xu and Kalbfleisch 2010) and adjust model (1) with propensity scores piobtained
from a logistic regression model with the treatment as the outcome:

f
(
yi

) = β0 + β1pi + β2xi + β3 Treatmenti + β4 Treatmenti ∗ xi (24.2)

This model would be reestimated at each level.
It is well known that the variance of the mean is inversely proportional to 1/N; we

present an example in the context of subgrouping methodology to show how covari-
ates can become increasingly different between treatments within smaller subgroups.
We present an example in Fig. 24.4 from a simulated data set of 300 observations
and 74 standard normal covariates, a normal outcome with mean 33 and standard
deviation 25, and 1:1 randomization between a test and reference treatment. For each
covariate, the data were randomly split to divide the 300 observations into two sub-
groups. Within each subgroup, the standardized difference was calculated between
the treatments and plotted against the size of subgroup. This exercise was repeated
10 times for each covariate. Figure 24.4 illustrates that covariates that were initially
balanced in the full population can exhibit larger differences between treatments as
the group size decreases.

While the above method seems reasonable to identify interesting subgroups, how
is it possible to directly compare the performance of PAYGO against other completed
methodologies and those currently under development? Further, how can researchers
keep informed of the properties of the best-performing method(s) so that the optimal
approaches are used in practice? The proposed PBP in Sect. 24.3 addresses these
concerns.

24.3 Predictive Biomarker Project

24.3.1 Overview

In order to assess the performance, developers of a subgroup identification method
typically rely on applying the particular method to simulated data sets, where the
“interesting” subgroup(s) are known. However, simulation studies as they are cur-
rently presented in the literature are insufficient to identify the best BSID methods for
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Fig. 24.4 Standardized difference of a N(0,1) covariate between treatments by subset size. The
reference line indicates the standardized difference from the original data, where standardized
difference = |mean(treatment)—mean(control)|/(pooled standard deviation)

use in practice. The simulations reported may highlight scenarios where a particular
method performs best, or may not account for important analysis considerations,
such as the correlation among covariates, missing data patterns, or the number and
distribution of covariates. Further, reproducing simulations for new research based
on the available description in the literature is difficult at best. Finally, even if simu-
lated data sets could be reproduced, how one chooses to compare the performance of
the methods under investigation could vary, which could make comparisons across
several manuscripts challenging. The goal of the proposed PBP is to define important
and relevant scenarios and summary criteria so that the performance of a method,
such as the one described in the previous section, can be assessed in a consistent
manner as it is developed. Additionally, maintaining an environment, such as a PBP
web portal, where individuals can collaborate and track the performance of available
methods, could be immensely valuable.

The above proposal suggests a major change to the conventional way in which
statistical research is performed. Often, several methods to solve a particular problem
are introduced into the literature. This may include methods that are refinements
of earlier published algorithms, or entirely new approaches. As frequently occurs,
once several methods become available, the key question then becomes which of
the available methods is the best. Certain publications may compare a subset of
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Fig. 24.5 The three components of the Predictive Biomarker Project (PBP)

the methods, but rarely would a definitive study of the methods be available. This
necessitates additional research to compare the methods in a single large stimulation
study. Even here, all interesting simulation scenarios may not be considered, and
certain methods may be excluded due to limitations of available software. Newer
methods will be excluded from this study until a new simulation study is performed.
This research paradigm also slows the progress due to the time needed to publish
methods and results before comparisons are made.

The goal of the PBP exercise is to identify the best method(s) for subgroup identi-
fication in a given setting to be applied in practice for tailored therapeutics. In order
to be successful, there are three components to consider (Fig. 24.5). Data generation
is to ensure consistent inputs, as well as inputs that cover a wide range of scenarios.
Ideally, the interface of the PBP web portal will provide data sets (or the code) in
which to generate the data. The BSID component can be considered the “open” part
of the process in which researchers would apply their methodologies. Here, it would
be advantageous to get consistent output from the methods in order to compute a
standard set of reports for a complete set of performance metrics. In this way, a con-
sistent summary is generated to compare across the available methodologies as the
candidate method is being developed. There is no need to wait for the publication,
or hunt down the needed software for comparator methods. In the following section,
we provide the additional information for the suggested components of the PBP web
portal.

24.3.2 Data Generation

For generating data sets, the first goal is to outline the key attributes necessary to
cast as wide a net as possible to cover the situations likely to occur in practice.
At a minimum, this includes the distributions and moments of the outcome and
covariates (as well as censoring mechanism for time-to-event endpoints), a range of
sample sizes and treatment allocations to be expected in phase II or III trials, the
number of covariates, as well as the magnitude of predictive and prognostic effects
(including null effects). More complex simulation criteria could include the presence
of outliers among one or more covariates, levels of correlation among the covariates,
and missing data patterns.

Once key attributes are defined, various combinations of these criteria can be com-
bined to define likely scenarios. These scenarios should best represent the conduct
of trials for the therapeutic area(s) where the BSID methodology is to be applied.
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For example, consider a typical phase II oncology clinical trial. How many patients
are studied? What is the length of the trial? How is dropout appropriately modeled?
How do patients typically respond to treatments? These and other questions are the
important considerations for the data generation. The more realistic the simulated
data are, the more useful the assessment of the BSID methods would be.

To ensure completeness of the simulation, it may be necessary to recruit a panel
of experts to outline an initial set of parameters with the corresponding range of
values. The current literature on BSID methods may provide a reasonable starting
place, and therapeutic area knowledge will likely provide further suggestions for
simulation criteria. Initially, scenarios may focus on finding subgroups within single
trials. However, more complicated examples including multiple trials of varying
sizes and durations or simulated development programs could be considered for the
future. It is not expected that all factors will be initially identified; researchers should
be able to suggest additional areas to the simulation factor space.

It is important that clear identifiers are available so that the simulation character-
istics of the data are easily interpretable. These identifiers should be flexible enough
so that additions or changes to the simulation criteria do not alter the meaning of
past labels. These identifiers will aid in the reporting of the simulations at the PBP
web portal as well as within individual publications. These identifiers should be
extensible so that researchers can extend the simulation factor space over time.

Generating data on demand or having predefined data sets available for download
is less challenging than identifying a hosting service or personnel to support the
endeavor. Further, supplying data sets in lieu of code to generate data helps alleviate
the potential issues of individuals generating data incorrectly, having limited access to
software, or the requirement to maintain code in multiple languages. Perhaps a bigger
concern is creating a collection of data sets that reasonably cover the space of common
applications. There are at least a few possible approaches to this problem. First, users
can suggest or contribute simulated data sets for which they understand their favorite
methods to perform well. Such data sets should be vetted for validity and closeness to
real-life scenarios. Over time, the collection of such data sets would at least provide
benchmarks for existing methods against which new methods can be compared.
Second, a design of experiments approach can be utilized to systematically choose
combinations of simulation factors to effectively cover the factor space. Finally,
an adaptive strategy may be appropriate to first address simulation factors where a
particular class of methods excels, then examine other areas of the factor space.

24.3.3 Biomarker Subgroup Identification

The BSID component is the most flexible portion of the PBP. Here, authors are
free to use their knowledge, expertise, and imagination to develop and apply any
methodology of their choosing. This includes the methods described above, as well
as any methods suggested by the framework outlined in (Shen et al. 2015). The benefit
of the PBP web portal is that methods do not need to be published, and can provide
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near instant feedback on the performance of the candidate BSID method, compared
to the other methods that have been contributed. General good performance against
other methods, or excellent performance localized to various subspaces of simulation
attributes could be key findings for publication of the method in the literature. Further,
the performance of other methods tracked in the PBP web portal could suggest
refinements to the candidate BSID method in situations where the performance is
disappointing. Some facility for storing and sharing contributed software would be
ideal to make a method generally available to the research community.

24.3.4 Performance Measures

BSID methods will ultimately be compared by a number of performance measures,
and it may be likely that not all metrics will favor the same model. In these cases, the
particular problem may suggest the most important metrics to consider. However,
it is important that all metrics be computed so that comparisons across the BSID
methods can at least be performed.At a minimum, reporting will include the identified
biomarkers, the final subgroup that was selected for purposes of designing the next
study, and the estimated treatment effect within this subgroup (which should at least
be as high as currently available therapies).

There are a number of important and specific metrics that can be considered, and
this depends on the particular objective of the subgroup identification exercise. For
example, identifying important biomarkers related to the treatment response would
be considered a testing problem, and the performance metrics here would be at
the covariate level. Next, measuring the enhanced treatment effect is an estimation
problem, with the metrics obtained at the subgroup level. Deciding which patients
are ultimately treated with which medication is a prediction problem, with metrics
defined at the patient level. The web portal should have some means of summarizing
performance measures across simulation criteria and contributed methods so that the
key attributes and scenarios under which a given method performs can be identified
and described.

24.3.4.1 Testing

Testing problems are important to improve our understanding of the underlying
biology and how this interacts with the treatments we hope to prescribe. Here, we
compare the set of identified biomarkers with the truly predictive biomarkers for a
given data set using statistics commonly used in epidemiology (Table 24.1).

1. How many true biomarkers were identified? Sensitivity = a
a+b

2. How many false biomarkers were incorrectly identified? 1 − specificity = c
c+d

3. Among identified biomarkers, how many are true biomarkers? Positive
predictive value (PPV) = a

a+c
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Table 24.1 Contingency
table for true versus identified
biomarkers

Identified biomarker

Predictive biomarker Yes No

True a b

False c d

4. Among biomarkers not identified, how many are true biomarkers? 1 −
negative predictive value (NPV) = b

b+d

These quantities can be computed for each simulation, with the overall average, min-
imum, maximum, and standard deviation used as summary measures. Measures of
variability are important to assess the sensitivity of the results to individual simulated
data sets. Other quantities of interest include accuracy, the proportion of simulations
that correctly identify each individual biomarker, as well as proportion of simulations
that identify the set of biomarkers. Note, the analysis suggested above only consid-
ers whether the biomarker is identified, and not the particular cutpoints or alleles
for the biomarkers. For continuous variables or categorical variables with multiple
categories, there can be numerous subgroups to consider that number far beyond the
total number of biomarkers. However, these varying cutpoints or groupings are often
limited by the number of patients available in the resulting subgroups.

24.3.4.2 Estimation

At the subgroup level, the goal is to compare the estimated treatment effect against
the truth. The true treatment effect can be calculated using the expected treatment
effect from the simulation model for each patient that is a member of the identified
subgroup. The accuracy of the estimated treatment effect can be compared to the
truth in terms of magnitude and direction of estimation error. The example described
in Sect. 24.2 illustrates the potential bias that could occur if covariate imbalance
between the treatment groups is not considered.

The implications of the identified subgroup for further clinical trials can be inves-
tigated by calculating the sample size needed for a trial with a specified (for example,
90 %) power compared to the standard of care. The accuracy mentioned above is im-
portant; an overestimate of the treatment effect can result in an underpowered study
or even a suboptimal decision to pursue tailoring, while an underestimated effect
results in an unnecessarily large trial. Further, the cost of the trial can be estimated
(largely driven by the number of enrolled patients) as well as the time needed to
complete the trial (driven by the number of patients screened).

24.3.4.3 Prediction

Finally, the goal of tailored therapeutics is to understand a patient’s personal and
disease characteristics so they can be prescribed the most effective medication. Ul-
timately, it is important to ascertain how well the identified subgroup(s) classify the
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Table 24.2 Comparison of simple accuracy between virtual twins and prune as you go based on
100 simulated samples

Simulation Baseline Virtual twins Prune as you go

Binary, base case 0.75 0.75 0.75

Binary, base case × 2 0.75 0.88 0.79

Normal, base case 0.75 0.94 0.94

Normal, base case × 2 0.75 0.98 0.99

response to the treatment. Here, a model can be used to predict the response to the
treatment (or not). The accuracy of these predictions can then be compared to the
true response the patients exhibited.

24.3.5 Application to the Example

To illustrate one combination of the preceding approach, we conducted a small
simulation study comparing the method described in Sect. 24.2 with virtual twins
(VT) (Foster et al. 2011). The simulated data follow the “base case” described in
(Foster et al. 2011). This simulates 1000 patients, half treated and half not, with
predictors X1–X15 iid N(0,1) and a binary response B with

P (B = 1) = logit−1 (−1 + 0.5X1 + 0.5X2 − 0.5X7 + 0.1T + 0.5X2X7 + 0.9TA)

where T denotes the treatment variable coded as 0 or 1 and A indicates the subgroup
X1 > 0 and X2 < 0, also coded as 0 or 1. We performed 100 simulations and also
simulated a normal response with the same linear predictor and variance 1. The depth
of the tree was set to 2 for both methods and the p value cutoff for PAYGO was set
to 0.0005 to temper the greedy nature of the algorithm.

As a performance metric, we chose simple accuracy, which is the proportion of
all patients classified into their true subgroup. Note the featured subgroup comprises
25 % of the data on average, so a baseline minimal accuracy is 0.75. Finally, to
increase the power of the methods, we simulated a “base case × 2” scenario, which
doubles every coefficient in the linear predictor. Results are shown in Table 24.2.

We see that virtual twins perform better with the binary response for base case
× 2 and that the two methods perform almost identically for the normal response.

The preceding brief analysis represents one example thread through the simulation
options discussed previously. We would envisage simulated data sets corresponding
to each of the four rows of Table 24.2 being available in the repository to facilitate
comparison with the two methods shown here.
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24.4 Conclusions

In this chapter, we have outlined a novel approach to performing methodological
research using subgroup identification methods for tailored therapeutics as a mo-
tivating example. There are many benefits to the proposed PBP web portal. First,
and the most important, is the benefit of consistency in the simulated data and per-
formance criteria for comparing BSID methodologies. This consistency allows for
direct comparisons against current and future methods in order to identify the best
approach to be used in practice. Further, should no single method prove optimal
across all scenarios, the PBP web portal will fully characterize the study attributes
for which each BSID method performs best so that an appropriate choice can be
made based on the current clinical trial design. Heat maps and clustering analyses
can identify methods with similar performance, which could suggest more compu-
tationally straightforward methods to apply. Finally, the PBP web portal enables the
researcher in a number of important ways by simplifying their simulation studies by
fully characterizing important simulation criteria and providing code and/or data for
use, negating the need to locate or develop software for comparator methods to be
used as a benchmark, and providing immediate feedback for performance. Though
the PBP web portal is not yet generally available as described above, some efforts
have been made at individual companies (such as Eli Lilly) and working groups of
industry statisticians.

Given the importance of personalized medicine and considering the potential
abuses and overinterpretations of subgroup analyses (Rothwell 2005; Wang et al.
2007), as well as past failures of research (Ioannidis 2005), the PBP may benefit from
an industry-wide effort through the participation of the Clinical Trials Transformation
Initiative (CTTI) (Clinical Trials Transformation Initiative 2013) or TransCelerate
BioPharma Inc (TransCelerate BioPharma Inc 2008). Involving either or both of these
organizations will make best use of the expertise across numerous pharmaceutical,
regulatory, and academic institutions. Further, the PBP is no straightforward feat;
the combined technical and financial resources of the member groups will be needed
to develop and maintain the PBP web portal. However, once the infrastructure is
developed, such collaborative efforts can be applied to other problems. For example,
the simulated data sets can be easily utilized for other methodological developments,
though modifications and extensions to simulated data may be needed in order to be
appropriate for other applications (such as OTR).

Identifying subgroups with enhanced treatment response addresses one small part
of tailored therapeutics; OTR is another. The next step is to apply the findings to the
clinical program. While BSID methods often employ resampling methods to pre-
vent overfitting, it is still possible to have identified a subgroup where the enhanced
response was an artifact of the particular trial. Whenever possible, identified sub-
groups should be examined for scientific plausibility of the enhanced response, while
independent trials should be used for enrichment and reproducibility of the result.
Various strategies for enriching and analyzing trials with patients from “important”
subgroups have been described elsewhere (Alosh and Huque 2009; Simon 2010).
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Chapter 25
A Framework of Statistical Methods for
Identification of Subgroups with Differential
Treatment Effects in Randomized Trials

Lei Shen, Ying Ding and Chakib Battioui

Abstract The problem of identifying subgroups of patients with differential treat-
ment effects in randomized trials plays an important role in the effort to tailor
therapies to patients who are most likely to get benefit from them. It has attracted
active research effort in recent years, and a growing number of statistical methods
have been developed. In this chapter, after first examining the major challenges with
subgroup identification that these methods are designed to address, we create a struc-
tured framework into which many of the methods can be placed. Such a framework
provides insight into the subgroup identification problem and methods, and can be
utilized to generate additional methods from existing ones. Using a small simulation
study, we also demonstrate a recently proposed approach to systematically evaluate
the performance of subgroup identification methods. Together, the methodological
framework and systematic assessment of performance can help to determine the
optimal analyses for various applications.

25.1 Introduction

In the drug development process, there is now an increasing amount of attention on
tailoring a new therapy to those patients who are most likely to benefit from it. An
important part of the effort to develop tailored therapeutics is the identification, using
data from randomized clinical trials, of patient subgroups that enjoy an enhanced
treatment response.

A number of statistical methods for the identification of such subgroups have
been proposed (Loh 2002; Su et al. 2008; Lipkovich et al. 2011; Dusseldrop and Van
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Mechelen 2014; Foster et al. 2011; Battioui et al. 2014; Bell et al. 2012), and new
ones regularly appear in the literature. With methods becoming more numerous, there
comes an acute need to understand these methods and their performance in various
settings. Although publications that present novel methods often contain simulation
studies, the many differences in the setup of these simulation studies make it difficult
to understand the relative performance of various methods. There is a strong interest
in consistent and rigorous evaluation of subgroup identification methods, a topic
addressed in Zink et al. (2015). In this chapter, we focus on a different question:
Can we create a framework into which most of these methods would fit? Such a
framework could help us gain much insight into the subgroup identification problem
itself and its desirable solutions. On the surface, many of the statistical methods for
subgroup identification look quite different from each other. However, in this chapter,
we attempt to show that a useful framework can indeed be used to capture the key
components of these methods. We will then demonstrate some important benefits of
this framework and new insights gleaned from it.

In Sect. 25.2, we briefly review some of the subgroup identification methods in
preparation for the discussion that follows. A methodological framework is pro-
posed in Sect. 25.3, and we show a few important applications of this framework in
Sect. 25.4 before concluding with Sect. 25.5.

25.2 Subgroup Identification Problem and Methods

25.2.1 Major Challenges

We first discuss the major challenges inherent in the problem of subgroup identi-
fication, which the various methods attempt to address in different ways. Perhaps
the most often mentioned of these challenges is multiplicity, appropriately so, given
the potentially severe impact it has on inflated type I error rate as well as on overly
optimistic estimates of treatment effect. An analysis to identify interesting subgroups
almost always includes multiple predictors—numbering in dozens for baseline patho-
physiological variables and sometimes thousands for genomic or genetic variables.
The number of predictors in an analysis is, however, not the only source of multi-
plicity, as there are at least two others. If a predictor is measured on a continuous
scale—such as expression level of a gene or the amount of a protein—the same
predictor can define many different patient subgroups when various cutoff values
are used. In addition, when an analysis attempts to explore beyond subgroups de-
fined by a single biomarker, the number of potential subgroups defined by the same
set of predictors increases exponentially with higher complexity of the subgroups
under consideration. For example, 100 binary biomarkers define 200 single-marker
subgroups, but about 20,000 subgroups when two biomarkers are used jointly.

Another major challenge, also derived from the potentially large number of candi-
date subgroups, is computational. Not only do we need to efficiently search through
a large number of subgroups in order to identify the most promising ones but we also
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often need to apply resampling approaches to address the aforementioned multiplicity
issue. Any of the various resampling techniques require an additional computational
loop around the search for subgroups. When these two factors—searching among
many subgroups and repeating the search for a larger number of resampled datasets—
are put together, the computational burden can be so severe as to render an otherwise
reasonable method infeasible.

High degree of multiplicity is not unique to the problem of subgroup identifi-
cation; rather it is prevalent in fields such as “high dimensional data analyses” or
“statistical learning,” of which subgroup identification can be considered a special
case. It is therefore natural to assume that many of the modern statistical techniques
developed for these fields can be applied to subgroup identification, and indeed many
of them prove to be useful. But now we come to a third major challenge of subgroup
identification. If we analyze data from patients receiving the same treatment and try
to identify subgroups with higher average response, we can directly utilize methods
such as classification-and-regression trees (CART) (Breiman et al. 1984). However,
since we are interested in subgroups with differential treatment effects, with “treat-
ment effect” defined as the difference in average responses between two treatment
groups (typically a new treatment and a control, the latter often in the form of placebo
or standard-of-care), the problem is one of identifying treatment-by-subgroup inter-
actions. Many statistical learning algorithms such as CART cannot be directly applied
to solve this more complex problem.

It should be noted that, while these challenges are the most important ones, there
are certainly others. For example, the naı̈ve estimate of treatment effect in the identi-
fied subgroup is known to be overly optimistic due to ascertainment bias associated
with the process of searching for the best subgroups. It is therefore desirable if a sub-
group identification method can provide bias-corrected estimates of treatment effect
so that the clinical importance of an identified subgroup can be properly judged.

25.2.2 Subgroup Identification Methods

Having discussed three major challenges in subgroup identification, we now provide
a brief survey of three methods that have been proposed for this problem.

In what is traditionally termed as “subgroup analysis,” most phase 2 and phase 3
clinical trials have in their statistical analysis plans lists of prespecified subgroups to
be investigated using interaction testing. In this chapter, we will refer to this method
as the “traditional” method. The testing for treatment by subgroup interaction is
performed one-at-a-time. Often, no formal multiplicity adjustment is made, although
the Bonferroni correction is sometimes used (if informally) in the interpretation of
results.

Recursive partitioning techniques are utilized by many modern statistical methods
for subgroup identification, including the next two methods to be reviewed in this
chapter (as well as Loh 2002; Su et al. 2008; Lipkovich et al. 2011; Dusseldrop and
Van Mechelen 2014; Bell et al. 2012). A detailed review of recursive partitioning
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can be found in the references (Breiman et al. 1984; Loh 2014). Briefly, a recursive
partitioning method creates a decision tree that classifies patients into subgroups
with differential treatment effects using sequential splits based on dichotomous (or
dichotomized) predictors.

The second method we consider in detail is the “virtual twin” method by Foster
et al. (2011). It borrows concepts from counterfactual models for causal inference.
As a first step, this method applies random forest model (Breiman 2001) to impute
the unobserved outcome for each patient; that is, the outcome of the patient if he or
she had been randomized to the other treatment group. This allows an individualized
treatment effect to be calculated for each patient since his or her responses to both
treatments are now available, for example, by subtracting one treatment response
from the other if the response variable is continuous. Recursive partitioning is then
applied to these individualized treatment effects in order to identify subgroups with
enhanced treatment effect. The authors considered a number of techniques to account
for multiplicity.

The final method to be discussed here is the “treatment-specified subgroup de-
tection tool” (TSDT) method by Battioui et al. (2014). It also utilizes recursive
partitioning to identify promising subgroups, albeit in two steps. First, one of the
treatment groups is selected based on practical considerations; this is often—although
not always—the group receiving the new treatment, since a hypothesized subgroup
effect is such that response to the new treatment is impacted much more by the
group status than is response to placebo or standard-of-care. Recursive partitioning
is applied to this selected treatment group to yield a list of candidate subgroups that
manifest differential response (note, not differential treatment effect, at this point).
As the second step, data from the other treatment group are utilized to ensure that a
given candidate subgroup does not reflect a similar differential response in the other
treatment group, which would render the subgroup uninteresting since there would
be little or no differential treatment effect. This two-step analysis is performed on a
number of datasets resampled from the original dataset using bootstrap or subsam-
pling. And finally, response values are permuted within each treatment arm to allow
the calculation of an adjusted p value for the best subgroup identified.

While other methods for subgroup identification have been proposed (e.g., Loh
2002; Su et al. 2008; Lipkovich et al. 2011; Dusseldrop and Van Mechelen 2014;
Bell et al. 2012), the above review of three representative methods is sufficient for
the introduction of a general methodological framework in the next section.

25.3 A Framework for Subgroup Identification Methods

Although the three methods reviewed above have many differences among them, a
number of important components emerge when we examine how they handle the
major challenges of subgroup identification presented in the previous section. We
will discuss each of these components below.
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25.3.1 Component “T”: How to Handle Treatment-By-Subgroup
Interaction

The “traditional” method deals with this directly by testing for interactions. An
interesting idea used by the “virtual twin” method is to first impute unobserved
outcomes, hence changing a problem of differential treatment effect (interaction) to
a simpler problem of differential response (main effect). Yet another strategy is used
by the “TSDT” method, where one treatment group is analyzed first, before the other
group is incorporated into the analysis to ensure an interaction effect.

By reviewing these and other methods, we can see at least the following
approaches:

1. “Model”: Testing for treatment-by-subgroup interaction in a regression model.
2. “Transformation”: Transforming the observed response, such as imputing for

unobserved outcome and then calculating individualized treatment effect (Foster
et al. 2011).

3. “Sequential”: Analyzing one treatment group first, before incorporating the other
group (Battioui et al. 2014).

4. “Direct”: Directly contrasting the observed average responses to two treatments
for any given subgroup (Lipkovich et al. 2011).

25.3.2 Component “S”: How to Search for Candidate Subgroups,
Ideally in a Computationally Efficient Manner

In this regard, the “traditional” method simply considers all possible subgroups, but
in doing so, essentially limits itself to considering only single-marker subgroups,
since testing treatment-by-subgroup interactions for more complex subgroups is of-
ten computationally prohibitive in practice. The other two reviewed methods both
utilize recursive partitioning, which counts computational efficiency as one of its
main strength. Although not all possible subgroups are considered, the recursive na-
ture of the algorithm allows much more complex subgroups to be considered, such
as those defined by two or even more predictors.

We therefore have the following options for this component:

1. “Exhaustive”: Studying all possible subgroups.
2. “Recursive partitioning”: Creating a decision tree that classifies patients into

subgroups with differential treatment effects using sequential splits based on
dichotomous (or dichotomized) predictors (Loh 2014).

3. “Stepwise modeling”: We use this option to represent the various penalized re-
gression techniques (Zou and Zhang 2012), which can also identify candidate
subgroups efficiently without considering all possible subgroups, but (unlike
option #2) does so in a regression setting.
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25.3.3 Component “M”: How to Address Multiplicity

The Bonferroni correction sometimes used in traditional subgroup analysis can be
impractical and overly conservative, and most subgroup identification methods uti-
lize one or a combination of resampling techniques. We have the following options
regarding this component:

1. “Simple”: Such as the Bonferroni correction.
2. “Permutation”: Using permutations of the original data to generate a reference

distribution of the test statistic under an appropriate null.
3. “Bootstrap”: Bootstrapping the original data to estimate the sampling distribution

of the test statistic and/or a bias-corrected estimates of effect sizes using out-of-bag
samples.

4. “Cross-validation”: Using m-fold cross-validation to estimate prediction accuracy
or other key quantities associated with a particular application.

5. “Subsampling”: Randomly dividing the original data into two smaller datasets
with prespecified proportions, with one used as training data and the other testing
data; this is often repeated a number of times with results then averaged over
subsamples.

6. “Combinations”: Using a combination of above approaches, such as “subsam-
pling & permutation.”

It should be noted that there are other options for each of the components above, as
the lists are not intended to be comprehensive. For example, some methods utilize
variable importance to further control false-positive findings. One could also say that
some of the options are fairly broad. For example, “recursive partitioning” covers
a wide range of actual methods, with one of the key differences being the criteria
used to determine whether and how to split at each node. In this regard, the “TSDT”
method uses a specific approach, while the method by Bell et al. (2012) allows any
user-defined criteria to be used. In theory, the user-defined criteria can optimize
the desirability of the identified subgroup according to practical considerations for
the specific application, such as the proper balance between subgroup size and the
magnitude of treatment effect in the subgroup. Nevertheless, we will see in the next
section that such a framework, even with simplifications on the options for each
component, can be quite useful.

25.4 Utilizing the Framework

An immediate application of this framework is that we can now catalogue seemingly
different methods for subgroup identification. For example, the “TSDT” method
can be represented by T(sequential) × S(recursive partitioning) × M(subsampling
& permutation). As another example, the method by Lipkovich et al. (2011) can be
represented by the following entry in the framework: T(direct) × S(recursive parti-
tioning) × M(permutation). Of course, it should be stated that such representation
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captures the key elements of each method, but not all its details. The “TSDT” method
utilizes out-of-bag samples from bootstrapping or subsampling to correct ascertain-
ment bias in estimating the treatment effect size in the identified subgroup, and such
details are not easily captured in a framework.

By considering the key components of subgroup identification methods, we are
able to enumerate multiple options for each component, hence gaining valuable
insight. By dissecting even a small number of methods, we now have a “toolbox”
where options for each component can be combined. This leads to an even more
interesting application, namely many “new” methods for subgroup identification
generated by this toolbox. For example, one can naturally combine T(transformation)
with S(exhaustive). In other words, we can perform the first step of the “virtual twin”
method and calculate individualized treatment effects, then perform a test for each
subgroup that is simpler than interaction tests. Intuitively, in situations where the
imputed outcome is of high quality, this method should outperform the “traditional”
method. With the options given above for each component, we have 4 × 3 × 6 = 72
combinations, each of which corresponds to a unique “method.” Some of these
methods, once described, are clearly impractical or inferior; but at the same time,
many of these methods appear reasonable, yet are “novel” in the sense that they have
not been proposed in the literature.

25.4.1 Systematic Method Evaluation

In addition to the value described above, we posit that such a framework of nu-
merous methods for subgroup identification should work very well with a system
to consistently and rigorously evaluate these methods, as proposed by Zink et al.
(2015). There are three components in this evaluation system: data generation, ap-
plication of analysis methods, and performance measurement. Consistency in data
generation and performance measurement allows a wide array of analysis methods
to be compared directly, thus leading to insight on strengths and weaknesses of each
method.

Of both technical and practical importance is the proposal to evaluate the perfor-
mance of a method on three levels: marker-level, subgroup-level, and subject-level.
Briefly, the marker-level performance measures capture the accuracy in which the
markers are correctly identified as predictive markers (or not); the subgroup-level
performance measures include the average size and treatment effect of the identified
subgroups, while the quality of associated treatment decisions for individual patients
is measured at the subject level. Section 25.4.2 will elaborate on these measures in
the context of a simulation study; additional details can be found in Zink et al. (2015).
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Table 25.1 Three subgroup identification methods compared in the simulation study

Method Component “T” Component “S” Component “M”

“Traditional” Model Exhaustive Simple (Sidak correction)

“VT” Transformation Recursive partitioning Permutation

“TSDT” Sequential Recursive partitioning Subsampling + permutation

25.4.2 Simulation Study

Here, as an example to demonstrate how this system works, we present a small
simulation study to compare three subgroup identification methods.

25.4.2.1 Subgroup Identification Methods

The methods have been briefly described in Sect. 25.2 and presented in Table 25.1
according to the framework we established. Here, we provide additional details of
each method:

• Traditional Method: Test for treatment by subgroup interaction (“T: model”) one-
at-a-time for all variables (“S: exhaustive”), with multiplicity adjustment made
using Sidak correction (“M: simple”).

• Virtual Twin Method: First apply random forest model to impute for each patient
the unobserved outcome as if he or she had been randomized to the other treat-
ment group (“T: transformation”). Then apply recursive partitioning (“S: recursive
partitioning”) to the individualized treatment effects calculated by subtracting the
“control outcome” from the “new treatment outcome” of the same patient. Finally,
use permutations of the original data to estimate a reference null distribution of
the test statistics for differential treatment effect in an identified subgroup, which
in turn provides a multiplicity adjusted p value (“M: permutation”).

• TSDT Method: In a subsample of the original data, construct candidate subgroups
with differential response based solely on the new treatment arm, and then incor-
porate data from the control arm to exclude any candidate subgroup that does not
show sufficient treatment-by-subgroup interaction (“T: sequential”). Candidate
subgroups are constructed using recursive partitioning (“S: recursive partition-
ing”). Confirm the directional consistency of any remaining candidate subgroup
in the corresponding out-of-bag sample. Averaging the results over all the ran-
dom subsamples, for each candidate subgroup, and calculate the proportion of
subsamples for which the subgroup is identified and shown to be consistent in
the out-of-bag sample. Finally, apply permutation of the original data to obtain a
reference null distribution of the consistency measure, which in turn provides a
multiplicity adjusted p value (“M: subsampling + permutation”).

For each of the subgroup identification methods, three different α levels (α = 0.1,
0.2, 0.3) are used for controlling type I error rate.
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Table 25.2 Five scenarios used in the simulation study

Scenario Number of subjects Number of markers Number of predictive markers

A 240 20 1

B 240 50 2

C 240 50 1

D 240 20 0

E 240 50 0

25.4.2.2 Simulation Scenarios

We generated 200 datasets in each of five scenarios, with Table 25.2 providing a
summary of these scenarios. In scenario A, each dataset contains 20 predictors,
with one of them being a predictive marker and hence the target of identification.
The number of predictors is increased to 50 in scenario B, with two of them being
predictive markers. Scenario C is chosen to provide comparisons with the first two
scenarios. It calls for generation of datasets with 50 predictors, one of which is a
predictive marker. Contrasting scenarios A and C will allow us to observe the impact
of the total number of predictors, while the comparison between scenarios B and
C can demonstrate the impact of the number of predictive markers. Scenarios D
and E are null scenarios with no predictive marker, included here for the purpose of
evaluating control of type I errors.

In all scenarios, there are 240 subjects, with a 3:1 randomization ratio between
the new treatment and control. For each dataset, an appropriate number (20 or 50) of
genetic markers with identical distribution were generated. Specifically, each marker
is a three-level ordinal variable with proportions of the three levels being 49, 42, and
9 %. According to the scenario, responses on a continuous scale were then generated
with either zero, one, or two of the genetic markers being predictive. The predictive
markers each confer the same magnitude of effect. When there is one predictive
marker (scenario A and C), the population consists of two subpopulations that are
both about 50 % in size and have average treatment effects 0.1 and 0.55, respectively.
When there are two predictive markers (scenario B), the population is divided into
four subpopulations that are each about 25 % in size and have average treatment
effects 0.1, 0.55, 0.55, and 1.00, respectively.

25.4.2.3 Performance Measures

The aforementioned performance measures were calculated for each method across
datasets. Specifically:

• Marker-level performance measures: Natural choices for presenting the accuracy
with which predictive markers are correctly identified by an analysis method are
sensitivity, specificity, positive predictive value, and negative predictive value.



420 L. Shen et al.

Fig. 25.1 Marker level performance for scenario A (solid line/solid dots = “Traditional,” dashed
line/hollow dots = “Virtual Twin,” dotted line/square dots = “TSDT”). a Sensitivity = proportion of
times that true predictive marker(s) are identified as predictive. b Specificity = proportion of times
that nonpredictive markers are identified as nonpredictive. c PPV = proportion of true predictive
markers among the markers identified as predictive. d NPV = proportion of nonpredictive markers
among the markers identified as nonpredictive

These values for a single analysis are easily calculated from the 2 × 2 table with
rows being the true status of a marker (predictive or not) and columns being the
results of identification (identified as predictive or not). The proportions are then
averaged across datasets.

• Subgroup-level performance measures: Toward the eventual objective of subgroup
identification—to tailor a potential medicine to those patients who are more likely
to respond—it is often desired that subsequent clinical trials would focus on the



25 A Framework of Statistical Methods for Identification of Subgroups . . . 421

Fig. 25.2 Marker level performance for scenario B (solid line/solid dots = “Traditional,” dashed
line/hollow dots = “Virtual Twin,” dotted line/square dots = “TSDT”). a Sensitivity = proportion of
times that true predictive marker(s) are identified as predictive. b Specificity = proportion of times
that nonpredictive markers are identified as nonpredictive. c PPV = proportion of true predictive
markers among the markers identified as predictive. d NPV = proportion of nonpredictive markers
among the markers identified as nonpredictive

subgroup that has been identified. Whether such a tailored drug development
program is clinically and commercially prudent depends critically on the size
and treatment effect associated with the subgroup. Therefore, it is important to
capture these quantities (averaged over datasets) in simulation studies. While other
summaries across simulated datasets can be constructed, we start with the most
obvious ones by simply averaging the size and treatment effect of the identified
subgroup for each dataset.
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Fig. 25.3 Marker-level performance for scenario C (solid line/solid dots = Traditional,” dashed
line/hollow dots = “Virtual Twin,” dotted line/square dots = “TSDT”). a Sensitivity = proportion of
times that true predictive marker(s) are identified as predictive. b Specificity = proportion of times
that nonpredictive markers are identified as nonpredictive. c PPV = proportion of true predictive
markers among the markers identified as predictive. d NPV = proportion of nonpredictive markers
among the markers identified as nonpredictive

• Subject-level performance measures: Upon approval of a potential treatment by
regulatory agencies, the subgroup identified and confirmed in the drug develop-
ment program will impact clinical decision making. The status of each patient—in
terms of whether he or she belongs to the subgroup—can be considered as a deci-
sion rule of whether the patient should be given the new treatment. Naturally, the
quality of this decision rule can be measured using sensitivity, specificity, positive
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Table 25.3 Subgroup-level performance (α = 0.1)

Scenario Method Subgroup identified (%) Subgroup size (%) Subgroup treatment effect

A T 11 93.1 0.335

VT 22 88.8 0.359

TSDT 42 79.2 0.415

B T 16 92.5 0.574

VT 32 83.6 0.609

TSDT 49 75.8 0.658

C T 10 95.2 0.332

VT 21 89.7 0.352

TSDT 34 83.0 0.389

D T 9 93.7 –

VT 10 94.8 –

TSDT 10 94.9 –

E T 9 95.7 –

VT 12 94.3 –

TSDT 12 94.0 –

predictive value, and negative predictive value—this time with each subject as a
unit. However, since clinical decision making does not become important until
the new medicine is successfully developed, our simulation study here will not
focus on these measures.

25.4.2.4 Results

Figures 25.1, 25.2, 25.3 present the marker-level performance for each non-null
scenario, method, and α level. Across all scenarios and all measures, we can see that
the “TSDT” method performed the best, while the “traditional” method performed the
worst. The choice of α level had a moderate impact on the results. When comparing
between scenarios, we can see that when the number of predictors increased (scenario
C vs. A), sensitivity decreased for all three methods, as expected. On the other hand,
an interesting observation is that, when the number of predictive markers increased
(scenario B vs. C), sensitivity did not seem to improve.

The first column (“Subgroup identified”) of Table 25.3 provides further informa-
tion on how often each method identified a subgroup in these scenarios. We start
with the two null scenarios D and E, where all three methods appear to do a good
job of controlling the type I error rate at the stated nominal α level of 0.1. When we
look at the three non-null scenarios A, B, and C, we see that in every scenario, the
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“TSDT” method identified subgroups most often, whereas the “traditional” method
did so the least often.

The final two columns of Table 25.3 present the subgroup-level performance mea-
sures (for α = 0.1). It is evident that when the “TSDT” method identified subgroups
in non-null scenarios, the subgroups also tended to be of the best quality in terms of
having the largest treatment effect (“Subgroup Treatment Effect” column). Compar-
ing across scenarios, it is clear that identification of subgroup, especially high-quality
subgroups, is the most difficult for scenario C and easiest for scenario B, as one would
expect. The average size of subgroups identified by each method is closely related
to the frequency of identifying subgroups (since the size is 100 % of the population
when no subgroup is identified), and in this case it is not otherwise informative given
the identical distribution of all the predictors.

In summary, since all three methods control type I error rate at the same level in
the null scenarios, the performance in non-null scenarios indicates that the “TSDT”
is the most powerful method among the three in this simulation study.

25.5 Conclusions

In this chapter, we established a framework for statistical methods to identify pa-
tient subgroups with differential treatment effects in randomized clinical trials. By
focusing on three major challenges with subgroup identification, we submit that the
methods can be viewed as combinations of three key components: how treatment
by subgroup interaction is handled, how candidate subgroups are searched, and how
multiplicity is accounted for. This framework allows us to dissect existing methods,
identify the options they utilize for each component, and then combine these options
in other ways to easily generate additional methods. Such a system to catalogue and
index various methods also works well with the framework proposed by Zink et al.
(2015) to consistently evaluate performance of subgroup identification methods.
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Chapter 26
Biomarker Evaluation and Subgroup
Identification in a Pneumonia Development
Program Using SIDES

Alex Dmitrienko, Ilya Lipkovich, Alan Hopkins, Yu-Ping Li and Whedy Wang

Abstract This chapter discusses the general problem of exploratory subgroup anal-
ysis in the context of late-stage clinical development. In this context, exploratory
subgroup analysis focuses on biomarker discovery and identification of subgroups
with enhanced treatment effect in large clinical trial databases. A case study based on
a Phase III development program in patients with nosocomial pneumonia is used to
compare traditional approaches to subgroup search, based on univariate assessments
of individual biomarkers, and a novel subgroup exploration method, which utilizes
a recursive partitioning algorithm with a local treatment effect modeling approach.
The SIDES (Subgroup Identification based on Differential Effect Search) method
and its extensions (SIDEScreen method) have been used in multiple Phase II and
Phase III programs to perform a comprehensive evaluation of candidate biomarkers
and identify biomarker-based subgroup of patients with desirable characteristics (im-
proved efficacy or acceptable safety). The chapter provides a detailed summary of
key features of the SIDES method, including complexity control (subgroup pruning),
biomarker screening to prevent data overfitting and application of resampling-based
techniques to account for Type I error rate inflation inherent in subgroup exploration.

A. Dmitrienko ( ) · I. Lipkovich
Quintiles, Inc, 4820 Emperor Boulevard, Durham, NC 27703, USA
e-mail: alex.dmitrienko@quintiles.com

I. Lipkovich
e-mail: ilya.lipkovich@quintiles.com

A. Hopkins · Y. Li · W. Wang
Theravance, Inc, 901 Gateway Boulevard, South San Francisco, CA 94080, USA
e-mail: ahopkins@theravance.com

Y. Li
e-mail: yli@theravance.com

W. Wang
e-mail: wwang@theravance.com

© Springer International Publishing Switzerland 2015 427
Z. Chen et al. (eds.), Applied Statistics in Biomedicine and Clinical Trials Design,
ICSA Book Series in Statistics, DOI 10.1007/978-3-319-12694-4_26



428 A. Dmitrienko et al.

26.1 Introduction

Assessment of treatment effect heterogeneity in clinical trials is one of the most
important and challenging problems in drug development which has received much
attention in both statistical and medical literature over the past 15 years. Several
research groups have published extensive guidelines and detailed checklists that (if
properly followed) would ensure credible subgroup analysis (Brookes et al. 2001;
Rothwell 2005; Sun et al. 2010). However, these guidelines have not eliminated im-
portant concerns about validity of subgroup analysis strategies. In particular, should
subgroup analysis focus on only a (small) set of predefined subpopulations while ap-
plying clearly defined multiplicity adjustment procedures, or can statistically valid
data-driven strategies resulting in the identification of patient subgroups that were
not prespecified (or even envisioned as likely important) be applied as well? These
two approaches can be loosely labeled as “confirmatory” and “exploratory” subgroup
analysis, respectively (see Varadhan et al. 2013; Lipkovich and Dmitrienko 2014a).

The need for principled data-driven approaches to evaluating treatment effects
across biomarker-driven subgroups of patients is stressed by a recent paradigm shift
from the idea of developing “one treatment which fits all patients” to personalized
medicine (Ruberg et al. 2010). The recently published draft guidance documents on
enrichment strategies and subgroup analysis in clinical trials (Food and Drug Ad-
ministration 2012; Committee for Medicinal Products for Human Use 2014) discuss
the role of subgroup search and exploration. The draft Committee for Medicinal
Products for Human Use (CHMP) guidance states that ignoring possible treatment
effect heterogeneity in phase III trials (with respect to both safety and efficacy) may
be unacceptable as it may create a false impression of consistency of treatment effect,
whereas in fact this may be not the case. At the same time, this guidance document
emphasizes that data-driven subgroup analysis may result in inflated type I error rates
and “discovering” spurious patient subgroups.

It has been previously accepted that the use of unconstrained ad hoc methods in
subgroup analysis and biomarker evaluation is likely to lead to unreliable results.
However, downplaying data-driven subgroup exploration may be in conflict with the
“discovery spirit” of personalized medicine and science in general. Ones view is that
exploratory subgroup analysis should be treated as a special case of model selection
within the unifying statistical/machine learning framework. As with any statistical
learning method, the focus is on specifying an analytic strategy with known operating
characteristics rather than on prespecifying the final model.

Within this paradigm, biomarker evaluation and subgroup identification should
start with the prespecification of:

• A set of clinically relevant biomarkers that will be used to form a (typically quite
large) search space of candidate subgroups.

• Analysis strategy that will evaluate candidate subgroups and identify promising
subgroups.
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An important element of this analytic strategy is that it should protect against selec-
tion bias which may result in selecting spurious and overfit subgroups that are very
unlikely to be replicated in the future trials. Another important consideration (and
less common to other applications of statistical learning) is the need for controlling
an appropriately defined false positive rate (overall type I error rate or false discov-
ery rate) associated with the entire strategy, which typically can only be achieved by
using resampling methods.

Several methods extending the methodologies developed within machine learn-
ing and data mining communities have been proposed recently for the selection of
biomarkers in clinical trial databases and choosing biomarker cutoffs to define sub-
groups of patients with enhanced treatment effect. The following classification was
proposed in Lipkovich and Dmitrienko (2014b):

• Global outcome modeling comprises strategies that first estimate the “response
surface” for the clinical outcome, given a patient’s biomarker values and assigned
treatment arm (which typically results in a complex “black box model”) and then
“extract” each patient’s treatment effect from that model. Examples include the
virtual twins method by Foster et al. (2011) and penalized regression by Imai and
Ratcovic (2013).

• Global treatment effect modeling includes strategies aimed at directly estimating
an individual patient’s treatment effect, which obviates the need to fit the main
effects. This approach is used in the Interaction tree method of Su et al. (2009),
modified covariate method by Tian et al. (2012), qualitative interaction trees
(QUINT) by Dusseldorp and Mechelen (2014). A special case of this general
approach includes strategies for estimating optimal treatment regimes that require
only estimating the sign of the individual treatment effect as the basis for assigning
optimal treatment for each patient, see Zhao et al. (2012) and Zhang et al. (2012).

• The last class of subgroup search methods that can be called local treatment effect
modeling focuses on a direct search for treatment-by-covariate interactions and
selecting subgroups with desirable characteristics. Examples include the adaptive
signature designs by Freidlin et al. (2005, 2010) and bump hunting approach of
Kehl and Ulm (2006).

This chapter focuses on a powerful biomarker evaluation and subgroup identification
method known as subgroup identification based on differential effect search (SIDES).
The method was developed in Lipkovich et al. (2011) and belongs to the class of
local treatment effect modeling approaches. An advantage of the local approach to
subgroup search is that the researchers do not need to estimate the response function
over the entire covariate space. SIDES and other local treatment effect modeling
approaches focus on identifying specific regions of the search space with a large
differential treatment effect.

The SIDES method is based on a recursive partitioning subgroup search which
uses a set of candidate biomarkers to progressively split promising subgroups into
child subgroups to define groups of patients who are likely to experience significant
treatment benefit. The SIDES method offers several attractive features to clinical
drug developers, including complexity control (subgroup pruning) and biomarker
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screening to reduce the chances of data overfitting which may result in forming spu-
rious subgroups. SIDES utilizes resampling-based techniques to efficiently account
for selection bias inherent in biomarker exploration. In addition, one can construct
bias-adjusted estimates of the treatment effect (honest estimates) within the selected
subgroups using resampling methods such as cross-validation and bootstrap (see, for
example, Foster et al. 2011 and Simon et al. 2011).

The SIDES method has been successfully applied to multiple phase II and phase III
development programs to provide a comprehensive evaluation of candidate biomark-
ers and perform subgroup searches (see, for example, Hardin et al. 2013). Most
commonly, this method is utilized to better characterize the efficacy profile of new
treatments and identify the subgroups of patients who experience a highly beneficial
effect. However, due to its focus on differential treatment effects, the SIDES method
can be used to discover subgroups where the treatment could be harmful and thus it
offers a complete platform for developing tailored therapies.

In this chapter, the SIDES methodology will be used to facilitate the process of
identifying subgroups of patients who experience a strong beneficial effect in a phase
III development program for the treatment of nosocomial pneumonia (the ATTAIN
program).

This chapter is organized as follows. Section 26.2 provides background infor-
mation on the ATTAIN development program and defines the general problem of
biomarker and subgroup identification in clinical trials. Section 26.3 discusses tra-
ditional approaches to subgroup exploration and evaluation. Section 26.4 introduces
the SIDES method and provides information on its use in biomarker discovery and
subgroup identification problems. Section 26.5 describes applications of the SIDES
method to the analysis of the ATTAIN database. Section 26.6 provides a summary of
the results. Technical details, including a detailed description of the SIDES subgroup
search algorithm, are provided in the Appendix.

26.2 Case Study

This section introduces a case study based on two phase III randomized, double-blind,
parallel group, multinational trials of identical non-inferiority design (assessment
of telavancin for treatment of hospital-acquired pneumonia (ATTAIN) trials). The
studies will be referred to as studies 0015 and 0019. The studies were conducted
by Theravance, Inc. to evaluate the safety and efficacy of telavancin (test antibiotic)
compared to vancomycin (active control antibiotic) for the treatment of adults with
nosocomial pneumonia caused by Gram-positive methicillin resistant Staphylococ-
cus aureus (MRSA) bacteria. The studies were conducted using identical protocols
that included a provision for a pooled analysis in those patients with MRSA. Noso-
comial pneumonia encompasses hospital-acquired bacterial pneumonia (HABP) and
ventilator-associated bacterial pneumonia (VABP), both of which are important
causes of morbidity and mortality. A total of 1503 patients were randomized across
both studies. The primary end point was clinical response at a test-of-cure visit after
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completion of antibiotic therapy. Both studies demonstrated non-inferiority at the
prespecified 10 % level for clinical response (Rubinstein 2011).

The mortality analyses reported in this chapter are based on 1289 patients who
met the criteria forAmerican Thoracic Society/Infectious Disease Society ofAmerica
(ATS/IDSA) pneumonia diagnosis (American Thoracic Society/Infectious Diseases
Society of America 2005; Food and Drug Administration 2010). The ATS/IDSA
analysis set included patients in the all-treated analysis set who met the ATS/IDSA
pneumonia criteria. These criteria are included in the proposed inclusion criteria for
clinical trials of hospital-acquired bacterial pneumonia-associated bacterial pneumo-
nia/VABP in the 2010 Food and Drug Administration (FDA) guidance. Additionally,
they are included in the ATS/IDSA consensus guidelines for the diagnosis of pneu-
monia to identify patients who should be treated with antibiotics, offering the optimal
balance of sensitivity and specificity in making the diagnosis.

26.2.1 Mortality End Point

Subsequent to completion of the ATTAIN trials, the US FDA’s focus shifted to
all-cause mortality as an important end point for nosocomial pneumonia treatment
assessment. In the ATTAIN studies, timing of the last study visit varied depending
on the duration of treatment and the lag time between the end of treatment and the
last visit (which could occur between 7 and 14 days after the end of treatment),
resulting in different durations of patient follow-up. To minimize bias and increase
the precision of estimates of mortality rates, vital status information (through at least
day 49, i.e., up to 21 treatment days plus 28 post-treatment days) was collected post
study closure for all patients who participated in studies 0015 and 0019. Follow-up
queries were generated for nearly half of the study participants, and responses were
obtained for nearly 90 % of the 697 queries at 175 clinical sites, resulting in about
5 % censored data at 28 days post randomization and less than 10 % censored data
at 49 days (censoring refers to the number of subjects lost to follow-up at 28 and
49 days). Although collected after the studies had been completed, this additional
patient follow-up for vital status provides a near complete data set for analysis of
mortality.

The program’s sponsor conducted a post hoc analysis of the 28-day all-cause
mortality data from studies 0015 and 0019 in the ATTAIN program. The crude all-
cause mortality results based on the ATS/IDSA population are shown in Table 26.1.
Based on a 10 % non-inferiority margin for mortality (telavancin minus vancomycin),
study 0019 showed that the treatment had a nonstatistically significant numerical
advantage concluding non-inferiority based on the 10 % margin. However, study
0015 showed a numerical disadvantage for the treatment arm. Since both studies were
conducted under the identical protocol, it was of interest to understand the differences
between the mortality results in the two studies. The clinical trial database was utilized
to perform a series of exploratory subgroup searches with the objective of identifying
important predictive subgroups of patients that might explain the influential factors
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Table 26.1 Crude 28-day all-cause mortality in the ATTAIN program (based on the American
Thoracic Society/Infectious Disease Society of America (ATS/ITSA) population, N = 1289)

Study 0015 Study 0019

Telavancin Vancomycin Telavancin Vancomycin

N = 309 N = 316 N = 325 N = 339

Number of deaths 75 67 74 80

Crude mortality 24.3 % 21.2 % 22.8 % 23.6 %

Treatment difference 3.1 −0.8

(95 % CI) (−3.5, 9.6) (−7.2, 5.6)

Treatment difference: Telavancin−vancomycin
Confidence intervals were computed using the Agresti–Caffo adjustment

that were associated with the outcome variables. Other references which include
mortality analyses for the ATTAIN studies include Torres et al. (2014) and Corey
et al. (2014).

26.2.2 Key Patient Characteristics

Mortality in nosocomial pneumonia varies considerably depending on preexisting
chronic health condition(s), acute comorbid disease, severity of acute illness, and
type of infecting microorganism. Also relevant is whether a patient is hospitalized in
a medical, surgical, neurosurgical, or other type of specialized unit, each of which
is associated with risk factors that have a bearing on mortality. This diversity of
risk factors in nosocomial pneumonia contributes to the wide variability in reported
mortality. Mortality rate is also significantly influenced by early, appropriate antibi-
otic and supportive therapy, with inappropriate therapy contributing considerably
to higher rates of mortality (Sorbello et al. 2010). Interpretation of a mortality end
point in nosocomial pneumonia studies is confounded by the contribution of non-
attributable mortality, particularly due to factors described above, many of which
are unrelated to the pneumonia and are preexisting conditions that are the cause for
hospitalization.

Baseline patient characteristics (covariates) selected for the exploratory analysis
of mortality in the ATTAIN program are defined in Table 26.2. The covariates were
not prespecified but represented a set of baseline characteristics potentially related to
mortality. As we have done in other publications, in order to simplify the terminology,
we will refer to the covariates as biomarkers.

26.2.3 Differences Between Studies 0015 and 0019

To understand the differences between studies 0015 and 0019 in the ATTAIN pro-
gram, the 27 patient baseline characteristics listed in Table 26.2 were compared
between the treatment arms from study 0015 and from study 0019. The same
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Table 26.2 Candidate biomarkers in the ATTAIN program

Biomarker Description Values

X1 Age (years) Continuous

X2 APACHE II score Continuous

X3 Acute respiratory distress syndrome/acute lung injury
status

No, yes

X4 Bacteremia status No, yes

X5 Intensive care unit status No, yes

X6 Body mass index (kg/m2) Continuous

X7 Cerebrovascular accident No, yes

X8 Renal risk (diabetes) No, yes

X9 Presence of cardiovascular disease No, yes

X10 Two or more chronic illnesses No, yes

X11 Serum creatinine clearance (mL/min) Continuous

X12 Adequacy of Gram-negative HAP treatment No, yes

X13 Immunocompromised status No, yes

X14 Mixed infection (Gram-positive or -negative) No, yes

X15 MRSA infection at baseline No, yes

X16 Multilobe pneumonia No, yes

X17 Nephrotoxic medication use No, yes

X18 Prior treatment failure No, yes

X19 AN/PS/SMAL infection No, yes

X20 Presence of any pulmonary comorbidity No, yes

X21 Race White, other

X22 Sex Male, female

X23 Sepsis, septic shock, multiple organ failure at any time No, yes

X24 Total Glasgow coma score Continuous

X25 Ventilator status No, yes

X26 Use of vasopressors No, yes

X27 Geographical region North America; Latin
America; Asia; Middle
East; Europe, Australia
and South Africa

HAP hospital-acquired bacterial pneumonia, MRSA methicillin-resistant Gram-positive bacteria,
AN/PS/SMAL Acinetobacter/Pseudomonas/Stenotrophomonas maltophilia infection

comparisons were performed for the control arms between the two studies. In addi-
tion, the two studies were combined and differences among the 27 covariates were
examined between the treatment and control arms. Based on unadjusted p values,
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differences between the treatment arms in the two studies were found on 16 covari-
ates and differences between the control arms were found on 9 covariates. However,
when the studies were pooled, a difference was discovered only for biomarker X26

(use of vasopressors).
Justifications for combining evidence from the two telavancin studies include the

following:

• The study protocols were identical in all respects.
• The studies were conducted concurrently.
• The statistical analysis plan called for combining the studies for the analysis of

an efficacy endpoint (clinical response in patients with MRSA).
• There was no difference between the treatment arms for 26 out of 27 baseline

covariates.
• Confidence intervals for the all-cause mortality rates overlap between the studies

(see Table 26.1).

The consistency between the treatment arms on baseline characteristics is remark-
able, and the diversity is representative of the intended population. Based on this
information, it was felt that pooling the two studies was appropriate. The biomarker
evaluation presented in Sects. 26.3 and 26.5 is based on the pooled analysis of the
data collected in studies 0015 and 0019.

26.2.4 Predictive and Prognostic Biomarkers

Predictive biomarkers play a central role in evaluating subgroup effects in large clini-
cal trial databases such as the combinedATTAIN database. Predictive biomarkers are
defined as treatment-specific patient characteristics that help identify patients who
are more likely to respond to a particular treatment (Food and Drug Administration
2012). It is instructive to contrast predictive biomarkers with prognostic biomarkers,
i.e., patient characteristics that help predict disease-related outcomes independently
of the assigned treatment. Biomarker X2 (APACHE II score) defined in Table 26.2
serves as an example of a prognostic covariate. A higher APACHE II score is asso-
ciated with a higher risk of death for an individual patient (Knaus et al. 1985) but it
is not clear if the APACHE II score can be used for predictive purposes, i.e., if this
score may help identify patients who are most likely to benefit from telavancin.

Predictive biomarkers provide a foundation for developing individualized/tailored
therapies. A well-known example is the use of a protein expression-based classifier
in the trastuzumab (Herceptin) development program in metastatic breast cancer.
Based on the data collected earlier in the program, the program’s sponsor concluded
that patients whose tumors demonstrated high levels of human epidermal growth
factor receptor 2 (HER-2) expression would be most likely to benefit from the new
treatment. Patients in the phase III program were classified as biomarker-positive
if their tumors tested positive for HER-2 and biomarker-negative otherwise. Only
biomarker-positive patients were enrolled in the phase III trials and a positive effect
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of trastuzumab was confirmed in this subpopulation of patients (Romond et al. 2005).
However, further investigation of the treatment effect trastuzumab on breast cancer
indicated that the HER-2 status might not be a strong predictive biomarker and
biomarker-negative patients could also benefit from this treatment (Paik et al. 2008;
Hayes 2011). This example highlights the importance of a comprehensive assessment
of the predictive value of candidate biomarkers before launching a large development
program.

As shown above, the main purpose of studying predictive biomarkers in clinical
development programs is to help identify the subpopulations of patients with a mod-
ified (enhanced or reduced) treatment effect. The subpopulations are constructed
by dichotomizing one or more selected biomarkers. Any biomarker with more than
two levels, including continuous variables, needs to be converted to a simple binary
classifier which defines biomarker-negative and biomarker-positive patients. For ex-
ample, with a continuous variable, values below a certain threshold correspond to a
biomarker-negative status and values above the threshold define a biomarker-positive
status. The thresholds may be chosen based on clinically relevant cutoffs or based on
statistical criteria, e.g., criteria that are aimed at maximizing the differential treatment
effect between the subsets of biomarker-negative and biomarker-positive patients. Pa-
tient subgroups are then formed based on a single classifier or by combining several
classifiers.

26.3 Initial Biomarker Evaluation in ATTAIN Trials

We first describe a series of preliminary analyses aimed at characterizing the effect
of the candidate biomarkers listed in Table 26.2 on the outcome variable in the
ATTAIN program. The analyses were driven by the divergent results from the two
randomized phase III studies (studies 0015 and 0019) on the post hoc efficacy end
point (mortality).

The preliminary analyses rely on traditional “univariate” approaches to subgroup
exploration. Limitations of the traditional approaches are discussed in Sect. 26.3.2.
Advanced approaches to biomarker evaluation and identification of patient subgroups
with an enhanced treatment effect are defined in Sects. 26.4 and 26.5. These ap-
proaches are based on the SIDES method, which employs a “multivariate” approach
to evaluating sets of candidate biomarkers and features multiplicity adjustment and
complexity control tools.

26.3.1 Model-Based Biomarker Assessment

As explained in Sect. 26.2, the primary end point defined in the protocol was clinical
response at a test-of-cure visit approximately a week after completion of antibiotic
therapy. The clinical response results were shown to be non-inferior to the active
control in both phase III studies. The main objective of the exploratory biomarker
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evaluation was to identify potential predictive biomarkers while minimizing bias in
the process of analyzing the individual covariates. Proportional hazards regression
models were applied to compare the two treatment groups in each study adjusted
for important prognostic covariates related to mortality. The prespecified biomark-
ers were further tested for treatment interactions to check for differential subgroup
effects. This general methodology is similar to approaches to biomarker evaluation
that are often used in exploratory sections of statistical analysis plans.

The following five-step algorithm was used to develop a common proportional
hazards regression model based on studies 0015 and 0019 using the all-treated pop-
ulation. A single regression model for analyzing the combined ATTAIN database
resulted from the evaluation algorithm. PROC PHREG in SAS version 9.2 was used
to implement the algorithm.

Step 1. Screen potential prognostic biomarkers with univariate proportional hazards
regression

Each candidate biomarker was separately screened for its association with mortality.
The screen was conducted (1) on all patients in the database, combined across treat-
ment arms, (2) on all patients in study 0015, combined across treatment arms, (3) on
all patients in study 0019 combined across treatment arms, and (4) on each treatment
arm separately, combined across studies. Covariates with p ≤ 0.1 were considered
as candidate variables in further steps. At this step the candidate biomarkers were
not selected based upon their impact on any treatment group comparison.

Step 2. Use screened biomarkers in a stepwise proportional hazards regression
ignoring treatment

Stepwise proportional hazards regression was applied to identify the biomarkers
associated with outcome in each of the data groups defined in step 1. In each data
group, only the biomarkers found significant in step 1 in that data group were used for
the stepwise regression. The entry and removal criteria were both based on p≤0.1.
The study and treatment terms were ignored in these models.

Step 3. Check for interactions among selected variables with study

All biomarkers from the models in step 2 were evaluated in a stepwise regression
model that included all patients. In addition, the study term and interactions with
study for each of these biomarkers were included in the model. The entry and removal
criteria were both based on p ≤ 0.1. If any covariate-by-study interactions are
identified, proportional hazards regression models in subsequent steps was to be
stratified by study.

Step 4. Check for interactions among selected biomarkers with treatment to identify
potential predictive biomarkers

The same process as in step 3 was repeated for treatment interactions. Treatment
interactions were included for all biomarkers. If any study-by-biomarker interaction
was significant in step 3, the models were stratified by study. A hierarchical model
fitting procedure with treatment in the first hierarchy was used. The entry and removal
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criteria were both based on p ≤ 0.1. After step 5 below, a test for the study-by-
treatment interaction term in the model was assessed.

Step 5. Final model: Force treatment into the model and check for treatment
interactions with p ≤ 0.1

All the main effects and the significant interaction terms from steps 3 and 4 were
included in step 5. At this step, the treatment term was included in the model. Treat-
ment was forced to stay in the model and stepwise proportional hazards regression
was used to identify a final set of significant biomarkers. The entry and removal
criteria were both set to p ≤ 0.1. An interaction and its component could be entered
or be eliminated in a single step using the HIERARCHY option in PROC PHREG.

To summarize the results from the univariate analysis, there were 17 statistically
significant biomarkers identified from the combinedATTAIN database. The resulting
unadjusted hazard ratio and 95 % confidence intervals for levels of each biomarker
are shown in Table 26.3 under “univariate assessment.” Most of the biomarkers were
related to severity of disease or other preexisting conditions. The sole exception
is biomarker X27 (geographic region), where mortality rates were higher in Latin
America and Middle East than in North America, although the confidence interval
of the unadjusted hazard ratio included 1 for Middle East.

The results of the final model identified in step 5 are reported in Table 26.3 under
“model-based assessment.” This table lists the ten biomarkers plus an interaction
between treatment and X11 (creatinine clearance) that were included in the final
model.

In Table 26.3, several prognostic covariates associated with the outcome of mor-
tality were identified in the ATTAIN program. These covariates were each evaluated
for treatment interactions. Only one covariate (biomarker X11, serum creatinine
clearance) showed a strong differential mortality response. It is natural to hypothe-
size that creatinine clearance is a predictive biomarker. A higher creatinine clearance
rate (>80 mL/min and above) demonstrated a trend toward lower mortality in the
telavancin arm compared to vancomycin. This predictive biomarker illustrated a
qualitative interaction between the level of creatinine clearance and treatment. Pro-
portional hazards regression models showed how effects of the prognostic factors and
the predictive biomarker can be quantitatively expressed in terms of hazard ratios.

The conclusion is an important one, but how robust is the result? A lot of variable
screening of the covariate space was conducted using univariate regressions with
a prespecified cutoff point p ≤ 0.10 and a stepwise regression was then used to
develop a final model. p values in the stepwise model development did not have
real probability interpretations but were simply measures of the strength of evidence
upon which decisions were made in the model development process. The final model
p values were not adjusted for multiplicity, which is a particularly important defi-
ciency for regulatory decision making. Note also that several continuous biomarkers
were categorized and one clearly runs the risk of using incorrect cutoff points and
losing precision in the model without the continuous representation. In addition, the
classifications used for biomarker X11 were based on the levels generally considered
normal versus mild, moderate or severe renal deficiency.
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Table 26.3 Summary of hazard ratios based on univariate assessment and final model

Biomarker Subgroup Hazard ratio (95 % confidence interval)

Univariate
assessment

Model-based
assessment

X1 ≤65

>65 2.35 (1.84, 3.01) 1.46 (1.09, 1.95)

X2 0 − 14

15 − 20 2.58 (1.93, 3.46) 1.85 (1.37, 2.51)

>20 3.91 (2.90, 5.28) 2.06 (1.49, 2.84)

X3 No

Yes 1.92 (1.41, 2.62)

X4 No

Yes 2.26 (1.58, 3.21) 1.74 (1.21, 2.51)

X5 No

Yes 1.32 (1.04, 1.67)

X7 No

Yes 1.30 (0.98, 1.71)

X8 No

Yes 1.35 (1.05, 1.73)

X9 No

Yes 2.11 (1.64, 2.73) 1.33 (1.00, 1.77)

X10 No

Yes 2.07 (1.62, 2.64)

X11 >80 0.69 (0.44, 1.08) [>80: T–V]

50 − 80 1.76 (1.28, 2.42) 0.92 (0.57, 1.47) [50 − 80: T–V]

30 − 50 2.23 (1.61, 3.07) 1.30 (0.81, 2.11) [30 − 50: T–V]

≤30 4.17 (3.05, 5.70) 1.81(1.13, 2.89) [≤ 30: T–V]

X15 No

Yes 1.60 (1.27, 2.02) 1.35 (1.08, 1.69)

X16 No

Yes 1.73 (1.34, 2.24) 1.50 (1.15, 1.96)

X23 No

Yes 4.16 (3.29, 5.27) 2.83 (2.19, 3.64)

X24 >6

≤6 1.42 (1.02, 1.98)

X25 No

Yes 1.26 (0.99, 1.60)
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Table 26.3 (continued)

Biomarker Subgroup Hazard ratio (95 % confidence interval)

Univariate
assessment

Model-based
assessment

X26 No

Yes 2.36 (1.74, 3.20)

X27 North America

Latin America 1.63 (1.15, 2.30) 1.39 (0.96, 2.01)

Asia 0.98 (0.69, 1.39) 0.82 (0.57, 1.19)

Middle East 1.26 (0.82, 1.94) 1.33 (0.84, 2.09)

Europe, Australia, and
South Africa

0.87 (0.62, 1.22) 0.97 (0.68, 1.37)

T–Vis telavancin versus vancomycin

26.3.2 Limitations of the Traditional Approach

As illustrated earlier in this section, simple biomarker evaluation approaches are
commonly used in clinical drug development. In the context of time-to-event anal-
ysis, proportional hazards regression models including the terms for treatment,
single biomarker, and treatment-by-biomarker interaction may be applied to a set
of candidate biomarkers. Biomarkers with interaction effects that are significant at a
prepecified level are retained for further examination. For selected continuous/ordinal
biomarkers, such examination would typically involve evaluating all possible cutoffs
using multiplicity adjusted p values. This approach to biomarker evaluation can be
referred to as a “univariate” approach. An important feature of this approach is that
it can only identify patient subgroups defined by a single biomarker. In addition, the
approach does not control the overall alpha level or false discovery rate and at the
same time suffers from low power.

As an alternative to simplistic univariate approaches, multiple candidate biomark-
ers and their higher-order interactions with treatment may be evaluated in a single
regression model. Subgroups are identified based on the significance of specific inter-
action terms. However, this analytic strategy is similar to the univariate approach in
that it also suffers from low power and arbitrary choice of the significance levels used
in the interaction tests. Besides, the alternative approach requires the prespecification
of interaction terms and covariate cutoffs to form the individual subgroups.

Regression with stepwise selection of the main and interactions effects may also
be employed to help select important biomarkers; however, the stepwise selection
methods are notoriously unstable and their operating characteristics are not well un-
derstood. There are other problems common to fitting parametric models with a large
number of interaction terms. Hence, methods of penalized regression and their exten-
sions, as well as other methods adopted from statistical/machine learning, have been
proposed that may mitigate some of these issues. These complex methods are rarely
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employed in evaluating biomarkers in clinical trials and may require very careful
tuning. For example, penalized regression may fail to detect important interactions
since they may be obscured by much stronger main effects, i.e., effects of prognostic
biomarkers, compared to the predictive biomarker effects, which would require using
different penalties for the main and interaction terms (Imai and Ratkovic 2013).

One of the main drawbacks of the biomarker evaluation approaches described
above is that they do not fully explore the relationships among the individual biomark-
ers and their synergistic effect on the outcome variable. As a consequence, these
approaches do not fully assess the predictive value of individual biomarkers which
often manifests itself through their relationships with other covariates. Also, uni-
variate and stepwise selection methods overlook an inherent multiplicity problem.
Without a proper adjustment for the multiplicity and selection bias arising in the
analysis of multiple covariate and subgroups based on these covariates, one cannot
perform reliable inferences and is bound to face a highly inflated probability of incor-
rect conclusions. Basic biomarker evaluation approaches often suggest patterns that
are not confirmed by more advanced approaches that rely on a joint assessment of
candidate biomarkers. Advanced approaches to biomarker evaluation are presented
in Sects. 26.4 and 26.5.

26.4 SIDES Method

The SIDES method is a novel subgroup identification/biomarker discovery method
which offers a viable alternative to traditional biomarker exploration methods de-
scribed in Sect. 26.3. This method is based on key principles of data mining and
machine learning and utilizes recent advances in this expanding area of research.

The general SIDES methodology was introduced in Lipkovich et al. (2011) and
an extended version of the SIDES subgroup identification procedure which utilizes
biomarker screening was proposed in Lipkovich and Dmitrienko (2014a). Compre-
hensive simulation-based assessments of the operating characteristics of the standard
and enhanced SIDES methods are presented in Lipkovich and Dmitrienko (2014a,
2014b). For a detailed overview of the SIDES method as well as other approaches
aimed at efficient subgroup identification and biomarker evaluation, see Lipkovich
and Dmitrienko (2014b).

Note that for the simplification of the presentation, the analyses presented in
this section focus on superiority p values to compare the mortality rates between
the treatment and control arms. A similar approach can be used to investigate non-
inferiority of the treatment compared to the control arm.
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26.4.1 Key Components of SIDES Method

We will begin with a high-level summary of the key components of the SIDES
method, including:

• Component I. Subgroup generation algorithm (subgroup partitioning rules).
• Component II. Subgroup pruning tools (growth and treatment effect restrictions,

biomarker screening).
• Component III. Subgroup interpretation tools (multiplicity adjustment, subgroup

proximity assessment, and reproducibility assessment).

A detailed description of the general SIDES subgroup search algorithm is given in
the Appendix.

26.4.2 Component I. Subgroup Generation

To define the main building blocks of the SIDES method, the subgroup generation
component includes an efficient algorithm aimed at the identification of covariates
with treatment modification properties (predictive covariates) and promising sub-
groups of patients. This is a recursive partitioning algorithm which relies on the
local treatment effect modeling approach defined in the Introduction. Beginning
with the overall population, the algorithm generates subgroups by finding an opti-
mal split of each parent group into two complementary child subgroups for each
candidate biomarker. The optimality criterion used in the algorithm is known as the
partitioning criterion and is based on evaluating the treatment-by-split interaction.
The resulting set of subgroups forms a forest with a large number of subgroup trees.

26.4.3 Component II. Subgroup Pruning

If subgroup generation is performed in an unconstrained manner, the number of sub-
groups grows at an exponential rate and the final set of subgroups is quite difficult
to manage and interpret. It is therefore natural to consider ways to efficiently select
the most relevant subgroups from the extremely large search space (set of all sub-
groups produced by the subgroup generation algorithm). Subgroup selection utilizes
a number of subgroup pruning tools that help control the complexity of the subgroup
identification problem and reduce the size of the search space. This includes growth
restrictions and treatment effect restrictions in child subgroups. Setting a limit on
the absolute number of children or a fraction of the total number of children for any
parent group keeps the subgroups trees from growing at an unacceptably high rate.
Most commonly, growth restrictions are defined using the “rule of three children” or
“rule of five children,” e.g., only three or five subgroups are retained for any parent.
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In addition, restrictions on the magnitude of the treatment effect in child subgroups
are commonly applied (treatment effect restrictions). A child subgroup is retained
only if it provides a certain amount of improvement over the parent group. The
improvement is typically measured on a p value scale; however, other measures of
treatment effect such as the effect size can be utilized as well.

A closely related tool is biomarker screening based on the concept of variable
importance (VI). A VI score provides a quantitative estimate of a biomarkers ability
to modify treatment effect. This approach enables clinical trial researchers to assess
the relative effects of candidate biomarkers on the treatment response and build a
biomarker screen which filters out covariates with weak predictive properties. This
screen can be used as part of a two-stage procedure which first selects the strongest
predictors of treatment benefit and then applies the standard SIDES subgroup search
algorithm to the small subset of most promising biomarkers. The resulting procedures
(known as SIDEScreen procedures) help reduce the impact of nuisance covariates,
which results in improved performance of the subgroup identification method.

26.4.4 Component III. Subgroup Interpretation

The last component of the SIDES method is a set of tools that facilitate the interpre-
tation of the patient subgroups in the final set. This includes multiplicity adjustment,
subgroup proximity assessment, and reproducibility assessment. As was pointed out
in Sect. 26.3, traditional subgroup search methods are likely to produce spurious
results due to an inherent but commonly overlooked problem of testing a very large
number of null hypotheses. This multiplicity problem is directly related to the “curse
of dimensionality.” SIDES relies on resampling-based multiplicity adjustments that
account for subgroup selection bias, which leads to a considerable overstatement of
the treatment effect within individual subgroups. Properly adjusted p values pro-
vide a foundation for reliable inferences in the subgroups identified using the SIDES
method.

Subgroup proximity assessment provides tools for measuring the overlap between
individual subgroups. It is not unusual to discover that two or more subgroups based
on different sets of biomarkers in fact define virtually identical sets of patients.
The Jaccard index is utilized to measure the pairwise similarities (or proximities)
between subgroups in the final set. The proximities can be converted to distances and
analyzed further using hierarchical clustering methods to find families of subgroups
that are quite similar to each other. The resulting assessment plays an important role
in facilitating the clinical interpretation of patient subpopulations generated by the
SIDES subgroup search algorithm.

Another important consideration in subgroup exploration is reproducibility assess-
ment. The assessment is performed by splitting the original clinical trial database into
training and test subsets (learn and confirm approach) using the balanced allocation
procedure (Lipkovich et al. 2011). A set of most promising subgroups is constructed
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based on the training subset and the probability of confirming these subgroups in the
test subset is then estimated.

26.4.5 Application of Key SIDES Components

It is important to point out that the components defined in Sect. 26.4.1, i.e., subgroup
generation, subgroup pruning, and subgroup interpretation, serve as building blocks
of the general SIDES method and should not be viewed as sequential steps of a
subgroup search algorithm. In fact, within the SIDES method, subgroup pruning
can be either integrated into subgroup generation or performed as the second step
following subgroup generation (harvesting).

In the former case, the search space is restricted by imposing constraints as
part of the recursive partitioning process, e.g., requiring that the treatment effect
in a subgroup exceeds that in the parent group by some margin (treatment effect
restrictions).

In the latter case, a large number of subgroups is first formed with a few or no
restrictions and then the biomarkers are scored by averaging their contributions to
each subgroup, which is conceptually similar to ensemble procedures, e.g., bagging,
random forest, boosting (an important difference is that SIDES does not use random
components in generating subgroups). As a result, the search space can be restricted
by selecting only the biomarkers with top scores; the ensemble of subgroups can
be pruned by identifying subgroups based on the selected biomarkers. Two-stage
SIDEScreen procedures with VI assessment utilize this algorithm.

These two approaches correspond to two philosophies in model selection: the
first one indexes models by some free parameter(s) describing the complexity of the
model. The model is selected by fixing complexity parameters at some levels, which
is often done via cross-validation, external data, or expert knowledge. The second
approach relies on first harvesting a large ensemble of models that likely overfit the
data and contain many irrelevant covariates; however, it then takes advantage of the
fact that noise variables contribute sparsely to the ensemble and are suppressed by
averaging their contributions over the entire ensemble.

26.5 Biomarker Evaluation and Subgroup Identification
in ATTAIN Trials Using SIDES Method

A SIDES-based subgroup search method with a biomarker screening stage, known
as the SIDEScreen method (Lipkovich and Dmitrienko 2014a), was applied to the
analysis of the combined ATTAIN database, which includes studies 0015 and 0019.
The candidate set in this analysis included biomarkers X1 through X26 defined in
Table 26.2 (the geographic region was excluded). The main objective of this exercise
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was to characterize the predictive ability of the 26 biomarkers and select subgroups
of patients who are most likely to experience beneficial therapeutic effect.

To facilitate the presentation of the material, we will focus on the three main
components of the SIDES method introduced in Sect. 26.4.1, namely, compo-
nent I (subgroup generation), component II (subgroup pruning), and component
III (subgroup interpretation).

An Excel add-in package (SIDESxl package) developed by Ilya Lipkovich and
Alex Dmitrienko was used to perform subgroup search in the ATTAIN database.
This package can be downloaded from the Biopharmaceutical Network website at
http://biopharmnet.com/wiki/Software.

26.5.1 Component I. Subgroup Generation

As explained in Sect. 26.4, the first step in the general SIDES method deals with the
generation of promising subgroups that are later examined and compared to identify
the final set of subgroups with enhanced treatment effect. The subgroup generation
algorithm was applied recursively to the combined data set from the two ATTAIN
trials beginning with the overall population of patients (1289 patients). In the first
step of the algorithm, the overall population served as the parent group and a family
of child subgroups based on each biomarker in the candidate set was found. The
overall population was optimally partitioned using two splitting criteria:

• Criterion 1: Differential effect criterion.
• Criterion 2: Maximum effect criterion.

To define the splitting criteria, consider a continuous biomarker X (splitting criteria
for categorical biomarkers are constructed in a similar manner). For a given cut-
off point c, the biomarker-low and biomarker-high child subgroups are defined as
follows:

L(c) = {X ≤ c}, H (c) = {X > c}.
Further, ZL(c) and ZH (c) denote the log-rank test statistics for comparing the
mortality rates between the treatment and control arms in the biomarker-low and
biomarker-high subgroups. Criterion 1 (differential effect criterion) is based on a
standardized absolute difference between the two test statistics, i.e.,

D(c) = 2

[
1 − Φ

( |ZH (c) − ZL(c)|√
2

)]
,

where Φ(x) is the cumulative distribution function of the standard normal distri-
bution. By contrast, criterion 2 (maximum effect criterion) focuses on the more
significant of the test statistics in the two child groups:

D(c) = 2 min[1 − Φ(ZH (c)), 1 − Φ(ZL(c))].
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Fig. 26.1 Comparison of two splitting criteria for determining an optimal split of the overall popu-
lation on biomarker X11 (creatinine clearance). Black curve, differential effect criterion; gray curve,
maximum effect criterion

Note that splitting criteria are typically defined on a p value scale and therefore
they are optimized by finding the lowest/most significant value. Alternatively, a log
scale can be utilized, i.e., − log (D) can be used instead of D. This scale helps
highlight the more subtle yet important differences between very small values of a
criterion. For example, it is very difficult to detect the difference between D = 0.001
and D = 0.0001 on a regular scale but, with the log scale, this difference becomes
much more prominent.

Each splitting criterion was applied to partition the parent group into two mutually
exclusive child subgroups for each biomarker. The optimal cutoff c was defined as
the value which maximized the criterion on the log scale (or minimized the criterion
on the regular p value scale). To compare the two approaches to defining optimal
subgroups, Fig. 26.1 plots the splitting criteria as a function of the cutoff point
for biomarker X11 (creatinine clearance). Even though there was a fair amount of
variation across the criterion functions, the general pattern was quite similar and the
two criteria resulted in the same optimal cutoff point (c = 67).

A more detailed comparison of criteria 1 and 2 as well as other splitting criteria is
provided in Lipkovich and Dmitrienko (2014b). In general, criteria 1 and 2 produce
very similar results and, for this reason, we will focus on criterion 1 (differential
effect criterion) in this section. In addition, to speed up the subgroup generation
algorithm, all continuous biomarkers were converted to categorical covariates with
20 levels. This transformation had trivial impact on the final subgroups.

The differential effect criterion was applied to define promising subgroups based
on all biomarkers in candidate set 1. These subgroups will be referred to the level 1
subgroups. The SIDES subgroup generation algorithm was applied recursively up to
level 2, i.e., in the next step of the algorithm, each level 1 subgroup was treated as a
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parent subgroup and additional child subgroups were found. The level 2 subgroups
were based on two biomarkers.

A simple sample size restriction is typically applied in each step of the SIDES
subgroup generation algorithm, e.g., subgroups with less than a predefined number
of patients per treatment arm are discarded. The smallest sample size per arm was
set to 30 in the analysis of the ATTAIN database.

26.5.2 Component II. Subgroup Pruning

Due to its recursive nature, the subgroup generation algorithm tends to create a vast
search space with an exponentially growing set of promising subgroups. It is critical
to apply efficient subgroup pruning tools to reduce the number of subgroups to help
facilitate their analysis and interpretation.

The following two subgroup pruning tools were initially considered to reduce the
complexity of subgroup exploration in the ATTAIN program. Growth restrictions
based on the rule of five children were applied and thus up to five children subgroups
were retained for each parent group. In general, focusing on a single best child
subgroup for a parent subgroup may be misleading. Selecting several subgroups
better reflects the uncertainty around the choice of the most promising subgroup. To
make an analogy with model selection problems, reliance on a single best model is
known to be one of the key weaknesses of stepwise multiple regression. Treatment
effect restrictions were formulated in terms of the treatment effect p value (log-rank
p value for the difference in survival rates between the control and treatment arms).
Given a prespecified constant γ (0 < γ ≤ 1), a child subgroup was kept only if

pC ≤ γpP,

where pC and pP are the treatment effect p-values in the child and parent subgroups,
respectively, and γ is termed the child-to-parent ratio. Several child-to-parent ratio
values were considered to help control the size of the search space and choose the
most relevant subgroups. A lower value of γ resulted in more aggressive pruning.
Since the subgroup selection criterion was formulated in terms of the strength of the
treatment effect, this pruning tool focused on identifying the best subgroups for a
given parent.

The effect of the commonly used subgroup pruning tools is illustrated in Fig. 26.2.
This figure displays the relationship between the treatment effect and subgroup size
in the final set of subgroups identified using four different approaches:

• Approach 1: Unconstrained subgroup generation without pruning. The final set
contained 390 subgroups.

• Approach 2: Subgroup pruning with growth restrictions (up to five children
subgroups were retained for each parent group). The final set contained 15
subgroups.
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Fig. 26.2 Effect of subgroup pruning on the number of subgroups (closed circles, patient subgroups
in the final set; open circle, overall population of patients)

• Approach 3: Subgroup pruning with growth restrictions (up to five children sub-
groups were retained for each parent group) and treatment effect restrictions
(child-to-parent ratio γ = 0.5). The final set contained 12 subgroups.

• Approach 4: Subgroup pruning with growth restrictions (up to five children sub-
groups were retained for each parent group) and treatment effect restrictions
(child-to-parent ratio γ = 0.25). The final set contained three subgroups.
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Each dot in Fig. 26.2 represents a subgroup produced by the SIDES subgroup gen-
eration algorithm and the overall population of patients is provided as a reference
point. As in Fig. 26.1, the treatment effect p values within the subgroups and overall
population are presented on a log scale. The value of zero corresponds to an in-
finitely negative treatment difference. A commonly used significance level of 0.025
(one-sided) is equal to 1.6 on the log scale.

It is instructive to examine the impact of subgroup pruning on the size of the final
subgroup set in Fig. 26.2. Beginning with approaches 1 and 2, it is clear that the rule
of five children helps reduce the search space to a much more manageable size (from
390 subgroups down to 15 subgroups). Further improvement in the size of the final
set is achieved by applying treatment effect restrictions. The set tends to shrink quite
rapidly with the increasing child-to-parent ratio γ since child subgroups are pruned
more aggressively. In this particular setting, the size of the final set was reduced
from 15 subgroups in approach 2 (no treatment effect restrictions) to 12 subgroups
in approach 3 (treatment effect restriction with γ = 0.5), and only 3 subgroups in
approach 4 (treatment effect restriction with γ = 0.25).

An important feature of subgroup pruning is that it provides complexity control
by discarding the less relevant subgroups. The clinical relevance of a subgroup of
patients is usually defined as a composite measure of the treatment difference within
this subgroup and the subgroup’s size. Even though different measures can be con-
sidered, a more “attractive” patient subgroup has a larger size and a more significant
treatment effect. Figure 26.2 shows that the subgroup pruning methods defined above
retain about 4 % of the final subgroups obtained using approach 1 and the selected
subgroups are generally larger or exhibit a more significant treatment effect than the
discarded subgroups. This is accomplished by creating an efficient sieving mecha-
nism which helps identify the most promising subgroups from an expanding set of
eligible subgroups in each step of the algorithm.

An additional advantage of stricter subgroup pruning is that it reduces the burden
of multiplicity in complex subgroup search problems. It was explained in Sect. 26.4
that an unadjusted analysis of treatment differences across multiple subgroups of
patients is highly unreliable due to selection bias. SIDES utilizes a resampling-based
method to perform multiplicity adjustments within each final subgroup and compute
a properly adjusted treatment effect p value (for more information on multiplicity
adjustments, see Dmitrienko and D’Agostino 2013). To briefly introduce the key
idea, consider a subgroup identified by the SIDES method and let p denote the
raw treatment effect p value within this subgroup, which is computed directly from
the log-rank test. Using a resampling method, a large number of null data sets
(e.g., m = 10, 000 data sets) are generated from the original database by removing
the treatment effect across all possible subsets. The SIDES method is applied to each
null data set and the best subgroup is chosen. Let qj denote the treatment effect p
value in the best subgroup identified from the j th null data set, j = 1, . . . ,m. A
multiplicity-adjusted treatment effect p value within the selected subgroup, denoted
by p̃, is defined as the proportion of the null data sets such that the p value in the
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Fig. 26.3 Relationship between the raw and multiplicity-adjusted treatment effect p values in the
final subgroup sets based on approach 2 (closed circles) and approach 4 (open circles). The dotted
line is drawn at the standard significance level (one-sided 0.025). The solid line is an equality line
(adjusted p value is equal to raw p value)

best subgroup is less than or equal to the raw p value for the selected subgroup, i.e.,

p̃ = 1

m

m∑
j=1

I {qj ≤ p}.

Due to strong selection bias, multiplicity-adjusted p values tend to be much less
significant than raw p values. Adjusted treatment effect p values that are significant
at a 0.025 level (based on a one-sided test) are very rare in subgroup identification
problems.

To illustrate multiplicity adjustments in subgroup search, Fig. 26.3 displays the
raw and adjusted one-sided treatment effect p values using approaches 2 and 4
defined above (as before, the p values are displayed on the log scale). The figure
shows that the raw treatment effect p values identified using either approaches were
highly significant and ranged between 1.66 and 4 on the log scale (i.e., between
0.0001 and 0.0221 on the regular scale). When the less aggressive pruning approach
(approach 2 with the child-to-parent ratio γ = 0.75) was applied and resampling-
based multiplicity-adjusted p values were computed in the resulting 15 subgroups,
the most significant adjusted p value was greater than 0.09. Recall that, due to the
treatment effect restrictions, the subgroup search algorithm systematically chose the
subsets with the most significant results. The apparent significance of the treatment
effect in the resulting subgroups of patients before the multiplicity adjustment is a
direct effect of selection bias.

When the more stringent pruning rules with a treatment effect restriction based
on γ = 0.25 were considered (approach 4), only three subgroups were discovered.
The burden of multiplicity was reduced in this setting due to a smaller search space,
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which led to a smaller multiplicity penalty. Indeed, Fig. 26.3 demonstrates that
the adjusted p values obtained under approach 4 were uniformly more significant
compared to approach 2 (even though the difference was generally small). To see
this more concretely, consider one of the subgroups identified under approach 4, i.e.,

S11 = {X11 > 67}.
A naive analysis based on the raw one-sided log-rank p-value suggested a strong
treatment effect within this subgroup (p = 0.0077). Under approach 2, the adjusted
treatment effectp value was 0.82. When approach 4 was applied, the adjustedp value
was reduced to 0.52. Thus, the use of a more efficient subgroup search provided a
somewhat stronger evidence of significance.

26.5.3 Component II. Biomarker Screening

It was demonstrated earlier in this section that standard subgroup pruning provides
efficient tools aimed at slowing the growth of subgroup trees. This helps control
the complexity of the subgroup identification problem. However, subgroup pruning
based on growth and treatment effect restrictions does not address the fundamental
problem of nuisance/noise covariates. Most biomarkers are either non-informative or
may be valuable mostly from a prognostic perspective. Very few biomarkers are re-
liable predictors of treatment response. Non-informative and prognostic biomarkers
lower the signal-to-noise ratio in subgroup search problems and it is highly desirable
to find tools that help screen out the noise biomarkers. This approach is consistent
with the general scientific principle of parsimony.

In order to develop an effective screening method, we need to find a way to
quantitatively assess the predictive ability of a given biomarker. As proposed in
Lipkovich and Dmitrienko (2014a), clinical trial researchers can take advantage of
the concept of VI which has been successfully used in machine learning methods.
The VI index is defined as the impact of a biomarker on treatment response which
is averaged over the final set of subgroups. More formally, consider the final set
identified by the SIDES procedure and let

F1, . . .,Fm

denote the subgroups included in this set. Further, for a given biomarker, let di

denote the value of the partitioning criterion on the log scale (i.e., criterion 1 defined
in Sect. 26.5.1) associated with this biomarker in subgroup Fi , i = 1, . . .,m. Note
that di = 0 if the biomarker is not used in subgroup Fi . The VI index is then
computed as the average of d1, . . ., dm. The resulting VI index will be larger for the
biomarkers that are included in multiple subgroups and, in addition, demonstrate a
stronger differentiating effect within these subgroups as measured by the partitioning
criterion. For a thorough discussion of VI, see Lipkovich and Dmitrienko (2014a).
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A key feature of VI scores is that they explicitly account for (potentially complex)
interactions among the candidate covariates. For example, a simplistic version of
the VI score could have been obtained by using the partitioning criterion in the level
1 subgroups only. This score provides an initial estimate of VI since this approach
focuses on a “univariate” effect of each biomarker on the outcome variable (all-cause
mortality). Higher-order interactions are not taken into account even though they may
be quite valuable in assessing the predictive strength of a biomarker. As explained
in Lipkovich and Dmitrienko (2014a), a biomarker may not be strongly associated
with a differential treatment effect compared to the other biomarkers in the very
first step of the algorithm (i.e., when the level 1 subgroups are examined). However,
a careful review of all subgroups in the final set may reveal that this biomarker
modifies the treatment effect within the level 2 subgroups based on two covariates.
In this case, a biomarkers treatment modification effect may be conditional upon
another biomarker.

To illustrate the importance of accounting for higher-order interactions when
computing the VI score, consider biomarker X14 (presence of mixed infection). This
biomarker was included in the following four subgroups in the final set:

S2,14 = {X2 ≤ 10, X14 = ‘No’},
S14,5 = {X14 = ‘No’, X5 = ‘No’},
S17,14 = {X17 = ‘No’, X14 = ‘No’},
S11,14 = {X11 > 67, X14 = ‘No’}.

Figure 26.4 displays the values of the partitioning criterion for these subgroups
along with the value of the partitioning criterion in the level 1 subgroup based on
biomarker X14, i.e., {X14 = ‘No’}. The latter is equal to 3.3 and is represented by the
horizontal line. It is clear that the partitioning criterion for subgroups S2,14, S17,14,
and S11,14 was much different from 3.3. For example, consider first subgroup S2,14.
This subgroup was formed by splitting a level 1 subgroup based on X2 by X14. The
associated partitioning criterion equaled 2.2 and thus it was lower than 3.3. This
indicates that, after accounting for the impact of biomarker X2 on the survival rate,
biomarker X14 exhibited a more “modest” differential effect. On the other hand,
when subgroup S11,14 was examined, the partitioning criterion increased to 5. This
implies that a synergistic effect of biomarkersX11 andX14 considerably improved the
latter’s ability to predict the treatments effect on survival. Higher-order interactions
turn out to be quite important for assessing the predictive value of biomarker X14

and clearly need to be incorporated into the VI score.
Figure 26.5 shows the finalVI scores for the top four biomarkers (the scores for the

remaining biomarkers were less than 0.5 and they were treated as noise covariates).
It follows from this figure that the VI score can be used as an effective biomarker
screening tool. For example, biomarker X11 (creatinine clearance) had a high VI
score compared to the other biomarkers, which indicates that baseline creatinine
clearance is a strong predictor of telavancin-related survival benefit.
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Fig. 26.4 Values of the partitioning criterion for the four subgroups based on biomarker X14 (crea-
tinine clearance). The horizontal line is drawn at the value of the partitioning criterion in the level
1 subgroup based on biomarker X14 (3.3)
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Fig. 26.5 Variable importance scores for the top four biomarkers (biomarker X11, creatinine clear-
ance; biomarker X2, APACHE II score; biomarker X14, presence of mixed infection; biomarker
X25, ventilator status)

A biomarker screening rule can be constructed either by choosing a fixed number
of biomarkers with the highest VI scores, e.g., k = 3 biomarkers, or by applying
an adaptive approach which identifies a variable number of biomarkers in order to
protect an appropriately defined selection error rate. The fixed biomarker screening
rule is easy to implement. For example, based on the results presented in Fig. 26.5,
the fixed rule with k = 3 selected the following biomarkers:
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• Biomarker X11 (creatinine clearance).
• Biomarker X2 (APACHE II score).
• Biomarker X14 (presence of mixed infection).

This screening rule is somewhat simplistic and an adaptive approach with built-in
error rate control provides a useful alternative. The error rate is defined in this case as
the probability of incorrectly selecting at least one biomarker when all biomarkers are
in fact non-informative. The selection error rate is computed from the null distribution
of the maximum VI score. To apply the adaptive biomarker screening rule to the 26
biomarkers in candidate set 1, the null distribution was computed based on 1000
permutations. This distribution was approximately normal with mean μ = 0.85 and
standard deviation σ = 0.32. Using this reference distribution, we can compute
normalized VI scores using the same principle which is used in the definition of a p

value:

v∗ = 1 − Φ

(
v − μ

σ

)
,

where v and v∗ are the regular and normalized VI scores, respectively, and Φ(x)
is the cumulative distribution function of the normal distribution. The normalized
VI scores have a simple interpretation. A lower score indicates that the associated
biomarker is important. In particular, if the normalized VI score for a biomarker is
equal to v∗, this biomarker will be chosen by the adaptive rule based on the selection
error rate of 100v∗ %.

It is easy to see that the normalized VI scores for the most important four
biomarkers were given by

• Biomarker X11: v∗ = 0.00002.
• Biomarker X2: v∗ = 0.228.
• Biomarker X14: v∗ = 0.717.
• Biomarker X25: v∗ = 0.756.

If a restrictive adaptive biomarker selection rule based on the selection error rate of
10 % was applied, only one biomarker would be chosen for the second stage of the
procedure (normalized VI score for biomarker X11 was less than 0.1). If the selection
error rate was increased to 30 %, two biomarkers would be selected (normalized VI
scores for biomarkers X11 and X2 were less than 0.3).

Using the fixed and adaptive biomarker screening rules, a two-stage subgroup
identification procedure (SIDEScreen procedure) can be built as follows:

• Step 1. Apply the SIDES subgroup search algorithm with liberal subgroup pruning
rules to a set of biomarkers. Compute the VI score for all candidate biomarkers
and select the most promising biomarkers.

• Step 2. Apply the SIDES subgroup search algorithm to the biomarkers identified
in step 1.

Fixed and adaptive SIDEScreen procedures were applied to the combined ATTAIN
database to perform biomarker assessment.
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Table 26.4 Final sets of subgroups identified by the the fixed and adaptive SIDEScreen procedures
in the ATTAIN program

Subgroup Subgroup One-sided p values

size Raw p value Adjusted p value

Overall patient population

All patients 1289 0.6894 NA

Fixed SIDEScreen procedure

S11,14 = {X11 > 67 and X14 = ‘No’} 547 0.0004 0.0990

S11,2 = {X11 > 67 and X2 ≤ 15} 426 0.0056 0.4530

S11 = {X11 > 67} 703 0.0077 0.5160

S2,11 = {X2 ≤ 13 and X11 > 49} 432 0.0083 0.5310

S14,2 = {X14 = ‘No’ and X2 ≤ 13} 439 0.0099 0.5650

S2 = {X2 ≤ 13} 522 0.0221 0.7430

Adaptive SIDEScreen procedure

S11 = {X11 > 67} 703 0.0077 0.0680

26.5.4 Component II. Two-Stage Subgroup Search

To illustrate the two-stage approach to subgroup identification based on SIDEScreen
procedures with biomarker screening, we applied the fixed and adaptive procedures
to the combined ATTAIN database. Both procedures utilized the SIDES subgroup
search algorithm with the following parameters in the first step:

• No treatment effect restrictions.
• Up to five children subgroups selected for each parent.
• Two-level subgroup search with subgroups defined using one or two biomarkers.

The fixed SIDEScreen procedure then applied the SIDES algorithm to the three
biomarkers with the largest VI indices (X11, X2, and X14). The adaptive SIDEScreen
procedure only selected the biomarkers with VI exceeding a prespecified threshold,
which was computed using the “rule of one standard deviation.” In particular, as
discussed in Sect. 26.5.3, the null distribution of the maximum VI score was com-
puted. This distribution was approximately normal with meanμ = 0.85 and standard
deviation σ = 0.32 and the threshold was defined as

μ + σ = 1.17.

This biomarker screening rule corresponded to a 16 % selection error rate. The adap-
tive approach resulted in selection of only one biomarker (X11). The resulting sets
of subgroups are summarized in Table 26.4.

Table 26.4 presents key characteristics of the subgroups identified by the fixed
and adaptive SIDEScreen procedures and compares them to the overall patient pop-
ulation. The relative size of the subgroups identified by the fixed procedure ranged
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Fig. 26.6 Hazard ratios and 95 % confidence intervals in the subgroups identified by the the fixed
and adaptive SIDEScreen procedures in the ATTAIN program

from 33 to 55 % (from 426 to 703 patients) and all subgroups provided a substantial
improvement over the general population in terms of survival benefit. The raw one-
sided p values within the six subgroups ranged from 0.0004 to 0.0221 but, after the
resampling-based multiplicity adjustment, none of the p values were even remotely
significant. Consider, for example, subgroup S11,14. The raw p value computed from
the log-rank test in this subgroup was highly significant (one-sided p = 0.0004).
However, when the null data sets without treatment effect across all possible sub-
groups were generated, it turned out that a subgroup with a one-sided treatment effect
p value of 0.0004 or smaller was found in 9.9 % of the null sets. As a consequence,
the multiplicity-adjusted p value in subgroup S11,14 was set to 0.0990.

As explained in Sect. 26.5.2, the multiplicity penalty in subgroup identifica-
tion problems is greatly affected by the size of the search space. With stricter
biomarker screening rules, the search space is often substantially shrunk, which
reduces the degree of multiplicity adjustment. Indeed, as shown in Table 26.4, the
multiplicity-adjusted p value in subgroup S11 was considerably smaller when the
adaptive SIDEScreen procedure was applied. With the fixed procedure, the adjusted
treatment effect p value in this subgroup was very large (p = 0.516) whereas the
adjusted p value associated with the adaptive procedure was p = 0.068, which may
be viewed as marginally significant.

Figure 26.6 provides a summary of the treatment effects (estimated hazard ratios
and 95 % confidence intervals) in the subgroups listed in Table 26.4. It is worth
noting that the estimated hazard ratios are obviously biased estimates of the true
treatment differences in the individual subgroups and are used here mostly as bench-
marks. Secondly, no adjustment for multiplicity was performed across the subgroups
and marginal 95 % confidence intervals are presented in Fig. 26.6 to describe the
variability of the treatment effect estimates.
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Figure 26.6 shows that a highly beneficial effect was observed in most subgroups
with the hazard ratios ranging between 0.44 and 0.63. With the exception of S2,
the upper confidence limits were well below the horizontal line drawn at 1. For
comparison, the hazard ratio in the overall patient populations was 1.059. Also,
since the biomarker screening rule used in the fixed SIDEScreen procedure was more
liberal than the adaptive screening rule, the apparent effect size in the top subgroup
selected by the fixed procedure (S11,14) was much larger (and the corresponding
hazard ratio was lower) than in the subgroup identified by the adaptive procedure
(S11):

• Hazard ratio of 0.46 in the best subgroup identified by the fixed SIDEScreen
procedure.

• Hazard ratio of 0.63 in the best subgroup identified by the adaptive SIDEScreen
procedure.

The results presented in Table 26.4 and Fig. 26.6 suggest that biomarker X11 (creati-
nine clearance) is a reliable predictor of treatment benefit in the combined ATTAIN
database and subgroup S11 is worth investigating further in future trials as the best
candidate for developing a tailored strategy. For comparison, a negative treatment
effect was observed in the complementary subgroup {X11 ≤ 67}. The hazard ratio
in this subgroup was 1.4 with a significant treatment effect in favor of the control
group (one-sided p = 0.008).

Considering subgroup S11, it is helpful to assess the balance of key patient charac-
teristics between the two treatment arms within this subgroup. In general, a positive
treatment effect within a particular subset of the overall patient population may be
induced by imbalance with respect to important prognostic covariates (note that co-
variates with a weak prognostic ability have virtually no impact on the outcome
variable). To rule out such an explanation of the observed beneficial effect in sub-
group S11, treatment imbalance was examined across the 26 covariates listed in
Table 26.2. Since the candidate set of biomarkers included a mix of continuous and
binary covariates, the standardized treatment difference between the treatment arms
(effect size) was computed for the 26 biomarkers. The standardized treatment dif-
ference was defined as the difference in sample means or proportions divided by the
pooled sample standard deviation. In addition, the prognostic strength of each indi-
vidual biomarker was assessed using a Cox proportional hazards model for 28-day
all-cause mortality with the biomarker as the only independent variable. A p value
computed from this model was used to quantify the impact of the biomarker on the
outcome variable. As in Sect. 26.5.2, a log transformation was applied to each p

value to compute a measure of prognostic effect.
Figure 26.7 plots the measures of treatment imbalance (standardized treatment

differences) as a function of the prognostic effect for the 26 biomarkers included in
the candidate set. The standardized treatment differences are quite small (most of
the differences lie between −0.1 and 0.1), which demonstrates that the treatment
arms were balanced with respect to the most important patient characteristics within
subgroup S11. It is also worth noting that the magnitude of treatment imbalance is
independent of the prognostic ability of the individual biomarkers.
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Fig. 26.7 Assessment of treatment imbalance within subgroup S11 = {X11 > 67}. The standardized
treatment difference is plotted as a function of the prognostic strength (on a log scale) for the 26
biomarkers in the candidate set

26.5.5 Component III. Proximity Assessment

The output of the SIDES procedures (both single-stage and two-stage procedures)
is a collection of subgroups that would typically require further examination. Some
of the groups may substantially overlap and essentially represent the same type of
patients. This would obviously happen because of using common biomarkers in
defining subgroups; however, subgroups defined by different markers are also likely
to overlap because they are based on correlated covariates. As an extreme case, if
two copies of the same covariate were accidentally included in the set of candidate
biomarkers, e.g., X1 andX2, the SIDES method would report two identical subgroups
{X1 ≤ c} and {X2 ≤ c}.

In general, it is always beneficial to assess the “amount of overlap” among the
subgroups, based on the actual group memberships rather than on the labels of the
biomarkers that define subgroups. Since a subgroup can be thought of as a binary
variable assuming valuesZ = 1 for the patients who are included in the subgroup and
Z = 0 for those who are not, the similarity between two subgroups can be measured
by any of the variety of similarity (proximity) measures for binary variables. One
popular measure is the Jaccard index which measures the overlap between subgroups
Si and Sj . This index is defined as the ratio of the number of patients included in
both subgroups to the number of patients included in either subgroup, i.e.,

J (Si , Sj ) = |Si ∩ Si |
|Si ∪ Si | ,

where |S| is the size of subgroup S. The Jaccard index equals 0 if the two subgroups
do not overlap and 1 if the two subgroups are identical to each other. A dissimilarity
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measure or, in other words, “distance” between subgroups Si and Sj , is defined
simply as 1 − J (Si , Sj ).

The matrix of pairwise subgroup similarities can be analyzed using cluster anal-
ysis methods (e.g., hierarchical cluster analysis) or multidimensional scaling (e.g.,
principal coordinate plots based on singular value decomposition of the dissimilarity
matrix).

The results of proximity assessment can be graphically presented using:

• Heatmaps with rows and columns arranged according to their order in a
dendrogram produced by a hierarchical clustering method.

• Low-dimensional plots using coordinates from (metric or nonmetric) multidimen-
sional scaling methods.

As an illustration, Fig. 26.8 presents a heatmap based on hierarchical clustering of
dissimilarities among the six subgroups generated by the SIDEScreen procedure
with a fixed biomarker screening rule (three most important biomarkers were taken
forward to the second stage of the subgroup search algorithm, see Table 26.4). Lighter
cells in this figure correspond to dissimilar subgroups and darker cells help identify
subgroups with a considerable overlap. In addition, a dendrogram shows the groups
of clusters defined by combining the individual subgroups. Due to a strong correlation
between biomarkers X2 (APACHE II score) and X14 (presence of mixed infection),
subgroups S2 and S14,2 are fairly close to each other with the Jaccard index of 0.84.
Indeed, it can be seen from Table 26.4 that most patients at a lower risk of death
based on the APACHE II score (X2 ≤ 13) do not present with mixed infections
(X14 = ‘No’). Further, Biomarkers X11 (creatinine clearance) and X14 are also
strongly correlated. As a result, two other pairs of subgroups, namely, subgroups S11

and S11,14, and subgroups S2 and S2,11, exhibit a considerable overlap.
Based on the results presented in Figure 26.8, the six subgroups identified by the

SIDEScreen procedure can be grouped as follows:

• Cluster 1: Subgroups S2,11, S2 and S14,2 are similar to each other.
• Cluster 2: Subgroups S11 and S11,14 are similar to each other.
• Cluster 3: Subgroup S11,2 is dissimilar to the other groups of patients.

26.5.6 Component III. Reproducibility Assessment

As was pointed out in Sect. 26.4, an important goal of subgroup analysis is to sup-
port reliable predictive inferences by selecting the subgroups that are likely to be
reproduced in subsequent trials. Lipkovich et al. (2011) described the use of a learn-
and-confirm approach to performing reproducibility assessments. This approach
relies on splitting the original data set into two random subsets that are balanced
with respect to the key patient characteristics (the two subsets are created using the
balanced allocation procedure). A single-stage or two-stage SIDES procedure is
applied to the first subset (known as the training set) and the confirmation rate is
estimated by examining the subgroups in the other subset (known as the test set). The
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Fig. 26.8 Heatmap-based proximity assessment in the six subgroups produced by the SIDEScreen
procedure with a fixed biomarker screening rule

confirmation rate is defined as the probability that the beneficial effect in a subgroup
identified in the training set is confirmed in the test set.

As we would expect, subgroups identified by SIDES in the training set may be
quite different from those found in the analysis of the full data set. Recursive parti-
tioning methods are known to be unstable and the results often change across multiple
replicates from the same data set. The main reason for that is that most of the can-
didate biomarkers are noise covariates and some of them are likely to be incorrectly
“identified” as significant predictors of treatment response in a greedy search pro-
cess. By creating random subpopulations, we may redistribute the “contributions”
of the noise biomarkers in the ensemble of subgroups. However, as discussed in
Sect. 26.5.3, when averaged over a collection of subgroups, the contribution of the
noise biomarkers tends to shrink toward zero, which helps reveal the true predictors
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Table 26.5 Subgroup sets identified by the the fixed and adaptive SIDEScreen procedures in the
training set

Subgroup Subgroup size Raw p value

Fixed SIDEScreen procedure

S11 = {X11 > 67} 352 0.0044

S11,1 = {X11 > 67 and X1 > 50} 211 0.0108

S16,1 = {X16 = ‘No’ and X1 ≤ 60} 98 0.0162

S1,11 = {X1 ≤ 60 and X11 > 57} 236 0.0167

S11,16 = {X11 > 67 and X16 = ‘No’} 132 0.0206

Adaptive SIDEScreen procedure

S11 = {X11 > 67} 352 0.0044

of treatment response. By this reasoning, we expect that the subgroups based on the
biomarkers with the largest VI would have a better chance to be replicated when
independent data sets are considered.

As recommended in Lipkovich et al. (2011), the balanced allocation procedure
was applied to the combined ATTAIN database to define two sets of equal size
(training and test sets). The two sets were balanced with respect to all covariates.
The following procedures were applied to the training set:

• Single-stage SIDES procedure with the same subgroup pruning parameters that
were utilized in approach 3 defined in Sect. 26.5.2 (up to five children subgroups
were retained for each parent group and the child-to-parent ratio was set to γ =
0.5).

• Fixed SIDEScreen procedure (three biomarkers with the highest VI were selected
for the second stage).

• Adaptive SIDEScreen procedure (biomarkers with high VI were selected using
the rule of one standard deviation defined in Sect. 26.5.4).

The single-stage SIDES procedure selected 9 subgroups in the training set that were
quite different from the 12 subgroups that were identified on the full data set (see
Sect. 26.5.2). The results produced by the fixed and adaptive SIDEScreen proce-
dures were generally more consistent with those presented in the analysis of the full
ATTAIN database (see Table 26.4). The three biomarkers chosen by the fixed screen-
ing rule were X11 (creatinine clearance), X1 (age) and X16 (multilobe pneumonia)
with biomarker X11 exhibiting a much higher VI score compared to the other two
covariates. The adaptive screening rule selected only one biomarker (X11).

The final subgroups identified by the two SIDEScreen procedures are listed in
Table 26.5. It can be seen from this table that the fixed SIDEScreen procedure
selected fewer subgroups compared to the full database and there was a fair amount
of variability across the subgroups. By contrast, the adaptive SIDEScreen procedure
returned the same subgroup on the training data as it did on the full data, i.e., S11 =
{X11 > 67}.
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Fig. 26.9 Hazard ratios and 95 % confidence intervals in the subgroups identified by the the fixed
and adaptive SIDEScreen procedures in the ATTAIN program. Training set, closed circles; test set,
open circles

To evaluate the extent to which the subgroups identified on the training set are
likely to be confirmed in an independent data set, Figure 26.9 displays the hazard
ratios estimated in the training and test sets. It was emphasized in Sect. 26.5.4 that, due
to selection bias, the observed hazard ratios overstate the magnitude of the treatment
difference. The treatment effects within the individual subgroups are expected to
attenuate in the test set and thus the hazard ratios will most likely shrink towards 1
(or, in other words, the effect sizes measured on a log-hazard ratio scale will shrink
towards 0). In fact, with ad hoc subgroup search methods, the reproducibility rate
is typically quite low. Even though a strong beneficial effect may be found within
a subgroup based on one data set, a confirmation exercise on another data set often
reveals no evidence of a positive effect or a negative treatment difference may be
observed. This phenomenon is a simple example of regression to the mean.

In this setting, Fig. 26.9 demonstrates that a negative treatment effect with the
hazard ratio of 1.18 was detected in subgroup S1,11. However, the hazard ratios were
comparable between the two data sets in subgroups S16,1 and S11,16 and a meaningful
fraction of the effect size was retained in subgroups S11 and S11,1. However, even
if the effect sizes were generally similar between the training and test data sets in
selected subgroups, the confidence intervals were clearly wider when the treatment
differences were estimated in the test set.

This simple example illustrates the importance of reproducibility assessment
based on cross-validation. In general, “repeated cross-validation” can be applied
to better characterize the magnitude of selection bias in the subgroups discovered
by SIDEScreen procedures. This can be accomplished by randomly generating a
larger number of complementary training and test sets and evaluating an appropriate
measure of discordance between each pair of sets. For example, one could compute
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the average difference between the effect size in the top subgroup identified in each
training set and the effect size in the corresponding subgroup in the test set. Another
approach to assessing the “optimism bias” could focus on computing the rate at
which the top subgroup was confirmed on the test data using the treatment effect p
value < 0.05 or 0.1.

To summarize, the reproducibility assessment strengthened an earlier conclusion
that biomarker X11 (creatinine clearance) is a strong predictor of telavancin’s effect
on survival. The survival benefit observed in patients with higher rates of creatinine
clearance and related subgroups of patients is likely to be confirmed in future clinical
trials.

26.6 Discussion

The general topic of personalized medicine and tailored therapeutics has attracted
much attention in the clinical trial literature. Clinical trial sponsors are increasingly
interested in the evaluation of treatment effects within specific subsets of the overall
patient population that are defined using biomarkers. However, the use of basic ap-
proaches to biomarker exploration and subgroup identification remains widespread
in clinical trials. In this chapter, we outlined the main weaknesses of the traditional
methods that rely mainly on univariate assessments of the individual biomarkers.
Recent developments in subgroup identification methodology provide viable alter-
natives to traditional approaches. This chapter describes an application of a novel
subgroup identification method (SIDES) to a large clinical trial database with the
goal of selecting most promising predictors of treatment response and associated
subgroups of patients who are most likely to experience a beneficial effect.

The SIDES method overcomes important limitations of simplistic biomarker ex-
ploration methods. The proposed method emphasizes a multivariate treatment of
the general problem of biomarker discovery and characterization, and explicitly ac-
counts for the multiplicity induced by the analysis of a massive number of subgroups.
It was shown in recent publications (see, for example, Lipkovich and Dmitrienko
2014b) that the SIDES methodology, including extended SIDES procedures that uti-
lize biomarker screening, performs well in a broad class of realistic settings with up
to a 100 candidate biomarkers.

Both the regression- and SIDES-based approaches to biomarker evaluation
identified baseline creatinine clearance as a predictive biomarker. The traditional
regression-based method showed the interaction favoring telavancin for patients with
baseline creatinine clearance > 50 mL/min and the opposite for baseline creatinine
clearance ≤ 50 mL/min. The SIDES method found the optimal baseline creatinine
clearance cutoff point at >67 mL/min for telavancin benefit associated with the mul-
tiplicity adjusted treatment effect p value of 0.068. This predictor may be a potential
candidate for developing a tailored treatment strategy.

To provide relevant background information, the phase III ATTAIN trials pro-
vided the basis for the 2013 FDA approval of telavancin for HABP/VABP caused by
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susceptible isolates of Staphylococcus aureus when other alternatives are not suit-
able. The label contains a black box warning concerning treatment of patients with
decreased renal function:

Patients with pre-existing moderate/severe renal impairment (CrCl ≤ 50 mL/min) who
were treated with VIBATIV for hospital-acquired bacterial pneumonia/ventilator-associated
bacterial pneumonia had increased mortality observed versus vancomycin. Use of VIBATIV
in patients with pre-existing moderate/severe renal impairment (CrCl ≤ 50 mL/min) should
be considered only when the anticipated benefit to the patient outweighs the potential risk.

The SIDES method offers several attractive features that help clinical drug developers
address challenging problems in biomarker evaluation, e.g., efficient subgroup search
strategies and selection bias control. The method provides multiplicity-adjusted p

values for statistical comparisons. We hope that the adjusted probabilities can be
evaluated by regulators as evidence of superiority or inferiority to help better establish
a risk/benefit profile for future drug reviews.

26.7 Appendix

The Appendix defines the subgroup search algorithm used in the SIDES method.

26.7.1 Algorithm Parameters

The following parameters need to be specified before the algorithm is applied to a
clinical trial database:

• D: Partitioning criterion.
• L: Depth (maximum number of levels in subgroup).
• M: Width (maximum number of child subgroups for a parent group used in

subgroup pruning).
• γ : Child-to-parent ratio used in subgroup pruning (degree of improvement in the

treatment effect p-value).
• nmin: Lower bound for the sample size per treatment arm in a subgroup.
• pmax: Upper bound on the treatment effect p in a subgroup.

26.7.2 Description

The subgroup search algorithm includes the three main steps:

Initialization

A single level 0 parent group is formed of all patients in the data set. Initialize the
set of promising subgroups as an empty set, P = ∅.
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Iteration

Partition the current level l parent group, 0 ≤ l ≤ L. If l = L, the current parent
group is included in the final set and is not partitioned further. Otherwise perform
the following steps:

• Form the ordered list of biomarkers from the “best” to “worst” in terms of the
optimal value of the partitioning criterion, i.e., D̃(1), . . ., D̃(k). Here, Dj is the value
of the partitioning criterion for the best split on biomarker Xj for all allowable
partitions. If biomarker Xj is ordinal, the allowable partitions include all binary
splits into sets {Xj ≤ c} and {Xj > c}, where c ranges over the values of Xj . If Xj

is nominal, the binary splits are formed as all possible partitions of the values of
Xj into two nontrivial sets, e.g.,. {Xj = ‘No’} and {Xj = ‘Yes’}. The restriction
on the minimum sample size is imposed at this step. Further, D̃j is the adjusted
value of the partitioning criterion based on local multiplicity adjustment.

• For each of the top M biomarkers, say, Xj , based on the above criterion, form two
children subgroups Lj and Hj and select the subgroup with the larger treatment
effect (this promising subgroup is denoted by Sj and included in P). Retain this
subgroup if it meets the treatment effect restrictions, i.e., pj ≤ γp0, where pj is
the treatment effect p value in subgroup Sj and p0 is the treatment effect p value
in the parent subgroup.

• For each promising subgroup Sj , set Sj as the current parent group, let l = l + 1
and repeat the iteration step.

• If none of the biomarkers has allowable splits resulting in a promising child
subgroup, the current parent group is included in the final set and is not considered
for further partitioning.

Selection

Define the final set of subgroups as the subset of P with the treatment effect p values
≤ pmax. Compute multiplicity-adjusted p values for the subgroups in the final set
using resampling-based techniques.
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Chapter 27
A Stochastic Segmentation Model for the
Indentification of Histone Modification and
DNase I Hypersensitive Sites in Chromatin

Haipeng Xing, Yifan Mo, Will Liao, Ying Cai and Michael Zhang

Abstract Focal alterations in chromatin structure are essential for the proper func-
tioning of various classes of transcriptional regulatory elements in the human
genome. These changes can be detected through an increased sensitivity to DNase
I and other nucleases due to an open and accessible chromatin conformation. Cur-
rently, quantitative analysis approaches use heuristic procedures to identify regions
enriched for histone modifications and DNase I hypersensitivity. We here develop a
stochastic segmentation model and associate inference framework to characterize the
categorical and continuous features of hierarchical structures hidden in sequences.
The proposed model has attractive statistical and computational properties and yields
explicit formulas for posterior distribution of hidden states with a hierarchical struc-
ture. We propose an approximation method whose computational complexity is only
linear in sequence length. We demonstrate the performance of the model via exten-
sive simulations. We further use our model to identify DNase I sensitivity and DNase
I hypersentitive sites over the Encyclopedia of DNA Elements (ENCODE) regions
in human lymphoblastoid cells.
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27.1 Introduction

Recent advances in sequencing technologies have led to a vast leap in our under-
standing of the genome. It is now well accepted that genomic features beyond simple
protein-coding sequence are of significant import. The extent of functional relevance
of this noncoding DNA has been the topic of much debate of late. A hotly discussed
study by the Encyclopedia of DNA Elements (ENCODE) Project Consortium postu-
lated that as much as 80 % of these regions have some functional roles clear departure
from the days where this so-called junk DNA was largely overlooked (Consortium
TEP et al. 2012). Whether or not this figure proves true or not, their main point—that
deciphering the regulatory role of noncoding DNA is critical to understanding the
complexity of the genome—clearly has taken hold. Now, significant work is be-
ing undertaken to make sense of how DNA outside of protein-coding regions might
participate in gene regulation in a cell- and tissue-specific manner.

No area of research has contributed more to this understanding than that of
epigenomics comprised primarily DNA methylation, posttranslational histone mod-
ifications, noncoding RNA species, and chromatin structure. These features, as the
name suggests, sit “upon” or “outside” the genome and may provide key distinc-
tions between functional and nonfunctional DNA that cannot be discerned from
the primary sequence. Already, ENCODE and other collectives like the Roadmap
Epigenomics Mapping Consortium (Bernstein et al. 2010) have invested considerable
effort into characterizing epigenomic profiles in various cellular contexts. Their work
has validated many previously described correlative, and putatively causal, relation-
ships with function, e.g., enrichment of the posttranslational histone modifications
H3K4me3 at active promoters, and H3K4me1 and H3K27ac at distal enhancers
(Barski et al. 2007; Mikkelsen et al. 2007).

Many of their findings were based on enrichment assays designed to isolate frag-
ments of chromatin DNA, by way of specific antibodies, which are complexed with
posttranslationally modified histone protein of interest an assay termed chromatin
immunoprecipitation. Similar efforts employed an assay that selects for fragments
more easily digested by an enzyme, DNase I, which preferentially cuts at open, acces-
sible DNA. Regions that are “hotspots” for DNase I cleavage are thought to pinpoint
areas of active transcription or targeting by regulatory DNA-binding proteins (Sabo
et al. 2006). Given this, improving methods to reliably and accurately identify re-
gions of enrichment, by chromatin immunoprecipitation or DNase I digestion, have
been the subject of great interest to computational biologists.

Analyses of these types of enrichment assays have largely been described as a
peak detection problem, where the main goal is segmenting the genome into re-
gions that are absent of and those that are overrepresented by observed sequence.
The abundance of fragments at genomic locations is usually quantified using ei-
ther tiling arrays or next-generation sequencing. Several successful solutions have
been introduced to address this problem (Zhang et al. 2008; Rozowsky et al. 2009;
Qin et al. 2010). The model-based analysis for chromatin immunoprecipitation se-
quencing (ChIP-Seq; MACS) is one of the most popular methods. This method uses
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a window-based approach to solve the peak-calling problem. MACS slides twice
of preset bandwidth windows across the genome to search the locations with very
enriched signals of the Watson strand and Crick strand, where they estimate the
mean distance between the summit of these two strand as d. Then the reads will be
moved to the middle of these two strands by d/2 base pairs. They model the tag
distribution along the genome by a Poisson distribution and use one parameter, λ,
to capture both the mean and the variance. Then, 2d windows are slid across the
genome to find candidate peaks. MACS uses a dynamic parameter λlocal defined
as λlocal = max(λbackground, λ1k , λ5k , λ10k), where λ1k , λ5k , λ10k are estimated around
each candidate peak region in the control data. MACS uses local to calculate the p
value and smooth out the potential false positives.

Heuristic solutions like MACS are quite common and perform reasonably well for
identifying regions enriched for histone modifications and DNase I hypersensitivity,
but they do not make full use of the pertinent characteristics of the data. One notable
feature of these assays is that the fragment size often exceeds the maximum resolution
of tiling arrays or sequencing. Consequently, if signal is observed at a particular
position, it is far more likely to be observed at adjacent positions, as well. Given
this longitudinal nature of the data and a dependency of the signal on neighboring
positions, a more sophisticated hidden Markov model could provide a much more
refined solution. Furthermore, these methods produce a binary classification for a
region—as either enriched or not. Due to the stochasticity inherent to enrichment
assays, it would be particularly useful to have a sort of “smoothed” estimate of the
true signal as an intermediate output, in addition to the simple call on enrichment.
This could provide additional insights into the actual physical characteristics of the
region.

Furthermore, enrichment assays produce data with features that are not entirely
unique from other tailing array and sequencing platforms and as a result we imagine
models could easily be modified to address other similar issues. For example, there
is a similar spatial relationship in DNA methylation levels from array hybridization
or sequencing of bisulfite-treated DNA as well as in copy number detection from
genome sequencing. A Markov chain-based approach would also be well suited for
these problems.

To address the above issues, we propose in this chapter a stochastic segmentation
model and associated inference framework. The proposed model has a hierarchical
hidden Markov structure that yields attractive statistical and computational proper-
ties. In particular, our model assumes a latent finite state Markov chain for categorical
features of a region, and then conditional on the latent finite-state Markov chain, the
true signal levels on the region follow a continuous state hidden Markov chain. As a
working model, such assumptions give us more flexibility to capture the categorical
and continuous features of signals with hierarchical structures simultaneously. Al-
though these assumptions seem to lead to complicated or computationally intensive
inference procedures, it turns out that the proposed model yields explicit recursive
formulas for the posterior distributions of latent finite state and continuous states
of Markov chains. To make implement the inference procedure more efficiently,
we further develop a bounded complexity mixture (BCMIX) approximation scheme
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to reduce the computational complexity of the algorithm to linear order. We also
develop an expectation-maximization (EM) algorithm to estimate the model hyper-
parameters for practical applications. The proposed model and developed inference
methods are closely related to the ones in Xing et al. (2014), which characterizes the
categorical and continuous features of the means and variances of observed data in
the recurrent copy number alteration analysis.

The rest of the chapter is organized as follows. Section 27.2 presents the model
assumptions and develops an inference procedure. It also discusses some compu-
tational issues of the model and propose a BCMIX approximation scheme and an
EM estimation procedure for model hyperparameters. Section 27.3 demonstrate the
performance of the model and associated inference procedure through extensive
simulation studies. Section 27.4 applies our model to identify the DNase I sensi-
tivity and DNase I hypersensitive sites (DHS) over the ENCODE regions in human
lymphoblastoid cells. Section 27.5 concludes the chapter.

27.2 A Stochastic Segmentation Model

27.2.1 Model Specification

We assume the following stochastic segmentation model for observations yt :

yt = μt + σtεt , t = 1, . . ., n, (27.1)

where εt are independent normal random variables with mean 0 and variance 1.
The latent states θt := (μt , σt ) take continuous values; however, they are governed
by a K-state irreducible hidden Markov chain {st } with transition probability matrix
Q = (qij ) and a stationary distribution π . Note that such specification corresponds to
the qualitative description of the hidden states. For example, K = 3 could represent
the three states (major DHS, minor DHS, and insensitive) discussed in Sect. 27.4.
As θt are continuous state variables, we assume that the dynamics of θt is given by

θt = 1{st=st−1}θt−1 + 1{st �=st−1}(zt , ν
2
t ), (27.2)

where
zt |νt ∼ N (z(k), ν2

t κ
(k)), (2ν2

t )−1 ∼ gamma (g(k), λ(k)),

and z(k), κ (k), λ(k), and g(k) (k = 1, . . .,K) are hyperparameters. This indicates that if
the categorical state st undergoes a transition, the continuous variable θt will jump
to another level, and the new level can be sampled from a normal-inverted gamma
prior distribution.

In the above specification, the existence of stationary distribution of Markov chain
{st } could define as a reversed chain for {st }. This further implies that the Markov
chain {θt } has a stationary distribution. Moreover, if we assume that θ0 is initialized at
the stationary distribution, {θt } becomes a reversible Markov chain, which provides
substantial simplification for computing the posterior distributions of θt and st .
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27.2.2 Forward Filters

Let J
(k)
t = max{i ≤ t : si−1 �= si = · · · = st = k} be the most recent location

prior or equal to t on which st switches to state K from another state. Denote
ξ

(k)
t = P (st = k|Ft ) and ξ

(k)
i,t = P (J (k)

t = i|Ft ) for 1 ≤ i ≤ t and 1 ≤ k ≤ K ,
in which Fi,j and Ft are defined as follows: Fi,j := {yi , . . ., yj }, and Ft := F1t .
Then by definition, ξ (k)

t = ∑t
i=1 ξ

(k)
i,t . We then note that, given Ft and J

(k)
t = i, the

conditional distribution of θt is given by

μt |(σt , Fit ) ∼ N
(

z(st )
it , σ 2

t κ
(st )
it

)
,

(
2σ 2

t

)−1 |Fit ∼ gamma
(
g

(k)
it , λ(k)

it

)
. (27.3)

in which

κ
(k)
it =

(
1

κ (k)
+ t − i + 1

)−1

, z(k)
it = κ

(k)
it

⎛
⎝ z(k)

κ (k)
+

t∑
j=i

yj

⎞
⎠ .

g
(k)
it = g(k) + (t − i + 1)/2,

1

λ
(k)
it

= 1

λ(k)
+ (z(k))2

κ (k)
+

t∑
j=i

y2
j − (z(k)

it )2

κ
(k)
it

.

Based on the above conditional distribution, the posterior distribution of θt given Ft

become mixtured normal-inverted gamma distributions:

θt |Ft ∼
K∑

k=1

t∑
i=1

ξ
(k)
i,t

[
θt |Fit , J

(k)
t = i

]
. (27.4)

Making use of
∑K

k=1

∑t
i=1 ξ

(k)
i,t = 1, we show in appendix that the conditional

probabilities ξ
(k)
i,t can be determined by the following recursions:

ξ
(k)∗
i,t :=

⎧⎨
⎩

(∑
l �=k ξ

(l)
t−1qlk

)
ψ

(k)
0,0

/
ψ

(k)
t ,t i = t ,

qkkξ
(k)
i,t−1ψ

(k)
i,t−1

/
ψ

(k)
i,t i < t ,

(27.5)

and the conditional probabilities ξ
(k)
i,t can be computed by

ξ
(k)
i,t = ξ

(k)∗
i,t

/⎡
⎣

K∑
h=1

t∑
j=1

ξ
(h)∗
j ,t

⎤
⎦ ,

in which

ψ
(k)
0,0 = (κ (k))−

1
2

(λ(k))−g(k)

�(g(k))
, ψ

(k)
i,j = 1√

κ
(k)
ij

1

�(g(k)
ij )

[
λ

(k)
ij

]−g
(k)
ij

.

Therefore, making use of (27.4) yields:

P (st = k|Ft ) =
t∑

i=1

ξ
(k)
i,t , E(θt |Ft ) =

K∑
k=1

t∑
i=1

ξ
(k)
i,t E(θt |Fit ). (27.6)
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27.2.3 Backward Filters

The model assumption implies that a stationary distribution of θt exists and can be
expressed as

K∑
k=1

πk normal (z(k),V (k)). (27.7)

As mentioned in Sect. 27.2.1, this allows us defining a reversed chain for θt , and such
reversed chain has the same structure as the one in the forward filter. In particular,
we define R

(k)
t = min{j ≥ t : k = st · · · = sj−1 �= sj } as the closest switching

positions larger than or equal to t on which st switches from state k to another state.
Let η

(k)
t = P (st = k|Ft ,T ) and η

(k)
j ,t = P (R(k)

t = j |Ft ,T ) for t ≤ j ≤ T and

1 ≤ k ≤ K . The quantity η
(k)
t is the conditional probability that the current state is k

given information Ft ,T , and η
(k)
i,t is the conditional probability that the current state

is k and the next transition occurs at location j given Ft ,T . Thus, η(k)
t = ∑T

j=t η
(k)
t ,j .

If we know all the information from time t to T and that the next transition occurs
at location j , we only need to use the information before the change to estimate the
current value of θt .

We then use the time-reversed chain of θt to obtain a backward analog of (27.4):

θt+1|Ft+1,T ∼
K∑

k=1

T∑
j=t+1

η
(k)
t+1,j

[
θt+1|Ft+1,j

]
, (27.8)

in which the weights η
(k)
t+1,j can be obtained by backward induction using the time-

reversed counterpart of (27.5):

η
(k)
t+1,j ∝ η

(k)∗
t+1,j :=

⎧⎨
⎩

(∑
l �=k η

(l)
t+2q̃lk

)
ψ

(k)
0,0/ψ

(k)
t+1,t+1 j = t + 1,

q̃kkη
(k)
t+2,jψ

(k)
t+2,j /ψ

(k)
t+1,j j > t + 1,

(27.9)

where Q̃ = (̃qlk) is the transition matrix of the reversed chain of {st }, and
q̃lk = P (st = k|st+1 = l). Since for B ⊂ R

d , P (βt ∈ B|Ft ,T ) = ∫
P (βt ∈

B|βt+1)dP (βt+1|Ft ,T ), it follows from (27.8) that

θt |Ft+1,T ∼
K∑

k=1

⎧⎨
⎩q̃kk

T∑
j=t+1

η
(k)
t+1,j

[
θt |Ft+1,j

]+
⎛
⎝∑

l �=k

q̃lkη
(l)
t+1

⎞
⎠ [θt |F0]

⎫⎬
⎭ . (27.10)

27.2.4 Smoothing Estimates of Hidden States

We now use Bayes’ theorem to combine the forward filter (27.4) with its backward
variant (27.10) to estimate θt and st given FT . Note that the posterior distribution of
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θt given FT can also be expressed as the following mixture:

θt |FT ∼
K∑

k=1

∑
1≤i≤t≤j≤T

α
(k)
ij ,t

[
θt |Fi,j

]
, (27.11)

in which the mixture weights α
(k)
ij ,t are posterior probabilities explained below.

Consider the event

C
(k)
ij = {si = · · · = sj = k, si �= si−1, sj �= sj+1},

i.e., C(k)
ij represents the event that the categorical state st is k from location t = i to

t = j , but not before or afterward. We can see that, for i ≤ t ≤ j , α(k)
ij t = P (C(k)

ij |Fn).

We then show in Appendix that α(k)
ij ,t can be calculated recursively as follows:

α
(k)
ij t = α

(k)∗
ij t

/
Dt , Dt =

K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)∗
ij t ,

α
(k)∗
ij t =

⎧⎨
⎩
ξ

(k)
i,t

(∑
l �=k η

(l)
t+1qkl/πl

)
i ≤ t = j ,

qkkξ
(k)
i,t η

(k)
t+1,jψ

(k)
i,t ψ

(k)
t+1,j

/
(πkψ

(k)
i,j ψ

(k)
0,0) i ≤ t < j.

(27.12)

Therefore, the smoothing estimates of θt and st given FT are given by

E(μt |FT ) =
K∑

k=1

∑
1≤i≤t≤j≤T

α
(k)
ij t z

(k)
i,j , (27.13)

E(σ 2
t |FT ) =

K∑
k=1

∑
1≤i≤t≤j≤T

1

2
(gk

ij − 1)−1(λk
ij )−1, (27.14)

P (st = k|FT ) =
∑

1≤i≤t≤j≤T

α
(k)
ij t . (27.15)

27.2.5 BCMIX Approximation

Although the Bayes filter (27.4) uses a recursive updating formula (27.5) for the
weights ξ

(k)
i,t (1 ≤ i ≤ t , 1 ≤ k ≤ K), the number of weights increases dramati-

cally with t , resulting in rapidly increasing computational complexity and memory
requirements in estimating θt as t keeps increasing. To address the issue of computa-
tional efficiency, we follow (Xing et al. 2006) and consider a BCMIX approximation
procedure with much lower computational complexity yet comparable to the Bayes
estimates in statistical efficiency. The idea of BCMIX approximation is to keep only
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a fixed number M of weights at every stage t , in particular, the most recent m

(1 ≤ m < M) weights ξ
(k)
i,t (with t − m < i ≤ t) and the largest M − m of the

remaining weights.
Denote K(k)

t−1 the set of induces i for which ξ
(k)
i,t−1 in (27.5) is kept at stage t −1 for

regime k. Note that there are at most M induces in K(k)
t−1 and K(k)

t−1 ⊃ {t − 1, · · · , t −
m}. When a new observation arrives at time t , we still define ξ

(k)∗
i,t by (27.5) for

i ∈ {t} ∪ K(k)
t−1 and denote it the index not belonging to the most recent m stages,

{t , t − 1, . . ., t − m + 1}, such that

ξ
(k)∗
it ,t = min{ξ (k)∗

i,t : i ∈ K(k)
t−1 and i ≤ t − m}, (27.16)

choosing i
(k)
t to be the one farthest from t if the minimizing set in (27.16) has more

than one element. Define K(k)
t = {t} ∪ (K(k)

t−1 − {i(k)
t }), and then

ξ
(k)
i,t =

⎛
⎝ξ

(k)∗
i,t

/ ∑

j∈K(k)
t

ξ
(k)∗
j ,t

⎞
⎠ , i ∈ K(k)

t , (27.17)

yields a BCMIX approximation to the forward filter.
Similarly, to obtain a BCMIX approximation to the backward filter (27.9), let

K̃(k)
t+1 denote the set of indices j for which η

(k)
j ,t+1 in (27.9) is kept at stage t + 1

for regime k; thus, K̃(k)
t+1 ⊃ {t + 1, · · ·, t + m}. At time t , define η

(k)
j ,t by (27.9) for

j ∈ {t} ∪ K(k)
t+1 and let jt be the index not belonging to the most recent m stages,

{t , t + 1, · · ·, t + m − 1} such that

η
(k)∗
jt ,t = min{η(k)∗

j ,t : j ∈ K̃(k)
t+1 and j ≥ t + m}, (27.18)

choosing j
(k)
t to be the one farthest from t if the minimizing set in (27.18) has more

than one element. Define K̃(k)
t = {t} ∪ (K(k)

t+1 − {i(k)
t }), and then

η
(k)
j ,t =

⎛
⎝η

(k)∗
j ,t

/ ∑

j∈K̃(k)
t

η
(k)∗
j ,t

⎞
⎠ , j ∈ K̃(k)

t , (27.19)

yields a BCMIX approximation to the backward filter.
For the smoothing estimate E(θt |FT ) and its associated posterior distribution, we

construct BCMIX approximations by combining the preceding forward and back-
ward BCMIX filters with index sets K(k)

t and K̃(k)
t+1, respectively, at time t . Then the

BCMIX approximations to (27.12) are given as

α̃ij t = α∗
ij t

/
D̃t , D̃t =

∑

i∈K(k)
t ,j∈{t}∪K̃(k)

t+1

α∗
ij t ,

α
(k)∗
ij t =

⎧⎨
⎩
ξ

(k)
i,t

(∑
l �=k η

(l)
t+1qkl/πl

)
i ∈ K(k)

t ,

qkkξ
(k)
i,t η

(k)
t+1,jψ

(k)
i,t ψ

(k)
t+1,j

/
(πkψ

(k)
i,j ψ

(k)
0,0) i ∈ K(k)

t , j ∈ {t} ∪ K̃(k)
t+1.
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Therefore, the BCMIX smoother for θt and st given FT are expressed as

E(θt |FT ) ≈
∑K

k=1

∑
i∈K(k)

t ,j∈{t}∪K̃(k)
t+1

α̃
(k)
ij t

[
θt |Fij

]
, (27.20)

P (st = k|FT ) ≈
∑K

k=1

∑
i∈K(k)

t ,j∈{t}∪K̃(k)
t+1

α̃
(k)
ij t . (27.21)

The BCMIX approximation fixes the number of filters as M at each time, and keeps
the m closest weights and the other M − m largest weights. This reduces the com-
putational complexity, O(T 2) of the filter in Sects. 27.2.1 and 27.2.2 and O(T 3) of
the smoother in Sect. 27.2.3, to O(T ). The specification of M and m are discussed
in Sect. 27.3.

27.3 Simulation Studies

In this section, we access the performance of the proposed inference procedure via
extensive simulation studies. Since our estimates deal with means and variables of
continuous state variables and finite state variables, we use the following three mea-
sures to access the performance. We define the mean squared error (MSE) between
true and estimated means:

SSE = 1

T

T∑
t=1

(μt − μ̂t )
2.

To measure the divergence between the true and estimated (μt , σt ), we consider the
Kullback–Leibler (KL) divergence:

2KL(θt , θ̂t ) = (μt − μ̂t )2

σ̂ 2
t

+ σ 2
t

σ̂ 2
t

− 1 − log

(
σ 2
t

σ̂ 2
t

)
.

We use κ to represent the average of KL for the whole sample

κ := 2

T

T∑
t=1

KL(θt , θ̂t ).

To evaluate the estimates r̂ (k)
t |T = P (st = k|Ft ) for st , we first estimate st by k such that

the computed probability r̂
(k)
t |T for k is larger than 0.5. We then define the identification

ratio (IR) as

IR := 1

T

T∑
t=1

K∑
k=1

1(̂r (k)
t |T >0.5)∩(st=k),
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27.3.1 Comparison of Bayes and BCMIX Estimates in Frequentist
Setting

We first evaluate the performance of Bayes and BCMIX estimates and see if the
BCMIX approximation is close enough to Bayes estimates. We consider four cases
of the hidden state {st } with K = 2 and T = 1000.

Case 1. st = 1 · 1{1≤t≤200} + 2 · 1{201≤t≤1000}.
Case 2. st = 1 · 1{1≤t≤800} + 2 · 1{801≤t≤1000}.
Case 3. st = 1 · 1{1≤t≤350,701≤t≤1000} + 2 · 1{351≤t≤700}.
Case 4. st = 1 · 1{1≤t≤200,401≤t≤600} + 2 · 1{201≤t≤400,601≤t≤1000}.

Given {st }, the signals θt are generated by (27.2) with following hyperparame-
ters, z(1) = 2.0, κ (1) = 0.8, λ(1) = 0.8, g(1) = 2.5; z(2) = 4.0, κ (2) = 1.0, λ(2) =
0.5, g(2) = 1.8 and transition probability matrix Q such that q11 = 0.99, q22 = 0.9.

We then compute the Bayes and BCMIX estimates using the procedure in
Sect. 27.3. For BCMIX estimates, we consider four settings of (M ,m), which in-
cludes (10, 5), (20, 10), (30, 15), and (40, 20). To evaluate the performance of our
estimates, we also consider an oracle estimate that assumes the hidden state of each
position is known, so that the Bayes estimates of θt between two transitions can be
computed via standard Bayes formulas (Sect. 2.7 of Box and Tiao 1973). We then
run such simulation 500 times for each case, and summarize the results in Table 27.1
(the standard errors are given in parentheses).

We find that, in terms of the estimates of μt , the oracle estimate has the small-
est MSE while the performance of BCMIX estimates are comparable to the Bayes
estimates. The relative differences between the BCMIX(10,5) and oracle estimates
is less than 2 % in all cases, suggesting the BCMIX estimate is also comparable
to the oracle estimate. In terms of the estimated μt and σt , the KL divergence in
Table 27.1 has the similar pattern to the MSE measure in all cases. For categorical
states st , the IRs of Bayes and BCMIX estimates in Table 27.1 are very high, and the
BCMIX estimates performs even slighly better than the Bayes estimates. Actually,
the standard errors of the IRs estimated by BCMIX methods are smaller than that
of Bayes methods, indicating that BCMIX has less variations or better stability. We
further notice that the difference of MSE among four settings of (M ,m) in BCMIX
estimates is very small, so we focus on the performance of BCMIX estimates in the
sequel for (M ,m) = (20, 10).

27.3.2 Performance of BCMIX Estimates Under Model
Assumptions

We then evaluate the performance of the BCMIX estimate when st is indeed a hidden
Markov chain. In this study, we only consider the BCMIX estimate with (M ,m) =
(20, 10) for different types of transition probabilities. Specifically, we assumeK = 2,
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Table 27.1 Performance of the oracle, Bayes and BCMIX estimates

BCMIX(M ,m)

Case Oracle Bayes (10, 5) (20, 10) (30, 15) (40, 20)

MSE 1 0.0023 0.0031 0.0025 0.0025 0.0025 0.0025
(1.3e-4) (1.6e-4) (1.6e-4) (1.6e-4) (1.6e-4) (1.6e-4)

2 0.0024 0.0031 0.0024 0.0024 0.0025 0.0025
(1.3e-4) (1.5e-4) (1.4e-4) (1.4e-4) (1.4e-4) (1.4e-4)

3 0.0027 0.0035 0.0030 0.0030 0.0030 0.0030
(1.3e-4) (1.7e-4) (1.6e-4) (1.6e-4) (1.6e-4) (1.6e-4)

4 0.0027 0.0051 0.0045 0.0045 0.0045 0.0045
(1.3e-4) (2.3e-4) (2.2e-4) (2.2e-4) (2.2e-4) (2.2e-4)

103κ 1 3.973 5.461 4.269 4.268 4.268 4.268
(1.2e-4) (2.1e-4) (2.0e-4) (2.0e-4) (2.0e-4) (2.0e-4)

2 4.027 5.394 4.200 4.199 4.198 4.198
(1.3e-4) (1.8e-4) (1.7e-4) (1.7e-4) (1.7e-4) (1.7e-4)

3 5.882 7.434 6.245 6.244 6.244 6.242
(1.4e-4) (2.8e-4) (2.8e-4) (2.8e-4) (2.8e-4) (2.8e-4)

4 7.883 9.557 8.365 8.365 8.364 8.362
(1.4e-4) (2.8e-4) (2.7e-4) (2.7e-4) (2.7e-4) (2.7e-4)

IR×100 % 1 99.9892 99.9992 99.9992 99.9992 99.9992
(2.0e-5 ) (4.0e-6 ) (4.0e-6 ) (4.0e-6 ) (4.0e-6 )

2 99.9898 99.9994 99.9994 99.9994 99.9994
(1.9e-5) (4.5e-6) (4.5e-6) (4.5e-6) (4.5e-6)

3 99.9894 99.9999 99.9999 99.9999 99.9999
(2.0e-5) (4.5e-6) (4.5e-6) (4.5e-6) (4.5e-6)

4 99.9884 99.9984 99.9984 99.9984 99.9984
(2.1e-5) (5.6e-6) (5.6e-6) (5.6e-6) (5.6e-6)

BCMIX bounded complexity mixture, IR identification ratio, MSE mean squared error

z(1) = 2.0, κ (1) = 0.8, λ(1) = 0.8, g(1) = 2.5, z(2) = 4.0, κ (2) = 1.0, λ(2) = 0.5,
g(2) = 1.8. The 2 × 2 transition matrix Q has the following nine scenarios:

Scenario S1. (q11, q22) = (0.001, 0.001).
Scenario S2. (q11, q22) = (0.002, 0.001).
Scenario S3. (q11, q22) = (0.002, 0.002).
Scenario S4. (q11, q22) = (0.004, 0.001).
Scenario S5. (q11, q22) = (0.004, 0.002).
Scenario S6. (q11, q22) = (0.008, 0.004).
Scenario S7. (q11, q22) = (0.008, 0.008).
Scenario S8. (q11, q22) = (0.016, 0.008).
Scenario S9. (q11, q22) = (0.016, 0.016).

For each scenarios, we first simulate observations {yt }based on our model assumption
for T = 3000, 4000, 5000, 6000, and 7000, then use the EM algorithm to estimate
the hyperparameters, and compute the BCMIX (20, 10) estimates. We then run 500
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simulation for each specific setting. Table 27.2 summarizes the simulation result,
and also provided the corresponding standard errors based on 500 simulations in
parentheses of each cell. We can see that the MSE is very small and keeps almost
constant when T increases. κ has a tendency of decreasing when T increases. When
T changes from 3000 to 4000, there is a significant decrease in κ . Furthermore, the
IRs in all scenarios are larger than 95 %. The above observations suggest the BCMIX
estimates show good performance in identifying the hidden categorical states st and
continuous states θt .

27.4 A Real Data Analysis

We applied the stochastic segmentation model to a real dataset: Nimblegen ENCODE
Arrays for identifying DNase I sensitivity and DHS over the ENCODE regions in
human lymphoblastoid cells (GSE4334). We display some characteristic results of
our model such as posterior means, variance, and state probabilities. Genome browser
screenshots are also used to demonstrate the biological relevance of the results.

This data were published on July 27, 2006, with the series number GSE4334
in the Gene Expression Omnibus (GEO) database. The goal of this study was to
map DNase I sensitive and DHS over the covered ENCODE regions in human lym-
phoblastoid cells (GM06990, Coriell). The assay protocol used by (Sabo et al. 2006)
is a “quantitative chromatin profiling” method previously introduced by (Dorschner
et al. 2004). In brief, intact nuclei were first isolated and divided into two fractions,
one treated with DNase I, another which was not. In a departure from the (Dorschner
et al. 2004) method that utilized a single enzymatic cut, (Sabo et al. 2006) further
size-selected for small fragments by cutting a second time with DNase I in close
proximity. Then, using a custom-designed Nimblegen array which employed around
39,000 50-mer probes tiled with 12-mer overlaps and falling within 44 genomic EN-
CODE segments, signal-to-noise ratios were calculated from the observed intensities
at each probe position by comparing DNase-I-treated versus untreated samples. It
was these signal-to-noise ratios that served as the input for our algorithm.

Since the study involves three states (major DHS, minor DHS, and insensitive
sites), we label those states as state 1, 2, and 3, respectively, in the model and per-
form the analysis for each of 23 chromosomes. Due to the page limit, we only show
numerical results of six randomly selected chromosomes (chromosomes 1, 5, 7, 8,
9, and 12) and provide graphical interpretation for two chromosomes (chromosomes
1 and 6). In particular, for each chromosome, we first use the EM algorithm to es-
timate the hyperparameters of the model. Tables 27.3 and 27.4 show the estimated
parameters in hyper priors and transition probabilties of the model for each chro-
mosome. We can see that the patterns of estimated transition probabilities for each
chromosome are quite similar. We then use the estimated parameters to compute the
postier distribution of continuous and categorical states via BCMIX(20, 10) algo-
rithm. Table 27.5 summarizes some relevant statistics of the results. For example,
major and minor hypersensitive sites comprise only a small fraction of the genome
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Table 27.3 Estimated parameters in hyperpriors of the model for six chromosomes

Chr 1 Chr 5 Chr 7 Chr 8 Chr 9 Chr 12

z1 1.6287 1.4385 1.3999 1.3320 1.6070 1.4157

z2 0.3614 0.3387 0.3102 0.2784 0.2162 0.3038

z3 −0.0166 −0.0339 −0.0238 −0.0442 −0.0174 −0.0204

κ1 0.9716 1.4020 1.4041 1.0464 0.9235 1.2234

κ2 2.0104 2.0329 2.1900 2.5055 2.4176 2.2494

κ3 1.3335 1.0567 1.0551 0.8612 1.2474 1.0216

λ1 1.3860 1.4965 1.7600 1.9908 1.2697 1.8861

λ2 4.4515 4.5131 5.2046 5.3476 4.3205 5.3941

λ3 10.2532 7.9558 8.5532 8.1350 8.2500 8.6679

Table 27.4 Estimated transition probabilities for six chromosomes

Major DHS Minor DHS Insensitive Major DHS Minor DHS Insensitive
(State 1) (State 2) (State 3) (State 1) (State 2) (State 3)

Chr1 State 1 0.8637 0.1001 0.0362 Chr5 0.8104 0.1430 0.0466

State 2 0.0325 0.7985 0.1690 0.0234 0.8118 0.1648

State 3 0.0048 0.0250 0.9702 0.0025 0.0214 0.9761

Chr7 State 1 0.8162 0.1293 0.0545 Chr8 0.8272 0.1200 0.0528

State 2 0.0162 0.8220 0.1618 0.0108 0.8025 0.1867

State 3 0.0020 0.0203 0.9777 0.0017 0.0128 0.9855

Chr9 State 1 0.8253 0.1133 0.0614 Chr12 0.8170 0.1215 0.0615

State 2 0.0128 0.7741 0.2131 0.0204 0.8343 0.1453

State 3 0.0021 0.0313 0.9666 0.0020 0.0173 0.9807

DHS DNase I hypersensitive sites

Table 27.5 Base level coverage and segment lengths for three states

Major DHS Minor DHS Insensitive

(State 1) (State 2) (State 3)

Number of segments 815 5127 31,104

Number of bases 234 kb 802 kb 13,326 kb

Percent of bases 1.60 % 5.60 % 92.80 %

Mean of segment length 287 156 428

DHS DNase I hypersensitive sites

(7.2 %) as compared to insensitive regions (92.8 %). This suggests that the majority
of the genome exists in a more compact, less accessible state and only a fraction is
openly accessible, a state more amenable to regulation or transcription, at any given
moment.

We then chose chromosomes 1 and 6 to visualize the posterior means, variance and
state probabilities that are estimated by our model. Figure 27.1 displays the observed
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Fig. 27.1 The observation of 600 probes in chromosomes 1 (upper panel) and 6 (lower panel)

signal-to-noise ratios across the first 600 probes on chromosome 1 which cover 55024
basepairs (chr1:148374643-148429666) and another 600 probes on chromosome 6
which cover 37164 basepairs (chr6:41537432-41574595). The presence of clear
peaks on both chromosomes demarcate the regions of increased coverage due to
DNase I hypersensitivity that we are trying to capture. We then show the posterior
estimates of chromosomes 1 and 6 in Figs. 27.2 and 27.3, respectively. These two
figures demonstrate that our model performs well at smoothing the highly variable
signals and generates reasonable state calls. Based on estimated state probabilities,
we can identify the categorical states by using a threshold line of 0.5, as the way
suggested in the beginning of Sect. 27.3. Shown in Fig. 27.4 is a genome browser
screenshot for the series from chromosome 1, in which some of the major and minor
hypersensitive sites called by our model are annotated. Notably, there is a distinct
hypersensitive region in the upstream promoter of PLEKH01 gene and extending
across its transcription start site (TSS) into its gene body. This is consistent with the
expectation for highly accessible chromatin, which would be extremely susceptible
to DNase I, within cis-regulatory regions that are commonly associated with gene
promoters and enhancers.

To assess DNase I hypersensitive (DHS) island accuracy, we operated on the
assumption that high signal-to-noise ratios falling within DHS islands would be
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Fig. 27.2 The posterior estimation of mean (the first panel), variance (the second panel) and state
probabilities (bottom two panels) for chromosome 1

enriched and flanked by significantly reduced ratios outside of the island boundaries
thereby forming a plateau-shaped profile. Given this, we examined the profiles of
our call and the DHS island calls in Sabo et al. (2006), including flanking regions up-
and downstream half the island length. We divided the islands, plus flanks, into 100
equal-sized bins and calculated average read densities within each bin. Our method
showed a much more pronounced plateau (Figure 27.5), which implies our DHS
islands more accurately defined island boundaries dividing regions of higher and
lower DNase I accessibility.

As mentioned, common wisdom suggests that functionally relevant regions of
DNA are more susceptible to enzymatic digestion by DNase treatment due to
increased accessibility at cis-regulatory elements. We assessed the degree of enrich-
ment of our DHS islands within regions of known functional importance, including
CpG islands, known genes, mRNA transcripts, spliced expressed sequence tags
(ESTs), and regions enriched for histone modification marks. We adopted the same
enrichment calculation as Lian et al. (2008). Compared to the DHS called by Sabo
et al. (2006), our results exhibit better enrichment at major DHS and similar enrich-
ment on the union of major and minor DHS (Fig. 27.6). The method of calculation
of enrichment is same as in Lian et al. (2008). These results suggest our model is
capable of more accurately capturing regions hypersensitive for DNase I cleavage.
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Fig. 27.3 The posterior estimation of mean (the first panel), variance (the second panel) and state
probabilities (bottom two panels) for chromosome 6

Fig. 27.4 A screenshot corresponding to the selected series of chromosome 1 from UCSC genome
browser. UCSC University of California Santa Cruz

The boundaries of such regions are more clearly and accurately defined which mini-
mizes the amount of false positive signal and search space propagated to downstream
analysis. For example, one consequence of accurately identifying DHS is the identi-
fication of more concise regions of possible transcription factor binding. Therefore,
analysis for enrichment of motif recognition sites within these DHS regions would
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Fig. 27.5 The assessment of DHS island accuracy. DHS DNase I hypersensitive sites

Fig. 27.6 Enrichment of annotation functional elements
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be simplified. All in all, our model provides a sound statistical basis for improved
analysis of enrichment assays like DNase I hypersensitivity.

27.5 Conclusion

We have developed a stochastic segmentation model and an associated inference
framework to identify DNase I sensitivity and DHS over the ENCODE regions in hu-
man lymphoblastoid cells. The proposed model yields explicit recursive formulas for
posterior distributions of both categorical and continuous states. To reduce the com-
putational comlexity to linear order, an approximation to the exact explicit formulas
is also developed. These make the model more attractive statistically and computa-
tionally. To estimate the hyperparameters for the practical purpose, an explicit EM
algorithm is also developed and described in the appendix.

As demonstrated by application to the Nimblegen ENCODE Array dataset, our
model makes important advances to existing heuristic algorithms used to identify
regions of DNase I hypersensitivity. The explicitly determined posterior means of
signal-to-noise ratios can be viewed as a more representative smoothed estimate of
the true underlying signal and should more accurately pinpoint regions of increased
DNA accessbility. This estimate leverages the known correlation of nearby genomic
positions through a Markov chain, thus providing a sound statistical underpinning.
As has been pointed out previously, our model is able to more accurately identify
regions hypersensitive to DNase I digestion at higher resolution, with segmentation
points more clearly distinguishing enriched and unenriched genomic regions. This
type of sequential data structure is actually quite common in genomics research.
Many other assays share a similar relationship where local genomic regions are
expected to have highly correlated signals. Two immediately obvious data types,
DNA methylation and copy number variation, are areas of intense research and it
is clear that the principles of the model we describe here can easily be modified to
address the peculiarities of these problems as well. Notably, methods in common
usage for analyzing these datasets are largely heuristic or make use of finite state
Hidden Markov models with significant dependency on simulations. As was the
case with DNase I hypersensitivity detection, we see notable room for improvement
through implementation of our work.
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Appendix A. Proof of 27.5 and 27.12

Proof of 27.5: To derive the mixture weight ξ (k)
i,t , we first note that

f (θt , yt , st−1 = k|Ft−1) =
K∑
l=1

f (θt , yt , st−1 = k, st = l|Ft−1).

When l �= k,

f (θt , yt , st−1 = k, st = l|Ft−1)

=f (θt , yt |Ft−1, st−1 = k, st = l)P (st−1 = k, st = l|Ft−1)

=f (yt |Ft−1, J (l)
t = t)f (θt |Ft , J

(l)
t = t)P (st = l|st−1 = k)P (st−1 = k|Ft−1)

=f (yt |Ft−1, J (l)
t = t)f (θt |Ft , J

(l)
t = t)pk,lξ

(k)
t−1.

When l = k,

f (θt , yt , st−1 = k, st = k|Ft−1) =
t−1∑
i=1

f (J (k)
t = i, θt , yt |Ft−1)

=
t−1∑
i=1

f (θt , yt |Ft−1, J (k)
t = i)P (st−1 = k, st = k|Ft−1)

=
t−1∑
i=1

f (yt |Ft−1, J (k)
t = i)f (θt |Ft , J

(k)
t = i)P (st = k|st−1 = k)P (st−1 = k|Ft−1)

=
t−1∑
i=1

f (yt |Ft−1, J (l)
t = t)f (θt |Ft , J

(k)
t = i)pk,kξ

(k)
i,t−1.

Let

ξ
(k)∗
i,t =

⎧⎨
⎩

(∑
l �=k ξ

(l)
t−1plk

)
f (yt |J (k)

t = t) i = t ,

pkkξ
(k)
i,t−1f (yt |Ft−1, J (k)

t = i) i < t.

We then have

f (βt |Ft ) ∝
K∑

k=1

ξ
(k)∗
t ,t f (θt |Ft , J

(l)
t = t) +

K∑
k=1

t−1∑
i=1

ξ
(k)∗
i,t f (θt |Ft , J

(k)
t = i).

Hence, the mixture weight ξ (k)
i,t is the conditional probability which can be determined

via normalization of ξ (k∗)
i,t . Furthermore, simple algebra shows that

f (yt |J (k)
t = t) = ψ

(k)
0,0

/
ψ

(k)
t ,t , f (yt |Ft−1, J (k)

t = i) = ψ
(k)
i,t−1

/
ψ

(k)
i,t ,



490 H. Xing et al.

where

ψ
(k)
0,0 = (κ (k))−

1
2

(λ(k))−g(k)

�(g(k))
, ψ

(k)
ij = (κ (k)

ij )−
1
2

(λk
ij )−g

(k)
ij

�(g(k)
ij )

,

for i ≤ j . This proves (27.5).

Proof of (27.12): We use Bayes’ theorem to combine the forward filter (27.4)
with its backward variant (27.10) to derive the posterior distribution of θt given FT

(1 ≤ t < T )

f (θt |FT ) =
K∑

k=1

f (θt , st = k|FT ) ∝
K∑

k=1

f (θt , st = k|Ft )
f (θt , st = k|Ft+1,T )

f (θ , st = k)
.

(27.22)

We first consider the following:

f (θt , st = k|Ft )f (θt , st = k|Ft+1,T )
/
f (θ , st = k)

=
∑t

i=1 ξ
(k)
i,t f (θt |Fi,t ) · {̃qkk

∑T
j=t+1 η

(k)
t+1,j f (θt |Ft+1,j ) +∑

l �=k q̃lkη
(l)
t+1f (θt |st = k)}

P (st = k)f (θt |st = k)

=
∑t

i=1 ξ
(k)
i,t f (θt |Fi,t ) · q̃kk

∑T
j=t+1 η

(k)
t+1,j f (θt |Ft+1,j )

πkf (θt |st = k)

+
∑t

i=1 ξ
(k)
i,t f (θt |Fi,t ) ·∑l �=k q̃lkη

(l)
t+1f (θt |st = k)

πkf (θt |st = k)

=
t∑
i

ξ
(k)
i,t

∑
l �=k

q̃lk

πk

η
(l)
t+1f (θt |Fi,t ) + q̃kk

πk

∑
1≤i≤t≤j≤T

ξ
(k)
i,t η

(k)
t+1,j

f (θt |Fi,t )f (θt |Ft+1,j )

f (θt |st = k)
.

Note that

f (θt |Fi,t )f (θt |Ft+1,j )

f (θt |st = k)
= ψ

(k)
i,t ψ

(k)
t+1,j

ψ
(k)
i,j ψ

(k)
0,0

f (θt |Fi,j ),

we then obtain
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Hence, (27.12) is proved.
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Appendix B. EM Algorithm for Hyperparameter Estimation

The inference procedure in the above sections involve the hyperparameters Φ =
{Q, z(k), κ (k), λ(k), g(k); k = 1, . . ., }, is a [4K + K(K − 1)]-dimensional vector. We
can use the EM algorithm to exploit the much simpler structure of the log likelihood
lc(Φ) of the complete data {(yt , st , θt ), 1 ≤ t ≤ T }, which is expressed as

lc(Φ) =
T∑

t=1

log f ({yt , st , θt })

=
T∑

t=1

{
log f (yt |θt ) +

K∑
k=1

f (θt |st = k)1{st=k} +
K∑

k,l=1

log (pkl)1{st−1=k,st=l}
}

= −
T∑

t=1

{ (yt − μt )2

2σ 2
t

+ 1

2
log (2σ 2

t )
}

−
T∑

t=1

K∑
k=1

{ (μt − z(k))2

2σ 2
t κ

(k)
+ 1

2
log (2σ 2

t κ
(k))
}

−
T∑

t=1

K∑
k=1

{
g(k) log (λ(k)) − log (Γ (g(k))) − (g(k) − 1) log (2σ 2

t ) + 1

2σ 2
t λ

(k)

}
1{st=k}

+
T∑

t=1

K∑
k,l=1

log (pkl)1{st−1=k,st=l}. (27.23)

The E-step of the EM algorithm calculates E[lc(Φ)|Ft ], which involves the
computation of the conditional expectations:

E

[
(yt − μt )2

2σ 2
2

|FT

]
, E[ log (2σ 2

t )|FT ], E

(
(μt − z(k))2

2σ 2
t κ

(k)
1{st=k}|FT

)
,

E[ log (2σ 2
t κ

(k))1{st=k}|FT ], E[ log (2σ 2
t )1{st=k}|FT ], E

(
1

2σ 2
t λ

(k)
1{st=k}|FT

)
,

and the conditional probability:

P (st = k|FT ), P (st−1 = k, st = l|FT ).

The M-step of the EM algorithm involves calculating the partial derivatives of
E[lc(Φ)|Ft ] with respect toΦ. Simple algebra yields the following updating formulas
for Φ:

q̂kl,new =
∑T

t=2 P (st−1 = k, st = l|FT , Φ̂old)∑T
t=2 P (st−1 = k|FT , Φ̂old)

,

ẑ(k)
new =

∑T
t=1 E[μt/(2σ 2

t )1{st=k}|FT , Φ̂old]∑T
t=1 E[Pt1{st=k}|FT , Φ̂old]

,
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new =2
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(27.24)

I-terms in (27.24) can be obtained as follows:
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in which
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2
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We can use the BCMIX approximations instead of the full recursions to determine
the items (27.25)–(27.29) in order to speed up computation. The iteration scheme
(27.24) is carried out until convergence to estimate hyperparameters.
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Chapter 28
Combining p Values for Gene Set Analysis

Ziwen Wei and Lynn Kuo

Abstract In detecting genes which are significantly associated with a treatment,
a clinical outcome, or an experimental design variable from high-throughput gene
expression data, it is common to examine genes individually. However, it would be
advantageous to analyze them at the level of gene sets where the sets are predefined,
for example, as the genes belong to the same biological pathway, chromosomal
location, or regulation. Gene set analysis (GSA) will ease the interpretation of a large-
scale experiment by identifying important pathways and processes. An increasing
number of GSA methods are being proposed.

In this chapter, we propose another method based on aggregating individual p
values within the set. We evaluate the proposed approach along with six other gene
set methods including gene set enrichment analysis (GSEA), GSA by Efron and
Tibshirani (GSA-ET), random set, significance analysis of microarray for gene sets
(SAM-GS), global test, and global analysis of covariance (ANCOVA) by a simulation
experiment, where we compare them in terms of the false positive rate (FPR), false
negative rate (FNR), false discovery rate (FDR), false non-discovery rate (FNDR),
and receiver operating characteristic (ROC) curve.

28.1 Introduction

When microarray technology was first developed, a large number of statistical meth-
ods were developed to screen for differentially expressed (DE) genes between two
groups of samples. They are mostly individual gene analysis (IGA) consisting of two
steps: first, we select a set of significant genes based on individual gene scores and
a threshold, and second, we seek a biological interpretation of this selected set. The
IGA is sensitive to the noise in the microarray data and thresholds that are selected
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(Pan et al. 2005). Hence, we saw gradual interests in the development of gene set
analysis (GSA) to identify DE sets across different conditions, where the sets are
predefined, for example, consisting of genes in a pathway. The null hypothesis of
GSA can be summarized into two types (Nam and Kim 2008): (1) The level of the
association of a gene set with the phenotype is the same as the complement of the
gene set with the phenotype; (2) consider only genes within the set, in which no gene
is associated with the phenotype. Consequently, the methods developed accordingly
were termed competitive and self-contained tests, respectively. As opposed to IGA,
GSA is a single-step process to infer the biological meaning of the set by either
applying a sampling or a gene randomization test. It is more appealing than IGA in
understanding the cellular process, because weak expression changes in individual
genes gathered together may show a significant effect.

In this chapter, we propose a new gene set method which summarizes a gene set
using individual p values in the set instead of individual gene scores, for example,
the t-statistic. It relies on the fact that the individual p values tend to be small for
both upregulated genes and downregulated genes. Let us consider a gene set denoted
by S. We start with individual p values from t-statistics for genes in set S, denoted
by pi , i ∈ S. Next, let si = −2 log (pi), and summarize them by the total sum
score T Sobs = ∑

i∈S si . Then we evaluate the p value of the total sum score by the
permutation method. Fisher (1932) first develops the combined p value approach
which is also known as the Fisher’s combined probability test to combine the results
from several independent tests having the same null hypothesis. It has been used
routinely in meta-analysis (Hedges and Olkin 1985). It has also been extended to
combine dependent p values with either known covariance by Brown (1975) or
unknown covariance by Kost and McDermott (2002). Although we use the same
combined probability test (essentially a product of p values) proposed by Fisher,
our hypothesis is very different from that in the meta-analysis. In meta-analysis, the
null hypothesis is that all of the separate null hypotheses are true. The alternative
hypothesis is that at least one of the separate alternative hypotheses is true. When
we apply the same Fisher’s combined p value test statistics to the GSA, our null
hypothesis is that the set is not particularly enriched by significant genes associated
with the clinical outcome. To test this null hypothesis, Fisher’s exact test is often
used. Z-test, t test, Kolmogorove–Smirnov test, and unpaired Wilcoxon’s test have
also been developed for GSA. All these procedures evaluate the proportion of DE
genes in the set to a reference. As far as we know, our method of aggregating p values
within the set has not been applied to GSA. Our method not only takes into account
the number of DE genes in the set but also incorporates the strength of DE evidence
for individual genes. So we would like to examine it in the perspective of testing sets
of DE genes and argue that it is desirable to apply this test to GSA by the following
simulation study.

We conduct a simulation study to compare our method to six other GSA methods
in terms of false positive rate (FPR), false negative rate (FNR), false discovery rate
(FDR), false non-discovery rate (FNDR), and receiver operating characteristic (ROC)
curve. These six methods are: gene set enrichment analysis (GSEA) by Subramanian
et al. (2005), GSA by Efron and Tibshirani (2007; GSA-ET), random set (RS) method
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by Newton et al. (2007), significance analysis of microarray for gene sets (SAM-
GS) by Dinu et al. (2007), global test by Goeman et al. (2004), and global analyis
of covariance (ANCOVA) test by Mansmann and Meister (2005).

Our simulation study demonstrates that the proposed method has more power in
detecting DE gene sets than several other commonly used methods, especially when
sets contain a lot of DE genes in both directions, up- and downregulated.

There are other studies to evaluate GSA methods. For example, Liu et al. (2007)
conduct a comparative study on global test, global ANCOVA test, and SAM-GS test;
Dinu et al. (2008) evaluate the biological performance of six GSA: SAM-GS, global
test, global ANCOVA test, the method of Tian et al. (2005), the method of Tomfohr
et al. (2005), and GSEA; andAbatangelo et al. (2009) compare four methods: Fisher’s
exact test, GSEA, RS, and gene list analysis with prediction accuracy (GLAPA). An
even broader range of 16 approaches are compared in Tarca et al. (2013).

A brief summary of the six GSA methods that were used for comparison to our
method is provided in Sect. 28.2. Our proposed approach based on aggregating
individual p values within each gene set is discussed in Sect. 28.3. In Sect. 28.4, we
evaluate these seven methods by a simulation experiment in which five scenarios with
different number of DE sets and different magnitude of differentiation are considered.
Section 28.4.1 describes the simulated data, and Sect. 28.4.2 presents and discusses
the simulation results, including a comparison among the seven methods in terms of
the accuracy and the receiver operating characteristic (ROC) curve. Section 28.5 is
devoted to a real data analysis using preferred methods. At the end, discussions are
given in Sect. 28.6.

28.2 Review of Existing Methods

28.2.1 GSEA

GSEA was initially proposed by Mootha et al. (2003) to provide a set enrichment
score for assessing its association with a phenotype, say D for example, using the
Kolmogorov–Smirnov running sum statistic. The method is then improved by Subra-
manian et al. (2005) in which the components of the original Kolmogorov–Smirnov
statistic are weighted by the strength of associations between the genes and the
phenotype.

GSEA Procedure
Step 1: For gene i, i = 1, ...,N , compute a Pearson correlation ri (or other metrics)

between gene i and phenotype D.
Step 2: Establish a gene list L by sorting N genes according to ri from maximum

to minimum.
Step 3: Let ES be the running sum score for gene set S. Start with ES = 0,

walking down the list L, add ES by |ri |∑
l∈S |rl | if i ∈ S; decrease ES by 1

N−M
if i /∈ S.

Step 4: LetES(S) be the enrichment score of gene setS, whereES(S) =maximum
deviation of ES from 0.
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Step 5: Permute labels of phenotype D and repeat steps 1–4 a large number of
times to obtain the permutation distribution of ES(S).

Step 6: Statistical significance for the association between the gene set S and the
phenotype D is obtained by the proportion of permutations with ES(S) larger than
the observed ES(S) which is positive, or proportion of permutations with ES(S)
smaller than the observed ES(S) which is negative.

28.2.2 GSA-ET

GSA-ET is introduced by Efron and Tibshirani (2007) improving upon GSEA by
using a more robust statistics called maxmean and a permutation test that employs
both subject resampling and gene resampling. The maxmean statistics would prevent
a few large positive or negative scores in the gene set dominating the whole set. Efron
and Tibshirani (2007) call their procedure GSA. Given we have used GSA for the
gene set analysis in general, we just use GSA-ET for this procedure, where ET are
the first letters of the two authors.

GSA-ET Procedure
Step 1: Start with a gene-level t-statistic ti for gene i, and convert it to a z value

by

zi = Φ−1(Fn−2(ti)), (28.1)

where Fn−2 is cdf of the t distribution with df = n − 2, Φ−1 is the inverse cdf of a
standard normal random variable, and zi follows N (0, 1) under the null hypothesis.

Step 2: Define s(z) = (s(+)(z), s(−)(z)), where s(+)(z) = max(z, 0) and s(−)(z) =
−min(z, 0). And define (s(+)

S , s(−)
S ) to be the average of s(z). Then the proposed

maxmean statistic for set S, is defined as

Smaxmean = max
(
s

(+)
S , s(−)

S

)
. (28.2)

Step 3: Randomly shuffle the gene labels and repeat step 2 for a large number of
times to get the mean denoted by meanSmaxmean and the standard deviation SDSmaxmean .
Standardize Smaxmean by

S ′
maxmean = Smaxmean − meanSmaxmean

stdevSmaxmean

. (28.3)

Step 4: Repeat steps 1–3 for B times (B is large) by column permuted bootstrap
data sets, yielding S

′∗1
maxmean, S

′∗2
maxmean, ..., S

′∗B
maxmean.

Step 5: Statistical significance for association between gene set S and phenotype
D is obtained by the proportion of permutations with S

′∗
maxmean from step 4 greater

than S
′
maxmean observed from the data.
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28.2.3 Random Set

RS method is proposed by Newton et al. (2007) in which the set-level score is
defined as the average of the gene-level scores in this set. RS method treats the
unstandardized enrichment score of the gene set as a random variable as in the
simple random sampling without replacement. With the first two moments of this
random variable given analytically, RS method is one of the computationally most
efficient methods.

RS Procedure
Step 1: Starting with a gene-level score di for gene i, for example, log(fold change)

or t-statistic, obtain a set-level score as the average of di’s in gene set S of size M:

X = 1

M

∑
i∈S

di . (28.4)

Step 2: Consider X as a random variable. It is claimed that the distribution of X
is approximately Gaussian, with mean and variance given by:

μ = E(X) =
∑N

i=1 di

N
(28.5)

and

σ 2 = Var(X) = 1

M

(
N − M

N − 1

)⎧⎨
⎩

(∑N
i=1 d

2
i

N

)
−
(∑N

i=1 di

N

)2
⎫⎬
⎭ . (28.6)

Step 3: Standardize X by Z = X−μ

σ
, which is N(0,1) under the null hypothesis.

Step 4: Statistical significance for association between the gene set S and the
phenotype D is obtained by p value = 1 − Φ(Z) for positive Z or p value = Φ(Z)
for negative Z.

28.2.4 SAM-GS

SAM-GS is introduced by Dinu et al. (2007). It is based on the individual t-like
statistic from the SAM proposed in Tusher et al. (2001). It calculates the observed
gene set score as the sum of squares of the SAM statistic scores of all genes in
that set, and conducts a permutation test to obtain the statistical significance of the
association between the gene set and phenotype D. Assume we have N genes, and
n samples in the gene expression data set. We are interested in the gene set S which
contains M genes. Let di denote the gene-level score for gene i. We summarize the
SAM-GS procedure as below.
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SAM-GS Procedure
Step 1: As in SAM, calculate the gene-level statistic di for gene i,

di = x1(i) − x2(i)

S(i) + S0
, (28.7)

where x1(i) is the average gene intensity over the samples of phenotype 1, x2(i)
is the average gene intensity over the samples of phenotype 2, S(i) is the pooled
standard deviation over all samples of both phenotype 1 and 2, and S0 is a small
positive constant that adjusts for the small variability encountered for some genes in
the data, so the method would not be biased toward genes with small intensity.

Step 2: For set S, calculate the observed set score as

SAMGS =
∑
i∈S

d2
i . (28.8)

Step 3: Permute labels of phenotype D (i.e., shuffle 1’s and 2’s) and repeat steps
1 and 2 to obtain the permutation distribution of SAMGS.

Step 4: The statistical significance for association between set S and phenotype
D is obtained by comparing the observed SAMGS from step 2 and its permutation
distribution from step 3.

28.2.5 Global Test

Global test is proposed by Goeman et al. (2004) to test whether the global expression
pattern of a gene set is significantly related to some clinical outcome of interest using
a random-effect logistic model. Let XM×n be the data matrix that contains expression
data of set S with M genes and n samples, and let Y1×n be a 0-1 vector indicating
clinical outcome, where 0 is for the control group and 1 is for the treatment group.
The procedure of global test is summarized as below.

Global Test Procedure
Step 1: Fit a logistic regression model,

E(Yj |β) = h−1

(
α +

M∑
i=1

xijβi

)
, i = 1, 2, ...,M; j = 1, 2, ..., n. (28.9)

where h−1 is the link function (e.g., logit link), α is the intercept, and β ′
i s are

regression coefficients, which are random. The null hypothesis of interest is

H0 : β1 = β2 = ... = βM = 0. (28.10)

Assume β1,β2, ...,βM come from a distribution with mean 0 and variance τ 2, then
(28.10) is equivalent as:

H0 : τ 2 = 0. (28.11)
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Table 28.1 Data set for
global ANCOVA Genes j = 1 ... j = n1 ... j = n2

g1 x111 ... x11n1

k = 1 ... ... ... ...

gN x1N1 ... x1Nn1

g1 x211 ... ... ... x21n2

k = 2 ... ... ... ...

gN x2N1 ... ... ... x2Nn2

ANCOVA analysis of covariance

Step 2: Let ζj = ∑
i xijβi , then ζ = (ζ1, ..., ζn), E(ζ ) = 0, and cov(ζ ) = τ 2XX′.

Hence, the model (28.9) can be simplified into a simple random effects model,

E(Yj |ζj ) = h−1(α + ζj ), j = 1, 2, ..., n. (28.12)

Step 3: The score test (Le Cessie and Van Houwelingen 1995) uses complicated
test statistic T or a simpler statistic Q,

Q = (Y − μ)R(Y − μ)′

μ2
(28.13)

where R = 1
M
X′X, μ = h−1(α) = E(Y ), and μ2 is the second central moment of Y

under H0.
Step 4: Permute the labels of all samples and recalculate Q value. Repeat above

steps for a large number of times.
Step 5: The empirical p value is computed as a proportion of permutations with

Q values greater than the observed Q value from the data.

28.2.6 Global ANCOVA

Global ANCOVA test is derived by Mansmann and Meister (2005) to compete with
the global test. It tests the same hypothesis in the global test, but applies an ANCOVA
approach and exchanges the roles of genes and phenotype in the regression modeling
framework of the global test. Note that for all methods mentioned here, genes in the
same set are assumed to contribute equally to the set.

In this method, it is further assumed that the n samples consists of n1 samples
from group 1 and n2 samples from group 2. The data can be organized as in Table
28.1 (as an example, we assume n1 < n2), where xkij is the gene intensity of the j th
sample in group k for gene i, k = 1, 2, i = 1, 2, ...,N , and j = 1, 2, ..., nk .

Global ANCOVA Procedure
Step 1: Consider the saturated (full) model given by

xkij = μki + ekij , (28.14)
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with E(ekij ) = 0, and μki , the mean expression for gene i in group k, can be split
up into a two-way ANOVA layout as

μki = μ + αk + βi + γki , (28.15)

where αk is the group effect, βi is the gene effect, γki is the interaction, and
∑

k αk =∑
i βi = ∑

k γki = ∑
i γki = 0.

Step 2: Consider the null hypothesis of interest H0 : μ1i = μ2i , i = 1, ...,N
which is equivalent to H0 : αk = γki = 0, k = 1, 2. So under H0, μki = μ + βi .
If we only only test for interaction γki = 0, k = 1, 2; i = 1, ...N , then under H0,
μki = μ + αk + βi .

Step 3: Providing the residual sums of squares for full model and reduced model,
the F-statistic is derived as

F = [SSEreduced − SSEfull]/df1

SSEfull/df2
, (28.16)

where df1 = N , df2 = N (n1 + n2 − 2). If test interaction only, df1 = N − 1.
Step 4: Permute the labels of all samples and recalculate the F value. Repeat the

above step for a large number of times.
Step 5: The empirical p value is computed as a proportion of permutations with

F values greater than the observed F value from the data.

28.3 Proposed Approach

The performance of GSA methods, to a large extent, depends on how one summarizes
the gene-level scores of a set. Therefore, whether the summary score of the gene set
is representative becomes an important concern. We propose a combined p score,
which aggregates p values for each gene in the set instead of individual gene scores
(the t-statistic, d-statistics, etc.).

28.3.1 Combined p Score

The p value of a simple hypothesis testing framework is uniformly distributed under
the null hypothesis and all other assumptions are met (Tippett 1931). The validity of
this statement can be verified in a one-step derivation as below. Under the null
hypothesis, the test statistic, denoted by T , has the null distribution F (t) (e.g.,
standard normal). The p value, denoted by P = F (T ), has a probability distribution

Pr(P < p) = Pr(F−1(P ) < F−1(p))

= Pr(T < t)

≡ p.
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In other words, P is uniformly distributed. An explicit explanation is given in
Murdock et al. (2008).

If we assume that a set of M hypotheses are independent, with p value for the ith
hypothesis denoted by pi , i = 1, ...,M , and let

si = −2 log (pi),

then

si ∼ χ2
2 , for all i, (28.17)

and the sum of si ,
∑M

i=1 si , yields a chi-square distribution with degree of freedom
2M . That is,

M∑
i=1

si ∼ χ2
2M. (28.18)

Such way of combing p values is known as Fisher’s method, or Fisher’s combined
probability test. Fisher’s method of combining the probabilities is asymptotically
optimal among essentially all methods of combining independent tests (Littell and
Folks 1971, 1973) according to Bahadur relative efficiency (Bahadur 1967). In meta-
analysis, this technique is known as the inverse chi-square method. It is one of the
combined test procedures for testing the significance of combined results (Hedges
and Olkin 1985). Here, we propose to apply the same technique in summarizing the
set scores.

While combining p values, one needs to assume all individual tests are independent
in order to apply the chi-square distribution. When the individual statistical tests
are not independent, one can approximate the null distribution of si with a scaled
chi-square distribution. Brown’s method (Brown 1975) or Kost’s method (Kost and
McDermott 2002) can be used depending on whether or not the covariance between
the p values is known. More sophisticated methods can be developed. But this is
beyond the scope of this chapter.

In addition to the Fisher’s method, Owen (2009) describes Pearson’s method for
meta-analysis that also has potential to be applied to GSA. That is to be investigated
in the future.

28.3.2 Combined p Procedure

The test procedure proposed is listed as below:
Step 1: Let us consider set S which contains M genes. We start with individual p

values from t-statistic for genes in the set, denoted by pi , i ∈ S.
Step 2: For each pi , let

si = −2 log (pi), (28.19)
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and summarize si’s, i ∈ S by

T Sobs =
∑
i∈S

si . (28.20)

Step 3: Permute labels of phenotype D and repeat steps 1 and 2 for a large number
of times. Each time we obtain a summarized set score, T S, from the permuted data,
hence it yields a permutation distribution.

Step 4: The p value representing the significance of the gene set S is estimated by
the proportion of T S that is larger than T Sobs.

The combined p method relies on the fact that the individual p value tends to
be small for both upregulated genes and downregulated genes. Therefore, it avoids
canceling out the upregulation and downregulation effects in one set. It is an effective
way to test the significance of gene sets, especially for the gene set containing both
up- and downregulated genes.

28.4 Simulation Study

28.4.1 Simulated Data

We focus on two-condition situations along our study, similar to the simulation
scheme of Efron and Tibshirani (2007), we generated a larger data set with more
variation. Assume that we have N = 5000 genes, coming from 200 disjoint gene
sets of size 25 each. We also assume there are two conditions, A and B, each of which
has 50 replicated samples. First, we generated a 5000 × 100 matrix with each entry
from the standard normal distribution. Then, we prepared gene expression data sets
for five different scenarios by adding effect to the first 30 gene sets. Specifically:

Scenario 1: For all 25 genes of the first 30 gene sets, add 0.2 units for condition B.
Scenario 2: For the first 15 genes of the first 30 gene sets, add 0.3 units for

condition B.
Scenario 3: For the first 10 genes of the first 30 gene sets, add 0.4 units for

condition B.
Scenario 4: For the first 5 genes of the first 30 gene sets, add 0.6 units for

condition B.
Scenario 5: For the first 10 genes of the first 30 gene sets, add 0.6 units for

condition B; and for second 10 genes of the first 30 gene sets, subtract 0.4 units for
condition B.

Table 28.2 provides a summary on how we simulated the data for different
scenarios.

The first 30 gene sets in all scenarios were constructed as DE sets. Specifically,
scenarios 1–4 set the first 30 gene sets to be upregulated to different extents. In
scenario 1, all members in the first 30 sets have a 0.2 higher average expression
in condition B. In scenarios 2, 3/5 of genes in the first 30 sets have a 0.3 higher
average expression in condition B. In scenarios 3, 2/5 of genes in the first 30 sets



28 Combining p Values for Gene Set Analysis 505

Table 28.2 Simulated data summary

Genes that are manually altered in the first 30 sets Condition A Condition B

Scenario 1 {g1, ..., g25} N (0, 1) N (0, 1) + 0.2

Scenario 2 {g1, ..., g15} N (0, 1) N (0, 1) + 0.3

Scenario 3 {g1, ..., g10} N (0, 1) N (0, 1) + 0.4

Scenario 4 {g1, ..., g5} N (0, 1) N (0, 1) + 0.6

Scenario 5 {g1, ..., g10} N (0, 1) N (0, 1) + 0.6

{g11, ..., g20} N (0, 1) N (0, 1) − 0.4

have a 0.4 higher average expression in condition B. In scenario 4, 1/5 of genes in
the first 30 sets have a 0.6 higher average expression in condition B. In scenario 5,
2/5 of genes in the first 30 sets have a 0.6 higher average expression in condition
B, another 2/5 of genes in the first 30 sets have a 0.4 lower average expression in
condition B, and the remaining 1/5 have no average difference in the two conditions.
Scenarios 5 represents the situation that the set contains genes having higher average
expressions in both conditions. This is commonly seen and can be difficult to detect
if the summary statistics allow the cancellation of upregulated and downregulated
effects.

We evaluate all seven methods in terms of FPR, FNR, FDR, FNDR. In this study,
we set 0.05 as the cutoff p value for significance gene sets for each method. We
estimate FPR as the fraction of false positives out of negatives, FNR as the fraction
of false negatives out of positives, FDR as the fraction of negatives out of claimed
positives, and FNDR as the fraction of positives out of claimed negatives. Note that
positives (or negatives) in the GSA setting means the set is DE (or EE, equivalently
expressed). Methods with small values in all four metrics, FPR, FNR, FDR, and
FNDR, are considered to be superior. In addition, all methods are also compared via
the ROC curve, which is created by plotting TPR versus FPR, at various threshold
settings. TPR stands for true positive rates, which is estimated by the fraction of true
positives out of the positives. In terms of the ROC plot, the closer the ROC curve is
to the upper left corner, the higher the overall accuracy of the test is. The simulation
results are discussed in detail in the next section.

28.4.2 Simulation Results

In this section, we present the results of the FPR, FNR, FDR, and FNDR first,
followed by a discussion on ROC curves.All values in Tables 28.3–28.7 are calculated
based on 100 simulations, so are the rate values used to plot ROC curves.
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Table 28.3 FPR, FNR, FDR, and FNDR for scenario 1

Methods FPR FNR FDR FNDR
Mean (SE) Mean (SE) Mean (SE) Mean (SE)

GSEA 0.0065 (0.0006) 0.0173 (0.0022) 0.0350 (0.0031) 0.0031 (0.0004)

GSA-ET 0.0049 (0.0006) 0.0200 (0.0024) 0.0270 (0.0031) 0.0035 (0.0004)

RS 0.1625 (0.0024) 0.0060 (0.0013) 0.4784 (0.0036) 0.0012 (0.0003)

SAM-GS 0.0068 (0.0006) 0.4213 (0.0110) 0.0583 (0.0051) 0.0693 (0.0017)

Global test 0.0356 (0.0014) 0.1967 (0.0077) 0.1969 (0.0066) 0.0346 (0.0013)

Global ANCOVA 0.0471 (0.0017) 0.1683 (0.0062) 0.2380 (0.0066) 0.0301 (0.0011)

Combined p 0.0506 (0.0017) 0.1493 (0.0062) 0.2477 (0.0066) 0.0269 (0.0011)

FPR false positive rate, FNR false negative rate, FDR false discovery rate, FNDR false non-discovery
rate, GSEA gene set enrichment analysis, GSA-ET gene set analysis by Efron and Tibshirani,
RS random set, SAM-GS significance analysis of microarray for gene sets, ANCOVA analysis of
covariance

28.4.2.1 FPR, FNR, FDR, and FNDR

FPR, FNR, FDR, and FNDR are used to assess the accuracy of the seven methods.
Mean and standard error for each metric are computed based on 100 simulations.
Methods with small values in all four metrics are considered to be superior.

Table 28.3 presents the FPR, FNR, FDR, and FNDR from seven GSA methods
for simulation scenario 1. From this table, we see GSEA and GSA-ET have smaller
rates in FPR, FNR, FDR, and FNDR, while others have at least one rate appearing to
be high, which suggests that GSEA and GSA-ET perform better than others in cases
that all genes in the set have 0.2 higher average expression in condition B. Between
GSEA and GSA-ET, GSA-ET is slightly better.

The results for other simulated scenarios are presented in Tables 28.4–28.7. From
these tables, we notice that none of the methods beats others in all four rates. SAM-
GS has large FNR in scenario 1. Global test consistently has large FDR. It also has
large FNR in scenario 1. The rates of global ANCOVA are comparable to global test.
It has relatively larger FDR but smaller FNR than global test. For scenarios 1–4,
the rates for GSEA and GSA-ET are relatively low, but not always the lowest. For
example, in scenario 1, RS achieves smaller FNR and FNDR than both GSA-ET and
GSEA. Also, in scenario 4, the FNR for all other methods except RS are smaller
than the FNR for GSA-ET and GSEA. These two methods also have large FNR in
scenario 5. On the other hand, SAM-GS turns out to be the optimal in this case. RS
method has highest FDR in general, and its FNR in scenario 5 goes as high as 0.6710.
However, it can achieve very small FNR and FNDR in the first two scenarios. Our
proposed combined p method performs satisfactorily in terms of FPR, FNR, FNDR.
Its FDR is never the highest. Moreover, it has a smaller FNDR comparing to most
of the other methods, especially in scenarios 3, 4, and 5.
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Table 28.4 FPR, FNR, FDR, and FNDR for scenario 2

Methods FPR FNR FDR FNDR
Mean (SE) Mean (SE) Mean (SE) Mean (SE)

GSEA 0.0071 (0.0006) 0.0387 (0.0031) 0.0393 (0.0031) 0.0068 (0.0005)

GSA-ET 0.0039 (0.0005) 0.0227 (0.0025) 0.0216 (0.0028) 0.0040 (0.0004)

RS 0.1362 (0.0023) 0.0203 (0.0023) 0.4377 (0.0042) 0.0041 (0.0005)

SAM-GS 0.0094 (0.0008) 0.1667 (0.0076) 0.0580 (0.0044) 0.0287 (0.0013)

Global test 0.0356 (0.0014) 0.0610 (0.0045) 0.1730 (0.0058) 0.0110 (0.0008)

Global ANCOVA 0.0470 (0.0016) 0.0497 (0.0041) 0.2152 (0.0058) 0.0091 (0.0007)

Combined p 0.0508 (0.0017) 0.0467 (0.0036) 0.2277 (0.0059) 0.0086 (0.0007)

FPR false positive rate, FNR false negative rate, FDR false discovery rate, FNDR false non-discovery
rate, GSEA gene set enrichment analysis, GSA-ET gene set analysis by Efron and Tibshirani,
RS random set, SAM-GS significance analysis of microarray for gene sets, ANCOVA analysis of
covariance

Table 28.5 FPR, FNR, FDR, and FNDR for scenario 3

Methods FPR FNR FDR FNDR
Mean (SE) Mean (SE) Mean (SE) Mean (SE)

GSEA 0.0089 (0.0007) 0.0590 (0.0040) 0.0500 (0.0036) 0.0104 (0.0007)

GSA-ET 0.0041 (0.0005) 0.0250 (0.0027) 0.0225 (0.0025) 0.0044 (0.0005)

RS 0.1145 (0.0022) 0.0527 (0.0036) 0.4031 (0.0046) 0.0103 (0.0007)

SAM-GS 0.0094 (0.0007) 0.0733 (0.0059) 0.0528 (0.0039) 0.0128 (0.0010)

Global test 0.0356 (0.0014) 0.0227 (0.0027) 0.1674 (0.0056) 0.0041 (0.0005)

Global ANCOVA 0.0474 (0.0016) 0.0177 (0.0024) 0.2105 (0.0058) 0.0032 (0.0004)

Combined p 0.0508 (0.0017) 0.0173 (0.0024) 0.2224 (0.0058) 0.0032 (0.0004)

FPR false positive rate, FNR false negative rate, FDR false discovery rate, FNDR false non-discovery
rate, GSEA gene set enrichment analysis, GSA-ET gene set analysis by Efron and Tibshirani,
RS random set, SAM-GS significance analysis of microarray for gene sets, ANCOVA analysis of
covariance

28.4.2.2 ROC Curve

On the ROC curve, each point represents a (TPR, FPR) pair corresponding to a
particular decision threshold. To establish (TPR, FPR) pairs, we first sort all the gene
sets according to increasing p values, yielding a top-ranked set list. Then cut the DE
set at different places in the top-ranked set list. A perfect test should have an ROC
plot that passes through the upper left corner. Therefore, the closer the ROC curve
is to the upper left corner, the higher the overall accuracy of the test is (Zweig and
Campbell 1993).

The plots of TPR versus FPR for all scenarios are shown in Fig. 28.1. For scenario
1, where all members in the sets of interest have 0.2 higher average expression in
condition B, we see from these plots that, GSA-ET and GSEA perform best, much
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Table 28.6 FPR, FNR, FDR, and FNDR for scenario 4

Methods FPR FNR FDR FNDR
Mean (SE) Mean (SE) Mean (SE) Mean (SE)

GSEA 0.0134 (0.0009) 0.1430 (0.0061) 0.0787 (0.0048) 0.0248 (0.0010)

GSA-ET 0.0048 (0.0005) 0.1030 (0.0058) 0.0287 (0.0031) 0.0178 (0.0010)

RS 0.0885 (0.0020) 0.2420 (0.0066) 0.3942 (0.0058) 0.0446 (0.0012)

SAM-GS 0.0104 (0.0007) 0.0360 (0.0037) 0.0562 (0.0038) 0.0063 (0.0006)

Global test 0.0356 (0.0014) 0.0103 (0.0019) 0.1656 (0.0056) 0.0019 (0.0003)

Global ANCOVA 0.0474 (0.0016) 0.0083 (0.0017) 0.2091 (0.0057) 0.0015 (0.0003)

Combined p 0.0509 (0.0017) 0.0103 (0.0019) 0.2215 (0.0057) 0.0019 (0.0003)

FPR false positive rate, FNR false negative rate, FDR false discovery rate, FNDR false non-discovery
rate, GSEA gene set enrichment analysis, GSA-ET gene set analysis by Efron and Tibshirani,
RS random set, SAM-GS significance analysis of microarray for gene sets, ANCOVA analysis of
covariance

Table 28.7 FPR, FNR, FDR, and FNDR for scenario 5

Methods FPR FNR FDR FNDR
Mean (SE) Mean (SE) Mean (SE) Mean (SE)

GSEA 0.0102 (0.0007) 0.2460 (0.0084) 0.0689 (0.0046) 0.0418 (0.0014)

GSA-ET 0.0012 (0.0003) 0.1300 (0.0057) 0.0075 (0.0017) 0.0224 (0.0010)

RS 0.0346 (0.0014) 0.6710 (0.0087) 0.3670 (0.0103) 0.1091 (0.0012)

SAM-GS 0.0108 (0.0008) 0.0000 (0.0000) 0.0562 (0.0039) 0.0000 (0.0000)

Global test 0.0356 (0.0014) 0.0000 (0.0000) 0.1642 (0.0055) 0.0000 (0.0000)

Global ANCOVA 0.0468 (0.0016) 0.0000 (0.0000) 0.2059 (0.0055) 0.0000 (0.0000)

Combined p 0.0531 (0.0018) 0.0000 (0.0000) 0.2268 (0.0059) 0.0000 (0.0000)

FPR false positive rate, FNR false negative rate, FDR false discovery rate, FNDR false non-discovery
rate, GSEA gene set enrichment analysis, GSA-ET gene set analysis by Efron and Tibshirani,
RS random set, SAM-GS significance analysis of microarray for gene sets, ANCOVA analysis of
covariance

better than other methods. The next best is RS. The performance of SAM-GS, global
test, global ANCOVA, and the proposed combined p method are quite similar but not
as good as GSA-ET, GSEA, and RS. As less genes in the sets of interest have larger
average expression in condition B, GSEA and RS start working not as good, but GSA-
ET still works well. Also, SAM-GS, global test, global ANCOVA, and combined
p all show improved performance. This can be seen from Fig. 28.1, scenario 4, in
which these four methods are superior to others. It indicates that SAM-GS, global
test, global ANCOVA, and combined p are capable of detecting the gene sets with
only 1/5 of the genes having 0.6 higher average expression in condition B. In the
last scenario, SAM-GS, global test, global ANCOVA, and combined p show better
performance than GSA-ET, GSEA, and RS. It is worth mentioning that our proposed
combined p method is one of the best approaches in this particular case.
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Fig. 28.1 Receiver operating characteristic (ROC) curves for scenarios 1–5
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28.5 Real Data Analysis

28.5.1 Bone Data

Bone is a multifunctional, highly dynamic mineralized connective tissue that under-
goes significant turnover. Osteoprogenitor lineage differentiation is one of the key
processes responsible for bone formation and remodeling. During this process, a sub-
population of mesenchymal progenitors undergoes osteoblast lineage commitment
and matures through a series of differentiation steps. Osteocytes represent the most
abundant cellular component of mature mammalian bones with important functions
in bone mass maintenance and remodeling. In order to selectively isolate defined
populations of cells uncontaminated with other cell fractions, dual green fluores-
cent protein (GFP) reporter mice are utilized in which osteocytes are expressing
GFP (topaz) directed by the DMP1 promoter, while osteoblasts are identified by
expression of GFP (cyan) driven by 2.3 kb of the Col1a1 promoter. Comprehensive
analysis of gene profiles and regulatory networks involved in skeletal development
and remodeling is a prerequisite to elucidate the differential gene expression be-
tween osteoblasts and osteocytes, and completely understand physiological bone
structure, function, and homeostasis. In Paic et al. (2009), the cRNA preparation
and array hybridization are performed using Illumina microarray technology. The
presence/absence call is determined and intensity values derived from the hybridiza-
tion signals of each gene (i.e., Illumina source IDs) to represent their raw expression
level.

We use the same data set considered by Paic et al. (2009) for our real data anal-
ysis. We consider the comparison between two conditions, cyan (osteoblasts) and
topaz (osteocytes). There are four biological replicates for each condition and a total
number of 45,856 genes in the data set. The scanned data are normalized before GSA
using the R Bioconductor package “lumi” (Du et al. 2008) to rescale gene expres-
sion intensities across all Mouse-WG6 v1 BeadChip arrays used for hybridization
of cRNA samples from four analyzed biological replicas. The annotations of the Il-
lumina probe sets (source IDs) and corresponding genes are derived using the nuID
part of the lumi software package (Du et al. 2007).

We use the 127 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
from the KEGG pathway database (http://www. genome.jp/kegg) as the gene sets for
our GSA.

28.5.2 Analysis Results

Considering each KEGG pathway as a gene set, we are interested in those DE between
osteoblasts and osteocytes. To achieve this goal, we apply GSA-ET, SAM-GS, and
combined p method on the bone data introduced above, focusing on investigating
DE KEGG pathways. For each method, we use 1000 as the number of permutations
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Fig. 28.2 Venn diagram of
Kyoto Encyclopedia of Genes
and Genomes (KEGG)
pathway analysis

for the permutation test, and we use 0.1 as a cutoff of p value for each method to
select pathways of interest.

We have summarized the number of pathways selected by each method from the
127 KEGG pathways in a Venn diagram as in Fig. 28.2. Out of 18 KEGG pathways
selected by GSA-ET, 15 are also selected by SAM-GS and combined p, indicating
a high likelihood of differential expression for these 15 pathways. There are a total
of 25 pathways selected by two methods, where 22 of them are selected by SAM-
GS and combined p, and the other three pathways are selected by only GSA-ET
and SAM-GS. They should still be of interest. Additionally, there are 18 pathways
selected only by one method, hence further investigations are needed to determine
their regulation.

Note that two pathways, glycosphingolipid (GSL) biosynthesis—globo series and
sphingolipid metabolism pathways, are selected by our proposed combined p method,
but not by any of the other two methods. This finding that these two pathways are in-
volved in the differentiation between osteoblasts and osteocytes is further supported
by the following literature search. GSLs are a subtype of glycolipids containing the
amino alcohol sphingosine. They are cell type-specific markers that change dramat-
ically during ontogenesis and oncogenesis. Hakomori and Igarashi (1995) partially
clarify the functional roles of GSLs in cellular interactions and control of cell prolif-
erations in multicellular organisms. In addition, GSLs of the globo series are found
to be associated with the monocytic lineage of human myeloid cells in Kniep et al.
(1985). Sphingolipids are important for cell growth and differentiation (Wells and
Lester 1983, Hanada et al. 1992), and they play major roles in cell recognition and ad-
hesion (Hakomori and Igarashi 1995). Sphingolipids and their degradation products
are claimed to be involved in signal transduction (Hannun 1996), and the formation
of lipid rafts (Simons and Ikonen 1997). Spiegel and Merril (1996) point out that
sphingolipid metabolites appear to serve as second messengers for growth factors,
cytokines, and other “physiological” agonists. Tables 28.8 and 28.9 in Appendix
illustrate the detailed information for these two pathways.



512 Z. Wei and L. Kuo

Ta
bl

e
28

.8
K

yo
to

E
nc

yc
lo

pe
di

a
of

G
en

es
an

d
G

en
om

es
(K

E
G

G
)

pa
th

w
ay

:G
ly

co
sp

hi
ng

ol
ip

id
bi

os
yn

th
es

is
—

gl
ob

o
se

ri
es

G
en

e
sy

m
bo

l
G

en
e

na
m

e
t i

d
i

p
i

St
6g

al
na

c2
ST

6
(a

lp
ha

-N
-a

ce
ty

l-
ne

ur
am

in
yl

-2
,3

-b
et

a-
ga

la
ct

os
yl

-1
,3

)-
N

-a
ce

ty
lg

al
ac

to
sa

m
in

id
e

al
ph

a-
2,

6-
si

al
yl

tr
an

sf
er

as
e

2
0.

38
4

0.
41

9
0.

64
0

B
4g

al
t1

U
D

P-
G

al
:b

et
aG

lc
N

A
c

be
ta

1,
4-

ga
la

ct
os

yl
tr

an
sf

er
as

e,
po

ly
pe

pt
id

e
1

−0
.1

00
−0

.1
36

0.
88

5

St
8s

ia
3

ST
8

al
ph

a-
N

-a
ce

ty
l-

ne
ur

am
in

id
e

al
ph

a-
2,

8-
si

al
yl

tr
an

sf
er

as
e

3
−1

.2
20

−1
.7

21
0.

10
5

St
8s

ia
5

ST
8

al
ph

a-
N

-a
ce

ty
l-

ne
ur

am
in

id
e

al
ph

a-
2,

8-
si

al
yl

tr
an

sf
er

as
e

5
−1

.1
16

−1
.5

25
0.

13
5

St
3g

al
2

ST
3

be
ta

-g
al

ac
to

si
de

al
ph

a-
2,

3-
si

al
yl

tr
an

sf
er

as
e

2
1.

19
6

1.
41

6
0.

13
9

St
3g

al
2

ST
3

be
ta

-g
al

ac
to

si
de

al
ph

a-
2,

3-
si

al
yl

tr
an

sf
er

as
e

2
0.

30
0

0.
32

5
0.

71
5

St
8s

ia
4

ST
8

al
ph

a-
N

-a
ce

ty
l-

ne
ur

am
in

id
e

al
ph

a-
2,

8-
si

al
yl

tr
an

sf
er

as
e

4
0.

07
7

0.
08

7
0.

92
2

G
la

G
al

ac
to

si
da

se
,a

lp
ha

−0
.5

73
−0

.6
56

0.
46

7

St
8s

ia
1

ST
8

al
ph

a-
N

-a
ce

ty
l-

ne
ur

am
in

id
e

al
ph

a-
2,

8-
si

al
yl

tr
an

sf
er

as
e

1
−0

.1
54

−0
.2

23
0.

82
2

H
ex

a
H

ex
os

am
in

id
as

e
A

1.
72

1
2.

00
6

0.
04

8

H
ex

b
H

ex
os

am
in

id
as

e
B

2.
42

9
2.

64
3

0.
01

6

St
8s

ia
3

ST
8

al
ph

a-
N

-a
ce

ty
l-

ne
ur

am
in

id
e

al
ph

a-
2,

8-
si

al
yl

tr
an

sf
er

as
e

3
0.

85
5

1.
36

8
0.

23
9

St
8s

ia
2

ST
8

al
ph

a-
N

-a
ce

ty
l-

ne
ur

am
in

id
e

al
ph

a-
2,

8-
si

al
yl

tr
an

sf
er

as
e

2
−0

.0
82

−0
.0

92
0.

91
7

Fu
t2

Fu
co

sy
ltr

an
sf

er
as

e
2

0.
97

8
1.

58
2

0.
18

5

St
6g

al
na

c2
ST

6
(a

lp
ha

-N
-a

ce
ty

l-
ne

ur
am

in
yl

-2
,3

-b
et

a-
ga

la
ct

os
yl

-1
,3

)-
N

-a
ce

ty
lg

al
ac

to
sa

m
in

id
e

al
ph

a-
2,

6-
si

al
yl

tr
an

sf
er

as
e

2
−0

.4
01

−0
.6

74
0.

57
2

N
ag

a
N

-a
ce

ty
lg

al
ac

to
sa

m
in

id
as

e,
al

ph
a

2.
05

3
2.

52
1

0.
02

0

B
4g

al
nt

2
B

et
a-

1,
4-

N
-a

ce
ty

l-
ga

la
ct

os
am

in
yl

tr
an

sf
er

as
e

2
−0

.5
09

−0
.8

31
0.

47
2

St
3g

al
2

ST
3

be
ta

-g
al

ac
to

si
de

al
ph

a-
2,

3-
si

al
yl

tr
an

sf
er

as
e

2
0.

21
6

0.
27

1
0.

76
5

B
3g

al
t5

U
D

P-
G

al
:b

et
aG

lc
N

A
c

be
ta

1,
3-

ga
la

ct
os

yl
tr

an
sf

er
as

e,
po

ly
pe

pt
id

e
5

−0
.0

50
−0

.0
75

0.
94

2



28 Combining p Values for Gene Set Analysis 513

Ta
bl

e
28

.8
(c

on
tin

ue
d)

G
en

e
sy

m
bo

l
G

en
e

na
m

e
t i

d
i

p
i

Fu
t7

Fu
co

sy
ltr

an
sf

er
as

e
7

0.
77

5
1.

03
7

0.
28

5

B
3g

al
nt

1
U

D
P-

G
al

N
A

c:
be

ta
G

lc
N

A
c

be
ta

1,
3-

ga
la

ct
os

am
in

yl
tr

an
sf

er
as

e,
po

ly
pe

pt
id

e
1

1.
90

5
2.

30
2

0.
02

9

B
4g

al
t1

U
D

P-
G

al
:b

et
aG

lc
N

A
c

be
ta

1,
4-

ga
la

ct
os

yl
tr

an
sf

er
as

e,
po

ly
pe

pt
id

e
1

1.
10

9
1.

48
0

0.
14

0

St
8s

ia
4

ST
8

al
ph

a-
N

-a
ce

ty
l-

ne
ur

am
in

id
e

al
ph

a-
2,

8-
si

al
yl

tr
an

sf
er

as
e

4
−0

.7
28

−0
.9

83
0.

31
2

B
4g

al
t5

U
D

P-
G

al
:b

et
aG

lc
N

A
c

be
ta

1,
4-

ga
la

ct
os

yl
tr

an
sf

er
as

e,
po

ly
pe

pt
id

e
5

−0
.4

24
−0

.6
54

0.
54

3

B
4g

al
t5

U
D

P-
G

al
:b

et
aG

lc
N

A
c

be
ta

1,
4-

ga
la

ct
os

yl
tr

an
sf

er
as

e,
po

ly
pe

pt
id

e
5

0.
01

5
0.

01
7

0.
98

5

St
8s

ia
1

ST
8

al
ph

a-
N

-a
ce

ty
l-

ne
ur

am
in

id
e

al
ph

a-
2,

8-
si

al
yl

tr
an

sf
er

as
e

1
−0

.6
20

−1
.0

48
0.

39
0

Fu
t4

Fu
co

sy
ltr

an
sf

er
as

e
4

0.
07

3
0.

08
9

0.
92

1

G
la

G
al

ac
to

si
da

se
,a

lp
ha

−2
.4

97
−3

.1
35

0.
00

7

Su
m

m
ar

y
St

at
is

ti
c

S
′ m

ax
m

ea
n

=
0.

07
0

SA
M

G
S

=
∑

28 i=
1
d

2 i

28
T
S

ob
s

=
1.

85
5

=
−2
∑

28 i=
1

lo
g

(s
i
)

28

=
2.

75
5

U
D

P
ur

id
in

e
di

ph
os

ph
at

e
ga

la
ct

os
e



514 Z. Wei and L. Kuo

Table 28.9 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway: Sphingolipid
metabolism

Gene symbol Gene name ti di pi

B4galt1 UDP-Gal:betaGlcNAc beta 1,4- galactosyltrans-
ferase, polypeptide 1

−0.100 −0.136 0.885

Glb1 Galactosidase, beta 1 −0.231 −0.259 0.770

Galc Galactosylceramidase −0.159 −0.228 0.817

Glb1 Galactosidase, beta 1 0.339 0.462 0.627

Glb1 Galactosidase, beta 1 0.764 1.062 0.286

Smpd2 Sphingomyelin phosphodiesterase 2, neutral 0.547 0.719 0.445

Sphk1 Sphingosine kinase 1 0.343 0.400 0.654

Gba Glucosidase, beta, acid −0.895 −1.058 0.255

Galc Galactosylceramidase −0.587 −0.736 0.425

Sphk2 Sphingosine kinase 2 0.173 0.233 0.804

Sphk2 Sphingosine kinase 2 0.908 1.264 0.212

Sphk1 Sphingosine kinase 1 −0.209 −0.275 0.766

Smpd1 Sphingomyelin phosphodiesterase 1, acid lysoso-
mal

0.470 0.488 0.589

Smpd3 Sphingomyelin phosphodiesterase 3, neutral −0.546 −0.573 0.527

Asah1 N-acylsphingosine amidohydrolase 1 0.004 0.004 0.997

Asah1 N-acylsphingosine amidohydrolase 1 −0.953 −1.463 0.191

Sptlc1 Serine palmitoyltransferase, long chain base
subunit 1

0.613 0.792 0.398

Smpd2 Sphingomyelin phosphodiesterase 2, neutral −0.309 −0.387 0.670

Sphk1 Sphingosine kinase 1 1.781 2.075 0.043

Sptlc2 Serine palmitoyltransferase, long chain base
subunit 2

−0.383 −0.523 0.584

Gla Galactosidase, alpha −0.573 −0.656 0.467

Glb1 Galactosidase, beta 1 2.425 3.428 0.007

Galc Galactosylceramidase 0.082 0.101 0.910

Neu1 Neuraminidase 1 2.291 3.019 0.010

Gal3st1 Galactose-3-O-sulfotransferase 1 −0.201 −0.229 0.797

Galc Galactosylceramidase 0.741 0.959 0.311

Sptlc2 Serine palmitoyltransferase, long chain base
subunit 2

0.560 0.805 0.424

Sgpp1 Sphingosine-1-phosphate phosphatase 1 0.805 0.900 0.325

Glb1 Galactosidase, beta 1 −0.564 −0.866 0.422

Neu1 Neuraminidase 1 0.358 0.428 0.633

Neu3 Neuraminidase 3 1.115 1.440 0.143
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Table 28.9 (continued)

Gene symbol Gene name ti di pi

Sgpl1 Sphingosine phosphate lyase 1 1.203 1.382 0.147

Smpd1 Sphingomyelin phosphodiesterase 1,
acid lysosomal

−0.036 −0.041 0.963

Sphk1 Sphingosine kinase 1 1.648 2.257 0.040

Ugcg UDP-glucose ceramide
glucosyltransferase

−1.489 −1.719 0.081

B4galnt2 Beta-1,4-N-acetyl-galactosaminyl
transferase 2

−0.509 −0.831 0.472

Smpd3 Sphingomyelin phosphodiesterase 3,
neutral

−0.575 −0.651 0.470

Fut7 Fucosyltransferase 7 0.775 1.037 0.285

Sgms2 Sphingomyelin synthase 2 −0.155 −0.174 0.844

B4galt1 UDP-Gal:betaGlcNAc beta 1,4-
galactosyltransferase, polypeptide 1

1.109 1.480 0.140

Neu2 Neuraminidase 2 −0.456 −0.545 0.545

Sphk2 Sphingosine kinase 2 0.181 0.191 0.830

Phca Phytoceramidase, alkaline 3.087 3.778 0.003

Phca Phytoceramidase, alkaline 2.730 3.448 0.005

B4galt5 UDP-Gal:betaGlcNAc beta
1,4-galactosyltransferase,
polypeptide 5

−0.424 −0.654 0.543

B4galt5 UDP-Gal:betaGlcNAc beta
1,4-galactosyltransferase,
polypeptide 5

0.015 0.017 0.985

Degs2 Degenerative spermatocyte homolog
2 (Drosophila), lipid desaturase

0.288 0.442 0.677

Asah1 N-acylsphingosine amidohydrolase 1 3.219 4.609 0.001

Degs1 Degenerative spermatocyte homolog
1 (Drosophila)

−0.691 −0.943 0.334

Fut4 Fucosyltransferase 4 0.073 0.089 0.921

Gla Galactosidase, alpha −2.497 −3.135 0.007

Summary
Statistic

S ′
maxmean = SAMGS = T Sobs =

0.145
∑51

i=1 d2
i

51
−2
∑51

i=1 log (si )
51

= 2.231 = 2.790

UDP uridine diphosphate galactose



516 Z. Wei and L. Kuo

We have also used 0.05 as the cutoff of p value for each of the three methods.
Only one pathway is in common among all three methods and ten pathways are
selected by the combined p method only and missed by both GSA-ET and SAM-
GS. However, eight out of the ten pathways are not “real” miss because they have
relatively small p values (between 0.05 and 0.1) by other methods. If we eliminate
these eight pathways which are in the borderline, the remaining two pathways are
exactly the same as what we have obtained before by using the p value = 0.1 as the
cutoff. Therefore, this reduces to our previous gene ontology (GO) findings.

28.6 Discussions

We have reviewed six different methods on the analysis of the high-throughput mi-
croarray gene expression data at the level of groups of genes rather than individual
genes. A new gene set method based on combining individual p values for genes in
the set is proposed. All seven methods, including the proposed one, are compared
via simulation studies. Based on our simulation results, we cannot say any single
method is superior to others all the time, or any one is the weakest among all. As we
have discussed in Sect. 28.4.2, GSEA and GSA-ET outperform others in the case
that all genes in the set have 0.2 higher average expression or 3/5 of genes in the
set have 0.3 higher average expression in condition B. Nevertheless, in cases that
only 1/5 of genes in the set have 0.6 higher average expression in condition B or
there are genes with higher average expression in both conditions, SAM-GS works
relatively better. Furthermore, our proposed combined p approach performs satisfac-
torily. It maintains low FNR and low FNDR all the time. One advantage of combined
p method worthy mentioning is that when data are confidential and only p values are
available, one can still implement GSA. Therefore, we suggest including it in the
data analysis to complement with other methods. For the real data analysis, we apply
GSA-ET, SAM-GS, and combined p method on the bone data set and search for the
DE pathways between osteoblasts and osteocytes. Fifteen pathways are commonly
selected by all three methods. In particular, we note that the proposed combined p
method selects GSL biosynthesis—globo series and sphingolipid metabolism path-
ways. The importance of these two pathways in osteoblast lineage differentiation are
further supported by our literature search. We suggest further study to be conducted
to confirm this finding.
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Appendix

Tables 28.8 and 28.9 illustrate the information of GSL biosynthesis—globo series and
sphingolipid metabolism pathways in detail. This information includes gene source
IDs in the particular pathway (meaning the overlap of mouse Illumina source IDs
from the KEGG pathway database and our data set), corresponding gene symbols and
gene names, individual gene-level scores used for GSA-ET, SAM-GS, and combined
p method. Summary statistics indicating the observed set scores for these three
methods are S ′

maxmean (28.2), SAMGS (28.8), and T Sobs (28.20), respectively. Note
that S ′

maxmean is an average, while SAMGS and T Sobs are summations, so we divided
SAMGS and T Sobs by the set size (denoted by SAMGS and T Sobs) to make them
more comparable to S ′

maxmean. These three summary statistics are also listed at the
bottom in the tables.
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Chapter 29
A Simple Method for Testing Global
and Individual Hypotheses Involving a Limited
Number of Possibly Correlated Outcomes

A. Lawrence Gould

Abstract Tests for the presence of a global treatment effect expressed by possibly cor-
related “primary” outcome variables taken together frequently use Bonferroni-type
adjustments. These procedures accommodate an arbitrary number of comparisons,
but can be conservative if the outcome variables are highly correlated. This conser-
vatism can be ameliorated by a simple rule requiring essentially no calculation (and
therefore convenient to apply when exact calculation is impractical) that is relatively
robust to the correlation structure of the responses when the number of comparisons
is not large (16 or less for 5 % level tests). The recommended global testing rule
is: For a type 1 error rate of α and up to K(α) “primary” response variables, reject
the global null hypothesis if (a) the smallest marginal p value is slightly less than
α1 =α/K, (b) the second smallest marginal p value is ≤ 2α1, or (c) the third smallest
marginal p value is ≤α. Analytic expressions that do not assume independence or any
particular distribution for the responses are provided for the probability of rejecting
the global null hypothesis. The type 1 error rates and power generally are preserved
regardless of the correlation structure. Individual comparisons can be tested if the
global null hypothesis is rejected, with reasonable preservation of comparison-wise
type 1 error rates and of the false discovery rates (FDRs).

29.1 Introduction

Effects of treatments or interventions often are expressed by several prespecified
outcome variables instead of a single “primary” variable in, for example, the clin-
ical evaluation of psychotherapeutic and antiarthritic agents, treatments of asthma
and gastroesophageal reflux disease, and nondrug interventions. When inferences
regarding the existence of a treatment effect are based on tests of hypotheses about
the effect of treatment on each individual outcome variable, multiplicity adjustments
to the individual critical values generally are necessary to control at a specified level
α, the probability of concluding that there is a treatment effect overall or for the
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individual outcome variables when there truly is none. These usually require calcu-
lations that may not be convenient in some circumstances, such as when listening
to a presentation or when evaluations need to be done quickly or manually. The
prespecification of the outcome variables means that the individual hypotheses are
identified at the outset.

Many recent articles describe methods for controlling type 1 error rates of various
kinds in the evaluation of the outcomes of genotyping experiments based on mico-
rarrays when there are hundreds or thousands of individual comparisons to identify
enhanced or suppressed gene expression. Farcomeni (2008) and Storey et al. (2004)
provide reviews of current methods. When the number of component hypotheses
is relatively small (≤ 16, say), which typically happens in large scale clinical tri-
als when there are multiple primary outcomes, a suggestion by Sen (1999) can be
exploited to yield a testing procedure that requires no calculation.

Testing strategies using individual comparisons for multiple outcome variables
generally proceed as follows. Let pi denote the conventional p value computed
for testing the i-th of K individual null hypothesis H0i, i = 1, . . . ,K, and let p(1)≤.
p(2)≤ . . .≤ p(K) denote the ordered p values. If αK = {

αK1,αK2, . . . ,αKK
}

with
αK1≤αK2,≤ . . . ≤ αKK denotes a set of adjusted type 1 error rates, then the i-th null
hypothesis H0i (and the global null hypothesis H0) could be rejected if p(i) < αKi for
some i. Different tests arise from different choices for αK, e.g., (Sen 1999; Benjamini
and Stark 1996; Bonferroni 1936; Farcomeni and Pacillo 2011; Farcomeni and Finos
2013; Finner and Roters 2002; Finner and Gontscharuk 2009; Finos and Farcomeni
2011; Hochberg 1988; Hochberg and Rom 1995; Hochberg and Benjamini 1990;
Holland and Copenhaver 1987; Holland and Copenhaver 1988; Holm 1979; Hom-
mel 1988; James 1991; Liu 1996; Rom 1990; Rom and Connell 1994; Sarkar and
Chang 1997; Sarkar 1998; Sarkar 2008; Simes 1986; van der Laan M et al. 2004).
Classical testing method set αK1 = αK2, = . . . = αKK = α∗, e.g., the Bonferroni
procedure (1936) that setsα∗ = αB = α/K. These methods can be very conservative,
especially if the outcome variables are positively correlated. This chapter addresses
a particularly interesting choice for αK that does not seem to have been considered
in detail. The method sets αK3 = . . . = αKK (Sen 1999) and rejects the global null
hypothesis if p(1) < αK1 or if p(2) < αK2 or if p(3) < αK3, where αK1, αK2, and αK3 are
chosen to control the global type 1 error rate at α. This rule is not the same as any of
the conventional step-up or step-down rules. Recent reviews of methods for testing
multiple hypotheses based on ordered p values do not address this testing strategy
(Farcomeni 2008; Storey et al. 2004; Sarkar 2008; Hommel et al. 2011; Sarkar et al.
2012).

The elements of the procedure are described in Sect. 2, including guidance on
sample size determination. Power comparisons over a variety of correlation patterns
are provided in Sect. 3 when K = 5. Section 4 addresses tests of the individual
members of the collection of outcomes. A number of examples are presented in
Sect. 5, and some concluding remarks are given in Sect. 6. Technical details and
derivations are provided in Appendix 1. Appendix 2 provides R code for carrying
out the simulations discussed in Sects. 3 and 4.
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29.2 Elements of the Method

Suppose that a collection + of prespecified null hypotheses {H0i} to be tested
using the outcomes of an experiment or trial is minimal (Gabriel 1969) or “free-
combination” (Grechanovsky and Pinsker 1999) in the sense that the component
hypotheses are not functionally related. Suppose further that there are at most K(α)
such null hypotheses, where α is the nominal type 1 error rate.

A global null hypothesis that all of the component null hypotheses are true is tested
using the following simple strategy: Reject the global null hypothesis if p(1) ≤ αK1,

or if p(2) ≤ αK2, or if p(3) ≤ α. The critical values αK1 and αK2 must satisfy αK1 =
α/K − ε and αK2 = 2αK1, where ε is a small, analytically determined, positive
number, ε � α/K, so thatαK1 andαK2 are slightly less than the corresponding bounds
for Simes’s test (1986) when K> 3 (they are the same when K ≤ 3). The ability to
reach a decision using the first three ordered p values more than compensates for the
slight diminution of the first two bounds, and the proposed procedure has power no
less than that of Simes’s test. Slightly decreasing the value of αK1 below αB provides
an opportunity to increase αK3 to α when the number of component tests is bounded.

Table 29.1 provides the maximum values that can be taken by αK1 (see Ap-
pendix 1). These values are for all practical purposes negligibly less than the values
used for Simes’s test, especially when fewer than ten comparisons are to be made.
The values are scaled for readability, e.g., the upper leftmost entry (167) means that
the value of α1max is 0.0167. If K = 8, then both α/K and α1max are approximately
equal to 0.006 (actually, 0.00625 and 0.0058, respectively).

The power and, therefore, the sample size needed, for rejecting a global null
hypothesis depends on the joint distribution of the outcomes under an alternative hy-
pothesis. An alternative hypothesis could specify a constant shift for each component
outcome such as H1i : θi = θ∗ �= θi0 for all i, or a shift with respect to some, but not
all, of the component outcome distributions, so that the alternative hypothesis would
be defined by H1i : θi = θi1 �= θi0 for i ∈ {

i1, . . ., im
} ⊂ {1, . . ., K}, and θi = θi0

otherwise. Section A1.5 of Appendix 1 describes the computation of noncentrality
parameter and sample size values. Noncentrality parameter values commonly are
expressed as a ratio such as θ = μ

√
n/σ , where μ denotes a shift, n denotes a sample

size, and σ is a measure of variability such as the standard deviation. Table 29.2
provides noncentrality parameter values calculated assuming normality for K = 3
(1) 16 and when m = 1 (1) min (5,K) of the K means are positive.

29.3 Computational Results

The statistical properties of the proposed method relative to the methods described
by Benjamini and Hochberg (1995) and by Benjamini and Liu (1999) are addressed
in Tables 29.3, 29.4, 29.5, 29.6, and 29.7 of this section and the following section
for various correlation structures and patterns of nonzero means assuming a common
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Table 29.1 Values of α1max, α/K, and their difference ( × 10−4)

α = 0.05 α = 0.025 α = 0.05 α = 0.025

K α1max αB ε α1max αB ε K α1max αB ε α1max αB ε

3 167 167 0 83 83 < 1 10 41 5 09 24 25 1

4 125 125 0 63 63 < 1 11 35 45 11 21 23 2

5 99 100 1 50 50 < 1 12 28 42 13 19 21 2

6 81 83 2 41 42 < 1 13 22 38 16 17 19 2

7 68 71 3 35 36 < 1 14 16 36 19 15 18 3

8 58 62 5 31 31 1 15 11 33 22 14 17 3

9 49 56 6 27 28 1 16 05 31 26 12 16 4

Table 29.2 Noncentrality parameter values θ ( = μ
√

n/σ) yielding 90 % power for rejecting at the
5 % level H0: “all K independent responses have zero mean” using the rule based on S1∪S2∪S3,
when m of the K means are positive

m K = 3 4 5 6 7 8 9

1 3.65 3.75 3.83 3.89 3.95 4.00 4.04

2 2.83 2.93 3.00 3.05 3.10 3.15 3.18

3 2.43 2.52 2.58 2.62 2.66 2.69 2.72

4 2.26 2.31 2.35 2.38 2.41 2.43

5 2.12 2.16 2.18 2.20 2.22

m K = 10 11 12 13 14 15 16

1 4.09 4.14 4.20 4.26 4.34 4.45 4.63

2 3.22 3.26 3.30 3.35 3.41 3.49 3.65

3 2.74 2.77 2.79 2.82 2.86 2.91 2.99

4 2.45 2.46 2.48 2.51 2.53 2.56 2.61

5 2.24 2.25 2.27 2.28 2.30 2.32 2.36

variance via simulations consisting of 10,000 random observations from (K =)
5-dimensional multivariate normal distributions. A set of 286 correlation patterns
were considered initially, consisting of ordered combinations of some or all of 0,
0.1, 0.5, and 0.9. Not all of the corresponding correlation patterns turned out to be
positive definite. The calculations used the 141 correlation patterns corresponding
to the positive definite correlation matrices. The determinants of the correlation ma-
trices (det(R)) ranged from 0.0005 to 1. The variable least correlated with the other
variables has a nonzero mean in case 2, while the variable most correlated with the
other variables has a nonzero mean in case 3. A similar comment applies for case 5
as opposed to case 6.
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29.3.1 Type 1 Error Rate

The top row of Table 29.3 presents the type 1 error rates for the S1 ∪ S2 ∪ S3 rule
calculated directly from expression (A4) in Appendix 1. The simulated type 1 error
rates for all of the cases were (mean, min, max) = (4.9, 4.5, 5.5), suggesting good
type 1 error control. For comparison, the corresponding (mean, min, max) values for
the Benjamini–Hochberg and Benjamini–Liu procedures based on all of the cases
were (B–H: 4.6, 3.6, 5.4; B–L: 4.4, 3.1, 5.4).

29.3.2 Power

The power of the S1∪S2∪S3 rule for rejecting the global null hypothesis depends on
the pattern of the nonzero noncentrality parameters when the outcomes are not inde-
pendent. Table 29.3 summarizes the power values corresponding to 15 configurations
of the nonzero means (noncentrality parameters). The noncentrality parameter values
were drawn from Table 29.2.

The power was 89–90 % when the variables were uncorrelated [det(R) = 1] for all
cases. The effect of intercorrelations among the variables on the power depended on
the number of nonzero means and the degree of correlation. In general, the average
power was less for cases when det(R)< 0.4. The range of achieved power was much
smaller for cases when det(R)> 0.4. The power tended to be less when the nonzero
means were among the most highly correlated variables, as in cases 6 and 10, for
example. This was especially pronounced when the correlation matrices were nearly
singular. Table 29.4 compares the average power for rejecting a false global null
hypothesis of the S1 ∪ S2 ∪ S3 hypothesis-testing rule with the average power for the
Benjamini–Hochberg and Benjamini–Liu rules. The power is about the same for all
of the approaches in all of the cases.

29.4 Individual Comparisons

Comparison-wise testing procedures often are evaluated using the “false discovery
rate” (FDR) = Pr(H0i true | H0i rejected) (Benjamini Hochberg 1995), as opposed to
the Type 1 error rate = Pr(H0i rejected | H0i true). The type 1 error rate does not depend
on how many individual H0i are true. However, the FDR increases when few of the
individual null hypotheses are false because it is the same as 1—positive predictive
value used to evaluate diagnostic procedures, which does depend on the prevalence
of true negatives (true H0i). The strategy for testing individual comparisons therefore
depends on how many null hypotheses are tested and how many are likely to be false.

The following variation of the Benjamini and Hochberg (1995) approach for
individual comparisons is proposed. First, carry out individual comparisons only if
the global null hypothesis is rejected. If half or more of the comparison-wise p values
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Table 29.3 Size and power properties of the S1 ∪S2 ∪S3 rule for testing the global null hypothesis as
a function of the degree of correlation among the outcome variables and the pattern of true nonzero
means (denoted by “X” in the pattern) when there are five outcome variables, except for case 1
which corresponds to the null hypothesis that all means equal to zero. The target power is 90 %.
det(R) is the determinant of the correlation matrix

All (n = 141) det(R) ≥ 0.4 (38) det(R)< 0.4 (103)

Case Pattern Mean Min. Max. Mean Min. Max. Mean Min. Max.

1 00000 4.9 4.5 5.5 5.0 4.5 5.5 4.8 4.5 5.3

2 X0000 90.1 89.5 91.2 90.1 89.5 90.7 90.1 89.5 91.7

3 0000X 90.7 89.6 91.9 90.4 89.6 91.1 90.9 90.1 91.9

4 X000X 88.5 82.8 90.9 89.6 88.3 90.7 88.0 75.8 90.9

5 XX000 89.8 83.3 91.1 90.0 88.6 90.8 89.6 76.7 91.1

6 000XX 80.3 75.4 90.7 85.1 82.7 90.7 78.5 75.4 84.6

7 00XX0 84.4 75.5 90.6 88.1 83.3 90.6 83.0 75.5 90.0

8 0XX00 87.4 76.0 90.9 89.5 88.5 90.6 86.5 76.0 90.9

9 XXX00 87.8 74.7 90.7 89.5 87.7 90.7 87.0 68.4 90.5

10 00XXX 78.0 68.5 89.9 83.8 77.9 89.9 75.7 68.5 83.3

11 XX00X 86.6 74.4 90.8 89.2 87.7 90.8 85.5 68.2 90.4

12 X00XX 83.1 74.4 90.0 86.7 84.5 90.0 81.7 68.5 86.8

13 0XXX0 83.4 68.5 90.8 88.0 84.5 90.8 81.5 68.5 90.3

14 XXXX0 84.4 68.5 90.1 88.1 84.9 90.1 82.9 62.3 90.0

15 0XXXX 78.0 61.9 90.2 84.8 80.5 90.2 75.4 61.9 85.1

16 XXXXX 80.0 62.7 89.6 85.7 81.4 89.6 77.8 57.9 86.0

are less than α, then reject the individual null hypotheses whose p values are less than
α. If fewer than half are less than α, then calculate adjusted p values as described by
Benjamini and Hochberg (1995):

padj(K) = p(K) (29.1)

padj(i) = min(padj(i+1), (K/i) × p(i), i = K − 1, . . ., 1

and reject the individual null hypotheses whose adjusted p values are< α. A simpler
way to state (29.1) when using the procedure described here is to reject H0i if p(i) <

iα/K.
Table 29.5 summarizes the FDR for the proposed procedure and the Benjamini

and Hochberg, and Benjamini and Liu procedures for the same correlation patterns
used to construct Tables 29.3 and 29.4, and for a variety of patterns of nonzero means
whose values were drawn from Table 29.2.

Cases 1 and 16 are omitted because their corresponding FDRs are fixed by def-
inition (FDR ≡ 100 % in case 1 and FDR = 0 in case 16). All of the procedures
controlled the FDR reasonably well when the outcomes were not highly correlated
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Table 29.4 Average percent power of the S1 ∪ S2 ∪ S3 (“Rule 3”) rule for testing the global null
hypothesis relative to the Benjamini–Hochberg and Benjamini–Liu approaches. Case 1 corresponds
to the global null hypothesis (pattern = 00000); “X” denotes a positive mean

All det(R) ≥ 0.4 det(R)< 0.4

Case Pattern Rule3 B–H B–L Rule3 B–H B–L Rule3 B–H B–L

1 00000 4.9 4.6 4.4 5.0 5.0 5.0 4.8 4.5 4.2

2 X0000 90 90 90 90 90 90 90 90 90

3 0000X 91 91 91 90 90 90 91 91 91

4 X000X 89 88 88 90 89 89 88 88 87

5 XX000 90 90 89 90 90 89 90 89 89

6 000XX 80 80 79 85 85 84 78 78 77

7 00XX0 84 84 83 88 88 87 83 83 82

8 0XX00 87 87 86 89 89 89 87 86 86

9 XXX00 88 87 86 90 89 88 87 86 85

10 00XXX 78 76 74 84 83 82 76 74 72

11 XX00X 87 86 85 89 88 87 86 85 83

12 X00XX 83 82 80 87 86 85 82 80 79

13 0XXX0 83 82 81 88 87 86 82 80 79

14 XXXX0 84 83 81 88 87 85 83 81 80

15 0XXXX 78 76 74 85 83 82 75 73 71

16 XXXXX 80 78 76 86 84 82 78 75 73

(det(R)> 0.4). The FDR values for the Benjamini–Hochberg and Benjamini–Liu
procedures generally were less than a nominal 5 % error rate. The FDR values for
all of the procedures tended to decrease substantially when many of the component
null hypotheses were false.

The FDR is not the only metric that can be used to assess misclassification. It
also is possible to fail to identify true differences, that is, the probability that a
particular hypothesis H0i is false given that it was not rejected, which we term the
“missed discovery rate” or MDR (See also Hwang et al. 2011, where it is called
the “false non-discovery rate.”). Table 29.6 displays MDR values for the “Rule of
3,” Benjamini–Hochberg, and Benjamini–Liu procedures for the cases considered
in Table 29.5.

The MDRs are slightly lower for the Rule of 3 procedure than for the other two
procedures. They do not depend greatly on the correlation structure but, as expected,
do depend on how many of the component null hypotheses are false.

Another desirable property of multiple comparison procedures is control of the
family-wise error rate (FWER), that is, the probability of rejecting a true null hy-
pothesis. In the context of diagnostic testing, the probability of rejecting any true null
hypothesis is the complement of the specificity, which here is the probability of not
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Table 29.5 False discovery rates (FDR) of tests for individual comparisons for various mean vector
patterns (X denotes a nonzero component obtained from Table 29.3) and high or low intercorrelation
as measured by the determinant of the correlation matrix

Case All det(R)> 0.4 det(R)< 0.4

Rule 3 B–H B–L Rule 3 B–H B–L Rule 3 B–H B–L

2 4.7 3.9 2.6 4.6 4.1 2.7 4.7 3.9 2.5

3 4.6 4.2 2.9 4.6 4.2 2.8 4.7 4.1 2.9

4 4.2 2.9 1.9 4.3 2.8 1.8 4.2 2.9 1.9

5 4.0 2.6 1.8 4.2 2.7 1.7 3.9 2.6 1.8

6 5.1 3.3 2.3 4.6 3.0 1.9 5.2 3.5 2.5

7 4.6 3.1 2.2 4.4 2.9 1.9 4.7 3.2 2.3

8 4.3 2.9 2.0 4.3 2.8 1.8 4.3 3.0 2.0

9 2.3 1.8 1.3 2.3 1.7 1.2 2.3 1.8 1.4

10 2.7 2.1 1.6 2.5 1.8 1.3 2.7 2.2 1.8

11 2.5 1.8 1.3 2.4 1.7 1.2 2.5 1.9 1.4

12 2.5 1.9 1.4 2.3 1.7 1.2 2.6 2.0 1.5

13 2.6 2.0 1.5 2.4 1.8 1.2 2.6 2.1 1.6

14 1.2 1.0 0.9 1.1 0.8 0.7 1.2 1.1 1.0

15 1.1 0.9 0.9 1.0 0.8 0.7 1.1 1.0 1.0

rejecting any true null hypothesis. Table 29.7 provides values of 1—the specificity
for the various cases. Procedures providing strong control of the FWER guarantee
that the probability of rejecting any true null hypothesis is less than the type 1 error
rate regardless of the correlation structure and of how many of the null hypotheses
are true. Although the proposed procedure probably does not provide strong control
of the FWER, the simulation results presented in Table 29.7 suggest that the level of
control it does provide may be acceptable in practice.

The power for rejecting an individual null hypothesis depends only on the true
mean for that outcome variable, and may be appreciably less than the power for
rejecting the global null hypothesis. In fact, the global null hypothesis can be rejected
without rejecting any individual null hypothesis when most or all of the outcome
variables provide modest evidence against the null hypothesis. For example, if there
were K = 5 individual hypotheses with p values equal to 0.045, 0.045, 0.045, 0.045,
and 0.06, then the global null hypothesis would be rejected by the “Rule of 3”
procedure (but not by any of the conventional procedures) even though none of the
individual null hypotheses would be rejected. This is the circumstance in which
composite testing strategies (Tang et al. 1993) are most effective (O’Brien 1984).
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Table 29.6 Missed discovery rates (MDR) of tests for individual comparisons when K = 5 based
on 10,000 simulated draws from multivariate normal distributions with the indicated mean vectors
(X denotes a nonzero component obtained from Table 29.3) and high or low intercorrelation as
measured by the determinant of the correlation matrix

All det(R)> 0.4 det(R)< 0.4

Case Rule 3 B–H B–L Rule 3 B–H B–L Rule 3 B–H B–L

2 2.0 2.1 2.1 2.0 2.0 2.1 2.1 2.1 2.1

3 2.1 2.1 2.1 2.0 2.0 2.1 2.1 2.1 2.1

4 12 13 15 12 13 15 12 13 15

5 12 13 15 12 13 15 13 13 15

6 11 12 14 12 12 14 11 12 13

7 12 12 14 12 12 14 12 12 14

8 12 12 14 12 12 15 12 12 14

9 27 31 35 27 31 36 27 31 35

10 24 28 32 26 30 34 23 27 32

11 27 30 35 27 31 36 26 30 35

12 25 29 34 26 30 35 25 29 33

13 26 29 34 27 31 35 25 29 33

14 51 55 61 53 57 62 50 54 60

15 48 51 57 51 55 61 46 50 55

29.5 Examples

29.5.1 Exercise for the Elderly

Lazowski et al. (1999) studied the effect of two exercise programs for elderly residents
of long-term care institutions on the participants’ strength and functional ability. The
two exercise programs were functional fitness for long-term care (FFLTC) and range
of motion (ROM). Ninety-six residents of five long-term care facilities who satisfied
mild inclusion criteria were recruited for the study. The participants were stratified
according to their degree of mobility using a standardized test as low or high mobility
(LM or HM). The participants were assigned to the two exercise programs at random
within each facility and each stratum. Fifty-five residents were assigned to the FFLTC
program and 41 to the ROM program.

The assessments of strength and functional capacity were carried out by observers
who were blinded to the participants’ program assignments. Sixty-eight of the en-
rollees completed the study, 36 on FFLTC, and 32 on ROM. Table 29.8 summarizes
the findings for functional ability. Stair-climbing ability could be assessed in only
20 participants because two of the facilities had no stairs.
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Table 29.7 Family-wise error rates (FWER) of tests for individual comparisons when K = 5 based
on 10,000 simulated draws from multivariate normal distributions with the indicated mean vectors
(X denotes a nonzero component obtained from Table 29.3) and high or low intercorrelation as
measured by the determinant of the correlation matrix

All det(R)> 0.4 det(R)< 0.4

Case Rule 3 B–H B–L Rule 3 B–H B–L Rule 3 B–H B–L

1 1.6 1.4 1.1 1.3 1.2 1.1 1.8 1.4 1.1

2 3.0 2.3 1.5 2.5 2.1 1.3 3.2 2.4 1.5

3 2.5 2.0 1.3 2.4 2.0 1.3 2.5 2.0 1.3

4 4.0 2.6 1.6 4.1 2.6 1.5 4.0 2.6 1.6

5 4.3 2.9 1.8 4.3 2.7 1.6 4.3 2.9 1.9

6 4.0 2.5 1.5 4.1 2.6 1.5 4.0 2.5 1.5

7 3.9 2.5 1.5 4.1 2.6 1.5 3.9 2.5 1.5

8 4.1 2.7 1.6 4.2 2.6 1.5 4.1 2.7 1.6

9 4.3 3.2 2.1 4.5 3.1 1.9 4.2 3.2 2.2

10 4.0 3.0 1.9 4.3 3.1 1.8 3.9 2.9 1.9

11 4.1 3.0 1.9 4.3 3.0 1.8 4.1 3.0 2.0

12 4.0 2.9 1.8 4.3 3.0 1.8 3.9 2.9 1.9

13 4.0 2.9 1.8 4.3 3.0 1.8 3.9 2.9 1.9

14 3.9 3.2 2.5 4.3 3.3 2.3 3.7 3.2 2.6

15 4.1 3.3 2.6 4.3 3.3 2.4 4.0 3.3 2.7

It is clear from Table 29.8 that from a global perspective, participants in the FFLTC
program had substantially greater improvements in functional capacity than partici-
pants in the ROM program. Where the material improvements actually occurred can
be determined by evaluating the individual assessments. Applying the conventional
Benjamini–Hochberg adjustments (1) causes all but one of the individual compar-
isons to lose significance. However, the individual assessments need no adjustment
with the method described here because at least half of them were significant at
the 5 % level. Consequently, one can conclude that the participants in the FFLTC
program had better results than the participants in the ROM program with respect to
all components of functional capacity except possibly gait and stair-climbing ability.
Similar conclusions were reached by Lazowski et al. (1999).

29.5.2 Uterine Weights from Estrogen Assay

Table 29.9 illustrates the comparisons of k treatments against a control using the
findings of an estrogen assay (Steel and Torrie 1980). The six differences between
the activated solutions and the control solution clearly are not independent. The
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Table 29.8 Significance levels from two-sided comparisons of the effect on functional capacity of
two group exercise programs for elderly residents in long-term care institutions Lazowski et al.
(1999). p values adjusted using (29.1)

Mobility Balance Sit and
reach

Shoulder
flexibility

Gait
(normal)

Gait
(fast)

Stair
climb

Function
capacity

(s) (score) (cm) (degrees) (m/s) (watts) (score)

nFFLTC/nROM 36/30 36/32 25/19 36/29 35/29 35/30 11/9 34/31

Mean chg
FFLTC

−3.7 3.9 4.7 16 0.04 0.03 −1.7 0.1

Mean chg
ROM

6.2 −0.5 0.4 4.3 0.04 0.03 −1.1 −5.4

p 0.044 0.0014 0.0403 0.016 1 0.82 0.16 0.046

padj 0.074 0.0112 0.074 0.064 1 0.94 0.21 0.074

Table 29.9 One-tail p values corresponding to comparisons of effects of six in vitro-activated test
solutions against a control on uterine weights (mg) of mice from an estrogen assay (Steel and Torrie
1980). padj from (29.1)

Solutions

1 2 3 4 5 6 Control

Mean 88.25 75.4 68.45 84.9 78.9 70.2 96.15

1-tail p 0.183 0.012 0.002 0.101 0.028 0.003

padj 0.183 0.024 0.012 0.112 0.042 0.009

global null hypothesis that the mean weights for none of the solution groups differs
from the mean weight for the control solution would be rejected at the (1-tailed) 5 %
level. Furthermore, the mean weights for solutions 2, 3, 5, and 6 are significantly
lower than the control weight. Hochberg and Tamhane (1987) and Westfall andYoung
(1993) reached the same conclusion from their analyses of these data.

29.5.3 Anesthesiology

Läuter (1996) presented an example in which 30 patients undergoing surgery were
randomly assigned to one of two procedures for administering anesthesia. Seven
correlated measurements were made on each patient. If the two procedures can be
distinguished globally, what is the pattern of difference between the two procedures?
The information presented by Läuter permits t-tests to be carried out for each of the
measurements, although this is not how the analysis was done in the paper. The results
are presented in Table 29.10. The outcomes are sorted in descending order of naı̈ve
significance level. The global null hypothesis of no difference between the procedures
is rejected because p(1) < 0.05/7 = 0.0071. Adjusted p values must be used to evaluate
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Table 29.10 Two-tail significance levels for individual outcome measures comparing two proce-
dures for surgical anesthesia (Läuter 1996). padj from (29.1)

v1 v2 v3 v4 v5 v6 v7

Procedure 1 mean 1.44 45.7 26.6 3.28 53.7 37.7 76.2

Procedure 2 mean 1.19 33.5 15.1 1.57 33.6 19.2 33.6

p 0.752 0.393 0.112 0.100 0.060 0.025 0.006

padj 0.752 0.458 0.157 0.157 0.139 0.087 0.042

the individual outcomes because fewer than half of them were significant at the 5 %
level. Only the seventh outcome measure remains significant after the adjustment.
This is not surprising because Läuter’s example illustrates a situation in which all
(except the 7th) of the outcomes demonstrated a modest advantage for procedure 1.

29.5.4 Post-Thrombolytic Treatment

Benjamini and Hochberg (1995) presented an example of treatment differences with
respect to the occurrence of cardiac and other events following the start of throm-
bolytic treatment. There were 15 treatment comparisons, for which the ordered
p values were 0.0001, 0.0004, 0.0019, 0.0095, 0.0201, 0.0278, 0.0298, 0.0344,
0.0459, 0.3240, 0.4262, 0.5719, 0.6528, 0.7590, and 1.0; the value corresponding
to 0.0095 corresponds to mortality. There are fewer than 16 comparisons, so the
rule described here can be used when the type 1 error rate is 5 %. Since more than
three of the comparisons had p values less than 0.05, the global null hypothesis of
no treatment effect with respect to any of the comparisons can be rejected. Given
that at least some of these differences are “real,” the question is, “which ones?” The
FDR controlling procedure (29.1) described by Benjamini and Hochberg supports
rejecting only the hypotheses corresponding to the four smallest p values. The rule
described here would support rejecting the nine hypotheses with p values less than
0.05 because more than half of the p values were less than 0.05.

29.6 Discussion

This chapter describes a method for carrying out multiple comparisons that controls
the type 1 error rate for global null hypotheses and requires almost no computa-
tion beyond that used to produce conventional summary tables with naive p values.
Although the method does not necessarily provide strong control of the FWER, it
did control the FDR at a nominal 5 % level less conservatively than the Benjamini–
Hochberg procedure, and showed similar power properties in a simulation study.
Since basing a decision on a combination of persistence and strength of positive
findings is consistent with how clinicians intuitively interpret study findings, in-
terpreting and communicating the findings to clinicians should be relatively simple.
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Moreover, it is easy to explain the need to adjust p values when few of the unadjusted
individual comparisons reach significance, but difficult when most of them do.

Sample sizes can be kept relatively small by selecting uncorrelated outcome vari-
ables that demonstrate a treatment effect (have a positive mean). For example, the
ratio of the sample sizes required when two of four instead of three of four variables
have a positive mean is 1.35, which means that a trial in which two of four variables
are expected to show a treatment effect would require 35 % ((2.926/2.518)2−1) more
patients than one in which three of four variables were expected to show the same
treatment effect, and would require 68 % more patients than a trial in which all four
variables were expected to show the effect. However, variables that demonstrate a
treatment effect also may be highly correlated, so that the power may be much less
than if the variables were independent. As an extreme case, if all four of the variables
were perfectly correlated, then the test would amount to a test on just one variable,
for which the noncentrality parameter for 90 % power with a 5 % level two-sided
test would have to be 3.242 (= 1.96 + 1.282) instead of 2.259. The more variables
that are chosen, i.e., the greater the value of K, the more serious this problem will
become. Hence, K should be no larger than necessary and the outcome variables
should not be highly correlated with each other as well as presumably reflecting a
treatment effect (Capizzi and Zhang 1996).

In some applications, especially those involving subjective or functional evalua-
tions such as trials of antiarthritic agents, efficacy is evaluated in terms of a number
of “domains,” which are sets of individual measurements. “Activities of daily living,”
which includes a number of questions about a patient’s ability to function from day
to day, is an example of one such domain. The domains occupy the roles of primary
response variables. The findings from the individual responses comprising a do-
main provide a basis for determining whether the domain finding is “significant” at a
specified level. The significance level is determined separately for each domain. This
process protects the domain-wise type 1 error rate. Combining the domain findings
across domains in the same manner preserves the experiment-wise error rate.

Most clinical trials have more than one relevant “primary hypothesis” because
more than one issue usually needs to be addressed in reaching conclusions about the
clinical utility of a drug, for example, safety or tolerability and efficacy, or whether a
drug shrinks tumors and improves survival, or does one but not both. These marginal
issues need to be addressed separately, and may not be subject to the multiplicity
adjustment paradigm (Cook and Farewell 1996).

Appendix 1 Technical Details

A1.1 Acceptance Sets

Let Xi denote the i-th of K measures of the effect of an intervention obtained from
a trial, with marginal cumulative distribution function (cdf) Fi (x;θi), where θi char-
acterizes the intervention effect. The null hypothesis of no intervention effect with



532 A. L. Gould

respect to the i-th measure Xi is H0i: θi = θi0 and the alternative is H1i: θi �= θi0.
These could be expressed as one-sided hypotheses H1i: θi > θi0. The global null hy-
pothesis of no overall intervention effect, H0 = ⋂K

i=1 H0i is false if any individual
null hypothesis is false. Let pi denote the usual p value (unadjusted for multiplicity)
calculated for testing H0i, i=1, . . . , K so that H0i would be rejected at the 100α% level
of significance if pi < α when multiplicity is ignored. Denote the ordered values of
p1, . . . , pK by p(1) ≤ p(2) ≤ . . . ≤ p(K)

Let α1 ≤ α2 ≤ . . . αK denote a set of adjusted Type 1 error rates for the ordered p
values, and let A(h)

i denote the set of realizations of Xi for which H0i: θi = θ
(0)
i would

not be rejected at the 100αh% level of significance, that is, for which pi > αh,i=1,
. . . , K. A(h)

i is the “acceptance set” for measure Xi when the null hypothesis H0i is
tested at level αh. For positive integers h and h′ between 1 and K,

h < h′ ⇒ (i) αh ≤ αh′

(ii) Ai
(h′) ⊂ Ai

(h)

(iii) Ai
(h)Ai

(h′)= Ai
(h) ∩ Ai

(h′)= Ai
(h′)

(iv) Ai
(h) ∪ Ai

(h′) = Ai
(h) (A1)

For notational convenience,

A(h) ≡ ∩K
i=1 Ai

(h)

A(h)
−j ≡∪K

i=1,
i �=j

A(h)
i

and, in general,

A(h)
−j1j2··· ≡

⋂K

i = 1,
i �= j1j2 · · ·

A(h)
i

A(h) is the set of outcomes such that all of the p values exceed αh and ∼ A(h) denotes
its complement.

A1.2 Rejection Regions

Denote by

S1 = ∼ A(1)

the set of outcomes for which p(1) ≤ α1. S1 is the set of outcomes among X1, . . . , XK

for which at least one of the component hypotheses H01, . . . , H0K would be rejected
at the 100α1% level. If α1 = α, the nominal type 1 error rate, then controlling the
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FWER at α requires P(S1 | H0) ≤ α, which implies that α1 ≤ 1 − (1 − α)1/K = αS

if the outcomes are independent. The Bonferroni approach replaces αS with αB =
α/K < αS.

Let

S2 = ∼
⋃K

i=1
A(2)

−i

denote the set of outcomes X1, . . . , XK for which p(2) ≤ α2, and let

S3 = ∼
⋃⋃

i1<i2
A(3)

−i1i2

denote the set of outcomes for which p(3) < α3. S3 is the set of outcomes for which
at least three of the component null hypotheses are rejected at the 100α3 % level.

Lemma: The set of outcomes for which the global null hypothesis will be rejected
if p(1) < α1 or p(2) < α2 or p(3) < α3 is defined in terms of the acceptance sets by

S1 ∪ S2 ∪ S3 = ∼
⋃⋃

i1<i2

{
A(1)

i1 A(2)
i2 ∪A(2)

i1 A(1)
i2

}
A(3)

−i1i2 = ∼
⋃CK,2

i=1
Ei (A2)

where CK,2 = K (K − 1) /2.
Proof:
Repeated application of relationship (iii) of (A1) yields:

∼ (S1 ∪ S2) = ∼S1∩ ∼ S2 =
⋃K

i=1

(⋂K

i=1
A(1)

i

)
∩
(⋂

j�=i
A

(2)
j

)

=
⋃K

i=1

(
A(1)

i ∩
(⋂

j�=i
A(1)

j A(2)
j

))

=
⋃K

i=1

(
A(1)

i ∩
(⋂

j�=i
A(2)

j

))
=
⋃K

i=1
A(1)

i A(2)
−i

Expression (A2) follows from

∼
(

S1

⋃
S2

⋃
S3

)
= ∼ S1

⋂
∼ S2

⋂
∼ S3

=
(⋃K

i=1
A(1)

i A(2)
−i

)⋂(⋃⋃
i1<i2

A(3)
−i1i2

)

=
(
A(1)

i1 A(2)
−i1 ∪ A(1)

i2 A(2)
−i2 ∪

(⋃
i�=i1,i2

A(1)
i A(2)

−i

))⋂(⋃⋃
i1<i2

A(3)
−i1i2

)

=
⋃⋃

i1<i2

(
A(1)

i1 A(2)
−i1 ∪A(1)

i2 A(2)
−i2 ∪

(⋃
i�=i1,i2

A(1)
i A(2)

−i

))
∩ A(3)

−i1i2

=
⋃⋃

i1<i2

(
A(1)

i1 A(2)
i2 ∪ A(2)

i1 A(1)
i2 ∪ A(2)

i1 A(2)
i2

)
∩ A(3)

−i1i2

from relationship (iii) of (A1)
⋃⋃

i1<i2

(
A(1)

i1 A(2)
i2 ∪ A(2)

i1 A(1)
i2

)
∩ A(3)

−i1i2

from relationship (iv) of (A1) QED
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A1.3 Probabilities Associated with Rejection Regions

In general (Feller 1957, p. 89), the probability associated with the events Ei in (A2)
is given by

P (S1 ∪ S2 ∪ S3) = 1 − P
(⋃CK,2

i=1
Ei

)
(A3)

= 1 −
⎧⎨
⎩

CK,2∑
i=1

P (Ei) −
CK,2∑
h=2

(−1)h
∑

i1<

∑
i2<

· · ·
∑

ih

P
(
Ei1 Ei2 · · · Eih

)
⎫⎬
⎭

Expressions for the joint probabilities in (A3) simplify appreciably because of the
relationships among the acceptance sets. The general result is given in the following.

Theorem:

P (S1 ∪ S2 ∪ S3) (A4)

= 1 −
{∑CK,2

i=1
P (Ei) − (K − 2)

∑K

j=1
P
(

A(1)
j A(3)

−j

)
+ CK−1,2P

(
A(3)

) }

where the Ei are defined by (A2).
Proof:
From the Lemma, and the fact that P(A ∪B) = P(A) + P(B) − P(AB),

P (Ei) = P
(
A(1)

i1
A(2)

i2
A(3)

−i1i2

)
+ P

(
A(2)

i1
A(1)

i2
A(3)

−i1i2

)
− P

(
A(2)

i1
A(2)

i2
A(3)

−i1i2

)

A typical product EiEj can be written as

EiEj =
(
A(1)

i1
A(2)

i2
∪ A(2)

i1
A(1)

i2

) (
A(1)

i3
A(2)

i4
∪ A(2)

i3
A(1)

i4

)
A(3)

−i1i2
A(3)

−i3i4

The pairs (i1, i2) and (i3, i4) are the index pairs of Ei and Ej, respectively. If i1, i2, i3, and
i4 are four distinct integers, then EiEj =A(3). Otherwise, if i1 = i3 = K or i2 = i4 = K,
then EiEj = A

(1)
k A

(3)
−k Hence, P(EiEj) = Pr(A(3)) or P (A(1)

k A
(3)
−k) depending on whether Ei

and Ej do not or do share a common index value. The product Ei1 · · ·Eih =A(3) if the
indices of the A sets for any two E factors consist of four distinct integers. Also, if k is one
of the members of the index pair corresponding to each Ei of the product Ei1 · · ·Eih , then
the product is equal to A

(1)
k A

(3)
−k. Consequently, P(Ei1 · · ·Eih ) = P(A(3)) or P( A

(1)
k A

(3)
−k)

accordingly as the factors of the product Ei1 · · ·Eih do not or do share a common index

value. All told, there are (CK,2
h

) distinct h-tuples Ei1 · · ·Eih . As long as h<K, there are

(K−1
h

) ways to choose h additional distinct indices to pair with any index value i to form

Ei1 · · ·Eih products whose members’ index pairs all contain i. Consequently, the term

P(A(1)
i A

(3)
−i ) occurs (K−1

h
) times in the sum

∑
i1<

∑
i2<

· · ·∑
<ih

P(Ei1Ei2 · · ·Eih ) and this is true

for each value of i, so there are K (K−1
h

) such terms. The remaining (CK,2
h

)−K(K−1
h

) terms
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of the sum all equal P(A(3)). If h ≥ K, then all of the products Ei1 · · ·Eih must equal

A(3) and so P(A(3)) must occur (CK,2
h

) times in the sum
∑
i1<

∑
i2<

· · ·∑
<ih

P(Ei1 Ei2 · · ·Eih ). This

completes the proof.
Expression (A4) does not require independence or continuity of the outcome variables.

Computationally useful forms can be obtained by assuming independence, as in the
following corollaries.

Corollary 1 If the outcome variables are independent and P
(
A(h)

i

)
= p(h)

i , then

P (S1 ∪ S2 ∪ S3)

= 1 −
⎧⎨
⎩
∑

i1<i2

(
p(1)

i1
p(2)

i2
+ p(2)

i1
p(1)

i2
− p(2)

i1
p(2)

i2

)∏
j�=i1,i2

p(3)
j

− (K − 2)
∑K

i=1 p(1)
i

∏
j�=i p(3)

j + CK−1,2
∏K

i=1 p(3)
i

⎫⎬
⎭ (A5)

Corollary 2 If the outcome variables are independent and continuous, and all of the
component null hypotheses are true, so that p(h)

i = 1 − αh, then the probability of rejecting
the global null hypothesis is

P (S1 ∪ S2 ∪ S3)

=1 − {CK,2(1 − α3)K−2(1 − α2)(1 − 2α1 + α2) − K (K − 2) (1 − α1)(1 − α3)K−1

+ CK−1,2(1 − α3)K}
This is the same as expression (3.3) of Sen (1999), when r = 3.

A1.4 Critical Values

Corollary 2 implies that the global null hypothesis test will have level at most α under
independence and continuity if and only if

f(α1,α2,α3) = CK,2(1 − α3)K−2(1 − α2)(1 − 2α1+α2) − K (K − 2) (1−α1)(1 − α3)K−1

+ CK−1,2(1 − α3)K ≥ 1 − α (A6)

Given α1, the maximum value of f in (A6) occurs when α2 = α3 = α1 (the derivative of
f with respect to α2 is zero when α2 = α1; the derivative of f with respect to α3 is zero
when α3 = α1 if α2 = α1). Inequality (A6) is satisfied if and only if α1 ≤ αS. If α1 = αS,
then f (α1,α2,α3) = 1 − α so that neither α2 nor α3 can exceed αS (Berger 1982). If
α1 < αS , which would be true if α1 < αB, then α2 and α3 both can exceed α1. This is
the key point. In particular, (A6) can be satisfied for α3 = α and α2 = 2α1 as long as
α1 ≤ α1max, where

α1max =
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CK,2 − K (K − 2) (1 − α) + CK−1,2(1 − α)2 − (1 − α)3−K

K (K − 1 − (K − 2) (1 − α))

It is easy to verify that α1max > 0 when α = 0.05 as long as K ≤ K(0.05) = 16. Smaller
values of α allow for greater values of K (α): K(0.025) = 25 and K(0.01) = 44. The value
of α1max is not much smaller than α/K when K ≤ 10. Table 29.1 in Sect. 2 displays the
values of α1max,α/K, and their difference for α = 0.05 and 0.25, and K = 3(1)16. The
quantity ε mentioned in the introduction is the difference between α1max and αB = α/K.

A1.5 Power

The power and, therefore, the sample size needed, for rejecting a global null hypothesis
will depend on the joint distribution of the outcomes under an alternative hypothesis. An
alternative hypothesis could specify a constant shift for each component outcome such
as H1i : θi = θi0 for all i. Or, the alternative hypothesis could specify a shift with respect
to some, but not all, of the component outcome distributions, so that the alternative
hypothesis would be defined by H1i : θi = θi1 �= θi0 for i ∈ {i1, . . . , im} ⊂ {1, . . . , K},
and θi = θi0 otherwise.

If the outcomes are independent, then the probability of rejecting the global null
hypothesis when there is a shift in m (1 ≤ m ≤ K) of the component distributions, is,
from (A5)

P (S1 ∪ S2 ∪ S3) = 1 − (A7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
CK−1,2γ 3 − m(K − 2)γ1

]
γ m−1

3 (1 −α3)
K−m

+Cm,2(2γ1−γ2)γ2γ
m−2
3 (1−α3)

K−m m > 1

+ (K − m)

[
(m − 1)

[
(γ1 − γ2) (1 −α2) + γ2 (1 −α1)

]

− (K − 2) (1 −α1)γ3

]
γ m−1

3 (1 −α3)
K−m−1

m < K

+ CK−m,2 (1 − 2α1+α2) (1 −α2) γ
m
3 (1 −α3)

K−m−2 m < K − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where γ K denotes the probability of a component event falling inside its level αK ac-
ceptance set when H1i is true. If H0i is true, then γ K = 1 − αK; if H1i is true, then γ K
denotes the corresponding type 2 error rate (assumed same for all components).

The functional form of F, the distribution generating the observations, is needed to
calculate the type 2 error rates γ i in (A7) corresponding to the type 1 error rates αi, i =
1,2, 3. Suppose the probabilities p(h)

i in (A5) can be calculated from

p(h)
i = pr(A(h)

i ) = F(θi + ζ1−αh/2; ξ ) − F(θi + ζαh/2; ξ ) (A8)

for two-sided tests of H0i: θi = 0 vs H1i : |θi| > 0, where F denotes an appropriate
cumulative distribution function such as the standard normal, Student t, etc., ξ denotes
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parameters with known values such as the degrees of freedom, θi (≥ 0) denotes the
expectation of the i-th component outcome under the alternative hypothesis, and the ζ are
percentiles of the null distribution of the appropriate test statistic. For power calculations
under independence, we want p(h)

i ≤γh if θi = θi1 > 0 and p(h)
i ≥ 1 − αh if θi = 0. The

first term on the right-hand side of (A8) will be only slightly less than 1 when 'i > 0,
so that the requirement p(h)

i ≤ γ h if θi = θi1 > 0 implies that a slightly conservative
estimate of θi1 is

θi
∼= ζ 1−γh

− ζ αh/2 (A9)

The value of θi must be the same for all h. Consequently, if θi is determined by α1 and
γ 1 in (A9), then γ 2 and γ 3 must be determined from

ζ 1−γ h
= ζ 1−γ 1

− ζ α1/2 + ζ αh/2

i.e., γ h = 1 − F(ζ 1−γ 1
− ζ α1/2 + ζ αh/2; θ).

The quantity θi1 is the value of the noncentrality parameter that gives power 1-γ 1 for
rejecting the i-th individual null hypothesis H0i when θi = θi1. It determines the required
sample size through expressions such as θi = μi

√
n/σ when the values of μi and σ are

specified. Table 29.2 in Sect. 2 above provides noncentrality parameters values calculated
assuming normality using (A9) for K = 3 (1) 16 and when m = 1 (1) min(5,K) = number
of positive means.

A1.6 Confidence Sets

Let θ denote the parameters of the joint distribution of the K outcomes addressed
by the null hypothesis H0: θ = θ0. H0 is rejected at the 100α% level when
Pr (S1 ∪ S2 ∪ S3|θ = θ0) ≤ α. A 100(1 − α)% joint confidence region for θ

consists of the parameter values for which H0 would not be rejected, i.e.,{
θ∗|P (S1 ∪ S2 ∪ S3| θ*

) ≥ α|}(Lehmann 1959, Theorem 4, p. 79). The region resem-
bles a notched hyper-rectangle when the outcomes are independent (Benjamini and Stark
1996).



538 A. L. Gould

Appendix 2 R Code for Simulations
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