
THE EXPERT’S VOICE®

George Stepanek

Software
Project Secrets
Why Software Projects Fail

Resolving the conflicts between software

development and project management.

S
te

p
a
n

e
k

S
o
ftw

a
re

 P
ro

je
ct S

e
cre

ts

SOFTWARE PROJECT
SECRETS

WHY SOFTWARE PROJECTS FAIL

SOFTWARE PROJECT
SECRETS

WHY SOFTWARE PROJECTS FAIL

George Stepanek

Software Project Secrets: Why Software Projects Fail

Copyright © 2005 by George Stepanek

Lead Editor: Dominic Shakeshaft
Technical Reviewer: David Putnam
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,

Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Associate Publisher: Grace Wong
Project Manager: Sofia Marchant
Copy Edit Manager: Nicole LeClerc
Copy Editor: Liz Welch
Assistant Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Dina Quan
Proofreader: Patrick Vincent
Indexer: Carol Burbo
Artist: Kinetic Publishing Services, LLC
Interior and Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Library of Congress Cataloging-in-Publication Data
Stepanek, George.
Software project secrets : why software projects fail / George
Stepanek.

p. cm.
ISBN 1-59059-550-5
1. Computer software--Development. 2. Project management. I. Title.
QA76.76.D47S733 2005
005.1--dc22

2005019810

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and
the publisher.

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail
orders-ny@springer-sbm.com, or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

To Erica, without whom I would not be who I am today

Contents at a Glance

ABOUT THE AUTHOR . xiii

ABOUT THE TECHNICAL REVIEWER . xv

ACKNOWLEDGMENTS . xvii

PART I
WHY SOFTWARE PROJECTS FAIL . . .

CHAPTER 1 INTRODUCTION . 3

CHAPTER 2 WHY SOFTWARE IS DIFFERENT 7

CHAPTER 3 PROJECT MANAGEMENT ASSUMPTIONS 23

CHAPTER 4 CASE STUDY:THE BILLING SYSTEM PROJECT 51

PART I I
. . . AND HOW TO MAKE THEM SUCCEED

CHAPTER 5 THE NEW AGILE METHODOLOGIES 65

CHAPTER 6 BUDGETING AGILE PROJECTS 97

CHAPTER 7 CASE STUDY:THE BILLING SYSTEM REVISITED 115

CHAPTER 8 AFTERWORD . 131

vi

APPENDIX:THE AGILE MANIFESTO . 133

GLOSSARY . 135

BIBLIOGRAPHY . 143

INDEX . 151

vii

Contents

ABOUT THE AUTHOR . xiii

ABOUT THE TECHNICAL REVIEWER . xv

ACKNOWLEDGMENTS . xvii

PART I
WHY SOFTWARE PROJECTS FAIL . . .

CHAPTER 1 INTRODUCTION . 3

CHAPTER 2 WHY SOFTWARE IS DIFFERENT 7

1. Software Is Complex . 8

2. Software Is Abstract . 10

3. Requirements Are Incomplete 11

4.Technology Changes Rapidly 12

5. Best Practices Are Not Mature 13

6.Technology Is a Vast Domain 15

7.Technology Experience Is Incomplete 16

8. Software Development Is Research 16

9. Repetitive Work Is Automated 18

10. Construction Is Actually Design 19

11. Change Is Considered Easy 20

12. Change Is Inevitable . 21

Summary . 22

viii

CHAPTER 3 PROJECT MANAGEMENT ASSUMPTIONS 23

Hidden Assumptions . 24

The PMBOK . 24

Scope Management . 25

When Should Scope Definition Occur? 27

Time Management . 28

Activity Definition . 28

Activity Sequencing . 30

Activity Duration Estimating 34

Schedule Development . 36

Cost Management . 37

Resource Planning . 38

Software Documentation 39

Developer Productivity . 42

Cost Estimating . 43

Quality Management . 44

Metrics . 44

Checklists . 45

Risk Management . 45

Risk Acceptance . 46

Risk Transference . 47

Risk Avoidance . 48

Risk Mitigation . 48

Summary . 49

ix

CHAPTER 4 CASE STUDY:THE BILLING SYSTEM PROJECT 51

Requirements . 51

Planning . 52

Design . 54

Construction . 54

Coding . 55

Integration . 55

Testing . 57

Death March . 58

Aftermath . 59

Summary . 60

PART I I
. . . AND HOW TO MAKE THEM SUCCEED

CHAPTER 5 THE NEW AGILE METHODOLOGIES 65

Selected Methodologies . 66

Other Agile Methodologies 66

Crystal . 67

1. Frequent Delivery . 68

2. Reflective Improvement 69

3. Close or Osmotic Communication 70

4. Personal Safety . 71

5. Focus . 72

6. Easy Access to Expert Users 72

7.Technical Environment with Automated Tests,
Configuration Management, and Frequent Integration . . . 73

Using Crystal . 74

Extreme Programming . 75

1.The Planning Game . 76

2.Testing . 77

3. Pair Programming . 78

4. Refactoring . 78

5. Simple Design . 79

6. Collective Code Ownership 80

x Contents

7. Continuous Integration 80

8. On-Site Customer . 81

9. Small Releases . 81

10. 40-Hour Week . 81

11. Coding Standards . 82

12. System Metaphor . 82

Using XP . 83

The Rational Unified Process 84

Phases . 86

Iterations . 87

Roles . 87

Artifacts . 87

Activities and Workflows . 88

Process Configuration . 88

Use Case–Driven Development 89

Visual Modeling . 89

Using RUP . 90

Mitigating Risks with Agility . 91

1. Incomplete Requirements and Scope Changes 91

2.Tools and Technologies Don’t Work As Expected 92

3. Developers Lack Skills and Expertise 92

4.The New Software Has Defects and
Requires Rework . 92

5. Project Staff Turnover . 93

Summary . 94

CHAPTER 6 BUDGETING AGILE PROJECTS 97

Budgeting for Software Development 98

1. Continuous Development 100

2. On-Demand Programming 101

3. SWAT Teams . 102

4. Subteam Encapsulation . 104

5. Feature Trade-off . 106

6.Triage . 106

7. Scoping Studies . 108

Contents xi

Combining These Techniques 109

Major Legacy System . 110

Minor Legacy Application 110

Major New System . 111

Minor New Application . 112

Agile Offshore Outsourcing 112

Summary . 114

CHAPTER 7 CASE STUDY:THE BILLING SYSTEM REVISITED 115

Methodology . 115

Inception . 116

Scoping Study . 117

Project Planning Meeting 118

Elaboration . 121

Review Meeting . 122

Construction . 123

Construction Iteration 5 124

Transition . 126

Deployment . 126

Aftermath . 127

Summary . 128

CHAPTER 8 AFTERWORD . 131

APPENDIX:THE AGILE MANIFESTO . 133

Manifesto for Agile Software Development 133

GLOSSARY . 135

BIBLIOGRAPHY . 143

INDEX . 151

xii Contents

An experienced team leader and software developer, George Stepanek has
gained certification as an architect in J2EE (Java 2 Enterprise Edition) and
as an MCSD (Microsoft Certified Solution Developer) in .NET. Born in the
Czech Republic, he grew up in England and later emigrated to New Zealand.
He studied natural science and philosophy at the University of Cambridge—
achieving an MA—followed by postgraduate diplomas in computer science
and education. He has worked for a range of IT companies, most recently at
Unisys New Zealand. He is passionate about creating quality software and
sharing new and interesting ideas. His interest in education has taken him to
Wikipedia (the free encyclopedia), where his writing has achieved featured
article status.

xiii

About the Author

Previously a mentor at Exoftware, where his role took him to a variety of
organizations, David Putnam has acted as an advisor on the management of
software development projects to companies in three continents. Now the
manager of CentaurNet, part of Centaur Publishing, David still regularly pres-
ents papers, workshops, and tutorials on the management and practice of soft-
ware development at national and international events, including XP2002,
XP2003, XP2004, and XP2005. Until recently he wrote the “Models and
Methodologies” column for Application Development Advisor magazine and
has had articles published in other publications. His main interests are people
management, software development, and learning organizations, and making
work satisfying to all those involved.

xv

About the Technical
Reviewer

The following people deserve their share of the credit:

Richard Cheeseman,
Andrew Chessum,
Kimson Co,
Alistair Cockburn,
Greg Forsythe,
Dave Horton,
Jasmine Kamante,
Eugene Sergejew,
Dominic Shakeshaft,
Olga Stepanek, and,
of course,
my sweet Erica.

To them my thanks are due for suggestions, advice, inspiration, encourage-
ment, expert opinions, and other such things. Without their help, this book
wouldn’t have been half as good.

Special thanks go to Unisys for their support during the writing of this
book, to the whole Apress team for their patience and their hard work, and to
Emily Cotlier for improving my writing with a wealth of advice and editing
input.

George Stepanek

xvii

Acknowledgments

WHY SOFTWARE
PROJECTS FAIL . . .

I
P A R T

Your boss has asked you to oversee the development of a new billing system,
and you’ve brought together a capable project manager and a group of hand-
picked developers. They’ve chosen state-of-the-art technologies and tools to
build the system. The business analyst has talked at length with the accounting
manager, and has written up a detailed set of requirements. The project has
everything it needs to be a success—doesn’t it?

Apparently not. Six months later the project is already late and over
budget. The developers have been working overtime for weeks, and one has
already quit, but despite this the software never seems to get any closer to
completion. Part of the problem is that the accounting team keeps claiming
that the software doesn’t do what they need, and they have pushed through a
steady stream of “essential” change requests, not to mention a flood of bug
reports. Your boss will be furious when she hears about this.

So what went wrong?
Whatever it is, it must be something that most companies get wrong.

According to Standish Group [2001] research, only 28 percent of software
projects in 2000 succeeded outright (see Figure 1-1). Some 23 percent were
canceled, and the remainder were substantially late (by 63 percent on aver-
age), over budget (by 45 percent), lacking features (by 33 percent), or, very
often, all of those issues combined.

At New Zealand’s Ministry of Justice, the new $42 million Case Manage-
ment System was $8 million over budget and over a year late when it was
rolled out in 2003. Of the 27 benefits expected from the system, only 16
have been realized. Instead of boosting productivity, the system has actually
increased the time needed to manage court cases by doubling the amount of
data entry. A postimplementation review identified over 1,400 outstanding
issues. But “the only challenges faced by the developers were those common
to large and complex systems” [Bell 2004].

3

Introduction

1
C H A P T E R

Figure 1-1. The success and failure of software projects in 2000

In contrast, things look very different in the engineering and construction
industry. According to the Engineering News-Record, 94 percent of the proj-
ect customers they queried were satisfied with the results of their projects,
which suggests that construction projects have much lower failure rates than
software projects. That’s why the collapse of the tube-shaped roof in the newly
constructed terminal 2E at Charles de Gaulle airport (Paris) in May 2004
made front-page news around the world: it was so unusual. Failed software
projects are far too common to merit such attention.

We can learn why by looking at commercial and noncommercial software
development. Commercial software is produced by companies for profit.
Some software is custom written for individual clients, such as your billing sys-
tem, but there are also generic “off-the-shelf” products like Microsoft Word.
Virtually all of these are created within a project, or within a series of projects.

Noncommercial software is very often open source, which means that
anyone can read its source code. Users can find out how it works, and make
changes to fix bugs and add the features they want. With open source soft-
ware, developers from around the world work together on software that has
no fixed feature list, budget, or deadline. Open source developers coordinate
their efforts in ways that are quite different from traditional project manage-
ment.

Open source software is a huge success. “The Internet runs on open
source software (BIND, Sendmail, Apache, Perl),” says Tim O’Reilly, CEO
of O’Reilly & Associates, one of the largest publishers of computer books.
Open source software generally has far fewer reliability issues or bugs than
commercial software. But is it a success by the same criteria we use to meas-
ure commercial projects? After all, with unlimited time, wouldn’t every project
succeed?

4 Part I Why Software Projects Fail . . .

It’s true that unlimited time can compensate for poor productivity.
However, the productivity of open source developers is legendary. In 1991
Linus Torvalds wrote a complete, stable, operating system kernel (Linux) in
less than a year, substantially on his own at that stage. And less than a year
after eight core contributors came together to form the Apache Group, they
had made Apache 1.0 so compelling a piece of software that it became the
most widely used webpage server on the Internet.

These successes suggest that software development can work very well
outside traditional project management. This is perplexing, considering that
project management techniques work well in most other areas. We have seen
that this is true for construction and engineering. There must be something
quite different about software development that makes project management
fail.

The next chapter will begin the analysis by identifying the characteristics
of software, and of the software development process, that make them unique.
These characteristics will then be compared against project management’s best
practices to discover where the process of project management breaks down
for software development. The first part of the book closes with a simulated
case study that shows how these problems can cause an otherwise promising
project to fail.

These chapters describe the problems in software development in some
detail. This may seem discouraging, but don’t abandon hope just yet. Identifying
the source of a problem is the first step toward finding a solution.

The second part of the book focuses on strategies that can help to bring
software projects to a successful conclusion. It begins by surveying three pop-
ular and promising new software development methodologies. It then consid-
ers ways to reconcile these methodologies with project management. Finally,
the case study from Part One is reworked to show how the same project could
have succeeded by using the new techniques.

Chapter 1 Introduction 5

When we try to find out what’s different about software and software develop-
ment, the first question that comes to mind is “Different from what?” So let’s
compare software development to road building. We’ve all used roads; we
know what they’re for and how they work. Roads are a very different product
from software. In their massive and immobile simplicity, they’re as unlike soft-
ware as it is possible to be.

There are many differences between road building and software develop-
ment. Software development is rarely affected by the weather, for example,
whereas you shouldn’t begin excavating a cutting if the slope is soaking wet
and subject to landslip. But is this a fundamental difference? No. Software
projects are also affected by external events. If a third-party software compo-
nent isn’t available on time, for example, then similar delays can occur.

The following sections introduce 12 distinct but interrelated differences
between software development and other common business endeavors (see
Figure 2-1). Road building has been chosen as the example to compare against
because it displays none of these characteristics, so distinctions can be drawn
as clearly as possible. However, this may not be the case for any other activities
that come to mind, which might exhibit one or two, or even a few of these
characteristics. What makes software development unique is that it encom-
passes them all.

7

Why Software Is Different

2
C H A P T E R

Figure 2-1. The 12 sections in this chapter each introduce one characteristic that is
unique to software development, and explain its relationship to those already discussed.
The concepts that appear further down on the diagram are derived from the more basic
concepts shown at the top.

1. Software Is Complex
“The drive to reduce complexity is at the heart of software development”
[McConnell 2004]. Even minor software can accumulate frightening complex-
ity. A small program with one or two authors can easily run into tens of thou-
sands of lines of code. Significant products, like the latest versions of Microsoft
Windows, run into tens of millions. But numbers of lines of code may not
mean much to you until you can relate that measurement to other types of
complex systems.

8 Part I Why Software Projects Fail . . .

When you look at software as it’s being written, it appears as a sequence of
instructions. Instructions usually appear as a single line in the text, but very
complex instructions sometimes span two or more lines. An instruction may
copy a piece of data, perform some arithmetic, manipulate text, or decide
which parts of the program to execute (and in what order). There are also
blank lines to separate groups of instructions, comments that explain to other
programmers what these instructions are intended to accomplish, and ele-
ments that help define the structure of the program (components, objects,
methods, etc.—please see the Glossary for more details).

But the most important part of the code is the instructions. You can think
of an instruction as being equivalent to a moving part in a vehicle. An instruc-
tion, just like a moving part, takes a varying input and does something with it.

You might expect that a 100,000-line program would be ten times more
complex than a 10,000-line program. However, a program’s complexity depends
not just on the instructions, but also on the interactions between the instruc-
tions. The 100,000-line program has ten times as many instructions interacting
with ten times as many instructions, so we should actually expect it to be a
hundred times as complex.

Skilled developers endeavor to reduce this overall level of complexity by
isolating various parts of system from each other. These are sectioned off into
small pieces (called objects) or somewhat larger pieces (called components),
which are chunks of code that can be used without knowing exactly how they
work. They hide the complexity of their internal mechanisms behind simple
interfaces. This technique is known as encapsulation, and it is a key part of
object-oriented programming.

Figure 2-2 shows how it works. This system is composed of 12 items (of
some kind) that interact with each other. By dividing these items into four
smaller assemblages, the total number of interactions has been reduced from
66 to 18, and the system is now much less complex.

Figure 2-2. Simplifying a complex system by dividing it into smaller pieces

Despite such techniques, developers still find that the complexity of their
software increases faster than its size.

Chapter 2 Why Software Is Different 9

Computer programs are the most intricate, delicately balanced and
finely interwoven of all the products of human industry to date. They
are machines with far more moving parts than any engine: the parts
don’t wear out, but they interact and rub up against one another in

ways the programmers themselves cannot predict. [Gleik 1992]

NOTE Software is unique in that its most significant issue is its complexity.

2. Software Is Abstract
You can’t physically touch software. You can hold a floppy disk or CD-ROM in
your hand, but the software itself is a ghost that can be moved from one object
to another with little difficulty. In contrast, a road is a solid object that has a
definite size and shape. You can touch the material and walk the route. Even
the foundations, which are hidden when the road is completed, can be viewed
and touched as the road is being built.

Software is a codification of a huge set of behaviors: if this occurs, then
that should happen, and so on. We can visualize individual behaviors, but we
have great difficulty visualizing large numbers of sequential and alternative
behaviors.

That’s why playing chess well is so difficult. At its simplest level, chess is
just a game where 32 pieces move from square to square across a board. We
can think of each move as a piece’s behavior, but any single move is meaning-
less in isolation. What gives it significance is its relationship to the moves that
have gone before, and to the moves that are yet to come. These relationships
are entirely abstract. It’s a huge task to accurately assess them, and by doing so
draw up a sound strategy. That’s why there’s such a gulf between novice and
expert chess players.

The same things that make it hard to visualize software make it hard to
draw blueprints of that software. A road plan can show the exact location, ele-
vation, and dimensions of any part of the structure. The map corresponds to
the structure, but it’s not the same as the structure.

Software, on the other hand, is just a codification of the behaviors that the
programmers and users want to take place. The map is the same as the struc-
ture. Once the system has been completely described, then the software has
been created. Nothing else needs to be done. We have automatic tools that
convert this representation into a program that the computer can execute.

This means that software can only ever be described accurately at the
level of individual instructions. To summarize is to remove essential details,
and such details can (as we’ve all experienced) cause the software to fail cata-
strophically or—worse—subtly and insidiously. But no one can hold 10,000
or 100,000 operations in mind at once.

10 Part I Why Software Projects Fail . . .

Even encapsulation, which can reduce the overall complexity of a system,
doesn’t release us from the burden of having to individually define each and
every one of these instructions (or behaviors); it just helps us to organize them
better.

A map or a blueprint for a piece of software must greatly simplify the
representation in order to be comprehensible. But by doing so, it becomes
inaccurate and ultimately incorrect. This is an important realization: any archi-
tecture, design, or diagram we create for software is essentially inadequate.
If we represent every detail, then we’re merely duplicating the software in
another form, and we’re wasting our time and effort.

NOTE Software is the most abstract product that can be created in a project.

3. Requirements Are Incomplete
Software is normally commissioned for the needs of users and managers, not
professional developers. These individuals are experts in their own roles, but
they rarely have as much experience as professional developers in dealing with
the abstraction and complexity of software. They understand the business
processes much better than the developers, of course, but even when someone
has a good grasp of the main flows of behavior that are required, it’s still very
difficult to take into account all of the alternative flows and error conditions,
and how different sets of requirements relate to each other.

Moreover, as we saw in the previous section, it is impossible to accurately
blueprint software, or draw up a complete set of requirements before the soft-
ware has been completed in some form or another. This means that any speci-
fication of requirements for software is likely to be incomplete in important
ways.

The users will gain new insights into their needs as the software starts to
take shape. The software becomes less abstract to them once they can get
hands-on experience and try out a variety of scenarios. This is where the
“steady stream of ‘essential’ change requests” for the billing system comes
from. It’s not that users don’t know what they want: it’s that they’re just not
able to visualize a system of this complexity until it’s at least partially complete.

To be successful, users and developers must work together to refine the
requirements for the software. As the software grows in functionality, the users
can revise the remaining features based on their testing of the system under
construction. An expert can be brought in at any stage to perform usability
testing, and to make recommendations regarding the user interface.

All of this suggests that the belief that you have, or ever can have, a com-
prehensive and finalized set of requirements is a self-deception. The most
honest response that a user can give is “I’ll know what I want when I see it.”
However, as we’ll see later, this consideration is rarely taken into account.

Chapter 2 Why Software Is Different 11

Does this matter? The Standish Group [2001] identified problems with
requirements and specifications as the top “Project Challenged Factors” for
software projects. They were the most significant issues for 42 percent of
projects.

In contrast, drawing up the specifications for a new road is a relatively
straightforward process: only the route, number of lanes, intersections, surfac-
ing, and so on need to be defined. Any driver can understand and recognize
the value of these characteristics.

NOTE It is uniquely difficult to define a complete set of requirements for
software before beginning development.

4.Technology Changes Rapidly
Twenty years ago we were struggling with the MS-DOS operating system and
creating simple spreadsheets on our PCs. Today we edit video on our computers
and connect to systems across the world. Computers double in speed about
every two years, and this opens up more and more opportunities for software
developers. Software changes quickly—we all know that—but we may not be
aware of just how quickly it changes, and what impact this has on any new
software we try to build.

Nowadays any significant new software is almost certain to be built with an
enterprise application framework such as Sun Microsystems’ Java 2 Enterprise
Edition (J2EE) or Microsoft .NET. It’s important to understand just what this
phrase means, because these technologies largely define the software develop-
ment landscape as it stands today:

� A framework is a toolkit, just like a Lego set, that you can use to build a
variety of items. In the case of software, the building blocks are bits of
software that do jobs that have been found useful in a wide range of
situations. Examples include getting data from a database, drawing a
window on the screen, or converting dates from one format to another.

� The word “application” includes more than you might imagine. There
are the one-person desktop applications that we’re all familiar with, such
as Microsoft Word for word processing, but there are also multiuser
applications that run on an office network, such as accounting and
email. Beyond that are applications we use over the Internet, such as
Amazon.com’s online ordering and Google’s search page, and applications
that other applications use to exchange information, so that international
phone calls can get connected, for example.

12 Part I Why Software Projects Fail . . .

� “Enterprise” is the most difficult word to define. Perhaps the best way
to think of it is “as big as you want.” Desktop applications are limited to
running on one computer, but that’s OK because only one person is
using them at a time. The popular Internet search engine Google
provides information to more than 1,000 people every second: no single
computer could handle that load. Enterprise technology allows many
computers to work together for a single application, and also provides
the connectivity to allow lots of people to access it at the same time. But
“enterprise” also means “as small as you want”: enterprise application
frameworks are not just for major applications in big companies.

Given that some of the most important government and business software
is now being built with these enterprise application frameworks, you might
expect that they have a long and distinguished history, and that they’d be sta-
ble and mature products. That’s not the case. Sun’s J2EE, which was perhaps
the first true enterprise application framework to be widely used, appeared in
1998, and has seen considerable change since then. Microsoft only released its
competing technology (.NET) in 2002, and no one has more than a couple of
years of experience with it yet.

In contrast, we’ve been building roads for thousands of years, ever since
the time of the ancient Roman and Chinese civilizations. The problem is well
understood, and the technologies change slowly. Hot-mix asphalt was patented
in 1903, and that basic technology is still what we use today.

NOTE Software development technologies change faster than other
construction technologies.

5. Best Practices Are Not Mature
Technologies can be used skillfully or unskillfully. For software, this distinction
can often only be assessed some time after the software has been completed.
The presence or lack of software quality shows up most clearly in its extensibility.

Extensibility is the ability to add functionality or modify existing
functionality without impacting existing system functionality. You

cannot measure extensibility when the system is deployed, but it shows
up the first time you must extend the functionality of the system.

[Cade and Roberts 2002]

Most programmers have had the painful experience of trying to modify a
system that works well, but in which it’s virtually impossible to make changes
without breaking some of its functionality. Programmers call this fragile code.

Chapter 2 Why Software Is Different 13

Fragile code can have a big financial impact. Numerous studies have
shown that at least 50 percent of software cost goes into extending and modify-
ing the original system [Koskinen 2004], and modifications to fragile code can
be twice as expensive as modifications to robust and flexible code. Clients
need solutions that can change and grow along with them.

Code becomes fragile when it’s put together in an ad hoc fashion, without
sufficient attention being paid to its architecture. An architecture is the overall
structure and design of a system, and can be seen as a codification of how to
use the technologies that the system is built upon. New technologies need new
architectures. For example, when Microsoft introduced “event-driven pro-
gramming” to BASIC in 1991 via its new Visual Basic development environ-
ment, it provided powerful new capabilities, but also the potential for new
problems.

One of these problems was a poor design practice, which became so preva-
lent that it ended up with a name of its own: the Magic Pushbutton. In event-
driven programming, all a programmer does is write a few “event handlers,”
which are routines that respond to the user’s actions. This technology means
that instead of having to write the core functionality for each new program
over and over again, a programmer can just add functionality to an application
skeleton that’s provided for them.

In the Magic Pushbutton, the only event handler that does any real work is
the one that’s called when the user clicks the OK button. If the programmer
doesn’t deliberately organize the program’s code in a better way, then it all
accumulates in this one routine, which ends up as a huge, unmanageable blob
of code.

Over time, every field of human endeavor develops best practices to
counter common mistakes like this. A best practice is a process or technique
that has a proven record of success in providing significant improvement to
the results of an activity. Experience allows users to define the best practices—
in other words, the most consistent ways to use the technology well.

But how long should we wait for those best practices? Object-oriented
programming has been in use since 1980, but it was only in 1995 that the
“Gang of Four” (Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides) published their seminal book Design Patterns, which revolutionized
object-oriented architectures and provided solutions to “anti-patterns” such as
the Magic Pushbutton. Fifteen years is a long time in the IT industry: many
technologies have come and gone in less time.

The enterprise application frameworks we’ve discussed have been around
for only a fraction of that time. A few architecture books are available already,
but none of them are as significant as Design Patterns. This suggests that the
enterprise application frameworks’ best practices aren’t mature yet.

So is software based on new technologies necessarily poor? Fortunately, no.
Later sections in this chapter will show how robust software can be created
even in these circumstances, but it’s not as simple as in road building, where
the basic technologies have been around for much longer, and hence the best
practices are long established and almost universally applied.

14 Part I Why Software Projects Fail . . .

NOTE Most software development technologies are not mature enough to
have a set of proven best practices.

6.Technology Is a Vast Domain
“No man is an island, entire of itself.” Nor does any piece of software exist in
isolation. We’ve seen how the building blocks for any new software would
come from an enterprise application framework, and they would implement
the most commonly used tasks that the software performs. These tasks are
many and varied, and it comes as no surprise that the enterprise application
frameworks themselves are huge and complex, containing tens of thousands of
usable routines. You can think of each routine as a knob, button, or dial that
allows the application—and the developer—to control the workings of the
framework, although there are also some routines that behave more like stand-
alone tools.

However challenging it is to develop software using an enterprise applica-
tion framework, it’s still much simpler and quicker than attempting to create
your own versions of these tools from scratch. It’s always cheaper to buy than
to build, which is why a substantial marketplace has sprung up for software
components that are more specialized than those available in the enterprise
application frameworks.

Until recently, these software components were distributed on CD-ROMs,
and copied into any application that required them. Since then, web services
have become the preferred technology for accessing third-party software com-
ponents. For all the hype surrounding web services, they are in principle very
simple. Instead of selling CD-ROMs, a third party keeps their software com-
ponents on their own servers and makes them available over the Internet for
a fee. This makes it easy for the vendor to apply bug fixes and enhancements,
and enables them to provide access to interesting data (stock quotes, news,
retail price comparisons, etc.) as well as useful tools.

Enterprise application frameworks contain a wealth of functionality, and
beyond that there is even more functionality available from third-party soft-
ware components. A single application would use only a few of these routines
and components. Even when working on a variety of applications and systems,
a developer will not be able to gain experience with more than a small propor-
tion of the technologies that are available.

NOTE Software development has far more technologies, and its technologies
have far more complexity than a single individual can hope to gain expertise
with.

Chapter 2 Why Software Is Different 15

7.Technology Experience Is
Incomplete
We’ve already seen that software technologies change rapidly. New technolo-
gies supplant older ones every few years, and even more frequently, new ver-
sions of existing technology appear that radically change the functionality and
use of that technology. This change is necessary and inevitable.

For example, Microsoft’s BizTalk Server 2004 is a very different product
from BizTalk Server 2000. Some of the tools work like they did in the previous
version, but the majority are entirely new or have changed beyond recognition.
“The core purpose of BizTalk Server remains, but Microsoft has redesigned or
enhanced almost everything around that core” [Yager 2004].

Moreover, developers work with an enormous range of specialized third-
party software components. Experience with these components can rarely be
carried over into future projects, because those future projects are unlikely to
use the same third-party components. Experience with enterprise application
frameworks is similar; these frameworks are so extensive that different proj-
ects that use the same framework may well use totally different parts of it.

Whatever a developer was working on even three to four years ago is
unlikely to be of any direct use today. So what use is an experienced devel-
oper? Is it true that every significant new piece of software is written by
developers who are essentially novices to the task?

It’s true that long lists of desired technology skills, which are so prevalent
in IT job advertisements, are virtually useless. The bulk of the technical
knowledge required for a project will normally be learned on the job. However,
the “softer” skills that make one a good developer, or even a good team leader
or architect, do apply from one project to the next, and can accumulate over
time. These skills include the software development best practices that are dis-
cussed later in this book. Sadly, these skills are rarely mentioned in job ads.
They’re harder to assess: you can’t just boil them down to a list of buzzwords
and acronyms.

NOTE Expertise with particular software development technologies is very
quickly outdated, and therefore most specific skills are learned on the job.

8. Software Development Is Research
As noted in previous points, the requirements for a piece of software will
invariably be incomplete. There will be conceptual gaps that must be filled,
and there will be assumptions that aren’t justified and aspects that just won’t
work. Because clients aren’t software experts, they won’t always be able to
distinguish between what’s possible and what’s not, or know what trade-offs
are available. They need to work with the developers to discover this.

16 Part I Why Software Projects Fail . . .

This means that the development process is a process of discovery—
progressively finding out the exact character of the software that will meet the
customer’s needs. Developers must combine analytical and creative skills to
find out what their customer really wants (even if the customer’s description
is confused and incomplete) and invent ways to combine these requirements
into a system that’s logically consistent and easy to use.

The project will probably include software tools and components that are
new or unfamiliar to the developers. New technology doesn’t always match up
to the marketing claims that are made for it. The rate of change in technology
has been accelerating, and products are often released before they’re mature,
complete, or bug-free. The advantages of being first to the market can out-
weigh the drawbacks of proffering flawed software.

For these reasons, users need to be wary of “version 1.0” software: soft-
ware that has just been released for the first time. Many companies “get it
right” only on the second or third attempt. Just think about Windows 3.1 and
Internet Explorer 3.0: who remembers any of their earlier versions?

These issues are particularly relevant for beta software. Traditionally, after
in-house testing is completed, new software would be given to a small group of
carefully chosen customers for beta testing in real-world conditions. This would
uncover yet more bugs, which were fixed before the first general release.
Recently, however, some software publishers have begun selling beta releases
to their customers. This means that the first released version is known to con-
tain bugs, and that customers are expected to pay for the privilege of testing it
and finding the bugs. Other publishers do the same, but don’t even mention
that the software is beta.

We can’t take it for granted that a given software tool or component will
work as we expect it to, or do everything that we need when we use it to create
our software. Even if the product chosen is mature and well regarded, and
even if the developers have used it before, because of the complexity of soft-
ware, you can rarely be sure that it can be used for the functions and circum-
stances that are unique to a particular project. You can’t tell if it will do the job
until you’ve actually made it do the job, and have seen that it works.

So software development is also a process of discovering whether and how
the chosen technology can be made to perform the role that’s required of it.
Sometimes it will work as expected. Sometimes it won’t, but there’s a work-
around that takes more effort than originally planned. And sometimes the
technology just can’t do what’s needed. Software projects rarely run smoothly
from beginning to end. They frequently encounter setbacks and dead ends,
simply because of the scope of the unknown. In a very real sense software
projects are simply the process of discovering the unknowns: once the
unknowns are known, then the project is effectively at an end.

NOTE Software development isn’t just a process of creating software; it’s also
a process of learning how to create the software that is best suited for its
purpose.

Chapter 2 Why Software Is Different 17

9. Repetitive Work Is Automated
Automation is the automatic operation and control of a piece of equipment,
or of an entire system. The use of automation began during the Industrial
Revolution in the eighteenth century, and hasn’t let up any time since then.
We expect productivity gains in every industry, and software and road building
are no exceptions.

In some industries, manufacturing is done in factories that are empty of
workers except for a few maintenance staff, and production has been com-
pletely automated. But we’re discussing projects here rather than production,
and projects can never be wholly automated. The Project Management
Institute [2000] defines a project as “a temporary endeavor undertaken to
create a unique product or service.” It’s this uniqueness that makes complete
automation impossible. No road is just like another, and even a piece of soft-
ware that duplicates the behavior of another must be made in a unique way.
This is called a “clean room” implementation.

No matter how much labor is saved through the use of machinery in road
making, road workers must still do a substantial amount of repetitive work.
Asphalt must be laid and rolled. Median barriers and lane markings must be
installed.

All of the repetitive work can be automated in software development, and
that’s because software doesn’t exist in the real world. It resides in the con-
trolled environment of the computer. Every part of it can be created and
controlled by means of a wide range of software tools.

Common tasks and services are included in enterprise application frame-
works, and more specialized ones can be done by third-party software compo-
nents, so programmers work more efficiently because much of their work has
already been done for them. But even beyond that, tools are constantly being
developed and refined to automate new chores and responsibilities.

One example is in web services. Web services use the industry-standard
messaging language Extensible Markup Language (XML) to communicate
messages over the Internet. To create a web service, you must define the mes-
sage format for every possible type of message, to show how the data is to be
converted into XML. This is a labor-intensive chore. But not long after the
introduction of web services, Microsoft automated this step in its Visual Studio
.NET development environment. Developers no longer have to put any effort
into defining the XML message formats for their web services, because this
work is now done for them by their development tools.

NOTE Software development has been automated to a greater degree than
other project-based activities.

18 Part I Why Software Projects Fail . . .

10. Construction Is Actually Design
Road building consists of a sequence of well-defined phases. The first step is
to perform the planning and design, which results in a set of plans and blue-
prints that can be signed off. Once these tasks are completed, then construc-
tion can start. The construction phase largely consists of well-defined,
repetitive tasks that can be accomplished by less highly skilled workers.

In contrast, software development is a process of research, so at no point
can definitive plans be drawn up. The more definitive you try to make the
plans, the more flawed they’ll be, and the more labor there will be in revising
them to meet changing circumstances. As the shape of the software becomes
increasingly clear over the course of a project, the design of that software must
be revised again and again. To completely redesign the solution each time
around would be onerous and wasteful, so we should think rather of a process
of ongoing design.

We’ve seen that the repetitive work in software development is rapidly
automated. There aren’t any repetitive tasks to define. But if tasks aren’t
repetitive, then defining them exhaustively becomes a time-consuming
process. And there is little to be gained from defining tasks in this way.
Software is abstract, so defining the construction tasks completely is equiva-
lent to actually performing the work, because automated tools are available
that can turn such designs into working software.

If tasks can’t be well defined, then we can’t cleanly separate the design
and construction phases. Indeed, there’s no construction as such; there’s only
design on smaller and smaller scales. This means that we can’t easily catego-
rize people into the roles of architect, designer, programmer, or analyst. The
roles overlap. All developers have the same kinds of tasks to perform, even
though some may have more responsibilities than others.

When a developer creates a new feature in a piece of software, their task
is simply to answer the question “exactly how is this feature going to work?”
They will add a set of instructions to the source code that defines in every
detail how the feature will work. But each detail is a design choice. For exam-
ple, a piece of text can be stored in an unchangeable object for greater effi-
ciency, or in a changeable object for greater flexibility. Which option is chosen
depends on how that piece of text is used. It’s a significant decision.

Programming is more than just writing code. Each step requires the devel-
oper to analyze some portion of the problem and design some aspect of the
solution.

NOTE Unlike other products, software is not constructed, but rather designed
into existence.

Chapter 2 Why Software Is Different 19

11. Change Is Considered Easy
Last-minute changes to requirements are rare in road building because the
consequences are so severe. If you discover during the course of a project that
the foundations are in the wrong place, then it takes considerable effort to dig
them out and rebuild them in another place. This is obvious to clients and
contractors alike.

Once you’ve built a section of road, then it’s built. A road may be extended
or widened, but it is never moved. When a road is “realigned,” what happens
is that a completely new section of road is built alongside the old, which often
remains as an alternative route. A freeway interchange may be reworked over
several years to suit changing traffic patterns by the addition of permanent
bridges, ramps, and lanes in a series of projects.

This isn’t to say that changes never occur in civil engineering projects.
When you start digging, you may find that subsurface conditions are different
from the original analysis. Subcontractors might not be available when you
want them, and schedules may be adjusted accordingly. However, such changes
rarely have an impact on the nature of the product: we don’t expect to end up
with a different building or a different road.

Compare this to software. Software is soft, by definition. Any part of it can
be changed at any time, just by rewriting that portion of the code. We expect
that bugs can and will be fixed wherever they appear in the system, as indeed
they are. Anyone who has written macros for Microsoft Office, or learned how
to write small programs at school or at a university, knows how flexible soft-
ware is and how quickly you can make substantial changes.

It’s true that substantial changes can often be made quickly and easily, but
to properly implement them you really have to revise the architecture of the
software so that it gracefully supports the new functionality; otherwise you’ll
just create a mess and make the software more fragile.

The architecture must be flexible and designed to accommodate change.
This is the main yardstick that we have for an architecture. If the software
will never be changed, then why should we care if the software is fragile and
badly designed as long as it still works? But most major systems are intended
for long use—often decades—even if their underlying technologies rapidly
become obsolete. Over such long periods of time, the business environments
will almost always see significant change.

20 Part I Why Software Projects Fail . . .

In addition to designing the architecture, we must also design our develop-
ment process to support change. This subject will be covered in much greater
detail in later chapters.

NOTE Software can be modified rapidly, and this pace is expected, but it’s
better to implement the changes properly.

12. Change Is Inevitable
Are there any situations where there will never be changes to the software?
We’ve seen how software development is actually a process of design from
beginning to end. It includes design work to accommodate requirements
whose details become clearer as the project progresses, and design work to
reflect what’s learned about the tools and components used to develop the
software. The process of software development is one of continuous design,
and therefore of continuous change.

Moreover, clients see how easily changes can be made, and expect that
they can change their minds at any point. Indeed, they often do, as they learn
more about what their nascent software can achieve for them. In 8,000 large
software projects analyzed in one study, some 40 percent of their require-
ments arrived after development had begun [Jones 1995].

Change is inevitable, and if a piece of software isn’t built to support change
then it will fall apart even as it is being built. The quality of software shows
itself when the software is first extended or modified. If the process of devel-
opment becomes one of extension and modification, then any software that
resists change will have a difficult gestation. Poor changes are more likely to
generate defects or bugs, and will make the code fragile and hard to debug.

It’s easy to see the problems that change can bring to a project, and begin
to see change as the “enemy,” but is attempting to eliminate all change a viable
option? Once we see change as inevitable, then the issue isn’t one of avoiding
change but of making change work to our advantage. This is a much more
manageable problem, as we’ll see later.

NOTE No software is perfect as first envisioned; it will always require changes
to make it best suit its role.

Chapter 2 Why Software Is Different 21

22 Part I Why Software Projects Fail . . .

Summary

In this chapter we’ve taken a whirlwind tour of the software development
landscape to set the scene for the rest of the book.We’ve identified 12 key
characteristics of software development that make it unique. The next
chapter will use these concepts as a starting point.We’ll be performing an
in-depth analysis of project management to discover which kinds of activi-
ties it is suited to (and which it is not), and we’ll be comparing this picture
to the view of software development that we developed in this chapter:

1. Software is unique in that its most significant issue is its complexity.

2. Software is the most abstract product that can be created in a
project.

3. It is uniquely difficult to define a complete set of requirements for
software before beginning development.

4. Software development technologies change faster than other con-
struction technologies.

5. Most software development technologies are not mature enough to
have a set of proven best practices.

6. Software development has far more technologies, and its technolo-
gies have far more complexity than a single individual can hope to
gain expertise with.

7. Expertise with particular software development technologies is very
quickly outdated, and therefore most specific skills are learned on
the job.

8. Software development isn’t just a process of creating software; it’s
also a process of learning how to create the software that is best
suited for its purpose.

9. Software development has been automated to a greater degree than
other project-based activities.

10. Unlike other products, software is not constructed, but rather
designed into existence.

11. Software can be modified rapidly, and this pace is expected, but it’s
better to implement the changes properly.

12. No software is perfect as first envisioned; it will always require
changes to make it best suit its role.

In analyzing the interactions between software development and project man-
agement, we’ve already examined some of the unique characteristics of soft-
ware development. The next step is to analyze the corresponding features of
project management in similar detail. This chapter will cover the five most rel-
evant topics within project management, stepping through each one in turn:

� Scope management

� Time management

� Cost management

� Quality management

� Risk management

We’re interested in the differences between software development proj-
ects and other types of projects, so we won’t be looking at areas of project
management where the differences are less significant. The following topics
will therefore not be covered because they are peripheral to our analysis:

� Integration management

� Human resource management

� Communications management

� Procurement management

23

Project Management
Assumptions

3
C H A P T E R

Hidden Assumptions

The conventional wisdom in project management values managing
scope, cost and schedule to the original plan. . . . This mental model is

so entrenched in project management thinking that its underlying
assumptions are rarely questioned. [Poppendieck 2003]

In this chapter we’ll be looking for assumptions that aren’t valid in the context
of software development projects, because they may be the fundamental rea-
sons why software projects so often fail. We’ll therefore be comparing any
assumptions we find to the 12 key characteristics of software development
that we identified in Chapter 2.

Projects can fail for other reasons, of course. Poor staff, difficult clients,
and ineffective management can all contribute to project failure. But these
factors aren’t specific to software development, and they don’t explain why
software development projects are particularly challenged. We want to dis-
cover why a software project might fail even in the most favorable circum-
stances: where there’s a skilled and motivated team, and where the client has
realistic expectations.

This analysis applies just as much to projects undertaken for internal cus-
tomers and clients. Software projects undertaken by a company’s own develop-
ers are no more likely to succeed or fail than those done by external contractors.
The only factor that may be significantly different is that projects for external
customers always require contracts: either ongoing outsource agreements or
per-project contracts. (The issues that are specific to software project contracts
will be noted.)

Experienced project managers know when to bend and when to break the
rules. Many software projects are capably handled, and many achieve accept-
able results. But trial and error is a painful way to learn. We already know
what’s unique about software, so let’s bear that in mind as we look over the
discipline of project management, and find the changes that must be made
if our software projects are to succeed.

The PMBOK
We’ll be using the Project Management Institute’s Project Management Body
of Knowledge (PMBOK) as a reference to describe how project management is
supposed to work. The PMBOK has been published in a number of versions
since 1987, and has since become an American National Standards Institute
(ANSI) standard. Its purpose is to identify good practices and define a com-
mon terminology for project management. The PMBOK breaks down project
management into the nine topics (or “knowledge areas”) listed in the introduc-
tion to this chapter.

24 Part I Why Software Projects Fail . . .

At the time of writing, the third edition [PMI 2004] of the PMBOK Guide
has yet to be formally released, and it will doubtless take several years before
its advances are widely known and used throughout the profession, so our
analysis will focus on the second edition [PMI 2000]. Significant differences
between this edition and the exposure draft of the third edition will be noted.

The comments here aren’t a criticism of the PMBOK or of project man-
agement in general. The PMBOK describes a core project management
methodology that has been successfully applied to a wide range of projects in
many different industries. Because it’s intended to be used in such a variety
of situations, it’s reasonable that it should be adjusted for a specific situation
such as software development.

Scope Management
Scope definition is the process of breaking down the overall aims (or require-
ments) of a project into a number of smaller, more closely defined goals. These
are documented in the Work Breakdown Structure, which is a diagram that
represents the hierarchy of goals (Example 3-1). Each goal on one level is bro-
ken down into a number of subgoals on the next, and so on. Detailed descrip-
tions of these goals are collected into a Work Breakdown Structure dictionary.
The Work Breakdown Structure is used to produce cost and duration estimates.

Example 3-1. Part of a Sample Work Breakdown Structure for a Project to Build a
New Road

Pedestrian crossing
Road markings
Traffic light

Traffic light posts
Electricity cables
Controller

Bridge
Foundations
Pillars
Road bed

Roundabout (etc.)

ASSUMPTION Scope can be completely defined.

“Is each item clearly and completely defined?” asks the PMBOK [PMI
2000]. We can see one hidden assumption already. What happens if the scope
can’t be completely defined? After all, in software development there’s no
such thing as a complete and final set of requirements. (This is one of the key

Chapter 3 Project Management Assumptions 25

characteristics of software development: the third one—“characteristic #3”—
from the 12 we identified in the previous chapter.) Is it still worthwhile work-
ing toward a comprehensive scope definition, even if we can never quite get
there? Or would we just be writing up meaningless details?

This is an important question because, according to the PMBOK, the next
step is to obtain formal acceptance for the scope document. Often the scope
definition becomes part of the contract for the project. In the event of a dis-
pute there can be financial penalties or litigation, so we have every motivation
to ensure that the process doesn’t go astray.

The PMBOK [PMI 2000] gives this rationale for performing the scope
definition process: “Proper scope definition is critical to project success.
‘When there is poor scope definition, final project costs can be expected to be
higher because of the inevitable changes which disrupt project rhythm, cause
rework, increase project time, and lower the productivity and morale of the
workforce.’”

According to the PMBOK, a poor scope definition is one that’s incomplete
or inaccurate. But software is extraordinarily complex, so a scope definition
for software development would include a considerable amount of detail. The
implication is that the more detail there is, the better, at least if it helps to
define the various items more precisely.

It’s easy to be lulled into a false sense of security by having a very detailed
scope definition. For software, since the requirements are always incomplete
(characteristic #3), the more detail there is in a requirements definition, the
more inaccurate it becomes. The critical question is: would it be better to
include details that are known to be at least partially wrong, or would it be
better to initially omit this level of detail?

In practice, inaccuracies will always result in rework. Unless the client just
doesn’t care, or has given up in despair, they’ll always insist on making changes
to the software to ensure that it behaves in the way they think it should. That
they initially didn’t quite know, or couldn’t quite describe how the software
should work, isn’t their fault. They’re not the experts.

Omissions may result in rework, but only if the developers make assump-
tions about missing details as they develop the software. If they can consult
with the client whenever some details need to be elaborated, then there will
be little or no rework. We can think of this as “just-in-time” requirements
gathering.

An overly detailed scope definition will therefore result in more changes,
not fewer.

The PMBOK asks us to tightly lock down the project’s scope before start-
ing work on the project. Changes are shown in a bad light, and only the nega-
tive consequences are discussed. Change is the enemy, from the point of view
of the PMBOK.

But change is inevitable (characteristic #12). If we try to restrict the client
from making changes, then the software will be built without any considera-
tion of what they learn about their needs during the course of the project.
Even if we can build it exactly according to their initial specifications, by the

26 Part I Why Software Projects Fail . . .

end they’ll still be dissatisfied with the results. We may have fulfilled the letter
of the contract, but we won’t have fulfilled the spirit of it, and that’s how the
client will judge us.

When Should Scope Definition Occur?

ASSUMPTION Scope definition can be done before the project starts.

Another hidden assumption is that the scope definition process is sufficiently
uncomplicated that it can be performed outside the context of the project. We
define scope in order to obtain approval for activities that we hope to perform
during the course of a project. There’s no point in including activities that have
already taken place.

However, for software development, scope definition can take up a sub-
stantial proportion of the project’s duration and cost. At a Microsoft architec-
ture workshop the author attended, one rule of thumb that met with universal
approval was that one-third of a project’s effort should be devoted to require-
ments gathering.

Why should requirements gathering take up such a large proportion of
the project? Software is abstract (characteristic #2), so no money is spent on
raw materials or manual labor. The majority of the work is in obtaining the
requirements and then translating them into working software. Productivity
for the latter task is excellent because the repetitive work in software construc-
tion has been automated, so the requirements gathering takes up an unusually
large proportion of the project’s time.

This issue is particularly challenging when the project is done under
contract. Generally, the client starts paying only when the contract has been
signed, so the cost of the scope definition is carried by the contractor. No con-
tractor would be prepared to do a third of the work up front without guarantee
of payment, so this step is typically shortchanged. In the absence of any form
of ongoing scope definition, the consequences can be just as dire as the
PMBOK threatens.

Change control is a formal process in the PMBOK, which is understand-
able given the financial implications of uncontrolled scope expansion. After a
change is requested, variance analysis is carried out to determine its impact,
and it is then submitted for approval.

In practice, this approach doesn’t work as expected. Either the change
control process is strictly enforced, in which case the stream of change
requests dwindles to virtually nothing, or the change requests increasingly
bypass the change control process. For software development, most of the
issues raised are to revise small details, so excessive bureaucracy is resented
and resisted.

But if the initial scope definition step is shortchanged, and if ongoing
scope definition is inhibited by a time-consuming change control process,

Chapter 3 Project Management Assumptions 27

then at what stage can scope be properly defined? If clients and developers
never have a chance to agree exactly what the goals of the project are, then
what chance does the project have of achieving goals that are acceptable to
both parties?

To be fair, the third edition of the PMBOK [PMI 2004] backs off from the
hard-line pronouncements of the second edition [PMI 2000], and says that
the “requirements will generally have less detail in the early phases, and more
detail in later phases as the product characteristics are progressively elabo-
rated. While the form and substance of the requirements will vary, it should
always provide sufficient detail to support later project planning.” The
PMBOK, though, doesn’t specify how to make this happen.

Time Management
This section discusses the four main activities in the area of time management
in the sequence shown (Figure 3-1). They are performed after scope defini-
tion, and before resource planning and cost estimating (which will be dis-
cussed next).

Figure 3-1. The main activities in scope, time, and cost management

Activity Definition
Activity definition is the first task in time management, and it occurs right
after scope definition. Scope definition broke down the goals and require-
ments of the project into the Work Breakdown Structure hierarchy. Activity
definition breaks down the work of the project into an activity list.

ASSUMPTION Software development consists of distinctly different activities.

28 Part I Why Software Projects Fail . . .

Alongside software development, there’s often a range of peripheral
activities, such as configuring the production servers, training the users, and
installing the software. Although these are valid and important tasks, let’s put
them to one side for a moment. Only rarely are they the reasons why software
is late, faulty, and incomplete. So how many distinct activities are there in soft-
ware development alone?

Although developers enjoy considerable variety in their work, there is
nothing lengthy enough to be properly called an “activity.” The only substan-
tial activity that developers perform is software development itself. That’s not
what you’d expect from looking at the sample diagrams given in the PMBOK,
which include activities such as design, code/construct, and unit test. To build
software, or indeed to build any product, surely you need to first design it,
then construct it, and finally test it? That seems to be the most logical and
intuitive process to follow. Unfortunately, it’s not what developers actually do.

Let’s look over the shoulder of an expert developer on a typical day. She
first picks a feature from her to-do list, and calls the client representative to
confirm exactly how they’d like it to be implemented. Then she writes a set of
small routines that test just that feature’s functionality: this is called the unit
test. After that, she might take a few minutes to discuss with her colleagues
how the feature might best be implemented in the context of the whole sys-
tem, perhaps by drawing a few rough diagrams on a whiteboard.

The remainder of the morning would be spent finishing the detailed
design and writing the code, which together comprise a single activity (charac-
teristic #10). As she writes the code, she adds comments in plain English to
document how the feature works while it’s still fresh in her mind. It takes a
fraction of a second to run the unit test, and debugging continues until this
test succeeds completely.

She then rebuilds the whole system, including the new feature, on her
computer. All the other features and components already have their own unit
tests, so integration testing is as simple as running that suite of tests. This may
take a few seconds or a few minutes, depending on the size of the system. If
any of the tests fail, then the new feature must have broken some of the exist-
ing functionality, and this bug must be fixed.

When the suite of tests succeeds completely, she uploads the updated code
into the team’s software repository. The task is finished. That night there will
be an automatic rebuild and retest of all of the code in the repository to con-
firm that the whole system still works perfectly.

This description, complex though it is, still oversimplifies what really takes
place. When he was researching the subject, Alistair Cockburn [1999] found
that the “moment-to-moment process the team followed was so intricate that
[he] couldn’t possibly write it all down.”

The developer may continue to talk to the client representative, discuss
the design with her colleagues, run the unit test, and debug the code while
she implements the new functionality. The unit test might be extended as she
writes the code and discovers new ways in which the feature could fail.

Chapter 3 Project Management Assumptions 29

One can argue that this task is actually a collection of distinct activities:
we see the developer gathering requirements, writing a unit test, and integrat-
ing the feature into the rest of the system. However, given that the whole task
is completed in a day or two, dividing the task up further would serve little
purpose.

So what’s the problem? Even if there’s only one kind of activity, the project
as a whole can still be broken down into a number of tasks. Our example
shows what one of these tasks might involve.

The problem is that, although the activity definition could be done in this
way, in practice it most often isn’t. In both editions of the PMBOK discussed
here [PMI 2000, 2004], there’s a hidden assumption that software develop-
ment consists of a set of distinctly different activities.

To a significant degree, this may come from the Deming Cycle (Figure 3-2),
which is a concept that underlies many of the project management processes
defined by the PMBOK. While there is no doubting the utility of this concept,
it won’t help project managers plan software development tasks that take only
hours to complete.

Figure 3-2. The Deming Cycle

Activity Sequencing
After defining the project’s activities, the next step is to identify dependencies
between them, and to sequence them so that each activity is performed only
after the activities that it depends on have been completed. Activity sequenc-
ing is simple in the construction industry: rigid dependencies exist between
various tasks. You can’t roll tarmac before you’ve laid it, and you can’t lay it
before you’ve put down the foundations. However, this process is far more
complex in the software industry.

ASSUMPTION Software development activities can be sequenced.

30 Part I Why Software Projects Fail . . .

Software is commonly constructed in a number of “layers,” each of which
performs a different function. Figure 3-3 shows a common approach to struc-
turing the layers. Someone who uses a program would interact with the user
interface, which consists of the windows, menus, buttons, and fields that dis-
play the data and respond to the user’s actions.

Figure 3-3. A typical software architecture

This functionality would normally be kept separate from the business logic,
or middle layer of the application. For example, an insurance company might
define business rules to calculate the premium for a driver from their driving
history and the value of their car. These rules go into a separate layer so they
can be used by any user interface screen that requires them.

The lowest layer is concerned with data storage and retrieval. It contains
functionality to connect to a database or to an old legacy mainframe applica-
tion that’s too expensive to replace (such as inventory control). Each layer
depends on the layers beneath it, so the user interface would depend on the

Chapter 3 Project Management Assumptions 31

business logic and data access layers, but not vice versa. You might expect that
the lowest layer must be constructed first, and the highest layer last, but this is
not the case. The layers can be constructed in any order.

For higher-level code, developers commonly use “stubs” to isolate the
functionality from lower layers that haven’t been written yet. A stub is a rou-
tine that appears to function just the way it should when you use it, but that
doesn’t actually do any real work. All it does is return some fixed data that
allows code that uses it to be written and tested.

We saw earlier how a unit test can be written for a feature, so that it can be
run without involving any of the other features in the program. This approach
is often used to develop code in lower layers where the corresponding user
interface isn’t available yet.

By including activity sequencing, the PMBOK contains another hidden
assumption, which is that activities can and should be sequenced. Software
tasks have no intrinsic dependencies on each other. But what often happens
in activity sequencing is that artificial dependencies are created between
activities, just to make the activity sequence diagram look more like the ones
printed in the PMBOK.

The worst situation occurs when the project has been divided up into
design, construction, and testing activities during activity definition. Yes, these
activities do have natural dependencies on each other, and yes, you can con-
struct a neat and tidy activity sequence diagram from them, but no, this isn’t
a good way of doing things.

This is called the waterfall model of software development (Figure 3-4),
because it’s much easier going from one step to the next than it is to try to
make your way back “upstream.” If you encounter difficulties during one
phase, then it’s time-consuming and expensive to back up to a previous phase
to fix them. If during construction, say, you find problems with the design,
then the only option is to halt all construction work and restart the design
process. Only after the new design has been finalized, documented, and
signed off can construction start again. Most of the completed construction
work will have to be thrown out because it doesn’t match the new design.

This is particularly awkward because it makes changes very difficult to
implement. We’ve seen how clients expect to be able to request changes (char-
acteristic #12), and that, indeed, they must be able to request changes to com-
pensate for the incompleteness of the requirements (characteristic #3). The
waterfall model has no mechanism to allow them to do this, and it is therefore
extremely inflexible.

Computer scientists often cite the waterfall model in order to use its flaws
to justify their innovations. It has by now been thoroughly discredited. Few
software development teams intentionally use it any more. So why mention it
here? It’s important to understand the waterfall model because teams often
find themselves unintentionally mimicking it in their projects: the PMBOK
can make waterfall development seem natural and appropriate. This is some-
thing to guard against.

32 Part I Why Software Projects Fail . . .

Figure 3-4. The waterfall model

Another issue is that each activity must produce an artifact—a tangible
product such as a specification, plan, or other document—which will then be
the input for the next activity in the sequence. Only the construction activity
produces something that is actually useful to the client, which is the working
software. The analysis, architecture, and design activities each produce a docu-
ment that’s used exactly once, and then is thrown away. This is an inefficient
way to develop software.

A better approach is to sequence the activities so that lower layers are
completed before work starts on the higher layers, building the application
“from the ground up” (Figure 3-5). This avoids many of the problems of the
waterfall approach, but it still introduces an artificial dependency that’s unlikely
to be justified. It’s still onerous, although less so than for the waterfall model,
to restart work on an already completed activity when problems are discovered
during later work.

But the best way to organize the project is to ensure that the tasks with the
highest level of risk are carried out first. That way, if, for example, a third-party
component doesn’t work as expected, then sweeping changes can be made to
the system without having to rework a great deal of code that has already been
completed. Mock-ups of the user interface can also fall into this category, as
they help the client to identify missing or inaccurate requirements, which can
then reduce risk later in the project.

What this means is that during each task the developer will make changes
to several of the layers at once. This sounds like a recipe for disaster, but it
isn’t. It ensures that each layer works well with the others. There’s no “big bang”
integration phase at the end, where you try to pull all the pieces together but
find that they don’t quite fit.

Chapter 3 Project Management Assumptions 33

Figure 3-5. Building software “from the ground up”

Activity Duration Estimating
The third step in the time management process is activity duration estimating.
It occurs right after activity sequencing. The individual activities are analyzed
to estimate how long they will take. The PMBOK suggests that an estimate
should originate from the individual most familiar with the nature of the spe-
cific activity.

ASSUMPTION There is always a way to produce meaningful estimates.

What happens if that person isn’t on the team yet? The team is often
assembled only after the project plan has been put together and approved,
by which time it’s too late to change the estimates that form the basis for the
project’s budget.

Quantitatively Based Durations
The PMBOK outlines three techniques to estimate the duration for activities.
“Quantitatively based durations” is where you multiply the quantity of work
(e.g., square meters of tarmac) by an average level of productivity. For well-
known, repetitive tasks, this technique can produce the most accurate esti-
mates. For example, in Rapid Development, Steve McConnell [1996] explains

34 Part I Why Software Projects Fail . . .

how to estimate a software schedule from the estimated number of lines of
code in the finished software.

However, the data that he presents is based on software development proj-
ects in the 1970s and 1980s. Back then, the bulk of software development
work was repetitive. There were no enterprise application frameworks, and
almost all of the code was written from scratch.

Nowadays we expect that the majority of the work will have already been
done for us, because we’ll be using an enterprise application framework and a
number of third-party components. We can only get the level of productivity
we expect by reusing code that has already been written. An operation that
requires at least 5,000 or 10,000 lines of code, if it has to be created manually,
may take only 5 or 10 lines of code if a suitable tool or third-party component
is available.

But whether a particular tool can do the job often depends on subtle dis-
tinctions in the client’s requirements. This means that the lines of code and
duration estimates can vary wildly, depending on whether the functionality
has to be created from scratch.

Since technology experience is mostly out-of-date (characteristic #7), a
large proportion of the tools will be new to the developers, and their applica-
bility in a given context can only be determined by experience. All too often,
this is by bitter experience, when a project exceeds its estimates due to unfore-
seen limitations and problems in the new technology.

Analogous Estimation
The second technique, “analogous estimation,” uses the actual duration of pre-
vious, similar activities to estimate the duration of activities in the project that’s
being planned. It works best when there have been a number of projects that
are similar in type and approach, if not in detail. Road building would be a
good example of this.

“Analogous estimation is most reliable when a) the previous activities are
similar in fact and not just in appearance, and b) the individuals preparing the
estimates have the needed expertise,” says the PMBOK [PMI 2000]. But for
software development projects, neither of these conditions is likely to be true.
If the previous software were sufficiently similar, then rather than using it as
an example for estimation, its components and code would be reused directly
in the current project. The schedule’s accuracy would suffer, but this approach
would offer considerable cost savings.

We’ve also discussed the extent to which software development is research
(characteristic #8). You can only accurately determine how long it would take
to solve a problem once you’ve solved that problem, and it’s only at this point
that the needed expertise becomes available.

Managers often ask developers how long it will take to fix a certain bug, or
to fix all of the remaining bugs in the software. Any answer the developer gives
is no more than a guess. Fixing a bug can take minutes, or it can take weeks.
Until you’ve found it and fixed it, you can’t tell which will be the case.

Chapter 3 Project Management Assumptions 35

Expert Judgment
The last technique the PMBOK suggests is that of “expert judgment,” which
in practice means taking an educated guess. The PMBOK [PMI 2000] admits
this when it says that “Expert judgment guided by historical information
should be used whenever possible. If such expertise is not available, the esti-
mates are inherently uncertain and risky.” We’ve already seen how the rate of
technology change makes technical experience date very quickly (characteris-
tic #7), which makes suitable historical information difficult or impossible to
obtain.

Estimating is always a difficult process, and one that introduces risk to a
project. (Risk management will be covered in a later section.) However, in the
PMBOK there does appear to be a hidden assumption that meaningful esti-
mates can be produced by some means or other. What if this isn’t possible?
There’s no provision in the PMBOK for planning projects that don’t have such
estimates.

What happens frequently in practice is that, under management pressure,
developers come up with numbers with very limited validity, which are subse-
quently given far too much weight. When the project overruns these estimates,
is the project going badly, or is it just the initial estimates that were at fault?

Interestingly, the third edition [PMI 2004] of the PMBOK glosses over this
issue to a much greater degree than the second edition [PMI 2000], but its
estimation process is still better suited to manual or machine-assisted physical
labor.

Schedule Development
The activity duration estimates are used as an input to the schedule develop-
ment task, which is the last step in the time management process. This is
where a lot of the “heavy lifting” in project management is done, and a broad
range of tools and techniques is available to plan and optimize a project’s
schedule.

ASSUMPTION The size of the project team does not affect the development
process.

Scheduling development for software projects should be very easy. Unless
you’ve introduced the kinds of artificial dependencies that we discussed ear-
lier, you can parallelize the tasks to your heart’s content. That would get your
new product into the marketplace awfully fast, wouldn’t it? If five developers
can develop the software in 10 weeks, then 50 developers could finish it in a
week. Or could they?

The Mythical Man-Month is one of the most widely read computer science
books. In it, Fred Brooks [1995] presents his central argument, which is that
“large programming projects suffer management problems that are qualitatively

36 Part I Why Software Projects Fail . . .

different than small ones because of the division of labor; that the conceptual
integrity of the software product is thus critical; and that it is difficult but pos-
sible to achieve this conceptual integrity.”

What does this mean in real life? Software is complex (characteristic #1).
The biggest challenge when developing software is to come to grips with its
complexity, and to talk about it with other members of the team. Increasing
the size of the team increases the size of the problem. That’s obvious, but what
might not be obvious is just how fast it grows.

Consider a team of three developers. Each developer has to be able to talk
to every other developer. Andy and Beth talk to each other, Andy and Chang
talk to each other, and Beth and Chang talk to each other. That’s three com-
munication paths.

But if you double the size of the team to 6 developers, then there are now
15 communication paths (Figure 3-6). Twelve developers have 66 communica-
tion paths, 24 developers have 276, and so on.

Figure 3-6. Communication paths in teams with 3, 6, and 12 members

It doesn’t take long for communication to become the biggest overhead on
the project. The more communication paths there are, the more room there is
for misunderstandings between developers to creep in, and the more potential
there is for bugs to arise. It’s actually better, if somewhat counterintuitive, to
limit the size of the team as much as possible in order to limit the communica-
tion overhead.

The hidden assumption here is that the only significant constraints on
schedule development are the activity dependencies and resource availability,
but team size and communication issues must also be taken into account.
Moreover, because there’s considerable overlap between the topics of sched-
ule development and resource planning, there are additional related issues
that are more relevant to the latter. These will be discussed in the next section.

Cost Management
This section covers the main activities in the area of cost management—
resource planning and cost estimating. After discussing resource planning,
we’ll also be discussing two issues related to it: software documentation and
developer productivity.

Chapter 3 Project Management Assumptions 37

The two cost management tasks are the final steps toward completing a
project plan. They build on the outputs from the scope management and time
management processes.

Resource Planning
For software development, the most significant resources are the developers
themselves. A server may cost a few thousand dollars, but even a small team of
developers will cost hundreds of thousands of dollars per year. Software devel-
opment resource planning is largely a process of assigning people to activities.
Project managers use their judgment to assign the best available person to
each task. Resource planning uses the results of, and occurs directly after,
schedule development.

ASSUMPTION Team members can be individually allocated to activities.

There’s another hidden assumption here, which is that people can be indi-
vidually and independently assigned to activities. We’ve already seen how the
size of the team influences its level of communication overhead, but additional
factors are also relevant here. The composition and structure of the team turns
out to have a profound effect on how the software is developed, and thus on
how good the resulting software is.

It takes time for team members to learn how to work together, and for a
team to become more than the sum of its parts. Every project is unique, and
every individual too, which is why it takes time to work out how best to organ-
ize them. A project manager can’t arbitrarily swap people in and out, and
expect the team to function just as well as it did before. This is true for any
team, but it’s particularly significant for software development teams.

One common approach is to specify a number of roles. In this context, a
role is a specialization that someone might assume during a software develop-
ment project: for example, architect, business analyst, programmer, or tester.
Each role is given responsibility for a number of activities, and each role has
one or more individuals assigned to it, who might have specific experience that
suits them particularly for that role. This sounds very logical so far.

The problem is that by making such distinctions you increase the burden
of communication on the team, and you also nudge the development process
toward the flawed waterfall model. For example, testers wouldn’t like the idea
of being involved with coding, because they would have little or no experience
with that activity, so they’d prefer to work with a version of the software that’s
essentially complete. Thus the testers would only join the team at a relatively
late stage in the project.

But by coming on board at such a late stage, they’d then have to rapidly get
up to speed on the project. They’d normally do this by asking their colleagues
numerous questions, and by reading any existing documentation—but only if

38 Part I Why Software Projects Fail . . .

it proves to be particularly helpful. Nobody enjoys reading documentation.
(We’ll discuss the reasons for this in the next section.)

“Any manpower added to a late project makes it later.” That’s Fred Brooks’s
[1995] best-known slogan. There is a substantial burden on existing team
members whenever someone new joins the team, simply due to the additional
communication that’s required to get them up to speed. Experienced develop-
ers know how true this is. Because software is so complex (characteristic #1), it
takes time to learn how to find your way around the whole system.

Other background knowledge required by new team members includes

� The customer’s requirements

� Project assumptions

� IT environment and systems

� The customer’s culture

� Relationship history with the customer

� Contacts

Without a good understanding of these areas, it’s easy to make costly and
embarrassing mistakes.

The solution is to maintain continuity in the project team. Instead of con-
tinually interrupting the project to bring new team members on board, it’s
better to let the team acquire the knowledge it needs from day one. Let them
gain familiarity with the scope of the project by gathering and analyzing the
requirements themselves. Let the developers take a hand in designing the
solution, so that they can better understand how the architecture fulfills its
goals. Because software construction is actually a process of refining a design
(characteristic #10), the more the developers understand the design, the more
consistency and quality there will be in the code they write.

Developers don’t just write code. They also do design work and perform
testing. If you need to bring in an expert designer or tester, then bring them in
to advise, guide, and train the team in their specialty. That way, the expertise
stays with the team, rather than going straight out the door when the expert
leaves.

You’ll also find that team members will take a longer-term view if they
know they’ll have to use the results of their own work later in the project. It’s
hard to see how your work affects downstream activities, unless you’ve had
firsthand experience of those activities and know which ideas help and which
don’t.

Software Documentation
Let’s now take a look at the controversial topic of documentation. At first
glance, documentation would appear to be the perfect solution for the

Chapter 3 Project Management Assumptions 39

previously mentioned issues in resource planning. If everyone properly docu-
mented their work, then wouldn’t the communications overhead be elimi-
nated? Instead of bothering their colleagues, new team members could get up
to speed at their own pace. The documentation would become the repository
of the team’s knowledge, so it would stay with the team even when people left.

It’s no wonder that documentation has traditionally been such a big part of
the software development process. When managers try to increase the rigor of
their software development projects, they typically demand an increase in the
level of documentation. It’s reassuring to get a hefty document at the end of
each activity. It also makes project planning very easy: the output from one
activity is the input to the next. Just assign any available person, and let them
get on with the job.

There’s only one problem: developers hate documentation. They hate
reading it, and they particularly hate writing it. But is this just because they’re
lazy, or do they have a real justification? After all, developers are the ones who
are expected to benefit from documentation, so they should be the first ones
to see its benefits. Why don’t they?

To properly discuss this topic, we must first realize that the question of
whether to write documentation or not is actually a spurious one. The infor-
mation must be conveyed one way or another, and there are a wide range of
methods by which it can be communicated. A better question would be: which
technique is the most appropriate to communicate this specific piece of infor-
mation?

� We can speak face-to-face.

� We can videoconference.

� We can phone each other.

� We can exchange emails.

� We can write it up in a document.

Each of these methods has its own characteristics and limitations
[Cockburn 2002]. By choosing to videoconference rather than speaking face
to face, we remove physical proximity from the communication medium.
Detail is obscured, and we lose many of the subliminal cues that we use to
build rapport. Negotiation, problem solving, and brainstorming all become
more difficult.

Moving from videoconferencing to phone, we lose visual gestures, expres-
sions, and pointing. It’s hard to keep track of exactly what the speaker is refer-
ring to. When we draw on a whiteboard, the actions of drawing and speaking
serve to anchor and expand on each other. This is lost in a phone conversation.

In email there’s no vocal inflection or timing. It’s hard to get a sense of
which ideas are more important, in what way they’re being put forward, and

40 Part I Why Software Projects Fail . . .

exactly what the other person thinks about them. There’s also a much more
limited sense of dialogue: each communication stands on its own, and we don’t
have the immediacy and freshness of fully interactive communication.

Finally, for paper documentation we lose all interaction. The audience is
unknown, so the writer must guess what topics, approach, and level of detail
are suitable. They can’t ask questions to check understanding, or accept ques-
tions to provide more explanation. There is no feedback.

From this it’s clear that documentation is, in fact, the least rich and the
least effective form of communication. The effort is greater and the results are
worse than simply picking up the phone or stopping by to talk. It’s no wonder
that developers reject documentation as the way to communicate with one
another.

What makes things even worse is that very often documentation is required
as a thing in itself, for everyone and anyone, rather than for a specific audi-
ence. But if documentation is written for everyone, then it is written for no
one. It becomes a dry assemblage of facts that’s difficult and boring to read,
rather than a pertinent set of solutions to the problems that face a specific
individual or group.

There’s no magic solution to the problem of knowledge management and
communication. The most efficient approach is to make the person who uses
the knowledge the same person as the one who discovered or created it. That
way, there’s no communications overhead and no chance of misunderstanding.
Anything else is a compromise, and paper documentation is the greatest com-
promise of all. Excess documentation is actually a significant risk. Either too
much time will be spent updating all the documents whenever anything changes,
or the documents will become less and less useful as they get out of date.

Beyond the immediate project team, the situation is entirely different,
and there is certainly a valid role for documentation. A project team works
together for a period of time, and it has the flexibility to adjust its communica-
tion style as needed. However, when the project is over the team will be dis-
banded, and the team members may no longer be around to provide help and
advice, but sources of information about the software will still be needed.

Users may require a “Getting Started” guide, for example, and the help
desk may require a troubleshooting manual to resolve common problems.
There are several distinct audiences that need specific information presented
in specific ways. A skilled technical writer can produce effective documenta-
tion that addresses these particular audiences.

The hidden assumption here is that documentation is the best way to com-
municate information during a software project. The PMBOK doesn’t specifi-
cally discuss this type of documentation, so this isn’t a hidden assumption in
project management, but it is important to understand how it relates to the
other software project management issues.

Chapter 3 Project Management Assumptions 41

Developer Productivity

ASSUMPTION One developer is equivalent to another.

The issue of developer productivity also affects resource planning. The
assumption that resources can be individually allocated to activities carries
with it the assumption that one developer can be substituted for another. The
only exception is that senior developers are expected to be more productive
than their junior colleagues.

Again, the truth is more complicated. Unlike, for example, construction
workers, the productivity of individual software developers with similar levels
of experience varies by a factor of at least ten to one. “Although specific ratios
such as 25 to 1 aren’t particularly meaningful, more general statements such as
‘There are order-of-magnitude differences among programmers’ are meaningful
and have been confirmed by many. . . studies of professional programmers . . .”
[McConnell 2004].

It takes a peculiar talent to work with the complexity and abstract nature of
software. Some people exhibit prodigious talent, whereas others, who may be
just as motivated and hardworking, continue to struggle. Moreover, individuals
usually exhibit their ability in specific areas, such as detail work or client com-
munication.

Barry Boehm [1981] makes the following recommendations in his seminal
book Software Engineering Economics:

� “Top talent—Use better and fewer people.”

� “Job matching—Fit the tasks to the skills and motivation of the people
available.”

� “Team balance—Select people who will complement and harmonize
with each other.”

A naive project manager who saw developers as equivalent to each other
would be tempted to use the so-called “Mongolian Horde” approach, which
uses a large number of cheap and inexperienced developers. Just as with the
original Horde, the end result is chaos. Even allowing for their limited design
and programming skills, the developers just don’t have the experience to
organize and deliver a system of this scale.

Some developers can even bring negative productivity to a team. They may
not understand the sophistication of the team’s code, and will introduce bugs
that require lots of rework. They may demand so much help that their own
work fails to compensate for the lost productivity of the other team members.
Or their conflicting styles and difficult personalities may result in unproduc-
tive disagreements and reduced motivation all around.

42 Part I Why Software Projects Fail . . .

Cost Estimating

ASSUMPTION Acceptably accurate estimates can be obtained.

The final issue to consider in the area of cost management is the dramatic
disparity between the accuracy of cost estimates expected in project manage-
ment and that which is available for software development according to indus-
try research (Table 3-1). The project management figures originally came from
the Association for the Advancement of Cost Engineering International, and
are representative of the levels of contingency applied to projects in a wide
range of industries.

Table 3-1. Accuracies of Estimates in Project Management and Software Development

Project Management Accuracy Software Development Accuracy
from the PMBOK Third Edition from Rapid Development
[PMI 2004] [McConnell 1996]

Conceptual 30% under to 50% over 75% under to Initial product concept
300% over

Preliminary 20% under to 30% over 50% under to Approved product
100% over definition

Definitive 15% under to 20% over 33% under to Requirements
50% over specification

Control 10% under to 15% over 20% under to Product design
25% over specification

What happens when a developer gives a single estimate instead of a range?
The project manager will assume a level of variance in accordance with the left
side of the table, but the true variance is actually that given on the right side
of the table. Even if there is a contingency of 30 percent built into the project
plan, the project may still be late and over budget when a slip of 50 to 100 per-
cent occurs. The project can fail just because the contingency has been incor-
rectly calculated.

Why is there such a difference between these two sets of figures? We’ve
seen that software development is a process of ongoing research to refine
the customer’s needs and discover the tools’ capabilities (characteristic #8).
Research is, by definition, an uncertain process: you don’t know how long it
will take to find out the unknowns until you’ve actually done so.

Chapter 3 Project Management Assumptions 43

Quality Management
The main thrust of project planning goes through the sequence of scope, time,
and cost management activities that we have just considered. Alongside these
activities, however, project managers also spend some time planning their
quality management and risk management strategies. These subjects will be
briefly covered in the next two sections.

Metrics
According to the PMBOK, the two main tools that are created during the
process of quality planning are the set of operational definitions (or quality
metrics) and the set of quality checklists. “An operational definition defines,
in very specific terms, what something is and how it is measured by the quality
control process” [PMI 2000]. In other words, it’s a metric. For example, the
cookies produced at a bakery must be between 6.5 and 7.5 cm wide, or the
electricity supplied by a distributor must be between 235 and 245 volts.

ASSUMPTION Metrics are sufficient to assess the quality of software.

Aside from performance, the only real primary metric for software is the
number and severity of the defects or bugs remaining in the software. The
other metrics discussed in the literature are metrics for the process rather
than the product: progress compared to plan, requirements changes over time,
effort by activity, and so on. Still, it can be argued that the number of defects is
all we need to measure. Clearly, if the program fails to work as intended, then
this is not good. And if the software has no errors, then why shouldn’t it pass
quality assurance?

This approach may be suitable for other products, but it’s too simplistic for
software. We don’t just expect the software to work as is; we also expect to be
able to adapt and change it to meet our future needs (characteristic #12). We
saw in the previous chapter how the quality of software shows up most clearly
in its extensibility. Quality is more than just the absence of defects; it is also
the fragility or robustness of the code.

Fragile code often generates new defects when it’s modified; it’s a breeding
ground for bugs. Just finding and fixing those bugs won’t be enough to resolve
the broader problems in the design and implementation of the software. It will
always be expensive and risky to maintain. There are no metrics to determine
this when the software is first being written, which is when we’d really like to
find it out. By definition, you can only test extensibility when you try to extend
the system.

Before that point, the only option is to rely on subjective opinions of the
elegance and flexibility of the design, and of the clarity and rigor of the code—
hence the need for developers to review each other’s designs and code. The
hidden assumption is that the product measurements, and the metrics to

44 Part I Why Software Projects Fail . . .

which they belong, are sufficient inputs to the quality assurance process. This
is clearly not true. By themselves, they don’t give a complete enough view.

Despite this, metrics can still be valuable tools. Even if an application
works properly, users will still complain if they find it to be too slow. It’s there-
fore important to also monitor the application’s average response time (its
performance), and the number of concurrent users for which acceptable per-
formance can be maintained (its scalability).

Secondary metrics include ease of use, productivity gains, and business
benefits. These metrics are of critical importance, but they’re very difficult to
measure while the software is being developed. You have to put working soft-
ware into the hands of real users for extended periods of time in order to get
meaningful data.

Checklists
The other tool, the set of quality checklists, is even more problematic.
According to the PMBOK, a checklist is “a structured tool, usually item spe-
cific, used to verify that a set of required steps has been performed,” and it is
employed “to ensure consistency in frequently performed tasks” [PMI 2000].
But we’ve seen that for software development, repetitive work is rapidly auto-
mated (characteristic #9). What’s left is the problem solving, and every prob-
lem is unique. There are no significant “frequently performed tasks.”

It’s clear that software development requires quality assurance processes
beyond those suggested in the PMBOK. Suggestions for additional quality
assurance processes will be covered in Part Two.

It should be noted that the third edition of the PMBOK [PMI 2004] now
accepts the inclusion of additional quality assurance activities in the quality
management plan.

Risk Management
Finally, let’s take a quick look at risk management. A project risk is an uncer-
tain event or condition that has consequences for the project—for example,
that poor weather will delay construction. The purpose of risk management is
to identify, analyze, and respond to project risks. The PMBOK suggests four
techniques for dealing with project risks:

� Risk acceptance: Allocate contingency time and/or funds that can be
used to absorb the impact if one of the risks eventuates.

� Risk transference: Assign responsibility for the risks to another party.

� Risk avoidance: Find alternative processes that do not include these risks.

� Risk mitigation: Find ways to make the risks less likely to eventuate, or
to reduce the impact when they do.

Chapter 3 Project Management Assumptions 45

Risk Acceptance
Risk management deals with known risks, that is, risks that can be foreseen.
A typical risk register for a software development project would include

1. The requirements are incomplete, and the project scope will change.

2. The tools and third-party components don’t work as expected.

3. The developers lack sufficient skills and expertise.

4. The software developed will have flaws that require rework.

5. Sickness, resignations, and other projects will reduce the number of
people available to work on this project.

The risks in software development seem to be easy to identify. We’ve dis-
cussed most of these risks in previous sections. However, at this level the risk
descriptions are so generic as to be almost useless. Any risk evaluation at this
level would be little more than a guess. But difficulties arise as soon as we try
to drill down into these categories.

Let’s examine them one by one:

1. We know that the requirements will be incomplete (characteristic #3),
and that change is inevitable (characteristic #12). This risk has a 100
percent chance of eventuating. However, how can we predict what the
client will learn about their needs during the development process? We
can only wait for them to tell us. Moreover, any changes to the scope
could introduce new risks: how can you plan for these before you know
what they are?

2. The process of development is one of problem solving (characteristic
#8): we find ways to implement the functionality required by the client.
When you’re solving a problem, you don’t know how you’re going to
solve that problem until you’ve actually done it, and you don’t know
which features of your tools will be needed to help you do so. How
can we estimate what impact this will have? A limitation in a tool or
component may require a one-line workaround, or it may require
thousands of lines of additional code to reproduce the functionality
that is required.

3. Technical experience goes out-of-date very quickly (characteristic #7),
so it’s virtually certain that the project will introduce new tools, compo-
nents, and features that the developers haven’t used before. But until
you’ve learned enough about them, how can you determine how long it
will be before you can use them effectively?

46 Part I Why Software Projects Fail . . .

4. All software has bugs. Yes, even computer science luminary Donald
Knuth, who was so confident in his TeX page layout program that he
offered cash rewards to people who found bugs, has had to pay out
again and again over the years. A bug may take a minute to find and fix,
or it may take a week.

5. This is the one exception to the pattern. Over time we can measure sick
days, employee turnover, and project contention to obtain well-founded
estimates for these factors. This risk is specific and measurable.

Software development is a process of research (characteristic #8). The
intrinsic risk of research is that what you find out happens to be more compli-
cated than you thought it could be, and this risk can’t be quantified. You can’t
predict how complicated the problem or the solution will eventually become.

To be fair, the PMBOK also allows for qualitative risk analysis, where the
impact of the risk on the project is rated as Very Low, Low, Moderate, High,
or Very High. But without better knowledge of the risks at hand, even these
evaluations are likely to be little better than guesswork.

“Unknown risks cannot be managed, although project managers may
address them by applying a general contingency based on past experience with
similar projects,” says the PMBOK [PMI 2000]. For our five risks, although
we can name them, we know very little about them. Does this mean that the
risk management process is useless for software development?

It is if we follow it blindly. The level of contingency is often limited by
quantitative estimates that may be wildly inaccurate. Contingencies are typi-
cally too small, as we saw earlier, except where teams have learned otherwise
through painful experience.

Risk Transference
Risk acceptance is only one of the strategies that the PMBOK puts forward for
risk response planning. For any given organization, risk transference is another
option, but responsibility has to be assigned somewhere. It could be assigned
to the customer, to the contractor, or to a subcontractor, but the recipient still
has to manage the risk.

Unfortunately, there’s no software development equivalent to the comple-
tion bonds that are a common way to manage risk in the film and construction
industries. A completion bond is an insurance policy that guarantees comple-
tion of the project, which means that none of the participants are responsible
for the risk. A software completion bond would be a useful option, if it were
ever introduced.

Chapter 3 Project Management Assumptions 47

Risk Avoidance
For the reasons outlined previously, the kinds of risks that are common to
software development projects can’t feasibly be avoided. For example, some
contracts attempt to prevent the client from making any changes, but this situ-
ation rarely ends well. And you can look for developers who know everything
about everything that’s relevant to your project, but you’re unlikely to find
them.

Risk Mitigation
The last strategy recommended by the PMBOK is that of mitigation, which
“seeks to reduce the probability and/or consequences of an adverse risk event
to an acceptable threshold” [PMI 2000]. Given that software projects tend to
share the same sets of risks, we can find mitigation responses that are applica-
ble to software development projects in general. We’ll discuss the mitigation
responses pioneered by the new agile methodologies in Chapter 5, but be
warned: they usually involve breaking PMBOK rules.

The risk management model in the PMBOK is comprehensive and useful,
and it seems that there are no specific hidden assumptions that prevent it
from being used in software projects. However, software projects exhibit
unique characteristics that make it difficult to apply, and it is often applied
badly. After all, would such numbers of projects have failed so badly if their
risks had been properly managed?

48 Part I Why Software Projects Fail . . .

Chapter 3 Project Management Assumptions 49

Summary

In this chapter we’ve taken a crucial step toward understanding why soft-
ware projects fail. Our analysis of project management has revealed ten
hidden assumptions that don’t appear to be valid for software develop-
ment projects. In the next chapter we’ll take this a step further by working
through a case study that shows how these assumptions can cause prob-
lems for software projects and examines the impact that each of them
can have:

1. Scope can be completely defined.

2. Scope definition can be done before the project starts.

3. Software development consists of distinctly different activities.

4. Software development activities can be sequenced.

5. Team members can be individually allocated to activities.

6. The size of the project team does not affect the development
process.

7. There is always a way to produce meaningful estimates.

8. Acceptably accurate estimates can be obtained.

9. One developer is equivalent to another.

10. Metrics are sufficient to assess the quality of software.

In the previous chapter we performed an in-depth analysis of project manage-
ment to discover where it breaks down for software development. This chap-
ter covers the same issues, but from a different perspective. It introduces a
fictional case study (the same scenario as the one that begins the Introduction)
to illustrate how the ten hidden assumptions come into play, and how they
lead to the problems that cause projects to fail. At the end of the chapter we
will consider what impact each of the assumptions had.

The case study is not necessarily a typical project, since many aspects have
been simplified for reasons of clarity and space, but it is by no means unusual.
Each of the issues in the case study has occurred in at least one real-life proj-
ect that the author has been involved with.

This is the last chapter in Part One. In Part Two we’ll try to find solutions
for these issues, building on the ideas that we have already discussed. Part Two
will finish with another case study that reworks this scenario to show how it
could have succeeded had the project been managed differently.

Requirements
Acme Inc.—a medium-sized toy manufacturer—has seen its stock price slide
significantly over ongoing losses from its expansion program. Each department
has been asked to cut its costs by 10 percent to help profitability and reassure
investors. Karen, the accounting manager, has come up with the idea of inte-
grating the various financial applications that are used by her team, so that the
data would be entered only once into a new master application, which would
then automatically copy it into the other applications. Her department could
shed three full-time data-entry roles by eliminating multiple entry of the
same data.

Karen went to see her boss Salim, who, as the chief financial officer, had
the authority to approve or reject the project. He liked the idea, but urged

51

Case Study:The Billing
System Project

4
C H A P T E R

caution: “Remember, we’re trying to save money, so we’ve got to keep the cost
of the project down. Company policy says that any new investment has to pay
for itself within three years. Given the position that the company’s in right
now, I’d like to see payback well before then. See what you can do.”

Salim contacted Acme’s preferred employment agency, People Co., to hire
an experienced business analyst as a contractor for two weeks to scope and
estimate the project. Brian came on board a week later, and immediately set
up a series of meetings with Karen to go over the requirements. By the end of
the two weeks, he had completed a thick functional specification document.
He had also come up with an initial estimate of $300,000 for the whole proj-
ect, including $7,500 for his work so far.

This figure relieved both Karen and Salim, as the expected savings were
around $150,000 per year, so the investment would be fully recouped within
two years. The project was given the go-ahead to begin planning.

Planning
While Acme has outsourced all of its IT needs, it does still have a number of
capable and experienced operational project managers on its staff. After chat-
ting to the operations manager, Salim found out that one of his subordinates—
Phil—happened to have some free time over the coming months, and that he
could certainly take responsibility for the new project.

Phil spent a week going over the estimates and scope that Brian had writ-
ten up, and in his project plan he organized the duration, resource, and cost
estimates (Table 4-1).

Table 4-1. Duration, Resource, and Cost Estimates for the Project’s Activities

Activity Resources Name(s) Duration Cost

Project sponsor Salim N/A N/A

Key business owner Karen N/A N/A

Requirements 1 business analyst Brian 1⁄2 month $7,500

Design 1 software architect Angela 1 month $20,800

Construction 4 developers Reiko,Tim, 21⁄2 months $138,600
Hua, Mike

System Testing 1 tester Ian 1⁄2 month $6,100

User Testing 1 end user Emily 1⁄2 month $4,300

Rework 4 developers (as above) 1⁄2 month $27,700

Project 1⁄2 project manager Phil 4 months $34,700
Management

TOTAL $239,700

52 Part I Why Software Projects Fail . . .

He divided the remainder of the project into Design, Construction, and
Testing/Debug phases (Figure 4-1).

Figure 4-1. The overall project plan

Phil also considered which risks were most likely to affect the project
(Table 4-2). He followed the common practice of multiplying together the
probability and impact of each risk to obtain a figure for how much contin-
gency was needed. The impact of sickness could be ignored since Acme didn’t
pay for the contractors’ sick leave, and because he thought that one end user
could easily be substituted for another. After adding 10 percent contingency
for unknown risks, Phil ended up with what he thought was a generous contin-
gency reserve of 25 percent for the project as a whole.

Table 4-2. The Risk Register

Billing System Project Risks Probability Impact Contingency

Changes to requirements. 20% 25% 5%

Problems integrating with 25% 20% 5%
existing systems.

Developers not as competent 10% 20% 2%
as expected.

The system will be more buggy 30% 10% 3%
than expected.

Sickness will delay the project. 10% 0% 0%

Unknown risks will arise. 10%

TOTAL 25%

The final estimates for the project’s cost and duration were $299,600 and
five months respectively, and, as the formal sponsor for the project, Salim was
happy to sign off on it.

Chapter 4 Case Study:The Billing System Project 53

Design
People Co. quickly found an experienced software architect, and Angela
became the first contractor on the team. Her brief was to write a technical
specification document that included both a high-level architecture and
detailed design work. She soon decided that Microsoft .NET web services
would be the best technology to connect the various accounting applications,
and began drawing UML diagrams to show what the solution would look like.

She thought it a bit strange that she wasn’t allowed to create a prototype or
write any test code, but Phil had been very clear about this at their first meet-
ing. “I’m sorry, but you’re just too expensive to write the software. This project
is under strict financial constraints. There’s a lot of code to write, and we want
it done at $80 an hour—not $120.”

Angela knew that this arrangement wasn’t a good idea, but this contract
was only for a month, and it wasn’t worthwhile making a fuss about it. Besides,
it wouldn’t be her problem when things went awry.

Construction
As soon as Angela had decided on the basic technology, Phil went back to
People Co. to look for developers with the corresponding skills. He didn’t
want novices who couldn’t be trusted to deliver the results, but he didn’t want
anyone too expensive either. People Co. was able to find four intermediate-
level developers who claimed familiarity with .NET and web services: Reiko,
Tim, Hua, and Mike.

On Monday morning, the four developers turned up to find that they had
been given spare offices in various parts of the Acme building, one of which
had just been vacated by Angela. They quickly got busy installing their devel-
opment software and reading the two thick specification documents that Phil
had given them.

“We’ll have team meetings every two weeks,” he said to them, “but in the
meantime if you encounter any issues or problems, then don’t hesitate to come
and talk to me about them. My door is always open.”

Over coffee that afternoon the developers decided to divide the work into
four big chunks: the user interface and business logic, the database, the web
service interfaces, and the infrastructure. Hua had worked on a couple of big
database projects, so she volunteered to look after the database access func-
tionality. Reiko took over the user interface and business logic, Tim got the web
service interfaces, and Mike was left with the infrastructure. They decided to
work individually for two months, and then spend the last two weeks bringing
all the pieces together.

54 Part I Why Software Projects Fail . . .

Coding
Before long, Reiko discovered that the functional specification didn’t actually
describe how the new application’s screens should be laid out. She asked Phil
about this.

“Brian said that these requirements would be all that you’d need to build
the user interface,” was his response. “Why don’t you just put together some-
thing reasonable, and then update the functional specification to document
what you’ve done?”

Reiko had hoped that she could get away with just writing the code, but
she accepted in good grace. When she realized that the error messages hadn’t
been specified either, she didn’t bother to ask Phil, but just made them up
herself, and then added them to the functional specification too.

On the other side of the building, Tim was having real difficulties. He had
worked on a web services project before, so he was comfortable accepting
responsibility for the web services interfaces. However, some of the account-
ing applications had peculiar requirements for the format of their data, and
the interfaces that the .NET tools were creating just didn’t work.

He discovered that, rather than relying on his tools to create the interfaces,
he would have to create them by hand from technologies he knew nothing
about. However, he knew that books about these technologies were easy to
find, so he kept quiet and hoped that he could learn enough to get it all done
in time.

As Mike started work on the program’s internal infrastructure, he realized
that the design, although elegant, needed some refinement to allow it to do
everything that was needed. In fact, it really could do with a substantial
makeover. However, when he mentioned the problem to Phil, his response
wasn’t very encouraging:

“Angela came highly recommended as a software architect, and I don’t
want you to change her design any more than is absolutely necessary. I also
want you to document precisely what changes you do make. The technical
specification is the documentation for this software, and I want it to be com-
plete and accurate at all times.”

So instead of the redesign that Mike thought was necessary, he was reduced
to putting in a series of quick and ugly fixes for all of the functionality that was
missing in the infrastructure design.

At the project meetings, each developer reported steady progress, with
another 25 percent completed every two weeks. “Well, it looks like we’re stay-
ing on track,” said Phil.

Integration
After two months, the team got back together to integrate their code. Going
around the table, they found that each person’s work was pretty much com-
plete. Reiko spoke for everyone when she said, “My code is still a bit rough

Chapter 4 Case Study:The Billing System Project 55

around the edges. It should work fine, but the error handling, for example,
could do with a bit more work. I’m sorry, but updating all the documentation
has made everything take twice as long.”

However, when they tried to compile together the four separate chunks
of the system, it failed with a very long list of error messages. They worked
throughout the day to sort them out, but it seemed that for every one they
fixed, two more would appear. By the end of the day, the list was starting to
shrink again, but Hua was still quite panicky:

“You guys go home. I’ll stay here. We can’t all work on this at the same
time anyway. We haven’t got long to get it working properly, and the least I
can do is to get it to compile.”

However, the work went very slowly, and at 2 A.M. Hua gave up with half
a dozen serious errors remaining. What was worse, though, was that she had
noticed a fundamental incompatibility between Reiko’s business logic and
Tim’s web services. She called the team together for a meeting as soon as they
came in the next morning. The mood was tense.

“Guys, we’ve got a big problem. Reiko has written her code to use transac-
tions, but Tim’s web services don’t support transactions,” she said.

“It has to use transactions,” said Reiko. “It’s in the functional spec. The
updates to the database and the updates via the web services have to either all
work perfectly, or all be aborted together. Without transactions, how else can
you abort one update when another one fails?”

“But web services don’t support transactions yet,” said Tim. “That technol-
ogy has been delayed again, and it won’t be out until the beginning of next
year.”

“Is there a workaround?” asked Mike.
“I think so, yes,” said Hua. “For every web service, we can add another

web service to undo that update. Then if we need to abort the transaction, we
just call that undo web service.”

“But that means doubling the size of the web service module,” said Tim.
“There’s no way I can finish all of that in the next two weeks.”

“Reiko and I will help you,” said Mike. “Hua can finish up the integration;
she’s been doing really well on that so far. But we really need to get everything
done before we have to hand it over to the testers. Is there any way that we
can get things done faster?”

“Lose the documentation,” said Tim immediately. “That’s the biggest over-
head. Every time I make the slightest change to the code, I have to spend a lot
of time updating all the diagrams. I know it’s nice to have good documenta-
tion, but surely it’s a lower priority than getting the system working properly?”

“OK. And no gold plating either. I don’t care if it’s a bit rough and ready,
but it all has to be in place by a week from Monday,” said Mike.

The last two weeks were a nightmare. Hua was able to get the program
to compile at last, but it immediately crashed when she tried to run it. It was
hard tracking down the bugs because each of the developers had written their
code in a very different style. The code had few comments, and it was difficult
to understand how it worked.

56 Part I Why Software Projects Fail . . .

“Oh well,” she thought to herself, “we’ve still got the Debug phase ahead
of us. It’ll be much easier when we can all work on our own code again.”

The web service undo code turned out to be trickier than they had expected,
and it still wasn’t quite complete by the last Friday, so the developers decided
to work through the weekend. At the handover meeting on Monday morning,
they were at least able to claim that the software was now “feature complete,”
even if it still had a few bugs. It was now in the hands of the tester, Ian, and
Emily, the end user from the accounting team.

Testing
The first bug report came in just ten minutes after the handover meeting, and
after that they flooded in. Over the rest of that week, the bug list grew to
include over 160 serious or critical bugs. On Friday, Phil called a meeting to
discuss the situation.

“We were planning to deploy the system in a week’s time,” he said. “I really
need to know whether we can still make that date.”

Hua shook her head. “We’ve fixed nearly 60 bugs this week, which is a
tremendous rate, but there’s no way that we can get the rest done by the end
of next week. We’ll need another week, maybe two to be on the safe side.”

“Well, buggy code was one of the risks I identified at the beginning of the
project, and that’s what the contingency is for. I’m comfortable pushing back
the release date by two weeks,” replied Phil.

“I’m not,” said Ian. “There are a lot of features that I can’t test yet because
the program fails before I can even get to that point. I’m sure that there are
still a lot more bugs to be found.”

“That’s because half of the bug reports are actually change requests,”
replied Reiko. “Look at this: ‘Can’t paste a block of data from a spreadsheet
into the table.’ That’s not in the functional specification.”

“It’s what we do at the moment,” said Emily. “I thought this software was
supposed to save us time, not make our work slower. If we have to copy over
one number at a time, then we’ll spend twice as long on each invoice.”

“OK, guys,” said Phil, “let’s slip the date by three weeks, but I really want
you to make sure it’s done by then. I’d like to keep that last week of contin-
gency time for any issues arising from the deployment. Reiko, I see your point,
but the accounting guys have to be OK with the software too. I want you to
work with Emily to find the minimum set of changes that will keep them
happy. Tim, you work with the developers so they can fix the bugs that are
holding back your testing. And I want another project meeting in a week’s
time.”

At the next project meeting the developers were ranged down one side of
the table, and the testers down the other. Each side glared at the other.

Chapter 4 Case Study:The Billing System Project 57

Reiko was the first to speak. “Emily hasn’t backed down on any of her
change requests. In fact, she’s added more. At this rate the software will never
be finished.”

“I talked it over with Karen, and with the rest of my team, and they all
agree with me,” replied Emily. “We need software that we can use. Karen’s
not going to switch us over to the new system until we’re 100 percent happy
with it.”

“Let’s talk about that in a moment. How’s your end doing, Ian?” asked Phil.
“Sorry, Phil, it’s not going well. The guys have managed to open up most

of the application, but it seems like every time they fix one bug they break two
more things. The number of serious and critical bugs is now 230.”

“I’m still confident that we can make the deadline,” said Hua. “I think
we’ve fixed most of the really hard bugs, so the rest should go faster.”

Phil thought for a moment. “I’m willing to give you the whole month’s con-
tingency to fix those bugs, and to make the changes that the accounting guys
require. But that’s the absolute deadline. This project is supposed to save
money. There’s no way that I’m going to let it go over budget.”

Death March
The developers worked as fast as they could for the next four weeks, but it
became increasingly apparent that they just couldn’t make the deadline. The
bug list had stopped growing, but it wasn’t shrinking fast enough, and every
new feature that Reiko and Tim finished added its share of bugs to the total.

At the five-month mark, Phil finally allowed the project to slip beyond its
planned contingency. He rationalized that it was better to accept a small loss
than to throw away everything they’d worked so hard for.

Mike left the team at about the same time. He’d become increasingly
unhappy as the project got into more and more trouble, so he arranged
another contract to start as soon as the one with Acme was due to expire. He
was replaced at short notice by Deepak, a recent graduate who had studied
.NET at college.

However, Deepak found it very hard to work on the software. The code
had had so many hasty changes that it was disorganized and messy, and the
documentation was so out-of-date that it was almost useless. He alternated
between spending hours peering over the shoulders of the other developers
and spending hours in his own office making very little progress and getting
increasingly frustrated.

58 Part I Why Software Projects Fail . . .

Aftermath
The release date kept slipping, and eventually both Salim and the CEO,
Cathy, got involved. Salim asked Angela to return to Acme to provide solid
estimates for all the “essential” changes that Emily had asked for. Angela sug-
gested that they allow another month for these changes.

At the six-month mark, the project was already 30 percent over budget,
and it needed at least another 60 percent to complete, including a month’s
work to clear up the remaining bugs (Figure 4-2). Cathy had no hesitation in
canceling the project.

Figure 4-2. The financial position when the project was canceled

“This project is in very bad shape, and there’s no guarantee that it will ever
be completed successfully. I’m just not willing to put any more money into it.”

Salim lost his bonus over this project, and Phil missed out on the promo-
tion that he had been expecting. Both were chastened by the experience, but
neither of them really understood where the project had gone wrong.

Chapter 4 Case Study:The Billing System Project 59

60 Part I Why Software Projects Fail . . .

Summary

So where did the project go wrong? If we compare the case study to the
list of project management assumptions we identified in Chapter 3, we
can see that most of the problems in the project occurred because the
project plan relied on these assumptions, and because they turned out to
be incorrect:

1. Scope can be completely defined.

2. Scope definition can be done before the project starts.

There was no opportunity to reevaluate or adjust the scope of the project.
Emily was right to point out the flaws in the requirements, but she was only
able to do so after all of the functionality had been created.At this point,
the changes to the requirements meant that some of the existing code had
to be thrown away and rewritten, which was wasteful and increased the
cost of the project.

3. Software development consists of distinctly different activities.

4. Software development activities can be sequenced.

5. Team members can be individually allocated to activities.

The lack of overlap between the requirements gathering, design, construc-
tion, and testing activities meant that communication between the individ-
uals performing these tasks was extremely limited. The specification
documents were all they had to go on, and there was no way to ask ques-
tions or give feedback.The developers couldn’t discuss the design with the
software architect, and the testers couldn’t discuss the requirements with
the business analyst.

If the developers had begun testing as soon as they started writing code,
then the quality issues would have been apparent much earlier, and could
have been systematically addressed. And if the developers had also been
responsible for the design of the software, then it could have been refined
as required once they were able to see how the software was shaping up.

6. The size of the project team does not affect the development
process.

The team was very small, and could have worked more efficiently by adopt-
ing a less formal development process. Face-to-face conversation is a much
less laborious way to communicate information than via documentation.

7. There is always a way to produce meaningful estimates.

8. Acceptably accurate estimates can be obtained.

9. One developer is equivalent to another.

Chapter 4 Case Study:The Billing System Project 61

The project was estimated before the team members were identified, so
no allowance was made for individual variations in skill—such as Tim’s lim-
ited knowledge of web services. The team had never worked together
before, so there was no way to check the estimates against the outcomes
of earlier projects. In hindsight it’s obvious that the contingency reserve of
25 percent was grossly inadequate.

10. Metrics are sufficient to assess the quality of software.

The team used two metrics to assess their progress. In the Construction
phase they estimated the proportion of the functionality that they had
completed. In the Testing phase they counted the number of bugs that had
been reported.The sheer number of bugs made it clear that the software
was of low quality, but this metric misled the team into believing that fixing
these bugs would be enough to fix the software. But the more frantically
they worked on the software, the more messy and fragile it became.Their
efforts just reduced the quality even further.

. . .AND HOW TO MAKE
THEM SUCCEED

II
P A R T

In Part One we saw how naively applied project management practices can
derail software projects run by even the most capable project managers. Is the
solution to throw out half of project management’s best practices and hope for
the best?

The case study helped us to understand how poor quality can bring down
a software development project. But solutions are available. Over the last
five to ten years, several new software development methodologies have been
developed specifically to resolve the issues around software quality. These
methodologies are called “agile” because they aim to maximize flexibility and
minimize overhead in the process of software development (see the agile man-
ifesto in the Appendix). They’re not based on theory, but rather derived from
the experiences of successful project teams.

Sabre’s recent successful rewrite of its 25-year-old air-travel reservation
system shows how agile practices can improve the outcome of software projects:
“Sabre has tried to overhaul its reservation system before—most infamously
from 1988 to 1992, when it spent $125 million on a megaproject to do just
that. A few weeks ahead of the promised completion date, Sabre had to junk
the entire system.

“So what makes this new four-year, $100 million-plus success different
from that old four-year, $100 million-plus catastrophe? This time, it wasn’t a
big leap. Borrowing techniques from so-called agile programming, Sabre did it
as a series of small steps. . . . As a result, the system already looks a lot differ-
ent now than the design did in 2001, when the project started. Small steps—
and a willingness to change direction—make that possible” [Hayes 2004].

This experience isn’t unusual. “Companies adopting agile processes are
happy,” writes Forrester analyst Liz Barnett. “We’ve seen quite a number of
successes and, quite frankly, have yet to meet an agile failure” [Cooney 2004].

The new methodologies will form part of our proposed solution for the
problems outlined in Part One. Despite this, they aren’t a complete solution:
even with high-quality software, a project can still fail if its deadlines and

65

The New Agile
Methodologies

5
C H A P T E R

budget are incorrectly calculated. In the next chapter we’ll look at ways to
resolve this issue, and thereby bridge the gap between the agile methodologies
and traditional project management.

Selected Methodologies
Agile methodologies help developers create better software more easily. To
discover how they do this, let’s first take a detailed look at three specific agile
methodologies to find out how they work:

� Crystal

� Extreme Programming

� The Rational Unified Process

We’ll use Crystal to introduce the subject because, even though it’s a flexi-
ble and capable methodology in its own right, it presents the key agile concepts
in a clear and straightforward manner. Then we’ll take a look at Extreme
Programming (XP)—perhaps the best-known and most popular of the agile
methodologies. XP shares many ideas with Crystal, but it has its own priorities
and unique approach. We’ll finish up with the Rational Unified Process (RUP),
which is an industry-standard methodology toolkit that has been used for even
the largest and most complex projects. Depending on how it’s used, RUP can
be very agile, or it can be completely non-agile.

Each of these methodologies has its own series of books, so the summaries
given here are limited. This chapter aims to highlight only the main ideas, and
show how they address the software quality problems described in Part One.

After describing these methodologies, the next step is to see how they
solve the problems that project management can’t. In Chapter 3, we discov-
ered that risk management in software projects is especially difficult. Taking
Crystal and XP as our examples, we’ll show how they address the five specific
risks that software development projects typically face.

At the end of the chapter we’ll relate the agile methodologies to the ten
hidden assumptions we identified in Chapter 3, to show how they avoid the
problems that typically bedevil software development project management.

Other Agile Methodologies
Other well-known methodologies that aren’t described in this book, but which
may be of interest, include the following:

66 Part II . . .And How to Make Them Succeed

� Adaptive Software Development [Highsmith 1999]

� Dynamic System Development Method (DSDM) [Stapleton 2003]

� Evolutionary Project Management (EPM or Evo) [Gilb 1989]

� Feature-Driven Development (FDD) [Palmer and Felsing 2002]

� Lean Software Development [Poppendieck 2003]

� Microsoft Solutions Framework (MSF) [Microsoft 2003]

� OPEN Process Framework [Firesmith and Henderson-Sellers 2001]

� SCRUM [Schwaber and Beedle 2001]

Crystal
Alistair Cockburn is the most humble of the methodologists. His Crystal
methodologies come directly from years of interviewing teams to find out how
they succeeded. He found that they largely ignored the formal methodologies
that they’d inherited, but delivered software successfully anyway. Crystal is
his attempt to formulate and describe what it was that they actually did that
worked so well.

As a result, the Crystal methodologies are the most descriptive, and the
least prescriptive, of the lot. They particularly emphasize tolerance of individ-
ual variation: each team interviewed did things slightly differently, yet they
all succeeded. This makes Crystal particularly palatable and easy to apply.
“Crystal . . . aims to be a simple and tolerant set of rules that puts the project
into the safety zone” [Cockburn 2004].

This focus on tolerance comes from Cockburn’s [1999] research into
people’s behavior in teams:

� “People are communicating beings, doing best face-to-face, in person,
with real-time question and answer.”

� “People have trouble acting consistently over time.”

� “People are highly variable, varying from day to day and place to place.”

� “People generally want to be good citizens, are good at looking around,
taking initiative, and doing ‘whatever is needed’ to get the project to
work.”

These characteristics are why methodologies like Crystal avoid the rigid
process definitions that were so prevalent in older methodologies. A process
that can be represented on a flow chart is one that treats developers like

Chapter 5 The New Agile Methodologies 67

mechanical components that perform fixed tasks over and over again. Human
beings can work this way, but they’re not very good at it. They function best
when they can use their initiative and flexibility to adapt to an ever-changing
situation.

Cockburn realized that teams of different sizes need different strategies to
manage their particular problems. He developed a family of methodologies
to take account of these variations, which includes Crystal Clear for 2 to 8
developers, Crystal Yellow for 9 to 20, Crystal Orange for 21 to 50, and so on.
The following seven properties are common to all of the methodologies:

1. Frequent delivery

2. Reflective improvement

3. Close or osmotic communication

4. Personal safety

5. Focus

6. Easy access to expert users

7. Technical environment with automated tests, configuration
management, and frequent integration

They are identified as properties, rather than principles or procedures,
because of Cockburn’s project evaluations. He discovered that projects that
had more of these properties tended to succeed more often.

1. Frequent Delivery
An iteration is a small part of a project that contains all of the steps required
to design and build a portion of the software. It starts by choosing a set of
features to add during the course of the iteration. The high-level design is
extended and adjusted to accommodate the new features. Once the features
have been developed and tested, the developers can integrate and evaluate
an updated version of the software.

The idea of developing software in a series of iterations is common to all
of the agile methodologies, but Crystal goes even further than that. It requires
the delivery of running, tested code to the users on a regular basis, from
weekly to quarterly depending on the length of the project and the ease of
deployment.

Iterations are important to avoid the situation, illustrated in the case study,
where the status of the software becomes apparent only at the very end of the
project, when it’s too late to do anything about it. By integrating and testing
the software on a more frequent basis, you ensure that problems can be dis-
covered and resolved at an earlier stage, before they have a chance to grow
too big.

68 Part II . . .And How to Make Them Succeed

With each iteration, the project’s sponsors get solid information about the
progress of the project. The developers get a morale boost from seeing visible
progress, and they also have an opportunity to evaluate and optimize their
development processes, including the process of deployment.

The most important benefit is the opportunity to get feedback from the
users, which is why Crystal insists that real software should be delivered to real
users. We’ve seen how difficult it is to create a clear and comprehensive set of
requirements upfront, and that doing so removes flexibility from the project.

Frequent delivery allows the team to refine the project’s scope and fill in
the gaps, based on real experience of the product under development. The
client has an opportunity to say “That’s not what I meant,” or change their
mind when they see the results of their decisions. The software can then bet-
ter address the client’s needs.

Crystal distinguishes between an iteration, where the software is built to
the point where it could be released, and a delivery where the software is actu-
ally released to users (Figure 5-1). It may not be practical to deploy new ver-
sions of the software to the users as often as the team would like, but iterations
can be as frequent as desired, to obtain as much benefit from them as possible.

Figure 5-1. The deliveries and iterations in a typical Crystal project

2. Reflective Improvement
Most software projects get off to a rocky start. It’s hard to predict what strate-
gies will work best for the unique circumstances of a project team before you
begin to accumulate real experience. Many troubled projects have gone on to
eventual success because the team took time out from their day-to-day devel-
opment work to think about how to improve or fix their processes.

One of the benefits of using iterations is that they provide a natural rhythm
for these reviews. Another is that the process for finishing up the iteration pro-
vides important feedback on how well, or how badly, the project is progressing.

Crystal encourages teams to hold a “reflection workshop” every few weeks
to identify the practices, conventions, and habits that work, and to find alter-
natives for the ones that don’t. The team can test different strategies until they
find one that works for them.

This reflection workshop isn’t intended to substitute for iteration planning
and review meetings, but reflection could also occur in those meetings if the
team is encouraged to contribute issues and suggestions in them.

Chapter 5 The New Agile Methodologies 69

You should expect or even welcome the problems that come up in these
reviews because, as Cockburn [2004] says, “from that first catastrophe comes
all sorts of new and important information about the project’s working envi-
ronment, information that would otherwise be just as deadly, but hidden,
lurking.”

This approach addresses most of the problems identified in previous chap-
ters. After all, problems rarely go away by themselves, and to fix a problem
you first must be aware of it. Unless a project’s budget and deadline are wildly
incorrect, most of the project plan can be adjusted to suit the situation as it
eventuates.

Interestingly, Crystal doesn’t specify the format of the reflection workshop.
This could also evolve as the team gains experience with its processes.

3. Close or Osmotic Communication
Crystal Clear requires “osmotic communication,” where the whole team is
seated in the same room so that information flows effortlessly between them
“as though by osmosis” [Cockburn 2004]. For teams larger than six to eight
people, the environment can become increasingly noisy and distracting, so for
Crystal Yellow, Crystal Orange, etc., the requirement is weakened to “close
communication.” The same principles are applied as much as possible given
the size of the team.

This idea has been around for a long time. The most famous example was
Lockheed Martin’s “Skunk Works,” where America’s first production jet air-
craft (the P-80) was designed and built in 1943 to counter the new German jet
fighters during World War II. Team members attributed the tremendous pace
and success of the project to the degree of overcrowding, where you were lit-
erally rubbing shoulders with your colleagues.

In this environment, information flows rapidly and easily between the
members of the team. A question can be asked and answered in seconds,
without interrupting either person’s flow of work. This means that errors and
misunderstandings can be corrected promptly, and that knowledge is dissemi-
nated quickly. Junior developers can directly observe, copy, and learn from the
more experienced members of the team.

You can keep abreast of the current situation by overhearing what your
coworkers are saying to one another. Your neighbor can look over your shoul-
der, and help you fix problems with whatever is on your screen at the moment.

Even locating developers in offices along the same hallway is enough to
break this effect. The action of standing up and moving away from your desk
interrupts the flow of thought so much that most times you just won’t bother,
and when you do, it can take several minutes more to resume your previous
level of concentration.

Physical proximity provides all the benefits of using the richest possible
communications medium. People can discuss and directly see the impact of

70 Part II . . .And How to Make Them Succeed

changes to a whiteboard diagram, and it’s immediately apparent when some-
one is struggling with a problem, or when someone doesn’t understand what
you’ve just said.

Close/osmotic communication is an effective way to tackle the problem of
communication overhead that we discussed in the context of time manage-
ment’s schedule development task. By spreading information around the team,
you considerably reduce the need for ineffective and labor-intensive docu-
mentation. The cost of communication drops, and the team has greater flexi-
bility. Everyone has the background knowledge required to work on any part
of the system.

Alongside this requirement, and discussed elsewhere in the methodology,
is the crossover between design and programming. There’s no separation
between the two roles: everyone is a “designer-programmer.” In fact, given
that there’s rarely a dedicated tester on the team, the role is really that of
“designer-programmer-tester.”

4. Personal Safety
“Personal safety” is not physical safety, but rather the psychological and emo-
tional safety needed to speak up freely without fear of censure or hostility.
Problems like poor management decisions, a colleague’s lack of attention to
design, or even personal hygiene issues must be raised and resolved as soon
as they become apparent.

Personal safety is an important adjunct to both close/osmotic communica-
tion and reflective improvement. If team members show trust and expose
their ignorance by asking questions, then information can be efficiently trans-
mitted to where it’s needed. But if these questions are accompanied by
ridicule, then the flow of questions and answers dries up rapidly.

Likewise, there’s no point in organizing a reflection workshop if no one
speaks up about the problems they’re facing. The more confident people are
that their comments and suggestions will be taken seriously, the more freely
they’ll offer them, and the better will be the information and ideas that are
available to the team.

Some people show trust by default, whereas others only trust where they
have seen positive evidence that trust is warranted. Gaining trust can be a slow
process, so capable leaders will accelerate it by exposing themselves and their
team to carefully chosen threats (for example, by revealing a weakness), and
then showing that these lead to support, rather than hostility, and that there’s
no risk of being hurt.

Trust is enhanced by frequent delivery. When the results are on the wall
for everyone to see, then people know who worked and who shirked, who
spoke up and who kept quiet, who told the truth and who didn’t, and who
can be trusted and who can’t. Peer pressure will ensure that team members
remain trustworthy and dependable.

Chapter 5 The New Agile Methodologies 71

5. Focus
Crystal’s “focus” property has two distinct meanings. The first is the ability to
focus on an individual task in a single project for enough time to make effec-
tive progress. If the workday becomes fragmented, progress becomes increas-
ingly difficult until project estimates become unachievable. The project can
fail to meet its deadlines simply due to uncontrolled distractions.

The cost of switching context is high. Software is highly complex and
highly abstract, and it takes considerable concentration to work effectively on
it. This is often referred to as “flow.” It may take 20 minutes to regain your
train of thought after a phone call or a meeting, or more if it requires you to
completely change tracks to discuss another project.

These interruptions are distinct from those experienced during close/osmotic
communication. When you’re working side by side with someone, you can tell
if they’re concentrating hard on something, and you can wait for them to take
a break before asking your question. Also, a 30-second question won’t disturb
your concentration as much as a half-hour phone call or meeting.

Managers commonly assign developers to two or more projects at a time,
but the consensus is that by the time the third project is added, the developer
ceases to make effective progress on any of them. Management is a more
piecemeal activity than development, and managers often fail to appreciate
how much harder it is for developers to handle several areas of responsibility.

Crystal suggests two rules for dealing with these problems. The first is to
define two-hour time windows when interruptions are blocked, because inter-
ruptions are rarely so critical that they can’t be delayed for an hour or two. The
second is to specify that when a person starts work on a project, they’ll have
at least two full days on that project before they can be asked to switch back
again.

The second meaning of the focus property is related: it’s the clarity and
sense of direction the team needs to achieve its purpose successfully. Without
a clear definition of your goals, how do you know if you’re achieving them?
The project’s sponsor must ensure that the developers know what they’re sup-
posed to be working on by giving them an unambiguous mission statement.
The developers must also be given clear and consistent priorities; they should
be able to focus their efforts on one or two areas.

6. Easy Access to Expert Users
Even if most of the user requirements have been specified up front, these
requirements should still be refined over the course of the project. The devel-
opment team will work with an expert user to get feedback on the product,
and to resolve any questions the developers may have.

72 Part II . . .And How to Make Them Succeed

It’s important that this contact be a real user. Often the requirements are
defined by a mid-level manager who has responsibility for the users, but who
has never done their work and doesn’t know how it is really done. A senior
user or team leader would be more appropriate.

It would be ideal if that user could drop everything to join the project
team, but expert users typically have too many responsibilities for this to be
possible. A minimum level of involvement might be a weekly one- or two-hour
meeting, plus availability for phone calls as required. This involvement could
be adjusted to suit the project by means of reflective improvement.

A web-based application can be deployed to all the users at once by
updates to a single server, but there are significant costs to deploying a desk-
top application to all the workstations. If the project team can’t deliver the
software to the entire user base frequently enough, then they can at least ask
their expert user to trial each new version.

The developers can also train and work as users for a time. This is an
unusual, and potentially expensive, strategy, but it may provide developers
with a profound insight into the users’ environment and issues.

7.Technical Environment with Automated Tests,
Configuration Management, and Frequent
Integration
Many traditional projects have an integration phase toward the end of the
project. Typically, this is when the problems come to light. If the components
have been developed separately, hundreds of subtle incompatibilities will exist
between them. When the bugs become evident, there’s no information as to
which parts of the software are involved in the problem.

The ideal would be a development system that performs integration and
testing on a continuous basis. If a developer checks in some changes that
break the system, then these errors are identified immediately and can be
located in the changes that have just been made. Errors have no chance to
accumulate and overwhelm the project.

A system like this relies on three technologies. The first is configuration
management, which “is steadily cited by teams as their most critical non-
compiler tool” [Cockburn 2004]. It controls access to a master copy of the
source code, and ensures that only one developer works on a particular part of
the system at a time. All changes are recorded. This allows developers to work
together, while protecting them from stepping on each other’s toes. If prob-
lems are found, then changes can be reversed easily, and a specific configura-
tion can be bundled up for release.

Chapter 5 The New Agile Methodologies 73

It takes significant time and effort to write the code for automated unit
tests—the second technology—but developers often find that their overall
productivity goes up when they do so. A number of explanations have been
proposed:

� Automated testing takes less time than manual testing.

� The code is tested more frequently, so new bugs are found more rapidly.

� Unwanted changes to existing features can be easily found by running
the accumulated unit tests for those features.

� The tests also serve as useful documentation for the requirements and
functionality of the software.

� Test-driven development reduces the temptation to add flexibility and
functionality that isn’t required.

The third factor, frequent integration, is done by a build process that’s
scheduled to run on a regular basis. Microsoft established the idea of the over-
night build, but in smaller software projects it may be feasible for the server to
integrate and test the software several times a day. Developers can be notified
of integration errors within minutes of the errors being introduced.

The software remains sufficiently bug-free so that it can be released at
almost any time. Progress can be evaluated accurately, because there are no
hidden integration and testing issues to provide unwelcome surprises further
down the track.

Using Crystal
Crystal’s strength is its flexibility. It can be slowly worked into an organization’s
existing processes without the disruption that normally accompanies significant
change. Each of the properties can be progressively improved, quite inde-
pendently of the others.

However, this flexibility makes it hard to know if you’re “doing it right.”
The properties are fuzzy and easy to distort. For example, management may
claim that they support the principle of personal safety and that anyone can
speak freely, but staff members may just roll their eyes and say (to each other
only) “Yeah, right.”

74 Part II . . .And How to Make Them Succeed

Crystal is particularly appropriate for projects where

� The team has been together for a while.

� The developers are particularly adaptable and resourceful.

� It’s a culture where professionals don’t like being told how to do their
work.

� The goal is to develop business software, rather than life-critical or real-
time software (for example, aircraft control software).

Extreme Programming
Extreme Programming, commonly abbreviated to XP, is the enfant terrible of
the industry. It’s controversial, and deliberately so. It’s the methodology that
people have heard about, even if they know nothing else about agile software
development. The word “extreme” is used to describe the way that “XP takes
proven industry best practices and turns the knobs up to ‘ten’” [Auer and
Miller 2002]. XP includes 12 such practices:

Chapter 5 The New Agile Methodologies 75

1. The Planning Game

2. Testing

3. Pair programming

4. Refactoring

5. Simple design

6. Collective code ownership

7. Continuous integration

8. On-site customer

9. Small releases

10. 40-hour week

11. Coding standards

12. System metaphor

Critics decry XP as glorified hacking, but it actually requires considerable
discipline to follow: more than Crystal, certainly. It insists that all of its 12 prac-
tices must be followed to fully realize its benefits. The methodology is pre-
sented as is, and there’s no room in it for fine-tuning the process (Figure 5-2).
This dogmatism is one of the reasons that people occasionally refer to Extreme
Programming as a “cult.” Another reason is its undeniable popularity among
developers.

Figure 5-2. Unlike Crystal, XP’s overall process can be represented in a flowchart.

1.The Planning Game
XP starts the development cycle by creating an iteration plan during the
“Planning Game.” The process is as follows:

� The customer concisely and plainly describes some behavior or
functionality that they require in the software. This “story” is
handwritten on a note card.

� Often, the customer also defines acceptance test criteria for the
functionality, and writes them on the back of the card.

� The developer estimates the work required (in an arbitrary unit of
measurement) and writes this on the same card.

76 Part II . . .And How to Make Them Succeed

� Depending on the resources available, and the experience from
previous projects, the team members estimate how many units of work
can be accomplished in each iteration (this is known as the “velocity”).

� Each story should be small enough that a pair of developers can finish it
within one iteration. If a story is too big, then it should be split up into
several stories.

� The customer sorts the cards in the order that they’d like them to be
completed, and divides them into piles. Each pile consists of a set of
stories that the team can finish in one iteration.

These sets of features then become the plan for the project’s series of iter-
ations. The plan may be revised at the beginning of each iteration: the cus-
tomer can reorder the cards if their priorities have changed. The developers
can also revise their estimates, and the team’s estimated work rate can be
adjusted in view of the progress made during the previous iteration. The work
is then broken down into individual tasks, and these tasks are assigned to spe-
cific developers.

This process quickly produces a rough plan, which can be refined on a reg-
ular basis as the situation becomes clearer. It also allows the customer to make
the business decisions regarding which features should be implemented when,
and gives them a sense of ownership and control over the project.

2.Testing
The rationale for automated testing is the same as for Crystal, but XP has
added the requirement that the unit tests must be written before the code that
is to be tested. This approach helps the developers to write only the minimum
amount of code needed to run the tests successfully. The code has no unneces-
sary features, and it is as simple as it could possibly be. This avoids the risk of
creating messy and confusing code.

The customer is also expected to create automated tests, but these will be
acceptance tests to confirm that the software’s features work the way they’re
supposed to. The project’s progress can be measured by how many acceptance
tests succeed at any given point in time.

However, the customer rarely has the development skills required to cre-
ate these tests, so the developers will normally do the technical work for them.
The customer will then just define the output data that they expect would be
produced from some carefully chosen input data, and the developers will cre-
ate a test engine that submits these inputs and checks the resulting outputs.

Chapter 5 The New Agile Methodologies 77

3. Pair Programming
Perhaps the most controversial aspect of XP is its insistence that every line of
code must be created by a pair of developers sitting side by side. Developers
change their partners daily. The benefits cited for this approach include

� Every line of code is reviewed for quality as it is written.

� Developers have an effective way to learn from one another.

� Knowledge about the software is spread throughout the team.

� The team can easily regroup if a developer gets sick or resigns.

� There is immediate social pressure to follow the team’s conventions
and rules.

� Brainstorming during design or debugging is more effective.

� The team develops cohesion and unity.

Managers are often initially skeptical, but research shows that while a pair
is 15 percent less productive than two developers working alone, the resulting
software has 15 percent fewer bugs and the overall cost is less [Cockburn and
Williams 2000].

There are practical problems that must be overcome if this approach is to
work. Often, the office layout must be reorganized to allow two developers
to fit around each workstation: this usually means removing cubicle walls and
throwing out those corner desks.

Also, developers commonly show resistance to pair programming. Many
people are attracted to software development because they tend toward
introversion, and enjoy the alone time that programming normally provides.
Contrary to popular opinion, introverts are able to interact effectively with
others, but they find it more tiring than working alone. There is a significant
risk of burnout.

4. Refactoring
To refactor is to restructure existing code without changing its functionality
in any way. The aim is to clean up and simplify the design, so that further
progress can be made as rapidly as possible. The risk of introducing new
defects will have been minimized.

One significant task is to remove duplicate code, which can be a major
source of defects. Developers often borrow ideas from other parts of the code,
so as not to reinvent the wheel. The problem is that when this code needs to
be modified, there’s no assurance that all of the copies will be found and
updated. Human fallibility is allowed to creep in.

78 Part II . . .And How to Make Them Succeed

The solution is to bring together the common functionality into new rou-
tines and classes, thereby extending and enhancing the design. As the develop-
ers write the code, they learn what is needed in its design, and they continually
revise the overall architecture.

XP suggests that refactoring should be done before new code is written, to
prepare the design so that the new feature can be neatly integrated into the
existing work, and “once and only once” [Auer and Miller 2002] to tidy up the
code after it has been written. Automated testing means that you can refactor
with confidence, because any bugs introduced during the process of refactor-
ing will be spotted immediately.

5. Simple Design
“You’re not going to need it” is the constant mantra of XP developers. There’s
tremendous pressure to simplify the design as much as possible and avoid
unnecessary functionality. By aggressively managing the software’s complexity,
XP aims to maximize productivity and minimize the number of defects that
appear. This improves extensibility because a simple design is easier to modify
than a complex one.

Design has traditionally been done as an up-front activity. However, at this
stage you don’t know exactly how the software will work. Developers create
designs that are as generic as possible, which can accommodate a wide range
of possible implementations. But by doing so, they make the software more
complex and more abstract than is necessary, which results in more work and
more bugs.

With refactoring, the design can be adjusted constantly as the developers
learn how best to implement the software. XP suggests that at any given point,
you use the simplest design that can possibly work. This should

� Pass all of the automated tests created so far

� Contain no duplicate code

� Contain the fewest possible classes and methods

� Clearly state the programmers’ intentions

The last point helps to address the common complaint that XP fails to pro-
vide documentation for completed software. Source code written during an XP
project should be self-documenting. It should be clear enough that its intent
is obvious to any future developer who works on it. The names of classes and
methods should reflect their purpose, and avoid cryptic references and abbre-
viations.

Chapter 5 The New Agile Methodologies 79

6. Collective Code Ownership
All too often, responsibility for the code is divided among the developers, who
“own” their own code and have little or no access to each other’s code. This
leads to a number of problems:

� Staff turnover can leave parts of the system without anyone who fully
understands them, so no one can work effectively in those areas.

� There’s less flexibility in assigning tasks to individual team members, so
a developer may become a bottleneck during the project.

� The least experienced and least conscientious developers may create
pockets of poor code that no one else is aware of.

� Integration between the areas of code is difficult, and work in one area
may cause hidden problems in another.

In XP, everyone can make changes to any part of the system, so everyone
is responsible for making sure that it works by running the complete set of
automated tests. “You break it, you fix it” means that bugs are fixed, no matter
what parts of the system they affect. A culture of fixing rather than finger
pointing tends to bind the team together and bring a higher level of quality
to the code.

An additional benefit is that developers acquire broad knowledge of how
the whole system works, because they’ll have worked on all of the parts them-
selves.

7. Continuous Integration
Just like Crystal, XP insists on a technical environment where the software
under development can be automatically integrated and tested as often as pos-
sible. For XP, the primary goal is to sustain a rapid pace of development.

More traditional approaches tend to alternate between periods of coding
and periods of debugging, which slows the overall rate of progress. Think of
heavy traffic flow on a freeway: it can be either steady but slow, or stop-and-
start. Stop-and-start introduces inefficiencies due to the frequent changes
between braking and acceleration, so the overall traffic flow is slower.

Bug fixing is part of the daily development process in XP. Indeed, given
that the tests are written first, the process is simply that of getting the tests to
run successfully. Coding and bug fixing are effectively the same activity.

The advantage is that the code stays relatively free of bugs and remains a
stable platform for further development. Bugs can be fixed individually, so
there are fewer difficult situations where bugs obscure each other.

80 Part II . . .And How to Make Them Succeed

8. On-Site Customer
The Planning Game is just the start of the requirements-gathering process. The
stories on the note cards aren’t detailed enough to completely specify the fea-
tures that they refer to. They serve instead as placeholders for features whose
details will be fleshed out during development, in conversations between the
developers and the customer. These requirements will be “documented” in
the unit tests and the customer’s acceptance tests.

This process requires that a customer representative be located alongside
the developers throughout the project. For an internal project this isn’t nor-
mally a problem, but an external client may find it difficult to find someone
whose schedule is flexible enough.

The on-site customer representative makes critical business decisions
about exactly how the software should work, and they will clarify priorities as
to what features to develop first. But if they are junior enough that they can
drop their other responsibilities to relocate to the developer site, then it’s
unlikely that they’ll have the authority to make independent decisions that
won’t later be questioned or repudiated.

Having a customer representative on-site allows issues to be dealt with
very quickly, and the face-to-face discussions are the most effective way to
convey information about the requirements.

9. Small Releases
XP’s iterations always result in releasing a version of the software to the cus-
tomer. The aim is to deliver real business value to the customer as soon as pos-
sible, so iterations should occur as frequently as possible while still introducing
worthwhile functionality. The concrete feedback from each release can help to
steer the progress of the next release.

This is a relatively inflexible approach. With typical iteration sizes of two to
three weeks, the task of deploying the software can become a major overhead.
Moreover, the customer may not want their operations to be disturbed every
couple of weeks with yet more changes to their mission-critical software. They
may prefer to coordinate their software deployment with user training and
documentation activities.

10. 40-Hour Week
Tired is stupid. Unfortunately, because software is an especially complex and
abstract product, it requires concentration to work with it effectively. Longer
hours don’t necessarily mean more progress.

Chapter 5 The New Agile Methodologies 81

“Those all-night programming stints make you feel like the greatest pro-
grammer in the world, but then you have to spend several weeks correcting
the defects you installed during your blaze of glory,” writes Steve McConnell
[2004]. When there are many bugs, it may take longer to fix the software than
it took to write it in the first place. The 40-hour week, like many of XP’s prac-
tices, aims to improve both quality and productivity by avoiding such situations.

Another risk associated with ongoing overtime is that the developers use
up the reserves they need to tackle any new problems, which might need to be
resolved quickly. If you mess up, then you should work however long it takes
to fix the problem, but this shouldn’t happen on a regular basis. “If you burn
the [midnight] oil long enough, sooner or later you run out of oil” [Auer and
Miller 2002].

Overtime is often entrenched in a company’s culture, and as a cost-free
solution, it’s often seen as the remedy of choice when a project fails to meet its
deadlines. But because of its risks, overtime should be seen as a symptom of
broader underlying problems in the project. Both the problems and the symp-
toms should be addressed.

11. Coding Standards
Coding standards ensure that the code is uniform in style and formatting. This
boosts productivity by making the code easier to work with. It supports the XP
practices by making it easier to refactor the code, easier to switch pairs, and
easier to take collective ownership of the code.

Issues of style and formatting can create bitter disagreements between
developers because they depend on personal preferences, and because there
are no answers that are clearly better than others. They can develop into “reli-
gious wars.”

It’s better to defuse such issues before they arise by having the team agree
up front to a set of coding standards. The standards need not be a rigid set of
rules; they can be flexible guidelines that evolve over time as the team gains
experience working together.

12. System Metaphor
A system “metaphor” isn’t the same as a system’s architecture, but it takes the
same place in XP as an architecture does in other methodologies. In XP, the
architecture develops over time as the code is written and refactored. The sys-
tem metaphor provides a sense of direction to guide the development of the
architecture; it doesn’t dictate exactly what the system should look like when it
is finished. The developers use the system metaphor to get a consistent picture
of where new parts should fit, and roughly what they should look like.

One example of a system metaphor is the Model-View-Controller design
pattern. It’s often used to organize a program’s code into distinct areas of
responsibility:

82 Part II . . .And How to Make Them Succeed

� The Model contains all of the classes that define how the data is kept
in memory, and it therefore serves as a representation of the business
context.

� The View contains the classes that define the user interface. It provides
a series of “windows” that present the data so that users can look at it
and modify it.

� The Controller contains business logic that defines how the Model’s
data is updated and stored, and how the user navigates between screens
or pages in the View.

Another example is the Publisher-Subscriber design pattern. One part of
the system makes data available (i.e., it “publishes” the data), and then other
parts of the system provide pathways through which they can receive that data
(i.e., they “subscribe” to it). When new data becomes available, the Publisher
sends copies of that data to all of its Subscribers.

The system metaphor encapsulates the understanding and vocabulary that
the developers share. It will evolve over time, but it’s useful to define some-
thing to start with. XP recommends that developers do not waste time finding
the perfect metaphor, and that they should be prepared to abandon or supple-
ment a metaphor if they find that it’s of limited use.

XP also talks about the system metaphor as an aid to communication. The
basic structure of the software should be comprehensible to the customer as
well as to the developers, and a well-chosen metaphor can bring it to life.

Using XP
The biggest strength of XP is that its practices are clear and straightforward.
They may not be easy to apply, but it’s obvious whether they’re being used or
not. You can’t disguise it if the developers refuse to work in pairs, or if no one
is writing automated tests.

This clarity comes at the cost of limited flexibility. There’s little guidance
for those occasions when you need to adapt XP for specific circumstances.
How can you implement pair programming if part of your team is offshore?
How can you scale XP to work with very large projects? What do you do if
your customer’s decision makers can’t or won’t visit your site? XP has no
answer for these questions. It was designed for a narrow range of project
circumstances, and if your project doesn’t fit into this range, then that’s just
too bad.

However, an active community has developed around XP, and many arti-
cles and papers have been written that attempt to address these (and other)
concerns. Several new practices have been proposed to supplement the origi-
nal 12, and there is now much more potential for modifying and fine-tuning
XP than was originally intended.

Chapter 5 The New Agile Methodologies 83

XP is particularly appropriate for projects where

� The team has never worked together before.

� It’s a culture where professionals expect to be told how to do their work.

� The customer and the developers work for the same company.

� The team doesn’t contain any real introverts.

� The team is no larger than 10 or 12 developers.

� Speed of development is the most important issue.

The Rational Unified Process
Like both Crystal and Extreme Programming, the Rational Unified Process
(RUP) was created in the late 1990s. Unlike both Crystal and Extreme
Programming, though, RUP has a pedigree. It is a merger of the work of three
of the leading lights in the field at the time: Grady Booch, Ivar Jacobson, and
Jim Rumbaugh. In the mid-1990s, each of these experts had his own software
development methodology, his own software modeling notation, and his own
software company.

However, the uptake of these methodologies was slow because of the lack
of standardization. To boost their revenues, they decided in 1995 to merge
their methodologies, notations, and companies to create the Unified Process,
the Unified Modeling Language, and the Rational Software Corporation
(“Rational”), which was subsequently acquired by IBM in 2003. They them-
selves became known as the “Three Amigos.”

RUP is Rational’s version of the original Unified Process. RUP is widely
used in commercial software development, and Rational claims that it “has
emerged as a popular de facto standard modern software development
process” [Larman et al. 2001]. It includes many of the innovations proposed
by other agile methodologies, but retains a very different philosophy and
flavor.

A RUP project consists of a sequence of iterations that’s divided into four
distinct phases: Inception, Elaboration, Construction, and Transition. The
developers take on roles that define responsibilities for the activities within
the nine workflows in RUP, and for creating the various RUP artifacts. Each
of the phases, roles, activities, workflows, and artifacts is described in some
detail, which makes RUP far more complicated than Crystal or Extreme
Programming. This discussion will cover all of these topics, but in summary
form only.

84 Part II . . .And How to Make Them Succeed

Despite the abundance of books and papers, there are a number of widely
held misconceptions about RUP, whereas the truth is that

� The Rational Unified Process is not actually a process. It is instead a
toolkit for building processes. All of the roles, activities, and artifacts
are tools in that toolkit.

� Only very rarely would someone need every tool in the toolkit, and this
would most likely be in the circumstances of a critical, multiyear project
with hundreds of developers. Most teams can safely ignore most of
RUP.

� You therefore can’t really use RUP as-is out of the box. Before using it,
you must first spend time on process configuration. This topic will be
discussed later.

� “Rational Unified Process” is also the name of a software product
available from Rational. The RUP software is relatively expensive,
whereas you can get started with RUP, or with the original Unified
Process, quite cheaply by buying a book or two. Project teams don’t
need to buy the RUP software to use RUP.

� A new version of RUP has appeared each year, and RUP has changed
significantly over time.

� Rational produces powerful but complicated products, and RUP is no
exception. It’s hard to know how to get started; you can’t just “add
developers and mix well.” There is no simplified version to get started
with, and the full-scale RUP provides plenty of opportunities to shoot
yourself in the foot.

� RUP is often described as an agile methodology, but it can be used in
a very prescriptive, process-heavy way. The latter approach is more
common for first-time users, particularly if they have neglected to
perform process configuration. However, RUP can become an excellent
agile methodology when correctly used [Larman 2002].

� RUP’s four sequential phases appear similar to the discredited waterfall
model. Naive users may use it in exactly this way, or they may try to
disguise their existing flawed processes under RUP labels, but this isn’t
how RUP is intended to operate.

All too often, like the home exercise machines that so many of us purchase,
RUP software is obtained solely for the feel-good factor. Managers who know
that they need to do something about their development processes feel better
for having made the financial commitment to RUP. However, without the per-
sonal commitment to use it properly, the product will provide no help whatso-
ever.

Chapter 5 The New Agile Methodologies 85

Phases
The waterfall model assigns a particular activity—such as requirements gath-
ering or testing—to a specific phase of the project. In contrast, RUP’s high-
level activities, or “workflows,” continue throughout the project (Figure 5-3).

Figure 5-3. How RUP works in a typical project

The Inception phase is not just for gathering the requirements, nor is
the Elaboration phase just for performing the analysis and design, nor is the
Construction phase just for writing the code, nor is the Transition phase just
for deploying the solution into production. This is a very common miscon-
ception.

Yes, the bulk of the requirements are obtained during the Inception and
Elaboration phases, but this doesn’t rule out updates to the requirements dur-
ing the Construction phase.

The Inception phase is for defining the goals of the project. The overall
scope is defined in broad terms, and enough of the architecture is worked out
to ensure that a solution is possible. This phase also contains the project plan-
ning and start-up activities, as well as the initial process configuration for RUP.

During the Elaboration phase, the scope is refined by specifying the func-
tionality and features of the proposed software in some detail. The overall
architecture for the solution is developed to address these functional require-
ments. This architecture must also support service-level requirements such as
performance and security. Alongside these activities, the developers put
together a prototype to learn about and test any new tools and technologies.

86 Part II . . .And How to Make Them Succeed

The bulk of the effort goes into the Construction phase. Each iteration
results in an additional portion of the functionality undergoing design, con-
struction, and testing. The requirements may be adjusted as the customer has
a chance to comment on the work so far. By the end of this phase, the software
should be essentially complete.

In the Transition phase the software is progressively turned over to its
users. This may include user acceptance testing, beta testing, and a phased
deployment. New releases may be produced that fix any defects found during
these stages. Documentation is finalized, and the users and support staff may
be trained for the new system. The project team is disbanded at the end of
this phase.

Iterations
Each phase can contain a number of iterations. This number isn’t fixed, and
Figure 5-3 shows just one example of how they can be organized. RUP recom-
mends a total of three to nine iterations in the project. A duration from two
to six weeks is suggested for the iterations, although iterations of up to eight
months long are allowed for very large projects.

This is a different approach from Crystal and XP, which define the itera-
tion size without regard to the total number of iterations in the project. They
often have many more iterations during the course of their projects. RUP’s
smaller number of iterations means greater risk if any one iteration goes off
course.

Roles
RUP currently defines at least 40 specific roles that team members can
assume, including Architect, Code Reviewer, Database Designer, Technical
Writer, and Use-Case Specifier. Each person in the project team takes respon-
sibility for one or more roles, and each role may be performed by one or more
individuals. The project manager decides which individuals take on which
roles when she plans the project.

Artifacts
There are over a hundred distinct artifacts in RUP, and nearly all of them
are documents or collections of documents. For example, the Software
Development Plan includes a Risk Management Plan, a Product Acceptance
Plan, and so on. Each artifact is created and updated by a specific role.

It’s clearly overkill to produce all of these documents in every project.
Unfortunately, RUP doesn’t define a minimal set of artifacts that you can build
on, and it’s always more difficult to remove items from a list than it is to add
them. RUP projects frequently demand more artifacts than are strictly neces-
sary, which adds to the overhead and risk of these projects.

Chapter 5 The New Agile Methodologies 87

Interestingly, the Project Manager’s artifacts are organized quite differ-
ently from those defined by the PMBOK (there’s no Work Breakdown
Schedule, for example), so a manager who wishes to use both RUP and the
PMBOK faces a dilemma regarding which methodology to give priority to.

Activities and Workflows
The link between the artifact and the role is the activity. A role creates or
updates an artifact as part of a specific activity. RUP’s activities are far more
closely defined than any we’ve seen so far. For example, RUP identifies six
distinct activities just in the process of refining the architecture:

� Identify design mechanisms

� Identify design elements

� Incorporate existing design elements

� Describe runtime architecture

� Describe distribution

� Review the architecture

“Refine the architecture” is one of six “workflow details” in the Analysis
and Design workflow. Within the nine workflows shown in Figure 5-3, RUP
defines over 60 workflow details and hundreds of individual activities. Each
activity is further broken down into a number of steps. The overall level of
complexity is scary.

Process Configuration
The Environment workflow is where RUP defines the activities required to
tune RUP for an individual project. The Process Engineer role creates the
Development Case artifact, which is generally just a list of the artifacts to
be produced during the project, with perhaps some notes about each one.
Alongside this list there should be some guidelines for documentation, design,
and programming.

“A process should not be followed blindly, generating useless work and
producing artifacts that are of little added value. Instead, the process must be
made as lean as possible . . .” [Kruchten 2000].

Apart from this assertion, RUP says little about how to select artifacts and
activities, unlike Crystal, which gives specific guidelines for tuning the process
according to the size of the project. No wonder first-time users struggle with
RUP. The RUP software, though, provides a few predefined configurations for
specific project types.

88 Part II . . .And How to Make Them Succeed

Use Case–Driven Development
The use case is perhaps RUP’s most successful innovation: it’s used far more
widely than RUP itself. The use case is a technique for communicating
requirements in a simple but structured and unambiguous way with cus-
tomers, who may have no technical expertise whatsoever. For example, this
use case defines what happens when a hotel guest uses their electronic key
to open the door to their room:

Main flow:

1. The use case begins when the Guest inserts the key into the lock.

2. The system checks that the key is valid and, if so, unlocks the door.

3. The Guest removes the key and opens the door.

Alternative flow(s):

2a. If the key is not valid, a warning beep is sounded.

The use case defines a sequence of actions that ends up with a result that’s
of some value to whoever performs them. Defining the requirements in this
way gives the developers enough detail to work with. All too often, customers
ask for features rather than behaviors—“We need a search screen”—and fail to
explain how they want them to work. Since the use case’s result has value, it is
also meaningful to the customer.

Use cases are a convenient way to group individual features. The collection
of use cases defines the complete set of features that the system will have.
Subsets of this group can be used to define the scope of individual iterations.
The use case descriptions make it easy to do system testing: you simply per-
form each step in every use case. The use cases can also be converted into
step-by-step user documentation.

Visual Modeling
Visual modeling is an important part of RUP. We’ve seen that the management
of software complexity is one of the biggest challenges facing developers. A
visual modeling language allows you to create a “map” for software that shows
its structure in greater or lesser detail. By hiding details you can create a com-
prehensible overview of the system, and by exposing details you can show
exactly how a small part of it works.

Many of RUP’s artifacts are visual models. Visual models are used to depict
the architecture and design of the software, and to communicate them to the
development team. The quality of the architecture is easier to see in visual
models, and by maintaining a good architecture, we ensure that the quality of

Chapter 5 The New Agile Methodologies 89

the resulting software will be improved. As the software is modified, various
tools can be used to keep visual models and code synchronized with each
other.

Even though it comes from the same three contributors, the Unified
Modeling Language (UML) is not part of RUP. In fact, RUP does not require
that you use UML as the visual modeling notation, although virtually everyone
who uses RUP does so. UML is not even a Rational product: it has been taken
over as an industry standard by the Object Management Group.

Using RUP
In How to Fail with the Rational Unified Process, Larman et al. [2001] identify
the following qualities as characteristic of a non-agile process:

� “Rigidity and control”

� “Many activities and artifacts are created in a bureaucratic atmosphere”

� “Lots of documents”

� “Elaborate long-term detailed planning”

� “Significant process overhead on top of essential work”

� “Process-oriented rather than people-oriented; treats people as
pluggable parts in a mechanical method”

� “Predictive rather than adaptive”

It’s easy to see how RUP can come to look like this. The development
activities are described in painful detail, which can make the development
process laborious and inflexible. There appears to be little scope for initiative,
for looking around to see what needs to be done to make the project a success.
And the whole concept of roles seems precisely designed to “treat people as
pluggable parts.”

It takes a lot of work to use RUP as an agile process. The work required to
create a RUP configuration that suits small to medium-sized projects could
easily become a project in itself. However, for large to very large projects,
RUP comes into its own. A large project requires more documentation and
greater formality in its development process. RUP includes enough structure
and organization to allow software development on a scale that’s simply not
possible with XP.

Larman et al. [2001] compare RUP to a drug store; just because a vast
range of drugs is available doesn’t mean that you should take all of them for
every ailment. However, in a drug store you’d leave the diagnosis and prescrip-
tion to an expert, who would have a substantial body of reference material at
hand. But RUP experts are few and far between, and there’s little advice on
how to apply RUP to individual situations.

90 Part II . . .And How to Make Them Succeed

Nevertheless, RUP encapsulates a great deal of knowledge that in other
agile methodologies would come from the experience of the senior developers
on the team. Developers can learn a lot from it, but they won’t want do things
by the book, nor should they be expected to do so.

RUP is particularly appropriate for projects where

� The team already has a suitable process configuration for RUP, or
there’s time to create a new one for the project.

� It’s a culture where professionals expect to be told how to do their work.

� The team is very large.

� The goal is to develop life-critical or real-time software (for example,
aircraft control software).

� Issues such as quality and reliability are more important than speed of
development.

Mitigating Risks with Agility
When we discussed the PMBOK’s approach to risk management, we outlined
five specific risks that software development projects typically face. The agile
methodologies’ practices directly address these risks, and can be used to effec-
tively mitigate them. This section analyzes specific XP and Crystal practices to
find out which risks they mitigate. (RUP has been omitted from this analysis
because, as we saw earlier, whether it is agile or non-agile depends on how it
is used.)

The risks are discussed in the following sections.

1. Incomplete Requirements and Scope Changes
XP and Crystal use iterations to delay decisions on scope until just before the
features are implemented, which limits the impact of scope changes. In XP,
the on-site customer is intimately involved with the development process, and
is consulted on every detail. Requirements are confirmed as the code is writ-
ten, so any gaps in the requirements can be addressed as they become appar-
ent. Crystal uses easy access to expert users to achieve the same end.

XP uses the Planning Game, and Crystal uses its focus property to allow
the customer to define the priorities and schedule for the project in a flexible
way. These strategies allow the inevitable changes in priorities to be accommo-
dated without derailing the project.

Chapter 5 The New Agile Methodologies 91

2.Tools and Technologies Don’t Work As Expected
The iterative approach also mitigates the risk of problems arising in the pro-
ject’s new tools and technologies. One common engineering approach to this
problem is to first build a prototype that tests the new technology. Problems
can be found at an early stage when there’s still plenty of time to alter the
product’s design. The prototype is then thrown away.

In an iterative methodology, the product of the first few iterations is the
prototype. You can test the new technologies on a small scale at an early stage,
and you don’t have to throw anything away. The prototype becomes the core
of the new software. It can be refactored and improved as new functionality is
added.

Up-front automated testing means that if something doesn’t work, you find
out about it quickly. There are no nasty surprises at the end of the project,
when it’s too late to do anything about it.

Crystal’s personal safety property also allows the team to suggest and dis-
cuss any possible concerns at an early stage. Again, there’s no need to wait
until things go badly wrong before the issues are addressed.

3. Developers Lack Skills and Expertise
With XP’s pair programming, developers have an effective way to learn from
each other, and they can also monitor each other’s expertise and progress. The
equivalent principle in Crystal—close/osmotic communication—isn’t as direct
or as effective, but it has the same outcome.

The practice of simple design keeps the complexity of the software within
the skill level of the whole team. Moreover, as the developers learn, they can
go back and correct their earlier mistakes in design and coding through the
process of refactoring. Crystal’s reflective improvement also allows the devel-
opers to steadily improve their development process and environment.

4.The New Software Has Defects and
Requires Rework
XP and Crystal use continuous integration and automated testing to ensure
that the code remains free from defects. The tests are written alongside the
code, so developers can feel confident that any new code is defect-free when
it passes its unit tests. Rerunning previously written tests ensures that the
existing code still works properly too.

92 Part II . . .And How to Make Them Succeed

Crystal’s frequent delivery, which is the same as XP’s small releases,
ensures that the software is regularly cleaned up into versions that can be
delivered to customers. There is a powerful incentive to sort out defect-ridden
code, which might otherwise create ongoing problems in the system, before
the customer sees it. Exposing the software to customer testing also helps the
developers discover the limitations of their testing regime and find errors that
wouldn’t otherwise have come to light.

5. Project Staff Turnover
In pair programming, every piece of code is worked on by at least two devel-
opers, so there’s always someone else who knows how something works. This
reduces the risk if someone is “hit by a bus,” i.e., changes to another project or
to another job. Also, new developers can get up to speed quickly just by work-
ing side by side with an experienced team member

XP includes several techniques to make developers interchangeable, and
to reduce the impact if someone does leave the team. Collective code owner-
ship means that no code is off-limits, so everyone can and does make changes
to code throughout the system. The use of coding standards gives the team a
common format for their code, which makes it easier for people to work on
each other’s code. In addition, the system metaphor gives the team a common
understanding of how the whole system fits together.

In Crystal, the corresponding property is close/osmotic communication,
which allows the team to informally build a common understanding of the
software under construction. Also, by reflective improvement, the team can
agree on a common development environment and process, which may
include standards for design and code.

For some developers, the agile methodologies can also improve job satis-
faction and make it less likely that they will leave in the first place. These
methodologies empower developers, and allow them to work more produc-
tively, with less frustration. The 40-hour workweek helps to avoid “death
march” projects where developers burn themselves out and leave in droves.

Chapter 5 The New Agile Methodologies 93

94 Part II . . .And How to Make Them Succeed

Summary

Many of the agile practices improve software quality without affecting the
course of the project, for example: automated testing, simple design,
close/osmotic communication, and refactoring.They don’t change how the
project is managed, so they can be freely used in developing any piece of
software.

Other agile practices, however, have a much bigger impact on the project.
In particular, the use of iterations effects profound changes to the way that
projects are run. In How to Fail with the Rational Unified Process, Larman et al.
[2001] insist that “if an organization . . . does not experience a deep and
perhaps traumatic transformation at many levels in how they think about
developing software, this is probably a sign that they didn’t ‘get’ iterative
development and truly adopt it.”

These changes reduce the overall level of risk in projects, but they also
make it hard to use practices from project management alongside practices
from the agile methodologies. In the next chapter we will look at some
techniques that can help to bridge the gap between the two.

But by making these changes, the agile methodologies avoid the invalid
assumptions in project management that we identified in Chapter 3:

1. Scope can be completely defined.

2. Scope definition can be done before the project starts.

Agile methodologies don’t require all of the scope to be defined up-front:
scope definition is done throughout the course of the project.

3. Software development consists of distinctly different activities.

4. Software development activities can be sequenced.

5. Team members can be individually allocated to activities.

Agile methodologies treat development as a single activity, so design, cod-
ing, and testing are done concurrently. The developers are all doing the
same job.

6. The size of the project team does not affect the development
process.

Crystal defines explicit changes to the methodology depending upon
the size of the project team. In XP, it’s implicit that the methodology is
intended for small teams or subteams of 2 to 12 developers.

7. There is always a way to produce meaningful estimates.

8. Acceptably accurate estimates can be obtained.

9. One developer is equivalent to another.

Chapter 5 The New Agile Methodologies 95

Estimates can be based on the experience of prior iterations, which allows
you to build up a history of real metrics to make estimation more accu-
rate.You don’t need to guess how much work an arbitrary developer can
get done, because you know exactly how productive your particular team
has been.

10. Metrics are sufficient to assess the quality of software.

The developers continually review each other’s code to assess its
quality and find problems. In XP, the relevant practices are pair
programming and collective code ownership. In Crystal, it’s close/osmotic
communication and reflective improvement.

In the previous chapter, we saw how agile methodologies can help developers
avoid the invalid assumptions in project management that we identified in
Chapter 3. The main goal the agile methodologies address is how to efficiently
create high-quality software that meets the customer’s needs. Anything that
has been found to contribute to this goal has been included in one or more of
the methodologies. Anything that doesn’t contribute to it has been left out.

Efficiently creating high-quality software gets us a long way toward having
a successful software project, so it makes sense to use an agile methodology.
But there’s one big drawback: by allowing ongoing scope definition, the agile
methodologies make it hard to fix a project’s budget. How can we ensure that
our project will be profitable if we don’t know how much it will cost? If we
can find ways to address this issue, then we’ll be able to complete our solution
(started in the previous chapter) for the problems outlined in Part One.

In this chapter, we’ll start by discussing the issues around the budgeting
of software development projects. We’ll then introduce seven techniques
that can be used alongside the agile methodologies to make their estimation
processes more accurate, and to make it easier for them to stay within a fixed
deadline and budget:

1. Continuous development

2. On-demand programming

3. SWAT teams

4. Subteam encapsulation

5. Feature trade-off

6. Triage

7. Scoping studies

97

Budgeting Agile Projects

6
C H A P T E R

Each technique can be used individually, but they can also be used
together. After discussing each technique in turn, we’ll consider how best to
combine them for different types of software projects. Finally, we’ll take a
brief look at the controversial subject of offshore outsourcing, to see whether
it really can deliver its promised cost benefits, and whether it can be done in
an agile way.

In the next chapter, we’ll see these techniques in action as we rework the
case study from Chapter 4 to show how it could have succeeded had the proj-
ect been managed differently.

Budgeting for Software Development
By using practices from the agile methodologies, we can mitigate the most
common software development risks and ensure that we create software that
works well and meets the customer’s needs. However, this doesn’t guarantee
that the development can be done within a particular deadline or budget. In
fact, by spreading out the scope definition process over the course of the proj-
ect, it can be more challenging to create a budget for the software develop-
ment as a whole. As the scope is changed during the course of the project, so
too are the estimates for cost and duration. The agile scope definition process
bypasses the mechanisms that the PMBOK uses to control scope changes.

If the customer is allowed to think up too many changes and new features,
then the software may never be finished. This isn’t as bad as it seems, because
frequent delivery ensures that the customer quickly benefits from any new
development work. The agile practices stop uncontrolled change holding back
the software from being deployed. They also protect the quality of the soft-
ware through all the changes, but they don’t stop it from blowing out the
budget.

Here we encounter the critical difference between commercial and non-
commercial software. Noncommercial software doesn’t have a budget, and
isn’t limited by cost, so it’s OK to use as many developer hours as it takes to get
it right. That’s how open source development projects are run, and that’s one
of the reasons why they’re so successful in producing high-quality software.

However, commercial software development is undertaken for the sole
purpose of getting a good return on the money invested in developing the
software, either by making money or (more often) by saving money in stream-
lining a company’s operations. Compromises must be made to find the func-
tionality that provides “the biggest bang for the buck.” That’s why it’s so
important for customers to know exactly how much they must pay for the
software before they commission it.

During the late 1990s dot-com era, it might have been acceptable to
engage in ongoing speculative development in the hope that an initial public

98 Part II . . .And How to Make Them Succeed

offering (IPO) for the fledgling company would reap billions from the stock
market, but those days are gone for good. Nowadays a project won’t go ahead
unless the return on the investment is good enough.

“We start with payback period,” says Ron Fijalkowski, CIO at Strategic
Distribution Inc. in Bensalem, Pennsylvania. “For sure, if the payback period
is over 36 months, it’s not going to get approved. But our rule of thumb is
we’d like to see 24 months. And if it’s close to 12, it’s probably a no-brainer”
[Anthes 2003].

To meet these requirements, a new piece of software must enhance rev-
enue or save costs equivalent to its development budget during the first two
years in production (see Figure 6-1). IT systems go out-of-date very quickly,
so it makes sense to evaluate them on the basis of time. Even if technology
changes so fast that you have to replace your new system within three years,
with a payback period of two years you’re still ahead.

Figure 6-1. The return on investment for a project with a two-year payback period

A payback period calculation requires an accurate estimate of the develop-
ment costs for a new piece of software. In these circumstances, it’s no longer
acceptable to allow development costs to vary uncontrollably during the
course of a project. We must find ways to constrain the cost that don’t conflict
with the agile practices, and that still allow developers to create software of
acceptable quality. Moreover, we have an additional risk to mitigate: the cost
and duration estimates might be incorrect.

Chapter 6 Budgeting Agile Projects 99

1. Continuous Development
If it’s too difficult to provide reliable estimates for software development in the
context of projects, then there’s an obvious solution: don’t create your software
in projects.

This isn’t as irrational as it sounds. A project is “a temporary endeavor
undertaken to create a unique product or service” [PMI 2000]. However,
when developers write software, each feature that they add has similarities to
the ones that come before and after it. They’re similar in that they’re all fea-
tures of the same piece of software. The software may be unique, but the
features are not. The development team can become a production line that
adds one feature after another to the software under construction.

We use a project to create a unique product or service, and we use a
process to create a nonunique product or service. We’ve so far used the word
“process” only in a general way, but it has a more specific definition:

A process is a sequence of activities, people, and systems involved in
creating a product or service in a repeatable way.

The advantage of using a process is that with experience, and over time,
the process can be improved and perfected. Indeed, the whole point of devel-
oping software in a series of iterations is to convert software development into
a process. The developers can learn how best to create the software over a
series of iterations. They aren’t stuck with their initial preconceptions, and
with plans and strategies that become increasingly out-of-date.

This approach also mitigates the risk that the cost and duration estimates
might be incorrect. After a number of iterations, the developers will have
resolved many of the unknowns, and they’ll have established reliable measure-
ments for their productivity and pace of development. Estimates for subse-
quent iterations are likely to be much more accurate.

Taking this approach to the extreme would mean that the software is under
continuous development. The sequence of iterations would never end. For
many large systems this is a perfectly reasonable solution, as they continually
accumulate a backlog of change requests.

Eric Raymond [2000b] writes that “there is empirical evidence that
approximately 95% of code is still written in-house. This code includes most
of the stuff of [the IT department], the financial- and database-software cus-
tomizations every medium and large company needs. . . . Most such in-house
code is integrated with its environment in ways that make reusing or copying
it very difficult. . . . Thus, as the environment changes, work is continually
needed to keep the software in step. This is called ‘maintenance,’ and any soft-
ware engineer or systems analyst will tell you that it makes up the vast majority
(more than 75%) of what programmers get paid to do.”

Managers can obtain accurate estimates for the cost of each change, and
they can prioritize and approve individual pieces of work from iteration to

100 Part II . . .And How to Make Them Succeed

iteration. Unfortunately, it’s very difficult to evaluate the cost savings from
such small changes, so it isn’t practical to do a payback period calculation for
each one. A better approach is to decide how much the software is worth to
the organization on an ongoing basis, and then fund the development team
accordingly.

Maintenance is generally done by in-house software development teams,
as there’s less overhead and the organization can maintain a team of develop-
ers with exactly the right skills and areas of expertise. The developers are on
hand to resolve problems, help users, and look after the production environ-
ment. However, there’s less flexibility to significantly increase or decrease the
pace of development. If you can’t redeploy developers from one team to
another, then the only option is to hire and fire—which isn’t always straight-
forward.

2. On-Demand Programming
Organizations are increasingly frustrated by the lack of flexibility in their IT
systems in view of how much they have invested in them. The problem is that
system usage varies through the day, and also in weekly, monthly, and yearly
cycles. A system that’s only designed to handle average levels of load would
grind to a halt at times of peak load, but a system that’s designed to handle the
peak load would have ample spare capacity sitting idle most of the time.

There is a new IT industry trend to supply computing power as though it
were any other utility. After all, why buy a power station when you can draw
electricity from the grid? On-demand computing lets customers avoid big
up-front purchases of computer hardware, and gives them the ability to handle
unforeseen surges in demand. Setting up the connection to the system takes
some work, but subsequently a single contract for the supply of services covers
circumstances that can vary as required.

“IBM’s on-demand server hosting services are designed to let customers
add or subtract computing power and pay monthly only for what they use.
IBM estimates that companies using its hosted services will spend 30% less
on IT operations than if they ran comparable systems themselves,” reports
Larry Greenemeier in InformationWeek.

Why not do exactly the same thing with software development?

We saw that an in-house team of developers limits the flexibility of an
organization to increase or decrease the pace of development for its mission-
critical software. New initiatives come at irregular intervals and involve large
surges in workload, which disrupts the stability needed to make continuous
development operate smoothly. But scheduling each initiative as a one-off
project carries with it its own set of risks, which we’ve already discussed in
detail.

Chapter 6 Budgeting Agile Projects 101

On-demand programming is an extension of continuous development, but
it’s more flexible. The supplier maintains a team of developers that know how
to work on the customer’s systems, but they don’t work on them all the time.
The developers are hired only when they’re needed, and at other times they
work for other customers. There’s still an endless series of iterations, but there
may be gaps between groups of iterations.

Over the course of a year, for example, an on-demand team could divide
their time into fortnightly iterations for three different customers (see
Figure 6-2).

Figure 6-2. A year’s work for a typical on-demand team

This is not the same as taking individual developers out of a pool to assign
them to isolated projects. The critical factor is the experience the team gains
by working on a particular system. This allows them to estimate new work far
more accurately than would otherwise be possible.

Unlike project-based development, only a single ongoing contract exists
between customer and supplier. The customer only pays for the developer
time that they actually use. However, this approach works best when there’s a
strong relationship between the two parties, and where the customer trusts
the developers to deliver their “best effort” in the time available. An exhaus-
tive and rigid contract is not helpful.

Problems can occur in scheduling work from different customers so that
individual assignments don’t conflict with one another. Servers can be loaded
with new software very quickly, but developers take time to develop expertise
with a particular system, which makes it hard to swap teams within an engage-
ment.

3. SWAT Teams
On-demand programming requires adaptable, general-purpose teams that
have the expertise to work on systems for several different customers. These
teams can hit the ground running, not only for customers and systems that
they have already worked with, but also for customers and systems that are
unfamiliar to them, or even to build new software from scratch.

The SWAT team model is based on military or police SWAT teams. The
purpose of the Special Weapons and Tactics (SWAT) team is to provide

102 Part II . . .And How to Make Them Succeed

emergency tactical response to life-threatening incidents. The SWAT team is
able to respond quickly and effectively because they have already worked out
their operational strategies and tactics, and because they have trained and
worked together. They know how to get the most from their team. No time is
wasted getting themselves set up and sorted out. Team members know and
trust one another, and their shared experience gives them confidence in their
skills, and confidence that they can achieve the right outcome no matter what
situation they find themselves in.

A software development SWAT team would have a range of skills that
could include

� Software design and architecture

� User interfaces and usability

� Databases and data storage/retrieval

� Hardware and network infrastructure

� Client liaison and user training

The developers would still do the same job—we’ve seen how dividing work
by specialization can lead to problems—but each person would bring their
own expertise to the team. This creates a well-rounded team that can be used
for a wide range of problems.

Developer skills don’t need to be technology specific: you’ll need a data-
base expert in the team, for example, rather than an expert on Oracle database
software. Detailed technical knowledge for particular products can be obtained
by research and by problem solving on the job, so what’s needed is deep famil-
iarity with the underlying concepts in a specific area of technology.

This is particularly true for the enterprise application frameworks, the
toolkits that are used to build modern software systems. Over the last few
years there has been a move away from proprietary technologies and toward
common standards. There are now only two major enterprise application
frameworks: Java 2 Enterprise Edition (J2EE) from Sun, IBM, BEA, etc.
and Microsoft’s .NET.

But writing code in C# for .NET is little different from writing code in
Java for J2EE. The two technologies use the same underlying concepts, and
have more similarities than differences. It’s easy to apply skills from one to
the other. An experienced team should be able to handle tasks in either area,
which means they can develop virtually any significant new software, no mat-
ter what technology is used.

The advantage of using a SWAT team is that they’ll have established and
perfected their own development process, and can apply it to a wide range of
tasks. Using a team with a proven track record is less risky than creating a new
team from scratch. The team’s history and metrics will improve the accuracy of
their estimates for any new software development work.

Chapter 6 Budgeting Agile Projects 103

4. Subteam Encapsulation
Agile methodologies rely on frequent, face-to-face communication between
the members of a software development team. As the team grows larger, this
becomes more and more difficult. The number of communication paths in a
team increases much faster than the size of the team (see Figure 6-3).

Figure 6-3. Communication paths in teams with 3, 6, and 12 members

Agile software development works best with small teams of two to ten
developers who sit together, and who can easily talk to each other whenever
they need to. But not every project can be tackled by a small SWAT team.
What do you do if there’s more work than ten developers can accomplish
within a reasonable time frame? How do you manage the complexity of a
large team while still keeping the benefits of agile development?

Let’s look at other complex systems to see how their complexity is man-
aged. The most complex systems arise in software development, and computer
scientists have invented several techniques to simplify them. One of the most
promising is encapsulation. In Chapter 2, we saw how it could be used to
make a complex system much simpler (see Figure 6-4). Why not apply this
technique to the organization of a software development team?

Figure 6-4. Encapsulation can simplify a complex system.

104 Part II . . .And How to Make Them Succeed

The key features of encapsulation are:

1. The system is divided into smaller components.

2. The internal complexity of these components is hidden behind a simple
interface.

3. Components communicate with each other whenever they need to.

4. All communication is peer-to-peer; there is no hierarchy.

5. Each component has its own specific responsibilities.

Applying this technique to the organization of a team means that:

1. The team is divided into smaller subteams.

2. A subteam doesn’t need to know how another subteam organizes itself.
They always talk to the same member of that subteam. We can call this
person the “mediator.”

3. A mediator is always available. They should be as accessible as any other
member of a subteam. This means that each mediator is a member of
two or more subteams.

4. A mediator is not a leader. They serve as a conduit for information; they
don’t tell their colleagues what to do. Information does not travel up
and down some kind of hierarchy, but horizontally—between equals.

5. Each subteam has well-defined areas of responsibility, which overlap
other subteams’ responsibilities as little as possible.

Figure 6-5 shows how a team of 15 developers can be divided into three
subteams of six developers. Each pair of subteams has a mediator (high-
lighted) who is a member of both subteams. Each subteam has 15 communi-
cation paths, so there are 45 communication paths in total. This is the same
number of communication paths as an undivided team of 10 developers (see
Figure 6-5). In this example, encapsulation allows us to increase the size of a
team by 50 percent without adding to the communication overhead.

Figure 6-5. A team of 15 can be just as agile as a team of 10.

Chapter 6 Budgeting Agile Projects 105

5. Feature Trade-off
Even the best estimates from an experienced SWAT team will be of no use if
the customer adds feature after feature to the software during development.
Allowing the customer to refine the requirements during the course of a proj-
ect is an important part of any agile methodology. But customers often want
to fix the development period to ensure that the cost remains within their
budget by, for example, booking the development team for a specific number
of iterations.

The simplest solution is to allow the customer to change their mind and
specify new features, but only if they let go of other features at the same time.
One feature is traded off against another. Features can often be implemented
in a variety of ways; some allow more flexibility but are more complex, whereas
others are simpler and more straightforward. If necessary, the developers can
suggest ways to modify the requirements that allow the software to remain
within its original budget.

There are potential interpersonal issues here. The customer will want to
retain control over the requirements and scope, and naturally so; they pay the
bills, after all. However, if they want to change the scope while keeping the
budget the same, then something has to give. If the customer wants flexibility,
then they’ll have to show flexibility.

6.Triage
Stedman’s Medical Dictionary defines triage as

A process for sorting injured people into groups based on their need for
or likely benefit from immediate medical treatment. Triage is used in
hospital emergency rooms, on battlefields, and at disaster sites when

limited medical resources must be allocated.

Although triage was originally a medical term, it now has a broader mean-
ing, which is to allocate any scarce commodity—such as developer time—to
the areas where you can derive the most benefit from it.

The concept of triage was first outlined in Edward Yourdon’s [2004a]
famous book Death March, but triage is also useful for projects that haven’t
yet become a death march. Triage is a way to prioritize development effort, so
the best use can be made of limited developer time. However, instead of sort-
ing people by their medical condition, developers sort features by their value
to the customer.

The 80/20 rule tells us that 20 percent of the features will be responsible
for 80 percent of the benefits in any piece of software. This is confirmed by
Standish Group [2001] research, which shows that on average only 20 percent

106 Part II . . .And How to Make Them Succeed

of software features in existing applications are “always” or “often” used, and
that 45 percent of features are never used (see Figure 6-6). The key is to iden-
tify that 20 percent, so you can ensure that it’s completed no matter what else
happens in the project. This is the minimum marketable feature set: the mini-
mum amount of functionality that will deliver the maximum amount of value.

Figure 6-6. Software feature usage

Yourdon [2004a] suggests asking the customer to divide the software’s fea-
tures into three groups: “must-do,” “should-do,” and “could-do.” The must-do
group will be completed first, then the should-do group and finally the could-
do group. Within a group, the highest risk features are tackled first. These
groups should be evenly balanced. If the customer can’t or won’t prioritize
the features in this way, then this is itself a sign of underlying problems.

This strategy reduces the impact of any risks in the project, particularly
with regard to incorrect estimation, because if the software can’t be completed
in the time allowed, then the missing features will be those that have the low-
est value for the customer.

Also, if the customer changes their mind and proposes drastic changes to
the scope during the course of the project, then the developers will have a list
of low-value features that can be traded off against the new features that the
customer wants.

If the project encounters any significant problems, triage can be useful in
drawing attention to the real priorities. In these circumstances, developers
must focus their efforts on getting the project back on the rails. Any attempt
to make up lost ground will only drag the project down even further.

Chapter 6 Budgeting Agile Projects 107

“When you’re in project-recovery mode, it’s easy to focus on the wrong
issue: how to finish quickly, how to catch up? This is rarely the real problem.
For projects that are in this much trouble, the primary problem is usually
how to finish at all” [McConnell 1996].

7. Scoping Studies
There’s still a place for individual software projects. Some software develop-
ment work just doesn’t suit the continuous development and on-demand pro-
gramming approaches. If the initiative is unrelated to any other recent work in
the organization, then it may be better to manage the work as a stand-alone
project. But you can still use an agile methodology, employ a SWAT team,
and make use of feature trade-offs and triage to help the project run more
smoothly.

Another way to reduce the risk of incorrect estimation is to perform a
scoping study before beginning the project. This would firm up the require-
ments and include some real development work to get a feel for the expected
level of productivity. It can also test out any new or risky technologies to
uncover potential problems. The scoping study would create

� Use cases or other requirements specifications

� Screen mock-ups

� A high-level design

� Working code for a few key features, with unit tests

� An acceptance test plan

� A breakdown of the work, with estimates

� An iteration plan

The scoping study should be organized and funded as a separate project in
itself, not as part of the main project—although it would be equivalent to the
RUP Elaboration phase for that project. It provides the information needed to
effectively plan the main project, which is why it must finish before the project
starts. You can evaluate the project with much better information, but you
must be prepared to walk away from the money expended on the scoping
study if the study shows that the main project is not viable. Be prepared to
allocate 10 percent to 20 percent of your overall budget to the scoping study.

108 Part II . . .And How to Make Them Succeed

A scoping study can be particularly effective when the work is performed
by an external contractor. External contractors are often forced to skimp on
the project planning process because they need to minimize their outlay, and
hence their exposure, before the contract is signed. The risks that accrue from
this are mitigated by sizable contingency costs, particularly in fixed-price con-
tracts. However, if the customer pays the contractor to perform a proper
requirements gathering and project planning phase—i.e., a scoping study—
then the overall cost will be lower since they won’t be paying the contractor
to assume as much risk.

The goal of the scoping study is to build a mock-up of the proposed new
software that gives the customer and the users a real feel for how the whole
thing will work. In a modern development environment, it’s easy to create
static screens filled with sample data that look exactly like the proposed appli-
cation. For a web application, the web pages would be written by hand, and
there would be no code to generate them automatically. They’d include fixed
hyperlinks to navigate from one page to another.

Unlike an ordinary mock-up, though, these screens don’t have to be
thrown away. They can form the foundation of the real application as its logic
is built up feature by feature. Building the mock-up contributes real progress
to the project; it’s not an overhead. The same applies to the key features devel-
oped during the scoping study.

The same team should be used for the scoping study as for the main proj-
ect; otherwise the metrics obtained from this exercise are of little value. The
team also benefits from the experience they gain with the system during the
course of the scoping study.

If having two separate contracts proves awkward, an alternative approach
is to conduct a scope review partway through the project. The scope review
follows a scoping study phase, as described previously, which allows the initial
ballpark estimates to be revised and reevaluated. The client can cancel or trim
down the project if it turns out to be too expensive.

Combining These Techniques
To show how combinations of these techniques can be used for different kinds
of software development situations, we’ll consider four major categories of
software projects. The categories are divided according to whether it’s a major
system or a minor application, and whether the work is for existing, legacy
software or whether it’s a proposal for a new piece of software (see Table 6-1).

Chapter 6 Budgeting Agile Projects 109

Table 6-1. Many Techniques Are Useful Only for Specific Types of Software Projects

Major Minor Major Minor
Legacy Legacy New New

Technique System Application System Application

1. Continuous development ✔

2. On-demand programming ✔

3. SWAT teams ✔ ✔

4. Subteam encapsulation ✔

5. Feature trade-off ✔ ✔ ✔

6.Triage ✔ ✔ ✔ ✔

7. Scoping studies ✔ ✔

Major Legacy System
An organization’s major legacy systems are likely to be mission-critical for them,
so it makes sense to develop them in-house. This ensures security of supply.
The organization won’t be affected if their outsourcing provider goes bust, and
they can’t be held hostage by their suppliers through “vendor lock-in.”

A major legacy system will generate enough user problems, change
requests, and ongoing issues to support continuous development. Starting up
and shutting down projects for all of these tasks would add an enormous
amount of overhead, so it’s better to perform the work as an ongoing series of
iterations. A general-purpose SWAT team is not required; the team members
only need the specific skills required for this system.

Triage is essential. The team will receive a wide range of requests, of which
only a small fraction would actually provide some tangible benefit to the
organization. These requests must be prioritized in some way. But feature
trade-off is less critical, because important issues will eventually be addressed—
if not in the current iteration, then in a subsequent one.

Minor Legacy Application
Minor applications demand much less work than major systems, and are less
likely to be critical, so it would be wasteful to have dedicated personnel. It
makes more sense to organize a SWAT team that can work on a wide range of
applications. An organization can maintain its own development team, or it
can select an outsourcing provider to provide on-demand programming serv-
ices. Requests accumulate until there is enough work for an iteration, or a
short series of iterations, to clear the backlog.

110 Part II . . .And How to Make Them Succeed

Triage is just as important as for major legacy systems. Requests must be
prioritized, because only a small fraction of the work is really worth doing. The
work rate is hard to estimate, because less work has been done on the applica-
tion over its lifetime, so there has to be some flexibility in the plan of work.
Depending on the work rate that the team manages to achieve, they may have
to shed tasks to meet their deadline, or they may be able to complete more
tasks than expected.

Feature trade-off is also important: there must be some way to accommo-
date urgent requests. If an important feature or bug fix doesn’t make it into
the current plan of work, then it’s likely to be quite some time before the
application is worked on again.

Major New System
Offshore outsourcing begins to make sense for the amount of work required to
develop a major new system. The potential financial benefits may compensate
for the additional hassle and overheads (discussed in the next section). However,
it might be helpful to hire a few key people on a permanent basis to provide
continuity beyond the end of the project. They can form the core of the team
that will support the system once it goes into production, when it becomes a
legacy system.

A big project is a big risk, and a separate scoping study project can help
reduce that risk. Because of the size of the project, the overhead of having two
(or more) contracts is manageable. A SWAT team can help get the scoping
study off the ground quickly, but for the main project the team will be together
long enough that it makes sense to build it around the specific skills required
for the project. Because it’s likely to be a large team, the technique of subteam
encapsulation can help the team work together more efficiently and effec-
tively.

Triage is critical. A large project is extremely difficult to estimate with any
degree of accuracy, because there are so many interrelationships. A problem
in one area can lead to problems in other areas, which may in turn lead to still
more problems, and so on. Triage helps to prioritize issues, so that many of
them can be dismissed before they spiral out of control.

It’s hard to gauge day-to-day progress on a long project, and it’s easy to
accumulate one small slip after another, until the deadline becomes hopelessly
unachievable. With triage, small slips can be immediately compensated for
with corresponding adjustments to the overall scope of the project.

A long project allows people plenty of time to change their minds or think
up new ideas. Indeed, over a period of months or years, many of the individu-
als who originally developed the requirements may have left the organization,
to be replaced by new people who have different priorities. Without feature
trade-off, this can result in a never-ending series of additions and changes to
the requirements.

Chapter 6 Budgeting Agile Projects 111

Minor New Application
Finally, with a small-scale project there’s less potential benefit to set against
the overheads of offshore outsourcing. However, the project would still create
a surge in workload for an in-house development team, so in many cases a
local outsourcing provider will be the best choice. They should provide a flexi-
ble, multi-talented SWAT team that can quickly adapt to the specific require-
ments of the project.

The overhead of a separate scoping study project is probably not justified,
but a scope review after an initial scoping study phase would be useful to
gauge progress, firm up requirements, and allow for mid-course corrections.

While triage and feature trade-off are not as critical as for a major project,
a minor software project can still benefit from them. They can help to ensure
that the project sticks to its original budget and deadline.

The next chapter describes a case study that explores these techniques in
more detail, in the context of a project to develop a minor new application.

Agile Offshore Outsourcing
To finish up, let’s take a brief look at the controversial subject of offshore out-
sourcing, to see whether we can use agile techniques to help an offshore proj-
ect succeed. Offshore outsourcing may be the only way to make a project
profitable if its budget is really tight, but this is not a decision to be taken
lightly.

We’ve seen that one of the biggest challenges in software development is
making person-to-person communication as effective as possible. The best way
to keep your customers, users, managers, and developers talking to each other
is to locate them as close together as possible. But if your company has out-
sourced its development work to Bangalore or Beijing, while keeping its man-
agers and users in Boston or Berlin, then this is likely to cause significant
problems. Offshore outsourcing adds considerable risk to software develop-
ment, so you should avoid it if you can.

Increasingly, though, executives are attracted by the potential cost savings
from employing people in countries where the local salaries are five to ten
times lower. Executives often have limited awareness of the issues around soft-
ware development, and presume that they can just send over a requirements
document and then wait for the completed software. This approach doesn’t
work very well.

Salon.com reports that “For [Celeste] Smith, who would love nothing bet-
ter than to hire back her U.S. programmers, the dot-com run-up and the cur-
rent mania for [offshore] outsourced labor share an eerie similarity. In both
cases, she says, top-level managers have valued the actions of competitors and
investors higher than the actual information coming back from the marketplace.

112 Part II . . .And How to Make Them Succeed

‘I’ve talked to a few people in my position,’ she says. ‘In general, when senior
management makes a decision to outsource [offshore], there’s political pres-
sure to pretend it’s working just so they don’t look stupid. That’s happening
here, too’ ” [Williams 2004].

Offshore outsourcing can succeed, and it can make an otherwise
unpromising project possible by significantly reducing its costs, but it takes a
lot of work to get it there. The same risks apply as for any other project, but to
a much greater degree. Communication is difficult when you’re on the other
side of the world from your development team. You must work that much
harder at communication, and indeed at all of the agile best practices. Some
helpful hints:

� Ensure that all of the developers speak your language fluently.

� Invest in good videoconferencing tools.

� Don’t let the difference in time zones be a factor. Ask the development
team to change their hours so that they’re at work when you’re at work.
You’ll want to be able to resolve issues instantly. You shouldn’t have to
wait 24 hours to get a decision or a clarification.

� Send over at least one person who can make instant business decisions:
the on-site customer is no longer an option—it’s a necessity.

� For geographically distributed teams, try organizing the team into
encapsulated sub-teams. Ask the mediators to commute between the
subteams’ locations.

� Invest in just as much training for your offshore developers, if not more.
Remember, they probably can’t afford the best books, courses, and
certifications on the salary that you’ll be paying them.

� Arrange to deliver the software frequently, to confirm progress and
check quality.

� People from Asian cultures are often more polite than Westerners, and
hence less outspoken and blunt. Your team leader should have deep
experience of the team’s culture, so they can be aware of any problems
as soon as possible. This is less of a problem when outsourcing to
western nations.

� Pay attention to the corporate culture. Effective use of an agile
methodology requires a degree of flexibility and individual
empowerment that may be difficult to achieve in certain cultures.

� Before you risk millions of dollars with a large mission-critical project,
try it out first with a small pilot project to see how well it works for you,
and where the problems are. Does it actually generate the level of
savings that you expected?

Chapter 6 Budgeting Agile Projects 113

114 Part II . . .And How to Make Them Succeed

Summary

In the previous chapter, we discovered that the agile methodologies can
form part of a solution to the problems in software development projects.
But they’re not the whole solution.They can help us successfully create
software, but they can’t ensure that our projects will be profitable. In this
chapter, we’ve introduced seven further techniques that can help make the
estimation process more accurate, and make it easier to stick to a fixed
deadline and budget:

1. Continuous development: Turn software development into a
continuous process that has a fixed operating cost.

2. On-demand programming: Use the same team for ongoing
work on several systems to make their projects more efficient and
predictable.

3. SWAT teams: Keep your team together, so you can use data from
previous projects to help estimate future ones.

4. Subteam encapsulation: Link up several small teams peer-to-peer
to make large projects as efficient as small ones.

5. Feature trade-off: Keep the total workload constant by eliminating
tasks whenever new ones are added.

6. Triage: Maximize the value of software created within a fixed
budget by prioritizing the work.

7. Scoping studies: Reestimate the project when part of it has been
completed to make the estimates more accurate.

In the previous two chapters we’ve looked at a series of techniques that can
help to solve the problems outlined in Part One. In Chapter 5 we saw tech-
niques that can resolve the issues around software quality. In Chapter 6 we
saw techniques that can constrain an agile project to a fixed deadline and
budget.

In this chapter we’ll look at the same techniques from a different perspec-
tive. We’ll use another case study—one that addresses the same business ini-
tiative as the case study described in Chapter 4—to show how these techniques
can be combined to produce a complete solution for the problems in software
project management, and how our suggested approach can lead to a more suc-
cessful outcome. At the end of the chapter we’ll see how the new techniques
helped the project team avoid the invalid assumptions that we identified in
Chapter 3. This is where our journey ends.

Methodology
The case study is a project to create a new, relatively small piece of software,
so we’ll see the following techniques from Chapter 6 in action:

� SWAT teams

� Feature trade-off

� Triage

� Scoping studies

The team will employ techniques from two agile methodologies. A high-
level structure of phases and iterations from the Rational Unified Process will
be supplemented with lower-level practices from Extreme Programming. This

115

Case Study:The Billing
System Revisited

7
C H A P T E R

is an unusual but perfectly valid approach. We’ll be focusing on the interac-
tions between the members of the team, so only the following practices will
feature in our discussion:

� Testing: Manual acceptance test scripts will be used alongside the
automated unit tests, because in this case it’s less expensive than
creating or purchasing a test engine for them.

� Pair programming: The developers will switch partners at the end of
each iteration. Unlike most Extreme Programming teams, they must
schedule their partner-swapping because they only have two pairs of
developers.

� On-site customer: In this case the developers will be on-site at the
customer’s premises.

� Small releases: After each iteration the software will be released for
customer testing and evaluation, but it will only go into production at
the end of the project.

Inception
At Acme Inc. the accounting manager, Karen, has been under pressure to
reduce costs, so she has proposed a new billing system to integrate the various
financial applications used by the accounting team. The same data wouldn’t
have to be entered several times into different systems, and this would elimi-
nate three full-time data-entry positions and save the company about $150,000
a year. Karen’s boss, Salim, was keen on the idea, but he was also concerned
about the cost of the new application. He wanted to keep it below $300,000 so
that the project would have a two-year payback period.

Salim contacted People Co., who suggested that he hire an established
team of four developers with a good mix of experience and skills. He also
found an experienced project manager from within Acme’s Operations depart-
ment, Phil, who could devote at least half his time to managing the project.

When Salim asked Angela, the lead developer, to estimate the cost and
duration of the project, she replied that “At this stage the requirements are
still very imprecise. All I can say is that it’ll probably take between one and
12 months to create this software. I suggest we first organize a two-week scop-
ing study to firm up the requirements as much as possible before we plan the
rest of the project. We can then decide how many more two-week iterations
we’ll need to complete the work.”

Salim wanted to include Karen in the project team to define the require-
ments, but Angela disagreed. “Your data entry supervisor, Emily, knows much
more about the accounting applications, and how the team uses them. Besides,

116 Part II . . .And How to Make Them Succeed

we’ll need this person on the team for the whole of the project, and I don’t
think that Karen can spare that much time. She would need to set aside at
least 20 hours a week.”

The project team was therefore organized as shown in Table 7-1.

Table 7-1. The Members of the Project Team

Hourly Effort per Cost per
Resource Name Specialty Rate Iteration Iteration

Lead developer Angela Architecture $120.00 80 hours $9,600

Senior developer Govind Networks $85.00 80 hours $6,800

Developer Rauna Databases $75.00 80 hours $6,000

Junior developer Karl User interfaces $60.00 80 hours $4,800

End user Emily Business issues $50.00 40 hours $2,000

Project manager Phil Client liaison $100.00 40 hours $4,000

TOTAL $33,200

Scoping Study
The scoping study started off with a three-day requirements workshop in a
conference room with a printing whiteboard. The focus was on mapping out
exactly how the new application was going to work. The four developers sat
around the table with Emily, and they helped her lay out the data fields and
buttons for each of the new screens, and step through each of the use cases
for the new system. They took turns writing up notes about the discussion.

On Thursday the developers gathered in the same room, this time without
Emily, to create a high-level design for the system. As the expert on software
architecture, Angela led the discussion, but she tried to include all of the
developers in the discussion by asking them questions related to their areas
of expertise. The architecture for the system was sketched on the whiteboard
in a series of UML diagrams.

Govind and Rauna then worked together to develop a small piece of func-
tionality that passed some data all the way from the front-end user interface to
a back-end web service. They expected to complete this work within a week,
but the actual pace they achieved and the problems they encountered would
provide valuable information as to how fast the remaining work could be
expected to progress.

Meanwhile, Angela and Karl concentrated on writing up the results of
the week’s discussions. Karl wrote up the use cases as a series of documents,
and created mock-up screens for the new application with the team’s software

Chapter 7 Case Study: The Billing System Revisited 117

development tools. Angela spent the time writing up the architecture
document. She used a UML drawing program for the diagrams, and added
some text that explained why the architecture was the way it was. There was
also discussion of the main technical risks, which Angela had spent some time
researching and, wherever possible, resolving.

She also broke down Emily’s requirements into a list of 73 individual fea-
tures, and gave initial estimates for each of these features of between one and
five units of work. Each unit initially represented a day’s work for a developer,
but this conversion factor could be adjusted if the overall pace was found to be
faster or slower. This meant that the estimates for individual features wouldn’t
have to be changed if the pace varied. Features that came out as larger than
five units were broken down still further.

Project Planning Meeting
On Friday the developers got back together with Emily and Phil to go over the
requirements and the estimates. After Karl demonstrated the mock application,
the developers asked Emily and Phil to divide up the feature list into must-do,
should-do, and could-do features.

“They’re all must-do features,” said Emily, “We need all of these features
in the application.”

“We define must-do a little differently from that,” replied Rauna. “A must-
do feature is one where if it’s not there, then the application is of absolutely no
use to anyone, and there’s no point in deploying it.”

“What about should-do and could-do?” asked Phil.
“A should-do feature is one where you can quantify, or at least point to the

feature’s business value. It has to directly save you money. A could-do feature
is one that has no business value of its own, but which helps you to use the fea-
tures that do,” said Rauna.

After some discussion, the team members were able to divide up the fea-
ture list as follows:

� Must-do: 29 features

� Should-do: 23 features

� Could-do: 21 features

� Total: 73 features

“Are you guys OK with the estimates I came up with?” asked Angela.
“I think the estimates for the web services need to be increased,” replied

Govind. “From the work we’ve been doing, it looks like we’ll need to coordi-
nate the database and web service updates with transactions. But web services
don’t support transactions yet, so we’ll have to use a workaround where we
create an ‘undo’ web service that is called whenever a transaction is aborted.”

“How much is that going to increase the estimates by?” asked Angela.

118 Part II . . .And How to Make Them Succeed

“We’ll have to create an undo web service for each functional web service,
which will double the amount of work we have to do in that area,” said
Govind.

“OK. Is there anything else?” asked Angela.
“Well, some of the screens are wrong,” said Emily, “I’ve marked the

changes on these printouts. We’ll have to add some fields and change the
names of some others. Also, these two screens have to be combined into one.”

“That doesn’t look too major. Apart from reworking the bits that Govind
and Rauna have already finished, we can probably do the rest in the same time
as before,” said Karl.

With these changes, the estimates came out as

� Must-do: 83 units

� Should-do: 56 units

� Could-do: 58 units

� Total: 197 units

“Over the last few projects, the team has averaged 20 units per week—or
perhaps half that during the Elaboration phase—so we’re looking at about
ten weeks work here,” said Angela. “Govind and Rauna completed features
worth 11 units last week, so the estimated pace is about right for this project.
We’ll need an Elaboration iteration of about 20 units, and then maybe four
Construction iterations of 40 units each. That adds up to 191 units. Can we
trim a couple of features to reduce the scope by 6 units? Otherwise we’ll need
to allow for an extra iteration.”

“I think that we can lose these two features. The users don’t need to resize
the data entry windows if they’re sensibly laid out, and pop-up help is not
essential if the users are properly trained,” said Phil.

“I agree: they’re not quite as important as the rest. I can go along with that,
so long as we don’t lose any more,” said Emily.

“OK. That gives us a project plan that looks like this,” said Angela as she
passed around copies of Table 7-2 and Figure 7-1.

Table 7-2. The Duration, Scope, and Cost of the Project’s Phases

Phase Iterations Duration Units Cost

Scoping Study 1 2 weeks 11 $33,200

Elaboration 1 2 weeks 20 $33,200

Construction 4 8 weeks 160 $132,800

Transition 1 2 weeks $33,200

Contingency 2 4 weeks $66,400

TOTAL 9 18 weeks 191 $298,800

Chapter 7 Case Study: The Billing System Revisited 119

Figure 7-1. The overall project plan

“Why do we need so much contingency?” asked Phil.
“We actually need more than this. At the product definition stage, esti-

mates are only accurate to a factor of 2, so we should allow at least 50 percent
contingency. But if we can make all of the could-do features optional, then
that gives us another 37 percent contingency. Combined with the two extra
iterations, that’s a total contingency of 68 percent, which should be more than
enough,” said Angela (see Figure 7-2).

Figure 7-2. The shaded area represents the total contingency for the project. In
addition to the time allocated to the essential must-do and could-do functionality,
another 68 percent can be used for resolving problems.

“We still want you to include all of the could-do features,” said Emily.
“Yes. That’s why the contingency iterations are there. I’m confident that

the estimates are within 30 percent of what they should be, so if there are any
overruns, then we can still complete all the features with only one or two extra
iterations. However, and I think this is very unlikely, if something does go
badly wrong, then at least we’ll be able to create software that still meets your
most pressing needs,” said Angela.

120 Part II . . .And How to Make Them Succeed

“I think I can get Salim to give us the go-ahead for that. The budget is very
close to what he was looking for,” said Phil.

“We’ll see you on Monday then,” said Angela.

Elaboration
The first task was to set up the team’s office for pair programming (Figure 7-3).
Instead of the usual corner desks, the team had requested straight worktables.
They put two of these back to back, each with a workstation and two chairs for
a pair of developers. The third table was placed end-on to these two, so Emily
or Phil could work alongside the team whenever they needed to. The develop-
ment team faced each other as they worked, which made their discussions
easier.

Figure 7-3. The layout of the team’s office

After that, they set up the development environment for the project,
including a source code repository and an automated build script. Govind and
Rauna merged their work and Karl’s mock-up screens into this structure. The
existing unit tests were included in the build script. The team also decided on

Chapter 7 Case Study: The Billing System Revisited 121

a process configuration for RUP, but this didn’t take long as they could reuse
one they’d already used successfully on several projects of about the same size
and duration.

For this iteration, Karl decided to work with Govind, and Rauna with
Angela. Between them, they divided up some of the highest-risk, must-do fea-
tures so that each pair of developers was assigned ten units of work. This work
included the undo web service for Govind and Rauna’s already completed
web service. The remaining time was allocated to analyzing the effects of the
inevitable change requests on the requirements and the high-level design.

In the meantime, Emily began working on a set of acceptance tests for the
system, based on the use cases that Karl had written up. The first one that she
wrote was for the functionality that Govind and Rauna had already completed.
When she tried it out, she found that it didn’t work the way she expected it to.

She looked up from her screen and said, “Hey guys, this first screen doesn’t
work properly. I’ve just tried to copy some lines from a spreadsheet to paste
them into this screen, but it doesn’t put them in the right fields. It all ends up
in the first field.”

“Is that how it’s supposed to work? I don’t think we covered that in the use
cases,” said Karl.

“It has to work like that,” replied Emily, “I can’t copy over one number at
a time. That’ll take forever. The whole point of this software was to save us
time.”

“That’s OK,” said Angela. “We can put this in as another feature. Karl, can
you work with Emily to update the use cases, and can you also estimate how
much extra work will be required to put this feature into the system?”

“Sure. I can start on that right away,” said Karl.

Review Meeting
As she worked her way through the acceptance tests, Emily found more and
more “bugs” in the system, which were really features that hadn’t been thought
of yet. The developers documented each one carefully, and assessed the
impact of each change. By the end of the first iteration, they had 13 new fea-
tures that came to 34 units of additional work. They discussed this with Phil
at the two-week iteration review meeting.

“We’ve got two options,” said Angela, “We can either use the project’s con-
tingency to add another Construction iteration for this work, or we can trade
off these new features against the lower-priority features that we identified.”

“Why don’t we do both?” asked Phil. “Why don’t we trade off the new
must-do and should-do features against the old could-do features, and then
decide after the fourth Construction iteration whether we want to add a fifth
iteration for the remaining could-do features? At that point we’ll know whether
we’re running behind schedule, and whether we can afford to use up the con-
tingency time.”

122 Part II . . .And How to Make Them Succeed

“I can go along with that,” replied Emily, “but only if you promise that we
will do that extra iteration if we’re not too far behind. We still need those fea-
tures in the software.”

“What was the progress for this iteration?” asked Phil.
“We finished 7 features that added up to 18 units,” said Govind.
“That’s a bit slow. We planned 20 units this iteration, didn’t we?” asked Phil.
“Yes, but we’d expect some variation, because the estimate for each feature

might be off by a few percent. We’ve done 29 units against a plan of 31 at this
point, so I still think that our estimates are broadly correct,” said Angela.

“Are there any other issues?” asked Phil.
“Well,” said Govind, “I had some difficulties getting the default .NET web

service interfaces to work with some of the accounting applications. They need
their data formatted in a strange way. I could get it to work in the end, but I
had to create the interfaces by hand.”

“What does this mean for the project?” asked Phil.
“It’ll take a bit longer to create the interfaces manually, but not too much. I

suggest that we add two more units of work to the estimates. Also, I’m the only
one who knows how to create these interfaces, so I’ll have to pair with anyone
who has to work on one of them. This might disrupt our pair programming
rotation a bit,” said Govind.

“We can work around that, though,” said Angela.

Construction
The team continued to make steady progress (Table 7-3).

Table 7-3. Progress During the Project’s Iterations

Expected Expected Actual Actual
Progress Total Progress Total

Iteration (units) (units) (units) (units)

Scoping study 11 11 11 11

Elaboration 20 31 18 29

Construction 1 40 71 35 64

Construction 2 40 111 32 96

Construction 3 40 151 43 139

Construction 4 40 191 33 172

Construction 5 37 209

Chapter 7 Case Study: The Billing System Revisited 123

Phil was concerned when the team slipped behind schedule by 5 units in
the first Construction iteration, and he became even more worried when he
saw this trend increasing in the next iteration. He scheduled a private meeting
with Angela to discuss the issue.

“What’s the problem, Angela? Why aren’t you meeting your targets?”
“To be honest, Phil, I’m not sure,” she replied, “The guys haven’t encoun-

tered any significant problems so far. It’s possible that the estimates were just a
little on the low side. Also, the earlier features required more of the infrastruc-
ture to be created, whereas we defined the features from a user perspective,
so that may be why this work is taking longer than expected.”

“How are you planning to make up the time?”
“Phil, the figures we gave you were estimates—not targets,” she said, “A

realistic estimate is just as likely to be too small as it is to be too big. We made
a commitment to develop this software in the most efficient way possible, and
we assured you that the development wouldn’t overrun its contingency. And it
won’t. At this rate we’ll still be well within our overall budget.”

“So what do you suggest we do?”
“We still have to see, but I think we’re going to need that fifth iteration

after all.”
With each iteration, the software that Emily was testing became more and

more complete. Whenever she got a new version, she ran through her accept-
ance tests to confirm that all of the new features worked as expected. She also
spent time playing with the new system, trying a variety of tasks in different
ways, and by doing so she uncovered a few small but significant bugs.

As before, most of the bugs she reported were actually changes to the
requirements, but the major ones had already been identified and superficial
changes could be accommodated within the existing estimates. The devel-
opers worked closely with Emily to ensure that each new feature that they
tackled worked exactly the way she wanted it to.

Construction Iteration 5
At the close-out meeting for the fourth Construction iteration, the team had to
decide whether to go ahead with a fifth iteration.

“How are we doing overall?” asked Phil.
“We’ve finished 66 features out of 72, and there are 6 features remaining,

which come to 19 units in total,” said Angela. “There are also a few outstand-
ing bugs that Emily found, but most of them are quite minor. The formatting
on some of the screens and reports can get stuffed up if the data items are too
long, but that should only take a few hours to fix. Apart from that, the software
passes all of our unit tests, and all of Emily’s acceptance tests.”

“It sounds like both the software and the project are in good shape. I think
we can use up some of that contingency time. We had 36 units of could-do
features that were traded off in the Elaboration phase. Do you think you can
finish half of those, plus the remaining features, in one more iteration?” asked
Phil.

124 Part II . . .And How to Make Them Succeed

“I’m confident that we can do at least some of them,” replied Angela.
“Let’s plan to do 32 units in this iteration—that seems safe in view of the pace
so far—and then we’ll see what else we can get done. Emily, you’ll have to
update the acceptance tests to include these new features. If we could have
them by the end of next week, then that’ll give us enough time to ensure that
everything is working properly before the end of the iteration.”

The burn-down chart displayed on the office wall was extended to show
the new iteration and the additional scope (Figure 7-4).

Figure 7-4. The pace of work during the project

The developers were able to complete 37 units of work during those two
weeks, so during the second week they asked Emily which additional features
she would most like to see implemented. She picked out 2 more features that
were worth 5 units together.

At the close-out meeting for the fifth Construction iteration, Emily argued
strongly for a sixth iteration to complete all of the remaining features. “These
were requirements that we said we needed right at the beginning of this proj-
ect. We still have time on hand. Why don’t we just do them too? And there are
a few more things that I’ve come up with that we should include too.”

Phil disagreed. “I’m sorry, but I’d rather keep some time in hand in case
there are any problems during the Transition phase. What happens if the beta
test goes badly, and we need to fix a whole lot more bugs? No. We decided
that these features were the least important ones, and I don’t think we’ll miss
much if they’re not included in the final version of the system.”

Chapter 7 Case Study: The Billing System Revisited 125

Transition
“So what’s the plan for the Transition phase?” asked Phil.

“Angela and Govind will spend the next few days closing out the remaining
defects and putting everything in order,” said Rauna. “Karl and I will be in
charge of training. We’d like to train your help desk on Monday, the system
administrators on Tuesday, and the data entry operators on Wednesday. We’re
planning to do a morning session and an afternoon session on each of these
days, so you don’t have to leave any of those areas unattended. We’ll be taping
each of these sessions, so anyone who’s away or sick on those days can catch
up. And also any new hires, of course.”

“And after that?” asked Phil.
“The big show-and-tell is on Thursday,” replied Angela. “I hope you

remembered to invite all the bigwigs. Then, all going well, we take Friday
off and deploy the new system into production over the weekend.”

Deployment
By Thursday, Angela and Govind had a zero-defect version of the software
ready for the executive meeting. The demo went flawlessly. Both Salim and
the company’s CEO, Cathy, were impressed. They were happy to sign off
acceptance for the new system.

The next week was the beta test period. There was nothing for the devel-
opers to do but answer queries about how to use the new system (there were
lots of these on Monday), sort out problems, and wait for bug reports. There
were quite a few bugs reported. Some were misunderstandings about how
the software was supposed to work. Others were suggestions for new features
and changes that were carefully documented; a few of these deserved further
investigation. They eventually ended up with just two new bugs that needed
fixing, and Govind and Karl volunteered to work on these.

Angela and Rauna took the Wednesday off, as they had to come back the
following weekend to install the final version of the software. On Friday there
was a project close-out meeting where the outstanding issues were aired—
these were mainly suggestions for new features—and the project was declared
a success. Phil opened a bottle of champagne to celebrate, and afterwards the
developers went back to clean out their office.

126 Part II . . .And How to Make Them Succeed

Aftermath
After the project, Phil went over the financials one last time. The project had
gone very smoothly, and only half the planned project management time had
been used, which saved about $16,000. The project had come in early by two
weeks, and that saved a further $33,200. The overall cost of the project was just
over $250,000 (Figure 7-5), and the payback period was now just 20 months.

Figure 7-5. The savings from the original budget

The users were mostly happy with the new system, although there was a
growing list of suggestions for additional features. Salim didn’t see these as
high priority, though, because most of them offered no direct financial benefit.

Cathy was very pleased with the results of the project. “I think that there
may be a bonus in this for you guys,” she said to Salim and Phil.

Chapter 7 Case Study: The Billing System Revisited 127

128 Part II . . .And How to Make Them Succeed

Summary

Why did this case study succeed when the previous one in Chapter 4
failed? If we compare this case study to the list of invalid assumptions iden-
tified in Chapter 3, we can see that the techniques used by the team helped
them to avoid these assumptions, and thereby achieve a better result:

1. Scope can be completely defined.

2. Scope definition can be done before the project starts.

The scope of the project was reevaluated and adjusted after each iteration.
Moreover, the developers worked alongside the customer representative
(Emily), and could ask her to clarify details whenever necessary.The team
used triage and feature trade-off to ensure that total quantity of work did
not overwhelm the budget.

3. Software development consists of distinctly different activities.

4. Software development activities can be sequenced.

5. Team members can be individually allocated to activities.

The team’s development process combined design, construction, and test-
ing, so the design could be refined as required and the software could be
tested from day one.The developers collaborated on gathering require-
ments, defining the architecture, and producing estimates, so everyone had
an opportunity to ask questions and make suggestions. Communication
was abundant and effective.

6. The size of the project team does not affect the development
process.

The team was very small, and the developers were able to adopt a very
informal and efficient development process.They used a Rational Unified
Process configuration that had been customized for the size of the team,
and adapted the Extreme Programming practices for their circumstances

7. There is always a way to produce meaningful estimates.

8. Acceptably accurate estimates can be obtained.

9. One developer is equivalent to another.

Using a SWAT team allowed the estimates to be based on the results of
the team’s previous projects, making them more accurate.The amount of
contingency reserve—partly based on triage—was more than adequate
for the degree of inaccuracy in the estimates.The scoping study also gave
the developers an opportunity to check their expected level of productiv-
ity against the project’s specific circumstances.

10. Metrics are sufficient to assess the quality of software.

Chapter 7 Case Study: The Billing System Revisited 129

The developers continually assessed the quality of each other’s code dur-
ing pair programming. Automated unit testing helped the developers
become aware of new bugs very rapidly, so the software maintained a low
level of defects. Ongoing acceptance testing by the end user ensured that
the usability and functionality of the software were also assessed.

A software project can fail even before it starts. It can fail just because of the
way it has been organized and set up. Often it’s impossible to find out whether
a project has failed until just before it’s due to end. Only when the software is
ready for testing and deployment does its poor quality become apparent.

The advantage of iterative development is that each iteration provides
another chance to find out what’s going wrong, and another chance to put it
right. However, to do iterative development properly, you must make dramatic
changes to the way you manage your projects. Many project management best
practices just won’t work anymore.

Software is strange stuff: it’s complex, abstract, and fluid. It helps to have a
deep understanding of the peculiar nature of software when you’re planning a
software development project. Nontechnical people—customers and project
managers—often haven’t had the kind of hands-on experience that’s needed
to achieve this level of understanding. However, the technical members of the
team—the developers, architects, and analysts—often lack the business and
management skills needed to successfully organize a project.

The conceptual gap between the technical and nontechnical members of a
software development team is the most obvious reason why software projects
fail. The communication of requirements from customers to developers is a
common source of problems, as is the communication from developers to cus-
tomers of the repercussions of those requirements.

Developers often concentrate on technology to the exclusion of everything
else, and they invariably propose technical solutions to nontechnical problems.
They need a detailed understanding of the business issues that the software is
intended to address, and they should be asked to think about what they can do
to help the project run more smoothly.

Developers can also bring essential input to the project planning process.
All too often, developers are brought onto the team only when the project has
been completely planned. Developers are the experts in software develop-
ment. If their input has been ignored, then how realistic will the plan be?

131

Afterword

8
C H A P T E R

The key to software development success is frequent, ongoing communica-
tion between the developers, the customer, and the project manager through-
out the project, with regular opportunities to confirm understanding and give
feedback. By making use of the techniques discussed in this book, you can
improve your team’s communication, and ensure that your software projects
succeed.

132 Part II . . .And How to Make Them Succeed

In early 2001 a small group of methodology thought leaders gathered in a ski
resort in Utah to find out whether there was any common ground between their
seemingly disparate methodologies: Extreme Programming, SCRUM, DSDM,
Adaptive Software Development, Crystal, Feature-Driven Development, and
others. After two days of vigorous debate, they agreed that the term “agile” best
described their new kind of methodology. They were also able to agree on a
number of common goals, outlined in the following manifesto.

Manifesto for Agile Software
Development
We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

� Individuals and interactions over processes and tools

� Working software over comprehensive documentation

� Customer collaboration over contract negotiation

� Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on
the left more.

133

Appendix:

The Agile Manifesto

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn,
Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith,

Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin,
Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas.

© 2001, the above authors

This declaration may be freely copied in any form, but only in its entirety
through this notice.

134 Appendix The Agile Manifesto

acceptance tests These are a set of structured system tests that have
been defined by the customer, and are often based on the use cases in the
system requirements. Software development contracts often state that the
software must pass acceptance testing before it can be delivered and the
final payment made.

application A piece of software that can run on its own, but which often
connects to other systems. It’s also known as a computer program. There
are the one-person desktop applications that we’re all familiar with, such as
Microsoft Word for word processing, but there are also multiuser applications
that run on an office network, such as accounting and email. Beyond that are
applications we use over the Internet, such as Amazon.com’s online ordering
and Google’s search page, and applications that other applications use to
exchange information, so that international phone calls can get connected,
for example.

architecture The internal design of a piece of software, taken at a high
level, that allows the software to fulfill its requirements. It shows how the
constituent components make up the software, and how it connects to
external systems such as a database or another application.

artifact The product of an activity during software development. Examples
of artifacts include a project plan, an architecture document, a set of unit
tests, an acceptance test plan, some components, an entire application,
a user manual, and so on.

best practice A process or technique that has a proven record of success in
providing significant improvement to the results of an activity such as software
development or project management.

135

Glossary

beta testing Testing software by releasing it to a small group of carefully
chosen customers for them to use in real-world conditions. These tests aren’t
structured in any way. Customers often use software in ways that developers
can’t predict, so this form of testing finds bugs and usability problems that are
missed by unit testing and system testing.

bug A defect or error in the software that makes it behave in a way that it’s
not supposed to.

build process An application that has been configured to automatically
perform all of the steps required to integrate a piece of software and create
its executable. It can also perform the unit tests for the software, to check
that everything still works properly. The build process can be scheduled to
run on a regular basis: either every hour, every night, or over the weekend,
depending on how long the process takes to complete.

burn-down chart A diagram that demonstrates progress by showing how
the quantity of work remaining to be done has decreased over the course of
the project [Cockburn 2004].

business logic The business processes and rules that are implemented in an
application. For example, an insurance company might define a formula that
calculates the premium for a driver from their driving history and the value of
their car.

class An object is created in a program according to the definition provided
by its class.

code Short for source code.

compile, to To convert source code into an executable.

component A piece of software that can’t run on its own, but must be
incorporated into or used by an application. A component is something
that can be deployed as a black box: it hides the complexity of its internal
mechanisms behind a simple interface. It contains data as well as routines
that operate on that data. A component works in the same way as an object,
but on a larger scale. A component can contain many objects.

Components can be purchased from third-party vendors, or they can be
created by developers to reduce the level of complexity in their software.

database A collection of data that’s organized in a structured way. A
company’s databases are kept on a server, and are accessed via database
software such as Oracle Database or Microsoft SQL Server.

encapsulation A technique to reduce the overall level of complexity in a
piece of software by isolating various parts of the system from each other.
These are sectioned off into objects or components. It is a key part of
object-oriented programming.

136 Glossary

enterprise application framework Nowadays any significant new software
is almost certain to be built with an enterprise application framework such as
Sun Microsystems’ Java 2 Enterprise Edition (J2EE) or Microsoft .NET. A
framework is a toolkit, just like a Lego set, that you can use to build a variety
of items. In the case of software, the building blocks are bits of software which
do jobs that have been found useful in a wide range of situations. Examples
include getting data from a database, drawing a window on the screen, or
converting dates from one format to another.

“Enterprise” is a difficult word to define. Perhaps the best way to think of it
is “as big as you want.” Desktop applications are limited to running on one
computer, but that’s OK because only one person is using them at a time.
The popular Internet search engine Google provides information to more
than 1,000 people every second: no single computer could handle that load.
Enterprise technology allows many computers to work together for a single
application, and also provides the connectivity to allow lots of people to
access it at the same time. But “enterprise” also means “as small as you want”:
enterprise application frameworks are not just for major applications in big
companies.

executable The set of instructions or operations that makes up a piece of
software, but written in a format that only the computer can understand. An
executable can’t normally be converted back into a form that a person can
understand.

extensibility The ability to extend or modify a piece of software without
damaging the way that it works. Extensibility isn’t apparent when the software
is first completed; it only shows up when you try to make changes to the
software.

feature An intended property or behavior of a piece of software. For
example, Microsoft Word’s ability to emphasize misspelled words is a feature
of the program.

fragile code Source code that may work well, but in which it’s virtually
impossible to make changes without introducing new bugs, and breaking
some of its existing functionality. Code becomes fragile when its architecture
doesn’t receive enough attention and expertise.

functional specification A document that describes in great detail the
features and functions of a piece of software. It defines the requirements
and scope for the project that creates the software.

instruction This is usually a single line of source code, but very complex
instructions sometimes span two or more lines. An instruction may copy a
piece of data, perform some arithmetic, manipulate text, invoke a routine in
an internal or external component, or decide which parts of the program to
execute (and in what order).

Glossary 137

integration The process of building the executable for an application or
component by compiling the source code to a format the computer can
understand, and then incorporating or connecting to other components.

iteration An iteration is a small part of a project that contains all of the
steps required to design and build a portion of the software. It starts with
choosing a set of features to be added. The overall architecture for the
software is then extended and adjusted to accommodate the new features.
Once these features have been developed and tested, the developers can
put together and evaluate an updated version of the software.

legacy software An application or system that is already in production. It
may rely on old versions of technologies, or even technologies that are totally
obsolete.

method A routine that’s defined in a class, and is available in an object.

methodology A set of procedures and guidelines for some or all of the
software development process. A methodology may contain step-by-step
descriptions to show how to perform individual activities, flowcharts to show
how activities are interrelated, and metrics to evaluate whether the activities
were completed successfully.

metric This defines, in very specific terms, what something is and how it’s
measured. For example, the number of new bugs found and the number of
existing bugs resolved during an iteration are two useful metrics that can
help a team to assess its progress.

object A piece of software that can’t run on its own, but must be incorpo-
rated into or used by an application. An object is something that can be used
as a black box: it hides the complexity of its internal mechanisms behind a
simple interface. It contains data as well as routines that operate on that data.
An object works in the same way as a component, but on a smaller scale. A
component can contain many objects. Objects are rarely downloaded or
purchased individually.

object-oriented programming A set of techniques and architectural
patterns that are used when building software out of objects.

open source When you buy or download software, you normally receive
only the executable—not the source code. Open source software includes
source code alongside the executable, so that anyone who wants to can
find out how the software works, and make changes to fix bugs and add the
features they want. The Linux operating system kernel is a well-known
example of open source software.

outsourcing Sending out software development work to another company,
which the customer might otherwise give to their own staff. Outsourcing is
usually done to cut costs, by allowing companies to specialize, but it also allows
a company to rapidly increase or decrease the pace of development without
having to hire or fire staff.

138 Glossary

payback period This metric represents the payback time for an invest-
ment. To achieve a two-year payback period, for example, a new piece of
software must enhance revenue or save costs equivalent to its development
budget during the first two years in production.

process In contrast to a project, a process is a sequence of activities, people,
and systems involved in creating a product or service in a repeatable way.

project In contrast to a process, a project is a temporary endeavor under-
taken to create a unique product or service. A project may include processes
for the parts of the project that are repeatable.

quality assurance A system of standards and procedures, such as sampling,
that ensures that an acceptable level of quality is maintained.

refactor, to To restructure existing code without changing its functionality
in any way. The aim is to clean up and simplify the design so that further
progress can be made as rapidly as possible. The risk of introducing new bugs
will have been minimized. As the developers write the code, they learn what
is needed in its design, and they continually revise the overall architecture.

risk An uncertain event or condition that has consequences for the project
or process; for example, that an essential third-party software component isn’t
available in time.

role A specialization that someone might assume during a software develop-
ment project: for example, architect, business analyst, programmer, or tester.
Each role is given responsibility for a number of activities, and each role has
one or more individuals assigned to it, who might have specific experience that
suits them particularly to that role. People often take on more than one role,
particularly in small teams.

routine The set of instructions contained in a small chunk of source
code, which perform a single, well-defined task, and are grouped together
for convenience, for example, converting dates from one format to another.

scope A clear and complete definition of the overall aims of a project. It’s
normally broken down into a number of smaller, more closely defined goals.

server A computer that doesn’t have a user sitting in front of it. A server can
run a shared application, accommodate a database, or host some shared
components, perhaps as web services. The word “server” is sometimes used
to refer to a server application such as BizTalk Server or SQL Server, but this
usage is incorrect.

source code The set of instructions that makes up a piece of software, but
written in a format that a person can understand. Before the software can be
run on a computer, it must be compiled into an executable so the computer
can understand it.

Glossary 139

system test Unlike a unit test, a system test tries out some features on
the software as a whole. System tests imitate what a user would do with the
software, but it’s very hard to create system tests for every situation or error
that could possibly occur.

technical specification A document that describes in great detail how
a piece of software should work. It normally includes both a high-level
architecture and detailed design work.

test engine Software that allows you to configure and run unit tests or
system tests by defining the expected output for some input data.

UML The Unified Modeling Language is a visual modeling language from
the Object Management Group. It allows you to create a “map” for software
that shows its structure in greater or lesser detail. By hiding details, you can
create a comprehensible overview of the system, and by exposing details you
can show exactly how a small part of it works.

Visual models are used to depict the architecture and design of the soft-
ware, and to communicate these to the development team. The quality of
the architecture is easier to see in visual models, and by maintaining a good
architecture, the quality of the resulting software will be improved. As the
software is modified, various tools can be used to keep visual models and code
synchronized with each other.

unit test Unlike a system test, a unit test takes only a small part of the
software and tests its functionality in isolation from the rest of the system. It’s
time consuming but relatively easy to create unit tests for every situation or
error that could possibly occur.

use case A technique for communicating requirements in a simple, but
structured and unambiguous way with customers who may have no technical
expertise whatsoever. A use case defines a sequence of actions that ends up
with a result that’s of some value to whoever performs them. Defining the
requirements in this way gives the developers enough detail to work with, but
the fact that the use case’s result has value also makes it meaningful to the
customer.

Use cases are a convenient way to group individual features. The collection
of use cases defines the complete set of features that the system will have.
Subsets of this group can be used to define the scope of individual iterations.
The use case descriptions make it easy to do system testing: you simply
perform each step in every use case. The use cases can also be converted
into step-by-step user documentation.

user interface The windows, menus, buttons, and fields in a software
application that display data and respond to the user’s actions. This is the part
of the program that the user sees, and they often have firm ideas on how it
should look.

140 Glossary

web service For all the hype surrounding web services, they are in prin-
ciple very simple. Instead of selling CD-ROMs, a vendor keeps their software
components on their own servers and makes them available over the
Internet for a fee. This makes it easy for the vendor to apply bug fixes and
enhancements, and enables them to provide access to interesting data (stock
quotes, news, retail price comparisons, etc.) as well as useful tools.

workaround A temporary procedure or approach used to bypass or avoid
a bug or limitation in a system. A developer can write extra code as a
workaround for the limitations of some tool or component. A user can
perform additional steps when they use an application, as a workaround
for its bugs.

Glossary 141

Anderson, David. Agile Management for Software Engineering: Applying the Theory of
Constraints for Business Results. Prentice Hall PTR, 2004.

Anderson applies a new accounting technique to measuring the value of software
development work. The aim is to achieve business goals more efficiently. He shows
how the theory can be applied to agile methodologies such as Scrum, Extreme
Programming, and Feature-Driven Development.

Anthes, Gary. ROI Guide: Payback Period. Computerworld, 17 February 2003. http://
www.computerworld.com/managementtopics/roi/story/0,10801,78529,00.html.

A clear explanation of the term “payback period.”

Auer, Ken and Roy Miller. Extreme Programming Applied: Playing to Win. Addison-Wesley,
2002.

One of a raft of very similar books that have been published about XP. This one focuses
on getting started with the various techniques, and is a good introduction.

Bell, Stephen. Justice ministry begins fixing error-ridden Courts system. Computerworld,
27 April 2004. http://www.computerworld.co.nz/news.nsf/UNID/
7256ECB173FBC19DCC256E81007D3CAF.

A postmortem of a typical software project that “showed many of the classic
shortcomings identified in delayed, over-budget and abandoned projects.”

Boehm, Barry. Software Engineering Economics. Prentice Hall PTR, 1981.

An overview of microeconomics as applied to software development. A classic in its
time, this book is now starting to show its age. Still well worth reading, though.

Brooks, Frederick. The Mythical Man-Month: Essays on Software Engineering,
20th Anniversary Edition. Addison-Wesley, 1995.

The classic book on the human elements of software engineering.

Cade, Mark and Simon Roberts. Sun Certified Enterprise Architect for J2EE Technology
Study Guide. Prentice Hall PTR, 2002.

A handy overview of enterprise-level software architecture concepts, particularly for
J2EE.

143

Further Reading

Cockburn, Alistair. Characterizing People as Non-Linear, First-Order Components in
Software Development. Humans and Technology, 1999. http://alistair.cockburn.us/
crystal/articles/cpanfocisd/characterizingpeopleasnonlinear.html.

Alistair Cockburn has had a number of brilliant insights into the way people actually
develop software. This paper is a great introduction into some of those ideas.

——. Agile Software Development. Addison-Wesley, 2002.

A survey of the concepts and techniques behind agile software development. Useful
tools to build your own methodology. More information is available at http://
alistair.cockburn.us.

——. Crystal Clear: A Human-Powered Methodology for Small Teams. Addison-Wesley,
2004.

This book is the best description of a workable small-team methodology that I’ve yet
seen. I’ve been working from an unpublished draft, and I can’t wait to see it in print.

—— and Laurie Williams. The Costs and Benefits of Pair Programming. Humans and
Technology, 2000. http://alistair.cockburn.us/crystal/articles/ppcb/
pairprogrammingcostbene.html.

Research that proves the value of pair programming: use it to convince the skeptics in
your organization.

Cooney, Matthew. Agile processes keep customers happy. ComputerWeekly, 13 May 2004.
http://www.computerweekly.com/Article130531.htm.

Yes, agile development techniques do work. This article summarizes recent research on
the successful adoption of agile methodologies, and includes an overview of XP, DSDM,
and RUP.

Firesmith, Donald and Brian Henderson-Sellers. The OPEN Process Framework: An
Introduction. Addison-Wesley, 2001.

This looks like a methodology designed by a committee. It aims to be all things to all
people, but ends up being of little value to anyone. Not recommended.

Fowler, Martin. The New Methodology. ThoughtWorks, 2003. http://www.martinfowler.
com/articles/newMethodology.html.

An excellent introduction to the agile movement, this article includes a broad survey of
the existing agile methodologies.

——. Using an Agile Software Process with Offshore Development. ThoughtWorks, 2004.
http://www.martinfowler.com/articles/agileOffshore.html.

Martin Fowler has made offshore development work in an agile way, and in this article
he describes his approach and his experiences.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley, 1995.

This is the seminal book that revolutionized object-oriented programming. It uses a
formal approach to explain an abstract subject, and many people regard it as a difficult
book. The fact that the examples are either in C++ or Smalltalk—which are both
obsolete programming languages—doesn’t help. It’s worth the effort, though.

144 Further Reading

Gilb, Tom. Principles of Software Engineering Management. Addison-Wesley, 1989.

Tom Gilb’s classic book describes the principles behind Evolutionary Project
Management (also known as EPM or Evo), which was an early agile methodology
that became quite influential even though its uptake was limited.

Gleik, James. Chasing Bugs in the Electronic Village. New York Times Magazine, 4 August
1992. http://www.around.com/bugs.html.

In January 1990 James Gleik bought one of the first copies of Microsoft’s Word for
Windows. What he didn’t know was that he had just become an unwilling beta tester
for a very buggy piece of software. A frustrating—and funny—saga ensues.

Hayes, Frank. Big IT: Doomed. Computerworld, 7 June 2004. http://www.computerworld.
com/managementtopics/management/project/story/0,10801,93641,00.html.

A perfect case study of how agile development techniques helped a huge software
project to succeed, after another huge project failed to accomplish the same task.

Highsmith, Jim. Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems. Dorset House Publishing Company, 1999.

A seminal agile methodology from one of the most active thought leaders in the
field. It has a sound theoretical basis, but doesn’t include as extensive a range of best
practices as some of the newer methodologies. More information is available at
http://www.adaptivesd.com.

——. Agile Project Management: Creating Innovative Products. Addison-Wesley, 2004.

Highsmith addresses many of the same issues as Software Project Secrets, but instead
of adapting existing project management standards, he creates an innovative five-phase
project management methodology. It is applicable to more than just software develop-
ment, even though it uses many ideas from the agile methodologies.

Jacobson, Ivar, Grady Booch, and James Rumbaugh. The Unified Software Development
Process. Addison-Wesley, 1999.

The original book about the Unified Process, this covers the subject in exhaustive
detail. The material is important, but the presentation is dry and overly academic.
Try Kruchten’s [2000] book first.

Jones, Caspers. Patterns of large software systems: Failure and success. Computer, vol. 28,
no. 3, March 1995.

An oft-cited study that shows the extent to which requirements arrive after development
begins.

Koskinen, Jussi. Software Maintenance Costs. Information Technology Research Institute,
University of Jyväskylä, 2004. http://www.cs.jyu.fi/~koskinen/smcosts.htm.

A useful overview of the research on this subject.

Kruchten, Philippe. The Rational Unified Process, An Introduction, Second Edition.
Addison-Wesley, 2000.

It can be a little dry at times, but this book does present a concise and well-organized
overview of RUP.

Further Reading 145

——. Agility with RUP. Cutter IT Journal, vol. 14, no. 12, December 2001.

This article addresses many of the criticisms that have been leveled at RUP by showing
how RUP can be used in an agile way. There’s a lot of promotion here, but also some
valuable guidance on how to adapt RUP for specific projects.

Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Process, Second Edition. Prentice Hall PTR, 2002.

More than just an introductory guide to object-oriented programming, this book
explains how to use RUP in an agile, effective and sensible way. Read this before, or
instead of, Design Patterns [Gamma et al. 1995].

——. Agile and Iterative Development: A Manager’s Guide. Addison-Wesley, 2004.

Larman tries to convince managers to use agile methodologies in their software
development projects by citing statistically significant research and a variety of case
studies. He describes and compares Scrum, Extreme Programming, the Unified
Process, and Evo in more detail than Software Project Secrets. This is the most
compelling argument yet for agile development. Buy a copy for your manager.

——, Philippe Kruchten, and Kurt Bittner. How to Fail with the Rational Unified Process:
Seven Steps to Pain and Suffering. Valtech Technologies & Rational Software, 2001.
http://www.agilealliance.com/articles/reviews/Larman1/articles/How_to_Fail_
with_the_RUP_-_Kruchten_and_Larman.pdf.

A humorous but effective essay that highlights the classic mistakes that people make in
applying RUP, and shows how to avoid them.

McBreen, Pete. Pretending to Be Agile. informIT, 15 March 2002. http://www.informit.
com/articles/article.asp?p=25913.

A succinct and pertinent description of what agile development really means.

McConnell, Steve. Code Complete, Second Edition. Microsoft Press, 2004.

Every developer should read this book, and their managers should at least skim it. It’s a
comprehensive guide to the techniques you need to make your code robust, readable,
and error-free. There’s extensive discussion about the issues behind the practices, and
about software development in general.

——. Rapid Development. Microsoft Press, 1996.

A fantastic smorgasbord of ways to make your software project run more smoothly.
Steve McConnell does his research, writes very readably, and takes the time to explain
the background to the issues.

Microsoft. Microsoft Solutions Framework Version 3.0 Overview White Paper. Microsoft,
2003.

MSF is an alternative to the PMBOK that’s specifically designed for software
development. I like the approach, and particularly the way that project management
responsibilities are shared around the team. More information is available at
http://www.microsoft.com/msf.

146 Further Reading

Miller, Roy. Managing Software for Growth: Without Fear, Control, and the Manufacturing
Mindset. Addison-Wesley, 2003. http://www.awprofessional.com/content/images/
0321117433/samplechapter/millerch01.pdf.

Miller attributes software development failure to the “manufacturing mindset.” His
argument is a little different from mine, but it reaches much the same conclusions.
It’s interesting to compare this work to the Poppendiecks’ [2003].

Palmer, Stephen and John Felsing. A Practical Guide to Feature-Driven Development.
Prentice Hall PTR, 2002.

This methodology takes the middle ground between lightweight processes like XP and
heavyweight processes like RUP. It’s best for mid-range projects, but the concept itself
is powerful, and can be useful in the context of any agile project. More information is
available at http://www.featuredrivendevelopment.com.

Poppendieck, Mary and Tom. Lean Software Development: An Agile Toolkit for Software
Development Managers. Addison-Wesley, 2003.

An intriguing new agile methodology that’s based on the classic Lean Production principles
from Toyota—also known as Just-In-Time manufacturing—which have revolutionized the
industry. More information is available at http://www.poppendieck.com.

PMI—see Project Management Institute.

Project Management Institute. A Guide to the Project Management Body of Knowledge
(PMBOK Guide) – 2000 Edition. Project Management Institute, 2000.

A surprisingly readable guide to the discipline, although it’s clearly intended as a
reference work. Beginners should consult an introductory workbook instead. More
information is available at http://www.pmi.org.

——. A Guide to the Project Management Body of Knowledge (PMBOK), Third Edition
(2004), Exposure Draft. Project Management Institute, 2004.

More text and diagrams than the previous edition; I found this one to be clearer and less
dogmatic. Sadly, this is no longer available for free download.

Raymond, Eric. The Cathedral and the Bazaar. Thyrsus Enterprises, 2000a. http://www.
catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/.

This isn’t just the story of Raymond’s Fetchmail project, but also a profound philosoph-
ical exploration of open source development, how it works, and why people do it. Don’t
be put off by the level of technical detail.

——. The Magic Cauldron. Thyrsus Enterprises, 2000b. http://www.catb.org/~esr/
writings/cathedral-bazaar/magic-cauldron/.

An intriguing analysis of the economics of software development. Raymond argues that
there’s much to be gained from sharing development expertise and costs by making
many kinds of software open source.

Read, Robert. How to Be a Programmer: A Short, Comprehensive, and Personal Survey.
Samizdat Press, 2003. http://samizdat.mines.edu/howto/.

A short and snappy guide to the social, personal, and general technical skills that are
required to program well. A great introduction to the world of software development.

Further Reading 147

Redmill, Felix. Software Projects: Evolutionary vs. Big-Bang Delivery. John Wiley & Sons,
1997.

Redmill wrote about agile concepts before the term “agile” was even coined. This book
didn’t have a big impact at the time, but it pioneered many of the ideas that have
subsequently been popularized by the agile methodologies. Interestingly, it presents
these ideas in the context of software project management.

Royce, Walker. Software Project Management: A Unified Framework. Addison-Wesley, 1998.

Royce has created a new project management methodology for software development
by extending the Unified Process. His book includes some sensible ideas, but it is
beginning to seem a little dated.

Schwaber, Ken. Agile Project Management with Scrum. Microsoft Press, 2004.

This book explains how to apply Scrum’s principles to software project management.
It consists of case studies that are based on Schwaber’s experience of helping teams
implement Scrum.

—— and Mike Beedle. Agile Software Development with SCRUM. Prentice Hall, 2001.

A short and readable book that describes a simple and highly effective software
development process. It focuses more on management than some of the other
methodologies. It’s increasingly widely used, and is gaining quite a reputation.
More information is available at http://www.controlchaos.com.

Standish Group, The. Extreme CHAOS. The Standish Group, 2001. http://www.
standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf.

An update to the famous 1994 report that’s universally referenced to show just how bad
the situation is in software development.

Stapleton, Jennifer and DSDM Consortium. DSDM: Business Focused Development,
Second Edition. Addison-Wesley, 2003.

The DSDM Consortium includes numerous British companies, universities, and
government departments, and offers extensive resources, training, and certification.
Unlike most of the other methodologies, this is not just a one-man band. More
information is available at http://www.dsdm.org.

Thomsett, Rob. Radical Project Management. Prentice Hall PTR, 2002.

This book describes Extreme Project Management (XPM) as “the first radically new
approach to project management in decades, designed from the ground up for today’s
high-speed, fast-changing projects.” Thomsett draws a firm distinction between project
management and “technical management”—the software development methodology—
but he fails to explain how the two should work together.

Williams, Sam. When offshoring goes bad. Salon.com, 6 April 2004. http://www.salon.com/
tech/feature/2004/04/06/offshoring_bad/index.html.

Offshore outsourcing isn’t risk free, and there can be a real downside. This article deftly
analyzes the risks, rewards, and potential of an increasingly popular trend.

Wysocki, Robert and Rudd McGary. Effective Project Management: Traditional, Adaptive,
Extreme, Third Edition. Wiley Publishing, 2003.

This is a good, general introduction to the subject.

148 Further Reading

Yager, Tom. BizTalk Server brings everybody into the process. InfoWorld, 23 April 2004.
http://www.infoworld.com/article/04/04/23/17TCbiztalk_1.html.

A general overview of BizTalk Server 2004.

Yourdon, Edward. Death March, Second Edition. Prentice Hall PTR, 2004a.

This book tells you what to do when good projects go bad, or bad projects get worse.
Readable and valuable, it might just save your sanity and your career. A classic.

——. Outsource: Competing in the Global Productivity Race. Prentice Hall PTR, 2004b.

A sequel to the prophetic Decline and Fall of the American Programmer, this book
analyzes the recent interest in the offshore outsourcing of software development.

Further Reading 149

Numbers and Symbols

80/20 rule, in software development,
106–108

A

A Guide to the Project Management
Body of Knowledge (PMBOK
Guide, 2000 Edition, Project
Management Institute, 2000),
147

A Guide to the Project Management
Body of Knowledge, Third
Edition (2004), Exposure Draft,
by Project Management
Institute, 147

A Practical Guide to Feature-Driven
Development (Prentice Hall
PTR, 2002), by Stephen Palmer
and John Felsing, 147

acceptance tests, defined, 135
Acme, Inc.

billing system project case study,
51–61

billing system project revisited,
116–117

activities and workflows, in the
Rational Unified Process
(RUP), 88

activity definition, as first task in time
management, 28–30

activity duration, estimating
drawbacks of using for software

development projects, 34–35
as third step in the time

management process, 34–36
activity sequencing, as part of project

time management, 30–34
Adaptive Software Development:

A Collaborative Approach to
Managing Complex Systems
(Dorset House Publishing
Company, 1999), by Jim
Highsmith, 67, 145

Agile and Iterative Development:
A Manager’s Guide (Addison-
Wesley, 2004), by Craig
Larman, 146

Agile Management for Software
Engineering: Applying the
Theory of Constraints for
Business Results (Prentice
Hall PTR, 2004), by David
Anderson, 143

151

Index

agile manifesto, 133–134
agile methodologies

for better software development,
65–94

budgeting agile projects, 97–113
Crystal, Extreme Programming

(XP), and the Rational Unified
Process, 66

how RUP works in a typical
project, 86

key features of subteam
encapsulation in, 104–105

others available, 66–67
Rational Unified Process as, 84–91
for a solution for problems in

project management, 115–127
using feature trade-off to stay

within budget, 106
agile offshore outsourcing, pros and

cons of, 112–113
Agile processes keep customers

happy, (ComputerWeekly,
13 May 2004), by Matthew
Cooney, 144

Agile Project Management: Creating
Innovative Products (Addison-
Wesley, 2004), by Jim
Highsmith, 145

Agile Project Management with
Scrum (Microsoft Press, 2004),
by Ken Schwaber, 148

agile projects
budgeting, 97–113
combining techniques when

budgeting, 109–112
importance of scoping studies in

budgeting, 108–109
techniques to make estimation

processes more accurate, 97–98
Agile Software Development

(Addison-Wesley, 2002), by
Alistair Cockburn, 144

agile software development,
manifesto for, 133–134

Agile Software Development with
SCRUM (Prentice Hall, 2001),
by Ken Schwaber and Mike
Beedle, 148

Agility with RUP (Cutter IT Journal,
vol. 14, no. 12, December
2001), by Philippe Kruchten,
146

analogous estimation, drawbacks of
using for software development
projects, 35

Anderson, David, Agile Management
for Software Engineering:
Applying the Theory of
Constraints for Business Results
(Prentice Hall PTR, 2004) by,
143

Anthes, Gary, ROI Guide: Payback
Period (Computerworld,
17 February 2003) by, 143

Apache 1.0, as most used webpage
server on the Internet, 5

Apache Group, formation of, 5
application, defined, 135
applications, functions of, 12
Applying UML and Patterns: An

Introduction to Object-
Oriented Analysis and Design
and the Unified Process, Second
Edition (Prentice Hall PTR,
2002), by Craig Larman, 146

architecture, defined, 135
artifact, defined, 135
artifacts

produced by activities in the
waterfall model, 33

in the Rational Unified Process
(RUP), 87–88

152 Index

assumptions
hidden in project management,

24–25
in project management, 23–49
in scope management, 25, 27

Auer, Ken and Roy Miller, Extreme
Programming Applied: Playing
to Win (Addison-Wesley, 2002)
by, 143

automated unit tests
effect of in Crystal methodologies

productivity, 74
need for before code is written in

Extreme Programming, 77

B

Bell, Stephen, Justice ministry begins
fixing error-ridden Courts
system (Computerworld, 27
April 2004) by, 143

best practice, defined, 135
best practices, development of, 14
beta testing

customer testing in real-world
conditions, 17

defined, 136
Big IT: Doomed (Computerworld,

7 June 2004), by Frank Hayes,
145

billing system project
bugs encountered in the testing

phase, 57–58
cancellation of project and reasons

it failed, 59–60
case study, 51–61
case study revisiting, 115–127
construction, 54–57
construction iteration 5, 124–125
construction phase, 123–125
construction progress during the

project’s iterations, 123

the death march for finishing the
project, 58

deployment of, 126
design of, 54
duration, resource, and cost

estimates for, 52
duration, scope, and cost of the

project’s phases, 119
elaboration, 121–123
employing techniques from two

agile methodologies, 116–117
integration phase, 55–57
iteration review meeting, 122–123
layout for team’s office, 121
overall project plan, 53, 118
pace of work for the case study

revisited, 125
planning the project, 52–53
problems encountered in coding

for, 55
project planning meeting for

scoping study, 118–121
requirements, 51–52
risk register for, 53
scoping study in case study

revisited, 117–121
transition phase, 126

BizTalk Server. See Microsoft BizTalk
Server

BizTalk Server brings everybody
into the process (InfoWorld,
23 April 2004), by Tom Yager,
149

Boehm, Berry, Software Engineering
Economics (Prentice Hall PTR,
1981) by), 143

Booch, Grady, creator of Rational
Software Corporation, 84

Brooks, Frederick, The Mythical
Man-Month (Addison-Wesley
1995) by, 36–37, 143

budgeting agile projects, 97–113

Index 153

bug, defined, 136
build process, defined, 136
burn-down chart, defined, 136
business logic

defined, 136
as part of software architecture, 31

C

C# for .NET, writing code for vs. Java
for J2EE, 103

Cade, Mark and Simon Roberts
extensibility defined by, 13
Sun Certified Enterprise Architect

for J2EE Technology Study
Guide (Prentice Hall PTR,
2002) by, 143

case studies
the billing system project, 51–61
the billing system project revisited,

115–127
change control process, importance

of in scope management, 27–28
Characterizing People as Non-Linear,

First-Order Components in
Software Development
(Humans and Technology,
1999), by Alistair Cockburn,
144

Chasing Bugs in the Electronic
Village (New York Times
Magazine, 4 August 1992),
by James Gleik, 145

checklists, created during the process
of quality planning, 44–45

class, defined, 136
“clean-room implementation”,

defined, 18
close/osmotic communication, effect

of in Crystal methodologies,
70–71

Cockburn, Alistair
Agile Software Development

(Addison-Wesley, 2002) by, 144
Characterizing People as Non-

Linear, First-Order
Components in Software
Development (Humans and
Technology, 1999) by, 144

Crystal Clear: A Human-Powered
Methodology for Small Teams
(Addison-Wesley, 2004) by, 144

research into people’s behavior in
teams, 67–68

Cockburn, Alistair and Laurie
Williams, The Costs and
Benefits of Pair Programming
(Humans and Technology,
2000) by, 144

code, defined, 136
Code Complete, Second Edition

(Microsoft Press, 2004), by
Steve McConnell, 146

coding, problems encountered in for
billing system project, 55

collective code ownership, problems
solved by in XP, 80

comments, importance of adding in
software development, 29–30

commercial projects, success rate of
vs. noncommercial projects, 4

compile, defined, 136
component, defined, 136
components, in software

development, 9
construction phase

for billing system project, 54–57
for billing system project revisited,

123–125
Construction phase, how it works in

the Rational Unified Process
(RUP), 87

continuous integration, advantages of
in Extreme Programming, 80

154 Index

Cooney, Matthew, Agile processes
keep customers happy
(ComputerWeekly, 13 May
2004) by, 144

cost estimating, in software
development cost
management, 43

cost management
effect of cost estimate differences

in, 43
impact of developer productivity

on resource planning, 42
resource planning as part of,

38–39
cost overruns, for noncommercial

software projects, 3
Crystal and Extreme Programming

(XP), mitigating risks with
agility in, 91–93

Crystal Clear: A Human-Powered
Methodology for Small Teams
(Addison-Wesley, 2004), by
Alistair Cockburn, 144

Crystal Clear methodology
close/osmotic communication

required in, 70–71
for teams of 2 to 8 developers, 68

Crystal methodologies (Alistair
Cockburn), 66

development and function of,
67–75

focus property of, 72
frequent delivery as part of, 68–69
importance of continuous

integration and testing in
development phase, 73–74

importance of developers having
easy access to expert users,
72–73

personal safety as part of, 71
projects they are appropriate for,

75

properties common to all, 68–74
reflective improvement as part of,

69–70
using, 74–75

Crystal Orange methodology, for
teams of 21 to 50 developers,
68

Crystal Yellow methodology, for
teams of 9 to 20 developers, 68

D

database, defined, 136
Death March (Edward Yourdon,

2004a), triage first outlined
in, 106

Death March, Second Edition
(Prentice Hall PTR, 2004a),
by Edward Yourdon, 149

Deming Cycle, example of, 30
Design Patterns (Addison-Wesley,

1995), by Erich Gamma,
Richard Helm, Ralph Johnson,
and John Vlissides, 14, 144

design phase, for billing system
project, 54

Development Case artifact, created
by the Process Engineer role in
RUP, 88

documentation. See software
documentation

DSDM: Business Focused
Development, Second Edition
(Addison-Wesley, 2003), by
Jennifer Stapleton and DSDM
Consortium, 148

Dynamic System Development
Method (DSDM) [Stapleton
2003], agile methodology, 67

Index 155

E

Effective Project Management:
Traditional, Adaptive,
Extreme, Third Edition (Wiley
Publishing, 2003), by Robert
Wysocki and Rudd McGary,
148

Elaboration phase, how it works in
the Rational Unified Process
(RUP), 86

encapsulation
defined, 136
key features of in agile

methodologies, 105
as key part of object-oriented

programming, 9
engineering and construction, project

completion figures vs. software
projects, 4

enterprise application framework
defined, 137
government and business software

built with, 13
new software built with, 12–13
specialized software components

available for, 15
two major, 103

enterprise technology, defined, 13
Environment workflow, process

configuration in RUP, 88
event handlers, defined, 14
Evolutionary Project Management

(EPM or Evo) [Gilb 1989],
agile methodology, 67

examples, sample work breakdown
structure for a new road
project, 25

executable, defined, 137
extensibility

defined, 13, 137

Extensible Markup Language (XML),
use of by web services, 18

Extreme CHAOS, by The Standish
Group (2001), 148

Extreme Programming (XP)
advantages of collective code

ownership in, 80
advantages of continuous

integration in, 80
advantages of having an on-site

customer representative, 81
automated unit tests written

before code to be tested, 77
best practices and use of, 75–84
creating an iteration during the

planning game, 76–77
importance of coding standards on

productivity, 82
overall process represented in a

flowchart, 76
place of a system metaphor in,

82–83
projects it is particularly

appropriate for, 84
pros and cons of developer

40-hour week schedules, 81–82
pros and cons of giving customers

small releases, 81
pros and cons of pair

programming in, 78
refactoring in to clean up and

simplify code design, 78–79
simplifying design to improve

productivity in, 79
using, 83–84

Extreme Programming (XP) and
Crystal, mitigating risks with
agility in, 91–93

Extreme Programming Applied:
Playing to Win (Addison-
Wesley, 2002), by Ken Auer
and Roy Miller, 143

156 Index

F

feature, defined, 137
Feature-Driven Development

(FDD) [Palmer and Felsing
2002], agile methodology, 67

Firesmith, Donald and Brian
Henderson-Sellers, The OPEN
Process Framework: An
Introduction (Addison-Wesley,
2001) by, 144

focus property, importance of in
Crystal methodologies, 72

Fowler, Martin
The New Methodology

(ThoughtWorks, 2003) by, 144
Using and Agile Software Process

with Offshore Development
(ThoughtWorks, 2004) by, 144

fragile code, 13–14
defined, 137

framework (toolkit), for building
software projects, 12

frequent delivery, benefits of in
Crystal methodologies, 68–69

frequent integration, importance of
in Crystal methodologies
development process, 74

functional specification, defined, 137

G

Gamma, Erich, as member of “Gang
of Four”, 14

Gamma, Erich, Richard Helm, Ralph
Johnson, and John Vlissides,
Design Patterns (Addison-
Wesley, 1995) by, 144

“Gang of Four”
members of, 14

Gilb, Tom, Principles of Software
Engineering Management
(Addison-Wesley, 1989) by, 145

Gleik, James
Chasing Bugs in the Electronic

Village (New York Times
Magazine, 4 August 1992), 145

quotation regarding computer
programs, 10

glossary, 135–141

H

Hayes, Frank, Big IT: Doomed
(Computerworld, 7 June 2004),
145

Helm, Richard, as member of “Gang
of Four”, 14

Henderson-Sellers, Brian and
Donald Firesmith, The OPEN
Process Framework: An
Introduction (Addison-Wesley,
2001) by, 144

Highsmith, Jim
Adaptive Software Development:

A Collaborative Approach to
Managing Complex Systems
(Dorset House Publishing
Company, 1999) by, 145

Agile Project Management:
Creating Innovative Products
(Addison-Wesley, 2004) by, 145

How to Be a Programmer: A Short,
Comprehensive, and Personal
Survey (Samizdat Press, 2003),
by Robert Read, 147

How to Fail with the Rational Unified
Process: Seven Steps to Pain
and Suffering (Valtech
Technologies & Rational
Software, 2001)

qualities of a non-agile process
identified by, 90

by Craig Larman, Philippe
Kruchten, and Kurt Bittner,
146

Index 157

I

Inception phase, how it works in
the Rational Unified Process
(RUP), 86

instruction, defined, 137
instructions, software development as

a sequence of, 9
integration, defined, 138
integration phase, problems

encountered in for billing
system project, 55–57

Internet, quote about running on
open source software by
Tim O’Reilly, 4

iteration, defined, 138
iteration review meeting, for billing

system project progress reports,
122–123

iterations
in the Relational Unified Process

(RUP), 87
using in software development to

ensure success of project,
68–69

iterative development, advantages of,
131–132

J

Jacobson, Ivar, creator of Rational
Software Corporation, 84

Jacobson, Ivar, Grady Booch, and
James Rumbaugh, The Unified
Software Development Process
(Addison-Wesley, 1999) by, 145

Java for J2EE, writing code for vs. C#
for .NET, 103

Johnson, Ralph, as member of “Gang
of Four”, 14

Jones, Caspers, Patterns of large
software systems: Failure and
success (Computer, vol. 28,
no. 3, March 1995) by, 145

Justice ministry begins fixing error-
ridden Courts system
(Computerworld, 27 April
2004), by Stephen Bell, 143

K

knowledge management, pros and
cons of various communication
methods, 40–41

Koskinen, Jussi, Software
Maintenance Costs
(Information Technology
Research Institute, University
of Jyväskylä, 2004) by, 145

Kruchten, Philippe
Agility with RUP (Cutter IT

Journal, vol. 14, no. 12,
December 2001) by, 146

The Rational Unified Process, An
Introduction, Second Edition
(Addison-Wesley, 2000) by, 145

L

Larman, Craig
Agile and Iterative Development:

A Manager’s Guide (Addison-
Wesley, 2004) by, 146

Applying UML and Patterns:
An Introduction to Object-
Oriented Analysis and Design
and the Unified Process, Second
Edition (Prentice Hall PTR,
2002) by, 146

158 Index

Larman, Craig, Philippe Kruchten,
and Kurt Bittner

How to Fail with the Rational
Unified Process: Seven Steps to
Pain and Suffering (Valtech
Technologies & Rational
Software, 2001) by, 90, 146

Lean Software Development: An
Agile Toolkit for Software
Development Managers
(Addison-Wesley, 2003)

agile methodology, 67
by Mary and Tom Poppendieck,

147
legacy software, defined, 138
Linux operating system kernel,

written by Linus Torvalds, 5
Lockheed Martin’s “Skunk Works”,

first production jet aircraft
designed and built by, 70

M

Magic Pushbutton, poor design
practice, 14

major legacy systems, techniques for
developing, 110

major new software systems, using
offshore outsourcing for, 113

Managing Software for Growth:
Without Fear, Control, and
the Manufacturing Mindset
(Addison-Wesley, 2003), by
Roy Miller, 147

McBreen, Pete, Pretending to Be
Agile (informIT, 15 March
2002) by, 146

McConnell, Steve
Code Complete, Second Edition

(Microsoft Press, 2004) by, 146
Rapid Development (Microsoft

Press, 1996) by, 34–35, 146

method, defined, 138
methodology, defined, 138
metric, defined, 138
metrics, created during the process of

quality planning, 44–45
Microsoft BizTalk Server, changes in

from one version to another, 16
Microsoft .NET, today’s software

built with, 12–13
Microsoft Solutions Framework

(MSF) [Microsoft 2003], agile
methodology, 67

Microsoft Solutions Framework
Version 3.0 Overview White
Paper (Microsoft, 2003), 146

Miller, Roy, Managing Software for
Growth: Without Fear, Control,
and the Manufacturing Mindset
(Addison-Wesley, 2003) by, 147

minor legacy applications, techniques
for developing, 110–111

minor new applications, techniques
for developing, 112

Model-View-Controller design
pattern, as example of a system
metaphor, 82–83

N

New Zealand Ministry of Justice
Case Management System

overruns and delays, 3

O

object, defined, 138
object-oriented programming,

defined, 138
objects, in software development, 9

Index 159

offshore outsourcing
helpful hints for, 113
techniques for major new software

systems, 111
using agile techniques for,

112–113
on-demand programming, pros and

cons of, 101–102
on-demand programming team,

example of a year’s work for
a typical team, 102

on-site customer representative,
advantages of having available
in Extreme Programming, 81

OPEN Process Framework
(Firesmith and Henderson-
Sellers 2001), agile
methodology, 67

open source, defined, 138
open source software,

noncommercial software as, 4
O’Reilly, Tim, quote about the

Internet running on open
source software by, 4

Outsource: Competing in the Global
Productivity Race (Prentice
Hall PTR, 2004b), by Edward
Yourdon, 149

outsourcing, defined, 138

P

pair programming, pros and cons of
in Extreme Programming, 78

Palmer, Stephen and John Felsing, A
Practical Guide to Feature-
Driven Development (Prentice
Hall PTR, 2002) by, 147

Patterns of large software systems:
Failure and success (Computer,
vol. 28, no. 3, March 1995), by
Caspers Jones, 145

payback period
defined, 139
return on investment for a project

with a two year, 99
phases, in Relational Unified Process

(RUP), 86–87
PMBOK (Project Management Body

of Knowledge)
breaking down of project

management in, 24–25
as reference for how project

management should work,
24–25

suggested techniques for dealing
with project risks, 45–48

techniques to estimate the
duration for activities, 34–35

Poppendieck, Mary and Tom, Lean
Software Development: An
Agile Toolkit for Software
Development Managers
(Addison-Wesley, 2003) by, 147

Pretending to Be Agile (informIT, 15
March 2002), by Pete
McBreen, 146

Principles of Software Engineering
Management (Addison-Wesley,
1989), by Tom Gilb, 145

process, 139
definition of for software

development, 100
process configuration, in the Rational

Unified Process (RUP), 88
project, defined, 139
project management, assumptions,

23–49
Project Management Body of

Knowledge (PMBOK). See
PMBOK (Project Management
Body of Knowledge)

160 Index

Project Management Institute
A Guide to the Project

Management Body of
Knowledge (PMBOK Guide,
2000 Edition) by, 147

A Guide to the Project
Management Body of
Knowledge, Third Edition
(2004), Exposure Draft by, 147

PMBOK (Project Management
Body of Knowledge) by, 24–25

project definition by, 18
project planning meeting, for billing

system project scoping study,
118–121

psychological and emotional safety, as
part of Crystal methodologies,
71

Publisher-Subscriber design pattern,
as example of a system
metaphor, 83

Q

quality assurance, defined, 139
quality checklists, created during

quality planning, 44–45
quality management, in software

development, 44–45
quality metrics, created during the

process of quality planning,
44–45

quality planning, metrics and
checklists created during the
process of, 44–45

quantitatively based durations, for
estimating activity duration in
software development, 34–35

R

Radical Project Management
(Prentice Hall PTR, 2002),
by Rob Thomsett, 148

Rapid Development (1996), by Steve
McConnell, 34–35, 146

Rational Unified Process (RUP)
created by the Rational Software

Corporation, 84–91
how it works in a typical project,

86
iterations in, 87
management of artifacts in, 87–88
phases, 86–87
sequence of iterations a project

consists of, 84
truths about it as a toolkit for

building processes, 85
types of projects particularly

appropriate for, 91
use case-driven development in,

89
using, 90–91
using visual modeling language in,

89–90
Raymond, Eric

The Cathedral and the Bazaar
(Thyrsus Enterprises, 2000a)
by, 147

The Magic Cauldron (Thyrsus
Enterprises, 2000b) by, 147

Read, Robert, How to Be a
Programmer: A Short,
Comprehensive, and Personal
Survey (Samizdat Press, 2003)
by, 147

Redmill, Felix, Software Projects:
Evolutionary vs. Big-Bang
Delivery (John Wiley & Sons,
1997) by, 148

Index 161

refactoring, to clean up and simplify
code design in Extreme
Programming, 78–79

references, further reading, 143–149
reflection workshop, importance of in

Crystal methodologies, 69–70
reflective improvement, benefits of in

Crystal methodologies, 69–70
resource planning, as part of software

cost management, 38–39
return on investment, importance of

in commercial software
development, 98–99

risk, defined, 139
risk acceptance

examining risk register categories,
46–47

as part of risk management, 46–47
risk avoidance, unfeasibility of in risk

management, 48
risk management

mitigating risks with agility, 91–93
risk avoidance as part of, 48
risk mitigation as part of, 48
risk transference as part of, 47
in software development, 45–48

risk mitigation, as part of risk
management, 48

risk register
for the billing system project, 53
typical for software development

projects, 46
risk transference, as part of risk

management, 47
risks

mitigating in Extreme
Programming and Crystal
methodologies, 91–93

mitigating with agility, 91–93
road building vs. software

development, 7–22

Roberts, Simon and Mark Cade, Sun
Certified Enterprise Architect
for J2EE Technology Study
Guide (Prentice Hall PTR,
2002) by, 143

ROI Guide: Payback Period
(Computerworld, 17 February
2003), by Gary Anthes, 143

role, defined, 139
roles

effect of assigning in software
development, 38–39

of team members in the Rational
Unified Process (RUP), 87

routine, defined, 139
Royce, Walker, Software Project

Management: A Unified
Framework (Addison-Wesley,
1998) by, 148

Rumbaugh, Jim, creator of Rational
Software Corporation, 84

RUP (Rational Unified Process). See
Rational Unified Process (RUP)

S

Sabre air-travel reservation system,
failures and successes in
rewriting, 65–66

Salon.com report, regarding offshore
outsourcing, 112–113

schedule development
effect of team size on, 36–37
for software development projects,

36–37
Schwaber, Ken and Mike Beedle

Agile Software Development with
SCRUM (Prentice Hall, 2001)
by, 148

scope, defined, 139

162 Index

scope management
rule of thumb for requirements

gathering, 27
for software development, 25–28

scope review, using for agile projects,
109

scoping study
for billing system project revisited,

117–121
importance of in budgeting agile

projects, 108–109
project planning meeting for

billing system project, 118–121
SCRUM (Schwaber and Beedle

2001), agile methodology, 67
server, defined, 139
simple design, importance of to

improve productivity in XP, 79
“Skunk Works” (Lockheed Martin’s),

first production jet aircraft
designed and built by, 70

software, as an abstract product,
10–11

software architecture
example of a typical, 31
function of typical layers in activity

sequencing, 31
software development

afterword, 131–132
automation of repetitive work in,

18
background knowledge required

by new team members, 39
budgeting for, 98–99
building projects from the ground

up, 33–34
complexity of, 8–10
continuous, 100–101
cost estimating, 43
cost management, 37–43
designed not constructed, 19

drawbacks of using analogous
estimation for, 35

effect of specifying roles in, 38–39
feature usage importance in

budgeting, 106–108
flexibility and ease of changes in,

20–21
immaturity of best practices,

13–15
importance of continuous

integration and testing in
Crystal, 73–74

incomplete technology experience
in, 16

inevitability of change in, 21
key to success of, 132
problems associated with

incomplete requirements,
11–12

as a process of discovery, 16–17
project vs. process for, 100–101
quality management, 44–45
rapidly changing technology for,

12–13
risk management in, 45–48
vs. road building, 7–22
summary of key characteristics of,

22
techniques for developing minor

new applications, 112
techniques for major legacy

systems, 110
techniques for minor legacy

applications, 110–111
technology as a vast domain, 15
using offshore outsourcing for

major new systems, 111
waterfall model, 32–33
why it is different from other

business endeavors, 7–22

Index 163

software development projects
how to make them succeed,

63–128
a typical risk register for, 46

software development SWAT team,
range of skills provided by, 103

software documentation
as part of the software

development process, 39–41
pros and cons of various

communication methods,
40–41

Software Engineering Economics
(Prentice Hall PTR, 1981)

by Berry Boehm, 143
recommendations regarding

developer productivity, 42
software maintenance, Eric Raymond

[2000b] quotation about, 100
Software Maintenance Costs

(Information Technology
Research Institute, University
of Jyväskylä, 2004), by Jussi
Koskinen, 145

software project management,
techniques for producing a
complete solution for problems
in, 115–127

Software Project Management: A
Unified Framework (Addison-
Wesley, 1998), by Walker
Royce, 148

software projects
cost overruns for, 3
top “Project Challenged Factors”

for, 12
why some fail, 1–62

Software Projects: Evolutionary vs.
Big-Bang Delivery (John Wiley
& Sons, 1997), by Felix
Redmill, 148

software technologies, rapid changes
in, 16

source code, defined, 139
Special Weapons and Tactics (SWAT)

team. See SWAT team
Standish Group, The

Extreme CHAOS (2001) by, 148
statistic on successes and failures,

3–4
Stapleton, Jennifer and DSDM

Consortium, DSDM: Business
Focused Development, Second
Edition (Addison-Wesley,
2003), 148

Stedman’s Medical Dictionary, triage
defined in, 106

subteam encapsulation, use of in agile
methodologies, 104–105

Sun Certified Enterprise Architect for
J2EE Technology Study Guide
(Prentice Hall PTR, 2002), by
Mark Cade and Simon Roberts,
143

Sun Microsystems’ Java 2 Enterprise
Edition (J2EE), today’s
software built with, 12–13

SWAT team
effectiveness of in emergency

situations, 102–103
range of skills provided by, 103

system metaphor, in Extreme
Programming, 82–83

system test, defined, 140

164 Index

T

technical specification, defined, 140
technical writers, for producing

effective documentation, 41
test engine

creation of by developers in
Extreme Programming, 77

defined, 140
testing phase, for billing system

project, 57–58
The Cathedral and the Bazaar

(Thyrsus Enterprises, 2000a),
by Eric Raymond, 147

The Costs and Benefits of Pair
Programming (Humans and
Technology, 2000), by Alistair
Cockburn and Laurie Williams,
144

The Magic Cauldron (Thyrsus
Enterprises, 2000b), by Eric
Raymond, 147

The Mythical Man-Month (Addison-
Wesley 1995)

by Frederick Brooks, 36–37, 143
The New Methodology

(ThoughtWorks, 2003), by
Martin Fowler, 144

The OPEN Process Framework: An
Introduction (Addison-Wesley,
2001), by Donald Firesmith
and Brian Henderson-Sellers,
144

The Rational Unified Process, An
Introduction, Second Edition
(Addison-Wesley, 2000), by
Philippe Kruchten, 145

The Unified Software Development
Process (Addison-Wesley,
1999), by Ivar Jacobson, Grady
Booch, and James Rumbaugh,
145

Thomsett, Rob, Radical Project
Management (Prentice Hall
PTR, 2002) by, 148

“Three Amigos”, creation of Rational
Software Corporation by, 84

time management
activity duration estimating, 34–36
activity sequencing as part of,

30–34
communication paths in teams

with 3, 6, and 12 members, 37
main activities in, 28
schedule development task, 36–37
for software development, 28–37
using expert judgment for

estimating project costs, 36
Torvalds, Linus, Linux operating

system kernel written by, 5
Transition phase

for billing system project revisited,
126

how it works in the Rational
Unified Process (RUP), 87

triage
in agile methodologies, 106–108
definition of in Stedman’s Medical

Dictionary, 106

U

UML (Unified Modeling Language),
defined, 140

unit test
defined, 140
function of in software

development, 29–30
use case, defined, 140
use case–driven development, in the

Rational Unified Process
(RUP), 89

Index 165

user interface
defined, 140
as part of software architecture, 31

Using and Agile Software Process
with Offshore Development
(ThoughtWorks, 2004), by
Martin Fowler, 144

V

velocity, defined for Extreme
Programming, 77

visual modeling language, using in
Rational Unified Process
(RUP), 89–90

Visual Studio .NET development
environment, automation of
message format definitions in,
18

Vlissides, John, member of “Gang of
Four”, 14

W

waterfall model, of software
development, 32–33

web service, defined, 141
When offshoring goes bad

(Salon.com, April 6, 2004), by
Sam Williams, 148

Williams, Laurie and Alistair
Cockburn, The Costs and
Benefits of Pair Programming
(Humans and Technology,
2000) by, 144

Williams, Sam, When offshoring goes
bad (Salon.com, April 6, 2004),
148

Work Breakdown Structure, using to
produce cost and duration
estimates, 25

work schedules, pros and cons of
developer 40-hour work week,
81–82

workaround, defined, 141
Wysocki, Robert and Rudd McGary,

Effective Project Management:
Traditional, Adaptive, Extreme,
Third Edition (Wiley
Publishing, 2003) by, 148

X

XML. See Extensible Markup
Language (XML)

XP (Extreme Programming). See
Extreme Programming (XP)

Y

Yager, Tom, BizTalk Server brings
everybody into the process
(InfoWorld, 23 April 2004) by,
149

Yourdon, Edward
Death March, Second Edition

(Prentice Hall PTR, 2004a) by,
106, 149

Outsource: Competing in the
Global Productivity Race
(Prentice Hall PTR, 2004b) by,
149

166 Index

