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Preface

This monograph grew out of my research in the field of resource-constrained
project scheduling conducted from 1995 to 2004 during my work as teaching
assistant and assistant professor at the Institute for Economic Theory and
Operations Research of the University of Karlsruhe. The aim of the book is
to give an introduction to quantitative concepts and methods for resource
allocation in project management with an emphasis on an order-theoretic
framework allowing for a unifying treatment of various problem types. In order
to make the work accessible for general readers, the basic concepts needed are
reviewed in introductory sections of the book.

Many pcople have contributed to the outcome of this research. First and
foremost, I would like to express my deep appreciation to my supervisor Pro-
fessor Klaus Neumann, who introduced me to the field and the community
of project scheduling. I have greatly benefited from his comprehensive scien-
tific knowledge and expertise, his continuous encouragement, and his support.
During all these years, his department has been a stimulating and attractive
place for doing research and teaching in Operations Research.

Moreover, I would like to thank my former colleagues for many fruitful
discussions on various research topics and their continuing interest in my
work. A major part of my research has been done in collaboration with the
colleagues of the Karlsruhe project scheduling group, Birger Franck, Cord-
Ulrich Fiundeling, Karsten Gentner, Steffen Hagmayer, Dr. Thomas Hartung,
Dr. Roland Heilmann, Christoph Mellentien, Dr. Hartwig Niibel, Dr. Thomas
Selle, PD Dr. Norbert Trautmann, and Professor Jiirgen Zimmermann. Our
work has been greatly influenced by the activities of a research unit on proj-
ect scheduling funded by the Deutsche Forschungsgemeinschaft and involving
colleagues from the universities of Berlin (Professor Rolf Méhring), Bonn (Pro-
fessor Erwin Pesch), Karlsruhe (Professor Klaus Ncumann), Kiel (Professor
Andreas Drexl), and Osnabriick (Professor Peter Brucker). Numerous joint
workshops on project scheduling and the “cooperative-competitive” spirit in
this group have been a great incentive to work even harder.
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Finally, I grateful acknowledge the help of several people in preparing the
manuscript of this monograph: Klaus Neumann for many valuable comments
on different versions of the manuseript, Gerhard Grill for carefully proof-
reading and improving the English wording of the manuscript, Frederik Stork
for pointing me to state-of-the-art contributions in convex programming, and
Jiirgen Zimmermann for making experimental results on resource levelling
problems available to me. Of course the faults and deficiencies remaining are
entirely my own.

Clausthal-Zellerfeld, February 2005 Christoph Schwindt
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Introduction

Project management and resource allocation. A project is a major
one-time undertaking dedicated to some well-defined objective and involving
considerable money, personnel, and equipment. It is usually initiated either by
some need of the parent organization or by a customer request. The life cycle
of a project can be structured into five consecutive phases involving specific
managerial tasks (cf. Klein 2000, Section 1.2). Starting with some proposal,
several preliminary studies such as a feasibility study, an economic analysis, or
a risk analysis are conducted in the project conception phase in order to decide
whether or not a corresponding project will be performed. In the project defi-
nition phase, the objectives of the project are formulated, the type of project
organization is selected, resourccs are assigned to the project, and different
tasks with associated milestones are identified. Subsequently, the project plan-
ning phase at first decomposes each task into precedence-related activities by
means of a structural analysis of the project. The time and resource estima-
tions then provide the duration and resource requirements for each activity as
well as temporal constraints between activities that are connected by prece-
dence relationships. The result of the structural analysis and the time and
resource estimations is the representation of the project as a network mod-
elling the activities and the prescribed precedence relationships among them.
Next, the temporal scheduling of the project provides the earliest and latest
start times as well as the slack times of the activities, limitations with respect
to resource availability yet being disregarded. The last and most complex is-
sue of project planning consists in allocating the scarce resources over time
to the execution of the activities. During the project ezecution phase, the im-
plementation of the project is controlled by monitoring the project progress
against the schedule which has been established in the project planning phase.
In case of significant deviations from schedule, the resource allocation has to
be performed again. The final project termination phase evaluates and docu-
ments the project after its complction to facilitate the management of future
projects.
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Each phase in the project life cycle requires specific project management
techniques. Several recent textbooks on project management are devoted to
the managerial and behavioral aspects of project conception, project defini-
tion, project planning, project execution, and project termination (see, e.g.,
Lewis 1998, Pinto 1998, Turner 1999, Keeling 2000, Meredith and Mantel
2002, or Kerzner 2003). This book is concerned with quantitative methods
for the project planning phase and, more specifically, with the problem of
optimally allocating resources over time.

Project conception

!

Project definition —

Project planning

¥

Structural analysis

'

Time and resource
estimations

!

Temporal scheduling

v

Sequencing

:

Time-constrained
project scheduling

Project execution

.

Project termination

Resource allocation

Project planning within the life cycle of a project

The complexity of resource allocation arises from the interaction between
the activities of a project by explicit and implicit dependencies, which may
be subject to some degree of uncertainty. Explicit dependencies are given by
the precedence relationships between activities emanating from technological
or organizational requirements. In the course of time estimation, those de-
pendencies are transformed into temporal constraints between activities. The
scarcity of the resources used establishes an implicit dependency between ac-
tivities, which can be formulated as resource constraints referring to sets of
activities competing for the same resources or in terms of an objective function
penalizing excessive resource requirements. The resource allocation problem
consists in assigning time intervals to the execution of the activities while tak-
ing into account the prescribed temporal constraints and resource scarcity. If



Introduction 3

resource constraints are given, we also speak of a resource-constrained proj-
ect scheduling problem. We distinguish between two subproblems: sequencing
and time-constrained project scheduling. The limited availability of resources
necessitates the definition of additional precedence relationships between ac-
tivities when performing the resource allocation task. Again, those precedence
relationships can be expressed in the form of temporal constraints. In contrast
to the structural analysis, however, the precedence relationships to be intro-
duced are subject to decision. This sequencing problem forms the core problem
of project planning. Time-constrained project scheduling is concerned with
computing the project schedule such that all temporal constraints — prede-
termined by the structural analysis or arising from sequencing — are observed
and some objective function reflecting the managerial goal of the project is
optimized. In the resource allocation methods developed in this book, sequenc-
ing and time-constrained project scheduling will be performed jointly in an
iterative manner.

If activitics can be performed in alternative execution modes that differ in
durations and resource requirements, the selection of an appropriate execution
mode for each activity may be included into the resource allocation problem.
In that case, the time and resource estimations provide the sets of alternative
execution modes, and solving the mode assignment problem constitutes the
first step of resource allocation. Depending on whether the sets of execution
modes are countable or uncountable, we speak of a discrete or a continuous
mode assignment problem. A resource allocation problem that comprises a
mode assignment problem is termed a multi-mode resource allocation prob-
lem.

Historical perspective and state of the art. Algorithms for resource
allocation in project management date back to the 1960s, see Davis (1966),
Laue (1968), Herroelen (1972), and Davis (1973) for overviews. The early work
was concerned with three types of resource allocation problems: the time-cost
tradeoff problem, the project duration problem, and the resource levelling
problem. For all three problem types it is assumed that a strict order in the
set of activitics specifies completion-to-start precedence constraints among
activities. The time-cost tradeoff problem is a multi-mode resource allocation
problem which arises when certain activity durations can be reduced at the ex-
pense of higher direct cost. The project budget is then regarded as the resource
to be allocated. If for each activity the cost incurred is a convex function in
the activity duration, the continuous mode assignment problem that consists
in computing all combinations of project duration and corresponding least-
cost schedule can be determined by applying network flow techniques (see
Kelley 1961). A survey of multi-mode resource allocation problems including
different types of tradeoffs between the durations, resource requirements, and
direct costs of activity execution modes can be found in Domschke and Drexl
(1991). The project duration problem consists in scheduling the activities of
a project subject to the limited availability of renewable resources like man-
power or machinery such that all activities are completed within a minimum
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amount of time. Early approaches to solving the project duration problem in-
clude mixed-integer linear programming formulations (see, e.g., Wiest 1963)
and priority-rule methods (cf. Kelley 1963, Verhines 1963, and Moder and
Phillips 1964). The objective when dealing with a resource levelling problem
is to “smooth” the utilization of renewable resources over time as much as
possible, within a prescribed maximum project duration. In some cases, a de-
sired threshold limit on the resource availability is given, and resources are to
be levelled around this target. In other cases, one strives at minimizing the
variance of resource utilization over time or minimizing the absolute magni-
tude of fluctuation in the resource profiles. The first procedures for resource
levelling offered by Burgess and Killebrew (1962) and Levy et al. (1963) werc
based on sequentially moving in time slack activities.

In the following years, a great deal of effort has been devoted to heuristic
and exact algorithms for the project duration problem. In the 1990s, project
planning methods gained increasing importance from their applicability to
scheduling problems arising beyond the area of proper project management,
for example, in production planning, time-tabling, or investment scheduling.
Different generalizations of the basic resource allocation problems have re-
ceived growing attention in recent years. Those expansions include a varicty
of objectives as well as the presence of different kinds of resources, general
temporal constraints given by prescribed minimum and maximum time lags
between the start times of activities, and uncertainty with respect to activity
durations. For a review of solution procedures, we refer to the survey papers by
Iemeli et al. (1993), Elmaghraby (1995), Ozdamar and Ulusoy (1995), Tavares
(1995), Herroelen et al. (1998), Brucker et al. (1999), Kolisch and Padman
(2001), and Kolisch (2001a). A comprehensive state-of-the-art overview of the
field is given by the handbook of Demeulemeester and Herroelen (2002), with
an emphasis on algorithms for project scheduling problems with precedence
constraints among activities instead of temporal constraints. A detailed treat-
ment of specific project scheduling problems of the latter type can be found in
the monographs by Kolisch (1995), Schirmer (1998), Hartmann (1999a), Klein
(2000), and Kimms (2001a). The book by Hajdu (1997) is mainly concerned
with several types of time-cost tradeoff problems. Solution procedures for sev-
eral project scheduling problems with general temporal constraints have been
discussed by De Reyck (1998), Dc Reyck et al. (1999), Neumann and Zim-
mermann (1999q), Zimmermann (2001¢a), and Neumann et al. (20035). Models
and algorithms for project scheduling with stochastic activity durations are
studied in the doctoral dissertations of Stork (2001) and Uetz (2002). A review
of models and algorithms for projects with stochastic evolution structure can
be found in Neumann (1999b).

Contribution. In this monograph we discuss structural issues, efficient
solution methods, and applications for various types of deterministic resource
allocation problems including genecral temporal constraints, different types of
resource requirements, and several classes of objective functions. The diver-
sity of the models dealt with permits us to cover many features that arise in
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industrial scheduling problems. Each resource allocation problem gives rise to
a corresponding project scheduling model, which provides a formal statement
of the resource allocation task as an optimization problem. This model may or
may not include explicit resource constraints. In the latter case, limitations on
the availability of resources are taken into account by the objective function.
Our main focus in this book is on developing a unifying algorithmic framework
within which the different kinds of project scheduling models can be treated.
This framework is based on the seminal work by research groups around Rolf
Moéhring and Franz-Josef Radermacher, who have proposed an order-theoretic
approach to stochastic and deterministic resource-constrained project sched-
uling (see, e.g., Radermacher 1978, Méhring 1984, Radermacher 1985, or Bar-
tusch et al. 1988). We extend the order-theoretic approach to resource al-
location problems involving so-called cumulative resources, which represent
a generalization of both renewable and nonrenewable resources known thus
far. Based on the results of a structural analysis of resource constraints and
objective functions, we discuss two general types of resource allocation pro-
cedures. By enhancing the basic modecls treated with supplemental kinds of
constraints we bridge the gap between issues of greatly academic interest and
requirements emerging in industrial contexts.

Synopsis. The book is divided into six chapters. Chapter 1 provides an
introduction to three basic project scheduling models. First we address proj-
cct scheduling subject to temporal constraints and review how the temporal
scheduling calculations for a project can be performed efficiently by calculating
longest path lengths in project networks. We then discuss resource constraints
which arise from the scarcity of renewable resources required. If the availabil-
ity of a resource at some point in time depends on all previous requirements,
we speak of a cumulative resource. We consider the case where cumulative
resources arc depleted and replenished discontinuously at certain points in
time. The available project funds, depleted by disbursements and replenished
by progress payments, or the residual storage space for intermediate products
are examples of cumulative resources. For both kinds of resource constraints,
we explain how to observe the limited resource availability by introducing
precedence relationships between activities.

In Chapter 2 we discuss a relation-based characterization of feasible sched-
ules, which is based on different types of relations in the set of activities.
Each relation defines a set of precedence constraints between activities. This
characterization provides two representations of the feasible region of project
scheduling problems as unions of finitely many relation-induced convex sets.
Whereas the first representation refers to a covering of the feasible region by
relation-induced polytopes, the second representation arises from partitioning
the feasible region into sets of feasible schedules for which the same precedence
constraints are satisfied. Those two representations are the starting point for
a classification of schedules as characteristic points like minimal or extreme
points of certain relation-induced subsets of the feasible region. For differ-
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ent types of objective functions, we show which class of schedules has to be
investigated for finding optimal schedules.

Depending on the objective function under study, we propose two dif-
ferent basic solution approaches. Chapter 3 is dedicated to relaxation-based
algorithms, which at first delete the resource constraints and solve the result-
ing time-constrained project scheduling problem. Excessive resource utiliza-
tion is then stepwise settled by iteratively introducing appropriate precedence
relationships between activities (i.e., sequencing) and re-performing the time-
constrained project scheduling. For different objective functions, we discuss
efficient primal and dual methods for solving the time-constrained project
scheduling problem. Those methods are used within branch-and-bound algo-
rithms based on the relaxation approach.

If we deal with objective functions for which time-constrained project
scheduling cannot be performed efficiently, we apply a constructive approach.
The candidate schedules from the respective class are enumerated by con-
structing schedule-induced preorders in the activity set and investigating ap-
propriate vertices of the corresponding polytopes. In Chapter 4 we treat local
search algorithms operating on those sets of vertices, where the schedules are
represented as spanning trees of preorder-induced expansions of the underly-
ing project network.

Chapter 5 is concerned with several expansions of the basic project sched-
uling models. First we discuss the case where during certain time periods given
by break calendars, resources are not available for processing activities. Cer-
tain activities may be suspended at the beginning of a break, whereas other
activitics must not be interrupted. Suspended activities have to be resumed
immediately after the break. The second expansion consists in sequence-
dependent changeover times between the activities of a project. Changeover
times occur, for example, if the project is executed at distributed locations
and resources have to be transferred between the different sites. Next, we re-
view methods to discrete multi-mode project scheduling, where activities can
be performed in a finite number of alternative execution modes. Finally, we
consider continuous cumulative resources that are depleted and replenished
continuously over time.

In Chapter 6 we discuss several applications of the models treated in Chap-
ters 1 to 5 to scheduling problems arising outside the field of proper project
planning in production planning (make-to-order and small-batch production
in manufacturing, batch scheduling in the process industries) and finance
(evaluation of investment projects). Finally, we propose two alternative tech-
niques for coping with uncertainty in project scheduling, which is commonly
encountered when performing real-life projects.
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Models and Basic Concepts

In this chapter we introduce three basic project scheduling problems: the
time-constrained project scheduling problem, the resource-constrained proj-
ect scheduling problem with renewable resources, and the resource-constrained
project scheduling problem with cumulative resources. The time-constrained
project scheduling problem consists in scheduling the activities of a project
such that all temporal constraints are satisfied and some objective function
is optimized. We review how temporal scheduling of the project can be per-
formed by solving specific time-constrained project scheduling problems. We
distinguish between two types of resources, namely renewable and cumulative
resources, depending on whether or not resource availability at a given point
in time is affected by the complete past project evolution. For both types
of resources we show how to cope with resource constraints by establishing
precedence relationships among the activities from so-called forbidden sets,
whose joint resource requircments exceed the resource availability.

1.1 Temporal Constraints

1.1.1 Time-Feasible Schedules

A project can be considered to be a set of interacting tasks requiring time and
resources for their completion. The structural analysis of the project provides
a decomposition of the tasks into a set V' of activities and a set E of prece-
dence relationships among them. Set V' consists of n activities i = 1,...,n
to be scheduled and two auxiliary activities 0 and n + 1, representing the
project beginning and the project termination, respectively. The precedence
relationships can be represented as activity pairs (¢,j) where i # j, saying
that the start time of activity 7 affects the earliest start time of activity j.
Thus, E C V x V is some irreflexive relation in set V. Note that this relation
may not be asymmetric if there are two activities 4,5 € V which mutually
influence their earliest start times. The time estimation associates a duration
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p; € Z»o with each activity and a time lag 6;; € Z with each pair (i,j) € E.
An activity i € V is referred to as fictitious activity or event if p; = 0. Oth-
erwise, we speak of a real activity. The project beginning and termination,
the receipt of materials, or milestones are examples of events. V¢ and V¢
respectively denote the sets of real activities and events of the project. We
assumne that the real activities must not be interrupted once they have been
begun. Let S; denote the start time of activity ¢, which has to be determined
when scheduling the project in the temporal scheduling and resource alloca-
tion steps. If 7 is a fictitious activity, S; 1s also termed the occurrence time of
event 7. The time lags d;; give rise to the temporal constraints

If (i,5) € E, activity j cannot be started earlier than é;; units of time after the
start of activity <. A nonnegative value of d;; corresponds to a minimum time
lag d;;”” = J;; > 0 between activities ¢ and j, whereas a negative value of §,;
can be viewed as a mazimum time lag d}*® = —d;; > 0 between activities j
and 7. If dgi” = p;, inequality (1.1) is referred to as a precedence constraint
between activities ¢ and j. For what follows, we establish the following con-
vention.

Remark 1.1. The project is started at time 0 and must be completed by a
prescribed deadline d, i.e., Sy = 0 and S,,+1 < d. The deadline is represented

as a maximum time lag dg',4, = d between the project beginning 0 and the
project termination n + 1.

The temporal constraints (1.1) connect the start times of activities ¢ and j.
Since by assumption activities must not be interrupted when being in progress,

Cs =S +p;

is the completion time of activity i. Thus, start-to-start, start-to-completion,
completion-to-start, and completion-to-completion relationships among activ-
ities can easily be transformed into one another (cf. e.g., Bartusch et al. 1988).

Remark 1.2. Some constraints that occur frequently in practice can be mod-
elled by minimum and maximum time lags between activities (see Neumann
and Schwindt 1997):

(a) Release date r; for the start of activity ¢ (head of 7): dj¥" = r;.

(b) Deadline d; for the completion of activity i € V: dJi%¢ = d; — p;.
(c) Quarantine time ¢; after the completion of activity ¢ (tail of 4):

min .
int1 = PitGi- '
(d) Fixed start time ¢; for activity ¢: dji*"™ = d2** = t;.
(e) Simultaneous start of activities 7 and j: df}*" = d7*" = 0.
imultaneous completion of activities ¢ and j with p; > p;:
f) Simult pleti f activities ¢ and j with p; > p;
dzr_?zn — d:r]mr =p; — pj-
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(g) Consecutive execution of activities ¢ and j without any delay in between:
dmin = Mot — p.
i G5 = Pi-
(h) Overlapping of activities 7 and j for at least z;; < min(p;,p;) units of
dmam _—

time: d3** = p; — @y, A" = p; — Tij.

From C; = S; + p; it follows that the schedule for executing the activi-
ties ¢ € V of the project is uniquely given by specifying the respective start
times S;. That is why we shall always represent solutions to project scheduling
problems by a vector of activity start times.

Definition 1.3 (Time-feasible schedule). A vector S = (Sp, S1,...,Sny1)
of start times for the activities where S; > 0 (i € V) and Sy = 0 is called
a schedule. Schedule S is said to be time-feasible if it satisfies the temporal
constraints (1.1). The set of all time-feasible schedules is denoted by St.

Obviously, set St represents an integral polytope in R';gQ. Assume that
Sr # 0. It is well-known that the partially ordered set (Sy, <) possesscs
exactly one minimum ES, where S < 5 precisely if S; < S} for all i € V.
We refer to E'S as the earliest schedule. Furthermore, by Remark 1.1 {Sp, <)
possesses exactly one maximum LS, which is termed the latest schedule. This
means that there is no time-feasible schedule S such that S; < ES; or S; > LS;
for any ¢ € V. The interval [ES;, LS;] is termed the time window (for the start)
of activity 1.

Now let f : Sp — R be an objective function assigning a value f(S) to
each time-feasible schedule S. Without loss of generality we assume that the
objective function has to be minimized. The basic time-constrained project
scheduling problem can then be stated as follows:

Minimize f(5)

subject to S € Sp (1.2)

Definition 1.4 (Time-optimal schedule). A time-feasible schedule S solv-
ing the time-constrained project scheduling problem (1.2) is called time-
optimal.

All objective functions that will be considered in this book are lower semi-
continuous, i.e., any lower-level set L, = {S € Sr | f(S) < a}, « € R, is
closed. Since set St is compact, this property ensures that there always exists
a time-optimal schedule provided that St # 0.

1.1.2 Project Networks

In this subsection we shall show how the activities ¢+ € V and the tempo-
ral constraints S; — S; > &;; for (i,7) € E can be represented by a project
network. Basically, there are three different types of project networks. Activity-
on-arc or CPM networks associate an arc (u,v) with each activity ¢, where
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the nodes w and v represent events (see Kelley 1961). CPM stands for “Crit-
ical Path Method”, a temporal scheduling method based on activity-on-arc
networks. u is the first start of all activities ¢ belonging to arcs emanating
from node u, whereas v is the last completion of all activities ¢ belonging to
arcs terminating at node v. Arc (u,v) is weighted by the duration p; of the
corresponding activity <. Though only precedence constraints can be modelled
by CPM networks, this type of project network is widely used in practice. In
general, dummy activities have to be introduced for modelling the precedence
constraints among the activities and there is no unique representation of the
project as a CPM network. The problem to assign a CPM network to the
project in question using a minimum number of dummy activities is known to
be NP-hard (cf. Garcy and Johnson 1979, problem ND44). Neumann (1999q)
devises an O(n®) time algorithm for the construction of a CPM network with
a small number of dummy activities, which is based on a procedure by Brucker
(1973).

In activity-on-node networks, the nodes are identified with the activities.
For each time lag §;;, the network contains one arc (¢, j) with initial node ¢
and terminal node j, i.e., V is the node set and F is the arc set of the network.
An arc (i,j) € E is weighted by d;;. Activity-on-node networks belong to the
class of MPM networks (cf. Roy 1964, Sect. 11.2.1). MPM is the acronym of
“Metra Potential Method”, the temporal scheduling method for activity-on-
node networks to be discussed in Subsection 1.1.3. Similar to CPM, MPM is
based on calculating longest directed paths in the project network. Obviously,
activity-on-node networks can cope with general temporal constraints. In ad-
dition, due to the one-to-one correspondence between precedence relationships
and arcs, there is a unique activity-on-node representation of the project (cf.
Neumann and Schwindt 1997).

Elmaghraby and Kamburowki (1992) have introduced the following event-
on-node network. Each real activity ¢ is represented by two events ¢* and i€ in
node set V. ¢° corresponds to the start and ¢ to the completion of activity 1.
Both nodes are linked by two arcs (i%,i°) and (i°,7%) with weights &;s;c = p;
and ;s = —p;. For each time lag §;; between activities ¢ and j, arc set E
contains an arc (¢ j°) with weight d;c;s = §;; — p;. Analogously to activity-
on-node networks, the arcs of the resulting MPM network can be interpreted
as minimum and maximum time lags between the incident events. The arcs
(¢%,1°) and (2°,4%) state that the completion of activity ¢ must occur exactly
p; units of time after its start, i.e., activity ¢ must not be interrupted. The
arcs (¢, j°) represent completion-to-start time lags between activities ¢ and j.

Example 1.5. We consider a project with four real activities ¢ = 1,2,3,4 for
which we assume that activities 3 and 4 cannot be started before activities 1
and 2 have been completed. The project must be completed by a prescribed
deadline d. Figure 1.1a shows the corresponding activity-on-arc project net-
work, where the dashed-line arcs represent dummy activities required for mod-
elling the precedence relationships. The arcs are labelled with the durations
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of the respective activities. The activity-on-node network of the project is
shown in Figure 1.1b, where square nodes correspond to real activitics and
circular nodes represent events. By splitting up each real activity into a start
and a completion event, one obtains the representation of the project as an
event-on-node network, which is shown in Figure 1.1c.

Fig. 1.1. Types of project networks: (a) activity-on-arc network; (b) activity-on-
node network; (c) event-on-node network

Throughout this monograph, we shall represent projects by MPM net-
works. If not stated otherwise, the project network is an activity-on-node net-
work. Event-on-node networks will be used when dealing with project sched-
uling problems where events instead of activities take up resources (the case
of cumulative resources treated in Section 1.3).

1.1.3 Temporal Scheduling Computations

In this subsection we review the Metra Potential Method for the temporal
scheduling of the project. Let N = (V| E|4) be the MPM network under con-
sideration, where § = (6;5) (i j)er denotes the vector of arc weights. Temporal
scheduling consists of

(a) computing earliest and latest start time of activities,

(b) finding the shortest project duration,

(¢) calculating total floats, early free floats, and late free floats of activities,
and

(d) identifying the critical activities with zero total float
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with respect to the temporal constraints (1.1).

A vector 7 € R™2 is called a potential on project network N if the cor-
responding tensions w; — m; are greater than or equal to the respective lower
bounds ;; (cf. Berge 1970, Sect. 5.3). Let S be some schedule and assume that
St # 0. Clearly, S is a potential on N if and only if schedule S is time-feasible.
The earliest schedule E'S thus corresponds to the componentwise minimal po-
tential m > 0, and the latest schedule LS equals the componentwise maximal
potential m > 0 with mg = 0 (and thus 7,,;; < d, sece Remark 1.1). In other
words, ES is the unique solution to the following minimization problem:

Minimize 3,y 7
subject to m; —m; > 6, ((4,7) € E) (1.3)

Problem (1.3) corresponds to the time-constrained optimization problem (1.2)
where f(S) = ;. Si- The latest schedule LS is obtained by solving (1.3)
with objective function — ZiEV m; and additional constraint 7o = 0.

Now let D = (dij)ijev be the matrix solving the following system of

equations
di; =0 (ieV) (1.4)
dij = din + ;) (,jEViid#] 1.4
5= nax (din+0ng) - (g i #3j)

The values d;; can be interpreted as time lags between activities ¢ and j which
are induced by the set of given time lags 4;; ((¢,7) € E).

Remarks 1.6.

(a) Due to 6;; € Z for all (¢,5) € E, matrix D is integral as well.

(b) For each activity i € V, we assume that dy; > 0 (i.e, activity ¢ cannot
be started before the project beginning) and d; 11 > p; (i.e., the project
cannot be terminated before all activities have been completed).

(c) Each node ¢ € V in project network N is reachable from node 0 and
node n + 1 is reachable from each node ¢ € V. Since we always have a
maximum time lag dg'n%) = —0py10 = d between the project beginning
and the project termination and thus (n + 1,0) € E, project network N
is strongly connected.

(d) Without loss of generality we assume that d is the latest project termina-
tion time, i.e., dpp10 = d.

(e} The minimum time lag between the project beginning and activity ¢ equals
the earliest start time E'S; of activity 1, i.c.,

(f) Likewise, the maximum time lag between the project beginning and ac-
tivity 7 equals the latest start time of activity i, i.e.,

LS; = —dy (Z S V)
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rnaxr

If there is no given maximum time lag dg;"* = —d;o between the project
beginning and activity ¢, then LS; = d — d; s 41.
(g) The earliest and latest completion times of activity i are

Recall that a directed walk in network N is a sequence (i1,19,...,1,) of
nodes of N such that (i,,i,41) € E for all p =1,...,v — 1, where the sum
Z;;i di i, 1s referred to as the length of the directed walk. A directed
walk without any repetition of nodes is called a directed path. A directed
cycle is a directed walk (i1,142,...,4,,41) such that (iy,42,...,4,) Is a directed
path. The lower cquations in (1.4) correspond to the Bellman equations for
calculating longest directed walks in MPM networks. Thus, each induced time
lag d;; coincides with the length of a longest directed walk from node i to
node j, provided that there is such a longest directed walk. Since according to
Remark 1.6¢ network N is strongly connected, there is always a directed walk
in N from any node i € V to any node j € V. In Roy (1962) it is shown that
there exists a longest directed walk from any node i € V to any node j € V
in N if and only if N does not contain any directed cycle of positive length.
On the other hand, system of equations (1.4) possesses a solution precisely if
there is a longest directed walk from ¢ to j for all 4,5 € V. In the latter case,
the longest directed walks in N coincide with the longest directed paths in
N, and D = (di;) jev is called the distance matriz of N. Thus, we have the
following proposition.

Proposition 1.7 (Roy 1962). There is a time-feasible schedule for a project
(i.e., ST # D) if and only if project network N does not contain any directed
cycle of positive length.

Let m := |E| denote the number of arcs in project network N. Prob-
lem (1.3) can be solved in O(mn) time by the label-correcting procedure
shown in Algorithm 1.1 (cf. Bellman 1958), where ) is a queue. Although
this algorithm has been devised more than four decades ago, it is still the
most efficient algorithm for solving longest-path problems in cyclic networks
with arbitrary arc weights. The procedure may be terminated if some node i
has been examined n+ 2 times (see, e.g., Ahuja et al. 1993, Sect. 5.5). In that
case, (1.3) is unsolvable and thus Sy = @), which means that contradictory
temporal constraints have been specified.

The solution D to equations (1.4) is the elementwise minimal matrix sat-
isfying

dii =0 (ieV)
dij 2 64 ((4,4) € E) (15)
dij > dih + dhj (haZ,J € V)

This formulation gives rise to the following Algorithm 1.2 by Floyd and War-
shall (cf. Floyd 1962) for computing distances d;; for all 4, j € V. After having



14 1. Models and Basic Concepts

Algorithm 1.1. Farliest schedule

Input: MPM project network N = (V| E, §).
Output: Earliest schedule ES.

set doo := 0, Q := {0}, and dy; := —oo for all : € V\ Q;
while Q # 0 do
dequeue i from Q;
for all (¢,7) € E with do; < doi + &;; do
set doj = d()i -+ (5”,
if j ¢ @ then enqueue j to @Q;
return earliest schedule £S = (doi)iev;

initialized the values d;; according to the prescribed time lags d;;, the algo-
rithm computes the transitive closure of those time lags by iteratively putting
into force the triangle inequalities

dij > dip, + dpy (1.6)

(1.5) and thus (1.4) is solvable exactly if the matrix D calculated by the
Floyd-Warshall algorithm satisfies d;; = 0 for all ¢ € V. The number of com-
putations performed is O(n?), which is the best possible time complexity for
this problem (note that for checking whether or not distances d;; satisty (1.5),
O(n?) triangle inequalities must be evaluated).

Algorithm 1.2. Distance matrix

Input: MPM project network N = (V| E, §).
Output: Distance matrix D.

for alli,j € V do

if (i,j) € F then set di; := §;;; elsif i = j set di; := 0; else set d;; 1= —o0;
for all h,4,j € V with din > —o0 and di; > —o0 do

if di; < din + dp; then set di; 1= dip + day;
return distance matrix D = (d;;)i,jev;

The next algorithm, which is due to Bartusch et al. (1988}, achieves the
update of the distance matrix D in O(r?) time when adding some arc (i, 7)
to the project network (see Algorithm 1.3). The calculation of the distance
matrix D from scratch by initializing the values d;; as in the Floyd-Warshall
algorithm and then applying the algorithin for all arcs (4,7) € F would re-
quire O(mn?) time, which is more expensive than using the Floyd-Warshall
algorithm. The former procedure, however, will prove useful later on when
dealing with resource constraints and the resolution of so-called resource con-
flicts, where individual arcs are added to .
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Algorithm 1.3. Addition of arc (%, ) with weight &;;

Input: Distance matrix D, an arc (¢, 7) with weight §;;.
Output: Updated distance matrix D.

for all g,h € V do
if dgn < dgi + dij + djn then set dgp = dgi + 0:i5 + djn;
return distance matrix D = (di;): jev;

Remark 1.8. The update of distances dy, (or, cquivalently, carlicst start times
ES},) after the addition of some arc (4, 7) to project network N can be per-
formed in O(n) time by putting dg := max(don, do; + ;5 +djp) forallh e V.
This can easily be seen by using the fact that the correctness of Algorithm 1.3
does not depend on the sequence in which pairs (g, h) are iterated. Symmetri-
cally, distances dgo (which coincide with the negative latest start times —LS,)
can be updated by putting dgo := max(dgo, dgi +9:5 +djo) for all g € V. More-
over, adding some arc (0,7) to N does not affect distances d;p (¢ € V) and
adding some arc (i,0) to N does not affect distances do; (j € V).

Proposition 1.9 shows that the creation of a directed cycle of positive
length when adding arc (4, 7) to IV can be tested before calling Algorithm 1.3.

Proposition 1.9. Let N be a project network with distance matriz D. The
addition of arc (i, j) with weight d;; to N generates a directed cycle of positive
length if and only if 6;; > —d;;.

Proof. Sufficiency: After the addition of arc (i,7) with &;; > —d;; to N it
holds that d;; > 6;;. Thus, we have d;; + dj; > ;5 + dj; > 0, which means
that there is a directed cycle of positive length containing nodes ¢ and j.
Necessity: Now assume that J;; < —d;; and consider an iteration of Al-
gorithm 1.3 for some pair (g, h) such that distance dgp is increased. Then
the updated distance is dgp, = dgi + 035 + djn < dgi — dj; + djn. The trian-
gle inequalities (1.6) say that dj; > djp + dpg -+ dg; and thus dg, + dpg <
dgi — (djn + dng + dyi) + djp + dpg = 0. This means that after applying Al-
gorithm 1.3 it holds that dgp + dng < 0 for all g,h € V, i.e., N contains no
directed cycle of positive length. ]

Next, we consider three different floats or slack times of an activity ¢ € V.
The total float TF; is the maximum amount of time by which the start of
activity ¢ can be delayed beyond its earliest start time FS; such that the
project is terminated on time, i.e., Sy < d. In other words,

TF, = LS, — ES; = —d;g — dy; (’L & V)

Activity i € V is called eritical if ¢ cannot be delayed, i.e., if the maximum
time lag —d;p equals the minimum time lag dg; between the project beginning
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and activity ¢ and thus fixes the start time S; of i to ES; = L.S;. Activity i is
critical exactly if TF; = 0.

The early free float EFF; is the maximum amount of time by which the
carliest start of activity ¢ at time ES; can increase given that any other
activity j can be begun at its earliest start time E£S;. Hence,

EFF; = min (FS; —6;;) — ES; = min (do; —d;y;) —dgy (1€V
% (i,j)eE( J z]) i jeV:i;éj( 0y 1]) 01 ( )
The late free float LFF; is the maximum amount of time by which the latest
start of activity ¢ at time LS; can decrease given that any other activity j can
be begun at its latest start times LS;. Thus,

LFF; = LS; ~ LS;+68;)) = min (djo—dji) —dip (GEV
(max (LS5 +05) = wmin, (djo —dji) —dio (P €V)

1.2 Renewable-Resource Constraints

To perform the activities of a project, different types of resources are required.
Basically, we may distinguish between resources whose availability solely de-
pends on the activities being in progress (like manpower or machinery) and
resources for which the availability results from the entire project history
(such as the project budget, materials, or storage space). In this scction we
deal with renewable resources, which belong to the former type and to which
the overwhelming part of research in the field of resource-constrained project
scheduling has been dedicated. The case of cumulative resources, correspond-
ing to the second type, will be discussed in Section 1.3. In the present section,
we suppose that no cumulative resources need to be considered. At first, we
provide a formal statement of the constraints arising from the scarcity of re-
newable resources. We are then concerned with conditions on the start times of
activities whose joint requirements for renewable resources exceed the resource
capacities and which thus cannot be in progress simultancously. Finally, we
discuss consistency tests for detecting temporal constraints that are implied
by the limited availability of renewable resources.

1.2.1 Resource-Feasible Schedules

Let R” be the set of renewable resources k with capacity R, € N U {oo}
that have been assigned to the project during the project definition phase.
R; = oo means that the availability of resource £ is not explicitly bounded
from above but can be adapted, at a certain cost, to any usage over time.
The resource estimation yields (resource) requirements 3, € Zsq for each
real activity ¢« € V' and each resource k € R”. ry corresponds to the number
of capacity units of resource k which are taken up for processing activity ¢
from start time S; (inclusively) to completion time C; = S; + p; (exclusively).
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;5 = 0 means that activity ¢ does not use resource k. Furthermore, we assume
that
rae <R (1eV? keRF)

which ensures that sufficient resource capacity is available for processing each
activity individually. For simplicity, we may omit resource index & when there
is only one renewable resource available.

Now let S be some schedule and let ¢ be some point in time. Then

A(S t) = {i € V| S; <t < Si+pi}

is the active set of activities being in progress at time t. The corresponding
requirement for resource k € R# at time ¢ is given by

rE(S,t) == Z Tik

1€EA(ST)

For given schedule S, function r(S, ) : R — Zx> is termed the loading profile

for renewable resource k. 7(S, ) is a right-continuous step function with at

most 2n jump discontinuities. Obviously, we have r(S,t) = 0 for all t < 0.
The renewable-resource constraints can be stated as follows:

(S, t) <Ry (k€RP, 0<t<d) (L.7)

Definition 1.10 (Resource-feasible and feasible schedules). A sched-
ule S satisfying the renewable-resource constraints (1.7) is called resource-
feasible with respect to renewable resources k € RP. The set of all resource-
feasible schedules is denoted by Sg. S := Sy N Sy is the set of all feasible
schedules.

As we shall see later on, unlike the polytope of time-feasible schedules Sp,
set Si represents a finite union of polytopes which is generally not connected.
As an intersection of a polytope and a finite union of polytopes, § is the union
of finitely many polytopes as well. Resource allocation consists in assigning
start times S; (and thus execution time intervals [S;, C;[) to the activities of
the project such that the corresponding schedule S = (S;);cv is feasible and
minimizes the objective function on set S.

The basic resource-constrained project scheduling problem with renewable
resources rcads as follows:

Minimize f(S5)

subject to S € SrNSp (1.8)

Recall that we have assumed objective function f to be lower semicontin-
uous. The compactness of S then implies that there exists an optimal solution
to problem (1.8) precisely if S # (). Note, however, that due to the presence
of maximum time lags it may happen that Sy # @ and Sg # 0 but S = 0.
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Definition 1.11 (Optimal schedule). A feasible schedule S solving the
resource-constrained project scheduling problem (1.8) is called optimal.

By replacing the set § = Sr N Sp of feasible schedules with the set
of resource-feasible schedules Sp we obtain the temporal relazation of the
resource-constrained project scheduling problem (1.8). Since we have assumed
that r;x < Ry for all 1 € V® and all £ € R?, each schedule carrying out the
activities one after another is resource-feasible. The resource relazation of
(1.8) arises from deleting the resource constraints (1.7) or, equivalently, set-
ting Ry := oo for all & € R¥. The resource relaxation coincides with the basic
time-constrained project scheduling problem (1.2). As we noticed in Subsec-
tion 1.1.3, the existence of a time-feasible schedule can be checked in O(mn)
time by applying Algorithm 1.1 to project network N. The following theorem,
howcver, shows that it cannot be decided in polynomial time whether or not
there exists a feasible schedule.

Theorem 1.12 (Bartusch et al. 1988). The following decision problem is
NP-complete.

Instance: A project with one renewable resource and requirements
ry =1 forallieV*,
Question: Does there exist a feasible schedule?

Proof. The feasibility of a given schedule S can be checked by computing
S; — 8; for all arcs (4,5) € E of project network N as well as the resource
requirements 7, (S5,t) for all resources k € R” and all start times ¢t = S; of
real activities ¢ € V. Thus, verification of schedule feasibility can be done in
polynomial time, and the problem to decide upon the existence of a feasible
schedule belongs to NP. In Bartusch et al. (1988) it is shown by transformation
from problem PRECEDENCE CONSTRAINED SCHEDULING with m processors
and strict order < that the decision problem whether or not & # @ is NP-
hard. An equivalent instance of the latter problem is obtained by considering
one renewable resource with capacity R = m and choosing r; = 1, p; = 1,
min = (), :’”ﬁl =1foralli € V@, as well as d;;-”'” =1lifi < janddgpi, =3.
O

When dealing with the project duration problem, we may drop the as-
sumption that there is a deadline d on the project termination because the
objective is to maximize the slack d — S,y of the deadline constraint. The
construction of a feasible schedule then turns into an easy problem if there
are no maximum time lags given. In that case, project network N is acyclic,
and the activities can be scheduled consecutively according to any topological
ordering of the nodes i € V of N.
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1.2.2 Forbidden Sets and Delaying Alternatives

The resource-feasibility of schedules is closely related to the concept of forbid-
den sets introduced by Radermacher (1978). The forbidden-set perspective of
resource constraints is useful for investigating the set S of feasible schedules.

Definition 1.13 (Forbidden and feasible sets). A set of real activities
F CV* is called a forbidden set if there is some resource k € R such that

ZT,;k > Ry

i€EF

If F' is C-minimal in the set of all forbidden sets, we speak of a minimal
forbidden set. By F we denote the set of all minimal forbidden sets. A set
A C V@ that is not forbidden is termed a feasible set. A is said to be a
mazimal feasible set if it is C-mazimal in the set of all feasible sets.

When solving the resource-constrained project scheduling problem (1.8),
the activities from a forbidden set F' must be scheduled in such a way that
they do not all overlap in time. In other terms, each forbidden set F' has to
be partitioned into a feasible sct A and some nonempty set B, no activity
from set B being executed simultaneously with all activities from set A. In
literature, such a set B is called a delaying alternative (cf. e.g., Christofides
et al. 1987 or Demeulemcester and Herroelen 1992, 1997).

Definition 1.14 (Delaying alternative). Let I be a forbidden set. B C F
is called a delaying alternative for I if F'\ B is a feasible set. If additionally
B is C-minimal in the set of all delaying alternatives for F (i.e., F\ B is a
mazimal feasible set), we speak of a minimal delaying alternative for F.

The number of minimal delaying alternatives for a forbidden set F grows
exponentially in the cardinality of set F. Given some forbidden set F' and a
subset B C F', it can be decided in polynomial time whether or not B is a
minimal delaying alternative for F' by evaluating the following two conditions

(1.9) and (1.10). This can be achieved in O(|R?||F}) time.

> rik < By forallk e R? (1.9)
i€F\B
Z Tig + r_nig rjk > Ry for some k € Rf (1.10)
j€

i€F\B

Nevertheless, Neumann et al. (2003b) have shown that a minimal delay-
ing alternative B cannot be generated efficiently by iteratively transferring
activities from sct F to set B.
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Proposition 1.15 (Neumann et al. 2003b, Sect. 2.5). The following de-
cision problem is NP-complete.

Instance: A project with one renewable resource, a forbidden set F
and an actwity h € F.

Question: Does there exist a minimal delaying alternative B for F
containing h?

Proof. Since conditions (1.9} and (1.10) can be verified in polynomial time,
the problem is contained in NP. Let B with h € B be an arbitrary set of
activities using the single resource. Then B is a minimal delaying alternative
if and only if R ~ minjegr; < ZieF\B r; < R. For rp, = 1, we then have
rhn =minjegry and thus R—1 <3, poprmi < R, e, ZieF‘\B r; = R. Hence,
there is a minimal delaying alternative B containing h exactly if there is a set
A C F\{h} with 3, ,r; = R. Now let I be an instance of problem SUBSET
SuM with index set Z, sizes s(i) € N for ¢ € 7, and threshold M € N (cf.
Garey and Johnson 1979, problem SP13). We obtain an equivalent instance
of our decision problem by choosing F' = T U {h}, r; = s(i) for all : € T,
rp=1,and R =M. a

Similarly it can be shown that it is also NP-complete to decide whether a
given activity h is contained in some minimal forbidden set F' € F (cf. Stork
and Uetz 2005, who devise a polynomial transformation from PARTITION).

In what follows, we describe a recursion for computing minimal delaying
alternatives for a forbidden set F' (see Neumann et al. 20035, Sect. 2.5). Given
a delaying alternative B, the set B of all minimal delaying alternatives B’ C B
for F' is either equal to {B} if B is a minimal delaying alternative for F' or
equal to the set of all minimal delaying alternatives B’ C B\ {i} for F with
1 € B. To avoid the multiple generation of one and the same minimal de-
laying alternative B’ (as subset of two different sets B\ {¢1} and B\ {i2}),
we restrict the recursion to subsets B’ of B\ {i¢} for which j > ¢ holds for
all 7 € (B\{i})\ B’. Since F itsclf is a delaying alternative, which includes
all minimal delaying alternatives for F, we start the recursion with B = F.
Algorithm 1.4 shows the corresponding recursive procedure, where i = 0 if
B = F at recursion level 0 and 7 is the number of the activity removed in the
preceding call to the recursion, otherwise. A call to MinimalDelayingAl-
ternatives(F,0) determines the set B of all minimal delaying alternatives for
forbidden set F'.

An alternative approach to calculating all feasible subsets A C I (and
thus all delaying alternatives B = F'\ A) has been proposed by Brucker et al.

(1998). Assume that F = {iy,ia,...,%,}. Brucker's procedure constructs a
binary decision tree, where each node at level p = 1,...,v corresponds to
some feasible set A" C {i1,42,...,4,} and branching from a node at level

it — 1 corresponds to the decision whether or not activity i, is contained in
the respective child node at level u. Each leaf of the decision tree belongs to
one feasible set A.
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Algorithm 1.4. MinimalDelayingAlternatives(B, )

Input: A project, a forbidden set B, an index 1.
Ensure: B contains all minimal delaying alternatives B’ C B for F with
min(B\ B') > i.

if B satisfies (1.9) then (* B is delaying alternative %)
if B satisfies (1.10) then (% B is minimal delaying alternative %)
B:=BuU{B};
else
for all j € B with j > ¢ do MinimalDelayingAlternatives(B\ {j},j);

The following proposition establishes the rclationship between minimal
delaying alternatives and minimal forbidden sets.

Proposition 1.16 (Schwindt 1998¢). A minimal delaying alternative B
for a forbidden set F is an C-minimal set containing an activity j of each
minimal forbidden set I C F.

Proof. We assume that there is a minimal delaying alternative B for F' and
a forbidden subset F' C F with BN F' = (. Then set F'\ B 2 F” is feasible.
Since every superset of a forbidden set is forbidden, this contradicts the fact
that F’ is forbidden. 0

1.2.3 Breaking up Forbidden Sets

When scheduling the activities of a project, resource conflicts caused by the
simultaneous execution of the activities of some forbidden set have to be re-
solved. The following theorem by Bartusch et al. (1988) shows how resource
conflicts can be settled by introducing precedence constraints between activ-
ities of minimal forbidden sets.

Theorem 1.17 (Bartusch et al. 1988). A schedule S is resource-feasible
if and only if for each minimal forbidden set F' € F, there are two activities
1,7 € F such that S; > S; + p;.

Proof. Sufficiency: We consider the active set A(S,t) for a resource-infeasible
schedule S at some time t > 0 such that A(S,t) is forbidden. Since A(S,¢)
is forbidden, there is a subset F' of A(S,t) that is minimally forbidden. By
definition of A(S,t), all activities of F' overlap at time ¢, which implies that
there are no two activities i,j € F' with §; > S; + p;.

Necessity: Assume that there is some minimal forbidden set F' for which no two
activities 7,5 € F satisfy S; > S; + p;. Then [S;, S; + p;[N[S;,S; + p;[# 0 for
any two activitics 4,7 € F'. The Helly property of intervals (cf. e.g., Golumbic
2004, Sect. 4.5) then implies that M;ep[S:, S + pi[# 0, and thus there is
some point in time ¢ at which all activities i from set F' overlap. Since F'is a

forbidden set, 74(S,t) = >, cp Tik > Ry for some k € R”. 0
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As a direct consequence of Theorem 1.17 we obtain the following Corollary.

Corollary 1.18 (Bartusch et al. 1988). The set S of all feasible schedules
represents the union of finitely many integral polytopes.

We say that a constraint C' breaks up minimal forbidden set F if for each
schedule satisfying C, there are two activities 7, § € F such that S; > S5, +p,.
Minimal forbidden sets can be broken up in different ways. According to
Theorem 1.17, the first possibility consists in choosing two activities 7,7 € F
and introducing an (ordinary) precedence constraint

Sj 2 Si +ps (1.11)

between ¢ and 7. Alternatively one may define a disjunctive precedence con-
straint

S; > min (Si+p; 1.12
j 2 uin, (S5 +pi) (1.12)

between set £\ {j} and activity j saying that j must not be started be-
fore the earliest completion of some other activity ¢ from set F. Disjunctive
precedence constraint (1.12) is equivalent to the disjunction of the precedence
constraints (1.11) for all ¢ € F, ¢ # j and represents a so-called linear reverse-
convex constraint (see, e.g., Tuy 1995, Sect. 7). Whereas the number of alter-
natives for breaking up F by precedence constraints is O(|F|?), this number
is of linear order O(|F|) when using disjunctive precedence constraints. The
set of all schedules satisfying a disjunctive precedence constraint is generally
disconnected and thus in particular nonconvex. As will be shown in Subsec-
tion 3.1.2, the minimization of regular (i.e., componentwise nondecreasing)
objective functions can nevertheless be done with a time complexity that is
linear in the maximum project duration d. In literature, disjunctive prece-
dence constraints are also referred to as AND/OR precedence constraints or
waiting conditions (cf. Mohring et al. 2004). They have been introduced by
Igelmund and Radermacher (1983) in the form of preselective strategies for
resource-constrained project scheduling with stochastic activity durations.

An arbitrary forbidden set F' is said to be broken up if all minimal for-
bidden subsets of F' are broken up. Let B be some minimal delaying alterna-
tive for F'. From Proposition 1.16 it then follows that breaking up F' can be
achieved by imposing a set of precedence constraints

S;>8Si+p; (jeB)

between some activity ¢ from the maximal feasible set A = F'\ B and all
activities 7 € B or by a disjunctive precedence constraint

min S; > min(S; + p;

jeB 7 = ieA( i+ pi)
between set A and set B. Notec that in the case of precedence constraints, one
and the same activity ¢ € F'\ B can be chosen for all 7 € B because any
conjunction of precedence constraints (1.11) for the activities j from delaying
alternative B implies shifting all 7 € B behind the earliest finishing activity
1 € F'\ B, which breaks up forbidden set F.
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1.2.4 Consistency Tests

The NP-hardness of finding feasible schedules implies that resource allocation
can only be performed by enumerating alternative sets of precedence relation-
ships among activities using common resources. Consistency tests designate
algorithms for detecting constraints that must be satisfied by any feasible
schedule and that can be evaluated without enumeration to rule out in ad-
vance certain inadmissible alternatives from further consideration. A consis-
tency test is described through a condition and a constraint that can be cs-
tablished whenever the condition is satisfied. From a gcometric point of view,
applying consistency tests provides a convex set containing all feasible sched-
ules. In the best case, this convex sct coincides with the convex hull conv(S) of
the feasible region. From Theorem 1.12, however, it immediately follows that
conv(S) cannot be computed in polynomial time (otherwise, problem (1.8)
with linear objective function f could be efficiently solved by finding some
optimal vertex of conv(S)). Since S is the union of finitely many integral
polytopes, the convex hull conv(S) is integral as well.

In enumeration procedures, consistency tests are often applied dynamically
to the search space of any enumeration node. The tests then refer to scarch
spaces rather than to the feasible region. In scheduling literature, consistency
tests are also known under the names preprocessing (if they are applied to the
root node before starting the enumeration), immediate selection algorithms,
edge finding rules, constraint propagation techniques, or satisfiability tests.
Instead of directly checking given conditions, consistency tests may also try
to refute additional, hypothetical constraints. If the test rejects the hypoth-
esis, the alternative hypothesis has been shown to be true and thus can be
used to reduce the search space. Consistency tests have been applied with
great success in machine scheduling and for the resource-constrained project
duration problem (see Brucker et al. 1998, Dorndorf et al. 20004, or Dorndorf
et al. 2000¢). The algorithm of Carlier and Pinson (1989) that solved the fa-
mous Fisher and Thompson (1963) job shop scheduling problem with 10 jobs
and 10 machines for the first time has become a classical reference in the field.

We review some consistency tests that have been proposed in literature
for project scheduling with renewable resources (see, e.g., Dorndorf et al.
1999). All procedures to be discussed provide additional temporal constraints
that can be added in the form of arcs to project network N. Let d;; again
denote the length of a longest directed path from node 7 to node j in project
network IV, where we assume that Sy # 0. Consistency tests are usually used
in an iterative fashion as long as new temporal constraints can be identified
and thus distance matrix D is modified (see Algorithm 1.5, where I" denotes
the set of consistency tests to be applied). The reason for this is that due to
updating distance matrix D, certain tests that in previous iterations failed
may possibly deduce additional constraints. In general, the distance matrix
yielded depends on the sequence in which the different tests are applied. For
the consistency tests to be discussed below, however, it can be shown that
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the resulting matrix is unique (cf. Dorndorf et al. 2000b). More precisely,
any consistency test can be interpreted as a function 4 mapping distance
matrices D to updated distance matrices (D). If for all consistency tests
v e I', D < D' implies v(D) < 4(D’), then there exists only one fixed-point
matrix D with D = ~(D).

Algorithm 1.5. Search space reduction by consistency tests v € I

Input: A project, a set I of consistency tests.
Output: Updated distance matrix D.

compute distance matrix D; (* Algorithm 1.2 %)
repeat
for all consistency tests v € I' do
apply v;
if new temporal constraint S; — S; > §;; has been established then
update distance matrix D, i.e., set D := v(D); (x Algorithm 1.3 %)

until distance matrix D has not been changed during last iteration;
return distance matrix D;

Disjunctive activities tests try to establish precedence constraints be-
tween activities which cannot be processed at the same time. Let 4,5 € V¢
be two different real activities that, with respect to the temporal constraints,
can be executed in parallel and for which j cannot be completed before i is
started, i.e.,

—pj < dz’j < pi and dji < pj

We say that ¢ and j are in disjunction if due to the resource constraints they
cannot be processed at the same time. In that case, we can introduce a new
precedence constraint S; > S; + p; between ¢ and j that will be satisfied by
any feasible schedule S.

Obviously, the activities of two-element forbidden sets are in disjunction.
However, ¢ and j may also be in disjunction if rj, + rjx < Ry for all £ € R*.
Brucker et al. (1998) have used the concept of symmetric triples for finding
such activities. We call (h, ¢, j) a symmetric triple if {h,14, j} is a forbidden set
and activity h must be executed simultaneously with activity ¢ (i.e., dp; > —p;
and d;p > —pp,) and with activity j (i.e., dn; > —p; and dj, > —pp). For a
symmetric triple (h, 1, 7}, activities ¢ and j cannot be in progress at the same
time because this would imply that &, ¢, and j were carried out in parallel,
which is impossible because {h, 1, j} is a forbidden set. Obviously, detecting all
symmetric triples takes O(n®) time. After having established a new precedence
constraint, distance matrix D must be updated, which can be done in O(n?)
time by using Algorithm 1.3.

Many consistency tests are based on lower bounds on the work that must
be performed in certain time intervals [a, b with 0 < a < b < d. Those tests
are referred to as energetic reasoning (“raisonnement énergétique”, see Lopez
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et al. 1992) or interval capacity tests (Dorndorf et al. 1999). If b — a = 1, we
speak of unit-interval capacity tests. Given some schedule S, fabrk(S', t)dt is the
workload to be processed by resource k € R” in time interval [a, b]. Ri(b— a)
is termed the interval capacity of resource k in interval [a,b[. The execution
time of activity ¢ in interval [a, b equals (min(b—a,p;, C; —a,b—S;))*, where
(z)* := max(0, z). It follows that the workload of resource k in interval [a, b|
can be written as ;. Tik(min(b — a,p;, C; — a,b — S))T. Now let

pi{a,b) ;== (min(b — a,p;, EC; — a,b— LS;))* (1.13)

denote the minimum time activity ¢ has to be processed in interval [a, b[. For
any time-feasible schedule S € Sr,

wi(a,b) 1= Z rikpi(a,b) (1.14)

ieve

then represents a lower bound on the workload of resource k € R in [a, b.

Dorndorf et al. (2000¢) have used energetic reasoning for finding further
activities ¢, 7 being in disjunction. ¢ and j are in disjunction if for all times ¢
at which the temporal constraints allow both activities to be in progress,
the combined resource requirements of ¢ and j for some resource k € R”
exceed the maximum residual capacity of k at time ¢t. This condition can
be formulated as follows. Activities ¢ and 7 may be executed in parallel at
time ¢ if ¢; < t < tp where t; = max{max(ES;, ES;), min(EC;, EC;) —~ 1]
and ty = min[min(LC;, LC;), max(LS;, LS;) 4+ 1]. The minimum workload in
interval [t,t + 1[ (or, equivalently, the minimum requirement at time t) that
is due to the execution of activities from set V@ \ {4, j} equals wy(t,t + 1) —
riepi(t,t + 1) — rjp;(t,t + 1). Accordingly, activities ¢ and j cannot overlap
in time if there exists a resource k € R” such that for all ¢ € [t1,to[

Tik + ik > R — [we(t, 6+ 1) —rapi(t, t + 1) — rjp;(t, ¢ + 1)) (1.15)

For given resource k € R”, the core loading profile ri, : R — Z>¢ where
ri(t) = wi(t,t + 1) represents a lower approximation to the loading profiles
(5, ) of all time-feasible schedules S € Sr. By using a support-point rep-
resentation of step function rf, all disjunctive activities ¢,7 € V* satisfying
(1.15) can be identified in O(|R”|n?) time (cf. Dorndorf et al. 2000¢). Each
time a new precedence constraint has been established, we have to recalculate
the earliest and latest start times of activities and to update the core loading
profiles of renewable resources, which, for given distance matrix D, requires
O(|R?nlogn) time. Recall that after the addition of an arc (7, §) to project
network IV, the earliest and latest start times can be updated in linear time
(see Remark 1.8).

The shaving technique is intended to tighten the time windows [E'S;, LS;]
of activities 1 € V@ by falsifying hypothctical earliest or latest start times. We
first consider the case of a hypothetical earliest start time ¢;. Assume that after
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the addition of the respective arc (0,7) with weight ¢; to project network N
it holds that
wk(t,t+1) > Ry (116)

for some resource k € R? and some time ¢t. Then the capacity of resource k is
not sufficient to match the requirements for resource k at time t, i.e., we have
shown that any feasible schedule S satisfies S; < ¢; — 1 (recall that conv(S)
is integral). For each activity 4, the values for ¢; can be tested according to
a binary search in set [ES;, LS;] N Z, where t; is decreased if the test fails in
refuting the hypothesis, and increased, otherwise. Testing hypothetical latest
start times can be performed analogously. When we apply the test to a given
activity ¢ € V¢, we have to update the core loading profiles r{ at each itera-
tion of the binary search, which again takes O(|R”|nlogn) time. Obviously,
inequality (1.16) needs only to be evaluated at jump-up discontinuities of the
core loading profiles, i.e., at points ¢t = LS; (j € V). Thus, the time complex-
ity of applying shaving to activity i is O(log d|R?|nlogn). Since updating the
core loading profiles is included in the shaving procedurc, establishing a new
earliest or latest start time does not incur any additional effort.

The following unit-interval capacity test determines points in time at
which certain activities cannot be executed. Consider some real activity ¢ € V¢
that, at a given time ¢, is not necessarily in progress (i.e., ES; <t — p; or
LS; > t+1). In this case, activity ¢ cannot be carried out at time ¢t if for some
resource k € R?

w(t,t+ 1)+ ri > Ry

which implies S; € [ES;,t —p;]U [t + 1, LS;] for any feasible schedule S (note
that due to p;(t,t + 1) = 0, requirement 7;; does not enter into workload
wg(t, t+1)). Two particular cases allow the introduction of additional tempo-
ral constraints. If ¢ is less than the carliest completion time EC; of activity 4,
we obtain S; > ¢+ 1, and if ¢ is greater than or equal to the latest start time
LS; of ¢, it follows that S; < t — p,;. Again, it suffices to consider points in
time ¢ coinciding with the latest start time LS; of some j € V. Accordingly,
applying the unit-interval capacity test to activity ¢ requires O(|R?|n) time.
The update of core loading profiles after having established a new earliest or
latest start time can again be performed in O(|R”|nlogn) time.

The activity-interval capacity test generalizes several consistency tests
that have been devised for machine scheduling (see Dorndorf et al. 1999). Let
U C V@ be a nonempty set of rcal activities and let U, U” C U be two subscts
of U. If for some resource k € R*, the interval capacity in the interval from
the earliest start of an activity from set U\ U’ to the latest completion of an
activity from set U\ U” is less than the workload of the activities from set U,
ie.,

> rukpn > R max (LC, — ES,) (1.17)
heU geEUN,
heU\U"

then there is some activity from set U’ that is started first or some activity
from set U” that is completed last among the activities from set U:
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min S < min S, or max Cp > max Cy (1.18)
gel’ REUNU' heU” getN\U” *

For certain choices of sets U’ and U”, the disjunction (1.18) results in temporal
constraints (cf. Table 1.1). The corresponding consistency tests are known as
input, output, input negation, and output negation tests. The computational
effort associated with the different activity-interval consistency tests will arise
from the analysis of the next consistency test.

Table 1.1. Specific implementations of the activity-interval capacity test

Test ', U Temporal constrain(s)
Input ({i},0) S;—S;>1foralljcU,j#4
Output (@, {7} S;—Si>pi—p;+1lforallieUi+#j
Input negation  (U\{j},{7}) S;=> min(' m<1{1 }ES,, El’ga%( EC; —p;)+1
7 7
Output negation ({¢}, U\ {i}) S < max( mm LS;, max LC; —p;)—1
UN i} JeUN#}

The general interval capacity test refers to time intervals [a,b[ for
which the residual interval capacity Ri(b — a) — wi(a,b) for given resource
k € R is minimum. In Schwindt (1998¢), Sect. 3.3, and, independently, in
Baptiste et al. (1999) it has been shown that intervals [a, b with minimum
residual interval capacity can be determined by investigating O(n?) critical
intervals (where interestingly it is not sufficient to consider only intervals
whose endpoints coincide with earliest or latest start or completion times).
Similarly to the shaving technique, we may establish a hypothesis on the
consistency of some temporal constraint S;—S; > ¢5;. If under this assumption
there is a resource k with

max _wi(a,b) > Ri(b—a)
0<a<b<d

the hypothesis has been refuted and thus we can introduce the reverse tempo-
ral constraint S; — S; > —t;; + 1. For cach pair (i,7) € V¢ x V® where i # j,
a binary search in set [{d;;, —d;;] N Z provides, within O(log d) iterations, the
minimum ¢;; for which S; —S; > t; can be disproved. Since for given re-
source k, an interval [a,b] with minimum residual interval capacity can be
found in O(n?logn) time (cf. Schwindt 1998¢, Sect. 3.3), the time required
for applying the general interval capacity test to a given pair (4, j) is of order
O(log d|R?|n? log n).

The general interval capacity test represents a generalization of all activity-
interval consistency tests listed in Table 1.1. This can be seen as follows. Con-
sider, for given sets U, U’,U", the time interval [a, b[ where a := minge v ES,
and b := maxpegnpr LCx. Then the right-hand side of inequality (1.17) co-
incides with the interval capacity Ry(b — a) of interval [a,b]. We first show
that the general interval capacity test generalizes the input test. Let U C V¢
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be a set containing two different activities 4, j. According to Table 1.1, we
choose U’ = {i} and U" = 0, i.e., a = mingein 15y ESy and b = maxpey LCy.
Now assume that S; —5; > 0. Then mingern 5y £Sy = mingey ES, and
thus [ESy, LCL[C [a,b] for all h € U, which implies 3, .y 7hepn < wi(a,b).
This means that any temporal constraint that can be deduced by using the
input test also arises from applying the general interval capacity test where
for each pair (4, ), time lag t;; is chosen to be equal to 0. We now turn to
the input negation test with U’ = U\ {j} and U” = {j}, ie., a = ES,
and b = maxpep ;) LCr. We apply the general interval capacity test with
hypothesis Sy —~ S5 > —min{mingep g5 ESg,InaxheU\{j} ECy — p;). From
S; < mingepn ;3 ESy it follows that ES; > ES; = a for all g € U\ {j},
and Sj +pj < maxpev\ (53 £C) implies LC < maxpep (53 LCh = b. We then
again have [ES), LCy[C [a,b] for all h € U For reasons of symmetry, the
output and output negation tests can be dealt with analogously.

The energy precedence test has been devised by Laborie (2003). If there
is an (implied) minimum time lag d;; > p; between the starts of activities ¢
and 7, then a workload of 7;;p; units has to be processed on each resource
k € R? between S; and S;, which takes at least maxpere rigp;/Ri units of
time. Thus, for each feasible schedule S we have

L > i ) sy
Sjz, min LS+ max [ > mpz/RJ

ieVeidi; zp: JEVaidyy > ps
idi; >pi

Note that in contrast to the preceding interval capacity tests, the effective-
ness of the energy precedence test is independent of the tightness of time win-
dows [ES;, LS;]. Applying the energy precedence test to activity j requires
O(|R?|n) time. If the energy precedence test is applied to all activities, the
amortized computational effort per activity can be decreased to O(|R?| +n).

1.3 Cumulative-Resource Constraints

Cumulative resources represent a generalization of nonrenewable resources like
money or raw materials, which have been studied in the context of project
scheduling problems where activities can be performed in one out of several
alternative execution modes differing with respect to duration and resource
requirements (cf. e.g., Weglarz 1980 or Slowinski 1981). Unlike renewable re-
sources, which are used during the execution time of activities and released
after completion, nonrenewable resources are consumed. Since the availability
of nonrenewable resources is nonincreasing over time, the feasibility of a re-
source allocation and the respective cost incurred is independent of the sched-
ule S established and solely depends on the assignment of execution modes
to activities. Thus, nonrenewable resources can be disregarded if each activ-
ity can only be performed in one mode. How to solve the mode assignment
problem in case of multiple execution modes will be discussed in Section 5.3.
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In practice, resources that are consumed are generally renewed later on. If
the replenishment occurs during the project execution, the availability of the
resource increases at certain points in time. In that case, the feasibility of a
schedule generally depends on the sequence of depletions and replenishments.
For example, in many real-life projects certain project activitics are associated
with disbursements for materials or staff leasing, and progress payments arise
for completed subprojects. It may then be necessary to delay certain disburse-
ments behind payments in order to avoid a negative cash balance. Resources
that are depleted and replenished over time arc called cumulative resources.
The concept of cumulative resources has been introduced by Schwindt (1998¢).
A cumulative resource can be regarded as the inventory level in some storage
facility of finite capacity. The inventory level is bounded from below by some
safety stock and bounded from above by the capacity of the storage facility.

Carlier and Rinnooy Kan (1982) and Carlier (1989) have dealt with the
special case where activities consume nonrenewable resources that become
available at given points in time. The authors provide a polynomial-time al-
gorithm for minimizing regular and max-separable objective functions f. In
addition they show that in presence of replenishing activities the optimization
problem becomes NP-hard.

Shewchuk and Chang (1995) have considered scheduling problems with
recyclable resources, 1.e., renewable resources whose availability expires after a
given lifespan and which may be reused after a certain repair time (like cutters
that have to be re-ground from time to time). Such a recyclable resource can be
viewed as the combination of a classical renewable resource and a cumulative
resource keeping the residual time before recycling becomes necessary.

Of course, cumulative resources can also be used to formulate part avail-
ability constraints arising, e.g., in construction projects or assembly manufac-
turing (see, c.g., Kolisch 2000, who has devised a mixed-integer lincar program
for scheduling in assembly environments). If certain intermediate products
represent common parts, which are components of different subassemblies or
final products, one has to decide on the sequence in which completed items of
those common parts are allotted to the respective products into which they
are installed (assignment-sequence problem, c¢f. Neumann and Schwindt 1997).
The concept of cumulative resources permits to integrate the assignment-
sequence problem into the resource allocation problem (see Section 6.1). A
further application of cumulative resources in the context of assembly man-
agement is the modelling of spatial capacity constraints, which are due to
the limited assembly area. Kolisch and HeB8 (2000) have developed schedule-
improvement methods for assembly scheduling problems including the latter
type of constraints (see also Kolisch 20015, Ch. 10).

The case of general cumulative resources has been considered by Neumann
and Schwindt (2002), who have discussed structural issues and have proposed
a branch-and-bound algorithm for project scheduling subject to inventory
constraints. Constraint-based methods for solving scheduling problems with
cumulative resources have been developed by Beck (2002) and Laborie (2003).
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For what follows, we assume that cumulative resources are depleted and
replenished discontinuously at the occurrence of certain events like the starts
and completions of real activities. Accordingly, we associate the resource re-
quirements with events instead of real activities, and we represent the project
under study by an event-on-node network (see Subsection 1.1.2). The case
where cumulative resources are replenished and depleted continuously over
the processing time of activities is treated in Section 5.4.

1.3.1 Resource-Feasible Schedules

Let R” be the set of cumulative resources. For each resource k € RY a mini-
mum inventory level or safety stock R;, € ZU{~o0} and a maximum inventory
level or storage capacity Ry, € 7 U {oo} is given, where Ry > R,. The (stor-
age) requirement r;. € Z of event ¢ € V¢ for resource k equals the increase
in the inventory level of resource k at the occurrence of i. ry is positive if 4
replenishes k& and negative if ¢ depletes k. For example, a replenishing event
may represcnt the completion of some real activity producing an intermediate
product that is stocked in resource k, whereas a depleting event may coin-
cide with the start of some real activity consuming the intermediate product.
Another example of replenishing and depleting events are progress payments
received and disbursements for materials and subcontractors. Resource re-
quirement rgx can be regarded as the initial inventory level in resource k. We
assume that
Ry< > rin <Ry (keR) (1.19)
ieve

which ensures that the inventories Ziew r;k of resources k € RY at the
project termination neither fall below the safety stocks R, nor exceed the
storage capacities Ry.

Now let V¢ :={i € V¢|ry <0} and V,f+ :={i € V° | ry > 0} denote
the sets of events depleting and replenishing, respectively, resource k € R”.
Given a schedule S,

A(S,t) = {i € V| S; <t}

is the active set of events that have taken place by time ¢ and thus determine
the inventory level in resource k € R at time t. By

TR(S,t) = Z Tik

i€ A(S 1)

we denote the inventory level of resource £ € R” at time ¢ given schedule S.
T1(S,t) corresponds to the cumulative resource demands for resource k in
time interval [0,¢]. The right-continuous step function ri(S,-) is again called
the loading profile of resource k. The cumulative-resource constraints can be
written as

Ry <r(S,) <Ry (keRY, 0<t<d) (1.20)
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Definition 1.19 (Resource-feasible and feasible schedules). A sched-
ule S satisfying the cumulative-resource constraints (1.20) is called resource-
feasible with respect to cumulative resources k € RY. The set of all resource-
feasible schedules is denoted by Sc. S 1= Sy NS¢ is the set of all feasible
schedules.

Notice that conditions (1.19) are necessary and sufficient for the existence
of a resource-feasible schedule. Under conditions (1.19), a resource-feasible
schedule is obtained by scheduling all events at time 0.

The basic resource-constrained project scheduling problem with cumulative
resources can be stated as follows:

Minimize f(S)

subject to S € SrNSe (121)

Definition 1.20 (Optimal schedule). A feasible schedule S solving the
resource-constrained project scheduling problem (1.21) is called optimal.

Remarks 1.21.

(a) Without loss of gencrality we may assumc that R = oo for all £ € R
because the storage capacity of resource k can be taken into account by
introducing a fictitious resource k' with R,, = —~Ry, Ry = oo, and rjp =
—r; for all ¢ € V¢, Since Sg remains unchanged when adding some integer
r € Z to rox, Ry, and Ry, we may in addition assume that R, = 0 for
all k e R7.

{(b) The resource-constrained project scheduling problem (1.8) with renewable
resources is a special case of problem (1.21). To formulate the renewable-
resource constraints in terms of temporal and cumulative-resource con-
straints, we replace each real activity ¢ by two events activities ¢* and i©
with d72 = d"% = p,. For each renewable resource k € R”, we intro-

19¢¢ 1914¢
duce a cumulative resource k' with safety stock R;. = 0, storage capacity
Ry = 0o, as well as requirements ropr = Ri, g1 = 0 and rispy = —ry,

riepr = T4 for all real activities i € V*.

In analogy to Section 1.2, the problem without temporal constraints is
termed temporal relazation. The resource relazation again coincides with time-
constrained project scheduling problem (1.2).

The NP-hardness of finding some feasible schedule follows from the fact
that first, the respective problem for the case of renewable resources is NP-
hard (cf. Theorem 1.12) and that second, renewable-resource constraints can
be expressed by temporal and cumulative-resource constraints without chang-
ing the order of magnitude of the problem size. The following theorem shows
that, unlike the case of renewable resources, the problem remains NP-hard
even if all maximum time lags are deleted.
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Theorem 1.22 (Neumann and Schwindt 2002). The following decision
problem is NP-complete.

Instance: A project with one cumulative resource of infinite storage
capacity, with 6;; > 0 for all (i,7) € E, (i,7) # (n+1,0), and with
an arbitrarily large project deadline d.

Question: Does there exist a feasible schedule?

Proof. Clearly, the resource-feasibility of a schedule S can be verified in poly-
nomial time by evaluating the resource constraints for all £k € R and all
occurrence times t = S; of events ¢ € V. Hence, the decision problem is
contained in NP.

Consider an instance of the NP-complete decision problem 3-PARTITION
(cf. Garey and Johnson 1979, problem SP15). Given a sct 7 of 3v indices
¢t =1,...,3v with sizes s(i¢) € N and given a bound M &€ N such that M/4 <
s(i) < M/2 for all i € 7 and ), ;rs(i) = vM. The question is whether
or not 7 can be partitioned into v sets Zy,...,7, such that Ziezﬂ s(i) =
M for all 4 = 1,...,v. An equivalent instance of our decision problem can
be constructed as follows. Besides the project beginning 0 and the project
termination n + 1, set V¢ contains n = 4v events i = 1,...,4v. There is one
cumulative resource with safety stock B = 0 and infinite storage capacity
R = oo. The requirements for the cumulative resource are ro = 1 = 0,
r; =s(z) fore=1,...,3v, and r;, = —M for i = 3v + 1,...,4r. In addition,
we define v — 1 minimum time lags d:’)‘ﬂ_‘l =1lfori=3v+1,...4v -1,
which prevent the simultaneous occurrence of any two depleting events. Due
to R = 0, each unit consumed must immediately be replenished, which can be
achieved precisely if the replenishing events can be assigned to the depleting
events such that at each depletion time ¢, the total replenishment by those
events ¢ = 1,...,3r with S; =t equals M. a

1.3.2 Forbidden Sets and Delaying Alternatives

In the case of cumulative resources, we have to consider depletions and re-
plenishments of resources. Moreover, in addition to upper bounds Ry, there
are lower bounds R, on the inventories (k € R7Y). This results in two differ-
cnt types of forbidden sets: so-called surplus sets if the storage capacity is
exceeded and shortage sets if the inventory falls below the safety stock.

Definition 1.23 (Surplus and shortage sets). For a resource k € R7, a
set of events ' C V¢ is called a k-surplus set if

Z Tik > Rk
i€l

F is termed a minimal k-surplus set if F' is a k-surplus set and there is no
k-surplus set F' C F with FF\ F' C V,fJr and no k-surplus set F'' D F with
F"\ F C V¢ . Likewise, a set of events F C V° is called a k-shortage set if
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Z rie < Ry,

i€F

F' is termed a minimal k-shortage set ifF is a k-shortage set and there is no
k-shortage set F' C F with F\F' CV¢ and no k-shortage set F"' D F with
F'"\F C V,c By Fif and F, we denote the sets of all minimal k-surplus
and all minimal k-shortage sets, respectively.

Note that one and the same set F' can be a surplus set with respect to
a resource k € R and a shortage sct with respect to a different resource
k' € R7. In the following, we refer to sets F' being k-surplus or k-shortage
sets for some resource k € RY as forbidden sets. A minimal forbidden set is a
minimal k-surplus or a minimal k-shortage set for some resource k € R”.

Remark 1.24. We assume that B, < 0 and R > 0 for all &k € R”, which
ensures that ' = () is not a forbidden set. It follows from Remark 1.21a that
this convention does not mcan any loss of generality.

Similarly to the case of renewable resources, the concept of minimal de-
laying alternatives can be used for breaking up several minimal forbidden sets
at once.

Definition 1.25 (Delaying alternative). Let ' be a k-surplus set (a k-
shortage set). B C F is called a delaying alternative for F' and k if F'\ B is
not a k-surplus set (not a k-shortage set). If additionally B is C-minimal in
the set of all delaying alternatives for F' and k, we speak of a minimal delaying
alternative for F and k.

The following two conditions (1.22) and (1.23) are necessary and sufficient
for a set B C V¢ to be a minimal delaying alternative for F' and k.

Z rik < R ( Z rik > Ry) (1.22)

ieF\B ieF\B
Z rik + mm?"]k > Rk ( Z Tik + maécrjk < Ek) (1.23)
i€F\B i€ F\B 7€

From (1.23) it immediately follows that minimal delaying alternatives for sur-
plus sets only contain replenishing events and that conversely, minimal delay-
ing alternatives for shortage sets only contain depleting events.

To prove the basic theorem that will show how to resolve resource conflicts
in a systematic way, we need the following preliminary lemma.

Lemma 1.26 (Neumann and Schwindt 2002).

(a) For each k-surplus set F there emsts some set F' € ‘7:,: satisfying the
condztzons@#F’ﬂVﬁ C FﬂVﬁ and F'OVE DFNVE .

(b) For each k-shortage set F, there exists some set F' e ]:,:r satzsfymg the
conditions § # F'NV¢ CFNVE and F’ﬂVe D FﬁVe
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Proof. Let F' be a k-surplus set. We construct a minimal k-surplus set F’
satisfying the condition of (a) as follows. We set I := F and scan the events
jeF ﬂV,f+. Event j is removed from set £ if F'\ {j} is still a k-surplus set.
Remark 1.24 implies that the resulting set F’ contains a replenishing event.
Then, we scan the events j € V¢ \ F and add j to set F' if F' U {j} is
still a k-surplus set. Consequently, for all events j € F' replenishing resource
k, F'\ {j} is no longer a k-surplus set and for all events j ¢ F’ depleting
resource k, F' U {j} is not a k-surplus set, either. Thus, F’ represents a
minimal k-surplus set meeting the condition of (a). The reasoning for a k-
shortage set F' is analogous. O

Proposition 1.27 (Neumann and Schwindt 2002). Let F' be a k-surplus
set (resp. k-shortage set). Set B represents a minimal delaying alternative for
F and k if and only if B is an C-minimal set contammg one e’uent] € V,C of
each minimal k-surplus set F' € F;t with F’ﬂVk - Fnd and F'nVE D
FNVE (resp. one event j € V¢ of each mmzmal k-shortage set F' € F~
withF’ﬂVe CFNnVe andF’ﬂVe DFﬂVe ).

Proof. Let F be a k-surplus set for some k € R"7.
Sufficiency: We consider a set B satisfying

F’ﬁV6 ﬂB%@forallF’€f+W1th }

FIOVE CEAVE and F'AVE D FAVE (1.24)

Now assume that > . jem\B Tk > Ri. Then F \ Bisak- surplus set, and Lem-

ma 1.26 1mphcs the existence of a set I’ € .7-'[; with F’I’WV,C C (F\B) ﬂVe

and F'NVE D (F\B)NV¢ . From F/ NV¢ (F\B)ﬂVe it then follows
that F' N V,f NnB :_(Z), Which contradicts the assumption. Consequently, we
have Z]EF\B rir < Ry for any set B with property (1.24), and thus each
C-minimal set B meeting condition {1.24) is a minimal delaying alternative.

Necessity: Now let B be a minimal dclaylng alternative. We assume the exis-
tence of a set I/ € FF with F/n VEE C FPNVE P nVE D FNVE,
and F' N Vk NB = Clearly, we have rj;, > O for all j € B, which
then implies B N V° = B, i F'NnB = § and F' = F’'\ B. Thus,
ZJeF' Tik = delﬂ\B ik < ZjeF\B rig < Rk, i.e., F' is not a k'—surpllls
set, which contradicts the assumption. Moreover, we have > jer\B Tik > Ry
for all subsets B’ C B, which implies that for each B’ C B, there is a set
F' e FF with F'n V,f+ - FﬁV,,f+ and F’ﬂV,f+ N B’ =0 (see the proof of
sufficiency). Thus, B is C-minimal in the set of all sets satisfying (1.24).
The proofs for the casc of a shortage set F' are analogous. a

Algorithm 1.6, which is a variant of Algorithm 1.4, shows the correspond-
ing recursive procedure used for computing the set B of all minimal delaying
alternatives for a forbidden set F' and a resource k. Since the project begin-
ning 0 may be contained in minimal delaying alternatives, the procedure is
invoked by MinimalDelayingAlternatives(F, k,—1).
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Algorithm 1.6. MinimalDelayingAlternatives(B, k, 1)

Input: A project, a forbidden set B, a resource k, an index :.
Ensure: B contains all minimal delaying alternatives B’ C B for I and k with
min(B \ B’) > i.

if B satisfies (1.22) then (x B is delaying alternative )
if B satisfies (1.23) then (x B is minimal delaying alternative *)
B:=BU{B};
else
for all j € B with j > ¢ do MinimalDelayingAlternatives(B\ {j}, k, 7);

1.3.3 Breaking up Forbidden Sets

The following theorem provides a sufficient and necessary condition on the
resource-feasibility of schedules with respect to cumulative resources.

Theorem 1.28 (Neumann and Schwindt 2002). A schedule S is re-
source-feasible if and only if

(a) for each F € FF with k € R, there exist two events j € F N V,f+ and
i€ VE \F such that S; > S;, and

(b) for each F e F with k € R, there exist two events j € FNVE and
zEVk \ F su(‘h that S; > S;.

Proof. Sufficiency: Let S be a schedule with 74 (S,t) > Ry for some resource
k € R and some point in time ¢ > 0. Lemma 1.26 then provides the existence
of a minimal k-surplus set F' € F;F for which @ # Fn VkJr C A(S, )N VkJr
and FNVE D A(S,t) NV . Moreover, (1.19) ensures that VE\NF #0.
Due to F'n V‘3 C A(S,t) we have S; <t forall j € F'n Ve In addition,

¢ \F C VE\A(S',t implics S; > ¢ for all ¢ € V¢ \ F. Thus, S; < 5;
holds forall j € FNVE andalli € V¢ \ F, which contradicts condition (a).
Similarly it can be shown that from a shortage in some resource k at a time
t > 0 it follows that condition (b} is not met.

N ecesszty Let F € F;" be a minimal k-surplus set violating (a), i.e., for all
jern Ve and all i € V¢ \F, we have S; < S;. From Remark 1.24 it follows
that F' contains an event replenishing resource k. Let ¢ := max;¢ Frvet S; be
the point in time at which the last replenishing event j € I occurs. Due
to FNVE C A(S,t) and (Ve \ F) N A(S,t) = 0, we obtain ry(S,t) >
ZjEF rik > Ry, ie., S is not resource-feasible. The case of F' € F; can be
dealt with analogously. a

Theorem 1.28 states that any resource conflict caused by the occurrence
of the events of some forbidden set can be resolved by adding precedence
constraints S; > S; to the original temporal constraints. As a consequence,
the set S¢ of all resource-feasible schedules represents a union of polyhedral
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cones, and the sct S of all feasible schedules again is a finite union of inte-
gral polytopes. Since each project scheduling problem with renewable-resource
constraints can be represented as an equivalent project scheduling problem
with cumulative-resource constraints, this union is generally disconnected.

Similarly to the casec of renewable resources, forbidden sets F' can be broken
up by introducing (ordinary) precedence constraints or disjunctive precedence
constraints. Let F' be a k-surplus sct for some resource k and let B be some
minimal delaying alternative for F' and k. Then we may either impose a set
of precedence constraints

S; =8 (j€B)
between some depleting cvent ¢ from set A = V¢ \ F and all replenishing
events 7 from set B or, alternatively, a disjunctive precedence constraint
min S; > min S;
jeB €A
between sets A and B. For breaking up a k-shortage set I, we may introduce
a set of precedence constraints

S;>8; (jeB)

between some replenishing event ¢ from set A = V,:+ \ F" and all events j from
a corresponding minimal delaying alternative B or by a disjunctive precedence
constraint

min S; > min S;

jEB i€A
between sets A and B. Since compared to project scheduling with renewable-
resource constraints, set A typically contains a large number of elements, the
use of disjunctive precedence constraints instead of ordinary precedence con-
straints generally leads to a tremendous decrease in the size of the enumeration
tree of branch-and-bound methods.

1.3.4 Counsistency Tests

As for project scheduling problems with renewable-resource constraints, con-
sistency tests can be used to draw conclusions about temporal constraints
that must necessarily be satisfied by resource-feasible schedules.

Necumann and Schwindt (2002) have used the profile test for calculating
lower bounds on the minimum project duration. Assume that some event 4
cannot take place before a hypothetical earliest occurrence time t;. We add
the corresponding arc (0,4) with weight ¢; to project network N. Let S* with
k € RY be the (generally not time-feasible) schedule where replenishments
arisc as early as possible and depletions occur as late as possible, i.e.,

Sk =ES;, ifry, >0
Sk = LS;, otherwise

} (ieVe)
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The corresponding loading profile r(S*, -) then provides an upper approxima-
tion to the loading profile of any resource-feasible schedule. If 7, (5%, ) < R,
for some time t, it has thus been shown that event ¢ must arise before time ¢,
e, S; <t; — 1 (notice that conv(S) is again an integral polytope). The con-
tradiction may also be derived from comparing the storage capacity Ry of
resources k with lower approximations to resourcc-feasible loading profiles
obtained by scheduling depletions at earliest and replenishments at latest oc-
currence times. Similarly to the shaving technique for project scheduling with
renewable resources, the tentative values for ¢; can be tested according to a
binary scarch in set [ES;, LS;]NZ. Hence, the profile test can be implemented
to run in O(log d|R”|nlogn) time per event 4. Recalculating the earliest oc-
currence times after having applied the test takes O(n) time (cf. Remark 1.8).
Instead of earliest occurrence times we can also establish hypotheses on latest
occurrence times, which may then be falsified by the same techniques.

The following balance test has been devised by Laborie (2003). Event
h € V¢ must occur before event j € V¢ precisely if dp; > 0, and h may occur
before j exactly if d;n < 0. Now let dg; > 0. By considering all depleting
events that must occur before j and all replenishing events that may occur
before j, we obtain the upper bound

T (j) = Z Thic + Z Thic

heVE :dp; >0 heVET din<0

on the inventory level in resource k just before the occurrence of j. By rear-
ranging the terms, 7<(4) can also be written as

=<(a\ _ "
NN Thi + E Th
heVeidy; >0 revet:
djn<0,dn,; <0

i.c., as the sum of all requirements that must take place before j and all re-
plenishments that possibly but not necessarily occur before j. Now assume
that >, cye. ;>0 This < Rk, which implies that some of the latter replenish-
ments must arise before 5. Let hi,...,h, be a numbering of the events from
set Vk‘ () =1{h eV | dp < 07 dp; < 0} according to nondecreasing
earliest occurrence times Sy, and let 4 be the smallest index such that

‘U,
Z Thk‘*‘zrh,\k > R,

hEVE:th‘>O A=1

Then j must occur after time ES),,, and we obtain the temporal constraint
S; > ESp, + 1. 1f distance matrix D is given, the time needed for applying
the balance test to activity j is of order O(|R7|nlogn). Updating matrix D
after having increased ES; takes O(n?) time.

The balancc test can be strengthened as follows. We consider one event
i€ V,f+ (4) and we assume that S; > S;. Then upper bound 75 (j) on the
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inventory level in resource & at time S;—1 can be reduced by all replenishments
from set V,f+ (7) which cannot occur strictly before 7 (and due to S; > S; thus
cannot occur strictly before j). This means that if

Z Thi < By,

hEV,:+:
d;p<0,dp;<0,d;p, >0

=<
Tk

—

<

=
|

for some k € R, then it must hold that S; > S; -+ 1. This variant of the test
takes O(|R7|n) time per pair (i,7) of events.
Similar consistency tests can be performed based on the upper bound

F;% (4) = Z Tik + Z Tik

i€VE ;>0 ieVE" 1d <0

on the inventory level at the occurrence of event 5 and the corresponding lower
bounds 5 (5) and 5 (7).
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Relations, Schedules, and Objective Functions

When allocating scarce resources over time we have to define precedence rela-
tionships among the activities of the project. Those precedence relationships
establish a binary relation in the activity set of the project. Together with
the original temporal constraints, the binary relation gives rise to a preorder
in the activity set. Depending on the type of basic project scheduling prob-
lem given and the specific objective function to be minimized, different types
of preorders have to be investigated. In this chapter we review and extend
a classification of schedules and objective functions that has been proposed
by Neumann ct al. (2000). The classification is based on two basic repre-
sentations of the feasible region of project scheduling problems as unions of
relation-induced polytopes. The purpose of the classification is to provide, for
each class of objective functions, a finite set of candidates for optimal sched-
ules that are characterized as specific points of the relation-induced polytopes
such as minimal points, local minimizers of the objective function, or vertices.

2.1 Resource Constraints and Feasible Relations

Before we discuss the relationship between resource constraints and certain
relations in the set of real activities or events, respectively, we first review
some basic terminology.

Definition 2.1 {Binary relation, preorder, and strict order). A binary
relation p in (ground) set X is a set of pairs (z,y) € X x X. Relation p' in
X with p' D p is termed an extension of p. tr(p) denotes the transitive hull
of relation p, i.e., the C-minimal transitive extension of p in X. A transitive
binary relation 8 in set X is termed a preorder in X. Two elements z,y € X
are referred to as comparable in preorder 0 if (x,y) € 0 or (y,z) € 8, and
incomparable, otherwise. @ is a complete preorder if (i,5) € 8 or (j,1) € 6 for
alli,je X, i# j. A set U C X of pairwise incomparable elements is called
an antichain in 0. Pred®(z) = {y € X | (y,2) € 6} is the set of predecessors of
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zinb. xzeY C X is called a mazimal element of Y in 0 if (y,z) € 0 implies
(z,y) € 8 for ally € Y, y # x. An irreflezive preorder is asymmetric and
thus represents a strict order. The covering relation cr(0) of strict order 6 is
the C-minimal binary relation p in X with tr(p) = 8. The precedence graph
of strict order 6 is the directed graph G(0) with node set X and arc set cr(6).

When we deal with renewable resources, forbidden sets F' are broken up by
introducing precedence constraints S; > S;+p; between real activities 4,5 € F.
In other words, we construct a strict order # in the set V¢ of real activities
where (7,7) € 6 means that activity j cannot be started before activity ¢ has
been completed. In case of cumulative resources, surplus and shortage sets F'
are broken up by introducing precedence constraints S; > S; between events
i€ Ve\ F and events j € F. Thus, by resolving cumulative-resource conflicts
we establish a reflexive preorder # in event set V¢ whose elements (7, j) say
that event j cannot take place before the occurrence of event 3.

The following two types of preorders will be needed when studying prece-
dence relationships between real activities or events that are induced by a
given schedule.

Definition 2.2 (Interval order and weak order). An interval order in
set X is a strict order 8 in X for which (w,z),(y,2) € 6 implies (w,2) € 0
or (y,x) € 0 for all w,z,y,z € X. A (reflexive) weak order in set X is a
complete and reflexive preorder in X.

2.1.1 Renewable-Resource Constraints

In this subsection we consider irreflexive relations in the set V' of real activ-
ities for the scheduling of projects with renewable resources. We first define
the concepts of time-feasible and feasible relations, which go back to the work
of Radermacher (1978) and Bartusch et al. (1988). In difference to the treat-
ment of the material by Neumann et al. (2000) and Neumann et al. (2003d),
Sect. 2.3, we use relations instead of strict orders, which allows of a unifying
view on renewable-resource and cumulative-resource constraints.

Definition 2.3 (Time-feasible and feasible relations). Let p be an ir-
reflezive relation in set V¢ and let St{p) = {S € Sr | S; > S; + p; for all
(1,7) € p} be the set of all time-feasible schedules satisfying the precedence
constraints given by p. Sp(p) is called the relation polytope of p. Relation p is
termed time-feasible if St(p) # 0. A time-feasible relation p with Sp(p) C S
1s called feasible.

Condition Sp(p) # § means that the precedence constraints from rela-
tion p do not contradict the prescribed temporal constraints. If Sp(p) C S,
all schedules satisfying those precedence constraints are feasible. If p is a fea-
sible rclation, then all time-feasible extensions p’ D p are feasible as well. A
feasible relation p represents a solution to the sequencing problem of resource
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allocation, which consists in determining a (partial) order in which competing
activities are processed on the resources. The subsequent time-constrained
project scheduling of the activities is achieved by finding some (necessarily
feasible) schedule S € Sy(p) minimizing objective function f on Sr(p).

Let M C St be a nonempty set of time-feasible schedules. We say that S is
a minimal point of M if there is no S’ € M with S’ < S, where §' < S means
S < S and S # S. Relation polytope Sy(p) is the set of all time-feasible
schedules belonging to the following “expanded” project network N{p). As a
consequence, the corresponding carliest schedule represents the unique mini-
mal point of polytope St(p) (see Subsection 1.1.3).

Definition 2.4 (Relation network). Given relation p in set V%, the rela-
tion network N(p) results from project network N by adding, for each pair
(¢,7) € p, the arc (i,7) with weight p;. By D{p) = (d?j)i,jeva we denote the
distance matriz belonging to relation network N(p).

Bartusch et al. (1988) consider time-feasible strict orders 6 that are exten-
sions of the strict order

QD) :={(4,7) € VEx V| dij > p;}

in V¢ induced by distance matrix D. We shall call such a strict order § BMR-
feasible if no antichain U in @ is forbidden. As we shall prove later on, the
antichains in 6 are exactly the sets of real activities which, subject to the
precedence constraints from €, can be in progress simultaneously. That is
why any BMR-feasible strict order is feasible as well. On the other hand,
there may be feasible strict orders ¢ O ©@(D) which are not BMR-feasible,
as will be illustrated in Example 2.10. The reason for this is that in general
O(D(0)) D tr(0 U O(D)). In the case where 6;; > p; for all (¢,7) € E, strict
order @ is feasible precisely if tr(6 U ©(D)) = ©(D(8)) is feasible.

By applying Theorem 1.17 we obtain the first basic representation of the
set S of all feasible schedules.

Proposition 2.5 (Bartusch et al. 1988). Let MFR be the set of all C-
minimal feasible relations in activity set V. Then {Str(p) | p € MFR} is a
covering of S.

Notice that in general the above covering is not a partition of S because two
different time-feasible relations p and p’ may not be contradicting each other
(i.e., Sp(pUp) = Sr(p) NSr(p’) # 0). Proposition 2.5 will be useful when
dealing with objective functions that can efficiently be minimized on convex
polytopes like regular or convex functions. In this case, the basic resource-
constrained project scheduling problem (1.8) can be solved by enumerating
(subscts of) relations p € MFR.

In the following we develop characterizations of time-feasible and feasible
relations that allow for efficiently checking the feasibility of a given relation.
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The latter technique will be used when dealing with the case of uncertain input
data in Section 6.5, where solving a resource allocation problem requires the
generation of appropriate feasible relations in the activity set. We shall apply
a similar approach in Section 5.2 for deciding on the feasibility of schedules
when resource units are occupied during a sequence-dependent changeover
time between the execution of consecutive activities.

Proposition 2.6 (Neumann et al. 2000). Relation p in V¢ is time-feasible
if and only if relation network N(p) does not contain any directed cycle of
positive length.

Proof. By definition, relation p is time-feasible exactly if Sr{p) # 0. Poly-
tope Sr(p) corresponds to the set of time-feasible schedules belonging to
network N(p). From Proposition 1.7 it follows that there is a time-feasible
schedule for N{p)} precisely if N(p) does not contain any directed cycle of
positive length. a

As a consequence of Proposition 2.6, checking the time-feasibility of p
can be done in O(n[m + |p|]) time by applying Algorithm 1.1 to relation
network N(p) for computing distances df, for all ¢ € V*. The next proposition
shows how the feasibility of p can be established on the basis of distance
matrix D(p). We need the following preliminary lemma.

Lemma 2.7. Let St # 0 and let U C V® be a set of real activities such that
dij < p; for all 4,5 € U. Then there exists a time-feasible schedule S with
A(S,t) DU for somet > 0.

Proof. Two activities ¢,7 € U necessarily overlap in time if dj7** < p; and
d7;*® < pj. Now assume that we add, for all ¢,j € U with ¢ # j, a cor-
responding arc (j,4) weighted by 6;; = —p; + 1 to project network N. We
consider the addition of one of those arcs (j,4). d;; < p; or, equivalently,
di; < p; — 1 implies d;; 4 0;; < p; —1 —p; + 1 = 0. Proposition 1.9 then says
that there is no directed cycle of positive length in the resulting (expanded)
network. Moreover, for all modified distances dg;, with g,h € U we have
dgn = dgj + 05 +dsp, =dg; —pi+1+dip <pg—1-p;+1+p;—~1=pg—1so0
that property dg;, < pg is preserved for all g, h € U. Thus, after the addition
of all arcs (j,4) € U x U with i # j there is no directed cycle of positive length
in the resulting network N'. Proposition 1.7 then yields &7 # @ for the set S,
of time-feasible schedules belonging to network N’. Due to the added maxi-
mun time lags, any two activities i, € U overlap in time for cach schedule
S e Sh, e, [Si,Si4+pi[N[S;,S;+p;[# 0 for all 4,57 € U. The Helly property
of intervals then implies that the interval M;cy{S;, S; + p;| during which all
activities from set U overlap is nonempty for each S € Sf. O

A constructive proof of Lemma 2.7 for the case where no deadline d for the
latest termination of the project is prescribed can be found in Bartusch et al.
(1988).
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Proposition 2.8 (Neumann et al. 2003b, Sect. 2.3). Time-feasible rela-
tion p in V@ is feasible if and only if for each minimal forbidden set F' € F,
relation network N(p) contains a directed path of length dfj > p; from some
node 1 € F' to some node j € F.

Proof. Sufficiency: Let p be a time-feasible relation such that for all minimal
forbidden sets F' € F, there is a pair (i, j) of activities 4, j € F' with df; > p;.
Each schedule S € S7(p) satisfies precedence constraint S; > S; + p; for
all those pairs (¢,7) € @(D(p)). From Theorem 1.17 it then follows that all
schedules S € Sp(p) are resource-feasible. Thus, with Sp(p) C Sy we have
0 £ Sr(p) SSprNSy=S8.

Necessity: We assume that there is a forbidden set F with dfj < p; for
all ¢,5 € F. Then from Lemma 2.7 it follows that there exists a schedule
S & Sp(p) for which all activities ¢ € F overlap in time. Thus, S is not
resource-feasible and Sr(p) € S, which contradicts the feasibility of rela-
tion p. O

The following theorem is a direct consequence of Proposition 2.8.

Theorem 2.9. Time-feasible relation p in V* is feasible if and only if no
antichain in strict order ©(D(p)) is forbidden.

Proof. U is an antichain in ©(D(p)) exactly if dfj < p; for all i,5 € U.
Proposition 2.8 says that p is feasible if and only if no antichain in ©(D(p))
is a minimal forbidden set. Obviously, this is true exactly if no antichain is
an (arbitrary) forbidden set because any forbidden antichain U would embed
some minimal forbidden subchain U’ C U. 0

Theorem 2.9 implies that the feasibility of a time-feasible relation p can
be verified by finding, for each £ € R?, a maximum-weight stable set Uy in
the precedence graph G(8) of strict order 8 = ©(D(p)) with weights r;;, for
nodes ¢ € V@, Since G(8) is a transitive directed graph (see, e.g., Bang-Jensen
and Gutin 2002, Sect. 1.8), such a set Uy can be determined efficiently by
computing a minimum (s,t)-flow u* in a flow network Gy(6) arising from
G(8) by adding two nodes s and t and arcs (s,?) and (j,t) for sources ¢ and
sinks j of G(#) and where lower node capacities r, for nodes i € V2 have to be
observed (cf. Kaerkes and Leipholz 1977 and Mohring 1985). This can be done
in O(n®) time by two applications of the FIFO preflow push algorithm for the
maximum-flow problem with upper arc capacities (see, e.g., Ahuja et al. 1993,
Sect. 7.7, or Bang-Jensen and Gutin 2002, Sect. 3.9). p is feasible precisely if
for each k € R?, the minimum-flow value ¢(u*) and thus the weight Yoicu, Tik
of stable set Uy, is less than or equal to resource capacity R.

Ezample 2.10. We consider a project with four real activities and one renew-
able resource. Figure 2.1a shows the relation network N(p) belonging to strict
order p = {(1,2),(3,4)}, where nodes ¢ € V* are labelled with durations p; on
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the top and resource requirements r; in boldface on the bottom. The resource
capacity is R = 2. There are five minimal forbidden sets {1, 2}, {1, 3}, {1,4},
{2,4}, and {3,4}. p is not BMR-feasible because antichains {1, 3}, {1,4}, and
{2,4} are forbidden sets. The strict order § = @(D(p)) induced by distance
matrix D(p) equals {(1,2),(1,3),(1,4),(2,4),(3,4)}. The corresponding flow
network G(6) is shown in Figure 2.1b. Each node i is labelled with lower node
capacity r; and each arc (4,7) is labelled with minimum flow »;; on (4, 7). A
maximum-weight antichain in 8 is U = {2, 3} whose weight ro + 73 =2 < R
equals the minimum flow value ¢(u). Thus, strict order p is feasible.

1 1 1 1
(a) 0 0 E 1 =@ 0 '@ 1 ) 1
2 1 1 2
—4

Fig. 2.1. Difference between feasibility and BMR-feasibility of strict orders: (a) re-
lation network N(p); (b) minimum (s,t)-flow in network G(6)

We now turn to strict orders 8 in V* that are given by the precedence
relationships induced by some schedule S.

Definition 2.11 (Schedule-induced strict order). Given a schedule S,
strict order 6(S) := {(i,7) € V* x V| §; > S; 4+ p;} is the schedule-induced
strict order which corresponds to the precedence relationships established by S.
The relation polytope Sy(6(S)) of 6(S) is called the schedule polytope of S,
and the relation network N(6(S)) is called the schedule network of S.

Schedule-induced strict orders 6(S) belong to the class of interval orders.
This can be seen as follows. Let S be some schedule and let (g, h), (¢, 7) € 6(S5).
If (i,h) ¢ 6(S), then S; > S; +p; > Sp, > Sy +pg, e, (9,75) € 6(5).

By Definition 2.3 we have

Sr(p) = {S € S716(S) 2 p} (2.1)

If schedule S is time-feasible, Sp(#(S)) contains S. If schedule S is feasible,
we have S1(0(S5)) C S. The reason for this is that all schedules S’ € S7(6(S))
satisfy 6(S’) 2 0(S) (compare (2.1)) and thus each active set A(S’,¢') with
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0 <t < d is a subset of some active set A(S,t) where 0 < t < d. This proves
the following proposition.

Proposition 2.12 (Neumann et al. 2000). Strict order 8(S) induced by a
time-feasible schedule S is feasible if and only if schedule S is feasible.

Notice that for a time-feasible schedule S, strict order §(S) represents the
C-maximal relation whose relation polytope contains S. This can easily be
shown by assuming the existence of some relation p D 0(S) with S € Sr(p).
Then relation p contains a pair (4,7) ¢ 0(S). That is, we have S; < S; + p;,
which contradicts the assumption S € Sr(p). The latter observation implies
the following statement.

Proposition 2.13. Each C-mazimal feasible relation is induced by some fea-
sible schedule.

The relation polytope Sp(6) of some strict order 8 is the set of all time-
feasible schedules inducing an extension of 6. The set of all schedules induc-
ing 8 is termed the equal-order set of 6.

Definition 2.14 (Equal-order set). Let 8 be some schedule-induced strict
order in set V*. Equal-order set ST(8) := {S € St | 6(S) = 8} is the set of

all time-feasible schedules inducing strict order 8.

Equal-order sets represent differences of schedule polytopes and thus are
generally not closed. If 8 is an C-maximal time-feasible strict order, we
have S7(0) = Sr(0), and SH(0) C Sr(0), otherwise. Equal-order sets are
convex because every schedule S on a line segment joining two schedules
S’, 8" € ST(0) induces strict order §. The concept of cqual-order sets leads
to the second basic representation of the set S of all feasible schedules.

Proposition 2.15. Let STO be the set of all feasible schedule-induced strict
orders. Then {S7(0) | 6 € SIO} is a partition of S.

We will refer to this representation of S when dealing with resource levelling
problems, where the objective function is regular or concave on equal-order
sets and thus can be minimized by investigating minimal points or vertices,
respectively, of equal-order sets. The following proposition shows that this
corresponds to enumerating minimal points or vertices of schedule polytopes.

Proposition 2.16. For a given project, the set of all minimal points (resp.
vertices) of equal-order sets coincides with the set of all minimal points (resp.
vertices) of schedule polytopes.

Proof. We show the coincidence of the vertex sets. The same reasoning can be
applied to minimal points. Let S be a vertex of some schedule polytope St(8).
Then S is a vertex of equal-order set S5 (6(5)) as well because S € S7(6(5))
and SF(0(S)) C Sr(). Now let S be a vertex of some equal-order set S5 (0).
Then ST (0) = Sr(0(S)) \ (UpseST(p)). Since set U,59ST(p) is closed, S must
be a vertex of Sp(0(9)). O
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2.1.2 Cumulative-Resource Constraints

In this subsection we are concerned with relations establishing precedence
relationships between the events of a project with cumulative resources. The
concepts of time-feasible and feasible relations are defined in analogy to (time-)
feasible relations for the case of renewable resources.

Definition 2.17 (Time-feasible and feasible relations). Let p be a rela-
tion in event set V° and let St(p) :={S € Sr | S; > S; for all (i,7) € p} be
the relation polytope of p. Relation p is termed time-feasible if Sp(p) £ 0. A
time-feasible relation p is called feasible if S(p) C S.

A feasible relation in set V¢ defines precedence constraints between the
events from set V¢ which are consistent with the temporal constraints and
which ensure that all schedules S € Sp(p) are feasible. The concepts of relation
network N(p) and corresponding distance matrix D(p) are defined as for strict

orders.
O(D) == {(i,5) e Ve x V*® | di; > 0}

denotes the reflexive preorder in set V¢ induced by distance matrix D.
Theorem 1.28 provides the first relation-based representation of the S of
all feasible schedules.

Proposition 2.18. Let MFR be the set of all C-minimal feasible relations
in event set V. Then {Sr(p) | p € MFR} is a covering of S.

Again, the covering of S by relation polytopes is generally not a partition.

As for relations in set V¢ we investigate how the feasibility of a given
relation in the event set can be checked efficiently. We need two preliminary
lemmas. The first lemma shows that any event set U C V¢ arising from the
union of predecessor sets in reflexive preorder ©(D) can be an active set.
The second lemma states that if not all minimal forbidden sets are broken
up by precedence constraints induced by distance matrix D, then there exists
a forbidden set satisfying the conditions of Lemma 2.19, which implies that
there are time-feasible schedules which are not resource-feasible.

Lemma 2.19. Let St # § and let U C V¢ be a set of events such that for all
i, € Ve withdy; >0, j € U implies i € U. Then there exists a time-feasible
schedule S with A(S,t) = U for somet > 0.

Proof. We select some j € U withd;; <Oforalli € U, e.g., a maximal element
of U in reflexive preorder ©(D). Since set U is finite, such a maximal element
always exists. Event ¢ € U necessarily occurs no later than j if dZ”" >0, and
event ¢ ¢ U must occur after j if d}’{i“ > 0. Suppose that project network N
is expanded by adding an arc (i, §) with weight &;; = 0 for each ¢ € U, i # j
and by adding an arc (j,¢) with weight d;; =1 for cach ¢ ¢ U. In what follows
we prove that the resulting network N’ does not contain dirccted cycles of
positive length. Event j has been chosen such that (1) d;, <0 for all h € U.
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Moreover, from the definition of set U it follows that (2) dgn < —1 for all
g ¢ U, h € U. We first consider the addition of one arc (¢,7) with ¢ € U.
Since (1) provides dj; < 0, it follows from Proposition 1.9 that no directed
cycle of positive length is created. Next we show that the updated distance
matrix D still satisfies inequalities (1) and (2). Obviously, adding (¢, j) does
not change any distance d;;, with h € U since from (1) we have dj; +6;;+d;5, <
0+ 0+ d;n = d;. For distances dg, with g ¢ U and h € U that are modified
when calling Algorithm 1.3 we have dgp, = dg; + 65 +djp, < -1 +040= -1
because of (1) and (2). Now consider the addition of one arc (4,¢) where
¢ ¢ U. (2) provides dj; + dij < 1+ (—1) = 0, and thus none of the created
directed cycles has positive length. By applying (2) we obtain the inequality
djp, = dj; + 05 + dipy, <0+ 1+ (—1) =0 for the modified distances d;; with
h € U. From (2) is also follows that dgp = dgj + 055 + din < -1 +1—-1=—1
for the modified distances dgp, with g ¢ U and h € U.

Thus, we can introduce a minimum time lag dZ-“'" =0foralliel, i#
and a minimum time lag dj** = 1 for all i ¢ U such that the reduced
set S of time-feasible schedules belonging to expanded project network N’ is
nonempty. Since all events ¢ € U occur before or at the same time as j and all
events ¢ ¢ U must be scheduled (strictly) later than j, the active set A(S, S;)
at time S coincides with set U for all schedules S € S O

Lemma 2.20. If there zs a minimal k-surplus set F € fk with di; < 0 for all
ieVE \F,jeFnN Vk or a minimal k-shortage set F' € F- with d;; <0
for all i€ VE\F, je FNVE | then there ezists a forbidden set F' for which
jer zmplzes 1€ F’ for allz ] € V" UV with d;; > 0.

Proof. Let F be a minimal k-surplus set with d;; < 0 for all ¢ € V¢ \ F,
jeFn VC . We construct surplus set F’ as follows. We first dclctc all
ieVE N F from F' for which d;; < 0 for all ] e Fn Ve . Since for none of
the deleted events 1 there is some j € F N V“3 with d;; > 0, it holds that (1)
dij <Oforallie V¢ \F',jeF’ ﬂVk After the deletion of events i it holds
that for any h € F’ there is some j € F/' N Ve with dp; > 0. Now consider
distances dzh forie V¢ \Flandhe V¢ N F’ For given h € V& N F’, let
jeEF'N Vk be an event such that dp; > 0. (1) provides 0 < dy; < dyp, + dp;
for all i € V¢ \ F, which together with dj,; > 0 implies d;;, < 0. Thus, we
have (Q)dh<0forallz€Ve \F’ he FFoVe .

Next, we add all j € V" \ F’ to F' for Whl(‘h djj» > 0 for some
j EF'ﬂVE , so that (3) dg] < 0 for allg € Ve \F’ j € F’ﬂV‘f Let
7 be one of the added events and let 3/ € F'' N Ve be an cvent buch that
d;;» > 0. From (1) it follows that 0 > dy;» > di; + d;y for all i € Ve \F.
Due to djj > 0, this implies d;; < 0 for all i € V¢ \ F”, and thus property
(1) is preserved The validity of property (2) is not affected by addmg events
j€ Ve \ F" to F' either. Finally, consider distances d, for g € Ve \ F” and
h € F’ NVE . Forgiven h € FFNVE ,let j € F'NVE be an event such that
dp; = 0. Using (1) we have 0 > dg; > dgn + th, which then implies dg;, < 0.
Thus, it holds that (4) dgn < 0 for all g € Ve \F',he FFNVE .
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The resultmg set F’ is a surplus set because it arises from F' by deleting
events i € V¢ and adding events j € VE . Moreover, from (1) to (4) we have
di; <0 for all i ¢ F' and all j € F7, Wthh proves the assertion. The case of
a minimal k-shortage set F' can be dealt with analogously. 0

The next proposition, which translates the statement of Proposition 2.8
to the case of cumulative resources, characterizes the feasibility of relations
on the basis of relation network N(p).

Proposition 2.21. Time-feasible relation p in V¢ is feasible if and only if for
each minimal k-surplus set F' € F,", relation network N(p) contains a dzrected
path of length d > 0 from some node i € Vi¢ \ F to some node j € F'N V‘

and for each mzmmal k-shortage set F' € F,~, relation network N(p) contains
a directed path of length d’ > 0 from some node 1 € V‘ \ F to some node
jeEFNVE .

Proof. Sufficiency: Let p be a time-feasible relation satisfying the conditions
of Proposition 2.21. Since for each schedule S € Sr(p) it holds that S; > 5;
for all (z,7) € ©(D(p)), Theorem 1.28 implies the resource-feasibility of all
schedules S € Sp(p). This means that Sp(p) C S¢ and thus Sr(p) C S.

Necessity: We assume that for some resource k& € RY, there is a k-surplus
set F' such that df; < Oforallie Vo \ F,je€ Fn V™. Lemma 2.20 then
provides some surplus set F’ for which Lemma 2.19 establishes the existence
of a time-feasible schedule S such that A(S,t) = F’ for some ¢t > 0, ie.,

St(p) £ S. m)

Now we are ready to prove the counterpart of Theorem 2.9.

Theorem 2.22. Time-feasible relation p in V¢ is feasible if and only if no
union of predecessor sets in @(D(p)) is forbidden.

Proof. Sufficiency: Let p be a time-feasible relation for which no union of
predecessor sets in @(D(p)) is forbidden. U is a union of predecessor sets in
©(D(p)) precisely if for all 7,5 € V¢ with d” >0, j € U implies ¢ € U. Since
there does not exist any surplus set U Wlth the latter property, Lemma 2.20
implies that for each mmlmal surplus set F € F;F, there are two events
ieVE \Fand j e Fn Ve such that dp > 0. Symmetrically it holds
that for each minimal shortage set F' € 7, there are two events ¢ € V” \F
and j € FNV¢ with df; > 0. Proposition 2.21 then establishes the fea51b111ty
of p.

Necessity: For any union U of predecessor sets in ©(D(p)), it follows from
Lemma 2.19 that there exists a schedule S € Sy (p) with A(S,t) = U for some
t > 0. If U is a forbidden sect, schedule S is not resource-feasible, which means
that Sp{p) € S. O
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Next we discuss how the feasibility of a time-feasible relation p can be
checked in polynomial time by using Theorem 2.22. The statement of the
theorem can be reformulated in the following way: Time-feasible relation p
in V¢ is feasible precisely if for no j € V¢ there is a forbidden union U of
predecessor sets in 8 = @(D{p)) containing j as maximal element of U in 8
(compare proof of Lemma 2.19). For given j € V¢, such a set U is defined by
properties {1) ¢ € U implies h € U for all (h,i) € 8, (2) j € U, and (3) j is
a maximal clement of U in 6, i.e., for all ¢ € U, (j,7) € 6 implies (¢,7) € 6.
The latter condition is equivalent to ¢ ¢ U for all ¢ € V© with (4,7} € 6 and
(7,7) ¢ 6. Now let z; be a binary decision variable indicating whether or not
event ¢ € V¢ is contained in U. Then we have (1) z;, > z; for all (h,i) € 8,
(2) z; =1, and (3) z; = 0 for all i € V¢ with (j,4) € 6 and (¢,7) ¢ 0. The
set U belonging to incidence vector z = (z;);cve is forbidden exactly if for
some k € RY, 3.y rik < L or 3,y ik > Ry Thus, the problem of testing
the feasibility of p can be solved by verifying, for each event j € V¢ and each
resource k € R7, whether or not there exists a binary vector z satisfying
constraints (1) to (3) such that ) y. 7w, is less than safety stock R, or
greater than storage capacity Ry. For given event j and resource k, checking
whether the storage capacity of k£ might be violated at the occurrence of j can
be achieved by solving the following binary program.

Maximize Z TiLT;
ieVve
subject to zp —2z; 20 ((h,i) € 0:h#4) (1)
z;=1 (2) (2.2)
z; =0 (ieVe:(5,4) €0, (i,j)¢60) (3)
z; € {0,1} (ieVe) (4)

The coefficient matrix of constraints (1) coincides with the negative transposed
incidence matrix of the directed graph G;; with node set V¢ and arc set
O\ {(¢,7) | i € V°}. That is why the coefficient matrix of constraints (1) to (3)
is totally unimodular, and the integrality condition (4) for variables x; can be
replaced with 0 < z; < 1 (¢ € V*). As a consequence, problem (2.2) can be
formulated as a linear program. In the sequel, we show that the dual of this
linear program represents a minimum-flow problem.

Let i € V¢ be some predecessor of j in §. Then it follows from (1) and
(2) that z; = 1. Conversely, let j be predecessor of some ¢ € V° in 0 with
(i,7) ¢ 0. Then (3) implies that z; = 0. The variables z; with fixed value 1
or 0 can be eliminated as follows. If z; = 1 because (7, j) € 8, the transitivity
of reflexive preorder 6 provides (h, ) € ¢ and thus z;, = 1 for all (h,7) € 6.
Symmetrically, assume that x; = 0 because (j,h) € 0 and (h,7) ¢ 6. Then
the transitivity of  implies that (4,¢) € 6 and (4, j) ¢ 0 and thus by (3) z; =0
for all (h,%) € 6. Hence, constraint (1) can be restricted to variables z; for
which (7, 7) ¢ 6 and variables z, for which (4, h) ¢ 6 or (h,j) € 0. Otherwise
we would have x;, = 1 or z; = 0, which implies (1). For those variables z;
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and z, we can furthermore assume that (j,7) ¢ ¢ and (h,7) ¢ 0 because
else again x; = 0 or @), = 1. Now let V¢ := {i € V° | (4,5),(j, 1) ¢ 0} be
the set of all events ¢ for which the value of x; is not fixed in advance. Then
constraint (1) necds only be considered for pairs (h,7) € 8 with h s ¢ and
h,i € VP VS is the set of all ¢ € V* that are incomparable with j in 6. We
note that due to Remark 1.6b, {0 n+1}NVe =@ for all j € V7, and in
particular Vi’ = V¢, = 0. By 0, := 0 (V7 x V) we denote the sub-preorder
of & induced by set V7. We obtdm the following statement of problem (2.2) as
a linear program, Where the additive constant Z(i, jyeo Tik 18 omitted in the
objective function.

Maximize Z TikLi
eV
subject to xp —x; >0 ((h,i) € 8; : h # i)
Now let s and ¢ be a source and a sink to be added to directed graph Gjy.
By G, = (V;,0;) where V; := VFU{s,t} and 0; := 0;U({s} x V)U(VF x {t})
we denote the directed graph that results from G;; by adding arcs (s,4) and
(4,t) for all nodes ¢ € V. The dual of (2.3) can be formulated as the following
minimum-flow problem in @—jk with supplies i at nodes ¢ € V¢, where & (u)
denotes the value of flow u:

Minimize ¢’ (u) = Z Usg

(2.3)

1€V"
subject to Z Uiy — Z up; =71 (1 € Vf) (2.4)
(i,h)€8;:h##i (h,8)€0;:h#4
Up; > 0 ((h,z)EOJh;éz)

Problem (2.4) can be solved in O(n?) time by first substituting supplies r;; at
nodes ¢ into appropriate upper arc capacities (see, ¢.g., Bang-Jensen and Gutin
2002, Section 3.2) and then solving the minimum-flow problem with vanishing
supplies (cf. Subsection 2.1.1). Let @* be some flow solving minimum-flow
problem (2.4). Then the optimal objective function value for problem (2.2)
equals >3, .ycpTik + ¢ (w*), which is equal to the maximum inventory level
in resource k at the occurrence of event j.

For testing whether the inventory might fall below the safety stock, we
solve the minimum-flow problem where supplies r;; at nodes ¢ € V are re-
placed with —r;;. With uw/* designating a corresponding minimum (s, t)-flow,
the optimal objective function value for (2.2) with “Minimize” instead of
“Maximize” equals Z(i, fyeo Tik = @ (u7*), which coincides with the minimum
inventory level in resource k at the occurrence of event j. p is feasible if for
all events 7 € V¢ and all resources k € R7,

Ry + ¢ (u'") < Z ra < Ry, — ¢ (@F)
(i,5)ed
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In sum, checking the feasibility of a relation p takes O(|RY|n?*) time (recall
that the time-feasibility of p can be verified in O(n[m + |p[]) time).

We illustrate the verification of feasibility for a relation by considering an
example.

Ezample 2.23. Figure 2.2a shows a project network with five events and one
cumulative resource for which we assume a safety stock of R = 0 and a storage
capacity of R = 2. The node labels provide the respective resource require-
ments. We consider the empty relation p = §. The reflexive preorder induced
by D(p) = D is 0 = {(0, 1), 0,2),(0,3), 0,4), (1,4), (2,3), (2,4), (3,2), (3, 4)}
U {(¢,3) | i € V¢}. When checking against the storage capacity for event
j = 1, we obtain the flow network G, depicted in Figure 2.2b, where nodes
i € V¢ are labelled with supplies 7;. In the minimum (s, ¢)-flow %!, one unit
is shipped from node 3 to node 2, and thus the minimum flow value ¢!(@')
equals 0 and Z(i,l)e9 ri + ¢ (@) = ro + r; + 0 = 2. Figure 2.2c shows the
flow network Gy = G3 belonging to events j = 2 and j = 3 with a mini-
mum flow 7% = @° of value ¢*(@?) = ¢*(@) = 2 and Y2y it *(u?) =
Z(i,s)eo ri + ¢3@) = ro+ ry + 713 + 2 = 2. By inverting the signs of
the supplies, we obtain the minimum-flow problems for testing against the
safety stock. The corresponding flow values are ¢'(u!) = 0 and ¢?(u?) =
¢*(u®) = 0. Accordingly, we have Yo i~ ) =rg+7 —0=2and
Diyeo i — 0P (W) = D0 zyeq i — $3(u®) = ro + 12 +1r3 —0 = 0, which shows
the feasibility of relation p.

1
2

O——0——0@

Fig. 2.2. Verification of feasibility: (a) project network; (b) minimum (s, ¢)-flow in
network G1; (¢) minimum (s, t)-flow in network Gs = G

-1

We close this subsection by considering reflexive preorders in set V¢ that
are induced by some schedule. As we shall see, the results for schedule-induced
strict orders in set V@ carry over to schedule-induced reflexive preorders in
set Ve.

Definition 2.24 (Schedule-induced reflexive preorder). Given a sched-
ule S, reflexive preorder 6(S) := {(1,7) € V¢ x V¢ | S; > S;} is the schedule-
induced reflezive preorder which corresponds to the precedence relationships
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established by S. Sp(0(S)) s again called the schedule polytope of schedule S,
and N(8(S)) is the schedule network of S.

Due to their completeness, schedule-induced reflexive preorders 6(S) are
reflexive weak orders. Proposition 2.12 saying that 6(5) is feasible precisely if
S is feasible also applies to schedule-induced reflexive preorders. Analogously
to Proposition 2.13 it can also be shown that the C-maximal feasible relations
in set V¢ are induced by feasible schedules. Let 6 be some schedule-induced re-
flexive preorder in V¢ and let equal-preorder set S5 (8) := {S € Sy | 6(5) = 6}
again denote the set of all time-feasible schedules inducing 6. Similarly to the
casc of renewable resources, set S of all feasible schedules can again be repre-
sented as the union of nonintersecting equal-preorder sets.

Proposition 2.25. Let STP be the set of all feasible schedule-induced reflex-
ive preorders. Then {ST(8) | 6 € SIP} is a partition of S.

Again, it can be shown that each minimal point (resp. vertex) of an equal-
preorder set is a minimal point {resp. vertex) of some schedule polytope and
vice versa (see Proposition 2.16).

2.2 A Classification of Schedules

In machine and project scheduling without maximum time lags, different finite
sets of minimal-point schedules have been used for the optimization of regular
objective functions (see, e.g., Baker 1974, Sect. 7.2, for a study of nondelay, ac-
tive, and semiactive schedules in machine scheduling and Sprecher et al. 1995
for the generalization of those concepts to project scheduling with renewable
resources). Based on the feasible relations discussed in Subsection 2.1.1, the
classification of Sprecher et al. (1995) has been extended by Neumann et al.
(2000) to project scheduling problems with general temporal constraints and
nonregular objective functions. This section refers to the latter classification
of schedules.

All resource allocation methods discussed in this book are based on one of
the two basic representations of set S, either as a covering by relation poly-
topes or as partition by equal-preorder sets (where the term equal-preorder
set may also designate an equal-order set). The schedules to be dealt with in
Subsections 2.2.1 and 2.2.2 refer to the first and to the second representations,
respectively.

2.2.1 Global and Local Extreme Points of the Feasible Region

Let M C St be a nonempty set of time-feasible schedules. S € M is a
(global) extreme point of M if there are no two schedules S, 5" € M such
that S = a8’ + (1 — @)5” for some 0 < o < 1. If M is a polytope, each
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extreme point is a vertex of M and vice versa. We say that S € M is a local
extreme point of M if § is an extreme point of M N B.(S) for some ¢ > 0,
where B:(S) = {S’ € R**2? | ||S — S|l < €} is the ball of radius € around S
in R™*2, Recall that S € M is a minimal point of M if there is no schedule
S’ e M with 8" < S. We notice that a minimal point of M need not represent
a local extreme point of M. As we will see later on, cach minimal point of a
relation polytope M = Sr(p), however, is a local extreme point of M.

Definition 2.26 (Active, stable, and pseudostable schedules). A (fea-
sible) schedule S is called active, stable, or pseudostable if S is a minimal
point, an extreme point, or a local extreme point, respectively, of S. AS, 8§,
and PSS denote the sets of all active, all stable, and all pseudostable sched-
ules.

Active schedules have been introduced by Giffler and Thompson (1960) for
solving open-shop problems with precedence constraints among operations
and regular objective functions. In shop-floor scheduling, there is a one-to-
one correspondence between job sequences on the machines and semiactive
schedules, for which no operation can be processed earlier without changing
the job sequences. Those semiactive schedules (as well as their analogues in
project scheduling) are precisely the minimal points of components of S, and
every active schedule is semiactive.

Since each active, stable, or pseudostable schedule is a vertex of some
relation polytope, the sets AS, SS, and PSS are finite. Neumann et al. (2000)
provide an example of a project for which there is an active schedule that is
not stable. However, each active schedule is pseudostable, which can be seen
as follows. Assume that there exists some schedule S € AS \ PSS. Since
S is not pseudostable, we can find an open line segment ¢ passing through
S that totally belongs to S. The representation of S as a union of finitely
many polytopes implies that £ can be chosen such that all points on ¢ are
boundary points of S, i.e., £ C 8S. With z € [~1,1]"*? being the direction of
¢ C S+ Rz, the minimality of S in S implies that z ¢ [0,1]**2. It then follows
from ¢ C 3S that all schedules on ¢ are minimal points, which contradicts
the finiteness of AS. Figure 2.3 summarizes the relationships between the
schedule sets introduced.

In Neumann et al. (2000) it is shown by transformation from PARTITION
that for the case of renewable resources, it is NP-hard to decide whether or not
a given schedule is active, stable, or pseudostable. Since renewable-resource
constraints can be expressed by temporal and cumulative-resource constraints
without changing the order of magnitude of the problem size, this result also
applies to project scheduling with cumulative resources.

2.2.2 Vertices of Relation Polytopes

All schedules considered in Subsection 2.2.1 represent vertices of C-mazximal
rclation polytopes. We now turn to vertices of arbitrary relation polytopes.
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St \ SS
Sr / S PSS

Sc AS

Legend:
A — B means A DB

Fig. 2.3. Relationship between sets of schedules

Since cach vertex of a relation polytope corresponds to some time-feasible
schedule that is a vertex of its schedule polytope, we may restrict ourselves
to (arbitrary) schedule polytopes.

Definition 2.27 (Quasiactive and quasistable schedules). A feasible
schedule S is called quasiactive or quasistable if S is the minimal point or
a vertex, respectively, of its schedule polytope Sp(0(S5)). QAS and QSS de-
note the sets of all quasiactive and all quasistable schedules.

Since the minimal point of a relation polytope is always a vertex, any quasi-
active schedule is quasistable as well.

A schedule S is quasiactive precisely if no nonempty sect of activities can
be scheduled earlier without deleting at least one precedence relationship
(7,7) € 8(S) or violating some temporal constraint. Schedule S is quasistable
exactly if there is no nonempty set of activities which can be scheduled both
earlicr and later such that all precedence relationships (7, 7) € 6(S) and all
temporal constraints are observed. The next proposition provides an equiva-
lent formulation of the latter observation, which will be useful when dealing
with algorithms operating on the sets QAS and QSS of all quasiactive and
all quasistable schedules in Chapter 4.

Proposition 2.28 (Neumann et al. 2000). A feasible schedule S is

(a) quasiactive if and only if there exists a spanning outtree G = (V, Eq) of

its schedule network N(6(S)) rooted at node 0 such that S; — S; = df}s)
for all ares (i,7) € Fe,

(b) quasistable if and only if there exists a spanning tree G = (V, Eg) of its
schedule network N(0(S)) such that S;—S; = df;s) for all arcs (i,7) € Eq.
From Proposition 2.28 it follows that the quasiactiveness and the qua-

sistableness of a given schedule can be checked in polynomial time. A further

implication of Proposition 2.28 is that any quasistable schedule (and thus any

quasiactive schedule as well) is integral and that any quasiactive schedule S

satisfies
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Spt1 < min (d max (IHdX 3i5,Ds), E max( Inax 6;”,;71))
i€V 09 eV

Obviously, active schedules are quasiactive, and pseudostable schedules are
quasistable. Figure 2.4 locates the quasiactive and quasistable schedules
within the framework of the schedule sets introduced before.

Sr PSS Ss
S \s 0SS

Se / QAS AS
Legend:

A — Bmeans A DB

Fig. 2.4. Relationship between sets of schedules, revisited

2.3 Objective Functions

An objective function f : St — R associates each time-feasible schedule S
with a numerical assessment f(5). Recall that we have assumed f to be lower
semicontinuous and thus f takes its minimum on compact set S if S # 0.
Whereas regular objective functions f, which are componentwise nondecreas-
ing, refer to temporal objectives of project planning like minimizing the proj-
cct duration, nonregular objective functions typically translate some monetary
goals such as minimizing inventory holding or capacity adjustment costs or
maximizing the net present valie of the project. In this scction we are going
to study several classes of objective functions, which cover a large variety of
resource allocation problems in project management. Based on the results of
Sections 2.1 and 2.2 we provide for each class a finite set of schedules contain-
ing at least one optimal schedule if & # 0. In Subsection 2.3.1 we consider
objective functions that can be minimized efficiently on relation polytopes.
Subsection 2.3.2 is concerned with objective functions for which in general al-
ready the time-constrained project scheduling problem is NP-hard. The latter
objective functions are typically encountered when solving resource levelling
problems, where the problem amounts to minimizing the variability in resource
loading profiles of renewable resources (expressed in terms of range, variance,
or total variation). Whereas resource allocation problems with objective func-
tions from Subsection 2.3.1 can be solved by enumerating C-minimal feasible
relations, minimizing objective functions from Subsection 2.3.2 requires the
investigation of arbitrary schedule-induced preorders. For certain of the lat-
ter objective functions, however, the search for an optimal schedule can be
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limited to schedule polytopes belonging to C-maximal schedule-induced pre-
orders. The latter objective functions will be studied in Subsection 2.3.3.

2.3.1 Regular and Convexifiable Objective Functions

Consider some nonempty relation polytope Sr(p). Any regular objective func-
tion is minimized by the unique minimal point min S (p) of St(p), which co-
incides with the earliest schedule belonging to relation network N(p). Now let
f be some convex (and due to our lower semicontinuity assumption) contin-
uous objective function. Then finding a minimizer of f on Sr(p) can, under
some mild technical assumptions, be achieved in polynomial time, e.g., by
the ellipsoid method (cf. Grotschel et al. 1998, Sect. 4.1) or, more efficiently
on the average, by interior-point methods based on self-concordant barriers
for Sr(p). Self-concordant barriers are available for different classes of con-
vex functions (see the book by Nesterov and Nemirovskii 1994 for details).
The next definition provides a class of objective functions which admits a
smooth coordinate transformation such that the resulting time-constrained
project scheduling problem is a convex programming problem. Recall that a
bijection ¢ is called a C!-diffeomorphism if both ¢ and ¢! are continuously
differentiable.

Definition 2.29 (Convexifiable and linearizable objective functions).
Let f : Sy — R be some objective function. We call f convexifiable if
there exists o C'-diffeomorphism ¢ : S — X from St onto some FEu-
clidean space X such that f o ¢! is a convex function and the images
o(St(p)) = {e(S) | S € Sr{p)} of all relation polytopes under ¢ are con-
vex sets. If f oo™ is linear, we speak of a linearizable objective function f.

Trivially, each convex objective function is convexifiable and each linear objec-
tive function is linearizable. In addition, we notice that due to the continuity
of ¢~ 1, all images ¢(St(p)) are compact sets and because St is a relation
polytope, set X = (Sr) is convex.

A time-feasible schedule S € M C S is called a local minimizer of f on
M if for some € > 0, S is a minimizer of f on the relative ball M N B.(S)
around S in M (for the basic concepts of relative topology in Euclidean space
nceded for what follows we refer to Sydseeter et al. 1999, Ch. 12). Roughly
speaking, the reason for the tractability of time-constrained project scheduling
with convex objective functions is that each local minimizer of f on a relation
polytope Sy (p) minimizes f on Sy (p). The next proposition relates the sched-
ule sets introduced in Subsection 2.2.1 to regular and convexifiable objective
functions. It also shows that, as for convex objective functions, any convexi-
fiable objective function f can be minimized on relation polytopes Sr(p) by
computing a local minimizer of f on Sr(p).

Proposition 2.30. Let f be some lower semicontinuous objective function
and assume that S # (.
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(a) If f is regular, the set of active schedules contains an optimal schedule.

(b) If f is linear, the set of stable schedules contains an optimal schedule.

(c) If f is linearizable, the set of pseudostable schedules contains an optimal
schedule.

(d) If f is convexzifiable, any set containing a local minimizer of f for each
(C-mazximal) relation polytope contains an optimal schedule.

Proof. (a) and (b) are obvious. We first show (d). Let S be a local mini-
mizer of f on some relation polytope Sr(p). Then there exists some ¢ > 0
such that f(S) < f(5') for all &' € Sp(p) N B:(S). With z = ¢(5) and
' = p(S') this means that (f oo™} (z) = f(9) < F(5) = (f op~1)(z')
for all 2/ € p(Sy(p) N B:(S)). From the injectivity of ¢ we can infer that
(S1(p) N B(S)) = o(Sr(p)) Np(BA(S)), where it follows from the continu-
ity of o1 that ¢(B.(S)) is open. As a consequence, there exists some ¢’ > 0
such that the ball B., (z) with radius ¢’ around z in X is included in (B, (S5)).
This implies that z is a minimizer of f o ™! on set p(Sr(p)) N BL (z), i.e., a
local minimizer of fop™! on (St (p)). Since by assumption fop ™! is a convex
function and ¢(St(p)) is a convex set,  is also a (global) minimizer of fo™!
on 9(St(p)), i F(S) = (f o )(w) < (fo 1)) for all 2’ € p(Sr(p)).
Thus, we have f(S) < f(S’) for all &' with 2’ = ©(5") € p(St(p)), or, equiva-
lently, f(.S) < f(S7) for all S’ € Sp(p). As a consequence, any local minimizer
of f on some relation polytope Sr(p) minimizes f on the total polytope Sr(p).
From Propositions 2.5 and 2.18 it follows that ¢(S) = @(Upe mrrST(p)) =
Upemrre(ST(p))), which proves the assertion.

We now show statement (c). Since fop™! is linear on X, there exists some
extreme point z of ¢(S) C X that minimizes f o »~! on ¢(S). Now assume
that S = ¢~1(z) is not a local extreme point of S. Then there is an open line
segment ¢ C S containing S. Since ¢~! is continuous and ¢ is injective, this
means that z is a relative interior point of ¢(£) C ¢(S), which contradicts the
fact that x is an extreme point of ¢(S). |

Neumann et al. {2000) have considered quasiconcave objective functions
and so-called binary-monotone objective functions. An objective function f
is said to be quasiconcave if its upper-level sets U, = {S € Sy | f(S) > a}
are convex for every a € R (see, e.g., Avriel et al. 1988, Scct. 3.1). [ is
termed binary-monotone if f is nondecreasing or nonincreasing on each line
segment in binary direction z € {0,1}"*2. A quasiconcave function attains its
minimum on a compact set M at an extreme point of M because on closed
line segments, the function is minimized at one of the two endpoints. That is
why there always exists a stable schedule that minimizes f on set S if f is
quasiconcave and S # (). Since each relation polytope St(p) arises from the
intersection of finitely many half spaces {S € ]R';gz | So =0, §;—-5; > dfj}
where (7, 7) € F U p, binary-monotone objective functions, like the linearizable
objective functions, always possess a vertex of Sy(p) among their minimiz-
ers on Sr(p). Thus, binary-monotone objective functions are minimized by
pseudostable schedules. Unlike the case of convexifiable objective functions,
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however, a local minimizer of a quasiconcave or binary-monotone objective
function f on some relation polytope is generally not a global minimizer of f
on Sr(p).

We proceed by providing examples of regular and convexifiable objective
functions that are of interest in project scheduling. The simplest and most
frequently used regular objective function is the makespan or project duration

f(S) = Sn+1

The project duration problem with renewable resources has been extensively
studied in the literature during the four last decades (see Subsection 3.1.4 for
an overvicw). Minimizing the project duration is a suitable objective if the
majority of income payments occur at or after the end of the project, if the
project deadline is tight and thus finishing the implementation of the project
as early as possibly lowers the danger of exceeding the deadline, or if resource
capacity is needed for future projects (cf. Kolisch 1995, Sect. 2.1).
A sccond regular objective function is the total tardiness cost

F(8) = wh(Si+pi —di)*
eV

where d; € Z>q denotes a given due date for the completion of activity ¢
and w! € Zxo is the cost arising from a late completion of activity 4 per
unit time. This objective function is of particular interest for applications of
resource allocation methods in make-to-order production scheduling, which
will be discussed in Section 6.1. In that case, each real activity corresponds
to the processing of a job on a machine, and violations of the delivery dates
for the completed jobs incur conventional penalty per unit time.

We now turn to convexifiable objective functions. Of course, any linear and
any convex objective function is convexifiable. A nonregular linear objective
function is the total inventory holding cost

-d
f8)= > a /0 (S, t)dt

kERY

where we assume that each cumulative resource k stands for the inventory in
a storage facility keeping one intermediate or final product with unit hold-
ing cost rate cx € Z»o. Then f(S) represents the cost arising from the stock
in planning interval [0,d]. The linearity of f can be seen as follows. A re-
plenishment of resource k by r;; units at time S; incurs a holding cost of
ckrik(ﬁ — 5;). A depletion of k by —r;; units at time 5; saves a holding cost
of cx(—ri)(d ~ S;). Thus, the total inventory holding cost f(S) can also be
written as d ), cry Ck D _seve Tik — D okeRry Ck 2icve TikSi-

In general, certain activities and events i of a project are associated with
a cash flow c{ € Z, which may be a paying out for raw materials or workforce
or a paying in arising at the completion of a task when reaching a milestone.
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When evaluating the profitability of a long-term project, the cash flows have
to be discounted by some interest ratc «, which can, e.g., be chosen to be the
minimum attractive rate of return. The sum of all cash flows discounted to
time O is called the net present value of the project. For the sake of simplicity,
we supjpose that all cash flows are discounted continuously and that each cash
flow ¢; arises at time §;. The factor by which cash flow c{ is discounted
then equals e~ and thus the net present value depends on the schedule S
according to which the project is performed. By minimizing the negative net

present value
f(8) == el em
eV

we obtain a schedule that maximizes the financial benefit of the project in
terms of its net present value. Grinold (1972) has shown that the (negative)
net present value is a linearizable objective function. Let ¢ : Sp — X C R™+2
be defined as ¢(5) = (¢;(S))iev where ;(S) = e~*%. With x; = ¢;(5), the
temporal constraints S; — S; > d;; can be stated as x; — e g, < 0 and
So = 0 becomes zo = 1. The linearized objective function is (f o ¢~1)(z) =
—Diev clf ;. In addition, the net present value function f is binary-monotone
because f is differentiable and for any time-feasible schedule S and any binary
direction z € {0,1}"%2, the directional derivative of f at a point S+ oz € Sp
in direction z is dfs402(2) = e~*?df|s(2) (see Subsection 3.2.2 and Neumann
et al. 20035, Sect. 3.3).

A convex objective function considered in project management is the total
earliness-tardiness cost

F(8) = (wldi — S; — pil ¥ + wl[S; + pi — di] )
iev

where w¢ and w! respectively denote the cost per unit time incurred by an
carly or a late completion of activity ¢ € V with respect to given due date
d; € Zxg (see, e.g., Schwindt 2000¢ or Vanhoucke et al. 2001). Another exam-
ple of a convex objective function is the negative total weighted free float of
the project

(S) = w! ( max [S; + 6] — min S; — 855
f(S) ieszl ((j,z‘)eE[ J J] (i,j)eE[ g 51)

For given schedule S, the total weighted free float of the projcct is the weighted
sum of all early and late free floats of activities ¢ € V if the carliest and latest
start times £S; and LS; are set to be equal to S; (cf. Subsection 1.1.3). A
schedule with maximum total weighted free float can be regarded as robust
in the sense that when executing the project, deviations of individual start
times S; from schedule will minimally affect the start times of other activities.
In Section 6.5 we shall discuss how the total weighted earliness-tardiness and
total weighted free float objective functions can be used for project scheduling
under uncertainty.
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Before concluding this subsection, we notice that all objective functions
discussed above are continuous, which of course implies their lower semicon-
tinuity.

2.3.2 Locally Regular and Locally Concave Objective Functions

In this subsection we move on to objective functions that are regular or con-
cave on individual equal-preorder sets. Those objective functions play an im-
portant role for resource levelling, where one strives at smoothing loading
profiles 74(S,-) of renewable resources k& € R? over time. Resource levelling
problems typically arise when resource capacities may, at a certain cost, be
adapted to the respective requirements. In that case, the resource capacities
arc regarded as being unlimited and the problem is to find a feasible minimum-
cost schedule. However, besides the cost point of view, levelling loading profiles
over time is of interest in its own right because in practice, evenly used re-
sources tend less to be subject to disruption than resources whose usage is
highly fluctuating over time. Accordingly, it has been proposed to use resource
levelling as a technique for capacitated master production scheduling in pro-
duction planning, where for a planning horizon of about one year, the monthly
production quantities matching the gross requirements for the main products
of a company are determined (see Franck et al. 1997, Neumann and Schwindt
1998, and Section 6.2).

Definition 2.31 (Locally regular and locally concave objective func-
tions). Let f: St — R be some objective function. We call f locally reqular,
if [ s reqular on all equal-preorder sets. f is termed locally concave if f is
concave on all equal-preorder sets.

The following proposition establishes the connection between locally reg-
ular and locally concave objective functions and the scts of quasiactive and
quasistable schedules introduced in Subsection 2.2.2.

Proposition 2.32 (Neumann et al. 2000). Let f be some lower semicon-
tinuous objective function and assume that S # 0.

(a) If f is locally reqular, the set of quasiactive schedules contains an oplimal
schedule.

(b) If f s locally concave, the set of quasistable schedules contains an optimal
schedule.

Proof. The lower semicontinuity of f and the compactness of S imply that f
attains its minimum on S. We first show statement (a). From the regularity
of f on equal-preorder sets we can conclude that this minimum is taken at the
minimal point of some equal-preorder set, which at the same time represents
the minimal point of some schedule polytope (see Proposition 2.16, which
applies to cumulative resources as well). We now show statement (b). From



2.3. Objective Functions 61

the concavity of f on equal-preorder sets it follows that f assumes its minimum
at a vertex of some equal-preorder set. Proposition 2.16 says that this vertex
is also a vertex of a schedule polytope. ]

In contrast to regular or convexifiable objective functions, locally regular
and locally concave objective functions cannot be minimized efficiently on re-
lation polytopes in general. In particular this means that a resource allocation
problem with a locally regular or a locally concave objective function generally
does not become more tractable when the resource constraints are deleted. Be-
low we shall give an example of a locally regular objective function for which
time-constrained project scheduling is NP-hard. Note that minimizing such a
function on an equal-preorder set constitutes an easy (though possibly unsolv-
able) problem because any equal-preorder set possesses at most one minimal
point. Concerning locally concave functions, it is well-known that alrcady the
minimijzation of concave functions on hypercubes is NP-hard (cf. Horst and
Tuy 1996, Sect. A.1.2). Proposition 2.28 indicates a simple way of gencrating
all quasiactive or all quasistable schedules by constructing all spanning out-
trees rooted at node 0 (resp. spanning trees) of relation networks belonging
to feasible schedule-induced preorders. A corresponding schedule-generation
scheme will be discussed in Section 4.1.

Next we consider locally regular and locally concave objective functions of
resource levelling problems that have been discussed in literature. The objec-
tive functions express the variability in the utilization of renewable resources
over time in terms of the range, the variance, and the total variation, respec-
tively, of the loading profiles r1 (S, ) of renewable resources k € R”.

An example of a locally regular objective function is the total procurement
cost for renewable resources

f(8) = Z ¢, max (S, t)

pere OStsd

where ¢, € Z>o denotes the unit procurement cost of renewable resource
k € R?. The total procurement cost equals the weighted sum of the maximum
resource requirements (or, in other words, the weighted sum of the ranges of
the loading profiles r¢(S,-)).

Proposition 2.33. The total procurement cost f is a lower semicontinuous
and locally reqular objective function.

Proof. The lower semicontinuity can be seen as follows. Let S be some time-
feasible schedule. The closedness of relation polytopes Sp(p) with p € 6(5)
implies that there exists some € > 0 such that 6(S") C 8(.S) for all §’ contained
in the relative ball B.(S)NSp in St around S. Since for each resource k € R?,
maX, ., <7 7k (5,t) coincides with the weight of a maximum-weight antichain in
6(S5), we obtain f(S") > f(S) for all S’ € B.{S)NSr. The lower semicontinuity
now follows from the fact that f is lower semicontinuous precisely if f(5) <
Hminfg g f(S’) for all S € St (see, e.g., Hiriart-Urruty and Lemaréchal
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1993, Sect. A.1). Since f(S) equals the weight of a maximum-weight antichain
in 6(S), f is constant and thus regular on cqual-order sets. O

The total procurement cost is the objective function of the resource in-
vestment problem introduced by Méhring (1984). The resource investment
problem arises in applications where installing resources incurs fixed trans-
portation or setup costs per unit capacity. The recognition version (i.c., the
question whether there is a feasible solution whose objective function value
is smaller than or equal to a given threshold value, see, e.g., Papadimitriou
and Steiglitz 1998, Sect. 15.2) of a resource investment problem with one re-
source coincides with the feasibility version (i.e., the question whether there is
a feasible solution) of the corresponding resource-constrained project duration
problem. The latter decision problem has been shown to be NP-complete by
Theorem 1.12; which implies that the resource investment problem is NP-hard
even if Ry = oo for all £ € RP. A classical objective function in the field of
resource levelling that has been studied since the early work of Burgess and
Killebrew (1962) is the total squared utilization cost for renewable resources

d
J&=> ck/o (8, t)dt

keRr

where ¢ € Z>g. Since workload fUE ri(S,t)dt = ZieV“ T p; does not depend
on schedule S, f(S) equals the weighted sum of the variances of the loading
profiles r; (5, ) plus a constant.

Proposition 2.34. The total squared utilization cost f is a lower semicon-
tinuous and locally concave objective function.

Proof. The lower semicontinuity of f follows from its continuity. We show
that f is concave on equal-order scts. For given schedule S, let AC(S) be the
set of antichains in strict order 6(S), let ri(U) = > ..y ix be the weight
of antichain U € AC(S), and let p(U, S) = th(S,t):U dt be the time during
which precisely the activities ¢ € U overlap in time given schedule S. By
wg (U, S) = r(U)p(U, S) we denote the corresponding workload on resource
k € RP. The total squared utilization cost can then be written as f(S) =
Zkenp Ck ZUGAC(S) Tk (U)we (U, S).

Now consider two schedules S and S’ inducing the same strict order 6(S) =
6(S"). For any « € [0, 1} we have AC(S) = AC(S’) = AC(aS+(1-a)S’). With
respect to schedule S, the activities ¢ from a nonempty antichain U € AC(S)
overlap during p(U,S) = min;ey C; — max;cpy S; > 0 units of time, where
(U, S) =p(U,9) if U is C-maximal in AC(S). Since function p(U,-) is con-
cave on ST (0(S)), we have (U, aS + (1 —a)S") > ap(U, S) + (1 — a)B(U, 5").
Consequently, wi(U,aS + (1 — @)S’) > awi (U, S) + (1 — o)wy (U, 8) for all
C-maximal antichains U € AC(S) and all k € R?. As 3 ¢ acs) wk(U. S) =
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all k& € RP, a positive difference wi(U, S + (1 — )5S’} — [aw(U,S) +
(1 — a)wg (U, S")] for the latter antichains U weighted by r;(U) corresponds
to an equally large negative difference for the remaining (not C-maximal)
antichains U’ C U weighted by r(U’) < rg(U). By recursively applying
the above reasoning to the function which arises from f by deleting the
C-maximal elements from set AC(S) until AC(S) = §, we finally obtain
flaS+ (1-a)s") > af(S)+ (1 — a)f(S') for any a € [0,1], which pro-
vides the concavity of f on equal-order scts. ]

By transformation from 3-PARTITION, Neumann ct al. (2003b), Sect. 3.4,
have shown that finding a time-feasible schedule with minimum total squared
utilization cost is NP-hard.

Now let t; < --- < t, denote the start and completion times of real
activities ¢ € V. Any jump discontinuity in loading profiles r¢ (S, -) for k € R”?
occurs at some start or completion time ¢, where 1 < p < v. A further
resource-levelling objective function that has been studied in literature is the
total adjustment cost for renewable resources

F08) =" x> Ire(S,ty) — 7a(S, tun)]

kERP p=1

where tg := —1 and ¢ € Z>p is the cost arising from increasing or decreasing
the availability of resource k € R” by one unit (see, e.g., Younis and Saad 1996
or Ncumann and Zimmermann 2000). Note that since 7, (S, tg) = r¢(S,t,) =0
for all k € R?, f(S) equals 237, cr, k3,1 [rk(S, tu) — 74(S, t—1)]*. Thus,
the case where decreasing the availability of (certain) resources does not incur
additional cost is contained in the total adjustment cost problem. The total
adjustment cost coincides with the weighted sum of the total variations of the
loading profiles (5, ).

Proposition 2.35. The total adjustment cost f is a lower semicontinuous
and locally concave objective function.

Proof. Apparently, f(.5) can be expressed as a function of all pairs (¢, j) € 8(S)
for which the precedence constraints S; > S; + p; are active. Consequently, f
is constant on the relative interior of any face of an equal-order set. Morcover,
it is casily scen that for any such face, the objective function values of relative
boundary points are less than or equal to the objective function values of
corresponding relative interior points. Hence, f is concave on equal-order sets
and lower semicontinuous. 0

Finally, we notice that in contrast to the total procurement and total
squared utilization costs, f is in general not continuous on equal-order sets.
In Neumann et al. (2003b), Sect. 3.4, it is shown by the same polynomial
transformation from 3-PARTITION as for the total squared utilization cost
that minimizing the total adjustment cost on set St is NP-hard as well.
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2.3.3 Preorder-Decreasing Objective Functions

In certain cases, the number of schedules to be enumcrated for minimizing
a locally regular or a locally concave objective function can be decreased by
restricting the search to schedules inducing a maximum number of precedence
relationships.

Definition 2.36 (Preorder-decreasing objective function). An objec-
tive function f is called preorder-decreasing if @' O 0 implies infses=(o) f(8) <
infses=(oy f(S) for all schedule-induced preorders 6 and 0.

It follows from the definition of preorder-decreasing objective functions
that, if § # @, such functions possess a minimizer on some schedule polytope
belonging to an C-maximal schedule-induced preorder. The total procurement
cost is an example of a preorder-decreasing objective function, as has already
been noticed by Mohring (1984). As an alternative to the construction of
spanning trees (see preceding Subsection 2.3.2), a preorder-decreasing locally
regular or locally concave objective function can be minimized on S by gener-
ating the set of C-maximal feasible schedule-induced preorders. Niibel (1999)
has proposed a branch-and-bound algorithm for the resource investment prob-
lem that is implicitly based on this concept. The approach generally proves
advantageous if the minimization of the objective function on equal-preorder
scts already constitutes an NP-hard problem (which in particular may be the
case for locally concave objective functions) because only the vertices of the
generated C-minimal schedule polytopes have to be investigated.

In conclusion, Table 2.1 summarizes the relationships between the different
classes of objective functions introduced and the sets of candidate schedules
discussed in Section 2.2.

Table 2.1. Objective functions f and minimizers on S

Objective function  Minimizer

Regular Minimal point of &

Convexifiable Local minimizer on C-max. relation polytope Sr(p) C S
Locally regular Minimal point of schedule polytope Sr(0(S)) C S
Locally concave Vertex of schedule polytopes Sp(8(S)) C S
Preorder-decreasing Minimal point of C-minimal schedule polytopes

locally regular B£Sr(B(S)CS

Preorder-decreasing Vertex of C-minimal schedule polytopes
locally concave 0 #£Sr(0(S)CS




3

Relaxation-Based Algorithms

Relaxation-based algorithms for resource-constrained project scheduling with
regular or convexifiable objective functions rely on the first basic represen-
tation of the set S of all feasible schedules as a union of relation polytopes.
By deleting the resource constraints we obtain the resource relaxation, which
coincides with the time-constrained project scheduling problem. The latter
problem can be solved efficiently by computing the minimal point S of set Sp
if f is regular or some local minimizer of the objective function f in set St if
f is convexifiable. Clearly, the tractability of the problem is preserved when
moving from set St to arbitrary nonempty relation polytopes Sr(p). Starting
with the resource relaxation, i.e., with the empty relation, relaxation-based
algorithms iteratively put the resource constraints into force by branching
over time-feasible extensions p’ of the respective parent relation p. Each re-
lation p’ defines a collection of precedence constraints that break up some
forbidden active set A(S,t) belonging to a minimizer S of f on search space
P = Sr(p). The branching process is continued until either Sy(p) = @ or the
minimizer S of f on Sr(p) is feasible. The latter condition is necessarily sat-
isfied as soon as relation p is feasible. Note, however, that schedule § may be
feasible even before p has been extended to a feasible relation. When dealing
with regular objective functions, the ordinary precedence constraints given by
relations p may be replaced by disjunctive precedence constraints (cf. Subsec-
tions 1.2.3 and 1.3.3). Since a disjunctive precedence constraint corresponds
to the disjunction of several ordinary precedence constraints, branching is
then performed over sets of rclations and consequently, the search spaces P
on which f is to be minimized represent unions of relation polytopes.

From now on we assume that the project under consideration comprises
renewable and cumulative resources, where the renewable resources are used
by real activities ¢ € V2 and the cumulative resources are depleted and re-
plenished by events ¢ € V€. Accordingly, for given schedule S the active sets

A(S, ) :={i eV |S; <t <S;+ptu{ieVe]s <t}
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at times ¢ contain both real activities and events, and resource-feasible sched-
ules satisfy both the renewable-resource constraints (1.7) and the cumulative-
resource constraints (1.20). The set of all feasible schedules is now § =
SrNSp N Se. As a straightforward extension of the definitions from Sub-
sections 2.1.1 and 2.1.2, we say that a relation p in set V is time-feasible
if Sp{p) # B and is feasible if § # Syr(p) C S. It is easily seen that first,
relation p is again time-feasible precisely if relation nctwork N(p) does not
contain any cycle of positive length and that second, a time-feasible relation p
is feasible exactly if both induced sub-relations pN(V* x V) and pN(Vex Ve)
are feasible in the sense of Definitions 2.3 and 2.17. As a consequence of the
latter statement, the feasibility of a time-feasible relation p in set V' can be
verified by sequentially applying the network flow techniques discussed in
Subsections 2.1.1 and 2.1.2 to the respective sub-relations.

The resource-constrained project scheduling problem to be dealt with reads
as follows:

Minimize f(S) )
subject to S € SrNSrNSe

where f is some regular or convexifiable objective function. In Section 3.1
we treat the case of regular objective functions. Section 3.2 is devoted to
convexifiable objective functions.

3.1 Regular Objective Functions

We first devclop an enumeration scheme based on the concept of disjunctive
precedence constraints that either generates a set of candidate schedules con-
taining an optimal schedule or proves that there is no feasible schedule for the
project under consideration. We are then concerned with the relaxation to be
solved at each enumeration node. The latter problem amounts to minimizing
a regular objective function subject to temporal and disjunctive precedence
constraints. Next, we discuss the extension of the enumeration scheme to a
branch-and-bound algorithm and review alternative solution procedures for
resource-constrained project scheduling with regular objective functions.

3.1.1 Enumeration Scheme

In this subsection we are concerned with an enumeration scheme for prob-
lem (P) with regular objective function f which forms the basis of branch-and-
bound procedures by Schwindt (1998a) and Neumann and Schwindt (2002)
for solving the project duration problem with renewable or cumulative re-
sources, respectively. Consider an optimal solution S to the time-constrained
project scheduling problem (1.2) with a regular objective function f, e.g.,
S = ES = minSr. If S satisfies the renewable-resource constraints (1.7) and
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the cumulative-resource constraints (1.20), S is an optimal schedule. Other-
wise, there is some point in time ¢t € [0,d] such that F' := A(S,t) NV or
F := A(S,t) NV represents a forbidden set. In the former case, the joint
requirements by real activities ¢ € I exceed the capacity of some rencwable
resource k € R, and in the latter case, the depletions and replenishments
by events i € F create a surplus or a shortage in some cumulative resource
k € RY. Forbidden set F' can be broken up by introducing a disjunctive prece-
dence constraint (see Subsections 1.2.3 and 1.3.3)

?%ig Sj 2 Iiléi:‘l(si + pi) (3.1)
between some appropriate set A and a minimal dclaying alternative B, where
by definition p; = 0 for i € V. If resource k is renewable, we choose A ;= F\B.
Otherwise, we put 4 := V;¢ \ F if F is a k-surplus set and A := ch+ \ Fif
F is a k-shortage set. Let

P(A,B) = U (i} x B}

denote the set of irreflexive relations {i} x B with ¢ € A, which each give
rise to the (ordinary) precedence constraints between activity ¢ and all ac-
tivities j € B. Introducing disjunctive precedence constraint (3.1) refines the
resource relaxation by restricting the initial search space P = Sy to the set
of all schedules S contained in the union of rclation polytopes Sy (p) with
p € P(A, B).

After the selection of a minimal delaying alternative B, we minimize f on
the restricted search space. Checking the resource-feasibility of the resulting
minimizer, refining the relaxation by disjunctive precedence constraints, and
re-optimizing f on the restricted search space is performed until either the
search space has become void or the resulting minimizer S of f is resource-
feasible. The disjunctive precedence constraints are represented as a collec-
tion P of relations p whose relation polytopes Sr{p) cover the scarch space.
In each iteration, when adding a disjunctive precedence constraint of type (3.1)
we put P:= P® P(A, B) where P = {0} at the root node and

P®P(A,B) = U {pup'}
peEP,p’€P(A,B)

As we shall see in Subsection 3.1.2, each of the nonempty search spaces P =
UoepSt(p) generated in this way possesses a unique minimal point, which
represents a minimizer S of f on sct P.

We now consider the enumeration scheme in more detail. The correspond-
ing procedure is given by Algorithm 3.1. Let ) denote a list of relation sets P
in set V and let C designate the set of candidate schedules generated. Starting
with @ = {{#}} and C = {, at each iteration we remove some relation sct P
from @ and solve the relaxation by either computing the minimal point S
of search space P = U,ecpSr(p) or showing that P = @. In the latter case,
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we write S = S = (00,...,00). For § < S, we proceed as follows. If
schedule S is resource-feasible, we have found a candidate schedule and put
C := CU {S}. Otherwise, there is a start time ¢ = .5; of some activity ¢ € V
such that active set A(S,t) includes a forbidden set of real activities or a
forbidden set of events. In the former case, we compute the set B all minimal
delaying alternatives B for F':= A(S,t) " V® by using Algorithm 1.4. Other-
wise, F':= A(S,t)NV*® is a k-surplus or a k-shortage set for some cumulative
resource k € R7, and calling Algorithm 1.6 provides the set B of all mini-
mal dclaying alternatives for F' and k. For each minimal delaying alternative
B € B we then introduce disjunctive precedence constraint (3.1) between the
corresponding set A and set B by setting P’ := P ® P(A, B) and adding the
expanded relation set P’ on list Q. We return to the (refined) relaxation and
reiterate these steps until all relation sets P in list @ have been investigated,
i.e., until @ = 0. Finally, we return the sct C of all candidate schedules found.

Algorithm 3.1. Enumeration scheme for regular objective functions

Input: A project.
Output: Set C of candidate schedules.

initialize list of relation sets @ := {{0#}} and set of candidate schedules C := §;
repeat
delete some relation set P from list Q;
determine schedule S = min(U,e pSt(p));
if S < 5 then (xsearch space is nonempty *)
if S is resource-feasible then C := C U {S}; (* candidate schedule found x)
else (xintroduce disjunctive precedence constraints x)
determine time ¢ such that resource constraints (1.7) or (1.20) are violated
for some kK € R UR";
if k € R” then
set F:= A(S,t)n V%
compute set B of all minimal delaying alternatives for I
(* Algorithm 1.4 %)
else
set F':= A(S,t)nV*
compute set B of all minimal delaying alternatives for F' and k;
(x Algorithm 1.6 )
for all B € B do
if k € R” then set A := F \ B; elsif B C Vk_“+ then set 4 := V¢ \ F;
else set A := V,f+ \ F;
set P’ := P ® P(A, B) and add P’ on list Q;
until Q = @
return C;

The following proposition establishes the correctness of the enumeration
scheme from Algorithm 3.1.
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Proposition 3.1 (Neumann et al. 2003b, Sect. 2.5). Let C be the set of
candidate schedules generated by Algorithm 3.1 and let OS denote the set of
all optimal schedules.

(a) Algorithm 3.1 is finite.
(b) Algorithm 3.1 is complete, i.e., CNOS =0 if and only if S = 0.
(c) All schedules generated by Algorithm 3.1 are quasiactive, i.e., C C QAS.

Proof.

{(a) At each itcration a relation set P is removed from list () and a finite num-
ber of expanded relation sets P’ are added to Q). For each p € P, sets P’
contain a relation o’ D p each. Since the cardinality of any irreflexive re-
lation in set V' is bounded from above by (n -+ 1)(n+ 2), this implics that
the number of iterations performed by Algorithm 3.1 is finite.

(b) Clearly, the search spacc P = Sp(#) = Sr associated with the initial
relation set P = {0} is a superset of the feasible region S and thus
S =87(®) NS. Now let S be the minimal point of some search space P
cnumerated in the course of Algorithm 3.1. If S is not resource-feasible,
there is a time ¢ such that active set A(S, £) includes a forbidden set F'. Let
B be the set of minimal delaying alternatives for F. Then Theorems 1.17
and 1.28 say that any resource-feasible schedule in set P satisfies one of
the disjunctive precedence constraints (3.1) with B € B and appropriate
set A. Since in addition all enumerated schedules S minimize f on the
respective search spaces, there is at least one optimal candidate schedule
S € C provided that S # @. Conversely, all candidate schedules S € C
are feasible and the lower semicontinuity of f implies that OS = () only
if S = §. Consequently, from C # § it follows that OS # @.

(c) Each candidate schedule S € C is the minimal point of some relation
polytope Sy (p) and feasible. Due to 6(S) D p and thus Sp(0(5)) C Sr(p),
it follows from S € Sp(8(S)) that S is the minimal point of its schedule
polytope St (0(5)) as well, i.e., S € QAS. O

We notice that as a direct consequence of the proof of Proposition 3.1a,
the maximum depth of the enumeration tree generated by Algorithm 3.1 is
O(n?). Moreover, the candidate schedules S € C are generally not active
but only quasiactive. Recall that already deciding on whether or not a given
feasible schedule is active constitutes an NP-hard problem.

3.1.2 Solving the Relaxations

In this subsection we are concerned with the problem of minimizing a reg-
ular objective function f on a search space P defined by temporal con-
straints and disjunctive precedence constraints. We assume that the dis-
junctive precedence constraints are given by a collection of v relation sets

P(Ay, By), ..., P(A,, B,) with P(A,, B,) = Uiea, ({i} x B,) for p = 1,...,v.
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With P = @}, _ P(Ay, B,) we then have
P =UpepSt(p) = N1 Yiea, Sr({i} x By)

Proposition 3.2 (Neumann and Schwindt 2002). Let ¢ be the operator
on partially ordered set (R;“0L2, <) with (S) = (¥;(S5))ev and

¥;(S) = max (0, (ln}?é(E(Sl +6;5), max lléun(S +pi)) (GeV).
jEB,L
(a) If P £ 0, set P has a unique minimal point S¥.
(b) ¥ possesses a fized point if and only if P # 0. Minimal point ST coincides
with the unique fized point S of ¥ with Sy = 0.
(c) If P # 0, ST arises as the limit of the sequence {S*} with S* = ES and
ST = (SA) for A € N.
(d) If P # 0, there is a £ < nd with (S*) = S = SF for all A > k.

Proof.

(a) Let ST be the schedule given by S;’ = mingep S; for all 7 € V and
assume that P # 0. We show that St is the unique minimal point
of P. Since 7 is isotonic and St < S holds for all S € P, we have
1/1(5*) < mingep ¥(5). By definition of ¢, set P can be represented as

={Se R”H | So =0, S > (S)}. Now assume that ST ¢ P. Then
thele is an actlvity 7 € V such that S;r < ;(ST) < mingep ;(S) <
mingep S = S;L, which contradicts the assumption.

(b) Since S* is componentwise minimal in set P = {S € RZ}? | Sy =0,
S > ¢(S5)}, we have ST = 4(S™), i.e., St is a fixed point of 1. Due to the
connectivity of network IV, a point S is a fixed point of ¥ exactly if there
is an a > 0 with S = S* + «(1,...,1). Thus, S = S7 is the unique fixed
point of ¥ with Sy = 0. Now assume that P = (. Then there is no point
S € R%}? such that Sy = 0 and S > ¢(S). Since the set of fixed points of
¥ equals {S € REF? | S = 5t +a(1,...,1) for some a > 0} and SF =0,
the latter statement implies that v does not possess any fixed point.

(¢) We first show by induction on A that $* < S+ for all A € N. From P C Sr
it follows that S! = ES = (minges, Sj)jev < (mingep Sj)jev = ST,
Now assume that S < S*. Since operator ¢ is isotonic, we have SM! =
P(SY) < (ST) < ST, where the last inequality results from S+ e P.
For §' = ES it holds that S} = [max; jep(S] + 0i5)]" for all j € V.
This provides S? = (S') > S!, which proves the sequence {S*} to be
componentwise nondecreasing. Thus, the existence of an upper bound S+
implies the convergence of {S*}. Then limy oo S* = limy o S*! =
limy_ oo ¥(S?) = ¥(limy_.00 S*), and the limit of {S*} represents a fixed
point of 1. The last equation is duc to the continuity of . From S} =
ESq = 0 < limy_o S < .S’O+ = 0 we obtain lim)_, Sé\ = 0. Since
S = ST is the unique fixed point S of ¢ with Sy = 0, ST coincides with
the limit of sequence {S™}.
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(d) The assertion is immediate with the monotonicity of {S*} and the prop-
erty that as long as S™! £ S there is an activity h € V with
Sptl > S} + 1 0

According to Proposition 3.2, minimizing a regular objective function f
on set P can be achieved by starting with § = ES and putting S := ¢(S)
until either S = (9) or S,y > d. In the latter case, P has been shown to be
empty. The number of iterates needed for reaching minimal point S+ can be
decreased by the following modifications. First, we may start the procedure
with any time-feasible schedule S < S*. Second, each time the start time .S; of
some activity 7 has been increased due to a disjunctive precedence constraint,
we may immediatcly restore the time-feasibility of schedule S by putting
Sy, := max(Sp, Sj + d;p) for all h € V. The resulting schedule is time-feasible
preciscly if 5,41 < d, which is easily seen by adding arc (0, j} with weight
do; = S to project network N and applying Algorithm 1.3 for updating dis-
tance matrix D (see Remark 1.8). For p = 1,...,v let t, 1= min;e 4, (Si + p;)
be the carliest completion time of some activity ¢« € A, with respect to cur-
rent iterate S € St and let dﬁ := maXjep, d;n denote the “distance” between
sct B, and activity h € V. Then the start time of activity h € V has to be
increased precisely if S, < t, + dﬁ. In this case, we set Sy :=1t, + dﬁ and
update the earliest completion times ¢y for all sets Ay containing activity h.
Algorithm 3.2 shows an implementation of this method as a label-correcting
procedure where queue @ contains all indices A = 1,..., v for which time ¢,
has to be updated.

Algorithm 3.2. Minimizing regular objective functions subject to temporal and
disjunctive precedence constraints

Input: A schedule S’ € Sr, distance matrix D, relation sets P(A,, By)

(p=1,...,v).
Output: Minimal schedule S > S’ in set P = N}_; Usca, St({i} x By).

set $:= 5 and Q:={1,...,v};
forallpu=1,...,v do
3t = minieA“(Si + pi);
4: for all h € V do dﬁ = max;eB, djn;
repeat
dequeue index p from Q;
7. for allh € V with S <t, +d}: do

8: set Sp =1, + dfj;
for all A\ =1,...,v with h € A and ¢ < mingea, (Sq + py) do
10: set ¢y 1= mingea, (Sg + pg);

if A ¢ Q then enqueue A to @
until Q@ = 0 or Sp41 > d;
if @ = (@ then return S; else return S°;
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Next we analyze the time complexity of Algorithm 3.2. To this end, we
assume that sets V and A, with u = 1,...,v are stored as Fibonacci heaps
(see, e.g., Knuth 1998, Sect. 6.2) sorted respectively according to nondecreas-
ing start times S; or nondecreasing completion times S; +p;. The initialization
of earliest completion times ¢, and distances dﬁ on lines 3 and 4 takes O(vn?)
time. Since the algorithm stops as soon as S,,; > d, line 8 is executed at most
O(nd) times. On the other hand, on line 10 each point in time ¢y cannot be
increascd more than O(vd) times, which implies that the repeat-loop is iter-
ated O(min[n, v}d) times. At each iteration, identifying activities h € V with
Sy <ty + dﬁ on line 7 requires O(logn) time and rearranging the Fibonacci
heaps V and A, after having increased start time Sy, on line 8 takes O(v logn)
time. Thus, the time complexity of Algorithm 3.2 is O(vn?+min[n, v]dv log n).

Alternative solution procedures with pseudo-polynomial time complexity
have been devised by Zwick and Paterson (1996), Chauvet and Proth (1999),
and Schwicgelshohn and Thiele (1999). Mdhring et al. (2004) provide a review
on papers dealing with applications of disjunctive precedence constraints that
arise in fields outside project scheduling, such as analyzing functional depen-
dencies among data in relational data bases (Ausiello et al. 1983), optimizing
the partial disassembly of products when removing single components (Gold-
wasser and Motwani 1999), or computing optimal strategies for mean-payoff
games on directed bipartite graphs (Zwick and Paterson 1996). In the latter
paper it is shown that the problem to decide whether the outcome of such
a game is positive is contained in NP N coNP. In addition, Méhring et al.
(2004) have shown that this decision problem is polynomially equivalent to
minimizing a regular objective function subject to disjunctive temporal con-
straints where p; in inequality (1.11) is replaced with an arbitrary time lag 6,;.
Despite this observation, however, no algorithm is available thus far for solv-
ing the latter scheduling problem in polynomial time. For the case where all
time lags J;; are nonnegative, Mohring et al. (2004) exhibit a label-setting
algorithm that runs in O(n+ 327 _, [Bulllm + 32, _; |Aul|B,l]) time.

3.1.3 Branch-and-Bound

The enumeration scheme given by Algorithm 3.1 defines the branching
strategy of a branch-and-bound algorithm for problem (P) with regular ob-
jective function f. In this subsection we present the complete branch-and-
bound procedure. Besides the branching strategy, a branch-and-bound algo-
rithm for a minimization problem is characterized by the search strategy for
sclecting one of the generated enumeration nodes for further branching, con-
sistency tests, which are applied to restrict the search spaces of enumecration
nodes, and lower bounds on the minimum objective function value.

The search strategy of the branch-and-bound algorithm is as follows.
We always branch from one of the child nodes v of the node u currently se-
lected, i.e., we perform a depth-first search. The depth-first strategy can be
implemented by simply choosing the list ) of unexplored nodes u to be a
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stack. The main advantages of depth-first search are that first, this strategy
minimizes the memory requirements necessary for storing list @ and that sec-
ond, the number of branchings for reaching the first leaf « of the cnumeration
tree (and thus often the time for computing a first feasible solution) is mini-
mum. Child nodes v are pushed onto stack @) according to nonincreasing lower
bounds. One drawback of the depth-first search strategy is that typically, two
enumeration nodes visited consecutively belong to similar relation sets, which
share a large number of common elements. As a consequence, it may take a
long time before any schedule located in a given part of the feasible region is
investigated, and thus the algorithm may spend much time in useless parts
of the enumeration trce. This shortcoming can be avoided by partitioning the
enumeration tree into a number of subtrees, which are simultaneously tra-
versed according to a depth-first search strategy each (scattered search, cf.
Klein and Scholl 2000).

Basically, each of the consistency tests discussed in Subsections 1.2.4
and 1.3.4 can be applied at any enumeration node. Since disjunctive prece-
dence constraints cannot be represented by a distance matrix D, the tests
using distances d;; between arbitrary nodes 4,5 € V (the disjunctive ac-
tivities, energy precedence, and balance tests) refer to a modified distance
matrix D' = (déj)i,jev reflecting the temporal constraints S; — 5; > d;j
that are implied by the original temporal constraints and the added dis-
junctive precedence constraints. For example, the modified distance matrix
can be chosen to be equal to the elementwise minimal matrix D’ with
d;h > max(dgn, min;e 4, Maxjep, (d;l + p; + d;,l)) for all g,h € V and all
= 1,...,v which satisfies the triangle inequalities (1.6). For distances dj,,
we may choose dy, = S (h € V), where S is the minimal point of search
space P computed by Algorithm 3.2.

The question which consistency test should actually be used at which node
has to be investigated with care. The reason for this is that intuitively there
is a tradeoff between the efficiency (i.e., the computation time required) and
the effectiveness (i.e., the decrease in size of the search space) of a test. As
a rule, the deeper the enumeration node, the less time should be spent with
consistency tests. In any case, the search space reduction algorithm (cf. Algo-
rithm 1.5) should be implemented in the form of a label-correcting procedure
iterating the hypothetical temporal constraints whose validity may be affected
by the last constraint added (either an imposed disjunctive precedence con-
straint or a temporal constraint arising from applying a consistency test).
In branch-and-bound algorithms for the project duration problem with re-
newable resource constraints, D¢ Reyck and Herroelen (1998a) and Schwindt
(1998¢) have applied the disjunctive activities test to two-element forbidden
sets (De Reyck and Herroelen used the test as a preprocessing technique at
the root node). Dorndorf et al. (2000a) report on favorable results using the
workload-based disjunctive activities test and the unit-interval capacity test
in a time-orientcd branch-and-bound procedure for the same problem (the
latter algorithm is briefly sketched in Subsection 3.1.4). Dorndorf et al. have
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also experimented with the activity interval and general interval consistency
tests, but on their testbed (projects with 100 or 500 activities) the additional
search space reduction has been, on the average, outweighed by the increase in
computation time. Finally, Laborie (2003) has been able to improve upon the
results obtained by Neumann and Schwindt (2002) for the project duration
problem with cumulative resources by using the balance test.

Next, we turn to lower bounds on the minimum objective function value.
Let S be the minimal point of search space P under study (possibly reduced by
applying consistency tests). Obviously, by = f(5) represents a lower bound
on the objective function value ming epns f(S’) of a best feasible schedule
in P. Within a branch-and-bound algorithm for the project duration problem
with renewable resources, Schwindt (1998a) has used two further lower bounds
b1 and lbg, respectively being based on disjunctive activities and energetic
reasoning. We first deal with lower bound b (sec also Klein and Scholl 1998).
Let d' € Lo with Spqq < d' < d denote some hypothetical upper bound on
the project duration. Clearly, the latest start time LS; = —d;g of activity ¢ is,
under the assumption of a project deadline d’, less than or equal to d’ — di i1,
and the earliest completion time S; + p; of activity 4 is independent of d’. Now
let {i,7} be a forbidden set such that d’ ~ d; 41 < S; +p; and d' — d; i1 <
S; +p;. Then activities ¢ and j must overlap in time, which is impossible due
to their excessive joint resource requirements. Consequently, d’ + 1 is a lower
bound on the shortest project duration of all schedules in the search space.
Moreover, d' must be increased by min(S; + p; + djnt1, S5 + pj + dinyr)
units of time to avoid the above contradiction. Thus, instead of performing
a binary search in set [S,y1,d] 0 Z, we may directly compute the smallest
deadline d’' = Ib; which cannot be disproved as

by = max(Sy41, {mﬁg{fmin(Si +pi+djngr1,S;+p;+dingr))
3

For given two-element forbidden sets {i,5}, calculating smallest deadline d’
requires O(n?) time. By applying the profile test from Subsection 1.3.4 to the
project termination event n+ 1, Neumann and Schwindt (2002) have obtained
a similar lower bound on the minimum project duration of projects with
cumulative resources. The algorithm iterates hypothetical upper bounds &,
which may be refuted based on lower and upper approximations to the loading
profiles.

Now recall the concept of lower bound wg(a,b) on the workload to be
processed on renewable resource k € R” in interval [a, b] (see equations (1.13)
and (1.14)). By replacing the carliest completion time EC; = ES; + p; in
(1.13) with S; + p;, we obtain a corresponding lower bound referring to the
search space P rather than to set Sy. In particular, wy(S;,d) represents a
lower bound on the workload for resource k£ that must be processed after the
carliest start time S; of activity i, which takes at least [wy(S;,d)/Ry] units
of time. By taking the maximum with respect to all real activities ¢ € V¢ and
all renewable resources k € R, we obtain lower bound
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by = max(S; + max [M])

i€ve keRr Ry

on the minimum project duration. Computing value lbs can be done in
O(|R?|nlogn) time.

We briefly touch upon further, more time-expensive lower bounds on the
minimum duration of projects with renewable resources, which can be found in
Heilmann and Schwindt (1997), Brucker and Knust (2003), and M&hring et al.
(2003) and will be used for the performance analysis of exact and heuristic
methods for the project duration problem in Subsection 3.1.4. The latter two
lower bounds are also described in more detail in Neumann et al. (20035),
Subsect. 2.5.8.

Heilmann and Schwindt (1997) discuss several lower bounds based on
disjunctive activities, energetic reasoning, and a relaxation of the resource-
constrained project scheduling problem (1.8) leading to a preemptive one-
machine problem with release dates ¥ and quarantine times dg’f,ﬂl (ie V).

Similarly to lower bound /b1, the lower bound on the minimum project
duration devised by Brucker and Knust (2003) is based on falsifying hypo-
thetical project deadlines d’. For a given value of d’, the procedure of testing
the consistency of deadline d’ constructs a linear program and tries to show
that it is unsolvable. At first, several consistency tests are applied in order
to tighten the time windows [S;, LS;] of individual activities ¢ € V* (recall
that minimal point S coincides with the earliest schedule in set P). For each
pair (t,t') of consecutive earliest start or latest completion times of activi-
ties ¢ € V%, the set of all tentative active sets A for interval [¢,¢'[ is then
computed, where S; < t' and LC; > t for all ¢ € A and d;; < p; for all
i,j € A. For each set A, a continuous decision variable y4 > 0 is introduced
providing the time during which A is in progress in interval {¢,#'] (i.e., during
which precisely the activities ¢ € A overlap in time). The project duration
is then minimized subject to the constraints that first, each real activity 7 is
carried out for p; units of time in the different sets A and second, the total
execution time of all sets A belonging to some pair (¢,t) is less than or equal
to interval length ¢ — t. The latter problem can be formulated as a linear
program in decision variables y 4 and corresponds to the relaxation of prob-
lem (1.8) where the temporal constraints are replaced with the weaker release
dates dji'™ = S; and deadlines d3*® = LS;. Moreover, activitics arc allowed
to be interrupted during their execution. Since the number of tentative active
sets A grows exponentially in n, it is expedient to solve the linear program by
column-generation techniques (see, e.g., Goldfarb and Todd 1989, Sect. 2.6).
The basic idea is to consider only a restricted working set of decision vari-
ables that are generated when needed. Each time the linear program with the
current working set of decision variables has been solved to optimality, new
decision variables are added to the working set or it is shown that the cur-
rent basic solution is optimal. For finding an improving decision variable y 4
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to be added to the working set, Brucker and Knust use a branch-and-bound
algorithm enumerating binary incidence vectors for sets A.

Mohring et al. (2003) usc a formulation of problem (1.8) as a binary linear
program with time-indexed binary variables z;;, which has been proposed by
Pritsker et al. (1969) for the first time. Decision variable z;; equals one if ac-
tivity ¢ is started at time ¢t and zero, otherwise. For (approximatively) solving
the continuous relaxation of the latter binary program, Mohring et al. apply a
standard subgradient method (cf. Held et al. 1974) to a Lagrangean relaxation
of the latter linear program, which substitutes the resource constraints into a
linear penalty function. For given multipliers, the Lagrangean relaxation can
be solved efficiently by transforming the problem into a minimum-cut problem
in a cyclic network with upper arc capacities, where each node stands for one
decision variable z;; (the time complexity of this approach is studied in more
detail in Mohring et al. 2001). The main advantage of this approach is that
it can be used for each objective function f which can be written in the form
Ziev Wi T4, Where wy € Z and variables x;; are used in the above meaning.
In addition, the approach can straightforwardly be generalized to the case of
cumulative resources (see Selle 1999).

3.1.4 Additional Notes and References

Algorithm 3.1 combines the enumeration schemes of the branch-and-bound
algorithms by Schwindt (1998a) and Neumann and Schwindt (2002) for the
project duration problems with renewable-resource and cumulative-resource
constraints, respectively (see also Schwindt 1999). In this subsection we briefly
present alternative solution procedures that have been proposed in literature
and present the results of an experimental performance analysis of the algo-
rithms. We only consider algorithms coping with general temporal constraints.
For the special case where instead of minimum and maximum time lags be-
tween activitics precedence constraints are prescribed, we refer to the survey
papers by Herroelen et al. (1998), Brucker et al. (1999), Hartmann and Kolisch
(2000}, and Kolisch and Padman (2001) and the literature cited therein.

We first deal with exact procedures for the project duration problem
with renewable resources. By using ordinary precedence constraints in-
stead of disjunctive precedence constraints for breaking up forbidden active
sets, we obtain the enumeration scheme of a branch-and-bound algorithm that
has been devised by De Reyck and Herroelen (1998a). Accordingly, the enu-
meration nodes correspond to time-feasible relations p which arise from the
union of minimal delaying modes {i} x B. This enumeration scheme will be
discussed in more detail in Subsection 3.2.1.

The earliest branch-and-bound algorithm for the project duration problem
is due to Bartusch et al. (1988). Their approach differs from the algorithm
by De Reyck and Herroelen in the forbidden sets considered in the course of
the algorithm. The forbidden sets F' broken up in the latter algorithm (and,
likewise, in Algorithm 3.1) are always active sets A(S,t) belonging to the
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minimal point S of the search space Sy(p). If there is no forbidden active
set A(S,t) for S at any time ¢t > 0, schedule S is feasible, and no further
pairs (¢,j) are added to p. As we have alrcady noticed in Subsection 3.1.1,
the feasibility of S does not necessarily imply the feasibility of relation p.
The algorithm of Bartusch et al. first computes all minimal forbidden sets
F € F for which the temporal constraints allow the simultaneous processing
of all activities ¢ € F. Similarly to the enumeration scheme of the algorithm
by De Reyck and Herroelen, enumeration nodes correspond to relations p
in set V*. The child nodes p’, however, now arise from branching, for given
minimal forbidden set F, over all pairs (i, 7) of activities %,j € F such that
relation p’ := pU{(4, )} breaks up F'. Leaves of the enumeration tree are either
feasible relations p or relations p for which no further minimal forbidden set
can be broken up by any time-feasible relation p’ O p.
By substituting the disjunctive precedence constraints (3.1) into release
dates
B = min(Si+p) (G € B) (3.2)

where the right-hand side is the smallest completion time of some activity
1 € A with respect to the schedule S under consideration, one obtains the
enumeration scheme of the branch-and-bound algorithm by Fest et al. (1999).
The main advantage of this approach is that given distance matrix D, min-
imizers S of the project duration on the search space can be calculated in
O(|B|n) time. Furthermore, there exists a very simple and effective domi-
nance criterion, which enables fathoming nodes by comparing corresponding
release date vectors. The drawback of the release-date based enumeration
scheme is that constraints (3.2) only temporarily establish a precedence re-
lationship between sets A and B. Since in contrast to the case of disjunctive
precedence constraints, the right-hand side of (3.2) is a constant, the resource
conflict caused by forbidden set F' = AU B is not definitely settled and thus
one and the same resource conflict may be resolved repeatedly along a path
from the root to some leaf of the enumeration tree. Computational experience,
however, indicates that this situation can often be avoided by discarding enu-
meration nodes which due to unnecessary idle times cannot lead to quasiactive
schedules (total-idle-time dominance rule, cf. Fest et al. 1999).

All algorithms mentioned thus far are based on breaking up forbidden sets.
The constraint propagation algorithm by Dorndorf et al. (2000¢) branches over
the binary decision whether to schedule a given activity i € V@ at its (current)
earliest possible start time ES; or delaying ¢ by introducing a release date
dpn > ES; + 1. The large size of the corresponding complete enumeration
tree is significantly reduced by applying the disjunctive activities and unit-
interval capacity consistency tests and exploiting specific properties of active
schedules.

We proceed with heuristic procedures for the project duration problem
with renewable resources. Franck (1999), Ch. 4, has proposed the following
priority-rule method. Preliminary variants of this algorithm have been de-



78 8. Relazation-Based Algorithms

vised by Neumann and Zhan (1995) and Brinkmann and Neumann (1996). A
streamlined version of Franck’s algorithm is deseribed in Franck et al. (20015).
At first, a preprocessing step is performed by applying the disjunctive activ-
ities consistency test to two-clement forbidden sets. To construct a feasible
schedule, a serial schedule-generation scheme is used (cf. Kolisch 1996), which
in each iteration schedules one eligible activity 7 € V¢ by fixing its start
time S;. An activity j is called eligible if all of its predecessors i € Pred™(j)
with respect to strict order < in set V' have been scheduled, where ¢ < 7 if (1)
di; > 0or (2) dij = 0 and dj; < 0. From the set of eligible activities, the activ-
ity to be scheduled next is chosen according to a priority rule. Let C' denote the
sct of all activities already scheduled. The activity j selected is started at the
earliest point in time ¢ € [ES;, LS|, where E'S; = max[do;, max;ec(S; +d;;)]
and LS; = min[—do;, minjec(S; —d;;)], such that in interval [t, t+p;[ the joint
resource requirements by j and the activities ¢« € C do not excced the resource
capacities. Due to the presence of maximum time lags, it may happen that for
a sclected activity j there is no such point in time ¢. Let ¢’ := min;ec(S; —dj;)
then denote the latest start time of j due to the (induced) maximum time lags
between scheduled activities i € C and activity j. To resolve the deadlock, an
unscheduling step is performed, which cancels the start times of all scheduled
activities ¢ € C with S; > t' and increases the earliest start time E.S; of all
scheduled activities 2 € C' with S; = ¢’ by one unit of time. The procedure
is terminated if a prescribed maximum number of unscheduling steps have
been performed or if all activities 7 € V¢ have been scheduled. The number
of required unscheduling steps can be markedly decreased on the average if
activities of strong components in project network N arc scheduled directly
one after another, where N does not contain backward arc (n + 1,0) (recall
that when minimizing the project duration, we may delete the deadline d on
the project termination).

Based on this priority-rule method, Franck (1999), Ch. 6, has also devel-
oped a schedule-improvement procedure of type parallel genetic algorithm (sce
also Franck et al. 2001b), which is an adaptation of a genetic algorithm by
Hartmann (1998) for the project duration problem without maximum time
lags. The genetic algorithm works on several subpopulations of equal size,
where cach island evolves separately until after a given number of iterations,
some individuals migrate from one subpopulation to another one. The indi-
viduals are represented by feasible activity lists (i.e., complete strict orders <
in set V* extending strict order <), which are transformed into schedules by
applying the serial schedule-generation scheme with strict order < substituted
into <. The initial subpopulations are created by randomly biasing priority
rules and transforming the resulting priority values 7 (¢) of activitics ¢ in an
activity list < by putting ¢ < 5 if (1) ¢ < j or (2) j A ¢ and 7(i) < 7(j). At
each iteration, two individuals are selected for crossover in each subpopulation
according to a double roulette-wheel selection. By applying a one-point and a
two-point crossover operation to those two individuals two new activity lists
are generated. With a certain probability, the new activity lists are then sub-
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jected to mutation by interchanging the positions of two adjacent activities in
the list. Subsequently, the two activity lists arc decoded into schedules using
the serial schedule-generation scheme. If in the course of the schedule gen-
eration a maximum number of unscheduling steps has been performed, the
violation of maximum time lags is allowed, which means that the resulting
schedule is not time-feasible. Based on the resulting schedules, the fitness of
the activity lists is calculated as the sum of the project duration and a penalty
term for time-infeasibility of the schedule. Eventually, the worst two individu-
als in the subpopulation are replaced with the two new activity lists, provided
that the new activity lists have a better fitness. These steps are iterated until
one of five stop criteria is met: all individuals have the same fitness, a lower
bound on the shortest project duration has been attained, a prescribed num-
ber of schedules have been evaluated, a feasible schedule has not been found
within a given number of iterations, or the best feasible schedule found has
not been improved within a given number of iterations.

A variant of the enumeration scheme of De Reyck and Herroelen (1998q)
has been used by Cesta et al. (2002) for a multi-pass heuristic, where relation
{i} x B is replaced with a pair (%, ) such that the addition of (¢, ) to relation p
breaks up some selected minimal forbidden set F'. Set F' is chosen from a
given number of sampled minimal forbidden sets F' € F with F' C A(S,t)
for some t > 0. I is one of the sampled minimal forbidden scts with minimum
“temporal flexibility” in terms of total slack times TF) with h € F, and
pair (4,7) is chosen such that the resulting temporal flexibility for set F' is
maximum. The addition of pairs (i,J) to p is repeated until Sr(p) = @ or
minimal point S = minSr(p) is a feasible schedule. Within the multi-pass
procedure, the temporal flexibility used for sclecting pairs (z, j) is randomly
biased, and thus in general several different feasible schedules are generated.

We now turn to the results of an experimental performance analysis. All
of the above algorithms for the project duration problem with renewable re-
sources except the branch-and-bound algorithm of Bartusch ct al. (1988) have
been tested on a test set consisting of 1080 problem instances with 100 real
activities and 5 renewable resources each. The instances have been generated
randomly by using the project generator ProGen/max (see Schwindt 19985
and Kolisch et al. 1999). The construction of projects can be influenced by
means of control parameters for the problem size, shape of the project net-
work, activity durations, time lags, and resource constraints. From the 1080
instances, 1059 possess a feasible solution. For 785 instances, an optimal so-
lution is known.

Table 3.1 shows, in historical order, the results obtained by the differ-
ent procedures, where the computation times refer to a Pentium personal
computer with 200 MHz clock pulse (to account for different hardware, we
have linearly scaled the computation times for De Reyck and Herroelen’s
and Franck’s algorithms according to the corresponding clock pulse ratio).
The results for the branch-and-bound procedure of De Reyck and Herroe-
len (1998a) are given as quoted by Dorndorf et al. (2000¢). “Schwindt (1998a)
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Table 3.1. Performance of algorithms for the project duration problem with renew-
able resources

Algorlthm tcp'u. Popt Pins Propt Punk Alb

De Reyck and Herroelen (1998q) 3s 54.8% 14% 425% 1.1% &
30s 564% 14% 411% 1.1% n. a.

Schwindt (1998a) BB 3s 58.0% 19% 401% 0.0% 75%
30s 625% 1.9% 356% 0.0% 7.0%
100s 63.4% 19% 34.7% 00% 6.9%

Schwindt (1998a) FBS 28.1s 59.4% 19% 387% 0.0% 64%

Fest et al. (1999) 3s 58.1% 1.9% 34.1% 59% 10.9%
30s 694% 19% 287% 00% 7.7%
100s 71.1% 1.9% 27.0% 00% 7.0%

Franck (1999) PR 0.16s 57.2% 1.9% 409% 00% 7.3%
Franck (1999) GA 12.1s 60.1% 19% 380% 00% 53%
Dorndorf et al. (2000c) 3s 66.2% 19% 316% 03% 52%

30s 704% 19% 27.7% 00% 4.8%
100s 71.7% 19% 26.4% 0.0% 4.6%

Cesta et al. (2002) 100s 63.2% 19% 349% 00% 73%

BB” and “Schwindt (1998a) FBS” designate the branch-and-bound algorithm
of Schwindt (1998a) and its truncation to a filtered beam search heuristic (see
Franck et al. 20015). “Franck (1999) PR” and “Franck (1999} GA” stand for
the priority-rule method and genetic algorithm by Franck (1999). The priority-
rule method is performed with 14 different priority rules and the best schedule
is returned. For the branch-and-bound procedures, t.;, denotes an imposed
time limit after which the enumeration is stopped. For the heuristics, ¢, is
the mean computation time. poyt, Pins, Propt, a1d punk denote the percentages
of instances for which respectively an optimal schedule is found and optimality
is proven, insolvability is shown, a feasible schedule is found whose optimality
cannot be shown, or the solvability status remains unknown. In addition, we
provide the mean percentage deviation 4y, of the project duration found from
a lower bound /b on the minimum project duration, which has been calculated
using techniques described in Heilmann and Schwindt (1997), the lower bound
of Méhring et al. (2003) based on Lagrangean relaxation, and the lower bound
of Brucker and Knust (2003) using column generation (sec Subsection 3.1.3).
For the algorithm of De Reyck and Herroelen (1998a), the published mean
deviations from lower bound are based on values different from [b and are
thus not listed. The mean refers to the instances which have been solved to
feasibility by the respective algorithm. For the heuristic methods, we say that
optimality is proven if the project duration obtained equals lower bound b
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and insolvability is shown if the consistency tests included reduce the search
space to void.

As far as the exact algorithms are concerned, the results suggest that
the most recent of the branch-and-bound procedures (Dorndorf et al. 2000¢)
is also the algorithm which performs best with respect to all five evaluation
criteria. The good performance of the constraint propagation algorithm is pri-
marily due to a clever search strategy and the effectiveness of the consistency
tests, which are applied at every enumeration node. In particular, the mean
deviation Ay, from lower bound is significantly smaller than for all remaining
algorithms and for almost three quarters of the instances, the enumeration
is complcted within a time limit of 100 seconds. It is worth mentioning that
all algorithms compared, except De Reyck and Herroelen’s branch-and-bound
procedure, are able to identify all insolvable instances and to find a feasible
schedule for each solvable instance. The comparison of the results obtained
when varying the time limit of the branch-and-bound procedures, however,
indicates that solving all of the remaining open instances would probably
require a prohibitively large computation time.

The priority-rule method provides feasible schedules with an acceptable
deviation from lower bound within a very short amount of time. If more
computation time is available, the genetic algorithm may be used to improve
the initial schedule calculated by the priority-rule method. The comparison
with Dorndorf et al.’s algorithm stopped after three seconds, however, shows
that the latter algorithm also outperforms the heuristics. In addition, the
data for the filtered beam search version of the branch-and-bound procedure
of Schwindt (1998a) suggest that even better results may be obtained by a
truncated version of Dorndorf et al.’s algorithm.

We proceed with the project duration problem with cumulative re-
sources. To the best of our knowledge, there are only two algorithms for
solving this problem: the branch-and-bound procedure devised by Neumann
and Schwindt (2002), which is based on the cnumeration scheme given by
Algorithm 3.1, and a branch-and-bound algorithm that has been proposed by
Laborie (2003).

The enumeration scheme of the latter procedure picks two distinct events
i,j with d;; < 0 and dj; < 0 in each iteration and branches over the binary
decision whether or not ¢ occurs before j (ie., S; < S; —1or S, > §;). The
selection of events ¢, j is based on the upper and lower bounds 75 (h), Ff(h),
ri (h), [E (h) on the inventory levels in resources £ € R just before and at
the occurrence, respectively, of events h € V¢ (sce Subsection 1.3.4). At each
node of the enumeration tree, the balance test is used to reduce the time
windows [ESy, LSy] of events h € V©.

Table 3.2 shows the results of an experimental performance analysis of
Neumann and Schwindt’s and Laborie’s algorithms. The test set has again
been generated by ProGen/max and contains 360 instances with 10, 20, 50,
or 100 events and 5 cumulative resources cach. The computations have been
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performed on a Pentium personal computer with 200 MHz clock pulse. For
each instance we have imposed a time limit of 100 seconds. The mean devia-
tion from lower bound 4;, is based on the lower bound by that is obtained
by applying the profile test to the project termination event n - 1 (see Sub-
section 3.1.3).

Table 3.2. Performance of algorithms for the project duration problem with cumu-
lative resources

Algorithm n Popt Pins Propt Punk Alb
Neumann and Schwindt (2002) 10 66.7% 33.3% 0.0% 0.0% 0.3%
20 489% 51.1% 0.0% 0.0% 22%
50 51.1% 456% 1.1% 22% 1.3%
100 55.6% 344% 7.8% 22% 12%

Laborie (2003) 50 53.3% 46.7% 0.0% 0.0% 1.5%
100 634% 36.6% 0.0% 0.0% 0.9%

We first discuss the results obtained with the algorithm by Neumann and
Schwindt (2002). For all 180 instances with 10 and 20 events, the enumeration
is completed within the time limit. Even for the projects with 100 events, 90 %
of the instances can be either solved to optimality or proved to be insolvable.
Put into perspective with the data displayed in Table 3.1, those results may in-
dicate that problems with cumulative-resource constraints are more tractable
than problems with renewable resources. As far as the computation of feasible
schedules is concerned, the picture is different. There exist projects with 50
events for which after 100 seconds neither a feasible schedule can be found nor
insolvability can be shown. With the branch-and-bound algorithm by Laborie
(2003), however, the twelve open instances with 50 or 100 activities can be
solved within less than 100 seconds (56 seconds on a HP 9000/785 worksta-
tion), which again confirms the benefit of efficient and effective consistency
tests. The results for the projects with 10 or 20 activities are the same as for
the algorithm by Neumann and Schwindt (2002).

3.2 Convexifiable Objective Functions

For convexifiable objective functions, time-constrained project scheduling with
disjunctive precedence constraints can no longer be performed efficiently, and
thus resource conflicts are settled by introducing ordinary precedence con-
straints. After the treatment of an enumecration scheme for gencrating can-
didate schedules, we discuss two alternative approaches to solving the relax-
ations: the primal approach, which will be used to solve the time-constrained
project scheduling problem at the root node of the enumeration tree, and
the dual approach for adding precedence constraints between activities of the
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project. Whereas the primal steepest descent algorithm iterates over time-
feasible schedules, the dual flattest ascent algorithm consecutively enforces
the precedence constraints. Both algorithms are used within a branch-and-
bound algorithm for minimizing convexifiable objective functions. In addition,
we provide an overview of alternative solution procedures that have been de-
vised in literature for specific convexifiable objective functions and discuss the
results of an experimental performance analysis of the methods treated.

3.2.1 Enumeration Scheme

Precursors of the enumeration scheme to be discussed in this subsection
have been proposed, independently, by Icmeli and Erengii¢ (1996) for the
net present value problem with renewable resources and by De Reyck and
Herroelen (1998a) for the project duration problem with renewable resources.
Temeli and Erenglig (1996) have considered the case of precedence constraints
among activities instead of general temporal constraints. The enumeration
scheme has arisen from the combination of the relaxation-based approach by
Bell and Park (1990) and the concept of minimal delaying alternatives intro-
duced by Demeulemeester and Herroelen (1992). Later on, Schwindt (2000¢)
has used the enumeration scheme within a branch-and-bound algorithm for
the total earliness-tardiness cost problem with renewable resources. For solv-
ing the capital-rationed net present value problem, Schwindt (2000a) has ex-
panded the enumecration scheme to cope with cumulative resources.

The algorithm mainly differs from the enumecration scheme considered in
Subsection 3.1.1 in that forbidden active sets are broken up by ordinary in-
stead of disjunctive precedence constraints. Hence, each enumeration node
is associated with a relation p rather than with a set P of relations, and the
search spaces P represent relation polytopes Sy(p). The relations p arise from
the union of minimal delaying modes {i} x B, where B is a minimal delaying
alternative for some forbidden set F'and i € A with A C V\ B being an appro-
priate set of activities to be chosen depending on the type of the underlying
resource conflict. Accordingly, we obtain one enumeration node for each com-
bination of activity ¢ € A and minimal delaying alternative B. The relaxation
to be solved at an enumeration node belonging to relation p consists in finding
a (local) minimizer of objective function f on search space Sy(p). In contrast
to the case of regular objective functions, it can easily be verified whether
or not the search space becomes void when passing from p to a child node’s
relation p” = pU({i} x B) by checking the condition df; +p; < 0 for each j € B
(see Proposition 1.9). Updating the distance matrix D(p) after the addition of
pairs (4,7) with j € B can be achieved in O(n?) time by using Algorithm 1.3
and observing that max,ep{dy; + 0;; + djn) = dgi + pi + maXx;ep d;p for all
g, heV.

The enumeration scheme is now as follows (cf. Algorithm 3.3). @ is a list
of relations in set V and C again denotes the set of candidate schedules to be
generated. At first, we put the empty rclation p = @ on list ) and set C := .
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We then check whether there is a cycle of positive length in project network N,
in which case we return the empty set of candidate schedules. At each iteration
we take some relation p from list @ and determine a minimizer S of f on
relation polytope Sp(p). If schedule S is resource-feasible, we have found a
candidate schedule, which is added to set C. Otherwise, we scan S for a start
time ¢ = 5; of some activity ¢ € V such that active set A(S,?) includes a
forbidden set F' and compute the corresponding set B of all minimal delaying
alternatives. For each minimal delaying alternative B € B and each activity 4
from the respective set A we obtain one minimal delaying mode {i} x B,
which is joined with relation p and gives rise to the extension p’ of p. If
relation polytope Sp(p’) is nonempty, p’ is added to the list @ of unexplored
enumeration nodes. We then take the next relation p from list @ and proceed
in the same way until no more relations p remain in list Q) and the set C of
all candidate schedules is returned.

Algorithm 3.3. Enumeration scheme for convexifiable objective functions

Input: A project, convexifiable objective function f.
Output: Set C of candidate schedules.

initialize list of relations @ := {#} and set of candidate schedules C := §;
if Sr = @ then return C; (x cycle of positive length in N x)
repeat
delete some relation p from list Q;
determine minimizer S of f on Sr(p);
if S is resource-feasible then C := C U {S}; (* candidate schedule found %)
else (x introduce ordinary precedence constraints )
determine time ¢ such that resource constraints (1.7) or (1.20) are violated
for some k € RP UR";
if £ € R” then
set F':= A(S, )NV
compute set B of all minimal delaying alternatives for F;
else
set F':= A(S,t) N V®;
compute set B of all minimal delaying alternatives for I and k;
for all B € B do
if k€ R” then set A:= F\ B; elsif B C V,f+ then set A := V¢ \ F;
else set A := V,f+ \ F
for alli € A do
set p’ = pU ({i} x B);
if St(p’) # 0 then add p on list Q; (* search space is nonempty *)
until Q = 0,

return C;




3.2. Convexifiable Objective Functions 85

3.2.2 Solving the Relaxations: The Primal Approach

The relaxation to be solved at cach node of the enumeration tree generated by
Algorithm 3.3 corresponds to a time-oriented scheduling problem of type (1.2)
where St is substituted into some relation polytope Sr(p) and f is a convex-
ifiable objective function. To simplify writing, we consider the relaxation at
the root node, where p = ), i.e., the resource relaxation of problem (P).

Recall that if objective function f : S — R is convexifiable, there exists a
C'-diffeomorphism ¢ : St — X such that composite function ¢ : X — R with
P(x) = (fop 1) (z) for all z € X is convex and the image X = ¢(Sr) of St
under ¢ is a convex set. The continuity of ¢ and the compactness of Sy imply
that the domain X of ¢ is compact as well. If for given convexifiable objective
function f, a diffeomorphism ¢ satisfying the conditions of Definition 2.29 is
known, the relaxation can be solved by computing a minimizer z of ¥ on X and
returning schedule S = ¢71(z). The existence of such a minimizer z is easily
scen as follows. By definition of v, the lower-level set LY of 1 for given o € R
equals the image of lower-level set LS of f under ¢, which is closed because
of the lower semicontinuity of f. Consequently, the continuity of ¢ provides
the closedness of any lower-level set LY of 1, which means that ¢ is lower
semicontinuous as well. Since X is compact, 1 always assumes its minimum
on X. A minimizer = of 1 on X can be determined by the ellipsoid method,
whose time complexity is polynomial in the input length of function % and
set X. We stress, however, that the latter time complexity is not necessarily
polynomial in the input length of the original relaxation (1.2).

For two special cases, which cover most convexifiable objective functions
occurring in practice, the rclaxation can be solved more efficiently on the
average. We first consider the case where f is piecewise affine, convex, and
sum-separable in the nodes ¢ € V and the arcs (4, j) € F of project network N,
t.e., f can be written in the form

)= f:S+ Y fu(S; = Si)
eV (4,1)EE
where functions f; : [ES;,LS;] — R (¢ € V) and f;; : [dij,—d;;] — R
((¢,4) € E) are piecewise affinc and convex. The problem of minimizing a
sum-separable function on set Sy is known as the optimal-potential problem
in literature (cf. e.g., Rockafellar 1998, Sect. 1J). It is well-known that the

optimal-potential problem with piccewise affine and convex functions f; and
fij is dual to the convex-cost flow problem

Minimize Z f;}(uij)—l—Zf,-*( Z Uj; — Z Uij)

(i,5)eE eV (J)eE (4,5)eE
subject to ¢, < Z Ujy — Z u; <6 (1eV:i#0)
(5,))€EE (,4)€E

where the functions f; and f7 and the functions f;; and f; are conjugate to
each other (see Rockafellar 1998, Sect. 8G). Recall that a function ¢* with
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effective domain X* (i.e., ¢*(y) < oo for all y € X*) is conjugate to a function
$: X — Rif ¢*(y) = sup,ex (v — ¢(z)) for all y € X*. For given functions
fi and fij, the corresponding conjugate functions f; and f/; are piecewise
affine as well. The functions f; and f7; (up to an additive constant) and the
lower and upper bounds ¢; and ¢; on supplies at nodes ¢ € V can be determined
by reversing the roles of breakpoints and slopes in passing from functions f;
and f;; to their respective conjugates f and f7;. The additive constants arise
from evaluating a convenient point on the characteristic curves of f; and f;;
(see Rockafellar 1998, Example 3 in Sect. 8F). The characteristic curve I' of
a convex function of one variable is the set of all points (x,y) € R? such that
y is between the left-hand and the right-hand derivative of the function at z.
The convex-cost flow problem can be solved in O(mn?log(}", .\ (6] + |c;])])
time by a generalization of the capacity-scaling algorithm for the min-cost
flow problem (see Ahuja et al. 1993, Sect. 14.5).

The subcase where f;(S;) = w;S; for all i € V and f,;(S; — 5;) = 0 for all
(i,7) € E leads to the following min-cost flow problem (cf. e.g., Russell 1970):

Minimize E —0;jUq;

GJ)eE
n+1 o
T Caw,, ifi=0 _
gt 3 w= X = { TR0 ey
(i.j)eE GAEE —w;, otherwise

ui; >0 ((¢,7) € E)

We now turn to the second special case, where convexifiable objective
function f is assumed to be continuously differentiable or sum-separable in
the nodes i € V of N. In that case, the relaxation is amenable to an efficient
primal steepest descent approach, which has been used by Schwindt (2000¢)
for solving the time-constrained total earliness-tardiness cost problem and
by Schwindt and Zimmermann (2001) for solving the time-constrained net
present value problem. We first review some basic concepts required for what
follows. For notational convenience, we assume that function f possesses a
continuation f from an open set C C R**2 to R which is differentiable at
the boundary points of Sy. The directional derivative of f at point S € Sy in
direction z € R™*? is defined to be

(3.3)
if the limit exists. Now recall that function ¥ = fo¢~! is convex and thus is
directionally differentiable in any direction at any interior point of its domain
(cf. Shor 1998, Sect. 1.2). Since f = 1 o ¢ is a composition of a C!-function
and a finite convex function, f is directionally differentiable in any direction
at any interior point of its domain as well. The latter property implies that
the limit in (3.3) always exists. The derivative df|s(z) in direction of the i-th
unit. vector z = e; coincides with the right-hand S;-derivative 87f/95;(S) of
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f at S, and the left-hand S;-derivative =f/85;(S) of f at S equals —df|s(z)
where z = —e;. The vectors of right-hand and left-hand S;-derivatives of f
at S are denoted by V*f(S) and Vf(.S), respectively. For fixed schedule S,
derivative df|s(z) is a positively homogeneous function g of z (i.c., g(az) =
ag(z) for all @ > 0 and all z € R™*2). Under our assumption that objective
function f is continuously differentiable or sum-separable in ¢ € V, derivative
g(z) = df|s(z) at point S in direction z takes thce form

- "
o= Y demr Y e

1€V:iz; >0 1€Viz; <0

In particular, if f is continuously differentiable, then g(z) = Vf(S)"z,
where Vf(S) is the derivative of f at S. As we will see later on (see
Lemma 3.4), 0%f/0S;(S) > 0=f/0S:i(S) for all i € V, which implies that
9(z) = ey max(91f/0S;(S)z;, 07 f/0S;(S)z). Conscquently, g is a convex
and thus sublinear function.

A direction z € R™*2 is called a descent direction at S € St if df|s(z) < 0.
z is termed a feasible direction at S if for some € > 0, S + dz € Sy for all
0 < § < . Due to the convexity of Sy, the latter condition is equivalent to
the cxistence of some ¢ > 0 with § + €z € Sy. Now let for given schedule
SeSr, E(S):={(i,j) € E|S; — S; = d;;} denote the set of arcs (i,j) € K
for which temporal constraint S; —.S; > ;5 is active at S. Then direction z
is feasible at S precisely if zo = 0 and z; — z; > 0 for all (¢,7) € E(S). A
(normalized first-order) steepest feasible descent direction at S is a feasible
descent direction z at S with ||z|| < 1 minimizing derivative g(z) = df|s(2),
where || - || is some vector norm in R"*2,

Now recall that any local minimizer of f on St is a global minimizer
as well (cf. Proposition 2.30d). Obviously, a schedule S can only be a local
minimizer of f on St if there is no feasible descent direction at .S. Thus, any
local minimizer S of f on Sy must satisfy the following necessary optimality
condition (defining an inf-stationary point, see Kiwiel 1986):

inf{g(z) | zo =0 and z; — z; > 0 for all (¢,5) € E(S)} >0 (3.4)

Condition (3.4) is sufficient for S to be a local minimizer of f on Sy if f is
convex or if f is differentiable and V f(S) # 0. The objective function of the
net present value problem is an example of a convexifiable and differentiable
objective function f for which V£(S) # 0 for all S € Sr.

A classical approach to computing local minimizers are so-called steepest
descent algorithms, which construct a sequence S', 52, ..., 5" of iterates such
that f(S*T1) < f(S#) for all p = 1,...,v—1. Steepest descent algorithms be-
long to the class of feasible direction methods introduced by Zoutendijk (1960).
Feasible direction methods offer an efficient way of solving nonlincar program-
ming problems with linear inequality constraints (cf. e.g., Jacoby et al. 1972,
Sect. 7.5, or Simmons 1975, Scct. 8.1), in particular if the directional deriva-
tives are casily obtained. Iterations of steepest descent algorithms consist of
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two main phases: the direction-finding phase and the line-search phase (see
Hiriart-Urruty and Lemaréchal 1993, Sect. 11.2). The direction-finding phase
determines a steepest feasible descent direction z at the current iterate S or
establishes that there is no feasible descent direction at S. Line search provides
a feasible destination S’ = S + oz with f(S + 02) < f(S). ¢ is termed the
stepsize. Algorithm 3.4 specifies a generic (primal) steepest descent algorithm.

Algorithm 3.4. Primal steepest descent algorithm

Input: MPM project network N = (V| E,§), objective function f.
Output: Local minimizer S of f on set St.

determine some time-feasible schedule S, e.g., S = ES;
repeat
determine normalized feasible direction z at S with minimum g(z); (* direction-
finding phase )
if g(z) < 0 then (x z is a descent direction x)
determine stepsize o in N at S; (x line-search phase )

set S =S+ o0z;
until g(z) > 0;
return S;

We now deal with the direction-finding phase in more detail. The prob-
lem of finding a normalized steepest feasible descent direction at schedule S
reads as follows:

Minimize g¢(z)

subject to z; —z >0 ((¢,4) € E(S))
29 =0
2l <1

(3.5)

The feasible region of problem (3.5) is compact and nonempty since z = 0
is always a feasible solution. The choice of vector norm || - || is of cru-
cial importance for the efficiency of the steepest descent algorithm. For
what follows, we assume that || - || is chosen to be supremum norm, i.e.,
Izl = |zl = maxiev |z, which means that normalization constraint
Izll <1 can bestated as —1 < z; <1 for all 4 € V. In this case, all constraints
of problem (3.5) are linear, and (3.5) can easily be transformed into a linear
program by introducing an additional variable y; for each i € V together with
the constraints y; > 07f/0S5,(S)z and y; > 0~ f/9S:(S)z; and replacing g(z)
with 3.y 4

In the following we consider a relaxation of problem (3.5) which can be
solved in linear time. To this end, we again assume that ||z|| = ||2]|cc, but we
only consider a subset of the temporal constraints that are active at S. The
active temporal constraints to be taken into account are chosen such that the
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corresponding rows of the cocfficient matrix are linearly independent. As it is
well-known from the theory of network flows, the directed graph G = (V, E¢)
whosc arc set E¢ contains the arcs belonging to the selected active temporal
constraints represents a spanning forest of project network N (sce, e.g., Ahuja
et al. 1993, Sect. 11.2). Proposition 2.28b tells us that G can be chosen to be
a spanning treec of N precisely if S is a vertex of Sp. The steepest descent
problem (SDP) at schedule S can now be formulated as follows:

Minimize ¢(z)

subject to z; — 2z >0  ((,7) € Eg)
zg=0
-1<z <1 (1eV)

(SDP)

A direction z solving steepest descent problem (SDP) is called an optimal
direction at S. Of course, we have to pay a price for the efficiency with which
(SDP) can be solved. At degenerate points S of St, where F C E(S), optimal
directions may no longer be feasible directions at S. In the latter case, line
search will provide the stepsize 0 = 0, and the set of selected active constraints
is modified without leaving the current iterate S. Since (SDP) is a relaxation
of problem (3.5), schedule S satisfies the necessary optimality condition (3.4)
if z = 0 is an optimal direction at S.

We show how for a given schedule S € Sy the steepest descent problem
can be solved in lincar time. The procedure is based on two fundamental
properties of problem (SDP). First, it always possesses an integral solution
and second, it can be decomposed into two independent subproblems with
linear objecctive functions.

Proposition 3.3. Let f be a differentiable or sum-separable convezifiable ob-
jective function. Then there is an integer-valued solution z to (SDP).

Proof. If f is differentiable or sum-separable, then objective function g(z) =
D ieViz>0 O f]0S;(S)z + Y eV iz, <0 0~ f/05;(S)z;. It follows that g is linear
on each octant and continuous. Since z = 0 is a feasible solution to (SDP),
the continuity of g implies that (SDP) is solvable. In addition, the coefficient
matrix of (SDP) is totally unimodular, which means that a feasible solution 2z
minimizing ¢ on a given octant can always be chosen to be integral. O

We proceed with the decomposition of the steepest descent problem (SDP)
into two independent subproblems where we only consider nonncgative di-
rections z > 0 or nonpositive directions z < 0 and which are respectively
denoted by (SDP™) and (SDP™). For (SDP™) objective function g(z) equals
V*f(S)Tz, and for (SDP™) we have g(z) = V7f(5) " 2.

Minimize g¢(z) = V*f(9)T2z || V= f(S)"=2

subject to z; — 2z >0 ((i,7) € Eg)

20=0
0<z<1|-1<%<0 (ieV)

(SDP*) || (SDP™)
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We first need two preliminary lemmas.

Lemma 3.4. Let f be some convezifiable objective function and let S be a
time-feasible schedule. Then

VTF(S) = VT F(S)

Proof. We only consider the case where S is an interior point of S since by
assumption, f is differentiable at boundary points of Sp. Let ¢ : Sp — X
be a C'-diffeomorphism satisfying the conditions of Definition 2.29 and lct
¥ = fop L. Since ¢ is continuous, z = ¢(S) is an interior point of X. Let
V(S) be the Jacobian matrix of ¢ at point S. For given direction z € R"+2,
applying the chain rule (see Shapiro 1990, Proposition 3.6 (ii) or Scholtes 1990,
Theorem 3.1) then provides df|s(z) = di|.(y) where y = V(S) z (recall
that ¢ is continuously differentiable and that + is finite-valued convex and
thus continuously Bouligand-differentiable at interior point of its domain).
We then have —df|s(—z) = —di|,(—y). The convexity of ¢ implies that
—dip|o(~y) < dip|.(y) and thus —df|s(—2) < df|s(z) (see Hiriart-Urruty and

Lemaréchal 1993, Sect. VL.1). The assertion follows from g%f(S) = df|s(e:)

and 5l (8) = ~dfls(~e:). 0

Lemma 3.5. z is a feasible solution to (SDP) if and only if max(0,z) and
min(0, z) are feasible solutions to (SDP).

Proof. Let z7 := max(0, z) and =z~ := min(0, z). Trivially, for any direction
z € R"? we have z = 2+ + 2™,

Sufficiency: Let H denote the coefficient matrix of constraints z; — 2z; > 0
((i,4) € Eq), which coincides with the negative arc-node incidence matrix of
spanning forest G. If 2% and 2~ are feasible solutions to (SDP), then Hz* > 0
and Hz~ > 0, which implies that Hz" + Hz~ = H(z* +27) = Hz > 0. In
addition, zg = zg'—i—zo_ =0andz; = zj'+zl_ >0—1=—-1and z = zf—i-zi_ <
1—-0=1forallie V.

Necessity: Let z and 2’ be two feasible solutions to (SDP). Then it follows
from elementary calculus that max(z, z’) and min(z, z’) are feasible solutions
to (SDP) as well. By choosing 2’ = 0 we obtain the feasibility of directions

zt and z~. o

Theorem 3.6. Let z* be a solution to (SDPT) and let 2~ be a solution to
(SDP™). Then z = 2T + 2~ solves problem (SDP).

Proof. We first show that g(z) = g(27) + g(z7). As a consequence of
Lemma 3.4 we have g(z) = Y,y max(87f/05:(5)z;, 0f/8S;(S)z), from
which it follows that g is convex. The positive homogeneity of g then
implies the sublinearity and thus the subadditivity of g. Hence, g(z) =
gzt +27) < g(2%) + g(27). Since max(0, z) is a feasible solution to (SDP*)
(see Lemma 3.5), we have g(z%) < g(max(0, 2}). Symmetrically it holds that
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9(z7) < g(min(0, z)). By definition g(max(0, 2)) = Y ;cv.,, 50 07/ /05:(S) 2 =

9(2) = X icviz <0 07f/95i(S)zi and g(min(0, 2)) = > icy... <o 0F/05:(5)zi.

Thus, g(2%) < g(2) — g(min(0, 2)) < g(2) — g(z7), Le., g(z) > g(2¥) + g(27).
Due to Lemma 3.5, problem (SDP) can now equivalently be stated as

Minimize g¢(z') + g(2")
subject to 2} — 2 >0, z{ — 2" >0 ((i,§) € Eg)
2p=2{ =0

Since in the latter problem the vectors z’ and 2" are unrelated, the problem
decomposes into the two independent problems (SDPT) and (SDP~) with
corresponding solutions z* and z~. O

For solving problem (SDP*) we make use of the following property of
forests. A forest G with at least one node possesses a source 1 with at most
one successor or a sink ¢ with exactly one predecessor. We call such a node ¢ an
extremal node of G. Now let ¢; := 81f/85;(S) be the right-hand S;-derivative
of f at point S. If there is a source i # 0 of spanning forest G with ¢; < 0,
then there is a solution z* to (SDP™) satisfying 2}t = 0. Conversely, if there
is a sink ¢ # 0 of G with ¢; > 0, then 2z} = 1 for any solution to (SDP¥). In
both cases node ¢ (and all incident arcs) can be deleted from G. If there is no
source i with ¢; < 0 and no sink ¢ with ¢; > 0, then V necessarily contains a
source ¢ with at most one successor j (and ¢; > 0) or a sink 7 with exactly one
predecessor 7 {and ¢; < 0). In both cases, ¢ is delayed exactly if j is delayed,
ie., zi‘Ir = zj+. Thus, nodes 7 and j can be coalesced into an aggregate activity
with partial derivative ¢; +¢; (which corresponds to the directional derivative
of f at S in direction z with z,"L" = 1for h € {i,j} and z;" = 0, otherwise). We
perform these steps until all nodes aside from 0 have been deleted from G.

Algorithm 3.5 provides an O(n)-time implementation of the above pro-
cedure, where Pred(i) := {j € V | (4,%) € Eg} and Suce(i) := {j € V|
(,j) € Eg} denote the sets of immediate predecessors and successors of node ¢
in G. To achieve the linear time complexity, we use an indices-representation
of forests, which is similar to the data structure discussed in Ahuja et al.
(1993), Sect. 11.3. We associate two indices pred; and orient; with each node
1 € V. For each component C of GG, we identify a specially designated node,
called the root of C. If 7 is not a root node, pred, provides the predecessor of
1 in G on the unique (undirected) path from the root to 4, and the orientation
index orient; equals 1 if G contains arc (pred;,i) and —1, otherwise. For a
root node i, we set pred, := —1 and orient; := 0. In addition, the nodes ¢ of G
are stored in some depth-first traversal order of GG, starting in each component
C at the root node. Then the last unvisited node i € U with respect to that
order is always an extremal node of the subgraph Gy of G induced by set U.
If orient; < 0, i is a source of Gy, and if orient; = 1, 7 is a sink of Gy. For
orient; # 0, the predecessor j € Pred(i) or successor j € Succ(i), respectively,
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is given by pred;. The sets C'(5) of coalesced nodes can efficiently be identified
via a labelling technique.

Algorithm 3.5. Direction-finding phase

Input: Objective function f, schedule S, spanning forest G of project network N.
Output: Solution z¥ to (SDPT).

set U=V, z7 := 0, ¢c:= Vf(S), and C(3) := {i} for all i € V;
while U # {0} do
if U contains a node ¢ # 0 with Pred(z) NU = § and |Succ(?) NU| < 1 then

set U .= U\ {i};
if ¢; > 0 and Succ(i)NU = {j} thenset ¢; := ¢;+¢; and C(j) := C(HHUC(2);
else
determine a node 7 € U, 4 # 0 with Succ(z) NU = @ and Pred() NU = {j};
set U :=U\ {i};
9: if ¢; > 0 then set 2,7 := 1 for all h € C(3);
else set ¢; 1= ¢; + ¢; and C(j) := C(j) U C(3);
return z+;

The mirror problem (SDP ™) can be solved by a similar procedure where 2+
is replaced with 2=, vector ¢ is initialized with the left-hand derivative V—f(S)
at schedule S, the roles of predecessors and successors in G are reversed, and
z; is put to —1 on line 9. Theorem 3.6 says that z = z* 4+ 2z~ is an optimal
direction at S.

In general, the line-search phase at schedule S is performed by comput-
ing an optimal stepsize o > 0 such that destination schedule S’ = S+o0z € Sp
minimizes f on the line segment £ in Sy passing through S in direction z. In
certain cases, however, it is more efficient to proceed with a suboptimal de-
scent step (see Jacoby et al. 1972, Sect. 5.1) because first, finding an optimal
stepsize is expensive or second, moving to a minimizer S’ on line segment £
may cause a zigzagging phenomenon. Schwindt (2000¢) and Schwindt and
Zimmermann (2001) have used the following stepsize ¢ in their steepest de-
scent algorithms for the total earliness-tardiness cost and the net present value
problems. Each activity ¢ € V with z; # 0 can at most be shifted until some
temporal constraint S; — S; > &;; with (4, j) ¢ E¢ becomes active, i.e.,

S; —S; — 4y
o <oy(i) = min 22—
(i,))EE:z; >z Z; — Zj
o1(i) may be cqual to 0 if S is a degenerate point of Sy. If f is not binary-
monotone (see Subsection 2.3.1), we stop shifting ¢ when crossing a kink of f,
i.e. _ _
af atf
a5; 05;
where for convenierlce we define min ) := oo. Note that we have min;cy 02(7)
=min{o’ > 0| —df|s1o2(—2) < dflsi0r2(2)}

o < oa(i) ;= min{c’ > 0| (S+0'2) < (S+0'2)}
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Accordingly, stepsize o is chosen to be

o= mln(%l‘? o1(i), min 09(1)) (3.6)

where o4(i) := oo for all ¢ € V if f is binary-monotone. For the general case
of an objective function that is neither piecewise affine nor binary-monotone,
we in addition have

o <min{o’ > 0| df|sio-(2) = 0}

When moving from S to destination S’ = S + oz, spanning forest G is
updated as follows. At first, we dclcte all ares (g, h) from G for which z, > z,.
If o = 01(i) for some ¢ € V, a new temporal constraint S; —S; > 4;; becomes
active and the corresponding arc (7, j) is added to G.

For the time-constrained net present value problem, Schwindt and Zim-
mermann (2001) have shown the following plausible statement, which readily
carries over to the more gencral case of piecewise affine or binary-monotone
objective functions f.

Proposition 3.7 (Schwindt and Zimmermann 2001). If in Algorithm 5.3
the initial schedule ts chosen to be the earliest schedule ES and the stepsizes o
are calculated according to (3.6), then at each iterate S there is a solution z
to steepest descent problem (SDP) with z > 0.

Under the assumptions of Proposition 3.7, it is thus sufficient to solve sub-
problem (SDP™) for computing optimal directions z.

For piecewise affine or binary-monotone objective functions, the number
of iterates needed to reach a schedule S satisfying necessary optimality con-
dition (3.4) can markedly be decreased by using an acceleration technique.
Consider the spanning forest G arising from deleting all arcs (7, j) with z; > z;
and let ¢ be an activity with ¢ = min(o,(¢),02(4)). All components C of G
consist of nodes j with identical z;. If there is a component of G which does
not contain node ¢ and for whose nodes j we have z; # 0, those nodes can
be shifted further without recomputing a new steepest descent direction. By
shifting the components in order of nondecrcasing minimum slacks between
component nodes ¢ and nodes j with z; > z;, we obtain the acceleration step
displayed in Algorithm 3.6. If the one-sided S;-derivatives of f arc obtained in
constant O(1) time, the algorithm can be implemented to run in O(mlogm)
time by maintaining a Fibonacci heap of arcs (i,7) € F with z; > z; and
a Fibonacci heap of nodes i € V with z; # 0 that are sorted according to
nondecreasing slack times S’;%’— and o2(%), respectively.

We finally notice that if f is binary-monotone and z > 0, the resulting
destination schedule S is always a vertex. Furthermore, it can be shown that
in case of regular and in case of so-called antiregular objective functions f,
which are componentwise nonincreasing in start times S;, the steepest descent
algorithm with the acceleration step included reaches the respective minimiz-
ers [/S and LS after one iteration, independently of the initial schedule chosen
(see Schwindt and Zimmermann 2001).
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Algorithm 3.6. Acceleration step

Input: MPM project network N = (V, E,§), schedule S, direction z, spanning
forest G of project network N.
Output: Destination schedule S, updated spanning forest G.

for all (i,5) € E¢ with z; > z; do set Eg = Eg \ {(¢,7)};
while z # 0 do
determine a node ¢ € V' with z; # 0 and minimum slack ¢ = min(o,(z), o2(3));
if 0 = 01(7) then (x update spanning forest G )
set Eq := Eq U {(¢,5)} for some arc (i,j) € E with 2; > z; and 5——57;—61
= o(i);
determine node set C(h) of component with ¢ € C(h);
for all g € C(h) do set Sy := S, 4+ 0 and z, 1= 0;

return schedule S;

3.2.3 Solving the Relaxations: The Dual Approach

Let p be a relation in activity set V' to be extended by a minimal delaying
mode {i} x B in the course of Algorithm 3.3. For computing a minimizer on
the reduced search space Sy(p’) of the resulting relation p’ = p U {{i} x B},
it is often more expedient to usc a dual approach rather than re-performing
the primal steepest descent algorithm from scratch. The basic principle of the
dual flattest ascent approach is to start with the minimizer S of f on Sr(p)
and to perform an outer approximation towards set Sp(p’}, where the dis-
tance to Sy(p’) is stepwise decreased at locally minimal cost. More precisely,
at each iteration we consider moving in feasible directions z such that first,
z; — z; > 1for all j € B and second, the directional derivative g(z) at iterate S
is minimum. We refer to such a direction as a flattest feasible ascent direction
at S. Let A(S,Sr(p")) := infsics, () 18" = Slloo = max;ep(Si +pi — §;)F =
(S; + pi — minjep S;)T denote the distance between S and set Sp(p’). The
first condition ensures that A(S + oz, Sp(p’)) < A(S,Sr(p’)) provided that
stepsize ¢ > 0, whereas the second requirement means that the first-order ap-
proximation of the increase in the objective function value when moving from
S to S + oz is minimum. We notice that if f is not a convex and piecewise
affine function, this increase may also be negative, and thus in the general
case we have to consider normalized flattest ascent directions z at S.
Algorithm 3.7 shows a generic flattest ascent algorithm, where for simplic-
ity we assume that p = @ and Sp(p’) # 0. At each iteration of the algorithm
we first remove those activities j from minimal delaying alternative B for
which precedence constraint S; > S; +p; has already been enforced. The arcs
(,7) corresponding to the latter precedence constraints are added to proj-
ect network N in order to ensure that they are observed at all subsequent
iterations. Next, we compute a normalized flattest ascent direction z at S.
If B =0 and g(z) = 0, we have reached sct Sp{p’) and there is no feasible
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descent direction z at S. Otherwise, we determine an appropriate stepsize o,
move to destination schedule S + oz, and put S := 5 + o=z.

Algorithm 3.7. Dual flattest ascent algorithm

Input: MPM project network N = (V, E,J), objective function f, time-optimal
schedule S, minimal delaying mode {i} x B.
Output: Local minimizer S of f on set Sr({i} x B).

repeat
for all j € B with §; > S, +p; do
remove j from set B and add arc (¢, ) with weight §;; = p; to N;
determine normalized flattest feasible ascent direction z at S; (xdirection-
finding phase *)
if B+# 0 or g(z) <0 then
determine stepsize o in IV at S; (* line-search phase %)
set S:= S5+ oz;
until B = 0 and g(z) = 0;
return S;

In what follows, we study the direction-finding and line-search phases in
more detail. During the direction-finding phase of the algorithm we have
to determine a flattest feasible ascent direction z at the given iterate S. In
analogy to (3.5), the latter problem can be formulated as follows, where {i}x B
is the minimal delaying mode under consideration:

Minimize ¢(z)
subject to z, — 2z, >0 ((g,h) € E(S))

20 =0 (37)
25— 2 >1 (] € B)
=l <1

The normalization constraint ||z|| < 1 may be deleted if f is convex and picce-
wise affine (the objective functions of the total inventory holding cost and total
earliness-tardiness cost problems are examples of such an objective function).
We notice that in contrast to the steepest descent problem (3.5), problem (3.7)
does not necessarily possess a feasible solution. It is casily secn, however, that
under the assumption that relation p’ is time-feasible, i.e., Sp{p’) # 0, there
is always a flattest ascent direction at S.

In analogy to the primal steepest descent algorithm treated in Subsec-
tion 3.2.2, we choose the vector norm || - || in (3.7) to be the supremum norm
and relax the problem by replacing the arc set E(S) belonging to all active
constraints at S with the arc set Eg C E(S) of some spanning forest G of
project network N. The resulting problem will be referred to as the flattest
ascent direction problem (FAP) at S.
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Minimize g¢(z)

subject to 2z, — 2, >0  ((g,h) € Eg)
20=0 (FAP)
z—z>21  (j€B)
-1<z, <1 (heV)

A solution z to (FAP) is again called an optimal direction at S. Our approach
to solving the flattest ascent direction problem is based on a decomposition of
the problem into two subproblems, where we respectively enforce all activities
j € B to be right-shifted (i.e., z; = 1) or activity ¢ to be left-shifted (i.e.,
z; = —1). The problems where in (FAP) we replace z; —2; > 1 (j € B) by the
corresponding constraints z; =0 and z; =1 (j € B) or z; = =1 and 2; > 0
(j € B) are denoted by (FAP*) or (FAP™), respectively.

Proposition 3.8. Flattest ascent problem (FAP) is unsolvable if and only if
both problems (FAPT) and (FAP™) are unsolvable. If (FAP) is solvable, it is
solved by any solution z* to (FAPT) or by any solution 2z~ to (FAP™).

Proof. Analogously to the proof of Proposition 3.3 it can again be shown that,
if (FAP) is solvable, there exists an integral solution z to (FAP). In the latter
case, z; may assume the two values 0 and —1. If z; = 0, we have z; = 1 for
all j € B. For z; = —1, the constraints z; — 2; > 1 (j € B) turn into z; > 0
(j € B). m)

As a consequence of Proposition 3.8, an optimal direction z at S can be
computed by solving both subproblems (FAPt) and (FAP™) and choosing
z=2z"if g(z1) < g(z7) and z = 27, otherwise (where we write g(z*) = co
or g(z7) = oo if the respective subproblem is unsolvable). Like the stecpest
descent problem (SDP), problem (FAP™) can be solved by using Algorithm 3.5
for (SDP*) and its analogue for the mirror problem (SDP™). To this end, we
put ¢; := oo and ¢; := —oo for all j € B when we apply Algorithm 3.5, and
we put ¢; := —oo and ¢; := oo for all § € B when using the algorithm for
the mirror problem. Problem (FAP™) can be dealt with analogously. In sum,
computing an optimal direction z at S necessitates four calls to the direction-
finding algorithms from Subsection 3.2.2 and thus can again be achieved in
linear time.

The following proposition shows that if at current iterate S moving in any
feasible descent direction z at S would increase the distance between S and
Sp(p’), then (FAP) can be solved by only one application of Algorithm 3.5
and its adaptation for the mirror problem. It can easily be seen (cf. Schwindt
2000¢) that the conditions of the proposition are satisfied at each iterate if f
is convex and piecewise affine.

Proposition 3.9. Let S be a time-feasible schedule and assume that for given
minimal delaying mode {1} x B, z = 0 solves the steepest descent problem
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(SDP) at point S with additional constraints z; — z; > 0 for oll j € B. If
(FAP™) is solvable, it is solved by some direction 2+ > 0, and if (FAP™) is
solvable, it is solved by some direction z— < 0.

Proof. Let 2’ be an optimal solution to (FAPT). Since 2+ := max(0, 2’) sat-
isfies all constraints of problem (SDP) (compare the proof of Lemma 3.5)
and z — 2 = 1 for all j € B, z¥ is a feasible solution to (FAP)* as
well, and thus from the optimality of 2’ it follows that g{z+) > g(2’). More-
over, direction z” := min(0, z') is a feasible solution to problem (SDP) with
z; — 2z > 0 for all j € B. For 2/ we have g(z') = Ziev;z;>o OYf/85;(8)z! +
Zz‘ev:z;<0 0~f/05:(S)zt = g(z+) + g(2"). Since the optimal objective func-
tion value of problem (SDP) with z; — z; > 0 for all j € B equals 0, it holds
that g(2”) > 0. We conclude that g(z*) = g(z) — g(2") < g(2'), which duc
to g(z*) > g(2') provides g(zt) = g(z'). From the feasibility of direction z*
then follows the assertion. The proof for problem (FAP™) is analogous, where
z7 == min{0, 2’} and z"” := max(0, ). 0

For given optimal direction z, the line-search phase yields an appropriate
stepsize o > 0 such that

o< o3(j) =S +pi — 5

for all j € B. 03(j) is the amount by which the time lag between the starts
of activities ¢ and j has to be increased for satisfying precedence constraint
S; > S;+p;. In addition, o is chosen such that destination schedule S' = S+o0z
is time-feasible and we do not move beyond a kink of g, i.e.,

— min(min o (B). mi ). main o ( i
o mln(znelval( ),helgag( ),521}3103(]))

3.2.4 Branch-and-Bound

By providing the enumeration scheme given by Algorithm 3.3 with a search
strategy, consistency tests, and lower bounds, we obtain a branch-and-bound
procedure for problem (P) with convexifiable objective function f. For the
same reasons as in Subsection 3.1.3 it is generally expedient to store list ¢ of
unexplored enumeration nodes in a stack, i.e., to perform a depth-first search.
Since the consistency tests discussed in Subsections 1.2.4 and 1.3.4 do not refer
to the objective function, we may again apply all those tests in principle. The
effectiveness of a given test, however, among other things strongly depends on
the particular objective function under consideration. As for the case of regular
objective functions, the objective function value f(5) of a minimizer S of f on
some search space St(p) may again serve as a lower bound /by on the objective
function value of the best feasible schedule in Sy (p). Sclle (1999) and Kimms
(2001b) have used the technique devised by Mohring et al. (2003) based on
Lagrangean relaxation of the resource constraints (see Subsection 3.1.3) to
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compute lower bounds for the net present value and total earliness-tardiness
cost, problems, respectively, with renewable resources.

Sometimes relations p can be excluded from further consideration because
they are dominated by other relations p’ in the sense that either the absence
of feasible schedules in St(p’) excludes the existence of feasible schedules in
Sr(p) or the minimum objective function value of the best feasible schedule
in Sy(p’) can be proved to be not greater than for the best feasible schedule
in S7(p). The simplest type of dominance between relations is given by the set
inclusion of relation polytopes: relation p’ dominates p if Sr(p) C St(p’). Since
such dominance rules define a reflexive relation in the set of relations, one has
to ensure by appropriate tie-breakers that “cross-pruning” (i.e., relation p’
dominates relation p and vice versa) does not occur. The branch-and-bound
algorithm may apply several dominance rules to newly generated relations p
with corresponding minimal delaying mode {i} x B.

The first dominance rule is as follows (cf. De Reyck and Herroelen 1998a).
We add all activities h € A(S,t) \ B with dj, > 0 for some j € B to set B
because they are delayed as well when shifting activities 7 € B behind the
completion of activity 4. If there is a minimal delaying alternative B’ € B with
B’ C B, relation p is dominated by relation p’ belonging to minimal delaying
mode {i} x B’. The second dominance rule refers to a (possibly induced)
minimum time lag between activity ¢ and some activity ¢’ of a delaying mode
{i'} x B with the same minimal delaying alternative. If either (1) dy; +p; > ps
or (2) dy; + pi = pir and (as tie-breaker) i’ < ¢, then relation p can be
fathomed because the completion time of activity i is greater than or equal
to the completion time of activity 7’.

Whereas the first two rules establish dominance between child nodes p of
one and the same parent node, the following subset-dominance rules compare
the recent child nodes p with (arbitrary) relations p’ from which we have
branched formerly or which remain on stack ). The first subset-dominance
rule has again been proposed by De Reyck and Herroelen (1998¢). If the whole
search space St(p’) of a relation p’ has been explored and if p’ is a subset
of p, relation p can be fathomed. This rule can be implemented to run quite
efficiently by exploiting two properties of the enumeration tree (see Schwindt
1998¢). First, p' C p” for all descendants p” of relations p’ and second, in
case of a depth-first search the parents p” of relations p’ with C-maximal
completely explored search spaces Sp(p') are ancestors of p.

Neumann and Zimmermann (2002} have used a generalization of the latter
rule in their branch-and-bound algorithm for the net present value problem
with renewable resources. Comparing relations p and p’ does not take into
account the time lags that are induced by the distance matrix D. In other
words, we may have Sp(p) C Sp(p’) though p 2 p’. Rather, condition St (p) C
St(p') can be checked by (elementwise) comparing the corresponding relation
matrices D(p) and D(p'), i.e., Sr(p) € St(p') precisely if df; > df; for all
i,jeV.
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The following subset-dominance rule by Schwindt (1998¢) compares the
recent child nodes p with relations p’ on stack Q. If Q contains a relation
¢ C p that is not an ancestor of p, then relation p can be deleted because
St(p) € Sr(p'). This rule offers the advantage that no additional memory is
required for storing enumeration nodes already visited. Of course, the rule can
also be applicd in a way to compare relation matrices rather than relations.

3.2.5 Additional Notes and References

In this subsection we briefly survey procedures for project scheduling with
specific convexifiable objective functions and general temporal constraints. We
first deal with primal algorithms for the time-constrained case, which may be
used for solving the resource relaxation of problem (P). Kamburowski (1990)
was probably the first who studied the time-constrained net present value
problem with general minimum and maximum time lags between the start
times of activities. He has proposcd an adaptation of the approach by Grinold
(1972) for ordinary precedence constraints to the case of general temporal
constraints. Grinold’s procedure is based on the transformation of the prob-
lem into a linear program by specifying a C!-diffeomorphism ¢ which satisfies
the conditions of Definition 2.29. Using specific properties of the linear pro-
gram, the problem is solved by a vertex-following algorithm, the methods by
Grinold (1972) and by Kamburowski (1990) differing in the pivot rule used.
De Reyck and Herroelen (1998b) have generalized the recursive-search pro-
cedure by Herroelen et al. (1996) for the precedence-constrained net present
value problem to the case of general temporal constraints. Starting at the
earliest schedule, the activities of subtrees representing active temporal con-
straints and possessing a negative net present value arc stepwise delayed in
order to increase the net present value of the project. In contrast to all other
procedures, the temporal constraints are represented by the distance matrix,
i.e., their transitive closure, rather than by the project network. Neumann
and Zimmermann (2000) have combined Kamburowski’s procedure, equipped
with a new pivot rule, and a preprocessing method proposed by Herroelen
et al. (1996). The latter method delays all terminal activities with negative
cash flows up to their latest start time (an activity is called terminal if it does
not have successors in project network N aside from the project termination
event n + 1).

Table 3.3 compiles the results of an experimental performance analysis
comparing the algorithms for the timc-constrained nct present value prob-
lem. The rows “Grinold (1972)” and “CPLEX” refer to the adaptation of
Grinold’s procedure to general temporal constraints with the original pivot
rule and the primal simplex algorithm implemented in LP solver CPLEX 6.0
(among the different LP solvers available in the CPLEX package, the primal
simplex method has shown the best performance). The performance of the
algorithms has been evaluated on the basis of two test sets generated with
ProGen/max. The test sets contain 1440 and 90 projects with 100 and 1000
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activities, respectively (see Schwindt and Zimmermann 2001 for details). The
results for the algorithm by De Reyck and Herroelen (1998b) are quoted from
De Reyck (1998). We provide the mean number #it of itcrations needed to
reach an optimal solution (where “n.a.” indicates that this number is not
available) and the corresponding mean computation time t.p, on an Intel 486
personal computer with 50 MHz clock pulse (n = 100) and a Pentium personal
computer with 200 MHz clock pulse (n = 1000).

Table 3.3. Performance of primal algorithms for the time-constrained net present
value problem

Algorithm n #it tepu

Grinold (1972) 100 22 26ms
1000 473 1.7s

CPLEX 100 n.a. 570ms

1000 n.a. 118.6s

Kamburowski (1990) 100 24 30ms
1000 577 2.58

De Reyck and Herroelen (1998b) 100 n.a. 831ms

Neumann and Zimmermann (2000) 100 12 17ms
1000 219 1.0s

Schwindt and Zimmermann (2001) 100 4 10ms
1000 17 0.6s

The results depicted in Table 3.3 permit several conclusions. First, the
methods based on Grinold’s vertex-following algorithm show a much better
performance than the primal simplex method applied to the lincarized prob-
lem. Second, the preprocessing method allows to save roughly one half of
the computation time. Third, the efficiency of the recursive-search method is
poor, which is presumably less due to the recursion itself than rather to the
use of the distance matrix, whose computation is expensive and which causes
almost any vertex of set Sp to be degenerate. As a consequence, the algo-
rithm performs many pivot steps that do not lead to a new vertex. Fourth,
the steepest descent method appears as the most efficient solution procedure
for the time-constrained net present value problem. If we reduce t.p, by the
time needed for computing the earliest schedule, the speed-up factor between
the procedure of Neumann and Zimmermann (2000) and the steepest descent
algorithm is more than six (cf. Schwindt and Zimmermann 2001). The small
value for #it can be mainly attributed to the acccleration step, which for
n = 1000 reduces the number of iterations by more than 90%. This reduc-
tion does not lead to an equally large saving in computation time because
the acceleration step is more time consuming than simple line search (recall



3.2. Convezifiable Objective Functions 101

that the time complexity of the acceleration step is O(mlogm), whereas line
scarch can be done in O(m) time).

Next, we consider the time-constrained total earliness-tardiness cost
problem. The only algorithm for this problem we arc aware of is the steepest
descent procedure proposed by Schwindt (2000¢). For the special case where
only minimum time lags are present, Vanhoucke et al. (2001) have devised a
recursive-search procedure, which is an adaptation of Herroelen et al.’s algo-
rithm for the net present value problem. The time-constrained total earliness-
tardiness cost problem can rcadily be transformed into a linear program by
introducing two continuous variables e; > 0 and t; > 0 for each activity i € V
along with the constraints e; > d; — S; —p; and ¢t; > S; + p; — d;. The ob-
jective function of the linear program then is Ziev(wﬁei + wit;). Obviously,
for St # 0 there is always an optimal solution satisfying e; = (d; — S; — p;)™
and t; = (S; +p; —d;)T for alli € V, i.e., e; equals the earliness and ¢; equals
the tardiness of i. Notice that the existence of an equivalent linear program
does not imply that the total earliness-tardiness cost is a linearizable objective
function in the sense of Definition 2.29, which is obviously not true.

Table 3.4 compares the primal simplex algorithm with the steepest descent
procedure. The analysis is based on two test sets with 100 and 1000 activi-
ties, respectively, containing 90 instances each (details are given in Neumann
et al. 2003b, Sect. 3.5). The computations have been performed on a 200 MHz
Pentium personal computer.

Table 3.4. Performance of primal algorithms for the time-constrained earliness-
tardiness problem

Algorithm n #it  tepu

CPLEX 100 367 539ms
1000 5035 58.3s

Schwindt (2000¢) 100 15  7ms
1000 139  3.8s

The results are in line with those obtained for the net present value prob-
lem. Again, the stecpest descent algorithm clearly outperforms the LP solver.
However, the gap betwcen both approaches is less important, which is duc
to two reasons. First, though the linear program contains more variables and
constraints than for the net present value problem, the computation time de-
creases since the coefficient matrix of the constraints is now binary instead of
real-valued. Second, since the objective function is no longer binary-monotone,
the stepsizes for the steepest descent algorithm are typically much smaller,
which is also indicated by the large increase in the number of iterations.

We proceed to the net present value and total earliness-tardiness cost
problems with renewable or cumulative resources. We restrict ourselves to
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procedures that are dedicated to the case of general temporal constraints be-
tween activities. For a review of various types of precedence-constrained net
present value problems and solution procedures we refer to the survey pa-
per by Herroelen et al. (1997). Algorithms for total carliness-tardiness cost
problems with precedence constraints and renewable resources have been de-
vised by Serafini and Speranza (1994a,b) and Vanhoucke et al. (2001). For
solving the resource relaxation, Serafini and Speranza exploit the duality re-
lationship between the latter problem and the convex-cost flow problem (see
Subsection 3.2.2).

We first consider the net present value problem with renewable
resources. The branch-and-bound algorithms by De Reyck and Herroelen
(1998b) and Neumann and Zimmermann (2002) are both based on the enu-
meration scheme discussed in Subsection 3.2.1. The algorithms mainly differ in
the procedures for solving the relaxations at the enumeration nodes. Whereas
De Reyck and Herroelen (1998b) use their (primal) recursive-search method,
Neumann and Zimmermann (2002) solve the initial resource relaxation at the
root node by the primal steepest descent algorithm by Schwindt and Zim-
mermann (2001) and the relaxations at descendant nodes with a dual method
rescmbling the flattest ascent algorithm dealt with in Subsection 3.2.3. In
addition, De Reyck and Herroelen (1998b) and Neumann and Zimmermann
(2002) have used disjunctive activities tests and dominance rules for reducing
the size of the enumeration tree. Selle and Zimmermann (2003) have proposed
a bidirectional priority-rule method for approximatively solving large-scale
net present value problems. Similarly to the heuristic by Franck (1999) for
the project duration problem (see Subsection 3.1.4), one activity is scheduled
per iteration, where the essential difference is that certain activities, namely
those with negative cash flows, are started at their latest feasible start time.
An analysis of this schedule-generation scheme in Section 4.1 will show that
the schedules obtained in this way are stable, provided that no unscheduling
step is performed. Since the set of all optimal schedules may not contain a
stable schedule, the heuristic may systematically miss the optimal solution.
A similar result is known for the minimization of regular objective functions,
where the parallel schedule-generation scheme yields nondelay schedules (see
Kolisch 1996), among which there is not necessarily an optimal schedule.

Table 3.5 shows the results of an experimental performance analysis where
we have compared the three algorithms on a test set containing 1440 projects
with 50 activities and 5 renewable resources each. A detailed description of the
remaining ProGen/max control parameters chosen can be found in De Reyck
and Herroelen (1998b). We have imposed a limit ¢, of 3 and 30 seconds on
the maximum running time of the branch-and-bound algorithms, which refers
to a Pentium personal computer operating at 200 MHz (for comparison pur-
poses, the computation times have been scaled according to the clock pulse
ratio by a factor of 0.3 for De Reyck and Herroelen’s branch-and-bound al-
gorithm and by a factor of 2.5 for the priority-rule method). Since De Reyck
and Herroelen (1998b) only report on the number of instances for which the
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branch-and-bound algorithm has completed the enumeration within the re-
spective time limit, the values p,,: and pins and the values pnopr and punk
have been aggregated.

Table 3.5. Performance of algorithms for the net present value problem with re-
newable resources

Algorithm tcpu Popt Pins Propt Punk
De Reyck and Herroelen (1998b) 3s 58.1% 41.9%
30s 75.5 % 24.5%

Neumann and Zimmermann (2002) 3s 79.1% 44% 165% 0.0%
30s 851% 44% 10.5% 0.0%

Selle and Zimmermann (2003) 3ms 1.0% 44% 94.6% 0.0%

Not surprisingly, the branch-and-bound algorithm by Neumann and Zim-
mermann (2002) seems to be more efficient than the earlier algorithm by
De Reyck and Herroelen (19985). The improvement upon the latter algorithm
is probably to be attributed to the tremendous difference in the time needed
for solving the relaxations. The dual method typically runs in a small frac-
tion of the time that is required for re-optimizing from scratch the minimizer
with the primal steepest descent method after the addition of a minimal de-
laying mode to the current relation. Moreover, the primal method is by far
less time-consuming than the recursive-search procedure (see Table 3.3). The
priority-rule method provides feasible schedules within a very short amount
of time. The small proportion p,y of instances, however, for which the opti-
mal objective function value computed by the branch-and-bound algorithm
of Neumann and Zimmermann (2002) can be found, indicates that the low
computational effort is paid for by some loss of quality. Nevertheless, experi-
ence with the project duration problem documented in Franck et al. (2001b)
suggests that priority-rule methods may constitute a valuable alternative to
exact procedures when coping with projects comprising hundreds of activi-
ties. Finally, we notice that we do not give a deviation Ay from some lower
bound b on the minimum objective function value because the latter quan-
tity may be positive, zero, or negative. The development of a suitable index
measuring the mean remaining error of suboptimal solutions for this type of
problem seems to be an open issue in literature.

Starting from the representation of minimizers of a convex objective func-
tion on relation polytopes as spanning forests G of the project network N,
Schwindt (20000) has developed a neighborhood function for local search pro-
cedures (see also Neumann et al. 2003 a). Similarly to the steepest descent algo-
rithm from Subsection 3.2.2, the arcs of forest G correspond to active temporal
or precedence constraints. G is decoded into the corresponding time-feasible
schedule by computing a local minimizer S on the relation polytope St(p)
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where p is the relation in set V' arising from the arcs of G that belong to
precedence constraints (precedence arcs, for short). Two types of neighbor-
hood operations are considered, which transform forest G into a neighboring
forest . If S is feasible, G’ results from G by deleting some precedence arc.
Otherwise, a precedence arc may be delceted or a new precedence arc may be
added for which both the initial and terminal nodes are contained in a forbid-
den active set for S. The reason why precedence arcs may also be cancelled
even if S is not resource-feasible is that due to maximum time lags, it may be
necessary to perform backtracking before attaining a feasible solution. When
some precedence arc is deleted from &, the new minimizer of f is determined
by applying the primal method starting at S. In case a precedence arc is added
to G, the dual method is used.

We have tested a simple randomized best-fit search implementation (cf.
Kolisch and Hartmann 1999) of this approach for the total earliness-
tardiness cost problem with renewable resources. At each iteration the
algorithm moves to the best neighboring forest. The quality of a forest G is
evaluated according to the objective function value f(S) of the corresponding
schedule S and its degree of infeasibility measured in terms of the excessive
workload 7, r, fod(rk(S,t) — Rp)tdt. In order to avoid cycling, the qual-
ity is randomly biased. Each time the local search gets stuck in a deadlock
where S is not yet resource-feasible and no additional precedence arc can be
added to G without generating a cycle of positive length in the corresponding
relation network N(p), we return to the best schedule found thus far. 10%
of the computation time is allotted to the branch-and-bound algorithm by
Schwindt (2000¢) for the computation of an initial feasible schedule serving
as starting-point for the local scarch. If the branch-and-bound procedure fails
in finding a feasible solution within the imposed time limit, the search starts
at the minimizer of f on set Sp.

The results for the branch-and-bound method and the best-fit search pro-
cedure are given in Table 3.6. They have been obtained for the test set with
90 instances comprising 100 activities and 5 renewable resources already used
for the analysis of the algorithms for the time-constrained problem (see Ta-
ble 3.4). Again, the tests have been performed on a 200 MHz Pentium personal
computer.

Table 3.6. Performance of algorithms for the earliness-tardiness problem with re-
newable resources

Algorlthm tcp’u. Popt Pins Propt DPunk Alb

Schwindt (2000¢)  3s 3.3% 13.3% 67.8% 156% 6.6%
30s 5.6% 13.3% 700% 11.1% 6.5%
100s 5.6% 133% 71.1% 10.0% 6.4%

Schwindt (20000) 83.4s 3.3% 13.3% 75.6% 7.8% 6.0%
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Comparing the results from Tables 3.1 and 3.6 suggests that the earliness-
tardiness problem is much more difficult to solve to optimality than the project
duration problem. The mean deviation 4;; from the lower bound lby arising
from the resource relaxation, however, indicates that the quality of the sched-
ules found is comparable to those computed for the project duration problem.
This deviation can be further decreased by stopping the enumeration after a
short amount of time and subsequently executing the best-fit search procedurc
based on the neighborhood function of Schwindt (2000).

We conclude the subsection by considering the capital-rationed net
present value problem, where the project is executed with a limited bud-
get. In that case, the funds available for disbursement depend on the initial
budget (possibly plus a credit line) and the difference of all past progress
payments and paying outs. This situation frequently occurs in the building
industry, where the receipts from completed subprojects serve to finance suc-
ceeding subprojects. It is readily seen that the cash balance can be interpreted
as a cumulative resource with infinite storage capacity R and a safety stock
of R = 0. The initial inventory r¢ equals the project budget, and the resource
requirements r; of events ¢ € V¢, i # 0 coincide with the cash flows czf . This
project scheduling problem has been treated in an early paper by Doersch
and Patterson (1977), who have devised an integer programming formulation
based on time-indexed binary variables z; being equal to one if t = S; and
zero, otherwise. The objective function then reads .y Ef’j}zs clemotyy,
and the resource constraints can be written as

min(¢,LS;)
S Y dawzR (t=01,...9
i€V t'=ES;

A priority-rule method for solving the problem has been proposed by Smith-
Daniels et al. (1996). The priority values are based on delay penalties, which
arise from solving the dual of the time-constrained problem where the objec-
tive function is replaced by its first-order Taylor expansion (as it has been
shown by Russell 1970, the dual then represents a transshipment problem).
Schwindt (2000a) has addressed the capital-rationed problem as a net
present value problem with cumulative-resource constraints. His branch-and-
bound algorithm is based on the enumeration scheme from Subsection 3.2.1,
and the relaxations at the enumeration nodes are solved by the dual flattest
ascent method discussed in Subsection 3.2.3. Kimms (2001a), Sect. 8.2, has
proposed a mixed-integer linear program for a gencralization of the problem
setting where residual cash is lent from one period to the next and several
projects from a given portfolio are considered simultaneously. The objective
is to select the projects to be performed from the portfolio and to schedule
the selected projects in a way that the cash balance at planning horizon d is
maximized. Kolisch (1997) has investigated a variant of this problem where
in addition, cash can be borrowed at an interest rate of o > « but only
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one project is considered. For a critique of the underlying assumptions of this
model we refer to Kimms (20014}, Scct. 8.1.

Table 3.7 shows the results of an experimental performance analysis com-
paring the branch-and-bound algorithm with the CPLEX 6.0 MIP solver pro-
cessing Doersch and Patterson’s integer programming formulation. The four
test sets used consist of 90 instances each with 10, 20, 50, or 100 activities.
For the projects with 10 or 20 activities, the emphasis parameter of the MIP
solver has been put to optimality, whereas for the projects with 50 and
100 activities, this parameter has been chosen to be feasibility. The MIP
solver and the branch-and-bound algorithm have been stopped after a maxi-
mum computation time of 100 seconds on a Pentium personal computer with

200 MHz clock pulse.

Table 3.7. Performance of algorithms for the net present value problem with one
cumulative resource

Algouthm n Popt Pins Propt Punk
Doersch and Patterson (1977) 10 73.3% 13.3% 0.0% 13.3%
20 500% 0.0% 7.8% 42.2%
50 0.0% 00% 5.6% 94.4%
100 0.0% 0.0% 0.0% 100.0%

Schwindt (2000a) 10 74.4% 25.6% 0.0% 0.0%
20 74.4% 25.6% 0.0% 0.0%

50 75.6% 16.7% 1.1% 6.7%

100 65.6% 89% 56% 20.0%

The analysis clearly demonstrates the suitability of the cumulative-resource
concept for solving this type of problems. Whereas the MIP solver is only ca-
pable of solving small problem instances of academic interest, the branch-and-
bound algorithm terminates the enumeration within 100 seconds for almost
75 % of the projects with 100 activities. The instances with 10 and 20 activi-
tics are all either solved to optimality or shown to be unsolvable. It is worth
noting that in contrast to the case of renewable resources (see Table 3.5), the
difficulty resides rather in finding a feasible schedule than in proving optimal-
ity. Thus, developing advanced search strategies to overcome this difficulty
may constitute a valuable field of future research.



4

Constructive Algorithms

If the objective function to be minimized is locally regular or locally concave,
the relaxation of the resource constraints does not yield a tractable problem
in general. Thus, the relaxation-based approach from Chapter 3 no longer
proves useful. For solving resource allocation problems with locally regular
or locally concave objective function f, we have to explicitly construct the
schedules from an appropriate set that contains an optimal schedule if the
problem is solvable. We refer to algorithms that proceed in such a way as
constructive algorithms. The serial schedule-gencration scheme for minimiz-
ing regular objective functions is an example of a constructive algorithm. In
this chapter we develop constructive algorithms that are based on the second
basic representation of the sct S of all feasible schedules as a union of disjoint
equal-preorder sets (recall that the term equal-preorder set may also desig-
nate an equal-order set). As we have seen in Subsections 2.1.1 and 2.1.2, the
set, of all minimal points or vertices of equal-preorder sets coincides with the
sct of all minimal points or vertices, respectively, of schedule polytopes. In
Subscction 2.2.2 we have introduced the notion of quasiactive and quasistable
schedules designating those feasible schedules which represent minimal points
or vertices, respectively, of their schedule polytopes. The analysis in Subsec-
tion 2.3.2 has shown that for S # @, the set of all quasiactive schedules always
contains some optimal schedule if the objective function f under study is lo-
cally regular. Likewise, the set of all quasistable schedules always contains an
optimal schedule if f is locally concave provided that S # 0.

Since we again consider the general case where both renewable and cumu-
lative resources are present, we consider relations p in set V of all (real and
fictitious) activities. Under our assumption that the real activities use the re-
newable resources and that the events deplete and replenish the cumulative
resources, precedence relationships need only be defined among recal activi-
ties and among events of the project. More formally, instead of considering
schedule-induced preorders 8(S) = {(¢,7) e V. xV | S; > S; + p;} inset V,
we may restrict ourselves to schedule-induced relations arising from the union
of the respective schedule-induced strict order in set V* and the correspond-
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ing reflexive preorder in set V°. Since the ground sets V* and V¢ of those
two preorders are disjoint, the union of both preorders is again transitive and
thus represents a preorder in ground set V = V¢ U V*. Accordingly, for given
schedule S we define the schedule-induced preorder to be

0(5) = {(1,7) € (VE xVHU(VE X V) [ 55 = S + pi}

We notice that preorder 6(5) is neither irreflexive nor reflexive.

Now recall that any quasiactive schedule can be represented as a spanning
outtree G = (V, Eg) of its schedule network N(6(S}) rooted at node 0, where
each arc (4, j) of G belongs to one temporal constraint S; — S; > &;; or one
precedence constraint S; > S; 4+ p; that is active at S (cf. Proposition 2.28).

Similarly, any quasistable schedule can be assigned to a spanning trec G of

its schedule network. In addition, we assign the weights 55 = df;s) to the
arcs (i,7) € Eq. The active temporal and precedence constraints can then be
written in the form

S;—8i =65 ((i,4) € Eg)

The constructive algorithms are based on generating such spanning outtrees
and spanning trees G. The corresponding schedule S is obtained from G by
computing the unique solution to the system of linear equations Sy = 0 and
S; = Si+5g ((i,7) € E¢), which can be achieved in linear time. By construct-
ing a spanning outtree or spanning tree G we perform two consecutive tasks
simultaneously: first, finding a feasible schedule-induced prcorder in set V
and sccond, computing some appropriate vertex (the minimal point if G is an
outtree) of the corresponding relation polytope.

Resource allocation problems with locally regular or locally concave ob-
jective functions, regardless of containing explicit resource constraints or
not, are much harder to solve to optimality on the average than resource-
constrained project scheduling problems where some regular or convexifiable
objective function is to be minimized. That is why in the present chapter
we are concerned with heuristic procedures. In Section 4.1 we first discuss
a generic schedule-generation scheme producing one quasiactive or one qua-
sistable schedule. This schedule-generation scheme has been proposed by Neu-
mann et al. (2000) and goes back to priority-rule heuristics for resource level-
ling problems that have been devised by Neumann and Zimmermann {19995,
2000). The schedule-generation scheme provides an initial quasiactive or qua-
sistable schedule, from which we may subsequently move stepwise towards dif-
ferent quasiactive or quasistable schedules by using an iterative improvement
procedure. In Section 4.2 we then deal with tree-based neighborhood functions
presented in Neumann et al. (2003a). Neighborhood functions constitute the
essential building block of local search algorithms such as hill climbing, tabu
search, simulated annealing, or threshold accepting (for an overview of differ-
ent local search techniques, see Aarts and Lenstra 2003b). In particular, we
show that the proposed neighborhoods allow local search algorithms to reach
optimal schedules independently of the initial schedule chosen. Section 4.3 is



4.1. Schedule-Generation Scheme 109

devoted to additional notes on alternative solution procedures and an exper-
imental performance analysis of the methods discussed.

4.1 Schedule-Generation Scheme

The schedule-generation scheme for constructing quasistable schedules ex-
pands the node set C of a subtree G of some schedule network by one node j
in each iteration until C' = V. The algorithm starts with C' = {0} and itera-
tively links the activities j € V' \ C not yet scheduled with activities ¢ € C.
In this way, the start times S; of all activities ¢ € C are fixed. They are
uniquely determined by the recursion Sy = 0 and S; = S, + (5,?1- if (h,?) € E¢
or S; = Sy, — 65 if (i,h) € Eg (i € C, i # 0), where h is the predecessor
of node ¢ on the (undirected) path from node 0 to node ¢ in G. For a given
pair (¢,7) with ¢ € C, j € V \ C, there are four alternatives of connecting
nodes i and j. First, we may either introduce a forward arc (,j) or a back-
ward arc (j,1). Now assume that we have chosen forward arc (4, 7). Then (3, §)
may be weighted by (55 = 0;; it (4,7) is contained in project network N or
weighted by 55 = p; if di; < p;. In the first case, we speak of a temporal arc,
and in the second case, the arc is referred to as a precedence arc. Likewise,
backward arc (4,¢) may be weighted by 5JC§ = J;; or by 52 =p;. lf i and j
are events, then S; +p; = 5; —p; = S; and thus the backward precedence arc
may be omitted. The arcs have to be chosen in accordance with the temporal
constraints. Let

ESJG = max[ESj,rlx}E%((Si +d;;)] and LSJG = min[LSj,%%l(Si — dj;))
denote the earlicst and latest start times of activity j given that activities
1 € C start at times S;. The schedule S generated is time-feasible precisely if
at any iteration it holds that ES]G <8, + 55- < LSJG if a forward arc (7, 7) is
selected and ESJ-G <§; — (5jGi < LS]G if a backward arc (4,14) is chosen.

From the viewpoint of implementation, it is expedient to allow the sched-
uling of activities j at their earliest or latest start times ESJ-G or LSJG even if
the corresponding temporal arc connects activity 7 with an activity ¢ that is
not scheduled either. We then need not check whether or not activity j can
already be linked to some activity ¢ € C, while the set of schedules which
can be generated is not affected by this modification. The reason for this is
that the same tree G could have been constructed by the original method just
by processing the activities j in a different order. Figuratively speaking, the
modification means that the dirccted graph G whose node set C' is iteratively
expanded may now be unconnected unless C = V. Nevertheless, the property
that the start times of all scheduled activities ¢ € C are known as soon as
they are added to G is preserved.

Algorithm 4.1 shows an implementation of the procedure for the case where
the availability of the resources is not limited, i.e., Ry = oo for all £ € R? and
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R, = —o0, Rj, = oo for all k € R". As we have mentioned in Subsection 2.3.2,
this assumption is generally met in practice when dealing with resource level-
ling problems, where only renewable resources are taken into account and the
resource capacities may be chosen according to the respective requirements.
How to modify the schedule-generation scheme in the presence of resource
constraints will be explained below. For simplicity, we assume that St # 0.
After the computation of the earliest and latest schedules ES and LS, at each
iteration some activity j € V' \ C not yet scheduled is selected. Then, the de-
cision set D; of tentative start times ¢ for j is determined. The conditions on
start times ¢ ensure that the resulting schedule S is (time-)feasible and that
precedence relationships are only established between activities of the same
type (i.e., among real activities and among events; recall our discussion about
the proper definition of schedule-induced preorder 8(5)). Finally, some t € D;
is selected to be the start time of j and the time windows [ESy, LSy] for the
activities h € V'\ C are updated. These steps are reiterated until all activities
have been scheduled. The resulting tree G is a spanning tree of all relation
networks N(p) for which p contains the precedence arcs added and thus in
particular a spanning tree of schedule network N(6(S)). The time complexity
of Algorithm 4.1 equals O(mn), which is the time required for calculating the
initial earliest and latest schedules.

Algorithm 4.1. Schedule-generation scheme for locally concave objective functions

Input: A project without resource constraints.
Output: A quasistable schedule S.

initialize set of scheduled activities C' := {0} and set Sy := 0;
compute earliest and latest schedules F.S and L.S;
while C # V do (¥ not all activities j € V scheduled %)
select an activity j € V \ C;
if j € V° then put V' := V*; else put V' := V¢,
add j to C and set D; := {ES;, LS;};
for all < € V' N C with ESJ <Si+pi < LSJ do add S; + p; to Dj;
8 if V' =V* then
9: for alli € V' NC with ES; < S; —p; < LS; do add S; — p; to Dj;
10:  select some time ¢t € D; and set S; :=t; (*schedule j at time ¢ *)
for all h € V' \ C do (*update earliest and latest start times %)
set ES) 1= max(ES), S; + d;n) and LSy := min(LSy, S; — du;);
return 5;

The following proposition (c¢f. Neumann et al. 2000) establishes the com-
pleteness of the schedule-generation scheme. This means that, at least in the-
ory, a resource allocation problem with locally concave objective function can
be solved by a brute-force algorithm branching over the activity j € V'\ C to
be scheduled next and the tentative start time ¢ € D; chosen.
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Proposition 4.1 (Neumann et al. 2000).

(a) Any schedule S generated by using Algorithm 4.1 is quasistable.
(b) Any quasistable schedule S € QSS can be generated by using Algo-
rithm 4.1.

Proof.

(a) Since the earliest and latest start times are updated in the course of the al-
gorithm, schedule S is (time-)feasible if at each iteration D; C [ES;, LS;].
It follows from the definition of decision set D; that we only need to show
that £S; < LS;. Now assume that we have scheduled some activity j
and before the update of the earliest and latest start times it holds that
ES, < LSy for all h € V\ C. Then S < LSy < LS, — djy, and
Sj» > ES; > ESp+dy; for all h € V\C and in particular Sj:+dj; < LS;
and S — d;y > ES;. Conscquently, £S; > LS; after the update would
imply Sj +dj; > Sy —djj, ie., dy;+d;; > 0, which contradicts Sg # 0.
Thus, S is feasible. The quasistableness of .S now follows from Proposi-
tion 2.28h.

(b) We consider some quasistable schedule S and show how to gencrate
S by using Algorithm 4.1. Let G be a spanning tree of schedule net-
work N(6(S)). The existence of such a spanning tree is guaranteed by
Proposition 2.28b. Since G is a tree and the procedure starts with C' = {0},
at cach iteration there is some activity j € V' \ C whose predecessor ¢ on
the path from node 0 to node j in G has already been scheduled. We may
then connect j with ¢ by selecting t = S; + 65 €D if S5 =8+ 55 and
t=2S5; — 5ﬁ- € D;, otherwise. Thus, when C' = V, the schedule gencrated
coincides with schedule S. (]

Now recall that any quasiactive schedule S can be associated with a span-
ning outtrec G of its schedule network N(6(S)) with root node 0. Such a
spanning outtree is obtained if each activity j to be scheduled is linked with
some activity ¢ € C by a forward arc (i, j). Accordingly, a schedule-generation
scheme for quasiactive schedules is readily obtained from Algorithm 4.1 by
initializing decision set D; with {ES;} instead of {ES;,LS;} and deleting
lines 8 and 9. The statements of Proposition 4.1 with “quasistable” and @SS
replaced by “quasiactive” and QAS immediately carry over to this modifica-
tion of Algorithm 4.1.

For what follows, we drop our assumption of infinite renewable-resource
capacities. To take account of renewable-resource constraints, in line 10 of Al-
gorithm 4.1 we only select feasible start times t from decision set D; such that
the residual resource capacities suffice to exccute activity j in time interval
[¢,t + pj[, ie.,

> riktri <R (heR, <t <t+p)) (4.1)

€CNVe:
8 <t'<S;+p;
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Of course, inequality (4.1) only needs to be evaluated for real activities
j € V. By using a support-point representation of the resource demand over
time that results from the real activities i € CNV® scheduled, testing (4.1) for
given t € D; takes O(|R”|n) time. If times ¢ in decision set D; are iterated in
increasing order, the amortized time complexity for eliminating all infeasible
start times from D; is O(nlogn + |R”{n). By keeping a sorted list of all start
and completion times of scheduled activities i € C' N V%, the amortized time
complexity for checking (4.1) is decreased to O(|R?|n) per iteration. Thus,
the time complexity of Algorithm 4.1 including the test of inequality (4.1) is
O(mn + |RP|n?).

It may happen that no tentative start time ¢ € D; is resource-feasible,
which means that the current partial schedule (S;);cc cannot be extended to a
feasible schedule S € S. In that case, cither the schedule generation is stopped
or an unscheduling step is performed. Different unscheduling techniques are
known from literature. The method by Franck (1999), Ch. 4, tailored to the
case of regular objective functions, has been sketched in Subsection 3.1.4. Fur-
ther unscheduling procedures have been devised by Neumann and Zimmer-
mann {1999b, 2000) (see also Zimmermann 2001a, Sect. 3.2, and Neumann
et al. 2003b, Sect. 3.7), where those activities ¢ € C are unscheduled whose
start at a different time frees capacity for processing activity j. Alternatively,
one may also generate a time-feasible schedule S using Algorithm 4.1 first
and then resolve resource conflicts by left- or right-shifting certain activities.
This approach corresponds to schedule-repair methods described by Neumann
and Zimmermann (2000). We finally notice that the proof of Proposition 4.1
remains valid for the case of renewable-resource constraints, which means that
even without unscheduling, any quasistable schedule may still be generated
using Algorithm 4.1 with reduced decision sets D;.

For certain choices of tentative start times ¢ € D; one obtains specific types
of schedules. If at cach iteration we select ¢ = minD; and no unscheduling step
is performed, the resulting schedule is active because each activity is scheduled
at its earliest feasible start time. Likewise, by always choosing ¢t = min D; or
t = maxD; we obtain a stable schedule. The following example, however,
shows that due to the presence of maximum time lags, not all active or stable
schedules can be generated in this way.

FEzample 4.2. We consider a project with one renewable resource of capacity
R =1 and four real activities ¢ = 1, 2, 3,4 with durations p; = 1 and resource
requirements 7; = 1 (¢ = 1,...,4). The project network N is depicted in
Figure 4.1a. Clearly, there is precisely one feasible schedule S = (0,1,2,3,4,5),
which, as a consequence, is active and stable. Schedule S is illustrated by
the Gantt chart shown in Figure 4.1b, where cach rcal activity i € V?® is
represented as a box of length p; and height r; over the time axis from S,
to Cz

The start times of activities 0, 1, 4, and 5 are fixed by the prescribed time
lags because the corresponding nodes form a cycle of length zero in N. If in
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Fig. 4.1. Incompleteness of schedule-generation scheme for active or stable sched-
ules: (a) project network N; (b) Gantt chart for unique feasible schedule S

the course of the algorithm, activity 2 is scheduled before activity 3, we obtain
min Dy = 0 and max Dy > 3. Symmetrically, if activity 3 is scheduled before
activity 2, we have minD3 < 2 and maxD3; = 5. Hence, the unique feasible
schedule S cannot be generated if solely scheduling at earliest or latest feasible
start times is considered.

We obtain the schedule-generation scheme of the priority-rule methods
for resource levelling proposed by Neumann and Zimmermann (199954, 2000)
if start time ¢ € D; is always chosen to be the greatest minimizer of an
additional-cost function f* on Dy, i.e., t = maxarg ming¢p, f]@(t’). For given
t' € Dy, f}(t') is the increase in the objective function value if activity j is
scheduled at time ¢’ given partial schedule (5;);ec, where we put 71,4 := 0 for
all activities & € V' \ C not yet scheduled and all k¥ € R®. Similarly to Exam-
ple 4.2 it can be shown that the restriction to locally optimal tentative start
times ¢ € argminy¢p, f}(¢') generally implies that the schedule-generation
scheme is no longer complete, which means that one may miss the optimum
even if all sequences in which activities j are scheduled are enumerated.

In the case where the availability of cumulative resources is limited as
well, the feasibility of the generated schedule can no longer be ensured by
iterating partial schedules which observe the resource constraints. The reason
for this is that a partial schedule leading to a shortage or a surplus in some
cumulative resource may be extended to a feasible schedule. Nevertheless,
we may still exclude certain tentative start times from further consideration
by computing, for given partial schedule, lower and upper bounds on the
inventory in cumulative resources.

Let (S;)icc be the partial schedule under consideration and assume that
we want to test whether event j € V*\C can be scheduled at time S; =t € D;.
By D’ we denote the distance matrix for the expanded project network N’
where for each h € C' U {j} we add the two arcs (0, k) and (h,0) weighted by
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Son = Sp, and dpg = —S), to project network N. The set S C Sy of all time-
feasible schedules belonging to project network N’ coincides with the set of all
schedules that can be obtained by extending (Sk)necuyy) to a time-feasible
schedule. If for all schedules S € S7., the inventory level at time S; either falls
below the safety stock or exceeds the storage capacity, i.e.,

7%(S, S;) < Ry, or r4(S,S;) > Ry, for some k € R” (4.2)

then cvent j cannot be scheduled at time ¢t = S; because 7 NS = 0. In
this case, tentative start time ¢ can be deleted from decision set D;. (4.2)
holds true for any schedule S € S precisely if for some cumulative resource
k € RP, the maximum inventory maxses; m(5,5;) at time S; is less than
safety stock R, or the minimum inventory minges; rx(S5, ;) at time S; ex-
ceeds storage capacity Rj. The problems of computing the maximum and
minimum inventories have been addressed in Subsection 2.1.2, where we have
been concerned with checking the feasibility of a given relation p in set V°.
In the latter context, we have shown that maximizing or minimizing r4(-, S;)
on a relation polytope St(p) can be stated as a binary program with totally
unimodular coefficient matrix, the dual of whose continuous relaxation is a
minimum-flow problem (see (2.2) and (2.4)). We obtain analogous formula-
tions of our present problems if we choose reflexive preorder € in (2.2) to
be the preorder 8 = G(D’) induced by distance matrix D’. Since solving a
minimum-flow problem takes O(n®) time, the computational effort for testing
the feasibility of a tentative start time ¢ € D; is O(|R|n®). Hence, the time
complexity of the variant of Algorithm 4.1 coping with renewable-resource
and cumulative-resource constraints is O(|R?|n? + |R7|n®).

Alternatively, resource constraints can be taken into account by combining
the relaxation-based and constructive approaches into a two-phase method. In
phase 1, we determine a feasible relation ¢ in set V. In phase 2, we generate
a vertex of relation polytope Sy{p) C S (i.e., a quasistable schedule) by using
a variant of Algorithm 4.1 where the original project network N is replaced
with relation network N{g). A feasible relation p in set V can be generated
using a modification of the enumeration scheme given by Algorithm 3.3. In
the modified version, forbidden sets F' are given by antichains U and unions
of predecessor sets U in preorders 8 = &@(D(p)) rather than by active sets
A(S,t) for minimizers S on relation polytopes Sr(p). For given relation p,
those sets U can be determined by solving the minimum-flow problems dis-
cussed in Subsections 2.1.1 and 2.1.2 for the restrictions of p to sets V* and V¢,
respectively. The solutions to the dual problems, i.e., the maximum (s, t)-cuts
in the respective flow networks, then provide the activity sets U sought (for
details we refer to Section 5.2, where we shall use a similar technique for com-
puting forbidden active scts when sequence-dependent changeover times arise
between the execution of activities that are executed at different locations). If
no set U is forbidden any longer, we have obtained a feasible relation p = p.
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4.2 Local Search

The schedule constructed by using the schedule-generation scheme may be im-
proved by performing a local search in the set Q.AS of all quasiactive schedules
if objective function f is locally regular or in the set QSS of all quasistable
schedules if f is locally concave. Starting with some initial solution, local
search algorithms try to find better solutions by exploring neighborhoods (cf.
Aarts and Lenstra 2003a). The neighborhoods are given by a neighborhood
function N+ X — P(X) mapping the set of solutions X into the power set
of . For each solution s € X, A defines a set N/(s) of neighboring solutions s'.
N (s) is called the neighborhood of s, and neighboring solutions s € N(s) are
referred to as neighbors of s.

A neighborhood function A can be represented by its (directed) neighbor-
hood graph G with node set X'. Two nodes s and s’ are linked by an arc (s, s’)
in G precisely if " is a neighbor of s, where it may happen that s’ is a neighbor
of s but not vice versa. Local search can be regarded as a directed walk in
neighborhood graph G. Graph G is called weakly optimally connected if from
any node s of G, there is a directed path from s to some optimal solution s*. If
G is weakly optimally connected, an optimal solution s* can be reached from
any initial solution just by iteratively moving from solutions s to appropriate
neighboring solutions s’. Obviously, G is weakly optimally connected if it is
strongly connected.

In this section we review neighborhoods for resource allocation problems
with locally regular or locally concave objective functions f that have been
proposed by Neumann et al. (2003a). We first deal with the case of locally
concave objective functions and then explain how to adapt the neighborhood
to locally regular objective functions. Recall that each quasistable schedule S
can be represented by a spanning tree G = (V, Eg, §%) of its schedule network
N(6(S)) such that S is the unique solution to the system of linear equations
Sy =0and §; - 5; = 55 ((1,7) € Eg). That is why we identify the set of
solutions X with the set X% of all spanning trees of schedule networks N (6)
where 6 € STP is some schedule-induced preorder in sct V.

The starting point for constructing a neighborhood function N'*t on set X
is the observation that first, two spanning trees in set X*¢ differing in only one
arc always belong to either coinciding or adjacent vertices of some schedule
polytope and that second, for any two adjacent vertices of a schedule polytope,
there exist two corresponding spanning trees in set X% which differ in exactly
one arc. Roughly speaking, we determine neighbors G’ of a spanning tree G
by removing a leaving arc (4,7) from G and adding a different entering arc
(#,4') to G such that the resulting directed graph G’ is again a tree. By
deleting arc (7,j), G decomposes into two subtrees with node sets C 2 {0}
and ¢’ = V\C. Let S and 5’ be the quasistable schedules that are represented
by spanning trees G and G’, respectively. Obviously, S;, = S, for all h € C
and S}, = S, +o forall h € C' or §;, = S, —o for all h € C" and some
stepsize o > 0. In other words, when moving from S to S’ we uniformly shift
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all activities h of C’ by some o > 0 until a new inequality S; — Sy > (5%,
with ¢ € (', 5/ € Cor i € C, j' € C' becomes active. Arc (¢/,7') may
be a temporal arc or a precedence arc. Similarly to the steepest descent and
flattest ascent methods discussed in Section 3.2, stepsize ¢ may be equal to 0
and thus S’ = S if S is a degenerate vertex of its schedule polytope St(6(S5)).

Now recall that we refer to (g, h) as a forward arc of G if g is the predecessor
of h on the (undirected) path from 0 to & in G, and as a backward arc of G,
otherwise. If leaving arc (7, ) is a forward arc of G, then ¢ € C and j €
and if (¢, 7) is a backward arc of G, then ¢ € C" and j € C. For what follows
we associate a direction z with leaving arc (¢, ) with z;, = 0 for all h € C and
zp = 1 for all h € C” if (4,7) is a forward arc and z, = —1 for all h € C" if
(,7) is a backward arc. Let (g, h) be an arc in some schedule network. We say
that set C’ is shifted along arc (g, h) if z, — 24y = 1. If 23, — 2, = —1, we speak
of a shift against arc (g,h). Clearly, a shift of C’ against leaving arc (i, 7)
is only meaningful if (7,7) is a precedence arc. In that case, the precedence
relationship between activities ¢ and j is deleted when passing from S to
neighboring schedule S’. Symmetrically, a shift along an entering temporal
arc is not possible. If we shift C’ along leaving arc (¢,5), then &' = S + oz,
and for a shift against leaving arc (i,7) we have S = § — oz. Before we
describe neighborhood function A% in more detail, we consider the four cases
that may occur when shifting set C’. For illustration, we consider the spanning
tree G and the corresponding Gantt chart displayed on the top of Figure 4.2,
where for simplicity we have omitted the arc weights. We assume that the
underlying project has one renewable resource and that the recal activities
1 = 1,2,3 are unrelated and can be started at the project beginning. Thus,
all arcs (g,h) € Eq are precedence arcs.

(a) We shift C” along leaving arc (¢, j) and against entering arc (¢/, 7). This
means that the schedule-induced preorder remains unchanged when pass-
ing from S to ', ie., 8(S') = 6(S), or, in other words, S’ € S7(6(S)).
This case is shown in Figure 4.2a, where (¢, ) = (0,1) and (¢, ') = (4,0).
In the resulting spanning tree G’, the activities h € C’ shifted are drawn
in bold.

(b) We shift C’ along leaving arc (i,7) and along entering precedence arc
(#',4"). This means that the schedule-induced preorder is augmented when
passing from S to S # S, ie., 6(5’) D 6(S). This case is shown in
Figure 4.2b, where (z,5) = (1,3) and (¢, 5) = (2,3).

(c) We shift C’ against leaving precedence arc (i, j) and against entering arc
(¢, 7). This means that the schedule-induced preorder is reduced when
passing from S to S’ # S, i.e., 8(S") C 6(S). Such a shift is always opposite
to a shift augmenting the schedule-induced preorder (case (b)). This case
is shown in Figure 4.2¢, where (4,5) = (1,3) and (¢, j') = (0, 3).

(d) We shift C” against leaving precedence arc (4, ) and along entering prece-
dence arc (i, j'). This means that 8(S") 2 6(S) and 6(S") ¢ 6(S)if S' £ S.
This case is shown in Figure 4.2d, where (¢, j) = (1,2) and (¢, j) = (2, 3).
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Fig. 4.2. Cases occurring when shifting set C’: (a) shift along leaving and against
entering arc; (b) shift along leaving and along entering arc; (c) shift against leaving
and against entering arc; (d) shift against leaving and along entering arc

In all four cases, the resulting schedule S’ either coincides with S (which
may happen when S is a degenerate vertex of its schedule polytope) or S’ is
a vertex adjacent to S in the closure of equal-order set S7(6(S”)) of some
schedule 5”. In cases (a) and (b), S and S’ are adjacent vertices of the closure
of ST(6(S)). In cases (a) and (c), S and S’ are adjacent vertices of the closure
of SF(6(S")). In case (d), S and S” are adjacent vertices of the closure of
S7(0(S")) with 5" := 1(S + &).

A neighbor G' € N*¥(G) can be determined in two steps. First, we delete
an arc (i, j) from G. Then, we shift set C' until a temporal or precedence con-
straint corresponding to some arc (7', j') becomes active. If (i, §) is a temporal
are, C' can only be shifted along (i, 7). C’ can be shifted along or against
(,7) if (¢,7) is a precedence arc. Finally, we add arc (i’,j') to G and obtain
spanning tree G'. Since G contains n+1 arcs (i, §), which all may leave G, and
because we may shift either along or against (7,7), the size of neighborhood
N3H(G) is of order O(n).

Next, we define a neighborhood function A° on the set X°t C X5 of
spanning outtrees G of schedule networks N (@) where 8 € STP. Those span-



118 4. Constructive Algorithms

ning outtrees represent minimal points of schedule polytopes Sr(8). A tree G
is an outtree with root node 0 precisely if all arcs (g,h) € Fg are forward
arcs. Hence, to obtain a spanning outtree G’ € 3)°¢ from a spanning outtree
G € X° such that G and G’ differ in cxactly one arc, the leaving arc (i, 5)
must be replaced by an entering arc (¢/, ) # (7, 7) such that G’ is a tree and
(#,7) is a forward arc in G’. Clearly, both conditions are satisfied precisely if
j' = j. Since (4, j) is a forward arc in G, in addition we have z; € {0,1}. This
implies that if we shift along leaving arc (i, j), we necessarily shift along enter-
ing precedence arc (¢, 7}, and if we shift against leaving precedence arc (i, 7),
we necessarily shift against entering arc (¢/, j) (see Figures 4.2b and 4.2¢). We
obtain a neighbor G/ € X of G as follows. An arc (4,5) can be chosen to
be the leaving arc if the first constraint that becomes active when shifting
set C’ corresponds to an arc (¢, j) with terminal node j. After the selection of
an appropriate leaving arc (4, j) we proceed analogously as for neighborhood
function N¢t. We first delete (i,7) from G, then shift set C’ until the con-
straint corresponding to entering arc (i/,7) becomes active, and finally add
arc (i',7) to G. The size of neighborhood N°(G) is again of order O(n).

Proposition 4.3 (Neumann et al. 2003a). The neighborhood graphs G

and G° of (a) neighborhood function N°¢ and (b) neighborhood function N
are strongly connected.

Proof.

(a) Clearly, each spanning outtree G representing the earliest schedule ES
can be reached from any other spanning tree G € Xt by performing a
sequence of (left-)shifts along a backward leaving arc or against a forward
leaving arc. This proves G*¢ to be weakly connected. Moreover, each shift
of type (a), (b), (c), or (d) transforming some spanning tree G into a
different neighboring spanning tree G’ is reversible because the opposite
shift is of type (a), (c), (b), or (d), respectively. Consequently, any two
adjacent nodes in G are linked by a pair of oppositely directed arcs,
i.e., G is symmetric (see, e.g., Bang-Jensen and Gutin 2002, Sect. 1.6).
From the weak connectivity and the symmetry of G*¢ it follows that Gt
is strongly connected.

(b) G° is the subgraph of G* that is induced by set 2°¢ and thus G° is
symmetric as well. The weak connectivity of G° follows from the fact
that the spanning outtrees representing schedule E'S can be obtained from
any outtree G € X° by successively shifting against leaving prccedence
arcs (4, 7). O

4.3 Additional Notes and References

Locally regular and locally concave objective functions have essentially been
studied in the context of resource levelling problems, where one strives at
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smoothing the utilization of renewable resources over time. Resource level-
ling problems have been investigated since the very beginning of algorithmic
project planning in the early 1960s. An overview of different problem set-
tings and solution procedures can be found in Zimmermann (2001a), Ch. 5,
and Kimms {2001a}, Sect. 11.3. Resource levelling procedures for the case
of general temporal constraints have first been proposed by Brinkmann and
Neumann (1996), who have devised simple priority-rule methods where the
activities are scheduled one after the other according to a quasi-topological
ordering < of the nodes in project network N. Strict order < arises from arc
set E by deleting all arcs with nonpositive weight (i.e., the maximum time
lags) and taking the transitive hull of the resulting relation. An activity h
becomes eligible for scheduling as soon as all its predecessors ¢ with respect
to strict order < have been processed, i.e., Pred~(h) C C. Among the eligible
activities h, an activity j is selected by using a priority rule and 5 is scheduled
at a minimizer ¢ of additional-cost function f¢ on set [ES;, LS;] N Z. Since
f* is evaluated on set [ES;, LS;] N Z by complete enumeration, the heuristic
shows a pseudo-polynomial time complexity.

Neumann and Zimmermann (19995, 2000) have streamlined this ap-
proach in different respects. First, instead of scanning all integral times
t € [ES;, LS;], only the relevant tentative start times ¢ from decision set D;
are investigated (see Section 4.1). Second, the concept of core loading pro-
files 7§ (see Subsection 1.2.4) is used to anticipate (a part of) the unavoidable
resource usage by activities h € V*\ C not yet scheduled. In doing so, dead-
locks where D; = @ can more likely be avoided when resource constraints
have to be taken into account. The definition of additional-cost function f; is
based on the core loading profiles, which means that the cost fJ"(t) of starting
activity j at time ¢ € D; arises from comparing the costs associated with the
core loading profiles before and after putting S; := ¢t. A third improvement
on Brinkmann and Neumann’s procedure is the use of different unscheduling
techniques invoked when no feasible start time can be assigned to activity j
(for details see Section 4.1).

Neumann and Zimmermann (2000) have also proposed a tabu search proce-
dure for resource levelling, which in principle is as follows (for an introduction
to tabu search we refer to Glover and Laguna 1997 or Hertz et al. 2003). Given
some time-feasible schedule S, a neighboring schedule S’ is constructed by se-
lecting a real activity j € V* such that r (S, S;) > Amax,,.77%(S,t), where
A with 0 < A < 1isa control parameter. Then activity j is shifted behind or in
front of some activity i € V¢, i.e,, S} = S; +p; or S; = S; — p;. Subsequently,
the time-feasibility of resulting schedule §’ is restored. The move from S to
S’ is only accepted if 74 (S’,t) < 7(S,t) for some resource k € R? and some
“peak time” t € argmaxy., 37%(S,t’). In general, the schedules S iterated
are not resource-feasible. That is why they are evaluated on the basis of a cost
function including a penalty term for violations of the resource constraints.
The penalty term is similar to that used by Schwindt (20008) in the local
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search algorithm for the earliness-tardiness problem with renewable resources
(see Subsection 3.2.5).

For solving the resource investment problem, Niibel (1999) has proposed a
branch-and-bound algorithm that (implicitly) makes use of the property that
the total procurement cost represents a preorder-decreasing objective function
(see Subsection 2.3.3). The principle of this branch-and-bound algorithm is to
introduce fictitious resource capacities that are stepwise decreased at certain
cnumeration nodes. Starting with the carliest schedule S = ES at the root
node, the capacity Ry of some resource k € R” is put to max,.,.57%(S,t) — 1
and a new schedule S is sought with 7.(S,t) < Ry for all 0°< ¢t < d by
using the enumeration scheme for regular objective functions given by Al-
gorithm 3.1. Reduction of fictitious resource capacities and computation of
quasiactive schedules with lower maximum resource requirements are reiter-
ated until no feasible schedule with S,,1 < d can be found any more. Each
time a new feasible schedule has been found, one branches over the resource k
whose capacity is decreased next.

Based on an enumeration scheme by Patterson et al. (1989) for project
scheduling subject to precedence and renewable-resource constraints, Neu-
mann and Zimmermann (2000) have developed a time-based branch-and-
bound procedure. The algorithm is capable of solving arbitrary resource allo-
cation problems for which an optimal schedule can be chosen to be integer-
valued. The latter condition is obviously always satisfied if the objective func-
tion is locally regular or locally concave because any quasistable schedule is
integral. The nodes of the enumeration tree are associated with partial sched-
ules (5;)icc satisfying the temporal and resource constraints. Starting with
C = {0} and Sy = 0, at each level an activity j from set V'\ C with minimum
total float TF; = LS; — ES; is added to C. For each integral start time t
in the current time window [ES;, LS;] of j, a corresponding child node with
S; =t is generated and the time windows of the activities A € V' \ C not yet
scheduled are updated. Leaves of the enumeration node correspond to feasible,
not necessarily quasistable schedules.

Next, we discuss the results of an experimental performance analysis for
the time-constrained resource investment and total squared utilization cost
problems. We compare a tabu search implementation of Neumann et al.’s
local search principle discussed in Section 4.2 to some of the alternative so-
lution procedures. The test set has been created using project generator Pro-
Gen/max and contains 90 projects with 500 activities and 1, 3, or 5 resources
each. For all algorithms a time limit of 100 seconds has been imposed, which
refers to a Pentium personal computer with 200 MHz clock pulse. The results
were communicated by Zimmermann (20015).

Table 4.1 shows the results obtained for the resource investment prob-
lem, where besides the tree-based tabu search procedure (“TS”) we have
tested truncated versions (filtered beam search, “FBS”) of the branch-and-
bound algorithms of Niibel (1999) and Neumann and Zimmermann (2000).
Since tight lower bounds for large resource levelling problems are not avail-
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able, we give the mean deviation A, from the objective function value of
a best solution found by the three procedures. pyes; denotes the percentage
of instances for which the respective method has found a best solution (the
values sum to more than 100 % because for some instances, a best solution
was found by more than one procedure).

Table 4.1. Performance of algorithms for the resource investment problem

Algorithm Apest Phest

Niibel (1999) FBS 23%  6.7%
Neumann and Zimmermann (2000) FBS 18% 11.1%
Neumann et al. (2003a) TS 3% 90.0%

The data from Table 4.1 suggest that the tabu search heuristic provides
markedly better schedules on the average than the truncated exact algorithms.
For 81 out of the 90 projects, the trce-based approach yields a best solution.
In addition, the mean deviation from the best solution found is considerably
smaller than for the two other algorithms.

The results for the total squared resource utilization cost prob-
lem are given in Table 4.2. The tree-based tabu search procedure has been
compared to the priority-rule (“PR”) and tabu search (“I'S”} methods by
Neumann and Zimmermann (2000). The priority-rule method has been run
as a multi-pass procedure with ten priority rules. Again, we give the mean de-
viation Ag.s: from the best objective function value and the percentage ppes:
of best solutions found.

Table 4.2. Performance of algorithms for the total squared utilization cost problem

Algorithm Abest  Pbest
Neumann and Zimmermann (2000) PR 10% 4.4%

Neumann and Zimmermann (2000) TS 3% 43.3%
Neumann et al. (2003a) TS 1% 68.9%

Not surprisingly, the schedule-improvement procedures outperform the
priority-rule method. As for the resource investment problem, the tree-based
approach again shows the best performance among the tested algorithms.
Compared to the tabu search of Neumann and Zimmermann (2000), the fa-
vorable behavior is probably due to the small size of the neighborhoods to be
explored and the little time needed for moving from one schedule to another.
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Supplements

When coping with real-life resource allocation problems, some of the assump-
tions of our three basic project scheduling problems may be too restrictive.
This chapter is dedicated to expansions of the basic models which permit us
to cover some features that arc frequently encountered in practice.

In Section 5.1 we deal with break calendars, which specify time intervals
during which some renewable resources cannot be used (such as weekends or
night shifts, where skilled staff is not available). In that case, it is often nec-
essary to relax the requirement that activities must not be interrupted when
being in progress. Instead, we assume that the execution of certain activities
can be suspended during breaks, whereas other activities still must not be
intcrrupted. We explain how to perform temporal scheduling computations
in presence of break calendars and outline how the enumeration scheme for
regular objective functions discussed in Section 3.1 can be generalized to this
problem setting.

When performing projects whose activities are distributed over different lo-
cations sharing common resources like manpower, heavy machinery, or equip-
ment, changeover times for tear down, transportation, and reinstallation of
resource units have to be taken into account. During the changeover, those
resource units are not available for processing activities. Due to the transporta-
tion of resource units, the changeover times are generally sequence-dependent,
which means that the time needed for changing over a resource unit between
the execution of two consecutive activities depends on both activities. In Sec-
tion 5.2 we show how to adapt the relaxation-based approaches to the occur-
rence of sequence-dependent changcover times.

In many applications of project management, the assignment of resources
to the project activities is not (completely) predetermined by technology. We
may then perform certain activities in alternative execution modes, which dif-
fer in durations, time lags, and resource requirements. The execution modes
of an activity reflect tradeoffs between the time and resource demands. For
example, the duration of an activity may be shortened by increasing the num-
ber of allotted resource units (time-resource tradeoft) or some resources used
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may be replaced by other resources (resource-resource tradeoff). If in that case
the selection of an appropriate execution mode for each activity in the proj-
ect planning phase is deferred from the time and resource estimations to the
resource allocation step, we obtain a multi-mode resource allocation problem.
In Section 5.3 we are concerned with relaxation-based procedures for solving
multi-mode resource allocation problems with finitely many execution modes.

As we have seen in Section 1.3, the concept of (discrete) cumulative re-
sources offers a straightforward way of modelling constraints arising from dis-
crete material flows in assembly environments. Sometimes, however, invento-
ries of intermediate products are not depleted and replenished batchwise at
the occurrence of certain events but rather continuously over the execution
time of consuming and producing real activities. Such continuous material
flows are, for example, typical of mass production in the process industries.
Material flows may also be semicontinuous, which means that facilities may be
operated in batch or continuous production modes. In Section 5.4 we develop
the concept of continuous cumulative resources and we propose a relaxation-
based approach to solving resource allocation problems with the latter type
of resources and convex objective functions. Resource conflicts are stepwise
resolved by introducing linear constraints which ensure that at the start or
completion of some activity, the inventory level is between the safety stock
and the storage capacity. For each activity we branch over the alternatives
whether or not the activity contributes to settling the resource conflict in
question.

In the following Sections 5.1 to 5.4 we closely follow the presentation in
the book of Neumann et al. (2003b), Sects. 2.11, 2.14, 2.15, and 2.12.2.

5.1 Break Calendars

In many real-life projects, certain renewable resources are not available during
breaks like weekends or scheduled maintenance times. Scheduling the activi-
ties subject to break calendars is termed calendarization. For what follows, we
assume that some real activities may be interrupted during a break, whereas
others must not be interrupted due to technical reasons. Hence, the set of
all real activities V'* decomposes into the set V3 of all (break-)interruptible
activities and the set V.2 of all non-interruptible activities. The processing
of interruptible activities ¢ € V2 can only be stopped at the beginning of a
break and has to be resumed at the end of the break. This assumption distin-
guishes calendarization from preemptive project scheduling problems, where
activities may be interrupted at any point in time (sce, e.g., Demeulemecester
and Herroelen 1996). Furthermore, for each interruptible activity ¢ € V%, a
manimum execution time e; € N is prescribed during which ¢ has to be in
progress without being suspended, e.g., e; = 1. To simplify notation, we set
e; := p; for non-interruptible activities ¢ € V% and assume that for activities
i € Vi, the time between any two successive breaks is not less than e;.
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In this section we first describe procedures presented by Franck et al.
(2001 a) for the temporal scheduling of projects subject to break calendars for
activities and prescribed time lags. We then briefly sketch how the relaxation-
based approach for regular objective functions discussed in Section 3.1 can be
adapted to the presence of break calendars. Preliminary versions of the tempo-
ral scheduling methods have been devised by Zhan (1992) and Franck (1999),
Sect. 3.3. An alternative approach can be found in Trautmann (20015). Here,
the calendar-dependent precedence relationships between activities are taken
into account by distinguishing between start-to-start, start-to-completion,
completion-to-start, and completion-to-completion time lags.

A break calendar can be regarded as a right-continuous step function b :
R — {0,1} where b(t) = 0 if time ¢t < 0 or if ¢ falls into a break, and b(¢) = 1,
otherwise. ft b(T)dr is the total working time in interval [, t’ [. In practice,
different renewable resources k € R? may have different calendars. We then
obtain the corresponding activity calendars b; for activities i € V' by setting
bi(t) := 0 exactly if ¢ requires some resource k € R? which is not available
at time ¢. If b;(t) = 0, we have to suspend the execution of activity i €
being in progress at time t. For activities 7 € V%, the time interval between
the start and completion of ¢ must not contain any time ¢ where b;(t) = 0.

The constraints arising from minimum execution times e; can be stated as
follows:

bi(r)=1 (1€V?® S;<7<S;+e) (5.1)
Ifie V2

n?

break.
Let C; > S; 4+ p; again denote the completion time of activity ¢ € V4. In
interval [S;, Ci[, activity 4 is in progress at time t precisely if b;(¢) = 1. Thus,
given start time .S;, the completion time C;(S;) of ¢ is uniquely determined by

(5.1) means that the execution of ¢ must not be interrupted by a

Ci(S:) = min{t > S; + p; | [g, bi(r)dr = p;}

Clearly, minimum and maximum time lags may depend on calendars, too.
For example, a precedence constraint between activities ¢ and j refers to the
completion time C; and thus to the calendar b; of activity 1. Therefore, we
introduce a time lag calendar by; for each arc (4, ) € E of project network N.
Point in time t is taken into account when computing the total working
time between the starts of activities ¢ and j exactly if b;;(¢) = 1. That is,
fgj bij(T)dT equals the total working time in interval [S;, S;[ if S; < §; and
equals the negative total working time in interval [S;, S;[, otherwise.

The actual minimum difference A;; between start times S; and S; that is
prescribed by arc (4, j) € E depends on start time S; and calendar b;;:

Aij(Si) =min{t > 0| [g biy(7) dr > 8} — Si ((i,5) € E)

Si + Ai;(S;) is the earliest point in time ¢ > 0 for which the total working
time in interval [S;, ¢[ or [t, S;[, respectively, is greater than or equal to |d;;].
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Since bij(t) S {0, 1} for all ¢ > O, it holds that IA”(SZ)I > I(Sij|7 and A,](S,)
and &;; have the same sign.

For temporal scheduling, the temporal constraints 5; — S; > d;; for all
(¢,7) € E have to be replaced by

Si =8 2 A(S:) ((4,5) € B)
which due to b;;(t) > 0 for all £ € R can also be written as
Jo? bij(T)dr = 85 ((i, ) € B) (5.2)

The interpretation of inequality (5.2) is as follows. If §;; > 0, then the to-
tal working time fs‘j b;;(T)dT between the starts of activity ¢ at time S5;
and the staxt of activity j at time S; must be at least &;;. If (5” < 0,
then fs i (T)dT > 6;; means that the total working time fSS i (T)dT =
— f s, b;j(T)dr between S; and S; must not exceed —d;;. Notice that for min-
imum tlme lags djy*™ = 52J > 0, constraint (5.2) is at least as tight as the
ordinary temporal constraint S; — S; > §;;, whereas maximum time lags
d7;** = —6;; > 0 arc relaxed by considering breaks. Given start time S; for
activity ¢, the minimum start time S; of activity j satisfying (5.2) is

t* ;== min{t > 0| f;z bij (1) dT > 6.5}

Constraints (5.1) and (5.2) are referred to as calendar constraints. A sched-
ule S satisfying the calendar constraints is called calendar-feasible.

We now explain how to integrate the calendar constraints into the com-
putation of earliest schedule ES by modifying the label-correcting method
given by Algorithm 1.1. Algorithm 3.2 for the minimization of regular ob-
jective functions subject to temporal and disjunctive precedence constraints
can be adapted similarly. The problem of finding the earliest calendar-feasible
schedule ES can be formulated as follows:

Minimize Z S;

eV 3
subject to (5.1) and (5.2) (5:3)
S; >0 (ieV)
We start the label-correcting algorithm with ES = (0, —o0, ..., —00) and

successively delay activities until all calendar constraints are satisfied. At the
beginning, qucue @ only contains the project beginning event 0. At each
iteration, we dequeue an activity ¢ € V from Q. If 7 is a real activity,
we check whether start time ES; complies with calendar b; by computing
the earliest point in time t* > ES; for which there is no break in interval
[t*,t* + ;] (cf. constraints (5.1)). In case of ES; < t*, the start of activity i
must be delayed until time t*. Next, we check inequalities (5.2) for all arcs
(4,7} € E with initial node 4. To this end, we compute the earliest start time
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t* = min{t > ES; | flf?Si b;;(T)dr > 6;;} of activity j given start time F.S;
for activity i. If ES; < t*, schedule ES does not satisfy the corresponding
prescribed time lag, and thus we increase £S; up to ¢*. In that case or if
b;j{r) = 0 for some t* < 7 < t* 4+ ¢, we enqueue j to Q if j ¢ Q. Algo-
rithm 5.1 summarizes this procedure.

Algorithm 5.1. Earliest calendar-feasible schedule

Input: MPM project network N = (V, E, §), partition {V;%, V% } of set V¢, activity
calendars b; for ¢ € V', time lag calendars b;; for (4,j) € E.
Output: Earliest schedule ES.

set ESp := 0, Q := {0}, and ES; := —oo for all i € V' \ Q;
while Q # 0 do
dequeue % from
if i € V* then
determine t* := min{t > ES; | bi(7) = 1forall t <7 <t +e;};
if t* > d then terminate; (x there is no time-feasible schedule *)
else if ES; < t* then set ES; := t*;
for all (z,5) € F do
determine t* := min{t > ES; | flfJSi bij(7)dr > 64}
if £ES; <t* then
set ES; =1t
if j ¢ @ then enqueue j to @Q;
if € V\ Q and b;(7) = 0 for some t* < 7 < ¢* 4 ¢; then enqueue j to Q;
return earliest schedule ES;

Let 8 denote the number of breaks in all activity and time lag calendars. If
some activity ¢ is inspected more than n(f+1) times, then there is no schedule
satisfying the calendar constraints, and the algorithm can be stopped. Franck
et al. (2001a) have shown that if the calendars are given as sorted lists of
start and cnd times of breaks, Algorithm 5.1 can be implemented to run in
O(mnf) time.

The latest schedule LS can be computed by using a similar label-correcting
procedure again starting at node 0 and proceeding from terminal nodes j to
initial nodes ¢ of arcs (7, 7) € F. In difference to Algorithm 5.1, ¢* is set to be
the lastest time for which condition (5.1) or (5.2), respectively, is fulfilled (for
details we refer to Neumann et al. 20035, Sect. 2.11).

The enumeration scheme for resource allocation problems with regular ob-
jective functions (see Algorithm 3.1) can be used without almost any modifica-
tion for the case of calendar constraints as well. Schedule §' = min(U,ec pSt(p))
is then computed by the adaptation of Algorithm 3.2 to the case of break cal-
endars, where the calendars b;; for pairs (4, 7) € p coincide with calendars b;
if ¢ € V* and are given by b;;(t) =1 forall 0 <¢ < difi e Ve, Sr(p) now
denotes the set of all schedules satisfying the calendar constraints (5.1) and
(5.2) for relation network N(p). Similarly to the case without calendars, it
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can be shown that set Sp(p), though generally being disconnected, possesses
a unique minimal point (cf. Franck 1999, Sect. 3.2) and that this property
still carries over to the union U,e pSt(p) of sets Sr(p).

5.2 Sequence-Dependent Changeover Times

This section is concerned with sequence-dependent changeover times arising
when several (sub-)projects using common renewable resources are performed
simultancously at different sites (multi-site scheduling, see c.g., Sauer et al.
1998). When a unit of resource k& € R” passes from the execution of an
activity ¢ at a location a to an activity j to be carried out at a different
location b, the unit has to be torn down after the completion of 4, transported
from a to b, and put into service for processing j. Thus, the changeover time
of resource k between the execution of activities ¢ and j generally depends on
resource k and on both activities ¢ and j.

There is an extensive literature dealing with sequence-dependent change-
overs in shop-floor environments, where changeover times are caused by re-
placing tools or cleaning. The great majority of the papers considers the prob-
lem of minimizing the total cost associated with changeovers (for a literature
review we refer to Aldowaisan et al. 1999). Brucker and Thiele (1996) have
devised a branch-and-bound algorithm for a general-shop problem where the
makespan is to be minimized subject to precedence constraints and sequence-
dependent changeover times between operations. Kolisch (1995), Ch. 8, has
shown how to model changeover times between activities of a project by in-
troducing alternative execution modes for the activities (see Section 5.3). The
changeover times between two activities are assumed to be equal to a sequence-
independent setup time or equal to zero. Moreover, the capacity Ry of each
resource k € R” equals one. Trautmann (2001a), Scct. 3.3, has devised a
branch-and-bound algorithm for minimizing the project duration in case of ar-
bitrary resource capacities Ry, single-unit resource requirements r;; € {0, 1},
and general sequence-dependent changeover times.

In the sequel, we drop the assumption of single-unit resource requirements
and consider any regular or convexifiable objective function f. Let V,* :=
{i € V* | rix > 0} be the set of all activities using resource k € R”. With
19% € Zzo we denote the changeover time from activity an ¢ € V to an
activity j € Vi on resource k, where IE =0 forallic V. We suppose that
the weak triangle inequality

Oy +pi + 195] > ﬂﬁj

is satisfied for all K € R” and all h, 1, j € V?. This assumption is generally met
in practice because otherwise it would be possible to save changeover time by
processing additional activities. For notational convenience we additionally
assume that there are neither changeovers from the project beginning event 0
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to activities ¢ € V* (setups) nor changeovers from activities ¢ € V* to the
project termination event n + 1 (teardowns). The latter condition can always
be fulfilled by introducing the minimum time lags '™ = MaXkeRe:icVe 19&
and d:’%il = MaXkeReicVe 0§n+1 and then putting 196'1- = ﬁﬁnH = 0 for all
ke Rf and all i € V2.

The resource-constrained project scheduling problem (P) with sequence-
dependent changeover times can be formulated as follows. We strive at min-
imizing objective function f such that all temporal and cumulative-resource
constraints arc observed and at any point in time, the demands for renewable
resources by activities and changeovers do not exceed the respective resource
capacities. More precisely, let for given resource k € R?, Xj : V;* — P(N) be
a mapping providing for each activity ¢ € V}? the set of units of resource &
processing activity ¢, i.e.,

I Xe(@)| =71 (1 €V") (5.4)

We call a schedule S changeover-feasible if for each resource k € R?, map-
ping X can be chosen such that

SjZSi-i-Pi—f-ﬁfj

w S TRT ) GVl XX 20 65)

and
Xi(@) C{L,...,Rx} (1€eV) (5.6)

(5.5) says that if there is a unit of resource k processing both activities ¢
and 7, then activitics ¢ and j (including the possible changeover in between)
must not overlap. (5.6) limits the availability of resource k to Ry, units. Since
all changeover times are nonnegative, a changeover-feasible schedule always
observes the renewable-resource constraints (1.7).

In the following, we develop an equivalent characterization of the change-
over-feasibility of schedules, which will serve as a basis for the solution
method discussed later on and which draws from a model used by Néagler
and Schonherr (1989) for solving time-resource and time-cost tradeoff prob-
lems. The underlying concepts go back to a model for aircraft scheduling
presented in Lawler (1976), Sect. 4.9. A similar tanker scheduling problem
has already been studied in an early paper by Dantzig and Fulkerson (1954).
Let S be some schedule and let & € R? be a renewable resource. The ana-
logue to schedule-induced strict order 8(S) introduced in Subsection 2.1.1 is
the relation

OF(8) = {(i,5) € V¥ x V& | S; = Si + pi + 95}

Owing to the weak triangle inequality and because p; > 0 for all i € V¢, rela-
tion 6%(S) is transitive and asymmetric and thus represents a strict order in
set V,¢. In contrast to the case without changeover times, however, 6%(3) does
not represent an interval order in general. We illustrate the latter statement
by an example.
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Ezample 5.1. Consider the schedule $ depicted in Figure 5.1a and assume
that the changeover times are d15 = 934 = 0 and 914 = 932 = 1. The
strict order induced by schedule S is 6(S) = {(1,2), (3,4)}, whose precedence
graph G(6(S)) = 2P5 is shown in Figure 5.1b. Since a strict order 0 is an
interval order if and only if its precedence graph does not contain the parallel
composition 2Py of two arcs as induced subgraph (see, e.g., M6hring 1984 or
Trotter 1992, Sect. 3.8), 6(S) is not an interval order.

(@ (b)
T
1 2 : :
1 2 a

Fig. 5.1. Schedule-induced strict orders are no longer interval orders: (a) Gantt
chart for schedule S; (b) precedence graph G(6(S5))

Let for given schedule S and resource k& € R?, X be a mapping satisfying
conditions (5.4) and (5.5) and let r(S) := |Uiev,e Xk (7)| denote the number of
resource units used. Clearly, S is changeover-feasible exactly if 75 (S) < Ry, for
all k € R?. We consider an antichain U in schedule-induced strict order 8%(S).
It follows from the definition of %(S) that [S;, Si+pi+95[N[S;, Sj+p;+9%5]
# { for any two activities 7,5 € U. (5.5) then implies that X;(¢) N Xx(5) =0
for any 4, j € U. This means that | Uicy Xi(4)| = D0;cp | Xk (D)l = Dy Tik-
On the other hand, it is obvious that for any subset U’ C V%, the number
| Userr X (4)| of resource units occupied by activities from U’ is less than or
equal to the joint requirements )., 73 for resource k. Consequently, r4(S)
equals the weight ), ;;, 7:k of a maximum-weight antichain Uy, in 6%(S). Since
all activities from set Uy pairwise overlap in time, Uy can be regarded as an
active set Ax(S) for S. Schedule S is changeover-feasible precisely if none of
the active sets Ag(S) with k € R? is forbidden.

Now recall that such a maximum-weight antichain Uy is a maximum-
weight stable set in the precedence graph G(6%(S)) equipped with node
weights 7 (i € V2). Since G(6%(S)) is transitive, stable set Uy can be
determined in O(n?) time by computing a minimum (s,t)-flow u* of value
#*(u*) = r(S) in the flow network Gi(6%(S)) with node set V2 U {s,t} and
arc set 0%(S) U ({s} x V&) U (V@ x {t}), where nodes i € V¢ are associ-
ated with lower capacities r;; {cf. Subsection 2.1.1). Example 5.1 shows that
strict order #%(S) generally does not represent an interval order, for which a
maximum-weight stable set in the precedence graph can be found in linear
time by computing a maximum-weight clique in the associated interval graph,
cf. Golumbic (2004), Sects. 4.7 and 8.2.

The lower node capacities r;; can be transformed into equivalent arc ca-
pacities by splitting up every node ¢ € V2 into two nodes ¢ and " linked
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by arc (¢,4") with lower capacity ly;» = 7 and infinitc upper capac-
ity. The network flow methods then do not only provide a minimum (s, t)-
flow u* in G,(6%(S)) but also a maximum (s,t)-cut [U},U]'], whose ca-
pacity equals the minimum flow value ¢(u®) (see, e.g., Ahuja et al. 1993,
Sect. 6.5). In addition, it can easily be shown that any maximum (s,{)-
cut in G(6%(S)) is a uniformly directed cut containing only forward arcs.
Thus, A,(S) = {i € V2 | (¢,7") € [U],U}/]}. As has already been noticed by
Mohring (1985), Sect. 1.5, the computation of a maximum (s, ¢t)-cut may also
be performed in the transitive reduction of G (6%(S)) (i.e., in the network
which arises from G (6%(S)) by replacing the arc set with its covering rela-
tion). In that case, any maximum (s, t)-cut (U], U]/] contains only arcs (¢/,4")
obtained by splitting up some node i € V2, i.e., Ap(S) = {i € V2 | ¢ € U/}

To adapt the enumeration schemes for regular and convexifiable objec-
tive functions from Algorithms 3.1 and 3.3, respectively, to the occurrence of
sequence-dependent changeover times, we make the following modifications.
First, we replace the active sets A(S,t) at times t by active sets Ag(S). If
for some k € R?, Ax(S) is a forbidden sct, we compute the sct B of all min-
imal delaying alternatives B for F' = A4;(S). In casc of a regular objective
function f, for given B € B we then introduce the disjunctive precedence
constraint

E,Iéig Sj > rzrél,{xl(S’ +pi+95)

between sets A = F'\ B and B including the changcover times 19%- on k between
i€ Aand j € B.If f is convexifiable and {¢} x B is some minimal delaying
mode with B € Band i € A = F'\ B, we add ordinary precedence constraints

S;>Si+pi+9; (j€B)

between activity ¢ and all activities j € B, again including the changeover
times ﬂfj.

5.3 Alternative Execution Modes for Activities

In practice an activity can often be carried out in one out of finitely many
alternative execution modes with different processing times, time lags, and re-
source requirements. The multiple modes give rise to several types of tradeoffs
permitting a more efficient use of resources. Sometimes the tradeoffs include
the consumption of nonrenewable resources like the project budget. As for re-
newable resources, the availability of nonrenewable resources is limited. The
availability of nonrenewable resources, however, does not refer to individual
points in time but to the entire planning period. Each time an activity is
carried out, the residual availability of a nonrenewable resource is decreased
by the corresponding resource demand. Thus, nonrenewable resources can
be viewed as special cumulative resources (cf. Section 1.3) that are depleted
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but never replenished. This implies that for nonrenewable resources, resource-
feasibility solely depends on the selection of activity modes and not on the
schedule. That is the reason why nonrenewable resources can be omitted when
dealing with single-mode project scheduling problems.

Since the early 1980s, the (discrete) multi-mode project duration problem
with precedence constraints among the activities instead of general temporal
constraints has been treated by several authors. The case of resource-resource
tradeoffs has already been considered by Elmaghraby (1977), Sect. 3.4.2. Ex-
act algorithms have been reviecwed and their performance has been tested by
Hartmann and Drexl (1998). At present, the most efficient method for solving
this problem is the branch-and-bound algorithm of Sprecher and Drexl] (1998).
Hartmann (19995), Sect. 7.3, has compared several heuristic approaches. An
experimental performance analysis presented in the latter reference reveals
that among the tested heuristics, the best procedure is a genetic algorithm
published in Hartmann (2001). A special case of the multi-mode project du-
ration problem has been studied by Demeulemeester et al. (2000), who have
developed a branch-and-bound algorithm for the discrete time-resource trade-
off problem. For each real activity, a workload for a single renewable resource
is specified. The alternative execution modes arise from all undominated inte-
gral duration-requirement combinations the product of which is at least equal
to the given workload.

For the case of general temporal constraints, four different algorithms have
been proposed in literature. The tabu search procedure by De Reyck and Her-
roelen (1999) performs a local search in the set of possible mode assignments
to activities. For given execution modes, the resulting single-mode problem
is then solved by the branch-and-bound algorithm of De Reyck and Herroe-
len (19984). Franck (1999), Sect. 7.2, has adapted a priority-rule method by
Kolisch (1995), Sect. 6.2, to the case of general temporal constraints. At each
iteration, the activity to be scheduled is chosen on the hasis of a first prior-
ity rule. A second priority rule provides the execution mode for the selected
activity. A streamlined multi-pass version of this procedure can be found in
Heilmann (2001). Dorndorf (2002), Ch. 6, has described an extension of the
branch-and-bound algorithm by Dorndorf et al. (2000¢) for the single-mode
project duration problem (cf. Subsection 3.1.4} to the multi-mode case, where
mode assignment and activity scheduling are iterated alternately. Brucker
and Knust (2003) have presented an adaptation of their lower bound for the
single-mode problem (see Subsection 3.1.3) to the presence of multiple exe-
cution modes. The corresponding linear program is again solved by column-
generation techniques.

In this section we discuss the enumeration scheme of a branch-and-bound
procedure proposed by Heilmann (2003) for the multi-mode project duration
problem, where the selection of activity modes and the allocation of resources
are performed in parallel. The basic principle of this relaxation-based enumer-
ation scheme can be used for solving multi-mode resource-constrained project
scheduling problems with arbitrary regular or convexifiable objective func-
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tions. Roughly speaking, the idea is to consider single-mode problems arising
from mode relazations where only the unavoidable resource requirements, core
durations, and core time lags occurring in all selectable execution modes are
taken into account. The mode relaxations are stepwise refined by assigning
execution modes to activities and thus reducing the sets of selectable modes.
For what follows, we assume that only the requirements for renewable and
nonrenewable resources depend on the mode selection. The case where execu-
tion modes also differ in requirements for cumulative resources can be treated
similarly (see Trautmann 20014, Sect. 3.1).

A discrete multi-mode resource allocation problem decomposes into two
subproblems: the discrete mode assignment problem and the (single-mode)
resource allocation problem. Let M, denote the set of alternative execution
modes for activity ¢ € V, where |[M;| = 1 if ¢ € V°. We call a binary vector
z = (Zip, JieVimiem,; With Doy 2, <1 a (partial) assignment of modes
m; € M to activities i € V' (an assignment, for short), where z;, = 1 if
activity ¢ is carried out in mode m; and z;,,, = 0, otherwise. An assignment
2’ > z is called an extension of z. An assignment x satisfying the mode
asstgnment constraints

> Tim, =1 (i€V) (5.7)

m; EM;

is termed a full assignment. Solving the mode assignment problem consists
in finding a full assignment z such that z complies with the temporal and
nonrenewable-resource constraints. Each assignment z defines a corresponding
single-mode resource allocation problem.

Now let .

{m.} with z,.. = 1, otherwise

be the set of modes that can be selected for activity ¢ in full-assignment exten-
sions z > z and let R” be the set of nonrenewable resources with availabilities
Ry, € N. By 7ikm, € Z>o we denote the requirement for resource k € RP URY
if real activity ¢ € V@ is executed in mode m; € M;. Then

Tie(Z) :=  min  Tipm,
ik (_) mee M () ikm;
is the (unavoidable) requirement of activity ¢ € V¢ for resource k € RP URY

given assignment z. Assignment z is called resource-feasible if z satisfies the
nonrenewable-resource constraints

> rinlz) < R (keRY) (5.8)
ieVe

Alternative assignments x are associated with different single-mode project
networks N(z). Without loss of generality, we assume that the node set V
and the arc set E of N(z) are the same for all assignments z. For each arc
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(i,7) € E, the associated time lag may depend on the execution modes of
both activities ¢ and j. Hence, the weight of an arc (¢,7) € E in the multi-
mode project network N is a matrix d;; = (5inmmj)m,-,e/vl,;,mjeM]a where the
elements O;pm, jm,; € Z denote the scalar arc weights that refer to the execution
of activities ¢ and j in modes m; € M; and m; € M;. For assignment g,

0;;(x) = min min = G,
MRV 1M
miEMi(@) mieM;@)

is the resulting (core) weight of arc (4,7) in network N(z). An assignment z
is called time-feasible if N(z) does not contain any cycle of positive length. A
time- and resource-feasible assignment is referred to as a feasible assignment.
A schedule S is said to be time-feasible with respect to assignment z if S
satisfies the temporal constraints

S5 =8 > di5(z) ((4,7) € E) (5.9)

The set of schedules which are time-feasible with respect to assignment z arc
denoted by Sr(z)

Define p;m, € N to be the processing time if real activity ¢ € V® is executed
in mode m; € M;. The (core} duration of activity ¢ € V given assignment x
is

pi(z) == 00 Pim;

For schedule S, the set of real activities being in progress at time ¢ then
cquals A(S,z,t) = {t € V* | 5, <t < S; + pi(z)} and r(S,z,t) =
ZiGA(S&t) rip(z) is the demand for resource k € R” at time t. A schedule S
which satisfies the renewable-resource constraints

(S, z,t) < R, (KERF, 0<t<d) (5.10)

as well as the cumulative-resource constraints (1.20) is called resource-feasible
with respect to assignment z. By Sg(z) we denote the set of all schedules sat-
isfying (5.10). Recall that the resource-feasibility of an assignment z requires
that the nonrenewable-resource constraints (5.8) are fulfilled. A schedule that
is time- and resource-feasible with respect to assignment z is termed feasible
with respect to z. S(z) = Sr(z)NSr(z) NSc is the set of all feasible schedules
with respect to z. The multi-mode resource-constrained project scheduling
problem can now be stated as follows:

Minimize f(S)

subject to Z Tim,; = 1 (teV)
m; EM; (MP)
Zim,; € {0,1} (ieV, m e M;)
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A feasible solution to problem (MP) consists in a schedule-assignment pair
(S,z), where z is a feasible full assignment (i.e., a solution to the mode-
assignment problem) and S is a feasible schedule with respect to z (i.e., a
feasible solution to the respective single-mode project scheduling problem). An
optimal solution is a feasible solution (S, z) with minimum objective function
value f(S).

From Theorem 1.12 it immediately follows that finding a feasible solu-
tion (S, z) is NP-hard. In addition, Kolisch (1995), Sect. 2.3, and Schwindt
(1998b) have shown by transformations from KNAPSACK and PRECEDENCE-
CONSTRAINED KNAPSACK, respectively, that the problems of testing whether
there is a resource-feasible or a time-feasible full mode assignment z are al-
rcady NP-complete. Consequently, the resource rclaxation of a multi-mode
resource allocation problem is NP-hard. Hence, to obtain a problem that can
be solved efficiently, the mode assignment constraints (5.7) have to be relaxed
as well. The mode relazation for an assignment z then reads

Min.irnize 7(8) } P(a)
subject to Sp(z) N Sp(z) N Sc

Obviously, the single-mode resource-constrained project scheduling problem
(P(x)) is a relaxation of all mode relaxations (P(z’)) belonging to extensions
z’ of z, ie.,
S(@') C S(@) (2’ >x)

This observation is the starting point for a relaxation-based enumeration
scheme for solving multi-mode problem (MP). Let p be some relation in node
set V, and let Sr(p,z) := {S € Sr(z) | S; > S; + pi(z) for all (4,5) € p}
be the relation polytope belonging to p and assignment z. The algorithm
starts with the empty assignment z = 0. For the corresponding single-mode
problem (P(z)), schedules are enumerated as minimal points of appropriate
(unions of) relation polytopes St (p, z), see Algorithms 3.1 and 3.3. Each time
a schedule S feasible with respect to z has been obtained, the execution mode
of some activity ¢ with ) . @, = 0 is fixed such that the resulting
assignment z’ is still feasible (if there is no mode m; € M, such that 2’ is fea-
sible, we perform backtracking). Then, the time-feasibility of S with respect
to the new assignment z’ is restored. Due to S(z') C S(z), S may be not
resource-feasible with respect to z’. In that case, the enumeration of sched-
ules is resumed by cxtending the current relation p until a schedule S’ which
is feasible with respect to z’ has been found. These steps are reiterated until
a feasible full assignment z has been reached or there is no feasible extension
of the current assignment z’.

5.4 Continuous Cumulative Resources

In this section we deal with continuous cumulative resources whose inven-
tory is depleted and replenished at constant rates by the activities of the
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project. This type of resources has been considered by Schwindt (2002) and
Neumann et al. (2005) in the context of scheduling problems arising in the pro-
cess industrics. Recently, Sourd and Rogerie (2005} have presented constraint
propagation techniques for computing lower and upper approximations to the
loading profiles of continuous cumulative resources.

The concept of continuous cumulative resources also covers the renewable
and (discrete) cumulative resources, which we have considered until now. For
the case of convex objective functions f, we show how the expanded resource-
constrained project scheduling problem can be solved by using a rclaxation-
based approach. The basic principle is again to substitute the resource con-
straints into a finite disjunction of linear inequalities, which can be viewed as
parametcrized precedence constraints between activities.

Let R be the set of continuous cumulative resources with safety stocks
R, € Z U {—oo} and storage capacities Ry, € Z U {oo}, where R, > R,.
Performing an activity ¢ € V increases the inventory in resource k € R7Y
by rix € Z units. Analogously to the case of discrete cumulative resources,
we suppose that R, < ZieV rix < Ry for all k& € R, which ensures that
the terminal inventories are within the prescribed bounds. If r;;, < 0, we
again speak of a depletion of resource k, and if r;;, > 0, we say that re-
source k is replenished. Depletion and replenishments arise at constant rates
Tix = T /Ps- This means that events ¢ € V¢ deplete and replenish at infi-
nite rates, which corresponds to the setting for discrete cumulative resources.
Since renewable-resource constraints can be expressed by temporal and dis-
crete cumulative-resource constraints, the new model also includes both types
of resource constraints that have been studied previously. By V. and Vk,+ we
respectively denote the sets of activities depleting or replenishing resource k.
Vi =V, U Vk+ is the set of all depleting and replenishing activities for re-
source k. The resource constraints again say that at any point in time, the
inventory level of each resource must be between the safety stock and the
storage capacity.

Now let S be some schedule. By

0, ift < Sz
x;(S,¢) = 1, ift>S;4+p;
(t — S;}/ps, otherwise

we denote the portion of activity ¢ € V that has been processed by time t. If
i € V¢, then z;(S,t) = 0 if S; < t, and z;(S,t) = 1, otherwise. The inventory
in resource k € R at time ¢ is

T(5,1) = }: ki (S, t)

i€V

The corresponding loading profile 7(S,-) is a right-continuous, piecewise
affine function. The resource constraints can be stated as

R, <7(S,t) <Ry (ke€RY, 0<t<d) (5.11)
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A schedule satisfying resource constraints (5.11) is called resource-feasible.
Let §C denote the set of resource-feasible schedules. The set of all feasible
schedules is § = S7NS¢. The resource-constrained project scheduling problem
to be dealt with reads as follows:

Minimize f(5) B
subject to S € SrNSe (P)

where f is some convex objective function. An optimal schedule is a schedule S
solving problem (P).

Next, we explain the basic principle of the solution procedure. For sim-
plicity of exposition we assume for the moment that Vi, C V¢ for all k£ € R”.
Similarly to the relaxation-basecd algorithms from Chapter 3, we first delete the
resource constraints and solve the resulting time-constrained project sched-
uling problem. Subsequently, resource conflicts are stepwise sorted out by
refining the relaxation with new constraints. For notational convenience we
suppose that all storage capacities are infinite. This can always be ensured by
the following transformation (cf. Remark 1.21a). For each resource k& € R7,
we sct Ry = oo and add a fictitious resource &’ with requirements r;pr = —7r
for all i € Vj, safety stock R,, = — Ry, and storage capacity Ry = co.

Let S be an optimal solution to the resource relaxation and assume that
at time ¢, the inventory in some resource k € R falls below the safety stock,
ie, (S, t) < R,. We partition Vj into two sets A and B with the following
meaning. Set A contains all activities 7 € V,~ to be completed by time ¢ and
all activities 7 € V,f to be started no carlier than at time t:

S; <t—p; (jeAmV,;)} (5.12)

S; >t (jeANV)

The total depletion of the inventory in resource k at time ¢ caused by activities
j € A equals — Zj canv Tik: The activities j from set B must be scheduled
in such a way that at time ¢, their net replenishment of resource k is greater
than or equal to the shortfall B, — 37, Anv ik caused by the activitics from
set A. This can be ensured as follows. For each activity j € B, we introduce
a continuous decision variable =; with

0<z;<1 (jeB) (5.13)

providing the portion of activity j that will be processed by time t. The
requirement that the inventory in resource k at time ¢ must not fall below R,

then reads
dorpw; > R— D (5.14)
JjeEB JEANV,

The coupling between decision variables z; and S; is achieved by the temporal
constraints (parameterized in x;)
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Sj Z t —PjTy (_7 € Bn Vk“) } (515)

S; <t—pzr; (je€BnVH)

Inequalities (5.15) ensure that for each schedule S satistying (5.15) it holds
that x; > z;(S5,t) if activity 7 € B depletes and z; < z;(5,t) if activity
j € B replenishes the stock of k. Adding constraints (5.12) to (5.15) to the
relaxation removes the inventory shortage at time ¢.

The inventory in resource k attains its minimum at a point in time when
some replenishing activity ¢ is started or when some depleting activity 7 is
completed. That is why time ¢ can always be chosen to be equal to S; for
some 1 € V+ or equal to S; + p; for some ¢ € V7, and thus we can replace ¢
in (5.12) and (5.15) by S; or S; + p;. We then write A** and B* instead of
A and B as well as x;k instead of ;. Note that without loss of generality we
can assume i € A for all k € RY and all i € Vj because the corresponding
inequality (5.12) is always satisfled. Passing from constants ¢ to variables S;
ensures that only a finite number of constraints have to be introduced before
the resource constraints (5.11) arc satisfied.

From the above reasoning it follows that gc again represents the union
of finitely many polyhedra. The set of all minimal points of S¢, however, is
generally uncountable, which implies that the set AS of all active schedules
is infinite (and hence so are all of its supersets depicted in Figure 2.4).

The solution procedure is now as follows. We solve the convex program

Minimize f(S)
subject to S € Sp (5.16)
(5.12) to (5.15) for partitions {A%, B**} selected

and add new constraints of type (5.12) to (5.15) to problem (5.16) until either
the search space P becomes void or the resulting schedule S is feasible. Then,
we return to an alternative partition {A%*, B*} and proceed until all alter-
natives have been investigated. Convex program (5.16) can be solved in poly-
nomial time because its feasible region P represents a polytope. Of course,
the objective function value of any optimal solution to (5.16) represents a
lower bound on the objective function value f(S) of any feasible schedule S
satisfying the added constraints of type (5.12) to (5.15).

Next we discuss some implementation issues. Assumc that the inventory
in some resource k € R” falls below the safety stock at time t = S; (i € V")
ort=5;+p (i €V, ). Toenumerate the sets A" and B* we construct a
binary treec as follows. Each level of the tree belongs to one activity 7 € V.
For each activity j we branch over the alternatives j € A* and j € B* and
add the corresponding constraints (5.12) or (5.13), (5.15), as well as for both
alternatives the relaxation

Z T P Y Z Tk

jeBik jEARNV,T JEVI\(ARUBik)
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of constraint (5.14) to the convex program (5.16). Each leaf of the tree corre-
sponds to one distinct partition { A% B*}. We can stop the enumeration for
activity ¢ as soon as the inventory shortage at time S; or S; + p; is settled,
even if A* U B* C V;. In the latter case, it may be necessary to resume the
branching later on if the shortage reappears while dealing with other resource
conflicts. Since for each resource k& € RY and each activity ¢ € Vi, the con-
struction of the corresponding sets A* and B requires at most |Vy| steps,
the height of the branch-and-bound tree is of order O(|R7|n?).

The computational effort can be reduced considerably by testing whether
the search spacc P has becomc void before solving convex program (5.16).
Let d;; be the minimum time lag between activities ¢ and j that is implied
by the prescribed temporal constraints, inequalitics (5.12), and inequalities
(5.15) where a:?k is set to be cqual to 1 if j € V7 and equal to 0, otherwise.
Assume that for some activity j € Vj, the addition to set A* or B leads to
a new temporal constraint S; —S; > 6;;. Then P = 0 if 6;; + d;; > 0. In that
case, the alternative set B or A** respectively, can immediately be selected
for activity j.

Now let (S,z) be an optimal solution to (5.16) such that schedule S is
feasible. We then obtain a feasible schedule S’ with f(S") < f(S) by

a) moving all activities j € V}, from A™* to B for which (5.12) is active,
(b) moving all activities j € V.~ from B%* to A* for which L;k =1, and
(¢) moving all activities j € V;* from B%* to A% for which ik =0

and solving convex program (5.16) again. Based on this dominance rule, fea-
sible solutions belonging to leaves of the enumeration tree can be improved
and thus the current upper bounds can be decreased by performing the above
transformations (a) to (c).

Eventually, we consider the general case including discrete depletions and
replenishments at the occurrence times of events. For events j € BN Ve®
decision variable x; can be fixed to 0 if j € V,” and to 1 if j € V,j" because
p; = 0 (compare (5.15)). If activity ¢ with ¢t = S; or t = 5; + p; is chosen to be
an event, then ¢ must deplete the stock of resource k. Moreover, for an event
J € BNV, it may happen that S; = ¢ though z; = 0, i.e., x; < z;(5,1).
As a consequence, the shortage at time t may persist after having introduced
constraints (5.12) to (5.15), in which case we perform backtracking. If problem

(P) is solvable, the enumeration tree contains alternative partitions removing
the shortage.
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Applications

The present chapter is concerned with applications of the concepts developed
in Chapters 1 to 5 to production planning problems in the manufacturing and
process industries, to the evaluation of investment projects, and to resource
allocation problems that are subject to different kinds of uncertainty.

In Section 6.1 we discuss how scheduling problems arising in make-to-order
asscmbly environments can be modelled as resource-constrained project sched-
uling problems. For different product structures, we consider the definition of
appropriate minimum and maximum time lags ensuring a non-preemptive
execution of overlapping operations.

Section 6.2 is devoted to a hierarchical three-stage approach to small-batch
production planning using resource allocation methods from project man-
agement. The approach comprises the master production scheduling, multi-
level lot sizing, and temporal plus capacity planning stages. At all levels, the
scarcity of resources is taken into account, which differentiates this approach
from most production planning and control systems used in practice. The
lacking integration of capacity aspects is the essential reason for the generally
poor performance of the latter systems.

When scheduling batch plants in the process industries, a variety of tech-
nological peculiarities have to be taken into account. In contrast to manufac-
turing, the batch processing times are mostly independent of the batch size
and the intermediate products must be stocked in dedicated storage facilities.
In addition, intermediate products may be perishable and to guarantee the
purity of output products, the processing units have to be cleaned between
the execution of certain operations. In Section 6.3 we deal with a two-phase
method for production scheduling in the process industries, which decom-
poses the problem into a batching and a batch scheduling problem. For given
primary requirements, the batching phase provides the numbers and sizes of
the batches to be produced. Subsequently, the batches are scheduled on the
processing units in the batch scheduling phase. The batching problem can be
formulated as a mixed-integer linear program of polynomial size. By using
the concepts of renewable and cumulative resources in combination with the
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supplements from Chapter 5, the batch scheduling problem can be modelled
as a resource-constrained project scheduling problem.

In practice, it is customary to evaluate investment projects based on
the net present value criterion. The maximum net present value of a time-
constrained investment project can, e.g., be computed by using the steepest
descent method for convexifiable objective functions discussed in Chapter 3.
In literature, however, it is commonly accepted that often the discount rate to
be applied (i.e., the required rate of return) cannot be determined with suffi-
cient accuracy. Moreover, the project deadline may be subject to negotiations
between the investor and his customers. In Section 6.4 we show how using the
steepest descent approach, the project net present value can be represented
as a function of the discount rate and project deadline. On the basis of this
function, investment projects with uncertain discount rate can be evaluated
for a variable project deadline.

Throughout our previous discussion we have supposed that data such as ac-
tivity durations, time lags, and resource requirements are deterministic quan-
tities. Clearly, this is a simplifying assumption, which nevertheless is justified
in many cases when the project data can be forecast reliably and small de-
viations from schedule do not seriously affect the execution of the project.
Sometimes, however, the latter conditions are not met, in particular when
coping with long-term projects like in the building industry or with produc-
tion scheduling problems where machines and equipment may be subject to
disruption. It is then expedient to take uncertainty into account already when
scheduling the project or to adapt the schedule in a suitable fashion during
its implementation. In Section 6.5 we propose two deterministic strategies for
coping with uncertainty in project management. The anticipative approach
consists in scheduling the project in a way that the impact of perturbations
is minimized. Alternatively or additionally, one may use a reactive approach,
where the project is rescheduled after each disruption and the objective is to
minimize the changes with respect to the previous schedule.

6.1 Make-to-Order Production Scheduling

We consider the processing of a given set of customer orders in a multi-level
make-to-order manufacturing environment, where no inventories are built up
for future sale. At first, we recall some basic concepts from materials require-
ments planning (see, e.g., Nahmias 1997, Sect. 6.1). We assume that each final
product consists of several subassemblies, which in turn may contain several
components from lower production levels. Let P/ be the set of all final prod-
ucts ordered and let P be the sct of all (intermediate or final) products [
under consideration. Generally speaking, the product structure of a firm can
be represented as a gozinto graph G = (P, A, a) with node set P. Arc sct A
contains an arc ([,1") weighted by input coefficient ay: € N if a;p units of
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product [ are directly installed into one unit of product I’. P/ coincides with
the set of all sinks of G.

Now let z; € Z>¢ denote the gross requirements for products { € P. The
gross requirements x; for final products [ € Pf are equal to the primary
requirements d; given by the customer orders. The gross requirements x; for
intermediate products [ can easily be obtained by a bill of materials explosion,
i.e., by solving the system of linear equations x; = d; +Z(H,)€A ayxy (L € P).
Since there are no stocks available, the gross requirements z; coincide with
the amounts ¢; of products ! to be manufactured.

Each product [ € P must be processed on machines of different types & in a
prescribed order, which is given by the process plan of product [. Scveral iden-
tical machines of each type k (k-machines, for short) may be available. The
processing of a batch of product [ on a k-machine is referred to as an operation,
which is denoted by kl. The execution of operation kl requires a (sequence-
independent) setup time Yy during which the machine is occupied. For what
follows we assume that no items of product ! are needed for installing the
machine. In addition, we suppose that the production is performed accord-
ing to a single-lot strategy, i.e., all units of a product are processed in one
batch of size x;. The latter assumption is generally met in make-to-order pro-
duction since cach product is manufactured in response to a customer order,
and splitting the batches would incur additional setup times without saving
considerable holding cost. Hence, the processing time of operation kl is

Pri = Prt + Tiup (6.1)

where ug; € N is the unit processing time needed for producing one item of
product [ on a k-machine.

The make-to-order production scheduling problem consists in finding an
operation schedule such that no two operations overlap in time on a machine,
the operation sequences given by the process plans are observed, a sufficient
amount of input products is available during the execution of cach operation,
and some objective function (e.g., the makespan) is minimized. In the follow-
ing, we show how the production scheduling problem can be modelled as a
resource-constrained project scheduling problem with renewable and cumula-
tive resources. The model is based on the previous work by Giinther (1992)
and Neumann and Schwindt (1997).

For each operation k! we introduce one real activity, also denoted by kl,
whose duration py; is given by (6.1). A machine type k is identified with a
renewable resource k € RP. Resource capacity Ry equals the number of k-
machines available. Fach activity &l requires one unit of resource k.

Project network N is obtained by exploding each node | € P of gozinto
graph G into the respective (directed) path from the initial operation &l to
the terminal operation k'l in the process plan of product ! (see Figure 6.1).
The arcs (1,1') € A are then replaced by arcs (k'l, k”l') linking the terminal
operation k'l of | with the initial opcration k"I’ of I’. Moreover, all initial
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operations of products at the lowest production level are connected with the
project beginning event 0, and the terminal operations of the final products
are connected with the project termination event n+ 1. Finally, backward arc
(n+1,0) is added.

product I

__________________________

,,,,,,,,,,,,,,,,,,,,,,,,,,

product 1

___________________________________________

____________________________________________

Fig. 6.1. Project network without arc weights arising from gozinto graph

We proceed by assigning weights 6z 4r to the arcs (ki k'l") of N. The
arcs emanating from node 0 are weighted with 0 and the arcs terminating
at node n + 1 are weighted with the duration of the respective initial node.
The weight 0,110 = —d is chosen to be the negative maximum makespan
allowed. Now let kI and k'l be two consecutive operations in the process
plan of product I. At first, we consider the case where ug; < ug, which is
depicted in Figure 6.2. Clearly, we may start the execution of operation k'l
when the preceding operation kl has been completed. From Figure 6.2 it can
be seen, however, that much time can be saved if we allow for overlapping
operations. The processing of the first item of product [ on the k’-machine
can then be started as soon as the first item on the k-machine has been
completed without causing any idle time on the k’-machine. Hence, instead of
adding a precedence constraint between kl and k'l, we introduce a time lag of
Okt krt = Vgt +upr — O < pry units of time between the starts of operations ki
and k’l. The time lag ensures that at any point in time where k'l is in progress,
a sufficient amount of product ! has already been processed on the k-machine.
Note that, as shown in Figure 6.2, time lag x; x1 may even become negative,
in which case we have a maximum time lag of —dy; %1 units of time between
operations k'l and kl.

¢ T

k [ Sk —{ Dt ‘ Uk ‘ ‘ |

> 1

Fig. 6.2. Overlapping operations k! and k'l with ug; < uyr
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The case where ug; > uyy is illustrated in Figure 6.3. Here, starting opera-
tion k'l at the completion of the first item of product { on the k-machine would
mean that after the processing of the first item on the k’-machine, the required
second item from the k-machine is not finished. Thus, we synchronize both
operations in a way that the last item on the k’-machine is processed after
the completion of operation kl, i.e., dpi 1 = O + zrun — (21 — Dugr — Fp.

B Orpn 4>| Dpry |ka1 | |

: [ [T ]

> 1

Fig. 6.3. Overlapping operations k! and k'l with ug; > ug

In sum, between two consecutive operations kl and k'l belonging to one
and the same product [ € P, we introduce the time lag

5 It + upt — Ity if wgg < ugrg
Kl k! =

'19kl + ziug — (.’El = l)uk/l = ﬂk’h otherwise (62)

which is the smallest lapse of time that guarantees that operation k'l need
not be interrupted because no items are available.

In practice, it is often expedient to transfer items in batches from one
machine to another. The transportation lot size y; € N for product [ € P
is then specified by the size of pallets or containers used for the transport
of [. In addition, we suppose all machines of a given type k to be grouped
in a k-shop, where tyr € Z>( denotes the transfer time from the k- to the
k’-shop (implicitly, we have supposed until now that y; = 1 and ¢ = 0
for all products [ and all machine types k,k’). Formula (6.2) can easily be
adapted to the case of general transportation lot sizes and transfer times by
noting that the items now arrive at the k’-shop in transfer batches of size y;. If
up < ug/, this means that the first batch is conveyed ¥4 + y;us; units of time
after the start of kl, whereas for ug; > ugy, y; items of product [ remain to
be processed on the k’-machine after the completion of kl. In both cases, the
respective transfer time tx; must be included. We then obtain the following
formula for the time lag 6z between consecutive operations:

s = { Vrr + yrugr — Iy + ey i wgr < gy _ (6.3)
’ Dy + xyug — (.’IIl . yl)ukrl — Yy + trr, otherwise

Note that y; = z; corresponds to nonoverlapping product processing, where
(6.3) provides the same value for both cases ug < ugy and ug, > ugy.

Next, we consider the transition from the terminal operation &l in the
process plan of a product ! to the initial operation k'l’ in the process plan
of a succeeding product " with (I,I') € A. We assume that !’ is the only
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product containing items of product [. In particular, the latter assumption
is always fulfilled if the product structure is linear or convergent, i.e., if the
gozinto graph G is an intree. The case of common parts, which are installed
into different products I/, is studied below. To simplify writing, we establish
the convention that y;/ay is integral, which means that all items of product {
needed for the production of one unit of product I’ are transferred at the
same time. The first item of product I’ cannot be processed before a;y items of
product ! have been completed on the k-machine. If the time a;;rug; needed for
producing ay items of { is less than or equal to unit processing time ug//, we
can start the processing of I’ as soon as the first transfer batch of product [ has
been conveyed from the k- to the k’-shop. Otherwise, we start the processing
of the last y;/ayr items of product I’ on machine &’ after the last transfer of
y; items of product ! from the k- to the k’-shop. Hence, the time lag i 11
between terminal operation kI and initial operation kI’ is chosen to be

5 S + yrugs — Oy + b, i aprug < ugy (6.4)
e = . .
kiK'l Dt + awapug — (v — L Yupy — Dy + terr, otherwise
I3

Note that formula (6.3) may be interpreted as the special case where I’ = [
and ay = 1.

We now turn to general product structures containing common parts [ € P.
The presence of common parts leads to an assignment sequence problem, where
we have to decide on the order in which completed items of product ! are al-
lotted to succeeding products I’. For a given assignment sequence, appropriate
time lags may then be computed in analogy to the casc of a convergent prod-
uct structure. For details we refer to Neumann and Schwindt (1997). In the
latter reference, a procedure for finding a suitable block-structured assignment
sequence has been devised, where all items allotted to one and the same prod-
uct I’ are processed consecutively. For that case, time lags 0y 1 can again
be written in closed form.

Alternatively, common parts can be dealt with by introducing cumulative
resources. This approach, which has not been considered by Neumann and
Schwindt (1997}, offers the prospect of being independent of an assignment
sequence to be specified in advance. Let | € P be some common part. We
again consider the case where all items of [ being assigned to some product
are processed one after another, and for simplicity we assume that [ is in-
stalled into two products, say, I’ and I”. At first, we identify product | with
a cumulative resource | € R with zero safety stock R, and infinite storage
capacity R;. We then decompose a copy of operation kl into two auxiliary op-
erations kI’ and kl” with durations pry = ayxyug and pyr = ayrzimug to
be executed on the same fictitious k-machine (which must be represented by a
separate renewable resource k with capacity R; = 1). To cnsure that after the
setup of the k-machine, operations kl’ and kl” are processed in parallel with
operation kl, we add the time lags dp ke = Op1 1 = Vrts Ok ki = Pty — Pkls
and 8g k1 = priv — pri- Because kI’ and kl” cannot overlap, they must be
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processed consecutively without any delay in between. The start events of
both operations ki’ and kl” replenish the cumulative resource by a;/z; and
ayrxe units, and the start events of initial operations &'’ and k”1"” in the
process plans of products I/ and !” deplete the inventory of I by ayrz; and
ay-xp0 units. Eventually, we introduce time lags dxp i1 and gy g of type
(6.4) between the auxiliary operations kI’ and kI and the respective initial
operations k'l and k”l"”, which guarantce that a sufficient amount of product
l is available when starting operations k'l’ and k"1".

6.2 Small-Batch Production Planning in Manufacturing
Industries

In this section we review a capacity-oriented hierarchical planning method
for small-batch multi-level production planning in manufacturing industries,
which has been proposed by Neumann and Schwindt (1998). An earlier version
of this approach is described in Franck et al. (1997). We consider the three
planning stages capacitated master production scheduling, multi-level lot siz-
ing, and temporal plus capacity planning (in the original paper, an additional
fine planning stage has been included). The optimization problems arising
at the capacitated master production scheduling and temporal plus capacity
planning stages can be formulated as resource-constrained project scheduling
problems. Alternative approaches to hierarchical production planning have,
e.g., been devised by Carravilla and de Sousa (1995), Schneewei} (1995), Drexl
and Kolisch (1996), Schneeweifl (2003), Ch. 6, and Kolisch (20015), Ch. 4. El-
ements of capacity-oriented production planning and control systems have
been discussed in Drexl et al. (1994).

At the stage of capacitated master production scheduling, a master
production schedule (MPS) has to be determined, which translates the pri-
mary requirements for final products into monthly production orders for final
products and main components such that the workload of work centers is as
smooth as possible over time. An even utilization of the work centers helps
to avoid expensive capacity adjustment measures and facilitates the deter-
mination of feasible solutions at subsequent planning stages, where explicit
resource constraints have to be taken into account. The planning horizon of
this first stage is usually about one year comprising twelve periods of one
month each.

For the final products the amounts to be produced and corresponding
month-precise delivery dates are given by the customer orders. We assume
that all customer orders must be met on time. From the order quantities of
final products and the product structure of the company, the gross require-
ments for main components at lower production levels can be computed by a
bill of materials explosion. To obtain the net requirements, we subtract the
corresponding available stocks.
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To schedule the production of the final products and main components
(referred to as main products in what follows), we model the problem of de-
termining an appropriate MPS as a resource levelling problem with, e.g., the
total squared utilization cost as objective function. To this end, we first de-
fine a project with renewable resources for each individual customer order.
The production of the net requirement for each main product ¢ of such a
customer order is regarded as an activity ¢ of the project. The duration p; of
activity 7 results from summing up the setup and processing times for prod-
uct 7 and the components of product i at lower production levels. To obtain
the minimum time lag dZ’J”" between the start of activity ¢ and the start of
any subsequent activity j in the product structure, some buffer for waiting
times arising when scheduling the components of all production levels has to
be added to p;. This time buffer can be estimated by using concepts from
queueing theory (scc Séhner 1995, Ch. 3). The renewable resources required
for carrying out the activities of the project coincide with the respective work
centers involved. The resource requirements of product ¢ are assumed to be
distributed uniformly over the execution time p; of activity <.

The project networks for all customer orders are then joined together to
make a multi-project network by adding the project beginning and termination
nodes 0 and n+1 and connecting nodes 0 and n+1 with all initial and terminal
activities, respectively, of the individual project networks. The backward arc
(n + 1,0) corresponding to the project deadline d is weighted by —d = —A,
where A denotes the planning horizon (typically about one year). A delivery
date d; for some product i can be modelled by a maximum time lag dJ}*® =
d; — p; between the project start and the start of activity 3.

The objective function of the resource levelling problem can be chosen to
be any of the objective functions dealt with in Subsection 2.3.2. A solution S
to the resource levelling problem provides month-precise milestones for the
production of the gross requirements for the main products.

At the stage of multi-level lot sizing, the main products are decomposed
into intermediate products for which weekly production quantities (also called
lots or batches) are computed. In the lot sizing model, the planning horizon of
roughly three months is divided into periods of one week each. The production
orders for the main products, which define the primary requirements of the
lot sizing model, are given by the MPS.

The production of the intermediate products requires several resources.
Each resource corresponds to a group of machines. The processing of a product
on a resource necessitates a setup of the resource, which takes a setup time
and incurs a setup cost. Additional costs arise from stocking products. Setup
and processing times are given in time units (for example, hours). For a given
resource, the aggregate per-period availability corresponds to the workload in
time units which can be executed by the machines of the corresponding group
within one period. The objective is to determine lots for the intermediate
products such that no backlogging occurs, the per-period availabilities of all
resources are observed in all periods, and the sum of setup and inventory
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holding costs is minimized. This problem represents a multi-level capacitated
lot sizing problem, for which Tempelmeier and Derstroff (1996) have developed
the following Lagrangean-based heuristic. By relaxing the inventory balance
and capacity constraints, a decomposition of the original problem into several
single-level uncapacitated lot sizing problems of the classical Wagner-Whitin
type is obtained, which can be solved efficiently by dynamic programming
(cf. Wagelmans ct al. 1992). Violations of the relaxed constraints are taken
into consideration via a Lagrangean penalty function, whose multipliers are
iteratively updated in the course of a subgradient optimization procedure.

Intermediate products may be further broken down into individual com-
ponents. At the stage of temporal plus capacity planning, the production
of those components has to be scheduled on groups of identical machines for
each week (period of the lot sizing stage). The weekly gross requirements for
the individual components can be found by a bill of materials explosion from
the lots for intermediate products computed at the lot sizing stage. Since all
lots have to be processed within one week, we aim at minimizing the maxi-
mum completion time of all operations, i.e., the makespan. As has been shown
in Section 6.1, the latter production scheduling problem can be modelled as
a project duration problem with renewable and cumulative resources.

Since at the lot sizing stage, only aggregate per-period capacities of re-
sources have been taken into account, it may happen that the makespan found
at the temporal plus capacity planning stage exceeds the deadline of one week.
In that case, we have to re-perform lot sizing such that the size of at least one
lot is reduced. This can be achieved by decreasing the aggregate capacity of
resources whose capacity has been violated, which corresponds to a feedback
mechanism originally proposed by Lambrecht and Vanderveken (1979) for the
special case of a job shop environment.

6.3 Production Scheduling in the Process Industries

In this section we are concerned with production scheduling in the process
industries, where similarly to the case of manufacturing dealt with in Sec-
tion 6.1, final products arise from scveral successive transformations of in-
termediate products. In contrast to manufacturing, however, where a limited
number of piece goods are processed on machines, in the process industries the
transformations are performed by chemical reactions of bulk goods, liquids,
or gases on processing units such as reactors, heaters, or filters. The trans-
formation of input products into output products on a dedicated processing
unit is called a task. Each task may consume several input products and
may produce several output products, whose amounts may be chosen within
prescribed bounds. Perishable products must be consumed in the space of a
given shelf life time, which may be equal to zero. In the latter case, the in-
termediate product cannot be stocked. In addition, the storable intermediate
products must be stocked in dedicated storage facilities like tanks or silos.
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That is why storage problems play an important role in the process industries
(see, e.g., Schwindt and Trautmann 2002). Further peculiarities encountered
in the process industries are cyclic product structures, sequence-dependent
cleaning times on processing units, and large processing times, which may
necessitate the explicit consideration of breaks like night-shifts or weekends.

Throughout this section we assume that the production is operated in
batch mode, which means that at the beginning of a task, the input products
are loaded into the processing unit, and the output becomes available at the
termination of the task. The case of continuous production mode can be dealt
with by using the concept of continuous cumulative resources introduced in
Section 5.4. As a rule, the production is organized according to batch mode if
small amounts of a large number of final products are required (whereas the
continuous production mode is typical of basic materials industry such as oil or
dyestuff industries). The combination of a task and the corresponding quantity
produced is called a batch. An operation corresponds to the processing of a
batch. Since the batch sizes are limited by the capacity of the processing units,
a task may be performed more than once, resulting in several corresponding
operations. In contrast to manufacturing, the processing times of operations
are generally independent of the respective batch sizes.

The production scheduling problem to be dealt with consists in allocating
processing units and storage facilities over time to the production of given pri-
mary requirements such that all operations are completed within a minimum
makespan. This objective is particularly important in batch production, where
often a large number of different products are processed on multi-purpose
equipment (cf. Blomer and Giinther 1998). In this case, the production plant
is configured according to the set of production orders released. Before process-
ing the next set of production orders, the plant has generally to be rearranged,
which requires the completion of all operations.

There is an extensive literature dealing with production scheduling in the
process industries. Most of the solution approaches discussed are based on
time-indexed or continuous-time mixed-integer programming formulations of
the problem, cf. e.g., Kondili et al. (1993), Pinto and Grossmann (1995),
Blémer and Giinther (1998, 2000), or Burkard et al. (1998). For a detailed
review of literature, we refer to Blomer (1999), Sect. 4.2, and Schwindt and
Trautmann (2000).

The special feature of the approach by Neumann et al. (2001), which we
shall discuss in what follows, is the decomposition of the production scheduling
problem into a batching and a batch scheduling problem. A similar technique
has been used by Brucker and Hurink (2000) for solving a related produc-
tion scheduling planning problem. This decomposition offers the prospect of
markedly decreasing the severe computational requirements incurred by solv-
ing the entire production scheduling problem at once. The batching phase
generates appropriate batches, which in the course of the batch scheduling
phase are subsequently scheduled on the processing units subject to inventory
constraints. The batching problem can be formulated as a mixed-integer lin-
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ear program. The batch scheduling problem can be viewed as a multi-mode
resource-constrained project scheduling problem with renewable and cumula-
tive resources, sequence-dependent changeover times, and calendars.

We first deal with the batching problem. Batching converts the given
primary requirements for final products into individual batches for tasks,
where the objective is to minimize the workload, i.e., the total amount of
work to be performed on the processing units. For each task we determine a
collection of batches such that all primary requirements can be satisfied, there
is sufficient capacity for stocking the residual inventories after the completion
of all operations, the prescribed bounds on the batch sizes are observed, and
the workload to be processed is minimum.

We are going to formulate the batching problem as a mixed-integer lincar
program (see Schwindt 2001 and Neumann et al. 2002). Let 7" be the set of
all tasks s, and let U be the set of all processing units k. Uy C U is the set
of all processing units on which task s can be cxecuted. By pis we designate
the processing time of task s on processing unit & € Us. The mean processing
time of task s on any processing unit k € Us is Py = )y, Prs/|Us|, and
vs = [ _keu, 4/Prs| is an upper bound on the number of batches for task s
which can be executed in the planning period [0,d]. For each task s € T,
a lower bound ¢ and an upper bound G, on the batch size are given. The
lower bound generally arises from technological or economical requirements,
whereas the upper bound equals the capacity of the respective processing
units.

By P we again denote the set of all products ! to be produced, and d; is the
primary requirement for product [. Each storable product I € P is stocked in
a dedicated storage facility of capacity ¢;. For simplicity we assume that there
are no initial stocks of products [, that a sufficient amount of raw materials
is available, and that no safety stocks have to be taken into account. Each
product { € P arises as output of some tasks s € T, and each intermediate
product [ € P is also input to some other tasks s’ € T. The analogue to
the input coefficients in manufacturing are the input and output proportions
—1 < a4 < 1, which provide the proportions of products [ in the input or
output, respectively, of task s. We have a;s < 0 if  is an input product of
s and a5 > 0 if [ is an output product of task s. For products [ that are
neither consumed nor produced by task s, we set a;s := 0. For what follows
we assume that the proportions aj, cannot be varied (Neumann et al. 2002
have considered the general case of flexible input and output proportions).

The batching problem can now be formulated by introducing, for each
task s € T, v, continuous variables ¢* > 0 (p = 1,...,v,) with the following
meaning. If the number of batches for task s is greater than or equal to u, g#
provides the size of the u-th batch and ¢# = 0, otherwise. In addition, we need
binary variables z# with z#+! < 2/ (u = 1,...,v, — 1), where z# = 1 indi-
cates that there exists a p-th batch for task s and z# = 0, otherwise. The total
workload to be processed then equals }~ P, ZZZ 1 2# (recall that the pro-
cessing time of a batch is independent of the batch size). The linking betwcen
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variables ¢/ and z! can be achieved by the inequalities ¢§ /g, < 2% < ¢/'/q,
which at the same time ensure that the batch sizes are between the lower and
upper bounds q, and q,.

a1sq% is the increase in the inventory of product [ after one execution of
task s (which is negative if [ is an input product of s). The quantity of product [
remaining on stock after the execution of all batches equals ) | - ass EZS:I q“,
which must not be less than the primary requirements d; for product {. On
the other hand, the residual amount of product ! after the delivery of the
demands must not exceed the storage capacity ¢; for product [.

In sum, the batching problem can be stated as the following mixed-integer
lincar program:

Minimize Zg‘)s Zlfj
seT p=1 v
subject to dy < Y a Y gt <di+e (L€ P)
seT p=1 (65)
' /as <al <qlfq, (€T, p=1,...,v5)
ahtl < ght (seT, p=1,...,v,—1)
zt e {0,1} (seT, p=1,...,vy)
gt >0 (seT, p=1,...,v)

A feasible solution (g, ) to batching problem (6.5) provides a set of operations
to be scheduled on the processing units. For cach task s € T, we have 2;5:1 xt
corresponding operations.

We now turn to the batch scheduling problem, which consists in allo~
cating the resources to the operations over time such that the processing of all
batches is completed within a minimum amount of time, i.e., the makespan is
minimized. A variety of technological and organizational constraints have to
be taken into account. A task generally requires different types of resources:
processing units with sequence-dependent cleaning times, input products, and
storage facilities for output products. The availability of these resources is lim-
ited by capacities and inventories. Break calendars specify time intervals dur-
ing which specific tasks cannot be processed. Certain tasks can be suspended
during a break (e.g., packaging), whereas other tasks (e.g., chemical reactions)
cannot be interrupted at all. Some tasks may be executed on alternative pro-
cessing units differing in speed and cleaning times. Finally, there may be
perishable intermediate products, which cannot be stored. In what follows we
develop a resource-constrained project scheduling model for the batch sched-
uling problem, which has been discussed in Neumann et al. (200356}, Sect. 2.16
(see also Schwindt and Trautmann 2000 and Neumann et al. 2002, who have
proposed similar models for batch scheduling).

Analogously to the case of make-to-order production dealt with in Sec-
tion 6.1, the execution of all operations can be viewed as a project, where
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the makespan to be minimized corresponds to the project duration S, 1. For
each operation we introduce one real activity ¢ € V. The activity durations p;
are equal to the processing times of the corresponding tasks. In addition, we
introduce two cvents g, h € V¢ for each operation i, representing the start and
the completion of i. Minimum and maximum time lags dZ;i" =d7** =0 and

dip™ = dip**
of 1.

Each operation is executed on a processing unit. We combine identical
processing units to form a pool. Each pool is modelled as a renewable resource
k € RP. Processing units are identical if they can operate the same tasks with
the same processing and cleaning times. The requirement r;;, of activity 2
for resource k equals 1 if operation 7 is carried out on a processing unit of
pool k and 0, otherwise. The resource capacity Ry is equal to the number of
processing units in the corresponding pool.

The cleaning times between consccutive operations on a processing unit
can be modelled by introducing sequence-dependent changeover times between
the activities (cf. Section 5.2). The changeover time 19% between two activities
© and j on renewable resource k € R equals the cleaning time after operation ¢
if § requires a cleaning of resource k. When checking the changeover-feasibility
of some schedule S, the lower capacities of all arcs in the flow network equal
0 or 1 because r;; = 1 holds for all activities ¢ requiring resource k. Hence,
the corresponding minimum-flow problem can be solved in O(n|0%(S)|) time
by augmenting path algorithms (cf. Ahuja et al. 1993, Sect. 6.5).

Certain operations cannot be in progress during breaks. We model breaks
by introducing an activity calendar b; for cach real activity ¢ € V* (cf. Sec-
tion 5.1). If operation ¢ cannot be processed during breaks, b;(t) = 0 exactly if
time ¢ falls into a break. For the remaining activities ¢ € V%, we have b;(t) = 1
for all ¢ € [0,d).

Some tasks s € T' can be executed on alternative processing units k € U,
belonging to different pools. For each corresponding activity ¢, we introduce
one exccution mode m; for each alternative processing unit operation ¢ can
be executed on (cf. Section 5.3). The requirements for renewable resources as
well as the durations and changeover times then refer to individual execution
modes instead of activities.

Intermediate storage facilities can be modelled as (discrete) cumulative
resources. We identify each intermecdiate product ! to be stocked with one
cumulative resource ! € RY with safety stock [, = 0 and storage capac-
ity B, = ¢;. The requirements of start and completion events g,h € V¢ of
operations 7 for resource [ can be determined as follows. Assume that oper-
ation 7 corresponds to the p-th execution of task s. If I is an input product
of task s, i.e., a;s < 0, then ry = a;.q4. If [ is an output product of s, i.e.
ajs > 0, we have 1, = a15¢%. Note that the integrality of resource require-
ments rg, T € Z may necessitate a subsequent scaling of all requirements
and storage capacities by some factor ¢ € Q, which does not affect the time
complexities of the solution algorithms discussed.

= p; ensure that g occurs at the start and h at the completion
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Finally, we turn to perishable intermediate products. We only consider the
case where a perishable product must be consumed immediately. The case of
general shelf life times can be modelled by introducing auxiliary events and
cumulative resources (see Schwindt and Trautmann 2002). Let [ be a perish-
able output product produced by some operation ¢. Then there must exist
some operation j that immediately consumes the amount of [ arising at the
completion of operation <. This can be ensured by introducing a minimum
and a maximum time lag d;?i" = dj7** = p; pulling the start of j to the
completion of i, provided that therc is a one-to-one correspondence between
operations producing and consuming perishable products. The latter require-
ment can easily be integrated into the batching problem and is generally met in
practice because otherwise small deviations of the realized from the predicted
processing times would most often imply the loss of perishable substances. If
the condition is not met, the immediate consumption of a perishable inter-
mediate product can be enforced by introducing a corresponding cumulative
resource | with R, = R; = 0.

Table 6.1, which is taken from Neumann et al. (2003b), Sect. 2.16, sum-
marizes the input data of a batch scheduling problem and their respective
counterparts in the resource-constrained project scheduling model.

Table 6.1. Batch scheduling vs. project scheduling

Batch scheduling Project scheduling

Operations Activities

Makespan Project duration

Pools of identical processing units Renewable resources

Cleaning times Sequence-dependent changeover times
Breaks Activity calendars

Alternative processing units Multiple execution modes
Intermediate storage facilities Cumulative resources

Perishable intermediate products Minimum and maximum time lags,

cumulative resources

Based on the above decomposition of the production scheduling problem
into batching and batch scheduling, Schwindt and Trautmann (2000) have
been able to provide a feasible solution to a benchmark problem from industry
submitted by Westenberger and Kallrath (1995) for the first time (see also
Kallrath 2002). The latter case study covers most of the features occurring
in the production scheduling problem of batch plants. Neumann et al. {2002)
have shown that the decomposition approach also compares favorably with
monolithic time-indexed mixed-integer linear programming formulations of
the problem.
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6.4 Evaluation of Investment Projects

In this section we discuss a parametric optimization procedure, which has
been proposed by Schwindt and Zimmermann (2002) for evaluating invest-
ment projects with respect to different project deadline and discount rate
scenarios (see also Zimmermann and Schwindt 2002). Project managers arc
frequently confronted with the problem to decide whether some given invest-
ment project should be performed or to select one out of several mutually
exclusive investment projects from a given portfolio. For the assessment of
investments, the net present value criterion is well-established in research and
practice (sec, e.g., Brealey and Myers 2002, Ch. 5). In classical preinvestment
analysis, investments are specified by a stream of payments, i.e., a series of
payments with associated payment times. Given a stream of payments and
a proper discount rate, the net present value of the project is obtained by
summing up all payments discounted to the project beginning (case (a) in
Figure 6.4, where exogenous parameters are written in italics).

Case (a) Case (b) Case (¢)
investment [investment project| [investment, project|
= =
payments > 8, payments > 8
a temp. constr. > % temp. constr. > %
= =] =]
5 0 02
payments > S
payment times ;:n Ioptimization probleml |optimization problem|
g 9 e
S S 2
= discount rate > | 8, g
. ) 5 :
project deadline > s o
g =
payment stream Ipayment stream] [net present value function|
o g m
discount rate > ‘:7 discount rate &> |5 preference > £
ot ot
.6. 6. ’g
=} =] =
-+

|net present Valuel [net present Valuel preference value

Fig. 6.4. Evaluation of investments and investment projects

In case of investment projects, the payment times are no longer given in
advance but are subject to optimization. An investment project consists of
a set of events each of which is associated with a payment. Moreover, there
are prescribed minimum and maximum time lags between the occurrence of
events. Thus, the stream of payments results from maximizing the net present
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value of the project subject to the temporal constraints that are given by the
minimum and maximum time lags (case (b) in Figure 6.4).

The formulation of the latter optimization problem presupposes the knowl-
edge of the required rate of return (i.e., the discount rate) for discounting the
payments and the specification of a mazimum project duration (i.e., the proj-
ect deadline). When dealing with real investments in material goods like in
the building industry, however, often neither is the proper discount rate to be
applied known with sufficient accuracy nor is the project deadline fixed when
the investment project must be evaluated. The required rate of return is a
theoretical quantity and can only be estimated (sece Brealey and Myers 2002,
Ch. 23). The project deadline generally arises from negotiations between the
investor performing the project and his customers. The parametric optimiza-
tion approach by Schwindt and Zimmermann (2002) provides the maximum
project net present value as a function of the discount rate and project dead-
line chosen. The resulting net present value curve can then scrve as a basis for
the decision of the investor, which depends on his individual risk preference
(case (c) in Figure 6.4).

Let V¢ be the set of project events, including the project beginning 0
and the project termination n + 1, the start events of project activities, and
milestones at the completion of subprojects. The project events and the corre-
sponding prescribed time lags among them can be represented by an event-on-
node network N = (V*°, I, §) with node set V°, arc set E, and arc weights d;;
for (i,7) € E (see Subsection 1.1.2). Each event i € V¢ belonging to an ac-
tivity start is associated with a (negative) disburscment c{ < 0 for bought-in
supplics or outside services. Progress payments cf > 0 arise when subprojects
with milestones j € V¢ have been finished. Progress payments generally re-
fer to the direct cost which is incurred by the activities of the corresponding
subproject (cf. Daynand and Padman 1997).

Given a discount rate a > 0 and a project deadline d, the time-constrained
net present value problem reads as follows, where the project deadline d is
specified by arc (n + 1,0) € E with weight 6,410 = —d:

Maximize C°(S) := Z C{eﬁas"
eve
subject to S; —S; > 6 ((4,5) € E)
Sp =0

(6.6)

Let S denote the feasible region of problem (6.6) for project deadline d and
let C* be the corresponding optimal objective function value. A time-feasible
schedule S with maximum net present value C*(S) == C* can be determined
by the steepest descent method from Subsection 3.2.2, where f(S) = —C*(5).

Until now we have assumed that discount rate o and project deadline d
are exogenous parameters. As we have mentioned above, however, the proper
discount rate a can only be estimated and the project deadline d may be
subject to negotiations. Thus, for an adequate evaluation of the investment
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project it is necessary to know the project net present value for a range of
relevant values of o and d. In the sequel, we describe a parametric optimization
procedure that determines the maximum project net present value C* as a
function of discount rate o and project deadline d. This algorithm extends a
method by Grinold (1972), who has studied the dependency between C* and
the project deadline d. Clearly, since Sf}" ) S% if d > d, C* is nondecreasing
in d.

The following considerations are based on two basic observations that de-
rive from the study of schedule sets and objective functions in Sections 2.2
and 2.3. First, since the net present value objective function is linearizable,
there always exists an optimal solution S to the time-constrained net present
value problem (6.6) that is a vertex of the feasible region 8% of (6.6). Second,
cach vertex S of 8¢ can be represented by a spanning tree G = (V¢, Eg) of
project network N.

The basic idea for computing net present value function

C* 1|0, 00[x[ESpt1,00[— R

with C*(a,d) = max{C*(S) | S € S} is to cover its domain by a finite
number of sets M such that on each of those sets, function C* can be specified
in closed form. Clearly, C* is a closed-form function on subsets M of its
domain where the active constraints for optimal schedules S are the same
for all (a,d) € M (and thus optimal schedules S can be represented by one
and the same spanning tree G of V). For given spanning tree G, we call an
C-maximal connected set M with the latter property a validity domain of G.
Now let Uy;; be the node set of the subtree which results from G by deleting
arc (4,7) and does not contain node 0. Recall that arc (i,j) € Eg is called
a forward arc if it is oriented in direction of the unique path from node 0 to
node j in G, and a backward arc, otherwise (see Section 4.1). In addition, let
Cf(S) be the net present value of the events from set U;; given schedule S.
The following four remarks indicate how to compute the validity domains M
of spanning trees G belonging to optimal schedules.

Remarks 6.1.

(a) Given « and d, vertex S of 84 is optimal if and only if there exists a
spanning tree G representing S such that for each arc (¢, j) € E¢, it holds
that C75(S) > 0 if arc (4,4) is a forward arc and C§(S) < 0 if (i,5) is a
backward arc. The latter condition is equivalent to the requirement that
there does not exist a feasible ascent direction z at S (see Subsection 3.2.2).
Hence, the set U of all cvents that are shifted in time when modifying
project deadline d coincides with set Upi1,0 if backward arc (n+1,0) € Eg
and is empty, otherwise.

(b) Given discount rate & > 0, a spanning tree G belonging to an optimal
vertex S of S% does not change when modifying project deadline d, un-
til a temporal constraint S; — S; > &;; with (i,j) ¢ E¢ becomes active.



158 6. Applications

This property is immediate from the binary monotonicity of objective
function C* (see Subsection 2.3.1).

(c¢) Given deadline d, a spanning tree G belonging to an optimal vertex S of
84 does not change when modifying discount rate «, until for some arc
(i,7) € Eg, net present value Cf3(S) changes in sign. This property is a
consequence of (a).

(d) When modifying deadline d for fixed spanning trce G, it follows from (b)
that the deadlinc for which a new temporal constraint becomes active
is independent of discount rate a. Symmetrically, when modifying dis-
count rate « for fixed G, the discount rate for which Cf%(S) = 0 for some
(i,7) € E¢ does not depend on deadline d. This can be seen as follows.
Let S’ be an optimal vertex belonging to spanning tree G and deadline d'.
Then for given arc (4,j) € Eg,

Cf(s) = 3 e

hEUi]'
¥ 3 3
— E chevaéh + E che—a(Sh+r1 —d)
}LEU”\U hEUiij
- =
= E cpe” % 4 emld'=d) E cpe 5 (6.7)
}LEUi]'\U hEU,-jﬂU

Now recall that set U either coincides with set U,41,0 or is void. As
a consequence, nodes ¢ and j necessarily belong to the same set U or
V\ U unless (i,5) = (n+ 1,0). For U = Upy1,9 we have U;; = U if
(,7) =(n+1,0),U;; cUifi,jeU,and U, NU =0 if 4,5 ¢ U. This
means that independently of set U and arc (¢, j) we have (1) U; NU =0
or (2) Uj; \U = 0. In case (1), it follows from (6.7) that C(S") = C3(S)
and in case (2), equation (6.7) provides C(5') = e‘“(‘ll‘d)C%(S). In
sum, for each (i, j) € E¢ it holds that Cf3(S’) = 0 precisely if C(S) = 0.

For a given spanning tree G, the net present value function C* takes the
form

C*(a,d) = Z eS¢ Z of e=a(Sitd=Sns1)
ieVe\U icU
= Z lee—aSi + e—a(E—S"H) Z c{e—aSi (6.8)
i€Ve\U =

where schedule S is any optimal schedule that is specified by spanning tree G
and U is the set of all events shifted when modifying d. If (n+1,0) ¢ E¢ and
thus U = §, function C* is constant in project deadline d.

The amount by which d can be increased until a temporal constraint be-
comes binding is

o+(G) = min{S; ~ S; = 6;; | (i,5) € E\{(n+1,0)} 15 € U, j € Ve\ U}
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Analogously, for the amount by which d can be decreased, we obtain
o (G)=min{S; - S; — ;| (4,j) e E:1 € V°\U, jeU}

The spanning tree G’ for an optimal schedule S’ to project deadline d’ =
d+ ot (G) or d = d— 07 (G) can be constructed without re-performing
any optimization by first, adding the arc (7, ) for the new active temporal
constraint to G and second, deleting an oppositely directed arc (g, h) with
minimum absolute net present value |C,(S")| in the resulting (undirected)
cycle in G.

We now turn to the problem of finding the smallest discount rate o' > «
where some C’io‘jl(S) with (7, j) € E¢ changes in sign. Let o; < af; <--- < aj
denote all discount rates «;; > « such that for given optimal schedule S,

CIP ()= 2 e =0 (6.9)

ij
heU;;

Each of those discount rates o;; corresponds to an internal rate of return for
the payment stream given by payments c£ for h € Uy; and schedule S. Thus,
discount rates a;; can be determined by one of the standard algorithms for
the calculation of internal rates of return (see, e.g., Zheng and Sun 1999). The
following condition is necessary and sufficient for a change in sign of Cf‘j'(S )

at o = aj;, where Aa = min{a); — a,af; —aj, ..., 0% — a7}
sign > cfe (T A% oL gign N~ of e (it Ae/DS: (6.10)
heU;; heU;;

For each set U;;, we calculate the smallest discount rate «;; > « for which
(6.9) and (6.10) are satisfied. An optimal schedule S’ for discount rate o’ :=
ming j)e g @i; then results from delaying events h € Uy; by oF(G) time units
if (¢,7) is a forward arc of G or from putting events h € U;; forward by o~ (G)
time units if (¢, 7) is a backward arc of G. The corresponding spanning tree
G’ can be determined analogously to the case where deadline d is varied.

In summary, each spanning tree G is valid for a rectangular set M which
can be specified by the bottom left corner («,d) and the top right corner
(o, d") (see Figure 6.5). For given o and d, the values of o/ and d’ can be
computed as described above. On the validity domain M for G, the net present
value function can be written in the closed form (6.8).

Algorithm 6.1 provides a procedure for computing all bottom-left corners
(o, d) of scts M along with the corresponding spanning trees G that uniquely
define function C* on sets M. Q is a list of triples (a,d, G sorted according
to nondecreasing discount rates «, ties being broken on the basis of increasing
deadlines d. For convenience we again put min () := co. How to find an appro-
priate initial discount rate o® > 0 is described in Schwindt and Zimmermann

(2002).
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deadline

T T T T T discount rate

Fig. 6.5. Validity domain M for spanning tree G

Algorithm 6.1. Computation of net present value function

Input: Event-on-node network N = (V¢ E, §), cash flows c{ for all events 7 € V¢,
initial discount rate a® > 0.
Output: Set C of triples (o, d, G).
compute spanning tree G belonging to optimal schedule for d = ES, 1 and
a=ao
initialize list Q := {(0, ESn+1,G)} and set of triples C := {(0, ESn41, &) };
while Q # 0 do
delete first element (a,d, G) and all other elements («, -, G) from list Q;
repeat
determine o’ := min{ay; | (i,7) € Ec, o, satisfies (6.9) and (6.10)};
if o/ < oo then
construct the spanning tree G belonging to o’ and d;
add triple (o, d, G") to Q and C;
if 01 (G) < oo then
set d :=d+ o (G);
construct the spanning tree G’ belonging to o and d';
if there is no triple (-,d’, G') in list Q then add triple (o, d’, ') to C;
set d:=d and G := G';

else put d = oo;
until d’ = oo;
return C;

6.5 Coping with Uncertainty

In this section we propose two deterministic strategies for coping with uncer-
tainty in resource allocation problems. When executing a project, unforeseen
downtimes of resources, staff time off, reworking time, late delivery of raw
materials or bought-in parts, or imprecise time and resource estimations may
cause considerable deviations from the schedule determined. Basically, there
are two ways of taking uncertainty into account when performing the resource
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allocation. First, we may anticipate deviations from predictive data by includ-
ing the knowledge of uncertainty into the scheduling decisions. Second, when
implementing the schedule, we may also react on disruptions in a way mini-
mizing the impact of the required adaptations. An overview of different ap-
proaches to project scheduling under uncertainty is given by Demeulemeester
and Herroelen (2002), Chs. 9 and 10, and Herroelen and Leus (2005), including
stochastic, fuzzy, robust, and reactive project scheduling. Robust and reactive
methods for project or production scheduling are reviewed in Herroelen and
Leus (2004b) and Aytug et al. (2005), respectively.

Substantial work has been donc in the area of (anticipative) stochastic
project scheduling problem, where activity durations are modelled as stochas-
tic variables and one attempts to minimize the expected value of a regular
or locally regular objective function (see Mohring 2000 and Uetz 2003 for
overviews and Stork 2001 for an in-depth treatment of the project duration
problem). Algorithms for stochastic project scheduling are based on the con-
cept of scheduling policies, which may be regarded as a specific application of
the theory of stochastic dynamic programming to scheduling problems. Var-
ious classes of policies have been developed, which show a different behavior
with respect to robustness and computational requirements. In principle, the
policies studied define (ordinary or disjunctive) precedence relationships in-
ducing feasible strict orders in the set of real activities. During the project
execution, an activity is started as soon as all of its predecessors in that strict
order have been completed. If we deal with arbitrary nonregular objective
functions, those policies cannot be applied because it is generally no longer
optimal to start activities at their earliest time- and resource-feasible start
times.

An alternative anticipative approach to coping with uncertainty in plan-
ning problems refers to the concept of robust plans (see Scholl 2001, Ch. 4).
We say that a plan is robust if it tends to require only minor revisions during
its implementation. In project scheduling, a robust schedule may be defined on
the basis of the free floats of activities as follows. For the moment we assume
that only temporal constraints have to be observed. How to integrate resource
constraints into this approach will be explained below. In Subsection 1.1.3 we
have defined the concepts of early and late free floats with respect to the earli-
est and latest schedules. When implementing a schedule S, we may regard the
activities as being “frozen”, i.e., ES; = LS; = S; for all 1 € V. In that case,
the early free float EFF; of an activity ¢ € V with respect to schedule S is
the maximum amount of time by which the start of activity ¢ can be delayed
given that any other activity j can be begun at its previous start time Sj.
Symmetrically, the late free float LE'F; with respect to schedule S is the max-
imum amount of time by which the start of activity 7 can be advanced given
that any other activity j can be begun at its previous start times S;. Hence,
a schedule that maximizes the (weighted) sum of all early and late free floats
contains the maximum (weighted) temporal buffers for shifting activities in
time without affecting the start times of any other activity. Such a schedule
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can be computed by minimizing the convex objective function f of the total
weighted free float problem (see Subsection 2.3.1) with

(S, + 6] — S, — 6,
;w 2 [S; 4 8] — min [ —6,5])

where weights w{ € N can be chosen to reflect the degree of uncertainty with
respect to start time S;. The time-constrained total weighted free float prob-
lem can be transformed into a time-constrained project scheduling problem
with a linear objective function f by introducing, for each i € V, two aux-
iliary activities 4" and 4" where (1) Siy > S; + d;; for all (4,7) € E and (2)
Sy < 85 — 65 for all (4,7) € E. Conditions (1) and (2) can be expressed via
additional arcs (7,1) with weights 8, = 6;; for all (5,7) € E and arcs (i", 5)
with weights d;» ; = d;; for all (¢, j) € E. Linear objective function fis then
given by f(S) = D ey Wi 7(Sir — 8i). A similar model for time-constrained
robust project scheduling under a probabilistic scenario has been studied by
Herroelen and Leus (20044a). The objective function considered in the latter
paper is the expected weighted deviation in start times between the realized
schedule and baseline schedule S, where it is assumed that no activity ¢ is
started before its predictive start time S;.

We now drop our assumption of infinite resource availability. In the pres-
ence of resource constraints, the free floats depend on the way in which re-
source conflicts are resolved. Similarly to stochastic project scheduling, the
conflict resolution strategy can be specified as a feasible relation p in the
set V of all activities (cf. Subsections 2.1.1 and 2.1.2). The feasibility of p
implies that in combination with the temporal constraints, the precedence
constraints among real activities and among events given by pairs (¢,5) € p
guarantee that the resource constraints are satisfied. Thus, by substituting
project network N into relation network N(p) and minimizing f on relation
polytope St(p), we obtain a feasible robust schedule that maximizes the total
weighted free float for the given set of precedence constraints. It remains to
show how to determine a feasible relation p such that the minimizer S of f
on Sy(p) also minimizes f on the set S of all feasible schedules, i.e., such
that S is a feasible schedule with maximum total weighted free float. First,
we notice that when replacing project network N with relation network N{p),
the objective function to be minimized turns into f# : Sp — R with

Zw max [S; +65) ~ min [S; —dF])

ey (J Z)GEU/) (i,7)€EUp

where 0%, and 67, denote the weights of arcs (j,7) and (4,7) in relation net-
work N(p). Thus, the objective function to be minimized explicitly depends
on p. From the definition of f# it follows that f#(S) < f*'(S) for all S € Sp
if p’ is an extension of p. In addition, it obviously holds that Sp(p’) C Sr(p)
if p” O p. That is why the feasible relation p sought can be chosen among the
C-minimal feasible relations. The latter relations can be generated by using
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a modification of the relaxation-based enumeration scheme given by Algo-
rithm 3.3. At each iteration it is checked whether or not the relation p we
branch from is feasible by finding minimum (s,t)-flows in specific relation-
induced flow networks belonging to the induced preorder § = ©(D(p)) (cf.
Subsections 2.1.1 and 2.1.2). Instead of breaking up forbidden active sets
A(S,t) we then break up maximum (s,¢)-cuts U in the respective flow net-
works (for details see Sections 4.1 and 5.2, where we have applied similar
techniques).

The problem where for given schedule S the resource allocation (i.e., an
appropriate (s,t)-flow) is to be determined in such a way that the expected
weighted deviation between the realized schedule and schedule S is minimized
has been investigated by Leus and Herroelen (2004).

The reactive approach is as follows. Assume that we want to minimize
some regular or convexifiable objective function like the project duration, the
total tardiness cost, the total inventory holding cost, or the nct present value
of the project. At first, we determine an optimal schedule S for objcctive
function f by using the relaxation-based enumeration scheme. We then start
performing the project according to schedule S. Each time the schedule be-
comes infeasible due to the breakdown of resources or overrun on activity du-
rations, we determine a new schedule S’ that first, complies with the updated
constraints and second, resembles as much as possible previous schedule S.
The reason is that we want to avoid disruptions in the project execution that
may arise from substantial modifications of the schedule. The resemblance be-
tween schedules S and S’ may, c.g., be measured by the (weighted Manhattan)
distance

A(S,8) = |IS" = S| == wilS; — S
eV

where w; € N are integers specifying the cost for shifting the start of activ-
ity ¢ € V by onc unit of time. A(S’,S) coincides with the objective function
value f(S’) of schedule S’ if f is chosen to be the total earliness-tardiness
cost function with due dates d; being equal to completion times S; + p; and
wf = wf = w; for all ¢ € V. Thus, we may determine a new fcasible sched-
ule $' by minimizing the total earliness-tardiness cost with respect to previ-
ous schedule S and put S := 5. In case of frequent schedule revisions, the
computational cffort for rescheduling the project can be markedly decreased
by providing, in addition to schedule S, a feasible relation p in set V. We
then minimize the total earlincss-tardiness cost f on the intersection of re-
lation polytope Sp(p) with the updated feasible region &’. An appropriate
C-minimal feasible relation p can be determined in the same way as for the
anticipative approach.



Conclusions

Summary. In this book we have been concerned with models, algorithms, and
applications of deterministic resource allocation problems in project manage-
ment. A special emphasis has been placed on developing a unifying framework
within which a variety of project scheduling problems can be treated. Those
problems involve general temporal constraints given by prescribed minimum
and maximum time lags, different types of scarce resources, and a broad class
of regular and nonregular objective functions. The diversity of the models pro-
posed allows to cover many features arising in applications beyond the proper
field of project management like short-term production planning in the man-
ufacturing or process industries.
The main contributions of this monograph are

e an in-depth analysis of temporal constraints and different kinds of resource
constraints (Chapter 1),

e the formulation of resource constraints in terms of specific relations in
the activity set, which permits a classification of schedules and objective
functions (Chapter 2),

e the development of efficient solution procedures for time-constrained proj-
ect scheduling and resource allocation, which are based on the results of
the previous structural analysis (Chapters 3 and 4),

e the expansion of the basic resource allocation models to problems with
break calendars, scquence-dependent changeover times in distributed proj-
ects, alternative execution modes for activities, and consumption and re-
newal of resources at constant rates (Chapter 5), and

e the application of concepts from resource allocation in project manage-
ment to first, production scheduling in the manufacturing and process
industries, second, the evaluation of investment projects with respect to
variable project deadline and discount rate, and third, deterministic strate-
gies for coping with uncertainty in project planning (Chapter 6).

In particular, we have generalized order-based approaches for project
scheduling with rencwable resources to resource allocation problems including
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cumulative resources that are depleted and replenished over time. The con-
cept of cumulative resources offers a natural way of studying several resource
types that have been dealt with in literature (renewable, nonrenewable, and
recyclable resources). In addition, cumulative resources have many immedi-
ate applications in their own right such as scarce budgets, material flows, or
limited storage capacitics.

Suggestions for future research. When planning real-life projects,
managers usually have to deal with problems that are much less well-structured
than the models treated in this book. However, to make resource allocation
amenable to methods of Operations Research, it is generally necessary to make
simplifying assumptions on the objectives pursued and constraints included.
Thus, bridging the gap between theoretical concepts and practical require-
ments remains a challenging field of further research. The following topics
may be directions of future developments.

e In certain applications it is more expedient to specify, for each activity,
a workload rather than a fixed duration and fixed resource requirements
because there is no need for keeping a constant amount of resource units
allocated to the activities over their execution time. It is then necessary
to define lower and upper bounds on the time-dependent resource require-
ments of activities and to relate the prescribed temporal constraints to the
activity progress.

e The scheduling policies developed for project scheduling with stochastic
activity durations assume a locally regular objective function. For this type
of objective functions, the precedence relationships among activities can
readily be translated into optimal start times during the project execution.
When dealing with nonregular objective functions important in practice
such as the project net present value or inventory holding cost, new con-
cepts need to be developed for coping with stochastic activity durations.

e In literature, the concept of partially renewable resources has been devised
for modelling resources whose availability is defined on unions of time in-
tervals. Partially renewable resources allow for modelling timetabling and
working-shift scheduling aspects like maximum working times during week-
ends or flexible break intervals (see Bottcher et al. 1999). The capacity of
such a partially renewable resource can be regarded as being continuously
consumed over the execution time of activities. It may thus be interesting
to study the relationship between the concepts of continuous cumulative
and partially rencwable resources.

e Our computational experience with algorithms for resource allocation
problems indicates that effective consistency tests have a large impact on
the efficiency of exact solution methods. Until now, those consistence tests
have primarily been devised for renewable-resource constraints. Hence, the
development of new consistency tests referring to the scarcity of cumula-
tive resources is an issue of future research.
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= Equal by definition

m| End of proof

[z] Smallest integer greater than or equal to «
(z)* Maximum of 0 and z
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(@, b] Half open interval {z € R | a < z < b}
| X| Cardinality of finite set X

B.(S) Ball of radius ¢ around S in R™*2
{ Line segment in R"*2

N Set of all positive integers

O Landau’s symbol

P(X) Power set of set X

R Set of all real numbers

R™ Set of all n-tuples of real numbers
R>o Set of all nonnegative real numbers
XcY X is proper subset of Y

XCY X is subset of Y

X\Y Difference of sets X and YV

XnYy Intersection of sets X and Y
XuY Union of sets X and Y

Z Set of all integers

Z>o Set of all nonnegative integers

Projects and project activities

b; Activity calendar for activity ¢
bij Time lag calendar for arc (4, 5)
d7e* Maximum time lag between the starts of activities ¢ and j
d;;-”" Minimum time lag between the starts of activities ¢ and j

d Prescribed maximum project duration



182 List of Symbols

m; Execution mode for activity ¢

M; Set of alternative execution modes for activity 7

pi Duration (processing time) of activity 7

Dim; Duration of activity 7 in execution mode m;

ﬁfj Sequence-dependent changeover time from activity ¢ to activity j
on resource k

V Set of all activities

vecv Set of all real activities

vecv Set of all fictitious activities (events)

Vi Set of all real activities using renewable resource k

V,f; Set of all events depleting cumulative resource k

Vi Set of all events replenishing cumulative resource k

Directed graphs and networks

D Distance matrix for project network N

dij Length of a longest directed path (distance) from node 7 to node j
in project network N

8ij Weight of are (%, j)

Simyjmy Weight of arc (4, j) for mode combination (m;, m;)

E Arc set of project network N

G =(V,E) Directed graph with node set V and arc set E

G = (V,E,é§) Weighted directed graph (network) with node set V, arc set E,
and vector § of arc weights

(%, 5) Arc with initial node ¢ and terminal node j

m = |E| Number of arcs in project network N

n+2=|V| Number of nodes in project network N

N Project network

Pred(3) Set of all direct predecessors of node 7 € V

Suce(i) Set of all direct successors of node i € V

V Node set of project network N

Resources

F Forbidden set of activities

F Set of all minimal forbidden sets

]:,j Set of all minimal k-surplus sets

Fr Set of all minimal k-shortage sets

Tik Requirement of activity ¢ for resource k

Tikm; Requirement of activity 7 for resource k in execution mode m;

re(S, ) Loading profile for resource k given schedule S

Ry Capacity of renewable resource k or availability of nonrenewable
resource k

R, Safety stock of cumulative resource k

Ry Storage capacity of cumulative resource k

R Set of all (discrete) cumulative resources

RY Set of all continuous cumulative resources

RY Set of all nonrenewable resources

RP Set of all renewable resources
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Objective functions

«
f

C;
Ck
~F/0S4(S)
a*F/35.(S)
f St — R
f:C—oR
p:Sr - X
vi(S)
V(9
VH(S)
df|s(z)

wy

w]

Continuous interest rate

Cash flow associated with the start of activity ¢
Per unit cost for resource k

Left-hand S;-derivative of f at S

Right-hand S;-derivative of f at S

Objective function to be minimized
Continuation of objective function f
C'-diffeomorphism

Derivative of f at S

Left-hand derivative of f at S

Right-hand derivative of f at S

Directional derivative of f at S in direction z
Weight of activity ¢

Earliness and tardiness costs for activity ¢ per unit time
Weight of free floats for activity @

Relations and preorders

cr(8)
D(p)
dy;

o
G(8)
MFR
min M
N(p)
Pred® (1)
P, 0
STO
SIP
Sr(p)
57(60)
tr(p)

0

o(S)
o(D)

Schedules

AS
ES
LS
PSS
QAS
oSS
S

S

Covering relation of strict order

Distance matrix for relation network N(p)

Distance from node 7 to node j in relation network N(p)
Weight of arc (4, 7) in relation network N(p)

Precedence graph of strict order 6

Set of all C-minimal feasible relations

Minimal point of ordered set (M, <) with M C R™**?
Relation network belonging to relation p

Set of all predecessors of 7 in preorder 6

Relation in set V'

Set of all schedule-induced strict orders in set V¢

Set of all schedule-induced reflexive preorders in set V¢
Relation polytope of relation p

Equal-preorder set of preorder 8

Transitive hull of relation p

Strict order in set V* or reflexive preorder in set V°
Schedule-induced preorder

Strict order in set V* or reflexive preorder in set V¢ induced by
distance matrix D

Set of active schedules

Earliest schedule

Latest schedule

Set of all pseudostable schedules
Set of all quasiactive schedules
Set of all quasistable schedules
Schedule

Set of all feasible schedules
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Sc
Sr

St
SS

List of Symbols

Set of all resource-feasible schedules with respect to cumulative
resources

Set of all resource-feasible schedules with respect to renewable re-
sources

Set of all time-feasible schedules

Set of all stable schedules

Temporal scheduling

Ci

di;
EC,
EFF,
ES,
LC;
LFF,
LS,
Si
TF,

Completion time of activity ¢

Induced minimum time lag between the starts of activities ¢ and j
Earliest completion time of activity ¢

Early free float of activity 4

Earliest start time of activity ¢

Latest completion time of activity ¢

Late free float of activity ¢

Latest start time of activity 4

Start time of activity ¢

Total float of activity ¢

Resource allocation

A
A(S,1)

Maximal feasible set

Active set at time ¢ given schedule S

Minimal delaying alternative

Set of all minimal delaying alternatives

Set of all activities scheduled

Set of all activities shifted

Set of candidate schedules

Set of all tentative start times for activity j (decision set)
Spanning forest of project network N with arc set Eg
Directional derivative of f at iterate S in direction z
Lower bound on minimum objective function

Search space

Stepsize

Enumeration nodes

Workload for renewable resource k in time interval [a, b]
Full mode assignment

Partial mode assignment

Steepest descent direction
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A

acceleration step 93,94

active schedule 53,57,112,138
active set 17,30, 65,130
activity 7

— critical 15

— fictitious 8

—real 8

activity calendar 125,153
activity list 78

activity-interval capacity test 26
activity-on-arc network 9
activity-on-node network 10
additional-cost function 113,119
algorithm

— augmenting path 153

— best-fit search 104

— branch-and-bound 72, 97,120
— capacity-scaling 86

— column-generation 75, 80, 132
— constructive 6,107

— ellipsoid 56, 85

— feasible direction 87

— flattest ascent 94,95, 102

— genetic 78

— label-correcting 13,71,73,126
— label-setting 72

— local search 115

— multi-pass 79

— parametric optimization 156
— preflow push 43

— priority-rule 77,113,119

—— bidirectional 102

— recursive-search 99, 101, 102

- relaxation-based 6, 65, 135, 163

— schedule-repair 112

— steepest descent 86,87, 102, 156

— stochastic dynamic programming
161

— subgradient 76

— tabu search 119

— vertex-following 99

antichain 39,43, 114, 130

anticipative approach 161

antiregular objective function 93

arc

- backward 109,116, 157

—entering 115

— forward 109, 111, 116, 157

— leaving 115

— precedence 104, 109, 116

— temporal 109,116

ascent direction

— flattest feasible 94

assignment 133

— feasible 134

—full 133

— resource-feasible 133

— time-feasible 134

assignment sequence problem 146

augmenting path algorithm 153

B

backward arc 109, 116, 157
balance test 37,81

batch 148,150

batch mode 150



186 Index

batch production 150
batch scheduling problem 152
batch size 150, 151
batching problem 151
best-fit search algorithm 104
bill of materials explosion 143, 147 constraint
binary-monotone objective function — calendar 126

57,92 — cumulative-resource 30,113
BMR-feasible strict order 41,44 — disjunctive precedence 22, 36,67, 72
Bouligand-differentiable function 90 — linear reverse-convex 22
branch-and-bound algorithm 72,97, — mode assignment 133

120 — nonrenewable-resource 133
branching strategy 72 — precedence 8,10, 22, 36, 83
break 150 — renewable-resource 17,111, 134
break calendar 6,123,125 — resource 2,66

— temporal 1,8,134

— energy precedence 28

— general interval capacity 27

— interval capacity 25

— profile 36, 82

— unit-interval capacity 25,26, 73

C
C1-diffeomorphism 56, 99
calendar

constructive algorithm 6,107
continuation (of a function) 86
continuous cumulative resource

6,124,

— activity 125,153 135
— break 6,123,125 continuously differentiable function 86
— time lag 125 convergent product structure 146
calendar constraint 126 convex objective function 56, 85,137,
calendar-feasible schedule 126 162
calendarization 124 convex-cost flow problem 85
capacitated master production convexifiable objective function 56,
scheduling 147 57,82
capacity core loading profile 25,119
— interval 25,27 covering relation 40
— resource 16 CPM  see Critical Path Method
capacity-scaling algorithm 86 CPM network 9
capital-rationed net present value criterion  see rule
problem 105 critical activity 15
cash flow 58 Critical Path Method 10
changeover time cross-pruning 98
— sequence-dependent 6, 123, 128 cumulative resource 5, 28,153
changeover-feasible schedule 129 — continuous 6, 124,135
characteristic curve 86 — discrete 124
cleaning time 150 cumulative-resource constraint 30,113
column-generation algorithm 75, 80, cyclic product structure 150
132
common part 29, 146 D
comparable elements (in preorder) 39  deadline 8,75
complete preorder 39 decision set 110,119
conjugate functions 85 degenerate point 89,92, 116
consistency test 23,24, 36,73, 97 delaying alternative 19,33
- activity-interval capacity 26 — minimal 19,21, 33,35
— balance 37,81 delaying mode
— disjunctive activities 24,73,102 — minimal 76, 83



depth (of enumeration tree) 69
depth-first search 72,97
derivative

— directional 86

— one-sided 87

descent direction 87

— steepest feasible 87

directed cycle 13

directed path 13

directed walk 13

direction

— descent 87

— flattest feasible ascent 94
— optimal 89,96

— steepest feasible descent 87

direction-finding phase 88,92, 95

directional derivative 86

discount rate 59,156

discrete time-resource tradeoff problem
132

disjunctive activities 24,74

disjunctive activities test 24,73, 102

disjunctive precedence constraint 22,
36,67, 72

distance matrix

dominance rule

— subset 98

dual flattest ascent approach 94

13-15, 41
77,98, 102, 139

E

earliest schedule 9,14

— calendar-feasible 126, 127

early free float 16,161

ellipsoid method 56, 85

energetic reasoning 24,74

energy precedence test 28

entering arc 115

enumeration scheme 66,83, 127

— for convexifiable objective functions
84,163

— for multi-mode problems 135

— for regular objective functions 68

equal-order set 45

equal-preorder set

event &

event-on-node network 10, 156

execution mode 3,6,123, 131,153

experimental performance analysis 79,
81,102, 120

52,107

Index 187

extension (of assignment) 133
extension (of relation) 39
extremal node 91

extreme point

— global 52

—local 53

F

feasibility version (of optimization
problem) 62

feasible assignment 134

feasible direction 87

feasible direction method 87

feasible relation 40, 43, 46, 48, 49, 66,
114,162,163

feasible schedule 17,31, 66, 137

— with respect to assignment 134

feasible set 19

— maximal 19

feasible solution 135

feasible start time 111

feedback mechanism 149

Fibonacci heap 72,93

fictitious activity 8

flattest ascent algorithm 95,102

flattest ascent direction problem 95

flattest feasible ascent direction 94

float

— early free 16,161
— late free 16,161
—total 15

flow network 43

forbidden set 7,19, 33,77

— breaking up 22, 36

— minimal 19, 33

forest 91

forward arc 109,111, 116, 157
full assignment 133

function see also objective function
— additional-cost 113,119

— Bouligand-differentiable 90
- continuously differentiable 86

— lower semicontinuous 9,17,55
— neighborhood 115
— net present value 157,158, 160

— positively homogeneous 87

—step 17
— subadditive 90
— sublinear 87,90



188 Index

— sum-separable 85, 86

G

general interval capacity test 27
general product structure 146
genetic algorithm 78

gozinto graph 142

gross requirements 143, 147

H

head see release date
Helly property 21,42
hierarchical planning 147

I

incomparable elements (in preorder)
39

inf-stationary point 87

initial inventory level 30

input coefficient 142

input proportion 151

interior-point method 56

internal rate of return 159

interval capacity 25, 27

interval capacity test 25

interval graph 130

interval order 40, 44, 129, 130

investment project 155

K

k-shortage set 32
— minimal 33
k-surplus set 32
— minimal 32

L

label-correcting algorithm
126

label-setting algorithm 72

Lagrangean relaxation 80,97, 149

late free float 16,161

latest schedule 9

— calendar-feasible 127

leaving arc 115

length (of directed walk) 13

life cycle 1

line-search phase 88,92,97

linear objective function 57

linear product structure 146

13,71, 73,

linearizable objective function 56,57

loading profile 17,30, 74, 136

- core 25,119

local extreme point 53

local minimizer 56,57, 83

local search 115

locally concave objective function 60,
107

locally regular objective function 60,
107,161

lot  see also batch, 148

lot size 148

— transportation 145

lower bound 36, 74,97, 98, 132, 138

lower semicontinuous function 9,17,

55

M
make-to-order production 142
make-to-order production scheduling
problem 143
makespan 150
manufacturing industries 147
master production schedule 147
material flows 124
materials requirements planning 142
maximal element (in preorder) 40
maximal feasible set 19
maximum (s,¢)-cut 131,163
maximum time lag 8
maximum-cut problem 114
maximum-flow problem 43
maximum-weight clique 130
maximum-weight stable set
method  see algorithm
Metra Potential Method
min-cost flow problem 86
minimal delaying alternative
33,35
minimal delaying mode
minimal forbidden set
— breaking up 22
minimal k-shortage set 33
minimal k-surplus set 32
minimal point 41, 45,52, 53
minimum exXecution time 124
minimum (s, t)-flow 43, 50, 130, 163
minimum time lag 8
minimum-cut problem 76

43,130
10,11
19,21,

76, 83
19,33



minimum-flow problem 50, 114, 153

mode assignment constraint 133

mode assignment problem 3,133

mode relaxation 133,135

MPM  see Metra Potential Method

MPM network 10

multi-level capacitated lot sizing
problem 149

multi-level lot sizing 148

multi-mode project duration problem
132

multi-mode project network 134

multi-mode resource allocation problem
3,124

multi-mode resource-constrained
project scheduling problem 134

multi-pass heuristic 79

N

neighborhood 115

neighborhood function 115

neighborhood graph 115,118

net present value 155

net present value function
160

net present value problem

— capital-rationed 105

— time constrained 99

— with cumulative resources see
capital-rationed

— with renewable resources 102

net requirements 147

network

- activity-on-arc (CPM) 9

— activity-on-node 10

157, 158,

— event-on-node 10, 156
—flow 43

- MPM 10

— project 9

- relation 41,110, 162

— schedule 44,52, 54,110,111

— strongly connected 12

nondelay schedule 52, 102

nonregular objective function 55
nonrenewable resource 5, 28,131
nonrenewable-resource constraint 133

O
objective function 3,9

Index 189

— antiregular 93

— binary-monotone 57, 92
—convex 56, 85,137,162

— convexifiable 56, 57, 82

— linear 57

— linearizable 56, 57

- locally concave 60, 107

— locally regular 60, 107,161
— makespan 58

— net present value
— nonregular 55
— preorder-decreasing 64, 120

— project duration 58

— quasiconcave 57

- regular 22,55,57, 66,93, 161

— total adjustment cost 63

— total earliness-tardiness cost 59,163
— total inventory holding cost 58

— total procurement cost 61,64
— total squared utilization cost

— total tardiness cost 58
— total weighted free float
one-sided derivative 87
operation 143,150
optimal direction 89,96
optimal schedule 18,31, 137
optimal solution 135
optimal-potential problem 85
order

59, 156

62, 148

59, 162

— interval 40,44
— strict 40
— weak 40,52

output proportion 151
overlapping operations 144

P

parametric optimization 156
partial schedule 112
perishable product 149

polytope
—relation 40, 46, 57, 83, 162
— schedule 44,52

positively homogeneous function 87
potential 12

precedence arc 104, 109,116
precedence constraint 8,10, 22, 36, 83
- disjunctive 22, 36, 67, 72
precedence graph 40, 43, 130
precedence relationship 7, 39



190 Index

predecessor (in preorder) 39,48,114

preemptive one-machine problem 75

preemptive project scheduling problem
124

preflow push algorithm 43

preorder 39

— complete 39

— schedule-induced 108

preorder-decreasing objective function
64, 120

preprocessing 73

primal steepest descent approach 86

primary requirements 143, 147,150

priority rule 78

priority-rule method 77,113,119

— bidirectional 102

problem

— assignment sequence 146

- batch scheduling 152

— batching 151

— convex-cost flow 85

— discrete time-resource tradeoff 132

— flattest ascent direction 95

— lot sizing

—— multi-level capacitated 149

—— single-level uncapacitated 149

— make-to-order production scheduling
143

— maximum-cut 114

— maximum-flow 43

— min-cost flow 86

- minimum-cut 76

— minimum-flow 50,114,153

— mode assignment 3, 133

— multi-mode project duration 132

— net present value

—— capital-rationed 105

—— time-constrained 99, 156

—— with cumulative resources see
capital-rationed

—— with renewable resources 102

— optimal-potential 85

— preemptive one-machine 75

— preemptive project scheduling 124

— project duration 3

—— with cumulative resources 81

—— with renewable resources 76

— resource allocation 2,120,133

—— multi-mode 3,124

— resource investment 120

— resource levelling 4,60, 61,113, 118,
148

— resource-constrained project sched-
uling 3,66, 152

—— multi-mode 134

—— stochastic 161

—— with cumulative resources 31, 137

—— with renewable resources 17

- sequencing 3,40

— steepest descent 89

- time-constrained project scheduling
3,9,18,41

- time-cost tradeoff 3

— total earliness-tardiness cost

~~ time-constrained 101

—— with renewable resources 104

— total squared resource utilization cost
121

— total weighted free float 162

procedure see algorithm

process industries 149

process plan 143

processing unit 149

product structure 147

— convergent 146

- cyclic 150

— general 146

— linear 146

production

— batch 150

— make-to-order 142

— small-batch 147

production order 147

profile test 36, 82

progress payment 156

project 1,7

project deadline 156

project duration 153

project duration problem 3

— multi mode 132

— with cumulative resources 81

— with renewable resources 76

project generator 79

project network 9

- multi-mode 134

project planning 2

project scheduling problem

— preemptive 124



— resource-constrained 3, 66, 152

—— stochastic 161

—— with cumulative resources 31, 137

—— with renewable resources 17

—— with sequence-dependent changeover
times 129

— time-constrained 3,9, 18, 41

pseudostable schedule 53, 57

Q

quarantine time 8,75

quasi-topological ordering 119

quasiactive schedule 54, 60, 69, 107,
111

quasiconcave objective function 57

quasistable schedule 54, 60,107, 109

R

range 61

reactive approach 163

real activity 8

recognition version (of optimization
problem) 62

recursive-search algorithm 99,101, 102

recyclable resource 29

reflexive preorder

— schedule-induced 51

regular objective function 22, 55, 57,
66,93, 161

relation 5

— binary 39

— covering 40

— feasible 40, 43, 46, 48, 49, 66, 114,
162,163

— time-feasible 40, 42, 46, 66

relation network 41,110, 162

relation polytope 40,46, 57, 83,162

relaxation 69, 85

— Lagrangean 80,97, 149

— mode 133

— resource 18, 31,65

— temporal 18,31

relaxation-based algorithm 6,65, 135,
163

release date 8,75,77

renewable resource 3,16, 153

renewable-resource constraint
134

requirement

17,111,

Index 191

— resource 16

— storage 30

requirements

—gross 143,147

—net 147

— primary 143,147, 150

resource

— cumulative 5, 28,153

—— continuous 6, 124,135

—— discrete 124

— nonrenewable

—recyclabe 29

—renewable 3,16, 153

resource allocation 2,17

resource allocation problem 2,120,
133

- multi-mode 3,124

resource capacity 16

resource conflict 21,35

resource constraint 2,66

resource investment problem 120

resource levelling problem 4,60, 61,
113,118,148

resource relaxation 18, 31,65

resource requirement 16

resource-constrained project scheduling
problem 3,66, 152

— multi-mode 134

— with cumulative resources 31,137

— with renewable resources 17

— with sequence-dependent changeover
times 129

5,28, 131

resource-feasible assignment 133

resource-feasible schedule 17,21, 31,
137

— with respect to assignment 134

robust plan 161
rule

— dominance
— priority 78

77,98, 102, 139

S

safety stock 30

scattered search 73
schedule 9

— active 53,112,138

— calendar-feasible 126

- changeover-feasible 129
—earliest 9,14



192 Index

—— calendar-feasible 126, 127

— feasible 17,31, 66, 137

—— with respect to assignment 134
— latest 9

—— calendar-feasible 127
—nondelay 52,102

- optimal 18,31, 137

— partial 112

— pseudostable 53,57

— quasiactive 54, 60, 69, 107, 111
— quasistable 54, 60, 107, 109

— resource-feasible 17,21, 31,137
—— with respect to assignment 134
— semiactive 53

- stable 53,57,102,112

— time-feasible 9

—— with respect to assignment 134
— time-optimal 9

schedule network 44,52, 54,110, 111
schedule polytope 44, 52

schedule sets 54,55
schedule-assignment pair 135
schedule-generation scheme 109

— for locally concave objective functions

110
— serial 78,107
schedule-induced preorder 108
- reflexive 51
schedule-induced strict order
schedule-repair method 112
search space 65,67, 83
search strategy 72
— depth-first 72,97
self-concordant barrier 56
semiactive schedule 53
sequence-dependent changeover time
6,123, 128,153
sequencing problem 3,40
serial schedule-generation scheme 78,

44,129

107
set
— active 17, 30, 65, 130
— decision 110,119

—~ equal-order 45

— equal-preorder 52,107
— feasible 19
— forbidden 19, 33,77

— k-shortage 32
— k-surplus 32

setup time see also changeover time,
143

shaving 25

shelf life time 149

shift

— against arc 116

-~ along arc 116

single-level uncapacitated lot sizing
problem 149

small-batch production 147

solution 115

— feasible 135

—optimal 135

spanning forest 89, 95

spanning outtree 54, 111,117

spanning tree 54,110,115

stable schedule 53,57,102,112

stable set

- maximum-weight 43,130

start time 8

— feasible 111

steepest descent algorithm 87,88, 102,
156

steepest descent problem 89

steepest feasible descent direction 87

step function 17

stepsize 88,93,97,115

— optimal 92

stochastic dynamic programming 161

stochastic project scheduling problem
161

storage capacity 30

storage facility 149

storage requirement 30

stream of payments 155

strict order 40

— BMR-feasible 41,44

— schedule-induced 44, 129

strong component 78

strongly connected network 12

subadditive function 90

subgradient algorithm 76

sublinear function 87,90

subset-dominance rule 98

sum-separable function 85, 86

support-point representation 112

supremum norm 88,95

symmetric triple 24



T

tabu search 119

tail see quarantine time

task 149

temporal arc 109,116

temporal constraint 1,8,134, 137

temporal plus capacity planning 149

temporal relaxation 18,31

temporal scheduling 11

tension 12

time lag

— maximum 8

— minimum 8

time lag calendar 125

time window 9

time-constrained net present value
problem 99, 156

time-constrained project scheduling
problem 3,9,18,41

time-constrained total earliness-
tardiness cost problem 101

time-cost tradeoff problem 3

time-feasible assignment 134

time-feasible relation 40, 42, 46, 66

time-feasible schedule 9

- with respect to assignment 134

time-optimal schedule 9

time-resource tradeoff problem 132

total earliness-tardiness cost problem

— time-constrained 101

— with renewable resources 104

total float 15

Index 193

total squared resource utilization cost
problem 121

total variation 63

total weighted free float problem 162

total working time 125

totally unimodular matrix 49,114

transfer time 145

transitive directed graph 43,130

transitive hull (of relation) 39

transitive reduction (of acyclic directed
graph) 131

transportation lot size 145

triangle inequality 14

—weak 128

U

uniformly directed cut 131
unit-interval capacity test
unscheduling step 78,112

25,26,73

A\

validity domain
variance 62
vertex 45,52,53
vertex-following algorithm 99

157,159

w

weak order 40, 52

weak triangle inequality 128
weakly optimally connected 115
workload 25, 74

Z
zigzagging phenomenon 92





