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Preface

Radiation in the Atmosphere is the third volume in the series A Course in Theo-
retical Meteorology. The first two volumes entitled Dynamics of the Atmosphere
and Thermodynamics of the Atmosphere were first published in the years 2003 and
2004.

The present textbook is written for graduate students and researchers in the field
of meteorology and related sciences. Radiative transfer theory has reached a high
point of development and is still a vastly expanding subject. Kourganoff (1952)
in the postscript of his well-known book on radiative transfer speaks of the three
olympians named completeness, up-to-date-ness and clarity. We have not made
any attempt to be complete, but we have tried to be reasonably up-to-date, if this
is possible at all with the many articles on radiative transfer appearing in various
monthly journals. Moreover, we have tried very hard to present a coherent and
consistent development of radiative transfer theory as it applies to the atmosphere.
We have given principle allegiance to the olympian clarity and sincerely hope that
we have succeeded.

In the selection of topics we have resisted temptation to include various additional
themes which traditionally belong to the fields of physical meteorology and physical
climatology. Had we included these topics, our book, indeed, would be very bulky,
and furthermore, we would not have been able to cover these subjects in the required
depth. Neither have we made any attempt to include radiative transfer theory as it
pertains to the ocean, a subject well treated by Thomas and Stamnes (1999) in their
book Radiative Transfer in the Atmosphere and Ocean.

As in the previous books of the series, we were guided by the principle to
make the book as self-contained as possible. As far as space would permit, all but
the most trivial mathematical steps have been included in the presentation of the
theory to encourage students to follow the various developments. Nevertheless,
here and there students may find it difficult to follow our reasoning. In this case,
we encourage them not to get stuck with a particular detail but to continue with the

x
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subject. Additional details given later may clarify any questions. Moreover, on a
second reading everything will become much clearer.

We will now give a brief description of the various chapters and topics treated in
this book. Chapter 1 gives the general introduction to the book. Various important
definitions such as the radiance and the net flux density are given to describe the
radiation field. The interaction of radiation with matter is briefly discussed by
introducing the concepts of absorption and scattering. To get an overall view of the
mean global radiation budget of the system Earth–atmosphere, it is shown that the
incoming and outgoing energy at the top of the atmosphere are balanced.

In Chapter 2 the hydrodynamic derivation of the radiative transfer equation (RTE)
is worked out; this is in fact the budget equation for photons. The radiatively induced
temperature change is formulated with the help of the first law of thermodynamics.
Some basic formulas from spherical harmonics, which are needed to evaluate certain
transfer integrals, are presented. Various special cases are discussed.

Chapter 3 presents the principle of invariance which, loosely speaking, is a
collection of common sense statements about the exact mathematical structure of
the radiation field. At first glance the mathematical formalism looks much worse
than it really is. A systematic study of the mathematical and physical principles of
invariance it quite rewarding.

Quasi-exact solutions of the RTE, such as the matrix operator method together
with the doubling algorithm are presented in Chapter 4. Various other prominent
solutions such as the successive order of scattering and the Monte Carlo methods
are discussed in some detail.

Chapter 5 presents the radiative perturbation theory. The concept of the adjoint
formulation of the RTE is introduced, and it is shown that in the adjoint formulation
certain radiative effects can be evaluated with much higher numerical efficiency than
with the so-called forward mode methods.

For many practical purposes in connection with numerical weather prediction it
is sufficient to obtain fast approximate solutions of the RTE. These are known as
two-stream methods and are treated in Chapter 6. Partial cloudiness is introduced in
the solution scheme on the basis of two differing assumptions. The method allows
fairly general situations to be handled.

In Chapter 7, the theory of individual spectral lines and band models is treated in
some detail. In those cases in which scattering effects can be ignored, formulas are
worked out to describe the mean absorption of homogeneous atmospheric layers. A
technique is introduced which makes it possible to replace the transmission through
an inhomogeneous atmosphere by a nearly equivalent homogeneous layer.

The theory of gaseous absorption is formulated in Chapter 8. The analysis of
normal vibrations of linear and nonlinear molecules is introduced. The Schrödinger
equation is presented and the computation of transition probabilities is described,
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which finally leads to the mathematical formulation of spectral line intensities. Sim-
ple but instructive analytic solutions of Schrödinger’s equation are obtained lead-
ing, for example, to the description of the vibration–rotation spectrum of diatomic
molecules.

Not only atmospheric gaseous absorbers influence the radiation field but also
aerosol particles and cloud droplets. Chapter 9 gives a rigorous treatment of Mie
scattering which includes Rayleigh scattering as a special case. The important
efficiency factors for extinction, scattering and absorption are derived. The math-
ematical analysis requires the mathematical skill which the graduate student has
acquired in various mathematics and physics courses. The effects of nonspherical
particles are not treated in this book.

So far polarization has not been included in the RTE, which is usually satisfactory
for energy considerations but may not be sufficient for optical applications. To give
a complete description of the radiation field the polarization effects are introduced
in Chapter 10 with the help of the Stokes parameters. This finally leads to the most
general vector formulation of the RTE in terms of the phase matrix while the phase
function is sufficient if polarization may be ignored.

Chapter 11 introduces remote sensing applications of radiative transfer. After
the general description of some basic ideas, the RTE is presented in a form which
is suitable to recover the atmospheric temperature profile by special inversion tech-
niques. The chapter closes with a description of the way in which the atmospheric
ozone profile can be retrieved using radiative perturbation theory.

The book closes with Chapter 12 in which a simple and brief account of the
influence of clouds on climate is given. The student will be exposed to concepts
such as cloud forcing and cloud radiative feedback.

Problems of various degrees of difficulty are included at the end of each chapter.
Some of the included problems are almost trivial. They serve the purpose of making
students familiar with new concepts and terminologies. Other problems are more
demanding. Where necessary answers to problems are given at the end of the book.

One of the problems that any author of a physical science textbook is confronted
with, is the selection of proper symbols. Inspection of the book shows that many
times the same symbol is used to label several quite different physical entities.
It would be ideal to represent each physical quantity by a unique symbol which
is not used again in some other context. Consider, for example, the letter k. For
the Boltzmann constant we could have written kB, for Hooke’s constant kH, for
the wave number kw, and ks for the climate sensitivity constant. It would have
been possible, in addition to using the Greek alphabet, to also employ the letters
of another alphabet, e.g. Hebrew, to label physical quantities in order to obtain
uniqueness in notation. Since usually confusion is unlikely, we have tried to use
standard notation even if the same symbol is used more than once. For example, the
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climate sensitivity parameter k appears in Chapter 12, Hooke’s constant in Chapter
8 and Boltzmann’s constant in Chapter 1.

The book concludes with a list of frequently used symbols and a list of constants.
We would like to give recognition to the excellent textbooks Radiative Transfer

by the late S. Chandrasekhar (1960), to Atmospheric Radiation by R. M. Goody
(1964) and the updated version of this book by Goody and Yung (1989). These
books have been an invaluable guidance to us in research and teaching.

We would like to give special recognition to Dr W. G. Panhans for his splendid
cooperation in organizing and conducting our exercise classes. Recognition is due
to Dr Jochen Landgraf for discussions related to the perturbation theory and to
ozone retrieval. Moreover, we will be indebted to Sebastian Otto for carrying out
the transfer calculations presented in Section 7.5. We also wish to express our
gratitude to many colleagues and graduate students for helpful comments while
preparing the text. Last but not least we wish to thank our families for their patience
and encouragement during the preparation of this book.

It seems to be one of the unfortunate facts of life that no book as technical as this
one can be written free of error. However, each author takes comfort in the thought
that any errors appearing in this book are due to one of the other two. To remove
such errors, we will be grateful for anyone pointing these out to us.
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Introduction

1.1 The atmospheric radiation field

The theory presented in this book applies to the lower 50 km of the Earth’s
atmosphere, that is to the troposphere and to the stratosphere. In this part of the
atmosphere the so-called local thermodynamic equilibrium is observed.

In general, the condition of thermodynamic equilibrium is described by the
state of matter and radiation inside a constant temperature enclosure. The radiation
inside the enclosure is known as black body radiation. The conditions describing
thermodynamic equilibrium were first formulated by Kirchhoff (1882). He stated
that within the enclosure the radiation field is:

(1) isotropic and unpolarized;
(2) independent of the nature and shape of the cavity walls;
(3) dependent only on the temperature.

The existence of local thermodynamic equilibrium in the atmosphere implies that
a local temperature can be assigned everywhere. In this case the thermal radiation
emitted by each atmospheric layer can be described by Planck’s radiation law.
This results in a relatively simple treatment of the thermal radiation transport in the
lower sections of the atmosphere.

Kirchhoff’s and Planck’s laws, fundamental in radiative transfer theory, will be
described in the following chapters. While the derivation of Planck’s law requires a
detailed microscopic picture, Kirchhoff’s law may be obtained by using purely ther-
modynamic arguments. The derivation of Kirchhoff’s law is presented in numerous
textbooks such as in Thermodynamics of the Atmosphere by Zdunkowski and Bott
(2004).1

1 Whenever we make reference to this book, henceforth we simply refer to THD (2004).

1



2 Introduction

The atmosphere, some sort of an open system, is not in thermodynamic equi-
librium since the temperature and the radiation field vary in space and in time.
Nevertheless, in the troposphere and within the stratosphere the emission of ther-
mal radiation is still governed by Kirchhoff’s law at the local temperature. The
reason for this is that in these atmospheric regions the density of the air is suffi-
ciently high so that the mean time between molecular collisions is much smaller than
the mean lifetime of an excited state of a radiating molecule. Hence, equilibrium
conditions exist between vibrational and rotational and the translational energy of
the molecule. At levels higher than 50 km, the two time scales become comparable
resulting in a sufficiently strong deviation from thermodynamic equilibrium so that
Kirchhoff’s law cannot be applied anymore.

The breakdown of thermodynamic equilibrium in higher regions of the atmo-
sphere also implies that Planck’s law no longer adequately describes the thermal
emission so that quantum theoretical arguments must be introduced to describe
radiative transfer. Quantum theoretical considerations of this type will not be treated
in this book. For a study of this situation we refer the reader to the textbook Atmo-
spheric Radiation by Goody and Yung (1989).

The units usually employed to measure the wavelength of radiation are the
micrometer (µm) with 1µm = 10−6 m or the nanometer (nm) with 1 nm = 10−9 m
and occasionally Ångströms (Å) where 1 Å =10−10 m. The thermal radiation spec-
trum of the Sun, also called the solar radiation spectrum, stretches from roughly
0.2–3.5 µm where practically all the thermal energy of the solar radiation is located.
It consists of ultraviolet radiation (<0.4 µm), visible radiation (0.4–0.76 µm), and
infrared radiation >0.76 µm. The thermal radiation spectrum of the Earth ranges
from about 3.5–100 µm so that for all practical purposes the solar and the terres-
trial radiation spectrum are separated. As will be seen later, this feature is of great
importance facilitating the calculation of atmospheric radiative transfer. Due to the
positions of the spectral regions of the solar and the terrestrial radiation we speak
of short-wave and long-wave radiation. The terrestrial radiation spectrum is also
called the infrared radiation spectrum.

Important applications of atmospheric radiative transfer are climate modeling
and weather prediction which require the evaluation of a prognostic temperature
equation. One important term in this equation, see e.g. Chapter 3 of THD (2004), is
the divergence of the net radiative flux density whose evaluation is fairly involved,
even for conditions of local thermodynamic equilibrium. Accurate numerical radia-
tive transfer algorithms exist that can be used to evaluate the radiation part of the
temperature prediction equation. In order to judiciously apply any such computer
model, some detailed knowledge of radiative transfer is required.

There are other areas of application of radiative transfer such as remote sensing.
In the concluding chapter of this textbook we will present various examples.
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Fig. 1.1 The Earth’s annual global mean energy budget, after Kiehl and
Trenberth (1997), see also Houghton et al. (1996). Units are (W m−2 ).

1.2 The mean global radiation budget of the Earth

Owing to the advanced satellite observational techniques now at our disposal, we are
able to study with some confidence the Earth’s annual mean global energy budget.
Early meteorologists and climatologists have already understood the importance
of this topic, but they did not have the observational basis to verify their results.
A summary of pre-satellite investigations is given by Hunt et al. (1986). In the
following we wish to briefly summarize the mean global radiation budget of the
Earth according to Kiehl and Trenberth (1997). Here we have an instructive exam-
ple showing in which way radiative transfer models can be applied to interpret
observations.

The evaluation of the radiation model requires vertical distributions of absorbing
gases, clouds, temperature, and pressure. For the major absorbing gases, namely
water vapor and ozone, numerous observational data must be handled and sup-
plemented with model atmospheres. In order to calculate the important influence
of CO2 on the infrared radiation budget, Kiehl and Trenberth specify a constant
volume mixing ratio of about 350 ppmv. Moreover, it is necessary to employ distri-
butions of the less important absorbing gases CH4, N2O, and of other trace gases.
Using the best data presently available, they have provided the radiation budget as
displayed in Figure 1.1.
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The analysis employs a solar constant S0 = 1368 W m−2. This is the solar radi-
ation, integrated over the entire solar spectral region which is received by the Earth
per unit surface perpendicular to the solar beam at the mean distance between the
Earth and the Sun. Since the circular cross-section of the Earth is exposed to the
parallel solar rays, each second our planet receives the energy amount π R2S0 where
R is the radius of the Earth. On the other hand, the Earth emits infrared radiation
from its entire surface 4π R2 which is four times as large as the cross-section. Thus
for energy budget considerations we must distribute the intercepted solar energy
over the entire surface so that, on the average, the Earth’s surface receives 1/4 of
the solar constant. This amounts to a solar input of 342 W m−2 as shown in the
figure.

The measured solar radiation reflected to space from the Earth’s surface–atmo-
sphere system amounts to about 107 W m−2. The ratio of the reflected to the
incoming solar radiation is known as the global albedo which is close to 31%.
Early pre-satellite estimates of the global albedo resulted in values ranging from
40–50%. With the help of radiation models and measurements it is found that
cloud reflection and scattering by atmospheric molecules and aerosol particles
contribute 77 W m−2 while ground reflection contributes 30 W m−2. In order to
have a balanced radiation budget at the top of the atmosphere, the net gain
342 − 107 = 235 W m−2 of the short-wave solar radiation must be balanced by
emission of long-wave radiation to space. Indeed, this is verified by satellite mea-
surements of the outgoing long-wave radiation.

Let us now briefly consider the radiation budget at the surface of the Earth,
which can be determined only with the help of radiation models since sufficiently
dense surface measurements are not available. Assuming that the ground emits
black body radiation at the temperature of 15◦C, an amount of 390 W m−2 is lost
by the ground. According to Figure 1.1 this energy loss is partly compensated by
a short-wave gain of 168 W m−2 and by a long-wave gain of 324 W m−2 because of
the thermal emission of the atmospheric greenhouse gases (H2O, CO2, O3, CH4,
etc.) and clouds. Thus the total energy gain 168 + 324 = 492 W m−2 exceeds the
long-wave loss of 390 W m−2 by 102 W m−2.

In order to have a balanced energy budget at the Earth’s surface, other phys-
ical processes must be active since a continuous energy gain would result in an
ever increasing temperature of the Earth’s surface. From observations, Kiehl and
Trenberth estimated a mean global precipitation rate of 2.69 mm day−1 enabling
them to compute a surface energy loss due to evapotranspiration. Multiplying
2.69 mm day−1 by the density of water and by the latent heat of vaporization amounts
to a latent heat flux density of 78 W m−2. Thus the surface budget is still unbalanced
by 24 W m−2. Assigning a surface energy loss of −24 W m−2 resulting from sens-
ible heat fluxes yields a balanced energy budget at the Earth’s surface. The individual
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losses due to turbulent surface fluxes are uncertain within several percent since it is
very difficult to accurately assess the global amount of precipitation which implies
that the estimated sensible heat flux density is also quite uncertain. Only the sum
of the turbulent surface flux densities is reasonably certain.

Finally, we must study the budget of the atmosphere itself. Figure 1.1 reveals
that the atmosphere gains 67 W m−2 by absorption of solar radiation, 102 W m−2 by
turbulent surface fluxes, and additionally 350 W m−2 resulting from long-wave radi-
ation emitted by the surface of the Earth and intercepted by atmospheric greenhouse
gases and clouds. The total of 519 W m−2 must be re-emitted by the atmosphere.
As shown in the figure, the atmospheric greenhouse gases and the clouds emit
165 + 30 = 195 W m−2 to space and 324 W m−2 as back-radiation to the surface
of the Earth just balancing the atmospheric energy gain.

We also see that from the 390 W m−2 emitted by the Earth’s surface only
350 W m−2 are intercepted by the atmosphere. To account for the remaining
40 W m−2 we recognize that these escape more or less unimpeded to space in the
so-called spectral window region as will be discussed later.

By considering the budget in Figure 1.1, we observe that only the reflected solar
radiation and the long-wave radiation emitted to space are actually verified by
measurements. However, the remaining budget components should also be taken
seriously since nowadays radiation models are quite accurate. Nevertheless, the
output of the models cannot be any more accurate than the input data. In future
days further refinements and improvements of the global energy budget can be
expected.

In order to calculate the global radiation budget, we must have some detailed
information on the absorption behavior of atmospheric trace gases and the physical
properties of aerosol and cloud particles. In a later chapter we will study the radi-
ative characteristics of spherical particles by means of the solution of Maxwell’s
equations of electromagnetic theory. Here we will only qualitatively present the
absorption spectrum of the most important greenhouse gases.

Figure 1.2 combines some important information regarding the solar spectrum.
The upper curve labeled TOA (top of the atmosphere) shows the extraterrestrial
incoming solar radiation after Coulson (1975). For wavelengths exceeding 1.4 µm
this curve coincides closely with a Planckian black body curve of 6000 K. The lower
curve depicts the total solar radiation reaching the Earth’s surface for a solar zenith
angle θ0 = 60◦. The calculations were carried out with sufficiently high spectral res-
olution using the so-called Moderate Resolution Atmospheric Radiance and Trans-
mittance Model (MODTRAN; version 3.5; Anderson, 1996; Kneizys et al., 1996)
program package. All relevant absorbing trace gases shown in the figure are included
in the calculations. Not shown are the positions of the CO and CH4 absorption bands
which are located in the solar spectrum and in the near infared spectral region of
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Fig. 1.2 Incoming solar flux density at the top of the atmosphere (TOA) and
at ground level. The solar zenith angle is θ0 = 60◦, ground albedo Ag = 0. The
spectral positions of major absorption bands of the trace gases are shown.

thermal radiation. A tabulation of bands of these two trace gases is given, for exam-
ple, in Goody (1964a). Since the radiation curve for ground level shows a high
spectral variability, it was artificially smoothed for better display to a somewhat
lower spectral resolution.

Figure 1.3 depicts the spectral distribution of the upwelling thermal radiance
as a function of the wave number (to be defined later) at a height of 60 km. For
comparison purposes the Planck black body radiance curves for several tempera-
tures are shown also. The maximum of the 300 K black body curve is located at
roughly 600 cm−1 . The calculations were carried out with the same program pack-
age (MODTRAN) using a spectral resolution of 1 cm−1 . All relevant absorbing and
emitting gases have been accounted for. The widths of the major infrared absorption
bands (H2O, CO2, O3) are also shown in the figure.

Kiehl and Trenberth (1997) produced similar curves for the solar and infrared
radiative fluxes per unit surface. However, in addition to the absorption by gases
shown in Figures 1.2 and 1.3, they also included the effects of clouds in their
calculations by assuming an effective droplet radius of 10 µm and suitable li-
quid water contents. Moreover, assumptions were made about the spatial distri-
butions of clouds. Their results indicate that water vapor is the most important
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Fig. 1.3 Upwelling infrared radiance at a height of 60 km for a clear sky mid-
latitude summer atmosphere.

gas absorbing 38 W m−2 of solar radiation which is followed by O3 (15 W m−2 )
and O2 (2 W m−2 ) while the effect of CO2 may be ignored. Thus the greenhouse
gases absorb 55 W m−2. Figure 1.1, however, requires 67 W m−2. The 12 W m−2 still
missing must be attributed to partial cloudiness and to spectral overlap effects, i.e.,
cloud droplets and gases absorb at the same wavelength. Handling clouds in the
radiative transfer problem is usually very difficult since in general water droplet
size distributions are unknown.

Finally, let us consider the gaseous absorption bands of the infrared spectrum.
In the calculations of Kiehl and Trenberth (1997) analogous to Figure 1.3, the
surface is assumed to emit black body radiation with a temperature of 15◦C. The
major absorbing gases are H2O, O3, and CO2. Of course, the same distribution of
absorbing gases and clouds as for solar radiation is assumed. Integration of the
infrared curve at the top of the atmosphere over the entire spectral region yields
235 W m−2 as required by Figure 1.1.

We conclude this section by considering a simple example to obtain the effec-
tive emission temperature of the system Earth’s surface–atmosphere. As we have
discussed above, the cross-section of the Earth intercepts the solar energy π R2S0.
Since the global albedo is 31%, the rate of absorption is 1368(1− 0.31) =
944 W m−2. Assuming that the Earth emits black body radiation, we must apply the
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Fig. 1.4 Simplified elliptical geometry of the Earth’s orbit.

well-known Stefan–Boltzmann law so that the Earth’s surface emits 4π R2σ T 4

where σ is the Stefan–Boltzmann constant. Assuming steady-state conditions,
we have π R2× 944 W m−2 = 4π R2σ T 4 from which we obtain the temperature
T = 254 K which resembles the effective emission temperature of our planet.

1.3 Solar–terrestrial relations

To a high degree of accuracy the Earth’s orbit around the Sun can be described by
an ellipse with eccentricity e = √

a2 − b2/a = 0.01673, where a and b are, respec-
tively, the semi-major and semi-minor axis of the ellipse, see Figure 1.4. The Sun’s
position is located in one of the two elliptical foci (F1, F2). For demonstration pur-
poses, the figure exaggerates the eccentricity of the elliptical orbit. The perihelion,
that is the shortest distance rmin between Sun and Earth, occurs around January
3rd, while the aphelion, that is the largest distance rmax between Sun and Earth, is
registered around July 4th. These times are not constant, but they vary from year to
year. Often the mean distance between the Earth and the Sun is approximated by

a = rmin + rmax

2
= 1.496 × 108 km (1.1)

The distances rmin and rmax are related to a and e via

rmin =a(1 − e) = 1.471 × 108 km

rmax =a(1 + e) = 1.521 × 108 km
(1.2)
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Beginning with January 1st, i.e. Julian day number 1 of the year, a normal year
counts 365 days (for simplicity we will not take the occurrence of leap years into
account). A particular day of the year is then labelled with its corresponding Julian
day number J .

We introduce the rotation angle � of the Earth beginning with the 1st of January
as

� = 2π

365
(J − 1) (1.3)

where � is expressed in radians.
During the course of the year the angular distance Sun–Earth, the solar declina-

tion δ, and the so-called equation of time ET change in a more or less harmonic
manner. In the following we will discuss simple expressions developed by Spencer
(1971) which are accurate enough to evaluate the quantities (a/r )2, δ, and ET ,
where r is the actual distance between Sun and Earth. The term (a/r )2 is given by(a

r

)2
= 1.000110 + 0.034221 cos � + 0.001280 sin �

+ 0.000719 cos 2� + 0.000077 sin 2� (1.4)

with a maximum error of approximately 10−4. If S0 = 1368 W m−2 is the solar
constant for the mean distance between Sun and Earth, the actual solar constant
varies as a function of J

S0(J ) = S0

(
a

r (J )

)2

(1.5)

According to (1.4) the maximum change of S0(J ) relative to S0 has an amplitude
of approximately 3.3%.

The solar declination δ is defined as the angle between the Earth’s equatorial
plane and the actual position of the Sun as seen from the center of the Earth. The
Earth’s rotational axis and the normal to the Earth’s plane of the ecliptic make on
average an angle of ε = 23◦27′, δ amounts to +23◦27′ and −23◦27′ at summer sol-
stice (around June 21st) and winter solstice (around December 22nd), respectively.
These relations are illustrated in Figure 1.5 and in the three-dimensional view of
the Sun–Earth geometry of Figure 1.6.

The equinox points are defined as the intersecting line (equinox line) between the
Earth’s plane of the ecliptic and the Sun’s equatorial plane. A second line which is
normal to the equinox line and which is located in the Earth’s plane of the ecliptic
intersects the Earth’s orbit in the points W S (winter solstice) and SS (summer
solstice). The perihelion P and the aphelion A, which both lie on the semi-major
axis of the Earth’s elliptical orbit, make an angle ψ = 11o08′ with the solstice line.
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Earth’s ecliptic plane
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ε

Fig. 1.5 Relation between the Earth’s orbit, the normal vector n to the plane of the
ecliptic, the Earth’s rotational vector N and the angle of the ecliptic ε.
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Fig. 1.6 Schematical view of the Sun–Earth geometry. P , perihelion; V E , vernal
equinox; SS, summer solstice; A, aphelion; AE , autumnal equinox; W S, winter
solstice; ε, angle of the ecliptic; ψ , angle between the distances (SS, W S) and
(A, P); N, vector along the rotational axis of the Earth; n, normal unit vector with
respect to the Earth’s plane of the ecliptic.

It should be observed that the vector N is fixed in direction pointing to the polar
star. At the solstices the vectors N, n and the line between the solstice points lie
in the same plane so that δ = ± 23o27′. At the equinox points (δ = 0o) the line
between the Earth and the Sun is at a right angle to the line (SS, W S).

The solar declination δ is a function of the Julian day number J . It can be
expressed as

δ = 0.006918 − 0.399912 cos � + 0.070257 sin �

− 0.006758 cos 2� + 0.000907 sin 2� (1.6)

with δ expressed in radians. Due to Spencer (1971) this approximate formula has
an error in δ less than 12′. Figure 1.7 depicts a plot of δ versus J .



1.3 Solar–terrestrial relations 11

0 50 100 150 200 250 300 350

−20

−10

 0

 10

20

Day of the year

WS

VE

SS

AE

So
la

r
   de

cl
in

at
io

 n
  ( 
)

˚

Fig. 1.7 Variation of the solar declination δ as a function of the Julian day J ,
see (1.6). V E , vernal equinox; SS, summer solstice; AE , autumnal equinox; W S,
winter solstice.

1.3.1 The equation of time

In the following we assume that the period of the rotation of the Earth around the
North Pole is constant. The time interval between two successive passages of a
fixed star as seen from the local meridian of an observer on the Earth’s surface is
called a sidereal day. Due to the fact that the Earth moves around the Sun in an
elliptical orbit, the time interval between two successive passages of the Sun in the
local meridian, i.e. the so-called solar day, is about 4 min longer than the length of
the sidereal day.

For a practical definition of time, one introduces the so-called mean solar day
which is exactly divided into 24-h periods. Thus the local noon with respect to
the local mean time (L MT ) is defined by the passage of a mean fictitious Sun
as registered from the Earth observer’s local meridian. Clearly, depending on the
Julian day J the real Sun appears somewhat earlier or later in the local meridian
than the fictitious Sun. The time difference between the noon of the true solar time
(T ST ) and the noon of the local mean time (L MT ) is the so-called equation of
time ET

ET = T ST − L MT (1.7)

Following the analysis of Spencer (1971), a functional fit expression can be derived
for ET in the form

ET = 1440

2π
(0.000075 + 0.001868 cos � − 0.032077 sin �

− 0.014615 cos 2� − 0.040849 sin 2�) (1.8)
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Fig. 1.8 Variation of the equation of time ET (in minutes) during the course of
the year as given by (1.8).

where ET is expressed in minutes and 1440 is the number of minutes per day. The
accuracy of this approximation is better than 35 s. The maximum time difference
between T ST and L MT amounts to less than about ±15 min. Figure 1.8 depicts
the variation of ET during the course of the year. Note that the irregularities of the
Earth’s orbit around the Sun lead to a complicated shape of the functional form of
ET versus J .

Universal time U T , or Greenwich mean time G MT , is defined as the L MT at
Greenwich’s (UK) meridian at 0◦ in longitude. Since 24 h cover an entire rotation
of the Earth, L MT increases by exactly 1 h per 15◦ in eastern longitude, i.e. 4 min
per degree of eastern longitude. Similarly, L MT decreases by 4 min if one moves
by one degree of longitude in the western direction. For the true solar time we thus
obtain the relation

T ST = U T + 4λ + ET (1.9)

where T ST , U T , and ET are given in minutes and the longitude λ is in units of
degree (−180◦ < λ ≤ 180◦).

The hour angle of the Sun H is defined as the angle between the local observer’s
meridian and the solar meridian, see Figure 1.9. If H is expressed in degrees
longitude one obtains

H = 15(12 − T ST ) (1.10)

where T ST has to be inserted in hours. Note that H > 0 in the morning and H < 0
in the afternoon.
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Fig. 1.9 Relation between hour angle H , solar declination δ, the solar and the local
meridian.

The local standard time L ST is defined as the local mean time for a given merid-
ian being a multiple of 15◦ away from the Greenwich meridian (0◦). Therefore, L ST
and U T differ by an integral number of hours. For particular countries, differences
of 30 and 45 min relative to the standard time meridians have been introduced for
convenience. Note also that for locations with daylight saving time, the local mean
time differs by 1 to 2 h relative to L ST .

1.3.2 Geographical coordinates and the solar position

A particular point P on the Earth’s surface is identified by the pair of geographi-
cal coordinates (λ, φ), where λ is the longitude and φ is the latitude. Note that φ

is counted positive in the northern hemisphere and negative in the southern hemi-
sphere. The coordinates of the Sun relative to P are defined by the solar zenith angle
ϑ0 and the solar azimuth angle ϕ0. If the Sun is at the zenith we have ϑ0 = 180◦,
and ϑ0 = 90◦ if it is at the horizon, see Figure 1.10. The solar height h is given by
h = ϑ0 − π/2. The solar azimuth ϕ0 is defined as the angle between the solar ver-
tical plane and a vertical plane of reference which is aligned with the north–south
direction. Here, ϕ0 = 0◦ if the Sun is exactly over the southern direction and ϕ0 is
counted positive in the eastward direction. Figure 1.11 depicts the apparent track
of the Sun during the day.

The position angles (ϑ0, ϕ0) of the Sun are usually not measured directly and must
be determined from other known angles. Utilizing the laws of spherical trigonom-
etry it can be shown that the following relations are valid

(a) cos(π − ϑ0) = sin ϕ sin δ + cos ϕ cos δ cos H

(b) cos ϕ0 = cos(π − ϑ0) sin ϕ − sin δ

sin(π − ϑ0) cos ϕ
(1.11)
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Fig. 1.10 Coordinates defining the position of the Sun.
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Fig. 1.11 Apparent solar track during the course of the day. The dotted curve marks
the projection of the solar path onto the horizontal plane.

At solar noon at any latitude we have H = 0. In this case we obtain from (1.11a)
(π − ϑ0) = ϕ − δ. At sunrise or sunset at any latitude ϑ0 = 90◦ and H = Dh. The
term Dh is also called the half-day length since it is half the time interval between
sunrise and sunset. Excepting the poles we find from (1.11a)

cos Dh = − tan ϕ tan δ (1.12)

At the equator on all days and at the equinoxes (δ = 0) at all latitudes (with
ϕ �= ±90◦) we find Dh = 90◦ or 6 h. The latitude of the polar night is found by
setting in (1.12) Dh = 0 so that tan ϕ = − cot δ (with δ �= 0) and ϕ(polar night) =
90◦ − |δ| in the winter hemisphere.

The daily total solar radiation Qs incident on a horizontal surface at the top of
the atmosphere is found by integrating the incoming solar radiation over the length
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Fig. 1.12 Precession and nutation of the Earth.

of the day. Thus from (1.5) we find

Qs = S0

(
a

r (J )

)2 ∫ Dh

−Dh

cos(π − ϑ0)dt (1.13)

Since the angular velocity of the Earth can be written as� = d H/dt = 2π day−1 we
obtain from (1.11a) after some simple integration

Qs = S0

(
a

r (J )

)2 86400

π
(Dh sin ϕ sin δ + cos ϕ cos δ sin Dh) J m−2day−1

(1.14)

In the first term Dh must be expressed in radians. The expression (a/r (J ))2 never
departs by more than about 3% from unity. Graphical representations of this formula
are given in various texts, for example in Sellers (1965) where additional details
may be found.

1.3.3 Long-term variations of the Earth’s orbital parameters

For completeness we briefly discuss the most important variations of the Earth’s
orbit around the Sun. The eccentricity e of the Earth’s elliptical orbit varies irregu-
larly between 0 and 0.05 with its current value e = 0.01673. The period of this
oscillation is approximately 100 000 years. The Earth’s rotational axis N precesses
around the normal of the ecliptic plane n with an angle of 23◦27′. The reason for
the precession of the Earth is that it is not an ideal sphere, but it has the shape
of a geoid, that is, the poles are flattened and an equatorial bulge of about 21 km
is observed, see Figure 1.12. First we investigate the influence of the Sun on the
geoidal form of the Earth. At the center of the Earth the gravitational attraction of
the Sun and the centrifugal force due to the revolving motion of the Earth around
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the Sun are equal but opposite in sign. At the center of gravity C1 (left half of the
geoid) the attractional force of the Sun is larger than the centrifugal force, which is
due to the smaller distance of C1 to the Sun. At the center of gravity C2 (right half
of the geoid) we observe the opposite situation, which is due to the larger distance
of C2 to the Sun as compared to the center of the Earth; here the centrifugal force
preponderates the attractional force of the Sun. Hence, at C1 the resultant force F1 is
directed toward the Sun whereas at C2 the resultant force F2 is directed away from
the Sun. Owing to the inclination of the ecliptic plane the forces F1 and F2 form
a couple attempting to place the Earth’s axis in the upright position. This results in
the precession of the Earth’s axis. The Moon, whose orbital plane nearly coincides
with the orbital plane of the Earth, acts in the same way but even more effectively.
Here, the small mass of the Moon in comparison with the mass of the Sun is over-
compensated by the small distance between Moon and Earth. As a result of these
forces, N revolves on the mantle of a cone as shown in Figure 1.12. The time for a
full rotation around the circle of precession amounts to about 25 780 years.

Apart from the Sun and the Moon the other planets of the solar system also
exert an influence on the inclination of the ecliptic leading to changes in ε between
21◦55′ and 24◦18′ having a period of about 40 000 years. Finally, in addition to the
precession, the Earth’s rotational axis exhibits also a nodding motion. This effect
is caused by the fact that the Moon’s gravitational influence varies in time. This
nutation leads to a small variation of the Earth’s axis inclination and has a period
of about 18.6 years.

1.4 Basic definitions of radiative quantities

In this section we will present some basic definitions and the terminologies used in
this book. The photon is considered to be an idealized infinitesimally small particle
with zero rest mass carrying the energy

e(ν) = hν (1.15)

where h = 6.626196 × 10−34 J s is Planck’s constant, and ν is the frequency of the
electromagnetic radiation. Frequency units are Hertz (Hz) where 1 Hz is 1 cycle
s−1. Considering a single photon one may attribute to it a momentum p(ν) with
magnitude

p(ν) = |p(ν)| = e(ν)

c
(1.16)

where c = 2.997925 × 108 m s−1 is the vacuum speed of light. Photons may travel
in an arbitrary direction specified by the unit vector Ω. Therefore, the vectorial
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direction Ω.

notation of the photon’s momentum can be expressed as

p(ν) = e(ν)

c
Ω = hν

c
Ω (1.17)

As soon as the photon interferes with matter, various types of interactions
between the atoms of the material and the photon may occur. A single interac-
tion may be an absorption or a scattering process. Between any two scattering
interactions the photon is assumed to travel in a straight line with the speed of light
c. We will also assume that during a scattering process the photon suffers no change
in frequency. In this case one speaks of elastic scattering.

In some situations inelastic scattering might be of importance where in addition
to the change of flight direction a shift in the photon’s frequency occurs. One
important example for atmospheric applications is Raman scattering. Rayleigh
scattering and Mie scattering to be discussed later are examples of elastic scattering
processes. Inelastic scattering processes will not be investigated in this book.

Six coordinates are required to unambiguously describe the photon at time t .
These are the three coordinates of the position vector r, the magnitude of momentum
p(ν) and two angles characterizing the direction of flight Ω. At a certain point in
space a local system of Cartesian coordinates (x̃, ỹ, z̃) is introduced. At the origin
of this system we define a spherical coordinate system r̃ , ϑ, ϕ, where r̃ is the radial
distance from the origin located at r and (ϑ, ϕ) are the zenith and azimuthal angle,
respectively, see Figure 1.13. In the latter system the direction Ω may be described
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Table 1.1 Definition of special radiance fields

Radiance field List of variables

Stationary Iν = Iν(r,Ω)
Isotropic Iν = Iν(r, t)
Homogeneous Iν = Iν(Ω, t)
Homogeneous and isotropic Iν = Iν(t)

by the triple set of coordinates (r̃ = 1, ϑ, ϕ). The differential solid angle element
d� is defined by

d� = d A

r̃2
(1.18)

Here, d A = r̃2 sin ϑ dϑ dϕ is the differential area element on a sphere with radius
r̃ , see Figure 1.13. Thus we obtain

d� = sin ϑ dϑ dϕ (1.19)

Integration over the unit sphere yields∫
4π

d� =
∫ 2π

0

∫ π

0
sin ϑ dϑ dϕ =

∫ 2π

0

∫ 1

−1
dµ dϕ = 4π (1.20)

where the abbreviation µ = cos ϑ has been introduced.
The distribution function of photons f (ν, r,Ω, t) = fν(r,Ω, t) is defined by2

Nν(r,Ω, t)dν = fν(r,Ω, t) dV d� dν (1.21)

where Nνdν represents the number of photons at time t contained within the vol-
ume element dV centered at r, within the solid angle element d� about the flight
direction Ω, and within the frequency interval (ν, ν + dν). Therefore, fν has units
of (m−3 sr−1 Hz−1). In place of the photon distribution function fν , in radiative
transfer theory it is customary to use the radiance Iν(r,Ω, t) as defined by

Iν(r,Ω, t) = chν fν(r,Ω, t) (1.22)

From this equation it is seen that the monochromatic radiance is expressed in units
of (W m−2 sr−1 Hz−1). In the most general case the radiance field is time dependent,
it varies in space, direction, and frequency. Table 1.1 briefly lists some special cases
of Iν .

2 The dependence of radiative quantities on frequency is commonly denoted by the subscript ν.
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Fig. 1.14 Radiative energy streaming through the infinitesimal surface element dσ
with surface normal n into the solid angle element d� around the flight direction
Ω of the photons.

The physical meaning of the radiance can be illustrated with the help of the
energy relation

uν(r,Ω, t)dν = Iν(r,Ω, t) cos θ d� dσ dt dν (1.23)

Thus uνdν is the radiative energy contained within the frequency interval (ν, ν +
dν) streaming during dt at r through the surface element dσ with unit surface
normal n into the solid angle element d� along Ω. The angle between Ω and the
surface normal of dσ is denoted by θ , see Figure 1.14. Therefore, Iνdν is expressed
in (W m−2 sr−1).

The energy density û(r, t) of the radiation field, expressed in units of (J m−3), is
obtained by integrating the term hν fν over all directions and frequencies

û(r, t) =
∫ ∞

0

∫
4π

hν fν(r,Ω, t) d� dν = 1

c

∫ ∞

0

∫
4π

Iν(r,Ω, t) d� dν (1.24)

Let us now consider the important case that the radiance is described by the
Planck function Bν (W m−2 sr−1 Hz−1), which is also known as the spectral black
body radiance. This special radiation field which is stationary, isotropic and homo-
geneous coexists with matter in perfect thermodynamic equilibrium at temperature
T . The expression

Bνdν = 2hν3

c2
(ehν/kT − 1)−1dν (1.25)
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Fig. 1.15 Planckian black body curves for various temperatures.

represents the energy (unpolarized radiation) emitted by a black unit surface area
per unit time interval within a cone of solid angle �0 = 1 sr vertical to the emitting
surface in the frequency range between ν and ν + dν.

Figure 1.15 depicts four Planck curves as function of the wavelength for the tem-
peratures 200, 250, 300 and 350 K. It is clearly seen that with decreasing temperature
the maxima of the curves are shifted towards larger wavelengths. This phenomenon
is also known as Wien’s displacement law. The Planck curve of a black body with
temperature 6000 K (the Sun) has its maximum around 0.5 µm while for a black
body with T = 300 K (the Earth) the maximum is found at 10 µm. For a further
discussion of Wien’s displacement law see also Problem 1.1.

The constant k = 1.380662 × 10−23 J K−1 appearing in (1.25) is known as the
Boltzmann constant. The corresponding energy density follows from

û = 1

c

∫ ∞

0

∫
4π

Bνd� dν = 4π

c

∫ ∞

0

2hν3

c2
(ehν/kT − 1)−1dν (1.26)

The integral over frequency can be evaluated by substituting the new variable
x = hν/kT and developing the exponential term (ex − 1)−1 into a power series,
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Fig. 1.16 Radiative energy streaming through the infinitesimal surface element
dσ in x-direction.

yielding

û = 8πk4T 4

(hc)3

∫ ∞

0
x3(ex − 1)−1dx = 48π (kT )4

(hc)3

∞∑
n=1

1

n4
(1.27)

Since

∞∑
n=1

1

n4
= π4

90
(1.28)

the final result is

û = 4

c
σ T 4, σ = 2π5k4

15h3c2
= 5.67032 × 10−8 W m−2 K−4 (1.29)

where σ is the Stefan–Boltzmann constant. Equation (1.29) can also be derived
from purely thermodynamic arguments as shown, for example, in THD (2004).

1.5 The net radiative flux density vector

Consider the special case that Ω is located in the (x, z)-plane and that the normal
unit vector n of the surface element dσ points in the x-direction of a Cartesian
coordinate system, that is n = i. According to (1.23) for the spectral differential
radiative energy crossing dσ during dt we find the expression

Enet,x,ν(r,Ω, t)dν = uν(r,Ω, t)dν

dσ dt
= Iν(r,Ω, t) cos θ d� dν

= Iν(r,Ω, t)�x d� dν

(1.30)

where �x = Ω · i = cos θ = sin ϑ is the projection of Ω onto the x-axis, see
Figures 1.16 and 1.17. Integrating this relation over the solid angle and over all
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frequencies yields the radiative energy streaming within unit time through the
surface element in the x-direction

Enet,x (r, t) =
∫ ∞

0

∫
4π

�x Iν(r,Ω, t)d� dν =
∫ ∞

0

∫
4π

�x chν fν(r,Ω, t)d� dν

(1.31)
In the general case �x will be a more complicated expression. If (Enet,x , Enet,y ,

Enet,z) are the three components of the net radiative flux density vector, then Enet

is given by

Enet(r, t)=
∫ ∞

0

∫
4π

ΩIν(r,Ω, t)d� dν = iEnet,x (r, t) + jEnet,y(r, t) + kEnet,z(r, t)

(1.32)

where

Enet,y(r, t) =
∫ ∞

0

∫
4π

�y Iν(r,Ω, t)d� dν

Enet,z(r, t) =
∫ ∞

0

∫
4π

�z Iν(r,Ω, t)d� dν

(1.33)

We will now derive an explicit form of Enet in Cartesian coordinates. From (1.32)
follows the definition of the spectral net radiative flux density vector

Enet,ν(r, t) =
∫

4π

ΩIν(r,Ω, t)d� (1.34)
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Thus the component of Enet,ν(r, t) in the arbitrary direction n is given by

Enet,n,ν(r, t)=Enet,ν(r, t) · n=
∫

4π

Ω · nIν(r,Ω, t)d�=
∫

4π

cos(Ω, n)Iν(r,Ω, t)d�

(1.35)

To find the Cartesian components (�x , �y, �z), of the unit vector Ω = (1, ϑ, ϕ)
we perform the scalar multiplication with the Cartesian unit vectors i, j and k. From
Figure 1.17 we find immediately

Ω · i = �x = cos(Ω, i) = sin ϑ cos ϕ

Ω · j = �y = cos(Ω, j) = sin ϑ sin ϕ

Ω · k = �z = cos(Ω, k) = cos ϑ = µ

(1.36)

Thus, from (1.36) the Cartesian components of Enet,ν(r, t) are finally given as

(a) Enet,x,ν(r, t) =
∫ 2π

0

∫ 1

−1
Iν(r, µ, ϕ, t) cos ϕ(1 − µ2)1/2dµ dϕ

(b) Enet,y,ν(r, t) =
∫ 2π

0

∫ 1

−1
Iν(r, µ, ϕ, t) sin ϕ(1 − µ2)1/2dµ dϕ

(c) Enet,z,ν(r, t) =
∫ 2π

0

∫ 1

−1
Iν(r, µ, ϕ, t)µ dµ dϕ

(1.37)

with (1 − µ2)1/2 = sin ϑ and d� = −dµdϕ.
It is straightforward to show that for an isotropic radiation field Enet,ν = 0. For

example, evaluating in (1.37a) for Iν = const the integral of the x-component yields∫ 2π

0
cos ϕ

∫ 1

−1
(1 − µ2)1/2dµ dϕ =

∫
4π

�x d� = 0 (1.38)

Similarly we obtain for the integrals of the y- and z-component∫
4π

�yd� = 0,
∫

4π

�zd� = 0 (1.39)

1.6 The interaction of radiation with matter

1.6.1 Absorption

If a photon travels through space filled with matter, a certain absorption probability
can be defined. For the mathematical description of this process the absorption
coefficient kabs,ν(r, t) with units (m−1) is introduced. The dimensionless differential

dτabs(r, t) = kabs,ν(r, t) ds (1.40)
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is the so-called differential optical depth for absorption where ds is the geometrical
distance travelled by the photon. Thus the differential dτabs(r, t) is a measure for
the probability that the photon is absorbed along ds so that the photon disappears.
It is important to realize that (1.40) is valid only for isotropic media. In general,
for anisotropic media, the absorption coefficient not only depends on position,
frequency and time but also on the direction Ω. For all practical purposes, the
atmosphere can be considered an isotropic medium.

Sometimes it is preferable to use the mass absorption coefficient κabs,ν(r, t) which
is defined by the relation

kabs,ν(r, t) = ρabs(r, t)κabs,ν(r, t) (1.41)

where ρabs(r, t) is the density of the absorbing medium, and κabs(r, t) has units of
(m2 kg−1 ).

1.6.2 Scattering

In a similar manner the photon may suffer an elastic scattering process after having
travelled a certain distance ds. The occurrence of a scattering process does not
mean that the photon disappears at the location of scattering, instead of that it
changes its flight direction from Ω′ to Ω. Let us denote the differential scattering
coefficient by ksca,ν(r,Ω′ → Ω, t). In analogy to (1.40), the differential optical
depth for scattering is defined as

dτsca(r,Ω′ → Ω, t) = ksca,ν(r,Ω′ → Ω, t) d� ds (1.42)

This expression is a measure of the probability that a photon of frequency ν with
initial direction Ω′, in traveling the distance ds, is scattered into d� having the
new direction Ω. From (1.42) it is clear that ksca,ν(r,Ω′ → Ω, t) is expressed
in units of (m−1 sr−1). It is noteworthy that the differential scattering coefficient
agrees with the scattering function P̃(cos �) which will be introduced in a later
chapter. The notation Ω′ → Ω has been chosen since in general the differential
scattering probability depends explicitly on both directions Ω′ and Ω. However,
for applications involving homogeneous spherical particles (e.g. cloud droplets) it
is obvious that the scattering process depends only on the cosine of the scattering
angle

cos � = Ω′ · Ω (1.43)

This means that scattering is rotationally symmetric about the direction of incidence,
see Figure 1.18. In case of randomly oriented inhomogeneous or non-spherical



1.6 The interaction of radiation with matter 25

 
 

 

Forward scatteringBackward scattering

Incident radiation

´

Ω

Ω

Θ

Fig. 1.18 Illustration of the rotationally symmetric scattering phase function.
P(r,Ω′ → Ω) = const on the circle defined by all points with � = const .

particles (e.g. ice particles or aerosol particles) it is often assumed that the scattering
angle may be defined analogously.

If we integrate the differential scattering coefficient over all possible directions
Ω, we obtain the ordinary scattering coefficient ksca,ν(r, t)

ksca,ν(r, t) =
∫

4π

ksca,ν(r,Ω′ → Ω, t)d� (1.44)

This relation together with (1.42) can be used to define the scattering phase function
or simply phase function Pν(r,Ω′ → Ω, t)

ksca,ν(r,Ω′ → Ω, t) = 1

4π
ksca,ν(r, t)Pν(r,Ω′ → Ω, t) (1.45)

The scattering phase function is a measure of the probability density distribution
for a scattering process from the incident direction Ω′ into the direction Ω. The
normalization of P is guaranteed since integrating (1.45) over the unit sphere,
utilizing (1.44), yields

1

4π

∫
4π

Pν(r,Ω′ → Ω, t)d� = 1 (1.46)

It is instructive to discuss a particularly simple form of scattering, namely an
isotropic scattering process. In this case the phase function is simply given by

Pν(r,Ω′ → Ω, t) = 1 (1.47)

i.e. for each direction there is equal probability of scattering.
The sum of absorption and scattering is called extinction. The extinction coeffi-

cient is defined by

kext,ν(r, t) = kabs,ν(r, t) + ksca,ν(r, t) (1.48)
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Another important optical parameter is the single scattering albedo ω0,ν(r, t)
which is defined as the relative amount of scattering involved in the extinction
process

ω0,ν(r, t) = ksca,ν(r, t)

kext,ν(r, t)
= 1 − kabs,ν(r, t)

kext,ν(r, t)
(1.49)

Of particular importance is the case ω0,ν(r, t) = 1 for which the scattering process
is conservative. In a medium with conservative scattering no absorption of radi-
ation occurs. Later it will be shown that a conservative plane-parallel medium is
characterized by a vertically constant net radiative flux density.

1.6.3 Emission

Emission is a process that generates photons within the medium. In the long-wave
spectral region photons are emitted and absorbed by atmospheric trace gases such
as water vapor, carbon dioxide, ozone, by cloud and aerosol particles, and by the
Earth’s surface. As already mentioned previously, in case of local thermodynamic
equilibrium these emission processes can be described by the Planckian function.

For the mathematical formulation of emission processes we introduce the so-
called emission coefficient jν(r, t) for isotropic radiation sources. This coefficient
defines the number of photons emitted per unit time and unit volume within the
frequency interval (ν, ν + dν). The photons are contained in the solid angle element
dΩ = Ω d�

∂

∂t
Nν(r, t)

∣∣∣
em

= jν(r, t) dV d� dν (1.50)

The emission coefficient is expressed in units of (m−3 s−1 sr−1 Hz−1).

1.7 Problems

1.1: With increasing temperature the maximum of the Planckian black body curve
is shifted to shorter wavelengths. Observing that dν = −cdλ/λ2, express
(1.25) in terms of wavelength.

(a) Differentiate Planck’s law with respect to wavelength and estimate the wave-
length λmax of maximum emission for a fixed temperature T . The resulting
formula is known as Wien’s displacement law.

(b) Find λmax for the solar temperature T = 6000 K and for the terrestrial tempera-
ture T = 300 K.
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1.2: Calculate for the two asymptotic situations

(a) ν 	 1: Rayleigh–Jeans distribution
(b) ν 
 1: Wien distribution

the resulting simplified radiation laws of Planck.
1.3: Integrate Planck’s formula (1.25) over all frequencies and directions to

find the hemispheric flux density Eb = σ T 4. This is known as the Stefan–
Boltzmann law.

1.4: A black horizontal receiving element (radiometer) of unit area is located
directly below the center of a circular cloud at height z having the temperature
Tc. The cloud radius is R. Find an expression for the flux density E incident
on the receiving element in terms of the Stefan–Boltzmann law, z and R.
Assume that the cloud is a black body radiator whose radiance is σ T 4/π .
Ignore any interactions of the radiation with the atmosphere.

(a) Start your analysis using Lambert’s law of photometry.
(b) Rework the problem using equation (1.37c).

1.5: An idealized valley may be considered as the interior part of a spherical
surface of radius a. The valley surface is assumed to radiate as a black body
of temperature T .

(a) Find an expression for the radiation received by a radiometer which is located
at a distance z > a above the lowest part of the valley. Ignore any interaction of
the radiation with the atmosphere.

(b) Repeat the calculation with the radiometer located below the center of curvature,
that is z < a.

Hint: Use Lambert’s law of photometry, see Problem 1.4.
1.6: A spherical emitter of radius a emits isotropically radiation into empty space.

(a) Find the flux density Er = Er (r)er at a distance r ≥ a from the center of the
sphere. er is a unit vector along the radius.

(b) From Er obtain the power φ emitted by the sphere.
(c) Find the energy density û(r).

1.7: For a monochromatic homogeneous plane parallel radiation field (solar radi-
ation S0,ν) find the energy density ûν and the net flux density Enet,ν . Ignore
any interaction of the radiation with the atmosphere.
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The radiative transfer equation

2.1 Eulerian derivation of the radiative transfer equation

In the following section we will derive a budget equation for photons in a medium in
which scattering, absorption and emission processes take place. The photon budget
equation finally results in the so-called radiative transfer equation (RTE) which is
a linear integro-differential equation for the radiance Iν(r,Ω, t). Let us consider a
six-dimensional (6-D) volume element in (x, y, z, ϑ, ϕ, ν)-space with side lengths
(�x, �y, �z, �ϑ, �ϕ, �ν). This volume element is assumed to be fixed in time
t . According to (1.21), at point r the total number of photons Nν is given by

Nν(r,Ω, t) = fν(r,Ω, t)�V ���ν (2.1)

where�V = �x�y�z is the ordinary volume element in space. In order to simplify
the notation, the dependence of different variables on (r,Ω, t) will henceforth be
omitted except where confusion is likely to occur.

The derivation of the photon budget equation requires the knowledge of the local
time rate of change of the number of photons leaving and entering the 6-D volume
element

∂ Nν

∂t
= ∂ fν

∂t
�V ���ν (2.2)

This change consists of the following processes.

∂ Nν

∂t

∣∣∣
exch

: Exchange of photons of the considered volume element with the
exterior surrounding.

∂ Nν

∂t

∣∣∣
abs

: Absorption of photons with frequency ν and direction Ω.

∂ Nν

∂t

∣∣∣
outsc

: Scattering of photons with frequency ν and direction Ω into all
other directions Ω′ (outscattering).

28
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ρv dx dz
ρv + ∂

∂y
(ρv)dy dx dz

dy
dx

d
z

( )

Fig. 2.1 Mass flux entering the left face and leaving the right face of a cube with
volume dx dy dz.

∂ Nν

∂t

∣∣∣
insc

: Scattering of photons with frequency ν and arbitrary direction Ω′

into the desired direction Ω (inscattering).
∂ Nν

∂t

∣∣∣
em

: Emission of photons with frequency ν in direction Ω.

The individual contributions of these processes to the photon budget equation will
now be discussed in detail.

2.1.1 The exchange of photons

The exchange of photons can be treated in analogy to the continuity equation for
the mass in fluid mechanics. We will consider a cube with side lengths (dx, dy, dz).
The velocity of a fluid particle is given by v = ui + vj + wk, and ρ is the mass
density of the medium. The volume dV is assumed to be fixed in space. The local
time rate of change of the mass d M = ρ dx dy dz of the cube is given by adding
all mass fluxes through its surface. Figure 2.1 depicts the mass fluxes entering and
leaving the infinitesimal volume element dx dy dz through the vertical sides with
area dx dz. Thus the net flux in y-direction is given by

Fρ,y = −
(

ρv + ∂

∂y
(ρv)dy

)
dx dz + ρv dx dz = − ∂

∂y
(ρv)dx dy dz (2.3)

In a similar manner we obtain the net fluxes Fρ,x and Fρ,z in the x- and z-direction.
Adding up all three contributions and dividing by dx dy dz yields the well-known
continuity equation

∂ρ

∂t
= −∇·(ρv) (2.4)
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The concept of obtaining the continuity equation for the mass M will now be
applied to the derivation of the photon budget equation. The velocity of a photon
is given by

v = cΩ = c(�x i + �yj + �zk) (2.5)

Analogously to (2.3) the net flux of photons in the y-direction through the 6-D
volume element �V ���ν can be expressed by means of

Fy,ν = − ∂

∂y

(
c�y fν

)
�V ���ν (2.6)

Note that Fy,ν is expressed in units of (s−1). Adding up the contributions of the
three directions yields the time rate of change for the number of photons due to the
exchange with the surroundings

∂ Nν

∂t

∣∣∣
exch

= −
(

∂

∂x
(�x fν) + ∂

∂y
(�y fν) + ∂

∂z
(�z fν)

)
c�V ���ν (2.7)

The exchange term has been derived under the assumption that the medium’s
index of refraction is constant in space and time. This assumption is sufficient
for most atmospheric applications. Otherwise, the photon path will be subject to
refraction leading to photon trajectories which are curved in space.

2.1.2 The absorption of photons

The absorption rate of photons within the 6-D volume element is given by the
product of the photon number Nν and the probability that a photon will be absorbed
during the time interval (t, t + dt). Dividing (1.40) by dt yields

dτabs

dt
= kabs,ν

ds

dt
= kabs,νc (2.8)

with c = ds/dt . Hence, for the total absorption rate of photons we obtain the
expression

∂ Nν

∂t

∣∣∣
abs

= Nν

dτabs

dt
= fνkabs,νc�V ���ν (2.9)

2.1.3 The scattering of photons

Figure 2.2 illustrates the inscattering and outscattering process of photons. For
inscattering the direction of the photons is indicated by solid arrows, outscattering
is denoted by dashed arrows. It will be noticed that for the direction Ω inscattering
represents a gain of photons whereas outscattering results in a reduction of the
number of photons in this particular direction.
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Fig. 2.2 Schematic view of the inscattering (solid arrows) and the outscattering
(dashed arrows) processes.

Analogously to (1.42) we may express the probability that at time t a photon is
scattered from Ω → Ω′ by means of

dτsca(Ω → Ω′) = ksca,ν(Ω → Ω′)d�′ds (2.10)

Dividing this equation by dt and multiplying by the number of photons Nν yields
the time rate of change of photons resulting from the outscattering process Ω → Ω′

Nν

d

dt

[
τsca(Ω → Ω′)

] = Nνksca,ν(Ω → Ω′)d�′c (2.11)

The total loss of photons due to outscattering is obtained by integrating (2.11) over
all directions Ω′

∂ Nν

∂t

∣∣∣
outsc

= Nνc
∫

4π

ksca,ν(Ω → Ω′)d�′

= fν�V ���ν
c

4π

∫
4π

ksca,νPν(Ω → Ω′)d�′
(2.12)

Here, use was made of (1.45) and (2.1). Utilizing the normalization condition for
the phase function

1

4π

∫
4π

Pν(Ω → Ω′)d�′ = 1 (2.13)
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finally gives

∂ Nν

∂t

∣∣∣
outsc

= fνksca,νc�V ���ν (2.14)

In a similar manner we may find the gain of photons for the direction Ω due to
inscattering from all directions Ω′. The number of photons moving in direction Ω′,
before inscattering takes place, is fν(r,Ω′, t) �V d�′�ν. In analogy to (2.11) we
have

Nν

d

dt

[
τsca(Ω′ → Ω)

] = fν(Ω′) �V d�′�νksca,ν(Ω′ → Ω)�� c (2.15)

Integrating over all directions Ω′, using equation (1.45), we find for the inscattering
rate

∂ Nν

∂t

∣∣∣
insc

= ksca,ν�V ���ν
c

4π

∫
4π

Pν(Ω′ → Ω) fν(Ω′)d�′ (2.16)

2.1.4 The emission rate

Finally, according to (1.50) the time rate of change of photons due to emission is
given by

∂ Nν

∂t

∣∣∣
em

= jν �V �� �ν (2.17)

Now we have derived mathematical expressions for the five contributions for the
photon budget equation as listed at the beginning of this section.

2.1.5 The budget equation of the photon distribution function

The budget equation for the photon distribution function fν is obtained by adding
up the individual contributions. Considering absorption and outscattering processes
as negative contributions, we may write

∂ Nν

∂t
= ∂ Nν

∂t

∣∣∣
exch

− ∂ Nν

∂t

∣∣∣
abs

− ∂ Nν

∂t

∣∣∣
outsc

+ ∂ Nν

∂t

∣∣∣
insc

+ ∂ Nν

∂t

∣∣∣
em

(2.18)

Combination of (2.7), (2.9), (2.14), (2.16), and (2.17) gives

∂ fν
∂t

= −c

(
∂

∂x
(�x fν) + ∂

∂y
(�y fν) + ∂

∂z
(�z fν)

)
− c fνkabs,ν − c fνksca,ν

+ c

4π
ksca,ν

∫
4π

Pν(Ω′ → Ω) fν(Ω′)d�′ + jν (2.19)

where the common factor �V �� �ν has been cancelled out.
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Obviously, the unit vector Ω is divergence-free, that is

∇ · Ω = ∂�x

∂x
+ ∂�y

∂y
+ ∂�z

∂z
= 0 (2.20)

Therefore, the streaming term on the right-hand side of (2.19) may further be
simplified yielding the final form of the photon budget equation for a nonstationary
situation

∂ fν
∂t

= −cΩ · ∇ fν − c fνkext,ν + c

4π
ksca,ν

∫
4π

Pν(Ω′ → Ω) fν(Ω′)d�′ + jν

(2.21)

Here, the extinction coefficient kext,ν as defined in (1.48) has been introduced.
Since we consider the spatial change of the photon distribution function along

ds in Ω-direction, ∇ fν may be expressed in terms of

∇ fν = Ω
d fν
ds

(2.22)

so that

Ω · ∇ fν = d fν
ds

= �x
∂ fν
∂x

+ �y
∂ fν
∂y

+ �z
∂ fν
∂z

(2.23)

According to (1.36) the Cartesian components of Ω are given by

�x = Ω · i = sin ϑ cos ϕ, �y= Ω · j = sin ϑ sin ϕ, �z = Ω · k = cos ϑ

(2.24)

By introducing into (2.21) the radiance Iν as defined in (1.22), one obtains the
general nonstationary form of the radiative transfer equation

1

c

∂ Iν
∂t

+ Ω · ∇ Iν = − kext,ν Iν+ksca,ν

4π

∫
4π

Pν(Ω′ → Ω)Iν(Ω′)d�′ + J e
ν (2.25)

Here, the source function for true emission

J e
ν (r, t) = hν jν(r, t) (2.26)

has been introduced. This function has units of (W m−3 sr−1 Hz−1). Its relation to
the Planck function will be described later.

For most atmospheric applications the term 1/c(∂ I/∂t) in the RTE can be
neglected in comparison to the remaining terms since the propagation speed c
is very high. Thus (2.25) simplifies to

Ω · ∇ Iν = −kext,ν Iν + ksca,ν

4π

∫
4π

Pν(Ω′ → Ω)Iν(Ω′)d�′ + J e
ν (2.27)
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In the following we will assume that scattering takes place on spherical particles.
Since according to (1.43) in this case the scattering process Ω′ → Ω depends on the
cosine of the scattering angle cos � = Ω′ · Ω only, henceforth the term Ω′ → Ω
will be replaced by Ω′ · Ω or by cos �. Utilizing in (2.27) the definition of the
single scattering albedo as given in (1.49), we obtain the standard form of the RTE
for a three-dimensional medium

− 1

kext,ν
Ω · ∇ Iν = Iν − ω0,ν

4π

∫
4π

Pν(Ω′ · Ω)Iν(Ω′)d�′ − 1

kext,ν
J e
ν (2.28)

The derivation of the RTE is based on arguments of radiation hydrodynamics as
presented by Pomraning (1973) where many additional and interesting details may
be found. The RTE can also be derived on the basis of geometric reasoning in the
manner described by Chandrasekhar (1960).

In passing we would like to remark that the RTE is part of the atmospheric
predictive system. With changing composition of the atmospheric constituents the
radiation parameters are also changing so that radiance continues to be a function
of time.

2.2 The direct–diffuse splitting of the radiance field

The total solar radiation field is defined as the sum of the direct solar beam and
the diffuse solar radiation. Usually one writes the RTE (2.28) in a different form
by splitting Iν(r,Ω) into the unscattered direct light Sν(r) and the diffuse light
Id,ν(r,Ω)

Iν = Id,ν + Sνδ(Ω − Ω0) (2.29)

where δ is the Dirac δ-function and Ω0 is the direction of the solar radiation. While
Id,ν is expressed in (W m−2 sr−1 Hz−1), the units of the parallel solar radiation
are (W m−2 Hz−1). In order to have a consistent set of units, the Dirac δ-function
δ(Ω − Ω0) must refer to the unit solid angle, i.e. (sr−1).

According to (2.23) we may write

Ω · ∇ Iν = d Iν
ds

= d Id,ν

ds
+ d Sν

ds
δ(Ω − Ω0) (2.30)

The attenuation of the direct Sun beam Sν along its way from the top of the atmo-
sphere (s = 0) to the location s at r follows from Beer’s law

d Sν

ds
= −kext,ν(s)Sν , Ω = Ω0 (2.31)
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Using the boundary condition Sν(s = 0) = S0,ν , where S0,ν is the solar radiation at
the top of the atmosphere, the solution of (2.31) is

Sν(s) = S0,ν exp

(
−
∫ s

0
kext,ν(s ′)ds ′

)
, Ω = Ω0 (2.32)

S0,ν is also called the solar constant or the extraterrestrial solar flux. The expo-
nential function occurring in (2.32) is also known as the transmission function
since it determines the fraction of radiation which is transmitted through the path
s. Obviously, the transmission function is bounded by 0 (no transmission) and 1
(total transmission).

The integral expression on the right-hand side of (2.28) contains the contributions
due to multiple scattering processes. Introducing into this term the definition (2.29)
yields

ksca,ν

4π

∫
4π

Pν(Ω′ · Ω)Iν(Ω′)d�′ = ksca,ν

4π

∫
4π

Pν(Ω′ · Ω)Id,ν(Ω′)d�′

+ ksca,ν

4π

∫
4π

Pν(Ω′ · Ω)Sνδ(Ω′ − Ω0)d�′

(2.33)

The last expression in this equation represents the direct solar radiation scattered
from Ω0 into the direction Ω. Hence, we may also write∫

4π

Pν(Ω′ · Ω)Sνδ(Ω′ − Ω0)d�′ = Pν(Ω0 · Ω)Sν (2.34)

We are now ready to obtain the RTE for the diffuse radiation. Substituting (2.29),
(2.31), and (2.33) together with (2.34) into (2.28) gives

Ω · ∇ Id,ν − kext,ν Sνδ(Ω − Ω0) = J e
ν −kext,ν Id,ν − kext,ν Sνδ(Ω − Ω0)

+ ksca,ν

4π

∫
4π

Pν(Ω′ · Ω)Id,ν(Ω′)d�′

+ ksca,ν

4π
Pν(Ω0 · Ω)Sν (2.35)

It can been seen that the two terms involving the direct solar light cancel. Thus,
after introducing the direct–diffuse splitting (2.29), the final version of the RTE for
the stationary diffuse radiation field of a three-dimensional medium reads

Ω · ∇ Id,ν = −kext,ν Id,ν + ksca,ν

4π

∫
4π

Pν(Ω′ · Ω)Id,ν(Ω′)d�′ + ksca,ν

4π
Pν(Ω0 · Ω)Sν + J e

ν

(2.36)

The third term on the right-hand side describes the generation of diffuse light from
the unscattered part of the direct sunlight.
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2.3 The radiatively induced temperature change

According to (1.34) the net flux density vector is obtained by taking the first moment
of the radiance with respect to Ω

Enet,ν =
∫

4π

ΩIνd� (2.37)

The total net flux density vector follows from an integration of this equation over
the entire electromagnetic spectrum

Enet =
∫ ∞

0
Enet,νdν =

∫ ∞

0

∫
4π

ΩIνd� dν (2.38)

Since ∇ · Ω = 0 the RTE for the total (diffuse plus direct) radiation field (2.28) can
be written as

∇·(ΩIν) + kext,ν Iν = ksca,ν

4π

∫
4π

Pν(Ω′ · Ω)Iν(Ω′)d�′ + J e
ν (2.39)

Employing the integral operator
∫

4π
d� . . . to the above equation we find in view

of (2.37)

∇·Enet,ν + kext,ν

∫
4π

Iνd� = ksca,ν

4π

∫
4π

∫
4π

Pν(Ω′ · Ω)Iν(Ω′)d� d�′ + 4π J e
ν

(2.40)
since the source function Jν was assumed to be isotropic. Applying the normaliza-
tion condition for the scattering phase function

1

4π

∫
4π

Pν(Ω′ · Ω)d� = 1 (2.41)

to the integral on the right-hand side, we obtain for the divergence of the net flux
density vector

∇·Enet,ν = ksca,ν

∫
4π

Iνd� − kext,ν

∫
4π

Iνd� + 4π J e
ν

= −kabs,ν

∫
4π

Iνd� + 4π J e
ν

(2.42)

If the medium does not contain any true interior sources (J e
ν = 0), then the vector

of the net flux density is given by

∇·Enet,ν = −kabs,ν

∫
4π

Iνd� < 0 (2.43)

Whenever ∇ · Enet,ν = 0 the medium is said to be in radiative equilibrium for the
frequency ν. The concept of radiative equilibrium will be discussed in more detail
in a later chapter.
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In the absence of frictional effects the first law of thermodynamics can be written
as

de

dt
+ p

dv

dt
= dh

dt
− 1

ρ

dp

dt
= − 1

ρ
∇ · (Jq + Enet) (2.44)

see e.g. Chapter 3 of THD (2004). Here, v = 1/ρ is the specific volume of the air
with density ρ. The quantities e, h, p and Jq stand for the specific internal energy,
the specific enthalpy, the total pressure, and the heat flux, respectively. Here we
are interested only in the contribution of radiative processes to the atmospheric
temperature change. For an isobaric process (dp = 0) enthalpy and temperature
changes are related by

dh

dt
= cp

dT

dt
= − 1

ρ
∇ · Enet (2.45)

where cp is the specific heat at constant pressure. The local time rate of change of
the temperature caused by radiative processes alone is then given by

∂T

∂t

∣∣∣
rad,ν

= − 1

ρcp
∇ · Enet,ν = − 1

ρcp

(
−kabs,ν

∫
4π

Iνd� + 4π J e
ν

)
(2.46)

From this equation the following conclusions are drawn.

(i) The first term on the right-hand side describes the absorption of photons. Since this
term is never negative it causes local warming.

(ii) The second term on the right-hand side describing the emission of photons is never
positive, thus resulting in local cooling.

(iii) In the absence of absorption and emission no radiatively induced temperature changes
take place.

2.4 The radiative transfer equation for a horizontally
homogeneous atmosphere

The simplest geometry for a scattering and absorbing medium is the so-called plane–
parallel approximation, where in the horizontal direction the medium stretches
to infinity. In such a homogeneous plane–parallel slab all optical properties are
independent of the horizontal position. Moreover, the incident radiation, including
the parallel solar beam, is assumed to be independent of the horizontal coordinates
along the upper and lower boundaries of the atmosphere. In many cases the plane–
parallel assumption represents a good approximation to a planetary atmosphere.
It is important to note that the plane–parallel approximation to the RTE is best
whenever the vertical variations of all radiative quantities dominate over the hori-
zontal variability which is often the case. Two specific examples for which the
plane–parallel theory is inadequate are: (i) radiative transfer in finite clouds located
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S0

s = 0

s Reference level

ϑ
ϑ

ϑ0
ϑ

x

y

zµ = 1

µ = −1

µ = 0

µ > 0

µ<0

z

d
z

ds

ϕ0

Fig. 2.3 Illustration of the plane–parallel geometry. Upwelling radiation: µ > 0.
Downwelling radiation: µ < 0. The zenith (µ = 1), nadir (µ = −1), and horizon-
tal (µ = 0) directions are indicated. Solar radiation is incident from (ϑ0, ϕ0).

over a heterogeneously reflecting ground; and (ii) radiative transfer in a spherical
atmosphere for solar positions near or below the horizon.

In the following we derive the RTE for a plane–parallel medium. For ease of
notation the subscript ν will henceforth be omitted from all radiative quantities.
We start with the RTE for the diffuse radiation in the form (2.36) (omitting for
simplicity the subscript d) and using Ω · ∇ I = d I/ds,

1

kext

d I (s)

ds
= −I (s) + ω0

4π

∫
4π

P(Ω′ · Ω)I (s,Ω′)d�′

+ ω0

4π
P(Ω·Ω0)S(s) + 1

kext
J e(s) (2.47)

For a black body the emission source function is given by Kirchhoff’s law

J e(s) = kabs B(s) with
kabs

kext
= 1 − ω0 (2.48)

where B(s) = B(T (s)) is the Planck function which depends on frequency and
local temperature. The form of (2.48) will be motivated in the Appendix to this
chapter.

In a plane–parallel medium the only spatial variable is the altitude z. The direction
of the radiation is defined by the angle ϑ with respect to the z-axis and by the
azimuth angle ϕ counted from an arbitrary origin. As illustrated in Figure 2.3, the
path element ds is related to dz by

ds = dz

µ
with µ = cos ϑ (2.49)
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From the figure it is also seen that for upward directed radiance µ>0 while for
downward directed radiance µ < 0. At an arbitrary reference level the horizontal
direction is characterized by µ = 0. Radiation propagating in the upward and down-
ward vertical direction is specified by µ = 1 and µ = −1, respectively. However,
in order to simplify the notation, for the downward directed radiance with ϑ > 90◦

the cosine of the zenith angle will henceforth be denoted by −µ so that for arbitrary
directions of the radiance µ is positive definite.

The direct solar radiation is expressed by

S(s) = S0 exp

(
−
∫ s

0
kext(s

′)ds ′
)

= S0 exp

(
− 1

µ0

∫ ∞

z
kext(z

′)dz′
)

(2.50)

where according to (2.49) and due to the fact that θ0 > 90◦, the path increment
ds ′ has been replaced by −dz′/µ0. The integration of the direct beam starts at
the upper boundary s = 0 of the medium and proceeds along a straight path of
length s.

The optical depth τ is defined as the integral of the extinction coefficient over
height along a path perpendicular to the horizontal plane, i.e.

τ =
∫ ∞

z
kext(z

′)dz′ or dτ = −kextdz (2.51)

Since according to (2.49) and (2.51) kextds = kextdz/µ = −dτ/µ we obtain for
the solar radiation

S(τ ) = S0 exp

(
− τ

µ0

)
with µ0 > 0 (2.52)

With these results one finds for the plane–parallel approximation of the RTE the
integro-differential equation

µ
d

dτ
I (τ, µ, ϕ) = I (τ, µ, ϕ) − ω0

4π

∫ 2π

0

∫ 1

−1
P(cos �)I (τ, µ′, ϕ′)dµ′dϕ′

− ω0

4π
P(cos �0)S0 exp

(
− τ

µ0

)
− (1 − ω0)B(τ )

(2.53)

We repeat that the cosine of the scattering angle is given by cos � = Ω′ · Ω, which
is a function of the four angles ϑ ′, ϕ′, ϑ, ϕ. An expression for cos � will be derived
later.
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The scattering phase function P(cos �) is assumed to be rotationally symmetric
along the direction of the incident light, an assumption that is exact for spherical
scattering particles. The scattering of light by homogeneous spheres is rigorously
described by the so-called Mie theory which will be thoroughly discussed in a
later chapter. The scattering properties of a single particle are solely a function of
two physical parameters; the complex index of refraction N = n + iκ ,1 and the
so-called Mie size parameter

x = 2πr

λ
(2.54)

where r is the radius of the scattering sphere and λ is the wavelength of the incident
electromagnetic wave. The schematic illustration of the rotationally symmetric form
of P(cos �) shown in Figure 1.18 indicates a strong forward peak of the scattering
phase function. This is typical of cloud droplets and spherical aerosol particles when
they are illuminated by solar radiation. Having specified the size parameter and the
index of refraction, the Mie theory provides a table of numbers of P versus �.

In order to give a mathematical description of P , the scattering phase function
will be expanded as an infinite series of Legendre polynomials Pl(cos �)

P(cos �) =
∞∑

l=0

pl Pl(cos �) (2.55)

For practical purposes the phase function will be truncated after a finite number of
terms.

The Legendre polynomials for argument x , with −1 ≤ x ≤ 1, are defined by

Pl(x) = 1

2l l!

dl

dxl

(
x2 − 1

)l (2.56)

It will be readily seen that the first three polynomials are given by

P0(x) = 1, P1(x) = x , P2(x) = 3

2
x2 − 1

2
(2.57)

The Legendre polynomials are a special case of the more general associated
Legendre polynomials Pm

l (x) as defined by

Pm
l (x) = (1 − x2)m/2

2l l!

dl+m

dxl+m
(x2 − 1)l = (1 − x2)m/2 dm

dxm
Pl(x) (2.58)

1 n and κ are, respectively, the real and the imaginary part of the index of refraction.
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They have the following properties

(a) Pm
l (x) = 0, m > l, Pm=0

l (x) = Pl(x), Pm
l (−x) = (−1)l+m Pm

l (x)

(b)
∫ 1

−1
Pm

n (x)Pm
l (x)dx = 2

2l + 1

(l + m)!

(l − m)!
δnl (2.59)

Equation (2.59b) expresses the orthogonality relation of the associated Legendre
polynomials on the interval [−1, 1].

In order to obtain an analytical expression for the phase function P we need to
evaluate the expansion coefficients pl occurring in (2.55). This is done by multi-
plying both sides of (2.55) by Pn(cos �) and then integrating over the unit sphere

1

4π

∫
4π

P(cos �)Pn(cos �)d� = 1

4π

∫
4π

∞∑
l=0

pl Pl(cos �)Pn(cos �)d� (2.60)

In this equation the integration
∫

4π
. . . d� may be replaced by

∫ 2π

0 dϕ∫ 1
−1 . . . d cos �. Application of the orthogonality relations for Pl , which are

given by (2.59b) if we set m = 0, finally yields

pl = 2l + 1

2

∫ 1

−1
Pl(cos �)P(cos �)d cos � (2.61)

In addition to specifying P with the help of the Mie theory, mathematical models
or experimentally determined values of the phase function may be employed. Due
to the normalization of P , i.e.

1

4π

∫
4π

P(cos �)d� = 1

4π

∫ 2π

0

∫ 1

−1
P(cos �)d cos � dϕ

= 1

2

∫ 1

−1
P(cos �)d cos � = 1

(2.62)

the first expansion coefficient p0 is always given by

p0 = 1

2

∫ 1

−1
P(cos �)d cos � = 1 (2.63)

Thus the coefficient p0 expresses conservation of energy in case of pure scattering.
In the following we require an explicit expression for the cosine of the scattering

angle �. From Figure 1.16 and equation (1.36) one easily obtains for Ω′ · Ω =
cos � the expression

cos � = (i cos ϕ′ sin ϑ ′ + j sin ϕ′ sin ϑ ′ + k cos ϑ ′)

· (i cos ϕ sin ϑ + j sin ϕ sin ϑ + k cos ϑ)
(2.64)
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With µ = cos ϑ , µ′ = cos ϑ ′ we find

cos � = µµ′ + (1 − µ2)1/2(1 − µ′2)1/2 cos(ϕ − ϕ′) (2.65)

This relation allows us to express the scattering angle with respect to the angles
ϑ ′, ϕ′ and ϑ, ϕ. From (2.53) it may be seen that the angles ϑ, ϕ are fixed while
ϑ ′, ϕ′ vary over the unit sphere.

To continue the mathematical development we also need to state the addition
theorem for the associated Legendre polynomials which is given by

Pn(cos �)= Pn(µ)Pn(µ′) + 2
n∑

m=1

(n − m)!

(n + m)!
Pm

n (µ)Pm
n (µ′) cos m(ϕ − ϕ′) (2.66)

(cf. Jackson, 1975). This theorem will now be used to separate the angles of the
scattering phase function. Substituting (2.66) into (2.55) gives

P(cos �) =
∞∑

l=0

pl

(
Pl(µ)Pl(µ

′) + 2
l∑

m=1

(l − m)!

(l + m)!
Pm

l (µ)Pm
l (µ′) cos m(ϕ − ϕ′)

)

=
∞∑

l=0

l∑
m=0

(2 − δ0m)pm
l Pm

l (µ)Pm
l (µ′) cos m(ϕ − ϕ′) (2.67)

with pm
l = pl

(l − m)!

(l + m)!

Since Pm
l (x) = 0 for m > l, P(cos �) can be reformulated as

P(cos �) =
∞∑

l=0

∞∑
m=0

(2 − δ0m)pm
l Pm

l (µ)Pm
l (µ′) cos m(ϕ − ϕ′)

=
∞∑

m=0

(2 − δ0m)
∞∑

l=m

pm
l Pm

l (µ)Pm
l (µ′) cos m(ϕ − ϕ′)

= P(µ, ϕ, µ′, ϕ′)

(2.68)

It can now be seen that in the scattering phase function the (µ, µ′)-dependence has
been completely separated from the (ϕ, ϕ′)-dependence.

In order to remove the azimuthal dependence of the radiance field we assume
that the radiance can be expressed by means of a Fourier expansion for an even
function of the azimuth angle ϕ

I (τ, µ, ϕ) =
∞∑

m=0

(2 − δ0m)I m(τ, µ) cos m(ϕ − ϕ0) (2.69)



2.4 The RTE for a horizontally homogeneous atmosphere 43

where ϕ0 is the azimuth angle of the direct solar beam. It is customary to orient the
Cartesian (x, y, z)-coordinate system in such a way that ϕ0 = 0, see Figure 2.3, so
that

I (τ, µ, ϕ) =
∞∑

m=0

(2 − δ0m)I m(τ, µ) cos mϕ (2.70)

The expansion (2.70) may be used whenever the phase function is expressed as a
series of Legendre polynomials.

Substituting (2.68) and (2.70) into the RTE (2.53) yields

µ

∞∑
m=0

(2 − δ0m)
d

dτ
I m(τ, µ) cos mϕ

=
∞∑

m=0

(2 − δ0m)I m(τ, µ) cos mϕ

− ω0

4π
S0 exp

(
− τ

µ0

) ∞∑
m=0

(2 − δ0m)
∞∑

l=m

pm
l Pm

l (µ)Pm
l (−µ0) cos mϕ

− ω0

4π

∫ 2π

0

∫ 1

−1

( ∞∑
m=0

(2 − δ0m)
∞∑

l=m

pm
l Pm

l (µ)Pm
l (µ′) cos m(ϕ − ϕ′)

×
∞∑

i=0

(2 − δ0i )I i (τ, µ′) cos iϕ′
)

dµ′dϕ′ − (1 − ω0)
∞∑

m=0

δ0m B(τ )

(2.71)

The above equation can be simplified by employing the orthogonality relations of
the trigonometric functions∫ 2π

0
cos m(ϕ − ϕ′) cos lϕ dϕ = (1 + δ0l)δlmπ cos lϕ′ (2.72)

An expression for I m(τ, µ) can be isolated from (2.71) by carrying out the following
two steps: (i) Multiply (2.71) by cos kϕ; (ii) Carry out the operation

∫ 2π

0 . . . dϕ.
As a consequence, the following relations are needed∫ 2π

0
cos mϕ cos kϕ dϕ = (1 + δ0k)δmkπ∫ 2π

0
cos kϕ dϕ = (1 + δ0k)δ0kπ∫ 2π

0
cos m(ϕ − ϕ′) cos kϕ dϕ = (1 + δ0k)δmkπ cos kϕ′

(2.73)
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From (2.71) it is seen that for the multiple scattering term an integration over ϕ′

remains to be done for which we obtain the result∫ 2π

0
cos iϕ′ cos kϕ′ dϕ′ = (1 + δ0i )δikπ (2.74)

Using the above intermediate steps we find from (2.71)

µ

∞∑
m=0

(2 − δ0m)
d

dτ
I m(τ, µ)(1 + δ0k)δmkπ

=
∞∑

m=0

(2 − δ0m)(1 + δ0k)δmkπ I m(τ, µ)

− ω0

4π
S0 exp

(
− τ

µ0

) ∞∑
m=0

(2 − δ0m)
∞∑

l=m

pm
l Pm

l (µ)Pm
l (−µ0)(1 + δ0k)δmkπ

− ω0

4π

∫ 1

−1

( ∞∑
m=0

(2 − δ0m)
∞∑

l=m

pm
l Pm

l (µ)Pm
l (µ′)(1 + δ0k)δmkπ

×
∞∑

i=0

(2 − δ0i )I i (τ, µ′)(1 + δ0i )δikπ

)
dµ′− (1 − ω0)

∞∑
m=0

δ0m B(τ )(1 + δ0k)δ0kπ

(2.75)

We recognize immediately that, with the exception of m = k, all terms vanish.
Therefore, after separation of the azimuthal dependence, for the m-th Fourier mode
of the radiance the RTE is given by

(a) µ
d

dτ
I m(τ, µ) = I m(τ, µ) − ω0

2

∫ 1

−1

∞∑
l=m

pm
l Pm

l (µ)Pm
l (µ′)I m(τ, µ′)dµ′

− ω0

4π
S0 exp

(
− τ

µ0

) ∞∑
l=m

pm
l Pm

l (µ)Pm
l (−µ0) − (1 − ω0)B(τ )δ0m

(b) µ
d

dτ
I m(τ, µ) = I m(τ, µ) − J (τ, µ)

(2.76)

(2.76b) is the standard form of the RTE for plane–parallel atmospheres. The source
function J (τ, µ) summarizes the terms describing multiple scattering, primary scat-
tering of solar radiation and thermal emissions.

For the special case m = 0 the same result is obtained by performing an azimuthal
average of (2.53). Consider the averaging process for each individual term separ-
ately.
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(1) Averaging the intensity I (τ, µ, ϕ) as defined by (2.70) yields

1

2π

∫ 2π

0
I (τ, µ, ϕ)dϕ = 1

2π

∞∑
m=0

(2 − δ0m)
∫ 2π

0
I m(τ, µ) cos mϕ dϕ

= I m=0(τ, µ) = I (τ, µ)

(2.77)

Only m = 0 contributes to the azimuthally averaged radiation field since the integral
of the cosine function over a complete cycle vanishes.

(2) Since the Planck function is isotropic the thermal emission term retains its form.
(3) Analogously to (1) the primary scattering term can be averaged according to the expan-

sion (2.68)

1

2π

∫ 2π

0
P(cos �0)dϕ =

∞∑
l=0

pl Pl(µ)Pl(−µ0) = P(µ, −µ0) (2.78)

(4) For the multiple scattering term we proceed as in (2.77) and (2.78) obtaining

ω0

8π2

∫ 2π

0

∫ 1

−1
I (τ, µ′, ϕ′)

∫ 2π

0
P(cos �)dϕ dµ′ dϕ′

= ω0

4π

∫ 2π

0

∫ 1

−1
I (τ, µ′, ϕ′)P(µ, µ′)dµ′ dϕ′

= ω0

2

∫ 1

−1
I (τ, µ′)P(µ, µ′)dµ′

(2.79)

The azimuthally integrated form of the phase function P(µ, µ′) is given by

P(µ, µ′) = 1

2π

∫ 2π

0
P(cos �)dϕ

= 1

2π

∫ 2π

0
P(µ, ϕ, µ′, ϕ′)dϕ =

∞∑
l=0

pl Pl(µ)Pl(µ
′) (2.80)

Application of steps (1)–(4) results in the azimuthally integrated form of the RTE

µ
d

dτ
I (τ, µ) = I (τ, µ) − ω0

2

∫ 1

−1
P(µ, µ′)I (τ, µ′)dµ′

− ω0

4π
S0 exp

(
− τ

µ0

)
P(µ, −µ0) − (1 − ω0)B(τ )

(2.81)

Comparison of (2.81) with (2.76) reveals that for m = 0 both equations are
identical.

The separation of the ϕ-dependence of the radiance field results in an infinite
system of first-order ordinary differential equations for the Fourier modes I m(τ, µ).
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It is convenient to introduce into (2.76) the following abbreviations

(a) Rm(µ, µ′) =
∞∑

l=m

pm
l Pm

l (µ)Pm
l (µ′)

(b) J m(τ, µ) = ω0

2

∫ 1

−1
Rm(µ, µ′)I m(τ, µ′)dµ′ (2.82)

+ ω0

4π
S0 exp

(
− τ

µ0

)
Rm(µ, −µ0) + (1 − ω0)B(τ )δ0m

With these definitions the RTE reads in short-hand notation

µ
d

dτ
I m(τ, µ) = I m(τ, µ) − J m(τ, µ), m = 0, 1, . . . , � (2.83)

For practical applications the infinite series (2.70) must be truncated after a finite
number of terms, �, as indicated above.

2.5 Splitting of the radiance field into upwelling and
downwelling radiation

It is common practice to distinguish between the upwelling (µ > 0) and down-
welling (µ < 0) radiation, see Figure 2.3. For the radiance field I m and the source
term J m the following quantities are introduced2

I m
+ (τ, µ) = I m(τ, µ > 0), I m

− (τ, µ) = I m(τ, µ < 0)

J m
+ (τ, µ) = J m(τ, µ > 0), J m

− (τ, µ) = J m(τ, µ < 0)
(2.84)

Now the integral
∫ 1
−1 . . . dµ′ in (2.82b) will be split into the two parts

∫ 0
−1 . . . dµ′

and
∫ 1

0 . . . dµ′∫ 1

−1
Rm(µ, µ′)I m(τ, µ′)dµ′ =

∫ 0

−1
Rm(µ, µ′)I m(τ, µ′)dµ′+

∫ 1

0
Rm(µ, µ′)I m(τ, µ′)dµ′

=
∫ 1

0
Rm(µ, −µ′)I m(τ, −µ′)dµ′+

∫ 1

0
Rm(µ, µ′)I m(τ, µ′)dµ′

=
∫ 1

0

[
Rm(µ, −µ′)I m

− (τ, µ′) + Rm(µ, µ′)I m
+ (τ, µ′)

]
dµ′

(2.85)

With the above conventionµ′ andµ are always positive quantities. As a consequence
of this, the system (2.83) can be treated as two separate differential equations, one
governing the upwelling part and the other one the downwelling part of the radiation

2 Some authors define the zenith angle ϑ in the opposite way, that is µ > 0 for downwelling radiation and µ < 0
for upwelling radiation.
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field

µ
d

dτ
I m
+ (τ, µ) = I m

+ (τ, µ) − J m
+ (τ, µ)

µ
d

dτ
I m
− (τ, µ) = −I m

− (τ, µ) + J m
− (τ, µ)

m = 0, 1, . . . , �, µ > 0

(2.86)

In a similar manner the source terms of (2.82b) can be split to give

(a) J m
+ (τ, µ) = ω0

2

∫ 1

0

[
I m
+ (τ, µ′)Rm(µ, µ′) + I m

− (τ, µ′)Rm(µ, −µ′)
]

dµ′

+ ω0

4π
S0 exp

(
− τ

µ0

)
Rm(µ, −µ0) + (1 − ω0)B(τ )δ0m

(b) J m
− (τ, µ) = ω0

2

∫ 1

0

[
I m
+ (τ, µ′)Rm(−µ, µ′) + I m

− (τ, µ′)Rm(−µ, −µ′)
]

dµ′

+ ω0

4π
S0 exp

(
− τ

µ0

)
Rm(−µ, −µ0) + (1 − ω0)B(τ )δ0m

(2.87)

with µ > 0 and µ′ > 0.
The above expressions demonstrate that (2.86) is a system of 2(� + 1) coupled

integro-differential equations. The source terms J m
+ and J m

− contain integrals over
µ′ which may be approximated by means of quadrature formulas. Best suited for the
interval [−1, 1] are the Gauss–Legendre quadrature formulas, which are obtained
by neglecting in the expression∫ 1

−1
f (µ)dµ =

r∑
i=1

wi f (µi ) + Rr

with Rr = 22r+1(r !)4

(2r + 1) [(2r )!]3 f (2r )(ξ ), − 1 < ξ < 1

(2.88)

the error term Rr (see, e.g. Abramowitz and Stegun, 1972). The wi are the weights
and the µi are the zeros or roots of the Legendre polynomials Pr (µ). The weights
are given by

wi = 2

(1 − µ2
i )
[
P ′

r (µi )
]2 > 0,

r∑
i=1

wi = 2 (2.89)

where P ′
r is the derivative of Pr . The last expression follows immediately from

(2.88) by setting there f (µ) = 1.
It is convenient to divide the interval [−1, 1] according to the zeros of even-

order Legendre polynomials, which is achieved by choosing r = 2s. For such even
divisions we have 2s different weights and zeros. By denoting them as (wk, µk,
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k = −s, . . . , −1, 1, . . . , s) the following relations hold

wi = w−i , µi = −µ−i , i = 1, . . . , s (2.90)

Now we split the integral of (2.88) into two parts yielding∫ 1

−1
f (µ)dµ =

∫ 0

−1
f (µ)dµ +

∫ 1

0
f (µ)dµ =

∫ 1

0
f (−µ)dµ +

∫ 1

0
f (µ)dµ

(2.91)

For the sum on the right-hand side of (2.88) we may write
s∑

i=−s

′
wi f (µi ) =

−1∑
i=−s

wi f (µi ) +
s∑

i=1

wi f (µi )

=
s∑

i=1

wi f (−µi ) +
s∑

i=1

wi f (µi ) (2.92)

where use was made of (2.90). Hence, the notation
∑′ is equivalent to the summa-

tion from i = −s to i = s thereby omitting the term i = 0. By comparing (2.91) with
(2.92) we obtain the Gauss–Legendre quadrature formulas of order 2s in the form

∫ 1

0
f (−µ)dµ ≈

s∑
i=1

wi f (−µi ),
∫ 1

0
f (µ)dµ ≈

s∑
i=1

wi f (µi ) (2.93)

For ease of notation (2.93) will henceforth be called the Gaussian quadrature
formulas. It is important to note that the µi , i = 1, . . . , s are the positive zeros
of the Legendre polynomials P2s(µ). Furthermore, from (2.89) and (2.90) we see
that the weights fulfill the requirement

s∑
i=1

wi = 1 (2.94)

We conclude that a particular Gaussian quadrature formula is defined by the set
of quantities (wi , µi , i = 1, . . . , s). The weights and the nodes may be found in
tabulated form (see e.g. Abramowitz and Stegun, 1972) or may be found using effi-
cient numerical algorithms (Press et al., 1992). Thus the nodes define the directions
of the radiances for which the system of equations (2.86) will be discretized.

In order to express the directional dependence of the radiance it is convenient
to introduce a compact matrix–vector notation. One defines two vectors for the
upwelling and downwelling radiation field by means of

Im
+(τ ) =




I m
+ (τ, µ1)

...
I m
+ (τ, µs)


 , Im

−(τ ) =




I m
− (τ, µ1)

...
I m
− (τ, µs)


 (2.95)
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In a similar manner vectors for the sources of the up- and downwelling primary
scattered solar radiation and the thermal emission will be defined

Jm
+,1(τ ) = ω0

4π
S0 exp

(
− τ

µ0

)
Rm(µ1, −µ0)

...
Rm(µs, −µ0)


 , Jm

+,2(τ ) = (1 − ω0)B(τ ) δ0m




1
...
1




Jm
−,1(τ ) = ω0

4π
S0 exp

(
− τ

µ0

)
Rm(−µ1, −µ0)

...
Rm(−µs, −µ0)


 , Jm

−,2(τ ) = Jm
+,2(τ ) (2.96)

where all vectors contain s rows.
For the evaluation of the multiple scattering integral the phase function term

Rm(µ, µ′) needs to be discretized. To give an example, let us first evaluate the mul-
tiple scattering term in Jm

+ for a particular direction µk by employing the quadrature
formula (2.93)

ω0

2

∫ 1

0

[
I m
+ (τ, µ′)Rm(µk, µ

′) + I m
− (τ, µ′)Rm(µk, −µ′)

]
dµ′

≈ ω0

2

s∑
i=1

[
wi I m

+ (τ, µi )Rm(µk, µi ) + wi I m
− (τ, µi )Rm(µk, −µi )

]

= ω0

2

s∑
i=1

(
s∑

r=1

pm
kr,++wrδri I m

+ (τ, µi ) +
s∑

r=1

pm
kr,+−wrδri I m

− (τ, µi )

)

= ω0

2

[
P

m
++W Im

+(τ ) + P
m
+−W Im

−(τ )
]

(2.97)

Here the following matrices have been introduced

P
m
++ = (

pm
kr,++

) =




Rm(µ1, µ1) · · · Rm(µ1, µs)
...

...
Rm(µs, µ1) · · · Rm(µs, µs)




P
m
+− = (

pm
kr,+−

) =




Rm(µ1, −µ1) · · · Rm(µ1, −µs)
...

...
Rm(µs, −µ1) · · · Rm(µs, −µs)




W = (wiδi j ) =




w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · ws




(2.98)
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Since

Pm
l (−µ) = (−1)l+m Pm

l (µ)

Pm
l (−µ)Pm

l (−µ′) = (−1)2(l+m) Pm
l (µ)Pm

l (µ′) = Pm
l (µ)Pm

l (µ′)
(2.99)

with the help of (2.82a) we obtain the equalities

P
m
++ = P

m
−−, P

m
+− = P

m
−+ (2.100)

With the above definitions the RTE can now be written in the form

M
d

dτ
Im
+(τ ) = Im

+(τ ) − Jm
+(τ )

M
d

dτ
Im
−(τ ) = −Im

−(τ ) + Jm
−(τ ), m = 0, 1, . . . , �

(2.101)

where the matrix M is defined by

M = (µiδi j ) =




µ1 0 · · · 0
0 µ2 · · · 0
...

...
. . .

...
0 0 · · · µs


 (2.102)

and the source vectors Jm
+, Jm

− are given in matrix notation as

Jm
+(τ ) = Jm

+,1(τ ) + Jm
+,2(τ ) + ω0

2

[
P

m
++W Im

+(τ ) + P
m
+−W Im

−(τ )
]

Jm
−(τ ) = Jm

−,1(τ ) + Jm
−,2(τ ) + ω0

2

[
P

m
+−W Im

+(τ ) + P
m
++W Im

−(τ )
] (2.103)

Multiplying (2.101) from the left by M
−1 we find the matrix–vector form of the

RTE as

d

dτ

(
Im
+(τ )

Im
−(τ )

)
=
(

I�m
++ −I�m

+−
I�m

+− −I�m
++

)(
Im
+(τ )

Im
−(τ )

)
+
(−Σm

+(τ )
Σm

−(τ )

)
(2.104)

where the following abbreviations have been introduced

I�m
++ = M

−1
(
E − ω0

2
P

m
++W

)
I�m

+− = M
−1 ω0

2
P

m
+−W

Σm
+(τ ) = M

−1 [Jm
+,1(τ ) + Jm

+,2(τ )
]

Σm
−(τ ) = M

−1 [Jm
−,1(τ ) + Jm

−,2(τ )
]

(2.105)

E is the s × s unit matrix. From the first two expressions of (2.105) it may be easily
seen that due to (2.100) I�m

++ = I�m
−− and I�m

+− = I�m
−+.
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The system (2.104) represents the discretized form of the RTE, discretized in
µ-space. It has been derived under the assumptions that

(i) the phase function P can be developed as an infinite series of Legendre polynomials;
and

(ii) the ϕ-dependence of both the radiance as well as the phase function can be separated
in product form from the dependency of the other variables.

If the solution of the Fourier modes I m
+ , I m

− of the radiance is known, the full
dependence of the radiance function follows from (2.70)3

I+(τ, ϕ) =
∞∑

m=0

(2 − δ0m)Im
+(τ ) cos mϕ

I−(τ, ϕ) =
∞∑

m=0

(2 − δ0m)Im
−(τ ) cos mϕ

(2.106)

The µi -dependency of the radiance vectors I+, I− is expressed by (2.95).

2.6 The solution of the radiative transfer equation for a
horizontally homogeneous atmosphere

The energy budget of the atmosphere is determined by the solar insolation and the
emission of infrared radiation by the Earth and the atmosphere. Thus scattering,
absorption and emission of radiation influence the radiative exchange between the
individual atmospheric layers. These processes depend on both the wavelength of
the radiation as well as on the different radiatively active atmospheric species. As
already mentioned in Chapter 1, the solar radiation spectrum ranges from roughly
0.2–3.5 µm while the thermal radiation spectrum of the Earth and the atmosphere
covers the region of about 3.5–100 µm. Hence, for all practical purposes both
spectral regions may be treated separately. As a consequence of this, in the solar
spectral region one is justified to neglect the Planck function B(τ ), while in the
infrared spectral region S0 may be omitted. This is most easily achieved by setting
in the source vectors Jm

± for the short-wave region Jm
±,2(τ ) = 0 and for the long-wave

region Jm
±,1(τ ) = 0, see (2.96) and (2.103).

In later chapters we will show that in the infrared spectral region scattering pro-
cesses are important only in the so-called atmospheric window region extending
from about 8 to 12.5 µm. In this spectral region the clear atmosphere is almost
transparent to infrared radiation while scattering and absorption by aerosol and
cloud particles must be accounted for. The atmospheric window is of particular

3 Recall that the coordinate system has been rotated so that ϕ0 = 0.
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importance for the energy budget of the Earth since in this region the largest frac-
tion of thermal radiation is emitted to space. Outside the window region scattering,
in general, plays almost no role in the troposphere. Unless in the upper troposphere
layers are extremely dry, outside the CO2 absorption spectrum it is sufficient to
include H2O absorption in the radiative transfer equation. Since even in the atmo-
spheric window scattering is relatively weak, very often scattering processes are
completely neglected in the entire infrared spectral region. In this case the source
function J± of the RTE reduces to Jm

±,2 with ω0 = 0.
Neglecting all scattering processes yields a relatively simple form of the RTE

which has a particularly simple solution. This motivates us to present the solution
of the RTE for two different cases. In the first case, scattering and absorption
processes are included while in the second case only absorption is accounted for.
According to the above discussion, the first case applies to the short-wave region
and to the atmospheric window, whereas the second case may be applied to the
infrared spectral region excepting the atmospheric window.

2.6.1 The scattering atmosphere

Inspection of the system (2.101) shows that the RTE is an inhomogeneous first-order
differential equation of the form

dy

dx
+ P(x)y(x) + Q(x) = 0, y(x = x0) = y0 (2.107)

with the general solution

y(x) = y0 exp

(
−
∫ x

x0

P(t)dt

)
−
∫ x

x0

Q(x ′) exp

(
−
∫ x

x ′
P(t)dt

)
dx ′ (2.108)

Let τg denote the total optical depth of the medium. By comparing (2.101) with
(2.107) we may substitute:

(a) Upwelling radiation

x = τ , x0 = τg, x ′ = τ ′

y(x) = Im
+(τ ), P(x) = −M

−1, Q(x) = M
−1Jm

+(τ )

(b) Downwelling radiation (2.109)

x = τ , x0 = 0, x ′ = τ ′

y(x) = Im
−(τ ), P(x) = M

−1, Q(x) = −M
−1Jm

−(τ )
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According to (2.108) the formal solution for the upwelling and downwelling
radiation is then given by

Im
+(τ ) = exp

[−M
−1(τg − τ )

]
Im
+(τg) +

∫ τg

τ

exp
[−M

−1(τ ′ − τ )
]
M

−1Jm
+(τ ′)dτ ′

Im
−(τ ) = exp

(−M
−1τ

)
Im
−(0) +

∫ τ

0
exp

[−M
−1(τ − τ ′)

]
M

−1Jm
−(τ ′)dτ ′

(2.110)

These solutions are called formal solutions of the RTE because they do not represent
explicit expressions for Im

+ and Im
−. This is due to the fact that the source terms Jm

+
and Jm

− implicitly contain the radiance field Im
+ and Im

− as follows from (2.103).
Some remarks concerning the so-called exponential matrices appearing in

(2.110) may be helpful. A few important rules for these matrices are stated
below.

exp(A) =
∞∑

k=0

1

k!
A

k , exp(O) = E

exp(A) exp(B) �= exp(A + B) , exp(A) exp(B) �= exp(B) exp(A)

(2.111)

Thus exponential matrices do not commute. If A is a diagonal (s × s) matrix, i.e.
A = (λiδi j ), then

exp(A) = (
exp(λiδi j )

) =




exp(λ1) 0 . . . 0
0 exp(λ2) . . . 0
...

...
. . .

...
0 0 . . . exp(λs)


 (2.112)

2.6.2 The nonscattering atmosphere

Now we will solve the radiative transfer equation in an atmosphere where only
absorption takes place. In this case the scattering coefficient and, thus, the single
scattering albedo ω0 vanishes so that (2.53) reduces to

µ
d

dτ
I (τ, µ) = I (τ, µ) − B(τ ) (2.113)

For a given frequency interval the Planck function B depends on temperature only.
The functional notation B(τ ) simply implies that B has to be evaluated using the
temperature existing at τ . Due to the fact that the interior long-wave sources as
well as the radiation field at the boundaries of the medium are isotropic, the long-
wave radiance field is axially symmetric with respect to the z-axis. Therefore,
the radiative transfer equation does not depend on the azimuth angle ϕ so that, in
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contrast to the solar spectral region, a Fourier cosine expansion of the radiance is not
necessary.

Splitting the radiation field into upwelling and downwelling radiation yields

µ
d

dτ
I+(τ, µ) = I+(τ, µ) − B(τ )

µ
d

dτ
I−(τ, µ) = −I−(τ, µ) + B(τ )

(2.114)

From (2.114) it is seen that, in contrast to (2.86), the system of ordinary differential
equations for I+ and I− is decoupled. The reason for this is that the multiple
scattering term, which couples the upwelling and downwelling radiation field, has
been neglected. Hence it is possible to obtain an analytical solution of (2.114).
This solution requires proper boundary conditions at the top and the bottom of the
atmosphere.

By comparing (2.114) with (2.107) we obtain the following correspondences

(a) Upwelling radiation

x = τ , x0 = τg, x ′ = τ ′

y(x) = I+(τ ), P(x) = − 1

µ
, Q(x) = 1

µ
B(τ )

(a) Downwelling radiation (2.115)

x = τ , x0 = 0, x ′ = τ ′

y(x) = I−(τ ), P(x) = 1

µ
, Q(x) = − 1

µ
B(τ )

The boundary conditions at the lower and upper boundary of the atmosphere are
given by

I+(τg, µ) = Bg, I−(0, µ) =
{

B(0) if a black body is present at τ = 0
0 else

(2.116)

Bg is the Planckian black body radiation of the ground. Substituting (2.115) into
the general solution (2.108) we obtain for the up- and downwelling radiances at the
reference level τ :

I+(τ, µ) = Bg exp

(
−τg − τ

µ

)
+ 1

µ

∫ τg

τ

B(τ ′) exp

(
−τ ′ − τ

µ

)
dτ ′

I−(τ, µ) = I−(0, µ) exp

(
− τ

µ

)
+ 1

µ

∫ τ

0
B(τ ′) exp

(
−τ − τ ′

µ

)
dτ ′

(2.117)

These equations can be interpreted as follows: the first term on the right-hand side
of each equation describes that part of the radiation which is emitted at the boundary
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z

τ

s

dτ ′
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u′

u′

du′

u

dτ ′ du′

Top of the atmosphere

Reference level

Ground

τ ′

τ ′

τg

Fig. 2.4 Correspondences between the optical depth τ and the absorbing mass u.

of the medium and transmitted to level τ . The second term on the right-hand side of
each equation expresses the total contribution of all elementary layers of optical
thickness dτ ′. The black body radiations B(τ ′) are multiplied by the transmittance
from level τ ′ to the level of observation τ .

According to (1.40) and (1.41) for an absorbing medium the differential of the
optical depth dτ and the mass absorption coefficient κabs are related by

dτ = kabsds = κabsdu′ =⇒ τ =
∫ u

0
κabsdu′

with du′ = ρabsds = −ρabsdz
(2.118)

Here, u refers to the absorbing mass between the top of the atmosphere and the
reference level, see Figure 2.4. This figure also depicts some other correspondences
between the optical depth and the absorbing mass which will be used below. Sub-
stituting (2.118) into (2.117) yields

I+(u, µ) = Bg exp

(
− 1

µ

∫ ug

u
κabs(u

′)du′
)

+ 1

µ

∫ ug

u
B(u′) exp

(
− 1

µ

∫ u′

u
κabs(t)dt

)
κabs(u

′)du′

I−(u, µ) = I−(0, µ) exp

(
− 1

µ

∫ u

0
κabs(u

′)du′
)

+ 1

µ

∫ u

0
B(u′) exp

(
− 1

µ

∫ u

u′
κabs(t)dt

)
κabs(u

′)du′

(2.119)
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These equations can also be reformulated as

I+(u, µ) = Bg exp

(
− 1

µ

∫ ug

u
κabs(u

′)du′
)

−
∫ ug

u
B(u′)

∂

∂u′ exp

(
− 1

µ

∫ u′

u
κabs(t)dt

)
du′

I−(u, µ) = I−(0, µ) exp

(
− 1

µ

∫ u

0
κabs(u

′)du′
)

+
∫ u

0
B(u′)

∂

∂u′ exp

(
− 1

µ

∫ u

u′
κabs(t)dt

)
du′

(2.120)

For ease of notation we introduce the transmission function T via

T (u, u′, µ) = exp

(
− 1

µ

∫ u′

u
κabs(t)dt

)
(2.121)

Now (2.120) assumes the form

I+(u, µ) = BgT (u, ug, µ) −
∫ ug

u
B(u′)

∂

∂u′T (u, u′, µ)du′

I−(u, µ) = I−(0, µ)T (0, u, µ) +
∫ u

0
B(u′)

∂

∂u′T (u′, u, µ)du′
(2.122)

Partial integration of these equations with respect to u′ yields the final result

I+(u, µ)= [Bg − B(ug)]T (u, ug, µ)+B(u)+
∫ ug

u

d B

du′T (u, u′, µ)du′

I−(u, µ)= [I−(0, µ) − B(0)]T (0, u, µ)+B(u)−
∫ u

0

d B

du′T (u′, u, µ)du′

(2.123)

Here, B(ug) describes the Planck radiation of the air temperature existing directly
above the ground. This means that the Earth’s surface itself may have a temperature
Tg which is different from the air temperature T (ug). A similar situation applies to
the upper boundary of the atmosphere where the black body radiation B must be
evaluated at the temperature existing at u = 0. A radiation source from outside the
atmosphere may radiate with the intensity I−(0, µ).

An interesting interpretation can be found for the integral terms in (2.123).
Depending on the sign of d B/du′, positive or negative contributions are registered at
the reference level u. Consider, for example, the situation of a temperature inversion
at the reference level as depicted in Figure 2.5. In this case both integral terms will
make a positive contribution to the radiances at the level u.



2.7 Radiative flux densities and heating rates 57

u
T

du′

du′
dB

du′
> 0

dB

du′
< 0

Reference level

Fig. 2.5 Contributions of the integral terms in (2.123) to the upward and downward
radiances.

In contrast to the formal solution of the RTE for the scattering atmosphere,
see (2.110), equation (2.123) describes the analytical solution for a nonscattering
atmosphere, provided the vertical distributions of the temperature and the absorption
coefficient are known. This is certainly a great advantage of (2.123) compared to
(2.110). However, as will be seen in later chapters, the solution of the RTE for the
purely absorbing atmosphere is still rather complicated. This is due to the fact that
the absorption coefficient strongly depends on the wavelength so that the integration
of (2.123) over a certain wavelength interval causes some problems.

2.7 Radiative flux densities and heating rates

For the computation of the radiative energy balance and the calculation of radiative
heating rates it is sufficient to determine the net radiative flux densities, see Sections
1.2 and 2.3.1. In a horizontally homogeneous atmosphere the radiance depends only
on the variables (z, µ, ϕ) or alternatively on (τ, µ, ϕ) but not on x and y. Hence,
only the vertical component of the net flux density needs to be considered. Since
for a purely absorbing atmosphere we have the analytical solution of the RTE, see
(2.123), it is interesting to determine the radiative flux densities and heating rates
for this particular case. However, before doing so we will again start the discussion
with the general situation of a scattering atmosphere.

2.7.1 The scattering atmosphere

It is convenient to rotate the Cartesian coordinate system in such a way that the
solar azimuth vanishes, that is ϕ0 = 0, see Figure 2.3. According to (1.37c) and
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(2.70) the z-component of the radiative net flux density is then given by

Enet,z(τ ) =
∫ 2π

0

∫ 1

−1

∞∑
m=0

(2 − δ0m)I m(τ, µ)µ cos mϕ dµ dϕ (2.124)

Since ∫ 2π

0
cos mϕ dϕ = 2πδ0m (2.125)

we find that only the zeroth Fourier mode m = 0 of the radiance is required for
evaluating Enet,z , i.e.

Enet,z(τ ) = 2π

∫ 1

−1
I 0(τ, µ)µdµ (2.126)

This is a very important result since it shows that for heating rate computations
knowledge of the full directional dependence of the radiation field is not necessary.

Analogously to the radiance field, the term Enet,z will be split into an upwelling
and a downwelling component by defining

Enet,z = 2π

∫ 1

0
I 0(τ, µ)µdµ − 2π

∫ −1

0
I 0(τ, µ)µdµ

= 2π

∫ 1

0
I 0
+(τ, µ)µdµ − 2π

∫ 1

0
I 0
−(τ, µ)µdµ = E+,z − E−,z

(2.127)

Obviously, the upward and downward directed flux densities E±,z are positive
definite.

In a similar manner the net radiative flux densities for the x- and y-direction can
be computed. Utilizing (1.37a) one finds for Enet,x

Enet,x (τ ) =
∫ 1

−1

∞∑
m=0

(2 − δ0m)I m(τ, µ)(1 − µ2)1/2dµ

∫ 2π

0
cos ϕ cos mϕ dϕ

(2.128)

Since ∫ 2π

0
cos ϕ cos mϕ dϕ = (1 + δ01)δ1mπ = πδ1m (2.129)

we obtain

Enet,x (τ ) = 2π

∫ 1

−1
(1 − µ2)1/2 I 1(τ, µ)dµ (2.130)

Owing to the particular choice of the coordinate system with ϕ0 = 0 and due
to the orthogonality of the trigonometric functions the y-component of the net
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radiative flux density vanishes

Enet,y(τ ) =
∫ 1

−1

∞∑
m=0

(2 − δ0m)I m(τ, µ)(1 − µ2)1/2dµ

∫ 2π

0
sin ϕ cos mϕ dϕ = 0

(2.131)

where now use was made of (1.37b). If the coordinate system is rotated about the
z-axis so that ϕ0 �= 0, then we obtain a nonvanishing value for Enet,y . However, in
this case Enet,x will assume a different value as well.

Obviously, for a horizontally homogeneous medium the net flux density does
not depend on the horizontal variables x and y. Hence we may write

∇·Enet = ∂ Enet,x

∂x
+ ∂ Enet,y

∂y
+ ∂ Enet,z

∂z
= ∂ Enet,z

∂z
(2.132)

According to (2.46) for the horizontally homogeneous medium the radiatively
induced temperature change due to the diffuse radiation at height z is then given
by

∂T

∂t

∣∣∣
rad,dif

= − 1

cpρ(z)

∂ Enet,z

∂z
= kext

cpρ(z)

∂ Enet,z

∂τ
= kext

cpρ(z)

(
∂ E+,z

∂τ
− ∂ E−,z

∂τ

)
(2.133)

where kext is the volume extinction coefficient as defined in (1.48) and ρ is the
density of the air. Recall, however, that owing to the splitting of the radiance field
into diffuse and direct radiation, see (2.29), (2.133) represents only the contribution
of the diffuse radiation. The total temperature change by radiative effects is obtained
by adding to ∂T/∂t |rad,dif the contribution by the direct solar radiation. Substituting
(2.29) together with (2.52) into (1.37c) yields the direct solar net flux density

Enet,z,dir =
∫ 2π

0

∫ 1

−1
S(τ )δ(Ω − Ω0)µ dµ dϕ = −µ0S0 exp

(
− τ

µ0

)
(2.134)

where δ(Ω − Ω0) = δ(µ − µ0)δ(ϕ − ϕ0). Hence, analogously to (2.133), the tem-
perature change due to the extinction of solar radiation is given by

∂T

∂t

∣∣∣
rad,dir

= kext

cpρ(z)

∂ Enet,z,dir

∂τ
= kext

cpρ(z)
S0 exp

(
− τ

µ0

)
(2.135)

Combining (2.133) and (2.135) we finally obtain

∂T

∂t

∣∣∣
rad,ν

= ∂T

∂t

∣∣∣
rad,dif,ν

+ ∂T

∂t

∣∣∣
rad,dir,ν

= kext,ν

cpρ(z)

[
∂ E+,z,ν

∂τ
− ∂ E−,z,ν

∂τ
+ S0,ν exp

(
− τ

µ0

)] (2.136)
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Here, we have again included the subscript ν in order to remind the reader that
this is a spectral equation. Hence, the total radiative heating rate is obtained by
integrating (2.136) over the entire spectral region. If the vertical net flux density of
the total radiation including the parallel solar radiation is constant with height then
the radiative temperature change vanishes.

2.7.2 The nonscattering atmosphere

For the nonscattering atmosphere the upward and downward directed flux densities
are obtained by integrating (2.123) over the upper and lower hemisphere. This gives

E+(u) =
∫ 2π

0

∫ 1

0
I+(u, µ)µdµ dϕ

= 2π [Bg − B(ug)]
∫ 1

0
T (u, ug, µ)µ dµ

+ π B(u) + 2π

∫ ug

u

d B

du′

∫ 1

0
T (u, u′, µ)µdµdu′

E−(u) =
∫ 2π

0

∫ 1

0
I−(u, µ)µdµdϕ

= 2π [I−(0) − B(0)]
∫ 1

0
T (0, u, µ)µdµ

+ π B(u) − 2π

∫ u

0

d B

du′

∫ 1

0
T (u′, u, µ)µdµ du′

(2.137)

where for simplicity we have assumed that the radiation field incident at the top of
the atmosphere is isotropic. It is convenient to define the so-called flux-transmission
function Tf via

Tf(u, u′) = 2
∫ 1

0
T (u, u′, µ)µdµ (2.138)

Substituting (2.121) into this equation yields

Tf(u, u′)=2
∫ 1

0
exp

(
− 1

µ

∫ u′

u
κabs(t)dt

)
µdµ=2

∫ ∞

1
ξ−3 exp(−ξ x)dξ (2.139)

where the following substitutions have been utilized

ξ = 1

µ
, dξ = − 1

µ2
dµ, x =

∫ u′

u
κabs(t)dt (2.140)



2.8 Appendix 61

The last integral expression in (2.139) allows for the introduction of the exponential
integral of third order

E3(x) =
∫ ∞

1
ξ−3 exp(−ξ x)dξ (2.141)

Thus we obtain

Tf(u, u′) = 2E3

(∫ u′

u
κabs(t)dt

)
(2.142)

Substitution of the flux-transmission function into (2.137); gives finally

E+(u) = π [Bg − B(ug)]Tf(u, ug) + π B(u) + π

∫ ug

u

d B

du′Tf(u, u′)du′

E−(u) = π [I−(0) − B(0)]Tf(0, u) + π B(u) − π

∫ u

0

d B

du′Tf(u
′, u)du′

(2.143)

These expressions may be used in (2.133) to obtain the infrared contributions of the
radiative heating rates whereby the substitution du = −ρabsdz has to be applied.

2.8 Appendix

2.8.1 Local thermodynamic equilibrium

Assuming conditions of local thermodynamic equilibrium, the source function J e
ν

for infrared emission should be proportional to the Planck black body function
Bν . We will now attempt to determine the proportionality factor between the source
function and the Planck function for a simple physical situation. The result, however,
is more general. From (2.36) we obtain

Ω·∇ Iν = d

ds
Iν(r,Ω) = −kext,ν Iν(r,Ω) + ksca,ν

4π

∫
4π

Pν(Ω′ · Ω)Iν(r,Ω′)d�′ + J e
ν (r)

(2.144)

Here, we have omitted the primary scattering term of the solar radiation since in
the range of infrared emission the solar radiation is practically zero for atmospheric
conditions in the troposphere and lower stratosphere. Integration of (2.144) over
the unit sphere, assuming isotropic and homogeneous radiation, gives∫

4π

d Iν(r)

ds
d� = −kext,ν

∫
4π

Iν(r)d� + ksca,ν

4π

∫
4π

Iν(r)
∫

4π

Pνd�′ d� +
∫

4π

J e
ν (r)d�

= −kabs,ν

∫
4π

Iν(r)d� +
∫

4π

J e
ν (r)d� = 0 (2.145)
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where the integral of the phase function over unit sphere has been evaluated accord-
ing to (1.46). From (2.145) we obtain for the source function

J e
ν (r) = kabs,ν Iν(r) = kabs,ν Bν(r) (2.146)

Since J e
ν (r) is the source function for true emission of heat radiation we set Iν = Bν .

(2.146) is known as Kirchhoff’s law. In case that the conditions of local thermody-
namic equilibrium are not met, the emission of radiative energy becomes a function
of the energy states in the gas. Equation (2.146) is not an exact derivation but a
plausible discussion.

2.9 Problems

2.1: Find the normalization constant C for the phase function P(cos �) = C(1 +
cos2 �). Plot your result in polar coordinates and � versus P(cos �).

2.2: Obtain the solution to the RTE in the form (2.76) for radiative transfer within
a plane–parallel cloud of total optical thickness τc. Assume that no diffuse
radiation is incident on the cloud either from above or from below. Ignore
the multiple scattering term and the Planckian emission.

2.3: Consider the following special cases for the solution you obtained from
Problem 2.2

(a) Find I m
− (τ, µ = µ0).

(b) Find I m
+ (τ, 0) and I−(τ, 0) for τ �= 0 and τ �= τc.

(c) Find I m
+ (τ, µ) and I m

− (τ, µ) for τ = 0 and µ = 0.

2.4: In the radiative transfer theory we have to deal with integrals of the type∫ τc

τ

exp

(
−τ ′ − τ

µ

)
A(τ ′)

dτ ′

µ
and

∫ τ

0
exp

(
−τ − τ ′

µ

)
A(τ ′)

dτ ′

µ

Evaluate these integrals for µ = 0 where A(τ ′) is an arbitrary function.
2.5: Assume isothermal conditions for the system Earth–atmosphere.

(a) From (2.117) find I+(τ, µ).
(b) Which additional condition must apply to obtain the same result for I−(τ, µ)?
(c) Show that the identical results follow from (2.123).

2.6: The exponential integral of order n is defined by

En(x) =
∫ ∞

1

exp(−ξ x)

ξ n
dξ

(a) Find En(0) for n = 1, 2, . . .

(b) Find d En/dx .
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(c) Verify

nEn+1(x) = exp(−x) − x En(x) = exp(−x) + x
d En+1(x)

dx
, n = 1, 2, . . .

(d) Verify En(x) =
∫ 1

0
exp

(
− x

µ

)
µn−2dµ.

2.7: According to (2.28) for a plane–parallel atmosphere the RTE can be written
in the form

µ
d

dτ
I (τ, µ, ϕ) = I (τ, µ, ϕ) − 1

4π

∫ 2π

0

∫ 1

−1
P(µ, ϕ, µ′, ϕ′)dµ′dϕ′

if ω0 = 1 and J e = 0. In this case the net flux Enet is a constant.
Show that the solution to this equation can be written as

K (τ ) = Enet

4π

[(
1 − p1

3

)
τ + C

]
where C is a constant and K is given by

K (τ ) = 1

4π

∫ 2π

0

∫ 1

−1
I (τ, µ, ϕ)µ2dµdϕ

Hint: Expand the phase function according to (2.55) and make use of the
addition theorem (2.66).

2.8: Consider the RTE in the form stated in Problem 2.7. Assume that the phase
function is given by P = 3/4(1 + cos2 �). Find the source function for the
azimuthally averaged RTE.

2.9: Consider the RTE as given in Problem 2.7. For a semi-infinite plane–parallel
atmosphere and the boundary condition I (0, −µ) = 0.

(a) Find the solution to the azimuthally averaged RTE in case of isotropic scattering.
(b) Introduce the solution found under (a) into the integral In(τ ) = ∫ 1

−1 I (τ, µ)µndµ.
Finally, introduce the exponential integral defined in Problem 2.6 into the latter
integral.

(c) Find the net flux density in terms of the exponential integral.
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Principles of invariance

The principle of invariance in the original form was stated by Ambartsumian (1942)
expressing the invariance of the diffusely reflected radiation emerging from a semi-
infinite atmosphere to the addition or subtraction of an infinitely thin atmospheric
layer. Chandrasekhar (1960) advanced the original form and stated four general
principles of invariance which apply to finite atmospheric layers. These principles
are not based on the radiative transfer equation, but they are of equal physical valid-
ity. We accept Goody’s (1964a) statement that the principles of invariance may be
viewed as a series of common-sense relations between the scattering and transmis-
sion functions with the radiances emerging from the upper and lower boundaries
of an atmospheric layer and at some intermediate variable level.

3.1 Definitions of the scattering and transmission functions

Let us consider a plane–parallel atmospheric layer of vertical optical thickness τ1

bounded on both sides by a vacuum, see Figure 3.1. The upper boundary of this
layer is illuminated by a beam of parallel downward directed radiation S0, while
at τ = τ1 no radiation is incident in the upward direction. For simplicity, only
short-wave radiation will be considered. However, inclusion of infrared radiation
causes no particular difficulties. We call this situation the restricted or standard
problem. We define the scattering function S(τ1, µ, ϕ, µ0, ϕ0) and the transmission
function T (τ1, µ, ϕ, µ0, ϕ0) by formulating the reflected and transmitted radiances
I (0, µ, ϕ) and I (τ1, −µ, ϕ) as

I (0, µ, ϕ) = S0

4πµ
S(τ1, µ, ϕ, µ0, ϕ0)

I (τ1, −µ, ϕ) = S0

4πµ
T (τ1, µ, ϕ, µ0, ϕ0)

(3.1)

64
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I(0, µ, ϕ)

I(τ1, −µ, ϕ)

S0

τ

τ τ1

= 0

=

Fig. 3.1 Schematic diagram of reflected and transmitted radiances at τ = 0 and
τ = τ1 of a plane–parallel atmospheric layer.

where here and in the following 0 < µ ≤ 1. Thus, I (0, µ, ϕ) denotes upward
directed radiation at the top of the atmospheric layer while I (τ1, −µ, ϕ) describes
downward directed radiation at τ = τ1. The reason that the factor 1/µ has been
introduced in the definitions (3.1) is to obtain symmetry of the S and T functions in
the variables (µ, ϕ) and (µ0, ϕ0) as required by Helmholtz’s principle of reciprocity
to be discussed soon.

It is noteworthy that the reflected and transmitted intensities include only the dif-
fuse radiation which has suffered one or more scattering processes, i.e. the directly
transmitted radiation S0 exp(−τ1/µ0) is not included in (3.1). The radiances appear-
ing in (3.1) are solutions of the standard problem. The extended solution which
includes ground reflection will be taken up in a later section.

So far we have assumed that the atmospheric layer is illuminated by an incident
parallel beam. The solution for an arbitrary incident radiation field Iin(0, −µ′, ϕ′)
with the same angular distribution at every point on the surface τ = 0 can also
be expressed in terms of the functions S and T . In this situation we would
have to integrate the incoming radiance over all directions of the incoming light
yielding

I (0, µ, ϕ) = 1

4πµ

∫ 2π

0

∫ 1

0
S(τ1, µ, ϕ, µ′, ϕ′)Iin(0, −µ′, ϕ′)dµ′dϕ′

I (τ1, −µ, ϕ) = 1

4πµ

∫ 2π

0

∫ 1

0
T (τ1, µ, ϕ, µ′, ϕ′)Iin(0, −µ′, ϕ′)dµ′dϕ′

(3.2)
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By assuming that the incoming radiance is the solar radiation, Iin may be
expressed in terms of the Dirac δ-functions as

Iin(0, −µ, ϕ) = S0δ(µ − µ0)δ(ϕ − ϕ0) (3.3)

Note that δ(x) = δ(−x). Substitution of this equation into (3.2) yields, as it should,
the original equations (3.1).

Finally, we would like to point out that the layer thickness τ1 has been explicitly
included in the definition of theS andT in (3.1) and elsewhere in order to emphasize
their dependence on the optical thickness of the atmospheric layer.

3.2 Diffuse reflection in a semi-infinite atmosphere

Consider a semi-infinite plane–parallel atmosphere being illuminated by a parallel
beam of radiation. In this case only the law of reflection will be of interest. Now
the emerging diffuse radiation at the top of the layer is written as

I (0, µ, ϕ) = S0

4πµ
S(µ, ϕ, µ0, ϕ0) (3.4)

omitting specific reference to the infinite optical thickness of the atmosphere.
The incident solar flux density S0 at the upper boundary of the layer is reduced

according to Beer’s law, see (2.52). Thus at the optical depth τ we obtain the so-
called reduced parallel solar flux density S0 exp(−τ/µ0). At this level in the down-
ward direction we not only have the reduced parallel solar radiation but also a diffuse
radiation field I (τ, −µ, ϕ). Both parts of the downward radiation will be reflected
by the atmospheric layer below τ so that the upward radiation at τ is given by

I (τ, µ, ϕ) = 1

4πµ

∫ 2π

0

∫ 1

0
S(µ, ϕ, µ′, ϕ′)I (τ, −µ′, ϕ′)dµ′dϕ′

+ S0

4πµ
exp

(
− τ

µ0

)
S(µ, ϕ, µ0, ϕ0)

(3.5)

Owing to the boundary condition

I (0, −µ, ϕ) = 0 (3.6)

at the top of the layer where τ = 0, (3.5) reduces to the first equation of (3.1) in
case of a finite optical thickness. Furthermore, by observing that for a semi-infinite
optical thickness the atmosphere below the level τ is still infinitely large, at
level τ the total downward radiation is reflected according to the same law of
diffuse reflection as (3.4). Thus equation (3.5) can be considered as a statement
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of the invariance of S(µ, ϕ, µ0, ϕ0) to the addition and subtraction of layers in a
semi-infinite atmosphere.

In order to obtain the required integral equation for S, we differentiate (3.5) with
respect to τ , set τ = 0 and find[

d

dτ
I (τ, µ, ϕ)

]
τ=0

= 1

4πµ

∫ 2π

0

∫ 1

0
S(µ, ϕ, µ′, ϕ′)

[
d

dτ
I (τ, −µ′, ϕ′)

]
τ=0

dµ′dϕ′

− S0

4πµµ0
S(µ, ϕ, µ0, ϕ0) (3.7)

The derivatives occurring in this equation can be evaluated with the help of the RTE
in the form

µ
d

dτ
I (τ, µ, ϕ) = I (τ, µ, ϕ) − J (τ, µ, ϕ) (3.8)

where J is the source function which, according to equation (2.53), may be written
as

J (τ, µ, ϕ) = ω0

4π

∫ 2π

0

∫ 1

−1
P(µ, ϕ, µ′, ϕ′)I (τ, µ′, ϕ′)dµ′dϕ′

+ ω0

4π
S0 exp

(
− τ

µ0

)
P(µ, ϕ,−µ0, ϕ0) (3.9)

The two differential expressions appearing in (3.7) follow from (3.8) and are given
by [

d

dτ
I (τ, µ, ϕ)

]
τ=0

= 1

µ
[I (0, µ, ϕ) − J (0, µ, ϕ)]

[
d

dτ
I (τ, −µ, ϕ)

]
τ=0

= 1

µ
J (0, −µ, ϕ)

(3.10)

where use was made of the boundary condition (3.6). Substituting (3.10) into (3.7)
yields

I (0, µ, ϕ) − J (0, µ, ϕ) = 1

4π

∫ 2π

0

∫ 1

0
S(µ, ϕ, µ′, ϕ′)J (0, −µ′, ϕ′)

dµ′

µ′ dϕ′

− S0

4πµ0
S(µ, ϕ, µ0, ϕ0) (3.11)

With the help of (3.4), equation (3.11) can be rewritten as

S0

4π

(
1

µ
+ 1

µ0

)
S(µ, ϕ, µ0, ϕ0) = 1

4π

∫ 2π

0

∫ 1

0
S(µ, ϕ, µ′, ϕ′)J (0, −µ′, ϕ′)

dµ′

µ′ dϕ′

+ J (0, µ, ϕ) (3.12)
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In order to replace J (0, µ, ϕ) on the right-hand side of (3.12), we again use (3.9).
To make the mathematical operation more obvious, we first rewrite the integral term
as ∫ 1

−1
P(µ, ϕ, µ′, ϕ′)I (τ, µ′, ϕ′)dµ′ =

∫ 1

0
P(µ, ϕ, µ′, ϕ′)I (τ, µ′, ϕ′)dµ′

+
∫ 1

0
P(µ, ϕ,−µ′, ϕ′)I (τ, −µ′, ϕ′)dµ′

(3.13)

At τ = 0, due to the upper boundary condition, the second integral in (3.13) vanishes
so that

J (0, µ, ϕ) = ω0S0

(4π )2

∫ 2π

0

∫ 1

0
P(µ, ϕ, µ′, ϕ′)S(µ′, ϕ′, µ0, ϕ0)

dµ′

µ′ dϕ′

+ ω0

4π
S0P(µ, ϕ,−µ0, ϕ0) (3.14)

Introducing this expression into (3.12) finally yields(
1

µ
+ 1

µ0

)
S(µ, ϕ, µ0, ϕ0)

= ω0

(4π )2

∫ 2π

0

∫ 1

0

∫ 2π

0

∫ 1

0
P(−µ′, ϕ′, µ′′, ϕ′′)S(µ′′, ϕ′′, µ0, ϕ0)S(µ, ϕ, µ′, ϕ′)

× dµ′′

µ′′ dϕ′′dµ′

µ′ dϕ′ + ω0

4π

∫ 2π

0

∫ 1

0
P(−µ′, ϕ′, −µ0, ϕ0)S(µ, ϕ, µ′, ϕ′)

dµ′

µ′ dϕ′

+ ω0

4π

∫ 2π

0

∫ 1

0
P(µ, ϕ, µ′, ϕ′)S(µ′, ϕ′, µ0, ϕ0)

dµ′

µ′ dϕ′ + ω0P(µ, ϕ,−µ0, ϕ0)

(3.15)

which is the desired integral equation for S. This integral equation is nonlinear,
but for simple phase functions there exist methods to evaluate it without excessive
numerical difficulties.

The scattering function S and the transmission function T have the important
property of being symmetric in the pair of variables (µ, ϕ) and (µ0, ϕ0). In order
to recognize this, we first refer to the definition of the phase function in the form
(2.68). Recalling the symmetry relations of the associated Legendre polynomials
as stated in (2.59) we immediately recognize the validity of the relations

P(µ, ϕ, µ′, ϕ′) = P(µ′, ϕ′, µ, ϕ)

P(−µ, ϕ,−µ′, ϕ′) = P(µ, ϕ, µ′, ϕ′)

P(µ, ϕ,−µ′, ϕ′) = P(−µ, ϕ, µ′, ϕ′) = P(µ′, ϕ′, −µ, ϕ)

(3.16)
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It is convenient to introduce the function f̃ (µ, ϕ, µ′, ϕ′) which is obtained from
f (µ, ϕ, µ′, ϕ′) by transposing the variables (µ, ϕ) and (µ′, ϕ′)

f̃ (µ, ϕ, µ′, ϕ′) = f (µ′, ϕ′, µ, ϕ) (3.17)

Using this notation, the symmetry properties of P(µ, ϕ, µ′, ϕ′) may be expressed
by means of

P̃(µ, ϕ, µ′, ϕ′) = P(µ′, ϕ′, µ, ϕ), P̃(µ, ϕ,−µ′, ϕ′) = P(µ′, ϕ′, −µ, ϕ)

(3.18)

Transposing the variables (µ, ϕ) and (µ0, ϕ0) in (3.15) applying the relations (3.16),
we observe that S̃ satisfies the same equation asS. Thus ifS is a solution of (3.15) so
is S̃. However, it does not follow that S is necessarily symmetrical in the variables
(µ, ϕ) and (µ0, ϕ0). We omit the complete proof of the symmetry relations but
simply assume that the scattering and the transmission functions are symmetric, i.e.

S̃(µ, ϕ, µ0, ϕ0) = S(µ, ϕ, µ0, ϕ0), T̃ (µ, ϕ, µ0, ϕ0) = T (µ, ϕ, µ0, ϕ0)

(3.19)

Verbally, the scattering and the transmission functions are unaltered when the
directions of incidence and emergence are interchanged. This is the principle of
invariance as applied to the functions S and T . A rigorous proof of (3.19) may be
found in Chandrasekhar (1960).

We will now briefly consider the simple case of isotropic radiation which, accord-
ing to (2.13), is given by P = 1. Owing to the axial symmetry of the radiation field,
(3.15) reduces to(

1

µ
+ 1

µ0

)
S(µ, µ0) = ω0

4

∫ 1

0

∫ 1

0
S(µ′′, µ0)S(µ, µ′)

dµ′′

µ′′
dµ′

µ′

+ ω0

2

∫ 1

0
S(µ, µ′)

dµ′

µ′ + ω0

2

∫ 1

0
S(µ′, µ0)

dµ′

µ′ + ω0

(3.20)

which can be also be written in the form(
1

µ
+ 1

µ0

)
S(µ, µ0) = ω0

(
1 + 1

2

∫ 1

0
S(µ, µ′)

dµ′

µ′

)(
1 + 1

2

∫ 1

0
S(µ′, µ0)

dµ′

µ′

)
(3.21)

Since S(µ, µ′) is symmetric in the variables (µ, µ′), on the right-hand side of this
equation the two terms in parentheses must be the values of µ and µ0 of the same
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function. It is customary to denote this function by the symbol H (µ), as defined by

H (µ) = 1 + 1

2

∫ 1

0
S(µ, µ′)

dµ′

µ′ = 1 + 1

2

∫ 1

0
S(µ′, µ)

dµ′

µ′ (3.22)

For the conservative case we obtain∫ 1

0
H (µ)dµ = 2,

∫ 1

0
µH (µ)dµ = 2√

3
(3.23)

With (3.22) equation (3.21) assumes the more simple form(
1

µ
+ 1

µ0

)
S(µ, µ0) = ω0 H (µ)H (µ0) (3.24)

By substituting S back into equation (3.22), we find the following expression for
the so-called H-function which is a nonlinear integral equation

H (µ) = 1 + ω0µ

2
H (µ)

∫ 1

0

H (µ′)
µ + µ′ dµ′ (3.25)

The H -function plays an important role in some parts of radiative tansfer theory.
A table of the H -function can be found, for example, in Chandrasekhar (1960).

3.3 Chandrasekhar’s four statements of the principles of invariance

Let us consider a plane–parallel atmospheric layer of total optical thickness τ1 so
that 0 ≤ τ ≤ τ1. We will now state the following four principles.

(1) The radiance I (τ, µ, ϕ) in the upward direction at any level τ results from the reflection
of the reduced incident flux density S0 exp(−τ/µ0) and the diffuse downward radiation
I (τ, −µ′, ϕ′) incident on the surface τ , reflected by the atmosphere below τ having the
optical thickness (τ1 − τ ). Hence we may write

I (τ, µ, ϕ) = 1

4πµ

∫ 2π

0

∫ 1

0
S(τ1 − τ, µ, ϕ, µ′, ϕ′)I (τ, −µ′, ϕ′)dµ′dϕ′

+ S0

4πµ
exp

(
− τ

µ0

)
S(τ1 − τ, µ, ϕ, µ0, ϕ0)

(3.26)

(2) The radiance I (τ, −µ, ϕ) in the downward direction at any level τ results from the
transmission of the incident flux density by the atmosphere of optical thickness τ ,
above the surface, and the reflection by this same surface1 of the diffuse radiation

1 The formulation ‘reflection by this same surface’ sounds as if some sort of a mirror in horizontal position is
placed in the atmosphere reflecting the radiation. Chandrasekhar simply implies that the atmospheric sublayer
above the surface acts as if it were an imperfect mirror.
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I (τ, µ, ϕ) incident on it from below, that is

I (τ, −µ, ϕ) = 1

4πµ

∫ 2π

0

∫ 1

0
S(τ, µ, ϕ, µ′, ϕ′)I (τ, µ′, ϕ′)dµ′dϕ′

+ S0

4πµ
T (τ, µ, ϕ, µ0, ϕ0)

(3.27)

(3) The diffuse reflection of the incident light by the entire atmospheric layer of optical
thickness τ1 is equivalent to the reflection by the part of the atmosphere above the
level τ and the transmission by the same part of the atmosphere of the diffuse radiation
I (τ, µ′, ϕ′) incident on the surface τ from below. The corresponding equation reads

S0

4πµ
S(τ1, µ, ϕ, µ0, ϕ0) = 1

4πµ

∫ 2π

0

∫ 1

0
T (τ, µ, ϕ, µ′, ϕ′)I (τ, µ′, ϕ′)dµ′dϕ′

+ S0

4πµ
S(τ, µ, ϕ, µ0, ϕ0) + I (τ, µ, ϕ) exp

(
− τ

µ

)

(3.28)

The last term on the right-hand side refers to the direct transmission of the diffuse
radiance I (τ, µ, ϕ) which is already in the direction (µ, ϕ).

(4) The diffuse transmission of the incident light by the entire atmospheric layer of optical
thickness τ1 is equivalent to the transmission of the reduced incident flux density
S0 exp(−τ/µ0) and the diffuse radiation I (τ, −µ′, ϕ′) incident on the surface τ and
transmitted by the atmosphere of optical thickness (τ1 − τ ) below τ . This principle is
expressed by

S0

4πµ
T (τ1, µ, ϕ, µ0, ϕ0) = 1

4πµ

∫ 2π

0

∫ 1

0
T (τ1 − τ, µ, ϕ, µ′, ϕ′)I (τ, −µ′, ϕ′)dµ′dϕ′

+ S0

4πµ
exp

(
− τ

µ0

)
T (τ1 − τ, µ, ϕ, µ0, ϕ0)

+ I (τ, −µ, ϕ) exp

(
−τ1 − τ

µ

)

(3.29)

The last term on the right-hand side refers to the direct transmission of the diffuse
radiance I (τ, −µ, ϕ), already in the direction (−µ, ϕ).

It is important to note that equations (3.26)–(3.29) are sufficient to uniquely
determine the radiation field in terms of the scattering and the transmission functions
S and T for plane–parallel atmospheres of finite optical thickness.

The four principles of invariance listed in the previous section will now be used
to derive a set of four integral equations for the scattering and the transmission
functions. These will be obtained by differentiating equations (3.26)–(3.29) with
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respect to τ and then passing (3.26) and (3.29) to the limit τ = 0 and (3.27) and
(3.28) to the limit τ = τ1. Furthermore, we will make use of the boundary conditions

I (0, −µ, ϕ) = 0, I (τ1, µ, ϕ) = 0 (3.30)

which apply to the standard problem. The resulting equations are[
d

dτ
I (τ, µ, ϕ)

]
τ=0

= 1

4πµ

∫ 2π

0

∫ 1

0
S(τ1, µ, ϕ, µ′, ϕ′)

[
d

dτ
I (τ, −µ′, ϕ′)

]
τ=0

dµ′dϕ′

+ S0

4πµ

(
− 1

µ0
S(τ1, µ, ϕ, µ0, ϕ0)

+
[

d

dτ
S(τ1 − τ, µ, ϕ, µ0, ϕ0)

]
τ=0

)
[

d

dτ
I (τ, −µ, ϕ)

]
τ=τ1

= 1

4πµ

∫ 2π

0

∫ 1

0
S(τ1, µ, ϕ, µ′, ϕ′)

[
d

dτ
I (τ, µ′, ϕ′)

]
τ=τ1

dµ′dϕ′

+ S0

4πµ

[
d

dτ
T (τ, µ, ϕ, µ0, ϕ0)

]
τ=τ1

0 = 1

4πµ

∫ 2π

0

∫ 1

0
T (τ1, µ, ϕ, µ′, ϕ′)

[
d

dτ
I (τ, µ′, ϕ′)

]
τ=τ1

dµ′dϕ′

+ S0

4πµ

[
d

dτ
S(τ, µ, ϕ, µ0, ϕ0)

]
τ=τ1

+
[

d

dτ
I (τ, µ, ϕ)

]
τ=τ1

exp

(
−τ1

µ

)

0 = 1

4πµ

∫ 2π

0

∫ 1

0
T (τ1, µ, ϕ, µ′, ϕ′)

[
d

dτ
I (τ, −µ′, ϕ′)

]
τ=0

dµ′dϕ′

+ S0

4πµ

(
− 1

µ0
T (τ1, µ, ϕ, µ0, ϕ0)+

[
d

dτ
T (τ1 − τ, µ, ϕ, µ0, ϕ0)

]
τ=0

)

+
[

d

dτ
I (τ, −µ, ϕ)

]
τ=0

exp

(
−τ1

µ

)
(3.31)

The derivatives d I/dτ appearing in these equations can be replaced with
the help of the RTE in the form (3.8) by employing the basic definitions (3.1) and
the boundary conditions (3.30). Thus we obtain[

d

dτ
I (τ, µ, ϕ)

]
τ=0

= 1

µ

(
S0

4πµ
S(τ1, µ, ϕ, µ0, ϕ0) − J (0, µ, ϕ)

)
[

d

dτ
I (τ, −µ, ϕ)

]
τ=0

= 1

µ
J (0, −µ, ϕ)[

d

dτ
I (τ, µ, ϕ)

]
τ=τ1

= − 1

µ
J (τ1, µ, ϕ)

[
d

dτ
I (τ, −µ, ϕ)

]
τ=τ1

= − 1

µ

(
S0

4πµ
T (τ1, µ, ϕ, µ0, ϕ0) − J (τ1, −µ, ϕ)

)
(3.32)
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Substituting (3.32) into (3.31) results in the four integral equations

(a)
S0

4π

((
1

µ
+ 1

µ0

)
S(τ1, µ, ϕ, µ0, ϕ0) −

[
d

dτ
S(τ1 − τ, µ, ϕ, µ0, ϕ0)

]
τ=0

)

= 1

4π

∫ 2π

0

∫ 1

0
S(τ1, µ, ϕ, µ′, ϕ′)J (0, −µ′, ϕ′)

dµ′

µ′ dϕ′ + J (0, µ, ϕ)

(b)
S0

4π

(
1

µ
T (τ1, µ, ϕ, µ0, ϕ0) +

[
d

dτ
T (τ, µ, ϕ, µ0, ϕ0)

]
τ=τ1

)

= 1

4π

∫ 2π

0

∫ 1

0
S(τ1, µ, ϕ, µ′, ϕ′)J (τ1, µ

′, ϕ′)
dµ′

µ′ dϕ′ + J (τ1, −µ, ϕ)

(c)
S0

4π

[
d

dτ
S(τ, µ, ϕ, µ0, ϕ0)

]
τ=τ1

(3.33)

= 1

4π

∫ 2π

0

∫ 1

0
T (τ1, µ, ϕ, µ′, ϕ′)J (τ1, µ

′, ϕ′)
dµ′

µ′ dϕ′ + J (τ1, µ, ϕ) exp

(
−τ1

µ

)

(d)
S0

4π

(
1

µ0
T (τ1, µ, ϕ, µ0, ϕ0) −

[
d

dτ
T (τ1 − τ, µ, ϕ, µ0, ϕ0)

]
τ=0

)

= 1

4π

∫ 2π

0

∫ 1

0
T (τ1, µ, ϕ, µ′, ϕ′)J (0, −µ′, ϕ′)

dµ′

µ′ dϕ′ + J (0, −µ, ϕ) exp

(
−τ1

µ

)

The validity of

(a)

[
d

dτ
S(τ, µ, ϕ, µ0, ϕ0)

]
τ=τ1

= −
[

d

dτ
S(τ1 − τ, µ, ϕ, µ0, ϕ0)

]
τ=0

(b)

[
d

dτ
T (τ, µ, ϕ, µ0, ϕ0)

]
τ=τ1

= −
[

d

dτ
T (τ1 − τ, µ, ϕ, µ0, ϕ0)

]
τ=0

(3.34)

may be easily verified. Multiplying (3.33b) by −1/µ0 and (3.33d) by 1/µ and
adding the results, with the help of (3.34b) we obtain an expression for the derivative
of the transmission function with respect to τ analogously to (3.33c)

S0

4π

(
1

µ
− 1

µ0

)[
d

dτ
T (τ, µ, ϕ, µ0, ϕ0)

]
τ=τ1

= 1

4πµ

∫ 2π

0

∫ 1

0
T (τ1, µ, ϕ, µ′, ϕ′)J (0, −µ′, ϕ′)

dµ′

µ′ dϕ′

− 1

4πµ0

∫ 2π

0

∫ 1

0
S(τ1, µ, ϕ, µ′, ϕ′)J (τ1, µ

′, ϕ′)
dµ′

µ′ dϕ′

− 1

µ0
J (τ1, −µ, ϕ) + 1

µ
J (0, −µ, ϕ) exp

(
−τ1

µ

)
(3.35)
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Finally, in (3.33a,b) the derivatives of S and T with respect to τ may be replaced
by means of (3.33c,d) yielding

S0

4π

(
1

µ
+ 1

µ0

)
S(τ1,µ, ϕ,µ0, ϕ0)= 1

4π

∫ 2π

0

∫ 1

0
S(τ1, µ, ϕ, µ′, ϕ′)J (0, −µ′, ϕ′)

dµ′

µ′ dϕ′

− 1

4π

∫ 2π

0

∫ 1

0
T (τ1, µ, ϕ, µ′,ϕ′)J (τ1, µ

′, ϕ′)
dµ′

µ′ dϕ′

+ J (0, µ, ϕ) − J (τ1, µ, ϕ) exp

(
−τ1

µ

)

S0

4π

(
1

µ
− 1

µ0

)
T (τ1, µ, ϕ, µ0, ϕ0)= 1

4π

∫ 2π

0

∫ 1

0
S(τ1, µ, ϕ, µ′, ϕ′)J (τ1, µ

′, ϕ′)
dµ′

µ′ dϕ′

− 1

4π

∫ 2π

0

∫ 1

0
T (τ1, µ, ϕ, µ′, ϕ′)J (0, −µ′, ϕ′)

dµ′

µ′ dϕ′

+ J (τ1, −µ, ϕ) − J (0, −µ, ϕ) exp

(
−τ1

µ

)

(3.36)

Inspection shows that these equations still contain the source functions J at
the boundaries τ = 0 and τ = τ1. These may be eliminated with the help of
equations (3.1), (3.9) and the boundary conditions (3.30). Without difficulties we
obtain the required expressions

J (0, µ, ϕ) = ω0S0

(4π )2

∫ 2π

0

∫ 1

0
S(τ1, µ

′, ϕ′, µ0, ϕ0)P(µ, ϕ, µ′, ϕ′)
dµ′

µ′ dϕ′

+ ω0

4π
S0P(µ, ϕ,−µ0, ϕ0)

J (τ1, µ, ϕ) = ω0S0

(4π )2

∫ 2π

0

∫ 1

0
T (τ1, µ

′, ϕ′, µ0, ϕ0)P(µ, ϕ,−µ′, ϕ′)
dµ′

µ′ dϕ′

+ ω0

4π
S0 exp

(
− τ1

µ0

)
P(µ, ϕ,−µ0, ϕ0)

(3.37)

Equations (3.36) together with (3.37) are the desired integral relations for S
and T in analogy to equation (3.15) for S in case of a semi-infinite atmosphere.
These integral relations describe the problem of diffuse reflection and transmission
of plane–parallel atmospheres of finite optical thickness. As Chandrasekhar points
out, (3.36) may be regarded as the expression of the invariance of the laws of diffuse
reflection and transmission to the addition (or removal) of layers of arbitrary optical
thickness to (or from) the atmosphere at the top and the simultaneous removal (or
addition) of layers of equal optical thickness from (or to) the atmosphere at the base
of the layer.
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It is possible to extend the analysis to include the effects of polarization. Without
going into details at this point, the scattering and transmission functions S and T
will have to be replaced by scattering and transmission matrices. This makes the
analysis quite complicated. In a later chapter we are going to show how to include
polarization in the radiative transfer equation.

We will conclude this section with a few additional remarks of how to evaluate
the preceding equations by expanding the scattering and transmission functions in
Fourier type series. In Section 2.4 we have shown that if the phase function can be
expressed in the form (2.68), then it is possible to expand the radiance I (τ, µ, ϕ)
by means of (2.69). Similarly, by expanding the phase function in the form (2.68),
the scattering and the transmission functions may be written as

S(τ1, µ, ϕ, µ0, ϕ0) =
N∑

m=0

Sm(τ1, µ, µ0) cos m(ϕ − ϕ0)

T (τ1, µ, ϕ, µ0, ϕ0) =
N∑

m=0

T m(τ1, µ, µ0) cos m(ϕ − ϕ0)

(3.38)

By substituting these expansions into (3.36), using the proper orthogonality condi-
tions, we can eliminate the azimuthal dependence. We will not carry out the analysis
but refer the interested reader to Chandrasekhar (1960).

3.4 The inclusion of surface reflection

The boundary conditions (3.30) of the standard problem did not include the effects
of surface reflection which may be of great importance in a number of realistic
situations. Whenever the surface reflection is included in the transfer analysis, we
speak of the planetary problem. To simplify the analysis of the planetary problem,
we will assume that the light is reflected according to Lambert’s law, that is the
reflected light is uniform and independent of the angular distribution of the incoming
light. In this case we also speak of a Lambertian surface. For convenience, as before,
we set the azimuthal angle of the Sun ϕ0 = 0. Furthermore, we ignore the effects
of polarization.

The two azimuthal independent terms S0(τ1, µ, µ0) and T 0(τ1, µ, µ0) in the
expansions (3.38) are given by

S0(τ1, µ, µ0) = 1

2π

∫ 2π

0
S(τ1, µ, ϕ, µ0, 0)dϕ

T 0(τ1, µ, µ0) = 1

2π

∫ 2π

0
T (τ1, µ, ϕ, µ0, 0)dϕ

(3.39)
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To obtain a simple mathematical structure of the equations to be derived, we intro-
duce the abbreviations

(a) s(τ1, µ) = 1

2

∫ 1

0
S0(τ1, µ, µ′)dµ′

(b) t(τ1, µ) = 1

2

∫ 1

0
T 0(τ1, µ, µ′)dµ′ (3.40)

(c) s̄(τ1) = 2
∫ 1

0
s(τ1, µ)dµ

Furthermore, in order to distinguish the solution of the planetary problem from that
of the standard problem we place an asterisk to all quantities referring to the plan-
etary problem. Thus I ∗ refers to the radiance in the presence of ground reflection.

Since we have assumed that the ground reflection is Lambertian, the reflected
intensity Ig at τ1 will be the same in all upward directions. At the top of the
atmospheric layer the emergent intensity I ∗(0, µ, ϕ) is expressed as the sum of
three terms, that is

I ∗(0, µ, ϕ) = I (0, µ, ϕ) + 1

4πµ

∫ 2π

0

∫ 1

0
T (τ1, µ, ϕ, µ′, ϕ′)Igdµ′dϕ′

+ Ig exp

(
−τ1

µ

)
(3.41)

The first term on the right-hand side represents the diffusely reflected radiance of
the standard problem, i.e. in the absence of ground reflection. The second term
stands for the radiance Ig which (under the conditions of the standard problem) is
transmitted into the upward hemisphere. The third term represents the transmission
of the radiance Ig, already in the direction (µ, ϕ) which is not scattered out of the
beam.

Substituting (3.40b) into (3.41) gives

I ∗(0, µ, ϕ) = I (0, µ, ϕ) + Ig

[
t(τ1, µ)

µ
+ exp

(
−τ1

µ

)]
= I (0, µ, ϕ) + Igγ (τ1, µ)

(3.42)

where the abbreviation

γ (τ1, µ) = t(τ1, µ)

µ
+ exp

(
−τ1

µ

)
(3.43)

has been introduced.
The isotropic radiance Ig incident on the surface τ = τ1 will also be scattered in

the downward direction by the atmosphere. This amount of radiation is given by

Ig,sca(−µ) = 1

4πµ

∫ 2π

0

∫ 1

0
S(τ1, µ, ϕ, µ′, ϕ′)Igdµ′dϕ′ = Ig

s(τ1, µ)

µ
(3.44)
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where use was made of (3.40a). Adding Ig,sca to the diffusely transmitted downward
radiation we obtain

I ∗(τ1, −µ, ϕ) = S0

4πµ
T (τ1, µ, ϕ, µ0, 0) + Ig

s(τ1, µ)

µ
(3.45)

Next, we need to find an explicit mathematical expression for Ig. We recognize
that the downward radiative flux density arriving at the level τ = τ1 consists of
three parts:

(1) the flux density of the diffusely transmitted radiance;
(2) the downward scattered radiative flux density; and
(3) the reduced incident flux density.

Adding all three contributions yields

∫ 2π

0

∫ 1

0

S0

4πµ
T (τ1, µ, ϕ, µ0, 0)µdµdϕ+

∫ 2π

0

∫ 1

0
Ig,sca(−µ)µdµdϕ + µ0S0 exp

(
− τ1

µ0

)

= S0

2

∫ 1

0
T 0(τ1, µ, µ0)dµ + 2π Ig

∫ 1

0
s(τ1, µ)dµ + µ0S0 exp

(
− τ1

µ0

)

= µ0S0

[
t(τ1, µ0)

µ0
+ exp

(
− τ1

µ0

)]
+ π Igs̄ = µ0S0γ (τ1, µ0) + π Igs̄ (3.46)

where use was made of (3.40) and (3.43). The total downward radiation given by
(3.46) will be reflected at the ground. By introducing the albedo of the ground Ag,
the reflected flux density is

π Ig = Ag[µ0S0γ (τ1, µ0) + π Igs̄] (3.47)

so that we finally obtain

Ig = Agµ0S0γ (τ1, µ0)

π (1 − Ags̄)
(3.48)

Substituting this expression into (3.42) and (3.45), we obtain the desired expressions
for the upward radiance emerging at τ = 0 and the downward radiance emerging
at τ = τ1

I ∗(0, µ, ϕ) = S0

4πµ

[
S(τ1, µ, ϕ, µ0, 0) + 4Ag

1 − Ags̄
µµ0γ (τ1, µ0)γ (τ1, µ)

]

I ∗(τ1, −µ, ϕ) = S0

4πµ

[
T (τ1, µ, ϕ, µ0, 0) + 4Ag

1 − Ags̄
µ0γ (τ1, µ0)s(τ1, µ)

]

(3.49)
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3.5 Diffuse reflection and transmission for isotropic scattering

We will conclude this chapter by presenting a relatively simple example showing
in which way the scattering and the transmission functions may be employed. Again
we return to the standard problem. To arrive at the equations of isotropic scattering,
we introduce average radiances, scattering and transmission functions according to

I (0, µ) = 1

2π

∫ 2π

0
I (0, µ, ϕ)dϕ, I (τ1, −µ) = 1

2π

∫ 2π

0
I (τ1, −µ, ϕ)dϕ

S(τ1, µ, µ0)= 1

2π

∫ 2π

0
S(τ1, µ,ϕ,µ0, 0)dϕ, T (τ1, µ, µ0)= 1

2π

∫ 2π

0
T (τ1, µ, ϕ, µ0, 0)dϕ

(3.50)

With these quantities the averaged form of (3.1) is given as

I (0, µ) = S0

4πµ
S(τ1, µ, µ0), I (τ1, −µ) = S0

4πµ
T (τ1, µ, µ0) (3.51)

Now we proceed to find explicit formulas for S(τ1, µ, µ0) and T (τ1, µ, µ0).
Isotropic scattering is expressed by the phase function P = 1, see (1.47). Utilizing
(3.50) and averaging the source functions, in the case of isotropic scattering (3.37)
reduces to

J (0) = ω0

4π
S0

(
1 + 1

2

∫ 1

0
S(τ1, µ

′, µ0)
dµ′

µ′

)

J (τ1) = ω0

4π
S0

[
exp

(
− τ1

µ0

)
+ 1

2

∫ 1

0
T (τ1, µ

′, µ0)
dµ′

µ′

] (3.52)

In order to have a compact notation, we introduce the functions

X (µ) = 1 + 1

2

∫ 1

0
S(τ1, µ

′, µ)
dµ′

µ′

Y (µ) = exp

(
−τ1

µ

)
+ 1

2

∫ 1

0
T (τ1, µ

′, µ)
dµ′

µ′

(3.53)

Substituting (3.53) into (3.52) results in

J (0) = ω0

4π
S0 X (µ0), J (τ1) = ω0

4π
S0Y (µ0) (3.54)

From (3.53) it may be easily seen that in case of a semi-infinite atmosphere, i.e.
τ1 → ∞, Y (µ) approaches zero while X (µ) is equivalent to H (µ) as defined in
(3.22).

Now we rewrite equations (3.36) for the condition of isotropic scattering. Util-
izing (3.54) yields the integral relations for S and T in the case of isotropic
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scattering

(
1

µ
+ 1

µ0

)
S(τ1, µ, µ0)= ω0

2

∫ 1

0
S(τ1, µ, µ′)X (µ0)

dµ′

µ′ − ω0

2

∫ 1

0
T (τ1, µ, µ′)Y (µ0)

dµ′

µ′

+ ω0 X (µ0) − ω0Y (µ0) exp

(
−τ1

µ

)
(

1

µ
− 1

µ0

)
T (τ1, µ, µ0)= ω0

2

∫ 1

0
S(τ1, µ, µ′)Y (µ0)

dµ′

µ′ − ω0

2

∫ 1

0
T (τ1, µ, µ′)X (µ0)

dµ′

µ′

+ ω0Y (µ0) − ω0 X (µ0) exp

(
−τ1

µ

)
(3.55)

Substituting (3.53) into these expressions results in(
1

µ
+ 1

µ0

)
S(τ1, µ, µ0) = ω0 [X (µ)X (µ0) − Y (µ)Y (µ0)](

1

µ
− 1

µ0

)
T (τ1, µ, µ0) = ω0 [X (µ)Y (µ0) − Y (µ)X (µ0)]

(3.56)

For the derivatives of S and T with respect to τ we obtain from (3.33c) and
(3.35) for the case of isotropic scattering[

d

dτ
S(τ, µ, µ0)

]
τ=τ1

= ω0Y (µ)Y (µ0)

(
1

µ
− 1

µ0

)[
d

dτ
T (τ, µ, µ0)

]
τ=τ1

= ω0

[
1

µ
Y (µ)X (µ0) − 1

µ0
X (µ)Y (µ0)

] (3.57)

Details leading to (3.55) and (3.57) will be worked out in the exercises to this
chapter.

Substitution of (3.56) into (3.53) gives integral relations for X (µ) and Y (µ),
analogously to (3.25) for the H -function

X (µ) = 1 + ω0

2

∫ 1

0
[X (µ)X (µ′) − Y (µ)Y (µ′)]

µ

µ + µ′ dµ′

Y (µ) = exp

(
−τ1

µ

)
+ ω0

2

∫ 1

0
[Y (µ)X (µ′) − X (µ)Y (µ′)]

µ

µ − µ′ dµ′
(3.58)

The functions X (µ) and Y (µ) are special cases of the general forms

X (µ) = 1 +
∫ 1

0
[X (µ)X (µ′) − Y (µ)Y (µ′)]

µ

µ + µ′ ψ(µ′)dµ′

Y (µ) = exp

(
−τ1

µ

)
+
∫ 1

0
[Y (µ)X (µ′) − X (µ)Y (µ′)]

µ

µ − µ′ ψ(µ′)dµ′
(3.59)
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These are known as Chandrasekhar’s X- and Y- functions. The quantity ψ(µ)
is called the characteristic function which differs from problem to problem. The
numerical evaluation of the nonlinear integral equations (3.59) may be accom-
plished by an iteration procedure.

Obviously, for the case of isotropic scattering we obtain ψ(µ) = ω0/2. For
Rayleigh scattering the characteristic function ψ(µ) still has a fairly simple alge-
braic form. As pointed out by Liou (2002), for the more complicated forms of the
Mie-type phase functions, the characteristic functions are rather complicated and
are not available for practical applications.

Finally, we wish to point out that in case of conservative perfect scattering, i.e.
ω0 = 1, the integral equations (3.59) are not sufficient to characterize the physical
situation uniquely. In the simple situation of isotropic scattering it is not particularly
difficult to resolve the ambiguity. We will refrain from further discussing this topic
and refer to Chapter IX of Chandrasekhar (1960) where a full treatment is given.

As stated above, for highly peaked Mie type phase functions it becomes increas-
ingly difficult to apply the principles of invariance to find exact solutions to trans-
fer problems. Even if we succeeded in obtaining such solutions, we are still
faced with the specification of realistic input data for atmospheric problems. In
practice, we are usually compelled to apply model data which may not always
be sufficient to simulate real physical situations. Thus the application of model
atmospheric data to an exact solution of a transfer problem at best results in an
approximation to the solution of a real physical problem. Usually the numerical
evaluation of the exact solution is difficult and time consuming, particularly if
the calculations have to be carried out at many wavelengths. Instead of evaluating
exact or quasi-exact solutions, for many practical purposes it might be sufficient
to use approximate methods. Usually these offer the advantage that they can be
quickly evaluated which is important in case of climate modeling and weather
prediction.

In the following chapters we will discuss various quasi-exact as well as some
approximate solution methods for the RTE at various levels of sophistication. Of
course, whenever possible the more exact solutions are used in order to test the
validity of the approximate methods.

3.6 Problems

3.1: Verify equation (3.34).
3.2: Verify equation (3.37).
3.3: Carry out all steps in detail in Section 4.4 to obtain (3.48).
3.4: Reduce (3.36) to the isotropic form (3.56).
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3.5: Use (3.33c) and (3.35) to obtain (3.57) which refers to isotropic scattering.
3.6: The law of darkening describes the angular distribution I (0, µ), 0 ≤ µ ≤ 1

of the emergent radiation in case of a plane–parallel semi-infinite atmo-
sphere with constant net flux. Show that I (0, µ) = J (0)H (µ) where J (0) =
1/2

∫ 1
0 I (0, µ)dµ. Assume the validity of

I (0, µ) = 1

2

∫ 1

0
I (0, µ′)dµ′ + 1

4

∫ 1

0

∫ 1

0
S(µ, µ′)I (0, µ′′)

dµ′

µ′ dµ′′

3.7: (a) The so-called Hopf–Bronstein relation for conservative isotropic scatter-
ing (in a plane–parallel semi-infinite atmosphere) is given by I (0, µ) =√

3/(4π )S0 H (µ). If the emergent radiation I (0, µ) is assumed to be given by

I (0, µ) = 3

4π
S0

(
µ + 1

2µ

∫ 1

0
S(µ, µ′)µ′dµ′

)

find J (0)=1/2
∫ 1

0 I (0, µ)dµ and � =1+∫ 1
0

∫ 1
0 S(µ, µ′)(µ′/µ)dµ′dµ.

(b) Use the information of part (a) to show that I (0, µ) can also be written as

I (0, µ) = 1

2

∫ 1

0
I (0, µ′)dµ′ + 1

4

∫ 1

0

∫ 1

0
S(µ, µ′)I (0, µ′′)

dµ′

µ′ dµ′′



4

Quasi-exact solution methods for
the radiative transfer equation

In this chapter we will discuss various techniques that can be used to solve the
radiative transfer equation. Although these techniques employ quite different math-
ematical models, they all produce very accurate solutions. Therefore, we call them
quasi-exact solution methods. A disadvantage of the quasi-exact procedures is their
mathematical complexity which causes them to be very expensive computationally.
However, the quasi-exact methods can be used to produce benchmark computa-
tions to test the quality of the computationally very efficient approximate solution
methods which for practical reasons are employed in weather prediction and cli-
mate models. The most common and efficient solution schemes are the two-stream
methods which will be discussed in detail in Chapter 6.

4.1 The matrix operator method

The matrix operator method (MOM) is one of the most accurate techniques for
solving the radiative transfer equation in a planetary atmosphere. It is based on the
fact that the Fourier components I m(τ, µ) of the radiation field as introduced in
(2.70) can be represented in discretized form as vectors Im

±. In order to apply the
method we need to determine the transmission and reflection properties of each
individual layer of the medium. In the following subsections it will be shown how
to compute the transmitted and reflected radiation for the entire medium and at its
interior levels.

4.1.1 Derivation of the addition theorems

Let us start with the discretization of the radiances Im
±(τ ), see (2.95). We

will consider two different but homogeneous sublayers (0, 1) = τ1 − τ0 and

82
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Level Optical depth

0

1

2

τ0

τ1

τ2

(0, 1) = τ1 − τ0

(1, 2) = τ2 − τ1

Fig. 4.1 Subdivision of an inhomogeneous layer (0, 2) into two homogeneous
sublayers (0, 1) and (1, 2) having different optical properties.

(1, 2) = τ2 − τ1. In general, however, the combined layer (0, 2) = τ2 − τ0 is inho-
mogeneous, see Figure 4.1.

For sublayer (0, 1) we will define the following optical quantities for the m-th
Fourier mode of the radiance which fully describe the transmission and reflection
properties.

tm(0, 1) discretized transmissivity (directions i = 1, . . . , s) of sublayer (0, 1)
applied to the radiance Im

−(τ0) incident at τ0,
tm(1, 0) discretized transmissivity for sublayer (1, 0) applied to the radiance Im

+(τ1)
incident at τ1,

rm(0, 1) discretized reflectivity (directions i = 1, . . . , s) of sublayer (0, 1) for the
radiance Im

−(τ0) incident at τ0,
rm(1, 0) discretized reflectivity for sublayer (1, 0) but for the radiance Im

+(τ1),
Jm

−,1(0, 1) discretized source function for the downward directed primary scattered
sunlight generated in sublayer (0, 1),

Jm
+,1(1, 0) discretized source function for the upward directed primary scattered

sunlight generated in sublayer (1, 0),
Jm

−,2(0, 1) discretized source function for the downward thermal emission generated
in sublayer (0, 1),

Jm
+,2(1, 0) discretized source function for the upward directed thermal emission

generated in sublayer (1, 0).

Similar definitions apply to the corresponding matrix and vector quantities for
sublayer (1, 2) and the combined layer (0, 2).

Let us consider Figure 4.2 describing the basic properties of the radiation model.
The radiation transmitted and reflected by an arbitrary layer depends linearly on
the incident radiation from above and below. This is the so-called linear interaction
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Im( )

Im+ ( )

Im+

−

−

−

−

( )

Jm
+,1(1, 0)

Jm
+,2(1, 0)

Jm
,1(0, 1)

Jm
,2(0, 1)

Scattering

Absorption

Emission

τ1

τ1

τ0

τ1

Im( )τ0

τ0

Fig. 4.2 The linear interaction principle for the emanating radiation Im
+(τ0), Im

−(τ1)
from sublayer (0, 1) expressed in terms of the incident radiation Im

+(τ1), Im
−(τ0)

and the interior sources for primary scattering and thermal emission Jm
+,1(1, 0),

Jm
+,2(1, 0), Jm

−,1(0, 1), Jm
−,2(0, 1). In general, scattering, absorption and emission

take place.

principle. Therefore, the radiance emanating at τ0 and τ1, expressed in terms of
the radiation Im

−(τ0), Im
+(τ1) incident at the boundaries of the sublayer (0, 1) and the

interior sources for primary scattering and thermal emission Jm
+,1(1, 0), Jm

−,1(0, 1),
Jm

+,2(1, 0), Jm
−,2(0, 1) is given by

(a) Im
+(τ0) = tm(1, 0)Im

+(τ1) + rm(0, 1)Im
−(τ0) + Jm

+,1(1, 0) + Jm
+,2(1, 0)

(b) Im
−(τ1) = rm(1, 0)Im

+(τ1) + tm(0, 1)Im
−(τ0) + Jm

−,1(0, 1) + Jm
−,2(0, 1)

(4.1)

In a similar manner we find for sublayer (1, 2)

(a) Im
+(τ1) = tm(2, 1)Im

+(τ2) + rm(1, 2)Im
−(τ1) + Jm

+,1(2, 1) + Jm
+,2(2, 1)

(b) Im
−(τ2) = rm(2, 1)Im

+(τ2) + tm(1, 2)Im
−(τ1) + Jm

−,1(1, 2) + Jm
−,2(1, 2)

(4.2)

If we replace in (4.1) the sublayer index 1 by index 2, we obtain for the combined
layer (0, 2) the result

(a) Im
+(τ0) = tm(2, 0)Im

+(τ2) + rm(0, 2)Im
−(τ0) + Jm

+,1(2, 0) + Jm
+,2(2, 0)

(b) Im
−(τ2) = rm(2, 0)Im

+(τ2) + tm(0, 2)Im
−(τ0) + Jm

−,1(0, 2) + Jm
−,2(0, 2)

(4.3)

It should be noted that in the last two equations the matrices tm(0, 2),
tm(2, 0), rm(0, 2), rm(2, 0) as well as the source vectors Jm

−,1(0, 2), Jm
−,2(0, 2),

Jm
+,1(2, 0), Jm

+,2(2, 0) are still unknown. We will show, however, that for the
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combined layer these unknown quantities can be determined as functions of the
radiative quantities of the individual sublayers (0, 1) and (1, 2).

In a first step we will express the radiances Im
±(τ1) at level τ1 in terms of the

radiances Im
−(τ0), Im

+(τ2) illuminating the combined layer (0, 2). Replacing Im
−(τ1)

in (4.2a) by (4.1b) and in (4.1b) the term Im
+(τ1) by (4.2a), we obtain two rather

complicated expressions

(a) Im
+(τ1) = rm(1, 2)[rm(1, 0)Im

+(τ1) + tm(0, 1)Im
−(τ0) + Jm

−,1(0, 1) + Jm
−,2(0, 1)]

+ tm(2, 1)Im
+(τ2) + Jm

+,1(2, 1) + Jm
+,2(2, 1)

(b) Im
−(τ1) = rm(1, 0)

[
tm(2, 1)Im

+(τ2) + rm(1, 2)Im
−(τ1)+Jm

+,1(2, 1) + Jm
+,2(2, 1)

]
+ tm(0, 1)Im

−(τ0) + Jm
−,1(0, 1) + Jm

−,2(0, 1) (4.4)

Solving for Im
±(τ1) yields

(a) Im
+(τ1) = [E − rm(1, 2)rm(1, 0)]−1[tm(2, 1)Im

+(τ2) + rm(1, 2)tm(0, 1)Im
−(τ0)

+ rm(1, 2)[Jm
−,1(0, 1) + Jm

−,2(0, 1)] + Jm
+,1(2, 1) + Jm

+,2(2, 1)]

(b) Im
−(τ1) = [E − rm(1, 0)rm(1, 2)]−1[rm(1, 0)tm(2, 1)Im

+(τ2) + tm(0, 1)Im
−(τ0)

+ rm(1, 0)[Jm
+,1(2, 1) + Jm

+,2(2, 1)] + Jm
−,1(0, 1) + Jm

−,2(0, 1)]

(4.5)

where E is the unit matrix.
It is important to realize that (4.5a,b) contain the optical properties of both

sublayers (0, 1) and (1, 2) only, but none of layer (0, 2). This fact can be used
to derive the so-called addition theorems for the optical properties of the layer
(0, 2). Substituting Im

+(τ1) from (4.5a) into (4.1a) and Im
−(τ1) from (4.5b) into (4.2b)

yields

(a) Im
+(τ0) = tm(1, 0)[E − rm(1, 2)rm(1, 0)]−1tm(2, 1)Im

+(τ2)

+ tm(1, 0)[E − rm(1, 2)rm(1, 0)]−1rm(1, 2)tm(0, 1)Im
−(τ0)

+ tm(1, 0)[E−rm(1, 2)rm(1, 0)]−1rm(1, 2)[Jm
−,1(0, 1)+Jm

−,2(0, 1)]

+ tm(1, 0)[E − rm(1, 2)rm(1, 0)]−1[Jm
+,1(2, 1) + Jm

+,2(2, 1)]

+ rm(0, 1)Im
−(τ0) + Jm

+,1(1, 0) + Jm
+,2(1, 0)

(b) Im
−(τ2) = tm(1, 2)[E − rm(1, 0)rm(1, 2)]−1rm(1, 0)tm(2, 1)Im

+(τ2)

+ tm(1, 2)[E − rm(1, 0)rm(1, 2)]−1tm(0, 1)Im
−(τ0)

+ tm(1, 2)[E−rm(1, 0)rm(1, 2)]−1rm(1, 0)[Jm
+,1(2, 1)+Jm

+,2(2, 1)]

+ tm(1, 2)[E − rm(1, 0)rm(1, 2)]−1[Jm
−,1(0, 1) + Jm

−,2(0, 1)]

+ rm(2, 1)Im
+(τ2) + Jm

−,1(1, 2) + Jm
−,2(1, 2)

(4.6)
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Comparison of these expressions with (4.3a,b) gives the required optical properties
for the combined layer (0, 2)

tm(0, 2) = tm(1, 2)[E − rm(1, 0)rm(1, 2)]−1tm(0, 1)

tm(2, 0) = tm(1, 0)[E − rm(1, 2)rm(1, 0)]−1tm(2, 1)

rm(0, 2) = rm(0, 1) + tm(1, 0)[E − rm(1, 2)rm(1, 0)]−1rm(1, 2)tm(0, 1)

rm(2, 0) = rm(2, 1) + tm(1, 2)[E − rm(1, 0)rm(1, 2)]−1rm(1, 0)tm(2, 1)

(4.7)

and

Jm
−,1(0, 2) = Jm

−,1(1, 2) + tm(1, 2)[E − rm(1, 0)rm(1, 2)]−1

× [
Jm

−,1(0, 1) + rm(1, 0)Jm
+,1(2, 1)

]
Jm

−,2(0, 2) = Jm
−,2(1, 2) + tm(1, 2)[E − rm(1, 0)rm(1, 2)]−1

× [
Jm

−,2(0, 1) + rm(1, 0)Jm
+,2(2, 1)

]
Jm

+,1(2, 0) = Jm
+,1(1, 0) + tm(1, 0)[E − rm(1, 2)rm(1, 0)]−1

× [
Jm

+,1(2, 1) + rm(1, 2)Jm
−,1(0, 1)

]
Jm

+,2(2, 0) = Jm
+,2(1, 0) + tm(1, 0)[E − rm(1, 2)rm(1, 0)]−1

× [
Jm

+,2(2, 1) + rm(1, 2)Jm
−,2(0, 1)

]

(4.8)

It is clear that the above formulas can be generalized to state the addition formulas
of two arbitrary adjacent layers (i, i + 1), (i + 1, i + 2) by the substitutions 0 → i ,
1 → i + 1, 2 → i + 2.1

The physical interpretation of the inverse matrix A = [E − rm(1, 2)rm(1, 0)]−1

occurring in (4.6a) will be demonstrated by means of Figure 4.3. It should be
observed that the inverse matrix can be developed analogously to the scalar
expression

1

1 − x
= 1 + x + x2 + x3 + . . . , |x | < 1 (4.9)

i.e. A can formally be developed as the infinite series

A =
∞∑

k=0

[rm(1, 2)rm(1, 0)]k (4.10)

The series of matrix products converges if the eigenvalues λk of A fulfill the condi-
tion |λk | < 1, for more details see Gantmacher (1986). Summing up the individual
contributions of the multiple reflections between the two sublayers in Figure 4.3

1 Note that tm (i, i + 1), rm (i, i + 1) represent (s × s) matrices for the transmission and reflection of downward
radiation incident at level i.
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Im+ ( )
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rm

rm tm

tmtm

rm

rm rm rm

rm tm(2, 1)Im+ ( )

(1, 0) (2, 1)Im+ ( )

(1, 2) (1, 0) (2, 1)Im+ ( )

(1, 0) (1, 2) (1, 0) (2, 1)Im+ ( )

[ (1, 2) (1, 0)]2 (2, 1)Im+ ( )
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τ2
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τ1

τ2

Fig. 4.3 Physical interpretation of the matrix A = [E − rm(1, 2)rm(1, 0)]−1 as an
infinite sum of successive reflections between layer (0, 1) and layer (1, 2).

is equivalent to the expansion terms given in (4.10) pre-multiplying the expression
tm(2, 1)Im

+(τ2) in (4.6a).

4.1.2 The optical properties of a homogeneous elementary layer

So far we have not determined the optical properties of a homogeneous elementary
layer. This layer is required to be sufficiently thin so that the photons entering this
layer will experience primary scattering only. In admitting only primary scattering,
the optical transmission, reflection and emission properties of the layer can be
directly extracted from the RTE (2.104). For �τ = τ1 − τ0 	 1, the left-hand side
of (2.104) can be written in finite difference form as

d

dτ


 Im

+(τ )

Im
−(τ )


 ≈ 1

�τ


 Im

+(τ1) − Im
+(τ0)

Im
−(τ1) − Im

−(τ0)


 (4.11)

with τ0 < τ1 and τ = (τ0 + τ1)/2.
Equations (4.1a,b) can be used to express the difference of the upwelling and

downwelling radiances at levels τ1 and τ0 so that we obtain

1

�τ

(
Im
+(τ1) − Im

+(τ0)
Im
−(τ1) − Im

−(τ0)

)
= 1

�τ

(
E − tm(1, 0) −rm(0, 1)

rm(1, 0) tm(0, 1) − E

)(
Im
+(τ1)

Im
−(τ0)

)

+ 1

�τ

(−Jm
+,1(1, 0) − Jm

+,2(1, 0)
Jm

−,1(0, 1) + Jm
−,2(0, 1)

)
(4.12)
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By comparing (4.11) and (4.12) with the RTE (2.104) we find explicit expressions
for the optical matrices tm(0, 1), tm(1, 0), rm(1, 0), rm(0, 1), and for the source
vectors Jm

+,1(0, 1), Jm
−,1(0, 1), Jm

+,2(1, 0), and Jm
−,2(0, 1)

tm(0, 1) = tm(1, 0) = E − I�m
++�τ = F + ω0

2
�τM

−1
P

m
++W

rm(0, 1) = rm(1, 0) = I�m
+−�τ = ω0

2
�τM

−1
P

m
+−W

Jm
+,1(1, 0) = ω0

4π
�τ S(τ0) exp

(
−�τ

µ0

)
M

−1




Rm(µ1, −µ0)
...

Rm(µs, −µ0)




Jm
−,1(0, 1) = ω0

4π
�τ S(τ0) exp

(
−�τ

µ0

)
M

−1




Rm(−µ1, −µ0)
...

Rm(−µs, −µ0)




Jm
+,2(1, 0) = Jm

−,2(0, 1) = �τ (1 − ω0)B(τ )δ0mM
−1




1
...

1




(4.13)

where we have used the definitions (2.96) and (2.105). Furthermore, the
abbreviation

F = E − M
−1�τ =

((
1 − �τ

µi

)
δi j

)
≈
(

exp

[
−�τ

µi

]
δi j

)
(4.14)

has been introduced. It is important to recall that in the homogeneous elementary
layer with optical depth �τ only single scattering is assumed to take place. Numer-
ical experimentation shows that a choice of �τ � 2−15 is sufficiently small so that
the single scattering approximation holds.

4.1.3 The doubling algorithm

The addition theorems for the optical properties (4.7) and (4.8) can be used to build
up the optical properties of an arbitrarily thick homogeneous layer. This is done in
the following way.

We start with a homogeneous elementary layer (0, 1). Assuming that this layer
is small enough so that only single scattering takes place, the optical properties of
this layer are given by (4.13). Now we construct the layer (0, 2) by adding to (0, 1)
the layer (1, 2) having the same optical properties as (0, 1). Since the layers are
homogeneous and their optical properties are identical, the addition theorems (4.7)
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and (4.8) reduce to

tm(0, 2) = tm(2, 0) = tm(0, 1)[E − rm(0, 1)rm(0, 1)]−1tm(0, 1)

rm(0, 2) = rm(2, 0) = rm(0, 1) + tm(0, 1)[E−rm(0, 1)rm(0, 1)]−1rm(0, 1)tm(0, 1)

with (4.15)

tm(0, 1) = tm(1, 0) = tm(1, 2) = tm(2, 1)

rm(0, 1) = rm(1, 0) = rm(1, 2) = rm(2, 1)

and

Jm
−,1(0, 2) = Jm

−,1(1, 2) + tm(0, 1)[E − rm(0, 1)rm(0, 1)]−1

× [
Jm

−,1(0, 1) + rm(0, 1)Jm
+,1(2, 1)

]
Jm

−,2(0, 2) = Jm
−,2(0, 1) + tm(0, 1)[E − rm(0, 1)rm(0, 1)]−1

× [
Jm

−,2(0, 1) + rm(0, 1)Jm
+,2(1, 0)

]
Jm

+,1(2, 0) = Jm
+,1(1, 0) + tm(0, 1)[E − rm(0, 1)rm(0, 1)]−1

× [
Jm

+,1(2, 1) + rm(0, 1)Jm
−,1(0, 1)

]
Jm

+,2(2, 0) = Jm
+,2(1, 0) + tm(0, 1)[E − rm(0, 1)rm(0, 1)]−1

× [
Jm

+,2(1, 0) + rm(0, 1)Jm
−,2(0, 1)

]
with

Jm
+,1(2, 1) = Jm

+,1(1, 0) exp

(
−τ1 − τ0

µ0

)

Jm
−,1(1, 2) = Jm

−,1(0, 1) exp

(
−τ1 − τ0

µ0

)
Jm

+,2(2, 1) = Jm
+,2(1, 0)

Jm
−,2(1, 2) = Jm

−,2(0, 1)

(4.16)

Sometimes these addition theorems are called the star-product algorithm. No
distinction has been made between the upward and downward transmission and
reflection matrices as well as for the thermal source vectors. Only the expressions
Jm

+,1(2, 1) and Jm
−,1(1, 2) involving primary scattering require a special distinction.

The optical properties of layer (0, 4) are obtained by adding to (0, 2) the layer
(2, 4) having the same optical properties as layer (0, 2). Layer (0, 8) is obtained by
adding layers (0, 4) and (4, 8) where again layer (4, 8) has the same optical proper-
ties as (0, 4). This process is continued until the final thickness of the homogeneous
layer is reached.

Figure 4.4 illustrates the adding and doubling procedure. One may easily see that
after l doubling steps one arrives at a homogeneous layer with total optical depth
2l(0, 1), that is after 15 doubling steps a layer with optical depth 1 is generated
if the thickness of the starting layer is (0, 1) = τ1 − τ0 = 2−15. In the case of a
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(0, 1)

(0, 2) = 2(0, 1)

(0, 4) = 4(0, 1)

(0, 8) = 8(0, 1)

Fig. 4.4 The doubling algorithm for homogeneous layers.

homogeneous cloud with a typical optical thickness of 32, only five additional
doubling steps are required. Since the final layer is required to be homogeneous it
must also be isothermal in order to specify the thermal emission.

4.1.4 Inhomogeneous atmospheres

Each vertically inhomogeneous atmosphere can be well approximated by N sub-
layers of varying optical properties and thermal structure. Each of these, however, is
homogeneous and isothermal. Let τN denote the total optical depth of such an atmo-
sphere. Reflection of radiation at the ground can be treated by means of an additional
fictitious layer (N , N + 1) to which the following special properties are assigned

tm(N , N + 1) = tm(N + 1, N ) = 0

rm(N , N + 1) = rm
g

rm(N + 1, N ) = 0

Jm
−,1(N , N + 1) = Jm

−,2(N , N + 1) = 0

Jm
+,1(N + 1, N ) = Agµ0

π
S0 exp

(
−τN

µ0

)
δ0m




1
...

1




Jm
+,2(N + 1, N ) = (1 − Ag)Bgδ0m




1
...

1




(4.17)
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Here Bg and Ag are the thermal emission of the ground and the albedo of the
isotropically reflecting ground, respectively. The assumption of isotropic ground
reflection leads to the following form of the (s × s) reflection matrix rm

g

rm
g = 2Ag




µ1w1 . . . µsws
...

. . .
...

µ1w1 . . . µsws


 δ0m (4.18)

Note that for isotropy the reflection matrix rm
g is independent of the azimuthal

expansion index m. The derivation of this particular form for rm
g will be given in

the Appendix to this chapter.
In addition to the reflection at the ground we need to specify the boundary

conditions for the diffuse radiation at the top of the atmosphere and at the ground.
Usually, external diffuse illumination will be ignored, that is

Im
−(τ = 0) = 0, Im

+(τN+1) = 0, Im
−(τN+1) = 0 (4.19)

In the following we will summarize the main steps of the MOM. The algorithm
proceeds in the following way.

(1) Calculation of the optical properties.
(i) First calculate the optical properties of the elementary layers by means of (4.13).

(ii) Utilizing the adding and doubling formulas (4.15) and (4.16), the optical properties
of all homogeneous sublayers (i, i + 1), i = 0, . . . , N are calculated.

(iii) The optical properties of the combined layer (0, 2) are calculated by means of (4.7)
and (4.8).

(iv) The combined layer (0, 3) is obtained by again applying the addition theorems
(4.7) and (4.8) to the sublayers (0, 2) and (2, 3).

(v) This procedure is continued until the optical properties of all required combinations
of sublayers (i, j), i = 0, . . . , N , j = 0, . . . , N are determined.

(vi) Utilizing the special properties of the fictitious layer (N , N + 1) as listed in (4.17),
the optical properties of the total layer (0, N + 1) are obtained by replacing in (4.7)
and (4.8) 1 → N and 2 → N + 1. This yields

tm(N + 1, 0) = 0, tm(0, N + 1) = 0

rm(0, N + 1) = rm(0, N ) + tm(N , 0)
[
E − rm

g rm(N , 0)
]−1

rm
g tm(0, N )

rm(N + 1, 0) = 0

Jm
−,1(0, N + 1) = 0, Jm

−,2(0, N + 1) = 0

Jm
+,1(N + 1, 0) = Jm

+,1(N , 0) + tm(N , 0)
[
E − rm

g rm(N , 0)
]−1

× [
Jm

+,1(N + 1, N ) + rm
g Jm

−,1(0, N )
]

Jm
+,2(N + 1, 0) = Jm

+,2(N , 0) + tm(N , 0)
[
E − rm

g rm(N , 0)
]−1

× [
Jm

+,2(N + 1, N ) + rm
g Jm

−,2(0, N )
]

(4.20)
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(2) Calculation of the radiances.
Replacing in (4.1b) and (4.2a) 1 → i we may formally write

Im
+(τi ) = α+(τi )Im

+(τi+1) + β+(τi )Im
−(τi ) + γ+(τi )

Im
−(τi ) = α−(τi )Im

+(τi ) + β−(τi )Im
−(τi−1) + γ−(τi )

(4.21)

The terms α±(τi ), β±(τi ), γ±(τi ) are functions of the optical properties of the medium
which have been determined in part (1) of the procedure, i.e. they are known quantities.
Writing (4.21) for i = 0, . . . , N + 1 we obtain a system of 2(N + 2) equations for
the radiances I±(τi ), i = 0, . . . , N + 1. Utilizing the boundary conditions (4.19) this
system may be solved by means of standard methods of linear algebra.

Finally, we list various properties of the MOM.

(1) MOM can be applied to layers with arbitrary large optical thickness.
(2) MOM offers high accuracy so that it can be used to compute benchmark results for

testing simpler techniques.
(3) MOM requires a significant amount of computer time due to the numerous inversions

and matrix-vector multiplications. This is particularly true if the radiance field needs
to be calculated at all interior levels.

(4) MOM can be extended by known methods to account for polarization effects.

The mathematical development as described above in large parts follows the
work of Plass et al. (1973). Numerous other authors have also contributed to the
development of the matrix operator method, for details see Lenoble (1985).

4.2 The successive order of scattering method

As already mentioned at the beginning of this chapter, the solutions (2.110) of the
radiative transfer equation are only formal because the source functions J± them-
selves are functions of the radiances I±. However, this fact might be a motivation
to construct an iterative solution of the RTE. For this iterative approach we first
define the following vectors

(a) Ym
+(τ ) = exp

[− M
−1(τN − τ )

]
Im
+(τN )

+
∫ τN

τ

exp[−M
−1(τ ′ − τ )]M−1[Jm

+,1(τ ′) + Jm
+,2(τ ′)

]
dτ ′

(b) Ym
−(τ ) = exp(−M

−1τ )Im
−(0)

+
∫ τ

0
exp[−M

−1(τ − τ ′)]M−1[Jm
−,1(τ ′) + Jm

−,2(τ ′)
]
dτ ′

(4.22)

The source vectors J±,1, J±,2 are given by (2.96). From these expressions it is
seen that Ym

+ and Ym
− contain only those quantities that are fixed with respect to



4.2 The successive order of scattering method 93

the iteration process, namely the boundary conditions, the primary solar scattering
term and the thermal emission.

For the remaining contributions to the formal solution (2.110) we define

(a) Qm
+[τ, Im

+(τ ), Im
−(τ )] = 1

2

∫ τN

τ

ω0 exp[−M
−1(τ ′ − τ )]M−1

× [Pm
++(τ ′)W Im

+(τ ′) + P
m
+−(τ ′)W Im

−(τ ′)]dτ ′

(b) Qm
−[τ, Im

+(τ ), Im
−(τ )] = 1

2

∫ τ

0
ω0 exp[−M

−1(τ − τ ′)]M−1

× [Pm
+−(τ ′)W Im

+(τ ′) + P
m
++(τ ′)W Im

−(τ ′)]dτ ′

(4.23)

where use was made of (2.103). Utilizing these equations the formal solution of the
RTE can now be written as

Im
+(τ ) = Ym

+(τ ) + Qm
+
[
τ, Im

+(τ ), Im
−(τ )

]
Im
−(τ ) = Ym

−(τ ) + Qm
−
[
τ, Im

+(τ ), Im
−(τ )

] (4.24)

For these equations we can set up an iteration process by defining

Im
+(τ )n = Im

+(τ )n=0 + Qm
+
(
τ, Im

+(τ )n−1, Im
−(τ )n−1

)
Im
−(τ )n = Im

−(τ )n=0 + Qm
−
(
τ, Im

+(τ )n−1, Im
−(τ )n−1

)
, n ≥ 1

(4.25)

where n is the iteration step. For the starting value n = 0 we have

Im
+(τ )n=0 = Ym

+(τ ), Im
−(τ )n=0 = Ym

−(τ ) (4.26)

Equations (4.25) and (4.26) are known as the successive order of scattering (SOS)
method of radiative transfer.

Equation (4.25) is based on the following method of solution. Consider the
integral equation

y(x) = g(x) +
∫ x

x0

f [t, y(t)] dt (4.27)

A solution of this integral equation can be found by successive iteration. Let n
represent the iteration step then

y(n) = y(n=0)(x) +
∫ x

x0

f [t, y(n−1)(t)] dt , n ≥ 1

with y(n=0)(x) = g(x)
(4.28)

The boundary conditions in (4.25) can be treated in the following manner.
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(1) At the upper boundary of the medium we assume that no diffuse radiation enters

Im
−(τ = 0) = 0 (4.29)

(2) At the lower boundary we again adopt an isotropically reflecting ground with albedo
Ag. The diffusely reflected radiation can then be expressed as

Im
+(τ = τN ) = rm

g Im
−(τN ) + Ag

π
δ0mµ0S0 exp

(
− τ

µ0

)
1
...

1


+ Bg(1 − Ag)δ0m




1
...

1




(4.30)

where rm
g is the reflection matrix of the ground, see (4.18).

The individual contributions in (4.30) can be interpreted in the following way.

(1) The first term on the right represents the isotropic reflection of the diffuse light Im
−(τN )

which is incident at the ground.
(2) The second term stands for the isotropic reflection of the direct sunlight.
(3) The third term accounts for the black body emission Bg of the ground with temperature

Tg.

The azimuthally dependent radiance field can be reconstructed with the help of
(2.106). For the flux densities the expansion term m = 0 is required only.

In the successive order of scattering (SOS) method the first and the n-th iteration
step can be interpreted as follows.

(1) For n = 1 in (4.25) the radiance vectors Im
±(τ )n=0 include:

(i) the influence of the boundary conditions;
(ii) primary scattering of the direct sunlight;

(iii) the isotropic thermal emission of each layer.
(2) The source vectors Qm

±(τ, Im
±(τ )1) include:

(i) secondary scattered sunlight;
(ii) primary scattered thermal radiation.

(3) In going from iteration step n to step n + 1 one more scattering process is simulated.

The iteration is continued until convergence is achieved, i.e. the changes in the
radiance vectors remain below a certain tolerance.

The convergence properties of the SOS method depend primarily on:

(1) the total optical depth of the medium;
(2) the total number of terms considered in the expansion of the phase function;
(3) the inhomogeneity of the optical parameters within the medium;
(4) the total number s of discrete directions for representing the vectors Im

±.

The SOS method has the following two advantages over the MOM.
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(1) Each iteration step has a physical significance, i.e. each additional iteration means that
one additional scattering process is simulated.

(2) The inhomogeneity of the optical parameters can be easily handled, that is – in contrast
to the MOM – an a priori subdivision of the atmosphere into different individual
homogeneous sublayers is not necessary.

However, the SOS method has the disadvantage of requiring a large number of
iteration steps thus converging very slowly. This is particularly true if the medium
is practically conservative (ω0 → 1) or if it has a very large optical thickness. In
these situations, however, techniques for speeding up the convergence process may
partly eliminate the problem.

The SOS method in the form described above follows an unpublished lecture
given by Z. Sekera. A detailed description is given in Korb and Zdunkowski (1970).
A fairly complete list of references for SOS may be found in Lenoble (1985).

4.3 The discrete ordinate method

The discrete ordinate method (DOM) is another very elegant approach for solving
the RTE in a plane–parallel atmosphere. It also belongs to the most accurate tech-
niques and may be used for calculating benchmark solutions to certain problems.
The formulation of the DOM dates back to Chandrasekhar (1960). Starting point
for the DOM is the discretization of the m-th Fourier mode of the radiance field,
see (2.69).

In the following we discuss the DOM for the azimuthally averaged radiation
field, i.e. for m = 0. Only the case m = 0 is needed to calculate important quantities
such as radiative flux densities, actinic fluxes, and heating rates. Actinic fluxes are
important for photochemistry and result from integrating the radiance over the unit
sphere. The case m �= 0 is needed to account for the directional dependence of
the radiation field as required, for example, in remote sensing. In the sequel, for
I m=0(τ, µ) we will simply write I (τ, µ). From (2.76) it may be seen that for the
case m �= 0 the same procedure applies.

Let us consider a total of 2s directions for discretizing the radiation streams,
that is −1 ≤ µi ≤ 1, i = −s, . . . , −1, 1, . . . , s, as illustrated in Figure 4.5. In the
following it will be shown how to solve analytically the resulting coupled system
of linear differential equations for homogeneous sublayers.

Evaluating (2.76) for m = 0 at the discrete direction µi and approximating the
multiple scattering integral with the help of the Gaussian quadrature (2.88) leads to

µi
d I (τ, µi )

dτ
= I (τ, µi ) − ω0

2

s∑
j=−s

′
w j I (τ, µ j )P(µi , µ j )

− ω0

4π
S0 exp

(
− τ

µ0

)
P(µi , −µ0) − (1 − ω0)B(τ ) (4.31)
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µ = −1

µ = 0

µ = 1
z

−1

−i

−
s

1

i

s

Fig. 4.5 Discretization of I (τ, µ) in a total of 2s streams.

where the azimuthally averaged phase function P(µ, µ′) has been used as defined
in (2.80). For practical reasons the infinite series in (2.80) must be truncated after a
sufficient number of terms. The special case that the direction µ0 of the direct solar
beam coincides with one of the quadrature directions must be avoided, otherwise
singularities would occur.

From (2.88) it may be easily seen that the Gaussian quadrature of order r is exact
on the interval [−1, 1] for Legendre polynomials Pm(µ), m = 0, 1, . . . , 2r − 1,
that is∫ 1

−1
Pm(µ) dµ =

r∑
i=1

wi Pm(µi ) = 2δ0m , m = 0, 1, . . . , 2r − 1 (4.32)

An important consequence of this is that the normalization condition of the phase
function (2.62) is also satisfied in its discretized version when developing this
function into a finite series of Legendre polynomials which is truncated after the
term l = 2r − 1. We will now demonstrate this. Starting with (2.68) we find the
following expression

P(cos �) =
2r−1∑
l=0

pl Pl(cos �)

=
2r−1∑
l=0

pl Pl(µ)Pl(µ
′) + 2

2r−1∑
m=1

2r−1∑
l=m

pm
l Pm

l (µ)Pm
l (µ′) cos m(ϕ − ϕ′)

= P(µ, µ′) + 2
2r−1∑
m=1

2r−1∑
l=m

pm
l Pm

l (µ)Pm
l (µ′) cos m(ϕ − ϕ′) (4.33)
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To see that there is no need to renormalize the phase function in DOM, consider
the quadrature form of the normalization condition as applied to P(µ, µ′)

1

2

∫ 1

−1
P(µ, µ′) dµ′ = 1

2

r∑
i=1

wiP(µ, µi )

= 1

2

r∑
i=1

wi

2r−1∑
m=0

pm Pm(µ)Pm(µi )

= 1

2

2r−1∑
m=0

pm Pm(µ)
r∑

i=1

wi Pm(µi ) (4.34)

= 1

2

2r−1∑
m=0

pm Pm(µ)
∫ 1

−1
Pm(µ) dµ

=
2r−1∑
m=0

pm Pm(µ)δ0m = 1

As demonstrated by Wiscombe (1977), the above property also holds for the
so-called δ-scaled phase function P∗(µ, µ′) as defined by

P∗(µ, µ′) = 2 f δ(µ − µ′) + (1 − f )
2r−1∑
m=0

p∗
m Pm(µ)Pm(µ′) (4.35)

if it is truncated after the term l = 2r − 1. The quantity f is the fraction of radiation
scattered into the forward peak of the phase function. We refrain from proving this
equation since the proof is carried out analogously to the development leading to
(4.34). Note also that pm �= p∗

m . The δ-scaled phase function will be discussed in
more detail in a later chapter.

If the expansion of the phase function is continued beyond 2r − 1 then the phase
function is no longer correctly normalized so that artificial absorption may occur as
pointed out by Wiscombe (1977). It is important to realize that the normalization of
the phase function is a basic requirement for the numerical algorithm to be energy
conserving.

An additional comment is due regarding an improved discretization of the
term I (τ, µ) = ∫ 1

−1 I (τ, µ′)P(µ, µ′) dµ′. The ordinary Gaussian quadrature, used
before, reads ∫ 1

−1
I (τ, µ′)P(µ, µ′) dµ′ ≈

n∑
i=−n

′
wi I (τ, µi )P(µ, µi ) (4.36)

For increasing quadrature order n the nodes µi still cluster near µ = 1 and µ = −1,
but only a few nodes are located near the horizon µ = 0. Therefore, for strongly
anisotropic phase functions the accuracy of the radiance field does not improve
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significantly by simply increasing the number of nodes. In order to improve this
situation one can use a simple trick by splitting the integration over [−1, 1] into
the subintervals [−1, 0] and [0, 1]. By using the transformations µ̃ = 2µ + 1 for
the interval [−1, 0] and µ̃ = 2µ − 1 for the interval [0, 1] and applying a s-point
Gaussian quadrature, we can write for integrals of the type

∫ 1

−1
f (µ) dµ = 1

2

∫ 1

−1
f

(
µ̃ − 1

2

)
dµ̃ + 1

2

∫ 1

−1
f

(
µ̃ + 1

2

)
dµ̃

≈ 1

2

s∑
i=1

wi

[
f

(
µ̃i − 1

2

)
+ f

(
µ̃i + 1

2

)] (4.37)

Figure 4.6 illustrates how the ordinary s-point Gaussian quadrature for the vari-
able µ̃ is mapped onto the intervals [−1, 0] and [0, 1] for the variable µ. The latter
nodes are now symmetric with respect to the locations µ = −0.5 and µ = 0.5 and
cluster near the end points of each interval. It can also be seen that the nodes µi are
antisymmetric with respect to µ = 0.

The zeros and weights of the Legendre polynomials occurring in (4.37) have the
following properties

µ̃i = −µ̃s+1−i , wi = ws+1−i , i = 1, . . . , s (4.38)

Utilizing these expressions together with the substitution µ′
i = (µ̃i + 1)/2, the

right-hand side of (4.37) may be written as

1

2

s∑
i=1

wi

[
f

(
µ̃i − 1

2

)
+ f

(
µ̃i + 1

2

)]

= 1

2

s∑
i=1

wi

[
f

(
− µ̃s+1−i + 1

2

)
+ f

(
µ̃i + 1

2

)]

= 1

2

s∑
i=1

ws+1−i f
(−µ′

s+1−i

)+ 1

2

s∑
i=1

wi f
(
µ′

i

)
= 1

2

s∑
i=1

wi
[

f
(−µ′

i

)+ f
(
µ′

i

)]
(4.39)

Introducing the nodes µ′
i and weights w′

i according to

w′
i = 1

2
wi , w′

−i = w′
i ,

µ′
i = µ̃i + 1

2
, µ′

−i = −µ′
i ,

i = 1, . . . , s (4.40)
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˜

Fig. 4.6 The double-Gaussian quadrature rule. The dots mark the locations of the
quadrature nodes for i = 1, . . . , s.

results in the so-called double-Gaussian quadrature of order 2s

∫ 1

−1
f (µ) dµ ≈

s∑
i=−s

′
w′

i f (µ′
i ) (4.41)

Recall that the notation
∑′ means that in the summation the term i = 0 is omitted.

Hence for the 2s-point double-Gaussian quadrature formula only the nodes and
zeros (wi , µi ) of the original s-point Gaussian quadrature formula are needed.
The advantage of the double-Gaussian quadrature formulas is that the nodes are
not only clustered in both the upward and downward directions but also near the
horizon.

Let us now find the solution to the RTE for the special case that no thermal
emission exists, B(τ ) = 0. Inclusion of this term, however, poses no particular
difficulty. The treatment of thermal emission will be taken care of in a later chapter.
For a layer with constant optical properties the inhomogeneous system of linear
differential equations (4.31) can be solved exactly. The solution is composed of
the general solution of the homogeneous system plus a particular solution of the
inhomogeneous part. First let us define the set of coefficients

bi, j =




− 1

µi

ω0

2
w jP(µi , µ j ) i �= j

1

µi

[
1 − ω0

2
w jP(µ j , µ j )

]
i = j

(4.42)

These coefficients satisfy the asymmetry relations

bi, j = −b−i,− j , bi,− j = −b−i, j (4.43)
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The homogeneous part of (4.31) can then be written as

d I (τ, µi )

dτ
=

s∑
j=−s

′
bi, j I (τ, µ j ) (4.44)

If we distinguish between upwelling and downwelling radiation, then from (4.44)
we obtain

d I (τ, µi )

dτ
=

s∑
j=1

bi, j I (τ, µ j ) +
s∑

j=1

bi,− j I (τ, −µ j )

d I (τ, −µi )

dτ
=

s∑
j=1

b−i, j I (τ, µ j ) +
s∑

j=1

b−i,− j I (τ, −µ j )

(4.45)

which can be written in vector–matrix form as

d

dτ

(
I+
I−

)
=
(

B+ B−
−B− −B+

)(
I+
I−

)
(4.46)

Here the vectors I± and the matrices B± are defined as

I± =




I (τ, ±µ1)
...

I (τ,±µs)


 ,

B+ = (bi, j )

B− = (bi,− j )
,

i = 1, . . . , s

j = 1, . . . , s
(4.47)

With the exponential trial solution

I± = F± exp(−kτ ) (4.48)

involving the vectors F± = (F±,i ), i = 1, . . . , s which are independent of τ , the
homogeneous system (4.46) may be transformed into an eigenvalue problem of
order 2s (

B+ B−
−B− −B+

)(
F+
F−

)
= −k

(
F+
F−

)
(4.49)

Without going into details we need to mention that all eigenvalues occur in pairs
±k (see Chandrasekhar, 1960) and that they are all real (Kuščer and Vidav, 1969).

Due to the particular form of the nonsymmetrical matrices B− and B+ the above
eigenvalue problem of order 2s can be reduced to a corresponding problem of order
s as will be shown next. Adding and subtracting the first and second equation in
(4.49) leads to

(a) (B+ − B−) (F+ − F−) = −k (F+ + F−)

(b) (B+ + B−) (F+ + F−) = −k (F+ − F−)
(4.50)



4.3 The discrete ordinate method 101

If we now multiply (4.50b) by (B+ − B−) and insert on the right-hand side of the
resulting expression (4.50a), we obtain

(B+ − B−) (B+ + B−) (F+ + F−) = k2 (F+ + F−) (4.51)

Thus we obtain an eigenvalue problem of order s involving the matrix (B+ −
B−)(B+ + B−) with eigenvalues k2 and eigenvectors F+ + F−. We may then use
(4.50b) to determine F+ − F−. The eigenvectors F+, F− of the original equation
(4.49) can be found from

X+ = F+ + F−, X− = F+ − F−

F+ = 1

2
(X+ + X−) , F− = 1

2
(X+ − X−)

(4.52)

As mentioned above, the 2s eigenvalues of (4.49) are all distinct and occur in pairs
±k j , ( j = 1, . . . , s). These eigenvalues and the corresponding i-th component of
the j-th eigenvector, F j (µi ), for eigenvalue k j can be efficiently computed with
numerical standard algorithms (see, e.g. Press et al., 1992).

The general solution Ih of the homogeneous system is then given by

Ih(τ, µi ) =
s∑

j=−s

′
D j Fj (µi ) exp(−k jτ ), i = −s, . . . , −1, 1, . . . , s (4.53)

The constants D j , j = −s, . . . , −1, 1, . . . , s follow from the boundary conditions
at the upper and the lower boundary of the homogeneous layer.

A particular solution Ip of the inhomogeneous system can be obtained from a
trial solution resembling the functional form of the right-hand side of (4.31)

Ip(τ, µi ) = Z (µi ) exp

(
− τ

µ0

)
, i = −s, . . . , −1, 1, . . . , s (4.54)

where the 2s unknown coefficients Z (µi ), i = −s, . . . , −1, 1, . . . , s can be found
by inserting (4.54) into (4.31). In summary, for a homogeneous layer the complete
solution of the azimuthally averaged RTE can now be written down by adding the
homogeneous solution (4.53) and the inhomogeneous solution (4.54) yielding

I (τ, µi ) =
s∑

j=−s

′
D j Fj (µi ) exp(−k jτ ) + Z (µi ) exp

(
− τ

µ0

)
(4.55)

So far we have considered the particular case of a single homogeneous layer. The
inhomogeneous atmosphere will now be subdivided into Q different homogeneous
sublayers, see Figure 4.7. The complete solution for each homogeneous sublayer
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ω0,1

ω0,q

 P1

 Pq
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∆τ1

∆τq
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Fig. 4.7 Subdivision of the atmosphere in a total number of Q different homo-
geneous sublayers with optical thickness �τq , single scattering albedo ω0,q ,
and phase function Pq , q = 1, . . . , Q. The albedo of the diffusely reflecting
ground is Ag.

is already known from (4.55). For layer q we now write

Iq(τ, µi ) =
s∑

j=−s

′
Dq, j Fq, j (µi ) exp[−kq, j (τ − τq−1)] + Zq(µi ) exp

(
− τ

µ0

)
(4.56)

with 1 ≤ q ≤ Q. Note that in the homogeneous part of the solution the integration
constants Dq, j , the eigenvalues kq, j , the components of the eigenvectors Fq, j , and
the constants Zq of the particular solution refer to layer number q. It is also clear
that the solution (4.56) is only valid for the optical depth τq−1 ≤ τ ≤ τq .

In total 2s Q equations are required to determine the integration constants Dq, j .
Two of these equations are given by the specification of the boundary conditions at
τ = 0 and τ = τQ . Assuming isotropic reflection at the ground with albedo Ag we
obtain

I1(τ = 0, −µi ) = 0

IQ(τQ, µi ) = Ag

π

[
E−,z(τQ) + µ0S0 exp

(
−τQ

µ0

)]

= Ag

π

[
2π

s∑
j=1

w j IQ(τQ, −µ j )µ j + µ0S0 exp

(
−τQ

µ0

)]
, i = 1, . . . , s

(4.57)

The upwelling radiance at the ground is assumed to be isotropic and, therefore,
is identical for all directions µi as expressed by the last equation of (4.57). The
remaining 2(s − 1)Q equations are determined by the requirement that the radiance
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for each µi must be continuous at each level interface τq , (q = 1, . . . , Q − 1), i.e.

Iq(τq, µi ) = Iq+1(τq, µi ), q = 1, . . . , Q − 1, i = −s, . . . , −1, 1, . . . , s
(4.58)

Inserting the complete solution as stated by (4.56) into relations (4.57) and (4.58)
then leads to a linear system for the coefficients Dq,i

s∑
j=−s

′
D1, j F1, j (−µi ) = −Z1(−µi ), i = 1, . . . , s

s∑
j=−s

′
[Dq, jγq, j (µi ) − Dq+1, j Fq+1, j (µi )] = ηq(µi ),

i = 1, . . . , s
q = 1, . . . , Q − 1

s∑
j=−s

′
DQ, jβ j (µi ) = −ε(µi ), i = 1, . . . , s

(4.59)

where the following abbreviations have been introduced

γq, j (µi ) = Fq, j (µi ) exp[−kq, j (τq − τq−1)]

ηq(µi ) = [Zq+1(µi ) − Zq(µi )] exp

(
− τq

µ0

)

β j (µi ) =
(

FQ, j (µi ) − 2Ag

s∑
l=1

wl FQ,l(−µl)µl

)
exp[−kQ, j (τQ − τQ−1)]

ε(µi ) =
(

Z Q(µi ) − 2Ag

s∑
j=1

w j Z Q(−µ j )µ j − Ag

π
µ0S0

)
exp

(
−τQ

µ0

)
(4.60)

The linear equation system (4.59) may also be written in matrix form as

KD = X (4.61)

K is a square matrix of dimension (2s Q × 2s Q), and the vectors D and X are 2sQ-
dimensional. From this system of linear equations for 2s Q unknown coefficients
we may obtain the required constants of integration Dq, j by numerical inversion.

The major advantages and disadvantages of the DOM are listed here.

(1) The solution of the RTE can be derived in a completely explicit form.
(2) The computational effort for each individual layer is independent of its optical depth.
(3) The accuracy of the method compares well with the MOM and, therefore, DOM can

also be used to perform benchmark calculations.
(4) Unless one uses a δ-approximation to the phase function, see (4.35), sharp phase func-

tions may produce unrealistic oscillating radiance patterns.
(5) DOM is computationally too expensive for routine calculations in climate models.
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The DOM in the form described above mainly follows the derivation given in
Stamnes et al. (1988). These authors also supplied the very reliable programme
package DISORT to the scientific community, a package which is widely used
for various applications. The discretization of the radiance field into streams trav-
eling along the directions of the Gaussian quadrature nodes is fully described in
Chandrasekhar (1960). Important developments regarding both the algorithmic for-
mulation of the DOM for an inhomogeneous atmosphere as well as the correct
evaluation of the numerical eigenvalue-eigenvector problem have been contributed
by Liou (1973) and Asano (1975).

4.4 The spherical harmonics method

In this section we will discuss the principles of the spherical harmonics method
(SHM) and illustrate the solution of the radiance field for a homogeneous atmo-
spheric layer. The SHM employs the transfer equation (2.76) which is based on the
cosine Fourier expansion of the radiance

I (τ, µ, ϕ) =
�∑

m=0

(2 − δ0m)I m(τ, µ) cos mϕ (4.62)

There are several equivalent ways of separating the µ and τ dependencies. Here
we choose the following expansion

I m(τ, µ) =
M∑

l=m

2l + 1

2
I m
l (τ )Pm

l (µ) (4.63)

with M = 2p − 1 + m, where p is chosen as the smallest integer number that fulfills
the condition 2p − 1 + m ≥ �. Recall also that, according to (2.59a), Pm

l (µ) = 0
for m > l. Inserting (4.63) into (2.76) and employing the integral operation∫ 1

−1
. . . Pm

n (µ) dµ (4.64)

leads to a system of � + 1 ordinary inhomogeneous linear differential equations.
Each such system contains 2p = M + 1 − m differential equations for the deter-
mination of the unknown functions I m

l (τ ) and has the form

(l + m + 1)
d I m

l+1(τ )

dτ
+ (l − m)

d I m
l−1(τ )

dτ
+ [ω0 pl − (2l + 1)] I m

l (τ )

= − ω0

2π
S0 exp

(
− τ

µ0

)
pm

l Pm
l (−µ0) − 2(1 − ω0)B(τ )δ0mδ0l (4.65)
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with m = 0, 1, . . . , � and l = m, m + 1, . . . , M . In order to have as many
unknowns I m

l as equations we require

I m
m−1(τ ) = 0, I m

M+1(τ ) = 0 (4.66)

These two terms appear in (4.65) for l = m and l = M , respectively. Otherwise the
system would be under-determined.

We return to the discussion why there should be an even number (2p) of equations
for the unknown functions I m

l (τ ). From (4.63) we see that the expansion coefficients
I m
l (τ ) fully determine the m-th azimuthal Fourier expansion coefficient I m(τ, µ)

of the radiance function. Considering an inhomogeneous atmosphere consisting of
individual homogeneous sublayers, for each m the radiance function I m(τ, µ) is
required to be a continuous function of µ in the range (−1, 1). Since at the top of a
particular layer we have the same number of determining equations for the incoming
downwelling radiance as for the incoming upwelling radiance at the bottom of that
layer, in total this leads to an even number of equations over the full range of µ.
For further details see also Dave (1975).

It is convenient to introduce the following vector and matrix symbols

Im(τ ) =




I m
m (τ )

I m
m+1(τ )

...

I m
M (τ )


 (4.67)

for m = 0, 1, . . . , �. Note that this column vector has exactly 2p rows. For the
primary scattered sunlight and the thermal emission term, i.e. the terms on the
right-hand side of (4.65), we introduce the 2p-dimensional vector f m(τ ). Further-
more, we need to define two 2p × 2p coefficient matrices A

m , B
m . The first of

these contains the factors in (4.65) multiplying the derivatives with respect to
τ , while the second matrix incorporates the factors premultiplying I m

l . In this
manner we obtain from (4.65) for each Fourier mode m the matrix differential
equation

B
m dIm(τ )

dτ
− A

mIm(τ ) = f m(τ ) (4.68)

The matrix elements of A
m and B

m can be determined as follows: let us consider a
fixed but arbitrary value of m. The first two and the last two equations of the system
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(4.65) are given by

(2m + 1)
d I m

m+1(τ )

dτ
+ [ω0 pm − (2m + 1)] I m

m (τ )

= − ω0

2π
S0 exp

(
− τ

µ0

)
pm

m Pm
m (−µ0) − 2(1 − ω0)B(τ )δ0mδ0m

× (2m + 2)
d I m

m+2(τ )

dτ
+ d I m

m (τ )

dτ
+ [ω0 pm+1 − (2m + 3)] I m

m+1(τ )

= − ω0

2π
S0 exp

(
− τ

µ0

)
pm

m+1 Pm
m+1(−µ0) − 2(1 − ω0)B(τ )δ0mδ0,m+1

...

(M + m)
d I m

M (τ )

dτ
+ (M − 1 − m)

d I m
M−2(τ )

dτ
+ [ω0 pM−1 − (2M − 1)] I m

M−1(τ )

= − ω0

2π
S0 exp

(
− τ

µ0

)
pm

M−1 Pm
M−1(−µ0) − 2(1 − ω0)B(τ )δ0mδ0,M−1

× (M − m)
d I m

M−1(τ )

dτ
+ [ω0 pM − (2M + 1)] I m

M (τ )

= − ω0

2π
S0 exp

(
− τ

µ0

)
pm

M Pm
M (−µ0) − 2(1 − ω0)B(τ )δ0mδ0,M (4.69)

It can be readily seen that the matrix B
m is tridiagonal with zero entries on the

main diagonal. The matrix elements Bm
i,k are given by

Bm
i,i−1 = i − 1, i = 2, . . . , 2p

Bm
i,i+1 = 2m + i , i = 1, . . . , 2p − 1

Bm
i,k = 0

i = 1, . . . , 2p
k �= i − 1, i + 1

(4.70)

Similarly we find for the matrix A
m nonzero entries on the main diagonal

Am
i,k = 0, i �= k,

i = 1, . . . , 2p
k = 1, . . . , 2p

Am
i,i = [2(m + i) − 1] − ω0 pm+i−1, i = 1, . . . , 2p

(4.71)

For the components of the vector f m(τ ) one obtains

f m
i (τ ) = − ω0

2π
S0 exp

(
− τ

µ0

)
pm

i+m−1 Pm
i+m−1(−µ0) − 2(1 − ω0)B(τ )δ0mδ0,i+m−1

i = 1, . . . , 2p (4.72)



4.4 The spherical harmonics method 107

Multiplication of (4.68) by (Bm)−1 and using the abbreviations

G
m = (Bm)−1

A
m , Dm(τ ) = (Bm)−1f m(τ ) (4.73)

yields

dIm(τ )

dτ
− G

mIm(τ ) = Dm(τ ) (4.74)

The solution of this ordinary differential equation is

Im(τ ) = exp
(
G

mτ
)

Cm +
∫ τ

0
exp[Gm(τ − τ ′)]Dm(τ ′)dτ ′ (4.75)

where Cm is the vector of integration constants

Cm =




Cm
1

Cm
2
...

Cm
2p


 (4.76)

It should be noted that the apparently complicated solution (4.75) contains parts
of the boundary conditions. For a homogeneous layer extending between τ = 0
and τ = τ1 we directly obtain at the upper boundary

Im(τ = 0) = Cm (4.77)

which determines the constants of integration after specification of the radiation
incident at τ = 0. For more details the reader may consult the work of Flatau and
Stephens (1988).

There are many ways to evaluate the exponential matrix appearing in (4.75), see
Moler and van Loan (1978). One way is to determine the exponential matrix with
the help of the Jordan matrix J

m in normal form which is defined as

J
m =




λm
1 . . . 0
...

. . .
...

0 . . . λm
2p


 (4.78)

The exponential matrix can be found from

exp(Gmτ ) = P
m exp(Jmτ )(Pm)−1 (4.79)

where P
m is the so-called modal matrix containing the eigenvectors of G

m . The
individual eigenvectors result from the distinct eigenvalues λm

1 , . . . , λm
2p. A simple

discussion on the subject may be found in Bronson (1972).
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However, for systems not too large the Putzer method (Putzer, 1966) provides an
entirely analytical procedure which will be outlined next. The exponential matrix
occurring in (4.75) may be evaluated using the following algorithm

N
m(τ ) = exp(Gmτ ) =

M−m∑
j=0

ηm
j+1(τ )Xm

j (4.80)

In the previous formula we have used the definitions

X
m
0 = E, X

m
j =

j∏
i=1

(
G

m − λm
i E

)
, j = 1, 2, . . . , M + 1 − m (4.81)

where E is the 2p × 2p unit matrix. The λm
i are the eigenvalues of the matrix G

m

which can be determined using standard numerical routines. The scalar coefficients
ηm

1 (τ ), . . . , ηm
M+1−m(τ ) occurring in (4.80) can be recursively determined via the

solution of the following linear system of ordinary differential equations

dηm
1

dτ
= λm

1 ηm
1

dηm
j+1

dτ
= λm

j+1η
m
j+1 + ηm

j , j = 1, . . . , M − m

(4.82)

The initial conditions for this system are given by

ηm
1 (0) = 1, ηm

j+1(0) = 0 (4.83)

Although this method requires solving a system of linear differential equations, it
has a triangular structure. Thus the solutions can be determined in succession.

Using the definition (4.80) we may formally write for the integral term in (4.75)

Hm(τ ) =
∫ τ

0
exp [Gm(τ − τ ′)]Dm(τ ′)dτ ′ =

∫ τ

0
N

m(τ − τ ′)Dm(τ ′)dτ ′ (4.84)

Utilizing (4.80) and (4.84) the solution (4.75) of the m-th differential equation
system may be written as

Im(τ ) = N
m(τ )Cm + Hm(τ ) (4.85)

Alternatively one may write this equation in component form as


I m
m (τ )

...

I m
M (τ )


 =




N m
1,1(τ ) · · · N m

1,2p(τ )
...

. . .
...

N m
2p,1(τ ) · · · N m

2p,2p(τ )






Cm
1
...

Cm
2p


+




H m
1 (τ )
...

H m
2p(τ )


 (4.86)

From this equation we immediately see that for m = 0, 1, . . . , � we have a total
of � + 1 different solutions. For each particular value of m there are in total 2p



4.4 The spherical harmonics method 109

different rows in (4.86). It is noteworthy that for an increasing Fourier mode m the
system of differential equations decreases in size up to the point where for m = M
only a single scalar differential equation has to be solved.

We now return to (4.75) to involve the boundary conditions. The integration
constants Cm

i are determined by first combining the solutions I m
l (τ ) as contained in

(4.63) to obtain the m-th Fourier mode of the radiance. There is no prescribed way to
specify the boundary conditions. A method which has found wide acceptance is the
so-called Marshak boundary condition which will be used in the following. We will
assume that no downwelling diffuse radiation enters at the top of the atmosphere.
For the downwelling and the upwelling radiance fields I m(τ = 0, −µ) and I (τQ, µ)
the following relations must hold

(a)
∫ 0

−1
I m(τ = 0, µ)Pm

m+2 j−1(µ) dµ = 0

(b)
∫ 1

0
I m(τQ, µ)Pm

m+2 j−1(µ) dµ

=
∫ 1

0

[
2Ag

∫ 0

−1
I m(τQ, µ′)µ′dµ′ +

(
Ag

µ0S0

π
exp

(
−τQ

µ0

)

+ (1 − Ag)Bg

)
δ0m

]
Pm

m+2 j−1(µ)dµ (4.87)

where j = 1, 2, . . . , p and m = 0, 1, . . . , �. Note that the scalar version of the
boundary condition (4.30) has already been employed in (4.87b). The integration
constants may be determined using standard numerical algorithms for systems of
linear equations. A vertically inhomogeneous atmosphere is handled as in DOM
by requiring continuity conditions for the radiation field at the interior boundaries
for each layer.

The main advantages and disadvantages of the SHM are listed here.

(1) The solution of the radiance field, to a large degree, can be derived in an analytic
manner.

(2) In contrast to DOM, a discretization of the µ-dependence is not required. Therefore,
the computation time does not increase when the radiance is needed for a large number
of directions µ.

(3) The SHM circumvents the problems involved in integrating the highly oscillatory Pm
l

functions for large l by carrying out these integrations analytically.
(4) The radiances at all depths inside as well as the reflected and transmitted radiation field

may be obtained simultaneously.
(5) An increasing number of directions does not notably change the total computation time.

The same fact applies to the total optical depth of the medium.
(6) The SHM needs less computation time as MOM and SOS if the same amount of

information is required (internal radiation field).
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(7) The SHM is closely related to DOM. Benchmark computations of both methods essen-
tially yield identical results.

(8) As is the case for any exact treatment of the RTE, the computation time drastically
increases with the number of expansion terms (�) in the phase function.

The SHM as formulated above follows the work of Deuze et al. (1973),
Zdunkowski and Korb (1974), and Zdunkowski and Korb (1985). It should also
be emphasized that for a total of four streams and for the azimuthally independent
radiation field (m = 0) very efficient and accurate solutions may be obtained for
fluxes and heating rates, since both the eigenvalue problem as well as the vector
Hm=0(τ ) can be solved analytically. For more details interested readers are directed
to the work of Li and Ramaswamy (1996) and Zdunkowski et al. (1998).

4.5 The finite difference method

The finite difference method (FDM) is based on the integro-differential form of the
RTE (2.76), using a phase function truncation after � terms, which for the m-th
Fourier mode is repeated below

µ
d

dτ
I m(τ, µ) = I m(τ, µ) − ω0

2

∫ 1

−1

�∑
l=m

pm
l Pm

l (µ)Pm
l (µ′)I m(τ, µ′)dµ′

− ω0

4π
S0 exp

(
− τ

µ0

) �∑
l=m

pm
l Pm

l (µ)Pm
l (−µ0)−(1 − ω0)B(τ )δ0m

(4.88)

In the following it is more convenient to formulate the RTE in z-space rather than
the usual τ -space, i.e.

µ
d

dz
I m(z, µ) = −kext(z)I m(z, µ)+ ksca(z)

2

∫ 1

−1

�∑
l=m

pm
l Pm

l (µ)Pm
l (µ′)I m(z, µ′)dµ′

+ ksca(z)

4π
S0 exp

(
−τ (z)

µ0

) �∑
l=m

pm
l Pm

l (µ)Pm
l (−µ0) + kabs(z)B(z)δ0m

(4.89)

Let us discretize µ by introducing a discrete set of 2s Gaussian quadrature points
(wi , µi ) with the usual properties

w−i = wi , µ−i = −µi , i = −s, . . . , −1, 1, . . . , s (4.90)
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Furthermore, symmetric and antisymmetric sums of the radiation field in direction
µi are introduced via

I m,+
i (z) = 1

2

[
I m
i (z) + I m

−i (z)
]

, I m,−
i (z) = 1

2

[
I m
i (z) − I m

−i (z)
]

(4.91)

where I m
i (z) = I m(z, µi ) and I m

−i (z) = I m(z, −µi ). Based on these definitions, and
after some tedious but simple steps, we obtain a set of coupled, ordinary first-order
differential equations approximating the original transfer equation

(a) µi
d I m,+

i

dz
+ kext I

m,−
i − ksca

s∑
j=1

w j Pm,−
i j I m,−

j = kscaSm,−
i

i = 1, . . . , s

(b) µi
d I m,−

i

dz
+ kext I

m,+
i − ksca

s∑
j=1

w j Pm,+
i j I m,+

j = kscaSm,+
i + kabs Bδ0m

(4.92)

Here, Sm,+
i , Sm,−

i symbolize the primary scattered light. Note that for the sym-
metric sum in (4.92a) no Planckian emission term occurs. For the symmetric and
the antisymmetric sum of the phase function in directions ±µ j we have defined

Pm,+
i j = pm(µi , µ j ) + pm(µi , −µ j ), Pm,−

i j = pm(µi , µ j ) − pm(µi , −µ j )
(4.93)

where the coefficients pm are given by

pm(µi , µ j ) = 1

2

�∑
l=m

pm
l Pm

l (µi )Pm
l (µ j ) (4.94)

The definitions (4.93) make use of the symmetry properties of the phase function

P(−µi , −µ j ) = P(µi , µ j ), P(−µi , µ j ) = P(µi , −µ j ) (4.95)

Finally, for the primary scattered sunlight the following expressions have been
introduced in (4.92)

Sm,+
i = S0

4π
exp

(
−τ (z)

µ0

)
1

2

�∑
l=m

pm
l

[
Pm

l (µi ) + Pm
l (−µi )

]
Pm

l (−µ0)

Sm,−
i = S0

4π
exp

(
−τ (z)

µ0

)
1

2

�∑
l=m

pm
l

[
Pm

l (µi ) − Pm
l (−µi )

]
Pm

l (−µ0)

(4.96)

The special case m = 0 is of particular interest if fluxes and heating rates are
required. This is the situation treated by Barkstrom (1976) which will be discussed
next.2 Since Pl(−µ) = (−1)l Pl(µ), see (2.59a), the Legendre expansion of the

2 The case m �= 0 has also been investigated, see Rozanov et al. (1997).
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phase function allows us to write P+
i j = Pm=0,+

i j and P−
i j = Pm=0,−

i j as fully
symmetric expressions. We recognize this from the following expression.

P+
i j = 1

2

�∑
l=0

pl Pl(µi )Pl(µ j ) + 1

2

�∑
l=0

pl Pl(µi )Pl(−µ j )

= 1

2

�/2∑
l=0

p2l P2l(µi )P2l(µ j ) + 1

2

�′∑
l=0

p2l+1 P2l+1(µi )P2l+1(µ j )

+ 1

2

�/2∑
l=0

p2l P2l(µi )P2l(−µ j ) + 1

2

�′∑
l=0

p2l+1 P2l+1(µi )P2l+1(−µ j )

=
�/2∑
l=0

p2l P2l(µi )P2l(µ j )

(4.97)

where �′ is the next smallest integer value to (� − 1)/2 and pl = pm=0
l . Analo-

gously we obtain for P−
i j the expression

P−
i j =

�/2∑
l=0

p2l+1 P2l+1(µi )P2l+1(µ j ) (4.98)

In a similar manner we can define for the primary scattered sunlight the expressions

P+
i0 =

�/2∑
l=0

p2l P2l(µi )P2l(µ0), P−
i0 =

�/2∑
l=0

p2l+1 P2l+1(µi )P2l+1(µ0) (4.99)

so that the terms involving the primary scattered direct sunlight are given by

S+
i = S0

4π
exp

(
−τ (z)

µ0

)
P+

i0 , S−
i = S0

4π
exp

(
−τ (z)

µ0

)
P−

i0 (4.100)

4.5.1 Vertical discretization in the finite difference method

In order to solve the coupled system of differential equations (4.92) for m = 0, we
introduce an odd number of discrete values zk, k = 1, 2, . . . , 2K + 1. The deriva-
tives occurring in (4.92) will be approximated by means of centered differences

d f

dz

∣∣∣
zk

≈ f (zk+1) − f (zk−1)

�zk
with �zk = zk+1 − zk−1 (4.101)

For numerical convenience Barkstrom (1976) recommends to evaluate I −
i =

I m=0,−
i at all even-numbered grid points and at the boundaries z1, z2K+1, and
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the function I +
i = I m=0,+

i at all odd-numbered grid points. Experience shows that
these approximations produce rather accurate results for the case of diffuse incident
radiation.

In case of an incident direct solar beam the primary scattered light varies very
rapidly with optical depth so that the above procedure is not sufficiently accurate.
However, this deficiency can be eliminated by analytically integrating the primary
scattered light as will be shown below.

Integrating (4.92) between the interior points zk−1 and zk+1 and approximating
all integrals (excepting the primary scattering term) by means of

∫ zk+1

zk−1

f (z)dz ≈ �zk f (zk) (4.102)

gives

I +
i (zk+1) − I +

i (zk−1) + �zk

µi

[
kext(zk)I −

i (zk) − ksca(zk)
s∑

j=1

w j P−
i j (zk)I −

j (zk)

]

=
∫ zk+1

zk−1

ksca(z)

µi
S−

i (z)dz

I −
i (zk+1) − I −

i (zk−1) + �zk

µi

[
kext(zk)I +

i (zk) − ksca(zk)
s∑

j=1

w j P+
i j (zk)I +

j (zk)

]

=
∫ zk+1

zk−1

ksca(z)

µi
S+

i (z)dz + �zk

µi
kabs(zk)B(zk) (4.103)

Due to the identity

exp

(
−τ (z)

µ0

)
= µ0

kext(z)

d

dz
exp

(
−τ (z)

µ0

)
(4.104)

we obtain

∫ zk+1

zk−1

ksca(z)

µi
S±

i (z)dz ≈ ksca(zk)

kext(zk)

µ0

µi

S0

4π
P±

i0 (zk)

×
[

exp

(
−τ (zk+1)

µ0

)
− exp

(
−τ (zk−1)

µ0

)]
(4.105)

As already mentioned above, (4.105) provides a very accurate approximation for
the integration of the solar term.
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Substituting (4.105) into (4.103) yields the discretized form of the RTE

I +
i (zk+1) − I +

i (zk−1)

+ �zk

µi

[
kext(zk)I −

i (zk) − ksca(zk)
s∑

j=1

w j P−
i j (zk)I −

j (zk)

]

= ksca(zk)

kext(zk)

µ0

µi

S0

4π
P−

i0 (zk)

[
exp

(
−τ (zk+1)

µ0

)
− exp

(
−τ (zk−1)

µ0

)]
I −
i (zk+1) − I −

i (zk−1)

+ �zk

µi

[
kext(zk)I +

i (zk) − ksca(zk)
s∑

j=1

w j P+
i j (zk)I +

j (zk)

]

= ksca(zk)

kext(zk)

µ0

µi

S0

4π
P+

i0 (zk)

[
exp

(
−τ (zk+1)

µ0

)
− exp

(
−τ (zk−1)

µ0

)]

+ �zk

µi
kabs(zk)B(zk)

(4.106)

4.5.2 Treatment of the boundary conditions

Next we will consider the specification of the boundary conditions. We will assume
that no diffuse radiation is incident at the top of the atmosphere, i.e. at z = zt =
z2K+1

I (zt, µ < 0) = 0 (4.107)

At the lower boundary z = zg = 0 we assume an isotropically emitting ground
with temperature Tg. However, in accordance with observations the ground emits
only a fraction εg of the black body radiation B(Tg). The term εg is called the
emissivity of the ground. This concept will be discussed in more detail in a later
chapter. Consequently, we must allow for isotropic reflection of diffuse radiation
with albedo Ag. The boundary condition then is given by

I (0, µ > 0) = 2Ag

∫ 1

0
I (0, −µ′)µ′dµ′ + Ag

π
µ0S0 exp

(
−τ (0)

µ0

)
+ εg B(Tg)

(4.108)

According to (4.91) the upwelling and downwelling diffuse radiation can be
recovered from the I +- and I −-functions via

Ii (z) = I +
i (z) + I −

i (z), I−i (z) = I +
i (z) − I −

i (z), i = 1, . . . , s (4.109)
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In terms of I + and I − the boundary conditions (4.106) and (4.107) can be expressed
as

(a) I +
i (0) + I −

i (0) = 2Ag

s∑
j=1

w jµ j
[
I +

j (0) − I −
j (0)

]

+ Ag

π
µ0S0 exp

(
−τ (0)

µ0

)
+ εg B(Tg), i = 1, . . . , s

(b) I +
i (zt ) − I −

i (zt ) = 0 (4.110)

It is convenient to define s-dimensional vectors

I+(z) =




I +
1 (z)

...

I +
s (z)


 , I−(z) =




I −
1 (z)

...

I −
s (z)


 (4.111)

Furthermore, boundary matrices At, Bt and Ag, Bg will be used for the upper and
lower boundary, respectively. Using these definitions equations (4.110) may be
reformulated as

AtI+(zt) + BtI−(zt) = 0

AgI+(0) + BgI−(0) = Ag

π
µ0S0 exp

(
−τ (0)

µ0

)
+ εg B(Tg)




1
...

1


 (4.112)

By writing (4.110b) as

s∑
j=1

[
δi j I +

j (zt) − δi j I −
j (zt)

] = 0, i = 1, . . . , s (4.113)

it may be easily seen that the elements of the boundary matrices At and Bt are given
by

At,i j = δi j , Bt,i j = −δi j , i = 1, . . . , s, j = 1, . . . , s (4.114)

Analogously we find for the lower boundary condition

Ag,i j = δi j − 2Agw jµ j , Bg,i j = δi j + 2Agw jµ j , i = 1, . . . , s, j = 1, . . . , s
(4.115)
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The system of matrix equations with (2K + 3)s equations to be solved in the
FDM can then be formulated in block tridiagonal form as


Bg Ag

−E A1 E

−E B2 E

−E A3 E

−E B4 E

...

−E A2K−1 E

−E B2K E

−E A2K+1 E

At Bt







I−
1

I+
1

I−
2

I+
3

I−
4
...

I+
2K−1

I−
2K

I+
2K+1

I−
2K+1




=




Xg

X1

X2

X3

X4
...

X2K−1

X2K

X2K+1

Xt




(4.116)

In view of (4.106) the (s × s) block matrix elements Ak,i j (k odd) and Bk,i j (k even)
in index form are given by

Ak,i j = zβ − zα

µi

[
kext(zk)δi j − ksca(zk)w j P+

i j (zk)
]

k = 1, 3, 5, . . . , 2K + 1, i = 1, . . . , s, j = 1, . . . , s

Bk,i j = �zk

µi

[
kext(zk)δi j − ksca(zk)w j P−

i j (zk)
]

k = 2, 4, 6, . . . , 2K , i = 1, . . . , s, j = 1, . . . , s

(4.117)

For odd k ≥ 3 we have to take zβ = zk+1, zα = zk−1. For k = 1 and k = 2K + 1 we
require zβ = z2, zα = z1 and zβ = z2K+1, zα = z2K , respectively. The components
of the vectors Xk are

Xk,i = ksca(zk)

kext(zk)

µ0

µi

S0

4π
P+

i0 (zk)

[
exp

(
−τ (zk+1)

µ0

)
− exp

(
−τ (zk−1)

µ0

)]

+ zβ − zα

µi
kabs(zk)B(zk)

k =1, 3, 5, . . . , 2K + 1, i = 1, . . . , s

Xk,i = ksca(zk)

kext(zk)

µ0

µi

S0

4π
P−

i0 (zk)

[
exp

(
−τ (zk+1)

µ0

)
− exp

(
−τ (zk−1)

µ0

)]
k = 2, 4, 6, . . . , 2K , i = 1, . . . , s

(4.118)
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−

Fig. 4.8 Model atmosphere and assignment of the vectors I+, I−, and the block
matrix elements Ak,i j and Bk,i j .

The vectors Xg, Xt are abbreviations for the right-hand sides of the boundary
conditions (4.112). Figure 4.8 depicts the arrangement of the various vector and
matrix quantities for the FDM.

4.5.3 Computation of mean radiances and flux densities

Once we have found the solutions for the vectors I+(zk), I−(zk), k = 1, . . . , 2K + 1
we may easily compute the internal diffuse radiation field at all levels zk . The mean
radiance is defined as

Ī (zk) = 1

4π

∫ 2π

0

∫ 1

−1
I (zk, µ)dµ dϕ (4.119)

and can be directly obtained from I+(zk)

Ī (zk) =
s∑

j=1

w j I +
j (zk) (4.120)

Here we have used

1

2

∫ 1

−1
I (z, µ) dµ = 1

2

∫ 0

−1
I (z, µ)dµ + 1

2

∫ 1

0
I (z, µ)dµ =

s∑
j=1

w j I +
j (z)

(4.121)
The total mean radiance is given by the sum of the mean diffuse radiance and the
direct beam

Ī tot(zk) = Ī (zk) + S0 exp

(
−τ (zk)

µ0

)
(4.122)
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The up- and downwelling diffuse flux densities can be computed from

E+(zk) = 2π

∫ 1

0
µI (zk, µ)dµ = 2π

s∑
j=1

w jµ j
[
I +

j (zk) + I −
j (zk)

]
E−(zk) = 2π

∣∣∣∣
∫ 0

−1
µI (zk, µ)dµ

∣∣∣∣ = 2π

s∑
j=1

w jµ j
[
I +

j (zk) − I −
j (zk)

] (4.123)

and the total downwelling flux density is

E−,tot(zk) = 2π

s∑
j=1

w jµ j
[
I +

j (zk) − I −
j (zk)

]+ µ0S0 exp

(
−τ (zk)

µ0

)
(4.124)

Utilizing (4.123) the diffuse net flux density is given by

Enet(zk) = 2π

∫ 1

−1
µI (zk, µ)dµ = E+(zk) − E−(zk) = 4π

s∑
j=1

w jµ j I −
j (zk)

(4.125)

To obtain the total net flux density we have to add the direct radiation, cf. (2.134),
yielding

Enet,tot(zk) = Enet(zk) − µ0S0 exp

(
−τ (zk)

µ0

)
(4.126)

4.6 The Monte Carlo method

The Monte Carlo method (MCM) is based on the direct physical simulation of the
scattering process for the transfer of solar or thermal radiation in the atmosphere. In
the MCM a very large number of model photons enters the medium in consideration
(entire atmosphere or cloud elements). We envision a model photon to represent
a package of real photons. Neglecting the effect of atmospheric refraction, the
straight line paths of these photons between particles interacting with the radiation
is changed by scattering processes. The method requires the calculation of a large
number of photons propagating in a particular direction as they are passing a certain
test surface. From these counts we obtain the radiance as a function of position.
This permits us to compute physically relevant quantities such as flux densities for
arbitrarily oriented test surfaces, the mean radiance field, and heating rates due to
the (partial) absorption of model photons within the medium. It is very important to
realize that one has to use a sufficiently high number of such model photons so that
for the particular radiative quantity of interest a reliable statistics is achieved. If the
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statistics does not satify this requirement one can simply continue the simulation
by increasing the total number of photons modeled until some accuracy criterion
is met.

The MCM has the chief advantage that one can treat arbitrarily complex prob-
lems. For example, it is relatively easy to determine the radiative transfer through
a three-dimensional spatial volume partially filled with cloud elements. In contrast
to analytical methods based on the numerical solution of the differential or integral
form of the RTE, the MCM has no difficulty at all in accounting for the horizontal
and/or vertical inhomogeneity of the optical parameters. Therefore, radiances or
flux densities can be computed at each location within a specified medium. The only
real but decisive disadvantage limiting the applicability of the MCM is related to
the statistical nature of the simulation process which, in certain situations, requires
an excessively large amount of computer time.

To give an example, the accuracy with which a certain quantity can be determined
increases only with the square root of total number of photons processed. Thus it is
very difficult to reach with MCM an accuracy limit below, say, 0.1%. In addition,
one has to make sure that a reliable random number generator is employed. If this
is not the case the computed radiance for a specific direction, for example, cannot
be determined very accurately. A good random number generator provides a large
number of significant decimal places for any random number between 0 and 1 and
also is able to generate a long random sequence before repetition occurs. For some
strategic choices to select a good random number generator the reader is referred
to Press et al. (1992). The MCM has been proven to be a very valuable research
tool for many applications which presently cannot be treated by other methods.

4.6.1 Determination of photon paths

For simplicity we will only discuss the determination of photon paths for a homoge-
neous plane–parallel medium of horizontally infinite extent. Let us assume that the
upper boundary of the medium is uniformly illuminated by parallel solar radiation.
For simplicity thermal radiation will not be treated in the discussion that follows.
At the lower boundary of the atmosphere we will assume isotropic reflection of the
ground with albedo Ag. Let us consider a model photon reaching the ground. The
energy fraction 1 − Ag of the model photon will be absorbed by the ground while
the remaining part is reflected.

As stated above, a model photon is assumed to represent a package of real
photons. The initial energy of the model photon is found by dividing the solar
energy in a certain spectral interval per unit area and unit time by the total number
of model photons used in the simulation. If an interaction with an absorbing gas
molecule or aerosol particle takes place, as expressed by the single scattering albedo
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Fig. 4.9 Definition of the coordinates of two arbitrary interaction points Pl and
Pl+1.

ω0, the fraction 1 − ω0 is lost by the model photon. Scattering changes the flight
direction only, but it conserves energy.

An arbitrary photon trajectory can be defined as follows: let P0 be the point of
entrance of the photon as it enters the atmosphere through the upper boundary. The
distance from P0 to the first interaction point P1 will be called �s0, and the distance
between two successive points Pl and Pl+1 is �sl . The direction of flight of the test
photon along the distance �sl will be expressed by the zenith and azimuth angles ϑl

and ϕl . By introducing a fixed Cartesian coordinate system whose z-axis is pointing
towards the zenith, see Figure 4.9, we find the coordinates (xl+1, yl+1, zl+1) of the
point Pl+1 as

xl+1 = xl + �sl sin ϑl cos ϕl , yl+1 = yl + �sl sin ϑl sin ϕl , zl+1 = zl + �sl cos ϑl

(4.127)

To begin with, we will ignore the effect of gaseous absorption, but we will admit
particle absorption. Let us assume that the test photon is located at point Pl with
coordinates (xl, yl, zl) where scattering occurs. Now the photon will travel the
distance �sl to point Pl+1 where the next scattering interaction with the medium
takes place. Due to the scattering event at Pl , the new direction of the photon path
may be expressed by selecting the local zenith and azimuth scattering angles ϑl and
ϕl as shown in Figure 4.9. We will not yet specify the type of scattering, but simply
follow the zig-zag path of the model photon through the atmosphere.

The entire atmosphere is discretized by a set of reference levels z j , ( j =
0, . . . , J ) where z0 = zg and z J = zt denote the ground and the top of the atmo-
sphere, respectively. On its path through the atmosphere the test photon will intersect
the level z j as shown in Figure 4.10. We will label the intersection points with the
symbol Di, j whereby the index i denotes the number of the departure point Pi after
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Fig. 4.10 Trajectory of an arbitrary test photon.

the previous scattering process. As a computational step we store the direction of
flight for all test photons as they pass z j . In Section 4.6.2 we will briefly describe
how this information can be used to obtain radiative fluxes and radiances at all
reference levels. If a photon will escape to space we will use the symbol ‘E’ to
designate this particular event.

Figure 4.10 gives an example trajectory of a test photon through the atmosphere.
The photon enters at the top of the atmosphere at point P0. The angle of incidence is
(ϑ0, ϕ0). At points P1 through P4 the photon is scattered from the incident direction
(ϑl−1, ϕl−1) to the new directions (ϑl, ϕl). The angles (ϑ ′

l , ϕ
′
l ) measure the local

zenith and azimuthal angles of scattering with respect to the direction of incidence
at point Pl . At point P5 a particular event occurs, that is isotropic reflection and
partial absorption at the ground. The pair of angles (ϑr , ϕr ) = (ϑ5, ϕ5) is used to
describe this reflection process. The figure also illustrates the intersection points
Di, j which are used for photon counting at the reference level z j .

The flight distances �sl can be determined from Beer’s law, cf. (2.31). According
to (2.32) for a homogeneous medium with extinction coefficient kext the transmis-
sion of photons traveling the distance s is given by

T (s) = exp(−kexts) (4.128)

Recall that kext is wavelength dependent, i.e. kext = kext,ν , so that Monte Carlo
simulations have to be carried out for several wavelengths separately to derive
wavelength-integrated radiative quantities.
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Fig. 4.11 Determination of the local zenith angle ϑ1 for scattering.

In Chapter 2 we found that the transmission for a path s can be interpreted as
the probability that the photon travels the distance s before the next scattering or
absorption process occurs. Therefore, by choosing in (4.128) for the transmission
T (s) a random number Rt,0 between 0 and 1 we may determine the path length
s = �s0. In this manner we find the coordinates (x1, y1, z1) of the first interaction
point P1.

So far the test photon flew along the direction (ϑ0, ϕ0) of the direct solar beam.
Due to scattering at P1 the test photon will now travel in a new direction as given
by the local scattering angles (ϑ ′

1, ϕ
′
1), see Figure 4.10. The local zenith angle for

scattering ϑ ′
1 can be determined from the specified phase function P(cos ϑ) in the

following way. The probability that a test photon is scattered into the interval (0, ϑ ′)
is given by the probability distribution function

P̄(ϑ ′) =

∫ ϑ ′

0
P(cos ϑ) sin ϑ dϑ∫ π

0
P(cos ϑ) sin ϑ dϑ

(4.129)

Figure 4.11 illustrates schematically in which way the probability distribution func-
tion P̄(ϑ ′) depends on ϑ ′. As soon as a particular phase functionP(cos ϑ) is chosen
the function P̄(ϑ ′) can be determined by numerical integration. Now we choose
a random number Rϑ,1 between 0 and 1 which picks a certain value for P̄(ϑ ′

1).
Numerical inversion of the graph, depicted in Figure 4.11, leads to the scattering
angle ϑ ′

1.
The local azimuth angle for scattering can be found in a similar way. Owing

to the rotational symmetry of P(cos ϑ ′
1), see Figure 1.18, for a constant value

of ϑ ′
1 the phase function is independent of the azimuth angle ϕ′ measured in a
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Fig. 4.12 Rotation of the (i, j, k) system about the angles ϕ0 (a) and ϑ0 (b) yielding
the (i′, j′, k′) system.

plane perpendicular to the direction of incidence. Thus we obtain ϕ′
1 by selecting

a random number Rϕ,1 from the interval [0, 2π ). Now we have found the local
scattering angles (ϑ ′

1, ϕ
′
1) at point P1 which are defined with respect to the direction

of incidence (ϑ0, ϕ0) of the test photon at this point.
In the next step we need to determine the new flight direction (ϑ1, ϕ1) with respect

to the fixed Cartesian coordinate system. Let us introduce a new Cartesian system
at point P1 defined by the unit vectors (i′, j′, k′). This primed coordinate system is
oriented so that k′ points along the direction (ϑ0, ϕ0). This can be achieved by first
rotating the system (i, j, k) by an angle ϕ0 about the z-axis yielding an intermediate
(ĩ, j̃, k̃) system. This intermediate coordinate system will then be rotated about the
j̃-axis by an angle ϑ0 giving the final (i′, j′, k′) system. Analytically the two rotations
are given by

(a)

ĩ = i cos ϕ0 + j sin ϕ0

j̃ = −i sin ϕ0 + j cos ϕ0

k̃ = k

(b)

i′ = ĩ cos ϑ0 − k̃ sin ϑ0

j′ = j̃

k′ = ĩ sin ϑ0 + k̃ cos ϑ0

(4.130)

Figure 4.12 depicts the two rotations about ϕ0 and ϑ0. Substituting (4.130a) into
(4.130b), using matrix notation, yields the transformation formula for (i′, j′, k′) as
function of the original (i, j, k)


i′

j′

k′


 =




cos ϑ0 cos ϕ0 cos ϑ0 sin ϕ0 −sin ϑ0

−sin ϕ0 cos ϕ0 0

sin ϑ0 cos ϕ0 sin ϑ0 sin ϕ0 cos ϑ0






i

j

k


 (4.131)
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Denoting in (4.131) the matrix elements by A′
i, j we may write

i′k =
3∑

n=1

A′
knin , k = 1, 2, 3 (4.132)

where here and in the following we identify i = i1, j = i2 and k = i3.
At P1 we will define a third coordinate system with double-primed unit vectors

(i′′, j′′, k′′) where the unit vector k′′ points into the flight direction (ϑ1, ϕ1) of the
test photon after the scattering event. Two successive rotations by the angles ϕ′

1

and ϑ ′
1 transform the primed coordinate system into the double-primed system. In

analogy to (4.131) we find


i′′

j′′

k′′


 =




cos ϑ ′
1 cos ϕ′

1 cos ϑ ′
1 sin ϕ′

1 −sin ϑ ′
1

−sin ϕ′
1 cos ϕ′

1 0

sin ϑ ′
1 cos ϕ′

1 sin ϑ ′
1 sin ϕ′

1 cos ϑ ′
1






i′

j′

k′


 (4.133)

or

i′′k =
3∑

n=1

A′′
kni′n , k = 1, 2, 3 (4.134)

Combination of (4.132) with (4.134) leads to

i′′k =
3∑

n=1

3∑
m=1

A′′
kn A′

nm im , k = 1, 2, 3 (4.135)

Finally, we need a fourth coordinate system (i∗, j∗, k∗) resulting from the rotation
of the fixed coordinate system (i, j, k) in such a way that k∗ points in the photon’s
new direction (ϑ1, ϕ1) at P1. From (4.131) we obtain again


i∗

j∗

k∗


 =




cos ϑ1 cos ϕ1 cos ϑ1 sin ϕ1 −sin ϑ1

−sin ϕ1 cos ϕ1 0

sin ϑ1 cos ϕ1 sin ϑ1 sin ϕ1 cos ϑ1






i

j

k


 (4.136)

Obviously, both unit vectors k∗ and k′′ are identical. Before the scattering event
occurs at point P1 the photon travels in direction k′, after the scattering process its
new direction is k′′. Therefore, by comparing (4.135) for k = 3 with the last row
of (4.136) we find the identities

sin ϑ1 cos ϕ1 =
3∑

n=1

A′′
3n A′

n1, sin ϑ1 sin ϕ1 =
3∑

n=1

A′′
3n A′

n2, cos ϑ1 =
3∑

n=1

A′′
3n A′

n3

(4.137)
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A new random number Rt,1 will determine the path length �s1 between P1 and
the new point P2. Substituting this path length together with (4.137) into (4.127)
yields the new coordinates (x2, y2, z2) of the point P2. At this point new local
scattering angles are chosen as random numbers and the computational process is
repeated until the test photon either is absorbed within the medium or at the ground
or it leaves the atmosphere into space, (event E in Figure 4.10). Since reflection at
the ground is assumed to be isotropic, two uniformly distributed random numbers
from the intervals [0, π/2) and [0, 2π ) can be used to find the new direction of the
test photon after ground reflection.

The above discussion was based on the assumption that the medium is homoge-
neous. In case of a vertically and horizontally inhomogeneous medium the transmis-
sion calculation must fully account for the (x, y, z)-dependence when determining
the optical depth, i.e. (4.128) has to be generalized to

T (�s) = exp

(
−
∫

�s
kext(s) ds

)
(4.138)

In addition to the already defined levels z j for the vertically inhomogeneous
medium, we have to introduce similar grids for discretizing the (x, y)-space. There-
fore, for a general three-dimensional medium the space is discretized into small
volume elements �V . The photon paths are then traced through these individ-
ual volume elements. Radiative fluxes or actinic fluxes may be determined at the
midpoints of the six faces of each volume element by weighting them with the
corresponding projection factor as the photons intersect a particular reference area.
In case of actinic fluxes this projection factor is always 1 since the weight of
each test photon is independent of its flight direction. For radiative flux densities
through area elements x = const the weighting factor is equal to the cosine of
the angle α subtended by the outward normal nx of the area element and the unit
vector Ω specifying the flight direction of the photon, see Figure 4.13. The energy
is counted positive if the photon travels into the interior of �V , otherwise it is
negative.

4.6.2 Treatment of absorption

The initial energy of the model photons is reduced by absorption due to gases and
atmospheric particles. Let N represent the total number of model photons, e.g.
some 10 000, entering the top of the atmosphere. On entry the initial energy carried
by such a photon is given by E0 = µ0S0/N where S0 refers to the solar constant
within a small spectral interval. Let si, j specify the total photon path between the
starting point P0 and an arbitrary intersection point Di, j as defined in Figure 4.10.
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x

y

z

Ω

nx

α

Fig. 4.13 Definition of the angle α between the photon’s flight direction Ω and
the outward normal nx of the area x = const of the volume element �V .

The length of this path is then given by

si, j =
i−1∑
k=0

�sk + �si, j (4.139)

where �si, j is the distance between point Pi and Di, j . If ω0,i is the single scattering
albedo of the particulate material located at point Pi , then the energy of the model
photon after traversing the path si , may be expressed as

E(si, j ) = E0[1 − A(si, j )]
i∏

k=1

ω0,k (4.140)

where A(si, j ) is the so-called absorption function of the atmospheric absorber gas.
This function will be discussed in detail in a later chapter. In the special case of
reflection at the ground the value of the corresponding ω0,k has to be replaced
by the ground albedo Ag. From (4.140) it is seen that the effect of gaseous and
particulate absorption can be determined after the photon trajectories have been
computed in a purely scattering atmosphere. Some authors treat the absorption
process differently, namely by reducing the photon’s energy at each interaction
point during the simulation of each photon trajectory.

Finally, we have to decide what kind of interaction takes place at a particular inter-
action point Pi . In general, three different processes are possible, that is molecular
scattering, extinction by aerosol particles or extinction by cloud droplets. Gaseous
absorption is already treated in terms of the absorption function A(si, j ) in (4.140).
In order to determine the kind of interaction at Pi additional random numbers are
drawn. Usually it is assumed that only one of the possible interactions takes place.
However, some authors also allow for combined extinction processes of aerosols
and water drops. In these cases average values of the extinction ccefficients and
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phase functions of the different particles have to be calculated. Monte Carlo algo-
rithms designed in the above manner have been employed, for example, by O’Hirok
and Gautier (1998a,b) and by Trautmann et al. (1999), to name a few. Radiative
characteristics of finite cloud fields have also been calculated using MCM, see e.g.
Welch and Zdunkowski (1981). For more details the interested reader is referred to
the original literature.

In the previous subsections we described how the random paths of test photons
can be determined. In order to obtain a statistically sound result a huge number N of
such photon trajectories has to be simulated. All we need to do for the computation
of the radiance field and the flux density is to count the number and energy of the test
photons passing all intersection points D j = ∑

i Di, j at height z j . For simplicity
we assume a horizontally homogeneous atmosphere so that all photon paths can
be related to a single vertical atmospheric reference column having unit area. This
treatment can be justified by the fact that for uniform external illumination in each
such reference column, on average, the same number of photons with a certain
energy and flight direction can be found.

Let us assume that for D j a total of J (z j ) test photons are registered. Let us
further introduce a total of 2s solid angle elements ��i which cover the 4π unit
sphere, i.e.

lower 2π hemisphere: ��i , i = 1, . . . , s

upper 2π hemisphere: ��i , i = s + 1, . . . , 2s
(4.141)

The number of test photons confined in ��i is designated by Ji (z j ) so that

J (z j ) =
2s∑

i=1

Ji (z j ) (4.142)

Each of the Ji (z j ) photons may carry a particular energy El(��i , z j ) which is the
energy of model photon number l within ��i penetrating the reference surface z j .
Adding the energy contributions of all photons yields the radiance at level z j within
the solid angle element ��i

Ii (z j ) = 1

��i�t�F

Ji (z j )∑
l=1

El(��i , z j ) (4.143)

Here �t and �F are the time interval and the reference area referring to photons
entering the top of the atmosphere at point P0. From (4.143) we may compute the
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upward and downward flux densities as

E+(z j ) =
2s∑

i=s+1

Ii (z j )��i , E−(z j ) =
s∑

i=1

Ii (z j )��i (4.144)

In a three-dimensional atmosphere similar expressions can be defined to determine
the flux densities crossing area elements x = const and y = const. We will not
discuss this topic any further.

The Monte Carlo method described in the previous subsections is not limited to
a horizontally homogeneous situation and for media infinitely extending in the lat-
eral directions. Obeying the general principles introduced above, one can construct
a Monte Carlo model for a three-dimensional situation. This can be achieved by
introducing in analogy to the area z j = const vertically oriented areas x = const
and y = const with corresponding arrays to register the intersections of the pho-
tons through these area elements. Moreover, the optical properties for the extinction
coefficient, the single scattering albedo and the details of the scattering phase func-
tion must be supplied to represent the physical characteristics of the finite medium.
In addition, one has to realize that solar photons not only illuminate the upper
boundary of the model domain but also enter it through the lateral sunlit surfaces.

A comprehensive description of the MCM may be found in Davis et al. (1979).
A full discussion of the rotation matrices determining the flight direction of a model
photon after a scattering event is given in Zdunkowski and Korb (1985). For various
applications of the MCM to two- and three-dimensional spatially inhomogeneous
media we refer, for example, to the work of Barker and Davies (1992), Cahalan
et al. (1994), Los et al. (1997), and more recently to Trautmann et al. (1999).

4.7 Appendix

4.7.1 The reflection matrix at the ground

We will now derive the reflection matrix rm
g for m = 0 under the assumption of

isotropic ground reflection for both the incident diffuse light and the direct beam.
In addition, we include possible contributions due to the thermal radiation of the
ground.

The upward directed flux density at the ground (τ = τN ) is given by

E+,z(τN ) = Ag

[
E−,z(τN ) + µ0S0 exp

(
−τN

µ0

)]
+ (1 − Ag)π Bg (4.145)

where Ag is the albedo of the isotropically reflecting ground, E±,z(τN ) are the
upward and downward traveling flux densities at ground level, µ0S0 exp(−τN/µ0)
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the direct solar flux density reaching the ground, and Bg the black body emission
of the ground with temperature Tg.

Owing to the isotropy of the reflected radiation the flux densities in (4.145) can
be replaced by corresponding isotropic radiances, i.e.

2π

∫ 1

0
µI m=0

+ (τN )dµ = Ag2π

∫ 1

0
µI m=0

− (τN , µ)dµ + Agµ0S0 exp

(
−τN

µ0

)
δ0m

+ (1 − Ag)π Bgδ0m (4.146)

The integral on the left-hand side of this equation may be evaluated yielding

2π

∫ 1

0
µI m=0

+ (τN )dµ = 2π I m=0
+ (τN )

[
µ2

2

]µ=1

µ=0

= π I m=0
+ (τN ) (4.147)

Expressing in (4.146) the integral containing the downwelling radiation by means
of the Gaussian quadrature gives together with (4.147)

I m=0
+ (τN ) = 2Ag

s∑
i=1

wiµi I m=0
− (τN , µi ) + Ag

π
µ0S0 exp

(
−τN

µ0

)
δ0m

+ (1 − Ag)Bgδ0m (4.148)

Since the reflected radiation is isotropic it follows that I m=0
+ (τN ) has the same value

for each direction µi (i = 1, . . . , s). Therefore, the upwelling radiation can also be
written in vector–matrix form as




I m=0
+ (τN )

...
I m=0
+ (τN )


 = 2Ag




µ1w1 . . . µsws
...

. . .
...

µ1w1 . . . µsws






I m=0
− (τN , µ1)

...
I m=0
− (τN , µs)




+ Ag

π
µ0S0 exp

(
−τN

µ0

)
δ0m




1
...
1


+ (1 − Ag)Bgδ0m




1
...
1



(4.149)

Substitution of the source vectors Jm=0
+,1 (N + 1, N ), Jm=0

+,2 (N + 1, N ) from (4.17)
leads to the final expression for the reflected radiance

Im=0
+ (τN ) = 2Ag




µ1w1 . . . µsws
...

. . .
...

µ1w1 . . . µsws


 Im=0

− (τN )

+ Jm=0
+,1 (N + 1, N ) + Jm=0

+,2 (N + 1, N ) (4.150)
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At τ = τN the upwelling radiation may be written as

Im=0
+ (τN ) = rm=0

g Im=0
− (τN ) + Jm=0

+,1 (N + 1, N ) + Jm=0
+,2 (N + 1, N ) (4.151)

Comparison of this expression with (4.150) gives the explicit form of the reflection
matrix

rm=0
g = 2Ag




µ1w1 . . . µsws
...

. . .
...

µ1w1 . . . µsws


 (4.152)

as stated in (4.18).
It should be mentioned that for anisotropic ground reflection a similar form of

the reflection matrix has to be derived from the reflection function of the ground for
each azimuthal expansion term m > 0. In this context it is interesting to note that
for an isotropically reflecting ground the boundary conditions for the azimuthal
expansion terms of the radiance field I m≥1

+ (τN ) are identical with the so-called
vacuum boundary conditions. Vacuum boundary conditions mean that there exists
no diffuse radiation that would enter the medium at its upper or lower boundary.

The treatment of complex reflection laws at the ground, that is the spec-
ification of the so-called bidirectional reflection function for diffuse radiation
ρd(µ, ϕ,−µ′, ϕ′), is rather difficult. Some information for treating anisotropic
ground reflection within the radiative transfer problem can be found in Stamnes
et al. (1988). These authors assume that ρd is a function only of the angle between
the directions of incidence and reflection, i.e. there is no preferred direction for
the scattering of radiation at the lower boundary. In this case, and in analogy to
the phase function, the bidirectional reflection function can be expanded into its
Fourier components

ρd(µ, ϕ,−µ′, ϕ′) =
2n−1∑
m=0

(2 − δ0m)ρm
d (µ, −µ′) cos m(ϕ − ϕ′) (4.153)

The contribution of the ground to the upwelling radiance field due to diffuse
anisotropic reflection of the downwelling diffuse and direct radiation can then be
expressed by

I m(µ, τN ) = (1 + δ0m)
∫ 1

0
ρm

d (µ, −µ′)µ′ I m(τN , −µ′) dµ′

+µ0S0 exp

(
−τN

µ0

)
ρm

d (µ, −µ0) (4.154)
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4.8 Problems

4.1: To become familiar with the terminology of the addition theorems and the
interaction principle check the validity of equations (4.4) and (4.5).

4.2: Check in detail equations (4.7) and (4.8) by carrying out the comparison.
Note well that this problem is not designed to keep you busy (as it may
appear) but to familiarize yourself with the general procedure of the matrix
operator method.

4.3: Carry out in detail the comparison to verify (4.13).
4.4: Consider an inhomogeneous atmosphere consisting of three homogeneous

sublayers. Each sublayer has different optical properties. Follow the out-
lined procedure that summarizes the main steps of the MOM to formally
obtain the vectors Im

+(τ = 0) and Im
±(τ3) and the upward and downward radi-

ance vectors at the sublayer boundaries. Make sure you have the required
information before you continue with the next step.

4.5: Since Gaussian quadrature (Gauss–Legendre quadrature) is essential in our
work, you should get an impression of the accuracy of this method. For
this purpose evaluate the following integral I = ∫ 1.5

0.2 exp(−x2)dx by using
a three-term formula. The weights wi and the values µi where the function
is evaluated are

wi µi

0.555 555 55 −0.774 596 67
0.888 888 88 0.000 000 00
0.555 555 55 0.774 596 67

(Four digits behind the zero are enough for your work). To bring the integral
to the limits (−1, 1) use the transformation x = 1/2 [(b − a)µ + b + a].

4.6: Show that the δ-scaled phase function as defined by (4.35) is normalized.
4.7: Determine the system of algebraic equations that permit us to find Z (µi ),

see (4.54).
4.8: Check in detail the validity of (4.59) by substituting (4.56) into the relations

(4.57) and (4.58).
4.9: Consider the radiance expansion in the form (4.63). For the determination of

flux densities and for divergences only the term m = 0 is required. Substitute
(4.63) with m = 0 into (2.76) to obtain a set of differential equations in terms
of I m=0(τ ). Make full use of the orthogonality properties of the spherical
functions. You may wish to use the recursion formula

µPl(µ) = l

2l + 1
Pl−1(µ) + l + 1

2l + 1
Pl+1(µ)
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4.10: Well equipped with the experience of the previous problem, verify equation
(4.65). You may wish to employ the recursion formula

µPm
l (µ) = l + m

2l + 1
Pm

l−1(µ) + l − m + 1

2l + 1
Pm

l+1(µ)

4.11: Derive equation (4.92) from (4.89) by using (4.91) and other required defini-
tions. Only by carrying out the required derivation you will become familiar
with the notation of the finite difference method.

4.12: Analogously to the derivation of (4.97) find (4.98).
4.13: Use simple Cartesian vector operations to verify (4.130) and (4.131).
4.14: Verify (4.137) by carrying out the required comparison.
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Radiative perturbation theory

5.1 Adjoint formulation of the radiative transfer equation

Problems in radiative transfer theory can be solved by various solution methods. In
the previous chapter we have discussed a number of these which we will classify as
the forward or the regular methods. In addition to applying the forward solutions,
it is also possible to use the so-called adjoint solution techniques which offer the
decisive advantage that for certain types of transfer problems the numerical effort
can be drastically reduced.

In this section we will formulate the adjoint technique. It will be necessary to
introduce a new terminology involving expressions such as the radiative effect and
the atmospheric response due to the presence of energy sources. By means of an
important but simple example we will demonstrate the numerical advantage that the
adjoint technique offers in comparison to the forward formulation. In Section 5.2 we
will introduce the perturbation technique and show how to apply it to the forward
as well as to the adjoint formulation.

The adjoint method originated as a purely mathematical tool for the solution of
linear operator equations. Discussions on this subject can be found in textbooks on
principles of applied mathematics such as Courant and Hilbert (1953), Friedman
(1956) and Keener (1988). Before presenting the basic radiative transfer theory in
the adjoint form, we would like to point out forcefully that this formulation is not
merely another solution method to solve the RTE. It is a method of reformulating
the transfer problem for maximum computational efficiency.

In the sequel, it will be of advantage to use the height z as the vertical coordinate
instead of the optical thickness. We start our analysis with the RTE for the total
radiation in the form, cf. (2.27)1

d

ds
I (s,Ω) = −kext(s)I (s,Ω) + ksca(s)

4π

∫
4π

P(s,Ω′ → Ω)I (s,Ω′)d�′ + J e(s,Ω)

(5.1)

1 For brevity, the index ν will again be omitted.
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where we have used Ω · ∇ I = d I/ds. Assuming horizontal homogeneity of all
variables the geometric increment ds may be replaced by dz/µ yielding

µ
∂

∂z
I (z,Ω) = −kext(z)I (z,Ω) + ksca(z)

4π

∫
4π

P(z,Ω′ → Ω)I (z,Ω′)d�′+ J e(z,Ω)

(5.2)

We could have used the total derivative d I/dz since the variables µ and ϕ are
treated as constants. For simplicity we ignore thermal radiation and polarization
effects and consider the Sun as the only radiation source. If z = zt stands for the top
of the atmosphere then the source function for true emission J e(z,Ω), introduced
in (2.26), may be written as

J e(z,Ω) = |µ0|S0δ(z − zt )δ(µ − µ0)δ(ϕ − ϕ0) = Q(z,Ω) (5.3)

where δ denotes the Dirac δ-function. Equation (5.3) is by no means the only
possible formulation of the solar source. Had we used the RTE after the direct–
diffuse splitting of the radiation field a different form for the source function Q(z,Ω)
would have resulted.

We are now going to introduce the linear differential operator L

L = µ
∂

∂z
+ kext(z) − ksca(z)

4π

∫
4π

P(z,Ω′ → Ω) ◦ d�′ (5.4)

which is a part of (5.2). The symbol ◦ occurring in the integral of this equation must
be replaced by the particular function on which the operator L operates. Utilizing
(5.3) and (5.4) the RTE can be written in the brief and elegant form

L I (z,Ω) = Q(z,Ω) (5.5)

Before we discuss the so-called adjoint operator L+ which is associated with L ,
we need to introduce the definition of the inner product

〈 f1, f2〉 =
∫ zt

0

∫ 2π

0

∫ 1

−1
f1(z, µ, ϕ) f2(z, µ, ϕ)dµ dϕ dz

=
∫ zt

0

∫
4π

f1(z,Ω) f2(z,Ω)d� dz

(5.6)

where the bracket expression on the left-hand side is a shorthand notation for
the integral expressions of the right-hand side. Here f1 and f2 are two arbitrary
functions. We wish to emphasize that in the definition of the inner product the
integrals extend over the complete range of each variable, i.e. the integration extends
over the so-called phase space of a particular problem.



5.1 Adjoint formulation of the RTE 135

Now we will derive the adjoint formulation of the transfer problem as well as
the proper boundary conditions. The theory of linear operators defines the adjoint
linear differential operator L+ corresponding to the linear differential operator L .
The operator L+ is uniquely defined if for any two arbitrary functions I and I + the
following relation is valid

〈I +, L I 〉 = 〈L+ I +, I 〉 or 〈L I, I +〉 = 〈I, L+ I +〉 (5.7)

The validity of the second equation, that is the possibility to interchange the expres-
sions within a bracket, follows immediately from the definition of the inner product
(5.6). In radiative transfer problems the two functions I and I + represent the radi-
ance and the adjoint radiance, respectively.

Now the problem arises in which way L+ should be determined. This could
be done by imposing suitable boundary conditions on I + and then attempt to
derive L+. Simple examples of this type are given by Friedman (1956) and Keener
(1988). At this point we recommend that the student consults Appendix 5.5.1 to this
chapter. It might be more practical, however, to follow Bell and Glasstone (1970) by
postulating L+ and then determine the appropriate boundary conditions on I +. Box
et al. (1988) successfully used the second type of approach. Their approach will be
described in this chapter. It appears that Gerstl (1982) introduced the adjoint method
into the meteorological literature on radiative transfer. The adjoint formulation to
solve transport problems was also successfully applied in reactor physics.

We will now introduce the adjoint linear differential operator L+ by means of

L+ = −µ
∂

∂z
+ kext(z) − ksca(z)

4π

∫
4π

P(z,Ω → Ω′) ◦ d�′ (5.8)

which differs from (5.5) only in the sign of the first term, also known as the streaming
term, and the interchange of the initial and final directions Ω and Ω′ in the phase
function. According to the discussion in Section 1.6.2 for homogeneous spherical
particles the scattering process depends only on the cosine of the scattering angle
cos � = Ω′ · Ω, see (1.43). Since the commutative law holds for the scalar product
of two vectors we may write

P(z,Ω′ → Ω) = P(z,Ω′ · Ω) = P(z,Ω · Ω′) = P(z,Ω → Ω′) (5.9)

so that the only real difference between L and L+ is the opposite sign of the
streaming term.

In analogy to the forward form (5.5) of the RTE, the adjoint form of the radiative
transfer equation can be written as

L+ I +(z,Ω) = Q+(z,Ω) (5.10)
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At this point the adjoint source Q+ will be left completely unspecified. For mathe-
matical convenience and also for purposes of interpretation, we introduce a function
�(z,Ω) according to the definition

�(z,Ω) = I +(z, −Ω) (5.11)

Inserting this definition into (5.10), using L+ as defined by (5.8), results in

Q+(z,Ω) =
(

−µ
∂

∂z
+ kext(z)

)
�(z, −Ω) − ksca(z)

4π

×
∫

4π

P(z,Ω → Ω′)�(z, −Ω′)d�′ (5.12)

In order to transform this operator equation to the form (5.5), we use the substitutions
Ω → −Ω and Ω′ → −Ω′. Since Ω = Ω(µ, ϕ) and ϕ ≥ 0, it is obvious that the
change of sign of the direction vector Ω also requires a change of sign of µ so that
instead of (5.12) we obtain

Q+(z, −Ω) =
(

µ
∂

∂z
+ kext(z)

)
�(z,Ω)− ksca(z)

4π

×
∫

4π

P(z, −Ω → −Ω′)�(z,Ω′)d�′ (5.13)

According to (5.9) we may write

P(z, −Ω → −Ω′) = P(z,Ω → Ω′) = P(z,Ω′ → Ω) = P(z,Ω′ · Ω) (5.14)

Utilizing this information together with (5.13) in (5.10) yields for the adjoint form
of the RTE

L�(z,Ω) = Q+(z, −Ω) (5.15)

This form involves the linear differential operator L , the function �(z,Ω) and the
adjoint source Q+ for the direction −Ω. The term � is also called the pseudo-
radiance.

We will now briefly summarize the previous discussion by momentarily assum-
ing that the adjoint source Q+ is known.

(i) In order to determine the radiance I +(z,Ω) due to the adjoint source Q+(z,Ω), we
first solve the forward RTE (5.15) for the pseudo-source Q+(z, −Ω). This yields the
auxiliary function �(z,Ω).

(ii) Changing the direction according to (5.11) results in the adjoint radiance I +(z,Ω).
(iii) For the determination of the auxiliary function �, any standard solution method can be

used to solve the RTE (5.15). Certainly, the accuracy of the adjoint radiance calculations
equals the accuracy of the chosen forward procedure.
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5.2 Boundary conditions

With the help of physical arguments it is a rather simple matter to specify the
boundary conditions for the radiance I . It is much more difficult, in the general case,
to obtain the boundary conditions for the adjoint radiance I + which is not readily
visualized. It might be preferable to think of the function I + as a mathematical entity
which was introduced for operational purposes and less on grounds of physical
arguments. In order to obtain the boundary conditions for the adjoint radiances I +

we apply the definition (5.7) and obtain∫ zt

0

∫
4π

I +(z,Ω)

(
µ

∂

∂z
I (z,Ω) + kext(z)I (z,Ω)

−ksca(z)

4π

∫
P(z,Ω′ → Ω)I (z,Ω′)d�′

)
d� dz

=
∫ zt

0

∫
4π

I (z,Ω)

(
−µ

∂

∂z
I +(z,Ω) + kext(z)I +(z,Ω)

−ksca(z)

4π

∫
4π

P(z,Ω → Ω′)I +(z,Ω′)d�′
)

d� dz

(5.16)

As will be observed, we have two sets of functions. The first set contains the
radiances I (z,Ω) to which we apply the operator L and certain boundary conditions
to be specified shortly. The second set consists of the adjoint radiances I + to which
we apply the operator L+ and some boundary conditions which may differ from
the boundary conditions that apply to the radiances I .

Obviously, the second terms on each side of (5.16) drop out. After renaming the
integration variables, we find that the third terms also cancel so that we obtain∫ zt

0

∫
4π

µI +(z,Ω)
∂

∂z
I (z,Ω)d� dz = −

∫ zt

0

∫
4π

µ
∂

∂z
I +(z,Ω)I (z,Ω)d� dz

(5.17)
Performing a partial integration of the right-hand side of (5.17) over z from z = 0

to z = zt we obtain∫ zt

0

∫
4π

µI +(z,Ω)
∂

∂z
I (z,Ω)d� dz = −

∫
4π

µI +(z,Ω)I (z,Ω)d�

∣∣∣z=zt

z=0

+
∫ zt

0

∫
4π

µI +(z,Ω)
∂

∂z
I (z,Ω)d� dz

(5.18)

from which follows immediately∫
4π

µI +(zt,Ω)I (zt ,Ω)d� =
∫

4π

µI +(0,Ω)I (0,Ω)d� (5.19)
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The evaluation of this equation requires the specification of the boundary conditions
for I and I +.

5.2.1 Vacuum boundary conditions

The vacuum boundary conditions for the radiance I state that an atmospheric layer
is illuminated only by the parallel radiation of the Sun while diffuse illumination
at the boundaries of the layer is not admitted. Since at the top of the atmosphere
the incoming parallel solar radiation is already included in the source term Q, it
does not have to be considered here. Thus, the vacuum boundary conditions can be
stated in the form

top of the atmosphere: I (zt, µ, ϕ) = 0, 0 ≤ ϕ ≤ 2π , −1 ≤ µ < 0

Earth’s surface: I (0, µ, ϕ) = 0, 0 ≤ ϕ ≤ 2π , 0 < µ ≤ 1
(5.20)

In order to apply these equations, we split (5.19) as shown into∫ 2π

0

∫ 0

−1
µI +(zt, µ, ϕ)I (zt, µ, ϕ)dµdϕ +

∫ 2π

0

∫ 1

0
µI +(zt, µ, ϕ)I (zt, µ, ϕ)dµdϕ

=
∫ 2π

0

∫ 0

−1
µI +(0, µ, ϕ)I (0, µ, ϕ)dµdϕ

+
∫ 2π

0

∫ 1

0
µI +(0, µ, ϕ)I (0, µ, ϕ)dµdϕ

(5.21)

Thus, with the help of (5.20), we recognize immediately that (5.21) reduces to∫ 2π

0

∫ 1

0
µI +(zt, µ, ϕ)I (zt, µ, ϕ)dµdϕ =

∫ 2π

0

∫ 0

−1
µI +(0, µ, ϕ)I (0, µ, ϕ)dµdϕ

(5.22)

We note that the radiances I and I + appearing in this equation are completely
arbitrary and independent of each other. In the range of integration the radiances
I (zt, µ, ϕ) and I (0, µ, ϕ) differ from zero. Thus, the only way to satisfy (5.22) is
to require that the boundary conditions of the adjoint radiances are given by

top of the atmosphere: I +(zt, µ, ϕ) = 0, 0 ≤ ϕ ≤ 2π , 0 < µ ≤ 1

Earth’s surface: I +(0, µ, ϕ) = 0, 0 ≤ ϕ ≤ 2π , −1 ≤ µ < 0

(5.23)

Summarizing, the vacuum boundary conditions of the regular radiances I require
that the incoming diffuse radiation is zero at the base and the top of the atmosphere
while in the adjoint formulation the outgoing radiances I + at the boundaries must be
zero. We refer to the solution of the RTE utilizing the vacuum boundary conditions
as the standard problem. For further reference see also Chapter 3.
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5.2.2 Boundary conditions for a reflecting surface

The most important extension of the standard problem is the inclusion of ground
reflection. For simplicity, we will assume a Lambertian surface with albedo Ag. As
already mentioned previously, such a surface reflects the incoming radiances from
the upper hemisphere isotropically according to

π I (0, µ, ϕ) = Ag

∫ 2π

0

∫ 0

−1
|µ′|I (0, µ′, ϕ′)dµ′dϕ′, 0 < ϕ ≤ 2π , 0 < µ ≤ 1

(5.24)

Since the integration is over all directions, the right-hand side of this equation is
independent of any direction so that the upward radiance I (0, µ, ϕ) must also be
independent of direction, that is it has the same value for every of µ and ϕ.

The inclusion of the surface reflection also requires a change of the lower
adjoint boundary conditions in (5.23) while the upper adjoint boundary condi-
tion in (5.23) remains unaffected. Let us return to equation (5.21). Substituting
the upper boundary conditions of (5.20) and (5.23) into (5.21) we find that the
left-hand side vanishes. Substitution of (5.24) into the right-hand side of (5.21)
yields∫ 2π

0

∫ 0

−1
µI +(0, µ, ϕ)I (0, µ, ϕ)dµdϕ

= − Ag

π

∫ 2π

0

∫ 0

−1
|µ′|I (0, µ′, ϕ′)dµ′dϕ′

∫ 2π

0

∫ 1

0
µI +(0, µ, ϕ)dµdϕ

= Ag

π

∫ 2π

0

∫ 0

−1
µI (0, µ, ϕ)dµdϕ

∫ 2π

0

∫ 1

0
µ′ I +(0, µ′, ϕ′)dµ′dϕ′

(5.25)

In the integral on the left-hand side only the function I +(0, µ, ϕ), (−1 ≤ µ < 0),
is unknown. Since I and I + are independent of each other, we conclude that in this
integral I +(0, µ, ϕ) must be given by the following expression

π I +(0, µ, ϕ) = Ag

∫ 2π

0

∫ 1

0
µ′ I +(0, µ′, ϕ′)dµ′dϕ′, 0 < ϕ ≤ 2π , − 1 ≤ µ < 0

(5.26)

By comparing this equation with (5.24) the symmetry between the forward and
the adjoint boundary conditions becomes apparent. More complicated boundary
formulations are possible but will not be considered here. Figure 5.1 depicts some
information about the forward and the adjoint formulation showing the various
directions of the regular and the adjoint radiances at the upper and lower boundary
of the atmosphere.
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µ < 0 µ > 0 µ < 0 µ > 0

I(zt,µ,ϕ) = 0

I(0,µ,ϕ) I+(0,µ,ϕ)

I(zt,µ,ϕ) = 0

I+(zt,µ,ϕ) = 0

I+(zt,µ,ϕ) = 0

= 0

I (0,µ

= 0
= 0

= 0
= 0

Forward method Adjoint method

z = zt

z = 0

{ I+(0,µ,ϕ){

/

,ϕ) = 0/

/

/ /
/

Fig. 5.1 Comparison of directions of radiances in the forward and the adjoint
formulation. Dashed arrows indicate no reflection (. . . = 0) or reflection at the
Earth’s surface (. . . �= 0).

5.2.3 Inclusion of surface reflection in the formulation of the radiances

Equation (5.26) gives the ground reflection in the adjoint formulation. Now we must
find a general expression for the adjoint radiance in the presence of ground reflection
which applies to an arbitrary height. This task will be accomplished by first finding
a suitable expression in the forward mode which can then be transformed to the
adjoint formulation.

Let Iv(z, µ, ϕ) represent the solution of the standard problem, that is the solution
of the RTE with vacuum boundary conditions (index v) and source term Q

L Iv(z, µ, ϕ) = Q(z, µ, ϕ) (5.27)

Then the downward flux density in the forward mode at the Earth’s surface (z = 0)
is given by

Ev,−(0) =
∫ 2π

0

∫ 0

−1
|µ|Iv(0, µ, ϕ)dµdϕ (5.28)
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For purely mathematical purposes, in analogy to the form (5.3), we introduce an
artificial surface source Qg by means of

Qg =
{
µδ(z) 0 < µ ≤ 1
0 −1 ≤ µ < 0

(5.29)

Now let Ig(z, µ, ϕ) represent the solution of the RTE with vacuum boundary
conditions and source term Qg

L Ig(z, µ, ϕ) = Qg(z, µ, ϕ) (5.30)

Owing to the special formulation of the surface source Qg the radiance Ig is a
dimensionless quantity.2 The corresponding dimensionless downward flux density
Eg,−(0) at the surface is given by

Eg,−(0) =
∫ 2π

0

∫ 0

−1
|µ|Ig(0, µ, ϕ)dµdϕ (5.31)

In Appendix 5.5.2 we will show that I (z, µ, ϕ) may be written as function of the
vacuum solution and the solution with surface reflection in the form

I (z, µ, ϕ) = Iv(z, µ, ϕ) + Ev,−(0)
Ag

π

1 − Ag

π
Eg,−(0)

Ig(z, µ, ϕ) (5.32)

This expression shows in which way at an arbitrary height z the radiance I (z, µ, ϕ)
is influenced by the ground albedo Ag.

The task ahead is to transform equation (5.32) to the adjoint representation.
To this end we first consider the vacuum problem without any surface reflection.
By repeating (5.10), adding the suffix v to I + (vacuum boundary conditions) for
distinction, we obtain

L+ I +
v (z, µ, ϕ) = Q+(z, µ, ϕ) (5.33)

Using (5.11), we find the auxiliary function for the vacuum problem

�v(z, µ, ϕ) = I +
v (z, −µ, ϕ) (5.34)

According to (5.15), the auxiliary function �v satisfies the forward RTE with source
Q+(z, −µ, ϕ)

L�v(z, µ, ϕ) = Q+(z, −µ, ϕ) (5.35)

2 Note that the unit of δ(z) is (m−1).
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The vacuum boundary conditions for �v may be obtained by substituting (5.34)
into (5.23).

For the reflecting surface we obtain from (5.26)

π�(0,−µ, ϕ)= Ag

∫ 2π

0

∫ 1

0
µ′�(0, −µ′, ϕ′)dµ′dϕ′, 0< ϕ ≤ 2π, −1 ≤ µ< 0

(5.36)

which may also be written as

π�(0, µ, ϕ) = Ag

∫ 2π

0

∫ 0

−1
|µ′|�(0, µ′, ϕ′)dµ′dϕ′, 0 < ϕ ≤ 2π, 0 < µ ≤ 1

(5.37)

To include the surface reflection in the adjoint formulation we may proceed
analogously to the forward formulation. Comparison of (5.35) with (5.5) shows
that the auxiliary function �v(z, µ, ϕ) enters the RTE in the same way as the
forward radiance I (z, µ, ϕ) if the source Q(z, µ, ϕ) is replaced by Q+(z, −µ, ϕ).
Furthermore, comparison of equation (5.37) with (5.24) shows the direct analogy of
the lower boundary conditions of �(0, µ, ϕ) and I (0, µ, ϕ). These two comparisons
imply that the auxiliary function � describing the radiation field including ground
reflection should be given by an expression which is analogous to the form (5.32),
that is

�(z, µ, ϕ) = �v(z, µ, ϕ) + Ẽv,−(0)
Ag

π

1 − Ag

π
Ẽg,−(0)

�g(z, µ, ϕ) (5.38)

where the terms Ẽv,−(0) and Ẽg,−(0) are still unspecified. The quantity �g(z, µ, ϕ)
is the solution to

L�g(z, µ, ϕ) = Qg(z, µ, ϕ) (5.39)

with vacuum boundary conditions for �g, and Qg as defined by (5.29).
We are now able to find the meanings of Ẽv,−(0) and Ẽg,−(0). Comparison of

(5.39) with (5.30), observing (5.11), yields the following identities:

Ig(z, µ, ϕ) = �g(z, µ, ϕ) = I +
g (z, −µ, ϕ) (5.40)

According to (5.31) and due to the similarities of the forms stated by (5.32) and
(5.38), for the quantity Ẽg,−(0) we conjecture

Ẽg,−(0) =
∫ 2π

0

∫ 0

−1
|µ|�g(0, µ, ϕ)dµdϕ = Eg,−(0) (5.41)
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The form of Ẽv,−(0) follows from (5.28) so that

Ẽv,−(0) =
∫ 2π

0

∫ 0

−1
|µ|�v(0, µ, ϕ)dµdϕ =

∫ 2π

0

∫ 1

0
µI +

v (0, µ, ϕ)dµdϕ = E+
v,−(0)

(5.42)
Moreover, from (5.34) we find

�v(z, −µ, ϕ) = I +
v (z, µ, ϕ) (5.43)

Utilizing these pieces of information, we are ready to write down the desired adjoint
relationship to handle surface reflection

I +(z, µ, ϕ) = I +
v (z, µ, ϕ) + E+

v,−(0)
Ag

π

1 − Ag

π
Eg,−(0)

Ig(z, −µ, ϕ) (5.44)

Admittedly, some of the above arguments are somewhat indirect.
In order to solve the forward as well as the adjoint problem, including ground

reflection, we have to treat three individual problems:

(i) solution of L Iv = Q
(ii) solution of L Ig = Qg

(iii) solution of L+ I +
v = Q+.

It should be noted that the solution for Ig plays a dual role since it is needed to
solve the forward problem (5.32) as well as the adjoint problem (5.44).

5.3 Radiative effects

Many practical applications do not require the complete information contained
in the radiation field which is described by the distribution of the radiances at a
particular point. Often it is sufficient to extract certain integral quantities from the
field such as upward and downward flux densities, net flux densities at certain
heights and radiative heating rates in selected atmospheric layers. Each integral
quantity is known as the radiative effect E .

The reader will have noticed that the adjoint method was introduced without any
particular motivation. We will now give a convincing reason why this method was
introduced and point out the enormous advantage this method offers when solving
certain radiative transfer problems.

In case of the forward mode, the radiance I follows from the solution of the RTE

L I = Q (5.45)



144 Radiative perturbation theory

The radiative effect E of the radiation field is expressed by the general definition

E = < R, I > (5.46)

where R(z, µ, ϕ) is known as the corresponding response function. To state it more
clearly: to each radiative effect belongs a response function R which expresses the
response of the medium to the illumination of the atmosphere by the source Q.
Soon we will give examples of how to formulate R.

Now we briefly consider the RTE of the corresponding adjoint problem

L+ I + = Q+ (5.47)

We recall that the adjoint source Q+ was not specified previously. Since Q+ is
completely arbitrary we are free to set Q+ = R. This particular choice of Q+

results in the advantages of the adjoint method that we have mentioned above.
Combining (5.46) and (5.47) with R = Q+ we obtain

E = 〈R, I 〉 = 〈Q+, I 〉 = 〈L+ I +, I 〉 = 〈I +, L I 〉 = 〈I +, Q〉 (5.48)

where the last two expressions have been obtained by means of (5.7) and (5.45).
To familiarize ourselves with the formulation of the response function, we con-

sider a few very useful examples.

Example I

Suppose, at level z0 we wish to calculate the downward flux density E−(z0) which
is a typical effect of the radiation field. The basic formula is

E = E−(z0) =
∫ 2π

0

∫ 0

−1
|µ|I (z0, µ, ϕ)dµdϕ (5.49)

In order to state R, we make use of the Heaviside step function U, defined by

U (x − a) =
{

1 x > a
0 x < a

(5.50)

Utilizing (5.50) equation (5.49) can also be expressed as

E =
∫ zt

0

∫ 2π

0

∫ 1

−1
|µ|δ(z − z0)U (−µ)I (z, µ, ϕ)dµ dϕ dz

= 〈|µ|δ(z − z0)U (−µ), I 〉
(5.51)

Comparison of this equation with (5.46) shows that the response function R is given
by

R(z, µ) = |µ|δ(z − z0)U (−µ) (5.52)
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Fig. 5.2 Arrangement of the Heaviside step functions U (z − z1), U (z2 − z) and
the product U (z − z1)U (z2 − z).

Example II

Suppose we wish to find the average spectral solar heating rate within an atmo-
spheric layer �z = z2 − z1. Omitting in (2.46) the thermal emission J e we integrate
this equation over �z yielding

∂T

∂t

∣∣∣
rad,�z

= 1

�z

∫ z2

z1

∂T

∂t

∣∣∣
rad

dz = 1

�z

∫ z2

z1

∫ 2π

0

∫ 1

−1

kabs(z)

ρ(z)cp
I (z, µ, ϕ)dµ dϕ

(5.53)

In order to find the response function R, we use the product of two Heaviside step
functions U (z − z1)U (z2 − z), see Figure 5.2. Thus for this particular example the
radiative effect E representing the radiative temperature change of layer �z is given
by

E = 1

�z

∫ zt

0

∫ 2π

0

∫ 1

−1

kabs(z)

ρ(z)cp
U (z − z1)U (z2 − z)I (z, µ, ϕ)dµ dϕ

=
〈

kabs(z)

ρ(z)cp�z
U (z − z1)U (z2 − z), I

〉 (5.54)

yielding the response function as

R(z) = kabs(z)

ρ(z)cp�z
U (z − z1)U (z2 − z) (5.55)

Example III

From (5.48) we see that there exist two ways of computing the radiative effect E .
The first is the standard or the forward approach. We solve the RTE assuming the
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presence of the source Q, and then we take the inner product of the solution I
with the response function R. The second approach is to solve the adjoint form of
the RTE with source Q+ = R, and then take the inner product of the solution I +

with the forward source Q. Which one of these two approaches is to be preferred?
If one is interested to compute a single radiative effect, corresponding to a single
source Q, then it does not matter which method is given preference. However, if we
wish to compute the radiative effect of a whole series of sources then one should
choose very judiciously. In the following example, we will demonstrate which type
of method offers the greatest numerical advantage.

Suppose we wish to calculate the downward flux density arriving at the Earth’s
surface. The basic formula is given by setting z0 = 0 in (5.49) or in the response
function (5.52). The radiance I (0, µ, ϕ) is found by solving the forward form of
the RTE (5.45) utilizing the source distribution function (5.3). However, the same
radiative effect can be found from (5.48), or explicitly

E = 〈I +, Q〉 =
∫ zt

0

∫ 2π

0

∫ 1

−1
I +(z, µ, ϕ)Q(z, µ, ϕ)dµ dϕ dz (5.56)

Inserting here for Q(z, µ, ϕ) the expression (5.3) the integration can be performed
analytically and we obtain

E = E−(0) = |µ0|S0 I +(zt , µ0, ϕ0) (5.57)

This interesting result shows that the downward flux density at the ground is com-
pletely determined by the adjoint radiance I + at the top of the atmosphere at zt for
the special direction (µ0, ϕ0). Moreover, the source flux density is |µ0|S0 where
S0 is the solar constant for the particular wavelength under consideration. For a
broader solar band an integration over the wave number or the wavelength needs
to be carried out.

Let us reconsider the classical solution (5.49) to find E−(0). For each given
direction (µ0, ϕ0) of the Sun, i.e. for a fixed Q, the forward RTE (5.45) must be
solved to find the corresponding distribution I (0, µ, ϕ). If the daily course of the
downward directed radiative flux density at the ground is required on the basis of
N solar positions, the RTE (5.45) must be solved N times, that is for each position
(µ0, ϕ0) of the Sun.

If we employ the adjoint formulation, we must solve (5.47), choosing as the
adjoint source Q+ = R. In practice, the adjoint radiance distribution at the top of
the atmosphere, I +(zt , µ, ϕ), is calculated for all directions (µ, ϕ). This includes
all solar angles (µ0, ϕ0). Thus, plotting the values |µ0|S0 I +(zt , µ0, ϕ0) versus µ0

gives the diurnal course of E−(0) for all µ0. In one-dimensional slab geometry,
E as well as I + are invariant to ϕ0. Hence only one single adjoint solution of the
RTE is required in comparison to N necessary forward computations. This is the
decisive advantage that the adjoint method offers for many interesting situations.
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Additional information concerning the advantage of the adjoint formulation of the
RTE can be found in Gerstl and Zardecki (1985).

5.4 Perturbation theory for radiative effects

As is well-known, the calculation of radiative effects for realistic scattering and
absorbing atmospheres requires a large computer effort if exact solutions of the RTE
are demanded. In contrast, the use of approximate methods reduces the computer
effort substantially. The amount of accuracy which is lost due to approximation
depends on the type of the chosen approach. As a first approximation method, we
now introduce the so-called perturbation theory which greatly differs from all the
other approximation procedures to be discussed in the next chapter. A number of
more or less successful attempts in this direction have been made to treat aerosol
scattering as a perturbation applied to a Rayleigh scattering atmosphere of fixed
optical path length, see e.g. Sekera (1956), Deirmendjian (1957, 1959) and Box and
Deepak (1979). A different approach is due to Fymat and Abhyankar (1969a,b) and
Abhyankar and Fymat (1970a,b) who considered variations of the single scattering
albedo as a perturbation to simulate aerosol scattering.

In this section we are going to introduce still another procedure due to Box et al.
(1989a) which is a natural continuation of the theoretical developments described
in the previous sections. The main idea is to first solve the RTE for a certain
realistic base atmosphere. Solutions to ‘neighboring’ atmospheres can be obtained
by perturbing the functions characterizing the base atmosphere. Since the radiative
transport operator L is not self-adjoint, i.e. L �= L+, not only the forward radiance,
but also the adjoint radiance will have to be accounted for. This method is not only
fast but in most cases also quite accurate. It has also been shown that this type
of the perturbation technique can be further developed to improve the accuracy
of the procedure without losing a substantial amount of the numerical advantages
characterizing the present stage of development.

Before we begin with the discussion of the perturbation technique, we would
like to convince the reader that the following treatment is not simply an academic
exercise. Often it is wrongly argued that with the development of ever faster com-
puters, all approximation methods will soon be entirely obsolete. It should not be
overlooked that with the advent of faster computers more realistic and thus more
complex weather forecasting and climate prediction models are being developed
which require the implementation of increasingly more accurate and still faster
radiation transfer codes. Since the exact and frequent evaluation of the RTE for the
entire spectrum is out of the question for some time to come, the development of
improved approximation methods is a matter of necessity. The perturbation tech-
nique has the potential of being such a method. Thus we are not simply presenting
an academic exercise but a procedure of great usefulness.
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5.4.1 Basic perturbation theory

The state of the atmosphere is characterized by functions such as kext(z), ksca(z)
and P(z,Ω). We must distinguish between the operators, the radiances and func-
tions of the perturbed atmosphere and the corresponding quantities describing the
base atmosphere. This will be done by attaching a zero as subscript to all sym-
bols characterizing the base atmosphere. Thus, instead of (5.4), (5.8), (5.45) and
(5.47) henceforth denoting the equations for the perturbed atmosphere, for the base
atmosphere we write

(a) L0 I0(z,Ω) = Q, (b) L+
0 I +

0 (z,Ω) = Q+ = R (5.58)

with

(a) L0 = µ
∂

∂z
+ kext,0(z) − ksca,0(z)

4π

∫
4π

P0(z,Ω′ → Ω) ◦ d�′

(b) L+
0 = −µ

∂

∂z
+ kext,0(z) − ksca,0(z)

4π

∫
4π

P0(z,Ω → Ω′) ◦ d�′
(5.59)

Of course, the source Q, as defined in (5.3), is the same for any atmosphere. A little
reflection shows that the radiative effect for the base atmosphere is given by

E0 = 〈R, I0〉 = 〈I +
0 , Q〉 (5.60)

We will now define the perturbation quantities L , L+, I and I + by means of

L = L0 + �L , L+ = L+
0 + �L+, I = I0 + �I, I + = I +

0 + �I +

(5.61)
so that the RTE can be written as

Q = L I = (L0 + �L)(I0 + �I ) = L0 I0 + �L I0 + L�I (5.62)

Due to (5.58a) this equation reduces to the important relation

�L I0 + L�I = 0 (5.63)

Forming the inner product of (5.63) with I +
0 yields

〈I +
0 , �L I0〉 + 〈I +

0 , L�I 〉 =
〈I +

0 , �L I0〉 + 〈I + − �I +, L�I 〉 =
〈I +

0 , �L I0〉 + 〈I +, L(I − I0)〉 − 〈�I +, L�I 〉 =
〈I +

0 , �L I0〉 + 〈L+ I +, I 〉 − 〈L+ I +, I0〉 − 〈�I +, L�I 〉 =
〈I +

0 , �L I0〉 + 〈R, I 〉 − 〈R, I0〉 − 〈�I +, L�I 〉 = 0

(5.64)

By using the definitions (5.46) and (5.60) this equation may be rewritten as

E = E0 − 〈I +
0 , �L I0〉 + 〈�I +, L�I 〉 (5.65)
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Since we consider only linear perturbation theory in this book, we omit the last
term in this equation which is a second-order perturbation or a small correction to
the first order and obtain finally

E ≈ E0 − 〈I +
0 , �L I0〉 (5.66)

This equation is the basic estimate of the radiative effect formula for our work. It tells
us that the radiative effect of an arbitrary atmosphere is given by the corresponding
radiative effect of the base atmosphere and a correction term 〈I +

0 , �L I0〉 which
we call the perturbation integral. As will be seen soon, for the evaluation of the
perturbation integral it is not necessary to solve the RTE again. This leads to the
idea to solve the RTE for a set of different base atmospheres by means of complex
exact solution methods. The results of these calculations will be stored as a data
base which is then used to calculate the radiative effects of arbitrary atmospheres
according to (5.66). In practice one chooses that base atmosphere of the data base
which yields the smallest perturbations from the actual atmosphere so that the error
of the linear approximation remains as small as possible.

Of course, for additional accuracy it is possible to include second-order pertur-
bations by utilizing (5.65). This, however, complicates the analysis. Some progress
in this direction has been made but will not be reported here.

5.4.2 An alternative formulation of the radiative effect

In order to avoid the expensive repetitive evaluation of the exact forward form or the
adjoint form of the RTE, we have introduced the perturbation theory. We have also
derived the important relation (5.66) to estimate the radiative effect (5.48). This is
not the only way to obtain an approximate radiation effect formula. By applying
the variational method, several stationary functionals have been investigated in the
literature to estimate the effect of interest. In this section we present such an estimate
of the effect formula in the form derived by Gerstl and Stacey (1973). This method
is based on Schwinger’s variational principle. We begin by defining the functional

F[I, I +] = 〈R, I 〉 + 〈I +, Q − L I 〉 (5.67)

Thus, F[I, I +] consists of the radiative effect E = 〈R, I 〉 and a perturbation term
〈I +, Q − L I 〉. However, if I is the solution of the RTE with source Q, then the
perturbation term vanishes and the functional is equal to the radiative effect.

Let us assume that equations (5.58) have been solved already, that is I0 and I +
0

are known, and in particular L0 I0 = Q. In contrast to this, the solutions I and I +

to (5.45) and (5.47) are still unknown. We are now going to evaluate the functional
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F in terms of the solutions I0 and I +
0

F
[
I0, I +

0

] = 〈R, I0〉+〈I +
0 , Q− L I0〉 = 〈R, I0〉+〈I +

0 , L0 I0 − L I0〉
= 〈R, I0〉 − 〈I +

0 , �L I0〉 = E0 − 〈I +
0 , �L I0〉 (5.68)

where use was made of (5.60) and (5.61). By comparing (5.68) with (5.66) it is
seen that F[I0, I +

0 ] agrees with the linearized form of the radiative effect E .
Now we introduce the arbitrary normalizations

C = I

I1
, C+ = I +

I +
1

(5.69)

Substituting (5.69) into (5.67) gives

F
[
C I1, C+ I +

1

] = C〈R, I1〉 + C+〈I +
1 , Q〉 − CC+〈I +

1 , L I1〉 (5.70)

The normalization factors C, C+ will be determined from the requirement that the
functional F[C I1, C+ I +

1 ] is stationary with respect to arbitrary variations in the
normalization factors C and C+. Thus from the conditions

∂ F

∂C
= 0,

∂ F

∂C+ = 0 (5.71)

we find the stationary values for C and C+. This is Schwinger’s variational principle.
A brief calculation gives

C = 〈I +
1 , Q〉

〈I +
1 , L I1〉

, C+ = 〈R, I1〉
〈I +

1 , L I1〉
(5.72)

Substituting these expressions into (5.70) leads to the Schwinger functional

FS
[
I1, I +

1

] = F
[
C I1, C+ I +

1

] = 〈R, I1〉〈I +
1 , Q〉

〈I +
1 , L I1〉

(5.73)

We will now apply the approximate functions I0 and I +
0 as trial functions for I1

and I +
1 . This results in

FS
[
I0, I +

0

] = 〈R, I0〉〈I +
0 , Q〉

〈I +
0 , L I0〉

= 〈R, I0〉〈I +
0 , Q〉

〈I +
0 , L0 I0〉 + 〈I +

0 , �L I0〉
= 〈R, I0〉

1 + 〈I +
0 ,�L I0〉
〈I +

0 ,Q〉
(5.74)
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Using the definition (5.60) for the base radiative effect E0, we find the radiative
effect according to the Schwinger functional

ES = E0

1 + 〈I +
0 , �L I0〉/E0

(5.75)

It is a matter of interest to compare the two formulations of the radiative effect
according to equations (5.66) and (5.75). Expanding (5.75) into a Taylor series we
find

ES = E0

(
1 − 〈I +

0 , �L I0〉
E0

+ 〈I +
0 , �L I0〉2

E2
0

∓ · · ·
)

(5.76)

If the ratio in the denominator of (5.75) is small in comparison to 1, we may
discontinue the expansion after the linear term yielding

ES ≈ E0 − 〈I +
0 , �L I0〉 (5.77)

in agreement with (5.66) and (5.68). For larger disturbances the higher-order terms
in (5.76) contribute significantly to the Schwinger appproximation. Only detailed
calculations can give information as to which one of these two approximations is
to be preferred.

5.4.3 Evaluation of the perturbation integral

In the final step of the analysis we evaluate the perturbation integral

�E = 〈I +
0 , �L I0〉 (5.78)

Substituting the phase function P(z,Ω′ → Ω) = P(z, cos �) in the form (2.68)
into the definitions (5.4) and (5.59a) of the operators L , L+ and applying them to
I0 gives

L I0(z,Ω) =
(

µ
∂

∂z
+ kext(z)

)
I0(z,Ω) − ksca(z)

4π

∫
4π

( ∞∑
m=0

(2 − δ0m)

×
∞∑

l=m

pm
l (z)Pm

l (µ)Pm
l (µ′) cos m(ϕ − ϕ′)

)
I0(z,Ω′)d�′

L0 I0(z,Ω) =
(

µ
∂

∂z
+ kext,0(z)

)
I0(z,Ω) − ksca,0(z)

4π

∫
4π

( ∞∑
m=0

(2 − δ0m)

×
∞∑

l=m

pm
l,0(z)Pm

l (µ)Pm
l (µ′) cos m(ϕ − ϕ′)

)
I0(z,Ω′)d�′ (5.79)
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Subtracting both equations yields

�L I0(z,Ω) = �kext(z)I0(z,Ω) − 1

4π

∫
4π

( ∞∑
m=0

(2 − δ0m)

×
∞∑

l=m

�ηm
l (z)Pm

l (µ)Pm
l (µ′) cos m(ϕ − ϕ′)

)
I0(z,Ω′)d�′

(5.80)

where the abbreviations

�kext(z) = kext(z) − kext,0(z)

�ηm
l (z) = ksca(z)pm

l (z) − ksca,0(z)pm
l,0(z)

(5.81)

have been utilized. The most striking feature of (5.80) is that the partial derivative
µ∂/∂z does not appear in the perturbation operator �L . We conclude that for the
evaluation of the perturbation integral (5.78) it is not necessary to solve the RTE.
As already mentioned this is the paramount advantage of the perturbation method.
Once the radiative effect is known for a base atmosphere, the corresponding radiative
effect of an arbitrary atmosphere may be obtained without solving the RTE once
more. Finally, it is obvious that

�L+ = �L (5.82)

In the previous formulas, for simplicity, we have omitted the wave number or
wavelength subscript. Thus all formulas refer to monochromatic radiation. In order
to obtain physically relevant expressions, we must integrate over the wavelength to
get the radiative effect for an absorption band or even for the entire solar spectrum.

A number of physically relevant quantities such as flux densities, net flux densi-
ties and heating rates are independent of the azimuthal angle. Inspection of (5.79)
and (5.80) shows that in this case in the sum over m only the term m = 0 must be
considered which results in an important simplification.

We wish to summarize: with the help of the perturbation parameters �kext(z) and
�ηm

l (z) we can construct all kinds of perturbations from a base atmosphere. The
following procedure can be used for an efficient calculation of a radiative effect E
for an arbitrary atmosphere in the framework of linear perturbation theory.

(1) Solve the RTE for a base atmosphere to obtain the base values I0. Since the base values
I0 are calculated once only, they may be obtained by means of very accurate and thus
elaborate solution methods of the RTE.

(2) Calculate the corresponding I +
0 for the base solution.

(3) Calculate the base radiative effect E0. Use both formulations of (5.60) to check the
results.

(4) Find E according to (5.66) or (5.75).
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5.5 Appendix

5.5.1 Linear operator and its adjoint

The differential operator L is linear:

L(α f + βg) = αL f + βLg (5.83)

where α, β are real numbers. L is bounded:

||L f || ≤ k || f ||, k ≥ 0 (5.84)

Every bounded linear operator L has an adjoint L+ defined by the relation

〈Lu, v〉 = 〈u, L+v〉 (5.85)

L is self-adjoint if

L = L+ (5.86)

Example: Lu = du/dx with boundary condition u(0) = 2u(1)

〈u, v〉 =
∫ 1

0
u(x)v(x)dx

〈Lu, v〉 =
∫ 1

0

du(x)

dx
v(x)dx = u(1) [v(1) − 2v(0)] −

∫ 1

0
u(x)

dv(x)

dx
dx

L+v = −dv

dx
with v(1) = 2v(0) (5.87)

5.5.2 Superposition formula for the inclusion of
Lambertian surface reflection

The fundamental formula (5.32) was stated by Box et al. (1988) without giving
a derivation. We will now derive this equation by considering a planetary atmo-
sphere which is illuminated by parallel solar radiation assuming that no diffuse
radiation is incident at the top of the atmosphere. At the lower boundary we place a
Lambertian surface to simulate ground reflection. The solution I (τ, µ, ϕ) to this
type of radiative transfer problem can be obtained by solving two independent
more simple problems. The first problem (i) involves the illumination of the atmo-
sphere by parallel solar radiation and by employing vacuum boundary conditions for
the diffuse radiation field. The second problem (ii) assumes that the atmosphere is
illuminated from below by a purely diffuse radiation field resulting from a reflect-
ing Lambertian ground. At the top of the atmosphere again a vacuum boundary
condition is employed. To express the complete solution of the radiation problem,
the solutions to problems (i) and (ii) must be superimposed in a suitable but linear
fashion.
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Let us first consider problem (i) as described by

µ
d

dτ
Iv(τ, µ, ϕ) = Iv(τ, µ, ϕ) − ω0

4π

∫ 2π

0

∫ 1

−1
P(τ, µ′, ϕ′, µ, ϕ)Iv(τ, µ′, ϕ′)dµ′dϕ′

− ω0

4π
S0P(τ, µ0, ϕ0, µ, ϕ) exp

(
− τ

|µ0|
)

(5.88)

with vacuum boundary conditions (suffix v)

top of the atmosphere: Iv(0, µ, ϕ) = 0, 0 ≤ ϕ ≤ 2π , −1 ≤ µ < 0

Earth’s surface: Iv(τ0, µ, ϕ) = 0, 0 ≤ ϕ ≤ 2π , 0 < µ ≤ 1
(5.89)

The solution I (τ, µ, ϕ) to the solar radiation problem involving a Lambertian
surface at τ = τ0 with albedo Ag follows from the same type of transfer equa-
tion. While the upper boundary condition remains unchanged, the lower boundary
condition will be replaced by

I (τ0, µ, ϕ) = Ag

π

∫ 2π

0

∫ 0

−1
|µ′|I (τ0, µ

′, ϕ′)dµ′dϕ′

+ Ag

π
|µ0|S0 exp

(
− τ0

|µ0|
)

, 0 < µ ≤ 1 (5.90)

Next we consider problem (ii) as described by the RTE in the form

µ
d I r

d(τ, µ)

dτ
= I r

d(τ, µ) − ω0

2

∫ 1

−1
P(τ, µ′, µ)I r

d(τ, µ′)dµ′ (5.91)

The purely diffuse radiance I r
d(τ, µ) (suffix d) is generated by an isotropically

reflecting surface (suffix r). Observe that the phase function is azimuthally averaged
and that the primary scattering term appearing in (5.88) is absent since no parallel
solar radiation is involved. At the top of the atmosphere we apply the vacuum
boundary condition. To formulate the lower boundary condition we must include
both the reflected flux densities resulting from the various Iv and I r

d in addition to
the flux density due to the direct solar radiation at the ground. Thus for problem
(ii) the boundary conditions are given by

top of the atmosphere: I r
d(0, µ) = 0, −1 ≤ µ < 0

Earth’s surface: I r
d(τ0, µ) = Ag

π
E−(τ0), 0 < µ ≤ 1

(5.92)

where E−(τ0) is the total downward flux density at the Earth’s surface

E−(τ0) = Ev,−(τ0) + 2π

∫ 0

−1
|µ′|I r

d(τ0, µ
′)dµ′ (5.93)
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which includes the total downward flux density Ev,−(τ0) resulting from the vacuum
problem (i), that is

Ev,−(τ0) =
∫ 2π

0

∫ 0

−1
|µ′|Iv(τ0, µ

′, ϕ′)dµ′dϕ′ + |µ0|S0 exp

(
− τ0

|µ0|
)

(5.94)

Note that in (5.92) the factor 1/π converts the flux density to the isotropic radiance.
Let us now consider another special radiative transfer problem in terms of a

dimensionless radiance Ig assuming an isotropic radiation source of unit strength at
the lower boundary and vacuum boundary condition at the top of the atmosphere.
This transfer problem is defined by

µ
d

dτ
Ig(τ, µ) = Ig(τ, µ) − ω0

2

∫ 1

−1
P(τ, µ′, µ)Ig(τ, µ′)dµ′ (5.95)

with the boundary conditions

top of the atmosphere: Ig(0, µ) = 0, −1 ≤ µ < 0

Earth’s surface: Ig(τ0, µ) = 1, 0 < µ ≤ 1
(5.96)

The solution to this problem will be employed to find the solution to the RTE (5.91).
This is possible since Ig(τ, µ) represents the response of the atmosphere due to an
isotropic diffuse illumination at τ = τ0 with flux density

Eg,+(τ0) = 2π

∫ 1

0
µIg(τ0, µ)dµ = π (5.97)

The total flux density in upward direction of the combined problem (i) and (ii)
is given by

E+(τ0) = Ag E−(τ0) (5.98)

so that

E+(τ0)

Eg,+(τ0)
= Ag

π
E−(τ0) (5.99)

Analogously to this expression for I r
d(τ, µ) we may write

I r
d(τ, µ)

Ig(τ, µ)
= Ag

π
E−(τ0) or I r

d(τ, µ) = Ag

π
E−(τ0)Ig(τ, µ) (5.100)

In order to comprehend this conclusion, first of all, we recognize the similarity
of the transfer equations (5.91) and (5.95) and the formal agreement between the
upper boundary conditions in (5.92) and (5.96). The lower boundary conditions in
(5.92) and (5.96) vary in form, but both refer to isotropic upward radiation. The
step leading to (5.100) is motivated by the fact that the transfer problem for Ig is
linear with respect to the isotropic boundary conditions as applied to Ig at τ = τ0.
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This implies that a multiple of the upwelling radiation illuminating the atmosphere
from below results in a corresponding multiple of Ig(τ, µ) which represents the
response of the atmosphere to the lower boundary conditions in (5.92).

To complete the problem, we need to express the factor multiplying Ig(τ, µ) in
(5.100) in terms of known quantities. With the help of (5.94) and (5.100) we obtain

Ag

π
E−(τ0) = Ag

π

[
Ev,−(τ0) + 2π

∫ 0

−1
|µ′|I r

d(τ0, µ
′)dµ′

]

= Ag

π

[
Ev,−(τ0) + 2Ag E−(τ0)

∫ 0

−1
|µ′|Ig(τ0, µ

′)dµ′
] (5.101)

By introducing the abbreviation

Eg,−(τ0) = 2π

∫ 0

−1
|µ′|Ig(τ0, µ

′)dµ′ (5.102)

into (5.101) we find the required expression

E−(τ0) = 1

1 − (Ag/π )Eg,−(τ0)
Ev,−(τ0)

= Ev,−(τ0)

[
1 + Ag

π
Eg,−(τ0) +

[
Ag

π
Eg,−(τ0)

]2

+ · · ·
] (5.103)

The physical interpretation of this expression is as follows: the first term represents
the downward flux density of problem (i), while terms two, three, etc., describe the
additional contributions due to one, two, etc., reflection interactions between the
Lambertian surface and the plane–parallel atmosphere.

Substituting (5.103) into (5.100) gives

I r
d(τ, µ) = Ev,−(τ0)

(Ag/π )

1 − (Ag/π )Eg,−(τ0)
Ig(τ, µ) (5.104)

The radiance I (τ, µ, ϕ) is the combination of the radiances Iv(τ, µ, ϕ) and I r
d(τ, µ),

i.e.

I (τ, µ, ϕ) = Iv(τ, µ, ϕ) + I r
d(τ, µ)

= Iv(τ, µ, ϕ) + Ev,−(τ0)
(Ag/π )

1 − (Ag/π )Eg,−(τ0)
Ig(τ, µ)

(5.105)

While in (5.32) we have written the general form for Ig(z, µ, ϕ), here we have
omitted the azimuthal dependency of this quantity which is the actual form used
by Box et al. (1989b) in their computations.

Finally, it is noteworthy that in Chapter 4 we have included an equation similar to
(5.32), see (3.48), which is due to Chandrasekhar (1960). We wish to make reference
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to Muldashev et al. (1999) who have generalized Chandrasekhar’s approach by
deriving the internal radiance field at an arbitrary level τ due to the presence of a
Lambertian surface as described in detail above.

5.6 Problems

5.1: Show that the third terms in (5.16) cancel out.
5.2: Write down in detail all steps involved in (5.64).
5.3: Verify both parts in (5.72).
5.4: Show that (5.73) is correct.



6

Two-stream methods for the solution
of the radiative transfer equation

6.1 δ-scaling of the phase function

A particular difficulty when solving the RTE for solar radiation in an atmosphere
containing aerosol particles and cloud droplets is associated with the fact that the
scattering phase function for such particle populations is highly peaked in the
forward direction. For cloud particles the energy scattered within an angle interval
of about 5◦around the forward direction is four to five magnitudes larger than that
part of the energy related to sideward or backward scattering. Therefore, it can
be concluded that an accurate treatment of the radiation field for highly peaked
phase functions requires a very large number of expansion terms when, according
to (2.55), the phase function is written as a series of Legendre polynomials.

In order to incorporate the forward diffraction contribution in multiple scattering
computations we may proceed as follows. Let f represent that part of the radiation
which is scattered in the forward direction. In specifying this forward part we may
define the so-called δ-scaled phase function by

P∗(cos �) = 2 f δ(1 − cos �) + (1 − f )
n−1∑
k=0

p∗
k Pk(cos �) (6.1)

where the first term on the right-hand side represents the forward scattering
contribution. The modified expansion coefficients p∗

k will now be determined in
such a way that the first n moments p∗

0, p∗
1, . . . , p∗

n−1 of the modified phase func-
tion P∗ are equal to the corresponding moments of the original phase function P .
With the help of (2.61) we may, therefore, write

∫ 1

−1
Pl(cos �)P∗(cos �)d cos �=

∫ 1

−1
Pl(cos �)P(cos �)d cos �, l =0, . . . , n − 1

(6.2)

158
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According to Morse and Feshbach (1953) the δ-function can be expressed as an
infinite series of Legendre polynomials, that is

δ(x − x ′) =
∞∑

k=0

2k + 1

2
Pk(x)Pk(x ′) (6.3)

Utilizing this expression together with the orthogonality relations for the Legendre
polynomials (2.59b), we obtain∫ 1

−1
Pl(cos �)2 f δ(1 − cos �)d cos �

=
∫ 1

−1
Pl(cos �)2 f

∞∑
k=0

2k + 1

2
Pk(1)Pk(cos �)d cos � = 2 f (6.4)

since Pk(1) = 1, see Abramowitz and Stegun (1972). Hence, (6.2) may be rewritten
as

2 f + (1 − f )
∫ 1

−1
Pl(cos �)

n−1∑
k=0

p∗
k Pk(cos �)d cos �

=
∫ 1

−1
Pl(cos �)P(cos �)d cos � l = 0, 1, . . . , n − 1 (6.5)

By applying once more the orthogonality relations (2.59b) we finally obtain

p∗
l = pl − (2l + 1) f

1 − f
, l = 0, 1, . . . , n − 1 (6.6)

So far we have given no rule for determining f . Since the modified phase function
is truncated after the (n − 1)th term, that is p∗

l = 0 for l ≥ n, we obtain from (6.6)
a relation between f and the pl

f = pl

2l + 1
, l ≥ n (6.7)

However, this expression does not determine f uniquely. In order to come up with
a suitable choice we consider the difference between the original phase function P
and the scaled phase function P∗. In noting that the δ-function can be expanded in
an infinite series of Legendre polynomials, see (6.3), the difference between P and
P∗ can be determined from

P(cos �) − P∗(cos �) =
∞∑

l=n

[pl − (2l + 1) f ] Pl(cos �) (6.8)

By choosing

f = pn

2n + 1
(6.9)
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we observe that the leading term in the series (6.8) vanishes, while the remaining
terms of the series do not vanish. On the basis of numerical experience, Wiscombe
(1977) argues that it is more important to force agreement in the phase function for
the lowest order term l = n than for higher order terms l > n. Therefore, we will
use (6.9) to determine the fraction of the radiation which is scattered in the forward
direction.

In the following we will demonstrate how the δ-scaling of the phase function
affects the RTE in the absence of thermal emission. With reference to (2.29) and
(2.47) we write the RTE for the total radiance Itot including the parallel solar
radiation as

d Itot

ds
= −kext Itot + kext J (6.10)

where the multiple scattering term is given by

J = ω0

4π

∫
4π

P(cos �)Itot(s,Ω′)d�′ (6.11)

Introducing the δ-approximation of the phase function (6.1) into the multiple scat-
tering term and noting that

δ(1 − cos �) = 2πδ(µ − µ′)δ(ϕ − ϕ′) (6.12)

(see, e.g. Jackson, 1975), we obtain

J = ω0

4π

∫ 2π

0

∫ 1

−1

[
4π f δ(µ − µ′)δ(ϕ − ϕ′) + (1 − f )

n−1∑
l=0

p∗
l Pl(cos �)

]

× Itot(s, µ
′, ϕ′)dµ′dϕ′ (6.13)

The term containing the two δ-functions can be evaluated immediately so that

J = ω0 f Itot(s, µ, ϕ) + ω0(1 − f )

4π

∫ 2π

0

∫ 1

−1

n−1∑
l=0

p∗
l Pl(cos �)Itot(s, µ

′, ϕ′)dµ′dϕ′

(6.14)
For the RTE we then obtain

d Itot

ds
= −k∗

ext Itot + k∗
ext J

∗ (6.15)

where the modified source term J ∗ is given by

J ∗ = ω∗
0

4π

∫ 2π

0

∫ 1

−1

n−1∑
l=0

p∗
l Pl(cos �)Itot(s, µ

′, ϕ′)dµ′dϕ′ (6.16)

The modified extinction coefficient k∗
ext and the modified single scattering albedo

ω∗
0 are

k∗
ext = (1 − ω0 f )kext, ω∗

0 = (1 − f )ω0

1 − ω0 f
(6.17)
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By comparing (6.15) with (6.10) we observe that both types of the radiative
transfer equation have the same form. This means that the δ-adjustment of the
phase function leaves the RTE formally invariant. In summary, in going from the
original unscaled to the scaled problem we have to make the following replacements

pl → p∗
l = pl − (2l + 1) f

1 − f

kext → k∗
ext = (1 − ω0 f )kext

ω0 → ω∗
0 = (1 − f )ω0

1 − ω0 f

(6.18)

where the forward diffraction part f of the phase function is given by (6.9).
For a homogeneous layer with thickness �z the optical depth �τ = kext�z has

to be replaced by the scaled value

�τ ∗ = k∗
ext�z = (1 − ω0 f )�τ (6.19)

It is important to note that in the δ-approximation for consistency the extinction of
the direct solar beam is given by

S(τ ∗) = S0 exp

(
− τ ∗

µ0

)
(6.20)

Since τ ∗ ≤ τ , the δ-scaled direct flux density is always larger than its unscaled
counterpart. This means that the sum of the scaled direct beam plus the scaled diffuse
radiation should be compared with the measured values of the global radiation, that
is the total downward radiation.

The δ-scaling approximation for solar radiative transfer has been widely
employed. In particular, this method has been applied to the so-called two-stream
methods, see Joseph et al. (1976) and Wiscombe (1977). These authors have shown
that the δ-scaling resulted in improved flux density and heating rate calculations.

6.2 The two-stream radiative transfer equation

It is well known that in a plane–parallel atmosphere the evaluation of the thermo-
dynamic heat equation requires the knowledge of the net radiative flux densities
Enet,z = E+,z − E−,z but does not need the complete directional dependence of the
radiation field.1 An accurate determination of these flux densities requires an inte-
gration of the azimuthally independent radiation field I m=0(τ, µ) over all directions
as shown in (2.126).

In many circumstances the computational effort to determine the up- and
downward flux densities in this manner is far too high so that approximate methods

1 For simplicity, the subscript z occurring at the radiative flux densities will henceforth be omitted.
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must be used. These are the so-called two-stream methods (TSM) which originated
with Schuster (1905), Schwarzschild (1906), Emden (1913), and Eddington (1916).
Owing to their high computational efficiency, two-stream methods are now widely
used in conjunction with global or mesoscale climate models for determining the
heating and cooling rates in the solar and long-wave radiative spectrum. In the fol-
lowing we will show how various versions of the TSM can be derived from the RTE.

In principle we could start from DOM by considering two radiation streams only.
However, it is more expedient to begin with the azimuthally averaged radiation field
in the absence of thermal radiation since the solar and infrared spectra may easily be
separated. For convenience we repeat (2.81), omitting there the infrared radiation
term

µ
d

dτ
I (τ, µ) = I (τ, µ) − ω0

2

∫ 1

−1
P(µ, µ′)I (τ, µ′)dµ′

− ω0

4π
S0 exp

(
− τ

µ0

)
P(µ, −µ0) (6.21)

The up- and downward radiative flux densities follow from

E+ = 2π

∫ 1

0
µI (τ, µ)dµ, E− = 2π

∫ 1

0
µI (τ, −µ)dµ (6.22)

so that the total net flux density is obtained from

Enet = E+ − E− − µ0S0 exp

(
− τ

µ0

)
(6.23)

see also Section 2.7. The last term on the right-hand side of (6.23) represents the
contribution of the unscattered solar beam. Integration of (6.21) over the 2π upper
hemisphere leads to

d E+
dτ

= 2π

∫ 1

0
I (τ, µ)dµ − ω0π

∫ 1

0

∫ 1

−1
P(µ, µ′)I (τ, µ′)dµ′dµ

− S0 exp

(
− τ

µ0

)
ω0

2

∫ 1

0
P(µ, −µ0)dµ (6.24)

Let us now discuss that part of the diffuse downward light which is scattered
into the backward hemisphere. From the phase function we define the so-called
backscattered fraction or backscattering coefficient b(−µ′) (Wiscombe and Grams,
1976) as

b(−µ′) = 1

2

∫ 1

0
P(µ, −µ′)dµ, µ′ > 0 (6.25)

where, as usual, −µ′ refers to the direction of the downward diffuse light as
illustrated in Figure 6.1. Due to the normalization condition (4.34) and the symmetry
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Upper hemisphere

Lower hemisphere

I(τ, −µ′)

b(−µ′)

1  − b(−µ′)

Fig. 6.1 Illustration of the backscattered fraction b(−µ′) in the phase function.

properties (4.95) of P(µ, µ′) it follows that

1

2

∫ 1

0
P(−µ, −µ′)dµ = 1

2

∫ 1

0
P(µ, µ′)dµ = 1 − b(−µ′), µ′ > 0 (6.26)

With this definition we can split the multiple scattering term in (6.24) into two parts

1

2

∫ 1

0

∫ 1

−1
P(µ, µ′)I (τ, µ′)dµ′dµ

= 1

2

∫ 1

0

∫ 1

0
P(µ, µ′)I (τ, µ′)dµ′dµ + 1

2

∫ 1

0

∫ 0

−1
P(µ, µ′)I (τ, µ′)dµ′dµ

= 1

2

∫ 1

0

∫ 1

0
P(µ, µ′)I (τ, µ′)dµ′dµ + 1

2

∫ 1

0

∫ 1

0
P(µ, −µ′)I (τ, −µ′)dµ′dµ

=
∫ 1

0
[1 − b(−µ′)]I (τ, µ′)dµ′ +

∫ 1

0
b(−µ′)I (τ,−µ′)dµ′ (6.27)

which motivates the definition (6.25). For the primary scattered sunlight in the
backward direction we obtain analogously to (6.25)

b(−µ0) = 1

2

∫ 1

0
P(µ, −µ0)dµ, µ0 > 0 (6.28)

Substituting (6.25)–(6.28) into (6.24) yields

d E+
dτ

= 2π

∫ 1

0
I (τ, µ)dµ − 2πω0

∫ 1

0
[1 − b(−µ′)]I (τ, µ′)dµ′

−2πω0

∫ 1

0
b(−µ′)I (τ, −µ′)dµ′ − ω0S0 exp

(
− τ

µ0

)
b(−µ0) (6.29)
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In an analogous manner we can derive the corresponding equation for the downward
flux density E−

d E−
dτ

=−2π

∫ 1

0
I (τ, −µ)dµ + 2πω0

∫ 1

0
b(−µ′)I (τ, µ′)dµ′

+ 2πω0

∫ 1

0
[1 − b(−µ′)]I (τ, −µ′)dµ′ + ω0S0 exp

(
− τ

µ0

)
[1 − b(−µ0)]

(6.30)

Next we define the average of a quantity ψ(τ, µ) weighted with respect to the
up- and downwelling intensities I (τ,±µ)

ψ+(τ ) =

∫ 1

0
ψ(τ, µ)I (τ, µ)dµ∫ 1

0
I (τ, µ)dµ

, ψ−(τ )=

∫ 1

0
ψ(τ, µ)I (τ, −µ)dµ∫ 1

0
I (τ, −µ)dµ

(6.31)

For the particular choice ψ = µ we obtain from (6.31)

µ+(τ ) =
2π

∫ 1

0
µI (τ, µ)dµ

2π

∫ 1

0
I (τ, µ)dµ

= E+

2π

∫ 1

0
I (τ, µ)dµ

µ−(τ ) =
2π

∫ 1

0
µI (τ,−µ)dµ

2π

∫ 1

0
I (τ, −µ)dµ

= E−

2π

∫ 1

0
I (τ, −µ)dµ

(6.32)

The parameters µ+ and µ− can be interpreted as the mean directional cosines of
the up- and downward diffuse radiation. Utilizing in (6.31) ψ = b(−µ) we obtain
in the same way

b+(τ ) =
2π

∫ 1

0
b(−µ)I (τ, µ)dµ

2π

∫ 1

0
I (τ, µ)dµ

, b−(τ ) =
2π

∫ 1

0
b(−µ)I (τ, −µ)dµ

2π

∫ 1

0
I (τ, −µ)dµ

(6.33)

It should be emphasized that, in general, the parameters µ±, b± are functions of
the optical depth τ since the radiances depend on τ . Combining (6.32) and (6.33)
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yields

2π

∫ 1

0
b(−µ)I (τ, µ)dµ = b+

µ+
E+, 2π

∫ 1

0
b(−µ)I (τ, −µ)dµ = b−

µ−
E−

(6.34)

Equations (6.32) and (6.34) can now be employed to eliminate all expressions
in (6.29) and (6.30) which contain the radiance I (τ, µ). The resulting differential
equations for the up- and downward flux densities can be written as a 2 × 2 matrix
differential equation which reads

dE
dτ

= A · E + S0 exp

(
− τ

µ0

)
S (6.35)

where

E =

 E+

E−


 , A =


 α11 α12

α21 α22


 , S =


 − ω0b(−µ0)

ω0 [1 − b(−µ0)]


 (6.36)

The coefficients α jk, ( j, k = 1, 2), of the matrix A are given by

α11 = 1 − ω0(1 − b+)

µ+
, α12 = −ω0b−

µ−

α21 = ω0b+
µ+

, α22 = −1 − ω0(1 − b−)

µ−

(6.37)

It must be stressed that the parameters µ±, b± occurring in A are unknown within
the two-stream approximation. Therefore, an ambiguity exists in specifying these
values. To the best of our knowledge practically all applications of the TSM ignore
the τ -dependency of both µ± as well as b±. While some authors provide different
constants for the parameters for the upper and lower hemisphere, others make no
distinction and, therefore, set µ+ = µ−, b+ = b−. In the way these parameters
are chosen, slight distinctions between the different TSM schemes occur in the
literature.

For a homogeneous layer �τi = τi − τi−1 the system (6.35) is a first-order dif-
ferential equation with constant coefficients α jk which can be solved analytically.
The integration constants are determined from the boundary conditions, i.e. the
downward flux density E−(τi−1) at the upper boundary and the upward flux density
E+(τi ) at the lower boundary of the homogeneous layer.

In order to solve the two-stream equations for an inhomogeneous atmosphere
we may proceed as in the DOM method, see Section 4.3.
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Layer

1

i

Optical depth

= 0

E+(τi

τi

τi

τN

τi

−1

−1

)

E ( )

 

 ω0,i

ω0,1

S0

Ground Ag

∆τ1

τ0

τ1

∆τi

−

Fig. 6.2 Subdivision of an inhomogeneous atmosphere into N homogeneous sub-
layers. At the boundaries τi−1 and τi the up- and downward flux densities are given
by E+(τi−1) and E−(τi ), respectively.

(1) First, solve (6.35) for each individual homogeneous sublayer i defined by the optical
depth interval �τi .

(2) The flux densities E±(τi ) are forced to be continuous at each interior interface τi .
(3) If τN is the total optical depth of the atmosphere then for a reflecting ground the flux

density E+(τN ) is determined by the diffusely reflected flux density E−(τN ) plus diffuse
or specular reflection of the direct solar radiation reaching the ground.

(4) Similar to DOM, a linear system of equations has to be solved to obtain the up- and
downward flux densities at each level i of the model atmosphere.

Figure 6.2 illustrates the sublayering of the atmosphere as well as the up- and
downward diffuse flux densities at the boundaries of an arbitrary layer i .

6.3 Different versions of two-stream methods

In this section we will present some two-stream methods which have been widely
discussed in the literature.

6.3.1 Two-stream method with hemispheric isotropy

In this version of TSM it is assumed that the up- and downward diffuse radiation
field is isotropic. Evaluating for this particular situation (6.32) and (6.33) yields

µ± = µ̄ = 1

2
, b± = b̄ =

∫ 1

0
b(−µ)dµ (6.38)
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Truncating in (2.80) the phase function after the linear term, i.e. P(µ, −µ′) =
1 − p1µµ′, and substituting this expression into (6.25) results in

b(−µ′) = 1

2
− 3

4
gµ′ =⇒ b̄ = 1

2
− 3

8
g (6.39)

Here the so-called asymmetry parameter of the phase function g has been intro-
duced. This quantity is defined by the first moment of the phase function

g = 1

2

∫ 1

−1
cos �P(cos �)d cos � = p1

3
(6.40)

whereby the integral was evaluated by means of (2.61). Hence it is seen that for
isotropic scattering g = 0.

At this point it is necessary to make a brief remark on the phase function as given
by (2.55). If the phase function is found with the help of the rigorous electromagnetic
theory, known as the Mie–Debye theory to be discussed later, we speak of the Mie
phase function PMie(cos �). Often it is convenient to approximate PMie with the
help of the asymmetry parameter. The resulting phase function is known as the
Henyey–Greenstein phase function defined by

PHG(cos �) = 1 − g2

(1 + g2 − 2g cos �)3/2
=

∞∑
l=0

pl,HG Pl(cos �)

with pl,HG = (2l + 1)gl

(6.41)

6.3.2 The Eddington approximation

In the classical Eddington approximation the radiance is arranged by means of

I (τ, µ, ϕ) = I0(τ ) + µI1(τ ) (6.42)

so that I is independent of the azimuthal angle ϕ. Substituting this equation into
(6.21) gives

µ
d

dτ
[I0(τ ) + µI1(τ )] = I0(τ ) + µI1(τ ) − ω0

2

∫ 1

−1
P(µ, µ′)[I0(τ ) + µ′ I1(τ )]dµ′

− ω0

4π
S0 exp

(
− τ

µ0

)
P(µ, −µ0) (6.43)
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The multiple scattering integral may be evaluated by means of (2.80) and the
orthogonality relations for the Legendre polynomials (2.59b) yielding2

∫ 1

−1
P(µ, µ′)(I0 + µ′ I1)dµ′ = 2I0 + 2gµI1 (6.44)

with g = p1/3. Hence, a consequence of the Eddington approximation (6.42) is that
the phase function is truncated after the linear term. Integrating (6.43) over µ in the
limits [−1, 1] we obtain a differential equation for I1. Multiplication of (6.43) by
µ and subsequent integration over µ gives the corresponding differential equation
for I0. Thus we obtain

d I1

dτ
= 3(1 − ω0)I0 − 3

4π
ω0S0 exp

(
− τ

µ0

)
(6.45)

d I0

dτ
= (1 − ω0g)I1 + 3

4π
ω0gµ0S0 exp

(
− τ

µ0

)
According to (6.22) the up- and downward radiative flux densities are given by

E+ = π

(
I0 + 2

3
I1

)
, E− = π

(
I0 − 2

3
I1

)
(6.46)

Hence, I0 and I1 may be written as

I0 = 1

2π
(E+ + E−), I1 = 3

4π
(E+ − E−) (6.47)

Substituting these relations into (6.45) we obtain

d

dτ
(E+ − E−) = 2(1 − ω0)(E+ + E−) − ω0S0 exp

(
− τ

µ0

)
(6.48)

d

dτ
(E+ + E−) = 3

2
(1 − ω0g)(E+ − E−) + 3

2
ω0gµ0S0 exp

(
− τ

µ0

)
Addition and subtraction of (6.48a,b) finally results in

d

dτ
E+ =

[
(1 − ω0) + 3

4
(1 − ω0g)

]
E+

+
[

(1 − ω0) − 3

4
(1 − ω0g)

]
E− − ω0

2

(
1 − 3

2
gµ0

)
S0 exp

(
− τ

µ0

)
d

dτ
E− = −

[
(1 − ω0) − 3

4
(1 − ω0g)

]
E+

−
[

(1 − ω0) + 3

4
(1 − ω0g)

]
E− + ω0

2

(
1 + 3

2
gµ0

)
S0 exp

(
− τ

µ0

)
(6.49)

2 Recall that P0(µ) = 1 and P1(µ) = µ.
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As stated before, the right-hand side of (6.44) implies a linear approximation of the
phase function so that b(−µ′) and b̄ are given by (6.39). According to (6.33) the
quantities b± are independent of direction. Since b̄ is also independent of direction,
we approximate b± by b̄. Assuming additionally that µ± = 1/2 we find from (6.37)
and (6.49)

α11,Ed = α11 − 1

4
, α21,Ed = α21 − 1

4

α12,Ed = α11 + 1

4
, α22,Ed = α11 + 1

4

(6.50)

Furthermore, one may easily see that the factors multiplying the solar radiation
terms in (6.49) are given by the components of S as defined in (6.36). The scat-
tering problem based on the approximation (6.42) was treated in some detail
by Shettle and Weinman (1970) and, among others, by Zdunkowski and Junk
(1974).

Two-stream approximations often yield unsatisfactory results because in these
methods the strong forward scattering peak of the phase function is not accounted
for. A distinct improvement of a particular TSM is achieved by utilizing the δ-scaled
phase function defined in (6.1). In the δ-two-stream approach, P∗ reduces to the
form given in (4.35).

Introducing P∗ in the classical Eddington method yields the δ-Eddington
approximation where, according to (6.18), the original unscaled parameters
(τ, p1, ω0) are replaced by (τ ∗, p∗

1, ω
∗
0) with

τ ∗ = (1 − ω0 f )τ , p∗
1 = p1 − 3 f

1 − f
, ω∗

0 = (1 − f )ω0

1 − ω0 f
(6.51)

The fraction f of radiation in the diffraction peak is determined with the help of
(6.9) yielding for n = 2

Mie phase function: f = p2

5

Henyey–Greenstein phase function: f = p2,HG

5
= g2 =

( p1

3

)2 (6.52)

where in case of the Henyey–Greenstein phase function (6.41) has been used.
Owing to the δ-scaling, the backscattered fraction of the direct solar radiation can
be expressed as

b(−µ0) = 1

2

(
1 − 3

2
g∗µ0

)
with g∗ = g − f

1 − f
= p∗

1

3
(6.53)
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6.3.3 Discrete ordinates formalism

Setting in the discrete ordinates method s =1, according to (2.90) the Gaussian
weights and nodes are given by

w1 = w−1 = 1, µ1 = 1√
3

, µ−1 = − 1√
3

(6.54)

Recall that the nodes µi are the positive zeros of the corresponding Legendre
polynomials. Equation (6.54) represents the simplest possible choice for the number
of streams in DOM. The upward and downward radiation streams can be interpreted
as traveling along the directionsµ1 andµ−1, respectively. For the backscattered frac-
tion and for a first-order representation of the phase function we obtain from (6.25)

b(−µ′) = 1

2
− 3

2
gµ1µ

′ (6.55)

For the determination of b̄ equation (6.38) will be evaluated by means of the
Gaussian quadrature. However, it is noteworthy that the double-Gaussian quadra-
ture leading to µ1 =1/2 is not recommended since for g =1 the quadrature of∫ 1

0 b(−µ′)dµ′ yields an unphysical total backscattered fraction b̄ = 1/8. However,
choosing g =1 means that the total radiation is scattered in the forward direction,
i.e. b̄ must be zero. With the ordinary Gaussian quadrature one finds indeed the
physically correct value b̄=0.

The parameters necessary for evaluating the matrix A in (6.36) are given by

µ± = µ1 = 1/
√

3, b+ = 1 − 1

2
P(µ1, µ1), b− = 1

2
P(µ1, −µ1) = b+

(6.56)
Here the first-order approximation of the phase function

P(µ1, ±µ1) = 1 ± 3gµ1µ1 = 1 ± g (6.57)

has been used. In the primary scattering term the phase function and the correspond-
ing backscattered fraction for the primary scattered sunlight are approximated as

P(µ0, ±µ1) = 1 ±
√

3gµ0 =⇒ b(−µ0) = 1

2
P(µ0, −µ1) = 1

2

(
1 −

√
3gµ0

)
(6.58)

6.3.4 Practical improved flux method

In the so-called practical improved flux method (PIFM) by Zdunkowski et al. (1982)
the following parameters are employed

µ± = µ̄ = 1

2
, b± = b̄ = 3

8
(1 − g), b(−µ0) = 1

2
− 3

4
gµ0 (6.59)
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It is to be noted that in PIFM the δ-scaling of the phase function is applied to the
primary scattering term only, that is

d

dτ
E+

∣∣∣
prim

= ω0(1 − f )b∗(−µ0)S0 exp

(
− (1 − ω0 f )τ

µ0

)
d

dτ
E−

∣∣∣
prim

= ω0(1 − f )[1 − b∗(−µ0)]S0 exp

(
− (1 − ω0 f )τ

µ0

) (6.60)

The δ-scaled backscattered fraction for primary scattered light is defined by

b∗(−µ0) = 1

2
− 3

4
g∗µ0 = 1

2
− 3

4

g − f

1 − f
µ0 (6.61)

The particular choices (6.60) replace the primary scattering term on the right-hand
side of (6.35). In PIFM the transfer of the diffuse radiation still employs the unscaled
optical parameters ω0 and b. For PIFM the coefficients of the matrix A are then
given by

α11 = −α22 = 1 − ω0(1 − b̄)

µ̄
, α12 = −α21 = −ω0b̄

µ̄
(6.62)

This selective type of scaling prevents negative flux densities which occasionally
occur in case of the traditional δ-scaling.

Finally, we will state different advantages and disadvantages of the two-stream
methods.

(1) Two-stream methods are computationally very fast and can be employed as a standard
technique for radiative transfer calculations in climate models.

(2) It is easy to apply modifications to a particular TSM which account for partial cloudi-
ness. Details will be given in Section 5.6 of this chapter.

(3) Two-stream methods yield sufficiently accurate results for radiative heating and cooling
rates. Maximum errors are typically in the order of 10%.

(4) Application of the δ-scaled phase function yields distinct improvements of the results
of the corresponding δ-two-stream methods.

The derivation of the TSM as outlined above follows mainly the work of
Zdunkowski et al. (1980), Zdunkowski and Korb (1985), and Ceballos (1988).
However, many more versions of TSMs (see, e.g. Meador and Weaver, 1980; Bott
and Zdunkowski, 1983) can be found in the literature which all have their particular
advantages and disadvantages.
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6.4 Analytical solution of the two-stream methods
for a homogeneous layer

In all versions of TSM presented in the previous section it turned out that µ+ = µ−
and b+ = b−. In this case the coefficients of the matrix A are related by α11 = −α22

and α21 = −α12, see (6.37), and the RTE (6.35) reduces to


d E+
dτ

d E−
dτ


 =


 α1 − α2

α2 − α1




 E+

E−


+


 α3

α4


 S (6.63)

Here the abbreviations

α1 = α11, α2 = α21, α3 = −ω0b(−µ0), α4 = ω0 [1 − b(−µ0)]

(6.64)

have been introduced while the solar radiation S(τ ) is given by the solution of the
differential equation

d S

dτ
= − 1

µ0
S0 exp

(
− τ

µ0

)
=⇒ S(τ ) = S0 exp

(
− τ

µ0

)
(6.65)

Equation (6.63) describes a set of coupled ordinary differential equations for E+
and E−. For a homogeneous layer �τi = τi − τi−1 the coefficients α j , j = 1, . . . , 4
of the system are constant so that it is possible to obtain analytical solutions. First
we solve the homogeneous system


d E+
dτ

d E−
dτ


 =


 α1 −α2

α2 −α1




 E+

E−


 (6.66)

Inserting the trial solutions E+ = A1 exp(λ̃τ ), E− = A2 exp(λ̃τ ) into (6.66) yields
the linear equation 

 α1 − λ̃ −α2

α2 −α1 − λ̃




 E+

E−


 = 0 (6.67)

This equation can be fulfilled only if the determinant vanishes, i.e.∣∣∣∣∣∣
α1 − λ̃ −α2

α2 −α1 − λ̃

∣∣∣∣∣∣ = −(α1 − λ̃)(α1 + λ̃) + α2
2 = 0 (6.68)
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From (6.68) we obtain the two eigenvalues of the system

λ̃1,2 = ±λ with λ =
√

α2
1 − α2

2 (6.69)

A solution of the homogeneous system can be obtained by inserting the expressions

λ̃1 : E+ = C1 exp (λτ ) , E− = D1 exp (λτ )

λ̃2 : E+ = C2 exp (−λτ ) , E− = D2 exp (−λτ )
(6.70)

into (6.67) yielding

λ̃1 : (α1 − λ)C1 − α2 D1 = 0, α2C1 − (α1 + λ)D1 = 0

λ̃2 : (α1 + λ)C2 − α2 D2 = 0, α2C2 − (α1 − λ)D2 = 0
(6.71)

From these equations the ratio of the constants can be determined as

D1 = (α1 − λ)

α2
C1 = α2

(α1 + λ)
C1

D2 = (α1 + λ)

α2
C2 = α2

(α1 − λ)
C2

(6.72)

with

α2

(α1 + λ)
= (α1 − λ)

α2
(6.73)

which is equivalent to λ=
√

α2
1 −α2

2. The general solution of the homogeneous
system, including two constants of integration, is given by a superposition of the
individual solutions and may be written as

E+, h(τ ) = C1 exp(λτ ) + C2 exp(−λτ )

E−, h(τ ) = C1
α2

(α1 + λ)
exp(λτ ) + C2

α2

(α1 − λ)
exp(−λτ )

(6.74)

In the next step we determine a particular solution of the inhomogeneous system.
This can be most easily obtained by using a trial solution having the functional form
of the inhomogeneous term of the differential equation (6.63), that is

E+, p(τ ) = α5S0 exp

(
− τ

µ0

)
, E−, p(τ )= α6S0 exp

(
− τ

µ0

)
(6.75)

Inserting these trial solutions into the inhomogeneous system (6.63) leads to another
inhomogeneous system of linear equations for α5 and α6


1

µ0
+ α1 −α2

α2
1

µ0
− α1




 α5

α6


+


 α3

α4


 = 0 (6.76)
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with the solutions

α5 =
(
α1 − 1

µ0

)
α3 − α2α4(

1
µ0

)2
− λ2

, α6 =
α2α3 −

(
α1 + 1

µ0

)
α4(

1
µ0

)2
− λ2

(6.77)

Inspection of these equations reveals that for µ0 =1/λ the constants α5 and α6

become infinitely large. However, this so-called resonance case may be easily
avoided by adding to the actual solar position µ0 a small increment ±�µ0.

In the third step, the complete solution of the inhomogeneous system of lin-
ear differential equations (6.63) is obtained by adding the homogeneous and the
particular solutions (6.74) and (6.75). Hence we obtain

E+(τ ) = C1 exp(λτ ) + C2 exp(−λτ ) + α5S0 exp

(
− τ

µ0

)

E−(τ ) = C1
α2

(α1 + λ)
exp(λτ ) + C2

α2

(α1 − λ)
exp(−λτ ) + α6S0 exp

(
− τ

µ0

)

(6.78)

Our final goal is to obtain expressions for the flux densities E+(τi−1) and E−(τi )
leaving the homogeneous layer �τi in terms of the flux densities E−(τi−1) and
E+(τi ) entering this layer. With the help of (6.78), the incident flux densities at the
boundaries of the layer can be written down immediately

E+(τi ) = C1 exp(λτi ) + C2 exp(−λτi ) + α5S(τi−1) exp

(
−�τi

µ0

)

E−(τi−1) = C1
α2

(α1 + λ)
exp(λτi−1) + C2

α2

(α1 − λ)
exp(−λτi−1) + α6S(τi−1)

(6.79)

where S(τi−1) is the solar radiative flux density incident at the top of the layer, that
is

S(τi−1) = S0 exp

(
−τi−1

µ0

)
(6.80)

Equations (6.79) may be solved to determine the integration constants C1 and
C2. The result is

C1 = β11 E+(τi ) + β12 E−(τi−1) + β13S(τi−1)

C2 = β21 E+(τi ) + β22 E−(τi−1) + β23S(τi−1)
(6.81)
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where the following constants have been introduced

β11 = A
α2

α1 − λ
exp(−λτi−1), β12 = −A exp(−λτi )

β21 = −A
α2

α1 + λ
exp(λτi−1), β22 = A exp(λτi )

β13 = −β11α5 exp

(
−�τi

µ0

)
− β12α6, β23 = −β21α5 exp

(
−�τi

µ0

)
− β22α6

A =
[

α2

α1 − λ
exp(λ�τi ) − α2

α1 + λ
exp(−λ�τi )

]−1

(6.82)

According to (6.78) the radiative flux densities leaving the layer �τi are given
by

E+(τi−1) = C1γ11 + C2γ21 + α5S(τi−1)

E−(τi ) = C1γ12 + C2γ22 + α6S(τi−1) exp

(
−�τi

µ0

)
(6.83)

with

γ11 = exp(λτi−1), γ21 = exp(−λτi−1)

γ12 = α2

(α1 + λ)
exp(λτi ), γ22 = α2

(α1 − λ)
exp(−λτi )

(6.84)

From (6.65) and (6.80) we obtain for the solar radiation flux density at τi

S(τi ) = S(τi−1) exp

(
−�τi

µ0

)
(6.85)

Substituting (6.81) into (6.83) and combining the result with (6.85) we obtain the
compact matrix notation


E+(τi−1)

E−(τi )

S(τi )


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33






E+(τi )

E−(τi−1)

S(τi−1)


 (6.86)

with

a11 = β11γ11 + β21γ21, a12 = β12γ11 + β22γ21, a13 = β13γ11 + β23γ21 + α5

a21 = β11γ12 + β21γ22, a22 = β12γ12 + β22γ22, a23 = β13γ12 + β23γ22 + α6a33

a31 = 0, a32 = 0, a33 = exp

(
−�τi

µ0

)
(6.87)
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From (6.82), (6.84), and (6.87) it may be easily seen that

a11 = a22 = A
2λ

α2
2

, a12 = a21 = A[exp(λ�τi ) − exp(−λ�τi )] (6.88)

Thus we finally obtain the analytical solution to the TSM as




E+(τi−1)

E−(τi )

S(τi )


 =




a11 a12 a13

a12 a11 a23

0 0 a33






E+(τi )

E−(τi−1)

S(τi−1)


 (6.89)

The a jk occurring in this equation are functions of the optical properties of the layer
�τi . They have the following physical meaning:

a11: transmission coefficient for diffuse radiation,
a12: reflection coefficient for diffuse radiation,
a13: reflection coefficient for the primary scattered parallel solar radiation,
a23: transmission coefficient for the primary scattered parallel solar radiation,
a33: transmission coefficient for the direct parallel solar radiation.

6.5 Approximate treatment of scattering in the infrared spectral region

It is well-known that scattering of solar radiation by cloud droplets and aerosol
particles is a dominant factor affecting the Earth’s planetary albedo and thus the
global climate. In the previous chapters we have discussed various calculation
methods to determine solar radiances. To obtain the flux densities from the radiances
is a relatively simple calculational procedure. A review of the literature shows that
the scattering of thermal radiation by clouds and aerosol layers is often neglected
in weather and climate models for two main reasons: (i) with the exception of the
atmospheric window region ranging from about 8–12.5 µm, long-wave radiative
transfer is dominated by absorption and emission processes due to atmospheric
water vapor and some other trace gases and by water droplets and ice particles;
and (ii) multiple scattering calculations require a large amount of computer time
in comparison to situations where the scattering part of the source function in the
RTE can be neglected.

In the following we will show how to include multiple scattering in the infrared
window region in addition to absorption and emission by modifying the two stream
equation (6.63). The same method, if desired, can also be applied to any other
part of the long-wave spectrum. Since the solar and the infrared spectrum can be
separated, say at 4 µm, all we need to do is to replace the solar scattering term in
equation (6.63) by the Planckian emission B(τ ). Analogously to (6.63) we obtain



6.5 Approximate treatment of scattering in the IR region 177

for the infrared spectral region with multiple scattering


d E+
dτ

d E−
dτ


 =


 α1 −α2

α2 −α1




 E+

E−


+ α3


−B(τ )

B(τ )


 (6.90)

with

α1 = α11, α2 = α21, α3 = π (1 − ω0)

µ̄
(6.91)

The terms α11, α21 are given by (6.37) where again b+ = b− and µ+ = µ− = µ̄. As
before, we suppress any reference to wave number or wavelength. In order to handle
the emission term in an effective way we make an Eddington type approximation
for the thermal radiation, cf. (6.42)

B(τ ) = B0 + B1τ (6.92)

where B0 and B1 are constants.
For a homogeneous layer the complete mathematical solution to the system

(6.90) is found in the same way as in the short-wave radiation case. The solution of
the homogeneous part of this differential equation is given by (6.74). To determine
a particular solution of the inhomogeneous system, instead of (6.75), we now sub-
stitute a trial solution of the type of the inhomogeneous term (6.92) into (6.90), i.e.

E+, p(τ ) = α4 + α5τ , E−, p(τ ) = α6 + α7τ (6.93)

By comparing in the resulting equations coefficients of zero-th and first order in τ
we obtain four linear equations for the unknown constants αi , i = 4, . . . , 7 which
may be easily solved yielding

α4 = γ1 B0 + γ2 B1, α6 = γ1 B0 − γ2 B1, α5 = α7 = γ1 B1

with γ1 = α3

α1 − α2
, γ2 = α3

α2
1 − α2

2

= α3

λ2
(6.94)

Hence, the general solution of (6.90) may be written as

E+(τ )=C1 exp(λτ ) + C2 exp(−λτ ) + γ1(B0 + B1τ ) + γ2 B1

E−(τ )=C1
α2

(α1 + λ)
exp(λτ ) + C2

α2

(α1 − λ)
exp(−λτ ) + γ1(B0 + B1τ ) − γ2 B1

(6.95)

The determination of the integration constants C1 and C2 is performed in the
same way as in the short-wave situation. First we use (6.95) to calculate the radia-
tive flux densities entering the homogeneous layer �τi = τi − τi−1. Introducing
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the abbreviations

Ẽ+(τ ) = E+(τ ) − γ1(B0 + B1τ ) − γ2 B1

Ẽ−(τ ) = E−(τ ) − γ1(B0 + B1τ ) + γ2 B1
(6.96)

we obtain

Ẽ+(τi ) = C1 exp(λτi ) + C2 exp(−λτi )

Ẽ−(τi−1) = C1
α2

(α1 + λ)
exp(λτi−1) + C2

α2

(α1 − λ)
exp(−λτi−1)

(6.97)

By comparing (6.97) with (6.79) we see that formally both systems differ only in
the solar radiation term which is missing in (6.97). Hence, it is an easy task to find
the integration constants by dropping the solar radiation term in (6.81)

C1 = β11 Ẽ+(τi ) + β12 Ẽ−(τi−1), C2= β21 Ẽ+(τi ) + β22 Ẽ−(τi−1) (6.98)

The constants βi j follow from (6.82).
Utilizing (6.84) in (6.97) the radiative fluxes leaving the layer �τi may be

formulated as

Ẽ+(τi−1) = C1γ11 + C2γ21, Ẽ−(τi )= C1γ12 + C2γ22 (6.99)

Substitution of (6.98) into these equations results in
 Ẽ+(τi−1)

Ẽ−(τi )


 =


 a11 a12

a21 a22




 Ẽ+(τi )

Ẽ−(τi−1)


 (6.100)

where the ai j are given by (6.87).
Finally, we need to set up proper boundary conditions at the top of the atmosphere

(τ = 0) and at the Earth’s surface (τ = τg). Denoting the albedo of the ground by
Ag we obtain from (6.96)

Ẽ+(τg) = Ag E−(τg) + π B(Tg)(1 − Ag) − γ1(B0 + B1τg) − γ2 B1

Ẽ−(0) = E−(0) − γ1 B0 + γ2 B1
(6.101)

Usually we set E−(0) = 0.
As in previous cases, the atmosphere will be subdivided into numerous

homogeneous layers. The vertical variation of temperature is accounted for by
permitting the Planck function to vary according to the linearization (6.92). By
using a sufficiently large number N of homogeneous sublayers, we can represent
with high accuracy the non-isothermal structure of the atmosphere. The upward and
downward directed flux densities of each layer are obtained by constructing from
(6.100) a (2N × 2N )-tridiagonal equation system. This system may be solved by
means of standard numerical procedures. Finally, the results for Ẽ±(τi ) are used in
(6.96) yielding E±(τi ).
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6.6 Approximations for partial cloud cover

The radiative transfer models described in the previous sections are only suitable for
horizontally homogeneous layers. In numerical weather prediction models dealing
with partial cloudiness within a numerical grid box, particular problems arise since
in the layers which are partially filled with clouds the assumption of horizontal
homogeneity is void. In addition to the horizontal inhomogeneity within a grid
box, the radiation scheme has to account for the vertical distribution of fractional
cloud cover within a numerical grid column.

In order to treat the situation with partial cloudiness more realistically, assump-
tions about the vertical distribution of the partial cloud cover have to be introduced.
In combination with two-stream radiative transfer two particular approximations
are widely employed to treat the overlap of contiguous cloud layers. These are the
concepts of random overlap and maximum overlap. For random overlap the com-
bined partial cloud cover of both layers is obtained by multiplying the cloud covers
of each individual layer. Apparently, this concept was first used in the radiative
transfer model by Manabe and Strickler (1964). The maximum overlap assumption
means that the combined partial cloud cover of two vertically adjacent cloud layers
is arranged in such a way that the cloudy portions of both layers overlap maximally.
This scheme has first been employed in the two-stream flux transfer by Geleyn and
Hollingsworth (1979). In the following we will illustrate both cases in detail.

6.6.1 Partial cloud cover with random overlap

In the random overlap concept it is assumed that the clouds of contiguous lay-
ers overlap in a random way. If in a real situation cloudy layers are separated by
cloud-free regions then it seems physical to postulate that these layers are statisti-
cally independent. For simplicity let us first consider only the transmission of the
downward directed diffuse radiation.

Figure 6.3 illustrates the random overlap assumption. At the bottom of the
partially cloudy layer i − 1 the two radiative flux densities Ec

−(τi−1) and E f
−(τi−1)

emanate, whereby the superscripts c and f denote the cloudy and cloud-free regions,
respectively. These two fluxes are added yielding the single flux E−(τi−1) =
E f

−(τi−1) + Ec
−(τi−1). If Ci is the cloud cover of layer i then it is assumed that

the fraction Ci E−(τi−1) enters the cloudy portion of this layer, whereas the remain-
ing fraction (1 − Ci )E−(τi−1) propagates through the clear sky portion. For the
cloudy and cloud-free parts of the downward radiation at τi we obtain

E−(τi )
f = af

11(1 − Ci )E−(τi−1), E−(τi )
c = ac

11Ci E−(τi−1) (6.102)

Here, af
11 and ac

11 are, respectively, the transmission coefficients for diffuse radiation
of the cloud-free and the cloudy part of layer i . The two relations (6.102) may be
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Fig. 6.3 Transfer of the downwelling diffuse radiation between two individual
sublayers assuming random overlap of the partial cloud fractions Ci−1 and Ci .

combined to a single equation for the total downward radiative flux density

E−(τi ) = E f
−(τi ) + Ec

−(τi ) = [
af

11(1 − Ci ) + ac
11Ci

]
E−(τi−1) (6.103)

This means that in the random overlap approximation we have to replace a11 in
(6.89) by

a11 = (1 − Ci )a
f
11 + Ci a

c
11 (6.104)

The transfer of the diffuse upward flux densities and the solar radiation can be
treated in exactly the same manner so that similar relations apply to the other a jk

coefficients of (6.89). In summary, we obtain

a jk = (1 − Ci )a
f
jk + Ci a

c
jk , j, k = 1, 2, 3 (6.105)

Consider, for example, the direct solar radiation through two adjacent cloud
layers of cloudiness Ci−1 and Ci . The emerging directly transmitted solar radiation
at the base of layer i is proportional to the product Ci−1Ci according to the rule that
statistically independent probabilities multiply. This explains the name ‘random’.

6.6.2 Partial cloud cover with maximum overlap

The assumption of maximum overlap of vertically adjacent clouds is reasonably
well justified for a situation for which the clouds in the various layers are formed
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Fig. 6.4 Downward (a) and upward (b) transmission of diffuse radiation through
two adjacent layers with different partial cloud cover for the maximum overlap
concept.

by the same physical process. Again we first consider only the transmission of
downward directed diffuse radiation in two contiguous sublayers i −1 and i with
cloud covers Ci−1 and Ci . The situation is illustrated in Figure 6.4(a). Two different
cases must be treated as shown in the left and right panel of this figure. In one case
(left panel) the lower layer has the larger cloud cover, that is Ci > Ci−1, whereas
in the other case (right panel) the situation is reversed.

From Figure 6.4(a) it is seen that the transfer of the downward radiation can be
formulated as follows. The cloudy part of layer i − 1 transmits Ec

−(τi−1) whereas
the cloudless part transmits E f

−(τi−1). Both parts of the transmitted radiation must
now be distributed between the cloudy and cloudless parts of the lower layer i . Let
the parameter b3 refer to that fraction of Ec

−(τi−1) leaving the base of layer i − 1
and entering the cloudy part of layer i . This fraction is equal to 1 if Ci ≥ Ci−1

(left panel of Figure 6.4(a)) and equal to Ci/Ci−1 if Ci < Ci−1 (right panel of the
figure). Both conditions can be combined yielding

b3 = min (Ci , Ci−1)

Ci−1
(6.106)
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Inspection of the right panel of Figure 6.4(a) shows that in this particular situation
the fraction (1 − b3)Ec

−(τi−1) enters the cloud free part of layer i .
Let us now consider the clear sky part in the left panel of Figure 6.4(a). The

diffuse radiation E f
−(τi−1) emanating from layer i − 1 will be subdivided between

the cloudy part Ci − Ci−1 and the clear sky region 1 − Ci . This is done by means
of the parameter b1 which in the left panel is given by b1 = (1 − Ci )/(1 − Ci−1).
In the right panel of Figure 6.4(a) where Ci−1 > Ci we have b1 = 1. Both cases
can again be combined as

b1 = 1 − max (Ci , Ci−1)

1 − Ci−1
(6.107)

The diffuse upwelling radiation E+(τi ) and the solar radiation are treated in
the same way as E−(τi−1). While for the solar radiation also the parameters b1

and b3 are applied, for E+(τi ) the coefficients b2 and b4 have to be utilized, see
Figure 6.4(b). Analogously to (6.106) and (6.107) they are given as

b2 = 1 − max (Ci , Ci+1)

1 − Ci+1
, b4 = min (Ci , Ci+1)

Ci+1
(6.108)

The parameters b j , j = 1, . . . , 4 are now introduced on the right-hand side of
(6.89) to obtain the cloud free and cloudy parts of the radiation field.3 For the cloud
free part we have




E f
+(τi−1)

E f
−(τi )

Sf(τi )


 =




af
11 af

12 af
13

af
12 af

11 af
23

0 0 af
33






b2 E f
+(τi ) + (1 − b4)Ec

+(τi )

b1 E f
−(τi−1) + (1 − b3)Ec

−(τi−1)

b1Sf(τi−1) + (1 − b3)Sc(τi−1)




(6.109)

while the cloudy parts of the radiative fluxes are written as




Ec
+(τi−1)

Ec
−(τi )

Sc(τi )


 =




ac
11 ac

12 ac
13

ac
12 ac

11 ac
23

0 0 ac
33






(1 − b2)E f
+(τi ) + b4 Ec

+(τi )

(1 − b1)E f
−(τi−1) + b3 Ec

−(τi−1)

(1 − b1)Sf(τi−1) + b3Sc(τi−1)




(6.110)

3 It is noteworthy that a particular coefficient b j is set equal to 1 if an undetermined expression 0/0 occurs. This
follows from physical reasoning or from applying l’Hôpital’s rule.
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These two systems of linear equations determine the flux densities E f
+(τi−1),

Ec
+(τi−1), E f

−(τi ), Ec
−(τi ), Sf(τi ), and Sc(τi ) that emerge from the homogeneous

layer �τi as a function of the corresponding incoming flux densities E f
+(τi ),

Ec
+(τi ), E f

−(τi−1), Ec
−(τi−1), Sf(τi−1), and Sc(τi−1). At an arbitrary level i the

physically relevant flux densities are the sum of the individual cloudy and cloud free
contributions

E+(τi ) = E f
+(τi ) + Ec

+(τi )

E−(τi ) = E f
−(τi ) + Ec

−(τi )

S(τi ) = Sf(τi ) + Sc(τi )

(6.111)

A comment is due regarding the ground reflection which, for simplicity, is
assumed to be isotropic, i.e. the ground is a Lambertian reflector. In this case
the diffuse upwelling flux densities are given by

E f
+(τN ) = Ag

[
E f

−(τN ) + Sf(τN )
]

, Ec
+(τN ) = Ag[Ec

−(τN ) + Sc(τN )]

(6.112)

Such a situation may arise if ground fog occurs. Note that the downward flux
densities leaving the lowest layer from which they emerged, after reflection enter
the same section of cloudy and cloud-free air.

Due to the fact that the systems (6.109) and (6.110) are coupled, for an
inhomogeneous atmosphere with N homogeneous sublayers we have to solve a
6N -dimensional linear matrix system. This means that in case of partially cloudy
layers the maximum overlap treatment costs about twice the computational time
as the original TSM which assumes 100% cloud cover in each cloudy layer. In
contrast to this, the numerical effort of the random overlap approach is almost the
same as in the original TSM since in both cases the same number of 3N coupled
equations has to be solved.

6.7 The classical emissivity approximation

In Section 2.6.2 we have shown that in case of a purely absorbing atmosphere it is
possible to obtain an analytical solution to the RTE, see (2.123). We have already
stated that in the infrared spectral region, apart from the atmospheric window,
scattering processes may savely be neglected in the calculation of atmospheric
radiative transfer in many cases. However, the analytic solution is still relatively
elaborate since it consists of integrals of the transmission function over the absorbing
mass. Furthermore, it is important to note that (2.123) is a spectral equation.4 This

4 Recall that in all equations of Chapter 2 for simplicity the index ν has been omitted.
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means that we need to perform another integration over the entire infrared spectral
region in order to obtain the total infrared radiative heating rate.

In this section we will present the classical emissivity method which is one of the
fastest ways to find simple approximate values of the infrared radiative flux densities
in a nonscattering atmosphere. The major simplification of the emissivity method
consists in the decoupling of the frequency integration from the integration over
the absorbing mass. To derive the classical flux-emissivity equations, we assume
that the temperature and pressure dependency of the mass absorption coefficient
κabs,ν(p, T ) can be expressed as

κabs,ν(p, T ) = κabs,ν(p0, T0)
p

p0

√
T0

T
(6.113)

The suffix 0 refers to standard conditions. In the following chapter we will present
a detailed discussion of different forms of the absorption coefficient. There it will
be shown that the so-called Lorentz absorption coefficient closely resembles the
form (6.113).

Utilizing (6.113) the argument of the flux-transmission function Tf,ν , as given by
(2.142), may be written as

∫ u′

u
κabs,ν(t)dt = κabs,ν(p0, T0)

∫ u′

u

p

p0

√
T0

T
dt = κabs,ν(p0, T0)(w′ − w) (6.114)

The integral
∫ u′

u p/p0
√

T0/T dt which is symbolically written as w′ − w is known
as the reduced absorber mass. This is equivalent to the definition

dw = p

p0

√
T0

T
du = p

p0

√
T0

T
ρabsds = − p

p0

√
T0

T
ρabsdz (6.115)

see also (2.118). With the help of (6.114) the flux-transmission function can be
approximated as

Tf,ν(u, u′) = 2E3

(∫ u′

u
κabs,ν(t)dt

)
≈ 2E3[κabs,ν(p0, T0)(w′ − w)] = Tf,ν(w, w′)

(6.116)

where w′ ≥w. Since E3(0) = 1/2 we obtain the physically correct transmission
function Tf(w, w′) = 1 if no absorption takes place.

Integration over ν yields for the upward and downward directed flux densities
as given by (2.143)
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(a) E+(w) = π

∫ ∞

0
[Bν,g − Bν(wg)]Tf,ν(w, wg)dν + π

∫ ∞

0
Bν(w)dν

+π
∫∞

0

∫ wg

w
d Bν

dw′ Tf,ν(w, w′)dw′dν

(b) E−(w) = −π

∫ ∞

0
Bν(w′ = 0)Tf,ν(0, w)dν + π

∫ ∞

0
Bν(w)dν

−π
∫∞

0

∫ w

0
d Bν

dw′ Tf,ν(w′, w)dw′dν

(6.117)

where in (6.117b) it has been assumed that I−,ν(0) = 0.
Let us consider the simple situation of an isothermal atmosphere T = T0. In

this case Bν is a constant so that d Bν/dw = 0. Furthermore, we assume that
Bν,g = Bν(wg). Then the equations for the upwelling and downwelling flux densi-
ties reduce to

E+(w) = π

∫ ∞

0
Bν(T0)dν = σ T 4

0

E−(w) = π

∫ ∞

0
Bν(T0)[1 − Tf,ν(0, w)]dν

(6.118)

This means that in an isothermal medium of temperature T = T0 the upwelling
flux density is independent of altitude and is identical with the emission of a black
body having this temperature. The situation is different for the downwelling flux
density. At w = 0 there is no downwelling radiation. However, if w → ∞ the flux
transmission vanishes so that the downward flux density is identical with σ T 4

0 .
In order to decouple the frequency integration from the integration over the

absorbing mass, we introduce the following mean transmissivities

T̄f(T, w, w′) =
π

∫ ∞

0
Bν(T )Tf,ν(w, w′)dν

π

∫ ∞

0
Bν(T )dν

(6.119)

T̂f(T, w, w′) =
π

∫ ∞

0

d Bν

dT
Tf,ν(w, w′)dν

π

∫ ∞

0

d Bν

dT
dν

with

π

∫ ∞

0
Bν(T )dν =π B(T )=σ T 4, π

∫ ∞

0

d Bν

dT
dν =π

d

dT

(∫ ∞

0
Bνdν

)
=π

d B

dT

(6.120)
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Furthermore, we introduce the so-called flux-emissivity function εf(T, w, w′) by
means of

εf(T, w, w′) = 1 − T̄f(T, w, w′) (6.121)

where w′ ≥ w. Utilizing (6.119) and (6.120) the last integral occurring in (6.117a)
may be reformulated as

∫ ∞

0

∫ wg

w

d Bν

dw′ Tf,ν(w, w′)dw′dν =
∫ wg

w

dT

dw′

∫ ∞

0

d Bν

dT
Tf,ν(w, w′)dνdw′

=
∫ wg

w

dT

dw′
d B

dT
T̂f(T, w, w′)dw′

=
∫ wg

w

d B

dw′ T̂f(T, w, w′)dw′

(6.122)

An analogous result will be obtained for the last integral in (6.117b).
From (6.119) it is seen that, in contrast to Tf,ν(w, w′), the mean transmissivities

T̄f(T, w, w′) and T̂f(T, w, w′) explicitly depend on temperature as caused by the
temperature-dependent weighting functions Bν(T ) and d Bν/dT . This leads to the
next assumption of the classical emissivity method which neglects this temperature
dependence. Thus we use the following approximations

Tf(w, w′) ≈ T̄f(Tm, w, w′) ≈ T̂f(Tm, w, w′), εf(w, w′) ≈ εf(Tm, w, w′)

(6.123)

where a suitable mean temperature Tm is used for the evaluation of the Planck
function and w′ ≥w.

Introducing the above approximations into (6.117) yields

E+(w) = π [Bg − B(wg)]Tf(w, wg) + π B(w) + π

∫ wg

w

d B

dw′Tf(w, w′)dw′

E−(w) = −π B(w′ = 0)Tf(0, w) + π B(w) − π

∫ w

0

d B

dw′Tf(w
′, w)dw′

(6.124)
Partial integration finally gives the so-called flux-emissivity equations

E+(w) = π Bg
[
1 − εf(w, wg)

]+ π

∫ wg

w

B(w′)
∂εf(w, w′)

∂w′ dw′

E−(w) = − π

∫ w

0
B(w′)

∂εf(w′, w)

∂w′ dw′
(6.125)
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Equation (6.125) may be used to calculate the infrared radiative heating rates at
the reference level zR according to

∂T

∂t

∣∣∣
rad

= − 1

cpρR

(
d E+
dz

− d E−
dz

) ∣∣∣
z=zR

= − 1

cpρR

(
d E+
dw

− d E−
dw

)
dw

dz

∣∣∣
z=zR

= ρabs,R

cpρR

pR

p0

√
T0

TR

(
d E+
dw

− d E−
dw

)

(6.126)

where use was made of (6.115). Differentiation of (6.125) with respect to w yields5

(a)
d E+
dw

= −π Bg
∂εf(w, wg)

∂w
+ π

∫ wg

w

B(w′)
∂2εf(w, w′)

∂w′∂w
dw′

− limw′→w π B(w′) ∂εf(w,w′)
∂w′

(b)
d E−
dw

= −π

∫ w

0
B(w′)

∂2εf(w′, w)

∂w′∂w
dw′ − lim

w′→w
π B(w′)

∂εf(w′, w)

∂w′

(6.127)

Partial integration of these equations results in

(a)
d E+
dw

= π [B(wg) − Bg]
∂εf(w, wg)

∂w
− π

∫ wg

w

d B

dw′
∂εf(w, w′)

∂w
dw′

− limw′→w π B(w′) ∂εf(w,w′)
∂w

− limw′→w π B(w′) ∂εf(w,w′)
∂w′

(b)
d E−
dw

= π B(w = 0)
∂εf(0, w)

∂w
+ π

∫ w

0

d B

dw′
∂εf(w′, w)

∂w
dw′

− limw′→w π B(w′) ∂εf(w′,w)
∂w

− limw′→w π B(w′) ∂εf(w′,w)
∂w′

(6.128)

From the definition of εf one may easily see that for two arbitrary values w1, w2

with w2 > w1 the following relations hold

(a)
∂εf(w1, w2)

∂w2
> 0,

∂εf(w1, w2)

∂w1
< 0

(b) lim
w2→w1

∂εf(w1, w2)

∂w2
= − lim

w2→w1

∂εf(w1, w2)

∂w1

(6.129)

Equation (6.129a) simply describes the fact that with increasing layer thickness the
emissivity is increasing and vice versa. Utilizing (6.129b) we find that the last two

5 Note that for the differentiation of the integrals the Leibniz rule has to be applied.
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terms in (6.128a,b) cancel. Subtraction of these two equations finally yields

d E+
dw

− d E−
dw

= π [B(wg) − Bg]
∂εf(w, wg)

∂w
− π

∫ wg

w

d B

dw′
∂εf(w, w′)

∂w
dw′

− π B(w = 0)
∂εf(0, w)

∂w
− π

∫ w

0

d B

dw′
∂εf(w′, w)

∂w
dw′

(6.130)

For the discussion of (6.126) we consider an atmosphere where dT/dz < 0.
From (6.115) follows that in this case d B/dw′ > 0. Utilizing (6.130) we see that
for Bg > B(wg), that is the Earth’s surface is warmer than the overlying air, the first
term of (6.130) yields a positive contribution to the radiative heating rate. The same
is true for the first integral of (6.130) describing the radiative energy arriving at the
reference level from the warmer atmosphere below. The last two terms of (6.130)
are negative resulting in radiative cooling of the reference level. The expression
π B(0)∂ε(0, w)/∂w sometimes is called the cooling to space term.

A brief discussion of the classical emissivity method is mandatory. In the middle
of the twentieth century, i.e. when computers to perform radiative transfer simula-
tions were not available, the emissivity approximation was often used as a very fast
way to calculate infrared radiative flux densities and heating rates in a nonscattering
atmosphere. However, there are several disadvantages to the classical emissivity
method.

(1) The entire infrared spectral range is treated in one part, i.e. the infrared atmospheric
window is not separated from the remainder of the spectrum. While water vapor radia-
tion may dominate the radiation field outside the atmospheric window and outside the
carbon dioxide absorption band, within the window the influence of aerosol particles
and other substances is of great importance. This treatment causes substantial errors
in the radiation budget because aerosol particles and hydrometeors scatter and absorb
thermal radiation in the window region.

(2) Inclusion of scattering processes is not possible. To include scattering, we have to
proceed as shown in a previous section.

(3) A reasonably accurate treatment of the overlap of gas absorption due to several gases
is not possible because absorption by atmospheric trace gases is wavelength sensitive.

(4) Finally, it should not be overlooked that ignoring the temperature dependence of the
emissivities, see (6.123), is a crude approximation.

Rodgers (1967) presented a novel approach on the use of emissivity in atmospheric
radiation calculations. He introduced two different emissivity functions to approx-
imate the upward and downward flux densities. Moreover, he also introduced the
CO2 contribution.
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An efficient improvement of the classical emissivity method consists in the
subdivision of the entire infrared spectral region into a certain number of frequency
intervals �ν j , j =1, . . . , J . In each of these intervals we determine mean values
of the emissivity and the Planck function by setting

εf, j (w, w′) ≈ 1

B j (Tm)

∫
�ν j

Bν(Tm)εf,ν(w, w′)dν

B j (Tm) ≈
∫

�ν j

Bν(Tm)dν

(6.131)

where Tm is again a suitable mean temperature. These equations imply the assump-
tion that within �ν j the values of Bν remain nearly constant.

The upward and downward directed radiative flux densities are now given as

E+(w) =
J∑

j=1

E+, j (w), E−(w) =
J∑

j=1

E−, j (w)

with E+, j (w) = π Bg, j [1 − εf, j (w, wg)] + π

∫ wg

w

B j (w
′)

∂εf, j (w, w′)
∂w′ dw′

E−, j (w) = −π

∫ w

0
B j (w

′)
∂εf, j (w′, w)

∂w′ dw′

(6.132)

Usually, a total number of about 10 to 20 frequency bands will be sufficient to
obtain a distinct improvement of the radiative flux densities and the corresponding
heating rates.

Once the subdivision of the total infrared spectral region into several subregions
has been introduced in the emissivity method, it is only a simple task to include the
so-called overlap effects of two different absorbers. By overlap effects we mean
that two gases absorb in the same spectral region. Within a given frequency interval
�ν j the mean transmission resulting from two absorbers 1 and 2 is given by

Tf, j = 1

�ν j

∫
�ν j

Tf, j,1(ν)Tf, j,2(ν)dν (6.133)

Let the transmission of each absorber be given by a mean transmission T̄f, j and a
deviation T ′

f, j (ν). Then we obtain

Tf, j = 1

�ν j

∫
�ν j

[
T̄f, j,1 + T ′

f, j,1(ν)
] [
T̄f, j,2 + T ′

f, j,2(ν)
]

dν = T̄f, j + �Tf, j

with T̄f, j = T̄f, j,1T̄f, j,2, �Tf, j = 1

�ν j

∫
�ν j

T ′
f, j,1(ν)T ′

f, j,2(ν)dν (6.134)
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If the absorption coefficients of the two gases are uncorrelated then �Tf, j vanishes.
If a correlation exists between the two absorption coefficients, then �T̄f may be
determined by means of detailed line-by-line calculations as will be explained in
the following chapter.

A particularly simple situation arises if one of the two absorbers is a so-called
gray absorber, that is the absorption coefficient and thus the transmission function of
the absorber is independent of ν. This is, for instance, approximately the case when
aerosol particles or cloud droplets are considered in the infrared radiative transfer
calculations. From (6.133) it is immediately seen that now the mean transmission
is given by

Tf, j = Tf, j,1

�ν j

∫
�ν j

Tf, j,2(ν)dν (6.135)

In the literature many other attempts have been made to obtain further improve-
ments of the classical emissivity method, e.g. by including approximate ways to
describe multiple scattering processes by aerosol particles and cloud droplets, (see
e.g. Chou et al., 1999, 2001). However, by considering the tremendous increase of
computer power in the past decade or so, it might be a better idea to apply one of
the two-stream approximations described in Section 5.3 not only to the short-wave
but also to the infrared spectral region.

6.8 Radiation charts

Before the availability of large electronic computers, the exact integration of the
flux density equations over the broad infrared water vapor spectrum was virtually
impossible. By simplifying the spectrum in a reasonable manner, Mügge and Möller
(1932) integrated the radiative transfer equation by graphical means thus invent-
ing the first radiation chart. Their integration method makes it possible to easily
obtain flux densities for any atmospheric sounding if pressure, temperature and
humidity are known as a function of height. Möller (1943) improved the original
radiation chart by using the Schnaidt model6 of the absorption function. Moreover,
Elsasser (1942) and later Yamamoto (1952) also devised radiation charts. These
three radiation charts differ in their outward appearance due to transformation of
coordinates, but they are equivalent in principle. For a given atmospheric sounding
the three charts also yield somewhat different flux densities since different models
of the absorption function are used. The literature also presents numerous simplified
radiation charts which will be omitted in this discussion.

6 The Schnaidt model will be presented in Section 7.2.5.
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In the meteorological practice radiation charts are no longer used. Nevertheless,
it is desirable to give a brief description how to use them since the calculation of
flux densities can be readily visualized. The radiation chart is the pre-integrated
radiative transfer equation over the wavelength domain of the infrared spectrum for
all combinations of the coordinates (w, T ) normally observed in the atmosphere.
With the help of (6.115) we easily find w(z) for an arbitrary atmospheric sounding
measuring T (z), p(z) and ρabs(z). By plotting and connecting the coordinates
(w, T ) by a smooth line we obtain the image of the atmospheric sounding on the
radiation chart. The area under the curve can be measured by means of a planimeter
which represents either the upward or downward flux density for a specified refer-
ence height.

We will now briefly discuss the underlying mathematical principle of the Möller
radiation chart. According to (6.118) in an isothermal atmosphere of temperature
T0 the downward directed flux density emitted by a layer of absorber mass w and
received at the reference level w(z) is given by

E−(T0, w) = π

∫ ∞

0
Bν(T0)[1 − Tf,ν(0, w)]dν (6.136)

Obviously, the same relation holds for the upward directed flux density resulting
from the emission of an atmospheric layer below the reference level having the same
temperature and reduced absorber mass. Therefore, the subscripts ± are henceforth
omitted by writing

E+(T0, w) = E−(T0, w) = E(T0, w) (6.137)

Thus, from now on E(T, w) describes the radiative flux density received at the
reference level which has been emitted by a layer of temperature T and optical
mass w.

The contribution of an elementary layer dw of fixed temperature T to the flux
density at z is obtained by differentiating (6.137) with respect to w

d E(T, w)

dw
= −π

∫ ∞

0
Bν(T )

dTf,ν(0, w)

dw
dν (6.138)

By introducing the abbreviations

x(w) = E(Tmax, w), y(T, w) =
d E(T, w)

dw
d E(Tmax, w)

dw

(6.139)
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for an arbitrary atmosphere of thickness w1 we find for the flux density

E(w1) =
∫ x(w1)

x(0)
y[T (w), w]dx (6.140)

where Tmax is a maximum temperature, e.g. Tmax = 40◦C. The ratio y(T, w) was
calculated for all temperatures normally occurring in the atmosphere.

We will now briefly discuss the construction and the use of the radiation chart.
In the troposphere and the lower stratosphere water vapor and carbon dioxide by
far outweigh the influence of other radiatively active gases such as ozone. In the
wavelength region ranging from 13.5–16.5 µm, the effect of carbon dioxide is much
more important than that of water vapor. Thus Möller felt justified to subdivide the
infrared spectrum into two parts. In the range from 13.5–16.5 µm he assumed that
CO2 acts completely independently of water vapor while in the remaining infrared
spectral ranges from 4–13.5 µm and 16.5–100 µm only water vapor was assumed
to be radiatively active.

To simplify the spectral integration, Möller divided the water vapor spectrum into
23 subintervals. In each of these, he replaced the numerous existing spectral lines
by a single composite spectral line and used the Schnaidt model to approximately
account for the overlap of neighboring spectral lines. Proceeding in this way, Möller
obtained x(w) and y(T, w) by numerical integration as intervals on the abscissa
and the ordinate of his chart.

Figure 6.5 displays schematically the Möller radiation chart whose shape is
rectangular. The smaller rectangle on the left side with horizontal isotherms is
the CO2 chart while the larger part with curved isotherms depicts the water vapor
radiation chart. The upper isotherm Tmax is a straight line since y = 1 independent
of w, see (6.139). The combined CO2 and H2O chart areas represent the flux density
emitted by a black body of temperature Tmax. Analogously, the combined areas of
the two parts under any isotherm T = const represent the black body radiation of
that temperature. The right hand ordinate of the x-axis of each part of the chart refers
w = ∞ where the emission of the corresponding absorber is given by the black body
radiation. Owing to the strong CO2 absorption, in the spectral section extending
from 13.5–16.5 µm, black body radiation is almost emitted by w(CO2) = 10 cm
NTP (normal temperature and pressure). In the section of the water vapor spectrum
the flux density emitted by w(H2O) = 100 g cm−2 already approximates black body
radiation. As an example, the shaded area in Figure 6.5(a) depicts the emission
of an isothermal layer of temperature T0 and absorber masses w(CO2)=1 and
w(H2O)=0.1. In Figure 6.5(b) we have shown the contributions of three isothermal
layers of temperatures Ti , i = 1, 2, 3 to the total flux density. The CO2 and H2O
absorber masses of these layers are assumed to be �w1 = 0.1, �w2 = 0.9 and
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Fig. 6.5 Schematic radiation chart after Möller. Horizontal lines in the CO2 chart
and curved lines in the H2O chart denote isotherms. Shaded areas describe the
radiative flux densities. (a) Emission of an isothermal layer; (b) emission of three
different isothermal layers. See also text.

�w3 = 9. In this example the total flux density is given by the sum of all three
layers in the CO2 and the H2O chart.

We will now briefly show how to find the upward and downward flux den-
sities with the help of the radiation chart which is equivalent to the integration
of (6.140). Utilizing (6.115) for a given atmospheric sounding we determine the
(T, w) relationship. This information will be used in (6.140) to find the curve
[x(w), y(T (w), w)]. Inserting this curve into the radiation chart one obtains the
radiation emitted by a particular layer. As an example, Figure 6.6(a) and (b)
show the resulting curves for upward and downward radiation at reference level
z with temperature T (z). The area in Figure 6.6(a) depicts the upward radiation
reaching the level from below. Starting from the point [x(w = 0), y(T (z))] the
curve approaches the isotherm Tg at x(w+) where w+ is the reduced absorber mass
of CO2 or H2O between the Earth’s surface and the level z. The black body emission
of the Earth’s surface with temperature Tg is taken into account by following the
curve from the point [x(w+), y(Tg, w+)] along the Tg isotherm towards the right
end of the x-axis. The area in Figure 6.6(b) describes the downward radiation at z.
Starting again at the point [x(w = 0), y(T (z))] the curve approaches the x-axis at
w− whereby w− denotes the absorber masses of carbon dioxide and water vapor
between the top of the atmosphere and the level z. By subtracting the areas under
the curves in Figure 6.6(b) from those in Figure 6.6(a) one obtains the net radiative
flux density Enet(z). Choosing a neighboring reference layer z + �z one obtains
the net flux density Enet(z + �z). The quantity �Enet = Enet(z + �z) − Enet(z) is
proportional to the infrared radiative heating rate at level z.

Finally, it is a simple task to include the effects of a cloudy atmosphere by first
assuming a total cloud cover and black body emission of the cloud. Analogously to
the treatment of the Earth’s surface, now the corresponding (T, w) curves for upward
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Fig. 6.6 Schematic radiation chart after Möller. (a) Upward-directed radiation,
(b) downward directed radiation.

(cloud below z) or downward (cloud above z) radiation approach the isotherm of
the cloud’s temperature and follows from there the isotherm to the right end of the
x-axis.

By calculating upward and downward flux densities for the clear and the
cloud covered sky and properly weighting the individual flux densities with the
fractional cloudiness, we obtain net flux densities and heating rates for cloudy
atmospheres. Möller (1951) carried out numerous calculations to obtain vertical
profiles of radiative temperature changes for various air masses and found cool-
ing practically everywhere. To check the validity of his and other radiation charts
many comparisons were made with ground based and free air measurements. In
general, there was reasonable agreement. In particular, Gergen (1956, 1957, 1958)
carried out numerous free air measurements of the infrared radiation with a spherical
receiver. Zdunkowski (1963) constructed a radiation chart for a spherical receiver
using precisely Möller’s (1943, 1944) absorption data. He found good but not per-
fect agreement with measurements.

We conclude this section with a few additional comments on the other radia-
tion charts. Elsasser (1942) assumed that the complete 15 µm CO2 absorption band
acts as a black absorber. Indeed, at the center of the band the absorption is almost
black for very small path lengths. However, for small pressures in the higher atmo-
sphere and at the wings of the band, the absorption is far from complete. Therefore,
Yamamoto (1952) developed a special method to treat the overlap effect of carbon
dioxide and water vapor. At the base of his diagram he provided an additional
scale to handle the overlap effect graphically. The contribution of ozone to the flux
densities was still ignored; the effect is small at low atmospheric levels. The three
charts yield compatible results.

Elsasser and Culbertson (1961) presented a set of radiation tables for the
absorption bands of atmospheric gases including ozone. Special tables were
provided to handle overlap effects. The tables are very versatile, but at the same
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time very tedious to use. Bruinenberg (1946), also using Möllers absorption data,
devised a numerical integration method for the calculation of radiative temperature
changes. His method revealed some details of the radiative temperature change
profiles that could not be obtained with the more crude graphical integration proce-
dures. Brooks (1950) simplified this numerical method. Hales (1951) was the first
to develop a graphical method to calculate radiative temperature changes. A similar
procedure was given later by Yamamoto and Onishi (1953).

Nowadays practically all calculations are carried out with high-speed computers
making it possible to attack many problems that were impossible to handle earlier.
Nevertheless, the earlier important research was carried far enough to analyze
and comprehend many of the interesting problems associated with radiative
transfer.

6.9 Radiative equilibrium

In the final section of this chapter we wish to explore in some depth the concept
of radiative equilibrium. Consider a horizontally homogeneous atmosphere where
radiative cooling and heating is the only process to form the vertical temperature
profile, that is other types of heat transfer such as heat conduction, convection and
latent heat release are ignored. If this atmosphere approaches thermal equilibrium,
i.e. ∂T (z)/∂t = 0 at all levels z, the atmosphere has reached radiative equilibrium.
Since we assume the existence of a horizontally homogeneous atmosphere, the
condition describing radiative equilibrium implies a vanishing vertical divergence
of the radiative net flux density.

With the exception of spatially very limited regions around kinks in the vertical
temperature profile, long-wave radiation causes atmospheric cooling in the free
atmosphere which is stronger practically everywhere than direct solar heating.
Some numerical results of radiative temperature changes are given, for example,
by Liou (2002). The resulting cooling by radiative transfer must be compensated in
some manner since the atmospheric temperature does not decrease permanently. In
the real atmosphere, such compensating heating effects are turbulent heat transport
and the liberation of latent heat due to water vapor condensation. Apparently no
tropospheric layer is in radiative equilibrium.

It appears that Emden (1913) was the first to investigate the atmospheric tem-
perature profile resulting from the condition of radiative equilibrium. He found a
strong superadiabatic temperature gradient in the lower troposphere and a uniform
temperature of −60◦C in higher atmospheric layers. However, the height of the
computed tropopause somewhere between 6 and 8 km was too low. Certainly, the
superadiabatic lapse rate resulted from the disregard of all processes other than
radiative heating. Since the calculated stratospheric temperature at the tropopause
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agreed remarkably well with observations it was erroneously concluded that the
stratospheric temperature can be satisfactorily explained by the radiative equilib-
rium of water vapor alone.

The agreement between Emden’s calculation and observations of the strato-
spheric temperature was due to a lucky choice of the magnitude of the gray
absorption coefficient of water vapor, which was assumed to be the only atmo-
spheric absorber. By subdividing the water vapor spectrum into two parts and
approximating each region by a different gray absorption coefficient, still a very
poor approximation, Möller (1941) showed that even in higher layers the temper-
ature continues to decrease to values as low as −100◦C. The absorption of solar
radiation influences this result to a very small extent only. This should refute the
idea that the stratospheric temperature can be explained by the radiative equilibrium
of water vapor alone.

While it is still worthwhile to discuss Emden’s model, it is more instructive
for us to follow Goody’s (1964a) more modern treatment, which is based on the
solution of the radiative transfer equation in the form discussed earlier. We start
out by repeating the monochromatic RTE for a nonscattering medium in local
thermodynamic equilibrium

µ
d

dτ
Iν(τ, µ) = Iν(τ, µ) − Bν(τ ) (6.141)

Integration of this equation over the unit sphere yields

d

dτ
Enet,ν(τ ) = 2π [I+,ν(τ ) + I−,ν(τ )] − 4π Bν(τ ) (6.142)

Here, we have introduced mean values of the upward and downward directed
radiances as defined by

I+,ν(τ ) =
∫ 1

0
I+,ν(τ, µ)dµ, I−,ν(τ ) =

∫ 1

0
I−,ν(τ, µ)dµ (6.143)

which is equivalent to the assumption of isotropic radiation in the upward and down-
ward direction. Enet,ν(τ ) is the monochromatic net radiative flux density. According
to (1.37c) this quantity may be expressed as

Enet,ν(τ ) = 2π

∫ 1

0
I+,ν(τ, µ)µdµ − 2π

∫ 1

0
I−,ν(τ, µ)µdµ = π [I+,ν(τ ) − I−,ν(τ )]

(6.144)

whereby in the integrals the radiances have been approximated by their isotropic
values.
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Differentiation of (6.142) with respect to τ results in

d2

dτ 2
Enet,ν(τ ) = 2π

[
d

dτ
I+,ν(τ ) + d

dτ
I−,ν(τ )

]
− 4π

d

dτ
Bν(τ ) (6.145)

Multiplying (6.141) by µ and integrating the result over the unit sphere gives

2π
d

dτ

(∫ 1

0
µ2 I+,ν(τ, µ)dµ +

∫ 1

0
µ2 I−,ν(τ, µ)dµ

)
= Enet,ν(τ ) (6.146)

In this equation we again replace the radiances I±,ν(τ, µ) in the integrals by I±,ν(τ )
and obtain

2π
d

dτ
I+,ν(τ ) + 2π

d

dτ
I−,ν(τ ) = 3Enet,ν(τ ) (6.147)

Substituting this equation into (6.145) finally results in a second-order ordinary
differential equation for the net flux density

d2

dτ 2
Enet,ν(τ ) − 3Enet,ν(τ ) = −4π

d

dτ
Bν(τ ) (6.148)

For the solution of (6.148) we need to formulate two boundary conditions.
Combination of (6.142) and (6.144) gives

I−,ν(τ ) = 1

4π

d

dτ
Enet,ν(τ ) − 1

2π
Enet,ν(τ ) + Bν(τ )

I+,ν(τ ) = 1

4π

d

dτ
Enet,ν(τ ) + 1

2π
Enet,ν(τ ) + Bν(τ )

(6.149)

Evaluating these equations at the upper (τ = 0) and lower (τ = τg) boundary of
the atmosphere yields

I−,ν(0) = 1

4π

d

dτ
Enet,ν(τ )

∣∣∣
τ=0

− 1

2π
Enet,ν(0) + Bν(0)

I+,ν(τg) = 1

4π

d

dτ
Enet,ν(τ )

∣∣∣
τ=τg

+ 1

2π
Enet,ν(τg) + Bν(τg)

(6.150)

In the case of monochromatic radiative equilibrium the divergence of the net
radiative flux density vanishes, Enet,ν(τ ) must be constant throughout the entire
atmosphere, that is

d

dτ
Enet,ν(τ ) = 0 =⇒ Enet,ν(τ ) = Enet,ν = const (6.151)

In this case the boundary conditions (6.150) reduce to
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Bν(0) Bν( )

Bν( )

Bg,ν

= 0

=

Bν(0)

Top of the atmosphereτ

τ τg

τ

τg

Fig. 6.7 Vertical distribution of Bν(τ ) for monochromatic radiative equilibrium.
At the top of the atmosphere the temperature adjusts itself to the net flux density.

(a) Enet,ν = 2π Bν(0)

(b) I+,ν(τg) = Bg,ν = Bν(τg) + 1

2π
Enet,ν = Bν(τg) + Bν(0)

(6.152)

Equation (6.152a) implies the assumption that no radiation is incident at the top of
the atmosphere, i.e. I−,ν(0) = 0.

Application of the equilibrium condition (6.151) to (6.148) results in

d

dτ
Bν(τ ) = 3

4π
Enet,ν (6.153)

This differential equation may be easily integated yielding Bν(τ ) as a linear function
of τ

Bν(τ ) =
(

1 + 3τ

2

)
Enet,ν

2π
=
(

1 + 3τ

2

)
Bν(0)

Bg,ν = Bν(τg) + Bν(0) =
(

2 + 3τg

2

)
Bν(0)

(6.154)

where use was made of the boundary conditions (6.152). Figure 6.7 depicts the
vertical profile of Bν(τ ) for monochromatic radiative equilibrium together with the
corresponding values at the boundaries of the atmosphere. At the Earth’s surface we
observe a discontinuity of the curve expressing a temperature jump �Tg between
the surface temperature Tg and the lowest atmospheric layer T (τg), i.e.

�Tg = Tg − T (τg) > 0 (6.155)
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Emden’s investigation pertains to gray absorption since he approximated the
strongly varying water vapor spectrum by a single absorption coefficient. In order
to formally pass from the monochromatic to the gray absorption, we have to omit
the subscript ν in the previous equations. In this case the vertical temperature profile
of the atmosphere in radiative equilibrium as well as the temperature of the ground
are obtained from

T (τ ) =
[π

σ
B(τ )

]1/4
, Tg =

{π

σ
[B(τg) + B(w = 0)]

}1/4

with B(τ ) =
∫ ∞

0
Bν(τ )dν

(6.156)

For the temperature of the Earth’s surface we may also write

Tg = [
T 4(τg) + T 4(0)

]1/4
(6.157)

Figure 6.8 depicts qualitatively different vertical temperature profiles resulting
from different choices of the total optical thickness τg. By considering only gray
absorption of water vapor in the troposphere, the height of the tropopause is given
by the optical top of the atmosphere, i.e. at τ = 0. Furthermore, in the stratosphere
the temperature distribution remains constant with height. The dotted curve shows
the situation with very weak absorption in the troposphere, that is τg,1 →0. In
this case B(τ ) and, thus, the tropospheric temperature remain nearly constant with
height. At the same time the temperature jump �Tg,1 is largest. Evaluating for this
particular situation (6.157) yields a temperature jump of more than 47 K and 37 K
for T (τg,1)=T (0)=250 K and 200 K, respectively. This means that �Tg decreases
with decreasing temperature at the tropopause.

From (6.154) we see that for a given Bν(0) with increasing total optical thick-
ness τg the quantity Bg,ν and, therefore, also T (τg) are increasing. According to
(6.157) the values of Tg are also affected thereof. To give a numerical example, for
T (0) = 200 K and T (τg) = 250 K we obtain Tg = 272.4 K, that is �Tg = 22.4 K.
Choosing T (0) = 200 K and T (τg) = 270 K yields Tg = 288.4 K or �Tg = 18.4 K.
Hence, with increasing total optical thickness of the atmosphere the temperature is
increasing in the lower atmospheric layers while at the same time the temperature
jump is decreasing. In the limit of a very opaque atmosphere with an unrealistically
low temperature T (0) = 150 K and T (τg) = 300 K, �Tg would be less than 5 K.

Goody (1964b) applied the radiative equilibrium model of the gray absorber by
assuming that the gray absorption coefficient and the absorber mass follow the same
height distribution. He also used a realistic temperature at the tropopause which he
estimated from a simple heat balance consideration assuming a mean global albedo
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 ∆Tg,1 ∆Tg,2 ∆Tg,3
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Fig. 6.8 Schematic vertical temperature distributions in case of a gray absorbing
troposphere for different values of the total absorber mass with τg,1 	τg,2 <τg,3
and �Tg,1 >�Tg,2 >�Tg,3.

of 0.4. For τg =1 he found T (τg)= 259.7 K, �Tg =22.8 K, while τg =4 resulted in
T (τg)=335.9 K and �Tg =11.3 K. At the same time the temperature gradients at
the ground were −∂T/∂z =19.5 and 36.0 K km−1, respectively.

From the above findings we may conclude that the radiative equilibrium
model with gray absorption in the troposphere yields satisfactory vertical tem-
perature distributions in terms of lapse rates which are decreasing with height.
Moreover, by a fortuitous choice of all model parameters it is possible to obtain
relatively good values of the stratospheric temperature and the tropopause height.
However, the model also shows many deficiencies. The most important are listed
here.

(1) The temperature jump occurring at the Earth’s surface is unrealistically large.
(2) The lapse rates in the lowest atmospheric layers are distinctly too high in comparison

to the observed value of about 6.5 K km−1.
(3) The temperature increase observed in the real stratosphere cannot be simulated with

the model.
(4) The stratospheric temperature T (0) is positively correlated with Tg, see (6.157).

Certainly, there are many reasons why Emden’s model fails to produce better results.
Here, we mention the following shortcomings.
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(1) The assumption of a gray absorbing atmosphere.
(2) The missing absorption of ozone in the stratosphere.
(3) The disregard of dynamic and thermodynamic processes in the lower troposphere.

Paltridge and Platt (1976) used simple arguments to show that even the
subdivision of the infrared spectral region into two subintervals, i.e. the almost
transparent atmospheric window and the remaining gray absorbing region, is suffi-
cient to achieve a decoupling of the stratospheric temperature from the temperature
of the Earth’s surface. Hence, with this simple treatment it is possible to obtain
warm temperatures at the ground, but at the same time cold stratospheric temper-
atures and vice versa. This is in accordance with observations in the tropics and
higher geographic latitudes.

Möller and Manabe (1961) successfully used the emissivity method to han-
dle the transfer problem. In addition to the water vapor absorption they included
the absorption effects of CO2 and O3 yielding more realistic temperature profiles
with temperatures increasing with height in the stratosphere. Manabe and Möller
(1961) carried out detailed calculations with a more refined model. They used a
time-marching procedure as the solution method starting out with an isothermal
atmosphere with the observed temperature at the Earth’s surface. However, this
method is very time consuming. Manabe and Strickler (1964) pointed out that it is
necessary to include various aspects of large-scale dynamics to obtain better results.
Apart from the inclusion of carbon dioxide and ozone they used a simple convective
adjustment scheme to account for the convective mixing and the latent heat release
in the lower troposphere. The resulting radiative–convective equilibrium showed
much more realistic temperature profiles than those produced by a pure radiative
equilibrium model.

6.10 Problems

6.1: Verify equation (6.8).
6.2: Verify equation (6.26).
6.3: In detail follow the steps from (6.92) to (6.95).
6.4: Consider the approximate treatment of scattering (Section 6.5) in the

infrared spectral region. For the conservative case ω0 = 1 find the solutions
E+(τ ) and E−(τ ) for a cloud layer of optical thickness τc. The boundary
conditions are given by E−(τ =0)= E−(0) and E+(τ =τc)= E+(τc).

6.5: (a) Find the integration constants C1 and C2 in (6.95) by assuming the bound-
ary conditions E−(τ = 0) = E−(0) and E+(τ = τc) = E+(τc), where τc is the
cloud layer optical thickness.

(b) Find the divergence of the net flux density, i.e. d(E+ − E−)/dτ .
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6.6: Again we consider the approximative scattering in the infrared spectrum
as discussed in Section 6.5. For a cloud model consisting of three layers,
find expressions for the upward and downward directed flux density. Each
layer of optical thickness Ti , i = 1, 2, 3 is homogeneous but of different
optical properties. Set up the required linear system which permits you to
determine the six integration constants C1,i , C2,i , i = 1, 2, 3. The required
boundary conditions and the continuity statements at the layer boundaries
are

E− (τ1

E− (τ2

E− (τ1

= 0) = E −(0)

= T1) = E −

−

( = 0)

E +(τ1 = T1) = E +(τ2

τ3

τ3

τ2

= 0)

= T2) = E ( = 0)

E +(τ2 = T2) = E +( = 0)

E +(τ3 = T3) = E +(T1 + T2 + T3)

= 0

= T1

= 0

= T3

= 0

= T2

τ1

τ1

τ1

τ2

τ2

τ2

τ3

τ3

τ3

6.7: In case of an isothermal and nonscattering atmosphere equation (6.95)
reduces to the so-called Schwarzschild equation. Carry out the reduction
assuming the boundary conditions E−(τ = 0) = E−(0) and E+(τ = τc) =
E+(τc).
Hint: Use Robert’s approximation, that is exp(−τ/µ̄) ≈ 2E3(τ ), see
(2.142), where µ̄ is an average value.

6.8: Carry out the required integration to show that (6.125) follows from (6.124).
6.9: The Sun may be treated as a black body emitting the largest amount of

energy at the wavelength of 0.5 µm. The Earth may also behave as a black
body in the spectral region of infrared emission. Which temperature will
the Earth assume if the incoming solar radiation and the outgoing infrared
radiation are balanced? Compare your result with the measured mean tem-
perature of 14◦C at the Earth’s surface (average value over all latitudes and
seasons) and explain the difference.
Required information: Sun’s radius, 695 300 km; distance Sun–Earth,
149 600 000 km; Earth’s radius, 6371 km; mean albedo of the Earth, 30%.

6.10: Set up the radiation budget at the top of the atmosphere and at the Earth’s
surface. The following quantities are given: Ā, mean absorption of solar
radiation by the atmosphere; Atot, global albedo (albedo of the entire sys-
tem); Ts, radiation temperature of the black body surface of the Earth; Ta,
radiation temperature of the atmosphere assumed to be gray; ε, thermal
emissivity of the gray atmosphere; and S0; solar constant.
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(a) Find T 4
s and T 4

a from the budget equations.
(b) Assume Ā=0.26, Atot =0.31 and ε=0.8 to find numerical values of Ts and

Ta.
(c) Now suppose that the atmosphere is completely transparent to solar radiation

but completely opaque (ε=1) to thermal radiation. Find the new values of Ts

and Ta.
(d) Suppose that Ts is fixed at 283 K. For a given Ā=0.2 and Atot =0.30 find the

thermal emissivity and Ta.
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Transmission in individual spectral lines
and in bands of lines

High resolution spectroscopy reveals that the absorption and emission of radiation
by atmospheric gases is not continuously distributed over the entire spectral range.
In fact, the absorption and emission spectra are composed of numerous spectral
lines of different strength. Molecules have three different forms of internal energy
Eint: rotational, vibrational and electronic. These energy forms are quantized and
are expressed by one or more quantum numbers. If a molecule absorbs or emits
radiation, a transition from one energy level to another takes place. During an
absorption process the molecule captures a photon thus reaching a higher level
of internal energy. Hence the molecule is said to be in an excited state. Emission
of radiation occurs if the molecule releases a photon resulting in a transition to a
lower energy level, that is, the molecule leaves the excited state. Both processes
yield spectral absorption and emission lines which are characteristic for a partic-
ular molecule. According to (1.15) the change of internal energy �Eint(ν) of a
molecule resulting from the uptake or release of a photon is given by Planck’s
relation

�Eint(ν) = ±hν (7.1)

where h is Planck’s constant and ν is the frequency of the absorbed or emitted
energy.

From these considerations one expects that each individual line has an infinitely
small width expressing the monochromatic absorption and emission of radia-
tion with frequency ν. In nature, however, it is observed that individual lines
do not have a zero line width, but they are broadened over a narrow fre-
quency range. This line broadening is caused by external influences affecting
the molecule during the absorption and emission process. There are mainly three
effects which are responsible for the broadening of spectral lines. These are listed
below.

204
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(1) Natural broadening: owing to the finite natural lifetime of a molecule in an excited
state, according to Heisenberg’s uncertainty principle the emitted energy is distributed
over a narrow frequency interval �ν.

(2) Collision broadening: during the emission of radiation the molecule will collide with
other molecules. This interaction disturbs the emission process resulting in a broadening
of the emission line. This process is also called pressure broadening.

(3) Doppler broadening: the Doppler effect caused by the thermal motion of the molecule
yields a broadening of the line. Often it is also called thermal broadening.

The natural lifetime of the excited state of a molecule is of the order 10−2 to
10−1 s, (Houghton and Smith, 1966). This is much larger than the time between
collisions in a gas at normal atmospheric pressures. Therefore, the first effect is
much smaller than the second and the third so that we are justified to disregard
it in our discussion. In the lowest 30 km of the atmosphere the line broadening
due to molecular collisions is much more important than the Doppler broadening.
At altitudes higher than about 50 km, however, the Doppler broadening becomes
more and more important as compared to the collision broadening. Certainly, this is
caused by the vertical decrease of the air density yielding a reduction of the number
of molecular collisions with height while at the same time the mean free path
length of the molecules is increasing. In a region of about 30–50 km the collision
broadening as well as the Doppler effect should be taken into account.

7.1 The shape of single spectral lines

In this section we will determine the shape of the mass absorption coefficient κabs,ν

of an absorbing gas resulting from the line broadening by collisions of molecules
and from the Doppler effect. We start with the description of the isolated effects. At
the end of this section the collision and Doppler broadening effects will be combined
yielding the so-called Voigt profile. For ease of notation, the mass absorption coef-
ficient will henceforth also be denoted by kν , that is kν = κabs,ν as given in (1.41).
Thus we omit the reference to the density of the absorbing gas. Furthermore, kν

will simply be called the absorption coefficient.

7.1.1 The Lorentz line

The simplest approach describing the collision broadening effect is due to Lorentz
who assumed that at each collision the interaction of radiation with a molecule
is momentarily halted and a random phase change is introduced. This is called a
strong encounter. First we will proceed to give a mathematical description of the
collision or Lorentz broadening.
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Let us consider an electromagnetic wave with circular frequency ω0 which is
incident on an absorbing atmospheric gas molecule. The time interval during which
this molecule absorbs the wave is given by −t0/2 ≤ t < t0/2. The time signal of
this wave can be expressed by

f (t) =
{

exp(−iω0t) −t0/2 ≤ t < t0/2
0 otherwise

(7.2)

Using the Fourier transformation we may switch from the time domain to the
frequency domain of the wave. If g(ω) denotes the Fourier transform of f (t) then
g(ω) and f (t) are related by

g(ω) = 1

2π

∫ ∞

−∞
f (t) exp (iωt) dt , f (t) =

∫ ∞

−∞
g(ω) exp (−iωt) dω (7.3)

Inserting (7.2) into the first equation of (7.3) we obtain

g(ω) = 1

2π

∫ t0/2

−t0/2
exp [i(ω − ω0)t] dt = sin

[ (ω−ω0)t0
2

]
π (ω − ω0)

(7.4)

Instead of ω we may also use the frequency since ω = 2πν so that

g(ν) = sin [π (ν − ν0)t0]

2π2(ν − ν0)
(7.5)

The modulus or the absolute value of g(ν) is called the amplitude spec-
trum. Since the square of the amplitude of a wave is proportional to the energy
of the oscillation, the quantity G(ν) = |g(ν)|2 is the so-called power spectrum.
Figure 7.1 illustrates the time signal f (t) of the real part of the finite wave, its
Fourier transform and its power spectrum.

Let us now briefly discuss how the shape of a spectral line is influenced by the
collisions with other molecules. Let pc stand for the number of collisions per unit
time so that pc�t is the number of collisions within the time increment �t . Thus,
q = 1 − pc�t is the probability that the molecule experiences no collisions within
�t . Let the wave have a duration of t0 = n�t . Assuming that the collisions during
each time increment �t are independent of each other, we obtain the probability
that the molecule experiences no collisions within the time span t0 as

qn = (1 − pc�t)n = (1 − pc�t)t0/�t= [(1 − pc�t)−1/(pc�t)]−pct0 (7.6)

Since lim
x→0

(1 − x)−1/x = e, for �t → 0 we obtain from (7.6)

lim
�t→0

qn = exp (−pct0) = exp

(
− t0

τ̄

)
(7.7)
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Fig. 7.1 Illustration of a finite wave f (t) in the time domain, its Fourier transform
g(ω) and its power spectrum G(ω).

Here, τ̄ = 1/pc is the average time between two collisions and t0/τ̄ is the total
number of collisions within t0.

The absorption coefficient of the Lorentz line is proportional to the probabil-
ity exp(−pct0) for the time interval t0 between collisions and to the power spec-
trum |g(ν)|2 describing the spectral energy distribution. Furthermore, in order to
obtain the total absorption, we need to integrate over all possible time spans t0
during which the molecule absorbs radiation. Hence kν,L may be written in the
form

kν,L = A
∫ ∞

0
|g(ν)|2 exp (−pct0) dt0 (7.8)
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where A is a constant. Substituting (7.5) into this equation the definite integral may
be evaluated yielding

kν,L = A

4π4(ν − ν0)2

∫ ∞

0
sin2 [π (ν − ν0)t0] exp (−pct0) dt0

= A

2π2 pc
[

p2
c + 4π2(ν − ν0)2

] (7.9)

From this equation it is seen that the absorption coefficient is largest at ν = ν0.
Denoting kν0,L = k0 we find from (7.9) that A = k02π2 p3

c . Substituting this expres-
sion into (7.9) yields

kν,L = p2
c k0

p2
c + 4π2(ν − ν0)2

(7.10)

We will now introduce the half-width of the Lorentz line αL. In general, the
half-width of a spectral line is defined by the distance from the line center ν = ν0

to the points ν1,2 where the absorption coefficient has decreased to one-half of
its maximum value. Hence we may write α2

L = (ν1,2 − ν0)2. Evaluating (7.10) at
ν = ν1,2 yields

αL = pc

2π
= 1

2πτ̄
(7.11)

showing that the Lorentz half-width is inversely proportional to the average
time between collisions. Replacing p2

c in (7.10) by means of (7.11) we obtain
immediately

kν,L = α2
Lk0

α2
L + (ν − ν0)2

(7.12)

Finally, we introduce the line intensity or the line strength S from the definition

S =
∫ ∞

−∞
kνdν (7.13)

Substitution of (7.12) into this equation yields the intensity of the Lorentz line

S = παLk0 (7.14)

so that the absorption coefficient of the Lorentz line can be written as

kν,L = 1

π

αLS

α2
L + (ν − ν0)2 (7.15)
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This is the form of the absorption coefficient which is normally used in radiative
transfer calculations.

For any line shape the absorption coefficient can be formulated as

kν = S f (ν − ν0) (7.16)

where f (ν − ν0) is the so-called line-shape factor. According to (7.13) the
line-shape factor is normalized, that is∫ ∞

−∞
f (ν − ν0)d(ν − ν0) = 1 (7.17)

From (7.15) we see that the line-shape factor of the Lorentz line is given by

fL(ν − ν0) = 1

π

αL

α2
L + (ν − ν0)2 (7.18)

Integrating this equation over all frequencies according to (7.17) shows that the
Lorentz line-shape factor is normalized.

It is customary in spectroscopy to introduce the wave number ν̃ instead of the
frequency ν. If λ represents the wavelength then ν̃ is defined as ν̃ = 1/λ (cm−1).
Using the basic relation ν = c/λ = cν̃, where c is the speed of light in a vacuum,
we may replace kν,L by kν̃,L. However, since c cancels out in (7.12), the form of the
absorption coefficient remains the same. As is common usage, we will not replace
kν,L by kν̃,L but simply continue to write kν,L. If ν represents the wave number
expressed in units of cm−1 then αL must also be expressed in units of cm−1 and
S in cm−2 so that the absorption coefficient kν has units of cm−1. Otherwise, if
ν represents the frequency then αL must be expressed in s−1 and S in units of
cm−1 s−1. Whenever a question arises about the set of units used, it is usually
not difficult to decide if we work with the frequency or the wave number system.
Unfortunately, some writers even call the wave number simply the frequency. The
problem associated with the introduction of the wave number is discussed in more
detail by Goody (1964a).

The shape of the Lorentz line is shown in Figure 7.2. Note that per definition the
area under the line profile is S.

Since the collision of molecules depends on their number density and on their
velocity, it is expected that the Lorentz half-width is a function of pressure and
temperature. In the following we will discuss a simplified collision model by assum-
ing the existence of preferably elastic spheres. Let us consider identical molecules
with radius r which are frozen in position with the exception of one individual
molecule that is moving along an irregular zigzag path with an average velocity v̄.
At the instant of collision the center-to-center distance of the colliding molecules
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Fig. 7.2 Shape of the Lorentz form of the spectral line.

is 2r . Thus the collision cross section σc of this molecule is given by

σc = π (r + r )2 = 4πr2 (7.19)

During the time t the molecule has moved the distance v̄t . If n is the number of
molecules at rest per unit volume, during t the individual molecule experiences a
total number of Nc collisions with

Nc = σcnv̄t (7.20)

The collision frequency pc, that is the number of collisions per unit time, is given
by

pc = 1

τ̄
= σcnv̄ (7.21)

where, as before, τ̄ is the average time between two successive collisions. From
the kinetic gas theory it is known that v̄ depends on the temperature T and on the
mass m of the molecules as expressed by

v̄ =
√

8kT

πm
(7.22)
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where k is the Boltzmann constant. For a brief derivation of v̄ see Appendix 7.6.1.
The pressure p of an ideal gas is given by

p = nkT (7.23)

Substituting (7.22) and (7.23) into (7.21) we obtain for the reciprocal of the average
collision time

1

τ̄
= σc

p

kT

√
8kT

πm
= C

p√
T

(7.24)

The constant C depends on the gas.
We are now ready to give an expression for the pressure and temperature

dependence of the half-width of the Lorentz line. Since αL = 1/2πτ̄ we find

αL(p, T ) = C

2π

p√
T

(7.25)

For reference values of the pressure and temperature (p0, T0) we denote the
half-width by

αL,0 = αL(p0, T0) = C

2π

p0√
T0

(7.26)

Utilizing this equation in (7.25) gives

αL(p, T ) = αL,0
p

p 0

√
T0

T
(7.27)

Thus it is seen that the Lorentz half-width depends linearly on pressure and thus
decreases with height. Furthermore, the temperature dependence of αL is relatively
weak as compared to the pressure dependence so that it is sometimes completely
ignored. The standard half-width αL,0 can be determined by experiment or from
quantum theory. Values of αL,0 for atmospheric gases can be found in tabulated
form in the literature.

As we have seen, the average time τ̄ can be determined from classical gas
kinetic theory enabling an estimate of αL. However, such an estimate is several
times too small. Although the absolute magnitude of αL cannot be found accurately,
the pressure dependence given in (7.27) is accurately followed. A more detailed
discussion on this subject is given, for example, in Goody (1964a).

7.1.2 The thermal Doppler line

At high altitudes in the atmosphere, that is at low pressure, the collision broadening
becomes less important while at the same time the Doppler shift in frequency
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Fig. 7.3 Molecule moving with velocity component v towards the observer.

becomes the main line broadening effect. Let us assume that a molecule which is
moving with velocity v along a path s has the velocity component v towards the
observer, see Figure 7.3. If the frequency of the radiation emitted by the stationary
molecule is ν0, then the observed frequency ν ′

0 is given by

ν ′
0 = ν0

(
1 + v

c

)
, |v| 	 c (7.28)

where c is the speed of light. Hence, the Doppler shift in frequency is

�ν ′
0 = ν ′

0 − ν0 = ν0
v

c
(7.29)

The number concentration of molecules, dn, belonging to the velocity interval
(v, v + dv) can be obtained from Maxwell’s one-dimensional velocity distribution,
see also Appendix 7.5.1

dn = n

√
m

2πkT
exp

(
−mv2

2kT

)
dv

= n√
πv0

exp

[
−
(

v

v0

)2
]

dv with v0 =
√

2kT

m
(7.30)

Due to the square of the velocity in the exponent the component v can either be
positive (towards the observer) or negative (away from the observer). In order to
account for the Doppler effect of arbitrary v we have to integrate over the Maxwell
distribution as illustrated in Figure 7.4. Then the average of the velocity squared is
given by

v2 = 1

n

∫ ∞

−∞
v2dn = 1√

πv0

∫ ∞

−∞
v2 exp

[
−
(

v

v0

)2
]

dv = v2
0

2
(7.31)

First we consider the case of pure Doppler broadening, that is we neglect the
effect of both natural as well as pressure broadening. In the following section
we will discuss the combined effect of pressure and Doppler broadening. If the
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Fig. 7.4 Maxwell’s one-dimensional velocity distribution for the component v.

molecule is at rest, then the absorption coefficient is proportional to the Dirac
δ-function

kν = Sδ(ν − ν0) (7.32)

Thus, according to (7.16) the line-shape factor for monochromatic emission is given
by δ(ν − ν0). If we take the Doppler effect due to a particular velocity v into account
we obtain

kν = Sδ
(
ν − ν ′

0

)
(7.33)

Note that this equation corresponds to the emission or absorption by a non-
broadened monochromatic line with frequency ν ′

0. From (7.28) we see that instead
of integrating over all possible velocities v it is equivalent to integrate over all cor-
responding frequencies ν ′

0. The right-hand side of (7.33) corresponds to a situation
where only a single frequency shift occurs. Therefore, the absorption coefficient
for all possible frequency shifts can be obtained from

kν = S
∫ ∞

−∞
P
(
ν ′

0

)
δ
(
ν − ν ′

0

)
dν ′

0 (7.34)

where the probability distribution function P(ν ′
0) follows directly from the Maxwell

distribution

P
(
ν ′

0

)
dν ′

0 = dn

n
= 1√

πv0
exp

[
−
(

v

v0

)2
]

dv (7.35)
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From (7.28) we have dν ′
0 = (ν0/c)dv so that

P
(
ν ′

0

) = c√
πν0v0

exp

[
−
(

v

v0

)2
]

(7.36)

Substituting this expression into (7.34) and evaluating the integral results in the
absorption coefficient of the Doppler line

kν,D = Sc√
πν0v0

exp

[
−
(

(ν − ν0)c

ν0v0

)2
]

(7.37)

The maximum of the absorption coefficient occurs at the line center where ν = ν0

and is given by

k0 = Sc√
πν0v0

(7.38)

Finally, we determine the particular frequency ν = ν0 ± αD where kν,D = k0/2.
This leads to the half-width of the Doppler line which has the form

αD =
√

ln 2
ν0v0

c
=

√
ln 2

ν0

c

√
2kT

m
(7.39)

It is noteworthy that the Doppler half-width depends on temperature only but not
on pressure.

By comparing (7.16) with (7.37) one may easily see that the line-shape factor
of the Doppler line is given by

fD(ν − ν0) =
√

ln 2√
παD

exp


−

(
(ν − ν0)

√
ln 2

αD

)2

 (7.40)

where use was made of (7.39). Finally, it is not difficult to verify that, in accordance
with (7.17), the Doppler line-shape factor is also normalized.

7.1.3 The Voigt profile

A comparison of broadening effects due to molecular collisions and the Doppler
effect reveals that pressure broadening dominates in the troposphere and lower
stratosphere while Doppler broadening is most important in atmospheric layers
above 50 km. At sea level the Doppler half-width αD is about two orders of mag-
nitude smaller than αL. In an altitude range from about 30 to 50 km, however, both
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mechanisms need to be considered since they are in the same order of magnitude. As
already mentioned, in the meteorologically relevant part of the Earth’s atmosphere
natural line broadening remains negligibly small in comparison to collisional and
thermal broadening.

In order to combine the pressure and Doppler broadening effect we apply Doppler
broadening to a line which has already been broadened by the pressure effect.
This is achieved by replacing in (7.32)–(7.34) the Dirac δ-function, expressing the
monochromatic emission, by the Lorentz line-shape factor, expressing the pressure
broadening. Instead of (7.34) we then obtain

kν = S
∫ ∞

−∞
P
(
ν ′

0

)
fL
(
ν − ν ′

0

)
dν ′

0 (7.41)

By comparing (7.36) with (7.40) one may easily verify that

P
(
ν ′

0

) = fD
(
ν ′

0 − ν0
)

(7.42)

Substituting this expression into (7.41) yields the absorption coefficient of the Voigt
line

kν,V = S
∫ ∞

−∞
fD
(
ν ′

0 − ν0
)

fL
(
ν − ν ′

0

)
dν ′

0 = S fV(ν − ν0) (7.43)

Here, fV(ν − ν0) is the line-shape factor of the Voigt line which is given by the
convolution of the Lorentz and the Doppler line-shape factors, i.e.

fV(ν − ν0) = fV(y) =
∫ ∞

−∞
fD(x) fL(y − x)dx (7.44)

with x = ν ′
0 − ν0 and y = ν − ν0. This equation reflects the fact that the signal of

the product of two spectra is equivalent to the convolution of the individual signals.
Substituting (7.18) and (7.40) into (7.44) yields for the Voigt line-shape factor

fV(ν − ν0) =
√

ln 2√
π3αD

∫ ∞

−∞
exp


−

(
x
√

ln 2

αD

)2

 αL

α2
L + (y − x)2

dx (7.45)

Integration of this equation over all frequencies shows that the Voigt line-shape
factor is also normalized. Furthermore, it may be easily verified that in the lim-
its αD → 0 and αL → 0 the Voigt line approaches the Lorentz and Doppler line,
respectively.

Unfortunately, it is not possible to give an analytical solution to the integral in
(7.45). However, it causes no problems to find a numerical solution. Nevertheless,
in the literature there exist several analytical approximations for the Voigt line
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(e.g. Penner, 1959; Fels, 1979). Fomichev and Shved (1985) suggest the following
formula

fV(ν − ν0) =
√

ln 2

π

1 − ξ

αV
exp(− ln 2η2) + ξ

παV(1 + η2)

− ξ (1 − ξ )

παV

(
3

2 ln 2
+ 1 + ξ

)

×
(

0.066 exp(−0.4η2) − 1

40 − 5.5η2 + η4

) (7.46)

with ξ = αL/αV and η = (ν − ν0)/αV. The term αV is the half-width of the Voigt
line and is given by

αV = 0.5

(
αL +

√
α2

L + 4α2
D

)
+ 0.05αL


1 − 2αL

αL +
√

α2
L + 4α2

D


 (7.47)

Generally, this approximation yields results with an accuracy of less than 3%.
Numerical evaluation of (7.46) reveals that the approximate form of the Voigt line-
shape factor is also normalized and it approaches the Doppler and Lorentz line for
αL → 0 and αD → 0.

As an example, Figure 7.5 shows the three line types for the half-widths αL = αD.
The curves are plotted as function of x = (ν − ν0)/αL and they are normalized
with respect to fD(0). From this figure we conclude that collisional line broadening
dominates in the line wings, whereas near the line center fD > fL. The effect of the
Voigt line is to increase the absorption in the wings and to decrease it in the center
of the line as compared to the Lorentz and the Doppler line. The same behavior of
the Voigt line is also observed for other choices of the half-widths with αL � αD.

However, if there is practically total absorption near the center of the spectral
line, the simpler Lorentz shape can still be used instead of the more complicated
Voigt shape. This is due to the fact that, for very strong absorption, the particular
shape of the line near its center is of secondary importance. A detailed discussion
of the Voigt profile can be found, for example, in Unsöld (1968).

7.2 Band models

Inspection of the absorption spectrum in the short-wave and long-wave spec-
tral region reveals that there exist many absorption lines for different molecular
species. With increasing spectral resolution the structure of the absorption spectrum
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Fig. 7.5 Comparison of the Lorentz, the Doppler and the Voigt line-shape factors
with αL = αD and x = (ν − ν0)/αL.

increases in complexity. For a particular gas the positions and the strengths of the
spectral lines are calculable with the help of the quantum theory of radiation. It is
found that there exist approximately 50 000 relevant lines for water vapor which
have to be considered in detailed spectral calculations for atmospheric problems.
Truly exact calculations of the absorption spectrum are carried out by the so-called
line-by-line models, meaning that the absorption coefficient must be determined
along the shape of each individual spectral line. In order to determine the radiation
field these calculations have to be performed for many altitudes within the atmo-
sphere because gaseous concentrations, half-widths and line intensities depend on
pressure and temperature.

One can easily imagine that radiative transfer by the exact line-by-line method
requires an extraordinary computational effort. Such benchmark calculations are
normally carried out for a few representative model atmospheres only. For routine
purposes, however, one needs to design simpler approaches which do not treat the
spectroscopic structure in detail, but still take the main features of the absorption
spectrum into account. These are the so-called band models.

A view of the absorption spectrum gives the impression that the positions of
the lines are randomly placed and that the line intensities are distributed accord-
ing to some statistical law. In reality, the spectral arrangement of the lines is not
completely random since line positions and intensities can be determined via quan-
tum mechanical laws. Nevertheless, random line position and statistical distribution
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laws for line intensities may be used to determine the absorption of simple band
models.

7.2.1 Mean absorption in a single Lorentz line

In the following we will first discuss the simple but important case of absorption by
a single Lorentz line in a homogeneous atmosphere. The resulting mean absorption
of such a spectral line will be used to find the limiting forms of very weak and very
strong absorption. These results in turn will be needed as closure assumptions of
various band models to be discussed later.

The monochromatic absorption Aν(u) in a single line depends on the spec-
tral absorption coefficient and the optical mass u of the gas in the following
way

Aν(u) = 1 − exp (−kνu) = 1 − Tν(u) with Tν(u) = exp (−kνu) (7.48)

where u was defined in (2.118). Tν(u) is the monochromatic transmission of the
single line. This fundamental quantity represents that part of the incident radiation
which remains after passage of the optical mass.

The single line model can be extended to more general situations involving the
absorption in several well-separated lines so that no appreciable line overlap ocurs.
If there exist N different absorbers with absorption coefficients kν,i and optical
masses ui the total monochromatic transmission is given by

Tν = exp

(
−

N∑
i=1

kν,i ui

)
=

N∏
i=1

Tν,i (ui ) (7.49)

indicating that the individual monochromatic transmissions can be multiplied to
yield the total monochromatic effect. It should be noted, however, that this multi-
plication property of the transmissions is not strictly true for the transmission of
band intervals.

A convenient way to define the spectrally integrated absorption is by means of
the equivalent width W (u)

W (u) =
∫ ∞

−∞
Aν(u)dν =

∫ ∞

−∞
[1 − exp (−kνu)]dν (7.50)

The relationship between W and u is also called the curve of growth. The notion
of the equivalent width stems from the fact that a rectangular line with width W ,
whose line center is completely absorbed (Aν = 1), gives rise to the same area
under Aν .
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Instead of W (u), which has the dimension of a frequency, one defines the average
absorptionA(u) of a single line over a frequency interval �ν taken sufficiently wide
as1

A(u) = W (u)

�ν
= 1

�ν

∫ ∞

−∞
Aν(u)dν = 1

�ν

∫ ∞

−∞
[1 − exp (−kνu)]dν (7.51)

Introducing in this equation the absorption coefficient of the Lorentz line (7.15)
and using the substitutions

ū = Su

2παL
, x = ν − ν0

αL
(7.52)

we obtain the expression

A(ū) = αL

�ν

∫ ∞

−∞

[
1 − exp

(
− 2ū

(1 + x2)

)]
dx (7.53)

Integration by parts results in

A(ū) = 4ūαL

�ν

∫ ∞

−∞

x2 exp(−2ū/(1 + x2))

(1 + x2)2
dx

= 4ūαL

�ν

∫ ∞

−∞

exp(−2ū/(1 + x2))

(1 + x2)
dx − 4ūαL

�ν

∫ ∞

−∞

exp(−2ū/(1 + x2))

(1 + x2)2
dx

(7.54)

In the next step we may treat the variable ū as a parameter in the integral of
(7.53). Thus, the first and second derivative of A with respect to ū are

dA
dū

= 2αL

�ν

∫ ∞

−∞

exp(−2ū/(1 + x2))

(1 + x2)
dx,

(7.55)
d2A
dū2

= −4αL

�ν

∫ ∞

−∞

exp(−2ū/(1 + x2))

(1 + x2)2
dx

Substituting these expressions into (7.54) gives an ordinary linear differential
equation of second order for A(ū)

ū
d2A
dū2

+ 2ū
dA
dū

− A(ū) = 0 (7.56)

This differential equation can be easily solved by means of Laplace transforms. Let
us define the Laplace transform of A(ū) as

L [A(ū)] =
∫ ∞

0
exp (−sū)A(ū)dū = y(s) (7.57)

1 Many authors denote the average absorption by Ā(u). This notation is unnecessarily complicated since averaging
implies an integration over ν which is just as well indicated by A(u).
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Then the properties of the Laplace transform yield

L
[

dA
dū

]
= sy(s) − A(0), L

[
d2A
dū2

]
= s2 y(s) − sA(0) − dA

dū
(0) (7.58)

The two boundary conditions A(0) and (dA/dū)(0) to evaluate the Laplace
transforms can be obtained very easily. From physical reasoning we must have
A(0) = 0. To obtain the first derivative of A at ū = 0 we expand (7.51) in a power
series. For small values of u we find

u 	 1 : A(u)�ν = Su, A(ū) = 2παLū

�ν
,

dA
dū

(0) = 2παL

�ν
(7.59)

The additional transform rule

L [ū f (ū)] = −d f

ds
with L [ f (ū)] = f (s) (7.60)

can then be used to formulate (7.56) in transformed space as

dy

ds
+ 2y

s + 2
+ 3y

s(s + 2)
= 0 (7.61)

It may be easily verified that the solution to this differential equation is given by

y(s) = C√
(s + 2)s3

(7.62)

where C is a constant of integration.
The inverse Laplace transform of y(s) may be found in transform tables and is

given by

L−1 [y(s)] = A(ū) = Cū exp (−ū) [I0(ū) + I1(ū)] (7.63)

where I0, I1 are the modified Bessel functions of the first kind. The constant C is
evaluated with the help of (7.59) and by observing that

I0(0) = 1, I1(0) = I2(0) = 0

d I0(ū)

dū
= I1(ū), 2

d I1(ū)

dū
= I0(ū) + I2(ū)

(7.64)

This results in

C = 2παL

�ν
(7.65)

which is required to evaluate (7.63). As final result we obtain the average absorption
of an isolated Lorentz line

A(ū) = 2παL

�ν
ū exp (−ū) [I0(ū) + I1(ū)] (7.66)
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This important result is due to Ladenburg and Reiche (1913) who originally used
the Bessel functions of the first kind J0 and J1 with pure imaginary argument to
expressA(ū). In the literature the Ladenburg and Reiche function L(ū) is defined as

L(ū) = ū exp (−ū) [I0(ū) + I1(ū)] (7.67)

so that

A(ū) = 2παL

�ν
L(ū) (7.68)

The Laplace transform method to find the Ladenburg and Reiche function is due to
Zdunkowski (1974). The original method to obtain L(ū) is outlined in Appendix
7.6.2.

Let us discuss the average absorption of an isolated Lorentz line for the two
important cases ū 	 1 and ū 
 1. For small ū the In may be expressed as infinite
series of the form (Abramowitz and Stegun, 1972)

In(x) =
∞∑

k=0

1

k! �(n + k + 1)

( x

2

)2k+n
(7.69)

where �(x) is the Gamma function which is defined by the definite integral

�(x) =
∫ ∞

0
exp (−t) t x−1dt (7.70)

For a positive integer n one finds �(n + 1) = n! The leading terms of the power
series for I0 and I1 are then given by

I0(ū) = 1 +
(

ū

2

)2

+ 1

4

(
ū

2

)4

+ · · ·

I1(ū) = ū

2
+ 1

2

(
ū

2

)3

+ 1

12

(
ū

2

)5

+ · · ·
(7.71)

For ū 	 1 it is sufficiently accurate if we retain only the first two terms of
these series. Furthermore, since exp (−ū) ≈ 1 − ū the third-order expansion of the
average absorption is found to be

A(ū) ≈ 2παL

�ν

(
ū − ū2

2
− ū3

4

)
(7.72)

The so-called weak line approximation is defined as the linear part of the absorption
law (7.72)

Aw(ū) ≈ 2παL

�ν
ū or Aw(u) ≈ Su

�ν
(7.73)



222 Transmission in spectral lines and bands of lines

This very important result shows that very weak absorption varies linearly with u.
Moreover, it is found that the absorption is independent of the half-width of the
spectral line. Since in (7.51) no special form of kν is involved, it may be easily seen
that for u 	 1 the general form of the weak line approximation (7.73) is valid for
arbitrary line shapes.

The second important case is known as strong absorption, i.e. ū 
 1. Now
we introduce the asymptotic expressions for the modified Bessel functions
(Abramowitz and Stegun, 1972)

In(x) = exp (x)√
2πx

[
1 + O

(
1

x

)]
(7.74)

We immediately find the so-called strong line approximation or square-root law

As(ū) ≈ 2αL

�ν

√
2π ū or As(u) = 2

�ν

√
SαLu (7.75)

It should be noted that, contrary to the weak line law, the strong line approximation
for certain combinations of S, αL and u might give an unphysical value A > 1.
Thus, one should correctly limit the average absorption in (7.75) by 1. In contrast,
the weak line limit is always bounded.

In the following we will seek a physical interpretation for these limiting values
of the average absorption. In a pressure-broadened spectral line the monochromatic
transmission reads

Tν(ū) = exp

(
− 2α2

Lū

ν2 + α2
L

)
(7.76)

Figure 7.6 depicts the absorption and transmission by a single Lorentz line for
different values of the parameter ū. It can be seen that near the line center Tν

gradually approaches zero for increasing ū. For ū = 5 the absorption is already
complete (Aν = 1) as long as ν stays within a distance of one half-width from the
line center.

For ν 
 αL we observe that in the denominator of Tν in (7.76) the term α2
L can

safely be neglected in comparison to the term ν2. In fact, already for ν > 10αL

this gives rather accurate approximations. Furthermore, if we assume that ū is very
large, then the absorption near the line center is complete. Neglecting α2

L in the
denominator of (7.76) does not appreciably change the monochromatic absorption
for ū 
 1 and for any ū far from the line center. In summary, for these two cases
we find the following approximate form for the monochromatic transmission

Tν(ū) ≈ exp

(
−2α2

Lū

ν2

)
(7.77)
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Fig. 7.6 Comparison of the transmission function (7.76) (full curves) with the
approximate form (7.77) (dashed curves) for different values of the variable ū
with x = ν/αL.

The accuracy of this approximation can be inferred from the dashed curves in Figure
7.6. As expected for large ū and for ν far away from the center line the approximation
is very good. For small ū, however, extremely large errors are observed near the
center line.

Using (7.52) and (7.53) it is easy to find an expression for the average
absorption of an isolated Lorentz line for large ū. Setting ν0 = 0 and
introducing the substitution ξ = 2α2

Lū/ν2 we again obtain the strong line
approximation

A(ū) ≈ αL

�ν

√
2ū
∫ ∞

0
(1 − exp (−ξ ))ξ−3/2dξ = 2αL

�ν

√
2π ū (7.78)

In case of very weak absorption the linear expansion of the exponential (7.76)
leads to

Tν(ū) ≈ 1 − 2α2
Lū

ν2 + α2
L

(7.79)

For ν/αL 
 1 and small values for ū we obtain Tν(ū) ≈ 1 in accordance with
Figure 7.6.
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7.2.2 Band model for nonoverlapping lines

The simplest band model to be treated is a spectral interval �ν = Nδ containing
N nonoverlapping lines of mean line spacing δ. Thus the average equivalent width
W (u) of all lines in the band can be obtained by summation over the individual
equivalent widths Wi , i.e.

W (u) = 1

N

N∑
i=1

Wi (u) (7.80)

The average band absorption then follows from

A(u) = 1

Nδ

N∑
i=1

Wi (u) = 1

N

N∑
i=1

Ai (u) (7.81)

It is useful to consider the two limiting cases of weak and strong absorption. In the
weak line limit the individual lines have the average absorption Aw,i (u) = Si u/δ.
Thus, for N nonoverlapping lines we obtain the weak line limit

Aw(u) = 1

Nδ

N∑
i=1

Si u (7.82)

In this limit A is independent of the line shape. For the strong line limit of N
nonoverlapping Lorentz lines we similarly obtain

As(u) = 2

Nδ

N∑
i=1

√
SiαL,i u (7.83)

In general, the band model for nonoverlapping spectral lines does not apply
to atmospheric conditions. Nevertheless, the model results will be needed in the
construction of realistic atmospheric transmission functions.

7.2.3 Random band models

For triatomic molecules such as H2O, the band structure is very complex and gives
the impression that the spectral lines are randomly spaced. We will use several steps
to construct a general random model.

First we consider an infinite array of identical lines of unspecified line shape.
Suppose that N lines are distributed randomly in the interval between −Nδ/2 and
Nδ/2 where δ is the mean line spacing. If a line is centered at ν = νi within this
interval, the contribution of this line to the absorption coefficient at the center of the
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interval at ν = 0 is kν,i . The contribution from all N lines in the spectral interval is∑N
i=1 kν,i . Therefore, the resultant transmission is given by

Tν=0(u) = exp

(
−

N∑
i=1

kν,i u

)
=

N∏
i=1

exp(−kν,i u) (7.84)

We have assumed that the lines in this superficial spectrum are randomly spaced.
Due to the random spacing, the probability for a line to be located in the interval νi

to νi + dνi is dνi/δ. Consequently, the joint probability for lines to be located in
the intervals extending from ν1 to ν1 + dν1, ν2 to ν2 + dν2, . . ., νi to νi + dνi , . . .,
νN to νN + dνN is given by

∏N
i=1 dνi/δ.

In order to allow for all possible arrangements of lines we must permit each
line to be located anywhere in the interval �ν extending from −Nδ/2 to Nδ/2.
Therefore, the average value of (7.84) over the interval is given by

T (u) =

N∏
i=1

1

δ

∫ Nδ/2

−Nδ/2
exp(−kν,i u)dνi

N∏
i=1

1

δ

∫ Nδ/2

−Nδ/2
dνi

(7.85)

Assuming that each arrangement of lines is equally probable then (7.85) can be
simplified substantially. Instead of the product

∏N
i=1 we obtain the N -th power so

that (7.85) can be written as

T (u) =
[

1

Nδ

∫ Nδ/2

−Nδ/2
exp (−kνu) dν

]N

=
[

1 − 1

Nδ

∫ Nδ/2

−Nδ/2
[1 − exp(−kνu)]dν

]N

(7.86)

If we permit the number of lines to be very large (N → ∞) then this equation
becomes the exponential function

T (u) = exp

[
−1

δ

∫ ∞

−∞
[1 − exp(−kνu)]dν

]
= exp

(
−W (u)

δ

)
(7.87)

where we have used the definition (7.50) of the equivalent width. It should be
noted that no particular line profile has been specified in the derivation of (7.87).
In general, we will use the Lorentz profile to specify the absorption coefficient.

The artificial situation of lines with equal intensity will now be generalized to
a more realistic spectrum consisting of randomly distributed lines with different
intensities. Let us consider a certain frequency range containing N lines. Each of
these is assumed to belong to an infinite array of randomly spaced lines of equal
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intensity and mean spacing Nδ. According to (7.87) the mean transmission of array
i is given by

Ti (u) = exp

(
−Wi (u)

Nδ

)
(7.88)

Due to the assumption of randomness in each array we may expect that the multi-
plication property (7.49) also applies so that

T (u) =
N∏

i=1

Ti (u) = exp

(
− 1

Nδ

N∑
i=1

Wi (u)

)
(7.89)

or

TG(u) = exp

(
−W (u)

δ

)
= exp[−A(u)] (7.90)

The transmission function TG(u) is due to Goody (1952). Sometimes (7.90) is also
attributed to Mayer (1947) and one speaks of the Mayer–Goody model.

In the following we will show how to find A(u). Since (7.90) refers to a realistic
spectrum, the line intensities of the N lines vary in strength. In order to account for
this situation various probability distributions p(S) for the distributions of S have
been proposed in the literature. We are going to discuss three prominent models.

Goody’s exponential model

Goody (1952) proposed the following distribution for the line intensities

p(S) = 1

σ
exp (−S/σ ) (7.91)

where σ is the average value of the line intensity in the given spectral interval. The
quantity p(S)d S then gives the percentage of lines in the spectral interval which
belong to the line intensity interval (S, S + d S). It is easily seen that the probability
distribution (7.91) fulfils the normalization condition∫ ∞

0
p(S)d S = 1 (7.92)

The expectation value for the absorption A(u) due to the exponential model is
obtained from

A(u) =
∫ ∞

0
p(S)A(S, u)d S

with A(S, u) = 1

δ

∫ ∞

−∞

[
1 − exp (− fν Su)

]
dν

(7.93)
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Introducing (7.91) into (7.93) yields

A(u)=
∫ ∞

0

1

σ
exp

(
− S

σ

)
1

δ

∫ ∞

−∞
[1 − exp (− fν Su)]dνd S = 1

δ

∫ ∞

−∞

fνuσ

1 + fνuσ
dν

(7.94)

In the following we will use the line-shape factor of the Lorentz line (7.18) for
ν0 = 0. Employing the substitutions

ū = σu

2παL
, y = αL

δ
(7.95)

we obtain for the average absorption of the exponential model

A(u) =
∫ ∞

−∞

2ūαL y

ν2 + α2
L(1 + 2ū)

dν = 2π ū y√
1 + 2ū

(7.96)

The parameters σ and αL, or equivalently ū and y, have not been specified so
far. They can be determined by the so-called matching principle, i.e. one forces
the random band model to obey the limiting forms of the weak and the strong line
approximation (7.82) and (7.83) of the band model with non-overlapping lines.
Thus the matching principle can also be viewed as the closure assumption of the
random band models. For the weak line and strong line approximation we find
using (7.96)

ū 	 1 : 2πyū = 1

Nδ

N∑
i=1

Si u

ū 
 1 : πy
√

2ū = 2

Nδ

N∑
i=1

√
SiαL,i u

(7.97)

These two equations can be used to determine the unknown parameters ū and y.
The result is

ū = u

8

C2

D2
, y = 4

π Nδ

D2

C

with C =
N∑

i=1

Si , D =
N∑

i=1

√
SiαL ,i

(7.98)

The exponential distribution for S as assumed in the Goody model involves a
range of line intensities. It is clear that the strongest lines will be most important
for very short path lengths, while the very weak line intensities dominate the trans-
mission of radiation over very long path lengths. Therefore, in order to correctly
describe the mean transmission for arbitrary path lengths, the distribution function
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for S must be carefully chosen. While the exponential distribution leads to a simple
expression, in several cases the model provides rather inaccurate representations of
the line intensities in atmospheric bands. For example, in the case of water vapor,
the exponential distribution fails to account for the large number of weak lines in the
bands between 50 and 100 µm wavelength. For more details see Goody and Yung
(1989).

Godson’s inverse power model

Godson (1955) applied an inverse power law to describe the distribution of line
intensities as

p(S) =



κ

S
for S0 < S ≤ S1

0 for S > S1

(7.99)

The constant κ is a model parameter which is used to normalize the probability
distribution according to (7.92). The expectation value for absorption, employing
the inverse power law, is given by

A(u) = lim
S0→0

1

δ

∫ S1

S0

κ

S

∫ ∞

−∞
[1 − exp (− fν Su)]dνd S (7.100)

Since p(S) approaches infinity if S0 → 0, the limiting value of the integral must be
considered. Using the substitutions

ū = Su

2πα
, x = κν

δ
, y = κα

δ
(7.101)

we obtain for a Lorentz line the intermediate result

A(ū1) = lim
ū0→0

∫ ū1

ū0

1

ū

∫ ∞

−∞

[
1 − exp

( −2ū y2

x2 + y2

)]
dxdū (7.102)

where the upper bound ū1 implicitly contains the dependence on u and S1. It
is convenient to carry out the integration over x first. From Appendix 7.5.2 we
know∫ ∞

−∞

[
1 − exp

(
− 2ū y2

(x2 + y2)

)]
dx = 2πyū exp (−ū) [I0(ū) + I1(ū)] (7.103)

Inserting this expression in (7.102) yields

A(ū1) = 2πy lim
ū0→0

∫ ū1

ū0

exp (−ū) [I0(ū) + I1(ū)]dū (7.104)
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The modified Bessel functions fulfill the following functional relations

(a)
d

dx
[x−ν Iν(x)] = x−ν Iν+1(x)

(b)
d

dx
[x exp (−x) (I0(x) + I1(x))] = exp (−x) I0(x)

(7.105)

where ν is a fixed real number. Integration by parts of the following integral gives

∫ ū1

ū0

exp (−ū) I1(ū)dū =
∫ ū1

ū0

exp (−ū) I0(ū)dū + exp (−ū) I0(ū)
∣∣∣ū1

ū0

(7.106)

where (7.105a) with ν = 0 has been used. Substituting this equation into (7.104)
we obtain

A(ū1) = 2πy lim
ū0→0

(∫ ū1

ū0

2 exp (−ū) I0(ū)dū + 2πy exp (−ū) I0(ū)
∣∣∣ū1

ū0

)
(7.107)

The integral on the right-hand side of this equation may be evaluated by means of
(7.105b) yielding

A(ū1) = 2πy[2ū1 exp (−ū1) [I0(ū1) + I1(ū1)] + exp (−ū1) I0(ū1)]

−2πy lim
ū0→0

[2ū0 exp (−ū0) [I0(ū0) + I1(ū0)] + exp (−ū0) I0(ū0)] (7.108)

and hence

A(ū1) = 2πy[2ū1 exp (−ū1) [I0(ū1) + I1(ū1)] + exp (−ū1) I0(ū1)] − 2πy

(7.109)

Here, use was made of I0(0) = 1 and I1(0) = 0, see (7.71). This is the final form
of the mean absorption of Godson’s model.

The unknown parameters y and ū1 will again be determined by requiring in the
weak and strong line limit agreement between the Godson model and the band
model for nonoverlapping lines

ū1 	 1: 2πyū1 = 1

Nδ

N∑
i=1

Si u

ū1 
 1: 4y
√

2π ū1 = 2

Nδ

N∑
i=1

√
Siαi u

(7.110)
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Solving these two equations gives

ū1 = 2u

π

C2

D2
, y = 1

4Nδ

D2

C
(7.111)

where C and D are given by (7.98). The Godson model allows for a good
representation of weak lines in certain absorption bands and is usually more accurate
than the exponential law.

The Malkmus model

So far the most successful statistical model is due to Malkmus (1967). This model
is a combination of the Goody and the Godson model. Malkmus also observed
that the exponential distribution (7.91) substantially underestimates the number of
weak lines. If we consider only the Boltzmann factor in the line intensity formula
to be discussed in a later chapter, then S ∼ exp [−E/kT ], where E represents
the lower energy level in a molecular transition. From this relation he concludes
that d E/d S ∼ S−1. In many cases the number density of lines, n, is approximately
equally spaced with respect to variations in E , that is dn/d E ∼ const . The prob-
ability p(S)d S to find lines with intensity S must be proportional to the change of
n versus S. Therefore, we obtain the relationship

p(S) ∼ dn

d S
∼ dn

d E

d E

d S
∼ d E

d S
∼ 1

S
(7.112)

which shows that p(S) should vary as S−1. Indeed, it is this dominating influ-
ence which determines the accuracy of the average band absorption. For this rea-
son Malkmus proposes a multiplicative combination of Goody’s and Godson’s
statistical models, that is

p(S) = 1

S
exp

(
− S

σ

)
(7.113)

where σ is the average value of the line intensities. For S = 0 the function p(S) of
the Godson and the Malkmus model is not defined. Nevertheless, both models can
be applied by using a limiting procedure.

The average absorption A(u) due to the Malkmus model is now given by

A(u) = lim
ε→0

∫ ∞

ε

1

S
exp

(
− S

σ

)
1

δ

∫ ∞

−∞
[1 − exp (− fν Su)]dνd S (7.114)
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The integral over S will be evaluated by means of

lim
ε→0

∫ ∞

ε

1

S
exp

(
− S

σ

)
[1 − exp (− fν Su)]d S

= lim
ε→0

∫ ∞

ε

1

S
exp

(
− S

σ

)
d S − lim

ε′→0

∫ ∞

ε′

1

S′ exp

(
− S′

σ

)
d S′

= − lim
ε→0

[
ln ε − ε

σ
+ 1

4

( ε

σ

)2
− 1

18

( ε

σ

)3
± · · ·

]
(7.115)

+ lim
ε′→0

[
ln ε′ − ε′

σ
+ 1

4

(
ε′

σ

)2

− 1

18

(
ε′

σ

)3

± · · ·
]

= ln(1 + σ fνu)

where the substitutions S′ = S(1 + σ fνu) and ε′ = ε(1 + σ fνu) have been
introduced. Furthermore, it should be noted that the contributions of the upper
limit of the integrals over S and S′ cancel so that only the difference of the lower
integral limits remains.

Substituting this result into (7.114) and applying the Lorentz line-shape factor
gives the average absorption of the Malkmus model

A(u) = 1

δ

∫ ∞

−∞
ln(1 + σ fνu)dν = 2πy(

√
1 + 2ū − 1) (7.116)

with y = αL/δ and ū = σu/(2παL). Finally, with the help of the matching proce-
dure we obtain

ū 	 1: 2πyū = 1

�ν

N∑
i=1

Si u

ū 
 1: 2πy
√

2ū = 2

�ν

N∑
i=1

√
Siαi u

(7.117)

so that the unknown parameters y and ū are given as

ū = u

2

C2

D2
, y = 1

π�ν

D2

C
(7.118)

The terms C and D are again given by (7.98). Applications of the Malkmus model
can be found, for example, in Crisp et al. (1986) and Lacis and Oinas (1991).

It should be observed that the absorption equations (7.96), (7.109) and (7.116)
have been derived on the assumption that only the intensities vary from line to
line. The model parameters ū and y employ the complete spectral data so that the
variation of the half-width from line to line is also taken into account.
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Fig. 7.7 Line-shape factor of Elsasser’s regular band model with x = ν/δ.

The model parameters ū and y have been determined for the three statistical
models using different formulations of p(S). We are now in the position to employ
the Mayer–Goody transmission formula (7.90) with some confidence. The spectral
data required to evaluate ū and y are given in Goody (1964a) or in Goody and Yung
(1989). This part of the sections on band models largely follow Goody’s (1964a)
excellent text.

7.2.4 Elsasser’s regular model

Spectra of linear molecules such as CO2 often appear as a superposition of arrays
of more or less regularly spaced lines with nearly identical line shape. Due to
this observation Elsasser (1942) constructed a band model consisting of an infinite
number of evenly spaced identical Lorentz lines. The absorption coefficient is given
by the superposition of all lines, that is

kν,E =
∞∑

n=−∞

S

π

αL

(ν − nδ)2 + α2
L

(7.119)

Figure 7.7 illustrates the line-shape factor fE(ν) = kν,E/S of the Elsasser band
model. The spectral lines are separated by the distance δ.

The function kν,E possesses an infinite number of simple poles at ν = jδ ± iαL.
With the help of the Mittag–Leffler theorem, see Appendix 7.6.3, the infinite sum
can be stated as a closed expression involving periodic and hyperbolic functions.
This leads to the absorption coefficient

k(s) = S

δ

sinh β

cosh β − cos s
(7.120)
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where s = 2πν/δ and β = 2παL/δ. Figure 7.7 suggests that kν varies periodically
within the bounds kmin ≤ kν ≤ kmax. From (7.120) we immediately find

kmin = S

δ

sinh β

cosh β + 1
, kmax = S

δ

sinh β

cosh β − 1
(7.121)

Next we will compute the average transmission of the regular band. Due to the
periodicity it is sufficient to average over the interval [−δ/2, δ/2], i.e.

T (u) = 1

δ

∫ δ/2

−δ/2
exp (−kνu) dν = 1

2π

∫ π

−π

exp [−k(s)u] ds (7.122)

It is convenient to determine the first derivative of T with respect to u

dT
du

= − 1

2π

∫ π

−π

k(s) exp [−k(s)u] ds (7.123)

Substituting

cos φ = 1 − cosh β cos s

cosh β − cos s
(7.124)

gives

dφ = −cosh β − cos φ

sinh β
ds = −k(φ)

δ

S
ds (7.125)

The latter expression is valid since by means of simple trigonometric manipulations
it can be shown that

cosh β − cos φ

sinh β
= sinh β

cosh β − cos s
(7.126)

Using the above relations (7.123) may be rewritten as

dT
du

= S

2πδ

∫ 2π

0
exp

(
− Su

δ

cosh β − cos φ

sinh β

)
dφ (7.127)

If we substitute in the argument of the exponential function the expression

y = Su

δ sinh β
(7.128)

we obtain

dT
dy

= sinh β

2π
exp (−y cosh β)

∫ 2π

0
exp (y cos φ) dφ (7.129)
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The Bessel functions Jn of the first kind can be expressed by the following
definite integral (Watson, 1980)

Jn(x) = (−i)n

2π

∫ π

−π

cos(nw) exp (i x cos w) dw, n ∈ N0 (7.130)

Substitution of φ = π − w yields

Jn(x) = (−i)n

2π

∫ 2π

0
cos(nπ − nφ) exp [i x cos(π − φ)] dφ (7.131)

which for n = 0 and y = −i x turns into

J0(iy) = 1

2π

∫ 2π

0
exp (y cos φ) dφ (7.132)

Hence (7.129) can be expressed as

dT
dy

= sinh β exp (−y cosh β) J0(iy) (7.133)

A final substitution of Y = y sinh β = Su/δ then leads to a formula for the average
transmission of the Elsasser model

T (Y ) =
∫ ∞

Y
exp(−Y ′ coth β)J0

(
iY ′

sinh β

)
dY ′ (7.134)

There are no analytical solutions to this integral. However, results can be found by
means of numerical integration.

From Figure 7.7 we conclude that there exists an average value k̄ for the
absorption coefficient kν . For the rapidly varying absorption coefficients of real
spectra it is usually impossible to give a reliable value of k̄. Formally we have

k̄ = 1

δ

∫ δ/2

−δ/2

S

δ

sinh β

cosh β − cos(2πν/δ)
dν (7.135)

Using the indefinite integral∫
dx

b + c cos ax
= 2

a
√

b2 − c2
tan−1

[
(b − c) tan(ax/2)√

b2 − c2

]
for b2 > c2

(7.136)

listed in integration tables, we find the expected result

k̄ = S

δ
(7.137)

This relation could have been guessed from Figure 7.7, since within the periodic
pattern of Lorentz lines the area under each line is S. Despite the fact that within
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the interval [−δ/2, δ/2] the central line does contribute to this area less than S, say
S − �S, the missing part is contributed by the infinite number of neighboring lines
whose wings give exactly rise to the contribution �S.

We will conclude this section by discussing two special cases of the Elsasser
band model and the resulting consequences.

(i) Large values of β Large β-values imply small distances between spectral lines since
β = 2παL/δ. In this case coth β approaches 1 while sinh β becomes a fairly large
number. For a fixed β-value the contribution of the product of functions under the
integral sign of (7.134) to the value of the integral decreases rapidly with increasing Y ′.
Saying it slightly differently, the contribution of the product of functions to the integral
is dominated by smaller values of Y ′ due to the rapidly decreasing exponential function
with increasing Y ′. Thus for large β and not too large values of Y ′, the fraction Y ′/ sinh β

is a small number also so that the argument of J0(iY ′/ sinh β) = I0(Y ′/ sinh β) is a small
number and may be approximated by I0 ≈ 1. For this special case the transmission
function T (Y ), originally given by (7.134), may be approximated by

T (Y ) =
∫ ∞

Y
exp(−Y ′)dY ′ = exp

(
− Su

δ

)
(7.138)

This is already a reasonably good approximation for β = 2 which is equivalent to δ =
παL. The fraction S/δ may be considered as an absorption coefficient of a continuous
spectrum. The spectral lines strongly overlap and no line structure is observed. The
special case of the weak line approximation, see (7.73), is included in (7.138) by setting
δ = �ν and Su/δ 	 1.

(ii) Small values of β For small β-values (δ 
 αL) the distance between line centers
considerably exceeds the half-width. This implies that the overlap effect is negligible
for weak lines. However, for strong lines considerable overlap may still take place in the
line wings. In this case cosh β ≈ 1 and sinh β ≈ β. Thus equation (7.120) simplifies
to

k(s) = Sβ

δ

1

1 − cos s
= Sβ

2δ

1

sin2(s/2)
(7.139)

Setting m = Suβ/2δ and sin2(s/2) = 1/y, the transmission function (7.122) can be
written as

T = 1

π

∫ π

0
exp [−k(s)u] ds = 1

π

∫ ∞

1

exp (−my)

y
√

y − 1
dy (7.140)

In order to write this expression in terms of a tabulated function, we differentiate (7.140)
with respect to m and obtain

dT
dm

= − 1

π

∫ ∞

1

exp (−my)√
y − 1

dy = exp(−m)

π

∫ ∞

0

exp(−mξ )√
ξ

dξ = exp(−m)√
πm

(7.141)
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from which follows

T = 1√
π

∫ m1

m

exp(−m ′)√
m ′ dm ′ = 2√

π

∫ √
m1

√
m

exp(−x2)dx (7.142)

The upper limit
√

m1 of the second integral can be found from the condition T = 1
when m = 0 (m is proportional to u) by observing the identity∫ ∞

0
exp(−x2)dx =

√
π

2
(7.143)

so that
√

m1 = ∞.
For the evaluation of T (u) we will now introduce the tabulated error function φ(x)

which is defined by

φ(x) = 2√
π

∫ x

0
exp(−s2)ds (7.144)

Replacing β in m we find

T (u) = 1 − φ(
√

m) = 1 − φ

(
1

δ

√
π SαLu

)
= 1 − φ

(√
π

2

Ws

δ

)
(7.145)

Here we have also used the equivalent width of the strong line approximation Ws =
As(u)�ν = 2

√
SαLu, see (7.75). As a matter of notation Elsasser also introduced the

generalized absorption coefficient l = 2π SαL/δ2 so that the transmission function can
be written in the form

T (u) = 1 − φ(
√

lu/2) (7.146)

Finally, let us consider the series expansion of the error function

φ(x) = 2√
π

(
x − x3

3
+ · · ·

)
(7.147)

Hence, for small values of the argument we obtain from (7.145)

T (u) = 1 − Ws

δ
(7.148)

which is the correct form of the transmission function for nonoverlapping lines. Addi-
tional information can be found in Goody and Yung (1989), Kondrat’yev (1965) and
elsewhere.

7.2.5 The Schnaidt model

There is another formulation of the absorption function A(u) which is due to
Schnaidt (1939). He assumed that the effect of line overlap was to terminate each
line at a distance δ/2 from the line center. Thus, instead of (7.51) the average
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absorption is now written as

A(u) = 1

�ν

∫ δ/2

−δ/2
[1 − exp(−kνu)]dν (7.149)

Since the integral is not taken over the interval [−∞, ∞] as in (7.51), the weak line
limit (7.75) does not follow for u → 0. It will be observed that the termination of
the integral at [−δ/2, δ/2] excludes the influence of any spectral lines which are
located outside this range.

7.3 The fitting of transmission functions

At the beginning of the previous section we have already stated that, owing to the
strongly selective absorption of atmospheric gases, the spectrum must be highly
resolved for a sufficiently accurate frequency integration of the radiative transfer
equation. In the most accurate line-by-line integration the RTE is evaluated along the
profile of each spectral line taking due account of the contribution of neighboring
and distant strong spectral lines. However, the line-by-line integration is far too
expensive for practical applications such as the computation of radiative heating
rates in climate or weather prediction models. The band models discussed in the
previous section provide one way to obtain less costly yet sufficiently reliable
solutions to the RTE.

Another possibility to reduce the computational effort of the line-by-line method
is to use certain parameterization techniques describing the mean transmission of
a particular gas in a given �ν interval. Two highly successful methods are the
exponential sum-fitting of transmissions and the correlated k-distribution method
which will be discussed in the following sections.

7.3.1 Exponential sum-fitting of transmissions

Let us approximate the transmission function T�ν(u) for a given interval �ν by an
exponential expression of the form

T�ν(u) ≈ E�ν(u) =
m∑

i=1

ai exp (−bi u) (7.150)

where, as usual, u is the gas absorber amount. The task ahead is to find by
some method reliable values of the coefficient pairs (ai , bi ), i = 1, . . . , m. The
coefficient ai is a dimensionless positive weight while bi must be interpreted as
the corresponding gray absorption coefficient. Thus the mean transmission over
the spectral interval �ν in approximated form can be considered as the sum of
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partial transmissions. Each subband i is described in terms of the dimensionless
‘width’ ai and the gray absorption coefficient bi . Clearly, if u = 0 then the trans-
mission equals 1. In summary, we search for an exponential expression of the
transmission function that meets the following constraints

m∑
i=1

ai = 1, ai > 0, bi ≥ 0 for all i (7.151)

Now we briefly describe the highly successful least-square technique formulated
by Wiscombe and Evans (1977) to find reliable values of (ai , bi ). For a uniform
grid of absorber mass increments �u we have

un = n�u , n = 0, . . . , N (7.152)

where a total number of N + 1 grid points is used.2 For the un the exponential fit
(7.150) then reads

E�ν(un) =
m∑

i=1

ai exp (−bi n�u) =
m∑

i=1

aiθ
n
i with θi = exp(−bi�u) (7.153)

The ‘exact’ values of the transmission function T�ν(un) for all pathlengths may
be found by employing a high resolution line-by-line integration technique or by
using a very accurate band model.

Using a set of equally spaced arguments, the ‘distance’ between T�ν(un) and
E�ν(un) is expressed by the least squares residual

R0 =
N∑

n=1

wn [T�ν(un) − E�ν(un)]2 (7.154)

where the wn ≥ 0 are the least square weights and E�ν(un) is the sum of powers as
expressed in (7.153) with 0 ≤ θi ≤ 1 when bi ≥ 0. The best fit is defined as the one
that minimizes R0 over all permissible values of ai , bi and m. Considering the θi in
(7.153) as known, the standard linear least squares normal equations for a1, . . . am

are given by

P(θi ) = ∂ R0

∂ai
= 0, i = 1, . . . , m (7.155)

where

P(θ) = 2
N∑

n=1

pnθ
n (7.156)

2 In general, an arbitrary nonuniform grid spacing can also be used. This makes it possible, for example, to obtain
very accurate fits for values of u for which the mean transmission is close to 1.
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is known as the residual polynomial. The coefficients

pn = wn [E�ν(un) − T�ν(un)] , n = 1, . . . , N (7.157)

are weighted point-by-point differences between the exponential fit and the ’exact’
data. The set ai satisfying (7.155) minimizes R0 for fixed θi . We call P(θ) the
residual polynomial whose central role in the approximation technique will be
recognized from the following theorem:

A best fit (ai > 0, bi ≥ 0) to the original data provided by T�ν(u) has been
achieved if and only if the residual polynomial satisfies the conditions

(a) P(θi ) = 0, i = 1, . . . , m
(7.158)

(b) P(θ) ≥ 0, 0 ≤ θ ≤ 1

It should be noted that condition (7.158a) is exactly equation (7.155). The method
iterates back and forth between solving condition (7.158a) for the coefficients ai

and improving toward condition (7.158b) by adding a new exponential factor θi .
For details of the method the reader should consult the original paper.

Let us demonstrate the exponential sum fitting method by means of a simple
example. Suppose that the functional form we wish to approximate is given by

T (u) = 0.6 exp (−0.1u) + 0.3 exp (−0.01u) + 0.1 exp (−0.001u) (7.159)

The exponential sum fit shall have the same analytical form with the unknown
coefficients (ai , bi ), i = 1, 2, 3, i.e.

E(u) = a1 exp (−b1u) + a2 exp (−b2u) + a3 exp (−b3u) (7.160)

The algorithm of Wiscombe and Evans (1977) will be used on a grid consisting of
20 grid points with

un = {0, 1, 2, 3, 4, 5, 10, 30, 60, 150, 300, 400, 500,

1000, 1500, 2000, 3000, 4000, 5000, 6000}
wn = 1

T (un)
, n = 0, . . . , 19

(7.161)

Note that the minimization problem involving the linear and the nonlinear part as
given above, can be solved by an iterative process. For details the reader is referred
to Wiscombe and Evans (1977). For this particularly simple example the result to
five significant digits is listed next

a1 = 0.59955, b1 = 0.098566

a2 = 0.29980, b2 = 0.0099970

a3 = 0.099916, b3 = 0.00099870

(7.162)
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By comparing these numbers with (7.159) it is seen that the exponential sum fitting
method is capable of retrieving the given nonlinear function with high accuracy for
as many as 20 data points. Further examples for the exponential fits of transmission
functions for atmospheric gases and intercomparisons with band model expressions
can be found in their article.

7.3.2 The k-distribution method

An alternative approach to obtain rather accurate expressions for the average
transmission in a particular wave number band is the so-called k-distribution
method. This method is considerably faster than the band model approach described
in the previous sections. It also allows for a self-consistent treatment of multiple
scattering in an absorbing atmosphere. The approach makes use of the fact that for a
homogeneous atmosphere, the transmission within a relatively wide wave number
interval is independent of the ordering of the values of the absorption coefficient kν .
This means that the fractional absorption caused by absorption coefficients belong-
ing to the interval (kν, kν + dkν) is associated with the number of instances for
which kν attains values for this particular kν interval. This leads us to the conclu-
sion that we must determine the probability density function f (k) for the k values in
the interval (kν, kν + dkν). More generally speaking, the absorption associated with
a particular value of k = kν is proportional to the expression f (k)dk. In essence,
this probability treatment means that we transform the transmission computation
from wave number space (ν-space) into the probability space of k values (k-space).

The k-distribution method is based on an idea of grouping frequency intervals
according to the line strengths as described by Ambartsumian (1936). This proce-
dure has been employed by Chou and Arking (1980) to compute infrared cooling
rates. The same authors carried out heating rate computations in the solar spectral
region, see Chou and Arking (1981). The interested reader is referred to the more
recent treatments by Lacis and Oinas (1991) and Fu and Liou (1992).

Similar to band models, the k-distribution approach is first developed for homo-
geneous absorber paths. For nonhomogeneous paths one uses the so-called corre-
lated k-distribution (CKD) approach first introduced by Lacis et al. (1979). The
correlated assumption means that the vertical inhomogeneity of the atmosphere is
accurately accounted for by assuming the existence of a simple correlation of the k-
distributions for different temperatures and pressures. Moreover, the CKD approach
allows us to fully treat the complicated Voigt line shape. The CKD method can be
used for thermal and solar radiative transfer likewise. As will be explained later,
the treatment of multiple scattering in a realistic atmosphere containing aerosol
particles and water droplets or ice crystals can also be straightforwardly done with
the CKD approach. A detailed discussion of this CKD method will be given below.
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f(k, p1)
f(k, p2)

kν(p1)
kν(p2)

ν k

Fig. 7.8 Schematic illustration of the k-distribution method. The left panel shows
the variation of the absorption coefficient in a spectral interval for two different
pressures p1 (full curve) and p2 = 3p1 (dashed curve). The corresponding prob-
ability density functions f (k) are shown in the right panel.

Basic illustration of the k-distribution method

In the k-distribution method it is not important to specify at which particular position
within the interval �ν a certain value of kν occurs. As soon as we know the proba-
bility f (k)dk of the occurrence of absorption coefficients belonging to (k, k + dk),
the average transmission can be obtained by an integration over k

T�ν(u) = 1

�ν

∫
�ν

exp (−kνu) dν =
∫ ∞

0
f (k) exp (−ku) dk (7.163)

From this definition it can be inferred that the average transmission is the Laplace
transform of the probability density function f (k). Vice versa, f (k) can be obtained
from the inverse Laplace transformation of the average transmission function, i.e.

T�ν(u) = L [ f (k)] , f (k) = L−1 [T�ν(u)] (7.164)

From these equations it may be concluded that only in very few cases it is possible
to obtain f (k).

Figure 7.8 depicts schematically the essence of the k-distribution approach. The
left panel of the figure shows the absorption line spectrum consisting of seven
Lorentz lines with different half-widths and line intensities. The full curve is plotted
for an arbitrary pressure p1 whereas the dashed curve is plotted for pressure p2 =
3p1. Owing to the pressure dependence of αL, see (7.27), the line broadening is
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kν

ki,min

ki,max

∆νi ν

Fig. 7.9 Definition of the subinterval �νi whose left boundary is given at the
location where kν attains are local minimum. Likewise the right boundary of �νi
is given by the next local maximum of kν .

much stronger for p2 than for p1 so that the high peaks occurring in the kν(p1)-
curve are strongly damped in the kν(p2)-curve. As a consequence of this, f (k, p2)
covers a smaller range of k-values expressing the missing small and large absorption
coefficients as compared to the f (k, p1)-curve.

We conclude the following: with the k-distribution approach one essentially
replaces the integration of kν in wave number space by a similar integration of the
product of the spectral transmission with f (k) in k-space. Figure 7.8 also suggests
that in k-space the integrand may have a much smoother shape which eases the
effort for numerical quadrature.

Algorithm for computing the k-distribution

An algorithm for computing the probability density function f (k) consists of the
following steps.

(1) Subdivide the entire spectral range �ν into suitably chosen subintervals �νi . Figure
7.9 depicts how the left and right boundaries have to be chosen so that the inverse
function ν = ν(k) of the absorption coefficient kν is uniquely defined. Note that within
�νi there exist no other local minima and maxima of the absorption coefficient, that is
ki,min ≤ kν < ki,max.

(2) Next we define the transformation which maps the differential dν into k-space

dν

�ν
→ dk

�ν

∣∣∣∣ dν

dkν

∣∣∣∣
�νi

, i = 1, 2, . . . , N (7.165)

Here |dν/dkν |�νi means that this derivative has to be provided for the subinterval �νi .
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(3) If � = �(kν, u) is an arbitrary function of the spectral absorption coefficient,
analogously to (7.163) we may define

�̄(u) = 1

�ν

∫
�ν

�(kν, u)dν =
∫ ∞

0
f (k)�(k, u)dk (7.166)

where f (k) is given by

f (k) =
N∑

i=1

1

�ν

∣∣∣∣ dν

dkν

∣∣∣∣
�νi

[U (k − ki,min) − U (k − ki,max)] (7.167)

and U is the Heaviside step function as defined by (5.50). Note that the difference of the
Heaviside step functions in (7.167) picks out the required range of k values for which
the first derivative of the inverse relationship ν = ν(k) has to be applied.

Equation (7.167) can be applied in two different ways.

(1) Use the complete listing of the spectral information on the absorption coefficient for
a particular gas, e.g. use the Air Force Geophysics Laboratory (AFGL) CD-ROM
database HITRAN for the spectral line compilation. This database contains the required
information on a line-by-line basis for all important atmospheric absorber gases. Now
use (7.167) to count the occurrence of all spectral lines within the subinterval �νi

which fall into a particular range of absorption coefficients (k j , k j + �k j ). Try differ-
ent choices for the binning width �k j in order to cover a large range of possible k j

values. However, a too coarse stepping �k j might result in the unwanted effect that the
frequency distribution exhibits holes at certain points. Some experimentation might be
necessary to yield the best results. After repeating this procedure for all subintervals
in the spectral band under consideration, the probability density function f (k) can be
derived.

(2) For certain analytic band models, explicit expressions for kν as a function of wave
number exist. Under certain circumstances, the derivative |dν/dkν |−1 can be calculated
explicitly.

In the following we will give an illustrative example, how f (k) can be calculated
for the regular Elsasser band model which has already been discussed in the previous
section. Owing to the symmetry of the absorption coefficient, we can confine the
discussion to the spectral interval [0, δ/2]. For the probability density function we
then obtain

f (k) = 2

δ

∣∣∣∣ dν

dkν

∣∣∣∣ for 0 ≤ ν ≤ δ/2 (7.168)

According to (7.120) the absorption coefficient for the regular Elsasser band can
be expressed in a closed analytical form. The minimum and the maximum values
of kν are given by (7.121). Clearly, kν is strictly monotone increasing in the given
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interval so that

kmin ≤ kν ≤ kmax for 0 ≤ ν ≤ δ/2 (7.169)

Differentiation of (7.120) with respect to ν yields

dkν

dν
= −2π

S

k2
ν sin s

sinh β
=⇒

∣∣∣∣ dν

dkν

∣∣∣∣ = S

2π

sinh β

k2
ν sin s

(7.170)

For the product of k and f (k) we thus obtain

k f (k) = S

πδ

sinh β

k sin s
(7.171)

An expression for sin s can be derived from (7.120)

sin2 s = 1 − cos2 s = sinh2 β

[
2k̄

k
coth β − 1 −

(
k̄

k

)2
]

(7.172)

where k̄ = S/δ, see (7.137). Using the above expressions, after a few simple
steps we find the k-distribution for the regular Elsasser model in analytic form
as

k f (k) = 1

π

[
2

k

k̄
coth β − 1 −

(
k

k̄

)2
]−1/2

(7.173)

Finally, from (7.121) we may see that k/k̄ is bounded by

sinh β

cosh β + 1
≤ k

k̄
≤ sinh β

cosh β − 1
(7.174)

The cumulative k-distribution

We have seen that the k-distribution approach replaces the wave number integra-
tion by an integration over k-space. For convenience, let us set the minimum and
maximum value for the absorption coefficient to kmin → 0 and kmax → ∞. Then
we obtain for the mean transmission in the band �ν

T�ν(u) =
∫

�ν

exp (−kνu)
dν

�ν
=
∫ ∞

0
f (k) exp (−ku) dk (7.175)

Note that f (k) is a normalized probability density function, i.e.∫ ∞

0
f (k)dk = 1 (7.176)
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Having found the k-distribution, we may further define the related cumulative
probability density function g(k) via

g(k) =
∫ k

0
f (k ′)dk ′ (7.177)

In particular we have

g(0) = 0, g(k → ∞) = 1, dg(k) = f (k)dk (7.178)

By definition g(k) is a monotone increasing function. Moreover, while for many
gases the spectral absorption coefficient is a highly variable function in ν-space,
its probability density f (k) exhibits much less variation. The reader will not be
surprised when going from f (k) to g(k) that the variability decreases even more
thus leading to a rather smooth cumulative probability density g(k). Having found
g(k), the mean transmission can be obtained from the basic equation (7.163) so that

T�ν(u) =
∫

�ν

exp (−kνu)
dν

�ν
=
∫ 1

0
exp [−k(g)u] dg (7.179)

It should be noted that k = k(g) is the inverse function of g = g(k).
Due to the fact that the cumulative probability density function is rather smooth,

the integration over g in (7.179) can be computed very accurately. Often one
employs Gaussian quadrature which means that certain g j and w j are used for
the abscissa and weights of the quadrature rule. This yields

T�ν(u) =
∫ 1

0
exp [−k(g)u] dg ≈

J∑
j=1

w j exp[−k(g j )u] (7.180)

where J is the total number of quadrature abscissa. Depending on the required accu-
racy of the transmission values one may use, for example, four to fifteen quadrature
nodes.

For demonstration purposes we will now discuss a realistic situation by consid-
ering a spectral interval within the vibration–rotation water vapor band. First we
calculate the absorption spectrum, then we find the frequency distribution f (k) and
finally the cumulative distribution g(k). Figure 7.10 depicts the spectral absorption
coefficient as calculated by means of line-by-line computations using the spec-
troscopic data for water vapor from the HITRAN database (Rothman et al. 1987,
1992). These computations employ the Voigt profile for the shape of the spectral
lines. In the HITRAN database one can find, among other information, the spectral
position of each spectral line, the line intensity and the half-width for standard
temperature and pressure. Furthermore, one has to describe a cutoff limit beyond
which the contributions of neighboring spectral lines can be neglected. Putting the
information together line-by-line, one arrives at the graph of Figure 7.10.
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Fig. 7.10 Line-by-line calculations of the absorption coefficient for the spectral
range extending from 1510–1520 cm−1, p = 10 hPa, T = 240 K. This interval is
located within the vibration–rotation water vapor band.

The units (atm-cm)−1 of the ordinate are obtained by multiplying the absorp-
tion cross-section for given coordinates (p, T ) by Loschmidt’s number NL =
2.6867 × 1019 cm−3. This is the number of molecules per cm3 of the absorb-
ing gas under standard temperature and pressure conditions. The spectral lines
have been computed on a wave number grid with an extremely fine resolution of
10−4 cm−1. The influence of neighboring lines from outside the selected interval
(1510–1520) cm−1 has been accounted for by setting the cutoff wave number to
25 cm−1.

The frequency distribution f (k) corresponding to Figure 7.10 was computed by
binning the k-values into a discrete k-grid employing a total of 100 logarithmically
equidistant k-values per decade of k, see Figure 7.11. A sufficiently fine resolution
(10−4 cm−1 in our case) is mandatory in order to obtain a satisfactory f (k) dis-
tribution. A coarser k-binning grid yields the physically unrealistic occurrence of
gaps in the discrete frequency distribution.

Finally, the results of Figure 7.11 were used to compute the cumulative distribu-
tion g(k), as stated in (7.178), see Figure 7.12. While the distribution f (k) exhibits
some structure, the cumulative distribution g(k) is very smooth. The solid line refers
to p = 10 hPa and T = 240 K. For comparison purposes an additional calculation
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Fig. 7.11 Frequency distribution f (k) of the absorption spectrum shown in
Figure 7.10.
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Fig. 7.12 Cumulative frequency distribution g(k) for two combinations of (p, T ).
Solid line: p = 10 hPa, T = 240 K, dashed line: p = 1000 hPa, T = 296 K.
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was carried out for p = 1000 hPa, T = 296 K which is displayed by the dashed
curve.

7.3.3 The correlated k-distribution method

So far our derivations for the k-distribution method are valid only for homogeneous
atmospheres. The extension to a realistic, inhomogeneous atmosphere requires
some careful considerations. Here we follow the discussion of Fu and Liou (1992)
and introduce the concept of correlated k-distributions. First, we have to recall the
dependence of kν on temperature and pressure

kν =
∑

i

Si (T ) fi (ν, p, T ) (7.181)

where the summation indicates that several spectral lines may contribute to the
value of the absorption coefficient at a particular wave number ν. The Si and fi are
the line intensities and the line-shape factors of the lines, respectively.

If we want to apply the k-distribution method to an inhomogeneous atmosphere,
we will consider an atmospheric layer defined by the heights z1 and z2 > z1. The
mean transmission for this layer can be obtained from

T�ν(u) = 1

�ν

∫
�ν

exp

[
−
∫ z2

z1

kν(p, T )ρabsdz

]
dν (7.182)

where ρabs is the density of the absorbing gas.
Now we will discuss the mathematical and physical requirements under which

(7.182) can be replaced by a form similar to (7.179), i.e.

T�ν(u) =
∫ 1

0
exp

[
−
∫ z2

z1

k(g, p, T )ρabsdz

]
dg (7.183)

If the mean transmission is computed according to (7.183), then the k-distribution
approach is referred to as the correlated k-distribution (CKD) method.

Since pressure and temperature vary over the layer (z1, z2), we should expect
that for different levels in the atmosphere there are different g = g(k) relationships
for the same wave number ν. In fact, this general behavior is not what the CKD
method assumes. Here we make the assumption that despite varying pressure and
temperature there is only one g value for a particular ν at all levels of the inhomoge-
neous atmosphere. For this to be fulfilled, we first must assume that the absorption
coefficients at two wave numbers ν1 and ν2 are the same for any p and T , if they
are the same at the reference state (pr, Tr)

k(ν1, pr, Tr) = k(ν2, pr, Tr) =⇒ k(ν1, p, T ) = k(ν2, p, T ) (7.184)

We will call this the first requirement for the CKD method.
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If (7.184) is assumed to be valid for an arbitrary wave number ν we may conclude
that the spectral absorption coefficient for arbitrary ν, p and T may be cast into the
functional form

k(ν, p, T ) = χ [kr(ν), p, T ] with kr (ν) = k(ν, pr, Tr) (7.185)

where the function χ consists of a ν-dependent part which can be separated from
the (p, T )-dependence. Since in (7.185) there appears only a single reference func-
tion kr (ν), we may compute the corresponding probability density function fr(k).
Introducing (7.185) into (7.182) and transforming to the k-space, we obtain

T�ν(u) =
∫ ∞

0
exp

[
−
∫ z2

z1

χ (kr, p, T )ρabsdz

]
f (kr)dkr (7.186)

Assuming that for the reference condition gr(kr) is a monotonic function of kr, we
may also compute the relationship kr = kr(gr). Thus, in gr-space the function χ

may be identified with another function β which depends on gr

χ [kr(gr), p, T ] = β (gr, p, T ) (7.187)

Using the last definition and (7.178), the mean transmission for the layer (z1, z2)
can be computed from

T�ν(u) =
∫ 1

0
exp

[
−
∫ z2

z1

β(gr, p, T )ρabsdz

]
dgr (7.188)

As the second requirement for the CKD approach we postulate that

k(νi , pr, Tr) > k(ν j , pr, Tr) =⇒ k(νi , p, T ) > k(ν j , p, T ) (7.189)

This assumption has an important consequence. The ordering of the spectral absorp-
tion coefficients, as required for the computation of the cumulative probability dis-
tribution, is independent of the actual values of pressure and temperature. In other
words, there exists only one g for a given wave number ν at different atmospheric
levels, that is

gr [kr(ν)] = g [k(ν, p, T ), p, T ] (7.190)

This last relation can be used to find the mean transmission for layer (z1, z2) by
means of a single g function

T�ν(u) =
∫ 1

0
exp

[
−
∫ z2

z1

β(g, p, T )ρabsdz

]
dg (7.191)
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By using equations (7.185), (7.187) and (7.190) we may conclude that the two
requirements of the CKD method lead to the relationship

k = β [g(k)] (7.192)

If k is a monotone function in g-space, then β(g) = k(g) as follows from differen-
tiating (7.192) with respect to k. This last identity makes (7.191) to be equivalent
to (7.183).

The first requirement of the CKD method provides the basis for using the k-
distribution method at the reference state (pr, Tr). The second requirement relates
the cumulative probability function of the reference state to any other level, i.e. for
other values of p, T .

7.3.4 The k-distribution method for special situations

Two overlapping gases

For certain gases it is necessary to treat overlap effects in radiative transfer cal-
culations. Due to the fact that computational speed is a very important issue in
radiative transfer modeling, in particular for vertically inhomogeneous scattering
and absorbing atmospheres, a fast method must be provided allowing the treatment
of overlapping effects in an efficient manner.

The mean transmission of two different gases 1 and 2 in a wave number interval
of width �ν is defined as

T�ν(1, 2) = 1

�ν

∫
�ν

Tν(1)Tν(2)dν (7.193)

To simplify this expression we assume that the spectral transmissions of the gases
are uncorrelated. This implies that the mean of the product of the individual trans-
missions equals the product of the corresponding mean transmissions, i.e.

T�ν(1, 2) = T�ν(1)T�ν(2) (7.194)

Expressing the individual transmissions for the layer (z1, z2) in g-space as

T�ν(i) =
∫ 1

0
exp

(
−
∫ z2

z1

kiρabs,i dz

)
dgi , i = 1, 2 (7.195)

the mean transmission of the two overlapping gases can be formulated as

T�ν(1, 2) =
∫ 1

0

∫ 1

0
exp

(
−
∫ z2

z1

[k1ρabs,1 + k2ρabs,2]dz

)
dg1dg2

≈
M∑

m=1

N∑
n=1

exp(−τmn)�g1m�g2n

(7.196)
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where ρabs,1, ρabs,2 and k1, k2 are the density and the absorption coefficient of gas
1 and gas 2, respectively. The optical depth of the two gases in the layer is defined
by

τmn =
∫ z2

z1

[k1ρabs,1 + k2ρabs,2]dz (7.197)

In summary we conclude, that for obtaining the absorption effect of two gases
which overlap in a particular wave number interval, we must carry out M × N
quasi-spectral radiative transfer calculations for each vertical atmospheric column.
To give an example of the amount of computations involved, let us consider the
overlap of CO2 and H2O in the spectral region 540–800 cm−1. Fu and Liou (1992)
recommend in their CKD method a subdivision of this region into the two subregions
540–670 cm−1 and 670–800 cm−1. In the first subregion they employ for H2O and
CO2 an expansion with 5 and 10 terms, respectively. In the second subinterval the
corresponding numbers are 4 (H2O) and 8 (CO2). Hence a total of 5 × 10 + 4 × 8 =
82 quasi-monochromatic radiative transfer computations has to be performed. This
illustrates the increased computational effort involved when treating gas overlap
effects in atmospheric radiative transfer. Additional simplifications can be used to
reduce computational efforts. For more details the reader is invited to consult the
original papers.

Gray absorption coefficient

We consider the wave number range �ν, in which the absorption coefficient takes
on the constant value kν = k̄. According to (7.163) the k-distribution is then given
by

f (k) = δ(k − k̄) (7.198)

where δ(k − k̄) is the Dirac δ-function.

Regular band of nonoverlapping rectangular lines

The next example is a regular band of an infinite number of nonoverlapping rectan-
gular lines. Let b represent the half-width of the rectangular line and define α = b/δ.
The absorption coefficient is then given by

kν =
{

k1 for α ≤ ν/δ ≤ 1/2
k2 for 0 ≤ ν/δ ≤ α

(7.199)

For this spectral arrangement we read from Figure 7.13

f (k) = (1 − 2α)δ(k − k1) + 2αδ(k − k2) (7.200)
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Fig. 7.13 A regular band of nonoverlapping rectangular lines with x = ν/δ.
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Fig. 7.14 A regular band of nonoverlapping triangular lines with x = ν/δ.

For the mean absorption coefficient we obtain by inspection of Figure 7.13 the
relation

k̄ = k1 + 2α(k2 − k1) (7.201)

Alternatively, we can calculate the mean absorption coefficient from the k-
distribution

k̄ =
∫ ∞

0
k f (k)dk =

∫ ∞

0
k(1 − 2α)δ(k − k1)dk +

∫ ∞

0
2αkδ(k − k2)dk

= (1 − 2α)k1 + 2αk2 = k1 + 2α(k2 − k1) (7.202)

Regular band of triangular lines

In this case the absorption coefficient is given by, see Figure 7.14

kν =
{

k2 − ν

α
(k2 − k1) for 0 ≤ ν/δ ≤ α

k1 for α ≤ ν/δ ≤ 1/2
(7.203)
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Fig. 7.15 A regular band of nonoverlapping Lorentz lines with x = ν/δ.

A few simple algebraic steps lead to

f (k) = (1 − 2α)δ(k − k1) +



2α

k2 − k1
for k1 ≤ k ≤ k2

0 for k < k1 or k > k2

(7.204)

For the average absorption coefficient we obtain

k̄ =
∫ ∞

0
k f (k)dk = k1(1 − 2α) + 2α

k2 − k1

k2

2

∣∣∣k2

k1

= k1 + α(k2 − k1) (7.205)

This result also follows directly from inspection of Figure 7.14.

Regular band of nonoverlapping Lorentz lines

As a final example we discuss a situation which is similar to the regular Elsasser
model. However, there is one exception, namely that the individual identical Lorentz
lines are cut off at the distance δ/2 from each center line, see Figure 7.15.

In this case we have

kν = SαL

π
(
ν2 + α2

L

) for 0 ≤ ν ≤ δ/2 (7.206)

With this information we employ (7.168) to find f (k) by differentiation

f (k) = 1

δ

(∣∣∣∣dν

dk

∣∣∣∣
�ν1

+
∣∣∣∣dν

dk

∣∣∣∣
�ν2

)
= 2

δ

∣∣∣∣dν

dk

∣∣∣∣
�ν2

(7.207)

where �ν1 = (−δ/2, 0) and �ν2 = (0, δ/2). The last step follows from
symmetry. The expression for the spectral absorption coefficient can be directly
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solved for ν yielding

ν =
√

SαL

πk
− α2

L (7.208)

Computing the first derivative of ν with respect to k, we obtain

dν

dk
= − 1

2
√

SαL/(πk) − α2
L

SαL

πk2
(7.209)

Substituting the maximum value of the absorption coefficient k2 = S/παL gives∣∣∣∣dν

dk

∣∣∣∣ = 1

2

k2αL

k3/2
√

k2 − k
(7.210)

Thus we find the k-distribution of the cut-off Lorentz band in the form

f (k) = k2αL

δk3/2
√

k2 − k
(7.211)

From k̄ = ∫
k f (k)dk we obtain after some tedious but straightforward steps

k̄ = 2k2αL

δ
tan−1

(
δ

2αL

)
(7.212)

Details in the derivation will be left up to the exercises.

Single scattering properties for inhomogeneous atmospheres

While gaseous atmospheric absorption is described by the spectral absorption coef-
ficient, extinction by air molecules, aerosol particles and hydrometeors requires
additional information on the extinction coefficient, the single scattering albedo
and the scattering phase function. Below we will describe how these radiative
properties are combined to yield the scattering and absorption properties of an indi-
vidual homogeneous atmospheric layer embedded in an otherwise inhomogeneous
atmosphere.

We will assume that the inhomogeneous atmosphere consists of a set of distinct
homogeneous layers. For a certain wave number band �ν the total optical depth of
a layer �z consists of Rayleigh scattering �τR, Mie scattering due to atmospheric
aerosol particles and hydrometeors �τM, and the contribution �τG due to gas
absorption

�τ = �τR + �τM + �τG (7.213)

Absorption by a gas with density ρabs may be described by means of the CKD
approach yielding

�τG(g) = k(g)ρabs�z (7.214)
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where g is the cumulative probability density for the absorbing gas. For simplicity,
we have omitted in τG(g) the pressure and temperature dependence. The contribu-
tion to the total optical depth in layer �z resulting from Mie scattering is3

�τM = �τsca,M + �τabs,M (7.215)

The single scattering albedo in the homogeneous layer is defined by

ω0(g) = �τR + �τsca,M

�τR + �τM + �τG(g)
(7.216)

Let the Legendre expansion coefficients for the Rayleigh and Mie scattering be
given by pl,R and pl,M. The Legendre expansion coefficients for the phase function
for the combined action of air molecules and particle scattering is defined by a
linear weighting of the expansion coefficients of the individual components. The
weighting factor is the scattering optical depth of the respective material in layer
�z, i.e.

pl = �τsca,M pl,M + �τR pl,R

�τsca,M + �τR
(7.217)

For many cases the Mie phase function can be approximated by the Henyey–
Greenstein phase function, which for particle scattering depends on the asymmetry
factor only, see (6.41). Thus we obtain for the phase function the two relations

P(cos �) =
M∑

l=0

pl Pl(cos �) =




3

4
(1 + cos2 �) Rayleigh scattering

M∑
l=0

(2l + 1)gl Pl(cos �) Henyey–Greenstein

(7.218)
In these examples we have seen that the k-distribution method can be applied to

various simple models. It is difficult to conceive any situation where this method
would fail.

7.4 Transmission in inhomogeneous atmospheres

In the previous sections we have derived various transmission functions for model
spectra of absorbing atmospheres. These transmission functions applying to homo-
geneous gaseous layers can be extended to simulate the transmission through inho-
mogeneous atmospheres. Ordinarily this involves coupled integrations over the
atmospheric path and the wave number. In order to avoid such extremely laborious
integrations to handle the transfer problem, it is customary to adopt approximate

3 A detailed description of the Mie theory will be given in a later chapter.
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techniques by means of scaling procedures which attempt to decouple these two
types of integrations. In earlier years radiation charts and the emissivity method
were used to study the radiative properties of the atmosphere. These procedures
already provided reasonably accurate profiles of the vertical flux density and the
radiative cooling rate for various types of air masses as was verified by compari-
son with measurements. These methods required that the integration over the wave
number was carried out once and for all. Then followed the integration over the
inhomogeneous path of the atmosphere either using a graphical or a numerical pro-
cedure. This was done with the help of a one-parameter scaling technique which
will be discussed below. In order to improve the accuracy of the one-parameter pro-
cedure, the Curtis–Godson approximation was introduced which is a two-parameter
scaling technique. Higher order scaling techniques are possible but usually they are
quite difficult to apply. In the following we will describe one- and two-parameter
models.

7.4.1 One-parameter scaling

The most simple scaling procedure is the so-called one-parameter scaling. Fortu-
nately, this method is sufficiently accurate to handle various transfer problems. The
transmission function for a non-homogeneous vertical atmospheric path may be
expressed by

T (u) = 1

�ν

∫
�ν

exp

(
−
∫

kν,L(p, T )du

)
dν

= 1

�ν

∫
�ν

exp

(
−
∫ ∑

i

Si

π

αL,i

(ν − ν0,i )2 + α2
L,i

du

)
dν

(7.219)

which applies to a small spectral interval containing numerous spectral lines. To
be specific we will assume that these lines have Lorentzian profiles, but for brevity
henceforth we omit the index L.

For simplicity let us first consider the technique as it applies to a single spectral
line. The formal extension to include neighboring lines is simple. We have shown in
(7.27) that the Lorentzian half-width is proportional to the linear pressure reduction
(p/p0) while the temperature dependency varies according to

√
T0/T . There is

sufficient empirical and some theoretical evidence that the square root law to handle
the temperature dependency is not always sufficient. Hence we will express the
temperature dependency by a more general law as stated by

α = α0
p

p0

(
T0

T

)n

(7.220)
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leaving the exponent n unspecified. Since (p0, T0) refer to the reference pressure and
temperature, the ratio of the absorption coefficients kν(p, T )/kν(p0, T0) is given
by

kν(p, T )

kν(p0, T0)
=

S(T )

π

α

(ν − ν0)2 + α2

S(T0)

π

α0

(ν − ν0)2 + α2
0

≈ S(T )

S(T0)

p

p0

(
T0

T

)n

≈ p

p0

(
T0

T

)n

(7.221)

Here, we have assumed that the strong-line approximation is sufficiently accurate
for the one-parameter scaling procedure. Thus, by ignoring the square of the half-
width in the denominator of the spectral line, the wave number-dependent parts of
the absorption coefficient can be factored out and cancel. Furthermore, we have
assumed that the ratio S(T )/S(T0) is approximately equal to 1. Hence we may
write ∫

kν(p, T )du = kν(p0, T0)
∫

p

p0

(
T0

T

)n

du = kν(p0, T0)ũ (7.222)

where the quantity

ũ =
∫

p

p0

(
T0

T

)n

du (7.223)

is known as the scaling parameter or the scaling path length. In case that there
are many spectral lines in the interval, the approximation used in (7.221) must be
replaced by

kν(p, T )

kν(p0, T0)
≈

∑
i

Si (T )α0,i

(ν − ν0,i )2

p

p0

(
T0

T

)n

∑
i

Si (T0)α0,i

(ν − ν0,i )2

≈ p

p0

(
T0

T

)n

(7.224)

However, the same scaling parameter ũ is used whether we are scaling the absorption
path of a single line or a group of lines.

As stated above, most early radiative transfer calculations were carried out with
the help of radiation charts or the emissivity method. These methods were designed
to employ the scaling parameter ũ which can also be successfully employed in
connection with the rotational water vapor band, see Chou and Arking (1980). In
the older literature the parameter ũ was called the reduced absorber mass.

The extension to an inclined path, assuming horizontally homogeneous sublay-
ers, is quite simple as we have seen in our previous work. All we need to do is to
introduce the factor 1/µ in the exponent of (7.219).
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7.4.2 The two-parameter scaling technique of Curtis and Godson

To simplify the transmission calculations, the approximation replaces an inhomoge-
neous by a more or less equivalent homogeneous layer. This will be accomplished by
adjusting the parameters appearing in the absorption coefficient which is assumed
to have the Lorentzian shape. The mean transmission in correct form is given by
(7.219). For simplicity let us again begin with a single spectral line by omitting the
summation sign. In the limit of the strong line approximation Ts(u) the half-width
in the denominator may be ignored. Instead of neglecting α2 altogether, we replace
it by a suitable mean value ã2 which is independent of the atmospheric path

Ts(u) = 1

�ν

∫
�ν

exp

(
−
∫

S(T )

π

α(p, T )

(ν − ν0)2 + α̃2
du

)
dν (7.225)

By expanding the exponent and discontinuing the expansion after the second term,
we obtain the weak line limit Tw(u) of the transmittance. Since the interval �ν is
assumed to be much larger than the half-width of the line, we may extend the wave
number integration to infinity yielding

Tw(u)=1 − 1

�ν

∫
S(T )α(p, T )

πα̃
du
∫ ∞

−∞

1

x2 + 1
dx =1 − 1

�ν

∫
S(T )α(p, T )

α̃
du

(7.226)

Here we have used the simple transformation x = (ν − ν0)/ã. In order to evaluate
ã, we also expand the exponent of (7.219) and obtain the approximation

Tw = 1 − 1

�ν

∫
S(T )du (7.227)

which, of course, is identical with the result obtained from the Ladenburg–Reiche
formula (7.73). Forcing agreement between (7.226) and (7.227) we obtain the
scaling half-width ã

α̃ =
∫

S(T )α(p, T )du∫
S(T )du

(7.228)

which is the first scaling parameter of the Curtis–Godson approximation. By ignor-
ing the small temperature dependence of the half-width, that is

α

α̃
≈ p

p̃
(7.229)

we obtain the so-called pressure scaling factor p̃

p̃ =
∫

S(T )pdu∫
S(T )du

(7.230)
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To simulate the transmission through an inhomogeneous atmosphere by an equiv-
alent homogeneous layer, using Goody’s (1964b) notation, we employ the adjusted
parameters S̃, ã, ũ. Thus, instead of (7.219) (omitting the summation sign), we
write

T = 1

�ν

∫
�ν

exp

(
− S̃α̃ũ

π [(ν − ν0)2 + α̃2]

)
dν (7.231)

We now wish to obtain explicit expressions for S̃, ã and ũ. Comparing (7.231) with
(7.225) and utilizing (7.228) gives

S̃α̃ũ =
∫

Sαdu, S̃ũ =
∫

Sdu, ũ =
∫

Sdu

S̃
(7.232)

For a moment one is tempted to conclude that we have a three-parameter approxi-
mation. However, only the parameters ã and ũ are needed. The pressure variation of
the inhomogeneous atmosphere is included in (7.228) or (7.230) while the temper-
ature variation is modeled by (7.232). The mean line intensity S̃ can be evaluated
at any specified temperature since the effect of this temperature cancels. Thus the
two scaling parameters are ã (or p̃) and ũ.

For a system of many lines the principle of the Curtis–Godson approximation
is the same as for a single line. We repeat equation (7.219) but we introduce the
line-shape factor of the Lorentzian line according to (7.18)

T (u) = 1

�ν

∫
�ν

exp

(
−
∫ ∑

i

Si f (ν − ν0,i , αi )du

)
dν (7.233)

In case of the weak line approximation this equation assumes the form

Tw(u) = 1 − 1

�ν

∫ ∑
i

Si

∫
�ν

f (ν − ν0,i , αi )dν du = 1 − 1

�ν

∫ ∑
i

Si dν

(7.234)

where we have assumed that the normalization condition (7.17) of the line-shape
factor is valid in the frequency interval �ν. In order to introduce the strong line
approximation, as before, in the denominator of (7.219) we replace the half-width
by the constant ãi yielding

Ts(u) = 1

�ν

∫
�ν

exp

(
−
∫ ∑

i

Si

π

αi

(ν − ν0,i )2 + α̃2
i

du

)
dν (7.235)
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To obtain the proper value for ã that fits the strong line and the weak line approxi-
mation, we expand the exponent and find

Tw(u) = 1 − 1

�ν

∫ ∑
i

Siαi

α̃i

∫
�ν

f (ν − ν0,i , α̃i )dν du = 1 − 1

�ν

∫ ∑
i

Siαi

α̃i
du

(7.236)

We proceed analogously to the single line case by comparing (7.234) and (7.236).
This gives ∫ ∑

i

Si du =
∫ ∑

i

Si p

p̃
du (7.237)

Since the pressure dependence of each line is identical, we obtain the first scaling
parameter

p̃ =
∫

σ pdu∫
σdu

(7.238)

where σ = 1/N
∑

i Si is the mean line intensity. In case of a single line this equa-
tion, as it should, reduces to (7.230).

Now we need to find the second scaling parameter. Let us reconsider equation
(7.219) whose exact analogy to a homogeneous path can be written as

T (u) = 1

�ν

∫
�ν

exp

(
−
∑

i

S̃i α̃i ũ

π
[
(ν − ν0,i )2 + α̃2

i

]
)

dν (7.239)

Comparison of (7.235) with (7.239) gives the second scaling parameter

ũ =

∫ ∑
i

Siαi

(ν − ν0,i )2 + α̃2
i

du

∑
i

S̃i α̃i

(ν − ν0,i )2 + α̃2
i

(7.240)

Recalling (7.228) and applying it to line i , after introducing the line-shape factors,
cf. (7.18), results in

ũ =
∑

i f (ν − ν0,i , α̃i )
∫

Si du∑
i f (ν − ν0,i , α̃i )S̃i

(7.241)

which is the scaled absorber mass. The line intensity S̃i , as explained before, can
be evaluated at any specified temperature.
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The quality of the Curtis–Godson approximation for spectral intervals contain-
ing many spectral lines has been tested by Walshaw and Rodgers (1963). They
performed extensive cooling rate calculations using a line-by-line integration tech-
nique. For the water vapor rotational band and the 15 µm CO2 band they found
errors less than a few percent. Various authors have investigated the accuracy of
the Curtis–Godson approximation. For example, Zdunkowski and Raymond (1970)
investigated the transmission in small spectral intervals in the 1.9 and 6.3 µm water
vapor bands. They found excellent agreement between the exact calculations and
the Curtis–Godson approximation. The Curtis–Godson approximation may also be
applied to other line shapes than the Lorentz line, but we omit any discussion.

While in many situations the Curtis–Godson approximation provides satisfactory
results for atmospheric water vapor and carbon dioxide distributions, the method is
less satisfactory for the 9.6 µm ozone band. Goody (1964b) employed van de Hulst’s
(1945) rather general technique to handle the transmission calculations pertaining
to inhomogeneous atmospheres. This technique is based on the series expansion of
the Fourier cosine transform permitting the formulation of three scaling parame-
ters. The extension of the Curtis–Godson scaling method resulted in a significant
improvement of the transmission calculations. It is also possible to use additional
scaling parameters. This, however, greatly complicates the calculation procedure.
For more details the reader is referred to Goody’s original work.

7.5 Results

In this section we will briefly consider some typical vertical profiles of solar and
infrared flux densities as well as radiative temperature changes which have been
obtained by means of the radiation transfer model DISORT (Stamnes et al., 1988)
with a total of four discrete streams. To handle the spectrally dependent absorption
by atmospheric gases we have used the correlated k-distribution parameterization
of Fu and Liou (1992). Presently this appears to be the most efficient yet sufficiently
accurate way to handle the spectral integration. The calculations specify the ground
albedo and the solar zenith angle as Ag = 0.1 and θ0 = 30◦ for the solar spectrum
and a ground emissivity εg = 1 for the entire thermal emission spectrum. Further-
more, the calculations assume clear sky conditions (no clouds and no aerosol) in
a mid-latitude summer atmosphere with typical vertical distributions of the radia-
tively relevant atmospheric trace gases. Figure 7.16 shows the vertical distributions
of temperature, relative humidity and those of the atmospheric trace gases which
have been used in the radiation calculations. The height constant CO2 volume mix-
ing ratio has been set to 350 ppmv where 1 ppmv = 10−6. The integrated or total
amount of ozone in a vertical column above the surface of the Earth is expressed
in atmosphere centimeters (atm-cm) which is the height of the resulting volume
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Fig. 7.16 Vertical distributions of temperature, relative humidity and the radia-
tively active trace gases for a mid-latitude summer atmosphere.
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Fig. 7.17 Distribution of upward (↑), downward (↓) and net flux densities labeled
as s (solar), i (infrared), t (total), s,dir (direct downward solar radiation) and net
(net radiation).

if all the ozone in the column of unit area were brought to normal pressure and
temperature (NTP). Currently, the total amount of atmospheric ozone is expressed
in terms of Dobson units (DU) where 1 DU = 10−3 atm-cm NTP. The total ozone
column shown in Figure 7.16 amounts to 330 DU.

The absorption bands of the gases have been fully accounted for in the solar and in
the infrared spectrum. All transfer calculations pertaining to the solar spectrum use
a solar constant of 1368 W m−2 while the infrared calculations assume a black-body
ground emission.

Figure 7.17 depicts the upward and downward directed solar and infrared flux
densities and the corresponding net flux density. The value of the upward solar flux
density at the ground is found by multiplying the value of total downward solar
radiation reaching the ground (s,↓ +dir) by Ag = 0.1. The flux densities at the
ground are needed to formulate energy boundary conditions in the thermodynamic
parts of weather and climate prediction models. Of particular interest is the radiative
flux divergence of the combined solar and infrared spectrum, which is needed to
evaluate thermodynamic equations of the type (2.44).

Radiative heating rates corresponding to the radiative flux densities of
Figure 7.17 are shown in Figure 7.18. While the vertical flux density profiles are
rather smooth, radiative temperature changes vary quite rapidly with height. This
variation results from the vertical structure of the volume mixing ratio of the trace
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Fig. 7.18 Solar heating rates, infrared cooling rates and the net radiative temper-
ature changes expressed in K day−1.

gases and from the atmospheric vertical temperature distribution. Inspection of the
curves shows that solar heating at the ground amounts to about 2 K day−1. Had a
normal aerosol distribution been included, we would have calculated an additional
heating of about 0.1 K day−1. This is a small but not entirely negligible effect.
Since aerosol concentrations usually decrease with height, the aerosol contribution
to the heating rate is negligible at some height above the atmospheric boundary
layer. Solar heating, mainly caused by the presence of water vapor, decreases rather
rapidly with height in the troposphere due to the vertically decreasing water vapor
concentration. In the stratosphere strong solar heating is observed resulting from an
increase of the ozone volume mixing ratio with height. At a height of 42 km where
the ozone concentration begins to decrease, a maximum value of nearly 20 K day−1

is obtained. For a smaller value of µ0 maximum heating would have occurred at a
somewhat smaller height. For increasing values of µ0 solar heating is most effective
in the upper part of the O3 layer. As stands to reason, maximum heating will then
be less intense due to the smaller O3 concentations existing there.

Let us now consider the infrared cooling rates which strongly depend on the con-
centration of the absorbing and emitting gases and also on the vertical temperature
distribution. For the midlatitude summer model, the tropospheric cooling rate of
2 K day−1, mostly due to water vapor absorption bands, is nearly height constant.
Additional calculations (not shown) reveal that larger tropospheric cooling will be
found in the moist tropical and smaller cooling in arctic air masses. Moreover, the
cooling rates will be strongly modified by the presence of clouds.
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Further inspection of Figure 7.18 shows that infrared cooling decreases in the
lower stratosphere and then increases to about −10 K day−1 just below 50 km. Even
at a height of 60 km, cooling rates still amount to about −5 K day−1. The strong
radiative cooling in the layer extending from 30 to 60 km is mainly caused by CO2.
In the height range from 30–50 km radiative cooling is intensified by the presence
of ozone and to a smaller extent by water vapor. The strongest cooling should take
place at the top of the stratospheric O3 layer located between 20 and 40 km since
shielding effects of still higher absorbing layers are absent. For a height of about
40 km Plass (1956) calculated an ozone cooling rate of about −2.5 K day−1. This
result was verified by more recent investigations.

Finally, we will investigate the net radiative temperature change. Within the
entire troposphere the net radiative heating is almost zero. Above the troposphere
radiation causes a net warming of the atmosphere. The strongest radiative heating is
found in the height range from 25–50 km which roughly coincides with the strato-
spheric temperature increase in this height interval. The fact that the atmospheric
temperature decreases above 50 km indicates that physical processes other than
radiation cause atmospheric cooling in this region.

7.6 Appendix

7.6.1 Maxwell’s velocity distribution and the mean molecular velocity

Let v = (vx , vy, vz) be the vector of the thermal velocity of the air molecules.
Temperature is just another measure for the average kinetic energy of the molecules.
If we limit our discussion to translational energy, the relation between temperature
and mean kinetic energy is given by

1

2
mv2 = 3

2
kT (7.242)

In total there are three degrees of freedom for the translational motion. Along each
of the three Cartesian axes the average kinetic energy contributes 1

2 kT to the total
thermal energy. Hence, we obtain

1

2
mv2

x = 1

2
mv2

y = 1

2
mv2

z = 1

2
kT (7.243)

Maxwell’s velocity distribution F(vx , vy, vz) is given by

F(vx , vy, vz) =
( m

2πkT

)3/2
exp

(
−m

(
v2

x + v2
y + v2

z

)
2kT

)
(7.244)
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vy

vx

v

v + dv

Fig. 7.19 Two-dimensional illustration of a spherical shell volume for the deriva-
tion of Maxwell’s velocity distribution f (v).

Maxwell’s distribution has spherical symmetry and depends only on the magnitude
of v, but not on the direction of v. To be a proper probability distribution F must
be normalized ∫ ∞

−∞
F dvx dvydvz = 1 (7.245)

Furthermore, each translational degree of freedom must contribute 1
2 kT to its aver-

age kinetic energy, see (7.243).
Due to the fact that F only depends on v2 = |v|2 = v2

x + v2
y + v2

z , integration of
F over the Cartesian volume element dvx dvydvz can be replaced by an integration
over spherical shells having the volume 4πv2dv, see Figure 7.19. Hence, we may
write

f (v)dv = 4πnF(v)v2dv = 4πn
( m

2πkT

)3/2
exp

(
−mv2

2kT

)
v2dv (7.246)

The function f (v) is Maxwell’s velocity distribution for the magnitude v of the
velocity. Note that the factor 4π stems from the integration over azimuth from 0 to
2π and over the cosine of the polar angle from −1 to 1. Furthermore, the factor n
is necessary to account for the contributions of each molecule contained in a unit
volume of space.

The most probable velocity v̂ is defined by that velocity for which f (v) attains
its maximum, i.e.

v̂ =
√

2kT

m
(7.247)



7.6 Appendix 267

Likewise, the average velocity v̄ can be computed from

v̄ = 1

n

∫ ∞

0
v f (v)dv =

√
8kT

πm
(7.248)

and the root-mean-square velocity is given by

(v2)1/2 =
(

1

n

∫ ∞

0
v2 f (v)dv

)1/2

=
√

3kT

m
(7.249)

Note that the factor 1/n in the last two expressions is required for normalization.

7.6.2 Original derivation of the Ladenburg and Reiche function

We start with the following expression for the average absorption of an isolated
Lorentz line

A(ū) =
∫ ∞

−∞

[
1 − exp

(
− 2ū y2

x2 + y2

)]
dx

with ū = Su

2παL
, x = ν

�ν
, y = αL

�ν

(7.250)

It is convenient to introduce the substitution

x = y tan (s/2) =⇒ dx = y
d

ds
tan (s/2) ds (7.251)

Using this substitution, the argument of the exponential function in (7.250) can be
transformed to

2ū y2

x2 + y2
= 2ū y2

y2[1 + tan2 (s/2)]
= 2ū cos2 (s/2) = ū(1 + cos s) (7.252)

so that the average absorption may be rewritten as

A(ū) = y
∫ π

−π

[
1 − exp [−ū(1 + cos s)]

d

ds
tan (s/2)

]
ds (7.253)

This expression can be further simplified by means of integration by parts

A(ū) = y
1 − exp [−ū(1 + cos s)]

cot (s/2)

∣∣∣π
−π

+ yū
∫ π

−π

exp [−ū(1 + cos s)] tan (s/2) sin sds (7.254)
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The first term on the right-hand side is of the form 0/0. Utilizing l’Hôpital’s rule
one can easily verify that this term vanishes. Using

tan (s/2) = 1 − cos s

sin s
(7.255)

the second term on the right-hand side of (7.254) can be rewritten yielding

A(ū) = yū exp (−ū)

(∫ π

−π

exp (−ū cos s) ds −
∫ π

−π

cos s exp (−ū cos s) ds

)
(7.256)

The two integrals appearing in (7.256) are proportional to the Bessel functions of
the first kind of order 0 and 1. From mathematical tables (Abramowitz and Stegun,
1972) we find

Jn(ρ) = (−i)n

2π

∫ π

−π

exp (iρ cos s) cos(ns)ds (7.257)

Hence, by setting ρ = i ū, we can write for (7.256)

A(ū) = 2πyū exp (−ū) [J0(i ū) − i J1(i ū)] (7.258)

The modified Bessel functions In are real functions and are related to the Bessel
functions by

Jn(i x) = i n In(x) (7.259)

This completes the alternative derivation of the Ladenburg and Reiche function,
that is

A(ū) = 2πyū exp (−ū) [I0(ū) + I1(ū)] = 2πyL(ū) (7.260)

7.6.3 The Mittag–Leffler theorem and the Elsasser model

Before stating the Mittag–Leffler theorem it might be useful for the reader to review
some terminology from complex variable theory. Undoubtedly, the student was
exposed to the theory of residues which is an integral part of any course on the
mathematics of physics and engineering. By necessity our review will be very
brief.

Consider the complex function f (z) where z is the complex variable z = x + iy.
Let f (z) be single-valued and analytic inside and on a circle C except at the point
z = a which is taken as the center of C . Then f (z) can be expanded as a Laurent
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series about z = a as given by

f (z) =
∞∑

n=−∞
bn(z − a)n (7.261)

The part
∑∞

n=0 bn(z − a)n of f (z) is called the analytic part while the remainder of
the Laurent series

∑−1
n=−∞ bn(z − a)n is known as the principal part. The expansion

coefficients can be calculated with the help of

bn = 1

i2π

∮
C

f (z)

(z − a)n+1
dz, n = 0, ±1, ±2, . . . (7.262)

For the special case that n = −1 we find∮
f (z)dz = i2πb−1 (7.263)

The latter equation can be evaluated by termwise integrating (7.261), utilizing∮
1

(z − a)p
dz =

{
i2π for p = 1
0 for p �= 1, p an integer number

(7.264)

Since (7.263) only involves the expansion coefficient b−1 it is called the residue
of f (z) at the point z = a. If the principal part of f (z) has only a finite number of
terms

f (z)principal part = b−1

z − a
+ b−2

(z − a)2
+ · · · + b−n

(z − a)n
(7.265)

where b−n �= 0, then z = a is a pole of order n. In case that n = 1 we have a pole
of order 1 or a simple pole. If z = a is a pole of order k then the residue b−1 can be
obtained from

b−1 = lim
z→a

1

(k − 1)!

dk−1

dzk−1
[(z − a)k f (z)] (7.266)

In case of a simple pole (7.266) simplifies to

b−1 = lim
z→a

(z − a) f (z) (7.267)

We are now ready to state the Mittag–Leffler theorem. Suppose the only singu-
larities of f (z) in the finite z-plane are the simple poles a1, a2, . . . . Let the residues
of f (z) at these poles be given by b1, b2, . . . . Then the Mittag–Leffler theorem can
be expressed as

f (z) = f (0) +
∞∑

n=1

bn

(
1

z − an
+ 1

an

)
(7.268)
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The special function f (z) = cot z − 1/z is fundamental in showing that the reg-
ular Elsasser spectral band model (7.119) can be written in the form (7.120). We
will now show this by performing two major steps.

Step 1

By writing

f (z) = cot z − 1

z
= z cos z − sin z

z sin z
(7.269)

we recognize that f (z) has simple poles at z = nπ with n = ±1, ±2, . . . so that
the residues at the poles are

bn = lim
z→nπ

(z − nπ )
z cos z − sin z

z sin z
= lim

z→nπ

z − nπ

sin z
lim

z→nπ

z cos z − sin z

z
= 1

(7.270)

In this equation we have made use of the fact that the limit of a product is equal to
the product of the limits. Using l’Hôpital’s rule we find that at z = 0 the function
has a removable singularity since

lim
z→0

z cos z − sin z

z sin z
= 0 (7.271)

Defining f (0) = 0 we find from (7.268) together with (7.270)

f (z) = cot z − 1

z
=
∑

n

(
1

z − nπ
+ 1

nπ

)
, n = ±1, ±2, . . .

= lim
N→∞

[ −1∑
n=−N

(
1

z − nπ
+ 1

nπ

)
+

N∑
n=1

(
1

z − nπ
+ 1

nπ

)] (7.272)

To accept this result we would still have to show that f (z) is bounded on circles
CN having their center at the origin and radius RN = (N + 1/2)π which is part of
the requirements used to derive the Mittag–Leffler theorem. We omit this part of
the proof.

Step 2

We split cot z into the real and imaginary part. According to (7.269)

cot z = 1

z
+ f (z) = 1

x + iy
+
∑

n

(
1

x + iy − nπ
+ 1

nπ

)
, n = ±1, ±2, . . .

(7.273)
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After a few simple steps we find

cot z = x

x2 + y2
+
∑

n

x2 + y2 − nπx

nπ [(x − nπ )2 + y2]
−i

(
y

x2 + y2
+
∑

n

y

(x − nπ )2 + y2

)

= �(cot z) + i�(cot z) (7.274)

It is a simple matter to show that we may also write

cot z = cos(x + iy)

sin(x + iy)
= sin(2x)

cosh(2y) − cos(2x)
− i

sinh(2y)

cosh(2y) − cos(2x)
(7.275)

A comparison of the latter two equations shows that for the imaginary part we must
have

sinh(2y)

cosh(2y) − cos(2x)
= y

x2 + y2
+
∑

n

y

(x − nπ )2 + y2
, n = ±1, ±2, . . .

(7.276)

Setting in (7.276) x = πν/δ and y = παL/δ we obtain

S

δ

sinh (2παL/δ)

cosh (2παL/δ) − cos (2πν/δ)
=

∞∑
n=−∞

S

π

αL

(ν − nδ)2 + α2
L

= kν,E (7.277)

Finally, by introducing in (7.277) the abbreviations β = 2παL/δ and s = 2πν/δ

we find

kν,E = S

δ

sinh β

cosh β − cos s
= k(s) (7.278)

in accordance with (7.120).
The proof of the Mittag–Leffler theorem can be found in various textbooks such

as Whittaker and Watson (1915). The theory of residues is nicely discussed, for
example, in Wylie (1966) and Spiegel (1964). The latter author also proves the
Mittag–Leffler theorem.

7.7 Problems

7.1: Show by direct integration that the Lorentz line-shape factor fL(ν − ν0) is
normalized.

7.2: Estimate the pressure levels for which the half-width αD of the Doppler line
equals the half-width αL of the Lorentz line for a
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(a) CO2 line located at 667 cm−1,
(b) H2O line at 1600 cm−1. Assume that αL(p0 = 1013.25 hPa) = 0.1 cm−1. You

may ignore the temperature dependence of the Lorentz half-width. Use the
following model atmosphere. At the Earth’s surface: z = 0 km, p0 = 1013.25
hPa, T = 288.15 K,

Height level (km) Lapse rate (K km−1)
0–11 6.5

11–25 0.0
25–47 −3.0
47–53 0.0
53–80 4.4
80–90 0.0

7.3: The centers of two identical Lorentz lines are separated by a distance of eight
half-widths. Calculate the transmission between the lines at a wave number
of three half-widths away from the line center. S = π cm−2, αL = 0.1 cm−1,
u = 1 cm.

7.4: Carry out the integration (7.149) of the Schnaidt model.
Hint: First assume that the line stretches to infinity on both sides of the line
center and then subtract the remaining parts. Make use of the approximation
that in the atmosphere y = αL/δ 	 1.

7.5: Consider an isothermal atmospheric layer so that the line intensity is con-
stant. Also assume that the specific humidity q is constant within this layer.
Show that for an Elsasser band the monochromatic transmission of this
layer is given by

T =
(

cosh β2 − cos s

cosh β1 − cos s

)η

, η = q Sp1 sec ϑ

2πgαL,1

where ϑ is the zenith angle of the radiation, s = 2πν/δ, and βi =
2παi/δ, i = 1, 2 are taken at the lower and upper boundary of the layer
where the pressure is p1 and p2, respectively.

7.6: Determine the vertical transmission of radiation within the spectral range
of a Lorentz line originating at the surface of the Earth where the pressure
is p0 = 1000 hPa. Ignore the temperature dependence of the line intensity
and of the half-width αL. The specific humidity is distributed according
to q(p) = q(p0)(p/p0)2.5. Assume that S = π cm−2, αL,0 = 0.08 cm−1,
δ = 20αL,0, and q(p0) = 5 g kg−1.
Hint: Use the Curtis–Godson approximation.

7.7: Consider a vertical transmission path between pressure levels p1 and
p2 < p1. The concentration cgas of an absorbing gas of density ρgas is homo-
geneously distributed.
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(a) Assuming that the line intensity is height independent, by using the Curtis–
Godson approximation, show that p̃ = (p1 + p2)/2.

(b) For a Lorentz line show that the equivalent widths of the strong line and weak
line approximations are given by

strong line approximation: W =
√

2SαL,0c

gp0

(
p2

1 − p2
2

)
weak line approximation: W = Sc

g
(p1 − p2)

where p0 is the normal pressure.

7.8: For a uniformly distributed absorbing gas the height dependence of the
absorption coefficient is assumed to be given by kν = kν,0

√
p/p0 where p0

is the surface pressure. The incoming solar radiation at the zenith angle ϑ0

at the top of the atmosphere is Sν,0 (W m−2). If the Sun’s position remains
fixed, find the parallel solar energy density E0,�t within 1 hour per square
meter at the Earth’s surface whose albedo is Ag = 0.31.

7.9: Show that the absorption of a Doppler line can be expressed by

AD = Su

δ

∞∑
n=0

(−1)nbn

(n + 1)!
√

n + 1
with b = Su

√
ln 2

πα2
D

For convenience use the wave number notation.
7.10: A cylindrical absorption cell of length l is filled with an absorbing gas.

The pressure within the cell can be varied. The cell is illuminated by a
parallel infrared light beam parallel to the axis of the cylinder. Show that
the absorption at the line center of a Lorentz line is independent of pressure.

7.11: A hypothetical spectral interval contains 100 spectral lines of equal half-
width αL. The line positions are statistically distributed. Each decade of
lines is represented by a line of mean intensity S0 with

Number of lines S0 (cm−2)
1–10 0.05

11–20 0.10
21–30 0.15
31–40 0.20
41–50 0.25
51–60 0.30
61–70 0.35
71–80 0.40
81–90 0.45
91–100 0.50

For αL = 0.1 cm−1, δ = 10αL and u = 1 cm find the transmission according
to the exponential model.
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7.12: Schnaidt expresses the average absorption as

A = 1

δ

∫ δ/2

−δ/2
[1 − exp (−kνu)]dν

This expression ignores the contribution of neighboring lines outside the
spectral range [−δ/2, δ/2]. Calculate the distribution function for this
model.

7.13: Given is the following tropical model atmosphere.

Height Pressure Temperature Relative humidity Specific humidity
(km) (hPa) ( ◦C) (%) (g/kg)

0 1011 27.7 82 18.76
1.0 902 22.8 68 13.03
1.5 858 20.6 63 11.09
1.8 830 19.2 60 10.00
2.0 808 18.2 59 9.50
2.3 780 16.9 57 8.75
3.0 710 13.3 52 6.96
4.0 636 7.8 48 4.96
4.4 604 5.5 46 4.28
5.0 562 2.0 44 3.43
6.0 495 −3.5 41 2.36
7.0 435 −10.0 39 1.46
8.0 385 −16.6 38 0.885
9.0 340 −23.2 37 0.518
9.8 302 −28.5 38 0.351

10.0 291 −30.0 38 0.312
11.0 253 −38.6 40 0.148
12.0 217 −47.2 43 0.0679
13.0 187 −55.7 49 0.0309
14.0 156 −62.3 58 0.0180
15.0 131 −69.0 70 0.0100
16.0 112 −75.5 90 0.0054

Calculate the radiative temperature change at 0, 1 and 3 km height for the
water vapor window (8–13) µm. The gray absorption coefficient k may
be traced back to the dimer-water vapor molecule. k is temperature and
pressure dependent according to

k(z) = k0 [1 + α2(T (z) − T0)]
p1(z)

p0

with k0 = 12 cm2 g−1, α2 = −0.02 K−1, T0 = 278 K, p0 = 1013.25 hPa.
p1 is the partial pressure of water vapor. For the calculation of the Planck
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radiation use

B = κσ T 4

π
with κ = 0.25, σ = 5.6697 × 10−8 Wm−2 K−4.

7.14: Consider two idealized lines in triangular form as shown in the figure.

,max

α α

kν

kν

ν1 ν2
ν

The center lines are located at ν1 and ν2. The distance between the lines
exceeds the half-width. (Note that here the half-width is twice as large
as in the usual definition.) Find an analytic representation of the spectral
absorption coefficient, the equivalent width W1, W2 of each line and the
equivalent width W of the line spectrum. Moreover, consider the limiting
cases u → 0 and u → ∞.

7.15: In an isothermal atmospheric layer an absorbing gas is homogeneously
distributed, that is the concentration cgas is constant. Calculate the equivalent
width of a spectral line for a vertical path in the region of the weak line
approximation. Assume the Lorentz line shape.
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Absorption by gases

8.1 Introduction

In this chapter we are going to discuss some of the more elementary ideas in
connection with the absorption spectra of gases. The energy E of a molecule may
be expressed as the sum of the rotational energy Erot, vibrational energy Evib and
electronic energy Eel. Of these three types of energy, Erot is generally the smallest,
typically a few hundredths of an electron Volt.1 Vibrational energies are of the order
of a few tenths of one electron Volt, while the largest energies are of the electronic
type which generally amount to a few electron Volts.

The absorption (emission) spectrum arising from the rotational and vibrational
motion of a molecule which is not electronically excited will be located in the
infrared region. In infrared absorption experiments light from a suitable source
penetrates an absorption chamber containing the gas to be studied and then enters a
spectrograph. If the instrument is of low resolving power, a series of wide bands is
observed which correspond to the vibrational transitions. If an instrument of high
resolving power is used, these bands are seen to consist of numerous spectral lines
resulting from the energy levels of rotation.

In the next section we are going to discuss the vibrational motion of two relatively
simple molecules (CO2 and H2O) which are particularly important in the study
of radiative transfer in the atmosphere. The forces between the atoms making
up the molecule may be crudely approximated by forces exerted by weightless
springs which hold the atoms relative to each other in the neighborhood of certain
configurations. The forces due to stretching or compression of the springs are
assumed to follow Hooke’s law.

If a molecule contains n atoms, there are 3n modes of motion. Of these, three
correspond to translation, and three to rotation (or two for a linear molecule). The

1 If an electron falls through a potential difference of one Volt it attains a kinetic energy of 1.602 × 10−19 joule
which is used as the definition of one electron volt, i.e. 1 electron volt = 1.602 × 10−19 joule.

276



8.2 Molecular vibrations 277

x1 x2

Fig. 8.1 Two coupled harmonic oscillators with equilibrium positions at x1 = 0,
x2 = 0.

remaining 3n − 6 (or 3n − 5) correspond to the normal vibrational modes of the
molecule.

8.2 Molecular vibrations

8.2.1 Two coupled harmonic oscillators

Before studying the vibrational motion of the carbon dioxide and water molecules,
we are going to discuss a fairly simple example by considering two particles, each
of mass m, connected by light springs of stiffness k, see Figure 8.1. The particles
are constrained to move in a straight line. The distances x1 and x2 stand for the
displacements of particles 1 and 2 from their equilibrium positions.

The equation of motion of each particle can be obtained quite easily by using
Lagrange’s equation of motion. The Lagrangian function L is defined as the dif-
ference of the kinetic energy K and the potential energy V of the system, that is

(a) L = K − V

(b) K = 1

2
mẋ2

1 + 1

2
mẋ2

2

(c) V = 1

2
kx2

1 + 1

2
k(x1 − x2)2 + 1

2
kx2

2

(8.1)

The second term on the right-hand side of (8.1c) refers to the potential energy
stored in the spring connecting the two masses. If qk and q̇k stand for the generalized
coordinate and the generalized velocity of the particles, then Lagrange’s equation
of motion of a conservative system is given by

d

dt

∂L

∂q̇k
= ∂L

∂qk
(8.2)

Substituting for qk = x1, x2 equation (8.1) into (8.2) yields the equations of motion
for the two particles

d

dt

∂L

∂ ẋ1
= ∂L

∂x1
or mẍ1 = −kx1 + k(x2 − x1)

d

dt

∂L

∂ ẋ2
= ∂L

∂x2
or mẍ2 = −kx2 + k(x1 − x2)

(8.3)
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Let us find the possible common frequencies of vibration of the two particles.
These frequencies are known as eigenfrequencies. The associated vibrational states
are the corresponding eigenvibrations or normal modes of vibrations. We are going
to solve the system (8.3) by means of the trial solutions

x1 = A1 cos ωt , x2 = A2 cos ωt (8.4)

which requires that both particles vibrate with the frequency ω. Had we used a sine
function or the combination of a cosine and a sine function we would still obtain the
same equations expressing the conditions for the frequency. Substitution of (8.4)
into (8.3) gives two linear homogeneous equations for the amplitudes A1 and A2

(−mω2 + 2k)A1 − k A2 = 0

−k A1 + (−mω2 + 2k)A2 = 0
(8.5)

Nontrivial solutions for the amplitudes exist only if the determinant of the coeffi-
cients vanishes. The expansion of the determinant results in the frequency equation∣∣∣∣∣∣

−mω2 + 2k −k

−k −mω2 + 2k

∣∣∣∣∣∣ = (−mω2 + 2k)2 − k2 = 0 (8.6)

The positive roots

ω1 =
√

3k

m
, ω2 =

√
k

m
(8.7)

are the eigenfrequencies of the system.
In order to get some idea about the type of the normal vibrations, we substi-

tute (8.7) into the system (8.5) and find the conditions for the symmetric and the
antisymmetric modes

antisymmetric mode: A1 = −A2 for ω1 =⇒ x1 = −x2

symmetric mode: A1 = A2 for ω2 =⇒ x1 = x2
(8.8)

The number of normal vibrations is equal to the number of coordinates which are
required for a complete description of the system. The equally large amplitudes
of this example result from the assumption that the two masses are equally large.
The general motion of the mass points will be given by superimposing the normal
vibrations with different amplitudes and phases.

8.2.2 Review of physical principles

Theoretical calculations of molecular vibrations often are carried out in a coordinate
system in which the center of mass of the particles is at rest. To prevent the molecule
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x

y

z

mi

rc

iri

Fig. 8.2 Center of mass system.

from rotating we must require that the angular momentum of the molecule vanishes.
A brief review of the physical principles involved in the solution technique now
follows.

We ignore the translational motion of the system as a whole since for spectro-
scopic considerations only the motion of the atoms relative to the center of mass is
of importance. As shown in Figure 8.2, the origin of the primed coordinate system
is the center of mass whose position in the unprimed system is given by the vector
rc.

The position of the particle mi in the primed and unprimed (laboratory) system
is r′

i and ri , respectively. In general, the center of mass is defined by

rc = 1

M

n∑
i=1

mi ri with M =
n∑

i=1

mi (8.9)

where M is the total mass. Replacing ri by the vector sum rc + r′
i results in

Mrc =
n∑

i=1

mi
(
rc + r′

i

) = Mrc +
n∑

i=1

mi r′
i (8.10)

From this equation it follows that

n∑
i=1

mi r′
i = 0,

n∑
i=1

mi v′
i = 0 (8.11)

whereby the second equation results from the time differentiation of the first one.
Hence in the center of mass system the sum of the mass moments mi r′

i as well as
the sum of the linear moments mi v′

i vanish.
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3 2 1
l l

mA mB mA

Fig. 8.3 Linear symmetric triatomic molecule in equilibrium position.

The total angular momentum of the system is defined by

J =
n∑

i=1

mi (ri × vi ) =
n∑

i=1

mi
(
rc + r′

i

)× (vc + v′
i )

= M (rc × vc) +
n∑

i=1

mi
(
r′

i × v′
i

) = Jc +
n∑

i=1

J′
i

(8.12)

showing that the angular momentum J can be expressed as the sum of two terms. The
first term represents the angular momentum of the center of mass Jc having mass
M , while the second term gives the sum of the angular momenta of the individual
particles about the center of mass.

8.2.3 Linear triatomic molecules

In the following we calculate the normal vibrations of the linear symmetric CO2

molecule whose equilibrium position is shown in Figure 8.3. The atoms mA are
separated from the atom mB by the equilibrium distance l. We assume that the
potential energy of the molecule depends only on the distances between the atoms
and on the angle of bending. The motion of the atoms takes place in the (x, y)-plane.
First we are going to discuss longitudinal vibrations.

If the vector xi with components (xi , yi ) stands for the displacement of atom i
from its equilibrium position r0,i then the momentary position of this atom is given
by

ri = r0,i + xi (8.13)

The forces holding the atoms together, in first approximation, follow Hooke’s law.
For longitudinal vibrations the Lagrangian function L of the system is expressed by

L = K − V = mA

2

(
ẋ2

1 + ẋ2
3

)+ mB

2
ẋ2

2 − kl

2
[(x1 − x2)2 + (x3 − x2)2] (8.14)

where kl is the spring constant for the longitudinal motion. To eliminate one
coordinate, say x2, we make use of

n∑
i=1

mi ri =
n∑

i=1

mi r0,i (8.15)



8.2 Molecular vibrations 281

which is a statement for the conservation of the center of mass. Application of
(8.13) and (8.15) yields

mA(x1 + x3) + mBx2 = 0 (8.16)

so that L is given by

L = mA

2

(
ẋ2

1 + ẋ2
3

)+ m2
A

2mB
(ẋ1 + ẋ3)2

−kl

2

[(
x2

1 + x2
3

)+ 2mA

mB
(x1 + x3)2 + 2m2

A

m2
B

(x1 + x3)2

]
(8.17)

We introduce the new set of coordinates (η, ξ ) by means of

η = x1 − x3, ξ = x1 + x3 =⇒
x1 = ξ + η

2
, x3 = ξ − η

2

(8.18)

Utilizing the new coordinates the Lagrangian function may be written as

L = mA

4
η̇2 + mAmT

4mB
ξ̇ 2 − kl

4
η2 − klm2

T

4m2
B

ξ 2 (8.19)

with mT = 2mA + mB. In contrast to (8.17), in this form L does not contain any
cross terms.

Differentiation of the Lagrange function (8.19) according to (8.2) yields

d

dt

∂L

∂ξ̇
= mAmT

2mB
ξ̈ ,

∂L

∂ξ
= −klm2

T

2m2
B

ξ (8.20)

so that the equations of motion for the (η, ξ ) coordinates are given by

ξ̈ + klmT

mAmB
ξ = 0, η̈ + kl

mA
η = 0 (8.21)

From these equations it is seen that due to the introduction of the coordinates (η, ξ )
the differential equations of motion are decoupled which was not the case in the
example of two coupled harmonic oscillators, see (8.3). The coordinates (η, ξ ) are
known as the normal coordinates. It is a characteristic feature of normal coordinates
that the differential equations of motion are automatically separated, there being
one differential equation for each normal coordinate.
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mA mB mA

mA mB mA

(a)

(b)

Fig. 8.4 (a) Antisymmetric mode of the longitudinal vibrations, η = 0, ν3-
vibration. (b) Symmetric mode of the longitudinal vibrations, ξ = 0, ν1-vibration.

Substituting the trial solution exp(iωt) into (8.21) we immediately find the
frequencies

antisymmetric vibration: ωa =
√

klmT

mAmB

symmetric vibration: ωs =
√

kl

mA

(8.22)

Let us examine the vibrations more closely and consider case (a) of Figure 8.4.
If x1 = x3 then η = 0 resulting in the antisymmetric vibrational mode. This is the
reason we have added the suffix a to the circular frequency in equation (8.22). This
type of motion is usually called the ν3-vibration. In case (b) we set x1 = −x3 so
that ξ = 0 resulting in the symmetric ν1-vibration (suffix s in (8.22)).

So far we have restricted the motion of the atoms to one direction. A nonrigid
triatomic molecule, such as CO2, vibrates not only longitudinally but also transver-
sally as shown in Figure 8.5. In this case the Lagrangian function is given by

L = mA

2

(
ẏ2

1 + ẏ2
3

)+ mB

2
ẏ2

2 − kT

2
(lδ)2 (8.23)

where the constant kT of the potential energy part of L refers to the transversal
displacement. The angle δ stands for the deviation from 180◦. The meaning of the
angles α1 and α2 follows from the figure. Since the angle δ is assumed to be very
small, we may replace it by the sine functions as shown in

δ =
(π

2
− α1

)
+
(π

2
− α2

)
≈ sin

(π

2
− α1

)
+ sin

(π

2
− α2

)
= cos α1 + cos α2 =

(
y2 − y1

l

)
+
(

y2 − y3

l

) (8.24)
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mA

mB

mA

y1

y2

y3
α1 α2

l l

Fig. 8.5 Coordinates of the transversal vibration of a linear triatomic molecule.

As before, we eliminate one coordinate by using the conservation of the center of
mass. The result is

mA(y1 + y3) + mB y2 = 0 (8.25)

In order to exclude the rotation of the molecule, the total angular momentum
must vanish. The mathematical form of the angular momentum is given by (8.12).
Since the deviation from the equilibrium position is small, we may approximate
the vector ri by r0,i . Thus the total angular momentum is approximately given by

J =
3∑

i=1

mi (ri × vi ) ≈
3∑

i=1

mi (r0,i × vi ) = d

dt

3∑
i=1

mi (r0,i × xi ) = 0 (8.26)

which is satisfied by

3∑
i=1

mi (r0,i × xi ) = 0 (8.27)

This equation can be used to show that y1 = y3 so that the Lagrangian function
may be written as

L = mAmB

4mT
(l δ̇)2 − kT

2
(lδ)2 (8.28)

After a few steps we find the eigenfrequency of the transversal vibration

ωT =
√

2kTmT

mAmB
(8.29)

Details of the derivations will be left to the exercises.
The transversal vibration shown in Figure 8.6(a) is called ν2-vibration. At the

beginning of the chapter we have stated that this molecule should have four vibra-
tional modes. Our calculations, however, provided only three of these. The fourth
vibrational mode of the CO2 molecule results from a twofold degeneracy, i.e. the
direction of one vibrational mode is perpendicular to that of the other as shown in
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(a)

(b)
mA

mB

mA

+ −

Fig. 8.6 Transversal vibration of a linear triatomic molecule.

Figure 8.6(b). This does not provide any new information. The + attached to mB

and the − attached to mA simply indicate that they vibrate in opposite directions in
a plane perpendicular to the plane of the paper.

As will be shown later, the interaction of an electromagnetic wave with the
molecule to produce absorption or emission results from the interaction of the ele-
ctric field vector E with the (variable) dipole moment M of the system. The dipole
moment of an electrically neutral molecule is a vector whose direction is along the
line joining the center of charge of the negative charges to the center of charge of
the positive charges. The magnitude of the dipole moment is the length of that line
multiplied by the total negative or positive charge, these being equal. An atom or a
molecule is said to be polarized by an electric field when the displacements of the
charges caused by the electric field produce or alter the dipole moment.

In a Cartesian coordinate system the components of M are given by

Mx =
∑

k

ek xk, My =
∑

k

ek yk, Mz =
∑

k

ekzk (8.30)

where ek is the charge of the particle k at the position (xk, yk, zk). If the particles
are the atoms of a molecule, the charges ek must be considered as effective charges.

Some molecules have a permanent dipole moment such as the heteronuclear
diatomic molecule CO. The dipole moment results from the asymmetric charge
distribution. In contrast, homonuclear diatomic molecules such as N2 have no elec-
tric dipole moment due to the symmetric charge distribution. Similarly, in the
equilibrium configuration the CO2 molecule has no permanent dipole moment due
to the symmetric distribution of charges. Further details may be found, for example,
in Wilson et al. (1955).

Let us re-examine Figure 8.4. The symmetric longitudinal stretching of the CO2

molecule, usually called the ν1-vibration, does not produce any dipole moment
so that this type of vibration is inactive in the infrared spectrum. The remain-
ing vibrations are classified as parallel or perpendicular according as the change
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Fig. 8.7 Coordinates of the triangular molecule H2O.

of the dipole moment takes place along or perpendicular to the axis of symmetry
of the molecule which is the internuclear axis. The antisymmetric longitudinal or
the ν3-vibration induces a dipole moment parallel to the axis of symmetry. Thus
ν2- and ν3-vibrations are active in the infrared spectrum. The most important CO2

band in the infrared spectral range is centered at the wave number ν̃ = 667.40 cm−1

(λ = 15 µm) which results from the ν2-vibration. In contrast to the CO2 molecule,
the diatomic gases N2 and O2, abundantly occurring in the Earth’s atmosphere,
do not possess permanent electric dipole moments and, therefore, do not exhibit
infrared absorption bands.

We have now examined in some detail the normal vibrations of a linear triatomic
molecule. The actual internal vibrations of a semi-rigid system (small amplitude
vibrations) may be very complicated. However, the motion can always be decom-
posed into a sum of elementary motions described by the normal vibrational modes.
The frequency equations (8.22) and (8.29) are in exact agreement with the results
shown in the standard reference book Infrared and Raman Spectra by Herzberg
(1964b) where many details can be found.

8.2.4 Nonlinear triatomic molecules

It is not always as simple as in the case of the linear triatomic molecule to find the
normal coordinates. This will become apparent in the discussion of the nonlinear
triatomic H2O, see Figure 8.7. The three masses are labelled as 1, 2 and 3. The
equilibrium distance from the central mass mB to the masses mA is l.

Employing the conservation of the center of mass according to (8.15) we find

mA(x1 + x3) + mBx2 = 0, mA(y1 + y3) + mB y2 = 0 (8.31)

If we place ourselves in the resting position of the atom mB so that r0,2 =0, noting
that |r0,1| = |r0,3|, we find that the conservation of angular momentum is given by

(y1 − y3) sin α = (x1 + x3) cos α (8.32)
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Details of the calculation will be left up to the exercises. Now we must find the
change of l due to stretching between the masses mA (mass point 1) and mB (mass
point 2) and between mB (2) and mA (3). The changes l1 and l3 are found by
projecting the vectors x1 − x2 and x3 − x2 on the directions of the lines connecting
the masses mA (point 1) and mB and mB and mA (point 3). A simple calculation
gives

δl1 = (x1 − x2) sin α + (y1 − y2) cos α

δl3 = −(x3 − x2) sin α + (y3 − y2) cos α
(8.33)

The change of the angle 2α is found by projecting the vectors x1 − x2 and x3 − x2

on the directions perpendicular to the lines connecting the points 1 and 2 and 2 and
3. The result is given by

δ = 1

l
[(x1 − x2) cos α − (y1 − y2) sin α − (x3 − x2) cos α − (y3 − y2) sin α]

(8.34)
Details of the calculations are left to the exercises.

The Lagrangian function is found as

L = mA

2

(
ẋ2

1 + ẋ2
3

)+ mB

2
ẋ2

2 − k1

2

[
(δl1)2 + (δl2)2

]− k2

2
(lδ)2 (8.35)

where ẋi = ẋi i + ẏi j, etc. The third and fourth right-hand side terms describe the
potential energy of the extension of the springs connecting the masses and of the
bending of the molecule.

As motivated by the previous example, we introduce the new coordinates

qa = x1 + x3, qs,1 = x1 − x3, qs,2 = y1 + y3 =⇒
x1 = 1

2
(qa + qs,1), x2 = −mA

mB
qa, x3 = 1

2
(qa − qs,1)

y1 = 1

2
(qs,2 + qa cot α), y2 = −mA

mB
qs,2, y3 = 1

2
(qs,2 − qa cot α)

(8.36)

where we have employed the conservation of the center of mass. A simple but
tedious calculation gives the Lagrangian function of the system

L = mA

4

(
2mA

mB
+ 1

sin2 α

)
q̇2

a + mA

4
q̇2

s,1 + mAmT

4mB
q̇2

s,2

− q2
a

k1

4

(
2mA

mB
+ 1

sin2 α

)(
1 + 2mA

mB
sin2 α

)
− q2

s,1

4
(k1 sin2 α + 2k2 cos2 α)

− q2
s,2

m2
T

4m2
B

(k1 cos2 α + 2k2 sin2 α) + qs,1qs,2
mT

2mB
(2k2 − k1) sin α cos α

(8.37)
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We immediately recognize that qa is a normal coordinate since no cross-term occurs
with the other coordinates. The coordinates qs,1 and qs,2 are not normal coordinates
due to the appearance of a cross-term. As we will see later, the suffixes a and s
stand for antisymmetric and symmetric vibrations. We omit the simple details in
the calculation of the equation of motion involving the coordinates q̇a and qa which
is decoupled from the remainder of the system. The solution of the qa equation of
motion is given by

ω2
a = k1

mA

(
1 + 2mA

mB
sin2 α

)
(8.38)

Using again the Lagrangian form of the equation of motion, after a few steps we
obtain

q̈s,1 + A1qs,1 + A2qs,2 = 0

q̈s,2 + B1qs,2 + B2qs,1 = 0
(8.39)

with

A1 = 1

mA
(k1 sin2 α + 2k2 cos2 α), A2 = − mT

mAmB
(2k2 − k1) sin α cos α

B1 = mT

mAmB
(k1 cos2 α + 2k2 sin2 α), B2 = − 1

mA
(2k2 − k1) sin α cos α

(8.40)

and mT = 2mA + mB. It is seen that (8.39) is a coupled system of two second-order
linear differential equations. The solution to this system can be found by any one
of the standard methods. The operator method is particularly easy to apply since
the two equations are decoupled almost immediately. We leave it to the exercises
to verify that the characteristic equation is given by

ω4 − ω2(A1 + B1) + (A1 B1 − A2 B2) = 0 (8.41)

permitting us to determine the eigenfrequencies ωs,1 and ωs,2 of the normal vibra-
tions qs,1 and qs,2.

We will now briefly discuss the normal modes of vibration. First we consider the
antisymmetric vibration described by (8.38) of the H2O molecule. Pure qa vibrations
exist if x1 = x3 and y1 = −y3. Thus qa describes antisymmetric vibrations with
respect to the y-axis. This case is shown in Figure 8.8(a).

Inspection reveals that the vibrations corresponding to the coordinate qs,1 and
qs,2 are symmetric with respect to the y-axis as shown in parts (b) and (c) of the
figure. We set qa = 0 and find x1 = −x3 and from (8.36) follows that y1 = y3.

A more exact but also more involved analysis is described in Herzberg (1964a,b)
who introduces an additional interaction coefficient. This changes slightly the fre-
quency equations (8.38) and (8.41). Setting this small interaction coefficient equal
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-vibration

-vibration
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Fig. 8.8 Normal modes of vibration of the H2O molecule.

to zero results in the equations we have derived above. The inclusion of the inter-
action coefficient implies that the normal coordinates shown in Figure 8.8 also
change slightly. Particularly the ν3-vibration (Figure 8.8(a)), must be modified in
such a way that the arrows extending from the masses mA are nearly parallel to the
lines connecting them with mB. The remaining parts of the figure are qualitatively
correct. Part (b) is called the ν2-vibration and part (c) the ν1-vibration. None of
the normal modes of vibration we have shown is drawn to scale. The most impor-
tant absorption band in the infrared spectral range is centered at the wave number
ν̃ = 1594.78 cm−1 (λ = 6.27 µm) which results from the ν2-vibration.

The famous books Molecular Vibrations by Wilson et al. (1955) and Infrared
and Raman Spectra by Herzberg (1964b) describe in great detail the theory of
vibrational spectra. Discussion on normal coordinates are given in any textbook on
theoretical mechanics. Our reference goes to Greiner (1989), Mechanik, Volume 2,
who gives a number of examples on normal vibrations. A wealth of information
relevant to radiative transfer in the atmosphere is summarized in Goody (1964a).

8.3 Some basic principles from quantum mechanics

We shall not attempt a rigorous development of quantum mechanics, but we shall
merely state some of the basic results as they apply to the individual atom or atomic
systems. The quantum mechanical description of atomic or molecular systems
is carried out with the help of the wave function or the state function �. This
function, in general, is a complex number and considered to be a function of all of
the configurational coordinates including time.



8.3 Some basic principles from quantum mechanics 289

According to the basic postulates of quantum mechanics, the square of the abso-
lute value |�|2 of the wave function is a measure of the probability that the consid-
ered system is located at the configuration corresponding to the particular values of
the coordinates. Sometimes the product �∗� or |�|2 is called the probability dis-
tribution function or the probability density. For example, if the system consists of a
single electron, then the probability that the electron is located somewhere between
x, y, z and x + dx, y + dy, z + dz is given by �∗(x, y, z)�(x, y, z) dxdydz.

From the interpretation of the wave function it follows that we cannot be certain
that the electron is located at any particular place. Only the probability of being
there within certain limits can be known. This interpretation is consistent with
Heisenberg’s uncertainty principle. Since the electron has to be somewhere in
space the total probability has to be unity as stated in∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
�∗� dx dy dz = 1 (8.42)

Functions satisfying (8.42) are classified as quadratically integrable normalized
functions.

8.3.1 Stationary and coherent states

We will now briefly discuss two particular states which are known as stationary
and coherent states.

(i) Stationary states

An eigenstate or characteristic state corresponds to a perfectly defined energy. A
given system may have many eigenstates each possessing, in general, a different
energy. If En denotes the particular energy of one of its eigenstates, the complete
wave function can be written as

�n(x, y, z, t) = ψn(x, y, z) exp

(
− i Ent

h̄

)
with h̄ = h/(2π ) (8.43)

The first factor ψn(x, y, z, ) depends on the space coordinates only while the
second factor gives the time dependency. The parameter h is Planck’s constant.
Multiplication of the wave function by its conjugate yields

�∗
n �n = ψ∗

n ψn (8.44)

which indicates that the probability density is constant in time or stationary in the
sense that no changes at all are taking place with respect to the external surroundings.
Thus an eigenstate is also a stationary state. In this situation the system does not
radiate.
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(ii) Coherent states

Suppose the system is in the process of changing from eigenstate �1 to �2. During
the transition the state function is a linear combination of the two state functions
as shown in

� = C1ψ1 exp

(
− i E1t

h̄

)
+ C2ψ2 exp

(
− i E2t

h̄

)
(8.45)

The time variation of the parameters C1 and C2 is slow in comparison with
the time variation of the exponential factors. A state of the type (8.45) is called
a coherent state. Inspection of this formula shows that the energy of a coherent
state is not well defined since two energies are involved. In contrast to the coherent
state, the energy of a stationary state is well defined. The probability density of the
coherent state is given by

�∗� = C∗
1 C1ψ

∗
1 ψ1 + C∗

2 C2ψ
∗
2 ψ2 + C∗

1 C2ψ
∗
1 ψ2 exp(iωt)

+ C∗
2 C1ψ

∗
2 ψ1 exp(−iωt)

with ω = 2πν = (E1 − E2)/h̄

(8.46)

The quantum mechanical description of a radiating atom may be stated in the
following way. During the change from one quantum state to another, the probabil-
ity distribution of the electron becomes coherent and oscillates sinusoidally. This
oscillation is associated with an oscillating electromagnetic field which constitutes
the radiation.

8.3.2 The Schrödinger equation

So far we have not given any information in which way we might find the wave
function �. From classical physics we know that the time-dependent wave equation
can be written in the form

∂2�

∂t2
= v2∇2� (8.47)

where � represents any wave function. Substituting the trial solution

� = ψ(x, y, z) exp(iωt) (8.48)

assuming the usual sinusoidal time dependency of � into (8.47) we obtain the
time-independent wave equation

∇2ψ +
(

2π

λ

)2

ψ = 0 (8.49)

where λ is the wavelength.
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In order to find Schrödinger’s equation, we make use of Einstein’s mass–energy
relation

hν = mc2 (8.50)

where c is the speed of light in empty space and m is the mass of the photon. The
linear momentum of the photon is denoted by

p = mc = hν

c
= h

λ
(8.51)

Just as light exhibits both wavelike and particle properties, De Broglie assumed that
a material particle m moving with speed v, also possesses a wave-like character as
stated in

λ = h

p
= h

mv
(8.52)

This assumption was later confirmed experimentally.
Replacing in (8.49) the wavelength λ by means of (8.52) we find

∇2ψ +
(

2πp

h

)2

ψ = 0 (8.53)

If E stands for the total energy of the particle as given by E = mv2/2 + V , V is
the potential energy, the linear momentum may be expressed by

p2 = 2m(E − V ) (8.54)

Substitution of (8.54) into (8.53) yields the famous Schrödinger equation

∇2ψ + 8π2m

h2
(E − V )ψ = 0 (8.55)

permitting us to find the wave function ψ . In case that the physical system consists
of N particles, (8.55) must be replaced by

N∑
k=1

1

mk

(
∂2ψ

∂x2
k

+ ∂2ψ

∂y2
k

+ ∂2ψ

∂z2
k

)
+ 8π2

h2
(E − V )ψ = 0 (8.56)

if Cartesian coordinates are used.
To obtain the wave function ψ from the Schrödinger equation can be very dif-

ficult. The solution procedure requires the specification of the potential function
V (x, y, z) of the physical system. Not all mathematical solutions of the Schrödinger
equation are acceptable since they may not be physically meaningful. To be an
acceptable solution, the function ψ must tend to zero for infinite values of the
coordinates in such a way that it is quadratically integrable. This requirement leads
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Table 8.1 Examples of quantum mechanical operators

Variable Operator

Position
x x
y y
z z

Linear momentum

px
h̄

i

∂

∂x

py
h̄

i

∂

∂y

pz
h̄

i

∂

∂z

Kinetic energy
1

2
m
(
v2

x + v2
y + v2

z

) − h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
Potential energy
V (x, y, z) V (x, y, z)

Total energy

E −h̄

i

∂

∂t

to the result that acceptable functions can exist only if the energy E has definite
values. These allowed values of E , known as eigenvalues, are characteristic energy
levels of the system. The corresponding solutions are the eigensolutions. Simple
examples will be given later.

In quantum mechanics every variable, such as position or momentum is associ-
ated with an operator. If one of these variables is denoted by g and the corresponding
operator by G, then the operation on the wave function of the system by G gives,
in some cases, the value for the variable g times ψ , i.e.

Gψ = gψ (8.57)

Examples of some quantum mechanical operators are given in Table 8.1.
It is often convenient to employ a form of the Schrödinger equation that makes

use of a formal analogy between classical and quantum mechanics. From classical
mechanics (see Appendix 8.8.1) we know that for a conservative dynamical system
the sum of the kinetic energy K and the potential energy V is equal to the constant
E , i.e.

H = K + V = E (8.58)
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The sum of K and V is called the Hamilton function H . If (xk, yk, zk) are the
coordinates of particle k and (pxk , pyk , pzk ) the components of the linear momentum
of this particle, the Hamiltonian function H can be written in the form

H =
N∑

k=1

1

2mk

(
p2

xk
+ p2

yk
+ p2

zk

)+ V (x1, y1, z1, . . . xk, yk, zk, . . .) (8.59)

Replacing the momenta and E according to Table 8.1 and introducing the wave
function � on which the operator is applied, we find the quantum mechanical
analogy. This gives the time-dependent Schrödinger equation

−h̄2

2

N∑
k=1

1

mk

(
∂2�

∂x2
k

+ ∂2�

∂y2
k

+ ∂2�

∂z2
k

)
+ V � = −h̄

i

∂�

∂t
(8.60)

Utilizing the information listed in Table 8.1, the Schrödinger equation can also be
written as

H� = E� = −h̄

i

∂�

∂t
(8.61)

While we denote the Hamiltonian function by the symbol H we will use the
calligraphic print H to designate the analogous quantum mechanical Hamilton
operator.

The general solution to (8.61) is given by

� =
∑

n

an�n =
∑

n

anψn exp

(
− i Ent

h̄

)
(8.62)

In textbooks on quantum mechanics it is shown that any two eigenfunctions of an
atomic system belonging to different eigenvalues are orthogonal. Assuming that
the eigenfunctions are normalized we may write∫ ∞

−∞
ψ∗

mψndτ = δm,n with dτ = dx dy dz (8.63)

If the wave function � is normalized to 1, then the following relation must be valid

∑
n

a∗
nan =

∑
n

|an|2 = 1 (8.64)

The latter equation implies that the product |an|2 = a∗
nan represents the probability

of finding the system in a state of energy En at time t .
In order to discuss radiation theory we need to find a suitable expression for the

Hamiltonian operator for a charged particle in an electromagnetic field. As before,
we begin our discussion with the classical Hamiltonian function.
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8.3.3 Hamilton operator for a charged particle in an electromagnetic field

The reader may wish to refer to Appendix 2 of this chapter where we have briefly
summarized those relationships from electromagnetic theory which are needed
later. The interaction of a charged particle of mass m with an electromagnetic field
is described by the well-known Lorentz force equation. If E and B represent the
electric and the magnetic field vector, e and v the charge and the velocity of the
particle, then the Lorentz force equation can be written in the form

F = eE + ev × B (8.65)

In deriving the classical Hamiltonian function it is more convenient to use the vector
potential A and the scalar potential φ rather than the field vectors themselves. The
basic relationships are

E = −∇φ − ∂A
∂t

, B = ∇ × A (8.66)

Hence the force equation assumes the form

F = −e
∂A
∂t

− e∇φ + ev × (∇ × A) (8.67)

We will now briefly show that equation (8.67) can also be derived with the help
of Lagrange’s equation of motion if L is given by

L = 1

2
mv2 + e(v · A) − eφ

= 1

2
m(ẋ2 + ẏ2 + ż2) + e(ẋ Ax + ẏ Ay + ż Az) − eφ

(8.68)

where we have used Cartesian coordinates. The use of the Lagrangian equation
requires that we treat (x, y, z) and (ẋ, ẏ, ż) as independent variables. For the x-
component we obtain

∂L

∂x
= e

(
ẋ
∂ Ax

∂x
+ ẏ

∂ Ay

∂x
+ ż

∂ Az

∂x

)
− e

∂φ

∂x
∂L

∂ ẋ
= mẋ + eAx = px

(8.69)

so that Lagrange’s equation of motion can be generalized to

d

dt
(mv + eA) = ∇L (8.70)

Using the vector identity

v × (∇ × A) = (∇A) · v − v · (∇A) (8.71)
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the gradient of L assumes the form

∇L = ev × (∇ × A) + ev · ∇A − e∇φ (8.72)

Application of the Euler expansion

dA
dt

= ∂A
∂t

+ v · ∇A (8.73)

yields

d

dt
(mv) = F = −e

∂A
∂t

− e∇φ + ev × (∇ × A) (8.74)

in accordance with (8.67)
In Appendix 8.8.1 it will be shown that the Hamiltonian function can be written as

H =
n∑

k=1

pkq̇k − L = p · v − L (8.75)

Since the momentum of the charged particle is given by

p = mv + eA (8.76)

the classical expression for H assumes the form

H = p · v − L = 1

2
mv2 + eφ (8.77)

Using (8.76) H can also be written as

H = 1

2m
(p − eA)2 + eφ (8.78)

For an electromagnetic wave such as that associated with a light wave the
Maxwell conditions

∇ · A = 0, φ = 0 (8.79)

apply, so that the Hamilton function will simplify. As shown in textbooks on quan-
tum mechanics the vectors p and A, in general, do not commute but follow the
rule

p · A − A · p = ih̄∇ · A (8.80)

Thus, by using (8.79), the Hamilton operator can be written as

H = p2

2m
− e

m
A · p + e2

2m
A2 (8.81)
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Since the perturbation of an atomic system by a light wave will be small, in
discussing radiation we may neglect the last term on the right-hand side of (8.81).
This term, however, cannot be neglected when discussing the perturbations due
to strong magnetic fields. The first term in (8.81) refers to the Hamiltonian of the
particle in the absence of a radiation field while the second term accounts for the
perturbation of the system due to an electromagnetic field. The perturbation part
H′ of the operator H is expressed by

H′ = − e

m
A · p = − eh̄

mi
A · ∇ (8.82)

where we have also replaced the linear momentum by the corresponding quan-
tum mechanical operator as defined in Table 8.1. The perturbation part H′ of the
Hamiltonian is also called the interaction Hamiltonian.

8.3.4 The interaction Hamiltonian

Now we consider a molecular system subjected to the perturbation H′ of an elec-
tromagnetic field of a light wave. Since the molecular dimensions are much smaller
than the wavelength of the infrared light, we may consider A to be a constant over
the molecule. For simplicity, we will assume that the field is that of a plane polar-
ized light wave traveling in the z-direction. With Ex = E0 exp [i(ωt − kz)] and
Ey = Ez = 0 we find from (8.66)

Ax = − Ex

iω
, Ay = 0, Az = 0 (8.83)

which enables us to obtain the interaction Hamiltonian.
By using in (8.82) the expression (8.76) of the momentum p we would again

obtain an expression that is proportional to A2 which we neglect in first-order
perturbation theory. Thus we simply write for the x-component of the momen-
tum px = mẋ . For a forced harmonic oscillation of frequency ω, px also varies
sinusoidally as stated in

px = m
dx

dt
= m

d

dt
[x0 exp(iωt)] = miωx (8.84)

so that the perturbation Hamiltonian is given by

H ′ = − e

m
A · p = ex Ex = ex E0,x cos ωt

= 1

2
ex E0,x [exp(iωt) + exp(−iωt)]

(8.85)
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The quantity ex Ex is the product of the dipole moment and the electric field in
the x-direction. Similarly we may consider the remaining directions. If the dipole
moment of the system is denoted by M whose components are

Mx =
∑

k

ek xk, My =
∑

k

ek yk, Mz =
∑

k

ekzk (8.86)

where the suffix k refers to particle k, then the interaction energy can be expressed
by M · E.

Any transition for which the probability can be calculated using the form (8.85)
is called an electric dipole moment transition. The effect of the magnetic field has
been ignored. The discussion we have carried out so far is a mixture of classical
and quantum mechanics which is known as a semi-classical treatment.

8.3.5 Computation of transition probabilities

We begin our discussion by restating the wave equation in the form

H� = ih̄
∂�

∂t
(8.87)

where � is the complete wave function. The Hamiltonian operator may be expressed
as H = H0 + H′. The part H0 is independent of time while H′ is a time-dependent
perturbation. The unperturbed eigenfunctions �0 satisfy

H0�
0 = ih̄

∂�0

∂t
(8.88)

In order to obtain a solution to (8.87) we expand the function � in terms of the
unperturbed eigenfunctions �0 permitting the expansion coefficients to vary with
time. Substituting

� =
∑

n

an(t)�0
n with �0

n = ψ0
n exp

(
− i Ent

h̄

)
(8.89)

into (8.87) we find the following equation

∑
n

an(t)H0�
0
n +

∑
n

an(t)H′�0
n = ih̄

∑
n

dan

dt
�0

n + ih̄
∑

n

an(t)
∂�0

n

∂t
(8.90)

Since the unperturbed eigenfunctions satisfy (8.88), equation (8.90) immediately
reduces to ∑

n

an(t)H′�0
n = ih̄

∑
n

dan

dt
�0

n (8.91)
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Now we multiply both sides of equation (8.91) by �0∗
m and then integrate over

the coordinate space yielding∑
n

an(t)
∫

�0∗
m H′�0

n dτ = ih̄
∑

n

dan

dt

∫
�0∗

m �0
n dτ = ih̄

dam

dt
(8.92)

Hence, due to the orthogonality of the wave functions we immediately obtain the
result2

dam

dt
= − i

h̄

∑
n

an(t)
∫

�0∗
m H′�0

n dτ = − i

h̄

∑
n

an(t)
(
�0∗

m |H′|�0
n

)
(8.93)

Often the integral is written in the operator form as shown in the final expression
of this equation. For any particular problem we have to solve a set of differential
equations to get explicit expressions for the am .

Temporarily we consider the perturbation for a single frequency. We assume
the simple situation that the system originally at t = 0 was in the state n so that
an(0) = 1 and all the other ak are zero at time t = 0. For a sufficiently short
time so that all ak are negligible except an , we find the following approximate
expression

am(t) = − i

h̄

∫ t

0

∫
�0∗

m H′�0
n dτ dt ′ with am(0) = 0 (8.94)

Making use of �0
n = ψ0

n exp(−i Ent/h̄) where the ψ0
n depend on space only, and

replacing the perturbation Hamiltonian by (8.85), upon integration we obtain

am(t) = 1

2
E0,x Xnm

(
1 − exp

[
i t
h̄ (Em − En + hν)

]
Em − En + hν

+ 1 − exp
[

i t
h̄ (Em − En − hν)

]
Em − En − hν

)

(8.95)

The expression

Xnm =
∫

ψ0∗
m Mxψ

0
n dτ (8.96)

is called the x-component of the matrix element of the dipole moment for the
transition n to m.

Let us consider the case Em > En so that the transition corresponds to absorption.
The coefficient am will be large only if Em − En is approximately equal to hν so
that the denominator of the second term on the right-hand side of (8.95) is nearly

2 Even shorter is Dirac’s notation which is written as 〈m|H′|n〉 where the terms 〈m| = �0∗
m and |n〉 = �0

n are
known as (bra) and (ket), respectively. The integration over all space is implied.
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zero. The first term can be ignored so that the product ama∗
m is given with excellent

approximation by

am(t)a∗
m(t) = E2

0,x |Xnm |2 sin2
[

π t
h (Em − En − hν)

]
(Em − En − hν)2

(8.97)

In case of emission En > Em the first expression will be the dominant term and a
similar expression will be found for ama∗

m .
Inspection of (8.97) shows that for small t the transition probability varies accord-

ing to t2 which is an unexpected result. This difficulty is due to the fact that so far we
have considered only a single frequency. From experience we know that we never
deal with strictly monochromatic radiation but always with a range of frequencies
and with radiation fields having components in all three directions.

The energy density of the radiation field in the frequency interval ν to ν + dν

will be denoted by ûνdν. From electromagnetic theory it is known that the energy
density and the electric field are related by

ûν = ε0 E2(ν) (8.98)

where the overbar represents an average value. For isotropic radiation the following
equation is valid

1

3
E2(ν) = E2

x (ν) = E2
y(ν) = E2

z (ν) (8.99)

with

E2
x (ν) = E2

0,x (ν) cos2 2πνt = 1

2
E0,x (ν)2 (8.100)

Hence the energy density can be expressed by the following relation

ûν = 3

2
ε0 E2

0,x (8.101)

Assuming that ûν is constant over the frequency range ν to ν + dν we may
integrate (8.97) yielding

am(t)a∗
m(t) = 2

3ε0
|Xnm |2ûν

∫ ∞

−∞

sin2
[

π t
h (Em − En − hν)

]
(Em − En − hν)2

dν (8.102)

At first glance it seems to be inconsistent to treat ûν as a constant and then
integrate over the complete frequency range from −∞ to +∞. Nevertheless, the
approximation is entirely satisfactory since ama∗

m is very small except for such
frequencies that Em − En = hν. By observing that

∫∞
−∞ sin2 α/α2dα = π we may
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carry out the integration and find the result

am(t)a∗
m(t) = 2π2

3ε0h2
|Xnm |2ûν t (8.103)

This relation shows that now ama∗
m varies linearly with time t as should be expected.

Corresponding expressions can be obtained for the other directions.
Thus we find for the total transition probability per unit time the expression

am(t)a∗
m(t)

t
= 2π2

3ε0h2
|Rnm |2ûν (8.104)

with

|Rnm |2 = |Xnm |2 + |Ynm |2 + |Znm |2 =
∣∣∣∣
∫

ψ0∗
m Mψ0

n dτ

∣∣∣∣
2

(8.105)

The term Rnm is the total matrix element for the transition n to m.
So far our discussion includes only transitions between the so-called non-

degenerate energy levels. Frequently, however, there are several different orthogonal
eigenfunctions associated with one and the same eigenvalue so that we are deal-
ing with a degenerate state. The frequency of this occurrence, i.e. the number of
eigenfunctions corresponding to this state, is the so-called statistical weight.

Suppose that the levels n and m are degenerate with statistical weights gn and
gm . The probability of transition per unit time from one of its lower states ni to the
upper level is given by

am(t)a∗
m(t)

t
= 2π2

3ε0h2
ûν

∑
k

|R(ni mk)|2 (8.106)

where the summation must be carried out over all states belonging to the upper
level. Let Nn represent the number populating the lower level n. Assuming that the
lower states will be equally distributed between the gn states, then each state will
have a population Nn/gn . Now the transition probability per unit time is given by

am(t)a∗
m(t)

t
= 2π2

3ε0h2gn
ûν

∑
i

∑
k

|R(ni mk)|2 (8.107)

8.3.6 Einstein transition probabilities

So far we have discussed the process of absorption and emission in the presence of
an electromagnetic field. Since a system in an excited state can emit radiation even
in the absence of an electromagnetic field, the completion of the theory of radiation
requires the calculation of the transition probability of spontaneous emission. The
direct quantum-mechanical calculation of this quantity is a matter of great difficulty.
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Fortunately, Einstein has shown how to tackle the problem of spontaneous emission
by using thermodynamic reasoning.

We investigate the equilibrium between two states of different energy. As stated
in equation (8.46) the transition between two states is always accompanied by the
absorption or emission of radiation. Let us now consider the radiation density in
an enclosure having opaque walls of uniform temperature T containing a large
number of quantized systems which can interact with the radiation. Two states m
and n of these systems have the respective energies Em and En . Any transition
between these states will be accompanied by absorption or emission of radiation.
For a wave, considering absorption with Em > En , we have

hνmn = Em − En (8.108)

We will denote the energy density in the spectral interval ranging from νmn to
νmn + dνmn by û(νmn)dνmn . For ease of identification we will momentarily call l
the lower and u the upper energy levels. The probability pabs that a system in state
l absorbing a quantum of radiative energy and undergoing a transition to state u in
unit time is given by

pabs(l → u) = Bl→uû(νlu) (8.109)

where the coefficient Bl→u is known as the Einstein coefficient of absorption. The
transition in the opposite direction is given by

pem(u → l) = Au→l + Bu→lû(νlu) (8.110)

where the coefficient Bu→l is the Einstein coefficient of induced emission which is
stimulated emission in the presence of the radiation field of volume density û(ν). In
addition spontaneous emission is taking place which is described by the Einstein
coefficient of spontaneous emission Au→l.3

Within the enclosure the systems will have various energy states. We denote the
number of systems of energy El by Nl, and the number of systems Eu by Nu, then
in equilibrium the number of transitions from u → l must be equal to the number
of transitions from l → u. Therefore, we must have the equilibrium statement

Nl Bl→uû(νlu) = Nu [Au→l + Bu→lû(νlu)] (8.111)

Since Nl, Nu are numbers per unit volume, each term expresses the number of
transitions in unit time per unit volume. Equation (8.111) can be solved to give the

3 The quantities û(νlu ) and Bl→u are respectively expressed in J s m−3 and m3 J−1 s−2 while Au→l is expressed
in s−1.
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ratio

Nu

Nl
= Bl→uû(νlu)

Au→l + Bu→lû(νlu)
(8.112)

In an enclosure at temperature T we may also express the ratio (8.112) with the
help of the Boltzmann distribution. The number of systems having an energy Ei

above the ground state is given by

Ni = N

Z
gi exp

(
− Ei

kT

)
(8.113)

where N is the total number of systems and Z the partition function, that is the sum
over all states. The quantity gi is the statistical weight of the level of energy Ei .
Therefore, at equilibrium the following expression is valid

Nu

Nl
= gu

gl
exp

(
− Eu − El

kT

)
= gu

gl
exp

(
−hνlu

kT

)
(8.114)

Substituting (8.114) into (8.112) and solving for the energy density û(νlu), we obtain

û(νlu) = gu Au→l

gl Bl→u exp (hνlu/kT ) − gu Bu→l
(8.115)

Within the enclosure the energy density must also be given by Planck’s radiation
law

û(νlu) = 8πhν3
lu

c3

1

exp (hνlu/kT ) − 1
(8.116)

Comparison of (8.115) and (8.116) gives the important relations

Au→l = 8πhν3
lu

c3
Bu→l, gu Bu→l = gl Bl→u (8.117)

From time-dependent perturbation theory we obtained equation (8.107) which
expresses the Einstein probability for absorption. Equation (8.109) also states this
probability, but the Einstein coefficient remained undefined. We observe that in
(8.107) the level m refers to the upper level. By setting (8.107) equal to (8.109),
replacing n by l we find the important equation for the Einstein coefficient for
absorption

Bl→u = 2π2

3ε0h2gl

∑
i

∑
k

|R(li uk)|2 (8.118)

This formula will be needed when we derive the line intensity equation for the
spectral absorption coefficient. Using (8.117) and (8.118) yields the coefficient for
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spontaneous emission

Au→l = 16π3ν3
lu

3hε0c3gu

∑
i

∑
k

|R(li uk)|2 (8.119)

To the degree of approximation we have used above, the Einstein coefficients depend
mainly on the matrix element for the electric dipole moment between the two states.

If the variation of the field over the molecule is not neglected additional terms will
appear. The first two of these correspond to magnetic dipole and electric quadrupole
radiation. In comparison to the transition probability of electric dipole radiation the
contributions of these additional terms may be ignored in most cases. Often these
terms are loosely called forbidden transitions.

8.3.7 Line intensities

We start the discussion with Beer’s law as given by

d Iν = −kν Iν du (8.120)

Here, kν is the monochromatic absorption coefficient and du the differential absorb-
ing mass. As we know, a spectral line is not infinitely sharp but it is broadenend.
Over the small frequency interval occupied by a spectral line, the radiative energy
from a nearly parallel beam varies so little that Iν may be treated as a constant.
Thus we may perform the frequency integration and obtain

d Iν = −Iν du
∫ ∞

−∞
kν dν = −SIν du (8.121)

where we have used the definition (7.13) for the line intensity S. To find a theoretical
expression for S we need to relate this quantity to the net number of transitions
Ntr from the lower energy level El to the upper energy level Eu. The number Ntr

induced by a radiation field of energy density per unit volume û(νlu) is given by

Ntr = (Nl Bl→u − Nu Bu→l) û(νlu) (8.122)

Due to (8.117) we may rewrite this expression as

Ntr = Bl→u

(
Nl − Nu

gl

gu

)
û(νlu) (8.123)

The energy absorbed in each transition is hνlu so that the decrease d Iν in the
beam may be expressed as

d Iν = −hνlu

c
Bl→u

(
Nl − Nu

gl

gu

)
Iνlu du (8.124)
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Here we have substituted Iν/c for ûν . Comparing the latter equation with (8.121)
we find

S = hνlu

c
Bl→u

(
Nl − Nu

gl

gu

)
(8.125)

With the help of (8.118) we now replace Bl→u by Bm→n and obtain

S = 2π2νmn

3hε0c

∑
i

∑
k

|R(mi nk)|2
(

Nm

gm
− Nn

gn

)

with R(mi nk) =
∫

ψ0∗(mi )Mψ0(nk) dτ

(8.126)

The indices i and k number the degenerate wave functions belonging to the energy
levels m and n, respectively. The summation must be carried out over all possible
combinations of wave functions of the upper state with wave functions of the lower
state.

In case of thermal equilibrium, using the Boltzmann distribution (8.113), the line
intensity can also be expressed as

S = 2π2νmn

3hε0c

∑
i

∑
k

|R(mi nk)|2 N

Z

[
1 − exp

(
−hνnm

kT

)]
exp

(
− Em

kT

)

(8.127)

The frequency νnm has previously been called ν0 which refers to the frequency
defining the position of the center of the absorption line. The above line intensity
formulas ignore the effect of nuclear spin which is responsible for the existence of
the so-called hyperfine structure of the spectrum, see Rothman et al. (1987, 1992).

Very few problems have exact quantum mechanical solutions. To this class of
problems belong the harmonic oscillator and the rigid rotator for which exact solu-
tions can be given. More complicated problems require approximate solutions.

8.4 Vibrations and rotations of molecules

8.4.1 The harmonic oscillator

Harmonic oscillation is of considerable importance in quantum mechanics. The
model of the simple harmonic oscillator is used to understand the vibrations of
diatomic and polyatomic molecules. A harmonic oscillator is a particle of mass m
moving in a straight line (say along the x-axis) subject to the potential V = kx2/2
where k is Hooke’s constant. According to (8.58) the classical Hamiltonian of the
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system is given by

H = p2

2m
+ 1

2
kx2 (8.128)

where p is the linear momentum. Using Table 8.1, the Hamiltonian operator is
expressed by

H = − h2

8π2m

d2

dx2
+ 1

2
kx2 (8.129)

and the wave equation by

d2ψ

dx2
+ 8π2m

h2

(
E − 1

2
kx2

)
ψ = 0 (8.130)

Introducing the abbreviations

α = 8π2m

h2
E, β = 2π

√
mk

h
(8.131)

(8.130) assumes the form

d2ψ

dx2
+ (α − βx2)ψ = 0 (8.132)

Changing the variable according to

ξ =
√

βx ,
d2

dx2
= β

d2

dξ 2
(8.133)

we find

d2ψ

dξ 2
+
(

α

β
− ξ 2

)
ψ = 0 (8.134)

Now we investigate which form ψ must have in order to be an acceptable wave
function for large values of ξ . For sufficiently large values of ξ the ratio α/β can
be neglected in comparison to ξ 2 so that we get the approximate equation

d2ψ

dξ 2
− ξ 2ψ = 0 (8.135)

This equation is approximately satisfied by

ψ = C exp

(
±ξ 2

2

)
with

d2

dξ 2
exp

(
±ξ 2

2

)
= exp

(
±ξ 2

2

)
(ξ 2 ± 1) (8.136)

since ±1 may be neglected in the region of large ξ 2. For obvious reasons we cannot
use the solution exp(+ξ 2/2), but exp(−ξ 2/2) behaves satisfactorily at large values
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of ξ . Thus we are led to the trial solution

ψ(ξ ) = u(ξ ) exp

(
−ξ 2

2

)
(8.137)

Substitution of (8.137) into (8.134) yields

d2u

dξ 2
− 2ξ

du

dξ
+
(

α

β
− 1

)
u = 0 (8.138)

By setting α/β − 1 = 2n, we obtain Hermite’s differential equation whose solu-
tion are the well-known Hermite polynomials Hn, n = 0, 1, . . .

Hn(ξ ) = (−1)n exp(ξ 2)
dn

dξ n
[exp(−ξ 2)] (8.139)

A few low-order expressions of these polynomials are listed next

H0(ξ ) = 1, H1(ξ ) = 2ξ, H2(ξ ) = 4ξ 2 − 2 (8.140)

A particular solution to equation (8.138) can be written as

u(ξ ) = Hn(ξ ) (8.141)

so that the wave function is given by

ψ(ξ ) = C Hn(ξ ) exp

(
−ξ 2

2

)
, C = const (8.142)

Using equation (8.131) we find that the energy E is quantized and must be written
as

E = h

2π

(
n + 1

2

)√
k

m
=
(

n + 1

2

)
hν, n = 0, 1, . . . (8.143)

where ν is the frequency of the classical harmonic oscillator. The state with n = 0
is the vibrational ground state whose vibrational energy is not zero. The residual
energy is known as the zero point energy. This is in agreement with Heisenberg’s
uncertainty principle which states that one can never precisely know the position
and the momentum of a particle. If the oscillator had zero energy it would have zero
momentum and would be located exactly at the position of the minimum potential
energy.

Finally, we have to find the normalization constant C by considering the condition
(8.142). For the present situation we obtain∫ ∞

−∞
ψ∗

n ψn dx = C2

√
β

∫ ∞

−∞
Hn(ξ )2 exp(−ξ 2) dξ = 1 with C = β1/4√

2nn!
√

π

(8.144)



8.4 Vibrations and rotations of molecules 307

Omitting details we find for the normalized wave function the following expression

ψn(ξ ) = Nn Hn(ξ ) exp

(
−ξ 2

2

)
with Nn =

(√
β

π

1

2nn!

)1/2

(8.145)

with ξ = √
βx .

The solution of the harmonic oscillator problem outlines the common approach
to solve the wave equation. We convert the wave equation into one of the standard
differential equations whose solutions are known. This technique will also be used
in connection with the rigid rotator problem.

8.4.2 Vibration of diatomic molecules

We consider the vibrations of the two atoms relative to each other. The simplest
form of vibrations in a diatomic molecule is that each atom moves toward or away
from the other in simple harmonic motion. For a molecule consisting of two like
atoms such as N2, O2 (homonuclear) the dipole moment is zero, and therefore no
transitions between the different vibrational levels will be observed. This means that
no infrared absorption or emission occurs. In contrast to this, diatomic molecules
such as HCl (heteronuclear) do have a permanent dipole moment.

The harmonic oscillator potential energy curve is not particularly accurate when
considering actual molecules. A more satisfactory procedure is to assume some
appropriate analytical expression for the potential energy curve such as

V (r ) = D (1 − exp [−β(r − re)])
2 (8.146)

This is the so-called Morse function. Here D is the dissociation energy of the
molecule which is obtained if r → ∞. The quantity β is a constant which differs
from molecule to molecule. If the distance r is equal to the equilibrium value re

the potential energy has the minimum value V = 0. For r = 0 the potential energy
approaches a large but finite value. (8.146) is satisfactory for many situations.
However, for reasons of mathematical simplicity we will presently continue to use
the harmonic oscillator approximation.

To determine the vibrational energy states it will be useful to introduce the
concept of the reduced mass. If r1 and r2 are the respective distances of the atoms
from the center of mass of the molecule, we obtain

m1r1 = m2r2 (8.147)

If r = r1 + r2 then r1 and r2 are given by

r1 = m2

m1 + m2
r , r2 = m1

m1 + m2
r (8.148)
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The kinetic energy K of the diatomic system is expressed by

K = 1

2
m1ṙ2

1 + 1

2
m2ṙ2

2 = 1

2
µṙ2 with µ = m1m2

m1 + m2
(8.149)

where µ is the reduced mass. Thus the classical Hamilton function is given by

H = 1

2
µṙ2 + V (r ) with V (r ) = 1

2
k(r − re)2 (8.150)

so that Schrödinger’s equation follows immediately

d2ψ

dr2
+ 8π2µ

h2
[E − V (r )] ψ = 0 (8.151)

Setting r − re = x , the latter equation has the form (8.130). Thus, according to
(8.145) and (8.143), we find that the wave function and the energy of the diatomic
system are given by

ψn(x) =
(√

β/π

2nn!

)1/2

Hn(
√

βx)e− 1
2 βx2

, β = 2π
√

µk/h (8.152)

and

E = h

2π

(
v + 1

2

)√
k

µ
=
(

v + 1

2

)
hν (8.153)

As is customary in spectroscopy, we have used the symbol v for the vibrational
quantum number. It will be observed that the vibrational spectrum of a diatomic
molecule considered as a harmonic oscillator consists of one frequency. The selec-
tion rule �v = ±1 will be derived later.

8.4.3 Vibration of polyatomic molecules

As stated before, a molecule consisting of n atoms has 3n degrees of freedom. Three
coordinates are required to describe the translational motion of the entire system
considered as concentrated at the center of mass, and three degrees are required, in
general, to describe the rotational motion of the system about its center of mass.
Thus 3n − 6 degrees of freedom are left to describe the vibrational motion of the
nuclei of the atoms relative to the axes with origin at the center of mass. For the
linear CO2 molecule (3n − 5 vibrational degrees of freedom) and for the water
vapor molecule we have shown how to find the normal coordinates and normal
frequencies. Any vibrational motion of the molecule may be constructed from the
superposition of the normal vibrations.
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In textbooks on theoretical mechanics, see also the previous examples, it is shown
that in terms of the normal coordinates the kinetic and the potential vibrational
energy assume the simple form

K = 1

2

3n−6∑
k=1

q̇2
k , V = 1

2

3n−6∑
k=1

λkq2
k (8.154)

For the linear molecule the summation extends to 3n − 5. In V there are no
terms present involving the cross-products of the coordinates qk . In the Hooke’s
law approximation the λk are constants. By naively treating the qk as if they were
ordinary Cartesian coordinates, ignoring any interaction with rotational motion, the
wave equation can be written as

3n−6∑
k=1

∂2ψ

∂q2
k

+ 8π2

h2

(
E − 1

2

3n−6∑
k=1

λkq2
k

)
ψ = 0 (8.155)

This equation is separable into 3n − 6 (or 3n − 5) equations by using the
substitution

ψ = ψ1(q1)ψ2(q2) · · · ψ3n−6(q3n−6) (8.156)

This leads to wave equations of the type

d2ψk(qk)

dq2
k

+ 8π2

h2

(
Ek − 1

2
λkqk

)
ψk(qk) = 0 (8.157)

The total energy E is the sum of the energies Ek associated with each normal
coordinate, i.e.

E =
3n−6∑
k=1

Ek (8.158)

Here each equation is an ordinary differential equation in one variable. From a
comparison with the wave equation for the linear harmonic oscillator (8.151) and
the energy relation (8.153) we find that the eigenvalues for this problem are given
by

Ek = hνk

(
vk + 1

2

)
, vk = 0, 1, . . . (8.159)

and the νk follow from

νk = 1

2π

√
λk (8.160)

This is the classical oscillation frequency of the normal vibration k and vk is
the vibrational quantum number. The total vibrational energy of the system of n
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Fig. 8.9 Coordinates of the rigid rotator.

particles is found by introducing (8.159) into (8.158). For further details see, for
example, Eyring et al. (1965).

8.4.4 Rotation of diatomic molecules

As an idealization of a diatomic molecule, we assume that the molecule consists of
two atoms rigidly connected by a weightless link of constant length R. In place of
the space coordinates (x1, y1, z1) and (x2, y2, z2) of the two point masses m1 and
m2 we are going to introduce the center of mass coordinates (x, y, z) of the system
and the spherical coordinates (r, θ, ϕ) of one particle referred to the other as origin.
The spherical coordinates are given by

x2 − x1 = R sin θ cos ϕ, y2 − y1= R sin θ sin ϕ, z2 − z1 = R cos θ

(8.161)
were θ is the polar angle and ϕ the azimuth angle of the system, see also
Figure 8.9. The center of mass coordinates of the diatomic system are given by

x = m1x1 + m2x2

m1 + m2
, y = m1 y1 + m2 y2

m1 + m2
, z = m1z1 + m2z2

m1 + m2
(8.162)

For brevity of notation we introduce the symbols a and b

a = m2

m1 + m2
R, b = m1

m1 + m2
R (8.163)

By eliminating the coordinates (x2, y2, z2) and then (x1, y1, z1) from (8.161) and
(8.162), we find

x1 = x − a sin θ cos ϕ, y1 = y − a sin θ sin ϕ, z1 = z − a cos θ

x2 = x + b sin θ cos ϕ, y2 = y + b sin θ sin ϕ, z2 = z + b cos θ

(8.164)
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Thus the center of mass coordinates have been separated from the spherical coor-
dinates. Since we are not interested in the translational motion of the molecule in
space, we may regard the center of mass as fixed. In terms of the original coordinates
(x1, y1, z1) and (x2, y2, z2) the kinetic energy of the system is given by

K = m1

2

(
ẋ2

1 + ẏ2
1 + ż2

1

)+ m2

2

(
ẋ2

2 + ẏ2
2 + ż2

2

)
(8.165)

Using (8.164) the kinetic energy can also be written as

K = m1a2 + m2b2

2

[(
dθ

dt

)2

+ sin2 θ

(
dϕ

dt

)2
]

(8.166)

Setting the fixed center of mass coordinates (x, y, z) equal to zero, the moment of
inertia I about an axis through the center of mass and perpendicular to the molecular
axis is I = m1a2 + m2b2 so that the kinetic energy can be written as

K = I

2

[(
dθ

dt

)2

+ sin2 θ

(
dϕ

dt

)2
]

(8.167)

The quantum mechanical operator for the kinetic energy, see Table 8.1, can be
written down by replacing the Laplacian in rectangular coordinates by the Laplacian
in spherical coordinates. Thus the quantum mechanical Hamiltonian is given by

H = − h2

8π2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂ϕ2

]
+ V

(8.168)

Since no external forces are acting on the rotator we may set the potential energy
V = 0. Moreover, setting r = 1, mr2 = m = I , we find that the Schrödinger equa-
tion is given by

1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

sin2 θ

∂2ψ

∂ϕ2
+ 8π2 I E

h2
ψ = 0 (8.169)

which is a partial differential equation with two independent variables. We attempt
to solve this equation by separating the variables, i.e. we are looking for a solution
in the form

ψ = �(θ)�(ϕ) (8.170)

Substituting (8.170) into (8.169) gives

sin θ

�

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 8π2 I E

h2
sin2 θ = − 1

�

∂2�

∂ϕ2
(8.171)
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Since the left-hand side of this equation depends on the variable θ , the right-hand
side on the variable ϕ, both sides must be equal to a constant, say M2. Thus we
obtain the two differential equations

d2�

dϕ2
= −M2� (8.172)

and

1

sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
− M2�

sin2 θ
+ 8π2 I E

h2
� = 0 (8.173)

From (8.172) we immediately obtain the solution

�(ϕ) = C exp(±i Mϕ) (8.174)

where C is an integration constant. This is an acceptable solution provided that M
is an integer. This condition arises because the function �(ϕ) must be single-valued
which implies

�(ϕ) = �(ϕ + 2π ) or exp(i Mϕ) = exp[i M(ϕ + 2π )] (8.175)

This requires that exp(i2π M) is unity which is possible only if M is an integer. It
is easy to show that the normalized function �M is given by

�(ϕ) = �M (ϕ) = 1√
2π

exp(±i Mϕ), M = 0, 1, . . . (8.176)

In order to solve equation (8.173) we set x = cos θ and introduce the derivatives
d/dθ and d2/dθ2 according to

x = cos θ,
d

dθ
= −sin θ

d

dx
,

d2

dθ2
= sin2 θ

d2

dx2
− cos θ

d

dx
(8.177)

After some simple rearrangements we obtain

(1 − x2)
d2�

dx2
− 2x

d�

dx
+
(

8π2 I E

h2
− M2

1 − x2

)
� = 0 (8.178)

This equation has the form

(1 − x2)
d2u

dx2
− 2x

du

dx
+
(

J (J + 1) − M2

1 − x2

)
u = 0 (8.179)

which is known as the associated Legendre equation having the solution

u = P M
J (x) where P M

J (x) = (1 − x2)M/2 d M

dx M
PJ (x) (8.180)
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The P M
J (x) are the associated Legendre polynomials and the PJ (x) the ordinary

Legendre polynomials. Whenever M > J the function P M
J (x) = 0. We have dis-

cussed the orthogonality properties of the Legendre polynomials in Section 2.4
when treating the scattering problem. Equations (8.178) and (8.179) are identical
if

8π2 I E

h2
= J (J + 1) or E = h2

8π2 I
J (J + 1), J = 0, 1, . . . (8.181)

Since M enters equation (8.178) only as M2 we must have �J,M = �J,−M .
Solution functions that are finite, have integrable squares and are single valued,
exist only for conditions that J is zero or a positive integer and J ≥ |M |. Thus the
correct normalized solution function is given by

�(θ ) = �
|M |
J (θ ) =

√
(2J + 1)

2

(J − |M |)!
(J + |M |)! P |M |

J (cos θ ) (8.182)

and the complete wave function by

ψJ,M = �M (ϕ)�|M |
J (θ) (8.183)

The allowed wave functions depend on the quantum numbers J and M which
are known as the rotational and magnetic quantum numbers, respectively. For every
value of J , there will be 2J + 1 values of M . For example, if J = 2, M can have
the values 0, ±1, ±2. This is called a (2J + 1) degeneracy. In the presence of an
electric or magnetic field, this degeneracy is removed if the molecule has an electric
or magnetic dipole moment, and the energy of the state will depend on M also. We
will return to this topic later.

In order that radiation may interact with the molecule to produce rotation or
that a rotating molecule may emit or absorb radiation, it is necessary that the
molecule possesses an electric moment implying that the molecule must have a
dipole moment. For this reason homonuclear molecules (having a symmetrical
charge distribution about their center of mass) do not have a pure rotation spectrum.

We will show later that the selection rule governing rotational transitions is given
by

�J = J ′ − J ′′ =±1 (8.184)

Thus the frequencies νR absorbed or emitted by a rotating molecule correspond to
energy differences between adjacent energy levels. Denoting the rotational quantum
numbers J ′ and J ′′, with J ′ > J ′′, we find from equation (8.181) the following
relation

νR = h

8π2 I
[J ′(J ′ + 1) − J ′′(J ′′ + 1)] = h

4π2 I
(J ′′ + 1), J ′ > J ′′ (8.185)
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or ν̃R = νR/c, that is division of the frequency ν by the speed of light c gives the
wave number ν̃.

8.4.5 Vibration–rotation of diatomic molecules

If a molecule absorbs electromagnetic energy of sufficiently high frequency, both
vibration and rotation may occur simultaneously. While the rigid rotator consists
of two mass points connected by a massless bar, the nonrigid (vibrating) rotator
consists of two mass points which are connected by a massless spring. In order
to describe the nonrigid rotator mathematically, we make use of the Hamiltonian
operator (8.168) and find the following equation

1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

r2 sin2 θ

∂2ψ

∂ϕ2

+ 8π2µ

h2
[E − V (r )]ψ = 0 (8.186)

where µ is the reduced mass. By writing the wave function as the product
ψ = ψr (r ) �(θ ) �(ϕ), (8.186) may be separated into three ordinary differential
equations. In the interest of brevity we omit mathematical details which can be
found in Eyring et al. (1965), Pauling and Wilson (1935), and in many other mod-
ern textbooks on quantum mechanics.

As before, solving the � and � equations leads to the introduction of the rota-
tional quantum number J . This is the Schrödinger equation for the r -component
of the wave function

1

r2

∂

∂r

(
r2 ∂ψr

∂r

)
+
(

8π2µ

h2
[E − V (r )] − J (J + 1)

r2

)
ψr = 0 (8.187)

Introducing into this equation the potential energy function V (r ) of the harmonic
oscillator, we find that the energy of the system is given by

E =
(

v + 1

2

)
hνe + J (J + 1)

h2

8π2 I
− J 2(J + 1)2h4

128π6ν2
e I 2

with νe = 1

2π

√
k

µ

(8.188)

where µ, as before, is the reduced mass. The subscript e on the frequency symbol
refers to the equilibrium position of the molecule. Inspection of equation (8.188)
shows that the first term describes the vibrational energy of the molecule. The
second term is the energy of rotation, assuming that the molecule is rigid, while the
third term introduces a correction taking into account the stretching of the actual
nonrigid molecule due to the rotation.
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It turns out that the harmonic oscillator approximation is a good approximation
only in the neighborhood of the equilibrium value of r . A more refined approx-
imation is the Morse function as introduced in (8.146). Substituting (8.146) into
(8.187) yields a new solution for the frequency

ν̃ = E

hc
= ν̃e

(
v + 1

2

)
− xeν̃e

(
v + 1

2

)2

+ J (J + 1)Be

− J 2(J + 1)2 De − αe

(
v + 1

2

)
J (J + 1) (8.189)

where

ν̃e = β

2πc

(
2D

µ

)1/2

, De = h3

128π6µ3ν̃2
e c3r6

e

, Be = h

8π2 I c

xe = hν̃ec

4D
, αe = 3h2ν̃e

16π2µr2
e D

(
1

βre
− 1

β2r2
e

) (8.190)

Since we have divided the energy E by hc, (8.189) is expressed in wave numbers.
For most diatomic molecules this equation gives rather accurate values of the energy
levels.

The first term of (8.189) represents the harmonic oscillator approximation, the
second is the correction for the anharmonicity due to the Morse function. The third
and the fourth terms describe the rotational part of the energy. The fifth term takes the
interaction of vibration and rotation into account. If still greater accuracy is desired,
a term proportional to (v + 1/2)3 or even higher powers may be introduced. The
selection rule for J , that is �J = ±1, is still obeyed in this more complicated model.
The vibrational transitions, however, are not restricted to �v = ±1 but may also
differ by larger integral amounts. The transitions due to �v = ±2, �v = ±3, . . .

are very weak. As a matter of terminology, transitions for which �v = ±1 are
known as the fundamental transitions, �v = ±2 as the first overtone transition or
second harmonic, �v = ±3 as the second overtone or third harmonics and so on.

Now we discuss an energy level diagram of the diatomic molecule on the assump-
tion that the molecular motion can be approximated as a harmonic oscillator and a
rigid rotator. First we introduce the definition

ν̃0 = ν̃e(v′ − v′′) − xeν̃e

[(
v′ + 1

2

)2

−
(

v′′ + 1

2

)2
]

, v′ > v′′ (8.191)

describing the vibrational energy difference due to the transition v′′ to v′ with
v′ > v′′. We consider an absorption or emission process between levels having
quantum numbers v′′ and J ′′ and v′ and J ′ where v′ and v′′ have fixed values. For
J ′ − J ′′ = 1 we find

ν̃R = ν̃0 + 2(J + 1)Be (8.192)
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Fig. 8.10 Schematic representation of the first few P and R transitions of the
vibration–rotation spectrum (rigid rotator and harmonic oscillator approximation)
of a diatomic molecule. After Houghton and Smith (1966).

where J ′′ has been replaced by J for simplicity. The final two terms in (8.189)
have been omitted for simplicity. This transition results in the so-called R branch
as shown in Figure 8.10. If the rotational transition is J ′ − J ′′ = −1 then we find

ν̃P = ν̃0 − 2J Be (8.193)

describing the P branch.
The fine structure consists of nearly equally spaced lines on each side of the band

center where a line is missing since �J �= 0. The line spacing has been exaggerated
compared with the spacing of the vibrational levels.

In a very few molecules transitions corresponding to �J = 0 are also allowed
giving a group of lines which is called the Q branch. When discussing rotation
of the molecule we have implicitly assumed that there is no angular momentum
about the internuclear axis. It is possible, however, that the electrons surrounding
the nucleus possess angular momentum about this axis resulting in the selection
rule �J = 0 so that the Q branch occurs. Since all lines with �J = 0 are located
at nearly the same frequency, a strong line is produced at the center of the band.
For additional details see, for example, Houghton and Smith (1966) and Herzberg
(1964a,b).

8.5 Matrix elements, selection rules and line intensities

Without derivations we have previously given the selection rules for the one-
dimensional harmonic oscillator and the rigid rotator. We will now show in which
way these may be obtained.
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8.5.1 The harmonic oscillator

In the harmonic oscillator approximation the dipole moment varies linearly with
the internuclear distance

M = M0 + M1(r − re) = M0 + M1x = M0 + M1√
β

ξ (8.194)

Here, M0 is the dipole moment in equilibrium position while x = r − re is the
change of the internuclear distance. The quantity M1 is the rate of change of the
dipole moment with internuclear distance and ξ = √

βx . The defining relation
(8.105) for the matrix element is rewritten as

R(v′′, v′) = M0

∫ ∞

−∞
ψ0∗

v′′ (x)ψ0
v′(x)dx + M1

∫ ∞

−∞
xψ0∗

v′′ (x)ψ0
v′(x) dx (8.195)

now using the vibrational quantum numbers (v′′, v′). From (8.145) we repeat the
complete time-independent one-dimensional harmonic oscillator wave function

ψv(ξ ) = Nv Hv(ξ ) exp

(
−ξ 2

2

)
with Nv =

(√
β

π

1

2vv!

)1/2

(8.196)

This wave function will be introduced into (8.195) in place of the unperturbed wave
functions. These form a complete orthonormal set. Thus we find

R(v′′, v′) = M0 Nv′′ Nv′

∫ ∞

−∞
exp(−ξ 2)Hv′′(ξ )Hv′(ξ )

dξ√
β

+M1
Nv′′ Nv′√

β

∫ ∞

−∞
ξ exp(−ξ 2)Hv′′(ξ )Hv′(ξ )

dξ√
β

(8.197)

Due to the orthogonality relations∫ ∞

−∞
ψ0∗

v′ ψ0
v′′ dx = δv′,v′′ (8.198)

the first integral vanishes if v′ �= v′′. In order to evaluate the second integral we
introduce the recursion formula for the Hermite polynomials as given by

ξ Hv(ξ ) = vHv−1(ξ ) + 1

2
Hv+1(ξ ) (8.199)

Due to the orthogonality of the wave functions we immediately find the selection
rules

v′ = v′′ + 1, v′ = v′′ − 1, or v′ − v′′ = �v = ±1 (8.200)

Details of the calculations are left to the exercises.
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We are now ready to calculate the matrix elements for the two transitions �v =
±1. We recall from (8.126) that the line intensity is proportional to the square of
the matrix elements. For the one-dimensional harmonic oscillator they are given by
the following two equations

|R(v′′, v′)|2 = M2
1




v′′ + 1

2β
for �v = +1

v′′

2β
for �v = −1

(8.201)

More complicated problems do not have an exact solution and approximate methods
must be used. By considering, for example, the harmonic oscillator wave functions
as the unperturbed functions it is possible to tackle the anharmonic oscillator as a
perturbation problem. We are not going to discuss the procedure which is explained
in textbooks on quantum mechanics.

8.5.2 The rigid rotator

For rotational transitions the matrix element may be expressed in the form

R(J ′′, M ′′, J ′, M ′) =
∫

ψ0∗
J ′′,M ′′Mψ0

J ′,M ′ dτ (8.202)

where J ′, M ′, J ′′, M ′′ are the rotational and magnetic quantum numbers of the
upper and lower states. The Cartesian components of the dipole moment in the x ,
y and z directions are given by

Mx = M̄ sin θ cos ϕ, My = M̄ sin θ sin ϕ, Mz = M̄ cos θ (8.203)

so that the component matrix elements can be written as follows

(a) Rx (J ′′, M ′′, J ′, M ′) = M̄
∫ 2π

0

∫ π

0
ψ0∗

J ′′,M ′′ψ
0
J ′,M ′ sin θ cos ϕ sin θdθdϕ

(b) Ry(J ′′, M ′′, J ′, M ′) = M̄
∫ 2π

0

∫ π

0
ψ0∗

J ′′,M ′′ψ
0
J ′,M ′ sin θ sin ϕ sin θdθdϕ

(c) Rz(J ′′, M ′′, J ′, M ′) = M̄
∫ 2π

0

∫ π

0
ψ0∗

J ′′,M ′′ψ
0
J ′,M ′ cos θ sin θdθdϕ

(8.204)

We recognize immediately that Rx , Ry , Rz differ from zero, that is emission or
absorption by the rotator can occur only when the dipole moment M̄ is different
from zero.
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As an example, we will now consider (8.204c) in some detail by substituting the
complete time-independent rigid rotator wave function. Using (8.183) we obtain

Rz(J ′′, M ′′, J ′, M ′) = M̄
N ′′

R N ′
R

2π

∫ π

0
P |M ′′|

J ′′ (cos θ) cos θ P |M ′|
J ′ (cos θ) sin θdθ

×
∫ 2π

0
e−i(M ′′−M ′)ϕdϕ (8.205)

where N ′′
R and N ′

R are the normalization factors of the two states described by the
first integral. The second integral in (8.205) is zero unless M ′ = M ′′ = M and the
integral is 2π . To evaluate the first integral we employ the recursion formula for
the associated Legendre polynomials

cos θ P |M |
J (cos θ) = J + |M |

2J + 1
P |M |

J−1(cos θ) + J − |M | + 1

2J + 1
P |M |

J+1(cos θ) (8.206)

and obtain the following equation

Rz(J ′′, M ′′, J ′, M ′) = M̄ N ′′
R N ′

R

(
J ′ + |M |
2J ′ + 1

∫ π

0
P |M |

J ′′ P |M |
J ′−1 sin θ dθ

+ J ′ − |M | + 1

2J ′ + 1

∫ π

0
P |M |

J ′′ P |M |
J ′+1 sin θdθ

)
(8.207)

Now we recognize immediately that the matrix elements Rz(J ′′, M, J ′, M)
vanish unless

J ′ − J ′′ = −1, J ′ − J ′′ = +1, or �J = ±1 (8.208)

and at the same time M ′ = M ′′ = M or �M = 0. Omitting details, for the remain-
ing directions we find the selection rules �M = ±1, �J = ±1 which show that
the selection rules for J are the same for the light polarized in each direction.

In order to obtain the line intensity we must calculate the square of the matrix
elements. If J ′ = J ′′ + 1 then the second integral on the right-hand side of (8.207)
is zero and we obtain

Rz(J ′′, |M |, J ′′ + 1, |M |) = M̄ N ′′
R N ′′

R

N ′
R

N ′′
R

J ′′ + 1 + |M |
2(J ′′ + 1) + 1

∫ π

0
P |M |

J ′′ P |M |
J ′′ sin θdθ

= M̄
N ′

R

N ′′
R

J ′′ + 1 + |M |
2(J ′′ + 1) + 1

(8.209)

= M̄

√
(J ′′ + 1 − |M |)(J ′′ + 1 + |M |)

(2J ′′ + 1)(2J ′′ + 3)
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For simplicity we replace J ′′ by J and finally obtain

Rz(J, |M |, J + 1, |M |) = M̄

√
(J + 1 − |M |)(J + 1 + |M |)

(2J + 1)(2J + 3)
(8.210)

Setting J ′ = J ′′ − 1, the first integral is zero and we obtain the expression

Rz(J, |M |, J − 1, |M |) = M̄

√
(J + |M |)(J − |M |)

(2J + 1)(2J − 1)
(8.211)

By using proper recursion relations Rx and Ry can be found analogously. The
results are given, for example, in Penner (1959). The square of the total matrix
element may be evaluated by summing over the components and over all allowed
values of M ′′ and M ′ as stated in

∑
M ′,M ′′

|R(J ′′, M ′′, J ′, M ′)|2 =
{

M̄2(J ′′ + 1) for �J = +1
M̄2 J ′′ for �J = −1 (8.212)

For the pure rotation spectrum, transitions in absorption always result from
�J = +1.

Equations (8.201) and (8.212) referring to the harmonic oscillator and the rigid
rotator can be superimposed. We consider the case that absorption takes place from
the vibrational state v′′. Thus for the combined transition (rotator plus oscillator)
we may write

∑
M ′,M ′′

|R(v′′, J ′′, M ′′, v′′ + 1, J ′, M ′)|2 = M2
1

(v′′ + 1)

2β

{
(J ′′ + 1) R branch
J ′′ P branch

(8.213)

For additional details see, for example, Penner’s (1959) description of the matrix
elements for the rotational lines belonging to the rotation–vibration bands.

8.6 Influence of thermal distribution of quantum states on line intensities

Now we return to equation (8.113) which requires information on the population
of the energy levels. The population Ni of a level having an energy Ei above the
ground state of the molecule is given by the Maxwell–Boltzmann distribution

Ni = gi

Z
N exp

(
− Ei

kT

)
with Z =

∑
i

gi exp

(
− Ei

kT

)
(8.214)
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Here, N is the total number of molecules and Z the sum over all states usually called
the partition function. The quantity gi is the statistical weight of the energy level
Ei . Herzberg (1964a) provides a table showing that for most diatomic molecules
at atmospheric temperatures the number of molecules in the first vibrational level
is very small compared to the ground state. Hence practically all transitions in
absorption observed in the infrared spectrum have v′′ = 0 as the initial state. For
vibrational transitions it is often possible to ignore the ratio Nn/gn in comparison
to Nm/gm in (8.126).

From (8.181) follows that the number of molecules NJ in the rotational level J
of the lowest vibrational state is given by

NJ = 2J + 1

Z R
N exp

(
− B J (J + 1)hc

kT

)
(8.215)

where 2J + 1 is the statistical weight, B = h/(8π2 I c) is the so-called rotational
constant and

Z R =
∑

J

(2J + 1) exp

(
− B J (J + 1)hc

kT

)
(8.216)

is the rotational partition function. The quantity Ei was obtained from (8.181)
which was divided by hc so that Ei is expressed in cm−1. Since B is usu-
ally quite small, for sufficiently large T , Z R may be expressed by an integral
which can be evaluated analytically. Setting x = J (J + 1) we find the approximate
expression

Z R ≈
∫ ∞

0
exp

(
− Bhcx

kT

)
dx = kT

Bhc
(8.217)

resulting for NJ in the simplified expression

NJ ≈ NhcB

kT
(2J + 1) exp

(
− B J (J + 1)hc

kT

)
(8.218)

We may now substitute (8.215) into (8.126), remembering that gn = 2J ′′ + 1,
and find for the line intensity the expression

S ≈ 2π2νN

3hε0cZ R

∑
i

∑
k

|R(mi , nk)|2 exp

(
− B J ′′(J ′′ + 1)hc

kT

)
(8.219)

which is identical with the corresponding expression given by Herzberg (1964b).
Observing that Z R is approximately given by (8.217) and by replacing the double
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Fig. 8.11 Schematic picture of the thermal distribution of the rotational lev-
els of the HCl molecule in the vibrational ground state, T = 300 K. ψ(J ) =
(2J + 1) exp[−BJ (J + 1)hc/(kT )]. After Herzberg (1964a) Spectra of Diatomic
Molecules.

sum expression in (8.219) by (8.213) we find that the part of S depending on J ′′ is
given by

SJ =




(J + 1) exp

(
− B J (J + 1)hc

kT

)
R branch

J exp

(
− B J (J + 1)hc

kT

)
P branch

(8.220)

where we have replaced J ′′ by J for brevity. Inspection shows that SJ varies with
J almost in the same manner as the population density NJ defined by equation
(8.215). For the HCl molecule this variation is depicted in Figure 8.11. Since the
factor (2J + 1) varies linearly with J , the number of molecules in the different
rotational levels does not from the beginning decrease with the rotational quantum
number but goes through a maximum.

8.7 Rotational energy levels of polyatomic molecules

Let us consider the rotation of a polyatomic molecule assuming that it is a rigid struc-
ture. By expanding the angular momentum vector (8.12) we find for the vector com-
ponents Jx , Jy, Jz expressions containing terms of the type Ix = ∑

i mi (y2
i + z2

i )



8.7 Rotational energy levels of polyatomic molecules 323

HH

H

H H

H

IA

IB IC

Fig. 8.12 Example of a symmetric top molecule. After Barrow (1962).

and Pxy = ∑
i mi xi yi . The Ix , Iy, Iz are the moments of inertia about the coordinate

axes. The coordinate axes are called principal axes for the body at the origin if all
the products of inertia Pxy , Pyz , Pzx vanish. If the body (molecule) has symmetry,
the direction of one or more of the principal axes going through the center of mass
can be found, since axes of symmetry are always principal axes and a plane of
symmetry is perpendicular to a principal axis.

The number of rotational quantum numbers which are needed to specify a given
rotational state depends on the particular molecular geometry. Only a very brief
and incomplete description can be reviewed here. A detailed account is given in
Infrared and Raman Spectra by Herzberg (1964b).

We will now briefly describe the pure rotation of polyatomic molecules, i.e. we
consider non-vibrating molecules in a fixed electronic state. There are four basic
types which are distinguished according to their three principal moments of inertia
which are denoted by IA, IB, IC. We will give a few atmospheric examples which
are taken from Goody (1964a).

(i) Linear molecules (CO2, N2O, O2, N2, CO): IA = 0, IB = IC �= 0
(ii) Symmetric top molecules (no common atmospheric gases): IA �= 0, IB = IC �= 0

(iii) Spherical top molecules (CH4): IA = IB = IC

(iv) Asymmetric top molecules (H2O, O3): IA �= IB �= IC

Of the listed molecules only H2O has an important pure rotation spectrum. The
symmetry property is best demonstrated in case of the benzene molecule which is
a symmetric top molecule, see Figure 8.12. The unique moment of inertia of the
molecule is usually represented by IA while the two equal moments of inertia are
IB and IC.
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2(h/2π)

1(h/2π)

−1(h/2π)

−2(h/2π)

0(h/2π)

2(2
 + 1)(

h/2
π)

Fig. 8.13 Total and component angular momentum vectors for J = 2. The applied
field reveals 2J + 1 = 5 components. Left part: Angular momentum component in
direction of an applied field. Right part: angular momentum of rotating molecule.
Illustration of the degeneracy 2J + 1. After Barrow (1962).

8.7.1 Linear molecules

In case of linear molecules and spherical top molecules only one quantum number
J is required to describe the rotational state. For linear molecules the solution of
Schrödinger’s equation for rotation is the same as that for the diatomic molecule.
The same selection rules �J = ±1 are obeyed for dipole transitions. As stated
before, unless the molecule possesses a permanent dipole moment no transitions
are possible as in case of carbon dioxide which is a symmetrical molecule O–C–O.
The N2O molecule (N–N–O) possesses a permanent dipole moment so that purely
rotational transitions are allowed.

As we have previously seen, the rotational energy of the diatomic molecule
depends only on the angular momentum quantum number J . The magnitude of the
angular momentum itself is given by

|J| = h

2π

√
J (J + 1) (8.221)

In addition to J , there exists the quantum number M = 0, ±1, . . . ± J . Thus
a total of 2J + 1 wave functions can be constructed. This is called the 2J + 1
degeneracy of the J th energy level. If J = 2, for example, M assumes the val-
ues −2, −1, 0, 1, 2 so that five different wave functions can be written down with
the help of (8.183). The quantum numbers M enumerate the possible compo-
nents of the angular momentum J of the rotating molecule in the direction of
an applied (magnetic or electric) field. The resulting angle between J and the
field is not arbitrary, but it is described by the rule that the components in the
direction of the applied field are ±Mh/2π . For J = 2 this is demonstrated in
Figure 8.13. The figure implies that the angular momentum vector J is never in
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the direction of the applied field since J carries out a precessional motion. Thus
the maximum component of the angular momentum vector cannot be as large
as the vector itself. The reaction of the molecule to an applied field is called space
quantization.

Since the molecule has an electric dipole moment, the different orientations of
J relative to the applied field will correspond to different energies. In a magnetic
field, all states with different M will have different energies. This observation is
called Zeeman effect. In case that J = 2, energy levels corresponding to M =
0, ±1, ±2 would be observed. In an electric field only those states have different
energy which differ in |M |. Thus, for J = 2 only three different energy levels M =
0, |±1|, |±2| appear. The splitting of the energy levels in the electric field is known
as Stark effect which often permits precise measurements of the electric dipole
moment.

Without going into any details but to demonstrate that the quantum theory
describing rotating molecules is very complex, we wish to point out in which
way further complications may occur. In addition to the molecular rotation angular
momentum, some molecules have angular momentum resulting from the nuclear
spin of one or more of their nuclei. A complete description of the rotational
states of the molecule must take into account both contributions to the total angu-
lar momentum. There exists a nuclear spin quantum number usually denoted by
I = 0, 1/2, 1, 3/2, . . . The spin angular momentum is given by

√
I (I + 1)h/2π . If

there is no interaction (coupling) between the orientation of the nucleus and that of
the molecule, the molecule will rotate and leave the spinning nuclei unchanged
in orientation. In this case the energy of the given molecular rotational state
described in terms of J will not be influenced by the nuclear spin. However,
if there is a molecular rotation–nuclear spin coupling the energy of the system
will depend on the orientation of the nuclear spin relative to that of the molec-
ular rotation. This coupling will cause a hyperfine splitting of rotational energy
values.

8.7.2 Symmetric top molecules

In case of symmetric top molecules, two quantum numbers are needed to specify
the rotational states. These are usually denoted by J and K . The axis along which
IA lies is usually called the figure axis of the molecule. If IA < IB we speak of
a prolate symmetric top, and if IA > IB an oblate symmetric top. The rotational
energy levels for such a molecule are given by

EJ,K = h2

8π2

[
J (J + 1)

IB
+ K 2

(
1

IA
− 1

IB

)]
(8.222)
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The derivation of this equation can be found, for example, in Pauling and Wilson
(1935). The quantum number K has the physical significance that K h/2π

is the component along the figure axis of the resultant angular momentum√
J (J + 1)h/2π . K takes values between −J and +J .
Equation (8.222) verifies that the energy does not depend on the magnetic quan-

tum number M = 0, ±1, ±2, . . . , ±J and is independent of the sign of K . There-
fore, the total degeneracy of the energy level is 2J + 1 if K = 0 and 4J + 2 if K
differs from zero. Most symmetric top molecules that have a dipole moment have
this dipole moment in the direction of the figure axis. In such cases the selection
rules for the absorption and emission of electromagnetic energy are

�J = 0, ±1, �K = 0, K �= 0

�J = ±1, �K = 0, K = 0
(8.223)

For absorption experiments, that part of the selection rules applies which increases
the energy of the system, that is

�J = +1, �K = 0 (8.224)

8.7.3 Spherical top molecules

The energy levels are given by the same simple formula stated in (8.181). For
each value of J there are again 2J + 1 values of K . Due to the high degree of
symmetry, spherical top molecules do not have a permanent dipole moment so that
pure rotational spectra do not occur.

8.7.4 Asymmetric top molecules

Theoretical considerations are much more involved than those for linear and sym-
metric molecules. If we ignore nuclear-spin angular momentum, the total angu-
lar momentum is quantized according to the relation (8.221). Unlike the sym-
metric top molecule, no component of this angular momentum is quantized. No
closed general expression is available for any but the lowest few energy values
for an asymmetric top molecule. Nevertheless, it is possible to obtain approximate
energy values by interpolation involving oblate and prolate symmetric top energy
diagrams.

A wealth of information about the approximate formulas of the partition function
and the matrix elements can be found in Herzberg’s books Spectra of Diatomic
Molecules (1964a) and Infrared and Raman Spectra (1964b) as well as in Penner’s
book Quantitative Molecular Spectroscopy and Gas Emissivities (1959). These
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books, however, are not introductions to the field of spectroscopy and require much
additional reading. A brief treatment for important atmospheric cases is given by
Goody (1964a) who assumes some knowledge of spectroscopy. A condensed and
quite readable treatment of most of the topics we have introduced in this chapter is
given in Infrared Physics by Houghton and Smith (1966). Many newer books, too
numerous to be mentioned, may serve as guides to get a deeper understanding of the
interesting but difficult topics treated in spectroscopy, e.g. Molecular Spectroscopy
by Barrow (1962), Molecular Spectroscopy by Levine (1975), Molecular Rotation
Spectra by Kroto (1975), Physikalische Chemie by Atkins (1993), Molekülphysik
by Demtröder (2003), and Lehrbuch der Physikalischen Chemie by Wedler (2004).
Many of the newer books give only very brief outlines of the quantum mechanical
derivations or simply state results. For details they often refer to the older textbooks
by Pauling and Wilson (1935) and Eyring et al. (1965).

8.8 Appendix

8.8.1 The Hamilton function

The Lagrangian function L is defined by

L = K (qk, q̇k) − V (qk) (8.225)

where K is the kinetic energy and V the potential function. The symbol
qk(k = 1, 2, . . .) represents the generalized coordinates and q̇k their time change.
Lagrange’s equation of motion is defined by

d

dt

(
∂L

∂q̇k

)
= ∂L

∂qk
(8.226)

The generalized momenta are

pk = ∂L

∂q̇k
= ∂K

∂ q̇k
(8.227)

Now consider the function

H =
∑

k

q̇k pk − L (8.228)

which is a function of the generalized coordinates. Euler’s theorem for a homoge-
neous function f of degree n in the variables x1, x2, . . . , xr states that

r∑
i=1

xi
∂ f

∂xi
= n f (8.229)
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Application of this theorem to the first term on the right-hand side of (8.228) yields

∑
k

q̇k pk =
∑

k

q̇k
∂K

∂ q̇k
= 2K (8.230)

which leads to

H = 2K − K + V = K + V (8.231)

The function H is known as the classical Hamilton function. Detailed treatments
of L and H can be found in textbooks on theoretical mechanics, for example in
Fowles (1966).

8.8.2 Macroscopic fields and Maxwell’s equations

In order to describe the absorption and emission of infrared radiation, a num-
ber of relations from classical electromagnetic theory will be used which are
summarized in this appendix. As before, we will use the mks rationalized units.
The electromagnetic state of matter at a given point is described by the following
four quantities:

(1) volume density of electric charge ρ;
(2) volume density of electric dipoles, called the polarization P;
(3) volume density of magnetic dipoles, called the magnetization M;
(4) electric current per unit area, called the current density J.

These quantities are considered macroscopically averaged in order to smooth
out microscopic variations due to the atomic structure of matter. They are related to
the macroscopically averaged electric and magnetic fields E and H by Maxwell’s
equations

∇ × E = −µ0
∂H
∂t

− µ0
∂M
∂t

∇ × H = ε0
∂E
∂t

+ ∂P
∂t

+ J

∇ · E = − 1

ε0
(∇ · P − ρ)

∇ · H = −∇ · M

(8.232)

The constants ε0 and µ0 are called the permittivity and the permeability of the
vacuum, respectively. Introducing the abbreviations D for electric displacement
and magnetic induction B

D = ε0E + P, B = µ0(H + M) (8.233)
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into (8.232) then Maxwell’s equations assume the compact form

(a) ∇ × E = −∂B
∂t

(b) ∇ × H = ∂D
∂t

+ J

(c) ∇ · D = ρ

(d) ∇ · B = 0

(8.234)

The response of the conduction electrons to the electric field is given by

J = σE (8.235)

where σ is the electrical conductivity. Additionally, we introduce the constitutive
relation

D = εE (8.236)

which describes the aggregate response of the bound charges to the electric field
and the corresponding magnetic relation

B = µH (8.237)

Using (8.233) and (8.236) the polarization P may also be expressed by

P = (ε − ε0)E = χε0E (8.238)

where χ is known as the electric susceptibility.

χ = ε

ε0
− 1 (8.239)

This equation is another way of expressing the response of the bound charges to
the impressed electric field. For isotropic media such as glass, the susceptibility
is a scalar. It is also customary to introduce the so-called relative permittivity or
dielectric constant εr and the relative permeability µr as stated in

εr = ε

ε0
, µr = µ

µ0
(8.240)

For non-magnetic media the relative permeability is equal to 1.
Next we are going to separate the electric and magnetic fields E and H from the

curl relations (8.234a,b). First we take the curl of (8.234a) and the partial derivative
of (8.234b) with respect to time. In a region where the volume density of electric
charges is zero, we obtain after a few elementary steps the wave equation

∇2E − εµ
∂2E
∂t2

− µσ
∂E
∂t

= 0 (8.241)
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Analogously we obtain the corresponding wave equation for H

∇2H − εµ
∂2H
∂t2

− µσ
∂H
∂t

= 0 (8.242)

In order to establish two useful operator identities in connection with harmonic
waves described by the wave vector k and the angular frequency ω, we perform the
following operations

∂

∂t
exp[i(k · r − ωt)] = −iω exp[i(k · r − ωt)]

∇ exp[i(k · r − ωt)] = ik exp[i(k · r − ωt)]

or
∂

∂t
→ −iω, ∇ → ik

(8.243)

Momentarily we consider a nonconducting medium σ = 0 and the case ρ = 0 so
that (8.234) reduces to

∇ × E = −µ
∂H
∂t

∇ × H = ε
∂E
∂t

∇ · E = 0

∇ · H = 0

(8.244)

Application of (8.243) to (8.244) leads to Maxwell’s equation in the form

k × E = µωH

k × H = −εωE

k · E = 0

k · H = 0

(8.245)

From the latter set of equations we recognize that the three vectors E, H and k
form a mutually orthogonal triad. The electric and the magnetic field vectors are
perpendicular to each other, and they are both perpendicular to the wave vector k
pointing in the direction of propagation. Furthermore, it may be easily seen that the
magnitudes of the fields are related by

H = E

µc
= εcE since c = ω

k
, k = kek (8.246)

Here, k = 2π/λ is the magnitude of the wave vector, λ is the wavelength, c is the
speed of light in the medium and ek is the unit vector in the direction of k.
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The time rate of flow of electromagnetic energy per unit area is given by the
Poynting vector which is defined as the cross product of the field vectors

N = E × H (8.247)

By considering E and H as real plane harmonic waves, i.e.

E = E0 cos(k · r − ωt), H = H0 cos(k · r − ωt) (8.248)

the Poynting vector N is given by

N = E0 × H0 cos2(k · r − ωt) (8.249)

In the mks-system of units N is expressed in Watts per square meter.
Since the average value of the cosine squared is 1/2, we find that the average

value of the Poynting vector is given by

< N >= 1

2
E0 × H0 = E2

0

2µω
k = E2

0

2µc
ek = I ek (8.250)

Hence, it is seen that in isotropic media the direction of N and k coincide. For
nonisotropic media such as crystals this is not always the case. The magnitude of the
averaged Poynting vector is the intensity I , also called irradiance. The intensity is
proportional to the square of E0. In a conducting medium there is a phase difference
between E and H. Nevertheless, the intensity I is still proportional to E2

0 .
Now we return to the wave equation (8.241). It is easy to verify that the function

E = E0 exp[i(kz − ωt)] (8.251)

is a solution of (8.241) provided that the following relation is satisfied

k2 = ω2µ

(
ε + iσ

ω

)
(8.252)

This solution refers to propagation along the z-axis so that z is the distance from a
fixed origin.

Finally, we wish to relate (8.252) to the index of refraction. For a nonabsorbing
medium the refractive index is defined as N = c/v, where c is the speed of light
in vacuum. Since for an absorbing medium k is a complex expression, the index of
refraction is also a complex quantity and is given by

N = n + iκ = ck

ω
where c = 1√

ε0µ0
(8.253)
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By separating the real and imaginary parts of the complex refractive index we find
from (8.252) and (8.253) the important relations

n2 − κ2 = εrµr , 2nκ = σµr

ε0ω
(8.254)

Expressing the wave number k in the solution (8.251) in terms of the complex
index of refraction we obtain

E = E0 exp
(
−ωκz

c

)
exp

[
iω
(nz

c
− t

)]
(8.255)

The first exponential factor describes the attenuation along the z-axis from an
arbitrary origin, while the second exponential defines the shape of the wave.

By introducing in (8.250) the attenuation along the z-axis we find

I = 1

2µc
E2

0 exp

(
−2ωκz

c

)
(8.256)

Denoting the initial value of the intensity by I (z = 0) = I0 we obtain Beer’s law

I = I0 exp

(
−2ωκz

c

)
= I0 exp (−αz) (8.257)

where the absorption coefficient α = 4πκ/λ is expressed as the reciprocal of length.
More complete treatments of the equations of electromagnetic theory are given

in standard textbooks on electrodynamics and in related books. Our reference goes
to Fowles (1966) and to Houghton and Smith (1966).

8.9 Problems

8.1: In connection with Figure 8.5, show that y1 = y3.
8.2: Verify equations (8.28) and (8.29).
8.3: Prove equation (8.32).
8.4: Show the validity of equations (8.33).
8.5: Verify equations (8.37), (8.38) and (8.41).
8.6: Show by direct computations that the wave functions for the simple harmonic

oscillator are normalized. Use the special cases n = 1 and n = 2. Show also
by direct computations that the wave functions ψ1 and ψ2 are orthogonal.

8.7: Show that the selection rules for the harmonic oscillator are given by (8.200).
8.8: Verify that the squares of the matrix elements for the harmonic oscillator are

given by (8.201).
8.9: Show the validity of equations (8.210) and (8.211).
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Light scattering theory for spheres

9.1 Introduction

The evaluation of the radiative transfer equation requires a detailed knowledge of the
extinction and scattering properties of atmospheric particles. In most cases we rely
on theoretical calculations assuming that the scattering particles have a spherical
shape. In order to carry out the calculations we must specify the particle size and
the wavelength-dependent complex index of refraction. The required calculations
are known as Mie calculations while the entire theory is called the Mie theory. This
goes back to Gustav Mie who published the whole theory in 1908. Nowadays a
large number of reliable computer programs are available to provide the required
information without understanding the theory behind it. This might be sufficient
in some cases, but it is more valuable to comprehend the theoretical background
which will be presented in the following sections.

The Mie theory of light scattering by homogeneous spheres is based on the for-
mal solution of Maxwell’s equations using proper boundary conditions. In this text
we will follow Stratton’s discussion of the Electromagnetic Theory (1941). In van
De Hulst’s (1957) treatise Light Scattering by Small Particles many mathematical
details of the Mie theory are omitted, but numerous helpful physical explanations
are given. In particular he gives a number of approximate formulas for special
cases. Due to modern computers the approximate formulas are rarely used since
the Mie series solutions can now be evaluated efficiently for practically all situa-
tions of interest. A newer more complete treatment of the Mie theory is given, for
example, by Bohren and Huffman (1983). We should not overlook the important ref-
erence Principles of Optics by Born and Wolf (1965) where a detailed treatment of
the theory can also be found. While the theory is named after Mie (1908), some of the
notations which we will use were introduced by Debye (1909). Special cases
of the scattering theory are discussed in various textbooks on electromagnetic
theory.

333
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We assume that the student has some familiarity with Bessel functions since
they are introduced in most introductory courses on differential equations. The
Mie theory makes use of the elements of the so-called field theory. In the present
case this means that if the scalar function ρ and the vector function J denoting the
charge density and the distribution of currents are known, we may seek a solution
for the vectors E and H of the electric and the magnetic field by using Maxwell’s
equations. Finally, the entire problem may be reduced to the solution of a standard
partial differential equation. A brief and simple but very illuminating mathematical
introduction to this type of problem can be found, for example, in Chapter 8 of
Buck’s Advanced Calculus (1965).

A full treatment of the entire Mie theory will now be presented giving all required
mathematical details.

9.2 Maxwell’s equations

As stated above, the Mie formulas are an exact mathematical solution of Maxwell’s
equations which contain the basic physics of the problem. From Appendix 8.8.2 of
the previous chapter we restate the curl equations (8.234a,b)

∇ × E + ∂B
∂t

= 0, ∇ × H − ∂D
∂t

− J = 0 (9.1)

The relations involving the vectors B, D, E, H, J are repeated as

∇ · B = 0, ∇ · D = ρ, J = σE, D = εE, B = µH (9.2)

According to (8.241) and (8.242) the wave equations for E and H are given by

∇2E − εµ
∂2E
∂t2

− µσ
∂E
∂t

= 0

∇2H − εµ
∂2H
∂t2

− µσ
∂H
∂t

= 0

(9.3)

As usual, we assume that the time dependency of the field vectors is harmonic.
Thus we may write for E and H

E = Ẽ exp (−iωt) , H = H̃ exp (−iωt) (9.4)

where Ẽ and H̃ denote the time-independent parts. Substituting (9.4) into (9.3) we
find

∇2E + k2E = 0, ∇2H + k2H = 0 (9.5)
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where we have introduced the square of the wave number

k2 = ω2

(
εµ + iµσ

ω

)
(9.6)

The following quantities will also be needed in our derivation:

(9.7)

speed of light in vacuum: c = 1√
ε0µ0

speed of light in a nonconducting medium: v = 1√
εµ

wave number in vacuum: k0 = ω

c

wave number in a nonconducting medium: k = ω

v

complex index of refraction: N = c

√(
εµ + iµσ

ω

)

The latter equation follows from (8.253). The imaginary part of N indicates that
absorption is taking place. From (9.6) and (9.7) one may easily see that

k2 = k2
0N 2 (9.8)

From (9.7) it is easily seen that in a dielectric medium with σ =0 the wave number
reduces to k =ω/v. In a nonabsorbing medium the imaginary part of N vanishes,
that is κ =0 in (8.253). The last equation of (9.7) leads to the conclusion that
every conductor absorbs electromagnetic waves while every dielectric (insulator)
is transparent. Practical examples can be given to contradict this statement. The
reason is that not only the refractive index depends on frequency but also the
conductivity.

Utilizing (9.8) we may also write (9.5) as

∇2E + k2
0N 2E = 0, ∇2H + k2

0N 2H = 0 (9.9)

For these two differential equations we assume the trial solutions

E = E0 exp [i(k · r − ωt)] , H = H0 exp [i(k · r − ωt)] (9.10)

where k and r are the wave number and position vectors. If ek is a unit vector in
the direction of wave propagation then the wave number vector is given by

k = kek = k0N ek (9.11)
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n2

n1

n

 ∆A

r

 ∆h

S
ε2,µ2,  σ2

ε1,µ1,  σ1

Fig. 9.1 Illustration for the derivation of the normal boundary conditions for B
and D.

9.3 Boundary conditions

The field equations are valid for ordinary points in space in whose neighborhood
the field vectors change continuously. Across any surface separating two media
sharp changes may occur in the parameters characterizing the media so that the
field vectors are expected to exhibit corresponding changes. Let these parameters
be denoted by ε1, µ1, σ1 and ε2, µ2, σ2.

For the solution of the wave equations suitable boundary conditions must be
supplied. The boundary surface separating the two media is denoted by the symbol
S and has the normal unit vector n, see Figure 9.1. We imagine a very thin transition
layer in which the parameters change rapidly but continuously from their values
near S in (1) to their values near S in (2). Within this transition layer as well
as in (1) and (2) the field vectors and their first derivatives are assumed to be
continuous bounded functions of position and time. Through the transition layer
we now construct a small right cylinder of height �h and cross-section area �A.
The surface normal unit vectors n1, n2 at the bottom and the top of the cylinder
have the directions shown in the figure.

Integrating the divergence equations of (9.2) over the volume �V = �h�A of
the cylinder and utilizing the divergence theorem of Gauss yields∫

�V
∇ · BdV =

∮
B · dA = 0∫

�V
∇ · DdV =

∮
D · dA = q =

∫
�V

ρdV
(9.12)

where the integrals over dA are taken over the closed cylinder surface. For
the evaluation of the surface integrals we assume that with vanishing height
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Fig. 9.2 Illustration for the derivation of the tangential boundary conditions for B
and D.

�h → 0 of the cylinder the contribution of the walls may be ignored. Thus we
may write ∮

B · dA =
∮

�A
B1 · n1d A +

∮
�A

B2 · n2d A = 0∮
D · dA =

∮
�A

D1 · n1d A +
∮

�A
D2 · n2d A = q̄�A

(9.13)

Here we have introduced the surface charge density q̄ = q/�A = ρ�h which is
the charge of the cylinder per unit area. We observe that the total charge q remains
constant since it cannot be destroyed. As �h → 0 the volume charge becomes
infinite.

Since n2 = −n1 = n, see Figure 9.1, we have∮
�A

(B2 − B1) · nd A = 0,
∮

�A
(D2 − D1) · nd A = q̄�A (9.14)

Assuming that the field vectors are constant within a small area element �A we
finally obtain the boundary conditions for the normal components of B and D

(B2 − B1) · n = 0, (D2 − D1) · n = q̄ (9.15)

These equations state that the normal component of B across any discontinuity
surface is continuous. In contrast, the normal component of D experiences an abrupt
change whose magnitude is q̄ .

In order to express the behavior of the tangential components of B and D at the
discontinuity surface S we consider a closed surface A with normal unit vector nA,
see Figure 9.2. The tangential unit vectors along the lower and upper boundary of
A are denoted by t1 and t2.
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Integrating (9.1) over this surface yields together with (9.2)∫
A
∇ × E · nAd A =

∮
E · ds = −

∫
A

∂B
∂t

· nAd A∫
A
∇ × H · nAd A =

∮
H · ds =

∫
A

(
∂D
∂t

+ J
)

· nAd A
(9.16)

where by means of the Stokes integral theorem in each equation the first surface
integrals have been rewritten as closed line integrals.

We split the line integrals into four parts and assume that in the limit �h → 0
the contributions from the corresponding sides vanish, see Figure 9.2. Hence we
obtain ∫

�s
E1 · t1ds +

∫
�s

E2 · t2ds = −
∫

A

∂B
∂t

· nAd A∫
�s

H1 · t1ds +
∫

�s
H2 · t2ds =

∫
A

(
∂D
∂t

+ J
)

· nAd A
(9.17)

For a small surface A we have t2 = −t1 = t = nA × n so that∫
�s

(E2 − E1) · nA × nds = −
∫

A

∂B
∂t

· nAd A∫
�s

(H2 − H1) · nA × nds =
∫

A

(
∂D
∂t

+ J
)

· nAd A
(9.18)

By assuming that for small values of A all integrands are constant, we obtain from
(9.18)

(E2 − E1) · nA × n = −∂B
∂t

· nA�h

(H2 − H1) · nA × n =
(

∂D
∂t

+ J
)

· nA�h
(9.19)

For finite values of the current J the right-hand sides of these equations vanish
in the limit �h → 0 since the field vectors B and D and their derivatives with
respect to time remain bounded. Thus, we finally obtain the result that the tangential
components of the field vectors are continuous across a discontinuity surface S, i.e.

n × (E2 − E1) = 0, n × (H2 − H1) = 0 (9.20)

Equations (9.15) and (9.20) describe the boundary conditions which are neces-
sary to solve the differential equations (9.9). We will apply these equations to the
scattering of radiation by a sphere (medium 2) which is embedded in the atmosphere
(medium 1). The boundary between the two media is the spherical surface of the
scatterer. Thus, it will be expedient to state the components of the field vectors in
spherical coordinates.
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9.4 The solution of the wave equation

9.4.1 Solution of the scalar wave equation in spherical coordinates

The solution of the scalar form of the wave equation is instrumental in the con-
struction of the solution of the vector wave equation. Given is the scalar form of
the wave equation for the scalar quantity u(x, y, z, t)

∇2u = 1

c2

∂2u

∂t2
(9.21)

For this equation we wish to express the solution in spherical coordinates. Assuming
that u can be written in the form

u(x, y, z, t) = u∗(x, y, z) exp(−iωt) (9.22)

we find

∇2u∗ + k2u∗ = 0 with k = ω

c
(9.23)

and in spherical coordinates

∂2u∗

∂r2
+ 2

r

∂u∗

∂r
+ 1

r2 sin ϑ

∂

∂ϑ

(
sin ϑ

∂u∗

∂ϑ

)
+ 1

r2 sin2 ϑ

∂2u∗

∂ϕ2
+ k2u∗ = 0 (9.24)

Defining the angular part of the Laplacian by

∇2
1 u∗ = 1

sin ϑ

∂

∂ϑ

(
sin ϑ

∂u∗

∂ϑ

)
+ 1

sin2 ϑ

∂2u∗

∂ϕ2
(9.25)

the wave equation can be written as

∂2u∗

∂r2
+ 2

r

∂u∗

∂r
+ 1

r2
∇2

1 u∗ + k2u∗ = 0 (9.26)

We assume that the solution to (9.26) can be written in the form

u∗(r, ϑ, ϕ) = f (r )F(ϑ, ϕ) (9.27)

Substitution of (9.27) into (9.26) yields

r2

f

d2 f

dr2
+ 2r

f

d f

dr
+ k2r2 = − 1

F
∇2

1 F (9.28)

By the method of separation of the variables each side must be equal to a con-
stant C . In order to guarantee unique solutions of these equations we set C =
n(n + 1) with n = 0, 1, . . . For details see, for example, Smirnow (1959). Thus we
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obtain

(a) ∇2
1 F + C F = 0

C = n(n + 1), n = 0, 1, . . .

(b)
r2

f

d2 f

dr2
+ 2r

f

d f

dr
+ k2r2 − C = 0

(9.29)

The solution to (9.29a) is well-known and is given by

Fn(ϑ, ϕ) = an Pn(cos ϑ) +
n∑

m=1

[amn cos(mϕ) + bmn sin(mϕ)] Pm
n (cos ϑ) (9.30)

In order to obtain a more suitable form of (9.29b) we introduce the substitutions

f (r ) = Rn(r )√
r

, ρ = kr (9.31)

yielding

d2 Rn

dρ2
+ 1

ρ

d Rn

dρ
+
(

1 − (n + 1/2)2

ρ2

)
Rn = 0 (9.32)

The quantity Rn is a new variable. Equation (9.32) is known as Bessel’s differential
equation of order (n + 1/2).

Using the notation

Rn(ρ) = Zn+1/2(ρ) (9.33)

the solution to (9.29b) is given by

fn(r ) = 1√
r

Zn+1/2(kr ) (9.34)

Employing the latter relation, the solution of the scalar wave equation in spherical
coordinates is written as

u(ρ, ϑ, ϕ, t) =
√

π

2ρ
Zn+1/2(ρ)Fn(ϑ, ϕ) exp(−iωt) (9.35)

where for convenience we have included the factor
√

π/2k. This does not change the
solution at all since this factor multiplies the integration constants. By introducing
the so-called spherical Bessel functions

zn(ρ) =
√

π

2ρ
Zn+1/2(ρ) (9.36)
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the elementary or characteristic wave functions can finally be written as

ue
mn(ρ, ϑ, ϕ, t) = cos(mϕ)Pm

n (cos ϑ)zn(ρ) exp(−iωt)

uo,mn(ρ, ϑ, ϕ, t) = sin(mϕ)Pm
n (cos ϑ)zn(ρ) exp(−iωt)

, m = 0, 1, . . . , n

(9.37)

Here we have distinguished between the even and odd form of the wave functions
ue

mn and uo,mn which are denoted according to the even and odd functions cos(mϕ)
and sin(mϕ) occurring in (9.30). Everywhere on the surface of the sphere the
elementary wave functions ue

o,mn are finite and single-valued, see also Stratton
(1941).

9.4.2 Solution of the vector wave equation in spherical coordinates

Let us reconsider the vector wave equations (9.5). Only if E and H are resolved in
terms of rectangular components we obtain three independent scalar vector wave
equations of the form (9.23) for each component of the vectors. In order to solve the
vector wave equations (9.5) in spherical coordinates, we make use of the following
two theorems.

(a) If ψ satisfies the scalar wave equation (9.23) then the vectors defined by

Mψ = ∇ × (rψ), Nψ = 1

k
∇ × Mψ (9.38)

satisfy the vector wave equations

∇2Mψ + k2Mψ = 0, ∇2Nψ + k2Nψ = 0 (9.39)

Furthermore, the following relation is valid

Mψ = 1

k
∇ × Nψ (9.40)

The quantities M and N are called vector wave functions. The proof of the above
statements will be left to the exercises. It will be observed that M and N are solenoidal
vectors, i.e. they satisfy

∇ · Mψ = 0, ∇ · Nψ = 0 (9.41)

(b) If u and v are two solutions of the scalar wave equation, then the vectors Mu, Mv,

Nu and Nv represent the derived vector fields which satisfy the vector wave equation.
The two vectors A and B defined by

A = Mv − iNu , B = −N (Mu + iNv) (9.42)

satisfy

∇ × A = ik0B, ∇ × B = −ik0N 2A (9.43)
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In order to evaluate the boundary conditions we must know the components of
the M and N functions. Let us consider the curl of the arbitrary vector A which is
given by the well-known formula

∇ × A = 1

r2 sin ϑ

∣∣∣∣∣∣∣∣∣
reϑ r sin ϑeϕ er
∂

∂ϑ

∂

∂ϕ

∂

∂r

r Aϑ r sin ϑ Aϕ Ar

∣∣∣∣∣∣∣∣∣
(9.44)

Recalling the definition (9.38), we identify the vector A by ψr = ψrer where er is
the unit vector in direction r. Thus we obtain for the components of M and N

Mψ,ϑ = 1

sin ϑ

∂ψ

∂ϕ
, Mψ,ϕ = −∂ψ

∂ϑ
, Mψ,r = 0

Nψ,ϑ = 1

kr

∂2rψ

∂r∂ϑ
, Nψ,ϕ = 1

kr sin ϑ

∂2rψ

∂r∂ϕ

Nψ,r = − 1

kr sin ϑ

[
∂

∂ϑ

(
sin ϑ

∂ψ

∂ϑ

)
+ 1

sin ϑ

∂2ψ

∂ϕ2

] (9.45)

The final expression in (9.45) can be stated in a much simpler form by involving
the scalar wave equation in spherical coordinates (9.24) as well as (9.29b). This
immediately leads to

Nψ,r = krψ + r

k

∂2ψ

∂r2
+ 2

k

∂ψ

∂r
= n(n + 1)ψ

kr
(9.46)

These relations will be needed for the evaluation of the boundary conditions.
The M and N functions obey some very desirable and helpful orthogonality

relations which will be derived now. We start the analysis by assuming a harmonic
time dependence of the two functions

Mψ = mψ exp(−iωt), Nψ = nψ exp(−iωt) (9.47)

With the help of (9.37) and (9.45) we obtain for the m functions

me
o,mn(r, ϑ, ϕ) = 1

sin ϑ

∂ψe
o,mn

∂ϕ
eϑ − ∂ψe

o,mn

∂ϑ
eϕ

=

− sin(mϕ)

cos(mϕ)


 m

sin ϑ
Pm

n (cos ϑ)zn(kr )eϑ

−

 cos(mϕ)

sin(mϕ)


 d Pm

n

dϑ
zn(kr )eϕ

(9.48)

Thus it is seen that for m = 0 the odd function mo,m=0,n = 0.
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To find the orthogonality conditions of the M functions, we multiply me
o,mn by

me
o,ml . Integrating the product over the unit sphere yields

∫ 2π

0

∫ π

0
me

o,mn · me
o,ml sin ϑdϑdϕ

= zn(kr )zl(kr )
∫ 2π

0


 sin2(mϕ)

cos2(mϕ)


 dϕ

∫ π

0

m2 Pm
n (cos ϑ)Pm

l (cos ϑ)

sin ϑ
dϑ

+ zn(kr )zl(kr )
∫ 2π

0


 cos2(mϕ)

sin2(mϕ)


 dϕ

∫ π

0

d Pm
n

dϑ

d Pm
l

dϑ
sin ϑdϑ (9.49)

From textbooks discussing Legendre polynomials we extract the important relation

m2
∫ π

0

Pm
n (cos ϑ)Pm

l (cos ϑ)

sin ϑ
dϑ +

∫ π

0

d Pm
n

dϑ

d Pm
l

dϑ
sin ϑdϑ

= 2n(n + 1)

2n + 1

(n + m)!

(n − m)!
δn,l (9.50)

By recalling the well-known orthogonality relations of the trigonometric functions

1

π

∫ 2π

0
cos(mx) cos(kx)dx = (1 + δ0,m)δm,k

1

π

∫ 2π

0
sin(mx) sin(kx)dx = (1 − δ0,m)δm,k

(9.51)

the orthogonality relation of the m functions can finally be stated as

∫ 2π

0

∫ π

0
me

o,mn · me
o,mn sin ϑdϑdϕ

= π


 (1 + δ0,m)

(1 − δ0,m)


 2n(n + 1)

2n + 1

(n + m)!

(n − m)!
[zn(kr )]2

(9.52)

Since the m functions differ from the M functions only by the time factor exp(−iωt),
we have obtained the desired result.

Utilizing (9.45) and (9.46) we obtain for the n functions

ne
o,mn = 1

kr

∂2

∂r∂ϑ

(
rψe

o,mn

)
eϑ + 1

kr sin ϑ

∂2

∂r∂ϕ

(
rψe

o,mn

)
eϕ + n(n + 1)

kr
ψe

o,mner

(9.53)
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Carrying out the differentiations we find after a few easy steps

ne
o,mn = 1

kr

∂

∂r
[r zn(kr )]

d Pm
n

dϑ


 cos(mϕ)

sin(mϕ)


 eϑ

×

 −sin(mϕ)

+ cos(mϕ)


 m

kr sin ϑ

∂

∂r
[r zn(kr )]Pm

n (cos ϑ)eϕ

+ n(n + 1)

kr
zn(kr )Pm

n (cos ϑ)


 cos(mϕ)

sin(mϕ)


 er (9.54)

Again we observe that for m = 0 the odd function no,m=0,n = 0.
The orthogonality relations for the n functions can be obtained analogously to

the m functions. After a few easy steps we find

∫ 2π

0

∫ π

0
ne

o,mn · ne
o,ml sin ϑdϑdϕ

= 1

(kr )2

∂

∂r
[r zn(kr )]

∂

∂r
[r zl(kr )]

∫ π

0

d Pm
n

dϑ

d Pm
l

dϑ
sin ϑdϑ

∫ 2π

0


 cos2(mϕ)

sin2(mϕ)


 dϕ

+ m2

(kr )2

∂

∂r
[r zn(kr )]

∂

∂r
[r zl(kr )]

∫ π

0

Pm
n (cos ϑ)Pm

l (cos ϑ)

sin ϑ
dϑ

×
∫ 2π

0


 sin2(mϕ)

cos2(mϕ)


 dϕ + n(n + 1)

kr

l(l + 1)

kr
zn(kr )zl(kr )

×
∫ π

0
Pm

n (cos ϑ)Pm
l (cos ϑ) sin ϑdϑ

∫ 2π

0


 cos2(mϕ)

sin2(mϕ)


 dϕ (9.55)

In order to evaluate the spherical Bessel functions we make use of the following
recurrence relations

zn−1(r ) + zn+1(r ) = 2n + 1

r
zn(r ),

dzn(r )

dr
= 1

2n + 1
[nzn−1(r ) − (n + 1)zn+1(r )] (9.56)
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so that we finally obtain the orthogonality relations for the n functions in the
form

∫ 2π

0

∫ π

0
ne

o,mn · ne
o,mn sin ϑdϑdϕ =π


 (1 + δ0,m)

(1 − δ0,m)


 2n(n + 1)

(2n + 1)2

(n + m)!

(n − m)!

× {(n + 1) [zn−1(kr )]2 + n [zn+1(kr )]2}
(9.57)

The orthogonality relations involving mixed products of the m and n functions
may be obtained in the same way as described above. A detailed derivation of the
corresponding relations is given by Stratton (1941). For completeness we list the
additional orthogonality relations

∫ 2π

0

∫ π

0
me

o,mn · ne
o,ml sin ϑdϑdϕ = 0

∫ 2π

0

∫ π

0
me

o,mn · no
e,ml sin ϑdϑdϕ = 0

∫ 2π

0

∫ π

0
me

o,mn · mo
e,ml sin ϑdϑdϕ = 0

∫ 2π

0

∫ π

0
ne

o,mn · no
e,ml sin ϑdϑdϕ = 0

(9.58)

9.5 Mie’s scattering problem

We are now prepared to discuss the actual scattering problem. Given is a spherical
particle of radius a which is embedded in a vacuum. This particle is illuminated by
a plane electromagnetic wave of wavelength λ. We assume that the wave is linearly
polarized and propagating in the positive z-direction. It is traditional to designate
the direction of the electric vector as the direction of polarization.1 The task at hand
is to determine the scattered electromagnetic field.

9.5.1 The incoming wave

The center of the particle is located at the origin of the coordinate system and the
incoming electric vector Ei is directed along the x-axis as shown in Figure 9.3.

1 A detailed treatment of the effects of polarization on radiative transfer will be given in the next chapter.



346 Light scattering theory for spheres

x

y

z

Ei
Hi

ex ey

ez

Fig. 9.3 Mie’s scattering problem: the incoming wave.

Again assuming a harmonic time dependency, the field vectors can be described
by

Ei = ex E i
0 exp [i(k0z − ωt)] , Hi = ey H i

0 exp [i(k0z − ωt)] (9.59)

whereby (ex , ey) are the unit vectors in (x, y)-direction. Ei and Hi satisfy the vector
wave equations

∇2Ei − 1

c2

∂2Ei

∂t2
= 0, ∇2Hi − 1

c2

∂2Hi

∂t2
= 0 (9.60)

We will now attempt to express Ei and Hi by means of the vectors M and N.
Substituting (9.10) into (9.1) yields

∇ × E = iωB, ∇ × B = −iω
N 2

c2
E (9.61)

where (9.2) and the defining expression of the complex index of refraction N (9.7)
have been used.

For brevity we introduce the vector B∗ by means of

B∗ = cB =
√

µ0

ε0
H (9.62)

so that (9.61) assumes the form

∇ × E = ik0B∗, ∇ × B∗ = −ik0N 2E (9.63)

with k0 = ω/c. Furthermore, according to (9.9), E and B∗ fulfill the vector wave
equations

∇2E + k2
0N 2E = 0, ∇2B∗ + k2

0N 2B∗ = 0 (9.64)



9.5 Mie’s scattering problem 347

By comparing (9.63) with (9.43), utilizing (9.42) and (9.62), it is seen that the field
vectors of the incoming wave may be written as

Ei = E i
0(Mv − iNu), Hi = −H i

0(Mu + iNv) with H i
0 =

√
ε0

µ0
E i

0

(9.65)

In order to apply the boundary conditions to the scattering sphere, we introduce
the spherical coordinates (ϑ, ϕ, r ) by means of the well-known transformation
equations

x = r sin ϑ cos ϕ, y = r sin ϑ sin ϕ, z = r cos ϑ (9.66)

The relations between the unit vectors (ex , ey, ez) of the Cartesian system and
(eϑ, eϕ, er ) of the spherical coordinate system are

eϑ = cos ϑ cos ϕex + cos ϑ sin ϕey − sin ϑez

eϕ = −sin ϕex + cos ϕey

er = sin ϑ cos ϕex + sin ϑ sin ϕey + cos ϑez

ex = sin ϑ cos ϕer + cos ϑ cos ϕeϑ − sin ϕeϕ

ey = sin ϑ sin ϕer + cos ϑ sin ϕeϑ + cos ϕeϕ

ez = cos ϑer − sin ϑeϑ

(9.67)

A detailed derivation of these relations may be found, for instance, in Zdunkowski
and Bott (2003). Replacing in (9.59) ex and ey by the corresponding expressions in
(9.67) yields

(9.68)(a) Ei = E i
0 exp [i(k0r cos ϑ − ωt)] (sin ϑ cos ϕer + cos ϑ cos ϕeϑ − sin ϕeϕ)

(b) Hi = H i
0 exp [i(k0r cos ϑ − ωt)] (sin ϑ sin ϕer + cos ϑ sin ϕeϑ + cos ϕeϕ)

The representation of the field vectors as stated in (9.65) and (9.68) shall now be
harmonized by writing series expressions for Ei and Hi in terms of still unknown
expansions coefficients Amn, Bmn, Cmn and Dmn . Recalling (9.47) we may write

Ei = E i
0

∞∑
n=0

n∑
m=0

(Amnmmn + Bmnnmn) exp(−iωt)

Hi = H i
0

∞∑
n=0

n∑
m=0

(Cmnmmn + Dmnnmn) exp(−iωt)

(9.69)

Comparison of coefficients of the terms involving the cos ϕ and sin ϕ functions in
(9.68), in view of the defining equations (9.48) and (9.54) for m and n, shows that
unless m =1 the coefficients Amn, Bmn, Cmn and Dmn vanish. For this reason the
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sums over m may be evaluated in (9.69) yielding

(a) Ei = E i
0

∞∑
n=0

(
Anmo,1n + Bnne

1n

)
exp(−iωt)

(b) Hi = H i
0

∞∑
n=0

(
Cnme

1n + Dnno,1n
)

exp(−iωt)
(9.70)

with A1n = An , B1n = Bn , C1n = Cn and D1n = Dn . The reason that either the
odd or the even parts of the m and n functions occur in (9.70) results from the
comparison of the cos ϕ and the sin ϕ terms appearing in (9.68) with (9.48) and
(9.54).

In order to determine the expansion coefficients An, Bn, Cn and Dn we make
use of the orthogonality relations (9.52) and (9.57) of the m and n functions. We
will demonstrate how to proceed by determining An . The remaining coefficients
are found analogously.

First we set (9.68a) equal to (9.70a). Then we multiply both sides by the func-
tion mo,1l and integrate the resulting expression over the unit sphere. Thus we
obtain∫ 2π

0

∫ π

0
exp(ik0r cos ϑ)(sin ϑ cos ϕer +cos ϑ cos ϕeϑ −sin ϕeϕ) · mo,1l sin ϑdϑdϕ

=
∫ 2π

0

∫ π

0
Anmo,1n · mo,1l sin ϑdϑdϕ (9.71)

Due to the orthogonality relations of the trigonometric functions, see (9.51), and
by using (9.52) we first find

π zn(k0r )
∫ π

0
exp(ik0r cos ϑ)

(
cos ϑ

sin ϑ
P1

n (cos ϑ) + d P1
n

dϑ

)
sin ϑdϑ

= Anz2
n(k0r )2π

n(n + 1)

2n + 1

(n + 1)!

(n − 1)!
(9.72)

Recalling the relationship between the associated and the ordinary Legendre poly-
nomials

Pm
n (x) = (1 − x2)m/2 dm

dxm
Pn(x) (9.73)

we may replace the expression in parenthesis on the left-hand side of (9.72) by

cos ϑ

sin ϑ
P1

n (cos ϑ) + d P1
n

dϑ
= −(1 − x2)

d2 Pn

dx2
+ 2x

d Pn

dx
= n(n + 1)Pn(x) with x = cos ϑ

(9.74)
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where we have made use of Legendre’s differential equation

(1 − x2)
d2 Pn

dx2
− 2x

d

dx
Pn + n(n + 1)Pn(x) = 0 (9.75)

Thus we obtain

An = 1

zn(k0r )

2n + 1

2n(n + 1)

∫ π

0
exp(ik0r cos ϑ)Pn(cos ϑ) sin ϑdϑ (9.76)

which contains the unspecified spherical Bessel function zn(k0r ). We choose zn = jn
which is defined by means of

jn(k0r ) = i−n

2

∫ π

0
exp(ik0r cos ϑ)Pn(cos ϑ) sin ϑdϑ (9.77)

The function jn is known as the spherical Bessel function of the first kind which is
finite at the origin. This spherical Bessel function is related to the ordinary Bessel
function of the first kind by

jn(k0r ) =
√

π

2k0r
Jn+1/2(k0r ) (9.78)

Introducing (9.77) into (9.76) gives the final form of the expansion coefficient An

An = i n 2n + 1

n(n + 1)
, Bn = −i An , Cn = −An , Dn = Bn (9.79)

The remaining expansion coefficients are also stated as part of this equation. Thus
(9.70) can be rewritten as

Ei = E i
0

∞∑
n=0

i n 2n + 1

n(n + 1)

(
mo,1n − ine

1n

)
exp(−iωt)

Hi = −H i
0

∞∑
n=0

i n 2n + 1

n(n + 1)

(
me

1n + ino,1n
)

exp(−iωt)

(9.80)

Due to the choice zn = jn the solutions (un, vn) of the scalar wave equation
appearing in the M and N functions for the incoming wave can be written down
immediately. From (9.37), including the factor i n(2n + 1)/n(n + 1) in the definition
of the un and vn functions, we obtain

ui
n(r, ϑ, ϕ, t) = i n 2n + 1

n(n + 1)
cos ϕP1

n (cos ϑ) jn(k0r ) exp(−iωt)

vi
n(r, ϑ, ϕ, t) = i n 2n + 1

n(n + 1)
sin ϕP1

n (cos ϑ) jn(k0r ) exp(−iωt)
(9.81)
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In view of equations (9.47) we may thus write the series expressions for the field
vectors of the incoming wave as

Ei = E i
0

∞∑
n=0

(
Mvi

n
− iNui

n

)
, Hi = −H i

0

∞∑
n=0

(
Mui

n
+ iNvi

n

)
with H i

0 =
√

ε0

µ0
E i

0

(9.82)

9.5.2 The scattered and the interior waves

A periodic wave which is incident on the particle gives rise to a forced oscillation
of free and bound charges synchronous with the applied field. These motions of the
charge set up a secondary field both inside and outside of the particle. The resultant
field at any point is the vector sum of the primary and the secondary fields. After
the transient oscillations are damped out a steady-state situation will occur which
will now be investigated.

As the incident wave interacts with the particle, the induced secondary field must
be constructed in two parts. The interior part of the sphere we will call transmitted (t)
while the other part, denoted by (s), refers to scattering. In analogy to the structure
of the incident field vectors we now use the forms

Es,t = E i
0

∞∑
n=0

(
Mv

s,t
n

− iNus,t
n

)
, Hs,t = −H s,t

0

∞∑
n=0

(
Mus,t

n
+ iNv

s,t
n

)

with H s
0 = E i

0

µ0c
= H i

0, H t
0 = N E i

0

µc

(9.83)

In contrast to the incoming wave, for the wave functions us
n and vs

n of the scattered
field we select zn = hn where hn are the spherical Hankel functions of the first kind.
The reason for this particular choice is the asymptotic behavior of the spherical
Hankel functions. For large values of the argument we have

h1
n(k0r ) ∼ exp(ik0r )

k0r
(−i)n+1 (9.84)

If this expression is multiplied by the factor exp(−iωt) it represents an outgoing
spherical wave (of amplitude 1), as required for the scattered wave. Thus, analo-
gously to (9.81) we may write

us
n(r, ϑ, ϕ, t) = i n 2n + 1

n(n + 1)
as

n cos ϕP1
n (cos ϑ)h1

n(k0r ) exp(−iωt)

vs
n(r, ϑ, ϕ, t) = i n 2n + 1

n(n + 1)
bs

n sin ϕP1
n (cos ϑ)h1

n(k0r ) exp(−iωt)
(9.85)
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For the inside wave we choose the function jn(N k0r ) because the refractive index
is finite and the spherical Bessel function is finite at the origin. This results
in

ut
n(r, ϑ, ϕ, t) = i n 2n + 1

n(n + 1)
at

n cos ϕP1
n (cos ϑ) jn(N k0r ) exp(−iωt)

vt
n(r, ϑ, ϕ, t) = i n 2n + 1

n(n + 1)
bt

n sin ϕP1
n (cos ϑ) jn(N k0r ) exp(−iωt)

(9.86)

with 0≤r ≤a. For the calculation of the unknown coefficients as,t
n and bs,t

n we apply
the boundary conditions at the spherical surface which have been derived in Section
9.3. Replacing in (9.20) the unit normal vector n by er we obtain

er × (Ei + Es) = er × Et, er × (Hi + Hs) = er × Ht (9.87)

The boundary conditions at the particle’s surface r = a can now be written down
for the various components of the M and N functions

(a)
(
Mvi

n
− i Nui

n

)
ϑ

+ (
Mvs

n
− i Nus

n

)
ϑ

= (
Mvt

n
− i Nut

n

)
ϑ

(b)
(
Mvi

n
− i Nui

n

)
ϕ

+ (
Mvs

n
− i Nus

n

)
ϕ

= (
Mvt

n
− i Nut

n

)
ϕ

(c)
(
Mui

n
+ i Nvi

n

)
ϑ

+ (
Mus

n
+ i Nvs

n

)
ϑ

= Nµ0

µ

(
Mut

n
+ i Nvt

n

)
ϑ

(d)
(
Mui

n
+ i Nvi

n

)
ϕ

+ (
Mus

n
+ i Nvs

n

)
ϕ

= Nµ0

µ

(
Mut

n
+ i Nvt

n

)
ϕ

(9.88)

Let us examine in detail equation (9.88a). Using (9.45) we obtain at r =a

1

sin ϑ

∂

∂ϕ

(
vi

n + vs
n − vt

n

)− i

k0r

∂2

∂r∂ϑ

(
rui

n + rus
n − rut

n

N

)
= 0 (9.89)

Employing the required equations (9.81), (9.85) and (9.86) we find at r = a

Nas
n

[
ρ0h1

n(ρ0)
]′ = at

n [ρ jn(ρ)]′ − N [ρ0 jn(ρ0)]′

bs
nh1

n(ρ0) = bt
n jn(ρ) − jn(ρ0) with

[ρ0 jn(ρ0)]′ = d

dρ0
[ρ0 jn(ρ0)]

∣∣∣
r=a

,
[
ρ0h1

n(ρ0)
]′ = d

dρ0

[
ρ0h1

n(ρ0)
]∣∣∣

r=a

[ρ jn(ρ)]′ = d

dρ
[ρ jn(ρ)]

∣∣∣
r=a

, ρ0 = k0r , ρ = Nρ0 (9.90)

Had we used the azimuthal components we would have obtained the same result.
With the help of (9.88c,d) we can obtain two additional relations for the coefficients
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an and bn . Altogether we find

at
n [ρ jn(ρ)]′ − Nas

n

[
ρ0h1

n(ρ0)
]′ = N [ρ0 jn(ρ0)]′

µ0Nat
n jn(ρ) − µas

nh1
n(ρ0) = µjn(ρ0)

µ0bt
n [ρ jn(ρ)]′ − µbs

n

[
ρ0h1

n(ρ0)
]′ = µ [ρ0 jn(ρ0)]′

bt
n jn(ρ) − bs

nh1
n(ρ0) = jn(ρ0)

(9.91)

from which the coefficients an and bn of the scattered wave can be calculated as

as
n = − µjn(ρ0) [ρ jn(ρ)]′ − N 2µ0 jn(ρ) [ρ0 jn(ρ0)]′

µh1
n(ρ0) [ρ jn(ρ)]′ − N 2µ0 jn(ρ)

[
ρ0h1

n(ρ0)
]′

bs
n = − µ0 jn(ρ0) [ρ jn(ρ)]′ − µjn(ρ) [ρ0 jn(ρ0)]′

µ0h1
n(ρ0) [ρ jn(ρ)]′ − µjn(ρ)

[
ρ0h1

n(ρ0)
]′

(9.92)

The coefficients as
n and bs

n are of paramount importance for the Mie computations.
The evaluation of the Mie expressions in some cases may pose numerical

difficulties. In order to avoid these see, for example, Deirmendjian (1969). It is
possible to state (9.92) in a somewhat simplified form by introducing the so-called
Riccati–Bessel functions which differ from the spherical Bessel functions. For
details see van de Hulst (1957). Moreover, equations (9.92) simplify by setting
µ = µ0 which is permissible if the scattering particle is non-magnetic.

The transmission coefficients have not been stated explicitly. They are also
of great importance for the calculation of the electromagnetic energy of a scat-
tering sphere. This is, for instance, necessary if photochemical reactions within
water drops are calculated. A detailed analysis of this topic is given by Bott and
Zdunkowski (1987).

We will now return to equation (9.85) and replace the spherical Hankel function
by its asymptotic expression (9.84). Thus we find for the wave functions of the
scattered wave

us
n(r, ϑ, ϕ, t) = −i

2n + 1

n(n + 1)
as

n

cos ϕ

k0r
P1

n (cos ϑ) exp [i(k0r − ωt)]

vs
n(r, ϑ, ϕ, t) = −i

2n + 1

n(n + 1)
bs

n

sin ϕ

k0r
P1

n (cos ϑ) exp [i(k0r − ωt)]
(9.93)

The following abbreviations will be introduced

πn(cos ϑ) = P1
n (cos ϑ)

sin ϑ
= d Pn

d cos ϑ

τn(cos ϑ) = d P1
n

dϑ
= cos ϑ πn(cos ϑ) − sin2 ϑ

dπn

d cos ϑ

(9.94)
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where we have used (9.74). First let us treat the components of the field vectors of
the scattered wave. According to (9.83) they are given by

E s
ϑ = E i

0

∞∑
n=0

(
Mvs

n
− i Nus

n

)
ϑ
, E s

ϕ = E i
0

∞∑
n=0

(
Mvs

n
− i Nus

n

)
ϕ
, E s

r =−i E i
0

∞∑
n=0

(
Nus

n

)
r

H s
ϑ =−H i

0

∞∑
n=0

(
Mus

n
+ i Nvs

n

)
ϑ
, H s

ϕ =−H i
0

∞∑
n=0

(
Mus

n
+ i Nvs

n

)
ϕ
, H s

r =−H i
0

∞∑
n=0

i
(
Nvs

n

)
r

(9.95)

Employing (9.45) and (9.46) we may write for the horizontal components

E s
ϑ = E i

0

∞∑
n=0

(
1

sin ϑ

∂vs
n

∂ϕ
− i

k0r

∂2
(
rus

n

)
∂r∂ϑ

)

E s
ϕ = E i

0

∞∑
n=0

(
−∂vs

n

∂ϑ
− i

k0r sin ϑ

∂2
(
rus

n

)
∂r∂ϕ

)

H s
ϑ = −H i

0

∞∑
n=0

(
1

sin ϑ

∂us
n

∂ϕ
+ i

k0r

∂2
(
rvs

n

)
∂r∂ϑ

)

H s
ϕ = −H i

0

∞∑
n=0

(
−∂us

n

∂ϑ
+ i

k0r sin ϑ

∂2
(
rvs

n

)
∂r∂ϕ

)
(9.96)

The r -component of the scattered field is proportional to r−2 so that it may be
ignored at large distances from the scattering center.

Inserting (9.93) into (9.96) and using the definitions (9.94) we find

E s
ϑ = −E i

0 cos ϕ

∞∑
n=1

2n + 1

n(n + 1)

[
as

nτn(cos ϑ) + bs
nπn(cos ϑ)

] i

k0r
exp [i(k0r − ωt)]

E s
ϕ = E i

0 sin ϕ

∞∑
n=1

2n + 1

n(n + 1)

[
as

nπn(cos ϑ) + bs
nτn(cos ϑ)

] i

k0r
exp [i(k0r − ωt)]

H s
ϑ = −H i

0 sin ϕ

∞∑
n=1

2n + 1

n(n + 1)

[
as

nπn(cos ϑ) + bs
nτn(cos ϑ)

] i

k0r
exp [i(k0r − ωt)]

H s
ϕ = −H i

0 cos ϕ

∞∑
n=1

2n + 1

n(n + 1)

[
as

nτn(cos ϑ) + bs
nπn(cos ϑ)

] i

k0r
exp [i(k0r − ωt)]

(9.97)

Inspection of these equations shows that the following relations hold

H s
ϑ = −

√
ε0

µ0
E s

ϕ , H s
ϕ =

√
ε0

µ0
E s

ϑ (9.98)
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Fig. 9.4 The (l, r, z)-coordinate system and the scattering plane.

since H i
0 = √

ε0/µ0 E i
0, see (9.82). For this reason, in the following it is sufficient

to discuss the electric field only.
In order to treat scattering of electromagnetic waves on spherical particles it is

advantageous to introduce the so-called (l, r )-system. For the incoming wave the
new system is obtained by rotating the original (x, y, z)-system about the z-axis in
counterclockwise direction by the angle ϕ. For the scattered wave the directions
of the l- and r -axes agree with the directions ϑ and ϕ of the spherical coordinate
system. Thus the l-axes are located in the plane defined by the directions of the
incoming and the scattered wave. This particular plane is called the scattering
plane. Figure 9.4 depicts the directions of the l- and r -axes as well as the scattering
plane. The labels l and r are taken from the last letters of the words ‘parallel’ and
‘perpendicular’ describing the directions of the components of the electric field
vectors with respect to the scattering plane.

If l0 and r0 are unit vectors along the l and r axis of the incident wave, according
to Figure 9.4 we may express Ei as

Ei = E i
l l0 + E i

r r0 = E i
0 cos ϕ exp [i(k0z − ωt)] l0 − E i

0 sin ϕ exp [i(k0z − ωt)] r0

(9.99)



9.5 Mie’s scattering problem 355

The scattered electric vector can be written as

Es = E s
ϑeϑ + E s

ϕeϕ = E s
l eϑ + E s

r eϕ since E s
ϑ = E s

l , E s
ϕ = E s

r (9.100)

In order to have a shorthand notation we introduce the amplitude functions S1 and
S2 by

S1(cos ϑ) =
∞∑

n=1

2n + 1

n(n + 1)

[
as

nπn(cos ϑ) + bs
nτn(cos ϑ)

]

S2(cos ϑ) =
∞∑

n=1

2n + 1

n(n + 1)

[
as

nτn(cos ϑ) + bs
nπn(cos ϑ)

] (9.101)

By using (9.19), and (9.100) and (9.101) the first two equations of (9.96) can be
written in matrix notation as

 E s
l

E s
r


 = exp [ik0(r − z)]

ik0r


 S2(cos ϑ) 0

0 S1(cos ϑ)




 E i

l

E i
r


 (9.102)

In Chapter 1 the symbol � was introduced for the scattering angle, see
Figure 1.17. In the spherical coordinate system used to derive (9.102) the scattering
angle corresponds to the polar angle ϑ . In order to obtain consistency with the earlier
notation, from now on we will again use the symbol � for the scattering angle.

9.5.3 Rayleigh scattering

Rayleigh (1871) has developed a scattering theory for particles which are small in
comparison with the wavelength. With the help of the formulas which he derived
he was able to explain the blue color of the sky. Since the Mie theory is valid
for spherical particles of any size, it is possible to derive the Rayleigh formulas
as special cases of the Mie equations rather than following Rayleigh’s original
work. Thus, in the following we will assume that the radius a of the scattering
particle (e.g. an air molecule) is small compared to the wavelength λ of the incident
electromagnetic wave.

Before we begin with the simplification of the Mie equations we need to state a
number of formulas. Employing the definition of the spherical Bessel functions as
stated in (9.36), with the help of the sum formula for the ordinary Bessel function
of the first kind, (see e.g. Abramowitz and Stegun, 1972) we have

jn(x) =
√

π

2

( x

2

)n ∞∑
k=0

(− 1
4 x2

)k

k!�(n + 3/2 + k)
(9.103)
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From (9.56) we first find

[x jn(x)]′ = x jn−1(x) − njn(x) (9.104)

and then the sum representation

[x jn(x)]′ = √
π
( x

2

)n ∞∑
k=0

(− 1
4 x2

)k

k!

(
1

�(n + 1/2 + k)
− n

2�(n + 3/2 + k)

)
(9.105)

which will be used to treat some special cases as required for the Rayleigh theory.
We also need the definition of the spherical Hankel function of the first kind which
is given by

h1
n(x) = jn(x) − i(−1)n j−(n+1)(x) (9.106)

The sum representation follows directly

h1
n(x) =

√
π

2

( x

2

)n ∞∑
k=0

(− 1
4 x2

)k

k!�(n + 3/2 + k)

− i
√

π

2
(−1)n

( x

2

)−(n+1) ∞∑
k=0

(− 1
4 x2

)k

k!�(−n + 1/2 + k)
(9.107)

from which we obtain the derivative formula

[
xh1

n(x)
]′ = √

π
( x

2

)n ∞∑
k=0

(− 1
4 x2

)k

k!

(
1

�(n + 1/2 + k)
− n

2�(n + 3/2 + k)

)

− i(−1)n√π
( x

2

)−(n+1) ∞∑
k=0

(− 1
4 x2

)k

k!

×
(

1

�(−n − 1/2 + k)
− n + 1

2�(−n + 1/2 + k)

)
(9.108)

Now we are ready to obtain the simplified formulas which will be needed soon.
The arguments of the Bessel functions are of the form x = ka where, as usual,

k is the wave number and a is the radius of the scattering particle. If a 	 λ then
the argument approaches zero. Thus it is sufficient to discontinue the various sums
after the first term. Evaluation of (9.103) for small arguments yields

jn(x) ≈
√

π

2

( x

2

)n 1

�(n + 3/2)
(9.109)
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Similarly, we obtain from the derivative formula (9.105)

[x jn(x)]′ ≈ √
π
( x

2

)n
(

1

�(n + 1/2)
− n

2�(n + 3/2)

)
(9.110)

while (9.107) and (9.108) result in

h1
n(x) ≈

√
π

2

( x

2

)n 1

�(n + 3/2)
− i

√
π

2
(−1)n

( x

2

)−(n+1) 1

�(−n + 1/2)

(9.111)

and

[
xh1

n(x)
]′ = √

π
( x

2

)n
(

1

�(n + 1/2)
− n

2�(n + 3/2)

)

− i(−1)n√π
( x

2

)−(n+1)
(

1

�(−n − 1/2)
− n + 1

2�(−n + 1/2)

)
(9.112)

We will now investigate the coefficients as
n and bs

n as given by (9.92) and find
out in which way these simplify if we apply the above approximation formulas.
The numerators of both coefficients contain powers of (x/2)n . Moreover, the real
part of the denominator also contains powers of (x/2)n while the imaginary part is
a function of x−1. Thus for very small arguments of the functions and for n > 1 we
may set approximately

as
n ≈ 0, bs

n ≈ 0 for n > 1 (9.113)

implying that in (9.101) the S1 and S2 series may be discontinued after the first term.
Now let us find explicit expressions for as

1 and bs
1. Inspection of the definitions of

the spherical Bessel functions shows that these contain the gamma functions. By
using the formulas

�(1/2) = √
π , �(x + 1) = x�(x) (9.114)

we find from (9.109) and (9.110) for small values of the argument

j1(x) ≈ x

3
, [x j1(x)]′ ≈ 2x

3
(9.115)

Likewise, from (9.111) and (9.112) we obtain

h1(x) ≈ x

3
− i

x2
, [xh1(x)]′ ≈ 2x

3
+ i

x2
(9.116)
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Substitution of these expressions into (9.92) yields the approximate expressions
for as

1

as
1 ≈

2ρ0

3

(
N 3 − N

)
2
(

ρ0

3 − i
ρ2

0

)
N −

(
2ρ0

3 + i
ρ2

0

)
N 3

= −ρ3
0

(
N 2 − 1

) [
ρ3

0

(
N 2 − 1

)− 3
2 i
(
N 2 + 2

)]
ρ6

0 (N 2 − 1)2 + 9
4 (N 2 + 2)2

(9.117)

Finally, by ignoring in (9.117) the sixth power of ρ0 gives

as
1 ≈ 2

3
iρ3

0
N 2 − 1

N 2 + 2
(9.118)

By the same procedure we find that the coefficient bs
1 vanishes, that is

bs
1 ≈ 0 (9.119)

Thus for Rayleigh scattering we obtain from (9.101) the amplitude functions

S1(cos �) ≈ iρ3
0
N 2 − 1

N 2 + 2
π1(cos �), S2(cos �)≈ iρ3

0
N 2 − 1

N 2 + 2
τ1(cos �)

(9.120)

From (9.94) we get for n = 1

π1(cos �) = 1, τ1(cos �) = cos � (9.121)

so that the amplitude functions assume the simple forms

S1(cos �) ≈ iρ3
0
N 2 − 1

N 2 + 2
, S2(cos �) ≈ iρ3

0
N 2 − 1

N 2 + 2
cos � (9.122)

For the � = 0 we observe that S1 = S2.
Utilizing the above approximations, for Rayleigh scattering the relationship

(9.102) between the components of the incoming and the scattered electric vec-
tor with reference to the scattering plane are given by

 E s
l

E s
r


 = ρ3

0

k0r

N 2 − 1

N 2 + 2
exp [ik0(r − z)]


 cos � 0

0 1




 E i

l

E i
r


 (9.123)

Since ρ0 = k0a = 2πa/λ it is seen that for Rayleigh scattering the electric field
vector of the scattered wave is proportional to λ−2 so that the radiance of the
scattered light is proportional to λ−4. Thus in the atmosphere scattering of the
visible sunlight on air molecules is most efficient for the shorter wavelengths, i.e.
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Fig. 9.5 Hypothetical experiment to define the extinction coefficient.

for blue light. This explains why the sky is blue, or in other words, why the sun
appears red during dawn and dusk. In the next section we are going to discuss the
scattering properties in a little more detail.

9.6 Material characteristics and derived directional quantities

9.6.1 Extinction, scattering and absorption coefficients

Let us consider a single fixed particle of arbitrary shape and composition being
illuminated by an electromagnetic wave as shown in Figure 9.5. The origin of the
(x, y, z)-coordinate system is somewhere within the particle. One part of the energy
which is incident on the particle is scattered and, in general, another part is being
absorbed. At a point P̃ which is located at a distance r = z from the origin, the
radiative flux φ incident on the surface A is given by

φ =
∫

A
E d A (9.124)

Now we remove the particle so that none of the incident light is lost. Then at point
P̃ the observed flux is given by

φi =
∫

A
E i d A (9.125)
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The extinction due to the presence of the particle causes a change φe in the radiant
flux as given by

φe = φi − φ =
∫

A
(E i − E)d A (9.126)

The change of the radiant flux can be described with the help of the extinction
cross-section Cext which is defined by means of

Cext = 1

E i

∫
A
(E i − E)d A (9.127)

Thus Cext has the dimension (m2).
Similarly, the scattered flux φs can be expressed by means of

φs =
∮

4πr2
E sd A (9.128)

where the integration extends over the spherical surface defined by the radius r .
Analogously to (9.127) we define the scattering cross-section by means of

Csca = 1

E i

∮
4πr2

E sd A (9.129)

Finally, we need to define the absorption cross-section. Since the extinction may
be treated as a combination of scattering and absorption, we may introduce

Cabs = 1

E i

∮
4πr2

(E i − E s − E)d A (9.130)

as the defining equation for Cabs so that

Cabs + Csca = Cext (9.131)

Hence in the absence of absorption Cext = Csca.
If we divide the quantities Cext, Csca and Cabs by the geometric cross-section

G of the particle, we obtain the dimensionless efficiency factors for absorption,
scattering and extinction

Qabs = Cabs

G
, Qsca = Csca

G
, Qext = Cext

G
(9.132)

In case of the Mie theory which was developed for spherical particles, we use
G =πa2 since the cross-section of a sphere with radius a is a circle having the
same radius.

In the following analysis we will assume that the particles have spherical shape.
Reference to equation (9.102) shows that each component of the electric vector can
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be expressed in the form

us = S(�)
exp [ik0(r − z)]

ik0r
ui (9.133)

Here, us and ui are the amplitudes of the scattered and the incident wave and S(�)
is the amplitude function. The amplitude function is in general complex and can
also be written in the form

S(�) = s(�) exp [iσ (�)] (9.134)

where σ is the phase of the scattered wave. The quantity s is positive and σ is real.
In general s(�) is independent of the choice of the origin while σ (�) depends

on this choice. The only exception is the case with �=0 since a displacement of
the origin does not change the scattering angle. Figure 9.6 illustrates the situation
with �=0 (left panel) and � �=0 (right panel).

At every point outside the particle the electromagnetic wave can be separated into
two parts representing the scattered wave in direction P and the incoming wave.
In order to determine the extinction caused by the presence of the particle we need
to know the amplitude of the wave at point P̃ which is located at a distance r = z
from the scattering center where the scattering angle is zero, see Figure 9.5. Since
in this case the directions of the incoming plane wave and the scattered spherical
wave are the same it is impossible to distinguish between the two waves. In order
to make a distinction possible one chooses a point which is very close to P̃ so that
the scattering angle for all practical purposes is still zero. For the coordinates of
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this point we have z 
 x and z 
 y so that we may use the approximation

r =
√

x2 + y2 + z2 ≈ z + x2 + y2

2z
≈ z + x2 + y2

2r
(9.135)

Adding the amplitude of the incoming wave and the scattered wave we may write

u = ui + us = ui

(
1 + S(0)

exp [ik0(r − z)]

ik0r

)

≈ ui

(
1 + S(0)

exp
[
ik0(x2 + y2)/2r

]
ik0r

) (9.136)

The radiance of the radiation is equal to the square of the amplitude. Since
no integration over the scattering angle needs to be carried out to obtain the flux
density E we have

E = E i

(
1 + S(0)

exp
[
ik0(x2 + y2)/2r

]
ik0r

)(
1 + S(0)

exp
[
ik0(x2 + y2)/2r

]
ik0r

)∗

= E i(1 + a + ib)(1 + a − ib) = E i(1 + a2 + 2a + b2) with

a = �
(

S(0)
exp

[
ik0(x2 + y2)/2r

]
ik0r

)
, b = �

(
S(0)

exp
[
ik0(x2 + y2)/2r

]
ik0r

)

(9.137)

Since a2 and b2 are proportional to r−2 we ignore these two terms for large r . Hence
we obtain for the total flux density

E = E i

[
1 + 2�

(
S(0)

exp
[
ik0(x2 + y2)/2r

]
ik0r

)]
(9.138)

from which we find the radiative flux with respect to the surface A as

φ =
∫

A
Ed A =

∫
A

E id A +
∫

A
E i2�

(
S(0)

exp
[
ik0(x2 + y2)/2r

]
ik0r

)
d A (9.139)

By comparing (9.127) with (9.139) we obtain for the extinction coefficient

Cext = −
∫

A
2�

(
S(0)

exp
[
ik0(x2 + y2)/2r

]
ik0r

)
d A (9.140)

which is an useless expression unless we are able to carry out the integration. To
accomplish this, first of all we use the substitutions

α2 = k0x2

2r
, β2 = k0 y2

2r
=⇒ d A = dx dy = 2r

k0
dαdβ (9.141)
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After a little algebra we obtain

Cext = −
∫ α2

α1

∫ β2

β1

4

k2
0

�[S(0)(cos α2 sin β2 + cos β2 sin α2)]dβdα

−
∫ α2

α1

∫ β2

β1

4

k2
0

�[S(0)(cos α2 cos β2 − sin β2 sin α2)]dβdα

(9.142)

The integrals in (9.142) can be evaluated if the limits of the double integral are
extended to infinity. This procedure is legal since only points x 	 z and y 	 z
effectively contribute to the result. Observing∫ ∞

−∞
sin x2dx =

∫ ∞

−∞
cos x2dx =

√
π

2
(9.143)

we obtain the final result for the extinction cross-section

Cext = −4π

k2
0

� [S(0)] (9.144)

The radiance of the light wave components I s
l and I s

r are obtained by squaring
the corresponding components of the electric vector. Thus we find from (9.102)

I s
l = 1

k2
0r2

S2(�)S∗
2 (�)I i

l , I s
r = 1

k2
0r2

S1(�)S∗
1 (�)I i

r (9.145)

The total scattered light intensity is given by

I s = I s
l + I s

r = 1

2k2
0r2

[S1(�)S∗
1 (�) + S2(�)S∗

2 (�)]I i (9.146)

with I i
l = I i

r = I i/2 which is true for natural light. In the general case where the light
is polarized, the zeros in the matrix on the right-hand side of (9.102) are replaced by
other quantities. In which way polarized light must be treated in radiative transfer
will be discussed in the following chapter.

We define the Mie intensity functions by means of

i1(cos �) = S1(cos �)S∗
1 (cos �), i2(cos �) = S2(cos �)S∗

2 (cos �) (9.147)

so that I s can be written as

I s = i1(cos �) + i2(cos �)

2k2
0r2

I i (9.148)

The functions i1 and i2 refer to light vibrating perpendicularly and parallel to the
scattering plane. For a given scattering angle �, the flux densities can be stated as

E s = i1(cos �) + i2(cos �)

2k2
0r2

E i (9.149)
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Hence, with reference to equation (9.129) the scattering cross-section is given by

Csca =
∫ 2π

0

∫ 1

−1

i1(x) + i2(x)

2k2
0

dxdϕ with x = cos � (9.150)

In this equation we substitute for i1 and i2 the definitions S1 and S2 as given by
(9.101) and find

Csca = π

k2
0

∫ 1

−1

∞∑
n=1

∞∑
m=1

cncm
(
as

nas∗
m + bs

nbs∗
m

)
[πn(x)πm(x) + τn(x)τm(x)] dx

+ π

k2
0

∫ 1

−1

∞∑
n=1

∞∑
m=1

cncm
(
as

nbs∗
m + bs

nas∗
m

)
[πn(x)τm(x) + τn(x)πm(x)] dx

(9.151)

with ci = (2i + 1)/[i(i + 1)]. According to (9.94) the functions πn(x) and τn(x)
may be written as

πn(x) = P1
n (x)√

1 − x2
, τn(x) = −

√
1 − x2

d P1
n

dx
(9.152)

Recalling the orthogonality relation (9.50) we find the condition

∫ 1

−1
[πn(x)πm(x) + τn(x)τm(x)] dx

=
∫ 1

−1

[
1

1 − x2
P1

n (x)P1
m(x) + (1 − x2)

d P1
n

dx

d P1
m

dx

]
dx = 2n2(n + 1)2

2n + 1
δn,m

(9.153)

Furthermore, we easily obtain the orthogonality condition

∫ 1

−1
[πn(x)τm(x) + τn(x)πm(x)] dx = −

∫ 1

−1

d

dx

[
P1

n (x)P1
m(x)

]
dx = 0 (9.154)

so that the scattering cross-section Csca can finally be written as

Csca = 2π

k2
0

∞∑
n=1

(2n + 1)
(
as

nas∗
n + bs

nbs∗
n

)
(9.155)

Thus Csca can be expressed entirely by the coefficients as
n and bs

n .
Next we will show that Cext can also be formulated in terms of these coefficients.

From textbooks on spherical harmonics and from mathematical tables, such as
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Jahnke and Emde (1945), we may extract the expression

Pm
n (x) = (n + m)!

2mm!(n − m)!
(1 − x2)m/2

(
1 − (n − m)(n + m + 1)

m + 1

1 − x

2
+ · · ·

)
(9.156)

for the associated Legendre polynomials. For the scattering angle � = 0 so that
x = 1 we find for m =1 the following simple expressions for the πn and τn functions

πn(x)
∣∣
x=1 = n(n + 1)

2
, τn(x)

∣∣
x=1 = n(n + 1)

2
(9.157)

Thus for the function S(0) appearing in (9.144) we obtain

S(0) = S1(0) = S2(0) =
∞∑

n=1

2n + 1

2

(
as

n + bs
n

)
(9.158)

yielding for Cext

Cext = −2π

k2
0

�
( ∞∑

n=1

(2n + 1)
(
as

n + bs
n

))
(9.159)

We will now briefly discuss Rayleigh scattering which we have treated as a
special case of Mie scattering. Without going into details, there is a problem if we
try to evaluate the Rayleigh extinction coefficient for a real index of refraction by
using equation (9.144). In this case we obtain Cext = 0 which cannot be correct.
Van de Hulst (1957) and Goody (1964a) trace this problem back to the Rayleigh
theory where radiation reaction on the oscillating dipole is neglected. Because of
this the phase of the scattered wave is incorrect. Due to our simplified treatment of
as

n and bs
n we have introduced the same type of problem.

We overcome this problem by recalling that in the absence of absorption the
extinction cross-section is equal to the scattering cross-section. Thus we find the
scattering cross-section by substituting (9.118) and (9.119) into (9.155). A brief
derivation shows that the scattering cross-section for a dielectric sphere of radius
a can then be expressed by

Csca = 8π

3k2
0

(N 2 − 1)2

(N 2 + 2)2
ρ6

0 (9.160)

This equation was derived for incident linearly polarized light, but it is also valid
for incident natural light. The reason for this is that unpolarized light can be treated
as two beams of incoherent light of equal intensity. We have used this fact already
when deriving equation (9.155).
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We will close this section with a few remarks stating that the Rayleigh theory can
be improved. Since molecules are not perfect dielectric spheres a correction term
must be included in equation (9.160) which is known as a depolarization correction.
Practically all tabulations of the scattering coefficient include this factor showing
that this increases the extinction coefficient by about 7%. A condensed derivation
of the correction factor is given by Goody (1964a). Finally, we would like to remark
that the inverse power law for the scattering coefficient is not exactly a fourth power
law since the index of refraction is wavelength dependent and slightly decreasing
with increasing wavelength. If this fact is incorporated into the theory then within
the visible spectrum the scattering coefficient is proportional to λ−4.08.

9.6.2 The scattering function and the scattering phase function

At this point we wish to discuss the scattering of unpolarized light by a spherical
particle contained in a small volume element �V . In analogy to the scattering
function S(µ, ϕ, µ′, ϕ′) introduced in terms of the principles of invariance (see
Chapter 3), we now wish to define the scattering function P̃(cos �) in the form
needed to evaluate the RTE. This type of scattering function is defined as the ratio
of the scattered radiant flux dφs per solid angle element d� and volume element
�V to the incoming radiant flux density d E i, that is

P̃(cos �) = dφs(cos �)

�V d�sd Ei
= r2d E s(cos �)

�V d E i
(9.161)

The second expression follows from d� = d A/r2 and d E s = dφs/d A. The units
of P̃(cos �) are (m−1 sr−1). Utilizing (9.149) we obtain immediately

P̃(cos �) = i1(cos �) + i2(cos �)

2k2
0�V

(9.162)

The scattering function agrees with the differential scattering coefficient introduced
in Section 1.6.2, see (1.42). Thus the ordinary scattering coefficient, defined in
(1.44), may also be written as

ksca =
∮

4π

P̃(cos �)d� (9.163)

Analogously to (1.45) we obtain the scattering phase function P(cos �) as

P(cos �) = 4π

ksca
P̃(cos �) (9.164)

Hence we directly see that P(cos �) is normalized, that is∮
4π

P(cos �)d� = 4π (9.165)
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Fig. 9.7 Polar plot of P(cos �) for N =1.33 + 0i and three different size param-
eters. Dashed curve: x = 0.01, lower solid curve: x =1, upper solid curve: x =50.

Finally, it is a simple task to show that for Rayleigh scattering the phase function
reduces to

PRayleigh(cos �) = 3

4
(1 + cos2 �) (9.166)

The proof of this equation will be left to the exercises. Application of (9.166) to
(6.25) shows that in case of Rayleigh scattering the backscattering coefficient is
given by 0.5.

9.7 Selected results from Mie theory

In this section we will present various results which follow from the Mie theory.
Figure 9.7 depicts a polar plot of the Mie scattering phase function P(cos �) for a
nonabsorbing sphere with refractive index N =1.33 + 0i . The figure shows three
curves for the size parameter x =2πr/λ selected as 0.01, 1 and 50. The value of
P(cos �) is given by the radial distance between a point on the curve and the origin
of the polar plot. The Mie phase function has rotational symmetry with respect to
the axis of incidence. Thus, for better comparison all three curves have been drawn
in a single plot, i.e. for each size parameter the full phase function is obtained by
reflecting the corresponding curve on the axis of incidence.

As can be seen from the figure, for very small size parameters of x =0.01
(dashed curve) the phase function is symmetric with respect to the ordinate denot-
ing the scattering directions �=90◦and �=270◦. For such a small size parameter,
P(cos �) approaches the Rayleigh phase function (9.166). For x =1 this symmetry
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Fig. 9.8 Efficiency factor for scattering for different values of κ .

of the phase function with respect to the ordinate is approximate only with a small
enhancement in the forward direction. Nevertheless the curve is still rather smooth.
For x =50 the phase function is very asymmetric with respect to the ordinate
showing a very strong peak in the forward direction. Note the logarithmic scale of
the axes of the polar plot. Moreover, the curve is characterized by numerous ripples
indicating the complex scattering behavior of particles with large size parameters.
For visible wavelengths x =1 is representative for a small particle having a radius of
approximately 0.1 µm, while x = 50 is typical for a cloud droplet with radius 5 µm.

In order to calculate the wavelength-dependent efficiency factors Qabs, Qsca and
Qext as defined in (9.132), we must specify the radius r of the scattering particle
and the wavelength λ. These two physically significant quantities enter the Mie
scattering coefficients as

n and bs
n in terms of the size parameters ρ0 and ρ, see (9.90)

and (9.92). For the evaluation of (9.92), the wavelength-dependent complex index
of refraction N , defined in (8.253), is also needed. This quantity can be extracted
from suitable tables. As soon as the coefficients as

n, bs
n are available, the scattering

and extinction cross-sections Csca, Cext can be calculated from (9.155) and (9.159),
whereas the absorption cross-section follows from (9.131).

As a first example, let us consider Figures 9.8–9.10 which show the distribution
of Qsca, Qabs and Qext as a function of the size parameter x =ρ0 =2πr/λ for a fixed
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real part n =1.33 of the complex index of refraction. This value is representative of
pure water in the visible part of the spectrum. By assuming values of κ =0, 0.01, 0.1
and κ =1.0, we wish to investigate in which way the efficiency factors are modified
by nonzero absorption indices. For these κ-values four curves of Qsca are depicted
in Figure 9.8. In the right part of the figure, the distribution Qsca not only shows
a wave-like behavior with decreasing amplitudes but also many ripples interfering
with the distribution curve. The major maxima and minima result from interference
of light which is transmitted and diffracted by the spherical particle. The superposed
ripples are not numerical inaccuracies. They are due to edge rays which are grazing
and traveling around the sphere thereby emitting small amounts of energy in all
directions. These ripples, however, are not of major physical concern and impor-
tance to us. As will be seen, even small κ-values, e.g. κ =0.01, will almost remove
this fine structure. For κ =0.1 only one major maximum is observed while for κ =1
the entire wave structure has disappeared.

Figure 9.9 displays the distributions of the absorption efficiency factors Qabs for
the values of the absorption index κ used in the previous figure. If no absorption
takes place, i.e. κ = 0, we must have Qabs = 0. It is seen that with increasing values
of κ the maxima of the curves are shifted toward lower values of the size parameter.
Ripple patterns are barely visible, only for κ = 0.01 they can be identified for values
of the size parameter of approximately 5–50.

Figure 9.10 depicts the distributions of the extinction efficiency factors Qext. For
κ = 0, of course, the efficiency factor for scattering and extinction are identical. Of
particular interest is the asymptotic behavior of Qext for very large values of x where
Qext approaches the value of 2 for all κ . At first it is surprising that the extinction
cross-section is twice as large as the geometrical cross-section of the spherical
particle. This apparently contradicts the observations, but the effect is real. A part
of the light is scattered in the forward direction and cannot be distinguished from
the incoming light. Since the particle is large, the so-called extinction paradox can
be explained in terms of geometric optics. A very minute part of the incoming light
traverses the sphere in the direction of the scattering angle zero. The remaining
light intercepted by the large particle suffers a change in direction by reflection and
refraction and is, therefore, scattered out of the forward beam. This explains one
half of Qext = 2. The other half is the radiation which is diffracted by the ‘edge’ of
the sphere. According to Babinet’s principle an opaque circular disk forms the same
diffraction pattern as a hole of the same radius in an opaque screen. Fraunhofer
diffraction theory (incident and diffracted wave are essentially plane) shows that
all rays passing through the hole, except for the axial ray, are deviated or scattered.
Most of the edge-diffracted light is contained within the maximum of the diffraction
pattern centered around the forward direction whose angular width is defined by the



9.7 Selected results from Mie theory 371

Fig. 9.11 Single scattering albedo as a function of the absorption index for different
values of the size parameter.

first minimum of the diffraction pattern. For a simple yet illuminating discussion of
the Fraunhofer diffraction pattern of a single slit see, for example, Fowles (1967).
Discussions of the extinction paradox can be found in Van de Hulst (1957), Johnson
(1960), Goody (1964a), Houghton (1985) and elsewhere.

As another example for the results of the Mie theory Figure 9.11 shows the single
scattering albedo ω0 as a function of κ for different values of the size parameter x . It
is not surprising that for a given x with increasing κ , i.e. with increasing absorption,
the single scattering albedo decreases strongly. However, instead of going to zero ω0

decreases to a minimum value and then rises steadily to ω0 = 1 which corresponds
to perfect scattering. To explain this effect in simple terms seems difficult, but it is
the result of exact Mie computations. In order to at least qualitatively appreciate this
result, let us consider a plane wave which is incident on the boundary of a medium
having a complex index of refraction as defined by (8.253). For normal incidence
a simple reflection formula exists as is shown, for example, in Fowles (1967). For
metals the absorption index κ is large, resulting in a high value of the reflectance
which approaches unity as κ becomes infinite. This compares with ω0 = 1 when
perfect scattering takes place.
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In order to model the attenuation caused by a particle population as observed in a
cloud, we need to introduce a particle distribution function n(r ). Such a function may
have various mathematical forms. Here we will model a cloud droplet population
with the help of the rather versatile standard modified gamma distribution, a type
of function already used by Deirmendjian (1969). It is expressed as

n(r ) = Cr (1−3b)/b exp
(
− r

ab

)
, C = N (ab)(2b−1)/b�

(
1 − 2b

b

)
(9.167)

where C is a normalization constant and N (cm−3) the total number of cloud
particles per unit volume of air which is related to n(r ) by

N =
∫ ∞

0
n(r )dr (9.168)

It can be shown that the parameters a and b are equal to the effective particle radius
and the dimensionless effective variance of the size distribution, i.e.

a = 1

G

∫ ∞

0
rπr2n(r )dr , b = 1

Ga2

∫ ∞

0
(r − a)2πr2n(r )dr (9.169)

G is the total geometric cross-section of the entire particle population per unit
volume, that is

G =
∫ ∞

0
πr2n(r )dr (9.170)

In the exercises it will be shown that the integrations of (9.169) indeed result in
the effective radius and the effective variance. As will be seen, the units of the
distribution function n(r ) are (cm−3 cm−1) which is number of particles per cm3

and per radius interval measured in cm. Of course, we could have used the length
unit m, but it is customary to use the smaller unit cm. By adjusting the length
parameter a (cm) and the dimensionless parameter b, equation (9.167) may also be
applied to describe an aerosol particle spectrum.

For b = 0.01, 0.1, 0.2 the gamma function appearing in (9.167) assumes the val-
ues 97!, 7!, 2!. To get an impression of the resulting shape of the size distribution, the
normalized form (N =1) cm−3 is plotted in Figure 9.12 with f (r ) = n(r, N = 1).
Six different distributions are shown, three curves for each a = 1 and a = 10. Two
curves refer to b = 0.01 (solid), two for b = 0.1 (dotted) and finally two curves
for b = 0.2 (dashed). Inspection of the figure shows that the widths of the particle
distribution curves increase with increasing values of b while the heights of the
curves decrease with increasing a.

An application of the cloud droplet distribution function is shown in Figure 9.13
displaying the scattering efficieny factor Qsca as a function of the size parameter
x = 2πa/λ. Here a, as defined in (9.169) is the effective radius of the standard
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modified gamma function for N = 1.33 + 0i and b = 0, 0.01, 0.1, 0.2, 0.5. To
produce this figure, each point on the curve was obtained by first calculating the
efficiency factor for an individual particle and then integrating over the number size
distribution according to

Qsca(a, b) =
∫∞

0 Qsca(r )n(r, a, b)dr∫∞
0 n(r, a, b)dr

(9.171)

where we have written n(r, a, b) to explicitly show that the particle distribution
function depends on the parameters a and b. A further inspection of the figure
reveals that with increasing b and increasing values of the size parameter x the
ripples, often called the resonances, disappear very quickly even for the rather small
value b = 0.01. Again the limiting value Qsca = 2 is obtained for large values of
x . Note that in the present case Qext = Qsca since the absorption index has been
chosen to κ = 0. More informations of this type can be found in Hansen and Travis
(1974).

9.8 Solar heating and infrared cooling rates in cloud layers

At this point we have some idea about the behavior of the important efficiency
factors which are needed to evaluate the radiative transfer equation. For a single
particle the extinction, scattering and absorption cross-sections can be calculated
according to (9.132). If the cross-sections refer to unit volume, they are known
as extinction, scattering and absorption coefficients or collectively as attenuation
coefficients. All practical problems involve some sort of a particle size distribution.
The gamma function we have used to specify a particle population is very useful,
but it is by no means the only existing distribution. Let n(r ) represent a nonspecified
particle distribution, then the attenuation coefficients are obtained by integrating
the cross-sections over the entire particle spectrum yielding

βext,λ =
∫ ∞

0
πr2 Qext,λ(r )n(r )dr

βsca,λ =
∫ ∞

0
πr2 Qsca,λ(r )n(r )dr

βabs,λ =
∫ ∞

0
πr2 Qabs,λ(r )n(r )dr

(9.172)

Since the complex index of refraction, in general, depends on the wavelength, the
efficieny factors Qext, Qsca, Qabs and thus the attenuation coefficients βext, βsca, βabs

are also wavelength dependent. Application of the wavelength dependent atten-
uation coefficients, in connection with the RTE, results in monochromatic flux
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Table 9.1 Solar heating rates at cloud top and cloud base for two
liquid water contents wl. Cloud base height is 3000 m or 500 m,

cloud thickness is 500 m, Ag =0

Cloud base at 3000 m wl = 0.1 g m−3 wl = 0.2 g m−3

Cloud top 1.6 K h−1 2.4 K h−1

Cloud base 0.15 K h−1 0.15 K h−1

Cloud base at 500 m

Cloud top 0.9 K h−1 1.4 K h−1

Cloud base 0.1 K h−1 0.15 K h−1

densities. To complete a particular problem, an integration over the spectrum must
be carried out.

Now we will briefly consider solar heating and infrared cooling rates of cloud
layers. It is very difficult to give representative results since radiative temperature
changes depend on many parameters. To calculate solar heating rates, we must
specify the position of the Sun, the heights of cloud base and cloud top, wavelength-
dependent optical parameters, the ground albedo and the cloud temperature which
determines the cloud saturation water vapor content. Moreover, the liquid water
content and the droplet distribution function must be known. Additional parameters
are involved. With the exception of the Sun’s position, infrared cooling rates depend
on the same quantities. In order to be brief, omitting details, we will simply state a
few results. The calculation methods were described previously.

In all cases we assume that the clouds are stratified, that the solar zenith angle
θ0 = 30◦ is fixed and that the cloud has a thickness of 500 m. The base of the
cloud is placed at 3000 m or 500 m while the ground albedo is assumed to be 0 or
40%. The calculations are based on the Best (1951) droplet size distribution which
is similar to (9.167). Both distributions contain exponential factors with negative
arguments, and both involve the radius r raised to a negative power. From Welch
et al. (1976) we have extracted the information stated in Table 9.1. The table shows
that for high values of wl the heating rates at cloud top are substantially larger
than for wl = 0.1 g m−3. At the cloud base both heating rates are nearly identical.
The reason is that the solar beam arriving at the bottom of either cloud is nearly
exhausted.

Suppose that the ground albedo is raised to the rather high value of 0.4. In case of
the smaller liquid water content wl =0.1 g m−3 and cloud base height of 500 m, the
heating rate at cloud base is increased to 0.20 K h−1. In the upper half of the cloud
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no distinction of the heating rates for Ag =0 and Ag =0.4 is found. The differences
in heating rates for Ag =0 at the cloud tops but different cloud base heights is
explained easily. At the cloud top of the lower cloud, the solar flux density of the
parallel solar radiation is substantially smaller than at the higher cloud top so that
less energy is available for solar heating. This difference results from the water
vapor absorption along the atmospheric path from 3500 to 1000 m.

Next we will give a few results on infrared cooling. Of some interest are the
cooling rates which are calculated as part of a radiation fog prediction model. Since
the model contains detailed microphysics, the droplet distribution is not prescribed
but actually calculated as a time-dependent table. During the time period which we
briefly consider, the liquid water content in the upper part of a 30 m deep ground
fog varies considerably resulting in varying cooling rates. For a particular situation
during a period of about 30 min, maximum cooling rates of 3–4 K h−1 are calculated
in the upper part of the fog. The liquid water content at the points of maximum
cooling was about 0.1 g m−3. In general, in a developing fog cooling rates vary
considerably with height and time. Detailed investigations of fog modeling show
the importance of reliable radiative transport models. Some details regarding the
influence of radiative cooling on the development of radiation fog are given by Bott
et al. (1990) and Siebert et al. (1992).

Fu et al. (1997) have calculated cooling rates of various clouds. For a low cloud
(cloud base height at 1 km, cloud thickness 1 km) and a liquid water content wl =
0.22 g m−3 they find a cloud top cooling of almost 1.5 K h−1 and a small amount
of cloud-base heating. For wl =0.28 g m−3 they calculate a cloud-top cooling of
2.5 K h−1 for a middle high cloud (cloud base height at 4 km, cloud thickness 1 km)
and a cloud-base heating of 0.7 K h−1. The heating of the cloud base is caused by
the trapping of long-wave energy emitted by the considerably warmer surface. The
results were calculated by assuming mid-latitude summer conditions.

By utilizing a detailed spectral cloud microphysics approach, Bott et al. (1996)
have investigated the role of atmospheric radiative transfer for the evolution of the
cloud-topped marine boundary layer. Bott (1997) has studied the impact of aerosol
particles on the radiative forcing of stratiform clouds. He showed that the radiative
forcing of the clouds is strongly affected by the physico-chemical properties of the
aerosol particles yielding different reflectivities and absorption characteristics of
the clouds.

9.9 Problems

9.1: As a review: Use the curl equations (9.1) to obtain the wave equations.
9.2: Show that equation (9.29b) can be transformed to (9.32).
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9.3: The auxiliary vector Mψ is defined in (9.38). Show that this vector satisfies
the wave equation (9.39).

9.4: Show that the relations (9.43) are valid.
9.5: Show in detail that Nψ,r as defined in (9.45) can be written as (9.46).
9.6: Use the definition of Nψ in (9.38) to show that Mψ can be written as (9.40).
9.7: Starting with the proper boundary conditions, find by detailed mathematical

operations the second, the third and the fourth equation of (9.91).
9.8: Verify that Bn =−i An, Cn =−An and Bn = Dn , see (9.79).
9.9: Show that (9.142) follows from (9.140).

9.10: Verify (9.169).
9.11: Verify equation (9.166).
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Effects of polarization in radiative transfer

So far we have considered radiative transfer in the atmosphere by means of the
scalar form of the radiative transfer equation. Since light is a vector quantity the
formulation of the radiative transfer equation was only approximate but sufficiently
accurate for most practical purposes in connection with atmospheric energetics.
A complete description of the radiation field, however, must include the state of
polarization since scattering, in general, produces polarized light. In this chapter
we will derive some mathematical statements about the polarization ellipse. Linear
and circular polarization follow as special cases.

At this point we wish to refer the reader to the interesting article by Hovenier and
van der Mee (1983) about the fundamental relationships relevant to the transfer of
polarized light in a scattering atmosphere. Here we can only give an introductory
discussion which may serve as a basis to tackle the more advanced papers.

10.1 Description of elliptic, linear and circular polarization

Let us consider the propagation of a plane time harmonic wave in a Cartesian
coordinate system. The components of the electric (magnetic) vector are of the
form �[a exp(−i(τ + δ))] = a cos(τ + δ) where a and δ are the amplitude and the
phase angle, respectively. The quantity τ , defined by

τ = ωt − k · r (10.1)

is the variable part of the phase factor and k, as before, represents the propagation
vector of the electromagnetic wave. To be specific, let us assume that the wave
propagates along the positive z-axis. Then the electric vector can be written as

E = a1�[exp(−i(τ + δ1))] i + a2�[exp(−i(τ + δ2))] j = Ex i + Eyj

with Ex = a1 cos(τ + δ1), Ey = a2 cos(τ + δ2), Ez = 0
(10.2)

378
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where δ1 and δ2 are constant phase angles. Ez = 0 since the field is transversal. The
point with coordinates (Ex , Ey) describes a certain curve in space which will now
be investigated in some detail.

In order to eliminate τ in (10.2) we first expand the cosine functions yielding

(a)
Ex

a1
= cos τ cos δ1 − sin τ sin δ1

(b)
Ey

a2
= cos τ cos δ2 − sin τ sin δ2

(10.3)

Next we multiply (10.3a) by sin δ2 and (10.3b) by sin δ1 and subtract the resulting
equations from each other. After some simple manipulations we obtain

Ex

a1
sin δ2 − Ey

a2
sin δ1 = cos τ sin(δ2 − δ1) (10.4)

Multiplication of (10.3a) by cos δ2 and (10.3b) by cos δ1 and subtraction of the
resulting equations gives

Ex

a1
cos δ2 − Ey

a2
cos δ1 = sin τ sin(δ2 − δ1) (10.5)

Squaring and adding (10.4) and (10.5) results in(
Ex

a1

)2

+
(

Ey

a2

)2

− 2Ex Ey

a1a2
cos δ = sin2 δ with δ = δ2 − δ1 = const

(10.6)
which is independent of τ , i.e. independent of the space coordinate z and of time t .

Now we consider the general equation of a conic

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (10.7)

The conditions to represent an ellipse, parabola or hyperbola are

B2 − 4AC




< 0 ellipse
= 0 parabola
> 0 hyperbola

(10.8)

Comparison of (10.7) and (10.6) with

4(cos2 δ − 1)

a2
1a2

2

≤ 0 (10.9)

shows that (10.6) is the equation of an ellipse. Hence the endpoint of the electric
field vector traces out an ellipse as shown in Figure 10.1. Therefore, the light is
elliptically polarized. This ellipse is inscribed into a rectangle whose sides are
parallel to the coordinate axes. The sides of the rectangle have the lengths 2a1 and
2a2. The ellipse touches the rectangle at the four points Pi , i = 1, . . . , 4. From
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Fig. 10.1 Vibrational ellipse for the electric field vector.

(10.6) and Figure 10.1 one may easily verify that at these points the values of
(Ex , Ey) are given by

P1 : (Ex , Ey) = (−a1 cos δ, −a2), P2 : (Ex , Ey) = (a1, a2 cos δ)

P3 : (Ex , Ey) = (a1 cos δ, a2), P4 : (Ex , Ey) = (−a1, −a2 cos δ)

(10.10)

Figure 10.1 shows that the axes of the ellipse are not in the x- and y-directions.
Thus, it seems expedient to rotate the (x, y)-cooordinate system in the counter-
clockwise direction by the angle ψ so that the directions ξ and η of the new
coordinate system are along the semi-axes of the ellipse. The components (Ex , Ey)
and (Eξ , Eη) are related by the well-known transformation rule

 Eξ

Eη


 =


 cos ψ sin ψ

−sin ψ cos ψ




 Ex

Ey


 (10.11)

With respect to the (ξ, η)-system the equation of the ellipse assumes the normal
form

E2
ξ

a2
+ E2

η

b2
= 1 (10.12)

where a and b are the lengths of the semi-axes with a > b. In the parametric form
we may write

Eξ = a cos (τ + δ0) , Eη = ±b sin (τ + δ0) with δ0 = const (10.13)

The chosen sign of the second equation specifies one of the two possibilities in
which way the endpoint of the electric vector describes the ellipse.
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We will now determine the still unknown quantities a and b appearing in (10.12).
Substituting (10.2) and (10.13) into (10.11) we obtain

a cos(τ + δ0) = a1 cos(τ + δ1) cos ψ + a2 cos(τ + δ2) sin ψ

±b sin(τ + δ0) = −a1 cos(τ + δ1) sin ψ + a2 cos(τ + δ2) cos ψ
(10.14)

Developing (10.14) with the help of the addition theorems for the trigonometric
functions and equating the coefficients of cos τ and sin τ we find

a cos δ0 = a1 cos δ1 cos ψ + a2 cos δ2 sin ψ

a sin δ0 = a1 sin δ1 cos ψ + a2 sin δ2 sin ψ

±b cos δ0 = a1 sin δ1 sin ψ − a2 sin δ2 cos ψ

±b sin δ0 = −a1 cos δ1 sin ψ + a2 cos δ2 cos ψ

(10.15)

Omitting further details of the calculations, from these equations the following
relations may be easily derived

(a) a2 + b2 = a2
1 + a2

2

(b) ± ab = a1a2 sin δ

(c) (a2
1 − a2

2) sin(2ψ) = 2a1a2 cos δ cos(2ψ)
(10.16)

It will be convenient for the following discussion to introduce the auxiliary angles
α and β by means of

(a) tan α = a2

a1
, 0 ≤ α ≤ π

2

(b) tan β = ±b

a
, −π

4
≤ β ≤ π

4

(10.17)

Thus, the numerical value of tan β represents the ratio of the axes of the ellipse,
called the ellipticity, while the sign of β distinguishes the sense in which the ellipse
may be described. We will soon see that β may also be expressed in terms of the
angles α and δ.

Substituting (10.17a) into (10.16c) first gives

tan(2ψ) = 2a1a2 cos δ

a2
1 − a2

2

= 2 tan α cos δ

1 − tan2 α
= tan(2α) cos δ (10.18)

Combining the well-known trigonometric identity sin(2β) = 2 tan β/(1 + tan2 β)
with (10.17b) and (10.16a,b) yields

sin(2β) = 2 tan β

1 + tan2 β
= ± 2ab

a2 + b2
= 2a1a2

a2
1 + a2

2

sin δ (10.19)

Similarly, from sin(2α) = 2 tan α/(1 + tan2 α) and (10.17a) we have

sin(2α) = 2a1a2

a2
1 + a2

2

(10.20)
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so that we finally obtain

sin(2β) = sin(2α) sin δ (10.21)

We summarize our results: if a plane electromagnetic wave moving in the positive
z-direction is described by means of the quantities (a1, a2, δ) it can also be expressed
in terms of the quantities (a, b, ψ). Conversely, if (a, b, ψ) are given it is easy to
find the amplitudes (a1, a2) and the phase difference δ of the wave.

Now we are going to introduce some useful terminology and designate the direc-
tion of the electric field as the direction of polarization. In connection with equation
(10.13) we stated that the ± sign determines the two possible senses in which the
endpoint of the electric vector may describe the ellipse. Thus we distinguish two
types of polarization. If the electric field vector appears to be rotating clockwise
at angular speed ω as viewed by an observer toward whom the wave is moving
(i.e. looking back at the source or looking against the direction of propagation) we
call the polarization right-handed. In the opposite case the polarization is called
left-handed.

Substituting the phase difference δ = δ2 − δ1 and τ ′ = τ + δ1 into (10.2) we
may write

Ex = a1 cos τ ′, Ey = a2 cos(τ ′ + δ) = a2
(
cos τ ′ cos δ − sin τ ′ sin δ

)
(10.22)

To give an example, we choose two different times t0 and t1 > t0 in such a way that
for a fixed z-value τ ′(t0) = 0 and τ ′(t1) = π/2. Evaluating (10.22) at t0 and t1 then
gives

Ex (t0) = a1, Ey(t0) = a2 cos δ

Ex (t1) = 0, Ey(t1) = −a2 sin δ
(10.23)

From this equation we may easily see that the polarization is right-handed if 0 ≤
δ ≤ π whereas it is left-handed if π ≤ δ ≤ 2π . Unfortunately, the terminology we
have used is not of universal usage. Some authors employ the opposite convention
so that some care must be exercised when consulting other textbooks.

We conclude this section by investigating two special cases of polarization.

10.1.1 Linear polarization

If the phase difference is δ = δ2 − δ1 = mπ, m = 0, ±1, ±2, . . ., we obtain from
(10.22)

Ey

Ex
= a2

a1

cos(τ ′ + mπ )

cos τ ′ = a2

a1
cos mπ = a2

a1
(−1)m (10.24)

Thus, the ellipse has degenerated to a straight line with slope (a2/a1)(−1)m passing
through the origin.



10.2 The Stokes parameters 383

δ = 0

δ = π π < δ<π/2

0 < δ<π/2 π/2     <δ<π

π/2  <δ < 2 π

δ = π/2

δ = 3π/2

Fig. 10.2 Various forms of elliptical polarization. Upper panel: right-handed polar-
ization, lower panel: left-handed polarization. After Born and Wolf (1965).

10.1.2 Circular polarization

For δ = ±π/2 + 2mπ, m = 0, ±1, ±2, . . . and a1 = a2 = a (10.22) results in the
parametric equation of a circle, that is

(a) δ = π

2
+ 2mπ : Ex = a cos τ ′, Ey = a cos(τ ′ + δ) = −a sin(τ ′)

(b) δ = −π

2
+ 2mπ : Ex = a cos τ ′, Ey = a cos(τ ′ + δ) = a sin(τ ′)

(10.25)

Thus, the E vector is moving on a circle with radius a and the polarization is right-
handed in (10.25a) and left-handed in (10.25b). Figure 10.2 depicts different elliptic
polarization possibilities and the corresponding phase differences.

10.2 The Stokes parameters

Again we consider a monochromatic plane electromagnetic wave which is moving
in the positive z-direction. As already mentioned the wave is completely determined
in terms of the parameters (a1, a2, δ) or equivalently as function of (a, b, ψ). Stokes
(1852) introduced the following four parameters to describe the electromagnetic
wave

S0 = a2
1 + a2

2 , S1 = a2
1 − a2

2

S2 = 2a1a2 cos δ, S3 = 2a1a2 sin δ
(10.26)

Evidently, S0 is proportional to the intensity of the light.1 From (10.26) follows

S2
0 = S2

1 + S2
2 + S2

3 (10.27)

1 Here and elsewhere, the expression ‘intensity’ is used quite loosely. In reality S0 may be a flux density.
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so that, analogously to the three parameters (a1, a2, δ) or (a, b, ψ), only three of the
Stokes parameters are independent. The radiation is said to be completely polarized
if (10.27) is valid.

The Stokes parameters can also be expressed with the help of the variables
(a, b, ψ)

S0 = a2 + b2, S1 = S0 cos(2β) cos(2ψ)

S2 = S0 cos(2β) sin(2ψ), S3 = S0 sin(2β)
(10.28)

The proof that (10.26) can be transformed to (10.28) is straightforward and will be
left to the exercises.

With the help of the Stokes parameters we will now present a graphical descrip-
tion of polarization. Inspection of (10.27) and (10.28) reveals that between the
Stokes parameters (S1, S2, S3) and the quantities (2ψ, 2β, S0) the same transfor-
mations are valid as between the Cartesian coordinates (x, y, z) and the coordi-
nates (ϑ, ϕ, r ) of a spherical coordinate system. Hence, if we replace the (x, y, z)-
coordinate system by an (S1, S2, S3)-system, a point P(S1, S2, S3) on the surface of
a sphere may also be expressed by means of P(2ψ, 2β, S0). This type of a sphere
is known as the Poincaré sphere.

Figure 10.3, depicting Poincaré’s sphere, can be used to display various types
of polarization. From (10.21) we see that for 0 < α < π/2 and sin δ > 0 denot-
ing right-handed polarization we obtain sin(2β) > 0. From (10.26) and (10.28) we
conclude that in this case S3 > 0, i.e. the point P is located in the upper half of the
Poincaré sphere. If the light is left-handed polarized we have S3 < 0 so that P is
located below the equatorial plane. Linear polarization, expressed by δ = mπ,

m = 0, ±1, . . ., yields sin δ = 0, sin(2β) = 0 and, therefore, S3 = 0, i.e. P is
located within the equatorial plane. Finally, from (10.26) we see that in case
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of a circularly polarized electromagnetic wave with δ = ±π/2 + 2mπ, m = 0,

±1, ±2, . . . and a1 = a2 = a the parameters S1 and S2 vanish so that, according
to (10.28), cos(2β) = 0. This in turn means that P is on the north pole or on the
south pole of Poincare’s sphere, denoting right-handed and left-handed circular
polarization, respectively.

Partially polarized light is a mixture of natural and polarized light. If Ep and Eu

represent the constituent flux densities of the polarized and the unpolarized light,
then the degree of polarization Dp is defined by

Dp = Ep

Ep + Eu
(10.29)

As can be shown, for partially polarized light the degree of polarization can also
be expressed in terms of the Stokes parameters by means of

Dp =
(
S2

1 + S2
2 + S2

3

)1/2

S0
(10.30)

For completely polarized light we will now describe the state of polarization in
terms of the Stokes vector consisting of the four components (S0, S1, S2, S3). For a
concise description we introduce the following notation. Linearly also called plane
polarized light is said to be in the P-state while right and left circularly polarized
light are in the R-state and L-state. Analogously, elliptically polarized light is in
the E-state.

Often the Stokes parameters are expressed in normalized form by dividing all
elements by S0. For completely polarized light a table of Stokes vectors may be
computed. We will briefly show how this can be done for linearly polarized light. If
a1 and a2 label the amplitudes of the horizontal and the vertical component of the
electromagnetic wave, we have a horizontally polarized wave if a1 > 0 and a2 = 0.
Utilizing (10.26) we see that the normalized Stokes vector is now given by

1

S0




S0

S1

S2

S3


 =




1

1

0

0


 (10.31)

In this case the light is said to be in the horizontal P-state.
Analogously to (10.31) other polarization states can be identified. Table 10.1

summarizes some polarization states which may be easily obtained by applying
the appropriate values of the variables (a1, a2, δ) or (a, b, ψ) to (10.26) or (10.28).
More complete tables may be found in Shurcliffe (1966) or Deirmendjian (1969).
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Table 10.1 Normalized Stokes vectors for various types of polarized light.
Upper panel: linear polarization. Lower panel: circular and general

elliptical polarization

horizontal P-state vertical P-state 45◦ P-state −45◦ P-state


1

1

0

0







1

−1

0

0







1

0

1

0







1

0

−1

0




R-state L-state E-state


1

0

0

1







1

0

0

−1







1

cos(2β) cos(2ψ)

cos(2β) sin(2ψ)

sin(2β)




The previous section largely followed the standard textbook by Born and Wolf
(1965) where additional information may be found. We have also made use of the
discussions on polarization given in the textbooks by Shurcliffe (1966), Fowles
(1966) and Hecht (1987).

10.3 The scattering matrix

10.3.1 Representation of the electric vector in the scattering plane

Let us consider an electromagnetic wave of wavelength λ which is scattered by
a spherical particle. In order to describe the scattering process various coordinate
systems will now be introduced as shown in Figure 10.4. The basic Cartesian
(x, y, z)-coordinate system is fixed in space with origin in the center of the scattering
sphere. By drawing meridians from the z-axis to the x-axis and to the y-axis we
construct a sphere whose equatorial plane coincides with the (x, y)-plane. The
incident wave propagating in the direction ki is defined in terms of the Cartesian
coordinate system (x i, yi, zi) with unit vectors (ii, ji, ki). Similarly, the scattered
wave moving in direction ks is defined with respect to the Cartesian coordinate
system (x s, ys, zs) with unit vectors (is, js, ks). The scattering plane is formed by
the straight lines in directions ki and ks. The intersection of the scattering plane with
the sphere defines the scattering angle �. The straight lines pointing in the directions
ki and ks together with the z-axis form two vertical planes whose intersections with
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Fig. 10.4 Definition of various coordinate systems needed to describe the scatter-
ing on a sphere, see also text.

the sphere define two meridians. The unit vectors li and ls are tangential to the
meridians while the unit vectors ri and rs are perpendicular to the corresponding
vertical planes. The two systems with the unit vectors (ii, ji, ki) and (is, js, ks) are
chosen in such a way that ii and is are parallel to the scattering plane while ji and
js are perpendicular to this plane.

We are now ready to apply the results of the Mie theory. In the following the
subscripts i and j refer to the components of the incident electric vector along
the unit vectors ii and ji. According to (10.2) the incoming electric vector may be
expressed by

Ei = [
ai

i exp(−iδ1)ii + ai
j exp(−iδ2)ji

]
exp [i(k0z − ωt)]

= (
E i

i i
i + E i

j j
i
)

exp [i(k0z − ωt)]
(10.32)

where ai
i and ai

j are real amplitudes. With the help of (9.102) we obtain


 E s

i

E s
j


 = exp[ik0(zs − zi)]

ik0zs


 S2(cos �) 0

0 S1(cos �)




 E i

i

E i
j


 (10.33)
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Fig. 10.5 Definition of the variables (ϑ i, ϑ s, �ϕ) for the formulation of the scat-
tering matrix with respect to the fixed (x, y, z)-coordinate system.

The amplitude functions S1(cos �) and S2(cos �) are defined in (9.101). Hence the
scattered electric vector depends only on the scattering angle �. The advantage of
this representation is the rotational symmetry of the scattered light with respect to
the scattering plane. The disadvantage is that the scattering plane is not fixed in
space, but it is continually changing its position. This implies that the corresponding
coordinate systems describing the incident and the scattered light are not fixed in
space either. In order to avoid this disadvantage we will transform (10.33) in such
a way that only variables appear which can be expressed with respect to the fixed
(x, y, z)-coordinate system. The required variables are (ϑ i, ϑ s) and �ϕ = ϕi − ϕs

as shown in Figure 10.5.
With the help of Figure 10.4 we easily find the transformations


 E i

i

E i
j


 =


 −cos γ sin γ

sin γ cos γ




 E i

l

E i
r





 E s

l

E s
r


 =


 cos β sin β

sin β −cos β




 E s

i

E s
j




(10.34)
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Substituting these relations into (10.33) yields
 E s

l

E s
r


= exp[ik0(zs − zi)]

ik0zs


 cos β sin β

sin β −cos β




S2(cos �) 0

0 S1(cos �)




×

 −cos γ sin γ

sin γ cos γ




 E i

l

E i
r




= exp[ik0(zs − zi)]

ik0zs


S11 S12

S21 S22




 E i

l

E i
r




(10.35)

where the following abbreviations have been introduced

S11 = −cos β cos γ S2(cos �) + sin β sin γ S1(cos �)

S12 = cos β sin γ S2(cos �) + sin β cos γ S1(cos �)

S21 = −sin β cos γ S2(cos �) − cos β sin γ S1(cos �)

S22 = sin β sin γ S2(cos �) − cos β cos γ S1(cos �)

(10.36)

The spherical triangle with the sides (�, ϑ i, ϑ s) will now be used to determine
the relationship between the scattering angle and the angles (ϑ i, ϑ s, �ϕ), see Figure
10.5. Spherical trigonometry provides the law of cosines for the sides

(a) cos � = cos ϑ i cos ϑ s + sin ϑ i sin ϑ s cos �ϕ

(b) cos ϑ s = cos � cos ϑ i + sin ϑ i sin � cos γ

(c) cos ϑ i = cos � cos ϑ s + sin ϑ s sin � cos β

(10.37)

the law of sines

sin �ϕ

sin �
= sin γ

sin ϑ s
= sin β

sin ϑ i
(10.38)

and the law of cosines of the angles

cos �ϕ = −cos β cos γ + sin β sin γ cos �

cos β = −cos γ cos �ϕ + sin γ sin �ϕ cos ϑ i

cos γ = −cos β cos �ϕ + sin β sin �ϕ cos ϑ s

(10.39)

(10.37a) is a fundamental equation for cos � and has already been derived earlier,
see (2.65). Substituting (10.38) into (10.37b,c) yields

cos ϑ i sin �ϕ = cos ϑ s sin �ϕ cos � + cos β sin γ sin2 �

cos ϑ s sin �ϕ = cos ϑ i sin �ϕ cos � + sin β cos γ sin2 �
(10.40)
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which may be reformulated as

cos ϑ i sin �ϕ = cos β sin γ + sin β cos γ cos �

cos ϑ s sin �ϕ = cos β sin γ cos � + sin β cos γ
(10.41)

Introducing the abbreviation

cos χ = cos ϑ i cos ϑ s cos �ϕ + sin ϑ i sin ϑ s (10.42)

after a few easy manipulations we find the following relations

cos β cos γ = cos � cos χ − cos �ϕ

sin2 �
,

cos β sin γ = (cos ϑ i − cos ϑ s cos �) sin �ϕ

sin2 �

sin β sin γ = cos χ − cos � cos �ϕ

sin2 �
,

sin β cos γ = (cos ϑ s − cos ϑ i cos �) sin �ϕ

sin2 �

(10.43)

Thus, the matrix coefficients of (10.36) assume the form

S11 = T1 cos �ϕ + T2 cos χ , S12 = (T1 cos ϑ i + T2 cos ϑ s) sin �ϕ

S21 = −(T1 cos ϑ s + T2 cos ϑ i) sin �ϕ, S22 = T1 cos χ + T2 cos �ϕ

(10.44)

where we have used the abbreviations

T1(ϑ i, ϑ s, �ϕ) = S2(cos �) − cos �S1(cos �)

sin2 �

T2(ϑ i, ϑ s, �ϕ) = S1(cos �) − cos �S2(cos �)

sin2 �

(10.45)

Detailed calculation steps will be left to the exercises.
Equation (10.44), together with (10.37a), (10.42) and (10.45), shows that the

matrix elements Si j are functions of the variables (ϑ i, ϑ s, �ϕ) only so that now the
scattering process is completely described in terms of quantities which are known
in the fixed (x, y, z)-coordinate system, see Figure 10.5.

From (10.45) we see that for � = 0 or � = π the denominators of T1 and T2

vanish. Therefore, we must show that in these cases the values of both quantities
are non-singular and well-defined. From the definitions (9.94) and (9.101) it can
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be seen that

τn(cos �)
∣∣
�=0 = πn(cos �)

∣∣
�=0, τn(cos �)

∣∣
�=π

= −πn(cos �)
∣∣
�=π

=⇒
S1(cos �)

∣∣
�=0 = S2(cos �)

∣∣
�=0, S1(cos �)

∣∣
�=π

= −S2(cos �)
∣∣
�=π

(10.46)

Thus in the limits � → 0 and � → π we easily find from (10.45)

T1

∣∣
�=0 = T2

∣∣
�=0 = 1

2
S1

∣∣
�=0, T1

∣∣
�=π

= −T2

∣∣
�=π

= −1

2
S1

∣∣
�=π

(10.47)

verifying that T1 and T2 are nonsingular.

10.3.2 Transformation of the Stokes vector

For the consideration of polarization effects in the RTE we need a transformation law
for the Stokes parameters in analogy to the transformation law (10.35) for the elec-
tric vector. Equation (10.26) introduced the Stokes parameters in terms of the ampli-
tudes a1, a2 and the phase angle δ. Instead of using the symbols (S0, S1, S2, S3), in
honor of Stokes, it is customary to use the symbols (I, Q, U, V ), defined by

I = Ei E∗
i + E j E∗

j , Q = Ei E∗
i − E j E∗

j

U = Ei E∗
j + E j E∗

i , V = −i(Ei E∗
j − E j E∗

i )
(10.48)

whereby the electric vector components are given by

Ei = ai exp(−iδi ) exp [i(k0z − ωt)] , E j = a j exp(−iδ j ) exp [i(k0z − ωt)]

(10.49)

As before, the subscripts i and j denote the directions parallel and perpendicular
to the scattering plane, see Figure 10.4. Substituting (10.49) into (10.48) yields the
Stokes parameters as

I = a2
i + a2

j , Q = a2
i − a2

j

U = 2ai a j cos δ, V = 2ai a j sin δ with δ = δ j − δi

(10.50)

Of course, (10.26), (10.48) and (10.50) are equivalent. Since the intensity compo-
nents of a radiation source can be measured directly, it seems practical to introduce
the so-called modified Stokes parameters

Ii = C Ei E∗
i = Ca2

i , I j = C E j E∗
j = Ca2

j

U = 2Cai a j cos δ = 2C�(Ei E∗
j ), V = 2Cai a j sin δ = 2C�(Ei E∗

j )

(10.51)

Both sets (10.50) and (10.51) give a complete description of polarization of an
electromagnetic plane wave since I = Ii + I j and Q = Ii − I j . For dimensional
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reasons, in (10.51) we have included a proportionality factor C to indicate that the
Stokes parameters carry the dimension of intensity. The factor C depends on the
system of electromagnetic units. As already mentioned, the expression ‘intensity’
is used quite loosely and, in reality, could be a flux density which is expressed in
units of energy per unit time and unit area.

Next we are going to carry out the linear transformation


I s
l

I s
r

U s

V s


 = A

(k0r )2




I i
l

I i
r

U i

V i


 (10.52)

where, as before, the superscripts i and s denote the incoming and the scattered
light and the subscripts l and r refer to parallel and perpendicular to the meridional
planes. Furthermore, in the denominator we have replaced zs by the radius r of the
scattering sphere. The constituents required to find the 4 × 4 matrix A are provided
by (10.35). Analogously to (9.161) we call the term

P̃(cos �) = A

k2
0�V

(10.53)

the scattering matrix for the intensities whereby �V is a small volume element
around the scattering sphere.

Before proceeding, we wish to recall a few helpful formulas from complex vari-
able theory. Let (z1, z2) represent complex variables. Then the following relations
hold

�(z1z2) = �(z1)�(z2) − �(z1)�(z2), �(z1z2) = �(z1)�(z2) + �(z1)�(z2)

�(z1z∗
2) = �(z∗

1z2), �(z1z∗
2) = −�(z∗

1z2)
(10.54)

Utilizing these relations, it is straightforward to show that A may be written as

A=




S11S∗
11 S12S∗

12 �(S11S∗
12) −�(S11S∗

12)

S21S∗
21 S22S∗

22 �(S21S∗
22) −�(S21S∗

22)

2�(S11S∗
21) 2�(S12S∗

22) �(S11S∗
22 + S12S∗

21) −�(S11S∗
22 − S12S∗

21)

2�(S11S∗
21) 2�(S12S∗

22) �(S11S∗
22 + S12S∗

21) �(S11S∗
22 − S12S∗

21)




(10.55)

This form of the transformation matrix for the Stokes vectors was first derived by
Sekera (1956). The detailed derivation of (10.55) will be left as a problem of the
exercises.
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We will conclude this section with a few additional remarks about the Stokes
parameters. In the previous sections we have considered strictly monochromatic
waves. We have shown that every wave of the type (10.2) is elliptically polarized.
This implies that with increasing time the endpoint of the electric (and also of
the magnetic) vector at each point in space periodically describes the circumfer-
ence of an ellipse. In special cases the ellipse degenerates into a straight line or
into a circle. Moreover, the amplitudes a1 and a2 and the difference in the phase
angles δ are constants, i.e. they are independent of time. However, no perfectly
monochromatic radiation exists. Even in the best so-called monochromatic sources
there is always some finite frequency spread centered about a mean frequency. Let
us briefly consider a hypothetical quasi-monochromatic light source having the
following property: the oscillation and the subsequent field varies sinusoidally for
a certain time and then changes phase abruptly. This time is known as the coher-
ence time. The sequence keeps repeating indefinitely, and the phase change after
each coherence time occurs randomly. This type of a field may be regarded as an
approximation to that of a radiating atom. The abrupt changes of phase may result
from collisions.

To continue the discussion on Stokes parameters we consider the complex ampli-
tudes ai exp(−iδi ) and a j exp(−iδ j ), which are no longer constants but functions
of time, i.e. ai = ai (t), a j = a j (t), δi = δi (t) and δ j = δ j (t). Over time intervals of
the order of the period of the oscillation 2π/ω they vary slowly. However, for a time
interval large in comparison with the period, the amplitudes fluctuate in some way,
perhaps independently or perhaps with some correlation. If the complex amplitudes
are completely uncorrelated, the light is natural or unpolarized. In this case, over
sufficiently long periods of time, vibration ellipses of all shapes, handedness and
orientation will have been traced out so that there exists no preferred polarization
ellipse. In contrast, if ai exp(−iδi ) and a j exp(−iδ j ) are completely correlated, the
light is called polarized. This definition includes strictly monochromatic light, but
it is somewhat more general: (ai , a j , δi , δ j ) may separately fluctuate provided that
the ratio ai/a j of the real amplitudes and the phase difference δ = δ j − δi are inde-
pendent of time. If ai exp(−iδi ) and a j exp(−iδ j ) are partially correlated, the light
is said to be partially polarized. Ignoring some statistical fluctuations, such a par-
tially polarized beam is characterized by a preference in handedness, or ellipticity,
or azimuth, which is the angle between the major axis of the ellipse and an arbitrary
reference direction.

The Stokes parameters of a quasi-monochromatic beam (omitting again the
constant C) are defined by

I = 〈
Ei E∗

i

〉+ 〈
E j E∗

j

〉
, Q = 〈

Ei E∗
i

〉− 〈
E j E∗

j

〉
U = 2� (〈

Ei E∗
j

〉)
, V = 2� (〈Ei E∗

j

〉) (10.56)
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where the symbols 〈. . .〉 refer to a time average over an interval which is long in
comparison with the period of the vibration. It can be shown that in this case the
inequality

Q2 + U 2 + V 2 ≤ I 2 (10.57)

must hold. When this situation occurs we speak of partial polarization. As we
already know from (10.27), the equality sign refers to completely polarized light.

Let us briefly look at the Stokes parameters from the experimental point of view.
Since the fluctuations are extremely swift in comparison with the duration of any
measurement, it is possible to measure only mean amplitudes and mean phases so
that all measured Stokes parameters refer to mean quantities.

We will now consider the Stokes vector of natural or unpolarized light such as
the Planckian black body radiation and the parallel (unscattered) solar radiation.
Due to the randomness of the fluctuations, experimental techniques fail to measure
any differences between the phase angles and the intensity components. Thus the
intensity in any direction in the transverse plane is the same so that the Stokes
parameters Q = U = V = 0. This is a necessary and sufficient condition for light
to be natural. That Q is zero follows directly from (10.56). U and V vanish because
cos δ and sin δ average to zero independently of the amplitudes. Thus the Stokes
vector for natural light is (I, 0, 0, 0), that is the intensity I by itself is sufficient to
specify unpolarized radiation.

It can be shown, see for example Chandrasekhar (1960) and Born and Wolf
(1965), that in all cases partially polarized light of intensity I may be regarded to
consist of one part of completely (elliptically) polarized light Ipol and another part
of completely unpolarized light I − Ipol. These parts are independent of each other,
and this representation is unique. The Stokes vector for the completely polarized
part of the radiation is specified by (Ipol, Q, U, V ) with Ipol = (Q2 + U 2 + V 2)1/2

while the unpolarized part of the radiation is described by the Stokes vector (I −
Ipol, 0, 0, 0).

Let us consider two or more quasi-monochromatic beams, traveling in the same
direction, which are superposed incoherently. This means that there is no fixed
permanent relationship among the phases of the separate beams. The total irradiance
is the sum of the irradiances of the individual beam. Because of the definition of the
Stokes parameters they are additive if a collection of incoherent sources is involved.

We have previously shown that for monochromatic light the Stokes vectors of
the scattered and the incoming light are related by a transformation matrix of the
type (10.55). Each one of the 16 elements of this matrix is a real number. If the
light is partially polarized, which is the case for most physical atmospheric sit-
uations, the same transformation matrix is still valid. The reason for this is that
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the Stokes parameters for monochromatic and quasi-monochromatic light have the
same mathematical form.

The previous sections are based on the discussions presented by Bohren and
Huffman (1983), Born and Wolf (1965), Chandrasekhar (1960) and van de Hulst
(1957) where additional information may be found.

10.4 The vector form of the radiative transfer equation

Let us now return to the scalar form of the RTE for a horizontally homogeneous
atmosphere

µ
d

dτ
I (τ, µ, ϕ) = I (τ, µ, ϕ) − J (τ, µ, ϕ) (10.58)

where the source function J is given by

J (τ, µ, ϕ) = ω0

4π

∫ 2π

0

∫ 1

−1
P(cos �)I (τ, µ′, ϕ′)dµ′dϕ′

+ ω0

4π
P(cos �0)S0 exp

(
− τ

µ0

)
+ (1 − ω0)B(τ )

(10.59)

see (2.53). In order to treat polarization effects in radiative transfer, the scalar
quantities I and J must be replaced by the vectors I and J as defined by

I =




Il

Ir

U

V


 , J =




Jl

Jr

JU

JV


 (10.60)

This yields the vector form of the RTE

µ
d

dτ
I(τ, µ, ϕ) = I(τ, µ, ϕ) − J(τ, µ, ϕ) (10.61)

The scalar form of the source function (10.59) will now be generalized to the
vector form. Planckian emission B(τ ) and the direct solar radiation S0 must be
classified as natural light so that the corresponding Stokes vectors can be written
as

B(τ ) = 1

2
B(τ )




1

1

0

0


 , S0 = 1

2
S0




1

1

0

0


 (10.62)
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Utilizing these expressions the generalization of the scalar source function to the
vector form is

J(τ, µ, ϕ) = ω0

4π

∫ 2π

0

∫ 1

−1
P(cos �) · I(τ, µ′, ϕ′)dµ′dϕ′

+ ω0

4π
P(cos �0) · S0 exp

(
− τ

µ0

)
+ (1 − ω0)B(τ )

(10.63)

The phase matrix P(cos �) and the scattering matrix P̃(cos �) are related by

P(cos �) = 4π

ksca
P̃ with P̃ = N

k2
0�V

A (10.64)

The quantity N refers to the number of identical scattering particles in the scattering
volume �V . Obviously, in (10.53) we have N = 1 expressing the scattering by a
single particle. If �V does not contain identical particles, then for each scattering
angle � the elements in (10.55) must be integrated over the particle size distribution.

Finally, we will list a few authors who have presented radiation calculations in
case of multiple scattering including polarization. The list could be easily extended.
Chandrasekhar (1960) was the first to show how to accurately compute the intensity
and polarization of radiation in case of multiple Rayleigh scattering. The work
was extended notably by Sekera and co-workers so that some extensive tables of
numerical results are now available, see, for example, Coulson et al. (1960), Sekera
and Kahle (1966).

Herman et al. (1971) belonged to the first group of investigators to apply (10.55)
in order to study the influence of atmospheric aerosols on scattered sunlight. They
used a numerical scheme applicable to small and moderate optical thicknesses.
Later a modified version of this scheme was used by others to solve the vector form
of the RTE. However, due to the occurrence of large optical depths of clouds, the
method cannot be applied to study radiative transfer in the cloudy atmosphere.

In Chapter 4 we have shown how to apply the adding–doubling method (MOM)
in case of the scalar form of the radiative transfer equation. The adding–doubling
procedure, originally introduced by van de Hulst (1963), did not consider polar-
ization effects. However, Hansen (1971) generalized this method to include
polarization. He showed that the MOM is capable of handling strongly anisotropic
phase matrices. For selected wavelengths in the near infrared he found that in case
of planetary clouds polarization is more sensitive than the intensity to changes
of cloud microstructure such as the particle size distribution. He concluded that
polarization measurements are potentially a valuable tool for cloud identification
and for microphysical studies. Moreover, his case studies revealed that the radiance
computed with the exact theory which includes polarization differs by 1% or less
from the results obtained with the help of the scalar theory where polarization is
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ignored. Thus he concluded that for energetic studies polarization effects can be
neglected.

In a related paper Hovenier (1971) also showed how to generalize the adding–
doubling method by including polarization. He confirmed Hansen’s conclusion that
generally polarization effects can be neglected if the radiative intensity (radiance)
is of interest only. The adding–doubling method for multiple scattering calculations
of polarized light was also treated by de Haan et al. (1987). To evaluate numerically
the combinations of an integration and a matrix multiplication, as they occur in the
adding method, they introduced the concept of a supermatrix. Using supermatri-
ces, such combinations are treated as a single matrix product thus simplifying the
computational procedures.

The research on this topic is going on. A fairly complete list of references can
be found in Liou’s (2002) book An Introduction to Atmospheric Radiation.

10.5 Problems

10.1: The electric vector of a certain wave is given by

E = iE0 cos (ωt − kz + π/2) + jE0 cos (ωt − kz)

Discuss the state of polarization.
10.2: Consider a linearly polarized harmonic wave of amplitude E0. Assume

that the wave is propagating along a straight line in the (x, y)-plane which
is the plane of vibration. For a straight line which is inclined 45◦ to the
x-axis find the electric vector.

10.3: Consider the superposition of an R-state and an L-state. Assume equal
amplitudes of the constituent waves. Show that the resulting wave is a
P-state.

10.4: Suppose that a wave is described by

Ex = iax cos(kz − ωt), Ey = jay cos(kz − ωt + δ)

(a) Discuss the state of polarization for δ = π/2.
(b) Sketch the vibrational figures for δ = nπ/4, n = 0, 1, . . . , 7.

10.5: Suppose that the components of the electric vector are written in the form

Ex = Ex,0 cos(kz − ωt), Ey = Ey,0 cos(kz − ωt + δ)

By performing the required operations, show that again we obtain the form
(10.6).

10.6: Verify that the coordinates P3 and P4 of equation (10.10) are stated
correctly.

10.7: Show that in (10.28) the quantities S1 and S2 are correct statements.
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10.8: Show that the Stokes vector in Table 10.1 for 45◦ is correctly stated.
10.9: Show that the transformation matrix in (10.35) is made up of the elements

listed in (10.44). Follow the derivation in the text and fill in the missing
steps.

10.10: For spherical particles the electric vector of the incoming and the scattered
wave in terms of the amplitude scattering matrix A can be written as

 E s
i

E s
j


 =


 A2 0

0 A1




 E i

i

E i
j




where Ei and E j are given by (10.32). Find the corresponding transfor-
mation matrix F for the incoming and the scattered Stokes vectors, i.e.


I s
i

I s
j

U s

V s


 = F




I i
i

I i
j

U i

V i




Specify each element of the matrix. The transformation to the vertical
plane is not required for this problem.

10.11: Verify by a direct calculation that the elements of the matrix (10.55) are
correctly stated.2

2 In setting up the first four problems of Chapter 10, we acknowledge the assistance of the textbook Optics
(Hecht, 1987)
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Remote sensing applications of radiative transfer

11.1 Introduction

In this chapter we will deal with the application of radiative transfer theory to atmo-
spheric remote sensing. Remote sensing means that measurements are performed
at a large distance from the physical object or medium under consideration with the
purpose of retrieving its physical properties. In many cases the carrier of the physi-
cal information is electromagnetic waves. Nevertheless it is possible to observe the
atmosphere, the soil, or the ocean by means of sound waves. Sodar (sound detection
and ranging) and sonar (sound navigation and ranging) are techniques that employ
acoustic waves.

Two basic methods known as active and passive remote sensing can be applied.
‘Active’ means that the source of the waves is man-made; for example, a laser trans-
mitter can be used to emit light pulses which propagate through the medium under
consideration. The laser light is scattered by air molecules, or it is scattered and
partly absorbed by aerosol and cloud particles. The scattered laser light is then col-
lected by a detector telescope. The amount and the amplitude of the detected pulses
can then be used as a measure for transmission losses. This particular technique is
called lidar (light detection and ranging). Another widely employed active tech-
nique is radar (radiation detection and ranging) where antennas emitting microwave
radiation are being used.

In contrast to the active techniques, passive remote sensing makes use of natural
radiation sources. The observation of sunlight propagating through the atmosphere,
being reflected by the Earth’s surface, then traveling upward to finally enter a
radiometer aboard a satellite, constitutes one of several other important methods to
investigate the physical and chemical properties of the Earth–atmosphere system.
Instead of solar radiation one can also exploit the long-wave infrared emission of
both the surface and the atmosphere. Another passive technique, which is based
on the microwave emission by atmospheric constituents, provides the beneficial

399
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feature that light is transmitted through clouds. This feature is due to the fact that
the size of cloud particles is very small in comparison to the observed wavelengths.

Depending on the location of the source and/or the detecting instrument, one
further distinguishes between ground-based, airborne or spaceborne remote sens-
ing. We will mainly focus on spaceborne remote sensing, i.e. to cases where an
instrument flown on a satellite is used for remote sensing.

In the following we will restrict the discussion to passive remote sensing. Clearly,
in a single chapter we cannot present an exhaustive and detailed treatment of this
subject. The main purpose of the following sections is to demonstrate how radiative
transfer theory can be used as a sound physical and mathematical basis to retrieve,
for example, the atmospheric temperature profile, or to make use of the forward–
adjoint-based perturbation theory to retrieve the atmospheric ozone profile.

In the retrieval process we have to distinguish two different steps, the forward
problem and the inverse problem. The easier and more straightforward task is the
forward problem in which the RTE is used to simulate the radiation field at the
detector’s location. This task requires as input all important geophysical and optical
parameters of the Earth–atmosphere system. If we assume that a measurable set of
such parameters is available, the only work to be accomplished is the computation
of the radiation field. In contrast to this, the inverse problem attempts to find the
inverse relationship. The task is to derive from the detected radiation field the
physical atmospheric properties which are relevant for the radiative transfer.

Since the radiation field at the satellite’s position depends in a complex and gen-
erally nonlinear way on the parameters to be retrieved (total gas columns, vertical
profiles of gas concentrations, extinction properties of aerosol and cloud particles,
temperature and pressure profile, etc.), the inverse problem is much more difficult
to solve than the forward problem. As we will see later, this difficulty is intimately
related to the so-called ill-posedness of the inverse problem. An ill-posed problem
may, for example, imply that there are far less independent measurements available
than the number of unknowns characterizing the problem. Therefore, the difficulty is
to properly add additional information that enables us to establish an approximate
inverse relationship between the unknown quantities and the radiation measure-
ments. The situation is similar to the inversion of a matrix which is singular or at least
close to be singular. The inversion of the matrix is either impossible, or the solution
strongly depends on the accuracy of the matrix elements. Thus is becomes clear that
the additional information mentioned above acts as a regularization of the problem.

Figure 11.1 illustrates the connection between the forward and the inverse prob-
lem. One also speaks of setting up the forward model y = F(x) and the correspond-
ing inverse model x = F−1(y), where y designates the measurement vector and x
is the state vector of the atmosphere to be retrieved.
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y = F(x)

x = F −1(y)

(Estimated) state vector Vector of measurements
x = (x1, . . . , xn) y = (y1, . . . , ym)

Fig. 11.1 Forward and inverse problem in remote sensing applications. Note that
the solution to the inverse problem in general provides only an estimate for the
true state of the atmosphere.

For the forward problem the function F can be seen as the RTE. It should be kept
in mind, however, that this is only true for an ideal instrument. In practice, F has to
consider the instrumental properties, such as slit function, response function, field
of view and noise. This means that the forward model has to simulate the instrument
signal by performing a convolution of the radiance spectrum as seen by an ideal
instrument with the various instrument characterizing functions.

While y = (y1, y2, . . . , ym) is the radiance at the instrument’s location for a set
of m different wavelengths, i.e. a radiance spectrum, the vector x = (x1, x2, . . . , xn)
could be temperature values T (z1), T (z2), . . . , T (zn) at n altitudes z1, z2, . . . , zn .

The determination of a medium’s state based on measured spectra is not limited
to atmospheric applications. Similar problems arise in other disciplines, e.g. the
determination of the composition of the Earth’s interior by exploiting seismic waves,
the derivation of the properties of single stars and galaxies on the basis of radio
waves, infrared or gamma ray observations, or in medicine using nuclear spin
computer tomography, techniques of nuclear medicine or ultrasound. In all these
applications the derivation of the target’s properties and/or composition is called
an inverse problem.

In general it is not possible to exactly reconstruct the state of the target under
investigation. One reason for this is the fact that any measurement contains to some
degree noise signals. Thus the relation y = F(x) is only approximately fulfilled.
Likewise the measurement apparatus may possess certain systematic inaccuracies
which lead to a distorted observation, and the forward model F renders only an
approximate solution to the real problem. Finally, one has to keep in mind that
with a discrete set of observations, that is with a limited number of observations,
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one cannot reconstruct field properties of the medium which depend on certain
geophysical parameters in a continuous manner.

In principle, the number n of unknown parameters must be smaller than the num-
ber m of independent measurements, n ≤ m. In the ideal case that each individual
measurement provides an independent piece of information, we would be able to
find a unique solution for the n required parameters. In practice, however, it is not
an easy task to determine the information content of a set of measurements. To give
an example, the observation of the nadir radiance from space in the wavelength
region 290 to 330 nm allows one not only to determine the total column amount
of ozone below the sub-satellite point, it is also possible to ‘sound’ the atmosphere
as a function of increasing distance from the platform if the wavelength is scanned
from smaller to larger wavelengths. This is due to the fact that ozone molecules
absorb solar radiation very strongly at short wavelengths, i.e. photons entering the
atmosphere are not able to pass the ozone layer, with maximum concentration near
20 to 25 km altitude at the short-wave end of this particular wavelength region.
On the other hand, for gradually longer wavelengths the chances will increase that
the photons will reach a greater depth (lower altitude) before absorption occurs.
This particular example illustrates the basic principle of passive (or active) remote
sensing: the spectral absorption or emission characteristics in combination with
the monotonously increasing path length provide a direct link between altitude,
absorber amount and magnitude of the observed radiance.

In the following section we will discuss different topics which are necessary to
understand the principles of remote sensing from satellites. Section 11.2 provides
some insight into solar–terrestrial relations. The physical principles of remote sens-
ing based on the extinction of solar radiation and in the long-wave spectral region
will be described in Section 11.3. In Section 11.4 the inversion of the atmospheric
temperature profile will be analyzed by means of various classical methods. The
final Section 11.5 will make use of the radiative perturbation technique introduced
in Chapter 6 to provide an efficient and accurate algorithm for determining the
so-called weighting function which is of key importance to any physically mathe-
matically based inversion technique.

11.2 Remote sensing based on short- and long-wave radiation

At a wavelength of about 4 µm the spectrum can be separated into the short-wave
region (λ < 3.5 µm), where the Sun is the radiation source, and the long-wave
region (λ > 3.5 µm), where the thermal emission of the Earth itself and the Earth’s
atmosphere are the sources of radiation. A particularly important wavelength region
is the UV/VIS (UV: ultraviolet, VIS: visible) spectral region in which scattering
of solar radiation by air molecules, aerosol and cloud particles plays an important
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role. An additional feature of the solar radiation can be exploited, namely that both
the diffuse as well as the direct solar radiation can be separately used for remote
sensing.

The different radiation sources lead to different remote sensing algorithms, each
taking advantage of a particular feature of the radiative transfer process. One class
of methods is based on the extinction process, while a second class has its focus on
the scattering process for short-wave radiation. In the long-wave spectral region the
thermal emission as function of the temperature field is in the center of the inves-
tigation. The different methods can also be based on observations from the ground
(ground based), from instruments flown on aircrafts (airborne) or from instruments
aboard rockets or satellites (spaceborne). Regarding satellites, an important obser-
vation geometry is the nadir-looking mode, i.e. the instrument looks at the surface
of the Earth in the nadir direction. Limb sounding means that the viewing path
as seen from the instrument represents a path which is tangential to the Earth
and which, in certain situations, avoids the influence by the Earth’s surface. For
nadir-looking instruments, or instruments covering a wide range of viewing angles,
the contributions of the Earth’s surface play a major role as a function of wave-
length. These contributions are further modified by the radiative properties of the
intervening atmospheric layers. Thus a more or less uniformly distributed (with
respect to wavelength) surface contribution will be modified in a manner that it
carries the spectrally highly variable absorption and emission features of individual
atmospheric trace gases.

11.2.1 Methods based on the extinction of solar radiation

If remote sensing is based on the measurement of short-wave radiation, the follow-
ing assumptions can be made.

(i) The thermal emission source is neglected in the RTE, i.e. J e
ν = 0.

(ii) The instrument detects the direct solar radiation only in a very narrow angular solid
angle interval centered around the solar disk. This narrow field of view has the advantage
that contributions due to single or multiple scattering processes of solar photons can
safely be neglected. Thus we can also omit the single and multiple scattering terms in
the RTE.

Introducing these simplifications in the RTE in the form (2.36) we obtain

d

dτ
Iν(τ, µ, ϕ) = Iν(τ, µ, ϕ) (11.1)

where dτ = −kext,νds and s denotes the geometrical distance between P and the
top of the atmosphere in viewing direction of the instrument. Equation (11.1) may
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τ p

τm

τv

ϑ0

P

Fig. 11.2 Definition of the optical air mass m for a spherical atmosphere. τv:
vertical optical depth, τp = |µ0|−1τ and τm = mτ .

be easily integrated yielding

Iν(τ, µ, ϕ) = δ(µ − µ0)δ(ϕ − ϕ0)S0,ν exp(−τobs) (11.2)

Here, τobs denotes the optical depth along a straight path between the observation
point P of the instrument and the top of the atmosphere in the direction of the Sun.
Hence, the radiative flux density registered by the instrument is

Eν = S0,ν exp(−τobs) (11.3)

Since the spectral extraterrestrial solar flux density S0,ν is assumed to be known,
the instrument’s signal Eν can be used to derive the extinction optical depth of the
entire atmosphere above the observation point

τobs = − ln

(
Eν

S0,ν

)
(11.4)

Usually one considers the vertical optical depth τ as defined in (2.51). For a
plane–parallel atmosphere we may write

τobs = τp = τ

|µ0| (11.5)

1However, since the atmosphere is spherical in nature, τobs is smaller than τp and
is given by

τobs = τm = mτ =
∫ ∞

z
kext,ν(z′)

ds

dz′ dz′ (11.6)

Figure 11.2 depicts the situation.

1 Recall that, according to Figure 2.3, µ0 ≤ 0.
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Fig. 11.3 Comparison of the optical air mass of a plane–parallel atmosphere |µ0|−1

(dashed curve) with the optical air mass m as obtained from (11.7) (solid curve).

In (11.6) we have introduced the optical air mass, m. For a perfectly plane–
parallel atmosphere we would have m = |µ0|−1. Kasten and Young (1989) sug-
gested a simple approximation for m as a function of ϑ0 which is accurate enough
for most practical purposes

m ≈ [|µ0| + 0.50572(ϑ0 − 83.92)−1.6364]−1 (11.7)

This equation applies to a clear and dry atmosphere containing no aerosols, clouds
or absorbing gases. In principle the optical air mass is wavelength dependent.
Equation (11.7) is to be interpreted in a manner that m multiplied by the total
scattering optical thickness of the Rayleigh atmosphere can be used to determine the
attenuation of the total solar radiation reaching the surface of the Earth. Figure 11.3
compares the idealized values |µ0|−1 of a plane–parallel atmosphere with m of
the real atmosphere which was calculated by means of (11.7). From the figure it
is concluded that the plane–parallel approximation is acceptable for solar zenith
angles ϑ0 ≥ 100◦. For smaller ϑ0 values the error becomes increasingly larger. If
the Sun is close to the horizon, the neglecting of spherical effects gives rise to big
errors. For ϑ = 90◦ we have |µ0|−1 = ∞ in contrast to m = 37.92.

In an atmosphere consisting of air molecules, aerosol particles and trace gases
the optical depth is given by the sum of the three individual optical depths, i.e.

τ = τair + τgas + τaer (11.8)

Since τair can be computed from standard atmospheric data, the optical depth of
the atmospheric aerosol can be directly retrieved if no gas contributions to the



406 Remote sensing applications of radiative transfer

lnEν

0 1 m

Fig. 11.4 The Bouguer–Langley method to determine S0,ν . For m = 1 the Sun is
in the local zenith. The solid line is the linear regression.

total optical depth exist. This type of measurement is a common procedure for
ground-based observations.

In order to guarantee a high accuracy to determine τaer, the instrument must be
well calibrated with respect to the extraterrestrial solar flux density S0,ν . If this
requirement cannot be met the so-called Bouguer–Langley method may be applied.
This procedure requires a plot of ln Eν versus m by taking measurements for various
solar zenith angles. Figure 11.4 depicts an example for a set of measurements. Based
on the evaluation of (11.4), from a linear regression of the resulting data points two
important quantities can be extracted: (i) the slope of the regression line is equal to
τ , and (ii) the intersection of the straight line with the ordinate gives an estimate of
ln Eν . The Bouguer–Langley method has been employed to determine the spectral
solar constant before satellite measurements were available.

Optical thickness observations for trace gases make use of a similar principle. Let
us assume two neighboring wave number points (ν, ν ′) with maximum absorption
of a particular gas at ν and very small absorption at ν ′. If we then measure Eν and
E ′

ν , according to (11.4) and (11.6) we can compute

τgas − τ ′
gas = 1

m

[
ln

(
S0,ν

Eν

)
− ln

(
S0,ν ′

E ′
ν

)]
= 1

m

[
ln

(
S0,ν

S0,ν ′

)
− ln

(
Eν

E ′
ν

)]
(11.9)

If at ν ′ the absorption of the gas is small enough, τ ′
gas may be neglected yielding the

optical thickness τgas. Clearly, the observation is not sensitive to uncertainties in the
calibration constant. This relation is strictly valid only if the calibration constants
for the wave numbers ν and ν ′ do not differ from each other.
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Example: determination of the aerosol and ozone optical depth

A Sun photometer can be used to determine the total optical depth between the
location of the instrument and the top of the atmosphere. From (11.4) and (11.8)
the total optical depth is given by

τ = τair + τgas + τaer = − 1

m
ln

(
Eν

S0,ν

)
(11.10)

This equation can be used to obtain the optical depth of the aerosol particles τaer.
First we determine the optical depth τair describing the Rayleigh scattering of the air
molecules. For this we need the scattering cross-section of an air molecule. Due to
Rayleigh (1918) and Cabannes (1929) the scattering cross-section for anisotropic
gaseous molecules in random orientation is given by

σsca,air = 8π3

3

(n2 − 1)2

λ4 N 2

6 + 3δ

6 − 7δ
(11.11)

where λ = 1/ν is the wavelength, N is the number of air molecules per unit volume,
n is the refractive index of the air, and δ the anisotropy factor of the gas molecules.
The Earth’s atmosphere can be treated as a single gas having δ = 0.031. Equation
(11.11) can be used to derive a simple expression for the total Rayleigh optical
depth of the atmosphere, see Allen (1963)

τair,tot = 0.008569λ−4(1 + 0.0113λ−2 + 0.00013λ−4) (11.12)

where the wavelength λ has to be inserted in units of µm. Note that due to the
wavelength dependence of the refractive index τair,tot slightly differs from the ideal
λ−4 law of Rayleigh scattering, see Section 9. For a wavelength of 0.55 µm we
obtain τair,tot = 0.0973. At an arbitrary pressure level p the Rayleigh optical depth
as measured from the top of the atmosphere is obtained from

τair(p) = p

p0
τair,tot with p0 = 1013.25 hPa (11.13)

An important absorbing gas in the UV/VIS spectral region is ozone. By assuming
that O3 is the only trace gas absorber within the atmosphere, for the determination
of τaer in (11.10) we need to know τgas = τO3. We select the two wavelengths λ

and λ′ where the ozone absorption is relatively high (λ) and rather low (λ′). The
differential absorption technique as described before allows us then to write

τO3 − τ ′
O3

= 1

m

[
ln

(
S0,ν

S0,ν ′

)
− ln

(
Eν

Eν ′

)]
(11.14)

where the spectral solar constants S0,ν , S0,ν ′ are known.
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Table 11.1 Examples for Dobson wavelength pairs (λ, λ′)
and the corresponding differences for the absorption

coefficient of ozone. See also Lenoble (1993).

(λ, λ′) kabs,ν,O3 − kabs,ν ′,O3

Pair (nm) (cm atm)−1

A (305.5, 325.4) 4.025
B (308.8, 325.1) 2.625
C (311.4, 332.4) 1.842
D (317.6, 339.8) 0.829
C′ (332.4, 453.6) 0.108

Equation (11.14) follows from (11.10) by assuming that there is no wavelength
dependence of τair and τaer. To fulfill this requirement as closely as possible, we
must choose λ and λ′ in close proximity within the spectrum. The aerosol optical
depth varies only very weakly with wavelength, and since the optical depth of
the air molecules varies approximately with λ−4, an expression such as (11.14) is
acceptable. To improve the treatment and make it even more correct, one may add to
the right-hand side of (11.14) a small correction term to account for the difference
in τair − τ ′

air, and an even smaller correction τaer − τ ′
aer. While the correction for

Rayleigh scattering can be carried out with high precision, physically reasonable
information from a suitable standard aerosol model is required to obtain the aerosol
correction, e.g. Shettle and Fenn (1979), d’Almeida et al. (1991), Hess et al. (1998).

As a particular example, Table 11.1 presents the generally adopted differences
of the ozone absorption coefficient for five different wavelength pairs A, B, C, D,
C′ which have been selected by the Dobson Network for total ozone measurements.
Utilizing these data the total ozone column uO3 can be evaluated from

uO3 = τO3 − τ ′
O3

kabs,ν,O3 − kabs,ν ′,O3

(11.15)

In contrast to the total vertical optical depth, it is much more difficult to obtain
an optical depth profile as a function of altitude. An important technique to achieve
this goal are spaceborne solar occultation measurements as shown in Figure 11.5.
Here, the instrument views the Sun along a path tangential to an interior atmospheric
surface S. This surface is defined by the minimum distance zT which is known as
the tangent height. Such observations cannot be performed continually. Only a
rather narrow time interval just after sunrise and before sunset, as viewed from the
satellite, can be used for the observations. As the satellite moves along its track,
the measurements can be performed for different tangent heights. In this manner
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Fig. 11.5 Solar occultation measurements and tangent height zT.

an optical depth retrieval versus altitude may be achieved. According to (11.6) this
can be expressed as

τ (zT) = 2
∫ ∞

zT

kext,ν(z)
ds

dz
dz (11.16)

where ds is the path element along the viewing direction of the satellite. The above
formula further assumes an atmosphere consisting of concentric spherical shells.
The factor 2 implies a symmetry in the atmospheric extinction properties with
respect to zT. Utilizing the occultation extinction observations it is possible to find
τ (zT) so that, in principle, an inversion of (11.16) can be carried out to find the
extinction profile kext,ν(z).

Let us assume that at a given wavelength only absorption due to an individual
gas occurs. In this case the extinction coefficient reduces to

kabs,ν(z) = σabs,ν N (z) (11.17)

where σabs,ν is the molecular absorption cross-section in units of m2, and N (z) is
the volume number concentration of the particular gas in question, i.e. the number
of gas molecules per unit volume of air located at altitude z. Assuming that the
absorption coefficient is known, with the help of the occultation measurements the
vertical concentration profile of the gas may be retrieved. In general, a correction
for molecular scattering will be necessary.

A further modification of the experiment is possible as will be discussed next.
Let us assume that the molecular scattering effects either are exactly known or
can be totally neglected, and that the same is true for gaseous absorption. The
only extinction that remains is due to a population of Mie scatterers. Assuming



410 Remote sensing applications of radiative transfer

spherical particles of radius r and a particle number density concentration N (z, r ),
the extinction coefficient for this population is given by

kext,ν(z) =
∞∫

0

πr2 Qext,ν N (z, r ) dr (11.18)

Here Qext,ν is the Mie extinction efficiency for spherical particles, see Chapter 9. In
principle it is possible to obtain the vertical profile of the particle number density
concentration N (z, r ) by inversion. However, such an inversion is rather difficult
because further assumptions have to be made to constrain the ill-posed problem
in a favorable way. For example, for the determination of Qext,ν the chemical
composition of the particles has to be specified in advance.

If a set of wavelengths is used simultaneously, an inversion of N (z, r ) is feasible
under certain circumstances. We will not give details and refer to the primary
literature, cf. King et al. (1978). In connection with the Stratospheric Aerosol and
Gas Experiment II (SAGE II) see Wang et al. (1989) or Livingston and Russell
(1989).

In contrast to the above very complicated situation, an inversion of atmospheric
column contents of trace gases can be carried out as follows. Let us assume that
some remote sensing experiment provides us with τ . In case of gaseous absorption
it is then possible to retrieve the entire column content,

∫∞
0 N (z)dz, i.e. the total

number of gas molecules per m2 in an atmospheric column having a 1 m2 cross-
section. A similar approach can be used in case of aerosol particles. This procedure
makes it possible to invert a mean particle number density for the entire atmospheric
column.

Figures 11.6a–d depict four typical situations of nadir viewing short-wave remote
sensing. Figure 11.6a shows the general situation where three contributions must be
accounted for describing the instrument’s signal: (i) direct solar radiation reflected
at the Earth’s surface and directly transmitted to the instrument, (ii) solar radiation
scattered by air molecules and aerosol particles and then transmitted to the instru-
ment, and (iii) solar radiation being reflected by the cloud tops and transmitted to
the satellite. This figure applies to a relatively transparent atmosphere with some
embedded clouds lying over a strongly reflecting surface.

Reflection of short-wave radiation at the surface and at the top of the clouds
plays an important role for remote sensing performed in an absorption band of an
atmospheric trace gas. This situation, shown in Figure 11.6b, is important because
the application of Beer–Lambert’s extinction law allows the establishing of a direct
relation between the transmission of the directly transmitted solar radiation and
altitude. If multiple scattering is of relevance, the relationship would turn out to be
much more involved and complicated to be exploited.
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(a) (b)

(c) (d)

Fig. 11.6 Nadir viewing geometry for different short-wave remote sensing obser-
vations. Dashed lines denote contributions of minor importance. See also text.

The case of a turbid atmosphere lying over a dark surface is illustrated in
Figure 11.6c. In order to detect a noticeable signal at the instrument, the atmosphere
must scatter the incoming solar radiation in the upward direction. Furthermore,
the atmosphere itself should not be opaque. Contributions due to ground reflection
are of secondary importance, since the ground is assumed to be dark.

Finally, Figure 11.6d depicts the situation that the backscattered solar radiation
is observed in the very strong absorption band in the UV-A and UV-B spectral
region (λ < 330 nm). For very short wavelengths (λ < 300 nm) the ozone absorp-
tion optical depth is so large that solar photons entering the top of the atmosphere
are absorbed before they reach the surface. Taking advantage of the smoothly
varying absorption cross-sections of ozone molecules, the location of the atmo-
spheric backscatter contributions can be varied through the entire altitude range
of the Earth’s atmosphere. In the figure we have λ1 < λ2 < λ3 < λ4. If clouds
occur in the pixel observed by the satellite instrument, then it is of key impor-
tance to know both the location of the cloud top as well as the cloud cover for the
pixel.

The limb viewing geometry is depicted in Figure 11.7. The observing instrument
and the Sun are located to the left and to the right of the local vertical with respect
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zT

Fig. 11.7 Limb viewing geometry for short-wave remote sensing.

(a) (b) (c)

Earth

Fig. 11.8 Ground-based observation of sky radiation: (a) sky radiance; (b) solar
aureole; (c) zenith radiation during sunset or sunrise.

to the tangent point at height zT. This point is the lowermost location along the limb
viewing path. The instrument’s viewing direction is tangential with respect to the
Earth’s atmosphere.

Note that, in principle, all atmospheric volume elements located along the limb
path may deliver a certain contribution to the observed signal. It should be observed,
however, that the more distant these volume elements are relative to zT the less
important is their contribution. This is due to the fact that the outer shells of the
atmosphere contain less scattering material than the volume elements close to zT.
Therefore, to a very good degree of approximation the major contributions to the
signal originate from atmospheric volume elements centered around zT.

Figure 11.8a–c depict several observation geometries for ground-based remote
sensing of solar radiation. Figure 11.8a illustrates the daytime observation of the
sky radiance. Due to atmospheric scattering of solar radiation by air molecules,
aerosol or cloud particles, the sky radiance exhibits specific features with respect to
the viewing zenith and azimuth angle. This information can be exploited to derive
physical properties of the scattering particles. More information can be obtained
by measuring, modeling and analyzing the polarized radiation field. This can be
understood if one realizes that the clear atmosphere (no aerosols and no clouds
present) possesses a distinct polarization pattern which is due to the polarizing
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nature of Rayleigh scatterers. In contrast to this, scattering by aerosol particles
or cloud droplets causes a depolarizing effect. This depolarizing nature can be
exploited to define specific remote sensing algorithms. We will not treat this subject
further and refer to the scientific literature (e.g. Coulson, 1988; Herman et al. 1997;
Mishchenko and Travis, 1997).

Figure 11.8b depicts the so-called solar aureole observation. By this we mean
that one observes the immediate neighborhood of the solar disk, i.e. the instrument
does not view the solar disk itself but detects diffuse radiation coming from a
narrow solid angle interval covering the solar aureole. It is obvious that this type
of observation exploits the forward scattering properties of atmospheric aerosol
particles or thin or medium thick cirrus clouds. Clearly, such measurements cannot
be performed if the sky is overcast because then the radiation field becomes more
and more isotropic thus losing any information signature that originates from the
single scattering processes. Further information can be found in the literature (e.g.
Deirmendjian, 1957; Box and Deepak, 1981; Nakajima et al., 1983; Santer and
Herman, 1983).

Another interesting observation geometry is shown in Figure 11.8c. Here one
observes zenith radiation during dawn or dusk, i.e. when the Sun is just below the
horizon. This observation geometry makes it necessary to take the spherical nature
of the atmosphere fully into account. While the Sun moves more and more below
the horizon it illuminates only atmospheric layers higher up in the atmosphere. This
means that the entire troposphere is located in the darkness zone.

11.2.2 Methods based on thermal emission

We will illustrate the basic principles by making the following assumptions. To a
sufficiently high degree of approximation scattering of radiation can be neglected
in the long-wave and microwave spectral region yielding

kext,ν = kabs,ν , ω0,ν = 0 (11.19)

As boundary conditions for the atmospheric radiation field we will assume that
at the top of the atmosphere no downwelling radiation exists whereas the upward
directed radiation at the Earth’s surface consists of the Planckian emission of the
ground having an emissivity εg,ν , plus the reflected part of the downwelling flux
density, i.e.

I−,ν(zt ) = 0

I+,ν(0) = εg,ν Bν(Tg) + (1 − εg,ν)
E−,ν(0)

π

(11.20)
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Wν (z, zt)

kabs,ν (z)
Tν (z, zt)

z

zm

Arbitrary units

Fig. 11.9 Typical functional shape of the weighting function Wν(z, zt).

In the following we will discuss two arrangements for remote sensing in the long-
wave spectral region.

(1) Nadir-looking instrument

In z coordinates the solution of the RTE for the upwelling radiation is given by,
(see (2.122))

I+,ν(zt) = I+,ν(0)Tν(0, zt) +
∫ zt

0
Bν(z)

d

dz
Tν(z, zt)dz (11.21)

with

Tν(z, zt) = exp

(
−
∫ zt

z
kabs,ν(z′)dz′

)
(11.22)

The term

Wν(z, zt) = d

dz
Tν(z, zt) = kabs,ν(z)Tν(z, zt) (11.23)

is called the weighting function.
Usually kabs,ν(z) decreases with height because for gases like O2 or CO2 the

number concentration of the gas molecules decreases with increasing z. For such a
case Figure 11.9 shows typical vertical profiles of kabs,ν , T (z, zt) and the resulting
weighting function. In a strong absorption band Tν(z, zt) increases from 0 to 1
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when z increases from z = 0 to z = zt. From the figure it will be seen that at a
particular altitude z = zm the weighting function exhibits a maximum. Obviously,
with increasing absorption the location of the maximum zm moves upward. This can
be explained by the fact that for a strongly absorbing gas Tν(z, zt) already vanishes
at high altitudes. With decreasing absorption zm moves downward correspondingly.

Let us consider the idealized situation where the weighting function is a δ-
function, i.e.

Wν(z, zt) = δ(z − zm) (11.24)

Inserting this equation into (11.21) leads to

I+,ν(zt) = I+,ν(0)Tν(0, zt) + Bν(zm) (11.25)

Hence, in addition to the contribution coming from the lower boundary, the satellite
instrument detects radiation coming directly from the level zm. If similar weight-
ing functions exist for other wavelengths λi and if the corresponding weighting
functions Wνi have their delta function peaks at zm,i , then this idealized situation
directly provides the atmospheric temperature profile at the discrete set of altitudes
zm,i .

Unfortunately, atmospheric weighting functions always possess a finite width,
and in most cases these weighting functions computed for different wave numbers
overlap substantially. Therefore, the inversion of the temperature profile from a set
of nadir radiance measurements is a complicated and difficult task.

In the atmospheric window region we have

Tν ≈ 1,
d

dz
Tν ≈ 0 (11.26)

Inserting this equation into (11.21) we obtain

I+,ν(zt) ≈ I+,ν(0) (11.27)

i.e. for most practical purposes the instrument registers the signal emitted by the
ground. If the emissivity of the ground is equal to 1 it follows from (11.20) that

I+,ν(zt) = Bν(Tg) (11.28)

Thus the instrument aboard a satellite measures the black body emission of the
Earth’s surface. This means that the temperature Tg of the ground can be determined
by inverting (11.28).

If the observation takes place in a strong absorption band, then the absorption
coefficient can be assumed to be large so that

Tν(0, zt) ≈ 0 (11.29)
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This statement implies that any ground contribution to the radiation field at the
satellite’s position can be safely neglected. Now (11.21) reduces to

I+,ν(zt) =
∫ zt

0
Bν(z)

d

dz
Tν(z, zt)dz (11.30)

This formula has important applications. For an absorber gas with constant mixing
ratio, such as carbon dioxide in the 4.3 and 15 µm bands, or oxygen in the 5 mm
microwave band (i.e. the so-called 60 GHz O2 complex), the weighting function
can be computed very easily, that is the signal observed by the instrument aboard
the satellite can be exploited to invert the vertical temperature profile. This makes
it necessary to select a specific set of wavelengths so that for each wavelength the
weighting function attains its maximum contribution to the observed signal at a
particular altitude range.

Note that the determination of the temperature profile heavily relies on the
assumption that the mixing ratio of the considered trace gas is constant with height.
Otherwise both the concentration profile as well as the temperature profile would
be unknown quantities making the inversion much more difficult.

Clouds pose a peculiar problem in atmospheric remote sensing because in the
visible and long-wave spectral wavelength region they are not transparent. As a con-
sequence, atmospheric parameters can only be retrieved for the altitude range above
the cloud top. However, it becomes possible to invert the cloud top temperature.

So far we have considered only the nadir viewing geometry. However, the pre-
vious discussion can be generalized to abritrary viewing directions using scanning
instruments. As seen from the satellite’s orbit such instruments provide a larger
areal coverage as compared to instruments which mainly look in nadir direction.

(2) Ground-based observations

In the case of ground-based observations of the long-wave sky radiation we assume
an isotropic radiation field. Utilizing the boundary conditions (11.20) the downward
radiance at ground level expressed in z coordinates follows from (2.122)

I−,ν(0, µ) = −
∫ zt

0
Bν(z)

d

dz
Tν(0, z, µ)dz = −

∫ zt

0
Bν(z)Wν(0, z, µ)dz (11.31)

with

Tν(0, z, µ) = exp

(
− 1

µ

∫ z

0
kabs,ν(z′)dz′

)
(11.32)

and where µ is the direction of observation. A similar analysis as in the case
of spaceborne observations leads to the following conclusions for ground-based
observations: The weighting function typically decreases strongly with increasing
altitude. Therefore, the main contributions to the detected signal originate from the
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lower troposphere thus limiting information extraction to the lowermost parts of
the atmosphere. This type of observation geometry in the long-wave spectral region
is of much less importance than radiance measurements from satellites. The only
exception is the observation of signals in close proximity to the flanks of the strong
absorption bands of atmospheric trace gases leading to a complete sounding of the
atmosphere from ground level to higher altitudes.

11.3 Inversion of the temperature profile

Using a radiometer in the long-wave electromagnetic spectrum aboard a satellite,
one can measure the upwelling radiance in several spectral regions that are called
channels. As discussed previously, the information content within an absorption
band of a specific trace gas can be exploited to retrieve the atmospheric temperature
profile. We will now show how to proceed.

Let us start with the radiative transfer equation of the infrared spectrum, cf.
(2.113)

µ
d

dτ
Iν(τ, µ) = Iν(τ, µ) − Bν(τ ) (11.33)

The monochromatic differential optical depth is given by

dτ = kνdu with du = −ρabs(z)dz (11.34)

where kν is the spectral absorption coefficient, u is the absorber amount and ρabs is
the density of the absorber gas. Employing the hydrostatic equation we can relate
optical depth changes to changes in total atmospheric pressure

dτ = kν

qabs

g
dp with qabs = ρabs

ρ
(11.35)

Here qabs is the mass concentration of the trace gas and ρ is the air density. Substi-
tuting (11.35) into (11.33) we obtain for the change in radiance

d Iν(p, µ) = 1

µ
[Iν(p, µ) − Bν(p)] kν

qabs

g
dp (11.36)

For a nadir-looking instrument radiation is observed within a small solid angle
element centered around µ = 1 and the monochromatic transmission between the
top of the atmosphere and the pressure level p is given by

Tν(p) = exp

(
−1

g

∫ p

0
kν(p′)qabs(p′)dp′

)
(11.37)
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In this case the solution to (11.33) can be written as

Iν(0) = Iν(τ0) exp(−τ0) +
∫ τ0

0
Bν(τ ′) exp(−τ ′)dτ ′ (11.38)

where τ0 is the total optical depth at z = 0 corresponding to the surface pressure p0.
Assuming that at τ0 the surface radiates like a black body with temperature T (p0)
and using the relation

∂Tν

∂p
dp = −Tνdτ (11.39)

we can write the upwelling radiance for µ = 1 at the top of the atmosphere as

Iν(0) = Bν(p0)Tν(p0) +
∫ 0

p0

Bν(p)
∂Tν

∂p
dp (11.40)

Recall that ∂Tν(p)/∂p is the weighting function which multiplies the Planck func-
tion for the upwelling radiation emanating from an elementary atmospheric layer
of thickness dp.

Equation (11.40) is valid for monochromatic radiation only. In practice, however,
a radiation instrument is only capable of detecting radiation within a finite spectral
band (ν1, ν2) with central frequency ν̄. The width of the interval and the sensitivity
of the radiometer are characterized by the response function φν . Thus the radiation
detected by the radiometer may be expressed by

Iν̄(0) =
∫ ν2

ν1
φν Iν(0)dν∫ ν2

ν1
φνdν

= 1∫ ν2

ν1
φνdν

(∫ ν2

ν1

φν Bν(p0)Tν(p0)dν +
∫ ν2

ν1

∫ 0

p0

φν Bν(p)
∂Tν

∂p
dp dν

)

(11.41)

The mean transmission is defined as

Tν̄(p) =
∫ ν2

ν1
φνTν(p)dν∫ ν2

ν1
φνdν

(11.42)

so that the average weighting function is given by

∂Tν̄

∂p
=
∫ ν2

ν1
φν

∂Tν

∂p dν∫ ν2

ν1
φνdν

(11.43)

Note that the average weighting function now contains the sensitivity or the effi-
ciency of the instrument. We may apply the approximation that within the given
frequency interval the Planck function varies linearly with respect to ν permitting
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us to replace Bν by its mean value Bν̄ . In this case Bν̄ can be extracted from the
frequency integral. Inserting then (11.42) and (11.43) into (11.41) yields

Iν̄(0) = Bν̄(p0)Tν̄(p0) +
∫ 0

p0

Bν̄(p)
∂Tν̄

∂p
dp (11.44)

where we have also assumed that the frequency integral over the response function
is independent of pressure p.

The fundamental principle for deriving the temperature profile of the atmosphere
from infrared soundings using satellite instruments is based on (11.44). This is due
to the fact that the Planck function contains the temperature information, while the
transmission of the atmosphere is associated with the absorption coefficient and
the vertical profile of the trace gas under consideration. Thus the observed radiation
must contain information on the profiles of both the atmospheric temperature as
well as the trace gas concentration.

As a particular example let us consider the infrared atmospheric window region
where, except for the 9.6 µm ozone band, absorption effects of atmospheric gases
are relatively insignificant. Therefore, observations of the upwelling radiance at the
top of the atmosphere in the atmospheric window are practically directly related to
the Planck radiation emitted by the surface, i.e.

Iν̄(0) ≈ Bν̄(p0) (11.45)

CO2 has its main absorption band in the wavelength region stretching from 12–18
µm. With the exception of small-scale local effects, for instance due to biomass
burning and other anthropogenic effects, the mixing ratio of CO2 is essentially
constant vertically and horizontally. Presently we may use

qCO2 ≈ 5.47 × 10−4 (11.46)

being equivalent to a volume mixing ratio of 360 ppmv. The line intensities, the
position of all spectral lines and the line half-widths for CO2 are known with high
precision from laboratory or theoretical results. Thus the spectral transmission
function and the weighting function for CO2 can be calculated very accurately as a
function of pressure and temperature using model distributions. In many cases the
uncertainties in T and p are not essential.

Once a temperature profile has been found by inverting the Bν̄ functions using
suitable model values of T and p, we may repeat the transmission function calcula-
tions by employing the inverted temperature profile and repeating the calculations
to obtain a new temperature profile. We will soon return to this problem.

Given the surface temperature T (p0) by inversion of (11.45), the vertical temper-
ature profile T (p) can be found by inverting (11.44) for a set of channels in the CO2
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absorption band. Based on the temperature retrieval using CO2, nadir observation
in spectral absorption bands of various other trace gases, such as O3, H2O and CH4,
could then be employed to derive total column contents or even profile information
for these trace gases. In the following we will limit the discussion to the derivation
of the temperature profile based on CO2.

In the CO2 absorption band there exist several regions where the transmission
function approaches zero, so that the thermal signal emitted by the surface does not
reach the top of the atmosphere, i.e.

Tν̄(p0) ≈ 0 (11.47)

Then (11.44) simplifies to

Iν̄(0) ≈
∫ 0

p0

Bν̄(p)
∂Tν̄

∂p
dp (11.48)

For a set of different frequency bands the transmission and weighting functions
have to be computed as functions of pressure and temperature. Due to the frequency
dependence of the Planck function the average Bν̄ will change from one frequency
band to the other. Therefore, it is necessary to eliminate the frequency dependence
in (11.48).

Within the CO2 15 µm band the Planck function can be expressed as a linear
function

Bν̄(p) = αν̄ Bν̄r (p) + βν̄ (11.49)

where νr is a fixed reference frequency close to the center of the 15 µm band, and
αν̄ and βν̄ are fit constants. Using this linear expression for the Planck function in
(11.48) leads to

Iν̄(0) − βν̄

αν̄

=
∫ 0

p0

Bν̄r (p)
∂Tν̄

∂p
dp (11.50)

It is customary to introduce the new functions

g(ν̄) = Iν̄(0) − βν̄

αν̄

, f (p) = Bν̄r (p), K(ν̄, p) = ∂Tν̄

∂p
(11.51)

Then (11.50) can be reformulated as

g(ν̄) =
∫ 0

p0

f (p)K(ν̄, p)dp (11.52)

This is a Fredholm integral equation of the first kind. The weighting function
K(ν̄, p) is the so-called kernel of the integral equation. f (p) is the function to be
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determined by employing a set of measurements g(ν̄i ), i = 1, . . . , M , where M is
the total number of channels provided by the infrared radiometer.

In a first step we will discuss the kernel K of the integral equation. The spectrally
averaged transmission function can be written as

Tν̄(p) = 1

�ν

∫
�ν

exp

(
−qCO2

g

∫ p

0
kν(p′)dp′

)
dν (11.53)

with �ν = ν2 − ν1. For illustrative purposes we have assumed an ideal instrument,
i.e. φν = 1. For altitudes below about 30–40 km Lorentz broadening dominates
spectral line broadening so that simultaneous Doppler broadening can be safely
neglected. Inserting the absorption coefficient for the Lorentz line shape, see (7.15),
and neglecting the temperature dependence of the Lorentz half-width so that

αL(p, T ) = αL,0
p

p 0

√
T0

T
≈ αL,0

p

p 0
(11.54)

we obtain for the transmission the expression

Tν̄(p) = 1

�ν

∫
�ν

exp

(
−qCO2

g

∫ p

0

L∑
i=1

Si [T (p′)]
π

αL,i (p′)
(ν − ν0,i )2 + αL,i (p′)2

dp′
)

dν

(11.55)

where we summed over a total of L individual Lorentz lines contained in the spectral
interval �ν.

In principle, the full temperature dependence of the absorption coefficient has to
be taken into account. A particular problem for setting up the inversion of (11.44) is
that a priori we do not even know a rough approximation of the temperature profile
that is needed to get the iteration started. As an initial guess one, therefore, assumes
a temperature profile which is climatologically representative for the actual position
of the satellite.

Wark and Fleming (1966) computed for the US standard atmosphere the kernel
functionK for six different rather narrow wave number bands ν̄i , i = 1, . . . , M = 6
located within the 15 µm CO2 band. Figure 11.10 depicts the vertical variation of
∂Tν̄(p)/ log p versus log p.

To make the inversion of (11.44) possible, the individual kernel functions
Ki (p) = K(ν̄i , p) must possess distinct maxima in different altitude regions. If
this is the case for the selected narrow frequency bands, we may extract suffi-
cient information from the upwelling radiation at the instruments level to con-
struct the desired vertical atmospheric profile. As follows from inspection of Figure
11.10, the individual weighting functions overlap considerably which complicates
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Fig. 11.10 Weighting functions ∂Tν̄/∂p versus log p for six reference wave num-
bers applied to the 15 µm CO2 band. (Redrawn from Wark and Fleming (1996),
with permission from the American Meteorological Society.)

the inversion process. The entire inversion is based on the set of observations
gi = g(ν̄i ), i = 1, . . . , M which provide the necessary input information. Owing
to the overlapping kernel functions, we have to invert a system of N linear equations
for the unknown functions f (p j ), j = 1, . . . , N where N denotes the total number
of pressure levels. In case that the Ki do not overlap, we would end up with N
independent equations which can be inverted directly. Since this is generally not
the case, it is advantageous to employ matrix methods to find the proper solution.

11.3.1 Direct linear inversion

Employing the M radiance observations the mathematical problem is stated by a
set of M integral equations

gi =
∫ 0

p0

f (p)Ki (p)dp, i = 1, . . . , M (11.56)

Usually the unknown function f (p) can be expanded in terms of known represen-
tation functions W j (p), j = 1, . . . , N , which may involve Legendre polynomials
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or trigonometric functions so that

f (p) =
N∑

j=1

f j W j (p) = Bν̄i (p) (11.57)

The f j appearing in this equation are the unknown expansion coefficients. For
(11.56) this leads to

gi =
N∑

j=1

f j

∫ 0

p0

W j (p)Ki (p)dp, i = 1, . . . , M (11.58)

It is now convenient to introduce a M × N matrix A whose elements Ai j are given
by

Ai j =
∫ 0

p0

W j (p)Ki (p)dp (11.59)

leading to the compact notation

gi =
N∑

j=1

Ai j f j , i = 1, . . . , M (11.60)

In vector notation we find

g = Af, g =




g1

g2
...

gM


 , f =




f1

f2
...

fN


 (11.61)

For the simple case where A is a square matrix with a nonvanishing determinant,
the solution to (11.61) is

f = A−1g (11.62)

Having found f we can compute the Planck function from (11.57) to find the tem-
perature profile T (p).

Usually for a remote sensing problem the above assumption of an equal number
of unknowns and observations is not fulfilled so that the matrix A does not possess
an inverse A−1. In most cases the problem is underdetermined (M < N ) so that
we have more unknowns than independent observations. Thus the problem is ill-
posed. Even if A is a square matrix, the inverse A−1 may still not exist if the
determinant of A is close to zero. This type of instability may arise for various
reasons such as (i) errors in the computation of the matrix elements Ai j , (ii) errors
when approximating the Planck function, (iii) round-off errors, or (iv) instrument
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noise leading to observed radiances which involve random errors. In the Appendix
to this chapter we will give an illustrative example of an ill-posed problem.

11.3.2 Linear inversion with constraints

Consider the ill-posed problem

gi =
N∑

j=1

Ai j f j , i = 1, . . . , M (11.63)

Now we admit errors in the measurements such that

ĝi = gi + εi (11.64)

Here gi represents the i-th measurement resulting from an ideal instrument, and εi is
the measurement error. Let us perform a linear inversion subject to some constraint.
For example, this can be expressed by the minimization of the cost function

S =
M∑

i=1

ε2
i + γ

N∑
j=1

( f j − f̄ )2 (11.65)

where f̄ is the average value of f , and γ is a smoothing parameter which must be
prescribed following a mathematically and physically consistent reasoning. It can be
seen that S contains as the second term the variance of the f j . Thus the minimization
problem is characterized by the fact that the sum of the squared differences between
f j and f̄ is minimized, too. The smoothing parameter γ determines to what extent
the discrete values f j forming the solution are constrained to remain close to the
average value f̄ .

Now we can use (11.64) in (11.63) solving the latter equation for the errors εi .
Minimization of S then means that the partial derivatives of S with respect to the
unknown physical parameters fk, k = 1, . . . , j, . . . , N must vanish. This leads to
the expressions

∂

∂ fk


 M∑

i=1

(
N∑

j=1

Ai j f j − ĝi

)2

+ γ

N∑
j=1

( f j − f̄ )2


 = 0 (11.66)

For the partial derivatives we obtain

M∑
i=1

(
N∑

j=1

Ai j f j − ĝi

)
Aik + γ ( fk − f̄ ) = 0 (11.67)



11.3 Inversion of the temperature profile 425

Since the average of the f j is defined as

f̄ = 1

N

N∑
k=1

fk (11.68)

we find

fk − f̄ = −N−1 f1 − N−1 f2 − · · · + (1 − N−1) fk − · · · − N−1 fN (11.69)

Inserting this equation into (11.67) leads in matrix notation to

AT Af − AT ĝ + γ H f = 0 (11.70)

where the N × N matrix H is given by

H =




1 − N−1 −N−1 . . . −N−1

−N−1 1 − N−1 . . . −N−1

...
... . . .

...
−N−1 −N−1 . . . 1 − N−1


 (11.71)

Inverting (11.70) leads to the final solution

f = (AT A + γ H )−1 AT ĝ (11.72)

This solution is due to Phillips (1962) and Twomey (1963).

11.3.3 Chahine’s relaxation method

Let us consider the solution to the radiative transfer equation for nadir observation
in the M measurement channels at the top of the atmosphere as discussed above,
see (11.44)

Ii = Bi (p0)Ti (p0) +
∫ 0

p0

Bi (p)
∂Ti (p)

∂ ln p
d ln p, i = 1, . . . , M (11.73)

The Planck function is given by

Bi (p) = Bi [T (p)] = aν3
i

exp [bνi/T (p)] − 1
(11.74)

We will assume that the weighting functions for the individual channels can
be chosen in such a way that each weighting function attains its maximum at a
different altitude level or, equivalently, within a pressure layer of thickness �i ln p.
Employing the mean value theorem for integrals, we can approximate the observed
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radiance Ĩ i by means of

Ĩ i ≈ Bi (T0)Ti (p0) + Bi (Ti )
∂Ti

∂ ln p

∣∣∣
pi

�i ln p (11.75)

Note that pi is the pressure level for which ∂Ti/∂ ln p attains its maximum value,
and that �i ln p can be understood as the effective width of the i-th weighting
function in logarithmic pressure coordinates.

Let T ′
i stand for an estimate of the temperature at level pi . Inserting this estimate

into (11.75), we obtain an estimate for the observed radiance

I ′
i ≈ Bi (T0)T ′

i (p0) + Bi (T
′

i )
∂T ′

i

∂ ln p

∣∣∣
pi

�i ln p (11.76)

Division of (11.75) by (11.76) leads to

Ĩ i − Bi (T0)Ti (p0)

I ′
i − Bi (T0)T ′

i (p0)
≈ Bi (Ti )

Bi (T ′
i )

∂Ti

∂ ln p

∣∣∣
pi

∂T ′
i

∂ ln p

∣∣∣
pi

(11.77)

Experience indicates that for a temperature change from T to T + �T the Planck
function varies much more strongly than the weighting function associated with
this particular temperature change. In other words, the change of the transmission
versus pressure remains virtually constant with respect to moderate temperature
changes. Thus the second factor on the right-hand side involving the ratio of the
weighting functions is approximately equal to 1.

Assuming that the surface contribution in (11.77) is negligible we find the simple
relaxation equation

Ĩ i

I ′
i

≈ Bi (Ti )

Bi (T ′
i )

(11.78)

which can be used in the following way: insert the measured radiance Ĩ in the
left-hand side numerator of (11.78). By employing an estimated temperature T ′

i the
Planck function Bi (T ′

i ) can be evaluated as well as I ′
i from (11.76) so that for a

fixed channel i the temperature Ti can be found by inverting Bi (Ti ).
If necessary, the same form (11.76) of the relaxation formula can be used in case

that T (p0) and Ti (p0) ≈ T ′
i (p0) are known to include the surface contribution. In

this case Bi (T0)Ti (p0) must be subtracted from Ĩ i in (11.78) and from I ′
i in (11.76).

The relaxation equation (11.78) has been originally derived by Chahine (1970).
We will now briefly discuss the application of this equation. In the strong absorp-
tion regions of the 15 µm band of CO2 the upwelling radiance measured by the
satellite instrument at the top of the atmosphere results from emissions of the
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upper atmospheric regions. For the weaker absorption bands this radiation origi-
nates from progressively lower atmospheric regions. One selects a particular set
of M frequency bands which is characterized by overlapping weighting functions
covering the altitude range of interest.

The algorithm for Chahine’s relaxation method is given by the following steps.

(1) Make use of the radiance observations Ĩ i for all channels i = 1, . . . , M .
(2) Specify the constant mixing ratio of CO2, the response functions φνi of the instrument

for all channels, and select the pressure levels pi for which the weighting functions
attain their maximum.

(3) Prescribe an initial estimate T (0)
i (i = 1, . . . , M) for the temperature profile, for exam-

ple, by using a reasonable profile from a climatology.
(4) For the n-th step, insert T (n)

i into (11.73) and employ an accurate quadrature formula
to determine the integral over d ln p.

(5) Make a comparison of the n-th iterate I (n)
i with the measurements Ĩ i for i = 1, . . . , M .

If all the residuals R(n)
i = | Ĩ i − I (n)

i |/ Ĩ i are smaller than a given bound ε, then T (n)
i

is the solution for the temperature profile. If | Ĩ i − I (n)
i |/ Ĩ i > ε apply the relaxation

equation (11.78) in the form

Ĩ i

I (n)
i

≈ Bi
(
T (n+1)

i

)
Bi
(
T (n)

i

) (11.79)

Substituting (11.74) into (11.79) gives the estimate

T (n+1)(pi ) = bνi/ ln

{
1 −

[
1 − exp

(
bνi

T (n)
i

)]
I (n)
i

Ĩ i

}
(11.80)

for the iteration step n + 1.
(6) Return to step 4 and re-evaluate (11.73) by appropriately interpolating the temperature

profile from the set (pi , T (n+1)
i ) yielding I (n+1)

i . Repeat the above steps until the residuals
are smaller than the bound ε.

(7) Use (linear) interpolation to evaluate the temperature profile at pressure levels other
than pi , i = 1, . . . , M .

11.3.4 Smith’s iterative inversion method

As an alternative to Chahine’s relaxation algorithm we will now discuss an iterative
method which was originally introduced by Smith (1970). In this approach (11.73)
will be iteratively solved. We start by writing the n-th iteration step of (11.73) as

I (n)
i = B(n)

i (p0)Ti (p0) +
∫ 0

p0

B(n)
i (p)

∂Ti

∂ ln p
d ln p (11.81)
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For step n + 1 we write analogously

Ĩ i = I (n+1)
i = B(n+1)

i (p0)Ti (p0) +
∫ 0

p0

B(n+1)
i (p)

∂Ti

∂ ln p
d ln p (11.82)

i.e. we use the observations Ĩ i as a first guess in the (n + 1)-th iteration step.
The difference between (11.82) and (11.81) is

I (n+1)
i − I (n)

i = [
B(n+1)

i (p0) − B(n)
i (p0)

]
Ti (p0)

+
∫ 0

p0

[
B(n+1)

i (p) − B(n)
i (p)

] ∂Ti

∂ ln p
d ln p

(11.83)

The main simplification of this method results from the assumption that for each
channel i the difference of the Planck functions under the integral sign does not
depend on the entire atmospheric pressure range but only on the temperature at level
p. Assuming further that the difference Bn+1

i (p) − Bn
i (p) depends only weakly on

the pressure level, the integral term in (11.83) can be approximated as∫ 0

p0

[
B(n+1)

i (p) − B(n)
i (p)

]
dTi (p)≈ [

B(n+1)
i (p) − B(n)

i (p)
]
Ti (0)

− [
B(n+1)

i (p0) − B(n)
i (p0)

]
Ti (p0)

(11.84)

Since Ti (0) = 1, we obtain for the differences of the nadir radiance between the
(n + 1)-th and n-th step

Ĩ i − I (n)
i = B(n+1)

i (p) − B(n)
i (p) (11.85)

The last expression can be solved for the Planck function in layer i for the (n + 1)-th
iteration step yielding

B(n+1)
i (p) = B(n)

i (p) + Ĩ i − I (n)
i (11.86)

or, equivalently for the temperature, we find

T (n+1)(p, νi ) = bνi

ln
[
1 + aν3

i /B(n+1)
i (p)

] (11.87)

For arbitrary p the best approximation for the temperature can be found by weight-
ing all temperature profiles for the individual channels i with their own kernel
Wi (p)

T (n+1)(p) =
∑M

i=1 T (n+1)(p, νi )Wi (p)∑M
i=1 Wi (p)

(11.88)
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where we have defined

Wi (p) =
{

dTi (p), p < p0

Ti (p), p = p0
(11.89)

Using the above formulas the following steps constitute Smith’s iterative retrieval
method.

(1) Provide an initial guess for the temperature profile T (n)(p) for n = 0.
(2) Compute B(n)

i (p) employing the expression (11.74) for the Planck function. With known
Planck function we can proceed to calculate I (n)

i using (11.81).
(3) Compute B(n+1)

i (p) and T (n+1)
i using (11.86) and (11.87). This can be done for arbitrary

pressure p.
(4) Using (11.88) a new improved approximation for the temperature profile T (n+1)(p) can

be found in the (n + 1)-th iteration step.
(5) In the final step we compare the computed nadir radiances I (n)

i and Ĩ i . If R(n)
i =

| Ĩ i − I (n)
i |/ Ĩ i < ε for all i , then T (n+1)(p) is the solution for the temperature pro-

file. If R(n)
i > ε, then repeat steps 1–5 until the residual term meets the specified

bound ε.

Let us now discuss some of the advantages of Smith’s iterative method.

(1) For the derivation of the temperature profile there is no prescription of the analytic
form of the profile. This is in contrast to Chahine’s method where the total number of
discrete points of the retrieved temperature profile directly depends on the total number
M of radiance observations.

(2) With Smith’s method the temperature profile can be evaluated for arbitrary p. Chahine’s
relaxation method, on the other hand, employs a linear interpolation of the retrieved
discrete temperature values T (n)(pi ) (i = 1, . . . , M).

Figure 11.11 shows a comparison of retrieved temperature profiles using
Chahine’s relaxation method and Smith’s iteration procedure. This figure is due
to Liou (1980) who computed the synthetic radiances for the six VTPR (Vertical
Temperature Profile Radiometer) channels centered at the wave numbers 669.0,
676.7, 694.7, 708.7, 723.6, and 746.7 cm−1 of the 15 µm CO2 band (solid curve
without dots). The VTPR was flown on the NIMBUS 4 satellite in the early 1970s.
As initial guess an isothermal temperature profile of 300 K was employed, and the
surface temperature was held fixed at 279.5 K. For Chahine’s relaxation method
the residual was set to ε = 10−2. The final result (solid curve with black dots) was
obtained after only four iteration steps. The dots represent the discrete pressure lev-
els pi . It is seen that the difference between the actual and Chahine’s temperature
profile amounts to typically 2–3 K with similar over- and underestimations. The
result obtained with Smith’s iterative method is depicted as the dashed line in the
figure. Smith’s method converged after about 20 iteration steps whereby the bound
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Fig. 11.11 Comparison between the temperature profile retrieval employing
Chahine’s relaxation and Smith’s iteration method for the six VTPR channels.
The thick solid line represents the actual temperature profile. (Redrawn from Liou
(1980), with permission from Elsevier.)

ε was set to 0.02. It is noteworthy that a reduction of the size of ε did not improve the
temperature profile. One can see that the retrieved profiles exhibit less variability
than the true profile. Moreover, both methods are not capable of recovering the tem-
perature profile in the upper atmosphere, because the VTPR channels were selected
in a manner that the peak for the highest weighting function lies near 30 hPa.

We do not wish to conclude this section without giving special credit to two
pioneers in the field of remote sensing of temperature profiles. King (1956) was the
first to show in which way the vertical temperature distribution could be inferred
from satellite radiance scan measurements. Kaplan (1959) pointed out that the
vertical temperature profile of the atmosphere can be inferred from the spectral
distribution of the emission spectrum as observed by a satellite. We have already
made use of his observation that the upper part of the atmosphere can be seen by
probing the radiance of the emitting gas at the band center. By properly selecting
spectral regions in the wings of the band we may view the entire atmosphere.

Many papers, too numerous to be listed here, have been written on remote sensing
techniques. Moreover, several textbooks on remote sensing are now available for
detailed studies, for example Houghton et al. (1984) and Stephens (1994).
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11.4 Radiative perturbation theory and ozone profile retrieval

We have pointed out already that ozone is one of the most important trace gases
in the Earth’s atmosphere. It is well known that the concentration of this trace
gas strongly depends on altitude. Typically, in the free troposphere the volume
concentration is approximately 0.05 ppmv, whereas in the altitude region between
about 20 and 40 km ozone has a pronounced maximum of about 10 ppmv.

The radiative effects of ozone can be summarized as follows: it absorbs practi-
cally all solar radiation between 240 and 300 nm wavelength. Therefore, the ozone
layer in the Earth’s atmosphere protects all unicellular organisms and all skin cells
of plants, animals and human beings from the dangerous lethal ultraviolet radia-
tion. Nevertheless, solar photons in the wavelength range 300 to 330 nm (UV-B
radiation) can penetrate the entire atmosphere and reach the surface. The intensity
of the solar radiation is significantly reduced due to the absorbing ozone molecules.
Thus UV-B radiation in this spectral region may cause skin cancer for susceptible
humans.

The temperature structure and the dynamics of the stratosphere have their origin
in the absorption of solar UV radiation. Thus in the stratosphere the tempera-
ture increases with increasing altitude while in the troposphere the temperature
decreases with increasing altitude. Due to the thermal stability, vertical mixing of
trace gases is very slow in the stratosphere. This is in contrast to the situation in
the troposphere where vertical convective and turbulent processes cause a rapid
mixing of atmospheric gases. In the atmospheric window region ozone possesses
a strong absorption band near 9.6 µm and acts here as an important greenhouse
gas.

In the stratosphere and lower mesosphere ozone molecules are produced by two
steps. First, for wavelengths shorter than 242 nm molecular oxygen is photodisso-
ciated into atomic oxygen by the absorption of a photon of energy hν (Chapman,
1930a,b)

O2 + hν → 2 O (11.90)

The subsequent reaction of O and the remaining oxygen molecules is

O2 + O + M → O3 + M (11.91)

where M denotes any third atom or molecule. This third atom or molecule is required
in order to conserve energy and momentum.

In the mesosphere the concentration of molecular oxygen is so low that the
production of atomic oxygen by photodissociation is unimportant. At lower alti-
tudes the concentration of O2 is higher but the solar photons have been absorbed
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already by ozone at higher altitudes. Thus there exists an intermediate altitude range
characterized by a maximum production of ozone molecules.

In the stratosphere ozone is destroyed due to catalytic reactions (Bates and
Nicolet, 1950)

O3 + X → O2 + XO

O + XO → O2 + X
(11.92)

leading to a net reaction

O + O3 → O2 + O2 (11.93)

Here X is the catalyst species. Due to the fact that the catalyst is not destroyed in
this reaction, only a small amount of X is necessary to destroy a large reservoir
of O3. For this catalytic reaction several gaseous species can be important, e.g.
X = H, OH, NO and Cl.

In the troposphere ozone is photochemically produced by the reactions

NO2 + hν → NO + O

O + O2 → O3
(11.94)

so that the photodissociation of a NO2 molecule provides a single oxygen atom.
The latter then reacts with molecular oxygen to produce ozone. It should be pointed
out that the presence of trace gases like CO, CH4 and other hydrocarbons allows
for a recycling of NO to NO2 thus making up a catalytic reaction chain. In the
lower troposphere a major source of ozone is the in situ production via the above
reactions. Transport from the stratosphere represents a second source of ozone in
the upper and middle troposphere.

In the troposphere ozone plays an important role in atmospheric chemistry. Due to
the photodissociation of ozone for wavelengths shorter than 315 nm highly reactive
OH (hydroxyl) radicals are produced. These OH radicals can react with practically
all atmospheric gases, and, therefore, OH is called an atmospheric detergent. It
can be concluded that tropospheric ozone is crucial for the removal of atmospheric
pollution. For detailed information on the chemistry of the atmosphere see, for
example, Graedel and Crutzen (1994).

A very important field of research is to study the different roles of both tropo-
spheric as well as stratospheric ozone in atmospheric chemistry and climate. For
this type of research altitude resolved ozone measurements are an essential input.
Ozone profile information on a global scale can only be obtained via satellite remote
sensing.
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In the following we will discuss the retrieval of ozone profiles from atmospheric
spectrometer instruments aboard satellites which observe backscattered solar radi-
ation. The retrieval method is based on radiative transfer modeling involving the
solution to the forward and adjoint radiative transfer equation. As will be discussed
next, the adjoint problem is used to derive the weighting functions, or Jacobians,
via the linear radiative perturbation theory. In general, the Jacobians are the key
input for the inversion of atmospheric parameters.

Let us consider the situation where the reflectance r (x) of the atmosphere at the
satellite position and in the viewing direction of the instrument is the required infor-
mation for a given state vector x of the atmosphere. In the following this state vector
represents the vertical profile of the ozone density ρO3 plus the Lambertian ground
albedo Ag, i.e. x = (ρO3, Ag). Thus we may use a forward radiative transfer model
to simulate r (x). The instrument itself measures the reflectance r̃ in dependence
of the unknown atmospheric state. In addition to this, the observation involves the
instrument error ε so that

r̃ = r (x) + ε (11.95)

Clearly, the radiative transfer model depends in a nonlinear way on the state
vector x. Any retrieval method requires a linearization of the reflectance about a
first guess state vector of the atmosphere which we will call x0. Using a Taylor
series expansion, omitting nonlinear terms, we may write

r (x) ≈ r (x0) +
K∑

k=1

∂r

∂xk

∣∣∣
x0

�xk with �xk = (xk − x0,k) (11.96)

where K is the dimension of the state vector x and xk is its k-th component. As an
example, one may identify this k-th component with the ozone density in the k-th
homogeneous atmospheric sublayer.

For the inversion of the forward radiative transfer model we have to find the
reflectance r as well as its linearization with respect to the individual components of
the state vector. Usually the linearization represents the computational bottleneck of
ozone profile retrievals. Therefore, for fast ozone profile retrievals on an operational
basis the development of efficient linearized radiative transfer models represents an
important task. For the linearization process we will now employ the linear radiative
perturbation theory as described previously in Chapter 5 in more detail.

According to (5.5) the radiative transfer equation including Lambertian ground
reflection can be formulated in its forward formulation as

L I (z,Ω) = Q(z,Ω) (11.97)
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where the linear differential operator L including the surface reflection part may
be written as (Ustinov, 2001; Landgraf et al., 2002)

L = µ
∂

∂z
+ kext(z) − ksca(z)

4π

×
∫

4π

[
P(z,Ω′ → Ω) − Ag

π
δ(z)U (µ)|µ|U (−µ′)|µ′|

]
◦ d�′ (11.98)

The first two terms on the right-hand side represent the extinction of the radiance, the
third term describes the scattering process due to air molecules and aerosol particles
while the last term denotes the reflection by the Earth’s surface with albedo Ag.
Again U is the Heaviside step function as defined in (5.50). For simplicity we will
not treat the effect of clouds so that only cloud free scenes will be considered in
the sequel. For solar radiation the source term Q on the right-hand side of (11.97)
is taken from (5.3), that is

Q(z,Ω) = |µ0|S0δ(z − zt)δ(µ − µ0)δ(ϕ − ϕ0) (11.99)

As discussed in Chapter 5, the radiance I has to fulfill vacuum boundary condi-
tions for the incoming radiation field

top of the atmosphere: I (zt, µ, ϕ) = 0, 0 ≤ ϕ ≤ 2π , −1 ≤ µ < 0

Earth’s surface: I (0, µ, ϕ) = 0, 0 ≤ ϕ ≤ 2π , 0 < µ ≤ 1

(11.100)

Any radiative effect E is associated with a corresponding response function R

E= 〈R, I 〉 (11.101)

where the angular brackets < . . . > denote the inner product defined by the inte-
gration over the full solid angle (4π ) and the entire vertical extension of the model
atmosphere, see (5.6). In the present situation the radiative effect is the reflectance
r (x).

In Chapter 5 we treated specific examples for the response function which yield
upward, downward or net flux densities. For satellite applications we have to con-
sider another type of response function. If �v = (µv, ϕv) is the instrument’s viewing
direction at the position of the satellite, then the response function

Rv = 1

S0
δ(z − zt)δ(� − �v) (11.102)

extracts from (11.101) the radiance field as seen by an ideal instrument.
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Next we have to consider the adjoint radiance field I +, which is given by the
solution of the adjoint radiative transfer equation

L+ I +(z,Ω) = Q+(z,Ω) (11.103)

where Q+ is the source of adjoint photons, and the adjoint operator L+ is defined
by

L+ = −µ
∂

∂z
+kext(z) − ksca(z)

4π

×
∫

4π

[
P(z,Ω′ → Ω) − Ag

π
δ(z)U (−µ)|µ|U (µ′)|µ′|

]
◦ d�′ (11.104)

Note that in (11.104) as compared to (11.98) the direction µ is inverted. Similarly
to this reversion of the zenith angle the meaning of the boundary conditions for the
adjoint radiance field has to be changed from the incoming forward radiation field
to the outgoing radiance, cf. (5.23)

top of the atmosphere: I +(zt, µ, ϕ) = 0, 0 ≤ ϕ ≤ 2π , 0 < µ ≤ 1

Earth’s surface: I +(0, µ, ϕ) = 0, 0 ≤ ϕ ≤ 2π , −1 ≤ µ < 0

(11.105)

We repeat from Chapter 5 the meaning of the pseudo-radiance

�(z,Ω) = I +(z, −Ω) (11.106)

by pointing out that �(z, µ, ϕ) is the solution to the usual forward radiative transfer
equation possessing a particular source

L�(z,Ω) = Q+(z, −Ω) (11.107)

Again it is noteworthy that for the pseudo-radiance field � the direction of the
propagating adjoint photons has to be inverted in the adjoint source Q+ with respect
to the upper and lower 2π hemisphere. Therefore, the transformation (11.106)
allows us to use the same standard method of finding the solution for the adjoint
radiance field as it is applied for the forward radiance field I (z, µ, ϕ).

Next we wish to illustrate how the first derivative of the reflectance with respect
to the state vector x is related to the perturbation integral. Let us suppose that we
have found the solutions I0 and I +

0 for an atmospheric base state (subscript 0)
characterized by the state vector x0. Following the procedure outlined in Chapter 5
and resulting in (5.66), the reflectance for a perturbed atmosphere to first-order
accuracy may be approximated by the linear expansion

r (x) ≈ r (x0) −
K∑

k=1

〈I +
0 , �Lk I0〉 (11.108)
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Here �Lk is the change of the differential operator L if we only perturb the k-th
component of the state vector x0 by �xk . By comparing this equation with (11.96)
we find for the first derivative of the reflectance r with respect to the physical
parameters xk

∂r

∂xk
= − 1

�xk
〈I +

0 , �Lk I0〉 (11.109)

Our particular interest lies in perturbing either the ozone molecule concentration
ρO3,k in units of molecules per m3 of air in the k-th homogeneous atmospheric
sublayer or the Lambertian albedo Ag of the ground. For this we derive the first
derivatives of the reflectance with respect to the ozone profile and the surface albedo.

If ρO3,k is the mean ozone molecule concentration in the sublayer k and ρO3,k,0

the corresponding unperturbed value, then the perturbation �xk is given by

�xk = �ρO3,k = ρO3,k − ρO3,k,0 (11.110)

Because we only perturb ρO3,k , the change in the absorption optical depth �τO3,k

of sublayer k may be written as

�τO3,k =
∫ zk−1

zk

(ρO3,k − ρO3,k,0)σO3,k dz = −σO3,k�ρO3,k(zk − zk−1) (11.111)

where σO3,k is the absorption cross-section of an ozone molecule and (zk, zk−1) refer
to the lower and upper boundary of the k-th homogeneous sublayer of the model
atmosphere. Furthermore, we easily see that, for this particular perturbation, �Lk

in the perturbation integral (11.108) is

�Lk =
{

σO3,k�ρO3,k, zk < z < zk−1

0, else
(11.112)

Therefore, we directly find the first derivative of r with respect to the mean ozone
molecule concentration in sublayer k

∂r

∂ρO3,k
= − 1

�ρO3,k
〈I +

0 , �Lk I0〉 = −σO3,k

∫ zk

zk−1

∫
4π

�0(z, −Ω)I0(z,Ω)d�dz

(11.113)

where we have replaced I +
0 by means of (11.106).

For the perturbation of the surface albedo, �Ag = Ag − Ag,0, where Ag,0 is the
Lambertian albedo for the unperturbed ground, we similarly find from (11.98)

�L = −
∫

4π

�Ag

π
δ(z)U (µ)|µ|U (−µ′)|µ′| ◦ d�′ (11.114)
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Due to the appearance of the delta function δ(z), the integration over z simpli-
fies to the evaluation of the radiances �0 and I0 at ground level z = 0. Thus the
corresponding first derivative of r with respect to the surface albedo Ag is given by

∂r

∂ Ag
= − 1

�Ag
〈I +

0 , �L I0〉 = 1

π
E−(�0)E−(I0) (11.115)

Here the quantities E−(�0) and E−(I0) represent downward flux densities at ground
level of the base atmosphere’s pseudo-radiance field �0(0, �) and the forward
radiance field I0(0, �), respectively, i.e.

E−(�0) =
∫

4π

U (−µ)|µ|�0(0,Ω)d�

E−(I0) =
∫

4π

U (−µ)|µ|I0(0,Ω)d�

(11.116)

Note that in these expressions the Heaviside step function U (−µ) just selects all
radiation coming from the upper 2π hemisphere.

Substituting (11.113) and (11.115) into (11.96) yields the reflectance r (x) of the
actual atmosphere as function of the reflectance r (x0) of a given base atmosphere.

Landgraf et al. (2001) applied the forward–adjoint perturbation theory to calcu-
late the derivatives of the reflectance with respect to the ozone concentration and
the surface albedo. They also compared the results with benchmark calculations
which have been performed with the DISORT programme package as provided
by Stamnes et al., (1988), see also Section 4. Since in the DISORT calculations
expressions for the partial derivatives of r with respect to ρO3,k and Ag, such as
(11.113) and (11.115), are not available, the following discretizations are used in
these benchmark calculations

∂r

∂ρO3,k
≈ r (ρO3,k + �ρO3,k) − r (ρO3,k)

�ρO3,k
,

∂r

∂ Ag
≈ r (Ag + �Ag) − r (Ag)

�Ag

(11.117)

Figure 11.12a shows the derivatives of r with respect to the ozone concentration.
In the left panel of the figure the vertical profile of ∂r/∂ρO3 has been computed on
the basis of the perturbation theory. These computations have been carried out for
the three wavelengths of 299 (solid), 312 (dotted), and 323 nm (dashed). The figure
has to be interpreted as follows: in regions where the curves attain large values, the
sensitivity of the reflected radiation with respect to a unit ozone perturbation in the
associated altitude range is significant. This is the case for all altitudes above 12 km.
A negative value for ∂r/∂ρO3 means that r decreases if the molecule concentration
of ozone is increased in the particular model layer. For similar perturbations of the
ozone profile in the middle and lower troposphere this sensitivity decreases with
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Fig. 11.12 Derivatives ∂r/∂ρ (ρ = ρO3 ) as computed with the forward-adjoint
linear perturbation theory. Results are shown for three selected wavelengths λ =
299, 312, 323 nm. The right part of the figure shows the relative difference δ
between the linear perturbation theory and finite difference results obtained with
DISORT. After Landgraf et al. (2001).

decreasing altitude. For the shorter UV wavelengths the clear-sky atmosphere is
optically so thick that photons scattered in the lower part of the atmosphere do not
make any significant contribution to the backscattered light observed by the satellite
instrument. Hence, we conclude that it is rather difficult to retrieve the ozone profile
in the troposphere with satisfactory accuracy.

The right panel of Figure 11.12 depicts the relative difference δ (in 10−2%)
between the forward–adjoint approach (11.113) and the finite difference approach
(11.117) based on DISORT calculations. Again the computations have been per-
formed for clear sky conditions involving only Rayleigh scattering and ozone
absorption. The results shown apply to a solar zenith angle of ϑ0 = 45◦ and a view-
ing zenith angle of ϑv = 10◦. It can be seen that the linear perturbation approach
nearly perfectly reproduces the partial derivatives with relative errors smaller than
about 0.03%.

The upper part of Figure 11.13 shows the sensitivity of the reflectance with
respect to the surface albedo. The solid curve denotes results with a clear sky
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Fig. 11.13 Derivatives ∂r/∂ Ag (upper part with A = Ag) and relative differ-
ences between the linear perturbation results and the DISORT approach employ-
ing finite differencing (lower part). The parameters for these computations were
ϑ0 = 45◦, ϑv = 10◦, and Ag = 0.1. Solid curves: atmosphere without aerosol
particles, dotted curves: atmosphere containing aerosol particles. After Landgraf
et al. (2001).

atmosphere containing no aerosol particles while for the dotted line a typical rural
aerosol scenario has been adopted. The optical parameters of the aerosol particles
were taken from Shettle and Fenn (1979). For the wavelength of 330 nm the total
aerosol optical depth attained a value of 0.85.

As can be seen from the figure, for the smaller wavelengths ∂r/∂ Ag converges
to zero. This can be explained by the fact that solar photons do not reach the
surface because they are already absorbed by the stratospheric ozone. This result
has an important consequence: Any ozone data retrieved with a particular inversion
method will turn out to be insensitive to a possibly unknown value of the Lambertian
surface albedo. Thus, regarding the surface properties it would make no difference
if the retrieval is made over the ocean or over a surface covered by snow or ice.
Figure 11.13 also shows that for increasing wavelength ∂r/∂ Ag increases with λ.
For larger values of λ the wavelength dependence of the sensitivity decreases again.
The lower part of Figure 11.13, depicting the difference between the perturbation
theory and the DISORT approach, reveals that the derivatives of r with respect to
Ag can be accurately computed with the linear radiative perturbation theory. The
relative errors are always smaller than about 0.05%.
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11.5 Appendix

11.5.1 Example for an ill-posed inversion problem

In Section 11.3.1 we have pointed out that due to the quasi-singular matrix A the
solution to (11.61) may become unstable. Now we will illustrate this feature by
virtue of a simple example. Experience with inversion methods tells us that small
perturbations in the observations g may lead to extreme perturbations in the physical
solution f. This is the typical situation in case of ill-posedness. Let us briefly discuss
the definition of a well-posed mathematical problem, see Hansen (1994).

(1) For each g there exists a solution f for which Af = g.
(2) The solution f is unique.
(3) Small perturbations in g cause only small perturbations for the solution f.

If, for a particular problem, one of these conditions is not fulfilled, the problem
is said to be ill-posed. Let us illustrate this with a simple example as discussed by
Craig and Brown (1986). As weighting function or kernel K(x, y) of the integral
equation we use the Heaviside step function

U (y) =
{

0, y ≤ 0
1, y > 0

(11.118)

The problem to be solved is the Volterra integral equation of the first kind for f (y)

g(x) =
∫ x

a
f (y)dy =

∫ b

a
U (x − y) f (y)dy, x ∈ [a, b] (11.119)

The solution to the inversion problem for (11.119) is simply the first derivative of
the function g

f (y) = dg

dx

∣∣∣
x=y

(11.120)

This can be easily verified by inserting (11.120) into (11.119).
Figure 11.14 depicts the solutions fa and fb which correspond to the two

‘measurements’

ga(x) = 1 − exp (−αx)

gb(x) = ga(x) + β sin(ωx)
(11.121)

with α = 0.8, β = 0.04 and ω = 20. Note that the term sin(ωx) can be understood
as a small perturbation of the measurement ga having an amplitude β. From (11.120)
we find for the solutions of the inversion problem

fa(y) = α exp (−αy)

fb(y) = fa(y) + ωβ cos(ωy)
(11.122)
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Fig. 11.14 Example for an ill-posed inversion problem. The left panel shows the
measurements (solid curve: exact measurement ga , dashed curve: measurement
with perturbations gb). The right panel depicts the corresponding inversions fa
and fb.

It is clear that the perturbations in gb due to the sine term are in the range of a few
percent with respect to the measured unperturbed signal ga . Nevertheless, for y > 1
the perturbations in the solution fb can amount to several 100% of the true solution
fa , see Figure 11.12. Therefore, the solution of the inversion problem (11.119)
becomes already unstable for small changes in the observation g.

The typical situation in inverse remote sensing problems is that, unlike to the
simple case above, it is not possible to find full analytical solutions of the Fredholm
integral equation by virtue of complete function systems (e.g. orthogonal polyno-
mials). Therefore, one formulates the inverse problem in its discretized form and
searches for a solution employing methods of linear algebra.

11.6 Problems

11.1: Show that in the Bouguer–Langley method the slope of the regression line
is given by

τλ = ln(Eλ,2) − ln(Eλ,1)

m1 − m2

11.2: Suppose that the absorption coefficient decreases with height according
to k(z) = k(z = 0) exp(−z/H ) where H is a positive constant. Find the
height where the weighting function has its maximum. Assume that the
transmission function follows an exponential law.
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11.3: By carrying out the matrix multiplications, show that (11.70) is equivalent
to (11.67).

11.4: Verify (11.80).
11.5: Formula (11.7) is purely empirical. A suitable air mass formula for dry air

scattering can be derived with the help of the figure below, the definition
m = (

∫∞
0 ρds)/(

∫∞
0 ρdz) and the basic astronomic formula (1 + δ)(R +

z) sin ζ = const , see the figure.

Sun

Observer

R

z

dz

dsζ0

ζ

Show that

m = 1

ρ0 H0

∫ ∞

0
ρ

[
1 −

(
1 + δ0

1 + δ

)2 ( R

R + z

)2

sin2 ϑ0

]−1/2

dz

with H0 = p0/(gρ0) and N = 1 + δ is the index of refraction of the air.
The suffix 0 refers to the ground. Usually one assumes that δ/δ0 = ρ/ρ0.
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Influence of clouds on the climate of the Earth

In the final chapter of this book we will briefly treat the radiative influence of
clouds on the climate of the Earth. A brief introduction to this topic has already
been presented in the first chapter where we have discussed the radiation budget of
the Earth. In the chapters that followed we have studied the radiative transfer theory
in some detail and have learned how to calculate the radiances and flux densities in
the solar and long-wave spectrum.

We have omitted any discussion of measurement programs such as the satellite
experiments ERB and ERBE which were specifically devised to study the global
radiation budget. A brief description of some of the sophisticated instrumentation
used to measure the reflected solar energy and the outgoing long-wave radiation is
given by Lenoble (1993) where many references to this topic can be found.

Globally the planet Earth is in radiative equilibrium implying that the reflected
solar radiation and the outgoing long-wave radiation are in balance with the incom-
ing solar radiation. If this balance is disturbed by natural or by anthropogenic pro-
cesses the global climate will be changed. A detailed study of the radiative impact
of clouds on the climate is very difficult and can be carried out only with the help
of sophisticated climate models. The reason for this is that many different variables
that are responsible for the evolution of the climate interact in a highly nonlinear
way. Here we will give a very simple discussion only following the arguments
presented by Arking (1991).

12.1 Cloud forcing

The outgoing long-wave radiation El,t at the top of the atmosphere can be calculated
with the help of one of the radiative transfer methods which we have previously
discussed. Accepting the insufficiency of any empirical formula, we use the Budyko

443
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expression
El,t = 223.0 + 2.2T0 − (48.0 + 1.6T0)C (12.1)

to calculate El,t where T0 is the air temperature near the ground and C the cloud
fraction ranging from 0 to 1. In order to obtain El,t in units of (W m−2), the tem-
perature T0 must be expressed in degrees Celsius. The variation of El,t with cloud
fraction C results in the so-called sensitivity coefficient for long-wave radiation δl

as defined by

δl = ∂ El,t

∂C
= −(48.0 + 1.6T0) (12.2)

For a constant mean global surface temperature T0 = 15◦C, δl assumes the value
of −72 W m−2.

Analogously, the sensitivity coefficient for solar radiation δs can be defined by
considering the solar flux density Es,t at the top of the atmosphere. If AC stands
for the average albedo of the overcast sky, A0 for the albedo of the cloud-free
atmosphere then Es,t is expressed by

Es,t = S0

4
(1 − A) = S0

4
[1 − ACC − A0(1 − C)] (12.3)

where A = ACC + A0(1 − C) is a weighted average global albedo with the cloud
fraction as weighting factor. In analogy to (12.2) the sensitivity coefficient for solar
radiation δs is defined by

δs = ∂ Es,t

∂C
= − S0

4
(AC − A0) (12.4)

Assuming S0 =1368 W m−2, AC = 0.5 and A0 = 0.12 which appear to be reason-
able values, the sensitivity coefficient is δs = −130 W m−2.

Let us now briefly discuss the effect of clouds on the radiation budget at the top
of the atmosphere. As follows from (12.3) and simple reasoning, an increase in
cloud fraction C increases the reflectance at the top of the atmosphere level thus
reducing the energy gain for the system Earth–atmosphere. However, an increase
in cloud fraction also reduces the outgoing long-wave radiation at the top of the
atmosphere because clouds are colder than the Earth’s surface. This fact is also
stated by the minus sign of the last term of (12.1).

We will now introduce the net sensitivity coefficient which is the difference
between the solar and long-wave radiation sensitivity coefficients as expressed by

δ = δs − δl = ∂ Es,t

∂C
− ∂ El,t

∂C
= − S0

4
(AC − A0)

(
1 −

∂ El,t

∂C
∂ Es,t

∂C

)
(12.5)

Thus, δ amounts to −58 W m−2. Certainly, this number is no more than a crude
estimate, but it gives us an impression of the order of magnitudes which are involved.
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We now wish to interpret the net sensitivity coefficient. Holding all other param-
eters constant, δ is the change in net energy absorbed by the climate system per
change in cloud cover fraction. From the above crude estimates of the sensitivity
coefficients we conclude that of the two cloud effects, the effect on solar radia-
tion dominates the effect on long-wave radiation emitted to space when looking
on the global scale. Moreover, the sensitivity can be determined for any spatial
and temporal scale by using instantaneous satellite observations. However, it will
have significance only on scales large enough to suppress the ‘noise’ of day-to-day
weather variations.

Inspection shows that (12.5) does not require any explicit cloud fraction infor-
mation. Since AC > A0, the sign of δ is determined by the ratio of the sensitivity
coefficients appearing in the last factor. If this ratio is greater than 1, net cloud
warming is expected. If it is smaller than 1 net cloud cooling should result. Various
authors have investigated the effect of clouds on the climate system with the help
of satellite data. They concluded that clouds, on the whole, have a very substantial
cooling effect on the climate system. For further details we refer to Arking (1991)
where an extensive bibliography on the subject can be found.

Let us now consider the difference of flux densities as stated by equations

Cf,l = El,t (C = 0) − El,t (C), Cf,s = Es,t (C) − Es,t (C = 0) (12.6)

The quantities El,t (C = 0) and Es,t (C = 0) refer to cloudless conditions. These
differences, now commonly called cloud forcing, represent the effect of clouds on
the radiative flux densities. The total cloud forcing effect Cf is the sum of the cloud
forcing components for solar and long wave radiation, that is

Cf = Cf,l + Cf,s (12.7)

It is a simple exercise to show that cloud forcing and cloud sensitivity coefficients
are related by

∂ El,t

∂C
= −Cf,l

C
,

∂ Es,t

∂C
= Cf,s

C
, δ = Cf

C
(12.8)

Various investigators have attempted to determine the cloud forcing Cf. Ellis
(1978), for example, estimated that the mean annual, quasi-global (65◦ S−65◦ N)
effect of clouds is a cooling of the climate system resulting in Cf = −20 W m−2. The
long-wave effect is Cf,l =22 W m−2 and the short-wave Cf,s =−42 W m−2. From
the ERBE satellite experiments Ramanathan et al. (1989) found Cf = −17 W m−2

which is not too different from the value given by Ellis. However, the individual parts
of cloud forcing differ substantially with Cf,l =31 W m−2 and Cf,s =−48 W m−2.

From climatological data Ellis extracted and computed the individual sensitivity
factors and the ratio of sensitivity factors that are independent of cloud amount.
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The ratio of the sensitivity factors that can be obtained from the above empirical
formulas and the data provided by Ellis and Ramanathan are not too different.
However, the ratio proposed by Ohring et al. (1981) differs substantially from the
values presented by the other authors which may be partly due to the different
methods used. It is difficult to decide whose value of the sensitivity coefficient best
approximates reality.

12.2 Cloud feedback in climate models

As we know already, the global climate equilibrium is reached if E =0 whereby

E = El,t − S0

4
(1 − A) (12.9)

If E < 0 then the system Earth–atmosphere will gain energy and heating will take
place. Whenever E differs from zero, primary forcing of the system occurs. This
may be due to changes of the solar constant, the global albedo, the upward long-
wave radiation or by a combination of these. According to the Milankovitch theory
a change of S0 may have occurred over a period of 104–105 years due to a change of
the Earth’s orbit. The variation of the solar constant may be responsible for changes
of the past climate. Here we will not dwell on this subject. Present measurements
show that the solar constant may vary by 0.1% due to changes between a minimum
and a maximum of the Sun’s activity. Variations of this order of magnitude have been
included in climate models to force climate changes. Global albedo changes may be
due to natural and anthropogenic causes such as the outburst of volcanoes, biomass
burning, agricultural and industrial activities. The observed increase of CO2 and
other trace gases as well as changes in the aerosol content of the air definitely have
a non-negligible influence on the radiation budget of the atmosphere.

It stands to reason that changes induced by primary forcing modifies the radiative
characteristics of the atmosphere and the Earth’s surface thus causing an additional
change of the net flux density at the top of the atmosphere. This is known as the
feedback process. If the feedback increases the primary forcing of the net flux
density at the top of the atmosphere, it is called a positive feedback. In contrast,
the feedback is called negative if it tends to reduce the primary net flux density
change. A detailed study of the feedback process is very complicated partly due to
the fact that many open questions in connection with climate modeling still have
to be resolved.

However, it is possible to give a very simple linear analysis of the feedback
mechanisms which will help us to visualize the overall problem. In the subsequent
discussion we will follow the arguments given by Arking (1991) and Lenoble
(1993). They assume that without feedback the only response to a variation of the
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net flux density at the top of the atmosphere level would be a height-independent
temperature change which includes a change of the air temperature T0 near the
surface of the Earth. The most simple formulation of this process is given by

�T0 = −k0 E (12.10)

where k0 is a positive climate sensitivity parameter. However, if feedback is assumed
to take place, this temperature change will be altered. Now we write

�T ′
0 = −k E (12.11)

where k is another positive climate sensitivity parameter. By assuming that all acting
feedback processes are linear in T0 and independent of each other, we may express
the modified net flux density at the top of the atmosphere level after feedback has
occurred by

E ′ = E − �T ′
0

∑
i

αi (12.12)

The sensitivity coefficients αi have the sign of the feedback. The response to the
perturbation E with feedback should be the same as the response to E ′ without
feedback. Thus from

�T ′
0 = −k E = −k0 E ′ (12.13)

we find

k = k0

1 − k0
∑

i αi
= k0

1 −∑
i βi

with βi = k0αi (12.14)

For a particular atmospheric variable yi the sensitivity coefficient αi may be
expressed by an equation of the form

αi = −∂ E

∂yi

dyi

dT0
(12.15)

It should be observed that only the determination of ∂ E/∂yi is a problem of radiative
transfer while the derivative dyi/dT0 must be obtained with the help of a climate
model. If the variable yi refers to cloud cover fraction C we have the particular case
expressed by

αC = −∂ E

∂C

dC

dT0
(12.16)

12.2.1 Cloud feedback in response to doubling atmospheric CO2

To give an impression of the complexity of the feedback problem we will briefly
discuss the cloud feedback in response to doubling the atmospheric CO2 and also list
several other mechanisms. There are a great number of general circulation models



448 Influence of clouds on the climate of the Earth

Climate system

Internal forcing

External forcing

Surface albedo

Water vapor

Cloud cover

. . .

 ∆T0 = −kE´

Fig. 12.1 Schematic diagram of the climate system depicting several feedback
processes.

(GCM) which can be used to investigate the effect of doubling the atmospheric CO2

concentrations on the climate. Arking (1991) briefly discusses the results provided
by the GISS (Hansen et al., 1984) and the GFDL (Wetherald and Manabe, 1988)
GCM models.

Both models have interacting clouds to the extent that the spatial distribution of
cloudiness (height and amount) may change as a reaction to climatic change. The
optical properties of the clouds remain fixed. In principle, it is possible to include
changing optical cloud parameters in response to the climatic change as part of
the feedback process. The interpretation of results, however, becomes increasingly
difficult due to phase changes and changing configurations of ice particles among
other things. Both models yield about the same change of the mean global surface
temperature of 4 K in response to doubling the amount of CO2. The overall con-
clusions derived from various other models are similar all showing an increase in
the surface temperature. However, due to different treatments of the feedbacks, the
models produce surface temperature changes ranging from about 1.5–5 K. Below
we will briefly dwell on the uncertainties of the feedback effects.

Figure 12.1 shows schematically four internal feedback blocks and their
contribution to the climate sensitivity factor k. Let us also inspect Table 12.1 listing
the calculated feedback factors due to the modeling of several processes. While the
calculated individual feedback factors differ in both models, the sum of these is
nearly identical amounting to about 0.7. By substituting 0.7 for the sum over the βi
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Table 12.1 Feedback factors for several processes calculated with
the two GCM models GFDL and GISS

Feedback process GFDL GISS

Surface albedo 0.16 0.09
Water vapor 0.43 0.40
Cloud cover 0.11 0.22

Total feedback factor 0.70 0.71

into (12.14), we find that the reponse is about 3.3 times what it would be without
feedback. For further details we refer to the original paper.

12.2.2 Other trace gases

Besides CO2, the concentrations of several other trace gases are increasing. Because
of their strong infrared absorption bands, methane, nitrous oxide and several
chlorofluorocarbons are radiatively very important. Although ozone is increasing
in the troposphere it is decreasing in the stratosphere.

An increase of other gases such as CO, NO and NO2, although radiatively not
important, cannot be ignored since they may alter the atmospheric chemistry and
perturb the radiatively acting gases such as CH4 and O3. There seems to be a general
agreement that the global effect of all trace gases is of the same order as the effect of
the CO2 increase (Ramanathan et al. 1985; Ramanathan, 1987; Wang et al. 1986).
As the feedback models become more complete we should expect further changes
in the results. Deficiencies such as the omission of nonlinear effects and of the
complicated chemical processes will eventually be removed.

12.2.3 Liquid water and cloud microphysics feedback

We have previously stated that the optical parameters in the above GCM models
were fixed. It has been argued quite early by Paltridge (1980) and later by others that
optical parameters are expected to change in response to CO2-induced atmospheric
warming. An increased temperature would increase the liquid water content of
clouds thus increasing the cloud optical thickness. Paltridge estimates that the
short-wave effect would dominate over the long-wave effect, resulting in a negative
feedback for this process alone and reducing the overall sensitivity of the climate
to CO2 changes by about 40%. Subsequent investigations with one-dimensional
radiative–convective models also suggest that cloud liquid water would contribute
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negatively to cloud feedback. It stands to reason, if all else remains the same, the
optical thickness of the cloud would be proportional to the vertically integrated
liquid water. Additionally, we may argue with Bohren (1985) that changes in the
microphysical properties of clouds would be produced due to changes in atmo-
spheric temperature and humidity. If the size of the cloud particles increases along
with liquid water content, the magnitude of the negative feedback would decrease.
Detailed modeling is required to resolve the remaining questions.

12.2.4 Climatic impact due to aerosols

As is well-known, atmospheric aerosols have a strong impact on the greenhouse
effect of the Earth–atmosphere system due to aerosol extinction in the short-wave
and long-wave parts of the spectrum. As in case of clouds, the resulting effects
depend strongly on the particle concentration, on the optical properties of the
particles, and on the vertical as well as on the horizontal aerosol distributions.
In general, the effect of increasing concentrations of aerosol particles results in an
increase of the planetary albedo. The resulting cooling may counteract the green-
house warming of CO2 and other trace gases as pointed out by Hansen and Lacis
(1990) and by others.

The single scattering albedo ω0 of the aerosol particles plays an important role
in the radiation budget of the atmosphere since the aerosol effect can switch from
cooling to heating when ω0 crosses a certain critical value. Due to the complex
composition of aerosol particles, the complex index of refraction is difficult to
measure accurately which is a prerequisite for accurate Mie calculations of the
extinction parameters and the phase function.

The relatively small mass of stratospheric aerosols plays an important role in
the radiation budget because of their global distribution and their long lifetime.
Occasionally, volcanic eruptions increase the stratospheric aerosol concentration
over the whole globe for a period of years so that they are an important cause
for primary global climate forcing. The stratospheric aerosols, mostly sulfuric acid
particles, have a very small imaginary part of the complex index of refraction which
results in small values of the absorption coefficient. For an average global albedo
of about 30%, they contribute to global cooling. In the stratosphere itself, however,
the main effect of the aerosols is an increase of the stratospheric temperature due
to the slight absorption of the particles themselves and due to the increase of the
photon pathlength in the absorbing gases. This warming was observed after the
El Chichon eruption as reported by Labitzke et al. (1983). Therefore, the cooling
effect of the stratospheric aerosols is limited to the troposphere and to the surface.

Tropospheric aerosols have a much larger optical depth than stratospheric
aerosols. However, tropospheric aerosols have a relatively short residence time
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and vary strongly in type, spatially and temporally. This makes it very difficult
to determine their mean radiative characteristics. Of course, they interact with the
solar and the infrared radiation field. The influence of tropospheric aerosols on the
long-wave radiation budget is small because they are mostly located in the lower
tropospheric layers having a temperature not too far removed from the ground
temperature. Numerous papers on the radiative effects exist in the literature.

Small aerosols act as cloud condensation nuclei (CCN) to form cloud droplets.
An increase of the number density of aerosols increases the number of droplets,
and, for a given liquid water content, decreases the droplet size. This effect which
is also known as the Twomey effect (Twomey, 1977) tends to increase the cloud
optical pathlength and cloud reflection. On the other hand, if the CCN contain
absorbing constituents they tend to reduce the reflectance. Thus the role of small
aerosol particles is quite complex.

12.3 Problems

12.1: To familiarize yourself with the terminology of this chapter, verify equations
(12.8).



Answers to problems

Chapter 1

1.1:

Bλ(T )dλ = 2hc2

λ5

[
exp

(
hc

λkT

)
− 1

]−1

dλ

(a) λmaxT = const = 2898 µm K
(b) λmax(T = 6000) = 0.48 µm, λmax(T = 300) = 9.66 µm

1.2:

(a) Bνdν = 2ν2kT

c2
dν

(b) Bνdν = 2hν3

c2
exp

(
− hν

kT

)
dν

1.4:

Lambert’s law of photometry: dφ = I d A1d A2 cos α1 cos α2

r2

I : radiance from d A1

dφ: radiant flux received at d A2

E = σ T 4
c

1 + (z/R)2

1.5:

(a) E = σ T 4a2 1 − cos2 α

a2 + h2 + 2ah cos α

(b) E = σ T 4a2 1 − cos2 α

a2 + h2 − 2ah cos α

a
z

h

Radiometer

Valley

α

h is the vertical distance between the radiometer
and the center of curvature.
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1.6:

(a) Er = πa2

r2

∫ ∞

0
Iνdν

(b) φ = 4π2a2
∫ ∞

0
Iνdν

(c) û(r) = 2π

c

(
1 −

√
1 − a2

r2

)∫ ∞

0
Iνdν

1.7:

ûν = S0,ν

c
, Enet,ν = S0,ν(sin ϑ0 cos ϕ0i + sin ϑ0 sin ϕ0j + cos ϑ0k).

The index 0 refers to the solar radiation and (i, j, k) are the unit vectors in the
directions of the axes of the Cartesian (x, y, z)-coordinate system.

Chapter 2

2.1:

C = 3

4

2.2:

I m
+ = ω0

4π
µ0S0

Fm
1 (µ, µ0)

µ0 + µ

[
exp

(
− τ

µ0

)
− exp

(
τ

µ

)
exp

(
−µ + µ0

µµ0
τc

)]

I m
− = ω0

4π
µ0S0

Fm
2 (µ, µ0)

µ0 − µ

[
exp

(
− τ

µ0

)
− exp

(
− τ

µ

)]
with

Fm
1 (µ, µ0) =

∞∑
l=m

pm
l (−1)l+m Pm

l (µ)Pm
l (µ0), Fm

2 (µ, µ0)=
∞∑

l=m

pm
l Pm

l (µ)Pm
l (µ0)

0 ≤ µ ≤ 1

2.3:
(a) I m

− (τ, µ0) = ω0

4π
S0 Fm

2 (µ0, µ0)
τ

µ0
exp

(
− τ

µ0

)

(b) I m
+ (τ, 0) = ω0

4π
S0 Fm

1 (0, µ0) exp

(
− τ

µ0

)
, I m

− (τ, 0) = ω0

4π
S0 Fm

2 (0, µ0) exp

(
− τ

µ0

)

(c) I m
+ (0, 0) = ω0

4π
S0 Fm

1 (0, µ0), I m
− (0, 0) = 0

The functions Fm
1,2 are given in the answer to Problem 2.2.

2.4:
For each integral we find A(τ ).



454 Answers to problems

2.5:
(a) I+(τ, µ) = Bg

(b) τ = ∞
(c) with u = ∞ you obtain the same result.

2.6:
(a) E1(0) = ∞, En(0) = 1

n − 1
, n = 2, 3, . . .

(b) d En/dx = −En−1(x)

2.8:

J (τ, µ) = 3(3 − µ2)

8

1

2

∫ 1

−1
I (τ, µ)dµ + 3(3µ2 − 1)

8

1

2

∫ 1

−1
I (τ, µ)µ2dµ

2.9:
I+(τ, µ) = 1

µ

∫ ∞

τ

J (τ ′) exp

(
−τ ′ − τ

µ

)
dτ ′

(a) I−(τ, µ) = 1

µ

∫ τ

0
J (τ ′) exp

(
−τ − τ ′

µ

)
dτ ′

(b) In(τ ) =
∫ ∞

τ

J (τ ′)En+1(τ ′ − τ )dτ ′ + (−1)n
∫ τ

0
J (τ ′)En+1(τ − τ ′)dτ ′

(c) Enet = 2π

∫ ∞

τ

J (τ ′)E2(τ ′ − τ )dτ ′ − 2π

∫ τ

0
J (τ ′)E2(τ − τ ′)dτ ′

Chapter 3

3.7:
(a) J (0) =

√
3/(4π)S0, � = 4/

√
3

Chapter 4

4.5:
I = 0.65860. The quasi-exact value is I = 0.65882.

4.7:

s∑
j=−s

[(
1 + µ j

µ0

)
δi j − ω0

2
w j P(µi , µ j )

]
(1 − δ0, j )Z (µ j ) = ω0

4π
P(µi , −µ0)S0
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4.9:

(l + 1)
d I 0

l+1(τ )

dτ
+ l

d I 0
l−1(τ )

dτ
+ [ω0 pl − (2l + 1)] I 0

l (τ )

= − ω0

2π
S0 exp

(
− τ

µ0

)
p0

l P0
l (−µ0) − 2(1 − ωo)B(τ )δ0l

Chapter 6

6.4:

E+(τ ) = 1

1 + ατc
[E+(τc)(1 + ατ ) + E−(0)α(τc − τ )]

E−(τ ) = 1

1 + ατc
{E+(τc)ατ + E−(0) [1 + α(τc − τ )]}

with α1 = α2 = α.

6.5:
C1 = A

[
E+(τc) − γ1(B0 + B1τc) − γ2 B1 − exp(−λτc)

β2
(E−(0) − γ1 B0 + γ2 B1)

]

(a) C2 = A

{
exp(λτc)

β2
(E−(0) − γ1 B0 + γ2 B1) − β1

β2
[E+(τc) − γ1(B0 + B1τc) − γ2 B1]

}

A=
[

exp(λτc) − β1

β2
exp(−λτc)

]−1

, β1 = α2

α1 + λ
, β2 = α2

α1 − λ

(b)
d

dτ
(E+ − E−) = C1(1 − β1)λ exp(λτ ) − C2(1 − β2)λ exp(−λτ )

6.6:

β1 j = α2 j

α1 j + λ
, β2 j = α2 j

α1 j − λ

(i) τ = 0:

E−(0) = C11β11 + C21β21 + γ11 B01 − γ21 B11

(ii) τ = T1:

C11β11 exp (λ1T1) + C21β21 exp (−λ1T1) + γ11 (B01 + B11T1) − γ21 B11

= C12β12 + C22β22 + γ12 B02 − γ22 B12

C11 exp (λ1T1) + C21 exp (−λ1T1) + γ11 (B01 + B11T1) + γ21 B11

= C12 + C22 + γ12 B02 + γ22 B12
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(iii) τ = T1 + T2:

C12β12 exp (λ2T2) + C22β22 exp (−λ2T2) + γ12 (B02 + B12T2) − γ22 B12

= C13β13 + C23β23 + γ13 B03 − γ23 B13

C12 exp (λ2T2) + C22 exp (−λ2T2) + γ12 (B02 + B12T2) + γ22 B12

= C13 + C23 + γ13 B03 + γ23 B13

(iv) τ = T1 + T2 + T3:

E+(T1 + T2 + T3) = C13 exp (λ3T3) + C23 exp (−λ3T3) + γ13 (B03 + B13T3) + γ23 B13

Evaluating from these six equations the six unkown quantities Ci j , i = 1, 2, j =
1, 2, 3 and substituting the result into (6.95) solves the problem.

6.7:

E+(τ ) = E+(τc)2E3(τc − τ ) + π B0 [1 − 2E3(τc − τ )]

E−(τ ) = E−(0)2E3(τ ) + π B0 [1 − 2E3(τ )]

6.9:
T = −17◦C, effective radiation temperature. The difference of 31◦C can be
explained by the fact that in reality the atmosphere interacts with the radiation field.

6.10:

(a) T 4
s = 2(1 − Atot) − Ā

σ (2 − ε)

S0

4
, T 4

a = ε(1 − Atot − Ā) + Ā

εσ (2 − ε)

S0

4
(b) Ts = 273.9 K, Ta = 248.2 K.
(c) Ts = 302.0 K, Ta = 254.0 K.
(d) ε = 0.87, Ta = 249.8 K.

Chapter 7

7.2:
(a) 5.7 hPa
(b) 20.3 hPa

7.3:
T = 25.04%

7.4:
A = 2πyL(ū) + [1 − exp(−8ū y2)] −

√
8π ū y2erf(2y

√
2ū) with

y = αL

�ν
, ū = Su

2παL
and erf(x) = 2√

π

∫ x

0
exp(−t2)dt is the error function.
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7.6:
T = 34.17%

7.8:

Sν(p0) = Sν,0 exp

(
− 2cgas

3µ0g
p0kν,0

)
where cgas is the concentration of the absorbing

gas.

E0,�t = 3600(1.0 − 0.31)2πµ0

∫ ∞

0
Sν(p0)dν J m−2.

7.11:
T = 81.81%

7.12:

f (k) = S

πkδ

(
Sk

παL
− k2

)−1/2

7.13:

At 0 km:
∂Trad

∂t
= −2.29 K day−1, at 1 km:

∂Trad

∂t
= −1.62 K day−1,

at 3 km:
∂Trad

∂t
= −0.57 K day−1.

7.14:
Lines do not overlap.

kν,i =
{

kmax

(
1 − |ν−νi |

α

)
, νi − α ≤ ν ≤ νi + α

0 elsewhere
, i = 1, 2

W1 = W2 = 2α
{

1 − 1

kmaxu
[1 − exp(−kmaxu)]

}
, W = W1 + W2 = 2W1

lim
u→∞ W1 = 2α, lim

u→0
W1 = 0, =⇒ lim

u→∞ W = 4α, lim
u→0

W = 0

7.15:

W = Sc

g
(p1 − p2)

Chapter 10

10.1:
Left circularly polarized
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10.2:

E = E0√
2

(−i + j) cos

[
k√
2

(x + y) − ωt

]

10.4:
(a) Left-handed elliptically polarized
(b) n = 2n = 1n = 0 n = 3

n = 6n = 5n = 4 n = 7

10.10:

F11 = |A2|2, F22 = |A1|2, F33 = |A1||A2| cos δ

F34 = −|A1||A2| sin δ, F43 = |A1||A2| sin δ, F44 = |A1||A2| cos δ

The remaining elements are zero.

Chapter 11

11.3:
zm = 0



List of frequently used symbols

In the following we will present a list of the most commonly used symbols of this
textbook. The units of all quantities are given in the so-called Système International
d’Unité (SI) or MKS system measuring lengths in meters, mass in kilograms and
time in seconds. The SI consists of the following seven fundamental units:

Physical quantity Unit name Unit abbreviation

Length meter m
Mass kilogram kg
Time second s
Current Ampere A
Temperature1 Kelvin K
Luminous intensity candela cd
Amount of substance mole mol

1 Often temperature is also measured in ◦C.

In addition to the seven basic units the following derived units are used:

Physical quantity Unit name Unit abbreviation

Solid angle steradian sr
Frequency Hertz Hz
Force Newton N
Pressure Pascal Pa
Energy Joule J
Power Watt W
Voltage Volt V
Magnetic flux density Tesla T
Charge Coulomb C

459
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A : area (m2)
A(ū) : absorption function

Ao : average albedo of the cloud-free atmosphere
Ac : average albedo of the overcast sky
Ag : albedo of the ground

Amn : Mie coefficient
An : Mie coefficient

Au→l : Einstein coefficient for spontaneous emission (s−1)
Aν : monochromatic absorption
A : vector potential (V m−1 s)
A : coefficient matrix of two-stream method
A : transformation matrix for the Stokes vectors

A
m : matrix used in spherical harmonics method

a1, a2 : amplitudes of the electric vector (V m−1)
ai : coefficient to fit the transmission function

am : expansion coefficient of the wave function
as

n : expansion coefficient in the Mie theory
Bν,g : black body radiation of the ground (W m−2 sr−1 Hz−1)
Bmn : Mie coefficient

Bn : Mie coefficient
Bu→l : Einstein coefficient for induced emission (m3 J−1 s−2)
Bl→u : Einstein coefficient for absorption (m3 J−1 s−2)

Bλ : black body radiance (W m−3 sr−1)
Bν : black body radiance (W m−2 sr−1 Hz−1)
B : vector for polarized black body radiation (W m−1 sr−1)
B : magnetic field vector (T)

B± : matrices for up- and downward radiation
B

m : matrix used in spherical harmonics method
b : backscattered fraction of radiation

bi : coefficient to fit the transmission function
bi j : symbols used in Gaussian quadrature
bs

n : expansion coefficient in the Mie theory
Cabs : absorption cross-section (m2)
Cext : extinction cross-section (m2)
Cf,l : cloud forcing for long-wave radiation (W m−2)
Cf,s : cloud forcing for short-wave radiation (W m−2)
Ci : cloud fraction of layer i
cp : specific heat at constant pressure (m2 s−2 K−1)

Csca : scattering cross-section (m2)
c : speed of light in vacuum (m s−1)

D : dissociation energy (J)
Dp : degree of polarization
D : displacement vector (A s m−2)

D
m : matrix used in spherical harmonics method
E : radiative effect
E0 : radiative effect of the base atmosphere
ES : radiative effect according to the Schwinger functional

E−,ν : downward directed radiative flux density (W m−2 Hz−1)
E+,ν : upward directed radiative flux density (W m−2 Hz−1)
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Enet,ν : net radiative flux density vector (W m−2 Hz−1)
En : exponential integral of order n

E i,s
l,r : components of the electric field vector (V m−1)
e : energy of a photon (J) or (eV)
e : specific internal energy of the air (J kg−1)
e : electric charge (C)
E : electric field vector (V m−1)

eλ,ϕ,r : unit vectors in λ, ϕ, r - direction
E : unit matrix
f : fraction of the forward scattered radiation

f (k) : probability density function for absorption
coefficient (m)

f (t) : time signal of a wave
f (ν − ν0) : profile of a spectral line

fν : distribution function of photons (m−3 sr−1 Hz−1)
G(ω) : power spectrum

g : asymmetry parameter of the phase function
g(k) : cumulative probability function for absorption

coefficient k
g(ω) : Fourier transform of f (t)

gl,u : statistical weights of lower and upper states
G : matrix used in spherical harmonics method
H : Hamilton function

H (x) : Hopf function
Hn(x) : Hermite polynomial of order n

H 1,2
n : Hankel functions of the first and second kind and

of order n
H : quantum mechanical Hamilton operator (J)
H′ : perturbation Hamilton operator (J)
Iν : radiance in a plane–parallel atmosphere (W m−2 sr−1 Hz−1)

I m
ν : m-th term in the development of Iν (W m−2 sr−1 Hz−1)

I +
ν : adjoint radiance

I−,ν : downward directed radiance (W m−2 sr−1 Hz−1)
I+,ν : upward directed radiance (W m−2 sr−1 Hz−1)

In : modified Bessel function of first kind and of
order n

Iν : radiance (W m−2 sr−1 Hz−1)
Im
±,ν : up- and downward directed radiance vector (W m−2 sr−1 Hz−1)
i1,2 : Mie intensity functions (sr−1)

J : rotational quantum number
Jν : source function for plane–parallel atmosphere (W m−3 sr−1 Hz−1)
J e
ν : source function for true emission (W m−3 sr−1 Hz−1)

J m
ν : m-th term in the development of Jν (W m−3 sr−1 Hz−1)
Jn : Bessel function of first kind and of order n
jν : emission coefficient (m−3 s−1 sr−1 Hz−1)
J : angular momentum (kg m2 s−1)
J : current density (A m−2)
J : source function vector (W m−2 sr−1)

Jq : heat flux (J m−2)
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K : quantum number
K : kinetic energy (J)
k : Boltzmann’s constant (J K−1)
k : Hooke’s constant (kg s−2)
k : wave number (m−1)

k0 : wave number in vacuum (m−1)
kabs,ν : absorption coefficient (m−1)
kext,ν : extinction coefficient (m−1)
kν,D : absorption coefficient of the Doppler line (m−1)
kν,L : absorption coefficient of the Lorentz line (m−1)
kν,V : absorption coefficient of the Voigt line (m−1)

ksca,ν : scattering coefficient (m−1)
k : wave number vector (m−1)
L : Laplace transform
L : Lagrange function
L : linear differential operator

L+ : adjoint linear differential operator
L(ū) : Ladenburg and Reiche function

M : magnetic quantum number
M, m : mass (kg)

me
o,m,n : wave functions

M : magnetization (A m−1)
M : dipole moment (A s m)

Mψ : vector function to solve the vector wave equation
M : diagonal direction matrix

M
m : matrix used in spherical harmonics method
N : complex index of refraction

Nl,u : number of systems in lower and upper state (m−3)
Nν : total number of photons

n : number concentration of molecules (m−3)
n : normal unit vector

Nψ : vector function to solve the vector wave equation
N : Poynting vector (W m−2)

P(cos �) : phase function (sr−1)
P̃(cos �) : scattering function (m−1 sr−1)

PHG : Henyey–Greenstein phase function (sr−1)
Pl : Legendre polynomial

Pm
l : associated Legendre polynomial

P̄(ϑ ′) : probability distribution appearing in Monte Carlo
method

p : linear momentum (kg m s−1)
p, p0 : air pressure (kg m−1 s−2)
p(S) : distribution function for line intensities (m2)

pc : number of molecular collisions per unit time (s−1)
pl , pm

l : expansion coefficients of the phase function
p∗

m : δ-scaled expansion coefficient
P : polarization vector (A s m−2)
P : phase matrix
P̃ : scattering matrix



List of frequently used symbols 463

Q : source function (W m−3 sr−1)
Qg : dimensionless surface source function
Q+ : adjoint source function (W m−3 sr−1)

Qabs : Mie efficiency factor for absorption
Qext : Mie efficiency factor for extinction
Qsca : Mie efficiency factor for scattering

q : probability that a molecule does not collide per unit time
qi : generalized contravariant position coordinate (m)
qk : normal coordinate (m)
qi : covariant base vector

Qm
± : integral expressions in successive order scattering method (W m−3 sr−1)

R(z) : response function
R0 : gas constant for dry air (m2 s−2 K−1)
Rm : expansion of phase function for m-th component of radiance

Rnm : matrix element for transition n → m
r : particle radius (m)
r : position vector

rc : position vector for center of mass
r : reflectivity matrix

rg : ground reflection matrix
rm : discretized reflectivity matrix
S : scattering function
S : line intensity (m−2)

S0 : direct sunlight (W m−2)
S1,2 : Mie amplitude functions
SJ : part of line intensity that depends only on rotational quantum

number J
Sν : direct solar radiative flux density (W m−2 Hz−1)
T : transmission function
Tf : flux transmission function
T : temperature (K)
t : tangential unit vector
t : transmissivity

tm : discretized transmission matrix
t : time (s)

U : Heavyside step function
u : absorber mass (kg m−2)
u : real scalar function

u∗ : complex scalar function
ûν : energy density (J m−3)

us,t
n : scalar functions to solve Mie problem
V : potential energy (J)
V : volume (m3)

V (r ) : Morse function (J)
v : specific volume (m3 kg−1)
v : vibrational quantum number
v : velocity (m s−1)
v : velocity vector (m s−1)

W : equivalent width (m−1)
w : absorber mass (kg m−2)
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w j : weights of the Gaussian quadrature formula
W : diagonal matrix of the Gaussian weights

X (µ) : Chandrasekhar’s X -function
Xnm : x-component of matrix element of dipole moment for

transition n → m (Asm)
x : size parameter

X
m
j : matrix used in spherical harmonics method

Y (µ) : Chandrasekhar’s Y -function
Y m

± : terms used in successive order of scattering method
Z : partition function

Zn : cylinder function of order n
zn : spherical Bessel function of order n
αD : half-width of the Doppler line (Hz or m−1)
αL : half-width of the Lorentz line (Hz or m−1)
αV : half-width of the Voigt line (Hz or m−1)
αi : sensitivity coefficient for feedback (W m−2 K−1)
δ : net sensitivity coefficient for feedback (W m−2)
δ : phase difference

δ(µ) : Dirac δ-function
δ1,2 : phase angles to describe polarization
δi j : Kronecker δ

δl,s : sensitivity coefficients for long-wave and short-wave
radiation

(W m−2)

ε : emissivity
ε, ε0 : permittivity, permittivity of free space (C V−1 m−1)

εf : flux emissivity function
εg : emissivity of the ground
εr : relative permittivity, dielectric constant

κabs,ν : mass absorption coefficient (m2 kg−1)
λ : wavelength (µm)
λ̃ : eigenvalues appearing in two-stream method
µ : reduced mass

µ, µ0 : µ = cos ϑ , µ0 = cos ϑ0

µ, µ0 : permeability, permeability of free space (V s A−1 m−1)
µr : relative permeability
ν : frequency (Hz)
ν̃ : wave number (m−1)
� : wave function
ρ : mass density of the dry air (kg m−3)
ρ : volume density of electric charge (A s m−3)

ρabs : mass density of an absorber gas (kg m−3)
σ : electrical conductivity (A V−1 m−1)
σ : mean line intensity (m−2)
σ : Stefan–Boltzmann constant (W m−2 K−4)
σc : collision cross-section (m2)
τ : optical depth

τ ∗ : δ-scaled optical depth
τ̄ : average time between two molecular collisions (s)
� : scattering angle
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ϑ : zenith angle indicating direction of radiation
ϑ0 : zenith angle indicating direction of direct solar radiation
φ : radiative flux (W)

φ(ϕ) : wave function
ϕ : azimuthal angle indicating direction of radiation

ϕ0 : azimuthal angle indicating direction of direct solar radiation
χ : electric susceptibility
� : solid angle (sr)
Ω : solid angle vector (sr)
ω : angular frequency (Hz)

ω0 : single scattering albedo
ω∗

0 : δ-scaled single scattering albedo
ωa,s : antisymmetric and symmetric vibration (Hz)

List of constants
c : speed of light in free space (2.997 924 58×108 m s−1)

cp,0 : specific heat at constant pressure, dry air (1005 J kg−1 K−1)
ε0 : permittivity of free space (8.8542×10−12 C V−1 m−1)
h : Planck’s constant (6.626 196×10−34 J s)
k : Boltzmann constant (1.380 662×10−23 J K−1)

µ0 : permeability of free space (1.2566×10−6 T m A−1)
R∗ : universal gas constant (8.314 32 J mole−1 K−1)
R0 : gas constant of dry air (287.05 J kg−1 K−1)
σ : Stefan–Boltzmann constant ( 5.670 32 ×10−8 W m−2 K−4)
S0 : solar constant (1368 W m−2)
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Beitrag zur Theorie der oberen Inversion. Sitzungsberichte der Königlich
Bayerischen Akademie der Wissenschaften, Math.-phys. Klasse, pp. 55–142.

Eyring, H., J. Walter and G. E. Kimball, 1965: Quantum Chemistry. New York, London,
Sydney: John Wiley & Sons, Inc.

Fels, S. B., 1979: Simple strategies for inclusion of Voigt effects in infrared cooling rate
calculations. Appl. Opt., 18, 2634–2637.

Flatau, P. J., and G. L. Stephens, 1988: On the fundamental solution of the radiative
transfer equation. J. Geophys. Res., 93, 11037–11050.

Fomichev, V. I., and G. M. Shved, 1985: Parameterization of the radiative divergence in
the 9.6 micron O3 band. J. Atmos. Terr. Phys., 47, 1037–1049.

Fowles, G. R., 1966: Analytical Mechanics. New York, Chicago, San Francisco, Toronto,
London: Holt, Rinehart and Winston.

Fowles, G. R., 1967: Introduction to Modern Optics. New York, Chicago, San Francisco,
Toronto, London: Holt, Rinehart and Winston.

Friedman, B., 1956: Principles and Techniques of Applied Mathematics. New York,
NY: John Wiley.

Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative
transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156.

Fu, Q., K. N. Liou, M. C. Cribb, T. P. Charlock, and A. Grossmann, 1997: Multiple
scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci., 52,
2799–2812.

Fymat, A. L., and K. D. Abhyankar, 1969a: Theory of radiative transfer in inhomogeneous
atmospheres. I. Perturbation method. Astrophys. J., 158, 315–324.

Fymat, A. L., and K. D. Abhyankar, 1969b: Theory of radiative transfer in
inhomogeneous atmospheres. II. Application of the perturbation method to a
semi-infinite atmosphere. Astrophys. J., 158, 325–335.

Gantmacher, F. R., 1986: Matrizentheorie. Berlin: Springer-Verlag.
Garcia, R. D. M., and C. E. Siewert, 1985: Benchmark results in radiative transfer. Transp.

Theory Statist. Phys., 14, 437–483.
Geleyn, J. F., and A. Hollingsworth, 1979: An economical analytical method for the

computation of the interaction between scattering and line absorption of radiation.
Beitr. Phys. Atmosph., 52, 1–16.

Gergen, J. L., 1956: Black ball: a device for measuring atmospheric radiation. Rev. Scient.
Instr., 27, 453.

Gergen, J. L., 1957: Atmospheric infrared radiation over Minneapolis to 30 millibars.
J. Meteorol., 14, 495–504.

Gergen, J. L., 1958: Observations of atmospheric radiation over Mc. Murdo Sound,
Antarctica. Techn. Rep. Atm. Phys. Progr. Navy Contr. Nonr.-710, 22.

Gerstl, S. A. W., 1982: Application of the adjoint method in atmospheric radiative transfer
calculations. In: Deepak, A., (Ed.), Atmospheric Aerosols: Their Formation, Optical
Properties, and Effects. Hampton VA: Spectrum Press, pp. 241–254.

Gerstl, S. A. W., and W. M. Stacey, 1973: A class of second order approximation
formulations for deep penetration radiation transport problems. Nucl. Sci. Eng., 51,
339–343.



470 References

Gerstl, S. A. W., and A. Zardecki, 1985: Discrete-ordinates finite-element method for
atmospheric radiative transfer and remote sensing. Appl. Opt., 24, 81–93.

Godson, W. L., 1955: The computation of infrared transmission by atmospheric water
vapour. J. Atmos. Sci., 12, 272–284.

Goody, R. M., 1952: A statistical model for water vapour absorption. Q. J. R. Meteorol.
Soc., 78, 165–169.

Goody, R. M., 1964a: Atmospheric Radiation, I: Theoretical Basis. Oxford: Clarendon
Press.

Goody, R. M., 1964b: The transmission of radiation through an inhomogeneous
atmosphere. J. Atmos. Sci., 21, 575–581.

Goody, R. M., and Y. L. Yung, 1989: Atmospheric Radiation – Theoretical Basis. Oxford:
Oxford University Press.

Graedel, T. E., and P. J. Crutzen, 1994: Chemie der Atmosphäre. Bedeutung für Klima und
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