

Painless Project Management
with FogBugz

MIKE GUNDERLOY

Painless Project Management with FogBugz

Copyright © 2005 by Mike Gunderloy

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-486-X

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Gary Cornell
Technical Reviewer: Joel Spolsky
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Beth Christmas
Copy Edit Manager: Nicole LeClerc
Copy Editor: Ami Knox
Production Manager: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Susan Glinert
Proofreader: Ellie Fountain
Indexer: Michael Brinkman
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

For all the ladies at PS I Love You, who watched me write and edit this book.

v

Contents at a Glance

Foreword . xi

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

CHAPTER 1 Managing Projects with FogBugz . 1

CHAPTER 2 Managing Cases . 17

CHAPTER 3 Making FogBugz Work for You . 53

CHAPTER 4 Getting the Big Picture . 81

CHAPTER 5 Communicating with Customers . 109

CHAPTER 6 Working with Source Code Control . 145

APPENDIX A Setting Up FogBugz . 161

APPENDIX B Using BugzScout . 173

INDEX . 179

vii

Contents

Foreword . xi

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 Managing Projects with FogBugz . 1

FogBugz from the Mountain Top . 1

Getting Down to Business . 5

Making Effective Use of FogBugz. 10

Keeping It Simple . 14

Summary . 15

■CHAPTER 2 Managing Cases . 17

The Three Categories of Cases . 17

Where Do Cases Come From? . 19

The Parts of a Case . 26

Using Screenshots and Attached Files . 34

Linking Cases . 38

Filtering Cases . 40

Searching for Cases. 47

Using List and Grid Views . 48

Being a Good FogBugz Citizen . 50

Summary . 51

Contents

viii ■C O N T E N T S

■CHAPTER 3 Making FogBugz Work for You . 53

Setting Up Users and Groups . 53

Setting Up Projects, Areas, and Releases . 57

Setting Up Clients and Departments . 64

Setting Up Permissions . 67

Setting Up Priorities . 71

Setting Up Versions and Computers . 72

Customizing Your Working Schedule. 73

Applying Bulk Actions to Cases . 75

Summary . 79

■CHAPTER 4 Getting the Big Picture . 81

Tracking Estimates . 81

Using Due Dates. 89

Escalation Reports . 91

Managing E-Mail and RSS Notifications . 93

Resolving Cases . 96

Creating Release Notes . 100

Extending FogBugz with Custom Reports . 104

Summary . 107

■CHAPTER 5 Communicating with Customers . 109

Using E-Mail . 109

Using Discussion Groups . 129

Summary . 143

■CHAPTER 6 Working with Source Code Control . 145

Understanding Source Code Control Integration 145

Making the Connection . 147

Getting from Cases to Code and Vice Versa . 155

Summary . 159

■C O N T E N T S ix

■APPENDIX A Setting Up FogBugz . 161

Installing on Windows . 161

Installing on Unix . 163

Installing on Macintosh . 166

Understanding the FogBugz Maintenance Service. 168

Customizing FogBugz . 169

Adding Licenses . 171

■APPENDIX B Using BugzScout . 173

Installing BugzScout . 173

Using BugzScout from Visual Basic . 174

Choosing What to Report . 177

■INDEX . 179

xi

Foreword

There’s a restaurant in my New York City neighborhood called Isabella’s that’s always packed.
Downstairs, upstairs, at the sidewalk cafe, it’s mobbed. And there are large crowds of

happy yuppies out front, waiting 45 minutes for a table when they can clearly see other perfectly
good restaurants right across the street that have plenty of tables.

It doesn’t matter when you go there. For Sunday brunch, it’s packed. Friday night? Packed,
of course. But go on a quiet Wednesday night at 11:00 p.m. You’ll get a table fairly quickly, but
the restaurant is still, basically, packed.

Is it the food? Nah. Ruth Reichl, restaurant reviewer extraordinaire from the New York Times,
dismissed it thusly: “The food is not very good.”1

The prices? I doubt anyone cares. This is the neighborhood where Jerry Seinfeld bought
Isaac Stern’s apartment with views over two parks.

Lack of competition? What, are you serious? This is Manhattan!
Here’s a clue as to why Isabella’s works. In ten years living in this neighborhood, I still go

back there. All the time. Because they’ve never given me a single reason not to.
That actually says a lot.
I never go to a certain fake-Italian art-themed restaurant, because once I ate there and the

waiter, who had gone beyond rude well into the realm of actual cruelty, mocking our entree
choices, literally chased us down the street complaining about the small tip we left him.

I stopped going to another hole-in-the-wall pizza-pasta-bistro because the owner would
come sit down at our table while we ate and ask for computer help.

I really, really loved the food at a local curry restaurant with headache-inducing red
banquettes and zebra-striped decor. The katori chat was to die for. I was even willing to over-
look the noxious smell of ammonia wafting up from the subterranean bathrooms. But the food
inevitably took an hour to arrive, even when the place was empty, so I just never went back.

But in ten years, I can’t think of a single bad thing that ever happened to me at Isabella’s.
Nothing.
So that’s why it’s so packed. People keep coming back, again and again, because when you

dine at Isabella’s, nothing will ever go wrong.
Isabella’s is thoroughly and completely debugged.
It takes you ten years to notice this, because most of the time when you eat at a restaurant,

nothing goes wrong. It took a couple of years of going to the curry place before we realized they
were always going to make us miss our movie, no matter how early we arrived, and we finally
had to write them off.

And so, on the Upper West Side of Manhattan, if you’re a restaurant, and you want to
thrive, you have to carefully debug everything.

1. Reichl, Ruth. The New York Times ➤ Travel ➤ New York City Guide ➤ Restaurant Details
(“Isabella’s Restaurant”) (Web page). http://travel2.nytimes.com/top/features/travel/
destinations/unitedstates/newyork/newyorkcity/restaurant_details.html?vid=1002207988079,
dated 4/98, retrieved December 9, 2005.

xii ■F O R E W O R D

You have to make sure that there’s always someone waiting to greet guests. This person
must learn never to leave the maitre d’ desk to show someone to their table, because otherwise
the next person will come in and there will be nobody there to greet them. Instead, someone
else needs to show patrons to their tables. And give them their menus, right away. And take
their coats and drink orders.

You have to figure out who your best customers are—the locals who come on weekday
nights when the restaurant is relatively quiet—and give them tables quickly on Friday night,
even if the out-of-towners have to wait a little longer.

You need a procedure so that every water glass is always full.
Every time somebody is unhappy, that’s a bug. Write it down. Figure out what you’re going

to do about it. Add it to the training manual. Never make the same mistake twice.
Eventually, Isabella’s became a fabulously profitable and successful restaurant, not because

of its food, but because it was debugged. Just getting what we programmers call “the edge
cases” right was sufficient to keep people coming back, and telling their friends, and that’s
enough to overcome a review where the New York Times calls your food “not very good.”

Great products are great because they’re deeply debugged. Restaurants, software, it’s all
the same.

Great software doesn’t crash when you do weird, rare things, because everybody does
something weird.

Microsoft developer Larry Osterman, working on DOS 4, once thought he had found a rare
bug. “But if that were the case,” he told DOS architect Gordon Letwin, “it’d take a one in a
million chance for it to happen.”

Letwin’s reply? “In our business, one in a million is next Tuesday.”2

Great software helps you out when you misunderstand it. If you try to drag a file to a button
in the taskbar, Windows pops up a message that says, essentially, “You can’t do that!” but then
it goes on to tell you how you can accomplish what you’re obviously trying to do. (Try it!)

Great software pops up messages that show that the designers have thought about the
problem you’re working on, probably more than you have. In FogBugz, for example, if you try
to reply to an e-mail message, but someone else tries to reply to that same e-mail at the same
time, you get a warning and your response is not sent until you can check out what’s going on.

Great software works the way everybody expects it to. I’m probably one of the few people
left who still closes windows by double-clicking in the top-left corner instead of clicking the
X button. I don’t know why I do that, but it always works, with great software. Some software
that I have is not so great. It doesn’t close if you double-click in the top-left corner. That makes
me a little bit frustrated. It probably made a lot of people frustrated, and a lot of those people
probably complained, but I’ll bet you that the software developers just didn’t do bug tracking,
because they have never fixed that bug and probably never will.

What great software has in common is being deeply debugged, and the only way to get soft-
ware that’s deeply debugged is to keep track of your bugs.

A bug-tracking database is not just a memory aid or a scheduling tool. It doesn’t make it
easier to produce great software, it makes it possible to create great software.

2. Osterman, Larry. “One in a million is next Tuesday,” from Larry Osterman’s WebLog (personal web
page). http://blogs.msdn.com/larryosterman/archive/2004/03/30/104165.aspx, dated March 30,
2004, retrieved December 9, 2004.

■F O R E W O R D xiii

With bug tracking, every idea gets into the system. Every flaw gets into the system. Every
tester’s possible misinterpretation of the user interface gets into the system. Every possible
improvement that anybody thinks about gets into the system.

Bug-tracking software captures the cosmic rays that cause the genetic mutations that
make your software evolve into something superior.

And as you constantly evaluate, reprioritize, triage, punt, and assign these flaws, the soft-
ware evolves. It gets better and better. It learns to deal with more and more weird situations,
more and more misunderstanding users, and more and more scenarios.

That’s when something magical happens, and your software becomes better than just the
sum of its features. Suddenly it becomes reliable. Reliable, meaning, it never screws up. It never
makes its users angry. It never makes its customers wish they had purchased something else.

And that magic is the key to success. In restaurants as in software.

—Joel Spolsky

xv

About the Author

■MIKE GUNDERLOY has been involved with the computer industry for over a quarter century. In
that time, he’s assembled PCs, run network cable through drop ceilings, contributed to and
managed software projects large and small, as well as written many books and articles. When
he’s not banging out code or words on the keyboard, Mike raises children, turkeys, and tomatoes
on a small farm in eastern Washington state.

xvii

About the Technical Reviewer

■JOEL SPOLSKY is an expert on software development and the founder of Fog Creek Software. His
Web site, Joel on Software (http://www.joelonsoftware.com), is popular with software devel-
opers around the world and has been translated into over 30 languages. His latest book is Joel
on Software (Apress, 2004).

xix

Acknowledgments

Every book starts somewhere. In the case of the current volume, the starting point is easy to
pinpoint: an e-mail from Fog Creek Software’s Joel Spolsky, asking me if I’d be interested in
putting together a book about FogBugz 4.0. After I leapt at (I mean, after I carefully considered
and accepted) this proposal, Gary Cornell at Apress was instrumental in pulling together the
contractual details necessary to make this book a reality.

Of course, a book about software can’t be written without the software itself, and in this
case it’s easy to know who to thank for that: Joel and the rest of the Fog Creek staff. Special
thanks to Michael Pryor, who spent a few maddening hours logged in to one of my computers
remotely trying to figure out what I was doing to provoke a particularly obscure bug. Beyond
that, the active FogBugz user community is to thank for many of the innovations in this version
of FogBugz.

I’d like to thank Project Manager Beth Christmas, Copy Editor Ami Knox, and Production
Editor Katie Stence for their hard work turning my manuscript into something actually resembling
a book. And let’s not forget the hard-working production crew: Compositor Susan Glinert,
Proofreader Ellie Fountain, and Indexer Michael Brinkman.

Then there are the people outside of the actual book production process who still deserve
huge thanks: my family. With this book, that’s even more true than usual, as they were quite
understanding about my tackling a new project with an intense schedule during the holiday
season. Somehow I managed to take breaks to carve turkey and bake cookies, but it was a near
thing. So thanks and much love to my dear wife, Dana, and our kids, Adam, Kayla, and Thomas.
Next year I’ll take more than a day off, honest.

xxi

Introduction

Like any other developer who wants to actually ship software, I use software management
tools. One of the most important tools in my own toolbox is FogBugz. Now on its fourth major
release, FogBugz is a complete project management system optimized for software teams. It’s
Web-based, so you access most of the functionality through your Web browser. I’ve found this
an immense help when working with developers and testers scattered about the Internet, but
you can also use FogBugz for projects that are maintained entirely at a single location. In this
book, you’ll see why I’m so excited about FogBugz, and learn what it can do for your own soft-
ware management tasks.

Why FogBugz?
Many of the software applications that overlap the functionality of FogBugz present themselves
as bug-tracking systems, but there’s more to FogBugz than just tracking bugs. FogBugz is a tool
for tracking, updating, and managing cases. There are three kinds of cases:

• Bugs: Things that don’t work right

• Features: New things being planned

• Inquiries: Questions from customers or team members

Every case is prioritized, categorized, and assigned to exactly one person on your team who
must either resolve it or assign it to someone else. Developers work through their cases one by
one, ideally in order of priority. That doesn’t sound like much to handle, but FogBugz integrates
case tracking with many other features, including the following:

• Source code control integration, which makes it easy to see which check-ins are associated
with which bugs or features, and allows you to set up an elegant online code review
system.

• Filters and advanced full-text search that make it easy to sort and search.

• A built-in estimation system to help you track your project and ship on schedule.

• Automatic release note generation from the cases that were resolved for a particular release.

• A customer e-mail management facility that discards spam and sorts the mail into
categories based on your own training. FogBugz preserves the entire e-mail history and
makes it easy to keep the customer informed of progress on a case.

• Integrated discussion groups for customers, testers, or team members. Discussion
groups include anti-spam features and easy integration with case tracking.

xxii ■I N T R O D U C T I O N

What’s in This Book
My goal in this book is to take you from the very basics of FogBugz through all the details of
managing and administering a complex FogBugz installation. Depending on your role—devel-
oper, tester, manager, system administrator, or (as with many of us) jack-of-all-trades—you
may want to read some portions of the book more closely than others. Here’s a roadmap of
what you’ll find inside:

In Chapter 1, you’ll learn about the overall philosophy of FogBugz (yes, software applica-
tions have philosophies) and get an introduction to how FogBugz works in practice. I’ll take
you through the lifecycle of several cases so that you can get a feel for how the pieces fit together.

Chapter 2 concentrates on the actual process of case management with FogBugz. You’ll
learn how cases get into the system and how to deal with them once they’ve been entered. This
chapter covers taking screenshots and attaching files, as well as filtering and sorting to find the
cases that you need.

Chapter 3 is directed mainly at the FogBugz administrator. While many organizations will
be able to use FogBugz productively right out of the box, there are quite a few pieces of the
program that you can customize. If you’re the one responsible for fine-tuning FogBugz where
you work, this is the chapter for you. You’ll learn how to set up projects, areas, clients, depart-
ments, and much more.

Chapter 4 looks at FogBugz from the perspective of the software manager. This is the
chapter that covers estimating techniques, due dates, the proper way to resolve cases, and
release notes. I’ll also dip a little bit into using external tools such as Microsoft Access and
Microsoft Excel to create custom reports from your FogBugz data.

Chapter 5 covers customer communication via e-mail and discussion groups. Some of the
most innovative and exciting features of version 4.0 are in this area, and you’ll want to read this
chapter closely. These features let you connect your FogBugz database directly with your
customers, tapping their collective intelligence and excitement.

Finally, in Chapter 6, I cover the integration of FogBugz with your source code control
system. You’ll learn why you might want to do this, and how to set it up if you’re using CVS,
Perforce, Subversion, Vault, or Visual SourceSafe.

The book wraps up with two appendixes. Appendix A reviews the instructions for installing
FogBugz on Windows, Linux, or Mac OS X servers. Appendix B shows how you can write code
to integrate your own applications directly with FogBugz for automatic bug reporting.

I hope that by the end of the book you’ll consider yourself a serious FogBugz user, and that
you’ll find this program as useful and well designed as I do.

Contacting the Author
I’m always happy to hear from readers of any of my books. You can find my own Web site at
http://www.larkware.com, or e-mail me directly at MikeG1@larkfarm.com. But in the case of
FogBugz questions, there’s another resource you should try for a quick response: the FogBugz
discussion group at http://support.fogcreek.com/?fogbugz. You’ll find many passionate and
committed FogBugz users there who are happy to help out, as well as Fog Creek’s own support staff.

1

■ ■ ■

C H A P T E R 1

Managing Projects
with FogBugz

Communication is the lifeblood of a software project. Whether you’re building an application
for commercial sale or developing it for internal corporate use, there’s no way that a software
project can be successful without customer feedback. Communication within the team that’s
building the application is equally important. Developers, testers, and managers all need to
coordinate their activities with each other to make sure the product gets out the door on time
and with the right features.

Software teams manage this communication with a variety of tools and technologies:
whiteboards, e-mails, phone calls, sticky notes, hallway meetings, formal review sessions, and
more. But there’s a danger to using too many tools to manage a software project: the more
places you have to store information and the more ways you have to pass it around, the easier
it is for important messages to fall through the cracks. In this book, I’ll show you how to use one
tool—Fog Creek Software’s FogBugz 4.0—to collect and manage all of the communication
between users, managers, developers, and testers. With FogBugz in place, you’ll spend less
time hunting for information and trying to remember who was doing what, and have more
time to finish the product on time and within budget.

FogBugz from the Mountain Top
As you work through this book, you’ll learn all the nitty-gritty details of working with FogBugz.
But before setting out on this journey, it’s good to know where you’re going. FogBugz came
from some simple notions of what a bug-tracking tool should do. From those roots, though, it’s
grown into a robust project management tool. You may also need some other tools (for example,
something to graphically display the project schedule and dependencies), but FogBugz can
form the core of a successful project management strategy for most software projects.

■Note The early versions of FogBugz did indeed concentrate on tracking bugs—hence the name of the
product. But the more robust capabilities of FogBugz 4.0 move it beyond the bug-tracking category to make
it more of a project-tracking tool. It’s too late to rename the product, though.

2 C H A P T E R 1 ■ M A N AG I N G P R O J E C T S W I T H F O G B U G Z

Understanding the FogBugz Philosophy
FogBugz is based on two core principles:

• Track as much product-related communication as possible in a single tool.

• Keep everything as simple as possible (but no simpler!).

By sticking to these principles, Fog Creek has been able to deliver a tool that can be installed in
minutes and that the average developer can start using immediately. Unlike some products in
the field, FogBugz does not let you customize everything. Excessive flexibility can lead to an
organizational paralysis while people debate which bug statuses to use, how to organize work-
flow, and so on. In contrast, FogBugz lets you customize the things that really vary between
organizations (like the name of the project that you’re working on), while delivering a robust
set of core features that just work.

■Note For more information on installing FogBugz, see Appendix A.

Surveying FogBugz
FogBugz is a client-server system with a Web client. The information that you store in FogBugz
is tracked in a database and presented through a series of scripted pages on a Web server
(depending on your choice of platform, the scripting language is either ASP or PHP). To the
users, this means a FogBugz installation looks like any other Web site. You can interact with
FogBugz through any modern Web browser, including Internet Explorer, Mozilla, Firefox, or
Opera. You can even use a mobile device such as a PocketPC or a SmartPhone to work with
FogBugz (though you may find using the small screen challenging).

The features of FogBugz break up into three categories:

• Case tracking

• E-mail management

• Discussion group management

I’ll briefly discuss each of these areas in turn.

Case Tracking

Cases are the key unit in the database that FogBugz maintains. Each case is assigned to one of
three categories:

• Features: New functionality to be added to the product

• Bugs: Existing functionality that doesn’t work right

• Inquiries: Questions from customers or other stakeholders

C H A P T E R 1 ■ M A N A G I N G P R O J E C T S W I T H F O G B U G Z 3

Figure 1-1 shows a typical case (it happens to be a bug) in FogBugz. As you can see, each
case is characterized by a variety of properties, including its priority, the release that needs to
include the fix, and the history of work on the case.

Figure 1-1. A typical case in FogBugz

Cases can be entered manually by any licensed user of FogBugz. They can also be created
in several other ways. For example, cases can be automatically created from e-mail received at
a specific address, created by a site administrator based on a discussion group thread, or even
automatically added to the database by special code in an application that you’ve already
shipped.

FogBugz lets users filter cases to find only the set they’re interested in at the moment
(for example, all open cases assigned to you that are due for the next release). You can use
the FogBugz Web interface to adjust the properties of a case or assign an estimate to it. When
you’re done fixing a bug, implementing a feature, or handling an inquiry, you can mark it
resolved. This automatically assigns the case back to its originator, who can close it (thus
removing it from the list of active cases).

4 C H A P T E R 1 ■ M A N AG I N G P R O J E C T S W I T H F O G B U G Z

■Tip Only the originator of a case can close it. If you can’t convince the person who spotted a bug that it’s
fixed, then it’s not fixed.

FogBugz also offers other features related to case management. If you’re interested in a
particular case, you can subscribe to it so as to receive e-mail notification whenever the case is
changed. You can also subscribe to RSS feeds that provide an overall view of case activity. FogBugz
integrates with a number of popular source code control systems so that you can track which
code fixes are related to which bugs. You can even create a set of release notes automatically
from the cases that were fixed for a particular release.

■Note You’ll learn more about managing FogBugz cases in Chapter 2.

E-Mail Management

FogBugz also helps you manage incoming product-related e-mail from your customers. This
isn’t a substitute for your existing e-mail server, but a way to handle e-mail sent to specific
addresses. For example, you might use CustServ@megautil.com as a general customer service
e-mail address, and ServMonBugs@megautil.com as an address to accept bug reports on your
Service Monitor application.

You can set up FogBugz to monitor any number of POP3 mailboxes for incoming mail.
When mail arrives, FogBugz applies a series of steps to sort it appropriately. First, spam is auto-
matically discarded. For other messages, you have a choice of manual sorting or autosorting. If
you choose to manually sort messages, FogBugz will create a new case in the project of your
choice for each incoming message. Autosort is much more sophisticated. You can create a set
of categories, and autosort will learn by example which messages belong in which category.
With autosort, you start by moving messages manually, but FogBugz soon takes over the job,
creating new cases in categories just as you would have done yourself.

Customers who send e-mail to a properly configured FogBugz POP3 address will get an
automatic reply return, with a URL where they can check the progress of their case in the
system. Any member of the development team can respond to e-mail messages and see the
whole history of communications with the user when doing so. The system can automatically
assign a due date to make sure that customers get replies in a timely fashion. To make it easier
to generate those replies, you can also create predefined text snippets that can be inserted into
a return e-mail with just a few keystrokes.

C H A P T E R 1 ■ M A N A G I N G P R O J E C T S W I T H F O G B U G Z 5

Discussion Group Management

E-mail is good for one-on-one communication, but there are times when a conversation bene-
fits from wider input. For example, you might have a group of developers and testers who want
to discuss how a particular feature should work, or a group of customers with feedback and
suggestions for future versions of the application. To handle this sort of many-to-many
communication, FogBugz includes support for online discussion groups.

FogBugz discussion groups are simple. You can set up any number of groups on your server
and give them each a distinct name. Each group contains threads, and each thread contains
messages. Messages are presented as a chronologically ordered list, without any branching;
this makes it easy to catch up with any conversation by starting wherever you left off.

The discussion group implementation includes anti-spam technology to prevent junk
from cluttering up the real discussion, and moderation to help weed out disruptive messages
or unruly users. You can customize the appearance of a discussion group so that it fits in with
your corporate Web site. A single button click will turn a discussion group message into a case,
so that problems and suggestions reported via discussion group don’t get lost.

Getting Down to Business
To get a better understanding for how FogBugz can help with your development cycle, let’s
follow a couple of typical cases from start to finish.

For these examples, I’ll introduce MegaUtilities Corporation, a fictional company that writes
and (with any luck) sells software utilities for the Microsoft Windows market. Their products
include Network Enumerator (a general-purpose network browser), ScriptGen (an automated
generator for command scripts), and Service Monitor (a Windows service that monitors the
event log and sends e-mail when it recognizes a particular message). MegaUtilities has a
comparatively small staff: two administrators, a single project manager, a customer service
representative, four developers, and three testers.

Moving a Bug Through the System
During the beta period for Service Monitor, Robert Evers (who is the company’s customer
service rep) logs on to FogBugz and, as part of his daily duties, reviews the new postings to the
Service Monitor discussion group. He finds the new thread shown in Figure 1-2 (fortunately,
there are lots of other threads from happy customers, so the beta isn’t a complete disaster).

6 C H A P T E R 1 ■ M A N AG I N G P R O J E C T S W I T H F O G B U G Z

Figure 1-2. A FogBugz discussion thread

MegaUtilities has the sensible policy of never ignoring customer complaints, no matter
how outlandish or ungrammatical they are. Even though another customer has already replied
to the first poster, Robert uses the New Case hyperlink (which only appears because he’s logged
in as a user on the server) to create a new FogBugz case to track this particular bug. FogBugz
automatically grabs the title and description from the discussion group posting, so all Robert
has to do is fill in other information and click OK to create the case.

■Tip This example shows in a small way one of the benefits of discussion groups: other customers will do
some of your support for you. The more effort you expend in building a broad base of users on your discussion
groups, the more chance there is that frequent posters will emerge and answer questions before your own
paid staff can even read them.

C H A P T E R 1 ■ M A N A G I N G P R O J E C T S W I T H F O G B U G Z 7

Robert chooses the Service Monitor project, and FogBugz automatically assigns the bug to
the project lead. Because this particular bug is a direct failure of the core functionality of the
product, he marks it as a priority 1 bug for the 1.0 release version of the product. Robert then
returns to the discussion group thread, clicks the Reply To This Topic button, and types a reply
to let the original poster know that his problem is being looked at.

Meanwhile, FogBugz itself has not been idle. As soon as the new case gets created and
assigned to the project lead, Valerie Shriver, FogBugz sends her e-mail to tell her that there’s
something new on her plate. Because Valerie is a Type A personality who always keeps her
e-mail running, she gets this notification in short order. Clicking the link in the e-mail takes her
directly to the case. Although she doubts that even a beta could get out the door if it wasn’t
working at all (and she knows that it’s happily monitoring events in the company lab in any
case), Valerie also knows that she can’t just ignore a prospective customer. Fortunately, she has
development staff to take care of these things for her. So she clicks the Assign button, assigns
the bug to Paige Nagel, and adds a comment guessing at the cause of the bug.

■Tip When you want to assign a case to another user, choose the Assign button rather than the Edit button.
While either one will move the case over, only the Assign button will automatically send an e-mail notification
as well.

Of course, FogBugz e-mails Paige to tell her the bug is on her plate now. Paige doesn’t see
how this bug can be happening either, but she dutifully sets up Service Monitor on one of the
lab machines and tells it to monitor for W32Time events. She deliberately assigns a bogus time
server to the machine so that events will end up in the event log. Sure enough, she gets the noti-
fication e-mails just as she should. Paige has other things to do, and this one really looks like
pilot error to her, so she clicks the Resolve button. She chooses “Resolved (Not Reproducible)”
as the status and saves her changes.

But remember, resolving a bug doesn’t get rid of it. Instead, it goes back to Robert, who
was the one who entered the case into the system in the first place. Robert feels strongly about
protecting his customers, and he’s not going to take “not reproducible” as a resolution without
a fight. He thinks about some of the issues they saw when alpha testing, looks at the customer’s
e-mail address, and comes to his own conclusion about the possible cause of the bug. So he
reactivates the bug, adds a comment, and shoots it back over to Paige.

This time Paige grumbles a bit about the added effort to set up a good repro case (after all,
she has new features to implement, not just bugs to fix!), but she gets to work. A few minutes
later she has a test Hotmail account of her own, and a few minutes after that, she verifies that
she can reproduce the problem. This puts her 90% of the way to fixing it. She changes the
format of the message so that it looks less “spammy” and marks the bug as “Resolved (Fixed).”
This bounces it back to Robert again.

Robert uses the private e-mail feature of the discussion group to send a message to the
original poster, asking him to check his Hotmail spam folder for the missing messages. Sure
enough, there they are, and Robert logs back into FogBugz to close the case. Figure 1-3 shows
the final state of the closed case. As you can see, it preserves the entire history and lets you see
just what happened, beginning with the original report.

8 C H A P T E R 1 ■ M A N AG I N G P R O J E C T S W I T H F O G B U G Z

Figure 1-3. A closed case in FogBugz

Responding to a Customer Inquiry
My second example highlights the e-mail management features of FogBugz. This time I’ll
follow what happens when a customer inquiry arrives by e-mail. Simon Jasperson, who happens
to be a long-time user of MegaUtilities products, had planned to be an enthusiastic tester of
Service Monitor. But when he tried to install the product, the installation failed. From reading
the release notes with the beta, he knows that he can send e-mail to CustServ@megautil.com
describing his problem, so he does so.

C H A P T E R 1 ■ M A N A G I N G P R O J E C T S W I T H F O G B U G Z 9

Back at MegaUtilities, Randy Wilson happens to be logged on to the FogBugz server when
he notices a new case in the Inbox project. Any FogBugz user can review and deal with incoming
mail, so Randy clicks through to the message. It looks like a legitimate bug to him, so he
moves it over to the Service Monitor project and lets FogBugz assign it to the primary
contact, Valerie Shriver.

Meanwhile, FogBugz doesn’t forget about the customer. Simon gets back an automatically
generated e-mail that not only tells him his message has been received, but gives him a URL for
tracking what’s going on with it. Clicking through to the URL gives him a read-only view of the
case, as shown in Figure 1-4.

Figure 1-4. Customer view of an open case

The bug proceeds through the usual process at MegaUtilities. Valerie adds a due date to
the bug and assigns it over to Terry Eagan, another of her developers. Terry is pretty swamped
right now, but she opens the bug and puts in an initial estimate of 6 hours to solve the problem.
All of these changes continue to be reflected on the status page that Simon can check out,
assuring him that the company is working on his problem.

In a few days, Terry has time to track down the actual problem, and fixes the code so that
it works—at least on her test machine. She marks the bug as fixed, and FogBugz assigns it to the

10 C H A P T E R 1 ■ M A N AG I N G P R O J E C T S W I T H F O G B U G Z

FogBugz administrator (because it can’t be assigned to a customer). The administrator later
signs on to look at the bug on behalf of the customer. Seeing that the bug is fixed, she clicks the
Reply button in the bug’s header, which automatically composes an e-mail back to the customer,
as shown in Figure 1-5. The administrator uses this e-mail to close the loop back to the original
customer, letting him know that the bug is fixed in the latest build, and then closes the bug.

Figure 1-5. Sending e-mail back to a customer

Making Effective Use of FogBugz
FogBugz is a great program, but it isn’t miraculous. No amount of management technology will
make your software projects successful all by itself. FogBugz can help by making it easy to track
and resolve issues, and by making sure that communication with the all-important customer
doesn’t get ignored. But you also need to do some work on the social level, to make sure that
FogBugz gets used, and used well.

Bringing FogBugz into Your Company
The first hurdle to using FogBugz is to get it used at all. Here, the first few cases may be the
hardest. After people see how easy FogBugz is to use, and how much it helps them work, they’ll
probably start using it on their own. So how do you jump-start the process?

C H A P T E R 1 ■ M A N A G I N G P R O J E C T S W I T H F O G B U G Z 11

If you sign the paychecks, you can just tell everyone to use the new bug-tracking system.
But this may not be the most effective option. Telling programmers what to do has frequently
been referred to as “herding cats,” and it is just about as effective. Instead, start using FogBugz
yourself. Put in some bugs or feature requests (if you don’t know enough about your own
company’s products to make sensible feature requests, why are you in charge?). Then you can
suggest to people that they’d better keep an eye on the system if they don’t want to lose your
valuable input. This will usually get through.

If you’re a manager, and nobody seems to be using FogBugz, start assigning new features
to your team using FogBugz. Eventually they’ll realize that instead of coming into your office
every few days saying “What should I do next?” they can just see what’s assigned to them in
FogBugz. If you’re using an agile process where new features get assigned during a consensual
meeting, have someone enter the features into FogBugz right there at the meeting.

If you’re a developer, and you’re having trouble getting testers to use FogBugz, just don’t
accept bug reports by any other method. If your testers are used to sending you e-mail with bug
reports, just bounce the e-mails back to them with a brief message: “Please put this in the bug
database. I can’t keep track of e-mail.” If you’re a developer, and only some of your colleagues
use FogBugz, just start assigning them bugs. Eventually they’ll get the hint.

If you’re a tester, and you’re having trouble getting programmers to use FogBugz, just
don’t tell them about bugs—put them in the database and let the database e-mail them. This
can be especially effective if you can also convince the manager for the project to subscribe to
the RSS feed for the bugs. Most developers have at least enough political savvy to want to stay
as informed as their boss.

Writing Good Bug Reports
It’s not enough to get everyone in the company using FogBugz. You also need to get them using
it well. The key here is to teach people to write good bug reports. For starters, every bug report
should contain the three essential pieces of information:

• How to make the bug happen

• What happened

• What should have happened

Put that way, it looks easy, right? But if you’ve ever spent time trying to actually respond to
bug reports, you know that writing good bug reports is harder than it looks. People post all sorts
of crazy things to bug databases (and that’s not even counting spam, which FogBugz fortunately
does a good job of weeding out before it gets to you).

When you think you’ve found a bug, the first step is to record the information about how
to reproduce the bug. The key problem here is to include just the necessary information. Deter-
mining what’s necessary is an art. What you had for breakfast this morning probably doesn’t
have a bearing on the bug (unless you’re testing dietary analysis software). The operating
system on your computer and the amount of RAM could have a bearing. The last action you
took in the application almost certainly does make a difference.

Whatever information you can collect, please organize it sensibly. Programmers tend to be
focused on careful instructions, so step-by-step details are very useful. Figure 1-6 shows a bug
with a good set of reproduction steps.

12 C H A P T E R 1 ■ M A N AG I N G P R O J E C T S W I T H F O G B U G Z

Figure 1-6. A bug report to make a developer happy

Sometimes it’s just not possible to come up with good repro steps. Perhaps you used the
application for quite a while and it suddenly crashed, and you don’t remember what you were
doing. In that case, write down everything you remember. Perhaps you thought you had the
steps, but they don’t always make the bug happen. In that case, record the steps, but please
also tell the developer that the bug is intermittent. Otherwise, it’ll probably just get closed as
not reproducible.

The second piece of information you need to supply is what happened that made you
think this was a bug. Did the program destroy all the files on your hard drive? Did Windows
expire in the fabled Blue Screen of Death? Did the developers just spell a word wrong on-screen?
This information often makes the best title for the bug as well; something like “Shift-Enter fills
hard drive with temporary files” is easy to recognize when you’re just scanning down a list of titles.

Finally, tell the developer what should have happened instead. “Sausauge should be
spelled sausage” will help guide the poor developer who wasn’t at the top of his English class.
At times you can omit this piece of information because it will be implied by the description of
what happened. If you report it as a bug that the program failed to install on a particular oper-
ating system, it’s a safe bet that you expected it to install. But when in doubt, be explicit.

C H A P T E R 1 ■ M A N A G I N G P R O J E C T S W I T H F O G B U G Z 13

Writing Good Feature Requests
Feature requests, too, require careful composition. When you enter a feature request into the
FogBugz database, you’re saying one of two things:

• “This feature is part of the spec, and now it’s your job.”

• “I know no one thought of this earlier, but I think it’s really, really important.”

Any project that requires enough work to justify using FogBugz at all should have a formal,
written specification. Specs are enormously important, because they represent the shared
vision of how the product should work when it’s finished. Developers refer to the spec to figure
out how all the pieces fit together, testers use it to figure out what to test (and to see whether a
particular piece of behavior is a bug or a feature), managers use it to help schedule to project,
and so on. The product’s spec should be a collective, comprehensive, up-to-date vision of the
way that the product will work.

■Note For more detail on writing good functional specifications, see Joel Spolsky’s book Joel on Software
(Apress, 2004).

But although the spec is important, it doesn’t quite get you all the way to working code.
Someone has to take all of those features in the spec and assign them to individual developers
to implement. Now, you (assuming you’re the program manager) could do that with e-mail or
notes on a whiteboard or orders shouted down the hall, but with FogBugz installed, you’ve got
a better solution: enter them as feature requests in FogBugz. You can cut and paste the appro-
priate part of the spec into the feature request, and include a hyperlink to the full spec on your
network (you do have the spec stored on a server where everyone can read it, right?).

An added benefit of using FogBugz to assign features is that it will help you schedule the
entire project. If your developers use the estimating features of FogBugz, you can look at the
total amount of work left to be done, and adjust your schedule (or your feature set) as necessary.

■Note For more information on estimating in FogBugz, see Chapter 4.

The other use for feature requests in FogBugz is to handle features that you didn’t think of
when you were designing the product. In this case, the feature request needs to contain three
essential pieces of information:

• What the feature should do

• Why this is important

• Who wants the feature

14 C H A P T E R 1 ■ M A N AG I N G P R O J E C T S W I T H F O G B U G Z

For anyone to implement the feature, you need to describe what it should do. This descrip-
tion should be as detailed as if you were writing a spec. For example, if your feature requires a
new message box to pop up, you need to supply the text that you want to see in the message
box. Without this level of detail, the developer who ultimately gets assigned the feature request
won’t know what to build (and the testers won’t know what to test, and so on).

■Tip If you’re the manager for a product, you should keep your specs up to date by incorporating any
feature requests that are entered directly into FogBugz.

Justifying new features is particularly important. For many organizations, software devel-
opment is a zero-sum game: with an announced release date, adding a new feature means
throwing some other feature out (or reducing the product quality, which is usually a bad idea).
You should be prepared to argue why your particular feature is essential. Does it take care of
some unforeseen scenario where the application crashes or destroys data? Does it bring the
product to feature parity with an important competitor? Is it something that will leapfrog all
the competition and make the program sell like hotcakes?

Finally, make it clear who wants this feature. All other things being equal, a feature request
from Joe Tester is less likely to meet the approval of management for this version than a feature
request relayed from Mr. Megabux, your largest customer.

Keeping It Simple
Remember that I said that one of the underpinnings of FogBugz is to keep everything as simple
as possible? To use the product successfully, you need to keep that rule in mind. FogBugz itself
is customizable (after all, it’s a set of ASP or PHP pages; there’s nothing to prevent you from
mucking about in the source code), but you shouldn’t waste time fixing things that aren’t
broken. In addition to keeping the program itself simple, you also need to think about keeping
your bug-tracking process simple. I’ll close this chapter with a few concrete suggestions on
how to do that.

On the application side, avoid the temptation to add new fields to FogBugz. Every month
or so, somebody will come up with a great idea for a new field to put in the database. You get all
kinds of clever ideas, for example, keeping track of the file where the bug was found; keeping
track of how often the bug is reproducible; keeping track of how many times the bug occurred;
keeping track of which exact versions of which DLLs were installed on the machine where the
bug happened. It’s very important not to give in to these ideas. If you do, your new bug entry
screen will end up with a thousand fields that you need to supply, and nobody will want to
input bug reports any more. For the bug database to work, everybody needs to use it, and if
entering bugs “formally” is too much work, people will go around the bug database. At that
point, your ability to track what’s going on goes out the window. When bugs are swapped by
e-mail, hallway conversation, and cocktail napkin, you can’t trust the estimates coming out of
FogBugz, you can’t search effectively for duplicate bugs, and you’re generally in trouble.

On the process side, you should consider training testers to write good bug reports. Meetings
between the test team and the development team can also be helpful (that is, if your organiza-
tion somehow enforces distance between these two teams, which I think is a bad idea anyhow).

C H A P T E R 1 ■ M A N A G I N G P R O J E C T S W I T H F O G B U G Z 15

A good tester will always try to reduce the repro steps to the minimal steps to reproduce; this is
extremely helpful for the programmer who has to find the bug. Developers can also give the
testers an idea of the sort of information that they find extraneous, and the sort that they find
necessary, in bugs that have already been entered.

Keep track of versions on a fine-grained basis. Every build that goes off the build machine
should have a unique version number. Testers need to report the version where they found a
bug, and developers need to report the version where they fixed the bug. This avoids pain all
around.

Everyone should be responsible for keeping the customers happy. Everyone on the team
needs to at least dip into the discussion groups to see what customers are talking about, and
should feel free to open cases based on discussion group comments. You may also want to
have everyone review the e-mail inquiries that have ended up in the inbox project, and sort
them to the correct project. This helps ensure a timely response to customers. For larger
projects and teams, though, it’s a better idea to have one person (or a small team of people)
whose job it is to explicitly sort the incoming inquiries.

Summary
The story of every bug is a variation on this theme:

• Someone finds it and reports it.

• The bug gets bounced around from person to person until it finds the person who is
really going to resolve it.

• When the bug is resolved, it goes back to the person who originally reported it for
confirmation.

• If, and only if, they are satisfied with the resolution, they close the bug, and you never
see it again.

In this chapter, you’ve seen how FogBugz enables you to work through this process with a
minimum of overhead. You’ve also learned a little about how to use the system most effectively
by writing good bug reports and feature requests, and by not cluttering the process up with
unnecessary overhead.

If you’ve installed FogBugz, you’re probably ready to dive in and start entering cases now.
Great! But there’s still plenty more to learn about FogBugz that might not be apparent at first.
So after you get those first few cases cooking, read on. In the next chapter, I’ll dig into case
management in more detail, and show you some of the other tools that FogBugz has to offer.

17

■ ■ ■

C H A P T E R 2

Managing Cases

Now that you’ve seen the high-level overview of FogBugz, you’re ready to start working with
cases related to your own products. But there’s an art to working with cases effectively. You
need to understand the categories of cases, where they come from, and their composition.
FogBugz also offers more advanced facilities such as adding screenshots to cases and filtering
cases to get just the ones that you need to work with at the moment. In this chapter, I’ll show
you how to manage cases easily and effectively.

The Three Categories of Cases
FogBugz supports three (and only three) categories of cases:

• Bugs

• Features

• Inquiries

Working with each of these is broadly similar, but there are differences. If you understand
the purpose of each of these categories, you can do a better job of making cases useful to your
whole team.

Bugs
Bugs are things that are wrong with the application. More precisely, a bug is something that the
submitter thinks is wrong with the product. When you’re training people to use FogBugz, it’s
important that you not scare them away from entering bugs. If you emphasize that bugs are for
things that are actually wrong, you can set up a thought process among casual testers that goes
like this: “Gosh, that looks like a bug to me. Maybe I should report it. But I haven’t read the
product spec. This is my first day working with the program. Maybe it’s supposed to work that
way. I’ll wait. I can always report it later if I find out for sure it’s a bug.”

The end result of this sort of thinking is that the bug never gets entered—and therefore
never gets resolved. Remember, developers can only resolve bugs that they know about. You
should let your testers know that when in doubt, they should open a bug. It’s a lot easier for the
program manager to close off a bug as By Design than it is for them to deduce the existence of
a rare bug that they were never told about.

18 C H A P T E R 2 ■ M A N A G I N G C A S E S

Features
Features are things that should be (in the opinion of the submitter) added to the product. You
can break down features further into two types. First, there are the features added by the product
manager as a way to assign tasks to developers. These features will normally be developed from
the product’s spec, as you learned in Chapter 1. Developers don’t usually have a choice about
these features; they must be implemented.

The second type of feature comes from testers, users, managers, and other stakeholders
who think they know what the product needs to make it more useful. These features have not
been through the winnowing process of spec writing, and may or may not be realistic. New
features from outside of the spec should first be assigned to the product manager, who can
make the call as to whether they fit in this release, need to be postponed, or should never be
implemented.

■Caution Sometimes you’ll find developers who enter features and then assign those features to them-
selves as a way to remember things that they intend to work on. You should discourage this practice if you
see it happening. The problem with this scenario is that one person is responsible for entering, resolving, and
closing the entire feature, so the rest of the team has no visibility. Encourage developers to submit their
features through program management like everyone else. The exception to this rule is in tracking tasks that
don’t need to be visible to anyone else; for example, developers might choose to maintain their own to-do lists
in FogBugz rather than by putting TODO comments in code. When in doubt, err on the side of making bugs
visible to more than one person.

Inquiries
Finally, inquiries represent questions from customers or other stakeholders. If you’ve set up an
e-mail mailbox for your project, anyone who knows the address of that mailbox can enter an
inquiry. Some inquiries may be answered by customer service people (for example, with the
URL of a knowledge base article that explains how to perform the task that the customer asked
about). Others will be reclassified as bugs or features.

■Tip Reserving inquiries for cases that come from completely outside of the project team gives you an easy
way to track the volume of feedback that you’re receiving.

C H A P T E R 2 ■ M A N A G I N G C A S E S 19

■Note No one will enforce this division of features, bugs, and inquiries on you. If you decide that it makes
more sense for your team to use inquiries to represent less severe bugs and general internal questions, that’s
fine. Just make sure that the whole team knows how things should be split up.

Where Do Cases Come From?
As you know, FogBugz stores all of its cases in a database. But where do those cases come from?
You may think of FogBugz as a strictly Web-driven application, but in fact there are five distinct
avenues that cases can take to get into the system:

• Web interface

• E-mail

• Discussion group

• ScoutSubmit

• Import

Let’s look at each of these in turn.

Entering Cases via the Web
In the typical FogBugz installation, most cases come in via the Web interface, which is shown
in Figure 2-1. Depending on how your server is set up, this interface may or may not be avail-
able to customers. Most organizations will choose to host their FogBugz server in such a way
that you need to log on to enter cases, so that customers without an account will not have
access to this screen.

You can normally create a new case this way by filling out less than a dozen fields (there
are more than a dozen fields on the page, but some, such as Estimate, aren’t likely to be filled
in by the person submitting the case). I’ll discuss some of these fields in more detail later in the
chapter in the section “The Parts of a Case.”

20 C H A P T E R 2 ■ M A N A G I N G C A S E S

Figure 2-1. Entering a case through the Web interface

Entering Cases via E-Mail
Cases from customers and others outside of your development group are likely to get into the
system via e-mail. Most FogBugz administrators will want to set up one or more mailboxes to
receive incoming cases. Figure 2-2 shows a typical case that arrived via e-mail, before anyone
from the project team worked on it.

C H A P T E R 2 ■ M A N A G I N G C A S E S 21

Figure 2-2. A case that arrived through e-mail

Note that the category for this case is automatically set to Inquiry. The FogBugz adminis-
trator can also define defaults for the other fields in the case. There are also a couple of extra
buttons for the case; with one click, you can dismiss an e-mailed case as spam, or send a reply
to the sender.

■Note I’ll discuss using FogBugz with e-mail extensively in Chapter 5.

■Tip Cases entered from e-mail will have a Reply button that sends mail to the original sender.

22 C H A P T E R 2 ■ M A N A G I N G C A S E S

Entering Cases via Discussion Group
FogBugz can also leverage discussion groups to create new cases in the system. This feature
lets you tap the collective knowledge and ideas of all your users. When a registered user of
FogBugz logs on and goes to a discussion group topic, they’ll see New Case links for each
message, as shown in Figure 2-3.

Figure 2-3. Reading a discussion group while logged on

Clicking the New Case link automatically creates a bug from the selected discussion group
message. The title of the bug will be set to the title of the discussion group thread, and the
contents of the message will be pasted into the bug description. The person porting the message
to a case can make any other necessary changes (such as setting the project and area) and then
click OK to create the case. Figure 2-4 shows a case created from one of the messages shown in
Figure 2-3.

C H A P T E R 2 ■ M A N A G I N G C A S E S 23

Figure 2-4. Case that started as a discussion group message

■Tip Cases entered from discussion groups will have a Reply button that sends mail to the original discus-
sion group poster, as well as a hyperlink to the discussion group posting.

Entering Cases via ScoutSubmit
Your FogBugz installation contains a file named ScoutSubmit.asp (or ScoutSubmit.php if
you’re using the Mac or Unix version). This file exists to take cases via a standard HTTP POST
mechanism. If you make ScoutSubmit.asp visible to the public, then anyone who can create a
properly formatted request can enter a bug. The ScoutSample.zip folder in your FogBugz
installation demonstrates two possible approaches to allowing case entry via ScoutSubmit.

24 C H A P T E R 2 ■ M A N A G I N G C A S E S

Figure 2-5 shows ScoutSample.html, which accepts results in an HTML form and packages
them up for sending to ScoutSubmit.

Figure 2-5. Entering a case via ScoutSample.html

Of course, ScoutSample.html exists only to show you the parameters that you can submit
in the HTTP POST. You ought to customize this page for your own uses. When you do so, you’ll
probably want to use hidden fields for some of the data, such as the default message to return
to the submitter and the FogBugz username.

The corresponding case for Figure 2-5 is shown in Figure 2-6. Note that there are several
special features to a case submitted this way:

C H A P T E R 2 ■ M A N A G I N G C A S E S 25

Figure 2-6. A case entered via ScoutSubmit

The Reply button sends a message to the e-mail address that was supplied via
ScoutSubmit.

The Scout Msg field lets you enter a message to be sent back to anyone else who reports
the same bug. You could use this to send workaround instructions or a suggestion to upgrade
to a later build.

The Scout Will field lets you choose whether to accept future duplicates of the same bug. If
you leave this set to Continue Reporting, new reports with the same title will be appended to
the original case. If you change it to Stop Reports, additional reports will be discarded.

The other tool FogBugz includes to work with ScoutSubmit is BugzScout, an ActiveX control
designed to construct the proper HTTP request. You can use this control in any application
that can host ActiveX, which is a pretty broad range. This lets you add automated or manual
case entry directly to your applications. For instance, you could implement Add a Bug as a
menu item in your next beta build. The FogBugz installation includes C++ and C# examples of
using BugzScout.

26 C H A P T E R 2 ■ M A N A G I N G C A S E S

■Note For more details on BugzScout coding, see Appendix B.

Importing Cases
Finally, you may need to import cases from another bug-tracking system. If you’re using the
open-source Bugzilla system (http://www.bugzilla.org/), then there’s a solution built into
FogBugz. Locate the importBugzilla.asp file in your FogBugz folder, and open it in your browser,
as shown in Figure 2-7.

Figure 2-7. Preparing to import bugs from Bugzilla

If you’re using something other than Bugzilla, things can be trickier, because you’re basi-
cally on your own. However, you do have one advantage: everything is stored in a single SQL
Server, Access, or MySQL database, and the field names are sensible. So if your existing bug-
tracking tool is backed by a database, you can use the tool of your choice (such as SQL Server
Data Transformation Services) to move the data from the old database to the new database.

The Parts of a Case
Now that you know all the different ways to open a case, it’s time to look at the fields that define a
case in more detail. Figure 2-8 shows a typical just-opened case. The developer got e-mail telling
her that she’d just been assigned a new case, and she’s opened it and clicked the Edit button.

C H A P T E R 2 ■ M A N A G I N G C A S E S 27

Figure 2-8. Editing a case

As you can see, there are quite a number of fields that can be edited for a case:

• Title

• Project

• Area

• Assigned To

28 C H A P T E R 2 ■ M A N A G I N G C A S E S

• Category

• Fix For

• Priority

• Due date and time

• Estimate

• Version

• Computer

• Notes

Some of these may be obvious to you; others are likely to be a little bit obscure. I’ll review
each of them in turn.

Title
Getting a good title for a case is absolutely critical. When you’re looking at a list of bugs, the title
is the best information that you have about the case’s contents. Although it’s possible to edit
the title, you should do so with care; other people on your team may be keeping an eye on the
bug and remembering it by title.

■Tip If you want to track a particular bug, you should use FogBugz’s e-mail subscription feature, discussed
in Chapter 5.

Some guidelines for writing good case titles:

• Keep them short. About 80 characters is all that you can depend on people seeing on
low-resolution screens.

• Make the title descriptive of the case. In some cases (such as the one shown in Figure 2-8)
the title can be so clear that the case doesn’t need any further description.

• Titles for bugs should state a problem: “CD-ROM fails to function after installing software.”

• Titles for features should specify what to implement: “Add popup Unicode conversion
table.”

• Avoid any language that you wouldn’t use in face-to-face conversation with stake-
holders in the project. “This software is lousy junk” may reflect your feelings when you
hit a bug that causes loss of data, but it’s not a good bug title.

C H A P T E R 2 ■ M A N A G I N G C A S E S 29

Project and Area
The choices in the Project and Area drop-down lists are set up by the FogBugz administrators,
and the lists of choices can’t be changed while you’re editing a case. This is a good thing, because
it keeps these lists from growing as everyone puts in their own idea of what the choices should
be. When you’re entering and editing cases, it should be fairly obvious which choices to make
in these lists (assuming your administrators did a good job of setting things up).

■Note I’ll discuss setting up projects and areas in detail in Chapter 3.

Assigned To
The Assigned To drop-down list includes everyone who’s a user of your FogBugz installation.
You can assign a case to another user in three ways:

• When you’re editing the case, you can choose a user in the drop-down list.

• Instead of editing a case, you can click the Assign To button, which lets you select a new
user and add notes without making any other changes.

• When you resolve a case, it’s automatically assigned to the user who entered the case in
the first place.

The first entry in the drop-down list will always be the primary contact for the project to
which the case is assigned. If you’re entering a new case, this is the person to whom FogBugz
will automatically assign the case.

Sometimes, people will want to share the ownership of a case among multiple people. In
principle this sounds good, but in real life, if a task or bug is owned by more than one person,
it is owned by nobody and gets neglected. That is why FogBugz is written to assume one person
per bug.

On the other hand, sometimes you have a team of people who are equally capable of
working on a set of tasks or bugs, and you want to be able to assign the bug to that team for a
while before you decide who is going to work on it. There are two ways to do this.

The traditional way is simply to assign it to the team lead. The team lead winds up with a
bunch of bugs that they are not going to work on personally, but which they haven’t yet passed
out to the team members.

Another good way is to create an account in FogBugz for the whole team in addition to
personal accounts. You can assign bugs to this virtual account, and tell the team members that
when they have a chance they should go through the bugs assigned to their team and then
personally assign to themselves any bugs which they are ready to work on. For example, you
might create a virtual account called “New Bugs,” with e-mail notification turned off on that
account, and set that as the project owner. The team members responsible for assigning bugs
could each check the bugs assigned to “New Bugs” regularly, using a saved filter, and assign the
bugs to individuals.

If there are several people who need to be notified whenever something changes about a
bug, they can all subscribe to the bug by clicking the small link at the bottom of the bug report.

30 C H A P T E R 2 ■ M A N A G I N G C A S E S

Category
The Category drop-down list is where you identify the case as a bug, feature, or inquiry. It makes
sense to edit this in some scenarios:

• If the product manager or developer determines that a bug isn’t in the scope of the orig-
inal spec, it can be reclassified as a feature.

• Inquiries from customers will often be sorted into bugs and features as the development
team works with them.

Fix For
The Fix For drop-down list lets you choose a release for which this bug needs to be fixed (or this
feature needs to be implemented). Like projects and areas, releases are set up by your FogBugz
administrators. Usually the value in this field will be assigned by the project manager, or possibly
by some triage committee. There’s nothing built into the software to prevent developers from
pushing back their own Fix For values to gain time to fix bugs, but managers are likely to notice
when bugs start piling up.

Priority
FogBugz allows you to assign each case a priority from 1 (the most important cases to resolve)
to 7 (cases that don’t need to be resolved). The FogBugz administrator can change the wording
of the priorities, but the scale will always run from 1 to 7. Experience has shown that most
people can’t distinguish between more gradations than that. If you’re entering a bug and unsure
which priority to assign it, choose a higher priority. That will get the attention of managers and
developers, who can always downgrade the case if they disagree with you.

Due Date and Time
Although each case should have a Fix For value, you probably don’t want a sudden avalanche
of fixes descending on your application’s source code the night before a release. That’s why
you can assign finer-grained due dates using these two controls. Typically, the project manager
will use these controls to even out workflow, dictate when features should be implemented,
and prioritize work.

You can click the calendar icon to select a date from a calendar or the clock icon to select
a time from a drop-down list. FogBugz also understands a variety of informal ways of speci-
fying a date or time. You can type phrases like these in the Due Date textbox, and FogBugz will
replace them with the correct date and time when you tab to another control:

• today

• tomorrow

• the day after tomorrow

• in 3 days

• in 1 week

C H A P T E R 2 ■ M A N A G I N G C A S E S 31

• Tuesday

• next Friday

• march 1

• 12/30 (or 30.12 outside the USA)

• 12/30/2006 (or 30.12.2006 outside the USA)

• June

You can also type some things in the Time textbox:

• noon

• midnight

• now

• in 1 hour

• in 3 hours

Estimate
The Estimate field is an essential part of using FogBugz as a project-tracking tool. Normally, the
person who creates the case will leave this field blank, to be filled in by the developer. The
developer should estimate the time that it will take to close the case and fill this in as soon as
they look at the case. Estimates are in days and hours, and you can use the format 6h or 3d8h
to enter them.

After you’ve entered an estimate, FogBugz presents some additional controls in this area,
as shown in Figure 2-9. You can’t change the original estimate, but you can reestimate the total
work by entering a value in the Current textbox, and show how much effort has been expended
in the Elapsed textbox.

Figure 2-9. Editing an estimate

■Note For more information on using estimates, see Chapter 4.

Version and Computer
The version and computer fields accept free-form text. Typically, the person who originally
enters a bug will put the software version where the bug appeared in the Version field, and the
name of their computer in the Computer field. Knowing the name of the computer can help
track what’s going on when you’re running automated tests in a lab, for example.

32 C H A P T E R 2 ■ M A N A G I N G C A S E S

■Tip You should assign a version number to every build of your software and make sure it’s easy for testers
to find (perhaps by putting it on the help menu or in the title bar). This will help ensure accurate use of the
Version field.

If you decide that you don’t require these two pieces of information, your FogBugz admin-
istrator can rename Version and Computer to capture any two other pieces of information. For
example, you might decide that you don’t care about computers, but you do care about the
operating system of the computer where the case was reported. That’s fine; just have the
administrator rename the Computer field to Operating System and you’re ready to go.

■Note For more details on customizing these fields, see Chapter 3.

■Tip New installations of FogBugz 4.0 will have these fields turned off by default. If you don’t see them, your
administrator can turn them on in site settings.

Notes
Finally, the free-form notes field serves as a scratchpad and history area for the case. As different
people work with the case, FogBugz makes notes of actions such as resolving the case, reacti-
vating it, or closing it. Figure 2-10 shows what the notes might look like in a case that’s bounced
around a bit.

When you’re deciding how much detail to add in notes for a case, remember that these
notes are part of your institutional memory. If the question “Why did we do it that way?” comes
up, it’s nice to be able to look back and see the debate as it happened. It’s especially important
to record the details if you’re responsible for a decision that might be controversial in the future.
For example, if you resolve a bug report as “Won’t Fix,” be sure to explain your reasoning in the
notes. This will help keep the original reporter from just reopening the bug on the theory that
you didn’t understand it.

■Note Because FogBugz cases can be linked directly to source code, there’s no need to copy code or
comments from the actual source code into the notes. See Chapter 6 for more information on how to tie
FogBugz together with your source code control system.

C H A P T E R 2 ■ M A N A G I N G C A S E S 33

Figure 2-10. A case with a selection of notes

34 C H A P T E R 2 ■ M A N A G I N G C A S E S

Using Screenshots and Attached Files
Cases in FogBugz aren’t limited to the words that you type in. You can also add files to cases to
make it easier for the developer to understand what’s going on. FogBugz includes its own dedi-
cated screenshot tool. For other files, there’s a general-purpose way to attach files to any case.

Taking Screenshots
Sometimes, describing a bug in words is tedious. Other times it’s simply impossible. If there’s
a subtle problem with control rendering on one version of Windows, for example, you don’t
want to have to specify the number of pixels that you think are wrong on the vertical lines. A
much better choice is to take a picture and attach it to the bug report. Fortunately, FogBugz
supports its own Screenshot tool for either Mac or Windows desktops.

To set up the Screenshot tool, log on to FogBugz and click the Capture Screenshots link on
your FogBugz home page. This will take you to another page from which you can do the actual
download for your operating system. After downloading and installing the program, you’ll
have a bug icon on your Windows taskbar, as shown in Figure 2-11, or a bug icon on your Mac
menu bar, as shown in Figure 2-12.

Figure 2-11. FogBugz Screenshot program on Windows

Figure 2-12. FogBugz Screenshot program on Mac OS X

C H A P T E R 2 ■ M A N A G I N G C A S E S 35

The Mac and the Windows version of the Screenshot tool are almost identical but differ in
small ways.

After you’ve installed the Screenshot tool, click the bug icon to perform a capture. A single
click is all it takes. On Windows, the Screenshot tool captures the active window by default, as
shown in Figure 2-13.

On Mac OS X, select the bug icon in the menu bar at the top of the screen, and then choose
Whole Screen, Mouse Selection (for just part of the screen), or Window Selection (to grab a
specific window). If you choose Window Selection, the cursor will change to a camera, and
then you can highlight and select the window you want, as shown in Figure 2-14.

Figure 2-13. Taking a screenshot on Windows

36 C H A P T E R 2 ■ M A N A G I N G C A S E S

Figure 2-14. Taking a screenshot on Mac OS X

After you take a screenshot, you can use the hyperlinks to the right of the work area to
modify the screenshot. On Windows, you can crop the screenshot (making it smaller) or high-
light an area to illustrate where the bug appears (which surrounds it with a bold red rectangle).
On Mac OS X, you have to crop before you take the screenshot by choosing Mouse Selection,
but you can still highlight the screenshot after you take it. Then you can decide whether to
submit the screenshot as a new case or to attach it to an existing case. To attach the screenshot
to an existing case, you must know the case number. Figure 2-15 shows a case with a screen-
shot; the screenshot shows up directly in the browser when you view the case.

C H A P T E R 2 ■ M A N A G I N G C A S E S 37

Figure 2-15. A case with a screenshot

Right-clicking the Windows Screenshot tool brings up a menu with the following options:

• Capture Screenshot Now: This is equivalent to just clicking the tool.

• About FogBugz Screenshot: Shows information about the program.

• New Case: Opens a browser window ready to enter a new case. This is the fastest way to
start a new case if you have the Screenshot tool running.

• Exit: Removes the Screenshot tool from the taskbar and closes the application.

38 C H A P T E R 2 ■ M A N A G I N G C A S E S

Right-clicking the Macintosh Screenshot tool brings up a slightly different set of menu options:

• Whole Screen: Captures the entire desktop window.

• Mouse Selection: Captures a specific piece of the desktop.

• Window Selection: Captures a specific window.

• New Case: Opens a browser window ready to enter a new case. This is the fastest way to
start a new case if you have the Screenshot tool running.

• Quit: Removes the Screenshot tool from the menu bar and closes the application.

Attaching Files
When you’re editing any case in FogBugz, you’ll find an Attach a File control directly under the
active Notes area. You can type in the name of a file here, or use the Browse button next to it to
locate a file on your hard drive. When you click OK to save your edits, FogBugz will also upload
the file and store it with the case. If you browse to a case that includes an attached file, you’ll
see a paper clip icon and the file name. If the file is recognized as an image type, such as .jpg or
.gif, it will be shown as part of the case. Click either the icon or the file name to open the file.

Attachments are useful for a number of purposes:

• To collect configuration files specific to a particular test machine

• To store log files of the actions leading up to a case

• To hold output files that show a problem

■Caution If you allow public access to your FogBugz site, you need to exercise caution in clicking links to
attached files. FogBugz will do its best to protect you from dangerous file extensions (such as .exe, .scr, and
.pif) by adding .safe to the end of the file name. If you click one of these files, your browser will prompt you to
save the file instead of immediately executing it.

Linking Cases
Sometimes you want to indicate that two cases are related. For example:

• You might determine that a case is a duplicate of an existing case.

• A bug might be a regression of a feature that was previously implemented.

• A case might incorporate incidental suggestions from another case.

FogBugz offers two ways to link cases. First, you can create a link between cases just by
typing the word “case” or the word “bug” followed by a case number. For example, Figure 2-16
shows a bug entered as a follow-up to another bug. Note that the words “Case 19” have been
automatically hyperlinked by FogBugz.

C H A P T E R 2 ■ M A N A G I N G C A S E S 39

Figure 2-16. Linking a case to another case

Any time FogBugz creates a link, it makes the link bidirectional. When you open the linked
case, you’ll see that it lists a related case in its fields, as shown in Figure 2-17.

■Note Linking is not transitive. That is, if you link case 23 to case 19, and case 42 to case 19, then case
19 will show both case 23 and case 42 as related cases, but case 23 and case 42 will not be related to each
other.

The other way to create a link between two cases is to resolve a case as a duplicate. When
you resolve a case as a duplicate, FogBugz will prompt you for the number of the duplicate
case. Both cases will then show up as duplicates of each other when you browse to them in the
future. This is especially useful when the cases seem to be different at first glance but have the
same underlying cause.

40 C H A P T E R 2 ■ M A N A G I N G C A S E S

Figure 2-17. Link to a related case

Filtering Cases
If your team is diligent about using FogBugz, you’ll quickly go from having dozens of cases in
the system to hundreds to thousands. Trying to find one case in that huge pile would be diffi-
cult. Fortunately, there’s an easy way to focus on just the cases you need. FogBugz supports the
notion of a filter; at any given time, FogBugz only shows you a list of the cases that match your
current filter.

Selecting a Filter
When you log on to FogBugz, the right side of your home page shows a list of saved filters under
the “Show Me” title, as shown in Figure 2-18. By default, this list will only include Inbox (a filter
that shows inquiries in the Inbox that are waiting to be processed) and My Cases (a filter that
shows all open cases assigned to the current user). The user in Figure 2-18 also has several
custom filters on her list.

C H A P T E R 2 ■ M A N A G I N G C A S E S 41

Figure 2-18. A list of filters

Clicking a filter opens a list of cases that match that filter. For example, Figure 2-19 shows
the cases that match the All open SM cases filter from Figure 2-18.

Figure 2-19. Cases that match a particular filter

42 C H A P T E R 2 ■ M A N A G I N G C A S E S

You can also select a saved filter from the Filters menu at the top of the screen at any
time to see the cases that match that filter. You don’t need to return to the home page to
select a new filter.

■Tip Clicking the List shortcut in the menu always returns you to your most recent filter.

Modifying Filters
Filters are made to be easy to change. Suppose you’re looking at the open cases for a particular
project, and you can’t find the case that you’re looking for. Perhaps someone has closed it. At
the top of the list of cases, you’ll see information about the current filter. First comes the name
of the filter (“All open SM cases” in Figure 2-19). Next comes a series of conditions showing the
parts that make up this filter. Click any of the underlined words to pop up a menu that lets you
modify the current filter, as shown in Figure 2-20.

Figure 2-20. Modifying a filter

For example, clicking Open gives you a menu that lets you choose open cases, closed
cases, or all cases. To switch from looking at open cases to looking at closed cases, just click
Closed in the menu. FogBugz will change the filter and refresh the screen to show you the cases
that meet the new filter.

■Tip If you click one of the filtering links by mistake, just click anywhere on the page to close the menu.

You can also add additional conditions by clicking the name of the filter. This will display
a menu that includes all of the possible filtering conditions. Click one of the plus signs to see
the choices in that condition, and then click a choice to add it to the filter. Figure 2-21 shows
this menu.

C H A P T E R 2 ■ M A N A G I N G C A S E S 43

Figure 2-21. Adding a condition to a filter

You can set up filter conditions for just about anything about a case. The available filtering
choices include the following:

• Open or closed cases

• Cases without estimates

• Cases to which you are subscribed

• Cases in a specific category

• Cases from a specific project

• Cases from a specific area

• Cases opened by a specific person

• Cases assigned to a specific person

• Cases with a particular status (“Active,” “Resolved (Duplicate),” and so on)

• Cases with a specific Fix For value

• Cases with a specific priority, with a priority at least equal to a specific priority, or with a
priority at most equal to a specific priority

44 C H A P T E R 2 ■ M A N A G I N G C A S E S

• Cases opened in a particular time period

• Cases resolved in a particular time period

• Cases closed in a particular time period

• Cases due in a particular time period

• Cases e-mailed from or to a particular correspondent (or, since you can use partial
matching here, from a specific domain)

• Cases with a specific version

• Cases with a specific computer

You can also choose to sort the filter on up to three fields and set a limit on the number of
cases that the filter can return.

Clicking Customize at the bottom of the conditions list or selecting Customize from the
Filters menu at the top of the screen will take you to the filter customization screen. This
screen, shown in Figure 2-22, lets you make changes to the current filter by selecting from
drop-down lists.

To apply changes from the filter customization screen and return to the list of bugs, click
OK at the bottom of the screen. You can also use this screen to save the changes under a new
name by supplying a name in the Save As box before you click OK. The newly saved filter will
now show up in your Filters menu list and on your home page.

C H A P T E R 2 ■ M A N A G I N G C A S E S 45

Figure 2-22. Customizing a filter

46 C H A P T E R 2 ■ M A N A G I N G C A S E S

Saving, Managing, and Sharing Filters
In addition to saving filters from the filter customization screen, you can also save a filter
directly from the list of cases. After you’ve tweaked a filter to get what you want, select Save
Current Filter As from the Filters menu. You’ll be prompted to fill in a filter name. Choose a
name that describes the filter and click OK to add this filter to your list of saved filters.

Select Manage Saved Filters from the Filters menu to open the screen shown in Figure 2-23.

Figure 2-23. Managing saved filters

This screen shows you all of the custom filters that you’ve created. For each filter, you can
perform these actions:

• Share the filter with the entire team by checking the Shared checkbox. The filter will now
appear on everyone’s list of filters. This checkbox is only available to FogBugz
administrators.

• Edit the conditions for the filter by clicking the icon in the Edit column.

• Delete the filter by clicking the icon in the Delete column. There’s no confirmation for
this action, so be sure you really want to delete the filter before you click!

• View the cases that match the filter by clicking the filter name.

• View the RSS feed for the filter by clicking the RSS icon.

■Note You’ll learn about RSS in Chapter 4.

C H A P T E R 2 ■ M A N A G I N G C A S E S 47

Working with Filtered Cases
Often, you want to work through a list of cases—checking that they are assigned to the right
person, reevaluating their priorities, and so on. FogBugz makes this easy by providing Next and
Previous links in the top corner of each case, which show the next or previous case in your
current filter. Thus, you don’t have to keep going back to the full list to see each case.

■Caution If you change the case’s position in the filter while you work through the list, you may be confused by
the behavior of the Next button. For example, if your filter lists cases in order of priority, and you change a
case’s priority to be higher, clicking Next will take you to a case you’ve already seen. The easiest way to
prevent this is to use a stable sort order, for example, sort by Case ID number, which won’t change as you
work through the list.

Another thing that makes working with a long list of cases simpler is that FogBugz carefully
coordinates with your Web browser to ensure that bugs you’ve already seen are shown in the
“visited links” color (usually purple), while bugs you haven’t seen are in the “unvisited links”
color (usually blue). So if you’re trying to look at just the new bugs that match a filter, click each
blue link in turn until they’re all purple.

FogBugz will even change the URL for any bug that changes after you last looked at the
details. That way, if anything changes about a bug that you’ve already looked at, the link to that
bug will appear blue again.

Searching for Cases
FogBugz also lets you find cases by searching for them—at least, if you can come up with a
good search term. There’s a search box at the upper left of every page in FogBugz. Type in a
search term and click the Search button to search cases. By default, FogBugz searches the full
text of every open case for the exact phrase that you typed. You can also open a separate search
page by clicking the Search button without typing any text in the box. This page lets you limit
your search to title text or include closed cases in the search.

■Tip To quickly jump to a case, type the case number in the search box and hit Enter.

FogBugz uses a reasonably sophisticated full-text searching algorithm:

• To search for an exact phrase, enter the phrase (“rotary engine”).

• To search for cases containing two words, but not necessarily an exact phrase, use AND
(“screen AND repaint”).

• To search for cases containing one or both of two words, use OR (“crash OR failure”).

48 C H A P T E R 2 ■ M A N A G I N G C A S E S

• To search for two words in close proximity, use NEAR (“string NEAR regedit”).

• To search for words starting with a set of characters, use * as a wild card (“Subscri*”).

Filtering done by the search process is temporary. If you click the List menu item, you’ll go
right back to looking at cases that match your current (pre-search) filter.

Using List and Grid Views
So far, I’ve shown you lists of cases in FogBugz’s grid view. This is the default view for new
users. Grid view shows you your cases in a grid that contains up to seven columns. Each
column contains a particular piece of information on the case.

■Note In addition to the seven columns of information, there’s a checkbox for selecting bugs. You’ll learn
about the use of this checkbox to modify cases in bulk in Chapter 3.

You can change the columns for grid view by clicking the Options menu item. Figure 2-24
shows the section of the Options page that lets you select the columns for your own personal
grid.

Figure 2-24. Choosing columns for the grid view

Alternatively, you may want to view cases in the newspaper-like list view. If you’re viewing
cases in grid view, click the Switch to List View link above the grid. This will change the list of
bugs to list view, as shown in Figure 2-25, while preserving the current filter. Note that list view
includes a Switch to Grid View link, so it’s easy to get back.

C H A P T E R 2 ■ M A N A G I N G C A S E S 49

Figure 2-25. Viewing cases in list view

Each view has its own advantages. In grid view, it’s easy to get an overall sense of the cases
that match the current filter, and easy to scan down the list to find a case that you want. In list
view, you have the benefit of seeing the summary boxes to the left of the list, which gives you a
quick way to see how cases are distributed among projects, releases, priorities, and persons.
Plus, in list view you also get to see the picture of the day.

50 C H A P T E R 2 ■ M A N A G I N G C A S E S

■Tip If you’d like list view to be your default, go to the Options page, click the List View tab next to the list
of grid columns, and click OK.

Being a Good FogBugz Citizen
At this point you’ve seen many of the capabilities of FogBugz (though there are still plenty
more things to learn in the rest of the book!). There’s more to working with cases than just
understanding the mechanics of FogBugz, though. To conclude this chapter, I’ll offer some
advice on how testers, developers, and managers should work with FogBugz to ensure a
smooth-running operation.

Working with FogBugz As a Tester
As a tester working with FogBugz, you should

• Carefully choose descriptive titles for new cases.

• Prevent duplicate bugs by searching for existing cases before entering new ones.

• Include the three essential parts (reproduction steps, expected behavior, actual
behavior) for every bug.

• Experiment to come up with the simplest possible set of reproduction steps.

• Confirm the resolution of bugs that are assigned back to you in a timely manner.

Working with FogBugz As a Developer
As a developer working with FogBugz, you should

• Review new cases assigned to you quickly so you can ask for more information if necessary.

• Not resolve bugs as “Not Reproducible” without checking with the tester first.

• Not resolve bugs as “Won’t Fix” or “By Design” without the product manager’s approval.

• Have a tester enter any bugs that you find, so that someone other than yourself will be in
the loop as the bug is resolved.

• Use the source code control features of FogBugz to associate code fixes with bug fixes.

• Keep time estimates up to date.

• Keep case priorities in mind as you set your schedule.

C H A P T E R 2 ■ M A N A G I N G C A S E S 51

Working with FogBugz As a Manager
As a manager working with FogBugz, you should

• Use FogBugz to assign features, so that they can be tracked like other cases.

• Quickly review new cases so you can assign them to the proper developer.

• Set up filters that allow you to track activity in the projects that you’re responsible for.

• Set up filters for very old cases to warn you of potential trouble spots.

Summary
In this chapter, you learned how you can work with FogBugz on a day-to-day basis. You learned
about the different categories of cases and the different ways in which a case can get to FogBugz.
You also saw the parts of a case and learned which information should be entered where. I also
demonstrated some of the useful tools that FogBugz provides for your daily work: screenshots,
filters, and links.

You might be wondering at this point where some of the choices in FogBugz come from.
For example, who chooses the projects and areas that are available to you when you enter a
new case? For the answer, turn to the next chapter, where I’ll cover some of the customization
that your FogBugz administrator can do to the product.

53

■ ■ ■

C H A P T E R 3

Making FogBugz Work for You

No software package is perfect for every user right out of the box—not even FogBugz! By now,
you know how to work effectively with FogBugz once it’s all set up, but I haven’t yet discussed
customization. The good news is that FogBugz allows you to customize a wide variety of things
about your installation to make it work the way you need it to. In this chapter, I’ll review the
various administrative tasks involved in fine-tuning FogBugz to be right for your own project
management.

Setting Up Users and Groups
When you first install FogBugz, a single user is already set up as the FogBugz administrator—
conveniently named “Administrator.” This initial user does not count against your FogBugz
license count. No matter how many licenses you purchase, you always get an administrator
account for free. So if you have 12 people using FogBugz, and one of them will primarily func-
tion as an administrator, you only need to purchase 11 licenses.

You’ll certainly want to create other users, though. One of the strengths of FogBugz is its
ability to track who has done what on any given case, and you can’t do that if everyone is logging
in as the same user.

Creating Users
Any FogBugz administrator can create a new user by selecting the Users item on the Adminis-
trative Tools bar. This opens the current user list, as shown in Figure 3-1.

54 C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U

Figure 3-1. Viewing the current list of users

Click the Add New Person link at the bottom of this screen to add a new user. This opens
up a blank form that you can fill in to create the new user account. You need to provide ten
pieces of information to create a new user:

• The full name of the user. This is the name that FogBugz will display throughout the
application.

• The e-mail address for the user. If the user has more than one e-mail address, and they
want all FogBugz e-mail sent to all of their addresses, enter them separated by commas.

• The user’s phone number. This is displayed on the user list in case someone needs to
contact the user outside of the system for more information.

• Whether this user should receive e-mail notifications. You should almost always leave
e-mail notifications turned on. If you turn them off, the user won’t be notified when
they’re assigned a case in the system.

• Whether this user should receive escalation reports. Escalation reports, sent once a day
by FogBugz, list all of the cases that are past due or due that day. You’ll learn more about
escalation reports in Chapter 4.

C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U 55

• Whether this user is an administrator. I’ll discuss administrators further in the next
section of this chapter.

• Whether this particular user is active. Your license count limits the number of active
users you have, but you can also have any number of inactive users who can’t log on.
You’ll almost always want new users to be active when you first create them, unless
you’re preparing for new licenses that you haven’t purchased yet.

• The snippet activation key for the user. FogBugz supports inserting snippets of saved
text by typing the name of the snippet and pressing this key. You’ll learn more about
snippets in Chapter 5.

• The columns to display on this user’s list of cases. You learned about selecting columns
in Chapter 2.

• The user’s password.

When you’ve filled in all of the required information, click OK to create the new user.
Assuming that you’re not trying to exceed your license count, FogBugz will create the user
immediately. If you do happen to exceed your license count, FogBugz will append a warning to
the user list, as shown in Figure 3-2.

Figure 3-2. Warning from exceeding the license count

If you don’t have more licenses to install, you’ll need to make some users inactive. To do
so, click a user name in the user list or click the edit icon next to the user name. Either way, you’ll
end up at the options page for that user. Set the status for the user to inactive and click OK.

■Note FogBugz doesn’t let you delete users because that would potentially leave a hole in the history of
existing cases.

The options page also lets administrators edit the information for any user. A user who is
not an administrator can use the Options link in the FogBugz menu to edit some of their own
information:

• E-mail address

• Phone number

• E-mail notifications

• Escalation reports

• Snippet activation key

• Display columns

• Password

56 C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U

Users who are not administrators can’t edit the information for other users. In fact, if
you’re not an administrator, you can’t even view the list of users. You can, however, get infor-
mation on any particular user who has worked with a case that you’re interested in. Just click
the user’s name anywhere in the case to get that user’s information, as shown in Figure 3-3.

Figure 3-3. Public information on a user

The Power of FogBugz Administrators
Any FogBugz user can be made into an administrator. You can have as many administrators as
you want (up to your total number of licensed users plus one). You’ve already seen some of the
things that only administrators can do. Here are the abilities that are reserved for administrators:

• Configure and add users, and change their passwords (though users can also change
their own passwords).

• Set up projects.

• Set up areas.

• Set up releases.

• Set up clients.

• Set up departments.

• Customize the working schedule.

• Configure all aspects of the FogBugz installation.

• Install new licenses purchased from Fog Creek.

C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U 57

Also, all administrators receive a copy of the e-mail that is sent when users choose the
Email your FogBugz Administrators option on the Help menu. It’s easy to tell when you’re
logged on as an administrator: you’ll see the Administrative Tools bar at the top of the screen
along with the regular set of tools for all users.

■Note FogBugz doesn’t support creating groups of users, but you can get some of the benefits of groups
by working with clients, departments, and permissions, as you’ll learn later in this chapter.

Setting Up Projects, Areas, and Releases
After you’ve created your FogBugz users, you’ll probably want to set up projects and areas
within those projects. Projects and areas form a hierarchy that lets you sort cases in ways that
make sense for your organization. Releases add one more dimension to this hierarchy. Each
project can have its own set of releases, and you can also share releases between projects.

Creating and Editing Projects
It’s possible that your organization is small enough that you’re only working on a single project.
But more likely, you’ve got more than one iron in the fire. On a typical software team, you’ll set
up a project for each individual product that you have under development. This lets you sort
cases so that the developers, testers, and managers working on a particular product only have
to deal with the cases that concern them.

■Tip Don’t make the mistake of thinking that projects absolutely must map directly to products. If your
requirements are unusual, it may make more sense to brainstorm an alternative arrangement. For example,
if your primary business is customizing an off-the-shelf product for a vertical market, and you assign custom-
ization to representatives around the country, you may want to set up one project for each geographical region.

If you’re an administrator, you can see a list of projects that are already in the system by
clicking the Projects link on the Administrative Tools bar. This will open the list shown in
Figure 3-4.

58 C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U

Figure 3-4. List of projects in FogBugz

■Note You’ll see in Figure 3-4 that one of the projects has a note indicating that it’s an Inbox. Only e-mail–
enabled projects will have such a note, and you can’t edit these notes yourself through the FogBugz user
interface. See Chapter 5 for more information on e-mail enabling a FogBugz project.

From the project list, you can perform these actions:

• Edit a project by clicking the edit icon or the project name.

• Delete a project by clicking the delete icon.

• View details on the associated client or department by clicking the client or department
name (you’ll learn more about clients and departments later in this chapter in the
section “Setting Up Clients and Departments”).

• View details about the project’s primary contact by clicking the primary contact’s name.

• Create a new project by clicking the icon or text at the bottom of the list.

When you choose to create a new project, FogBugz presents you with the screen shown in
Figure 3-5.

To get started, you need to choose a name for the new project. Ordinarily, this should be
the name of the product, though you can use any arbitrary string of characters up to 128 char-
acters in length.

C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U 59

Figure 3-5. Creating a new project

■Tip Don’t include the release number in the project name; you’ll set up releases for that. By including
multiple releases of the same product in one project, instead of creating a project for each release, you’ll
make it easier to move cases from one release to another.

You also need to select a FogBugz user to be the primary contact for the new project. The
primary contact is the person whom you’ve designated to look at cases and assign them to the
appropriate person to fix. When someone enters a new case, they usually leave it assigned to
the primary contact, the default. The primary contact will get e-mail as soon as the case is
saved for the first time, so they’ll know to look at the case and assign it to the proper person on
their team.

■Tip If you are working on a large project team, you may want to have several people who help categorize
new cases. To do this, you can (assuming you have enough licenses) set up a virtual user account called “Up
For Grabs” and make Up For Grabs the owner of the project. You can use as many e-mail addresses as you
want for Up For Grabs, separated by commas, so that a group of people receives an e-mail notification when-
ever there’s a new bug in a particular project. Anyone who wants to help sort through new bugs can create a
saved filter on “all cases assigned to Up For Grabs,” which they check occasionally.

60 C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U

Finally, you can choose whether to allow public submissions to the project. If you do allow
public submissions, and your FogBugz server is at a URL that is publicly available, then it’s
possible to submit cases to the project without being logged in to FogBugz. In most cases, I’d
suggest you use the e-mail features of FogBugz to allow anonymous cases and keep your FogBugz
server off the Internet instead of allowing direct public submissions, for a little bit of extra security.

Clicking OK on this screen will create the new project and return you to the list of projects.
The next step is to click the project name so that you can create areas and releases for the project.
Figure 3-6 shows the project editing screen for a brand new project.

Figure 3-6. Editing a brand new project

C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U 61

Creating and Editing Areas
Within each project, you can divide cases into areas. The primary use of areas is to let people
find the cases that they’d like to work with by creating filters for a particular area. For example,
you might have separate areas for the code and the documentation of your project.

In general, you’ll find that the fewer areas you have, the more likely people are to catego-
rize cases correctly into the right area. Think of it this way: if you have 100 areas, everybody who
enters a case is going to have to consider each of those 100 areas to decide which area is the
best fit. Inevitably, cases will be miscategorized, and the pain of choosing an area may even
make people enter fewer cases. If it’s easier to jot down a case than enter it into FogBugz, you’re
going to lose the benefit of bug tracking.

When you first create a project, FogBugz creates a default area for that project named
Misc. To create a new area, click the Create New Area link on the project’s editing screen. This
will open a screen that prompts you for the single piece of information required to define an
area: the area’s name. Enter a name, click OK, and FogBugz will create the area.

■Tip FogBugz automatically creates special areas to handle spam and unsorted mail in e-mail–enabled
projects. You’ll be able to identify these areas by notes on the listing of areas. You can’t add notes to your own
custom areas through the FogBugz user interface.

You can also edit and delete areas from the project editing screen. If you delete an area,
cases that were previously assigned to that area remain assigned to that area, but you cannot
assign new cases to that area.

For many projects, you’ll be able to identify a small set of areas, each of which belongs to a
different user. For example, you might end up with Documentation, Setup, and Core as your
areas, as well as the default catch-all Misc area. Set up these few areas when you first create the
project, and use them to categorize the initial cases as they come in. Then add areas only after
careful consideration and only if they are needed for a particular filter that you want to create.
For example, if you have a developer concentrating on the Web interface, and they need to see
all the bugs related to the Web interface, create an area named Web UI. Don’t create more areas
than you need for filters, because the more you have, the more likely cases will be misfiled.

Creating and Editing Releases
Another way to categorize cases within a project is by the release of the software. You’ll want to
have one release in FogBugz for each release of the software that you plan to make. Even when
a project is just getting underway, you can probably visualize the first several releases: Alpha,
Beta 1, Beta 2, RC1, RC2, 1.0, and 2.0 might make a reasonable initial set. Unless you have an
overwhelming number of development and testing resources to call on, you probably need to
project your releases into the future. That way, as you’re considering bugs and feature requests,
you’ll have the flexibility available to assign them to future releases. It’s a fact of software life
that we rarely get everything we want into the first (or second, or third) release of a project.

You’ll find two sections for releases on the project editing screen: Releases (This Project)
and Releases (All Projects). FogBugz ships with a release called “Undecided” as a default global
release (that is, one that’s available to all projects). If you don’t do anything to create more releases,

62 C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U

every project will let you assign cases to the Undecided release, which doesn’t have a particular
due date. To edit a global release, go into any project’s editing screen. Another useful global
release is one named ASAP for things that need to be done right away. The ASAP release doesn’t
exist by default, but as you’ll see shortly, it’s easy to create one.

To create a new release, click one of the Create New Release links on the project editing
screen (which one depends on whether you want the release to be available only in this project
or to be available in all projects). This will open the screen shown in Figure 3-7.

Figure 3-7. Creating a new release

To create a release, give it a name (such as “1.0” or “Third beta”) and assign it a release
date. You can change this date later, but you should try to pick a realistic date in the first place
so that people can budget their efforts. The other property you can set for a release is whether
it’s assignable. After a release has already shipped, it doesn’t make any sense to assign new
cases to it. You should set the Assignable field of the release to “No” to prevent new cases being
assigned to a release that has already shipped. This also makes the list of releases shown when
you enter a new case shorter by not showing this release at all.

■Tip You can use plain language such as “next month” or “pnext Tuesday” in the Release Date field, and
FogBugz will convert the text to an actual date when you tab out of the field. You can also click the calendar
icon to choose a date on a calendar.

C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U 63

When you click OK to create a new release, FogBugz will return you to the project editing
screen. You can edit the details of a release by clicking the edit icon or the name of the release.
Note that you can’t delete a release. If you no longer want a release to be available, edit the
release and set it to be nonassignable.

The date of a release doesn’t necessarily need to be a date. You can also use “(None)” to
create a release with no date. But you can’t use arbitrary text as the release date. If you want to
tie a release to an event rather than a calendar date, set the release date to “(None)” and set the
name of the release to the event, for example, “ASAP” or “Never” or “After VC Funding”.

All of the assignable releases for a project will show up in the Fix For drop-down list when
you enter a new case for that project. By default, new cases will be assigned to the Undecided
global release, but whoever reviews new cases should assign them to their proper release quickly.
This makes it easier to tell how much of the workload is assigned to each release.

As the date for a release nears, you’ll probably want to create a filter to see all of the features
and bugs that are assigned to that release.

When a certain release is coming up, you can create a filter to see all the features and bugs
that need to be fixed for that release. Figure 3-8 shows how you might create a filter for a partic-
ular release. Note that you need to select the project first to see all of the releases for that
particular project in the release drop-down list. In this case, the user is also choosing to focus
only on active, open cases.

■Note For more information on working with filters, see Chapter 2.

When you fix a bug or implement a new feature, before you resolve the case, double-check
that the Fix For setting is correct; that way a filter on a past release can also be used as an histor-
ical record of which bugs were fixed in that release, and which new features were implemented
for that release.

FogBugz also allows you to create release notes tied to a particular release and to update
these release notes as you close cases assigned to the release. I’ll discuss release notes in
Chapter 4.

Don’t confuse releases and versions. When you’re entering a new case, you pick the release
from a drop-down list, and enter the version as free-form text. The release is when you plan for
the bug to be fixed or the feature to be implemented. The version is when you spotted the bug.
Typically, you’ll have more versions than releases; if you’re using an automated build process,
you probably have one version per day, or even more.

64 C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U

Figure 3-8. Filtering by release

Setting Up Clients and Departments
The levels of grouping I’ve been discussing so far apply to individual cases. But FogBugz offers
two optional ways to group your projects as well. These groupings can’t be applied to individual
cases, but they’re still useful in organizing your cases:

• Grouping by client

• Grouping by department

Grouping projects by client is helpful when you work with multiple clients, each of which
may have multiple projects. You can also group projects by department, which is helpful when
your team is divided into different departments, each of which may work on multiple projects.

C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U 65

■Note Internally, clients and departments are treated in exactly the same way: they’re both ways to group
projects. Because clients and departments are stored in the same table in the FogBugz database, each project
can be assigned to exactly one client or one department, but not both.

FogBugz installs with a default client named Internal and no departments. To use these
grouping features, you first need to set up your clients or departments (or both). Log on as an
administrator and click the Clients link to get a list of clients, as shown in Figure 3-9.

Figure 3-9. Listing clients

From the client listing screen, you can

• Click the edit icon or the client name to edit the details of the client.

• Click the Delete icon to delete the client. Note that you cannot delete the default
Internal client.

• Create a new client by clicking the Create New Client link.

When you click the Create New Client link, FogBugz will open the screen shown in
Figure 3-10.

66 C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U

Figure 3-10. Adding a new client

To create a client, you need to give the client a name and, optionally, some notes. Then
click the OK button to create the client. You can also assign permissions on a user-by-user
basis; I’ll discuss permissions in the next section of this chapter.

Creating a department works very much like creating a client. There’s a department listing
page that looks like the client listing page, and a department edit page that looks like the client
edit page. In fact, they’re pretty much the same pages, with the exception of saying “department”
instead of “client” everywhere.

C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U 67

After you’ve created the clients or departments that you need, edit your projects one by
one. As soon as you create any clients or departments, the editing screen for a project will
display a new drop-down list that lets you choose the client or department, as shown in Figure 3-11.

Figure 3-11. Assigning a project to a client

There are two main reasons that you’d want to group projects by client or department.
First, doing so allows you to create a filter that lists all cases for a certain client or all cases in
a certain department that you care about. Second, user access can be granted on a client or
departmental level. This means that it’s possible to create FogBugz accounts for your clients
such that they can only see their own cases. You can also partition departments so that users
can only see cases in their own department. I’ll cover these techniques next.

Setting Up Permissions
The major reason for setting up clients and departments is to use them for access control.
FogBugz allows you to set up permissions (access control) so that only certain users can see or
modify certain cases. Before you can start assigning permissions, you need to create at least
one client or department.

Typically, you will use FogBugz access control for one of two purposes:

• Hiding clients from each other

• Limiting users to their own department

68 C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U

If you have multiple external clients, you can give them all accounts on your FogBugz
database without letting them see each other’s cases or even know about each other. When
your client logs on to FogBugz, they will only be able to see cases associated with their projects,
not with the projects of other clients. They won’t even be able to find out about the other
clients: they will have no way of seeing cases, users, or projects unless you specifically grant
them permission (assuming you set things up correctly, that is).

Similarly, if you are using a single FogBugz installation for multiple departments, you can
set things up so that users only have permission to see cases in their own department.

FogBugz will give a particular user permission to access all the cases associated with one
or more clients or departments. This means that before you can start assigning permissions,
you need to follow the procedures I discussed earlier in the chapter to create clients or depart-
ments, and then assign projects to the appropriate client or department.

■Caution Permissions are only useful if you require passwords to log on to FogBugz. See Appendix A for
details on the password options of FogBugz. If you don’t set passwords, anyone can log on as any user, which
defeats the purpose of permissions.

Isolating Clients with Permissions
To get a feel for what you can do with permissions, consider a software consulting business
working in a vertical market—say, customizing software for window-washing companies. The
company employs a number of consultants, each of whom should only be able to see cases
related to the clients that they service. To provide faster service, the company also allows
personnel from the clients to access their internal FogBugz server through special accounts. Of
course, if an employee of a client signs on, they should only be allowed to see their own cases.
In fact, if an employee of Highrise Window Washers logs on, the company doesn’t even want
them to be aware that Plate O’Glass Co. is also a client.

The key to making this work is to set up permissions properly in FogBugz. Whenever
FogBugz shows a drop-down list of users, it will not include everyone. It will only list users that
you might encounter because you share permission to access some client or department. For
example, consultants Alice and Bob are working on the Highrise Window Washers account
only, while Mike is working on the Plate O’Glass account only. Normally, Alice and Bob will see
each other in the user drop-down list, but they’ll never see Mike’s name in a drop-down list or
in a case, and vice versa. So if you make an account for the president of Highrise Window
Washers in your FogBugz database, this name won’t show up in drop-down lists when a Plate
O’Glass client logs on. This helps keep all the clients happy and secure in the knowledge that
you’re concentrating all of your efforts on their behalf.

But . . . and this is an important but . . . if you set up any clients who are visible to all users,
this protection is lost. For example, if the consulting company has a third client, the local Petting
Zoo, and thinks that, heck, the Petting Zoo doesn’t have anything confidential, we might as
well let everyone in there, they run the risk that a Highrise Window Washers executive and a
Plate O’Glass executive will run into each other’s names in the user drop-down list, since they
share access to the Petting Zoo, and flip out. In summary, if you need to isolate users from one
another, you can never have any clients that everyone can access.

C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U 69

Isolating Departments with Permissions
In a very large company with lots of departments or teams, where each department may work
on several projects, it can be helpful to divide up the projects according to department, even
when there’s no security reason to do so. This makes it easy to run filters so that the team
management can look at all the cases across an entire department. This also works well when
the company is large enough that individual developers and testers are 100% dedicated to a
particular department.

If you’re using permissions to isolate departments, you probably don’t have to be as careful
about overlapping permissions as you would with clients. Of course, if you ever need to set up
a secret internal project, you can do so by creating a department and making sure that the
users for that department aren’t assigned to any other projects.

Assigning Permissions
Now that you know the theory of assigning permissions in FogBugz, it’s time to look at how it
works in practice. FogBugz supports three levels of permissions:

• None: A given user does not have permission to see or modify cases.

• Read: A given user can read cases, but can’t modify them in any way.

• Modify: A given user can read and modify cases.

Permissions are set up on a client or department basis, and then applied to all projects
assigned to that client or department. When you are editing a client or department in FogBugz,
you have three choices. First, you can choose to give everyone full access to the client or
department, as shown in Figure 3-12. This is the default. With this setting, you can’t change the
permissions for individual users.

Figure 3-12. Giving everyone full access to a client

70 C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U

The second choice is to give everyone read access to the client or department, as shown in
Figure 3-13. In this case, you can control on a user-by-user basis which users can modify cases
for the client or department. Administrators, though, will always have modify access.

Figure 3-13. Giving everyone read access to a client

Finally, you can choose to customize access to the client or department. In this case, you
can choose on a user-by-user basis whether to assign none, read, or modify access. Adminis-
trators still get modify access automatically, as shown in Figure 3-14.

Figure 3-14. Assigning custom permissions for a client

C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U 71

It’s important to understand the consequences of your choices in editing this section of
clients and departments. If you choose option #1 or #2 for any client or department, you will
not be able to completely segregate groups of users from each other, because they can meet
each other in that client or department. The net effect is that if you want to use permissions to
keep users separated and hidden from one another, you need to set up custom permissions for
every single client and department.

■Caution Don’t forget to set custom permissions on the default Internal client when you’re setting up a
custom permissions scheme.

Anyone who is configured as a FogBugz administrator will always have permission to read,
write, and modify any case, anywhere. A corollary of this is that the administrators can see all
of the other users, and all users can see the administrators.

To sum up, there are four things you need to do when setting up a custom permissions
scheme in FogBugz:

• Use the Site Options screen to ensure that FogBugz is configured to require passwords
to log on.

• Create the appropriate clients or departments.

• Edit the clients or departments to assign user permissions appropriately.

• Assign each project to the appropriate client or department.

Setting Up Priorities
Every case in the system is given a priority from 1 to 7, where 1 is the highest priority and 7 is
the lowest. Developers and testers can (and should!) use these priorities to help them focus on
the things that are most important to fix. Of course, you can’t set a firm rule that you need to
always work in priority order (for example, a priority 3 bug that needs to be fixed by beta 1 probably
needs attention before a priority 1 bug that needs to be fixed by the final release, especially if
beta 1 is scheduled to ship tomorrow), but priorities act as a good starting point for ordering
your work.

FogBugz doesn’t let you change the number of priority levels, but you can rename the text
labels given to priority 1 through 7 to suit your preferences. To do so, log on as an administrator
and click the Priority link in the Administrative Tools bar. Figure 3-15 shows the default labels
for the seven priorities.

72 C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U

Figure 3-15. Modifying the labels for priorities

To change the priority labels, type in your new text and then click OK. As you can see, the
default scheme uses the same label for several different priorities. If your users find this confusing
(“Why are some Must Fix items more important than others?”), you might like to move to a
scheme such as this where each priority has a distinctive label:

1. Drop everything and fix.

2. A customer is waiting for this.

3. Very important.

4. Important.

5. Less important—fix before playing Minesweeper.

6. Probably won’t fix but worth remembering.

7. Not worth wasting time on.

Setting Up Versions and Computers
When someone reports a bug, you might find it helpful to know what version of the software
they saw the bug in. This might be a shipping version (e.g., “2.0 with service pack 2”) or it may
be a development version (“the build that Harry gave me on 9/5/06”). Similarly, you might like

C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U 73

some details about the computer where the bug was spotted (“an old Pentium II box we use in
the lab”).

These two pieces of information aren’t amenable to capturing in simple lists (like the lists
of priorities or areas). There are probably a lot more versions than releases; many program-
ming shops have builds every day, and it is helpful in reporting a bug to indicate exactly which
build it was found in. Similarly, you probably can’t enumerate all of the computers that your
testers might be using. That’s why these two pieces of information are better captured in free-
form text.

FogBugz includes two plain text fields that can be used to track versions and computers
(or, for that matter, any other two pieces of information). By default, these fields are hidden to
simplify entering cases. If you’re an administrator, you can turn these fields on and customize
them by clicking the Site link in the Administrative Links toolbar. Figure 3-16 shows the part of
the Site Configuration screen where you can customize these fields.

Figure 3-16. Customizing the free text fields

To turn either or both of these fields on, check the checkbox. You can also customize both
the display name of the field and the longer explanation that FogBugz gives as a tooltip.

When you enter a new case, the default version and computer will be the same as the last
case you entered; this way, if you are testing a particular version of code on a particular computer
and you find lots of bugs, you don’t have to keep reentering the version and computer details.
Of course, this memory facility works even if you’ve renamed the fields to hold other information.

Customizing Your Working Schedule
FogBugz has an internal notion of when your team should be at work. This working schedule is
used for two purposes. First, it calculates an automatic due date for incoming e-mail, based on
the e-mail policies you’ve set up. Suppose, for example, your policy is to respond to all e-mail
within 12 hours. If an e-mail comes in at 3 p.m. Friday, and you only work 9 a.m. until 6 p.m. on
weekdays, and not at all on weekends, FogBugz is smart enough to set the due date to 9 a.m. on
Tuesday. The second use for the working schedule is to convert between hours and days when
storing estimates for a case.

Administrators can customize the working schedule to fit their company’s needs. To do so,
log on as an administrator and click the Site link in the Administrative Tools bar. Scroll down
on the site configuration page and click the Working Schedule link to open the Working
Schedule screen, shown in Figure 3-17.

74 C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U

Figure 3-17. Customizing the working schedule

You can set up several things on this screen:

• Choose which days of the week your team works by checking the boxes for those days.

• Choose the starting and ending time for workdays. This setting applies to all of the days
that you check; you can’t have separate hours for weekends.

• Choose how many hours equal one day when you’re entering or adjusting the estimated
time to close a case.

• Specify holiday dates that are not counted as working dates at all. To enter a holiday,
click the Create New Holiday link, which opens the screen shown in Figure 3-18.

C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U 75

Figure 3-18. Creating a holiday

■Note FogBugz doesn’t have any notion of a repeating holiday. If you want to give your employees every
Christmas off, you’ll need to remember to enter the date each year.

Applying Bulk Actions to Cases
Sometimes you’ll want to operate on cases in bulk. For example, suppose you’ve just reviewed
all of the cases for a particular product and realized that there are a substantial number related
to the setup and installation of the product. You decide to create a new area named Setup and
then assign the setup-related cases to this area. But going through each case a second time to
change its area would be tedious. That’s where the bulk-editing capabilities of FogBugz come
in handy. You can do nearly anything with a group of cases that you can do with a single case.

To start, build a filter that includes all of the cases that you’re interested in, and then go to
the list page. At the far left of the page, you’ll see a set of checkboxes, as shown in Figure 3-19.

76 C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U

Figure 3-19. Selecting cases for a bulk action

Check the boxes next to the cases that you’re interested in, and then click one of the action
buttons at the bottom of the list. In this case, you’re interested in editing the selected cases, so
click the Edit button. This will open the bulk editing screen shown in Figure 3-20.

■Tip Clicking the checkbox in the column header selects or unselects all the bugs on the page.

■Tip To select any range of consecutive bugs, check the first box, then hold down the Shift key and check
the last box.

C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U 77

Figure 3-20. Bulk editing cases

The bulk editing screen looks very much like the normal case editing screen, but there are
several differences:

• The top of the screen lists all of the cases that will be affected by the editing operation.

• You can’t change the title field (because it wouldn’t make sense to assign the same title
to a whole group of cases).

• The various dropdown lists include “-- No Change --” as a choice. This allows you to let
cases retain their own individual information.

• The page doesn’t display the history of each case, though it does let you enter notes
related to this edit.

78 C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U

Make any changes you like (in this case, selecting Setup as the area) and then click OK to
apply the change to all of the selected cases. FogBugz will make the change and then show you
a confirming screen, similar to the one in Figure 3-21. If you like, you can use the action buttons
to perform further bulk operations here. Alternatively, you can use the menu bar to go back to
the original list of cases.

Figure 3-21. Confirming a bulk edit

Depending on the cases that you select from the original list, you can perform a variety of
bulk operations:

• If the cases are all in an e-mail inbox project, you can dismiss them as spam.

• You can edit the details of the cases, as you’ve already seen.

• You can assign the cases to a specific user.

• If all of the cases are open, you can resolve them.

• If all of the cases are resolved, you can reactivate them or close them.

• If all of the cases are closed, you can reopen them.

• You can send a reminder about the cases.

C H A P T E R 3 ■ M A K I N G F O G B U G Z W O R K F O R Y O U 79

Figure 3-22 shows the screen that comes up when you choose to send a reminder about
multiple cases. FogBugz constructs an e-mail message listing the cases in question together
with their links. By default, the message will come from the user who sets up the reminder and
go to all of the users who are currently assigned any of the cases. You can edit any of these
fields, of course, together with the subject of the e-mail.

Figure 3-22. Sending an e-mail reminder

Summary
In this chapter, you’ve learned about many of the things that you need to set up to customize
FogBugz for your own use. You saw how the FogBugz administrator can create projects and
areas, users, clients, departments, and so on. You learned about the FogBugz permission
system and saw how you can use the bulk editing feature of FogBugz to save time.

So far, though, you’ve been focused exclusively on individual cases and what you can do
with them. In the next chapter, I’ll pull back and look at some of the management features that
FogBugz offers to keep a project on track.

81

■ ■ ■

C H A P T E R 4

Getting the Big Picture

You’ve seen how to use FogBugz to enter and work with cases from the developer’s point of
view. You’ve also learned how to perform a variety of administrative tasks with FogBugz to
make it perfect for your own organization. Now it’s time to move on to another aspect of project
management with FogBugz: the actual management part of the job. FogBugz includes several
features to help you keep your development running smoothly and on time:

• Time estimates

• Due dates

• Escalation reports

• E-mail and RSS notifications

• Case resolutions

• Release notes

• Custom reports

In this chapter, I’ll show you how to effectively use these features of FogBugz. I’ll also show
you how you can use the data contained in the FogBugz database to create your own custom-
ized management reports.

Tracking Estimates
When you’re focusing in on a case or a group of cases, one key piece of information is how long
they’re going to take to resolve. Without this information, there’s no way to judge whether a
particular developer is overloaded or coasting. Just counting the number of open cases won’t
do it; depending on who entered the case and what it covers, a case might take 15 minutes or
15 days to resolve. Fortunately, FogBugz lets you provide detailed estimates for how long a case
will take to resolve in hours or days, and how much time has already been spent on it.

82 C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E

Maintaining a Case Estimate
To help make estimates of when a case or an entire project will be complete, FogBugz lets you
enter an estimate for any case. An estimate can be given in days or hours (or both). To enter an
estimate, you use d for days and h for hours; both parts are optional. For example, all of these
are acceptable estimates:

• .25h (15 minutes)

• 4h (4 hours)

• 15h (15 hours; FogBugz will convert this to the equivalent in days and hours when you
save the case.)

• 2d (2 days)

• 1d6h (1 day and 6 hours)

• 1.5d (1½ days; FogBugz will convert this to the equivalent in days and hours when you
save the case.)

■Note By default, FogBugz assumes that the working day is 8 hours long, so that 1.5d is converted to 1d4h.
Administrators can adjust the length of the working day, and FogBugz will change the conversion accordingly.
For example, if you force your workers to do mandatory overtime and work 10 hours a day, 15h will convert
to 1d5h. On the other hand, if your team only comes in for half days and works an average of 4 hours, 15h
becomes 3d3h. For details on adjusting working hours, see Chapter 3.

For cases that can be resolved quickly, you can enter less than an hour by using fractional
hours: .5h for 30 minutes, .25h for 15 minutes, even 0.1h for 6 minutes. The only estimate that
you can’t enter is 0h, because that would be indistinguishable from not having entered an esti-
mate at all. Anyhow, you can’t resolve a case in no time, no matter how efficient you are!

If you ever change an estimate, the original estimate is shown above the current estimate.
This is useful if you want to go back to your old bugs and see how good a job you’ve done esti-
mating in the past, so you can learn to estimate better in the future. Once you enter a nonzero
estimate for a case, FogBugz also allows you to enter the elapsed time. FogBugz will automati-
cally calculate the remaining time based on the current estimate and the elapsed time. For
features whose work spans several days, at the end of every day’s work, you can reenter your
current best-guess estimate and the amount of time spent so far. This helps ensure that the
total time estimated in the system is as accurate as it can be.

Let’s look at this process in practice with an actual case. Figure 4-1 shows the initial state
of a case representing a new feature that needs to be added to the Service Monitor application.

C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E 83

Figure 4-1. A new case with an initial estimate

In Figure 4-1, Paige has logged on to her account to discover that her manager, Valerie,
entered a new case and assigned it to Paige. Because Valerie entered an initial estimate when
she created the case, FogBugz shows four values in the Estimate section of the case:

• The original estimate

• The current estimate

• The actual elapsed time

• The estimated time remaining

■Tip Don’t enter an estimate when you create a case unless you think you can be reasonably accurate. It’s
easy to search for cases with no estimate (by setting up a filter) but impossible to search for cases with
inaccurate estimates. Use your judgment; if you’re a manager parceling out features based on a detailed
spec, you probably have a good idea of how long the work will take, but if you’re a tester who finds a
mysterious bug, it’s tough to know what will be involved in fixing it.

84 C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E

Paige has some other cases on her plate that are due sooner, but she doesn’t want this one
to creep up on her by surprise. So she blocks out an hour of her day to investigate the problem.
At the end of that time, she’s convinced that the feature can be implemented, but that it will
require major changes to the scripting in the setup project. At the end of her work day, Paige
edits the case as shown in Figure 4-2.

Figure 4-2. A case with some work and an updated estimate

■Tip An open case makes an excellent place to keep notes to yourself about what needs to be done to close
the case.

C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E 85

A few days later, Paige gets time to actually work on the new feature. She puts on her head-
phones, cranks up the music, and gets into the zone. Miraculously, no one calls an emergency
meeting and the corporate e-mail server is down for most of the day, minimizing interruptions.
At the end of the day, she thinks she has only another hour of work left, so she edits the case
again. Figure 4-3 shows the newly updated case.

Figure 4-3. Reupdating an estimate

As you work on a case, the elapsed time and the current estimate should converge to the
same number. Then, when you mark the case resolved, you should set the final estimate and
the elapsed time to the actual time worked. Of course, if the case needs to be reopened later,
you’ll find yourself increasing the estimate once again.

86 C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E

Using Estimates to Manage Workload
Estimates are also very useful if you’re trying to keep track of the total time left to resolve a
group of cases. At the bottom of any list of cases, FogBugz will always calculate a summary of
the estimated remaining time for all cases shown in that particular list. If you are careful to
maintain estimates and elapsed time as you go along, you can use these summaries to get a
good approximation of how much work is left for any set of cases. There are many uses for such
a list, depending on which filter you use to construct the list. For example:

• If you’re a manager, you can filter for unresolved cases in a particular release to get an
estimate of how much work remains to be done to ship that release.

• If you’re a manager, you can filter for unresolved cases assigned to particular developers
to tell who’s overloaded and who’s not.

• If you’re a developer, you can look at your own cases to see just how overloaded you are.

• If you’re a tester, you can see how good a job you’re doing at keeping the developers
overloaded.

• If you need to make cuts, you can filter by area to see how much work eliminating a
particular area would save.

■Tip Summing estimates is most useful when every case that can be estimated has an estimate. Using
filters, it is easy to search for all the bugs without estimates so you can add estimates (or ask the appropriate
developer to add estimates).

Figure 4-4 shows how FogBugz presents an estimate with a list of cases. Note the summary
at the bottom of the page; it includes the total estimated amount of time remaining, as well as
the number of cases with no estimate. You can also see the estimates for individual cases by
referring to the detailed list.

C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E 87

Figure 4-4. A list of cases with estimates

The Art of Estimating
If we could assign perfectly accurate estimates to the time needed to fix bugs and implement
features as soon as we knew about them, keeping a software project on track would be much
simpler. Alas, in the real world it doesn’t work that way. Initial estimates are frequently wrong
and need to be revised as work progresses. In fact, as a profession, we’re so bad at estimating
(especially on large projects) that many software projects never get finished at all. Instead
they’re cancelled amidst a general atmosphere of slipping schedules and rising costs.

88 C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E

The good news is that there are ways to improve your estimating ability. If you consciously
practice and put thought into making good estimates, you can get better at it. Although estimating
will always remain an art rather than a science, here are some tips that you can use to improve
your estimates:

• When entering cases (especially features), strive to make them cover as little as possible.
The smaller the task, the better you’ll be able to estimate it. For example, “add Web inte-
gration” is hopelessly broad, and any estimate the developer makes will probably be
wildly inaccurate. “Implement uploading log files via FTP” is a much more easily estimated
task. Some people call these fine-grained tasks inch-pebbles to indicate that they’re
much smaller than milestones.

• While a manager may enter an original estimate based on a project plan, the actual
estimate must be owned by the developer who’s actually doing the work. You can’t get
a 10-hour feature done in 5 hours simply by chopping the estimate in half.

• Keep all the work that has to be done in a single system (such as FogBugz!). If there’s a
place to estimate every task, developers will be less likely to pad estimates to include
time for “off the books” work. When you run into a new task that’s not on the project,
take the time to enter a case for it.

• After you’ve been entering estimates for a while, take the time to review the original and
final estimates on your own closed cases to look for patterns. If you consistently have to
add 50% to your original estimate, for example, you should adjust your original estimates
by 50% when you make them. Almost every developer is too optimistic when they start
estimating the time that it will take to fix a bug or implement a feature.

• Keep the schedule up to date. You should update the current estimate and elapsed time
on all of your open cases once a day in most cases. These continuous small course
corrections will help you zero in on accurate estimates.

• If one developer’s estimates are wildly inaccurate, have them work with an “estimating
mentor” in developing estimates for new cases.

• Don’t use estimates to hide a disaster. If you’re falling behind, it can be tempting to
reduce the estimates of the work remaining on your plate so that your manager doesn’t
get worried. Perhaps you think you’ll catch up by working extra hard. You won’t. If there’s
a problem, it needs to be out in the open where the whole team can solve it, if necessary
by reassigning features to other developers or even cutting them. Think of it this way:
would you rather look slow but honest six weeks before the beta, or be the person who
prevents the beta from going out on time when your poor estimates finally become
obvious the week before it’s due to ship?

• Don’t gold-plate your estimates. If you build in excess time so that you can surf the Web,
call your broker, and sleep late, your manager will eventually notice just by looking at the
number of features you implement compared to the rest of the team. It’s better to esti-
mate as accurately as you can and ask for slack time when you need it.

C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E 89

■Note For a more detailed look at the entire project planning process, see Joel Spolsky’s essay “Painless
Software Schedules,” reprinted in Joel on Software (Apress, 2004).

Using Due Dates
You can assign any case within FogBugz a due date. In most cases you won’t want developers
to be assigning their own due dates. Instead, plan on having a manager review each case and
decide when it must be finished (this is one good reason to keep your project manager as the
default user for the project, so that they get to see new cases first). FogBugz allows a flexible
syntax for entering due dates. For example, all of these are valid due dates:

• Today

• Tomorrow

• The day after tomorrow

• In 3 days

• In 1 week

• Tuesday

• Next Friday

• March 1

• 12/30 (or 30.12 outside the USA)

• 12/30/2006 (or 30.12.2006 outside the USA)

• June

In every case, FogBugz will replace the due date with an actual date and time when you
leave the data entry textbox.

In addition to entering due dates by hand, you can also set up FogBugz to automatically
calculate and enter due dates for one particular class of cases: cases submitted via e-mail.
That’s because these cases are most likely to be submitted directly by your customers, and so
will require attention in a reasonable period of time. If you make this time short enough, you
can even make it a marketing point for your company: “We respond to all customer inquiries
within one working day!”

To configure automatic due dates, you need to edit the properties of the mailbox that receives
the cases (remember, only administrators can edit mailbox properties). Scroll down the mailbox
settings page until you find the Due section. By default, as shown in Figure 4-5, the system
doesn’t automatically assign due dates to incoming mail. This leaves you free to manage due
dates for these cases manually, just as you do any other due dates.

90 C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E

Figure 4-5. A mailbox without an automatic due date

To have FogBugz calculate a due date for you, click the Automatic option button in the
Due Date section. Then choose a unit of time. Figure 4-6 shows setting a 6-hour response time
for incoming e-mails to this particular mailbox.

Figure 4-6. A mailbox with an automatic due date

You can select from four different units of time:

• Hours

• Working Hours

• Days

• Working Days

The difference is that Hours and Days are absolute time, while Working Hours and
Working Days take into account your organization’s schedule. For example, suppose that your
working hours are 9 a.m. to 6 p.m., Monday through Friday, with weekends off. If a bug comes
in at 4 p.m. on Friday afternoon, here’s when it would be due under various scenarios:

• With a 4-hour response time, it would be due at 8 p.m. that same Friday.

• With a 4–working-hour response time, it would be due at 11 a.m. the following Monday.

• With a 2-day response time, it would be due at 4 p.m. on Sunday.

• With a 2–working-day response time, it would be due at 4 p.m. on the following Tuesday.

■Note Administrators can follow the link that says “Determine Working Schedule and Holidays” to change
the hours that are considered working hours. You can set up the days of the week when you work and the
hours of each day when you work, and you can provide a list of holidays when you don’t work at all. See
Chapter 3 for more details on configuring the working schedule.

C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E 91

■Tip Even if you set a day or time as outside working hours, you can always manually force a case to be
due at that time.

Escalation Reports
Escalation reports work in conjunction with due dates to help you keep track of cases that may
need a little extra attention. Anyone can sign up to receive escalation reports via e-mail by
checking the appropriate box on their user options screen, as shown in Figure 4-7.

Figure 4-7. Signing up to receive escalation reports

An escalation report is sent early every morning via e-mail to each user who is signed up to
receive escalation reports. Figure 4-8 shows the format of the e-mail.

92 C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E

Figure 4-8. Daily escalation report e-mail

■Note This e-mail comes from the notification return address that the administrator can customize in the
site settings. This should be an invalid e-mail address, so that any replies that the user accidentally sends to
the address just bounce. Example.com, the domain used in Figure 4-8, is one that’s set aside by the Internet
authorities for fictitious addresses.

If the user clicks the link in the escalation report e-mail, they’ll be taken to their FogBugz
account with a filter that lists all cases that are either overdue or will become due that day.
Figure 4-9 shows how this list might look.

■Tip Even though the filter says it’s for open cases due today, it in fact also picks up cases that are
overdue today.

C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E 93

Figure 4-9. Cases from an escalation report

You can’t easily customize the timescale that the escalation report uses. But you can
generate your own filters that let you see cases before they creep up on you. For example, you
can set up a filter to list bugs that are going to be due sometime in the future and sort that filter
by due date. If you want a two-week view, you can set up a filter listing all cases due in the next
two weeks, in order by due date, and check that filter regularly.

Managing E-Mail and RSS Notifications
Filters and reports are good for keeping track of cases when you’ve got time to sit down and
work with FogBugz in your browser. But wouldn’t it be nice if FogBugz would actively notify
you when a case you’re interested in changes? It can! Depending on your needs, you may find
e-mail or Really Simple Syndication (RSS) to be a better notification medium.

Using E-Mail Notifications
If you want to make sure you know when someone updates a particular case, e-mail notifica-
tion is the way to go. At the bottom of each case you’ll find a hyperlink to subscribe to the case,
as shown in Figure 4-10.

94 C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E

Figure 4-10. Subscribing to a case

Click this link (it will then change to read “Unsubscribe”) to subscribe to the case. Now,
whenever anyone makes a change to the case, FogBugz will send you e-mail to tell you about
the change. Figure 4-11 shows a sample notification e-mail.

Figure 4-11. Notification e-mail from FogBugz

The e-mail contains the essential information to help you remember the case—but it
doesn’t show the actual change that caused the e-mail to be sent. If you need that level of
detail, you need to click the hyperlink to open the case in your browser.

Using RSS Feeds
If you want to track all cases retrieved by a particular filter, you should look at the RSS notifica-
tion feature of FogBugz. FogBugz publishes RSS feeds, allowing you to use any RSS aggregator
to receive notifications, so you can keep up to date on changes to your filter without opening
your Web browser. The RSS produced by FogBugz is RSS version 2.0, so any modern aggregator
should be able to display it with no problem.

C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E 95

FogBugz creates an RSS feed automatically whenever you save a filter. For the RSS link, go
into the Saved Filters screen. You will see a little RSS link at the far right of every saved filter, as
shown in Figure 4-12. Copy the link location into your favorite RSS aggregator (following the
instructions for that aggregator) and you’re ready to go.

Figure 4-12. A list of filters with RSS links

When you subscribe to a filter, your RSS reader will pick up changes to every case covered
by the filter. The individual RSS items contain the basic information needed to identify the
cases:

• Case number

• URL for further information

• Project

• Area

• Title

• Priority

• Assigned to

• Status

• Current estimate

The RSS items include hyperlinks directly to the case and to the user to whom the case
is assigned.

96 C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E

■Note Some RSS readers may not support cookies, making it impossible for them to keep you logged on
to FogBugz if you’re using password security. To work around this problem, you will need to append your user
name and password to the end of your feed link manually, according to this pattern: (FogBugz-generated RSS
link)&sEmail=email&sPassword=password.

You can also subscribe to a single bug using RSS, which will notify you as that bug changes.
Simply enter the URL of the bug itself in your RSS aggregator, which will automatically discover
the URL of the RSS link for that bug. The URL of bug number 1234 is http://fogbugz/?1234,
where fogbugz is your main FogBugz URL.

UNDERSTANDING RSS

RSS is an acronym that has stood for several things, depending on who’s doing the explaining. I like “Really
Simple Syndication” as the expansion, personally. If you don’t know about RSS, you’re missing out on a major
way to get useful information. RSS is a way for a Web site or other information provider to stuff headlines or
stories into an XML file with a simple format. Thus, an individual RSS file consists of multiple RSS items. In a
FogBugz RSS feed, each case corresponds to an RSS item.

There are dozens of applications out there (generically called “RSS aggregators”) that can monitor these files for
changes and show you new headlines as they come out. I’m partial to an Outlook-based aggregator called News-
Gator (http://www.newsgator.com/). Other popular aggregators include Syndirella (http://www.yole.ru/projects/
syndirella/), SharpReader (http://www.hutteman.com/weblog/2003/04/06.html#000056), RSS Bandit (http://
www.gotdotnet.com/Community/Workspaces/Workspace.aspx?id=cb8d3173-9f65-46fe-bf17-122e3703bb00),
NewzCrawler (http://www.newzcrawler.com/), and FeedReader (http://www.feedreader.com/). For a much more
extensive list of RSS aggregators and other RSS tools, refer to http://www.syndic8.com/documents/products/.

Most aggregators work on a “set it and forget it” theory: you tell them how often to look at the RSS feeds
(I usually go for once an hour), and when you have time, you read the headlines (in the case of items from
FogBugz, the case titles) and decide whether to click through to look at the actual items. It doesn’t sound like
such a huge advance, but compared with surfing around to dozens of sites to find the items you want to read,
RSS is a big improvement. Most people find that they can keep tabs on considerably more information with
RSS than with surfing around, and find it easier to home in on the stories that interest them. RSS got its first
real burst of popularity from weblogs, but it’s now being used by everyone from major media outlets like the
BBC and the New York Times to technology companies. Microsoft, Sun, Oracle, and IBM are all providing part
of their developer-oriented content via RSS these days.

Resolving Cases
As you know, every case in FogBugz needs to be ultimately resolved in some fashion before it
can be closed. FogBugz provides 13 different statuses that can be used to close a case (though
not all of them apply to every type of case). Any case in the system can be resolved using one of
these statuses:

C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E 97

• Duplicate

• By Design

Any bug can be resolved using one of these statuses:

• Fixed

• Not Reproducible

• Postponed

• Won’t Fix

Any feature can be resolved using one of these statuses:

• Implemented

• Won’t Implement

• Already Exists

Any inquiry can be resolved using one of these statuses:

• Responded

• Won’t Respond

• SPAM

• Waiting For Info

■Tip If you want to resolve a case with a status for another type of case, just change the type when you
resolve the case. For example, to close an inquiry as Won’t Fix, change the case to a bug before you resolve it.

It’s worth understanding, as a team, how each of these statuses will be used. Here are some
guidelines that you can start from in determining those common meanings.

Duplicate
Particularly if you’ve got a product out for active beta testing, you might find the same bug
reported two, three, or even more times. When you spot this situation, resolve the extra bugs as
duplicates. This will link all of the duplicate bugs together, so you can trace from any of the
duplicate bugs back to the bug that you ultimately resolve as fixed. Note that duplicate bugs
don’t have to describe exactly the same symptoms; as long as a single underlying code change
closes all the bugs, they’re all duplicates.

98 C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E

By Design
At times, you may get a bug report that describes exactly the way that you think the program
should work—in other words, a bug that isn’t a bug. For example, an e-mail program could be
set up to automatically send forged nondelivery reports to a spam folder. A user who wasn’t
expecting this might report the action as a bug. In that case, By Design would be the most
appropriate way to close the bug. Be careful when using this resolution, though; if something
works as you designed, but not as end users expect, it might be time to change your design.
Alternatively, you might make a note to explicitly spell out this bit of design in the application’s
documentation.

Fixed
Sometimes, the best way to resolve a bug is to fix it. In fact, if testers are doing their job well, this
will probably be the most common bug resolution in the system.

Not Reproducible
Testers are not infallible, and sometimes you’ll get bugs that you simply can’t reproduce on
your system. Resolve such bugs as not reproducible. Good testers will treat this resolution as a
request for more information rather than as an insult, and you may well get the same bug back
with additional explanation that makes it possible for you to reproduce the bug. When you’re
thinking of resolving a bug as not reproducible, try to figure out how the tester could have seen
such a thing happen. Is it something that you fixed in a more recent build? Is it an artifact of a
particular data file that you don’t have? “It works on my machine” is a very unsatisfying expla-
nation for resolving a bug as not reproducible, because, as every tester knows, you’re not going
to ship your machine to the customer. Leaping to the conclusion that a bug is not reproducible
may get it off your desk briefly, but it may also get you dragged down to the test lab to see the
bug actually happen.

Resolving a bug as not reproducible is also a common shorthand by developers to say that
the tester’s bug report is missing repro steps. If a bug is returned to you as not reproducible,
that does not mean that the bug is fixed or gone, it just means that the developer didn’t have
enough information to reproduce it. Don’t be timid and say, “Oh, must be fixed then,” and
close the bug without further investigation.

Postponed
It’s a fact of life that software is developed with limited resources. If you get more bugs than you
can fix before the release date, some will have to be postponed. You might use this resolution
for bugs that relate to features you’re planning to implement in the future, or for bugs that you
feel are unlikely to actually happen to real users (for example, crashing on a 10-million-character
input in a text box is much more likely to happen in the test lab than in the real world).

If you find yourself using this resolution on serious bugs in core features that are part of
what you’re marketing for the current release, it’s time to stop development and figure out how
to adjust the feature set or the release date. Shipping code with known serious bugs is a good
way to lose all of your customers.

C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E 99

If you know that you’re targeting a bug fix or feature implementation for a particular
release, there’s an alternative to resolving the bug as postponed: you can just change the Fix
For of the case to refer to the appropriate release. That way there’s no chance that it will be
forgotten. If you resolve the case as postponed, someone has to remember to reenter it into the
system at the appropriate time.

Won’t Fix
Won’t Fix is the moral equivalent of postponing a bug forever. When you use this resolution,
you’re saying that you acknowledge the bug but that you don’t consider it important enough to
deserve any development effort. Perhaps you never expect it to happen in the real world, or
perhaps you already know you’re going to cut the feature that displays the bug. Be careful not
to use this resolution too often to avoid demoralizing your application’s testers.

Implemented
In response to a feature, this resolution is the same as using Fixed for a bug. If you mark a
feature as implemented, you’re saying that it now works as designed in the product. This is the
resolution that you should see for most features.

Won’t Implement
Some features will be entered into FogBugz by the project manager, working from an agreed-
on design. Others, though, will come in from testers and random users. Not all of the latter type
are really things that you should implement. Sooner or later, for example, someone will suggest
adding the ability to read e-mail to almost any application. Unless this fits in with your vision
of what the product should do, Won’t Implement is an appropriate resolution.

Typically the Won’t Implement decision should be made by a manager rather than a devel-
oper or tester. If you’re a developer looking at a proposed feature and you think this is the right
resolution, you may want to assign it to your manager with a comment urging that the feature
not be implemented.

Already Exists
From time to time, you’ll get suggestions for features that are already in the application. This
resolution gives you an easy way to dispose of those suggestions. Maybe the feature was added
after the build that’s being tested, or maybe it’s just hard for the tester to find. Before you use
this resolution, though, think about whether there’s something you ought to do to make the
feature more discoverable. A feature that users can’t find doesn’t do anyone any good.

Responded
Some inquiries just require someone from customer service to write back, acknowledging the
customer’s concerns (or stating a policy such as “we don’t comment on upcoming versions of
the software, but you can apply for the beta program if you wish”). The Responded resolution
exists as a way to close these cases.

100 C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E

Won’t Respond
Sooner or later, most software houses attract attention from users who might charitably be
called “cranks.” If you get an inquiry demanding that you change your software to prevent the
National Security Agency from using it to transmit mind-control messages via the keyboard,
you should probably mark it Won’t Respond and try to forget about it. That’s assuming, of
course, that your software doesn’t actually transmit mind-control messages via the keyboard.

SPAM
This one is pretty self-explanatory. When you hand out an e-mail address, you’ll get spam. This
resolution is used to mark the spam.

■Note For more details on the way that FogBugz handles incoming e-mail and spam, refer to Chapter 5.

■Caution Depending on your mailbox settings, inquiries that are resolved as SPAM may be permanently,
automatically, and irrevocably deleted after a certain number of days. This is necessary to keep your bug
database from filling up with spam. But it does mean that you shouldn’t use this resolution for cases that you
actually want to keep track of.

Waiting For Info
Customers aren’t always the best bug reporters in the world. You might get an inquiry that
reads simply “it crashed.” After sending back a request for more information, you’ll probably
want to resolve the inquiry as Waiting For Info so that it doesn’t hang around in the system
awaiting the customer, who may or may not actually write back.

Creating Release Notes
When you release that great new version of your software, your customers are going to want to
know what’s fixed and what new features you’re giving them. FogBugz makes it easy to main-
tain release notes as you go along, effectively attaching a release note to any case. When you’re
done with a release, you can easily aggregate all of these notes into a single document.

■Note You will almost certainly not want to add release notes to every case. Some are too trivial for
customers to care about. Others might reflect bugs that were introduced during development and fixed before
any customer had a chance to see them, so customers will have no reason to care.

C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E 101

FogBugz does not attempt to compose release notes automatically based on the bug
report, because bug reports are not usually worded the way you want your release notes to be
worded. By the time you’re done working on a case, the text of the bug might include internal
code words, abbreviations, notes on competing products, and even rude back-and-forth
between developers and testers. Rather than showing all of this junk to the end user, FogBugz
requires you to create your own release notes specifically for this purpose.

You can add release notes to any case that has been resolved, whether it has been closed
or not. When you open up a resolved case, you’ll see a link at the top allowing you to edit
release notes, as shown in Figure 4-13.

Figure 4-13. Preparing to enter release notes for a case

Click the link to open an editing screen, as shown in Figure 4-14.
To see all the release notes for a particular release, go to the FogBugz home screen by

clicking the FogBugz icon in the top-left corner of any page, and then click the Release Notes
link. Choose the release you are working on, and you will see a list of cases that were resolved
for that release. From here you can jump to any case to edit its release notes. Figure 4-15 shows
the release notes in progress for a particular release.

102 C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E

Figure 4-14. Editing release notes for a case

Figure 4-15. Notes for a release

C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E 103

At the bottom of this screen are two button links, one marked HTML and one marked
XML. These icons are used to export the release notes to external files.

The HTML link displays all the release notes on one page. It uses extremely clean HTML
with all formatting done in a style sheet. You can use your favorite HTML editor to format the
release notes any way you like. By editing the styles, you can control the formatting of the entire
release notes document to match your exact requirements. Figure 4-16 shows a set of release
notes in HTML format.

Figure 4-16. HTML release notes

The XML link displays the release notes in XML format, suitable for any further processing
you may need to do to integrate the release notes with your Web site, documentation, or any
other electronic interchange or content management system. Figure 4-17 shows a set of release
notes in XML format.

104 C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E

Figure 4-17. XML release notes

Extending FogBugz with Custom Reports
One of the great things about FogBugz is that all of the case information is kept in an open data-
base—Access, SQL Server, or MySQL, depending on your installation. This means that you can
use a variety of tools, including Microsoft Access, Microsoft Excel, Crystal Reports, and so on to
drill into your FogBugz data. You’ll need to have some facility with your tools to get sensible
results out, and it helps to spend some time just exploring the FogBugz database so that you’ll
understand what’s stored in the various tables. To conclude this chapter, I’ll show you a couple
of samples that might provoke further ideas.

Creating an Access Report
Suppose you’d like a nice-looking report listing all of the users in your database together with
the count of cases assigned to each one, along with the status of those cases. Microsoft Access
is ideal for preparing this sort of hierarchical report. To get started, open up your FogBugz
database in Access.

C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E 105

■Note If you store FogBugz data in Access, you can open the database directly. If you’re using SQL Server
for your FogBugz database, you can create a new Access project based on the SQL Server data; search the
Access help for “project” for more information. If you’re using MySQL, you’ll need to install the MySQL ODBC
driver and attach the MySQL tables to an empty Access database to proceed.

Create a new Access query and add the Bug, Status, and Person table to the query. Figure 4-18
shows how these three tables can be joined (this particular screenshot is from an Access
project based on a SQL Server FogBugz database).

Figure 4-18. Tables for building an Access query

Select the ixBug field from the Bug table, the sStatus field from the Status table, and the
sFullName field from the Person table. As you can see, FogBugz field and table names are very
close to what you’ll see on the user interface. Group the query on the sStatus and sFullName
fields, and tell Access to count the ixBug field. The SQL for the query I’m using in this case is:

SELECT COUNT(Bug.ixBug) AS Count, Status.sStatus, Person.sFullName
FROM Bug INNER JOIN Status on Bug.ixStatus = Status.ixStatus
INNER JOIN Person on Bug.ixPersonAssignedTo = Person.ixPerson
GROUP BY Person.sFullName, Status.ixStatus

Save the query as BugCounts and close it. Navigate to the Queries container inside of
Access, select the BugCounts query, and click the New Report button on the Access toolbar.
Select the Report Wizard and click OK. On the first panel of the wizard, select all three fields for
the report and click Next. On the second panel of the wizard, add sFullName and sStatus as
grouping levels and click Next. On the third panel of the wizard, just click Next (you don’t need
to add any sorting because Access automatically sorts by the grouping fields). On the fourth
panel of the wizard, select the Outline 2 layout and click Next. On the fifth panel of the wizard,
select the Formal style and click Next. Click Finish to open the report. Figure 4-19 shows this
report after a bit of editing in design view.

106 C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E

Figure 4-19. Access report based on FogBugz data

Creating a Chart in Excel
Suppose you’d like some of the same information in a more graphical format. Excel provides a
nice tool for graphs with a somewhat easier-to-use interface than Access. Here’s how you can
create a pie chart showing the number of cases currently assigned to each status.

First, fire up Excel. Then select Data ➤ Import External Data ➤ New Database Query. This
will install Microsoft Query if necessary (it’s not part of the default Excel installation) and then
open the Choose Data Source dialog box. Select New Data Source and click OK. Name the data
source and select the appropriate driver (Access or SQL Server), then connect to the database.
Click OK to save the data source, then select it and click OK again. This will open the Query
Wizard.

On the Choose Columns panel of the Query Wizard, expand the Bugs table and select the
ixBug column. Then expand the Status table and select the sStatus column. Click Next twice,
then click Finish to edit the query in Microsoft Query. Click the SQL toolbar button and modify
the SQL statement:

SELECT Status.sStatus, Count(Bug.ixBug)
FROM Bug, Status
WHERE Bug.ixStatus = Status.ixStatus
GROUP BY Status.sStatus

Select Return Data to Microsoft Excel from the File menu. This will open the Import Data
dialog box. You can now select where in the workbook to place the data; I chose to put it in the
default A1 location.

After a moment, Excel will retrieve the data from FogBugz. Select the retrieved data and
click the Chart Wizard button on the Excel toolbar. Select a chart type such as the 3D pie chart
and click Finish to create the chart. Figure 4-20 shows a sample result.

C H A P T E R 4 ■ G E T T I N G T H E B I G P I C T U R E 107

Figure 4-20. Excel chart based on FogBugz data

Summary
In this chapter, you learned about the FogBugz features that make it easier to manage and track
an extensive caseload. You saw how estimates and due dates can be used to keep individual
cases on track and how escalation reports can alert you to potential problems. E-mail and RSS
notifications let you track bugs of interest without even opening FogBugz in your browser.
I discussed the importance of carefully resolving bugs, and then showed you how to create
release notes and custom reports.

But FogBugz isn’t only a management tool; it’s also a communications tool. In the next
chapter, you’ll learn how FogBugz integrates e-mail and discussion groups with its bug-tracking
efforts, giving you a single way to manage customer interactions.

109

■ ■ ■

C H A P T E R 5

Communicating
with Customers

FogBugz is not just a piece of software for managing cases. It’s also a support system for
communicating with your customers. This communication happens in two ways. First, there’s
a comprehensive e-mail system that both allows e-mail into the system and sends responses
back out. Second, there’s a full-featured discussion group implementation. You can use
discussion groups to gather customer feedback on new features, brainstorm new ways to
market your product, or just provide a virtual place for people to relax and chat. In this chapter,
I’ll show you how to use these aspects of FogBugz.

Using E-Mail
You can use FogBugz for both internal e-mail (within your team) and external e-mail (with
customers). I’ll look at both of these aspects of the FogBugz e-mail system in turn.

Managing Internal E-Mail
FogBugz uses e-mail for team members in two ways. First, some bug notifications are automat-
ically mailed to the appropriate team members. Second, you can decide that you’re a glutton
for punishment and sign up for even more e-mail if you want to.

Getting Automatic E-Mail from FogBugz

FogBugz will automatically send you e-mail about your cases. This means two things. First, if
someone assigns a case to you, you’ll get the e-mail shown in Figure 5-1.

Second, if someone edits a case that’s already assigned to you, you’ll get the e-mail shown
in Figure 5-2.

110 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

Figure 5-1. Notification of a new case assignment

Figure 5-2. Notification of a change to a case

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 111

In other words, FogBugz knows which cases you “own” and keeps you up to date on them
(but it’s smart enough not to e-mail you if you’re the one making the change).

If you feel these e-mail notifications are too intrusive, you can turn them off for yourself by
selecting Options on the main menu bar in FogBugz. Turn e-mail notifications off as shown in
Figure 5-3 and click OK.

Figure 5-3. Turning e-mail notifications off

■Caution It’s not a great idea to turn off e-mail notifications. If you do so, you won’t know when a new
case has been assigned to you. I recommend you only turn notifications off if you already spend so much time
in FogBugz that you won’t miss changes anyhow, or if you’re setting up a virtual account that doesn’t corre-
spond to a real human being. For example, you might want a FogBugz account where you can park cases that
are intended for a new intern that you haven’t hired yet. In that case, go ahead and turn off e-mail—but don’t
forget to turn it back on again!

Signing Up for Additional Notifications

On the other hand, perhaps you don’t feel like you’re getting enough mail. Never fear, if you’re
bored and lonely, FogBugz can help! At the very bottom of any case, you’ll find a hyperlink to
subscribe to the case, as shown in Figure 5-4.

Click the link and FogBugz will add you to the list of users to be notified by e-mail whenever
anyone changes the case at all. You’ll get e-mails similar to the one that you saw in Figure 5-2,
just as if you were the owner of the case. When you visit a subscribed case in your browser, you’ll
see that the link changes to Unsubscribe to let you remove yourself from the notification list
easily. Every e-mail also contains an unsubscription link.

In the interest of reducing the amount of unwanted e-mail, FogBugz does not let you
force-subscribe someone else to a case. If you want them to know about it, you should tempo-
rarily assign the case to them with a note like “FYI” and then immediately assign it back to
whomever it really belongs.

Before signing up for e-mail notifications, you should also consider the alternatives. First,
because FogBugz changes the link to a case whenever anything changes about the case, you
can monitor an entire list of cases simply by setting up an appropriate filter. Any cases that have
changed in any way will be displayed with the unvisited link color (usually blue) in your browser.

The other alternative is to subscribe to a case using RSS. You can subscribe to all of the
cases in a filter or to a single case by using RSS. For details on this technique, see the section
“Using RSS Feeds” in Chapter 4.

112 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

Figure 5-4. Link to subscribe to notifications on a case

Reminding People About Cases

I mentioned one other way to send e-mail to team members in Chapter 3, but it’s worth bringing
up here too. Sometimes, you may find that a whole list of cases is languishing in your FogBugz
database. Perhaps some people are too busy to log in to FogBugz on a regular basis, or perhaps
you have people with so many cases that they never get to the bottom of the list. While you’re
sorting out the management issues that lead to this situation, you can also remind people that
you’re waiting for them. Set up a filter that contains the cases of concern, then check them all
on the case list page. Click the Remind button at the bottom of the screen to send e-mail to the
users involved to remind them to look at their cases.

Managing Customer E-Mail
The internal e-mail features of FogBugz are simple to use: for the most part it just sends the
e-mail you want when you want it. The customer-facing e-mail features are a good deal more

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 113

complex. FogBugz incorporates extensive features for receiving, tracking, and responding to
customer e-mail. You’ll need to put in some effort to set up these features to work effectively for
your own organization, but the payoff can be immense. In this section, I’ll show you how to set
up and use the customer-facing e-mail portion of FogBugz.

Overview of the Customer E-Mail Process

There’s a lot to keep track of in understanding how e-mail integration works in FogBugz. If you
get confused in the details, you might find it worthwhile to refer back to this summary. In outline,
here’s how it works:

• You set up a FogBugz mailbox and a corresponding POP3 mailbox.

• A message arrives in the mailbox on your mail server.

• Periodically, FogBugz uses the POP3 protocol to check your mail server for new
messages.

• If it finds any messages, FogBugz downloads them from the mail server and creates a
case out of each one.

• If you’re using the AutoSort feature, FogBugz discards spam and sorts the rest of the
messages into areas according to topic.

• If desired, FogBugz sends an immediate reply to the customer, providing them with a
URL they can use to check on the status of their request.

• Once the message is in FogBugz, you can treat it like any other case: you can prioritize it,
assign it, track it, and so on. You can also send a reply directly to the original e-mail
sender from within the case.

• At any time, you can reply to the message from within FogBugz. FogBugz will insert the
case number into the subject line of the outgoing message.

• If the customer responds to your reply, as long as they don’t remove the FogBugz case
number from the subject, their response will be appended to the current case rather
than opening a new case.

• FogBugz will keep a complete transcript of everything that happens with the case, including
all relevant incoming and outgoing e-mail and even private internal conversations
about the case, which the customer does not see.

You can use FogBugz e-mail integration to manage customer service or a helpdesk. FogBugz
can set automatic due dates on incoming e-mail so you can be certain that customers are
receiving replies to their e-mail inquiries in a timely fashion.

Another use of FogBugz e-mail integration is to create a customer bug-reporting address
or a suggestion box. Since all customer e-mails go right into FogBugz, you can treat them just
like bugs or features: assign them to developers, schedule them, assign priorities and due dates,
and so on. When the feature is implemented or the bug is fixed, with one click you can reply to
the customer to notify them of this.

114 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

Setting up E-Mail Integration

To set up e-mail integration in FogBugz, you need to set up mailboxes. These are not POP3
mailboxes (though you require a POP3 mailbox that corresponds to each FogBugz mailbox),
but FogBugz mailboxes. Each FogBugz mailbox corresponds to one incoming POP3 mailbox
where FogBugz receives mail. You can set up as many mailboxes as you want; for example, you
could set up customer-service@megautil.com as well as suggestions@megautil.com and
bugs@megautil.com (at least, you could do that if you owned the megautil.com domain). Each
mailbox can be treated differently.

Any FogBugz administrator can set up or edit mailboxes. To do so, log on as an adminis-
trator and select the Mailboxes link on the Administrative Tools bar. This will open the list of
current mailboxes shown in Figure 5-5.

Figure 5-5. Managing mailboxes

From this screen, you can perform the following tasks:

• To edit an existing mailbox, click the edit icon or the mailbox name.

• To delete an existing mailbox, click the delete icon.

• To send test mail to a mailbox, click the envelope icon.

• To create a new mailbox, click the new icon or the Add new mail account hyperlink.

When you choose to create a new mailbox, you’ll see the screen shown in Figure 5-6, which
lets you configure the new mailbox. To configure a mailbox, you basically need to set up two
things: where the e-mail comes from and what FogBugz should do with it. This involves setting
up quite a number of options, but for many of them you should be able to use the defaults that
FogBugz provides.

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 115

Figure 5-6. Creating a new mailbox

The first section of the page concerns account setup:

• Email address is the full e-mail address of the mailbox, for example,
ServerMonitor@megautil.com. Messages that FogBugz sends will appear to
come from this account.

• Full name is the full name that will appear when replying to e-mail from this mailbox, for
example, MegaUtil Customer Service. Automated mail will always come from this name.
If you send mail manually (by hitting the Reply button while you’re working with a case),
FogBugz will offer you a choice between this name and your own name. This allows you
to choose between hiding behind an anonymous alias and providing the customer with
personalized feedback.

• Account Name is the login account on the POP3 mail server. FogBugz won’t set this
account up for you. There are just too many different e-mail servers. But your network
administrator should be able to set up as many POP3 accounts as you need.

• Password is the login password on the POP3 mail server.

• Mail Server is the DNS name or IP address of the POP3 mail server.

• Port is the TCP port for the POP3 service. This is almost always 110 unless you’re using
secure POP3, which is almost always 995.

116 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

The next section of the mailbox configuration screen handles automatic replies. Figure 5-7
shows this portion of the screen.

Figure 5-7. Configuring automatic replies

You can click the Off radio button to simply disable automatic replies, in which case all of
the other options vanish. But if you leave automatic replies on, you can set up these options:

• Subject is the subject line to be used for automatic replies.

• Message is the message to be sent as an automatic reply.

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 117

It might seem like this is a mighty inflexible way to set up automatic replies, but there’s a
trick: FogBugz accepts a number of shortcuts that will automatically be expanded when the
e-mail is sent. You can use any of these shortcuts to make your automatic replies more flexible:

• {case} for the Case ID.

• {email} for the e-mail return address of the FogBugz mailbox.

• {fullname} for the full name associated with the FogBugz mailbox.

• {sender} for the sender’s e-mail address (that is, the person who sent the e-mail that trig-
gered the automatic reply).

• {subject} for the subject of the original message.

• {ticket} for the external ticket ID. This is a randomized identifier that’s hard to guess.

• {ticketurl} for a full external link to the case.

• {url} for the base URL of the FogBugz server.

The default message supplied by FogBugz is straightforward:

Thank you for your message. We have received it and will
get back to you as soon as possible.

We use FogBugz to keep track of our incoming email.
You can check the status of your message at the following URL:

 {ticketurl}

Please reply to this message if there's anything else
we can do for you.

--
{fullname}
{email}
--
Powered by FogBugz from Fog Creek Software.
http://www.fogcreek.com/FogBugz

While you can use this message as-is, you probably want to customize it to include at least
your company name. You might also want to eliminate the FogBugz ad, though having it there
does help tip people off that this is an automatic reply.

118 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

■Tip No matter what you do, please make sure the outgoing subject includes (Case {case}) because this will
ensure that if the customer replies to the autoreply, their reply will go into the same case number instead of
opening a new case.

■Note FogBugz will not respond to follow-ups or to messages it decides are spam. It will also not respond
to certain bulk e-mail like “out of office” notices, and it won’t send more than three autoreplies an hour to the
same person, to prevent autoreply loops.

The remaining options let you fine-tune the way that FogBugz handles messages:

• Due lets you set a due date in the case that’s created when the message comes in. You
can leave this set to None (the default), in which case FogBugz won’t automatically
assign a due date. Alternatively, you can choose Automatic, and then select a particular
number of hours, working hours, days, or working days to be used when calculating the
automatic due date.

• Sort Messages lets you determine how incoming messages are categorized. If you leave
this set to the default FogBugz Autosort, then FogBugz will use its own sorting engine to
categorize incoming messages. See the section “Sorting Messages” later in this chapter
for more details. Alternatively, you can select Manual sorting, in which case you’ll be
prompted to supply values for Project, Area, Fix For, Priority, User to Open the Case As,
and Initial Assignment. These values will then be used for every message that arrives in
the mailbox.

• Message Template allows you to set up a signature that will be automatically inserted at
the bottom of every reply you send in this mailbox. This textbox accepts the same set of
shortcut values as the message textbox that I discussed earlier.

• Delete spam after lets you avoid spam filling up your FogBugz database. Any message
that is either resolved as SPAM or moved into the Spam area will be deleted after the
number of days that you set here, which defaults to 7 days. If you don’t want to delete
spam, leave this blank.

• Delete inquiries after lets you set up FogBugz to delete the complete case history of all
closed inquiries after a certain number of days if you do not wish to keep a permanent
record of incoming e-mail.

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 119

When you’ve filled in all of the configuration options, click OK to create the new mailbox.
FogBugz will start checking it for mail immediately. As FogBugz receives e-mail messages, it
discards the ones that it decides are spam (though you can reverse that decision if you need to)
and then creates cases from the rest. Once an e-mail turns into a case, you can work with it just
like you can with any other case in the system.

■Tip When you are looking at an e-mail from a customer, at the top of the case, you’ll see a list of all the
other e-mails you’ve ever received from the exact same e-mail address in the Correspondent section. You can
also search for other e-mail from the same domain name by clicking the link to the right of the @ sign in the
e-mail address. This is helpful because sometimes multiple people will correspond with you from the same
company, and this trick will find all their messages.

Using Snippets

Once you’ve got e-mail coming into your system, you’re going to want to reply to it. Some of the
incoming e-mails will be complete bug reports, but other e-mails will be confusing complaints,
suggestions for future features, or just plain irrelevancies. If you try to reply to all of this mail,
you’ll soon find yourself saying the same things over and over. Fortunately, FogBugz offers a
shortcut here.

FogBugz lets you set up snippets. A snippet can be anything from a word or two (“Sincerely
yours”) to a complete form letter. When you are replying to an e-mail, you simply type the
name of the snippet followed by a backtick (`), and the snippet will be inserted for you
automatically.

Snippets can be used to make it very easy to reply to frequently asked questions with a
canned reply or form letter. This has two benefits. First, it cuts down on the amount of typing
that you (or anyone else) has to do to put together a response. Second, it lets you use and reuse
a response that has been carefully edited and checked over by those concerned. This cuts down
on typographical errors, support people not sticking to the marketing message, and developers
accidentally leaking the next big feature before it’s announced.

There are two kinds of snippets: snippets for everybody, which are set up by an adminis-
trator for the whole team to use, and personal snippets, which only work for a single FogBugz
user. If you log on as an administrator and then click the Snippets link in the main toolbar,
you’ll see the screen shown in Figure 5-8.

120 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

Figure 5-8. Managing snippets

Administrators will see two lists of snippets here; regular users will only see their own
personal snippets. In either list, you can perform these actions:

• To edit a snippet, click the edit icon.

• To delete a snippet, click the delete icon.

• To create a new snippet, click the new icon or the Create New Snippet hyperlink.

The snippet management page also has a handy textbox where you can try out snippets.
Type the name of a snippet followed by the snippet activation key to test out the snippet in this
space. Or press the snippet key twice (``) to browse a list of snippets, as shown in Figure 5-9.

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 121

This feature works anywhere that snippets do, and is especially handy if you can’t remember
which snippet you want.

Figure 5-9. Browsing snippets

The Create New Snippet hyperlink will take you to the screen shown in Figure 5-10. To
create a new snippet, assign the snippet a name and replacement text, as well as a comment to
be shown on the snippet list page. Then click OK to create the snippet.

■Tip FogBugz won’t let you create two snippets with the same name. There is one exception to this rule:
you may create a personal snippet with the same name as a global snippet. In that case, the personal snippet
will be used instead of the corresponding global snippet, until you delete the personal snippet or change the
name of one of the two snippets.

Each user can change the key that is used to activate snippets in the Options screen. By
default FogBugz uses `, which is conveniently located in the top-left corner of an American
computer keyboard. The other symbols you can choose are

\

<

>

#

~

*

^

122 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

Figure 5-10. Creating a new snippet

If a snippet contains a section surrounded by [[and]], that section will be highlighted after
you insert the snippet on most Web browsers. This is extremely useful when you want to insert
something in the middle of a snippet. For example, if snippet b is defined as

I have looked up your account number and your
current balance is $[[x]]. Thank you for contacting us.

you can type b`24 to produce

I have looked up your account number and your
current balance is $24. Thank you for contacting us.

Sorting Messages

Ever faced an inbox full of messages and needed to sort them out between various folders to
keep track of them? Ever wished you had an assistant to help you out with the job? Well, in

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 123

FogBugz, you do. FogBugz contains a sophisticated spam-blocking algorithm that learns how
to recognize spam automatically as you train it. Beyond that, though, FogBugz can also sort
your incoming e-mail into categories other than Spam and Not Spam. Setting up and training
FogBugz AutoSort can be a bit time-consuming, but it’s well worth the effort.

FogBugz uses an adaptive system for recognizing spam and otherwise sorting the incoming
e-mail. This means that rather than using a fixed set of spam clues (such as assuming that
“mortgage” must mean spam), it learns from your own incoming e-mail. If you work for a bank,
“mortgage” probably doesn’t mean spam.

In addition to using positive clues (for example, “V1agra” probably means spam), FogBugz
will learn from negative clues as well (for example, if the e-mail contains the name of one of
your products, it’s much less likely to be spam). FogBugz examines many aspects of the incoming
e-mail for clues that could be considered positive signs of spam, negative signs of spam, or
neutral. And because you train it, FogBugz will also adapt itself to the particular stream of
e-mail that you receive.

■Note FogBugz implements a modified version of the Bayesian filtering algorithm proposed by Paul Graham
in the articles “A Plan for Spam” and “Better Bayesian Filtering” (both available at http://www.paulgraham.com),
with modifications and improvements designed by Ben Kamens, a summer intern at Fog Creek.

When you first configure a mailbox and turn on FogBugz AutoSort, FogBugz sets up a
project named Inbox with three areas: Spam, Not Spam, and Undecided. At first, FogBugz
AutoSort has no clues at all about what messages are spam and what messages are not spam.
All incoming messages are put straight into the Undecided area. FogBugz automatically sets up
an Inbox filter, so to get to the Inbox you can just click the link on your FogBugz home page.
Figure 5-11 shows what the Inbox might look like after a few messages arrive.

FogBugz creates the Inbox project with three predefined areas: NotSpam (for messages
that it is sure aren’t spam), Spam (for messages that it is sure are spam), and Undecided (for
everything else). One of the neat things about FogBugz AutoSort is that it’s not limited to these
three categories. You can create up to 14 custom areas to go along with these three. For example,
if you use the same e-mail alias for job applications and tech support, you might create areas
called Job Applications and Tech Support.

■Tip The fewer custom areas you create, the more reliable the AutoSort function will be.

If you are trying to sort messages into different areas, you will have the best luck if there are
obvious clues in the message. For example, if you make an area for accounting, various words
like “Invoice” and “Receipt” and “Payment” may be good clues that an incoming e-mail goes
to the accounting area, and AutoSort will pick up on these clues automatically as you train it.

124 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

Figure 5-11. Messages waiting in the FogBugz Inbox

■Tip When you first set up AutoSort on a mailbox in FogBugz, FogBugz will create a project named Inbox
and add the areas Spam, Not Spam, and Undecided to the project. But you’re not limited to this default inbox.
You can turn any project into an inbox by telling AutoSort to start placing mail in that project. As soon as you
do, the Spam, Not Spam, and Undecided areas will show up in that project too.

However, all artificial intelligence algorithms have their limitations, and there may be
cases where AutoSort simply can’t figure out a good enough clue from the message as to which
area it should go in. For example, if you try to train AutoSort to separate messages based on
Republican customers versus Democratic customers, it might never be able to do this because
there are no consistent clues in the message to do this sorting.

To make AutoSort useful, you need to train it. To train AutoSort, you need to teach it about
every message in the Undecided area, either by flagging it as spam or moving it to the appro-
priate area if it’s not spam. There are two ways to move a case to the Spam folder. First, you can
select as many cases as you like in the list view of the Inbox and click the Spam button beneath
the list. This will mark all of the selected cases as spam and get them out of your sight forever.

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 125

But if you’re not sure, go ahead and open the case by clicking its title. This will open it in the
regular FogBugz editing screen, as shown in Figure 5-12.

Figure 5-12. Spam or ham?

If the message is spam, click the Spam button to get rid of it. This will return you to the list
of messages in the Inbox. On the other hand, if the message is something you actually need to
deal with, you can move it to the correct area by editing the case, just as you would with any
other case, or use the Move button at the bottom of the Inbox.

126 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

■Tip For safety, FogBugz never displays HTML mail as HTML—it always shows you the plain text version.
Merely viewing an e-mail can never run scripts or otherwise compromise your system’s security. However, as
with all e-mail, use extreme caution when opening or saving any attachment unless you know who it is from
and you were expecting it.

After you’ve classified all of the messages in the Inbox, your screen will look something like
Figure 5-13. Note that the spam messages aren’t shown here. After a few days, the system will
delete them entirely so that they don’t clutter your database. Also, if you’ve moved any cases to
another project, they’ll no longer be listed in the Inbox.

Figure 5-13. Inbox with sorted messages

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 127

After a few days, you should notice that AutoSort is correctly sorting most messages. In the
first few days, there is a small chance that a few messages will be mistakenly flagged as spam.
Don’t worry about this, but do move them into the Not Spam area to help train FogBugz
AutoSort. In fact, any time you see a message in the wrong area, take the time to move it to the
right area. The more accurately you classify messages, the more easily AutoSort will take over
the job from you.

After you’ve received a bunch of spam and a bunch of good messages, typically after a
couple of days or about 100–200 messages, you’ll find that AutoSort is doing a really good job
automatically sorting messages. But no matter how good it gets, it will always be undecided
about some messages and you’ll have to decide those cases yourself. That’s because AutoSort
tries to be conservative to avoid accidentally flagging a message as spam when it’s not really
spam.

■Caution It is extremely rare for FogBugz AutoSort to accidentally mark something as spam that is a legit-
imate e-mail. In fact, our experience is that it’s more common for humans to mistake a real e-mail for spam
than for FogBugz AutoSort to make this mistake! Unfortunately, there’s always the possibility that a legitimate
e-mail from a customer will look so “spammy” that it gets deleted accidentally. If you are concerned about
this, set aside some time to review the spam messages every few days just to be certain nothing legitimate
is getting lost.

Replying to E-Mail and Sending E-Mail

FogBugz also lets you communicate directly with customers via e-mail. By keeping customer
communications in FogBugz, rather than in your own mailbox on an Exchange or other e-mail
server, you can make them available to the entire team. Think of this as creating a repository of
knowledge that everyone can draw on. It’s much easier to discover if a problem has already
been solved for another customer, for example, if all e-mail about customer problems is kept
in one place.

It’s easy to contact a customer who has submitted a case to FogBugz via e-mail. If you
open such a case in FogBugz, the action buttons at the top of the case include Reply and
Forward. If you click the Reply button, FogBugz will open a special editor in the case, as shown
in Figure 5-14.

You can choose whether the reply should come from the default name for the mailbox or
from your own name, and you can edit the message header and message as you like. Remember,
you should leave the case number as a part of the subject so that FogBugz can automatically
attach any customer reply to the same case. You can also attach a file to your reply if you like.
Click the Send & Close or Send button to send the mail. In either case, your message will be
saved as part of the notes on the case.

128 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

Clicking Forward opens the same form, except that it does not automatically grab the e-mail
address of the original submitter as the destination for the e-mail. This lets you use e-mail to
get a copy of the bug to anyone on e-mail (perhaps an executive for whom you haven’t bothered to
buy a FogBugz license, for example).

Regular cases (those that did not come into the system through a FogBugz mailbox) don’t
have the Reply and Forward buttons. Instead, they have an Email button, which opens up an
e-mail form in the notes for the case, similar to the one you’d get from forwarding a mailed case.

Figure 5-14. Sending a reply to a customer

You can also send e-mail to a customer without having a FogBugz case already open. To
initiate e-mail to a customer, click Send Email in the main toolbar. This does two things. First,
it creates a new case, just as if you’d clicked the New Case link. Second, it opens an e-mail form
as the first note on the new case, as if you’d decided to e-mail it after you opened it. So the Send
Email link doesn’t do anything that you couldn’t do otherwise, but it lets you skip a few manual
steps. As with any other e-mail exchange, any replies from that customer will automatically be
appended to the end of the new case so that everyone else on your team can see the entire
history of the e-mail transaction.

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 129

When you’ve got a team of people replying to customer e-mail, there’s always a risk that
two people will try to respond to the same message at the same time. At best, this can make you
look unprofessional; at worst, it can severely confuse your customers. FogBugz prevents this in
two ways:

• As soon as you hit the Reply button, the case is assigned to you. That way other people
can see that you’re working on it.

• If somebody else dashes in and sends a reply anyway while you are in the process of
composing your reply, FogBugz won’t actually send your reply when you click Send.
Instead, it will warn you that somebody else has changed the case and let you decide if
you still want to send your reply or cancel it.

Using Discussion Groups
E-mail provides an excellent way to communicate one-on-one with your customers in private.
Although you can include multiple recipients for a single e-mail or cut and paste e-mail to a
Web site, the fact remains that e-mail is ill-suited for discussions involving many people or for
those that you want to be easily accessible. Enter discussion groups. With version 4.0, FogBugz
introduces a full-fledged discussion group feature.

FogBugz lets you set up both private (available only to logged-in users) and public (avail-
able to anyone who can see the server via the Internet) discussion groups. Private discussion
groups are a great way to communicate in your team. Unlike private e-mail, once conversations
are captured in a discussion group, they will always be visible and searchable, capturing valuable
development knowledge for posterity.

Public discussion groups are a great way to announce features, collect ideas, and provide
tech support for customers. There are some big advantages to using discussion groups for
these purposes instead of e-mail:

• If the same problem comes up frequently, you won’t have to repeat yourself.

• Customers won’t hesitate to tell you if you plan to do something stupid, providing valuable
feedback as you plan for the future.

• There’s a good chance that another customer will help a customer with a problem before
you have a chance to get to them.

In addition to keeping a visible history of a conversation, FogBugz also lets you link items
in discussion groups to cases so that you can make sure somebody deals with each customer
problem, bug report, and feature request. Figure 5-15 shows a discussion group in action. This
is the view that a user logged in to FogBugz gets. As you can see, anyone can contribute to this
public discussion group. FogBugz users can turn posts into cases and take other actions that I’ll
discuss later in this chapter.

130 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

Figure 5-15. A FogBugz discussion group

Setting Up Discussion Groups
Any FogBugz administrator can set up discussion groups, and there’s no practical technical
limit to the number of discussion groups that you can create. The real limit is social: how many
discussion groups can you effectively manage? If there are too many discussion groups, it will
be harder to get a critical mass of people in any one of them. My recommendation is to start
with only one or two groups; you can always create more later if you find a good reason to do so.

To set up a new discussion group, click the Discuss link on the main toolbar and then select the
Customize option from the drop-down list. This will open the screen shown in Figure 5-16.

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 131

Figure 5-16. List of discussion groups

This screen shows all of the discussion groups that FogBugz is currently managing. From
here, you can perform several functions:

• To configure a discussion group, click the configure icon or the discussion group name.

• To delete a discussion group, click the delete icon.

• To create a new discussion group, click the new icon or the New Discussion Group link.

• To customize the appearance of discussion groups, click the customize the appearance
link (see the section “Customizing Discussion Group Appearance” later in this chapter
for more details).

Creating a new discussion group opens the screen shown in Figure 5-17.

132 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

Figure 5-17. Creating a new discussion group

To set up a new discussion group, you’ll need to configure the following options:

• Full Name is a complete name for the discussion group that will appear as a headline.
You can use spaces and special characters in the full name.

• URL Name is a short name for the discussion group that is incorporated into a simpli-
fied URL people can use to access the discussion group. For example, if your URL name
is plans and your web server is running at http://fogbugz.megautil.com, this discussion
group will be located at http://fogbugz.megautil.com/?plans (notice the question mark).

• Tagline lets you supply a brief description of the discussion group (or any other small bit
of text), which will appear below the discussion group name. The tagline may contain
HTML tags.

• Sidebar lets you supply text that will appear in the left-hand sidebar of the discussion
group. The sidebar may contain HTML tags. This can be used to make links to other
popular locations, to provide guidelines and FAQs, or for a decorative picture.

• Posting Guidelines lets you supply text that will appear right below the message text
entry field on new messages, telling people some basic rules for posting to the discussion
group. The default text of “Don’t use HTML. Surround URLs with spaces” is a good
starting point. The posting guidelines may contain HTML tags. If your rules get too long,
don’t expect people to read them!

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 133

• Days on Home Page is a number determining how many days’ worth of topics will be
listed on the main page. For busy discussion groups, use a low number like 7 to keep the
main page manageable. For new discussion groups, 30 is a good start. Anything older
than this number of days will disappear from the main page (although it will still be
visible in the archive). While your discussion group builds up critical mass, you should
adjust this number up to make the group look busier and avoid the dreaded “empty
restaurant syndrome” in which nobody bothers posting to the group because it looks
deserted.

• Sort Posts determines whether to let AutoSort look at every incoming post, delete the
spam, and hold suspicious posts for a moderator to approve. I recommend you leave
this setting on.

• Open to Public determines whether you need to be logged on to FogBugz to participate
in the discussion group. Otherwise, anyone who can navigate to your FogBugz server
can participate.

Customizing Discussion Group Appearance
FogBugz allows you to customize virtually every aspect of the visual appearance of the discus-
sion groups so as to match your corporate Web site exactly. However, this customization
requires some skill with HTML and CSS. To get started, click the Customize the Appearance
link on the screen that lists all of the discussion groups. This will take you to a new screen
where you can enter these options:

• Top of the Page: HTML that will be inserted before the discussion group content.

• Bottom of the Page: HTML that will be inserted after the discussion group content. This
is where the default FogBugz advertisement is located, which you can remove if you like.

• Customize Styles: CSS to be added to discussion pages, which lets you change the style of
any page element.

• Left Sidebar Width: The width (in pixels) of the left sidebar. This defaults to 125.

• Main Body Width: The width (in pixels) of the body of the discussion group. The default
value is 600.

■Note Any customization settings made here apply to all discussion groups on the server.

Starting a New Topic
After you’ve set up a discussion group, anyone navigating to the group’s home page will see a
screen like the one shown in Figure 5-18.

134 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

Figure 5-18. Discussion group home page

■Note Figure 5-18 shows a public discussion group as seen by a non-FogBugz user. If you’re logged in to
FogBugz when you visit a discussion group, you’ll see the same content, but it will be wrapped with the
normal FogBugz menus.

You can perform a number of actions from this home page:

• See the content in an existing topic by clicking the topic name.

• Create a new topic by clicking the New Topic link.

• See topics that have scrolled off the home page by clicking the Older Topics link.

• Search for content anywhere in the discussion group by entering text in the search box
and clicking OK.

• Subscribe to an RSS feed for the entire discussion group from the RSS icon.

When you click the link to create a new topic, FogBugz will display the screen shown in
Figure 5-19.

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 135

Figure 5-19. Creating a new discussion topic

To create a new discussion topic, you need to supply a subject and a message that will be
used to kick off the discussion. You also need to fill in your own name and (optionally) an e-mail
address and Web site where you can be contacted.

■Tip FogBugz never reveals users’ e-mail addresses on the Web site, so they can’t be harvested by spam-
bots. Instead, it turns addresses into a hyperlink that other users can click to enter messages. FogBugz then
forwards those messages to the user, and it’s up to the recipient to decide whether to respond. FogBugz will
not forward more than five personal e-mails from each sender per day, to make spam scripts impossible.

136 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

The new topic will be created as soon as you click OK, and you’ll be able to see the message
that you entered immediately. Figure 5-20 shows the start of a new discussion topic. The little
envelope is the hyperlink to send e-mail to this user.

Figure 5-20. A new topic, ready for discussion

Replying to a Topic
To reply to a topic in a discussion group, click the topic’s link on the discussion group home
page. This will open a page that shows all of the current discussion on the topic, with the newest
entries at the bottom of the page. At the very end of the page, you’ll find a Reply to this topic
button. This opens the screen shown in Figure 5-21. Note that you’re not shown the previous
discussion at the time that you’re entering your reply. I’ll talk about the reasons for this later in
the chapter.

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 137

Figure 5-21. Replying to a topic

Managing Discussion Groups
Hopefully your own team members will be polite and stay on topic in the private discussion
groups on your server. But as soon as you open a discussion group to the public, you’re likely
to see two things:

• Spam: Spammers are getting good at posting advertisements and other spam to public
discussion groups as soon as they find them, even rarely used discussion groups on
quiet corners of the Internet with no visitors. They often try to post URLs to their own
Web site in hopes of improving the Google PageRank of those URLs.

• General abuse: This ranges from personal abuse to copyright violations to merely off-
topic posts.

138 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

Fortunately, FogBugz lets you use AutoSort to help keep this sort of nonsense under
control. If you leave AutoSort turned on for a discussion group, it will take a look at all messages
before they get posted, and if necessary quarantine them for approval, or even delete them.
Anyone who is logged on to FogBugz as an administrator will be able to moderate discussion
groups, removing abusive posts and spam. Over time, as you moderate groups manually,
AutoSort will learn from your moderation and try to mimic what you did. For example, if it sees
that you keep deleting posts from a certain IP address or posts containing a certain word, it will
learn to delete those automatically. That way the post is deleted before it even appears.

FogBugz AutoSort is not 100% reliable, and sometimes it will be suspicious about a post
but not certain that it needs to be deleted. In this case, it will merely hold the post for approval.
A post that is held for approval will not appear to the outside world until a moderator clears it.
Alternatively, the moderator can decide the post should be deleted as spam, and AutoSort will
learn more about what you consider to be spam.

If you’re an administrator, going to a discussion group home page from within FogBugz
will show you a view like the one in Figure 5-22. In addition to the information that any user
can see, the administrator is also told about posts that have been held or deleted by AutoSort
(one of each appears in this figure).

Figure 5-22. Moderator’s view of a discussion group

Each of the categories of posts has its own review link. When you click the review link,
you’ll see a screen such as the one in Figure 5-23. Posts that are held for approval are marked,
and posts that were deleted automatically are shown in strikeout type and also marked.

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 139

Figure 5-23. Moderating a discussion group

Moderators are all-powerful. For a regular discussion group item, they can

• Delete the item.

• Create a new case from the item.

• Click the info link to see the e-mail address and IP address of the poster.

For an item that has been held for approval, they can

• Approve the item, making it visible to everyone.

• Delete the item.

• Create a new case from the item.

• Click the info link to see the e-mail address and IP address of the poster.

For an item that has been deleted, they can

• Undelete the item.

• Create a new case from the item.

• Click the info link to see the e-mail address and IP address of the poster.

140 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

Creating cases from items is one of the most powerful parts of the integration of discussion
groups with FogBugz. As you saw in Chapter 1, this gives you an easy way to capture a bug
report from a customer—even when that customer isn’t part of a formal beta program. You can
turn any feedback into a case to track it for later. You can also allow your team to use this feature to
assign discussion group items among themselves to make sure that every topic gets a reply.
When you create a case from an item, FogBugz also creates hyperlinks in both directions to
make it easy to go from one to the other.

As the moderator deletes posts, undeletes posts, and approves posts that were held for
approval, FogBugz AutoSort will learn from those actions. Over time, it will become more
adept at recognizing the signs of bad posts, as well as the signs of good posts. So after a while,
you won’t have as much need to actively moderate a discussion group.

Whenever a post has been deleted, the original person who made that post will still see it
if they log on from the same IP address or the same web browser. This technique helps reduce
the number of people who become furious at having their precious post deleted and try to
disrupt the discussion group in other ways.

FogBugz also uses a number of tactics to try to prevent spam from overwhelming a
discussion group:

• It does not allow Google or other well-behaved search engine spiders to follow links in
the discussion group to outside URLs, so posting an outside URL will not increase the
Google PageRank of that URL.

• It does not allow new replies to topics that have already scrolled off the home page, so
spammers cannot hide spam in old messages, which the moderator is unlikely to see.

• It uses AutoSort to spot and block spam.

• It prevents users from finding out that their message was blocked or deleted. If spam-
mers notice their spam is being blocked, they will try to work around the block and try to
repost their spam using different words. However since FogBugz continues to show
even deleted messages to the IP address range of the person (if spammers are people)
who posted it, it’s very hard for spammers to even find out that their spam is being
removed.

Moderating Effectively
As your discussion community grows, it becomes increasingly likely that you will find a small
number of disruptive users (or that they will find you; some people seem to wander from
system to system looking for places to cause trouble). Whether out of malice, boredom, or
greed, somebody will try to abuse your discussion system. As soon as you delete their posts,
they will immediately appear under another name complaining about censorship and prat-
tling about their First Amendment right to advertise sex aids and talk about politics on your
software discussion board. Inevitably, this will bring in a chorus of naive but well-meaning
users quoting Voltaire who didn’t see the porn ad that got deleted, but they sure know they are
against censorship.

You may find this whole thing to be fun, or you may just find it a boring distraction from
real work. If left unchecked, like Usenet, any public discussion group will rapidly accumulate a
significant amount of spam and “noise.” The noise itself will drive away the best users, and the
signal-to-noise ratio will worsen.

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 141

To address these issues, it’s best to apply some simple rules:

• Moderate your discussion group regularly. An unmoderated discussion group tends to
drift off topic in ever wider swings.

• Don’t delete things merely because you disagree with them; reserve the Delete button
for things that are really off topic or abusive. Although FogBugz tries to prevent people
from finding out that their posts were deleted so they won’t launch into a full-scale
attack, a small percentage of your users will have access to the discussion group from
different IP addresses, so they will discover that their posts are being deleted.

• On the other hand, don’t be afraid to delete things just because they are off topic. If
you’re running a technical support discussion group, go ahead and get rid of the political
ads and the ruminations about which fast food joint is best and the pointers to the latest
Evil Doings of Big Government. There are plenty of other places where people can go to
discuss those things. (If you find your users complaining vociferously, you might try
setting up an explicitly off-topic discussion group to satisfy them.)

• Help train FogBugz AutoSort whenever possible. It’s always better if a post is deleted
instantly by FogBugz AutoSort before anyone sees it, because it reduces the number of
people who even notice that moderation is taking place and launch into predictable
rants about censorship.

• Train FogBugz AutoSort to delete any posts that are about deleted posts, censorship, and
forum mechanics. They are off topic and sure to stir people up. If you don’t do this, you’ll
keep repeating the conversation about censorship every three weeks as new users join
in, which will eventually bore the old users, driving the good users away from the discussion
group and attracting the bad ones.

Understanding FogBugz Discussion Groups
There are many, many software packages out there that support discussion groups. So why
does FogBugz have its own? There are two good reasons for this. First, coupling discussion
groups to the case-tracking system gives you a really easy way to find customer complaints and
ideas and move them into the system where you can act on them. Second, the folks at Fog
Creek had some particular ideas about how a discussion group should be run, and they wanted
a product to implement those ideas.

The result is that FogBugz discussion groups act like other discussion packages in some
ways, but are unique in others. Although you can always hack around in the FogBugz source
code to change the way that discussion groups behave, it’s worth understanding some of the
design decisions here before you do so. You might find, on reflection, that you like things just
the way they are. As you read through the rest of this chapter, keep in mind the primary axiom
of online communities:

Small software implementation details result in big differences in the way the
community develops, behaves, and feels.

142 C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S

One thing you’ll notice is that the discussion groups are very easy to use. Once you master
reading a topic, creating a topic, and replying to a topic, that’s about it. You don’t need to go
through any registration procedure or use a particular browser to participate. The result is that
there are no artificial barriers to participation, and everyone is encouraged to participate (so
are spammers, but as you’ve already seen, FogBugz implements a defense-in-depth against
spammers).

On the other hand, there are two features that are present in many discussion groups that
FogBugz doesn’t implement: e-mail notification and branching conversations. Both of these
are deliberate omissions. If you allow people to subscribe to a conversation via e-mail (usually
implemented with a checkbox that says something like “e-mail me if people reply to this post”),
you’ve just removed the incentive people might have to come back to the discussion group.
The result is that conversations will peter out quickly, and you’ll have a hard (or impossible)
time building any community. Eliminating this one little checkbox encourages (OK, forces)
people to come back. While they’re back, they might read a few more posts and contribute a
few more of their own.

Branching conversations seem reasonable to programmers; let people reply to any post in
a discussion and start a new thread of discussion from there. But if you implement branching,
you’ll find two things. First, it’s incredibly hard to come up with a user interface that makes
multiply branched conversations easy to follow. Second, the same idiots will branch every
discussion in the same idiotic directions. Without branching, discussions tend to stay on a
single track, which makes them much easier to follow.

Even such a simple decision as page arrangement can have major consequences. FogBugz,
for example, always keeps topics sorted in the same order: the topic that was started most
recently remains at the top of the list. Many other packages sort in order of most recent reply
instead. With the FogBugz system, topics automatically age off the home page, rather than
hanging around forever. This prevents perennial arguments from hijacking your forum, spawning
discussions that run hundreds of replies, and scaring new users away.

Locating the Reply and New Topic links at the bottom of the lists is also a deliberate deci-
sion. This is a way to at least try to encourage people to read the discussion before replying.
At the very least they have to scroll past it, and perhaps they’ll notice that someone else has
already made their point.

FogBugz doesn’t show you the discussion thread while you’re writing a reply. This is to
encourage you to actually compose your own reply, rather than quoting what went before.
Quoting may seem like a fine idea when you’re writing a reply, but think about the next person
to come along: do you really want to sentence them to read everything twice? I didn’t think so.

A final note: none of these technical decisions will do the whole job of turning a discussion
group into a useful, friendly, and energetic community. More and more companies these days
are turning to having evangelists (or customer support representatives, or transparency
managers, or whatever the heck they want to call them) whose job it is to promote community.
If you’re planning on using discussion groups as an important part of your public face, it’s
worth making sure that someone in your organization is passionate about community, and
that they have promoting community as part of their official, paid job description.

C H A P T E R 5 ■ C O M M U N I C A T I N G W I T H C U S T O M E R S 143

Summary
In this chapter, you learned about two of the most important features of FogBugz: e-mail and
discussion group management. You saw how you can use e-mail within your team, and as a
means of communicating with customers, all under the control of FogBugz. You also learned
how to set up and moderate discussion groups to help create a community around your products.

In the final chapter, I’ll turn to one more major aspect of FogBugz, this one of great interest
to software developers: integrating your bug reports and your source code control system.

145

■ ■ ■

C H A P T E R 6

Working with
Source Code Control

FogBugz doesn’t exist in isolation from the rest of your development processes. In particular,
you can integrate FogBugz with a number of popular source code control systems:

• CVS

• Perforce

• Subversion

• Vault

• Visual SourceSafe

In this chapter, you’ll learn how and why to work with source code control from within
your FogBugz installation.

Understanding Source Code Control Integration
When you integrate FogBugz with a source code control system, you’re setting up a two-way
link between the two systems. This means two things:

• When you’re looking at a case, you can see the code that was checked in to resolve
the case.

• When you’re looking at a code check-in, you can see the case that it was intended to fix.

These two-way links make it much easier to keep track of what’s going on as your software
makes its way from conception to release. Before showing you the actual mechanics of setting
this stuff up, I’ll go through a scenario in which the links come in very handy, and then discuss
the different choices for source code control software to use with FogBugz.

Using Integration for Code Reviews
FogBugz’s source code control integration makes it trivial for you to set up code reviews, which
are an incredibly powerful tool for shipping high-quality software. The point of code reviews is
to make sure that all source code gets checked for errors by another developer before it’s checked

146 C H A P T E R 6 ■ W O R K I N G W I T H S O U R C E C O D E C O N T R O L

into the master build. Some teams implement code reviews with a formal checklist of defects
to watch out for. Others take a more informal approach, often having a senior developer read
over code from junior developers. In any case, this technique has been proven to lead to higher-
quality code and better developers, so it’s certainly worth considering in your own organization.

With FogBugz integrated to a source code control system, a code review process might
look like this:

1. Karen Benson, one of MegaUtilities’ QA staff, is testing out the latest build of Service
Monitor. She discovers that installing the software, uninstalling it, and then reinstalling
it brings up the login information from the first installation: a potential security issue.
She enters a bug, which FogBugz automatically assigns to the project lead, Valerie Shriver.

2. Valerie looks over the bug and decides that it’s a setup issue. She assigns it to Paige Nagel,
who’s handling the installer coding.

3. Paige inspects the code and realizes that some registry keys aren’t getting properly
deleted on uninstall. She checks the appropriate source files out of the corporate source
code control system and fixes the bug.

4. Paige checks the files back into the Development branch in the source code control
system. When she does this, she includes a specially formatted comment with the case
ID in her check-in comments. The source code control system notifies FogBugz of the
check-in.

5. Paige assigns the bug back to Valerie, with a note that the fix is ready for code review.

6. Valerie opens the case. Because of the notification from the source code control system,
FogBugz displays hyperlinks to the changed code right in the case itself. She clicks the
links for the latest version of each file involved to see color-coded diffs, highlighting just
the code that Paige changed. If Valerie needs more detail, she can drill into the entire
history of any of the source files without leaving the FogBugz interface.

7. Satisfied with the code review, Valerie assigns the bug back to Paige with a note that the
check-in is approved.

8. Paige marks the bug as resolved, and merges the changed code from the Development
branch to the Release branch.

9. FogBugz assigns the bug back to Karen, who checks to make sure the fix is good and
then marks the bug as closed.

Integration is also useful in the other direction, when you’re working with source code
control. Suppose you’ve just refreshed your local copy of a project with the latest shared source,
and you can’t figure out the point of a particular change in the code. Go to your source code
control interface, locate the link back to FogBugz, and you can jump right to the case that was
the reason for the change.

C H A P T E R 6 ■ W O R K I N G W I T H S O U R C E C O D E C O N T R O L 147

Choosing a Source Code Control System
With sufficient ingenuity, you can integrate nearly any source code control system with FogBugz.
The minimum requirement is that you need to be able to run some sort of script on every
check-in that either does a GET from a specially formatted URL or uses ODBC or OLE DB to
insert records into a table. Fog Creek supports five source code control systems in particular.
Each has its own pros and cons. Here’s some information to help you choose the right one for
your own purposes:

• CVS (https://www.cvshome.org/) is an open source project that has been around for
quite a while and that has been proven on many applications. You can install a CVS
server on many platforms, including Linux, Solaris, and Windows. It’s free, and an excellent
choice for many projects. Because it’s been around for so long, there are many add-on
tools available for CVS.

• Perforce (http://www.perforce.com/) runs on practically any modern platform, and has
the widest support for graphical clients on various platforms of any source code control
system I’ve seen. It has a particularly well-designed branching model that makes it
suitable for complex projects. Perforce is free for up to two users, but starts at $750 per
user after that.

• Subversion (http://subversion.tigris.org/) is meant to be a “better CVS.” Like CVS, it’s
an open source project. In particular, some of the underlying operations are faster and
more flexible than the CVS equivalents. Subversion isn’t as mature as CVS, but it’s also a
good choice as a free system.

• Vault (http://www.sourcegear.com/vault/index.html) uses Microsoft SQL Server as a
data repository for reliability, and it works very well over slow connections. It’s also
designed to be a painless upgrade for users who are familiar with Visual SourceSafe. It’s
the only one of these applications that offers built-in support for FogBugz integration.
However, in addition to SQL Server licenses, you’ll also need to pay $199 per user after
the first user.

• Visual SourceSafe (http://msdn.microsoft.com/vstudio/previous/ssafe/) is Microsoft’s
source code control system. It comes with Visual Studio, and it’s a good choice for
developers who work exclusively within Visual Studio. But it has a reputation for being
slow over WAN connections, and it has had data corruption problems in the past (both
of these problems are supposed to be fixed in Visual SourceSafe 2005).

Making the Connection
You can set up source code integration between FogBugz and your source code control system
in two steps. First, install a “trigger” script in your source control system to notify FogBugz
whenever a check-in occurs that is related to a particular bug. The easiest way to notify FogBugz
is to use an HTTP library to GET a URL of the following form, where bugID is the bug ID number,
file is the file that is being checked in, x is the old revision number, and y is the new revision
number:

http://fogbugzURL/cvsSubmit.asp?ixBug=bugID&sFile=file&sPrev=x&sNew=y

148 C H A P T E R 6 ■ W O R K I N G W I T H S O U R C E C O D E C O N T R O L

Alternatively, you can notify FogBugz by inserting records directly into the database table that
it monitors for source code control communications. The table is named CVS, and it includes
these columns:

• ixBug, the integer bug ID

• sFile, the 255-character-string name of the file

• sPrev, the 255-character-string old revision number

• sNew, the 255-character-string new revision number

■Note The revision numbers in this table are strings instead of integers because some source code control
products let you assign arbitrary nonnumeric revision numbers when you check in code.

The second step in setting up integration is to configure FogBugz to create hyperlinks from
the check-in information to a Web page showing the check-in logs or diffs. The URLs you’ll
need to use depend on the particular source code control system that you’re employing, but all
of the systems offer some Web interface that you can use, either built in or as an add-on.

In the remainder of this section, I’ll give you more detailed instructions for setting up each
of the supported source code control systems.

Setting Up CVS Integration
FogBugz comes with two integration scripts for CVS: one written in Perl, and one written in
VBScript. If your CVS server runs on a Linux or Unix machine, you’ll probably want to use the
Perl version. If your CVS server runs on a Windows machine, you can install Perl and use the
Perl script, but it’s probably simpler to use the VBScript version. The installation instructions
are similar either way. You’ll find the scripts installed with FogBugz:

Program Files\FogBugz\Accessories\SourceControl\CVS\logBugData.pl
Program Files\FogBugz\Accessories\SourceControl\CVS\logBugData.vbs

Once you’ve located the appropriate script, follow these steps to set things up:

1. Open a command window on your CVS server and check out the CVSROOT directory by
running this command:

cvs co -d cvsroot CVSROOT

2. Make the CVSROOT directory your current directory.

3. Create a file named bugz.txt in this directory. The file should contain a single line of text:

CVS: BUGZID:

4. Save the file and add it to your CVS repository by running this command:

cvs add bugz.txt

C H A P T E R 6 ■ W O R K I N G W I T H S O U R C E C O D E C O N T R O L 149

5. Copy the appropriate script file for your platform to the CVSHOME directory. If you’re
running on Unix, set execute permissions on this file.

6. Open the script file in a text editor. Near the top of the file, you’ll find three settings that
you need to customize:

• Set the value of $BUGZ_SERVER to the DNS name of the Web server where FogBugz is
running.

• Set the value of $BUGZ_URL to the virtual path of your FogBugz installation.
Normally this is /FogBugz/.

• Set the value of $CVSSUBMIT to cvsSubmit.asp or cvsSubmit.php, depending on
whether you’re using the ASP or PHP version of FogBugz.

7. Save the script file and use cvs add to add it to your repository.

8. Edit the file rcsinfo to add one line of text to the end. If you’re running on a Unix server,
the line to add is

ALL $CVSROOT/path/to/bugz.txt

If you’re running on a Windows server, use

ALL $CVSROOT\path\to\bugz.txt

9. Edit the file loginfo to add one line of text to the end. If you’re running on a Unix server,
the line to add is

ALL perl -s /path/to/cvs/logBugData.pl "%{sVv}"

On Windows, use this line:

ALL cscript.exe C:\path\to\logBugData.vbs "%{sVv}"

10. Edit the file checkoutlist, adding two lines at the end:

bugz.txt Error-bugz.txt
logBugData.pl Error-logBugData.pl

11. Check in your changes by running

cvs commit

■Tip Each user will have to recheck out the source tree they are working on so that the CVS: BUGZID: line
is added to the template for log notes. (Otherwise everything will still work, but they will have to remember to
add BUGZID: manually each time they commit a change.)

Now it’s time to set up the other end of the equation, letting FogBugz retrieve information
from CVS:

150 C H A P T E R 6 ■ W O R K I N G W I T H S O U R C E C O D E C O N T R O L

1. Download and install the CVSweb project from http://www.freebsd.org/projects/
cvsweb.html to implement a Web interface to your CVS repository.

2. Log in to FogBugz as an administrator. Click the Site hyperlink on the Administrative
Tools bar. Scroll down to find the Source Code Control URL settings shown in Figure 6-1.

Figure 6-1. Setting up source code control URLs in FogBugz

3. Follow the instructions on screen to set up the proper URLs for calling CVSweb.

4. Click OK to save your settings.

Setting Up Perforce Integration
Like CVS, Perforce runs on a variety of servers. Thus, FogBugz supplies both Perl and VBScript
integration scripts for Perforce as well:

Program Files\FogBugz\Accessories\SourceControl\Perforce\logBugDataP4.pl
Program Files\FogBugz\Accessories\SourceControl\Perforce\logBugDataP4.vbs

Follow these directions to set up FogBugz integration with Perforce:

1. Copy the appropriate script file into the Perforce installation directory.

C H A P T E R 6 ■ W O R K I N G W I T H S O U R C E C O D E C O N T R O L 151

2. Edit the script file, customizing it for your own FogBugz installation:

• Set the value of $BUGZ_SERVER to the DNS name of the Web server running
FogBugz, for example, www.example.com.

• Set the value of $BUGZ_URL to the virtual path of your FogBugz installation.
Normally this is /FogBugz/.

• If you’re using Perfoce passwords, add code at the end of the customization section.
For Perl, add these lines of code:

$UserName = $ARGV[3];
$Password = $ARGV[4];
$ClientHost = $ARGV[5];
$p4 = "p4 -p $ServerPort -c $ClientName -u $UserName -p $Password";

• If you’re using the VBScript integration script, add these lines instead:

Dim UserName: UserName = args(3)
Dim PassWord: PassWord = args(4)
Dim ClientHost: ClientHost = args(5)
Dim p4: p4 = "p4 -p " & ServerPort & " -c " & ClientName & _
 " -u " & UserName & " -p " & Password"

3. Add a trigger by typing p4 triggers at the command prompt. A text file appears. (If it
doesn’t, make sure p4, the Perforce executable, is in your path.) Add a line to the end of
this file. (Note: if you have Perforce passwords enabled, add %password% after %user% in
the trigger.) For the Perl version, the line to add is

exTest //… "c::/perl/bin/perl.exe c:/path/logBugDataP4.pl %changelist%
%serverport% %client% %user% %clienthost%"

For the VBscript version, use this line instead:

exTest //… "cscript.exe c:/path/logBugDataP4.vbs %changelist%
%serverport% %client% %user% %clienthost%"

Make sure to enter this code on a single line in the file, and to precede it with a single tab
character.

4. Save the file to create the appropriate trigger.

To set up integration in the reverse direction so that FogBugz can display code from your
Perforce repository, follow these steps:

1. Download and install the perfbrowse project from http://www.perforce.com/perforce/
loadsupp.html to implement a Web interface to your Perforce repository.

2. Log in to FogBugz as an administrator. Click the Site hyperlink on the administration
toolbar. Scroll down to find the Source Code Control URL settings.

3. Follow the instructions on screen to set up the proper URLs for calling perfbrowse.

4. Click OK to save your settings.

152 C H A P T E R 6 ■ W O R K I N G W I T H S O U R C E C O D E C O N T R O L

Setting Up Subversion Integration
Setting up Subversion integration is relatively simple, but you’ll need to locate two files before
you start. First, you need the actual integration script. You have your choice of Perl or VBScript
versions:

Program Files\FogBugz\Accessories\SourceControl\Subversion\logBugDataSVN.pl
Program Files\FogBugz\Accessories\SourceControl\Subversion\logBugDataSVN.vbs

You’ll also need the SubVersion-to-FogBugz post-commit hook file:

Program Files\FogBugz\Accessories\SourceControl\Subversion\post-commit.bat

Then follow these directions to set up the integration:

1. Put both files into the Hooks directory in your Subversion repository.

2. If your repository is on Unix, make sure to set execute permissions on your
logBugDataSVN file.

3. Customize the script file as follows:

• Set the value of $BUGZ_SERVER to the DNS name of the Web server where FogBugz
is running.

• Set the value of $BUGZ_URL to the virtual path of your FogBugz installation.
Normally this is /FogBugz/.

• Set the value of $CVSSUBMIT to cvsSubmit.asp or cvsSubmit.php, depending on
whether you’re using the ASP or PHP version of FogBugz.

4. Edit the post-commit.bat file and change the following line to point to your Subversion
repository Hooks folder (and change .vbs to .pl if you’re using the Perl version):

C:\SubVersion\Repos\Hooks\logBugDataSVN.vbs

To set up integration in the reverse direction, so that FogBugz can display code from your
Subversion repository, follow these steps:

1. Download and install the WebSVN project from http://websvn.tigris.org/ to implement
a Web interface to your Subversion repository.

2. Log in to FogBugz as an administrator. Click the Site hyperlink on the Administrative
Tools bar. Scroll down to find the Source Code Control URL settings.

3. Follow the instructions on screen to set up the proper URLs for calling WebSVN.

4. Click OK to save your settings.

Setting Up Vault Integration
Vault is unique among the supported source code control applications because the Vault
developers have built FogBugz support directly into their side of the equation. To set up inte-
gration from the Vault side, run the Vault admin tool. Go to the Repository options and enter

C H A P T E R 6 ■ W O R K I N G W I T H S O U R C E C O D E C O N T R O L 153

the main URL of your FogBugz server in the Bug Tracking Integration URL textbox, as shown in
Figure 6-2. Click Apply to save the change.

Figure 6-2. Setting up Vault for FogBugz integration

■Note: You can have different FogBugz URLs for different Vault repositories, or you can set an overall URL
to be used by all repositories.

Setting up integration from the other side is equally simple, because there’s no additional
software to install:

1. Log in to FogBugz as an administrator. Click the Site hyperlink on the Administrative
Tools bar. Scroll down to find the Source Code Control URL settings.

2. Follow the instructions on screen to set up the proper URLs for calling Vault.

3. Click OK to save your settings.

Setting Up Visual SourceSafe Integration
Visual SourceSafe doesn’t support running triggers for every check-in. Fortunately, there’s
a trick you can use to get information about check-ins to Vault anyhow. You can tell Visual
SourceSafe to keep a journal file, and then use a scheduled task to extract information from this
file. Here’s how to set this up:

154 C H A P T E R 6 ■ W O R K I N G W I T H S O U R C E C O D E C O N T R O L

1. Run the Visual SourceSafe 6.0 Admin program. Select Options from the Tools menu. On
the General tab, enter the name of a file that Visual SourceSafe should use as a journal
file. Click OK to save your change, and close the Admin program.

2. Install Visual SourceSafe to the FogBugz server machine. You must make sure that the
FogBugz user or whoever you installed FogBugz to run as has read access on all your
VSS folders and all subfolders. The user must also have full control on the names.dat
and the rights.dat files, and the LoggedIn directory. Also, the user must have full control
on the files SSUS.DLL and SSAPI.DLL in order to create the SourceSafe COM object.

3. Edit the vss_fbupdate.wsf file in the FogBugz\Accessories\SourceControl\VSS folder:

• Edit the FB_PATH variable so that the script will pick up the needed info from the
registry. (Note that you will have to add VSSUser and VSSPassword keys to the registry at
HKEY_LOCAL_MACHINE\SOFTWARE\Fog Creek Software\FogBugz\[%FB_PATH%].)

• Alternatively, you can override what is in the registry and manually set the
sDBConnection to the connection string for FogBugz, and the FB_VSS_USER
and FB_VSS_PASSWORD variables.

• For each VSS project you have, add a line to the script beneath the commented-
out line

'Call ProcessVSSJournal("Project Name", "Path to VSS Database directory")

For example (enter this as a single line in the file):

Call ProcessVSSJournal("Test", "
C:\program files\microsoft visual studio\common\vss")

■Note If you are using MySQL for your FogBugz database, you cannot have an underscore in the file path,
since it will be replaced by MySQL with a dash, and you cannot use a backslash, since MySQL will interpret
that as an escape character. The solution is to use forward slashes in the filename instead.

4. Set the vss_fbupdate.wsf file to run as a scheduled task every so often (maybe hourly or
even more often if you like). The task will complete very quickly, so do not worry about
this script running too often. Make sure this task runs as a user that has privileges to
rename and delete files in the VSS directories (usually not the FogBugz user, but instead
an admin on the machine). Use the //B option to wscript so the script does NOT run in
interactive mode. For example, you might use this command (entered as a single line at
the command prompt):

c:\winnt\system32\wscript.exe //B
\progra~1\fogbugz\accessories\vss_fbupdate.wsf

Setting up integration from the FogBugz side is simple, because FogBugz includes special
code to deal with Visual SourceSafe repositories:

C H A P T E R 6 ■ W O R K I N G W I T H S O U R C E C O D E C O N T R O L 155

1. Log in to FogBugz as an administrator. Click the Site hyperlink on the Administrative
Tools bar. Scroll down to find the Source Code Control URL settings.

2. Follow the instructions on screen to set up the proper URLs for calling Visual SourceSafe.

3. Click OK to save your settings.

Getting from Cases to Code and Vice Versa
The key to making sure that everything works together is that when you’re checking in code to
your source control system, you need to tell FogBugz which case this code is meant to address.
How you do this depends on the source code control system. If you’re using CVS, Perforce,
Subversion, or Visual SourceSafe, you need to include a specially formatted line in your check-
in comments. For example, if you’re checking in code for case 2587, you need to include (on a
line by itself)

BugzID: 2587

If you’re using Vault, the procedure is a bit different. Because Vault includes deep FogBugz
integration, there’s a spot right on the user interface for including the FogBugz case number.
Figure 6-3 shows the Vault Commit dialog box. You can fill in a FogBugz case number in the
Update Bugs textbox to have the code automatically linked to that case.

Figure 6-3. Committing code in Vault with a FogBugz link

156 C H A P T E R 6 ■ W O R K I N G W I T H S O U R C E C O D E C O N T R O L

What does it look like in action? Bearing in mind that the details of the Web interface
change from program to program, I’ll demonstrate with a simple bug. Figure 6-4 shows the
original FogBugz bug report, which calls for a couple of easy user interface changes.

Figure 6-4. A bug report that requires a code change

After inspecting the bug report, I check out the appropriate files to make the changes.
At this point, FogBugz isn’t involved, except to tell me what needs to be done. So I make the
necessary changes in the source code and make sure the project still passes my own unit tests.
Satisfied, I check in the files to my Vault server, making sure to note the bug number on the
check-in.

C H A P T E R 6 ■ W O R K I N G W I T H S O U R C E C O D E C O N T R O L 157

Figure 6-5 shows the tester’s view of the bug at this point. You’ll see that in addition to the
usual FogBugz information, FogBugz has added a number of hyperlinks in the Checkins area.

Figure 6-5. A bug report showing check-ins

Each file has two links. The first will take you to a screen containing the history of the file.
Figure 6-6 shows this screen for a file in a Vault server. Hyperlinks let you see any version of the
file, see its diff from the previous version, or tell who checked the changes in.

The other link displayed with each file takes you directly to a listing of the file, together
with a diff from the previous version. Figure 6-7 shows a small portion of such a diff, which is
color-coded to show lines that were added, deleted, or changed.

158 C H A P T E R 6 ■ W O R K I N G W I T H S O U R C E C O D E C O N T R O L

Figure 6-6. File history shown in FogBugz

Figure 6-7. Viewing diffs in FogBugz

C H A P T E R 6 ■ W O R K I N G W I T H S O U R C E C O D E C O N T R O L 159

Summary
In this chapter, you learned about the integration between FogBugz and various source code
control applications. You saw how to set up the integration and were introduced to some
scenarios where it’s very helpful to have this in place. With that, you know almost all of the ins
and outs of FogBugz: you’ve gone from simply entering cases, through managing and admin-
istering the system, to using it in conjunction with your other programming tools.

There’s one final key point to remember, though. Because FogBugz is supplied as ASP or
PHP pages as well as an unlocked database, its source code is completely open. Though Fog
Creek doesn’t officially support users modifying their own installations, there’s nothing to
prevent you from making changes if you find something that doesn’t quite work the way you’d
like. I urge you to learn the system inside and out before you start tweaking, though. But if you
do need to stretch the boundaries of FogBugz, open the pages in your favorite editor and you
may find that the changes you need are easy to make.

161

■ ■ ■

A P P E N D I X A

Setting Up FogBugz

The FogBugz help file contains complete instructions on installing FogBugz. But there’s a
chicken-and-egg problem there: to see the help file, you need to install FogBugz. If you want to
read the installation instructions before installing, you can find them on the Fog Creek Web site:

• Instructions for Windows:
http://www.fogcreek.com/FogBugz/docs/40/Articles/Installing/Windows.html

• Instructions for Unix:
http://www.fogcreek.com/FogBugz/docs/40/Articles/Installing/Unix.html

• Instructions for Macintosh:
http://www.fogcreek.com/FogBugz/docs/40/Articles/Installing/MacOSX.html

But just in case your corporate policies prohibit reading Web pages from your server, or
you just find having instructions on paper comforting, I’ll review the instructions here. The
server portion of FogBugz runs on Windows, Unix, or Macintosh servers; refer to the appropriate
section of this appendix for your operating system.

Installing on Windows
If you’re working with a Windows server, the most complex part of installing FogBugz is
checking the system requirements. After that, installing the software itself is pretty simple.

Checking System Requirements for Windows
You probably won’t have to worry about hardware for a FogBugz server. Any Pentium-class
computer will probably be fine for most teams. At Fog Creek, they’ve run databases with over
100 users off of a single Pentium II/266 MHz. You’ll probably want at least 512MB of RAM to get
decent performance out of any Windows server.

FogBugz for Windows is supported on the following operating systems:

• Windows XP Professional

• Windows 2000 (Professional, Server, Advanced Server, or Datacenter)

• Windows Server 2003 (Web, Standard, Enterprise, or Datacenter)

162 A P P E N D I X A ■ S E T T I N G U P F O G B U G Z

FogBugz is compatible with Windows XP Professional Edition but not Home Edition. On
Windows XP, you need to install Internet Information Services (IIS), which is not installed by
default. If it is not installed, you can install it from Start ➤ Control Panel ➤ Add or Remove
Programs ➤ Add or Remove Windows Components.

On Windows Server 2003, you should use the Manage Your Server application to install IIS.
Click Add or Remove a Role and ensure that the Application Server role is turned on.

FogBugz also requires VBScript 5.6 or later and Microsoft Data Access Components
(MDAC) 2.6 or later on the server. You can download VBScript from http://msdn.microsoft.com/
library/default.asp?url=/downloads/list/webdev.asp. To find the latest version of MDAC, go to
http://www.microsoft.com and enter MDAC in the search box.

You also need to have a database server installed. You have three choices for a database for
FogBugz on Windows:

• Microsoft Jet 4.0SP3

• MySQL 4.0 or later

• Microsoft SQL Server 7.0 or 2000. At the time of this writing, SQL Server 2005 (“Yukon”)
was not yet available in final form from Microsoft, but Fog Creek assures me that they
will support SQL Server 2005 shortly after it is released.

Microsoft Jet is preinstalled on Windows 2000 and later, so you probably don’t have to install
Jet. You can also install Jet for free from Microsoft’s Web site; go to http://www.microsoft.com
and enter “Jet” in the search box. Jet is good enough for small teams using FogBugz. It works
fine for up to about 10 users. The major drawback to Jet as a FogBugz database is that it does
not support full-text search.

MySQL is an extremely popular open source database available for free from
MySQL AB. MySQL supports full-text search. You can download and install MySQL from
http://www.mysql.com/.

Microsoft SQL Server is a commercial, industrial-strength database that will scale to virtually
any size software team. It requires a license from Microsoft and makes FogBugz work faster
and more reliably on larger teams. SQL Server supports full-text search.

If you’ve already got SQL Server installed on your network (or can afford to buy SQL Server
licenses just for bug tracking), use SQL Server. For very small teams or casual bug tracking, use
Jet. Otherwise, use MySQL.

To send e-mail, you need an SMTP server. If you have the ability to send Internet e-mail,
you probably already have one of these somewhere. There is also a free SMTP server included
in IIS. For FogBugz to receive incoming mail, you need a POP3 server. FogBugz supports plain
POP3 and secure (ssh-based) POP3. Virtually all e-mail servers support POP3. Windows Server
2003 includes a built-in POP3 server.

Running Setup on Windows
Setting up FogBugz on a Windows server is as easy as double-clicking the FogBugz setup file
and following the instructions on screen. FogBugz 4.0 setup uses a wizard interface to walk you
through the setup one step at a time. At any point before you click Finish, you can cancel, and
setup will roll back any changes you have already made.

A P P E N D I X A ■ S E T T I N G U P F O G B U G Z 163

FogBugz setup is designed to be as safe as possible. If anything goes wrong during the
main phase (in which you see a progress indicator), after the error message is displayed, FogBugz
setup gives up and rolls backwards. There are command-line arguments to the setup EXE
program that can be used to ignore errors and continue anyway. To use these options, you
need to launch setup from a command window, instead of by double-clicking the file:

• /ignoreiiserror will allow setup to continue even if it can’t set up a virtual directory in IIS.
You will need to create a virtual directory manually and map it to the FogBugz website
directory.

• /ignorepermissionserror will allow setup to continue even if it can’t set permissions for
the FogBugz account (that you specify during setup) to access the FogBugz directory.
You will need to grant full permission for the FogBugz account to access the FogBugz
directory manually.

• /sqlserveronly will tell setup to install only the SQL Server components. This is useful if
your SQL Server machine is a different machine from your IIS machine and they are not
on the same domain.

■Note Setup never requires a reboot. While files are being copied, it temporarily stops three services:
W3SVC (the Web service), CISVC (the Content Indexing Service), and FogBugz’s own Dispatcho or Maintenance
service (during an upgrade).

Installing on Unix
If you’re setting up FogBugz on Unix, you need to spend some time making sure that various
software prerequisites are installed. After that, installing FogBugz itself is a matter of extracting
files and running a setup script.

Checking System Requirements for Unix
FogBugz for Unix runs on 100% Intel-compatible computers (386, 486, Pentium, etc.). Other
CPUs will not work. FogBugz has been tested with and is supported on these operating systems:

• Red Hat Linux 8.0

• Red Hat Linux 9.0

• Mandrake Linux 9.2

• SuSE Linux 9.0

• Debian Linux 3.0r1

• FreeBSD 5.1

Other versions of Linux that are binary compatible with these may work, but they are not
officially supported.

164 A P P E N D I X A ■ S E T T I N G U P F O G B U G Z

■Tip If you’re not sure which version of Unix you have, type uname -a at the command prompt.

The Apache HTTP server must be installed and running. You’ll need version 1.3 or 2.0 to
run FogBugz. The easiest way to tell if Apache is running on your server is to point a Web
browser at it. For example, from the command line, type lynx http://localhost. If Apache is
running, the command apachectl status will usually tell you what version you have. Or you can
try to download a page that doesn’t exist, which will display an error message containing the
version of Apache. For example, type lynx http://localhost/xxxx.

You’ll also need the PHP command-line interpreter, version 4.2.2 or later (but not PHP 5.0,
which is not supported), which you can download from http://ca2.php.net/manual/en/
features.commandline.php. This is a version of the PHP scripting language that runs from the
command line. The xml, imap, and mysql extensions must be compiled in PHP.

■Tip If you’re not sure whether PHP is installed, the command php -v will try to run it and tell you what
version you have. The command php -m will show you which extensions you have installed. On some
systems, php may be named php4. In this case, you can make a symbolic link from php to php4.

You also need to have pear in your path or in /usr/local/php/bin/pear. Type which pear
to find out whether your path includes the pear binary.

You’ll need to have the PHP scripting language (http://www.php.net) installed as well.
Yes, this is different from the PHP command-line interpreter. PHP must have the xml, imap,
and mysql extensions compiled, and the version must be at least 4.2.2, but not 5.0 or later.

■Caution Although FogBugz will run on PHP 4.2.2, I recommend you get the latest version of PHP 4
(4.3.10 as of this writing). There are important security fixes in recent versions.

To check whether PHP is installed, create a file named test.php in a directory that is served
by your Web server. Copy the following text into that file:

<?
echo PHP_VERSION . "
";
echo "XML:" . extension_loaded('xml') . "
";
echo "imap:" . extension_loaded('imap') . "
";
echo "mysql:" . extension_loaded('mysql') . "
";
?>

Now browse to that new page with a Web browser, for example, lynx http://localhost/
test.php. If you see either the PHP source code itself or your Web browser offers to download
the file to you, this means your HTTP server is not configured to run PHP files. See the PHP
documentation for instructions on configuring Apache to run PHP files.

A P P E N D I X A ■ S E T T I N G U P F O G B U G Z 165

If PHP is running, you will see the PHP version in the first line. Check that it is 4.2.2 or later.
The next three lines tell you whether PHP was compiled with xml, imap, and mysql support,

respectively. If they are, you will see the number 1 after the colon. For example:

4.3.3
XML:1
imap:1
mysql:1

On Unix, you need to use MySQL, version 4.0 or later, to host the FogBugz database. You
can download MySQL from http://www.mysql.com. To check whether MySQL is running, type
mysql at the command line:

• If you get “Command not found,” you probably don’t have MySQL installed, or it might
not be in your path.

• If you get “Can’t connect to local MySQL server,” it’s possible you only have the client
installed, or it could be that the server (mysqld) is simply not running.

• If you get “Welcome to the MySQL monitor,” you’re probably in good shape. It should
also tell you what version you’re running.

Finally, your Unix server needs to be running the curl command-line tool from
http://curx.haxx.se. Type curl --version at the command line. If curl is installed, you will
see a version number. If you get the message “Command not found,” install curl.

Setting Up FogBugz on Unix
To install FogBugz, log on as root or issue the su command. Before you start, you’ll need to
know three things about your system. Figure these out and make a note of them:

• The group under which Apache runs

• The location of your Apache Web server configuration file

• The location of your php.ini configuration file

FogBugz is delivered as a .tar.gz file. Uncompress this file in the directory where you want
FogBugz to live. Fog Creek recommends /opt:

 $ mv FogBugz-setup-php-*.tar.gz /opt
 $ cd /opt
 $ tar zxf FogBugz-setup-php-*.tar.gz
 $ cd FogBugz

Now run the install.php script:

 $ php -d output_buffering=0 -f install.php

■Note The buffering setting is the number zero, not the letter O.

166 A P P E N D I X A ■ S E T T I N G U P F O G B U G Z

After the script file completes its work, launch your Web browser and navigate to
http://localhost/FogBugz/install1.php to finish installing FogBugz. Now you need to set up
the FogBugz Maintenance Service daemon, fpgbugzd. To start the daemon manually, enter
these commands:

$ cd (your FogBugz directory)
$ cd Accessories
$./dispatchod start

You’ll probably also want to add the daemon to your server’s startup script so that it starts
automatically. How you do this depends on which variety of Unix you’re using:

Red Hat or Mandrake Linux Add this line to the bottom of your /etc/rc.local file:

 (your FogBugz directory)/Accessories/fogbugzd start

Debian Linux Create this shell script in your /etc/rc.boot directory, named fogbugzd.sh:

 #!/bin/sh
 (your FogBugz directory)/Accessories/fogbugzd start

Make the script executable:

 $ chmod +x fogbugzd.sh

SuSE Linux Add this line to the bottom of your /etc/init.d/boot.local file:

 (your FogBugz directory)/Accessories/fogbugzd start

FreeBSD Create this shell script in your /usr/local/etc/rc.d directory, named fogbugzd.sh:

 #!/bin/sh
 (your FogBugz directory)/Accessories/fogbugzd start

Make the script executable:

 $ chmod +x fogbugzd.sh

Installing on Macintosh
If you’re setting up FogBugz on a Macintosh server, you need to spend some time making sure
that various software prerequisites are installed. After that, installing FogBugz itself is a matter
of running a setup program.

Checking System Requirements for a Macintosh Server
FogBugz for Macintosh runs on PowerPC Apple Macintosh computers running Mac OS X
version 10.3 (Panther) or version 10.2.4 (Jaguar). Other systems will not work.

A P P E N D I X A ■ S E T T I N G U P F O G B U G Z 167

The Apache HTTP server must be installed and running. You’ll need version 1.3 or 2.0 to
run FogBugz. To check whether Apache is installed, launch System Preferences, and click
Sharing. There should be a check mark next to “Personal Web Server.” Alternatively, you can
just point a browser at your own server. For example, try loading http://localhost in Safari or
Internet Explorer. To check the version of Apache, try to download a page that doesn’t exist,
which will display an error message containing the version of Apache. For example, type
lynx http://localhost/xxxx.

You’ll also need the PHP command-line interpreter, version 4.2.2 or later (but not PHP 5.0,
which is not supported), which you can download from http://ca2.php.net/manual/en/
features.commandline.php. This is a version of the PHP scripting language that runs from the
command line. The xml, imap, and mysql extensions must be compiled in PHP.

■Tip If you’re not sure whether PHP is installed, the command php -v will try to run it and tell you what
version you have. The command php -m will show you which extensions you have installed. On some
systems, php may be named php4. In this case, you can make a symbolic link from php to php4.

You also need to have pear in your path or in /usr/local/php/bin/pear. Type which pear
to find out whether your path includes the pear binary.

You’ll need to have the PHP scripting language (http://www.php.net) installed as well.
Yes, this is different from the PHP command-line interpreter. PHP must have the xml, imap,
and mysql extensions compiled, and the version must be at least 4.2.2, but not 5.0 or later.

■Caution Although FogBugz will run on PHP 4.2.2, I recommend you get the latest version of PHP 4
(4.3.10 as of this writing). There are important security fixes in recent versions.

To check whether PHP is installed, create a file named test.php in a directory that is served
by your Web server. Copy the following text into that file:

<?
echo PHP_VERSION . "
";
echo "XML:" . extension_loaded('xml') . "
";
echo "imap:" . extension_loaded('imap') . "
";
echo "mysql:" . extension_loaded('mysql') . "
";
?>

Now browse that new page with a Web browser, for example, lynx http://localhost/test.php.
If you see either the PHP source code itself or your Web browser offers to download the file to
you, this means your HTTP server is not configured to run PHP files. See the PHP documenta-
tion for instructions on configuring Apache to run PHP files.

If PHP is running, you will see the PHP version in the first line. Check that it is 4.2.2 or later.

168 A P P E N D I X A ■ S E T T I N G U P F O G B U G Z

The next three lines tell you whether PHP was compiled with xml, imap, and mysql support,
respectively. If they are, you will see the number 1 after the colon. For example:

4.3.3
XML:1
imap:1
mysql:1

On the Macintosh, you need to use MySQL, version 4.0 or later, to host the FogBugz data-
base. You can download MySQL from http://www.mysql.com. To check whether MySQL is
running, type mysql at the command line:

• If you get “Command not found,” you probably don’t have MySQL installed, or it might
not be in your path.

• If you get “Can’t connect to local MySQL server,” it’s possible you only have the client
installed, or it could be that the server (mysqld) is simply not running.

• If you get “Welcome to the MySQL monitor,” you’re probably in good shape. It should
also tell you what version you’re running.

■Caution The version of MySQL that comes with Mac OS X SERVER is broken. It yields incorrect results for
SELECT COUNT queries. If you are running the default Mac OS X SERVER edition, you will need to reinstall
MySQL from http://www.mysql.com. You can use the mysqldump command to back up your databases.

Finally, your Macintosh server needs to be running the curl command-line tool from
http://curx.haxx.se. Type curl --version at the command line. If curl is installed, you will see
a version number. If you get the message “Command not found,” install curl.

Setting Up FogBugz on a Macintosh Server
To install FogBugz for Macintosh on an OS X server, double-click the .dmg file that you down-
loaded, and double-click the package inside that (it looks like a box). You will be guided
through setup step by step. After the GUI-based setup is finished, it will launch your Web
browser to let you finish configuring your system.

Understanding the FogBugz Maintenance Service
FogBugz does almost all its work through the Web, via a Web-based interface. That means that
FogBugz code won’t run until a user requests a Web page in their browser.

Typically, Web-based interfaces have two problems:

• Operations that take a long time make the user wait and result in a nonresponsive UI.

• Operations can only be initiated when a user hits a Web page. This makes it impossible
to perform routine tasks such as deleting old spam at midnight or sending out the morning
escalation report via e-mail.

A P P E N D I X A ■ S E T T I N G U P F O G B U G Z 169

To address these issues, FogBugz requires the FogBugz Maintenance Service (informally
known as “the heartbeat”) to be running at all times. This service’s entire job is to wake up
every few seconds and hit a Web page (specifically, heartbeat.asp). That Web page checks
whether there’s any maintenance work to be done, and, if there is, does it.

The FogBugz Maintenance Service is responsible for the following tasks:

• Receiving incoming e-mail via POP3

• Sending outgoing e-mail from the FogBugz outgoing mail queue (a table named
MailQueue) using SMTP

• Performing the Bayesian learning algorithm after someone has reclassified an e-mail
message or discussion group topic

• Deleting old spam messages permanently

• Sending the daily e-mail escalation report to any subscribers

If any of these tasks are not happening, it may be because the FogBugz Maintenance
Service is not running. If the page heartbeat.asp has not been hit for a long time, FogBugz takes
this as a sign that something is wrong with the FogBugz Maintenance Service and reports an
error to the next administrator who logs on.

■Note The FogBugz Web interface will continue to function even if the FogBugz Maintenance Service is
down, so users can continue to enter, work with, resolve, and close cases.

Customizing FogBugz
You learned in Chapter 3 how to customize FogBugz for your own development organization
by creating projects, areas, clients, and so on. Maintaining these areas of FogBugz is likely to be
an ongoing job for your FogBugz administrator. But there are other FogBugz options that you
probably won’t change often. As part of setting up FogBugz, the administrator should check
and configure these settings. There’s also a second configuration process to go through for
individual users. FogBugz administrators can change these user options, or users can change
their own options.

Site Configuration
To adjust the overall configuration of your FogBugz site, log in as an administrator and click
the Site link on the Administrative Tools bar. You can change these settings on the Site
Configuration screen:

• SMTP Server: Enter the network name, DNS name, or IP address of your outgoing mail
server. Enter localhost if the mail server is on the same machine as FogBugz. Enter NONE
if you don’t want FogBugz to send any notification e-mail at all.

• SMTP User: If your SMTP server requires you to log in, provide the username here.

170 A P P E N D I X A ■ S E T T I N G U P F O G B U G Z

• SMTP Password: If your SMTP server requires you to log in, provide the password here.

• Notification Return Address: This is the apparent return address for notification e-mails.
Usually, you want this to be a fake address, so people don’t reply to those automatic
mails. The example.com domain is reserved for fake addresses, so that’s what FogBugz
defaults to.

• Log On Method: FogBugz offers three log on methods with increasing levels of security.
The first is “Names in dropdown, no passwords.” This provides no security, and lets
anyone log on to any account. This method is useful in small organizations where you
trust everyone and are behind a firewall so there is no risk of public access to the FogBugz
server. The second log on method is “Names in dropdown, with passwords.” Every user
can have a password, but the list of users is shown in a drop-down box in the log on
screen. This will allow anyone who can access the FogBugz server to determine a list of
names of users. If some of those users had blank or easily guessed passwords, a mali-
cious user could break into FogBugz. The final method is “Type email address and
password.” This provides a moderate level of security, forcing each user to type their
address and password to log on, and does not provide a public list of users.

• Log on: Determines whether the “Remember me at this computer” option appears on
the log on page.

• New User Control: Normally only administrators can create FogBugz accounts. By changing
this setting to “Anybody can create an account,” you will allow anyone who can access
FogBugz to make their own account. This is useful if your FogBugz server is secure inside
a firewall and you have a large number of potential users in your organization.

• Database: These controls let you choose the type of database server and enter the
connection string for the server. FogBugz will normally set this during setup.

• Extra Fields: Lets you set up any two text fields (such as Version and Computer) that will
be included with cases.

• FogBugz URL: The full URL of the FogBugz server.

• Working Schedule: A hyperlink to the screen where you can adjust the working schedule
(which is used for calculating due dates).

• Source Control URL for Logs: The URL to use for displaying source code control logs.

• Source Control URL for Diffs: The URL to use for displaying source code control diffs.

• Date Format: The format to use for displaying dates. The default is to query the user’s
browser for the setting to use.

• Upload File Size Maximum: The maximum size for a file that can be uploaded as an
attachment to a case.

• Reset FogBugz Autosort: If you’ve made serious changes to the way that you want to
classify incoming messages, you can click this link to tell FogBugz AutoSort to start its
learning process over again.

A P P E N D I X A ■ S E T T I N G U P F O G B U G Z 171

■Caution The SMTP username and password will be stored in clear text in the Windows registry so that
FogBugz can use them to log on whenever needed. Also note that SMTP is a clear-text protocol, so if the
SMTP server is on a different computer, the username and password will be sent in clear text across the
network.

User Options
The Options screen (available from the Options link in the main toolbar) lets you configure
your personal options in FogBugz. Anyone who is logged on as an administrator can change
the options for any user; everyone else can only change their own options.

You can configure the following:

• Full Name: Your full name as it appears in FogBugz.

• Email Address: The e-mail address that FogBugz will use to contact you. If you wish to
receive multiple copies of each notification e-mail at different addresses, separate the
addresses by commas.

• Phone Number: This will be displayed so that other users can contact you to ask questions
without waiting for e-mail.

• Escalation Report: Check this box to receive a copy of the morning escalation report each
day.

• Snippet Activation Key: The keystroke that you can use to insert a snippet into edit fields.

• Display: The information to be displayed in lists of cases.

You can also use the Options screen to change your password.

Adding Licenses
If business is going well, you’ll probably need to add additional FogBugz licenses to accommo-
date more developers and testers. Fortunately, this is an easy process once you’ve purchased
the licenses. When you purchase licenses, Fog Creek will e-mail you an order ID. To install the
licenses, log on as an administrator. Click the Licenses link in the Administrative Tools bar.
Enter the e-mail address and order ID from your purchase. Click the OK button, and your new
licenses will be ready to use.

■Note If your FogBugz computer isn’t connected to the public Internet, follow the link on the licenses page
to an alternate data entry page where you can type in the license number and signature that Fog Creek will
provide on request.

173

■ ■ ■

A P P E N D I X B

Using BugzScout

You’ve seen how easy it is to enter bug reports through the FogBugz interface. But wouldn’t
it be easier to not enter them at all? That’s the reasoning behind BugzScout, a technology that
works with FogBugz to programmatically submit bug reports. By incorporating BugzScout into
your own applications, you can make it possible for those applications to submit bugs from the
field. The only requirement is that the end user be able to see your FogBugz server via HTTP.

Installing BugzScout
After you’ve installed FogBugz on your server, open the accessories folder under your main
FogBugz folder. In it you’ll find a file named BugzScout.dll. Copy this to your development
computer and register it using this command line:

regsvr32 bugzscout.dll

The BugzScout library contains a single object, BugzScoutCtl. Table B-1 shows the inter-
face supported by this object.

Table B-1. BugzScoutCtl Interface

Member Type Description

Area Property Project area to contain this bug

DefaultMessage Property Default message to return to the user

Project Property Project to contain this bug

URL Property URL of your FogBugz server

UserName Property User to use when creating the bug

SubmitBug Method Sends the bug to the server

Failure Event Raised if the submission fails

Progress Event Raised while the submission is underway

Success Event Raised if the submission succeeds

174 A P P E N D I X B ■ U S I N G B U G Z S C O U T

■Tip FogBugz includes the full source code for the BugzScout library. You’ll find it in the ScoutSample.zip
file in your accessories folder. Look for the BugzScoutCPP folder inside of the zip file.

Using BugzScout from Visual Basic
To use BugzScout from any ActiveX host, follow these steps:

1. Create an instance of the BugzScoutCtl object. Because BugzScout submits its bug
reports asynchronously over HTTP, you must ensure that this object does not go out of
scope before the success or failure events are posted.

2. Set the properties of the object to represent the bug that you want entered in the
FogBugz database.

3. Call the SubmitBug method.

Here’s an example of using BugzScout from a Visual Basic 6.0 application:

Option Explicit
' Declare the BugzScout object at the form level so
' that it will persist and we can trap its events
Dim WithEvents scout As BUGZSCOUTLib.BugzScoutCtl

' User email. We'd prompt for this during setup and
' store it somewhere.
Dim strUserEmail As String

Private Sub cmdMonitor_Click()
 On Error GoTo ErrHandler

 ' Do some actual work here

ExitHere:
 Exit Sub

ErrHandler:
 ' Call our bug-handling routine
 HandleError ("cmdMonitor_Click")
 Resume ExitHere

End Sub

A P P E N D I X B ■ U S I N G B U G Z S C O U T 175

Private Function HandleError(strCallingFunction As String)
 ' Generic handler for errors
 ' Submits the error-causing routine to FogBugz
 If scout Is Nothing Then
 Set scout = New BUGZSCOUTLib.BugzScoutCtl
 With scout
 .Project = "ServiceMonitor"
 .Area = "Misc"
 .URL = "http://shoofly.larkgroup.larkfarm.com/FogBugz/ScoutSubmit.asp"
 .UserName = "Robert Evers"
 .DefaultMessage = "The error has been sent to MegaUtilities"
 End With
 End If

 ' Submit the bug
 scout.SubmitBug "Error in " & strCallingFunction, "MainForm", _
 strUserEmail, False

End Function

Private Sub scout_Failure(ByVal sError As String)
 Debug.Print sError
End Sub

Private Sub scout_Success(ByVal sContents As String)
 Debug.Print sContents
End Sub

This code sample shows a generic function (HandleError) that you’d call from anywhere in
your code. This function is responsible for initializing the BugzScoutCtrl object and setting its
properties, then calling the SubmitBug method. SubmitBug takes four parameters:

• A string parameter that will be the title of the case created in FogBugz.

• A string parameter containing any extra information you care to pass. This parameter
will be appended to the notes of the case.

• A string parameter that is the e-mail address of the person submitting the case. This will
be used for the correspondent link on the case.

• A Boolean parameter that you can set to True to force the creation of a new case or False
to allow this report to be appended to an otherwise identical existing case.

176 A P P E N D I X B ■ U S I N G B U G Z S C O U T

When the ScoutSubmit method finishes its work, the object will fire one of two events,
Success or Failure. Success fires if the communication with the FogBugz server actually
happens. It returns with a simple XML payload. It contains either an element called Success or
one called Error, similar to these examples:

<?xml version="1.0"?>
<Success>Thank you for submitting your bug!</Success>
<?xml version="1.0"?>
<Error>No username found: George Swenson</Error>

The Success payload returns with either the DefaultMessage property provided when the
bug was submitted, or a message added by someone on the bug server, such as “This bug has
been fixed in version 2.0. Please upgrade.” If you choose, you can show this to your users after
the bug was submitted to give them an idea of why that bug happened or how to fix it. If there’s
an error after communicating with the server, the Error element contains the error message.

The Failure event fires if the communication with the server failed. For instance, this can
happen because the URL field was not set correctly.

■Note BugzScout uses the ScoutSubmit Web page to enter its bugs into the database. Refer to Chapter 2
for more information on ScoutSubmit.

Using BugzScout from C#
You could use the BugzScout ActiveX object from a .NET language via COM Interop, but there’s a
better way. In the FogBugz accessories folder on your hard drive, you’ll find the ScoutSample.zip
file. The BugzScout.Net folder within this zip file contains two C# .NET projects:

• BugzScout is a complete C# implementation of BugzScout.

• ScoutSample is an example of calling the C# version of BugzScout.

Because .NET supports calling across languages, you can use the C# version of BugzScout
from any .NET language. Its interface is quite similar to the ActiveX version. Table B-2 shows
the members of the BugReport object in the C# version of BugzScout.

Table B-2. BugReport Interface

Member Type Description

Area Property Project area to contain this bug

DefaultMsg Property Default message to return to the user

Description Property Description of the bug

Email Property E-mail address of the bug submitter

ExtraInformation Property Additional information for the notes of the bug

FogBugzURL Property URL of your FogBugz server

A P P E N D I X B ■ U S I N G B U G Z S C O U T 177

Here’s a calling example from the ScoutSample project:

private void CustomReport(object sender, System.EventArgs e){
 try{
 BugReport bug = new BugReport(txtUrl.Text, txtUserName.Text);
 bug.Project = txtProject.Text;
 bug.Area = txtArea.Text;
 bug.Description = txtDescription.Text;
 bug.ExtraInformation = txtExtraInfo.Text;
 bug.ForceNewBug = chkForceNewBug.Checked;
 bug.Email = txtEmail.Text;
 bug.DefaultMsg = txtDefaultMessage.Text;
 lblStatus.Text = bug.Submit();
 lblStatus.ForeColor = Color.Green;
 }
 catch(Exception ex){
 lblStatus.ForeColor = Color.Red;
 lblStatus.Text = ex.Message;
 }
}

The .NET version of BugzScout uses a slightly different strategy from the ActiveX one for
returning information. In case of success, the success message is returned as the return value
from the Submit method. In case of any error, the BugReport class raises an exception.

Choosing What to Report
The most dangerous part of BugzScout is the ability to include extra information with the bug
report. Developers are often tempted (probably through copying other applications) to capture
everything they can think of: hardware and software configuration, time of day, speed of the
user’s Internet connection, the versions of every DLL on the system, and even complete
memory dumps.

There are two good reasons why you should resist this temptation. First, users will find
such full reporting to be an invasion of their privacy, which will make them less inclined to let
your software automatically report bugs (and don’t even think of reporting the bugs without
asking for user permission, unless you want to be branded far and wide as a spyware vendor).

FogBugzUserName Property User to use when creating the bug

ForceNewBug Property Set to true to force a new bug

Project Property Project to contain this bug

AppendAssemblyList Method Appends a list of assemblies and versions to the bug

Submit Method Sends the bug to the server

Table B-2. BugReport Interface (Continued)

Member Type Description

178 A P P E N D I X B ■ U S I N G B U G Z S C O U T

Second, most of the information will be worthless in most cases. As long as you have a way to
get back to the user, knowing the line of code where the crash occurred is enough information
to diagnose almost any problem.

Keeping the information you send back to a minimum has another benefit: it makes the
HTTP communication process faster, which means that bug reporting is less intrusive to users.
And that in turn makes them more likely to report bugs.

Here are a few other tips for making good use of BugzScout:

• Rather than assign all the bugs to a single person (who might move to another project or
even leave the company while your application is still in use), assign them to a virtual
account with a name such as “Bugs From the Field.” Project managers can search
through bugs assigned to this pseudo-person and assign the important ones to actual
developers.

• FogBugz identifies duplicate bug reports through their titles, so consider putting infor-
mation in the title to uniquely identify the bug. You might, for example, put the product
name, line number, and error number in the title, and other information in the description.

• If it looks like the bug is in your error-handling code, be suspicious. There might be some-
thing so drastically wrong elsewhere that it’s thoroughly scrambling the program’s state.

• Look at automatic bug reports promptly, especially during beta periods. This gives you a
chance to ask users for more information while the crash is still fresh in their minds.

179

INDEX

■A
About FogBugz Screenshot option, Windows

Screenshot tool, 37

Access report, creating, 104–105

Administrative Links toolbar

setting up versions and computers, 73

administrators, power of, 56–57

Already Exists status

resolving cases, 99

AppendAssemblyList method

BugReport interface, 177

Area drop-down list, 29

Area property

BugReport interface, 176

BugzScoutCtl interface, 173

areas, setting up, 61

Assigned To drop-down list, 29

attachments, uses in cases, 38

automatic e-mail

getting from FogBugz, 109–111

autosort, e-mail management, 4

■B
bug reports

writing good reports, 11–12

BugReport interface

members in C# version, 176

bugs case category, 17

as category of cases, 2

bug-tracking tool

FogBugz grows from, 1

BugzScout, 173

choosing what to report, 177–178

installing, 173

using from C# project, 176

using from Visual Basic application,
174–176

BugzScoutCtl interface

Members, 173

bulk editing screen

applying bulk actions to cases, 75–77

By Design status

resolving cases, 98

■C
C# and BugsScout, 176

Capture Screenshot Now option, Windows
Screenshot tool, 37

cases

applying bulk actions to, 75, 78

attaching files, 38

bugs category, 17

categories, 2

features category, 18

filtering cases, 40

modifying filters, 42

saving, managing and sharing filters, 46

selecting a filter, 40

working with filtered cases, 47

getting from cases to code and
vice versa, 155

inquiries category, 18

linking, 38

180 ■I N D E X

parts of case, 26

Assigned To drop-down list, 29

Category drop-down list, 30

due date and time, 30–31

Estimate field, 31

Fix For drop-down list, 30

Notes field, 32

priority, 30

Project and Area drop-down lists, 29

title, 28

Version and Computer fields, 31

reminding people about with internal
e-mail, 112

resolving, 96

Already Exists, 99

By Design, 98

Duplicate, 97

Fixed, 98

Implemented, 99

Not Reproducible, 98

Postponed, 98

Responded, 99

SPAM, 100

Waiting for Info, 100

Won't Fix, 99

Won't Implement, 99

Won't Respond, 100

screenshots, 34–35

searching for, 47

tracking, 2

categories, 3

using list and grid views, 48

where entering from, 19

importing cases, 26

via discussion group, 22

via e-mail, 20

via ScoutSubmit, 23

via web, 19

working as a developer, 50

working as a manager, 51

working as a tester, 50

Category drop-down list, 30

clients

isolating with permissions, 68

setting up, 64–67

Computer field

introduction, 31

computers, setting up, 72–73

Create New Client link, 65

custom permissions, setting up, 71

custom reports, 104

creating Access report, 104–105

creating Excel chart, 106

customer communication

discussion groups, 129–142

customer e-mail, 112

overview of process, 113

replying to e-mail and sending e-mail,
127–128

setting up e-mail integration, 114–118

sorting messages, 122–127

using snippets, 119–121

customization

reasons for limitations in FogBugz, 2

customizing working schedule, 73

CVS, 147

setting up integration, 148–150

■D
Debian Linux

setting up FogBugz on, 166

DefaultMessage property

BugzScoutCtl interface, 173

DefaultMsg property

BugReport interface, 176

181■I N D E X

departments

isolating with permissions, 69

setting up, 64–67

Description property

BugReport interface, 176

discussion groups

cases entering from, 22

customizing appearance, 133

managing, 5, 137–140

moderating effectively, 140–141

replying to topic, 136

setting up, 130–133

starting new topic, 133, 136

understanding, 141–142

using, 129

Due Date textbox

introduction, 30

due dates, using, 89–90

Duplicate status

resolving cases, 97

■E
e-mail

autosort, 4

cases entering from, 20

management, 4

managing notifications, 93–94

replying to and sending customers e-mail,
127–128

setting up integration, 114–118

Email property

BugReport interface, 176

escalation reports, 91–93

Estimate field, 31

Excel chart, creating, 106

Exit option, Windows Screenshot tool, 37

ExtraInformation property

BugReport interface, 176

■F
Failure event

BugzScoutCtl interface, 173

feature requests

writing good requests, 13–14

features case category, 18

as category of cases, 2

filtering cases, 40

modifying filters, 42

saving, managing and sharing filters, 46

selecting a filter, 40

working with filtered cases, 47

Fix For drop-down list, 30

Fixed status

resolving cases, 98

Fog Creek Web site

FogBugz installation instructions, 161

FogBugz, 161

adding licenses, 171

administrators, 56

case studies

moving a bug through system, 5–7

responding to a customer query, 8–10

cases

getting from cases to code and vice
versa, 155

communicating with customers

managing customer e-mail, 112–129

managing internal e-mail, 109–112

using discussion groups, 129–142

custom reports, 104

creating Access reports, 104–105

creating Excel charts, 106

customizing, 169

site configuration, 169–170

user options, 171

customizing working schedule, 73

182 ■I N D E X

effective use of, 10

good bug reports, 11–12

good feature requests, 13–14

introducing to company, 10–11

keeping it simple, 14

escalation reports, 91–93

installation instructions, 161

installing on Macintosh, 166

setting up on Macintosh on
OS X server, 168

system requirements, 166–168

installing on Unix, 163

setting up, 165–166

system requirements, 163–165

installing on Windows, 161

running setup on Windows server, 162

system requirements, 161–162

introduction, 1

case tracking, 2–3

core principles, 2

discussion group management, 5

e-mail management, 4

maintenance service, 168–169

managing e-mail notifications, 93–94

managing RSS feeds, 94, 96

release notes

creating, 100–103

setting up clients and departments, 64–67

setting up permissions, 67

assigning permissions, 69–71

isolating clients with permissions, 68

isolating departments with
permissions, 69

setting up priorities, 71–72

setting up projects, areas and releases,
57–63

setting up users and groups, 53

setting up versions and computers, 72–73

source code control systems, 145

choosing system, 147

connecting, 147

integration for reviews, 145–146

setting up CVS integration, 148–150

setting up Perforce integration, 150–151

setting up Subversion integration, 152

setting up Vault integration, 152–153

setting up Visual SourceSafe integration,
153–155

time estimates

art of estimating, 87–88

maintaining case estimates, 82–85

tracking, 81

using to manage workload, 86

using due dates, 89–90

FogBugzURL property

BugReport interface, 176

FogBugzUserName property

BugReport interface, 177

ForceNewBug property

BugReport interface, 177

FreeBSD Linux

setting up FogBugz on, 166

■G
grid views, lists of cases, 48

groups, setting up, 53

■I
Implemented status

resolving cases, 99

importing cases, 26

inquiries case category, 18

as category of cases, 2

internal e-mail

getting automatic e-mail, 109–111

reminding people about cases, 112

signing up for additional notifications, 111

183■I N D E X

■L
linking cases, 38

list views, viewing cases, 49

■M
mailboxes

configuring automatic replies, 116–118

creating, 115

managing, 114

Mandrake Linux

setting up FogBugz on, 166

messages, sorting, 122–127

Mouse Selection option, Macintosh
Screenshot tool, 38

■N
New Case option

Macintosh Screenshot tool, 38

Windows Screenshot tool, 37

Not Reproducible status

resolving cases, 98

notes field

introduction, 32

notifications, 109–111

■P
Perforce, 147

setting up integration, 150–151

permissions

assigning, 69

setting up, 67

Postponed status

resolving cases, 98

priorities, setting up, 71–72

Progress event

BugzScoutCtl interface, 173

Project drop-down list, 29

project management, 1

Project property

BugReport interface, 177

BugzScoutCtl interface, 173

projects, setting up, 57

■Q
Query Wizard

creating Excel chart, 106

Quit option, Macintosh Screenshot tool, 38

■R
Really Simple Syndication. See RSS

Red Hat, setting up FogBugz on, 166

release notes, creating, 100–103

releases, setting up, 61

Report Wizard

creating Access report, 105

Responded status

resolving cases, 99

RSS (Really Simple Syndication)

managing feeds, 94–96

■S
ScoutSubmit

cases entering from, 23

Screenshot tool

introduction, 34–35

Mac and Widows options, 35–37

Site Options screen

configuring to make passwords
required, 71

snippets, 119–122

sorting messages, 122

source code control systems

choosing system, 147

connecting, 147

integration for reviews, 145–146

setting up CVS integration, 148

setting up Perforce integration, 150–151

setting up Subversion integration, 152

setting up Vault integration, 152–153

setting up Visual SourceSafe integration,
153–155

SPAM status

resolving cases, 100

184 ■I N D E X

Submit method

BugReport interface, 177

SubmitBug method

BugzScoutCtl interface, 173

Subversion, 147

setting up integration, 152

Success event

BugzScoutCtl interface, 173

SuSE Linux

setting up FogBugz on, 166

■T
time estimates

art of estimating, 87–88

maintaining case estimates, 82–85

tracking, 81

using to manage workload, 86

Time textbox, introduction, 31

titles, writing good case titles, 28

■U
URL property

BugzScoutCtl interface, 173

UserName property

BugzScoutCtl interface, 173

users, setting up, 53–56

■V
Vault, 147

setting up integration, 152–153

Vault Commit dialog box, 155

commiting code, 155

Vault Commit dialog, box

commiting code, 155

Version field

introduction, 31

versions, setting up, 72–73

Visual Basic 6.0

using BugsScout, 174–176

Visual SourceSafe, 147

setting up integration, 153–155

■W
Waiting for Info status

resolving cases, 100

web, cases entering from, 19

Whole Screen option, Macintosh Screenshot
tool, 38

Window Selection option, Macintosh
Screenshot tool, 38

Won't Fix status

resolving cases, 99

Won't Implement status

resolving cases, 99

Won't Respond status

resolving cases, 100

working schedule

customizing, 73

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

