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You were my first teacher, best friend, loudest cheerleader, and greatest critic. 
Thanks for always telling me I can do, be, and achieve anything I want. For 
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path to success and could be used as a tool to change my life circumstances. You 
touched many lives but none more profoundly than mine, your only daughter. 
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This workbook started as a set of course notes and handouts that I used while teaching 
Introduction to Biostatistics. Although I love technology, I just think that “old school” 
is better for some things. I remember learning math in elementary school with work-
books. I am almost sure that none of my current students have even seen a workbook. 
Nonetheless, there is something about working through problems that helps people to 
grasp the concepts. We try to use examples in this workbook that are easy to under-
stand, and we walk through problems step by step.

This introductory workbook is designed like a good set of notes from the best stu-
dent in the class—the professor. Its outline format at the beginning of each chapter 
points to key concepts in a concise way, and chapters include highlights, bold text, 
and italics to point out other areas of focus. In addition, tables provide important 
information. Labs that include real-world clinical and public health examples walk 
readers through exercises, ensuring that students learn essential concepts and know 
how to apply them to data. The workbook provides the reader with the statistical 
foundation needed to pass medical boards and certification exams in public health. 
Also, those enrolled in online courses may find this workbook to be a great resource 
to supplement course textbooks. Researchers in the field, particularly those new to 
quantitative methods and statistical software (e.g., SAS or Stata), will find that this 
book starts at an appropriate level and covers a breadth of needed material with proper 
depth for a beginner. The workbook will also serve as a great reference to consult after 
the initial reading.

The workbook provides a solid foundation of statistical methods, allowing math-
phobic readers to do basic statistical analyses, know when to consult a biostatistician, 
understand how to communicate with a biostatistician, and interpret quantitative study 
findings in the contexts of the hypotheses addressed. Many introductory biostatistics 
books spend considerable time explaining statistical theory, but what students and 
researchers really need to know is how to apply these theories in practice. This work-
book walks readers through just that, becoming a lifelong reference.

This workbook covers the basics—from descriptive statistics to regression analysis —
providing a survey of topics, including probability, diagnostic testing, probability dis-
tributions, estimation, hypothesis testing (one-sample, two-sample, means proportions, 
nonparametric, and categorical), correlation, regression (linear and logistic), and survival 
analysis. Examples are used to teach readers how to conduct analyses and interpret the 
results. There is no fluff or extra verbiage. The workbook provides readers with exactly 
what they need to know and shows them how to apply their knowledge to a problem.

Introduction
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The workbook not only provides the reader with an introduction to statistical meth-
ods but also a step-by-step how-to guide for using SAS and Stata statistical software 
packages to apply these methods to data, using lots of practical hands-on examples.

Statistical package: A collection of statistical programs that describe data and perform 
various statistical tests on the data.

Some of the most widely used statistical packages include the following:

• SAS—used in this book
• R
• Stata—used in this book
• SPSS
• MATLAB®

• Mathematica
• Minitab
• Excel

In addition, this workbook provides a solid foundation with concisely written text 
and minimal reading required. Although it is designed for an academic course, the 
workbook can be used as a self-help book that allows the user to learn by doing. The 
real-world practical examples show the user how to place results in context and that 
outcomes of analysis do not always go the way that the researcher predicts.

The workbook walks the readers through problems, both by hand and with statisti-
cal software. Readers can learn how the software performs the calculations, and they can 
gain the ability to read and interpret SAS and Stata output. The SAS and Stata code 
provided in the workbook provide readers with a solid foundation from which to start 
other analyses and apply to their own datasets.

General overview

What is statistics?

Statistics

 1 “The science whereby inferences are made about specific, random phenomena on the 
basis of relatively limited sample material.”1

 2 “The art of learning from data. It is concerned with the collection of data, their 
subsequent description, and their analysis, which often lead to the drawing of 
conclusions.”2

The two main branches of statistics

 1 Mathematical statistics: The branch of statistics concerned with the development 
of new methods of statistical inference and requires detailed knowledge of abstract 
mathematics for its implementation.

 2 Applied statistics: The branch of statistics involved with applying the methods of 
mathematical statistics to specific subject areas such as medicine, economics, and 
public health.
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 A Biostatistics: The branch of applied statistics that applies statistical methods to 
medical, biological, and public health problems. The study of biostatistics explores 
the collection, organization, analysis, and interpretation of numerical data.

Basic problem of statistics

Consider a sample of data x1, x2,…,xn where x1 corresponds to the first sample point and 
xn corresponds to the nth sample point. Presuming that the sample is drawn from some 
population P, what inferences or conclusions can be made about P from the sample? (See 
figure below.)

Data

Data are often used to make key decisions. Such decisions are said to be data driven. With 
the use of technology, we are able to collect, merge, and store large amounts of data from 
multiple sources. Data are often the core of any public health or clinical research study, 
which often starts with a research question and the collection and analysis of data to answer 
that question. It is important for researchers and practitioners to understand how to col-
lect (or extract from other sources), describe, and analyze data. Furthermore, the ability to 
understand and critique data and methods used by others is increasing in importance as 
the volume of research studies increases while the quality remains inconsistent.

Units and variables

In most instances, a dataset is structured as a data matrix with the unit of analysis (e.g., 
research participants, schools, research papers) in the rows and the variables in the columns.
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• Units (cases): The research participants or objects for which information is collected.
• Variables: Systematically collected information on each unit or research participant.

Types of variables

• Nominal: Unordered categories (e.g., male, female).
• Ordinal: Ordered categories (e.g., mild, moderate, severe).
• Ranked: Data transformation where numerical or ordinal values are replaced by the 

rank when the data are sorted (e.g., top five causes of death, top three favorite 
movies).

• Discrete: Has a finite number of values where both ordering and magnitude are 
important (e.g., number of accidents, number of new AIDS cases in a one-year 
period).

• Continuous: Has an infinite number of possible values between its minimum and 
maximum values (e.g., volume of tumor, cholesterol level, time).

In this book, we will discuss ways to describe and analyze a single variable and the 
relationship between two or more variables. We demonstrate and walk through key 
principles by hand and supplement this with the use of a statistical package. A statisti-
cal package does what the user tells it to do. It is important to understand key concepts 
so that you can arrive at accurate outcomes from a software package, read statistical out-
put, and properly interpret the results. In Chapter 1, we discuss methods for describing 
sample data, and, in the rest of the chapters, we discuss ways of analyzing data to test 
hypotheses.

References

 1. Rosner B. Fundamentals of Biostatistics. 8th ed. Boston, MA: Cengage Learning. 2016.
 2. Ross SM. Introductory Statistics. 2nd ed. Burlington, MA: Elsevier Academic Press. 2005.



1 Descriptive statistics

This chapter will focus on descriptive statistics and will include the following:

• Measures of central tendency (measures of location)
• Measures of spread (measures of dispersion)
• Measures of variability
• Graphic methods
• Outliers and standard distribution rules

Terms

• arithmetic mean (average)
• bar graph
• box plot
• Chebyshev Inequality
• decile
• descriptive statistics
• empirical rule
• geometric mean
• GIS map
• histogram
• interquartile range
• median

• mode
• outlier
• percentiles
• quartile
• quintile
• range
• scatterplot
• standard deviation
• stem-and-leaf plot
• tertile
• variance

Introduction

A complete statistical analysis of data has several components. A good first step in 
data analysis is to describe the data in some concise way, which allows the data analyst 
a chance to learn about the data being considered. Descriptive statistics is the part 
of statistics that is concerned with the description and summarization of data. Initial 
descriptive analysis quickly provides the researcher an idea of the principal trends and 
suggests where a more detailed look is necessary. The measures used in describing data 
include measures of central tendency, spread, and the variability of the sample. All of 
these measures can be represented in both tabular and graphic displays. We will go over 
different types of graphs and displays in this chapter.
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Measures of central tendency (Measures of location)

One type of measure that is useful for summarizing data defines the center, or middle, 
of the sample. Thus, this type of measure is called a measure of central tendency (also 
“measure of location”). Several measures of central tendency exist, but four measures of 
central tendency will be discussed in this section:

 1 Arithmetic mean (average)
 2 Median
 3 Mode
 4 Geometric mean

Arithmetic Mean: The sum of all observations divided by the number of observations.

• The arithmetic mean is what is commonly referred to as an average.
• This is the most widely used measure of central tendency. However, the arithmetic 

mean, or average, is oversensitive to extreme values, meaning that the mean can 
be influenced by a value that is much higher or much lower as compared to other 
values in the dataset.

• We use the notation μ to denote the mean of a population and x  to denote the 
mean of a sample.

Equation 1.1 shows the calculation of the arithmetic mean.

 x
n

x
x x x

ni
n

i

n

= = + + … +

=
∑1 1 2

1

 (1.1)

Because the mean is based on summation, knowing several properties of summation 
is often useful as you begin to analyze data, specifically as the data relate to the mean.

Median: The median is the value in the middle of the sample variable such that 50% 
of the observations are greater than or equal to the median and 50% of the observations 
are less than or equal to the median.

BOX 1.1 PROPERTIES OF THE SAMPLE MEAN

Equation 1.2 shows the multiplicative property of summations:

 cx c xi

i

n

i

i

n

=
= =

∑ ∑
1 1

 (1.2)

Three important properties of the arithmetic mean:

 1. If yi = xi + c where i = 1,…,n then y x c= +
 2. If yi = cxi where i = 1,…,n then y cx=
 3. If yi = c1xi + c2 where i = 1,…,n then y c x c= +1 2
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• The median is an alternate measure of central tendency (measure of location) and is 
second to the arithmetic mean in familiarity.

• The median is useful in data that have outliers and extreme values; the median is 
insensitive to these values.

• Calculation of the median uses only the middle points in a sample and is less sensi-
tive to the actual numeric values of the remaining data points.

Calculation: Suppose that there are n observations in a sample and that these obser-
vations are ordered from smallest (1) to largest (n). The sample median is defined as 
follows:

If n is odd,

 Median the observation= +





n
th

1

2

If n is even,

 Median the average of the plus the=




 +




n n
th

2 2
1

th

observations

EXAMPLE PROBLEM 1.1

Calculate the arithmetic mean and median of Sample 1.
Sample 1: 2.15, 2.25, 2.30

To find the mean, we add all the values and divide the sum by n, which equals 3.

Mean = + + = =2 15 2 25 2 30

3

6 7

3
2 23

. . . .
.

To find the median, we put all values in numerical order and find the 
3 1

2
2

+



 =

th

nd value.

Median = 2nd value of Sample 1 (2.15, 2.25, 2.30) = 2.25.

PRACTICE PROBLEM 1.1

Calculate the arithmetic mean and median of Sample 2.
Sample 2: 2.15, 2.25, 2.30, 2.60

Mode: The mode is the observation that occurs most frequently.

• This measure of central tendency (measure of location) is not a useful measure if 
there are a large number of possible values, each of which occurs infrequently.

• Some distributions can have more than one mode. We can classify a distribution by 
the number of modes in the data.
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• If there is one mode, the distribution is unimodal. For example, in the follow-
ing sequence of numbers, there is one mode because 7 appears the most out of 
any data value:

– 1  2  3  5  7  7  7  8  8  9
• If there are two modes, the distribution is bimodal. For example, the following 

sequence of numbers has two modes because 5 and 6 both appear the most out 
of any data value in the sequence:

– 2  3  4  5  5  6  6  7  10
• If there are three modes, the distribution is trimodal. For example, the follow-

ing sequence of numbers has three modes because 1, 2, and 6 appear the most 
out of any data value in the sequence:

– 1  1  2  2  5  6  6  8  9

Arithmetic mean versus median

Because the mean is sensitive to outliers and extreme values, it is important to deter-
mine when to use the arithmetic mean versus the median. The distribution of the data 
is a key factor in making this decision.

Arithmetic mean

For a symmetric distribution, the arithmetic mean is approximately the same as the 
median.

For a positively skewed distribution, the arithmetic mean tends to be larger than the 
median.

For a negatively skewed distribution, the arithmetic mean tends to be smaller than 
the median.

Median

If the distribution is symmetric, the relative position of the points on each side of the 
sample median is the same. The mean or median can be used to describe this 
sample.

If the distribution is positively skewed (skewed to the right), the points above the median 
tend to be farther from the median in absolute value than points below the 
median. This is sometimes referred to as “having a heavy right tail.”

If a distribution is negatively skewed (skewed to the left), points below the median tend 
to be farther from the median in absolute value than points above the median. 
This is sometimes referred to as “having a heavy left tail.”

See Figure 1.1 for a demonstration of the relationship between the arithmetic mean 
and the median and the skewed versus nonskewed distributions. The mode is also rep-
resented in the symmetric distribution on the figure.

Geometric Mean: The geometric mean is the antilogarithm of logx  (see Equation 1.3).
This measure of central tendency is not often used in practice but can be useful when 

dealing with biological or environmental data that are based on concentrations (e.g., 
biomarkers, blood lead levels, C-reactive protein [CRP], cortisol).
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Equation 1.3 shows the logx  calculation.

 log logx
n

xi

i

n

=
=

∑1

1

 (1.3)

Example of geometric mean using data from the 2014 National 
Health and Nutrition Examination Survey

The 2014 National Health and Nutrition Examination Survey (NHANES) measures 
participants’ blood lead levels.1 Using these data, we computed the geometric mean for 
the participants. The geometric mean for blood lead levels for the entire group of 2014 
participants with nonmissing data was 0.83 ug/mL compared to the arithmetic mean 
of 1.1 ug/mL. We also categorized participants into age groups and computed the geo-
metric mean of blood lead levels by age category (see Figure 1.2).

EXAMPLE PROBLEM 1.2

Calculate the geometric mean for the dataset in Sample 1 from Example Problem 1.1.
Log (2.15) = 0.33
Log (2.25) = 0.35
Log (2.30) = 0.36

log x = + + = =0 33 0 35 0 36

3

1 04

3
0 3467

. . . .
.

Geometric mean = antilog(0.3467) =100.3467= 2.22

Positive skew Negative skew

Symmetric distribution

Mean
Median
Mode

Figure 1.1  Positively and negatively skewed distribution. In the distribution with a positive skew 
(top left) and the distribution with a negative skew (top right), the median is a better measure 
of central tendency than the mean. The mean more accurately captures the central tendency of 
the data when the distribution is symmetric (center bottom) with thin tails versus when the 
data is skewed. The mean follows the tail of a skewed distribution. The relationship between 
the sample mean and the sample median can be used to assess the symmetry of a distribution.
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PRACTICE PROBLEM 1.2

Calculate the geometric mean of Sample 2.

Measures of spread

Many variables can be well described by a combination of a measure of central tendency 
(measure of location) and a measure of spread. Measures of spread tell us how far or how 
close together the data points are in a sample. Six measures of spread will be discussed 
in this section:

 1 Range
 2 Quantiles
 3 Percentiles
 4 Interquartile range
 5 Variance
 6 Standard deviation

Range: The range is the difference between the largest and smallest observations of a variable.
The range measures the spread of a variable as the distance from the minimum to the 

maximum value. Although the range is very easy to compute, it is sensitive to extreme 
observations. The range depends on the sample size (n). The larger the n, the larger the 
range tends to be. This makes it hard to compare ranges from datasets of different sizes.

Quantiles and Percentiles: Quantiles and percentiles are measures of spread that are deter-
mined by the numerical ordering of the data. They are cut points that divide the frequency 
distribution into equal groups, each containing the same fraction of the total population.

Quantiles and percentiles can also be used to describe the spread of a variable. They 
are less sensitive to outliers and are not greatly affected by the sample size, which is an 
advantage over the range.
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Geometric mean of blood lead by patients’ age category

Figure 1.2  Geometric mean of blood lead levels by patients’ age category for participants of 
the 2014 National Health and Nutrition Examination Survey (NHANES). (Data 
from the National Health and Nutrition Examination Survey, Centers for Disease Control 
and Prevention website, https://wwwn.cdc.gov/Nchs/Nhanes/Search/nhanes13_14 .aspx, 
accessed February 23, 2016.)

https://wwwn.cdc.gov
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• The most useful percentiles are often determined by the sample size and subject matter.
• The pth percentile is the value Vp such that p percent of the sample points is less than 

or equal to Vp.
• The median, which we learned about previously in this chapter, is the 50th 

percentile.
• Other frequently used percentiles include the following:

• Tertiles: Two points that divide and order a sample variable into three categories, 
each containing a third of the population (e.g., high, medium, low). The 33rd 
and 66th percentiles of a sample variable are used to categorize it into tertiles.

• Quartiles: Three points that divide and order a sample variable into four cat-
egories, each containing a fourth of the population. The 25th, 50th, and 75th 
percentiles of a variable are used to categorize it into quartiles.

• Quintiles: Four points that divide and order a sample variable into five catego-
ries, each containing a fifth of the population. The 20th, 40th, 60th, and 80th 
percentiles of a variable are used to categorize it into quintiles.

• Deciles: Nine points that divide and order a sample variable into ten categories, 
each containing a tenth of the population. The 10th, 20th, 30th, 40th, 50th, 60th, 
70th, 80th, and 90th percentiles of a variable are used to categorize it into deciles.

The pth percentile is defined by the following:

 1. The (k + 1)th largest sample point if 
np

100  is not an integer. (k is the largest  integer 

less than np
100 ).

 2. The average of the 
np

th

100





  and the 

np
th

100
1+





  largest observations if 

np
100  is 

an integer.

Interquartile Range: The interquartile range is between the 75th and 25th percentiles. 
This measure of spread encompasses the middle 50% of observations and is not easily 
influenced by extreme values.

EXAMPLE PROBLEM 1.3

Calculate the range and interquartile range using the dataset in Sample 1 in 
Example Problem 1.1.

Range = − =2 30 2 15 0 15. . .

75
100

3 75

100
2 25 2 3075

th Vp
np= = × = → =. .

25
100

3 25

100
0 75 2 1525

th Vp
np= = × = → =. .

V V75 25 2 30 2 15 0 15− = − =. . .

The range is equal to 0.15, and the interquartile range is also equal to 0.15.
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PRACTICE PROBLEM 1.3

Calculate the range and interquartile range for the dataset in Sample 2 from Practice 
Problem 1.1.

Measures of variability

• Measures of variability are measures of spread that tell us how varied our data points 
are from the average of the sample.

• Measures of variability include the variance and the standard deviation (S).

Variance: The variance is a measure that will inform us how values in our dataset differ 
from the mean.

• A high variance indicates a wide range of values; a low variance indicates that values 
are closer to the mean.

• Equation 1.4 shows us how to calculate the variance.

 S
x x

n

i
i

n

2

2

1

1
=

−

−
=∑ ( )

 (1.4)

 where xi is the sample observation for variable X, x  is the mean of X, and n is 
the number of units (observations) in the sample. Variance is also noted as σ2 
in some instances; S2 refers to a sample variance, and σ2 refers to a population 
variance.

Standard Deviation: The standard deviation is the square root of the variance.

• The standard deviation is similar to the variance in that it also tells us how much 
variation around the mean there is in the dataset. The standard deviation is more 
commonly used than the variance because, in many cases, the standard deviation 
has the same units as the mean, whereas the variance has units squared, which can 
complicate interpretation.

• Equation 1.5 shows us how to calculate the standard deviation. Similar to the nota-
tion of variance, in some instances, the standard deviation will be noted as σ, which 
refers to the population standard deviation. When the standard deviation for a sam-
ple is being referred to, S is typically used.

 S
x x

n
Variance

i
i

n

=
−

=
==∑ ( )2

1

1
 (1.5)
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EXAMPLE PROBLEM 1.4

Calculate the variance and standard deviation of the dataset in Sample 1 in 
Example Problem 1.1.

 

S2
2 2 22 15 2 23 2 25 2 23 2 30 2 23

3 1

0

= − + − + −
−

=

( . . ) ( . . ) ( . . )

.00064 0 0004 0 0049

2

0 0117

2
0 00585

+ + = =. . .
.

 S = =0 00585 0 076. .

PRACTICE PROBLEM 1.4

Calculate the variance and standard deviation of Sample 2 from Practice Problem 1.1.

Grouped Data: Grouped data refers to data that are given as a count of observations 
within an interval of a continuous variable.

Suppose that data were given to us in a frequency table, such as the data in Table 1.1, but we 
wanted to know the mean and variance of those data. Table 1.1 contains a pair of frequency 
distributions of weight (lbs.) for a group of people who reported asthma and a group of people 
who reported no asthma. These data are from the 2014 Behavioral Risk Factor Surveillance 
System (BRFSS)2 data and are limited to participants residing in the state of Missouri.

Note that the continuous measure of weight for each subject is not given; instead, the 
weight of each subject is within one of three ranges of weight. Suppose that you want to 
calculate the mean and standard deviation for these subjects. You can do this by using 
the formulas for the grouped mean and grouped variance.

Grouped mean

Equation 1.6 shows us how to calculate the grouped mean.

 x
m f

f

i i
i

k

i
i

k
= =

=

∑
∑

1

1

 (1.6)

where k is the number of intervals, mi is the midpoint of the ith interval, and fi is the 
frequency associated with the ith interval.

BOX 1.2 PROPERTIES OF THE SAMPLE VARIANCE

 1. Suppose there are two samples, x1,…,xn and y1,…,yn, where yi = xi + c, i = 1,…,n, 
and Sx

2 and Sy
2 are the respective variances, then S Sx y

2 2= .
 2. Suppose there are two samples, x1,…,xn and y1,…,yn, where yi = cxi, i = 1,…,n, and 

Sx
2 and Sy

2 are the respective variances, then S c Sy x
2 2 2=  and Sy = cSx if c > 0 or Sy = −cSx 

if c < 0.
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Grouped variance

Equation 1.7 shows us how to calculate grouped variance.

 S
m x f

f

i i
i

k

i
i

k

2

2

1

1
1

=
−





 −

=

=

∑
∑

( )
 (1.7)

To get the grouped standard deviation, we could simply take the square root of the 
grouped variance.

EXAMPLE PROBLEM 1.5

Calculate the grouped mean and grouped standard deviation for the group with 
asthma (Table 1.1).

x = + + = + +110 206 178 394 468 290

890

22660 70132 135( ) ( ) ( ) 7720

890

228512

890
256 8= = . lbs

S2
2 2110 256 8 206 178 256 8 394 468 256 8= − × + − × + −( . ) ( . ) ( . ))2 290

890 1

×
−

BOX 1.3 SIDE NOTE ON GROUPED MEAN

Side Note: f ni

i

k

=
=

∑ ,
1

 where n is the number of observations in the sample.

Side Note: Zero is an integer; it is not a positive integer.

Table 1.1 Asthma status by weight group

Weight group, lbs Weight group midpoint
Asthma

(n = 890)
No asthma
(n = 5834)

70–150 110 206 1786
151–205 178 394 2699
206–730 468 290 1349

Source: Behavioral Risk Factor Surveillance System (BRFSS), Centers for Disease Control and Prevention, 
http://www.cdc.gov/brfss/annual_data/annual_2014.html, 2014. Accessed February 23, 2016. 

Note: The 2014 Behavioral Risk Factor Surveillance System (BRFSS) survey asked participants if they were 
“(ever told) you had asthma?” The response values were yes, no, don’t know/not sure, or refused. Those who 
answered the latter two responses were excluded from the data presented in Table 1.1. Survey partici-
pants were also asked, “About how much do you weigh without shoes?” Those who did not give 
weight were excluded from the data presented in Table 1.1. Also, weights given in kilograms were 
converted to pounds. The data presented in Table 1.1 are limited to residents of the state of Missouri.2

http://www.cdc.gov
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= − × + − × + ×( . ) ( . ) ( . )146 8 206 78 8 394 211 2 290

889

2 2 2

= × + × + ×21550 24 206 6209 44 394 44605 44 290

889

. . .

= + +4439349 44 2446519 36 1295577 6

889

. . .

= 22296 3 2. lbs

S = 22296 3.

= 149 3. lbs

PRACTICE PROBLEM 1.5

Calculate the grouped mean and grouped standard deviation for the group without 
asthma (Table 1.1).

Types of graphs

• Graphic displays provide a quick overall impression of the data, which is sometimes 
difficult to obtain with numeric measures.

• Several types of graphs are shown in this section, including bar graphs, histograms, 
stem-and-leaf plots, scatterplots, box plots, and GIS maps.

What makes a good graphic or tabular display?

To make a good graphic or tabular display, the material should be as self-contained as 
possible and should be understandable without the need for additional text. These attri-
butes require clear labeling, including the title, units, and axes on graphs or figures. The 
statistical terms used in tables and figures should be well defined. Keep in mind these 
important attributes of good displays.

Bar Graph: A widely used method for displaying grouped data, a bar graph is a picto-
rial representation of a frequency distribution for either nominal or ordinal data.

• Nominal data are represented by categories that have no order. An example of nom-
inal data is type of food. We could have categories of spicy, bland, or flavorful.

• Ordinal data are also represented in categories; however, the categories are ordered. 
An example of ordinal data is price category of food. The dishes can be cheap, 
affordable, moderately expensive, or pricey.
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With nominal or ordinal data, the bar graph is constructed by dividing the data into 
groups. For each group, a rectangle is constructed with a base of a constant width and a 
height proportional to the frequency within that group. The main problem with using a 
bar graph to present nominal or ordinal data is that the sense of the actual sample points 
in the respective groups is lost.

Figure 1.3 shows an example of a bar graph with nominal data. In this graph, we can 
see that family practitioners perform the majority of care for most of the respondents in 
the sample, and general practitioners/internists are in a close second.

Histogram: The most commonly used type of graph, the histograms depicts the sym-
metry and spread of a single variable. It shows the frequency distribution for discrete or 
continuous data. It allows for identification of intervals with high levels of frequency, 
gaps in the data, and values that are far from others.

• Discrete or continuous are ways to classify numerical data (see also Chapter 4).
• Whereas discrete variables can have only whole number values, continuous vari-

ables can have decimals.
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Figure 1.3  Type of doctor providing the majority of care per patients’ responses. Data used to 
create the figure are from participants’ responses to the question, “What type of doctor pro-
vides the majority of your healthcare?” The responses were cancer surgeon, family practitioner, 
general surgeon, gynecologic oncologist, general practitioner/internist, plastic surgeon/reconstructive 
surgeon, medical oncologist, radiation oncologist, urologist, other, or don’t know/not sure. Some did 
not answer the question. Note that urologist and other were combined to make the other 
category in the figure. Don’t know/not sure and abstentions were excluded from the figure. 
(Data from the Behavioral Risk Factor Surveillance System (BRFSS), Centers for Disease 
Control and Prevention website, http://www.cdc.gov/brfss/annual_data /annual_2014 
.html, 2014, accessed February 23, 2016.)

http://www.cdc.gov
http://www.cdc.gov
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• Examples of discrete data include the following:
– The number of Zika virus cases in a state. These would be discrete numeri-

cal data because we can have only a whole number of Zika cases (e.g., 12 
Zika cases). It would not be possible to have 11.6 Zika cases in a state.

– The number of live births at a hospital in a given year.
– The temperature of the water in a river on a given day.

• Examples of continuous data include the following:
– Concentration of lead in the blood of a patient.
– Parts per million of water contamination.
– Length of time a cancer patient survives after diagnosis.

• When there are a large number of discrete possibilities, the line between discrete 
and continuous data can be blurry. Rounding of measurement can also make con-
tinuous data appear discrete.

On the basis of the histogram in Figure 1.4, would you say the distribution of age in 
this sample is skewed or symmetric?3–6

This is a random sample that is based on a modest sample size (n = 93) from a 
real dataset; nevertheless, the distribution is fairly symmetric. However, the left tail is 
heavier than the right tail, suggesting a left skew.

Stem-and-Leaf Plot: In this type of plot, the actual sample values are preserved, and a 
grouped display of the data is presented. The collection of leaves takes on the general 
shape of the distribution of sample points. The stem-and-leaf plot can be used to over-
come problems with bar graphs. From the stem-and-leaf plot, it is easy to compute the 
median and other quantiles.

To construct a stem-and-leaf plot, follow these steps:

 1 Separate each data point into a stem component and a leaf component.
 a The stem component consists of the number formed by all but the rightmost digit.
 b The leaf component consists of the rightmost digit.
 2 Write the smallest stem in the dataset in the upper left-hand corner of the plot.
 3 Write the second stem, first stem + 1, below the first stem.
 4 Continue with Step 3 until you reach the largest stem in the dataset.
 5 Draw a vertical bar to the right of the column of stems.
 6 For each number in the dataset, find the appropriate stem, and write the leaf to the 

right of the vertical bar.

The data3–6 on age of the sample of patients from Figure 1.4 were used to create the 
stem-and-leaf plot in Figure 1.5.

EXAMPLE PROBLEM 1.6

Create a stem-and-leaf plot for Sample 3, which consists of the following observed 
data points: 234, 235, 243, 246, 247, 248, 250, 263, 274, 275.

To create the stem-and-leaf plot pictured in Figure 1.6, we first start by separating 
all of the data points into stem-and-leaf components. Here, we have stems of 23, 24, 
25, 26, and 27. Next, we place the stems in numerical order—which they already hap-
pen to be in—starting with the top of the left column labeled Stem. Now, we draw our 
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vertical bar to the right of the stem values and fill in the leaf for each data point in the 
column we label Leaf.

PRACTICE PROBLEM 1.6

Create a stem-and-leaf plot for Sample 4, which consists of the following observed data 
points: 348, 345, 342, 347, 374, 369, 350, 368, 364, 358, 359, 365, 373, 354, 352, 
358, 372, 366, 364, 355.

Stem Leaf
2
3
4
5
6
7
8

0376
011233445557789
01223456788999
0000001112222223334444455666666777889
0001222244456667
00127
23

Figure 1.5  Stem-and-leaf plot of age of sample of primary care clinic patients. The data are from the 
same random sample of 93 patients (from a total of 1380 patients) represented in Figure 1.4. 
(From Goodman, M. S., Griffey, R. T., Carpenter, C. R., Blanchard, M., and Kaphingst, 
K. A., J Am Board Fam Med., 28(5), 584–594, 2015, doi:10.3122/jabfm.2015.05.150037.)
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Figure 1.4  Age of a random sample (n = 93) of primary care clinic patients seen between 
July 2013 and April 2014. The data are from a random sample of 93 participants in a 
study conducted in a primary care clinic in St. Louis, MO. Participants were recruited 
from the waiting room of the clinic, and they completed the survey in English. A total of 
1380 patients participated in the study. (From Goodman, M. S., Griffey, R. T., Carpenter, 
C. R., Blanchard, M., and Kaphingst, K. A., J Am Board Fam Med., 28(5), 584–594, 2015, 
doi:10.3122/jabfm.2015.05.150037.)
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Box Plots: Box plots show the relationship among the median, upper quartile (75th per-
centile), and lower quartile (25th percentile) to demonstrate the skewness of a distribu-
tion. The box represents the middle 50% of observations (interquartile range) with the 
lower end of the box at the 25th percentile and the upper end of the box at the 75th 
percentile. The line in the middle of the box is the median (50th percentile). From the 
bottom of the box is a line with a horizontal bar at the 5th percentile, and from the top 
of the box is a line with a horizontal bar at the 95th percentile.

If the distribution is symmetric, the 75th and 25th percentiles should be approxi-
mately equally spaced from the median.

If the 75th percentile is farther from the median than the 25th percentile, the distribution 
is positively skewed.

If the 25th percentile is farther from the median than the 75th percentile, the distribution 
is negatively skewed.

Box plots will also show the presence of outliers. In the box plot in Figure 1.7, we can 
see that there is one outlier in the non-Hispanic white category. This is represented by 
the point above the upper horizontal bar representing the 95th percentile.

• Does the box plot in Figure 1.7 give you a sense of the mean of the BMI in the two 
groups?
• Yes, the mean is represented by the small diamonds inside the box plots.

• Does the box plot in Figure 1.7 give you a sense of the median BMI in the two groups?
• Yes, the median is represented by the bars through the middle of the boxes.

• Does the box plot in Figure 1.7 give you a sense of the mode(s) of BMI in the two groups?
• No, we do not get a sense of the mode from a box plot.

• How would you compare the distribution of BMI among non-Hispanic white par-
ticipants and non-Hispanic black participants based on Figure 1.7?
• The distributions appear similar between the two groups. The BMI distribu-

tion for non-Hispanic blacks has a larger spread than the BMI distribution for 
non-Hispanic whites.

Scatterplots: Scatterplots represent data by depicting single points for each observation.

• There are two types of scatterplots: a one-way scatterplot and a two-way scatterplot.
• A one-way scatterplot uses a single horizontal axis to display the relative position 

of each data point in a group. This plot is not often used in practice.
• A two-way scatterplot is used to depict the relationship between two continuous 

measurements. Each point on the graph represents a pair of values.

LeafStem
23
24
25
26
27

45

45

3678
0
3

Figure 1.6  Stem-and-leaf plot of Sample 3. The stem-and-leaf plot shows the distribution of the 
data in Sample 3 from Example Problem 1.6.
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Figure 1.8 shows an example of a two-way scatterplot. The two continuous variables 
being represented in the graph are waist circumference and body mass index.

Is there a relationship between the two variables?
We can see, on the basis of the scatterplot, that as body mass index goes up, waist 

circumference also goes up.

GIS Map: Graphical information system (GIS) maps show data that have some kind of 
geospatial attribute.

• There are two main types of geospatial data: Vector data and raster data.
• Types of vector data:

– Points, such as longitude and latitude
– Polygons, such as city boundaries
– Lines, such as streets

• Types of raster data:
– Elevations
– Temperature

• Figure 1.9 shows an example of a GIS map from a study on playground safety in the 
neighborhoods of St. Louis, Missouri.7
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Figure 1.7  Distribution of BMI by race. BMI indicates body mass index. The box plot shows 
BMI by race for a random sample (n = 100) of non-Hispanic white and non-Hispanic 
black participants in the 2014 NHANES survey. (Data from the National Health and 
Nutrition Examination Survey, Centers for Disease Control and Prevention website, 
https://wwwn .cdc.gov/Nchs/Nhanes/Search / nhanes13_14.aspx, accessed February 23, 
2016.)

https://wwwn.cdc.gov
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Outliers and standard distribution rules

Outlier: An outlying value is a value x such that either of the following is true: 
(1) x > upper quartile + 1.5*(interquartile range) or 
(2) x < lower quartile – 1.5*(interquartile range)

• An extreme outlying value is a value x such that either of the following is true: 
(1) x > upper quartile + 3.0*(interquartile range) or
(2) x < lower quartile – 3.0*(interquartile range)

• Outliers can influence measures of data and should be considered when presenting 
descriptive statistics.

Empirical Rule: The empirical rule describes a unimodal and symmetric distribution 
using the mean and standard deviation.

When dealing with a unimodal and symmetric distribution, the empirical rule states that

• Mean ± 1 standard deviation covers approximately 67% of observations.
• Mean ± 2 standard deviation covers approximately 95% of observations.
• Mean ± 3 standard deviation covers approximately all observations.
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Figure 1.8  Two-way scatterplot of BMI by waist circumference for a random sample (n = 100) 
of non-Hispanic white and non-Hispanic black participants in the 2014 NHANES 
Survey. NHANES indicates National Health and Nutrition Examination Survey. The body 
mass index (BMI) variable was calculated using participants’ measured weight and height. The 
waist circumference variable is the participants’ measured waist circumference in centimeters. 
All measures were collected by trained health professionals. (Data from the National Health 
and Nutrition Examination Survey, Centers for Disease Control and Prevention website, 
https://wwwn.cdc.gov / Nchs/Nhanes/Search/nhanes13_14.aspx, accessed February 23, 2016.)

https://wwwn.cdc.gov
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N

Playground scores

Percent vacant houses

High (77.0–100)

Medium (61.6–76.9)

Low (15.3–61.5)

7%–11%

12%–19%

20%–28%

29%–73%

No data

0 1 2 4 Miles

Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors,
and the GIS user community

Figure 1.9  GIS map from playground safety study in St. Louis, MO. The graphic information 
system (GIS) map shows levels of playground safety in neighborhoods in St. Louis, MO, 
and the percent of vacant houses in each neighborhood. (Data on playground scores from 
Arroyo-Johnson, C., Woodward, K., Milam, L., Ackermann, N., Goodman, M. S., and 
Hipp, J. A., J Urban Heal., 93(4), 627-638, 2016, doi:10.1007/s11524-016-0063-8; data 
on percentage of vacant housing from Neighborhood Data Gateway, RISE Community 
Development, http://www.datagateway.org, accessed on June 15, 2015. The cartography 
is licensed as CC BY-SA. For more information visit http://openstreetmap.org, http://open 
datacommons.org, and http://creativecommons.org.)

http://www.datagateway.org
http://openstreetmap.org
http://opendatacommons.org
http://opendatacommons.org
http://creativecommons.org
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Chebyshev Inequality: The Chebyshev Inequality states that at least 1
1

2

−




k

 of the x 
observations lies within k standard deviations of the mean.

• The Chebyshev Inequality makes no assumptions about the distribution of the vari-
able. That is, when we have a dataset that does not have a unimodal and symmetric 
distribution, the Chebyshev Inequality still applies, whereas the empirical rule is 
no longer valid.

• The Chebyshev Inequality still holds for unimodal and symmetric data but is more 
conservative than the empirical rule.

PRACTICE PROBLEM 1.7

Fill in Table 1.2 using the information provided.
The mean age of the study participants discussed in Figures 1.4 and 1.5 is 51.3 years 

with a standard deviation of 12.7 years.3–6 Use Figure 1.5 to fill in the column of Table 
1.2 with the heading Actual.

 x k SD± × ( )

PRACTICE PROBLEM 1.8

Suppose that the scale for a dataset is changed by multiplying each observation by a 
positive constant, c.

 A What is the effect on the median?

 B What is the effect on the mode?

 C What is the effect on the geometric mean?

 D What is the effect on the range?

Table 1.2 Practice Problem 1.7 blank table

k Left limit Right limit Empirical rule, % Chebyshev, % Actual, %

1
2
3

Note: This table should be filled in with the appropriate values based on the data provided in Practice 
Problem 1.7 and Figure 1.5.
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 E What is the effect on the arithmetic mean?

 F What is the effect on the variance?

 G What is the effect on the standard deviation?

PRACTICE PROBLEM 1.9

State whether each of the following observations is an example of discrete or continuous 
data.

 A The number of Zika diagnoses in Puerto Rico during May of 2016.

 B The weight of a newborn infant.

 C The concentration of albumin in a sample of blood.

 D The number of children injured on playgrounds in 2015.

Table 1.3 Pulse rate by shortness of breath status

Pulse rate, 60-second pulse rate

Shortness of breath on stairs/inclines No shortness of breath on stairs/inclines

76 76
76 68
72 64
62 84
74 68
82 58
70 82
80 74
80 58
64 74

Source: National Health and Nutrition Examination Survey, Centers for Disease Control and 
Prevention, https://wwwn.cdc.gov/Nchs/Nhanes/Search/nhanes13_14.aspx. Accessed 
February 23, 2016.

Note: The data are from a stratified random sample of 20 participants from the 2014 National Health 
and Nutrition Examination Survey. Participants over age 40 were asked, “{Have you/Has SP} 
had shortness of breath either when hurrying on the level or walking up a slight hill?” 
Respondents who answered don’t know or who refused were excluded from this sample. In a 
separate setting, participants also had their pulse rate measured by a trained health technician.

https://wwwn.cdc.gov
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PRACTICE PROBLEM 1.10

In Table 1.3 are data from a stratified random sample of participants in the 2014 
NHANES survey.1 The first column lists pulse rates, measured as beats per 60 seconds, 
for those who reported a shortness of breath while on stairs or an incline. The second 
column lists pulse rates for those who reported no shortness of breath while on stairs or 
an incline.

Fill in Table 1.4 (descriptive statistics table).

 A Is the typical pulse rate per minute larger for those who experience a shortness of 
breath when walking up stairs or an incline or for those who do not?

 B Which of the two groups has a greater amount of variability in the measurement?
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Table 1.4 Practice Problem 1.10 descriptive statistics blank table

Descriptive statistics Shortness of breath No shortness of breath

Median
Mean
Range
Interquartile range
Standard deviation

Note: Find the descriptive statistics named in the rows for each group named in the columns. 
This table should be solved using the data presented in Table 1.3.
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Lab A: Introduction to SAS®

The basics

The choice of a statistical package is up to you. They all allow you to do the same tasks 
for the most part, although some packages are easier to use for certain tasks than oth-
ers. However, for the purposes of the material in this book, they all work well. When 
deciding which package to use, think of it like learning a new language. It is more about 
who you want to be able to communicate with and your ability to learn new things. 
In this workbook, we have decided to use two programs so that you will be able to see 
the similarities and differences. The purpose of this lab is to introduce you to the SAS 
statistical software package. We are using SAS version 9.4 (SAS Institute, Cary, North 
Carolina) throughout this workbook.

In each chapter throughout this workbook, you will receive some SAS pointers con-
taining the information that you need to complete the computing for that chapter. 
There are multiple ways to use most statistical software programs. The main options 
are a window-based format with pull-down menus or a command-driven format in 
which the user writes code and runs it. We will give some examples of both but focus 
on command-driven programs that the analyst can save for future use.

Getting started

You should have SAS installed on your computer. Let’s open SAS. As we go through this 
introduction to SAS, you should be doing this on your computer to get the hands-on 
experience. 

What is SAS?

SAS is a computer software program that allows a user to perform different procedures 
on data, such as analysis and manipulation. For example, SAS has many statistical proce-
dures that can produce complex models or basic statistics, such as a mean and a standard 
deviation. SAS also allows a user to manipulate and clean data, such as creating new 
variables and changing categories of variables. We will use SAS throughout this work-
book and explore a subset of what SAS can do. 
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SAS windowing environment

The SAS interface is divided into six windows, five of which appear when we open SAS: 

 1 Editor Window
  This is where we type syntax into SAS in order to perform statistical analy-

ses, plot graphs, and other procedures. We can save code entered here by clicking 
the save button on the toolbar. This file will save with an extension of “.sas,” 
which indicates a SAS program.

 2 Output Window
  This is where the results of any procedure performed by SAS will appear if 

we have our preferences for results checked as “create listing.” We can check this 
by going to Tools/Options/Preferences and clicking the Results tab.

 3 Results Viewer Window
  This is where the results of any procedure performed by SAS will appear if 

we have “create HTML” checked. We can check this by going to Tools/Options/
Preferences and clicking the Results tab. This is the only window that will not 
automatically appear when SAS is opened. It will open if we are in HTML mode 
and submit a PROC step that produces results. 

 4 Explorer Window
  In this window, we can see the contents of our current SAS environment. 

This window is most useful for viewing libraries and opening datasets.
 5 Log Window

  This window is very useful. This is where we can see code that we have run 
and check for errors or warnings. In the log window, text appears in different 
colors. Black is for code that we submitted, blue is for SAS notes, green is for 
warnings, and red is for errors.

 6 Results Window
  This window is different from the Results Viewer window. In this window, 

you will be able to see a table of contents and index of results.

SAS menus

Depending on what window we are viewing in SAS, there will be several options on the 
menu bar at the top of the SAS windowing environment. The following is a description 
of the basic SAS menus that will appear:

• File—Opens and saves SAS programs. Imports and exports data. Exits SAS.
• Edit—Cut, copy, paste, clear all, select all, and the Find tool.
• View—Can change which window you are viewing and open any windows if you 

have closed them.
• Tools—Can get to options and preferences here and includes various editors.
• Run—Submit syntax (also called code), and run procedures and data steps.
• Solutions—Add-ons (may not be available). 
• Window—Controls the windows opened in SAS.
• Help—A good resource if we have questions about how to use SAS.
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SAS programs

When we use SAS, most of our tasks will be run through SAS programs. SAS programs 
can contain either a DATA step or a PROC step (both of which we will go through in 
this lab with examples). There are several important ideas that are vital to working with 
SAS. As we go through examples and the rest of this lab, these will become much more 
apparent. Here are some of the important ideas for SAS:

• End every SAS statement with a semicolon.
• To run your code, you can highlight the selected code that you wish to run, and 

either click the “run” button (the little man running) on the toolbar or go to Run/
Submit. 

• Check your log window for errors and warnings every time you run code in SAS.
• Commenting throughout code is very helpful when using SAS. 

• Comments are used throughout SAS code to provide notations for what the 
program does so that is useful when you come back to it at a later time or if 
someone else needs to use your code. 

• This can be done by either starting with an asterisk (*) and ending with a semi-
colon (;) or starting with a slash and asterisk (/*) and ending with an asterisk 
and slash (*/). 

• Commented code will appear green in the program editor window and will be 
ignored when you tell a program to run. The following is an example of a SAS 
program with comments:

/*Merging data sets*/
DATA mylib.test_scores;
     MERGE pre_score post_score;
     BY ID;
     score_diff= post - pre;
     *Drop IDs of those who were absent;
     IF ID in (328, 504, 004, 887) THEN delete;
RUN;

Opening data files in SAS

For most of the computer work that we will do in this workbook, we will use data that 
are already in SAS format. In order to easily access this data in SAS, we will need to 
use libraries. A library, in SAS terms, is a way to point SAS to a specific folder on our 
computer where SAS datasets are stored. There are two ways to create a new library in 
SAS—by using the SAS menus or by using SAS code, which is the recommended way 
and how we will create libraries throughout this workbook. 

Using SAS menus, we can create a library by clicking on Tools/New Library. From 
here, we will give our library a name and specify the folder in which our data are located 
in the “path” line. Using SAS code, we can specify a library via a LIBNAME statement:

LIBNAME mylib 'C:\Data';
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We can replace mylib with what we chose to name our library, and “C:\Data” is the file 
path directing SAS to our data location. The data files are located on the eResources site. 
Save the data files in a folder on your computer, and direct SAS to use as your mylib 
library, designated by the file path. Don’t forget your semicolon at the end.

Library names (also called librefs in SAS language) cannot be longer than eight char-
acters, must not be one of the default SAS librefs (SASHELP, SASMSG, SASUSER, or 
WORK), must start with either a letter or an underscore, and cannot have a blank or 
special character (besides underscore). 

Which of the following examples of a library name would not work in SAS: _Lib, 
2_cats, cat%9, mylib2, lib_for_data2? 

There are two correct answers: 2_cats and cat%9. The name 2_cats cannot work as a 
library name because it starts with a number, and cat%9 will not work because the name 
includes the % symbol, which is a special character.

In addition to allowing users to make their own library, SAS has a default library 
called the WORK library, which is where data are automatically saved if we do not 
specify a libname before we refer to a dataset. We will go over an example of this in the 
PROC IMPORT code that follows in the paragraphs below.

Now that we understand what a SAS library is, we can discuss the files inside our 
libraries and other types of data files that can be imported into SAS. SAS data files have 
the extension .sas7bdat and are the type of files that can be directly used in SAS and in 
our libraries. 

Raw text files, Excel files, and other types of files can be opened in SAS by clicking 
on File/Import Data and then using the data import wizard. Data can also be imported 
through the SAS procedure PROC IMPORT. Doing these procedures will turn other 
data files into SAS data files that are usable in SAS.

The following is an example PROC IMPORT for an Excel file:

PROC IMPORT DATAFILE='C:\Data\dataset1.xlsx'
     OUT=data_name DBMS=xlsx;
     SHEET='Sheet 1';
RUN;

The datafile= statement in the example refers to where our Excel filed titled “data-
set1” is stored. The out= statement in the example refers to the SAS data file that will be 
created from the Excel file. The file will be saved as data_name, and since there is no libref 
before the dataset name, it will be stored in our work library (which stores data that we 
are currently using in SAS). The dbms= statement refers to the type of file that we are 
importing. In this case, we are importing an Excel workbook, and we refer to this by 
using the Excel extension “.xlsx”. The sheet= is an optional statement and is used when 
importing Excel files with multiple sheets. We will refer to the sheet name that we want 
to import (in this case, ‘sheet 1’). The name must be encased in single quotations.

The dataset named er_heart.sas7bdat contains data with the number of emergency depart-
ment (ED) visits with a major diagnosis related to the heart and circulation, and the visits 
are listed by zip code for the St. Louis area of Missouri in 2013. These data come from the 
Missouri Department of Health and Senior Services, Missouri Information for Community 
Assessment (MICA).1 The variable zip is the five-digit zip code, and the variable visits is the 
number of ED visits in 2013 with a major diagnosis related to the heart and circulation.    
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Open the dataset er_heart.sas7bdat using a LIBNAME statement (see the following 
example). Mylib refers to what we chose to name our library. The file path in quotes 
refers to the location in which our data are located. 

LIBNAME mylib 'C:\Data';

We can also create a library by going to Tools/New Library. 
Run the code. Check the Log window to see whether the code ran. See Figure SAS A.1 

for an example. In the Explorer window, find the library that we just created, and open 
it to find the dataset. 

Data editor 

As we have seen with creating libraries, there are also two main ways to enter and 
manipulate data in SAS. Using the data editor is one way, and using SAS code through 
DATA steps is the other. Using SAS code through DATA steps is what is more com-
monly used and how we will enter new data throughout this workbook. 

• In the data editor, we can enter new data, make changes to the current dataset, or 
create new variables. Let’s explore the data editor.

• Open the data editor by going to the Explorer window, clicking on the library, and 
clicking on the specified dataset. 

BOX SAS A.1 ER HEART DATASET DESCRIPTION

The er_heart dataset comes from the Bureau of Health Care Analysis and Data 
Dissemination, Missouri Department of Health and Senior Services. The data are from 
2013 and contain the number of emergency department visits with a major diagnosis of 
heart and circulation by zip code for the St. Louis area of Missouri. The dataset includes 
two variables, a five-digit zip code, and the number of emergency visits with a heart or 
circulation diagnosis in that zip code for 2013.

Figure SAS A.1  Example log window after running libname statement. The snapshot of the SAS 
log window shows that there were no errors or warnings when running our code. The 
text tells us that the MYLIB library was successfully assigned.
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• Notice that when the dataset is opened, the default is browse mode, where we 
can only look through our data. 

• To make changes to our dataset, we must be in edit mode. 
• To enter edit mode, go to Edit/Edit Mode. 
• We can also change between modes by clicking the Edit or Browse buttons on 

the toolbar.
• Now, let’s sort the data on the variable named visits. To do this, we highlight 

the column for visits by clicking on the variable name. Click the Sort button, 
either ascending or descending, on the SAS toolbar. Watch how the order of 
the observations changes. (Hint: Make sure that you are in Edit mode, or this 
function will not work.)

BOX SAS A.2 AN EXAMPLE OF A LOG WINDOW WITH ERRORS

• The log window in Figure SAS A.1 shows us what happens when everything 
goes right when we run SAS code, but what happens when something goes 
wrong? See Figure SAS A.2.

• In Figure SAS A.2, we can see that there are WARNING and ERROR messages 
in the SAS Log Window. The LIBNAME reference, mylib%&jj was not a valid 
name; thus, we see the errors and warnings. 

• Although this book is in black and white, if we are using the Enhanced editor 
in SAS, then, by default, our warnings will appear in green, and the errors will 
appear in red.

Figure SAS A.2  Example log window after an error. The snapshot of the SAS log window 
shows that there was an error when running the code and also shows a warning. 
Because this book is printed in black and white, we cannot see the colors from 
this image; however, error messages show up in red by default and warnings 
in green by default. The warnings tell us that the symbolic reference was not 
resolved because of the special character in our text that is not allowed by SAS. 
The error tells us more details and lets us know the % that was found.
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• We can also sort data using PROC SORT. See the following:

PROC SORT DATA=mylib.er_heart;
 BY visits;
RUN;

Inputting data into SAS

Refer to the data in Table SAS A.1. It contains observations of diastolic blood pressure 
and weight for 10 study2 participants. We will manually input this data into SAS. 

BOX SAS A.3 TABLE SAS A.1 DATA DESCRIPTION

The data in Table SAS A.1 come from the 2014 National Health and Nutrition 
Examination Survey (NHANES). In the survey, participants’ blood pressure and weight 
(in kilograms) were measured by a trained health technician. Weight measurement was 
converted to pounds, and a random sample of 10 participants with nonmissing data is 
presented in Table SAS A.1.

Table SAS A.1 Diastolic blood pressure and weight 
for study participants

Diastolic blood pressure (mm Hg) Weight (pounds)

92 221
62 136
78 175
60 159
42 108
88 175
94 324
68 135
90 185

78 159

Source: National Health and Nutrition Examination 
Survey, Centers for Disease Control and 
Prevention, National Center for Health 
Statistics, Hyattsville, MD, 2014, https://
wwwn.cdc.gov/Nchs/Nhanes/Search/nhanes13 
_14.aspx. Accessed February 23, 2016.

Note: The data come from the 2014 NHANES survey 
and include a random sample of 10 study partici-
pants. The variables include diastolic blood pres-
sure in mm Hg and weight in pounds.

https://wwwn.cdc.gov
https://wwwn.cdc.gov
https://wwwn.cdc.gov
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To do this, we will use a data step and datalines. See the following syntax:

DATA mylib.study;
 INPUT dbp weight;
DATALINES;
92 221
62 136
78 175
60 159
42 108
88 175
94 324
68 135
90 185
78 159
;
RUN;

The first line in our code designates what the dataset will be named. Here, we are 
naming the dataset study and saving the dataset to the library mylib. The INPUT line 
specifies our variable names and their location in the datalines. We will name diastolic 
blood pressure dbp and type those values in the first column. We will name the partici-
pant’s weight as weight and enter these values in the latter column. The values should be 
separated by a space. Next, we will enter the values for dbp and weight after we specify 
DATALINES (see sample code before this paragraph).

Make sure to put a semicolon on a separate line after the rows of data. Run this sec-
tion of code. Because we specified mylib separated by a period before the name of the 
dataset, the data will be saved in the mylib library and placed in that folder on your com-
puter. Find the dataset, open it, and check the data. Remember, if we had not specified 
mylib before the dataset name, the dataset would have been stored in the work library 
automatically. See the following shortened code for an example:

DATA study;
     INPUT dbp weight;
DATALINES;
92 221
62 136
;
RUN;

BOX SAS A.4 NOTE ON SAS VARIABLE NAMES

SAS variable names can be up to 32 characters and must start with a letter or an underscore 
and cannot contain blanks or special characters (except an underscore).
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If one of the variables that we were entering was a character variable (as opposed to 
a numeric variable), we would have designated this by including a $ after the variable 
name (see the example after this paragraph). Here, we are entering dbp and weight such 
as in the previous example (both numeric variables) and including sex as a character vari-
able (M for male and F for female).

DATA mylib.study;
     INPUT dbp weight sex $;
DATALINES;
92 221 M
62 136 F
78 175 F
;
RUN;

Labels

For the sake of clarity, we may want to give labels to our data. Labels can be given to 
the entire dataset or to the individual variables. This is helpful when datasets, variables, 
or both have abbreviated names and we want to keep a more detailed explanation of the 
contents of the datasets and variables. For example, we might want to label the variable 
dbp as “Diastolic Blood Pressure.” To assign a label to our dataset and to our variables, 
we can use PROC DATASETS: 

PROC DATASETS LIBRARY=mylib;
      MODIFY study (LABEL='Diastolic Blood Pressure and Weights of 

Study Participants');
      LABEL dbp='Diastolic Blood Pressure (mmHg)' weight='Participant 

Weight (lbs)';
RUN;

LIBRARY=mylib specifies the library that is the location of the dataset that we are 
modifying. MODIFY specifies the dataset that we are modifying. To label our dataset, 
we follow the dataset name with a LABEL=option and include the label that we are 
assigning to our dataset in quotations. In this example, we are labeling the dataset as 
“Diastolic Blood Pressure and Weights of Study Participants.” 

The second statement, LABEL, modifies labels of variables in the dataset that we 
specified in the previous step. To assign labels to variables, we type variablename=“Label 
we are assigning to that variable.” In our example, we are labeling both dbp and weight.

We end the procedure code with a run statement and make sure not to forget our 
semicolons. Now, we run this step. To do this, we can either click the Run button on the 
toolbar or go to Run/Submit. If we want to run only a certain part of our code and not the 
whole thing, we can highlight a certain section, then run. Check the log window for errors 
or warnings. To see the labels that we just created, we will use PROC CONTENTS:

PROC CONTENTS DATA=mylib.study;
RUN;
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PROC CONTENTS will provide us with dataset and variable information, including the 
labels that we just assigned. Sample code for PROC contents is provided just before this 
paragraph. Here, we specify the dataset name in the DATA=option. Run this portion of code, 
check the log window for errors or warnings, and then check the results window for output.

• Are the labels that we just assigned visible? 
• Check your results with the partial output presented in “Alphabetic List of Variables 

and Attributes”:

Alphabetic List of Variables and Attributes

# Variable Type Len Label

1 dbp Num 8 Diastolic Blood Pressure (mm Hg)

2 weight Num 8 Participant Weight (lbs)

• Open the er_heart.sas7bdat dataset, and look at its thorough labeling.

Summarizing data

In this section, we will calculate some descriptive statistics. First, let’s open the dataset 
nhanes2014_sample.sas7bdat, which is found on the eResources site. These data come 
from the 2014 National Health and Nutrition Examination Survey.2 The dataset con-
tains several variables, including race (1 = non-Hispanic white; 2 = non-Hispanic 
black), age (in years), sex (1 = males; 2 = females), urine lead level (in μg/L), and an 
identification number. Use a libname statement to open the data in SAS.

BOX SAS A.5 ASSIGNING LABELS WHEN CREATING A DATASET

We can also assign labels when we are creating our dataset:

DATA mylib.study (LABEL='Diastolic Blood Pressure and Weights 
of Study Participants');
 INPUT dbp weight;
  LABEL dbp='Diastolic Blood Pressure (mmHg)' weight= 

'Participant Weight (lbs)';
DATALINES;
92 221
62 136 
78 175
;
RUN;

The above code is very similar to using PROC DATASETS, the difference being where 
we place the code. The label for the dataset goes in the DATA statement line, and the 
labels for the variables go on their own separate line—a procedure similar to the PROC 
DATASETS procedure.
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LIBNAME mylib 'C:\Data';

EXAMPLE PROBLEM A.1

 A Navigate via the Explorer window to view the data in the table viewer. 
Describe the variables in the dataset.

  The variables in the dataset include race, lead, age, sex, and identification 
number. Through the data editor, we can see the number values listed in the 
dataset for each variable.

 B What is the mean urine lead level (lead) for this group?

  We can use PROC MEANS or PROC UNIVARIATE for this. 

 PROC MEANS DATA=mylib.nhanes2014_sample;
 VAR lead;
 RUN;

 PROC UNIVARIATE DATA=mylib.nhanes2014_sample;
 VAR lead;
 RUN;

  In this code, we specify the dataset in question using the DATA=option. 
The VAR statement is where we specify which variable we want descriptive sta-
tistics for. We end our code with a RUN statement. This is the output that we 
should obtain from PROC MEANS:

The MEANS Procedure

Analysis Variable : lead 

N Mean Std Dev Minimum Maximum

100 0.5116000 0.5149673 0.0200000 2.7900000

BOX SAS A.6 NHANES 2014 SAMPLE DATASET DESCRIPTION

The nhanes2014_sample sample dataset comes from the 2014 National Health and 
Nutrition Examination Survey (NHANES). The variables included in the dataset are race, 
age, sex, urine lead level (lead ), and identification (id ). The id variable was created by the 
administrators of NHANES. Sex was collected as male or female. Age was collected in 
years at the time of screening, and participants above age 80 years were recoded to age 80 
(i.e., 80 years is the maximum age noted). Race was recoded by NHANES administra-
tors to Mexican American, other Hispanic, non-Hispanic white, non-Hispanic black, and 
other race—including multiracial. For this sample, only those with a race of non-Hispanic 
white or non-Hispanic black were included. Urine lead level was measured by trained pro-
fessionals and recorded in µg/L. For this example, 100 participants with nonmissing data 
and a race of non-Hispanic white or non-Hispanic black were randomly selected.
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  From here, we can see that the mean urine lead level in the group is 0.51 μg/L. 
From PROC UNIVARIATE, we would have seen a table like this in our output:

The UNIVARIATE Procedure
Variable: lead

Moments

N 100 Sum Weights 100

Mean 0.5116 Sum Observations 51.16

Std Deviation 0.51496733 Variance 0.26519135

Skewness 2.21713356 Kurtosis 5.55205811

Uncorrected SS 52.4274 Corrected SS 26.253944

Coeff Variation 100.658196 Std Error Mean 0.05149673

Basic Statistical Measures

Location Variability

Mean 0.511600 Std Deviation 0.51497

Median 0.330000 Variance 0.26519

Mode 0.490000 Range 2.77000

Interquartile Range 0.46000

Tests for Location: Mu0 = 0

Test Statistic p Value

Student’s t t 9.934611 Pr > |t| <.0001

Sign M 50 Pr >= |M| <.0001

Signed Rank S 2525 Pr >= |S| <.0001

Quantiles (Definition 5)

Level Quantile

100% Max 2.790

99% 2.610

95% 1.755

90% 1.140

75% Q3 0.650

50% Median 0.330

25% Q1 0.190

10% 0.105

5% 0.065

1% 0.020

0% Min 0.020
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Extreme Observations

Lowest Highest

Value Obs Value Obs

0.02 32 1.81 56

0.02 13 1.90 5

0.04 45 1.99 77

0.05 62 2.43 65

0.06 33 2.79 2

 From here, we can also see that the mean urine lead level in the group is 
0.51 μg/L.

 C What is the standard deviation of the lead variable? (Hint: We can obtain this 
from the SAS output provided in Example Problem A.1—Part (B).)

  The standard deviation of the urine lead level in this sample is 0.51 μg/L.

 D What is the median (50th percentile) age?

  Only PROC UNIVARIATE gives this automatically. When using PROC 
MEANS, we must specify MEDIAN as an option (see sample code below).

 PROC MEANS DATA= mylib.nhanes2014_sample MEDIAN;
 VAR age;
 RUN;

The MEANS Procedure

Analysis Variable: age

Median

38.5000000

  The median age in this sample is 38.5 years, as shown in our output just 
before this paragraph. Our code is similar to what we used in Example Problem 
A.1—Part (A), but we inserted MEDIAN in the first line of our PROC MEANS 
code. We can also add other key words in this spot to have more statistics output. 
For example, we could insert MEAN and STD along with median, and output 
would include the mean, standard deviation, and the median.

 E What is the mean age for males (male = 1, females = 2)?

  The variable sex contains the designation of male or female. To do this, we 
can use a WHERE statement in either PROC MEANS or PROC UNIVARIATE: 

 PROC MEANS DATA=mylib.nhanes2014_sample;
 VAR age;
 WHERE sex=1;
 RUN;
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The MEANS Procedure

Analysis Variable : age

N Mean Std Dev Minimum Maximum

47 38.2553191 22.6816034 6.0000000 80.0000000

  After running our PROC MEANS code, we can see that the mean age for 
males is 38.3 (see the output just before this paragraph). In the WHERE state-
ment, we specify which variable (sex =) and which category or group we want 
statistics for (1). If this were a character variable, we would have put quotes 
around the category. For example, if males were coded as “male,” instead of as 1, 
our statement would be read as the following:

 WHERE sex ='male';

 F How many girls are there in this dataset (male = 1, female = 2)?

  Use PROC FREQ (shorthand for frequency) to answer this question:

 PROC FREQ DATA=mylib.nhanes2014_sample;
 TABLE sex;
 RUN;

The FREQ Procedure

Sex Frequency Percent
Cumulative 
Frequency

Cumulative 
Percent

1 47 47.00 47 47.00

2 53 53.00 100 100.00

  Using the SAS output above, we can conclude that there are 53 females in 
our sample. To get to this conclusion, we used PROC FREQ, a procedure that 
provides frequency tables for categorical variables. In this code, we specify the 
dataset in question using the DATA=option. We then use a TABLE statement to 
tell SAS which variables we would like frequency tables on. We end our code, as 
always, with a RUN statement.

 G How many females in this sample have the race non-Hispanic black?

  The variable race is coded as 1 = non-Hispanic white and 2 = non-Hispanic 
black. We will also use PROC FREQ to answer this question:

 PROC FREQ DATA=mylib.nhanes2014_sample;
 TABLE sex*race;
 RUN;
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The FREQ Procedure

Frequency

Percent

Row Pct

Col Pct

Table of Sex by Race

Sex Race

1 2 Total
1 24 23 47

24.00 23.00 47.00

51.06 48.94

44.44 50.00
2 30 23 53

30.00 23.00 53.00

56.60 43.40

55.56 50.00
Total 54 46 100

54.00 46.00 100.00

  There are 23 females who have the race non-Hispanic black in our sample. 
In the code used to answer Example Problem A.1—Part (G), we are again using 
PROC FREQ; however, this time, we are specifying that we want a 2 × 2 table 
by using the asterisk (*) between the two variables of interest. The resulting 
output gives us a table of sex by race.

 H List 10 observations for race and lead level using PROC PRINT:

 PROC PRINT DATA=mylib.nhanes2014_sample (obs=10);
 VAR race lead;
 RUN;

Obs Race Lead

1 2 0.83

2 2 1.70

3 1 0.49

4 1 0.11

5 1 2.79

6 2 0.19

7 2 0.75

8 2 1.81

9 2 0.49

10 1 0.34
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  The above code uses PROC PRINT to “print” our data. The DATA=option 
tells SAS the dataset that we want to print. The obs= option tells SAS how many 
observations we would like to print. If we do not specify this option, SAS auto-
matically prints all observations in the dataset. The VAR statement tells SAS 
that we want to print the variables race and lead. If we do not include a VAR 
statement, SAS automatically prints all variables in the dataset. We end the code 
with a RUN statement and, of course, a semicolon.

Formats

Suppose that we wanted to format the variable sex in the nhanes2014_sample dataset to 
label 1 as males and 2 as females. Formatting consists of two parts. First, we must use 
a PROC FORMAT statement to assign the labels to the different levels. For character 
variables, make sure to include the dollar sign in the value line, and put the variable 
levels in quotation marks. 

PROC FORMAT;
 VALUE sexfmt 1='Male' 2='Female';
 VALUE $sex2fmt 'M'='Male' 'F'='Female';
RUN;

Then, we can either assign formats to variables permanently or assign them on a 
proc-by-proc basis. To assign formats that will automatically show up in all output, 
write a format line into a data statement:

DATA mylib.nhanes2014_sample;
 SET mylib.nhanes2014_sample;
 FORMAT sex sexfmt.;
RUN;

To assign formats that only show up in the output from a selected proc, we can add 
a format line into the proc step. 

PROC FREQ DATA=mylib.nhanes2014_sample;
 TABLE sex;
 FORMAT sex sexfmt.;
RUN;

BOX SAS A.7 A NOTE ON THE OBS= STATEMENT

• Using obs= in our PROC PRINT statement tells SAS how many observations we 
would like to be printed.

• In this example, we used obs=10, which means SAS pulls the first 10 
observations.

• If we had said obs=15, then SAS would have printed the first 15 observations in 
the dataset.
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If we have multiple variables that use the same format (for example, if we have three 
questions that all have 1 = ‘Yes’ 0 = ‘No’), we can list the variable names and then put 
the format name and period only once at the end of the line (e.g., format question1 
question2 question3 yesnofmt.;).

Printing SAS output

We just learned how to “print” SAS data. Now, we will discuss printing SAS output. 
We can print output from the session three different ways. One way is to choose File/
Print. Another option is to copy and paste the contents of the Results or Output window 
to a document in a word processor and print from there. This is often a little bit neater, 
and it allows you to print only the relevant parts of your session. The last option is 
using ODS (Output Delivery System) through SAS, which is more difficult to learn, 
so we will just provide a brief introduction in this workbook towards the end of this 
section.

View the current results or output, and select a portion of text from the results. Select 
Edit/Copy. Switch to an open word processor document, place the text cursor at the tar-
get location, and choose Edit/Paste. Notice that the text does not necessarily have the 
same appearance. We can change this by highlighting the portion that we pasted and 
by changing the font to a fixed-width font such as Courier New. 

Using ODS can be difficult to comprehend but can be very useful in printing SAS 
output. ODS displays SAS output in a nicer format than traditional output and can also 
create PDF files, HTML files, and RTF (Rich Text Format) files, among others, and cre-
ate datasets from output. 

For example, let’s say that we want to print our output from Example Problem A.1—
Part (G) to a PDF file. We could use the following code to do that:

ODS PDF FILE='C:\Data\ods_test.pdf';
PROC FREQ DATA=mylib.nhanes2014_sample;
 TABLE sex*race;
RUN;
ODS PDF CLOSE;

In this case, start ODS by using an ODS option, specifying that you want your out-
put printed in a PDF, and specifying the file path where you want the PDF to be saved 
following the FILE=option. When you are finished with the code that states that you 
want the output printed to the PDF, close ODS by using an ODS option and by specify-
ing what type of file you are closing—the PDF in this example. After you run the code, 
check your file to see the PDF that was created. The PDF will have the output from the 
PROC FREQ in it.

Creating new variables with formulas 

Sometimes we may need to create a new variable that is a function of one or more exist-
ing variables. We will see later in the chapters why you may want to do this.

Create a new variable called leadsq that is the square of the urine lead level (lead2). 
To do this, we will use a data step:
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DATA nhanes2014_sample2;
 SET mylib.nhanes2014_sample;
 leadsq=lead**2;
RUN;

In this code, since we do not specify a library name before the dataset name 
nhanes2014_sample2, SAS will save the dataset to the work library, which is where tem-
porary datasets are stored, but the dataset will not be saved when we exit SAS. The SET 
statement specifies which dataset we are copying to create the new dataset. The next line 
is where we create the new variable leadsq. The symbol that we use for exponentiation 
is 2 asterisks (**).

Graphs

Several SAS procedures create graphs. For this lab, we will go over a few of these 
examples. 

EXAMPLE PROBLEM A.2

 A Using the nhanes2014_sample data, create a box plot for age. Are there 
any outliers? Does the plot give you a sense of the mean? The median? The 
mode?

  We will use PROC UNIVARIATE, as previously used, except that this 
time, we will specify the PLOT option. Look at the resulting box plot in 
Figure SAS A.3. 

 PROC UNIVARIATE DATA=mylib.nhanes2014_sample PLOT;
 VAR age;
 RUN;

  The box plot can be seen in the resulting output, under the title of 
“Distribution and Probability Plot for age.” The box plot is in the upper 
right corner of this section of graphs. From the box plot, we can tell that 
there are no outliers in this sample because there are no points beyond the 
upper or lower end of the box plot. From this box plot, we can see the mean, 
represented by the diamond, and the median, represented by the bar through 
the middle of the box. The box plot does not give us a sense of the mode. 

  Suppose that we had two groups for which we wanted to compare box plots 
on a variable such as sex. We could use PROC BOXPLOT to solve this problem. 
Unfortunately, PROC BOXPLOT does not work with just one variable. We 
must also have a grouping variable included; in this case, that would be sex. The 
code for PROC BOXPLOT is as follows:

 PROC BOXPLOT DATA=mylib. nhanes2014_sample;
 PLOT age*sex;
 RUN;
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 B Construct a stem-and-leaf plot of age.

  To do this, we use PROC UNIVARIATE and the plots option. The code 
will be the same as the code that we ran when we obtained our box plot. If we 
look back at our output for Example Problem A.1—Part (A), we see a different 
version of a stem-and-leaf plot in the upper left corner of the output (Figure SAS 
A.4). The reason that we could not see a stem-and-leaf plot like the one that we 
saw in Chapter 1 is that we have our ODS graphics option on. We must turn this 
off before we run our code.

 ODS GRAPHICS OFF;
 PROC UNIVARIATE DATA=mylib.nhanes2014_sample PLOT;
 VAR age;
 RUN;
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Figure SAS A.3  SAS PROC UNIVARIATE plot output for age. The plot output for PROC 
UNIVARIATE gives us a figure that contains two other plots along with a box plot 
for the variable age. We can see the box plot in the upper right corner of the figure. 
The diamond in the middle of the box plot represents the mean, and the line through 
the box represents the median.
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  Our code for Example Problem A.1—Part (B) is almost the same as the code 
for Example Problem A.1—Part (A); however, in Example Problem A.1—Part 
(B), we use the ODS statement before PROC UNIVARIATE to turn graphics off 
and to obtain the resulting output. To turn ODS graphics back on, we use the 
code ODS GRAPHICS ON; thus, the graphics will reset to the default setting 
and will appear the next time that we run our code.
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Figure SAS A.4  Plot output for variable age from PROC UNIVARIATE including stem-and-
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a box plot and normal probability plot. Notice the difference between this figure and 
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 C Create a histogram for lead (consider it a continuous variable). Would you 
describe the distribution as skewed or symmetric?

  We will also use PROC UNIVARIATE for this. However, this time, we will 
include a HISTOGRAM statement, and the variable name will follow. 

 ODS GRAPHICS ON;
 PROC UNIVARIATE DATA=mylib.nhanes2014_sample;
 VAR lead;
 HISTOGRAM lead;
 RUN;

  After running the previous code in SAS, we obtain a histogram similar to 
what is presented in Figure SAS A.5. The distribution of lead is skewed to the 
right (positively skewed) and is not symmetric.

 D Now, create separate histograms of lead for males and females. How do the 
histograms differ between the two sexes?

  To do this, first we must use PROC SORT to sort our data by sex so that we 
can use a BY statement in PROC UNIVARIATE. This is a requirement in SAS. 
Our data must be sorted by the variable that we are using in the BY statement, 
or we will receive an error when we try to run the code. Remember, 1 = males 
and 2 = females for the sex variable.
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Figure SAS A.5  Histogram of lead level. The histogram of the variable lead shows the distribution 
of participants’ lead levels. The distribution is skewed to the right, with a majority of 
the participants’ lead levels being about 0.2 μg/L. 
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 PROC SORT DATA=mylib.nhanes2014_sample;
 BY sex;
 RUN;

 PROC UNIVARIATE DATA=mylib.nhanes2014_sample;
 VAR age;
 HISTOGRAM age;
 BY sex;
 RUN;

  The first histogram in our output is for sex = 1, or males (Figure SAS A.7). 
This distribution appears similar to the distribution of the group as a whole. The 
second histogram in our output is for sex = 2, or females (Figure SAS A.8). The 
distribution for females is also skewed to the right; however, it appears that most 
females have lead levels lower than those of the males, as we can see that the distri-
bution is shifted toward 0.

BOX SAS A.8 EXAMPLE OF ERROR LOG IF 
DATA ARE NOT SORTED FIRST

• Below is a snapshot of what the log window will look like if we do not 
sort  our  data by sex before using a BY statement in PROC UNIVARIATE 
(Figure SAS A.6).

Figure SAS A.6  Snapshot of log window if data are not sorted before using BY statement. 
The snapshot of the SAS log window shows an error message that tells us the 
data are not sorting in ascending sequence. In order to use a BY statement in 
SAS, we must first sort our data. Otherwise a similar error message will appear, 
and we will not get the desired results.



Lab A: Introduction to SAS 45

60

50

40

30

20

10

0

Pe
rc

en
t

Distribution of lead

0.25 0.75 1.25 1.75 2.25 2.75
Lead

Figure SAS A.7  Histogram of lead level for males (sex = 1). The histogram of lead level for males 
show the distribution of the variable. Most participants have a lead level around 0.25 
μg/L. The data are skewed to the right.
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Figure SAS A.8  Histogram of lead level for females (sex = 2). Similar to the histogram of lead level 
for males, the histogram for females is also skewed to the right; however, it is less so 
than the males. Most female participants also have a lead level around 0.25 μg/L, but 
the range of values for females is not as high as the lead levels of males.
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 E Create a scatterplot of age vs. lead. Is there a relationship between the two 
variables?

  To do this, we will use PROC SGPLOT (see the following syntax example). Here, 
we use the SCATTER statement, specifying age on our x-axis and lead on our y-axis.

BOX SAS A.9 EXAMPLE OF USING LABELS 
TO MAKE A GRAPH LOOK BETTER

• Suppose that we want our graphs to have labels of “Lead Level” instead of just 
“lead” as seen in our previous histograms. We could use labels for this.

 PROC UNIVARIATE DATA=mylib.nhanes2014_sample;
 VAR age;
 HISTOGRAM age;
 BY sex;
 LABEL lead= "Lead Level";
 RUN;

• The resulting histogram for males with a labeled x-axis is shown in 
Figure SAS A.9.
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Figure SAS A.9  Labeled histogram of lead level for males. The histogram presented here is 
essentially the same as the histogram presented in Figure SAS A.7; however, 
this time we have used the LABEL statement to label the x-axis so that “Lead 
Level” will appear instead of just the variable name lead.
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PROC SGPLOT DATA=mylib.nhanes2014_sample;
 SCATTER X=age Y=lead;
 RUN;

  When we run the previous code, we receive a resulting scatterplot of lead and 
age (Figure SAS A.10). In our code, we specify the dataset with the DATA=option, 
and, then, we use a SCATTER statement to specify that we want a scatterplot. In 
the SCATTER statement, we specify the variables that we would like to put into 
the scatterplot with the X= and Y= options. The X refers to the x-axis, and the 
Y refers to the y-axis. We end the procedure, like every procedure, with a RUN 
statement.

Saving graphs

While the results window is active, we can copy and paste graphs to a word processing 
program by right clicking on the graph and choosing Copy and then pasting it into a 
word processing document.
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Figure SAS A.10  Scatterplot of age and lead. The scatterplot shows the relationship between two 
continuous variables, age and lead. On the x-axis, age is represented, and on the 
y-axis, lead is represented. Within the plot, we see points, which are representative 
of the data in our dataset. Each point represents a different participant. From this 
scatterplot, there does not appear to be a clear relationship between age and lead 
level.
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PRACTICE PROBLEM A.1

The dataset nhanes2014_glucose contains a sample of participants from the NHANES 
2014 survey.2 The variables include the following: whether the participant was ever 
told by a doctor that he or she has diabetes (diabetes); the participant’s fasting glucose in 
mg/dL (fast_glu); the participant’s two-hour glucose, also in mg/dL (twohour_glu); and 
the participant’s age (age), sex (sex), race (race), and identification number (id). For the 
diabetes variable, 1 = the participant was told that he or she has diabetes and 2 = the 
participant was not told that he or she has diabetes. The sex variable is coded the same 
as before, 1 = males and 2 = females. For race, 1 = white, 2 = non-white. We want to 
know whether the descriptive statistics of glucose levels differ by whether a participant 
replied that a doctor told the participant that he or she has diabetes.

 A What is the mean fasting glucose level for participants who had a doctor tell him or 
her that they have diabetes and for those who did not? What is the standard deviation? 
How do these compare to the mean and standard deviation of the sample as a whole?

 B What are the median and interquartile range of the fasting glucose variable? What 
are the median and interquartile range of the two-hour glucose variable?

 C What is the mean difference between fasting glucose and two-hour glucose? What 
is the variance of the difference? Hint: Create a variable of the difference between a 
participant’s fasting glucose and his or her two-hour glucose. This can be done in a 
data step using the following code:

BOX SAS A.10 NHANES 2014 GLUCOSE DATASET DESCRIPTION

The nhanes2014_glucose dataset comes from the same survey as the nhanes2014_sample data-
set. The age, sex, and ID variables are the same as in the previously used dataset (Box SAS 
A.6). For this dataset, race was coded as white or nonwhite, with white being those classi-
fied as non- Hispanic white and nonwhite being the other race options combined (Mexican 
American, other Hispanic, non-Hispanic black, and other race—including multiracial). 
The diabetes variable comes from the question “{Other than during pregnancy, {have you/has 
SP}} ever been told by a doctor or health professional that {you have/{he/she/SP} has} diabe-
tes or sugar diabetes?” The response options were “Yes,” “No,” “Borderline,” “Don’t know,” 
or they could refuse to answer the question. For this example, those who answered any-
thing other than “Yes” or “No” to the diabetes questions were excluded. The fast_glu vari-
able comes from the participants’ measured glucose levels in mg/dL after participants aged 
12 and older fasted for nine hours. The twohour_glu variable comes from the participants’ 
measured glucose level, also in mg/dL. This measurement was taken two hours after par-
ticipants drank a glucose-filled solution, which was consumed after the fasting glucose 
measurement was taken. For this example, a stratified random sample of 46 participants 
(23 who reported having diabetes and 23 who reported not having diabetes) were selected.
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 DATA nhanes2014_glucose2;
 SET mylib.nhanes2014_glucose;
 glucose_diff=twohour_glu-fast_glu;
 RUN;

 D Create a histogram of the glucose_diff variable that we just created. Describe the 
distribution.

 E Create a scatterplot of the fasting glucose and the two-hour glucose. Is there a rela-
tionship between the two variables in this sample?

PRACTICE PROBLEM A.2

Continuing with the same dataset as in Practice Problem A.1, nhanes2014_glucose, we 
now want to look at descriptive statistics of our sample by race and sex.

 A How many females are in our sample? How many non-whites are in our sample? 
How many non-white females are in our sample?

 B Describe the fasting glucose levels in whites and non-whites. What conclusions can 
we make?

 C Describe the fasting glucose levels in males and females. What conclusions can we 
make?

 D Create a box plot of the fasting glucose levels for whites and nonwhites. Hint: There 
are two ways to do this. The first is to use a BY statement in PROC UNIVARIATE, 
but this will give you two separate box plots. The second is to use PROC BOXPLOT 
(see the code below). Note that when using PROC BOXPLOT, we must first sort 
our data by the categorical grouping variable—in this case race.

 PROC BOXPLOT DATA=mylib.nhanes2014_glucose;
 PLOT fast_glu*race;
 RUN;

PRACTICE PROBLEM A.3

We will use the dataset nhanes2014_sample for this problem. We are interested in 
describing lead levels by race and seeing whether there appears to be a difference in the 
descriptive statistics for lead levels between racial groups.
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 A What are the mean and standard deviation of lead level for both racial groups? 
Remember, 1 = non-Hispanic white and 2 = non-Hispanic black.

 B What are the median and interquartile range of lead level for both racial groups?

 C Do the mean and median lead level appear to be different between racial groups?

 D Present the lead levels of both racial groups graphically. Describe the distribution 
of lead level in both groups.

 E Is the mean or the median a better measure of location for lead levels in this sample? 
Why?

Congratulations are in order! We have successfully completed the Introduction to 
SAS lab. We will become even more familiar with SAS as the workbook progresses.
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The basics

In this workbook, we demonstrate how to use the Stata statistical software package to 
complete problems, in addition to using SAS. The purpose of this workbook is to learn 
statistical concepts, so we have tried to make the computing aspect of this text as simple 
as possible. In each lab throughout the workbook, we will go over some Stata pointers, 
containing the information that we need to complete the computing for that chapter. 
We will use Stata version 14.1 (StataCorp LP, College Station, Texas) throughout this 
workbook, but most commands will be similar regardless of which Stata version is being 
used. Note that in Stata, commands that are presented in italicized text can be changed, 
and commands presented in nonitalicized text (the standard) should not be changed.

Getting started

Let’s open Stata on our computers. Throughout the remainder of this lab, we will walk 
through the basics of Stata and get to know the Stata environment.

What is Stata?

Stata is a computer software program that allows a user to perform different procedures 
on data, such as analysis and manipulation. Stata has many statistical commands that 
can produce complex models or basic statistics, such as a mean and standard deviation. 
Stata also allows a user to manipulate and clean data, such as creating new variables 
and changing categories of variables. We will use Stata throughout this workbook and 
explore a subset of what Stata can do.

Stata Windows

The Stata interface is divided into five windows, the first four of which appear when you 
open Stata. (Note: If they are not all there, you can open them via the Window drop-
down menu and pick the name of the window that you want to appear):

 1 Command Window
  This is where we type commands into Stata in order to perform statistical 

analyses, plot graphs, and more. Many of the commands that we will use in this 
workbook are available in the Data, Statistics, and Graphics menus found on the 
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toolbar at the top of the Stata screen also. We will provide commands for the 
analyses done throughout this workbook.

 2 Results Window
  This is where the results of any command performed by Stata will appear.

 3 Variables Window
  When we have a dataset open or if we have created a new dataset, the vari-

able names will be listed here.
 4 Review Window

  The Review window is useful because as commands are sent to Stata they 
appear there, even if you use the Statistics and Graphics menus to perform your 
analyses. To learn the command-driven version of Stata, noticing the commands 
in the Review window is a good place to start. You can also call back the com-
mands in the Review window by clicking on them, editing them in the Command 
window, then running them by hitting the Enter key.

 5 Graph Window
  This window appears when we create a graph. The resulting graph can, then, 

be included in a word-processed document, which we will talk about later in the 
Graphs section of this lab.

Stata menus

As mentioned previously, commands that you will use in this workbook are also 
available through the use of drop-down menus. The menus can be found on the 
menu bar at the top of the Stata window. The following is a description of the Stata 
menus:

• File—Opens and saves Stata data files. Opens and closes log files. Saves or prints 
graphs. Imports and exports data in other formats (e.g., excel, text, SAS). Exits Stata.

• Edit—Allows copying of output from the Results or Graphs windows to a word pro-
cessor or other application.

• Data—Opens the Data Editor and Data Browser. Summarizes data. Labels datasets 
and variables. Replaces and generates data.

• Graphics—Contains all of Stata’s graphing tools.
• Statistics—Includes data summaries and all statistical tests.
• User—Serves as storage place for any user-generated commands.
• Window—Controls the windows opened in Stata.
• Help—Serves as a good resource if you have questions about how to use Stata.

Opening existing Stata data files

For most of the computer work that we will do in this workbook, we will use already-
existing Stata data files that you can access by using the following command:

use dataset

When we run the use command, we have to make sure that our working directory is 
set to the folder in which our dataset is stored. A working directory is the folder out of 
which the user is currently working in Stata. We can see where our working directory is 
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set by looking at the bottom left corner of our Stata window. If we need to change our 
working directory, we can use the cd (change directions) command, followed by the file 
path where we want our working directory set:

cd "C:\Data"

You can find the Stata data files on the eResources site. Stata data files have the exten-
sion .dta. Delimited text files can be opened in Stata by using the import delimited 
command:

import delimited "C:\Data\raw.csv"

The syntax right before this paragraph imports a file that is comma delimited. If we 
have a delimiter other than a comma, we can use the delimiters ( ) option. For example, 
if our data were tab delimited, we could use the following:

import delimited "C:\Data\raw.txt", delimiters(tab)

Excel files can be opened using the import excel command. For example, if we had an 
Excel spreadsheet saved in C:\ Data named TestScores and the first row of the spreadsheet 
contained the variable names, we could use the following syntax:

import excel "C:\Data\TestScores.xlsx", firstrow case(lower)

The above code imports the TestScores file that has the extension .xlsx. The firstrow 
case(lower) option tells Stata that the variable names should be taken from the first row 
in the spreadsheet and made lowercase.

The dataset named er_heart.dta contains data with the number of ED visits with 
a major heart or circulation diagnosis by zip code for St. Louis, Missouri, in 2013. 
These data come from the Missouri Department of Health and Senior Services, Missouri 
Information for Community Assessment (MICA).1 The variable zip is the five-digit zip 
code, and the variable visits is the number of ED visits with a major heart or circulation 
diagnosis for 2013.

Open the dataset er_heart.dta through a use command. We should see the list of vari-
able names in the dataset appear in the variable window. See Figure Stata A.1 for an 
example.

use "C:\Data\er_heart.dta"

BOX STATA A.1 ER HEART DATASET DESCRIPTION
The er_heart dataset comes from the Bureau of Health Care Analysis & Data Dissemination, 
Missouri Department of Health and Senior Services. The data are from 2013 and contain the 
number of emergency department visits with a major heart or circulation diagnosis by zip code 
for the St. Louis area of Missouri. The dataset includes two variables, a five-digit zip code, and 
the number of emergency visits with a heart or circulation diagnosis in that zip code for 2013.
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The Do Editor

When typing commands in Stata, we might want to save the commands used in case we 
need to go back for reference later. The Do Editor in Stata is a good way to do this. To 
open a new do file type ctrl+9, select the Do File button below the menu bar (the button 
looks like a pen and paper) or go to Window/Do-file Editor/New Do-file Editor. We can also 
use the do command to run the text that is saved within the do file. For example, say that 
we had saved all of the commands that we have learned thus far in a do file named LabA 
saved in C:\Data. We could use the following command to run the do file, which would, 
in turn, run all the commands saved within the do file:

BOX STATA A.2 A NOTE ON THE USE COMMAND 
AND THE WORKING DIRECTORY

In the example just before this box using the er_heart dataset, the use command includes 
the file path in which our er_heart dataset was stored.

If we had specified our working directory before running the use command, we could 
have just typed er_heart after our use command, and it would have also worked.

For example, we can set our working directory:

 cd "C:\Data"

Now, we can just type the following:

 use er_heart

The same results are possible with either setting a working directory or stating the file 
path within the use command.

Figure Stata A.1  Screenshot of variable window of er_heart dataset. The screenshot of the variable 
window in Stata shows the names of the variables that we have in the dataset along 
with the labels of the variables. We have a variable named zip with the label “Five 
Digit ZIP Code” and a variable named visits with the label “Number of emerg...” If 
we were to stretch the label column, we could see the entire label of the variable visits.
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do "C:\Data\LabA.do"

We can also simply open the do file and copy and paste commands into our command 
window to run them one at a time instead of running the whole do file at once or high-
light portions of the do file that you would like to execute and hit the execute button 
(looks like a piece of paper with a blue right arrow).

Data Editor

The Data Editor is where you can enter new data, make changes to the current dataset, 
or create new variables. Open the Data Editor by clicking the Data Editor button on the 
toolbar at the top of the screen. The button looks like a little spreadsheet. Alternatively, 
you could choose Data/Data Editor from the menu bar.

Sort the data on the variable visits.

• Highlight the column for visits by clicking on the variable name.
• Right click and choose Data/Sort Data. Keep the default settings, and click OK. 

Watch how the order of the observations changes. The default setting is to sort in 
ascending order.

• We can also sort our data by using the sort command:

sort visits

Now, try deleting data.

• We can delete a variable by highlighting the column and clicking the variable 
header. Then, right click, and choose Data/Drop selected data.

• We can delete an observation by doing the same thing but with the row highlighted.
• What happens when you close (click on “×” at top right corner) and reopen the 

Data Editor? Were your changes preserved?
• Now, close the Data Editor and clear out the current dataset by typing clear in the 

Command window. What happened in the Variable window?
• Note that Stata does not save any of your changes to disk until you explicitly tell it 

to File/Save, generally when exiting the program. Please, do not save your changes 
for this exercise.

Inputting data into Stata

Refer to the data in Table Stata A.1. It contains observations of diastolic blood pressure 
and weight for 10 study2 participants. We will manually input these data into Stata.

BOX STATA A.3 NOTE ON DATA EDITOR AND DATA BROWSER

The Data Editor is different from the Data Browser. The Data Browser allows only look-
ing at the data and does not allow making changes to the dataset. The button for the Data 
Browser looks like a magnifying glass over a little spreadsheet, which is also located on 
the toolbar.
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Open the Data Editor, and type in the values of diastolic blood pressure into the 
first column. Assign the variable a name by double clicking where it says “var1” in the 
properties box. Type dbp for the variable name. Enter the values for weight, and name 
the variable weight. Click on the close (“×”) button on the window’s upper right corner. 
This data file can be saved for future use by clicking File/Save As. Practice saving this 
dataset to disk, calling it study.dta.

Labels

For the sake of clarity, you might want to give labels to your data. Labels can be given 
to the entire dataset or to the individual variables. This is helpful when you have given 

BOX STATA A.4 TABLE STATA A.1 DATA DESCRIPTION

The data in Table Stata A.1 come from the 2014 National Health and Nutrition 
Examination Survey (NHANES). In the survey, participants’ blood pressure and weight (in 
kilograms) were measured by a trained health technician. Weight was converted to pounds. 
A random sample of 10 participants with nonmissing data is presented in Table Stata A.1.

BOX STATA A.5 NOTE ON STATA VARIABLE NAMES

Stata variable names need to be fewer than 32 characters, cannot start with a number, and 
must be made up of letters, digits, underscores, or same combination of these.

Table Stata A.1 Diastolic blood pressure and weight for study participants

Diastolic blood pressure (mm Hg) Weight (pounds)

92 221
62 136
78 175
60 159
42 108
88 175
94 324
68 135
90 185

78 159

Source: National Health and Nutrition Examination Survey, Centers for Disease Control 
and Prevention, National Center for Health Statistics, Hyattsville, MD, 2014, 
https://wwwn.cdc.gov/Nchs / Nhanes/Search/nhanes13_14 .aspx. Accessed 
February 23, 2016.

Note: The data come from the 2014 NHANES survey and include a random sample of 10 
study participants. The variables include diastolic blood pressure in mm Hg and 
weight in pounds.

https://wwwn.cdc.gov


Lab A: Introduction to Stata 57

abbreviated names to your dataset, variables, or both, and you want to keep a more 
detailed explanation of the contents of the datasets and variables. For example, you 
might want to label the variable dbp with “Diastolic Blood Pressure (mmHg).” You can 
assign a label to the study dataset by using the label data command, followed by the 
label that you wish to assign to the dataset in double quotation marks:

label data "Diastolic Blood Pressure and Weight of 10 Study 
Participants"

Next, use the label variable command to label your variables (alternatively, it is also 
done by typing in the label column in the variables properties window when you are in 
the Data Editor). Type label variable, followed by the variable name (dbp in this case), and 
type the label that you are assigning to the variable enclosed in double quotation marks:

label variable dbp "Diastolic Blood Pressure (mmHg)"

Follow the same procedure to apply a label for the variable weight. These labels will 
appear in any tables or graphs that you make with this data.

In order to describe all of the variables in the dataset, we will use the describe command:

describe

You will see a table of information appear in your Results window. Generally, this 
command provides the number of observations and variables in the dataset, the storage 
and display type for each variable, and any special labels. There are, potentially, a label 
for the entire dataset, a label for each variable, and special label values used in storing a 
variable. Once you know that your labeled study dataset is saved, open the er_hearts.dta 
dataset, and look at its thorough labeling.

Log files

Now that we have data to work with, we will want to do some statistical analyses. The 
log file is where we save all the work that we do during our Stata session. Basically, as 
long as a log file is open, everything that appears in the Results window is saved in the 
log file (including errors). Graphs, however, are not saved to the log file.

Create a log file by using the log command:

log using "C:\Data\session1.log"

The log using command just noted creates a log file named session1 that is saved in the 
C:\Data folder. We can also create a log file by clicking on the button that looks like 
a notebook with lines on it. Alternatively, we could pull down File/Log/Begin. In the 
window that pops up, enter a file name. For example, you could call it session1. Choose 
the .log file type, and click on Open. The .log extension is used so that the log file can be 
opened in most word processing applications.

Look at what appears in the Results window. Once we have opened a log file, it will 
record everything that we do until we suspend it or close it. We can do this by typing 
the appropriate command. When we want to close the log file, we type log close:
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log close

When we close the log file, we have to open a new one before we can start recording 
again. However, with the suspend option, we can pause recording:

log off

Then, we just turn the log back on again to start recording in the same log:

log on

Once a log file is closed, no additional information can be written to that log file. 
However, you can suspend and resume a log file as many times as you want. You can 
keep adding information to a log file until you close it. You can view the current con-
tents of the log file by going to File/Log/View. Leave the log file open, and go on to the 
next step. We will come back to saving and printing it after it has recorded something. 
Note, also, that you might want to just include portions of your work in a word process-
ing document (see Printing section of this chapter).

Summarizing data

In this section, we will calculate some descriptive statistics. First, let’s open the dataset 
nhanes2014_sample.dta, which is found on the eResources site. These data come from the 
2014 National Health and Nutrition Examination Survey.2 The dataset contains several 
variables, including race (1 = non-Hispanic white; 2 = non-Hispanic black), age (in 
years), sex (1 = males; 2 = females), urine lead level (lead in μg/L), and an identification 
(id ) number. Make sure that your working directory is set to where the dataset is stored, 
and type a use command to open the dataset in Stata.

use nhanes2014_sample

BOX STATA A.6 NHANES 2014 SAMPLE DATASET DESCRIPTION

The nhanes2014_sample dataset comes from the 2014 National Health and Nutrition 
Examination Survey (NHANES). The variables included in the dataset are race, age, sex, 
urine lead level (lead), and identification (id ). The id variable was created by the adminis-
trators of NHANES. The sex variable was collected as male or female. The age variable was 
collected in years at the time of screening, and participants over age 80 years were recoded 
to age 80 (i.e., 80 years is the maximum age). The race variable was recoded by NHANES 
administrators to Mexican American, other Hispanic, non-Hispanic white, non-Hispanic 
black, and other race—including multiracial. For this sample, only those with a race of 
non-Hispanic white or non-Hispanic black were included. Urine lead level was measured 
by trained professionals and recorded in μg/L. For this example, 100 participants with 
nonmissing data and a race of non-Hispanic white or non-Hispanic black were randomly 
selected.
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EXAMPLE PROBLEM A.1

 A Use the Data Editor to view the data. Describe the variables in the dataset.

  The variables in the dataset include race, lead, age, sex, and id. Through the 
Data Editor, we can see the number values listed in the dataset for each variable.

 B What is the mean urine lead level (lead) for this group?

  To get the mean of lead, we can use the mean command:

mean lead

  Using this command will give the following output:

Mean estimation                   Number of obs   =        100
--------------------------------------------------------------
             |       Mean   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------
        lead |      .5116   .0514967      .4094193    .6137807
--------------------------------------------------------------

  Also, we could have used the means command, which would have given us the 
arithmetic mean, along with the geometric mean and harmonic mean (not discussed 
in this book because it’s not used much in clinical and public health research):

means lead

 Variable |    Type         Obs      Mean     [95% Conf. Interval]
-----------+--------------------------------------------------------------
     lead | Arithmetic      100      .5116     .4094193   .6137807
          |  Geometric      100   .3365086     .2781522   .4071081
          |   Harmonic      100   .2002655     .1537678   .2870732
---------------------------------------------------------------------------

  The mean of lead is 0.51 μg/L.

 C What is the standard deviation of the lead variable?

  To get the standard deviation of lead, we can use the summarize command:

summarize lead

    Variable |      Obs      Mean    Std. Dev.       Min        Max
--------------+---------------------------------------------------------
        lead |      100     .5116    .5149673        .02       2.79

  The standard deviation of lead is 0.515 μg/L. As you can see from the ouput 
above, we could have used this command to get the mean in Example Problem 
A.1—Part (B).
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 D What is the median (50th percentile) age?

  To find the median of age, we can use the summarize command again and add 
the detail option so that our output includes the median or 50th percentile.

summarize age, detail

  The resulting output follows:
age
-----------------------------------------------------------
      Percentiles      Smallest
 1%            6              6
 5%          9.5              6
10%           12              7       Obs                 100
25%           22              8       Sum of Wgt.         100
50%         38.5                      Mean              40.34
                        Largest       Std. Dev.      21.56045
75%           56             78
90%         71.5             79       Variance       464.8529
95%           76             80       Skewness        .151011
99%           80             80       Kurtosis       1.841606

  The median age is 38.5 years.

 E What is the mean age for males (1 = males; 2 = females)?

  To find the mean age for males, we can use a by command in front of our sum-
marize command to obtain statistics by each category of the variable sex. In order 
to do this, we first have to sort our data by sex by using the sort command:

sort sex

  Now, we can use the by command in front of the summarize command to 
obtain the mean age for males:

by sex : summarize age

  We get the resulting output:

-------------------------------------------------------------------------------
-> sex = 1
    Variable |        Obs        Mean    Std. Dev.      Min     Max
--------------+---------------------------------------------------------
         age |         47    38.25532     22.6816         6      80
-------------------------------------------------------------------------------
-> sex = 2
    Variable |        Obs        Mean    Std. Dev.      Min     Max
--------------+---------------------------------------------------------
         age |         53    42.18868    20.55486         8      80

  The mean age for males (sex = 1) is 38.3 years.



Lab A: Introduction to Stata 61

 F How many females are there in this dataset (1 = males; 2 = females)?

  To get the number of females in the dataset, we want to use a tab (short for 
tabulate; the full word works as well) command. The tab command will give us 
a frequency table.

tab sex

        sex |      Freq.     Percent        Cum.
------------+-----------------------------------
          1 |         47       47.00       47.00
          2 |         53       53.00      100.00
------------+-----------------------------------
      Total |        100      100.00

  There are 53 females in this dataset.

 G How many females in this sample are recorded as non-Hispanic black for 
race? 

BOX STATA A.7 EXAMPLE OF ERROR MESSAGE 
WHEN DATA ARE NOT SORTED

What would happen if we did not sort our data before we used the by option in the sum-
marize command, like we did in Example Problem A.1—Part (E)?

We would get an error message like the one in Figure Stata A.2. We can also see that 
the command is red in the Review window.

Figure Stata A.2  Screenshot of error message when data are not sorted. The screenshot 
of our Stata windowing environment after trying to run the summarize com-
mand with a by option shows an error message that says “not sorted.” Because 
this book is printed in black and white, we cannot see the colors from this 
image; however, error messages show up in red by default. In the Review win-
dow, we also see the command show up in red.
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  Remember that for the race variable 1 = non-Hispanic white; 2 = non-Hispanic black.

  To obtain the number of females that are recorded as non-Hispanic black for 
race in the dataset, we want to use a tab command again, but this time we will 
specify sex and race variables:

tab sex race

    |         race
       sex |         1          2 |     Total
-----------+----------------------+----------
         1 |        24         23 |        47
         2 |        30         23 |        53
-----------+----------------------+----------
     Total |        54         46 |       100

There are 23 females that are recorded as non-Hispanic black for race in the dataset.

 H List 10 observations for race and lead.

  To list observations in Stata, we will use the list command, followed by an in 
option with 1/10, which means observations 1 through 10:

list in 1/10

  We obtain the resulting output:

     +---------------------------------+
     | race   lead   age   sex      id |
     |---------------------------------|
  1. |    1    .18     6     1   80346 |
  2. |    1    .48    63     1   82409 |
  3. |    2    .49    26     1   74197 |
  4. |    1    .35    23     1   82271 |
  5. |    2    .64    65     1   81820 |
     |---------------------------------|
  6. |    2   1.48    10     1   74444 |
  7. |    1    .11    20     1   73992 |
  8. |    2    .19    35     1   77076 |
  9. |    2    1.7    38     1   73859 |
 10. |    2    .22    37     1   81219 |
     +---------------------------------+

  Write a command to have Stata list observation 5 through 50.

list in 5/50

  You may see a blue-colored –more at the bottom of the Results window. Hit 
the space bar to see the additional content.
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Value labels

So far, we have learned about labeling datasets and variables, but we can also label values 
of variables. Suppose that we wanted to format the variable sex in the nhanes2014_sample 
dataset to label 1 as males and 2 as females to make our output easier to interpret. We 
could use the following commands to do that:

label define sexlabel 1 "Male" 2 "Female"
label values sex sexlabel

The first line, label define, creates a label called sexlabel that labels values of 1 as “Male” 
and values of 2 as “Female.” The second line, label values, assigns the label sexlabel that 
we just created to the variable sex. Now, if we run a tab command on the variable sex, we 
would obtain the following output:

tab sex

        sex |      Freq.     Percent        Cum.
------------+-----------------------------------
       Male |         47       47.00       47.00
     Female |         53       53.00      100.00
------------+-----------------------------------
      Total |        100      100.00

We can see that the values of sex are now labeled as Male and Female. Create a label 
for race variable values and assign it to the race variable.

Printing

We can print output from our session in two ways. One way is to choose Print from the 
File menu when viewing the log. The other option is to copy (pick Copy from the Edit 
menu after highlighting what you want to copy) and paste the contents of the log file 
(or the Results window) to a document in a word processor and print from there. This is 
often a little bit neater than printing from the File menu, and it allows you to print only 
the relevant parts of your session.

Here are some steps to follow:

 1 View the current log snapshot (by clicking on the Log button), and select a portion 
of text from your results.

 2 Select Edit/Copy Text.
 3 Switch to an open word processing document, place the text cursor at your target 

location, and choose Edit/Paste. Notice that text does not necessarily have the same 
appearance.

 4 Highlight the portion that you pasted, and change the font, making sure that you 
use a fixed-width font such as Courier New.
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Creating new variables with formulas

Sometimes, we may need to create a new variable that is a function of one or more exist-
ing variables. We will see later in chapters why you might want to do this.

Create a new variable called leadsq that is the square of lead (lead 2). To do this, we use 
the generate command:

generate leadsq=lead^2

A caret (^) is used for exponentiation. There are many other mathematical functions 
that Stata can perform, some of which we will learn later in this workbook.

Graphs

Several Stata commands create graphs. For this lab, we will go over a few of these examples.

EXAMPLE PROBLEM A.2

 A Using the nhanes2014_sample dataset, create a box plot for age. Are there 
any outliers? Does the box plot give you a sense of the mean? The median? 
The mode?

graph box age
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Figure Stata A.3  Box plot of age for the NHANES 2014 sample data. The boxplot shows the dis-
tribution of the age variable. The line through the middle of the box represents the 
median. When graphing boxplots in Stata, we do not get a sense of the mean, unlike 
other boxplots we have seen in Chapter 1 (created using SAS).
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 This box plot does not show any outliers. We do not get a sense of the mean 
or the mode in this graph. The median is represented by the bar through the 
middle of the box (Figure Stata A.3).
 Suppose that we wanted to compare box plots across males and females. We 
could do this using the graph box command by adding a by option after the com-
mand. The code is as follows:

graph box age, by(sex)

 B Construct a stem-and-leaf plot of age.

  To create a stem-and-leaf plot in Stata, we use the stem command:

stem age

  0. | 66789
  1* | 0012223444
  1. | 5568889
  2* | 012233344
  2. | 56677
  3* | 0001223
  3. | 55778889
  4* | 00124
  4. | 5899
  5* | 0000123333
  5. | 5555667
  6* | 02233334
  6. | 599
  7* | 01234
  7. | 55789
  8* | 00

  In this stem-and-leaf plot, Stata created two lines for most of the stems. If we 
wanted to see only one line per stem, we could use a line option to specify how 
many lines we would like to see:

stem age, lines(1)

 C Create a histogram for lead (consider it a continuous variable). Would you 
describe the distribution as skewed or symmetric?

  To create a histogram in Stata, we use the histogram command with a freq 
option. By default, Stata provides a density histogram. Adding the freq option 
gives a frequency histogram (Figure Stata A.4).

histogram lead, freq

 D Now create separate histograms of lead for males and females. How do the 
histograms differ between the two sexes?

  We, again, use the histogram command for this (Figure Stata A.5) but include 
a by option:

histogram lead, by (sex) freq
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Figure Stata A.4  Histogram of urine lead level for the NHANES 2014 sample data. The his-
togram of the variable lead shows the distribution of participants’ lead levels. The 
distribution is skewed to the right, with a majority of the participants’ lead levels 
being between 0 and 0.5 µg/L.
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Figure Stata A.5  Histogram of urine lead level for males and females for the NHANES 2014 
sample data. Male is indicated by 1. Female is indicated by 2. The histogram of 
lead level for males (sex = 1) show the distribution of the variable. The majority of 
participants have a lead level between 0 and 1 µg/L. The data is skewed to the right. 
Similar to the histogram of lead level for males, the histogram for females (sex = 2) is 
also skewed to the right; however, it is less so than the males. The majority of female 
participants also have a lead level between 0 and 1 µg/L, but the range of values for 
females does not go as high as for males.
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 E Create a scatterplot of age vs. lead. Is there a relationship between the two 
variables?

  To create a scatterplot (Figure Stata A.6), we use the graph twoway scatter 
command:

graph twoway scatter lead age

BOX STATA A.8 EXAMPLE OF USING LABELS 
TO MAKE A GRAPH LOOK BETTER

Suppose that we want our graphs to have labels of “Lead Level” instead of just “lead” and 
“Age in Years” instead of just “age” as shown in the scatterplot in Figure Stata A.6. We 
could use labels for this.

Previously in this lab, we learned how to use the label command. Let’s apply that here:

label variable age "Age of Participant , years"

label variable lead "Urine Lead Level , micrograms/liter"
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Figure Stata A.6  Scatterplot of age by urine lead level for the NHANES 2014 sample data. The 
scatterplot shows the relationship between two continuous variables, age and lead. 
Age is on the x-axis and lead is on the y-axis. Within the plot, we see points which 
are representative of the data in our dataset. Each point represents a different partici-
pant. From this scatterplot, there does not appear to be a clear relationship between 
age and lead level.
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  There does not appear to be a relationship between age and lead.

Saving graphs

While the graph window is active, under the File menu you have the option to either 
print it or save it (you can recall the saved graphs by File/Open and navigating to where 
the graph is saved). Again, note that graphs do not appear in your log file. You can, 
therefore, copy and paste graphs to word processing programs by choosing Copy from 
the Edit menu while the graph window is active and then, pasting the graphs into a 
word processing document.

Practice cutting and pasting your scatterplot into your open word processing 
document.

We labeled both variables in our scatterplot. Let’s remake the scatterplot:

graph twoway scatter lead age

Now, our graph should look like Figure Stata A.7, below:
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Figure Stata A.7  Scatterplot of age by urine lead level for the NHANES 2014 sample 
data with labels. The scatterplot presented here is essentially the same as the 
scatterplot presented in Figure Stata A.6; however, this time we have used a 
label option to label the x-axis so that “Age of Participant, years” will appear 
instead of just the variable name age and labeled the y-axis so that “Urine 
Lead Level, micrograms/liter” will appear instead of just the variable name 
lead.
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Before exiting from Stata, close your open log file by clicking on the Log button and 
selecting Close log file.

Congratulations! You have successfully completed your Introduction to Stata. You 
will become even more familiar with Stata as the workbook progresses. Now, try some 
practice problems on your own.

PRACTICE PROBLEM A.1

The dataset nhanes2014_ glucose contains a sample of participants from the NHANES 
2014 survey.2 The variables include whether a doctor or health professional ever told 
the participant that he or she has diabetes (diabetes); the participant’s fasting glucose in 
mg/dL (fast_ glu); the participant’s two-hour glucose also in mg/dL (twohour_ glu); and 
the participant’s age (age), sex (sex), and ID number (id ). For the diabetes variable, 1 = 
the participant was told by a doctor or health professional that he or she has diabetes, 
and 2 = the participant was not told by a doctor or health professional that he or she 
has diabetes. The sex variable is coded 1 = males, and 2 = females. For race, 1 = white, 
and 2 = nonwhite. We want to know whether the descriptive statistics of glucose levels 
differ by whether a participant replied that a doctor told the participant that he or she 
has diabetes.

BOX STATA A.9 NHANES 2014 GLUCOSE DATASET DESCRIPTION

The nhanes2014_ glucose dataset comes from the same survey as the nhanes2014_sample 
dataset. The age, sex, and id variables are the same as in the previously used dataset. For 
this dataset, race was coded as white or nonwhite, with white being those classified as non-
Hispanic white and nonwhite being the other race options combined (Mexican American, 
other Hispanic, non-Hispanic black, and other race—including multiracial). The dia-
betes variable comes from the question “The next questions are about specific medical 
conditions. {Other than during pregnancy, {have you/has SP}} ever been told by a doctor 
or health professional that {you have/{he/she/SP} has} diabetes or sugar diabetes?” The 
response options were “Yes,” “No,” “Borderline,” “Don’t know,” or they could refuse to 
answer the question. For this example, those who answered anything other than “Yes” 
or “No” to the diabetes questions were excluded. The fast_ glu variable comes from the 
participants’ measured glucose levels in mg/dL after participants aged 12 and older fasted 
for nine hours. The twohour_ glu variable comes from the participants’ measured glucose 
level, also in mg/dL. This measurement was taken two hours after participants drank a 
glucose-filled solution, which was consumed after the fasting glucose measurement was 
taken. For this example, a stratified random sample of 46 participants (23 who reported 
having diabetes and 23 who reported not having diabetes) were selected.
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 A What is the mean fasting glucose level for those who had a doctor tell them that 
they have diabetes and for those who did not? What is the standard deviation? How 
do these compare to the mean and standard deviation of the sample as a whole?

 B What are the median and interquartile range of the fasting glucose variable? What 
are the median and interquartile range of the two-hour glucose variable?

 C What is the mean difference between fasting glucose and two-hour glucose? What 
is the variance of the difference? Hint: Create a variable of the difference between a 
participant’s fasting glucose and two-hour glucose. This can be done using the fol-
lowing code:

generate glucose_diff=twohour_glu-fast_glu

 D Create a histogram of the glucose_diff variable that we just created. Describe the 
distribution.

 E Create a scatterplot of the fasting glucose and the two-hour glucose. Is there a rela-
tionship between these two variables in the sample?

PRACTICE PROBLEM A.2

Continuing with the same dataset as in Practice Problem A.1, nhanes2014_ glucose, we 
now want to look at descriptive statistics of our sample by race and sex.

 A How many females are in our sample? How many nonwhites are in our sample? 
How many nonwhite females are in our sample?

 B Describe the fasting glucose levels for whites and nonwhites. What conclusions can 
we make?

 C Describe the fasting glucose levels in males and females. What conclusions can we 
make?

 D Create a box plot of the fasting glucose levels for whites and nonwhites.
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PRACTICE PROBLEM A.3

We will use the dataset nhanes2014_sample for this problem. We are interested in 
describing lead levels by race and seeing whether there appears to be a difference in the 
descriptive statistics of lead levels between racial groups.

 A What are the mean and standard deviation for lead for both racial groups? 
Remember, 1 = non-Hispanic white, and 2 = non-Hispanic black.

 B What are the median and interquartile range for lead for both racial groups?

 C Do the mean and median for lead level appear different between racial groups?

 D Present the lead levels of both racial groups graphically. Describe the distribution 
of lead level in both groups.

 E Is the mean or the median a better measure of location for this example? Why?
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This chapter will focus on the concept of probability and will include the following:

• Properties of probabilities
• Laws of probabilities

Terms

• addition law of probability
• complement
• conditional probability
• event
• exhaustive
• generalized multiplication law of 

probability
• intersection

• multiplication law of probability
• mutually exclusive
• probability
• relative risk
• sample space
• total probability rule
• union

Introduction

The concept of probability is vital to the core of statistics. Throughout this chapter, 
we will discuss the different laws and properties of probability and learn how to apply 
them. The remainder of this book will delve into many other topics of biostatistics, 
most of which are based on or incorporate the concept of probability.

Probability: The probability of an event is the relative frequency of a set of outcomes 
over an indefinitely large (or infinite) number of trials occurring in a particular sample 
space.

Event: An event is the result of an observation or experiment, or the description of some 
potential outcome. The symbol { } is used as shorthand for the phrase “the event.”

Sample Space: The sample space is the set of all possible outcomes in which the event 
is contained. Omega (Ω) is used as the notation for sample space.

Probability2
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Example of probability in action

To further help us to understand what probability is, let’s look at an example. What 
is the probability that at least two students in the Introduction to Biostatistics course 
have the same birthday (month and day)? Examine the probabilities in Table 2.1 and 
Figure 2.1.

Table 2.1 Birthday problem

Number of students Probability

5 3%
10 12%
20 41%

23 50%

35 81%

50 97%

70 99.5%

Note:  The table shows the probabilities that two stu-
dents in the Introduction to Biostatistics course 
have the same birthday, based on the number of 
students in the course. As the number of students 
increases, the probability that two students will 
have the same birthday also increases.
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Figure 2.1  Birthday problem. The figure is showing the probability that at least two students have the 
same birthday (y-axis) by the number of students in the course (x-axis). Similar to Table 2.1, 
the graph shows that as the number of students in the class goes up, the probability that at least 
two students have the same birthday also goes up until it reaches a point that is almost to 1.
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• If there were currently five people in the course, the probability that at least two 
people would have the same birthday would be 3% or 0.03.

• As the number of people in the course increases, the probability that two people 
have the same birthday also increases.

• In this example, the sample space would be all of the possible combinations of 
people’s birthdays, and the event would be the outcomes in which at least two of 
the birthdays are the same.

To understand more about the concept of probability, in this chapter, we will discuss 
the properties, laws, and relationships that apply to probabilities.

Properties of probabilities

The probability of an event E, denoted by P(E), always satisfies 0 ≤ P(E) ≤ 1. That is, the 
probability of event E can range only between 0 and 1.

If an event has a probability of 0: There is a 0% chance the event will not occur.
If an event has a probability of 1: There is a 100% chance the event will occur.

Mutually Exclusive: Two events A and B are mutually exclusive if they cannot both 
happen at the same time.

Equation 2.1 shows the calculation for the probability of A or B occurring if A and 
B are two events that cannot happen at the same time—in other words, if A and B are 
mutually exclusive.

 P A B P A P B( ) ( ) ( )or occurs = +  (2.1)

This equation is telling us that the probability of event A or B occurring is equal to 
the probability of event A occurring plus the probability of event B occurring. We can 
look to the Venn diagram in Figure 2.2 for a visual representation of this, with the circle 
around A being the sample space for event A and the circle around B being the sample 
space for event B.

As an example, let A be the event that a person lives to be 50, and let B be the event 
that a person dies before their 35th birthday. These two events are mutually exclusive 
because someone cannot live to be 50 and die before their 35th birthday.

Figure 2.2  Venn diagram for mutually exclusive events. The Venn diagram shows a visual example 
of mutually exclusive events. Event A, represented by the striped circle, and event B, 
represented by the dotted circle, cannot occur at the same time (no overlap); thus, they are 
mutually exclusive events.
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Null Event: A null event is an event that cannot happen and is represented by the 
symbol Ø.

In the example discussed previously regarding mutually exclusive events, the event 
of someone living to 50 and dying before their 35th birthday cannot happen; thus, it 
is a null event.

Complement: The complement of A is the event that A does not occur.
Equation 2.2 shows that the complement of event A is equal to 1 minus the prob-

ability of event A occurring. As we know that a probability of 1 means that there is a 
100% chance of the event occurring, the probability of A occurring plus the probability 
that A will not occur will equal 1.

 P A P Ac( ) ( )= −1  (2.2)

Note: The complement of an event occurring is represented by P(Ac), or P( ).A

For a visual example of this property, we can look at the Venn diagram in Figure 2.3. 
Here, we see that the sample space for the complement of event A is all the space outside 
of the sample space for event A.

Let’s think of an example to help us better understand this concept. We will say that 
event A is that Tom eats vegetables. The complement of event A in this example would 
be that Tom does not eat vegetables.

Intersection: The intersection of two events is the event in which both events occur.

• The intersection of two events is represented by A∩B.
• Figure 2.4 shows us a Venn diagram example of the intersection of events A and B. 

Here, the intersection is where the two circles overlap.

Going back to our example with Tom, we know that Tom eats vegetables (event A). 
Event B is that Tom eats green foods. The intersection of events A and B would be that 
Tom eats green vegetables.

Equation 2.3 shows the calculation for probability of the intersection of two events 
(A and B), if events A and B are independent events.

 P A B P A P B( ) ( ) ( )∩ =  (2.3)

Figure 2.3  Venn diagram for the complement of an event. The Venn diagram shows a visual example 
of the complement of an event. Event A occurring is represented by the white space inside the 
circle, and event A not occurring, the complement of event A, is represented by the striped 
space outside of the circle.
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That is, for independent events, the probability of the intersection of events A and B 
occurring is the probability of event A occurring multiplied by the probability of event 
B occurring.

If events A and B are dependent events, the probability of the intersection of the 
two events is not equal to the multiplication of the probability of each of the events 
(Equation 2.4).

 P A B P A P B( ) ( ) ( )∩ ≠  (2.4)

If two events are not independent, then they are dependent.

Union: The union of two events is the occurrence of event A or event B or both events 
together. We use the notation A ∪ B to represent the union of two events.

Figure 2.5 shows us the union of two events in Venn diagram form. Here, the sample 
space of the union of events A and B is in the sample space of event A, of event B, and 
of both simultaneously.

In our example with Tom, the union of events A and B would be that Tom eats green 
vegetables, green nonvegetable foods, and other nongreen vegetables.

Intersection, union, and complement can be used to describe even the most compli-
cated situations in terms of simple events. These and other properties of probabilities 
presented in this section are summarized in Table 2.2 as a reference guide.

Figure 2.4  Venn diagram for the intersection of two events. The Venn diagram shows a visual 
example of the intersection of events A and B. The intersection is the section of the circles 
that overlap, represented by the stripes.

Figure 2.5  Venn diagram for the union of two events. The Venn diagram shows a visual example 
of the union of events A and B. The union is represented by the stripes and covers all space 
inside the circles of both A and B.
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Laws of probability

There are several laws of probabilities. The laws include the multiplication law, the 
addition law, and the total probability rule.

Multiplication Law of Probability: The multiplication law of probability tells us that 
if A1,…,Ak are independent events, then the probability of the intersection of these 
events is the product of the probabilities for each individual event. Equation 2.5 shows 
the calculation for the multiplication law of probability.

 P P P P( ( ) ( ) ( )A A A A A Ak k1 2 1 2∩ ∩… ∩ = × × … ×  (2.5)

Remember that the symbol ∩ represents the intersection of events. Let’s look at an 
example to help us to better understand the multiplication law as it applies to indepen-
dent events.

EXAMPLE PROBLEM 2.1

Suppose that we have two unrelated patients in a clinic and we want to know the 
probability that both patients will develop human immunodeficiency virus (HIV) 

Table 2.2 Reference guide on properties of probabilities 

Term Brief definition Notation

Probability The relative frequency of a set of outcomes over an 
indefinitely large (or infinite) number of trials.

P()

Event Result of observation or experiment. {A}, {B}

Sample space The set of all possible outcomes.
Ω

Mutually exclusive A and B are mutually exclusive if they cannot happen 
together.

P(A∩B) = 0

Complement The complement of A is the event that A does not 
occur. AC or A

Intersection The event that both A and B occur. A∩B

Independent A and B are independent events if the probability 
of one occurring is not dependent upon whether 
the other has already occurred.

P(A|B) = P(A)
P(B|A) = P(B)

Dependent A and B are dependent events if the probability of one 
occurring is dependent upon whether the other has 
already occurred.

P(A∩B) ≠ 
P(A) × P(B)

Union The event that either A or B or both occur. A ∪ B

Null event Cannot happen. Ø

Exhaustive A and B are exhaustive events if there are no other 
possible outcomes.

Note:  A summary of the properties of probability is provided. This table will serve as a good reference for 
learning notation and definitions of the different terms presented in this chapter.
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after a needle stick. The Centers for Disease Control and Prevention (CDC) tells us 
that there is a 23 in 10,000 risk that a person will get HIV after a needle stick.1 We 
can use the multiplication law for independent events to answer this.

 

P Patient gets HIV Patient gets HIV

P Patient ge

( )

(

1 2

1

∩
= tts HIV P Patient gets HIV) ( )

. . .

×
= × =

2

0 0023 0 0023 0 000000529

The probability that both patients will get HIV is 0.00000529.

Addition Law of Probability: The addition law of probability tells us that if A and B 
are any events, then Equation 2.6 is true:

 P P P P( ) ( ) ( ) ( )A B A B A B∪ = + − ∩  (2.6)

There are a few special cases of the addition law that are important for us to note.
If events A and B are mutually exclusive, then P(A∩B) = 0, and the addition law reduces 

to Equation 2.7:

 P P P( ) ( ) ( )A B A B∪ = +  (2.7)

If events A and B are independent, then the addition law of probability can also be 
simplified. By definition, as given by the multiplication law for independent events,

P(A ∩ B) = P(A) × P(B); therefore, Equations 2.8 and 2.9 are resulting corollaries.

 P P P P P( ) ( ) ( ) ( ) ( )A B A B A B∪ = + − ×  (2.8)

 P P P P( ) ( ) ( ) [ ( )]A B A B A∪ = + × −1  (2.9)

For three events, the addition law is as follows in Equation 2.10:

 

P P P P P P P

P

( ) ( ) ( ) ( ) ( ) ( ) ( )

(

A B C A B C A B A C B C∪ ∪ = + + − ∩ − ∩ − ∩
+ AA B C∩ ∩ )  (2.10)

EXAMPLE PROBLEM 2.2

To help us further understand the addition law, let’s go back to our HIV example. 
Suppose that we, again, have two unrelated patients in a clinic, but this time we want 
to know the probability that either patient 1, patient 2, or both patients will develop 
HIV after a needle stick. Based on data from the CDC, there is a 23 in 10,000 risk that 
a person will get HIV after a needle stick.1 We can use the addition law for independent 
events to answer this question.
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P Patient gets HIV Patient gets HIV

P Patient ge

( )

(

1 2

1

∪
= tts HIV P Patient gets HIV P Patient gets HIV) ( ) [ (+ × −2 1 1 ))]

. . ( . )

. [ . .

= + × −
= + ×

0 0023 0 0023 1 0 0023

0 0023 0 0023 0 99977

0 0023 0 00229 0 00459

]

. . .= + =

The probability that either patient 1 or patient 2 or both will get HIV is 0.00459.

Conditional Probability: When describing a conditional probability, we would say 
that it is the probability of event B given that event A has occurred.

The conditional probability of B given A is written as P (B|A) and defined as 
Equation 2.11:

 
P |

P

P
( )

( )

( )
B A

A B

A
= ∩

 (2.11)

If A and B are independent events, then Equation 2.12 is true:

 P | P P |( ) ( ) ( )B A B B AC= =  (2.12)

If Events A and B are dependent, then Equation 2.13 is true:

 P | P P | P P P( ) ( ) ( ) ( ) ( ) ( )B A B B A and A B A B≠ ≠ ∩ ≠ ×  (2.13)

Generalized Multiplication Law of Probability: The generalized multiplicative law 
of probabilities is based on conditional probabilities and expands on the multiplication 
law discussed previously in this chapter.

So what do we do if the events are not independent and we want to apply the multi-
plication law? We can apply the generalized multiplication law of probability.

If A1,…,Ak is an arbitrary set of events, meaning that the events are not mutually 
independent, then Equation 2.14 is true:

 

P P P P

P

( ) ( ) ( | ) ( | )

(

A A A A A A A A A

A
k

k

1 2 1 2 1 3 2 1∩ ∩… ∩ = × × ∩
× … × || )A A Ak− ∩ … ∩ ∩1 2 1  (2.14)

Relative Risk: The relative risk is the conditional probability of event B given event A 
divided by the conditional probability of event B given the complement of event A. The 
relative risk is also referred to as the risk ratio.

The relative risk (RR) of B given A is represented in Equation 2.15:

 

P

P

( | )

( | )

B A

B A  
(2.15)

Total Probability Rule: The total probability rule allows us to calculate the probability 
of an event based on conditional probabilities.
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The total probability rule is such that for any events A and B, Equation 2.16 is true:

 P P | P P P( ) ( ) ( ) ( | ) ( )B B A A B A A= × + ×  (2.16)

Mutually exclusive and exhaustive

Mutually Exhaustive: A set of events A1,…,Ak is exhaustive if at least one of the events 
must occur.

• If events A1,…,Ak are mutually exclusive and exhaustive, then at least one event 
must occur and no two events can occur simultaneously; therefore, exactly one event 
must occur.

• We should note that mutually exclusive events are not necessarily exhaustive.
• Let A1,…,Ak be mutually exclusive and exhaustive events. The unconditional prob-

ability of an event B, P(B), can be written as a weighted average of the conditional 
probabilities of B given Ai, P(B|Ai), as in Equation 2.17:

 

P P P( ) ( | ) ( )B B A Ai i

i

k

= ×
=

∑
1  

(2.17)

Here are a few properties to note when considering mutually exclusive and exhaus-
tive events.

• The sum of the probabilities for mutually exclusive events ≤ 1.
• The sum of the probabilities for exhaustive events ≥ 1.
• The sum of the probabilities for mutually exclusive and exhaustive events = 1.

EXAMPLE PROBLEM 2.3

Table 2.3 shows causes of death for infants, defined as children under the age of 1, in the 
United States from the years 2007 through 2013.2 In total, there were 23,446 infant deaths.

 A Are the five causes of death mutually exclusive?

  Yes, the five causes of death are mutually exclusive because each death is 
classified into one of these five groups.

 B Are the five causes of death exhaustive?

  Yes, because we have a cause of death for all infant deaths that occurred, and 
they must be in one of the categories listed in Table 2.3.

 C For the population noted in Table 2.3, what is the probability that an infant 
death was caused by a disease of the respiratory system?

 
P disease of respiratory system( )

,
.= =524

23 446
0 0223
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 D What is the probability that two randomly selected infants who died between 
2007 and 2013 both died of a disease of the nervous system?

  Let X = {Infant 1 died of disease of nervous system}
  Let Y = {Infant 2 died of disease of nervous system}

 P( ) ( ) ( ) . . .X Y P X P Y∩ = × = × =0 0141 0 0141 0 0002

  In this problem, we have the intersection of two independent events; thus, 
we use the multiplication law to multiply the probabilities of each event.

 E Given that an infant did not die of a cause of death classified as other in this exam-
ple, what is the probability that the infant died of a digestive system disease?

  Let A = {Infant did not die of an “other” cause of death}
  Let B = {Infant died of a digestive system disease}
  P(A) = 1 – 0.9366 = 0.0634
  P(B) = 0.0075

 
P B A

P B A

P A
( )

( )

( )

.

.
.| = ∩ = =0 0075

0 0634
0 1183

  We set this problem up as a conditional probability. Here, P(B ∩ A) = P(B) 
because the event that an infant did not die of an other cause of death AND died of 
digestive system disease is the event that an infant died of digestive system disease. 
We use the complement 1 − P(A) for the event “Infant did not die of an ‘other’ 
cause of death.”

 F Suppose that we have four infants who died between 2007 and 2013. What 
is the probability that at least one of the infants died from a disease of the 
respiratory system?

  Let A = {Infant 1 died of disease of the respiratory system}
  Let B = {Infant 2 died of disease of the respiratory system}

Table 2.3 Causes of infant death 2007–2013

Cause of death Number Probability

Disease of circulatory system 457 0.0194
Disease of respiratory system 524 0.0223
Disease of digestive system 175 0.0075
Disease of nervous system 330 0.0141
Other cause 21960 0.9366
Total 23,446

Source: United States Department of Health and Human Services, Centers for Disease 
Control and Prevention, National Center for Health Statistics, Division of Vital 
Statistics. Linked Birth / Infant Death Records 2007–2013, as compiled from 
data provided by the 57 vital statistics jurisdictions through the Vital Statistics 
Cooperative Program, on CDC WONDER Online Database, http://wonder.cdc 
.gov/lbd-current.html, accessed July 7, 2016.

Note: The number and probability of infant deaths in different categories are presented. The 
probability of death in a certain category can be found by dividing the number of infant 
deaths that occurred in that category by the total number of infant deaths occurring.

http://wonder.cdc.gov
http://wonder.cdc.gov
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  Let C = {Infant 3 died of disease of the respiratory system}
  Let D = {Infant 4 died of disease of the respiratory system}

 

P A B C D P A B C D( ) ( )

[( . )( . )

∪ ∪ ∪ = − ∩ ∩ ∩
= − − −

1

1 1 0 0223 1 0 0223 (( . )( . )] ( . )

. .

1 0 0223 1 0 0223 1 0 9777

1 0 91374 0

4− − = −
= − = 00863

  In this problem, we consider each of the infants dying of a disease of the respi-
ratory system as an independent event, represented by A, B, C, and D. We can 
also think of the probability of at least one of the infants dying of a disease of the 
respiratory system as 1 − P (no infant died of a disease of the respiratory system).

PRACTICE PROBLEM 2.1

Estimates of the prevalence of diabetes (i.e., how many in the specified population have 
diabetes out of the total specified population) are presented for several different racial or 
ethnic groups (Table 2.4).3 The prevalence rates are presented as percentages and strati-
fied by education level.

Suppose that an unrelated non-Hispanic black person with a high school diploma, a 
Puerto Rican person who did not graduate from high school, and a Puerto Rican person 
with a bachelor’s degree were selected from the community.

 A What is the probability that all three of these individuals have diabetes?

 B What is the probability that at least one of the Puerto Rican people has diabetes?

 C What is the probability that at least one of the three people has diabetes?

 D What is the probability that exactly one of the three people has diabetes?

Table 2.4 Prevalence of diabetes

Race/ethnic group
<High school 
diploma (%)

High school diploma 
or GED (%)

>High 
school 

diploma (%)

Non-Hispanic White 12.1 8.1 5.3
Non-Hispanic Black 16.1 9.7 8.2
Mexican/Mexican American 9.7 6.3 6.7
Puerto Rican 17.6 9.8 6.8
Cuban/Cuban American 13.4 8.2 6.0

Source: Arroyo-Johnson, C., Mincey, K. D., Ackermann, N., Milam, L., Goodman, M. S., and Colditz, 
G. A., Prev Chronic Dis., 13(E10), 2016, doi:10.5888/pcd13.150260.

Note: The table shows the prevalence of diabetes for each racial or ethnic group by education category. The 
prevalence presented is the average yearly prevalence of diabetes over a 16-year period from 1997 to 
2012.
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 E Suppose that we know that only one of the three people has diabetes, but we do not 
know which one. What is the conditional probability that the affected person is 
Puerto Rican?

 F Suppose that we know that two of the three people have diabetes. What is the con-
ditional probability that they are both Puerto Rican?

 G Suppose that we know that two of the three people have diabetes. What is the con-
ditional probability that they both have, at most, a high school education?

  Suppose the probability is 0.015 that both members of a married couple 
who are Mexican or Mexican American and have more than a high school educa-
tion will have diabetes.

 H What is the conditional probability that one of the individuals in the married couple 
will have diabetes given that the other individual in the couple has diabetes? How 
does this value compare to the prevalence in the table? Why should it be the same (or 
different)?

 I What is the probability that at least one member of the couple is affected?
  Suppose that a study of diabetes is proposed in a neighborhood, where the 

race or ethnicity distribution is as shown in Table 2.5.

 J What is the expected overall prevalence of diabetes in the community if the preva-
lence estimates in Table 2.5 for specific race or ethnicity and education groups hold?

 K If 2000 people are in the community, then what is the expected number of cases of 
diabetes in the community?

Table 2.5 Race/ethnicity distribution of neighborhood

Race/ethnicity
<High school 
diploma (%)a

High school diploma/
GED (%)

>High school 
diploma (%) Total

Non-Hispanic White 11 18 12 41
Non-Hispanic Black 6 9 5 20
Mexican/Mexican American 10 5 3 18

Puerto Rican 4 6 2 12

Cuban/Cuban American 3 3 3 9

Note: The hypothetical percentage of a neighborhood’s total population is given by race or ethnic group and educa-
tion level. Using these percentages and the prevalence of diabetes from each group given, we can calculate the 
expected overall prevalence of diabetes in the community.

a Percentage of total population.
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PRACTICE PROBLEM 2.2

Probability rules
A  Additive rule of probability

 1. For nonmutually exclusive events:

 P A and or B P A B( / ) ( )= ∪ =

 2. For mutually exclusive events:

 P A and or B P A B( / ) ( )= ∪ =

B  Conditional Probability

 1. What is a conditional probability?

 2. For nonindependent events:

 P A B( )| =

 3. For independent events:

 P A B( )| =

 4. For mutually exclusive events:

 P A B( )| =

 5. Complement:

 P A BC( )|

C  Multiplicative rule of probability

 1. For nonindependent events:

 P A and B P A B( ) ( )= ∩ =
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 2. For independent events:

 P A and B P A B( ) ( )= ∩ =

PRACTICE PROBLEM 2.3

Let A represent the event that a particular person has hypertension, and let B represent 
the event that he or she eats salty French fries.

 1 What is the event A ∩ B?

 2 What is the event A ∪ B?

 3 What is the complement of A?

 4 Are the events A and B mutually exclusive?

PRACTICE PROBLEM 2.4

Table 2.6 contains categories of the amount of time spent in an emergency department 
(ED) and the number and percent of patients reporting a wait time in each interval for 
2011.4

Table 2.6 Time in emergency department, 2011

Time spent in the emergency department, hours People (no.) People (%)

< 1 16 198 12.3
≥ 1 but < 2 33 184 25.1
≥ 2 but < 4 47 537 36.0
≥ 4 but < 6 20 420 15.5
≥ 6 but < 10 10 487 7.9
≥ 10 but < 14 2134 1.6
≥ 14 but < 24 1340 1.0
≥ 24 794 0.6
Total 132 094 100

Source: Centers for Disease Control and Prevention, National Hospital Ambulatory Medical Care 
Survey: 2011 Emergency Department Summary Tables, 2011, https://www.cdc.gov/nchs 
/ data/ahcd/nhamcs_emergency/2011_ed_web _ tables.pdf.

Note: The table shows categories for amounts of time spent in the emergency department. The 
number of people who reported a waiting time in each category is given in the middle col-
umn, along with a percentage of the total number of people reporting in the last column. 
These data will be used to solve the questions in Practice Problem 2.4.

https://www.cdc.gov
https://www.cdc.gov
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 A What is the probability that the amount of time a patient spent in the ED is 
between two and four hours?

 B What is the probability that a patient spent less than six hours in the ED?

 C Given that the time spent in the ED is less than six hours, what is the probability 
that the wait time was between one and two hours?

PRACTICE PROBLEM 2.5

According to the CDC,5 68.9% of physicians were accepting new Medicaid patients in 
2013.

 A Suppose that a patient who has Medicaid as their insurance is looking for a new 
physician. The patient randomly chooses two unrelated physicians. What is the 
probability that both physicians will accept the new patient?

 B What is the probability that both physicians will not accept the new patient?

 C If five unrelated physicians are chosen from the population, what is the probability 
that all five will not accept the patient?
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3 Diagnostic testing/screening

This chapter will focus on applying the concepts of probability to diagnostic testing and 
screening and will include the following:

• Diagnostic terms and concepts
• Receiver operating characteristic (ROC) curves

Terms

• Bayes theorem
• cumulative incidence
• false negative error
• false positive error
• negative predictive value (PV–)

• positive predictive value (PV+)
• prevalence
• ROC curve
• sensitivity
• specificity

Introduction

Probability is one of the pillars of biostatistics, and now that we have learned the basics 
in Chapter 2, we will apply probability to diagnostic testing and screening in this 
chapter.

Diagnostic terms and concepts

Positive Predictive Value of a Screening Test: The positive predictive value (PV+) of a 
screening test is the probability that a person has a disease given that the test is positive: 
P(disease|test+).

Negative Predictive Value of a Screening Test: The negative predictive value (PV–) of 
a screening test is the probability that a person does not have a disease given that the 
test is negative: P(no disease|test–).

Clinicians often cannot directly measure the predictive value of a set of symptoms. 
However, they can measure how often specific symptoms occur in healthy people and in 
people with disease.

Sensitivity: The sensitivity of a symptom (or set of symptoms or screening test) is the 
probability that the symptom is present given that the person has a disease. 
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Specificity: The specificity of a symptom (or set of symptoms or screening test) is the 
probability that the symptom is not present given that the person does not have a disease.

For a symptom or test to be effective in predicting disease, it is important that both 
the sensitivity and specificity are high. However, there is a trade-off between the two; as 
sensitivity increases, specificity decreases.

False Positive Error: A false positive error is defined as a positive test result when the 
person does not have the disease.

False Negative Error: A false negative error is defined as a negative test result when the 
person actually has the disease. 

Prevalence: The prevalence of a disease is the probability of currently having the disease 
regardless of the duration of time one has had the disease. Prevalence is obtained by 
dividing the number of people who currently have the disease by the number of people 
in the study population. 

Cumulative Incidence: The cumulative incidence of a disease is the probability that a 
person with no prior disease will develop a new case of the disease over some specified 
time period.

Table 3.1 shows the notation and definition for each of these terms.

BOX 3.1 NOTATION USED WHEN REFERRING 
TO DISEASES AND TESTS

D+ = has disease D– = disease-free
T+ = test positive T– = test negative

Table 3.1 Diagnostic testing/screening terms

Term Brief definition Notation

Positive predictive value Probability of disease given a positive test result P(D+|T+)
Negative predictive 
value

Probability of not having disease given a negative test result P(D–|T–)

Sensitivity Probability of a positive test result given that the individual 
tested actually has the disease

P(T+|D+)

Specificity Probability of a negative test result given that the individual 
tested does not have the disease

P(T–|D–)

P(false positive) Probability of a positive test result given the individual does 
not have the disease

P(T+|D–)

P(false negative) Probability of a negative test result given the individual does 
have the disease

P(T–|D+)

Prevalence Proportion of individuals who have a disease at a given point in time P(D+)

Cumulative incidence Probability that a person with no prior disease will have a new 
case of the disease over some specified time period

Note: Diagnostic testing and screening terms are presented along with a definition and notation for each term. This 
table summarizes the main terms learned in Chapter 3 and is a good reference.
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Bayes Theorem: Bayes theorem is used to calculate the conditional probability of an 
event on the basis of other known probabilities and is useful in diagnostic testing.

Equation 3.1 shows the Bayes theorem for two mutually exclusive and exhaustive 
events, A and B.

 P
P P

P P P P
( )

( ) ( )

( ) ( ) ( ) ( )
A B

A B A

A B A A B Ac c
|

|

| |
=

+
 (3.1)

Previously, we mentioned that clinicians often cannot directly measure the predictive 
value of a set of symptoms. We can use Bayes theorem to calculate the predictive values. 
If A = Disease and B = Symptom, then PV+ = P(A|B). We can apply Bayes theorem here; 
if we know the sensitivity, specificity, and prevalence, these can be used to calculate the 
positive predictive value:

 PV
sensitivity prevalence

sensitivity prevalenc
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× ee specificity prevalence+ − × −( ) ( )1 1

We can also apply Bayes theorem to find the negative predictive value:
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Another way of representing the notation of using Bayes theorem to find the positive pre-
dictive value of a test if the prevalence, sensitivity, and specificity are known is the following:
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EXAMPLE PROBLEM 3.1

Often in health research, self-reported measures of health conditions are used in place 
of data from medical records. In this situation, we think of the self-reported measure 
as the “test” and the medical record as the actual record of disease status. In one study, 
self-reports and medical records were available on heart disease for 493 participants.1 Of 
these participants, 87 had heart disease according to their medical record, and 63 of these 
87 self-reported having heart disease. According to the medical records, 406 participants 
did not have heart disease, and 349 of the 406 self-reported not having heart disease.

 A What is the sensitivity of the self-reported measure of heart disease?

 P( | ) .test disease+ + = =63

87
0 724
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 B What is the specificity of the self-reported measure of heart disease?

 P( | ) .test disease− − = =349

406
0 860

  Suppose that we ask patients in a clinic waiting room whether they have 
been diagnosed with heart disease. We anticipate about 15% of the patients will 
have heart disease.

 C What is the positive predictive value of the self-reported measure of heart 
disease?

  We can calculate the positive predictive value using Bayes theorem:
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EXAMPLE PROBLEM 3.2

A study was conducted on the use of C-reactive protein (CRP) as a way to diagnose post-
stroke pneumonia.2 CRP cutoff points ranging from 14.9 to 110.5 mg/L were exam-
ined. Table 3.2 contains a few selected cutoff levels and the sensitivities and specificities 
of the tests corresponding to these different levels.

 A As the cutoff point for the CRP level gets higher, how does the probability of 
a false positive result appear to change?

Table 3.2 CRP cutoff level with sensitivity and specificity

CRP level Sensitivity Specificity

17.2 0.939 0.407
23.5 0.848 0.556
29.5 0.788 0.704
45 0.697 0.778
59.4 0.636 0.889
77.65 0.545 0.963

105 0.394 0.963

Source: Warusevitane, A., Karunatilake, D., Sim, J., Smith, C., 
and Roffe, C., PLoS ONE, 11(3), e0150269.

Note: Selected CRP cutoff levels along with the respective sensi-
tivity and specificity for each cutoff are presented.

Abbreviation: CRP, C-reactive protein.
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  As the cutoff point increases, we can see that the specificity increases. 
Therefore, the probability of a false positive will decrease. The probability of a 
false positive = 1 − specificity (see Table 3.3).

 B How does the probability of a false negative result appear to change as the 
cutoff increases?

  As the cutoff increases, the sensitivity decreases; therefore, the probability of 
a false negative (1 – sensitivity) result increases (see Table 3.4).

 C Suppose that the prevalence of pneumonia in poststroke patients is 30%. 
What is the probability of poststroke pneumonia among patients who have 
CRP levels above 59.4 mg/L? What is another name for this quantity?

Let Pn [poststroke pneumonia] C [CRP level abov= =; ee 59.4]

Table 3.4 CRP cutoff level with sensitivity and false negative

CRP level Sensitivity False negative

17.2 0.939 0.061
23.5 0.848 0.152
29.5 0.788 0.212
45 0.697 0.303
59.4 0.636 0.364
77.65 0.545 0.455
105 0.394 0.606

Source: Warusevitane, A., Karunatilake, D., Sim, J., Smith, C., and 
Roffe, C., PLoS ONE, 11(3), e0150269.

Note: Selected CRP cutoff levels along with the respective sensitivity 
values are presented. False negative values for each cutoff level are 
calculated by taking 1 – sensitivity.

Abbreviation: CRP, C-reactive protein.

Table 3.3 CRP cutoff level with specificity and false positive

CRP level Specificity False positive

17.2 0.407 0.593
23.5 0.556 0.444
29.5 0.704 0.296
45 0.778 0.222
59.4 0.889 0.111
77.65 0.963 0.037
105 0.963 0.037

Source: Warusevitane, A., Karunatilake, D., Sim, J., Smith, C., and 
Roffe, C., PLoS ONE, 11(3), e0150269.

Note: Selected CRP cutoff levels along with the respective specificity 
values are presented. False positive values for each cutoff level are 
calculated by taking 1 – specificity.

Abbreviation: CRP, C-reactive protein.
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  The probability of poststroke pneumonia among patients who have CRP lev-
els above 59.4 mg/L is 0.71. This is also known as the positive predictive value.

Receiver operating characteristic curves

ROC Curve: A receiver operating characteristic (ROC) curve is a plot of the sensitivity 
versus the false positive result (1 − specificity) of a screening test, where the different 
points on the curve correspond to different cutoff points used to designate a positive test.
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Figure 3.1  ROC curve. ROC indicates receiver operating characteristic. On the x-axis are the false 
positive values. On the y-axis are the values for sensitivity. From this ROC curve, we can 
see that the false positive values and sensitivity values have a positive relationship.
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• The ROC curve plots P(true positive) versus P(false positive) and shows the inher-
ent trade-off of sensitivity and specificity. There is a relationship between sensitiv-
ity and specificity, which can be seen in the ROC curve; when sensitivity is at the 
highest point, false positives are also high (meaning that sensitivity is low) and vice 
versa.

• When looking at the ROC curve, we want to choose a cutoff value in the upper 
left-hand corner of the graph that maximizes sensitivity and minimizes a false posi-
tive result, thus maximizing specificity. Figure 3.1 shows an example of an ROC 
curve.

EXAMPLE PROBLEM 3.3

The dataset cr_ protein expands the data provided in Example Problem 3.2 and con-
tains the full set of provided CRP cutoff levels with the sensitivities and specificities 
of the test corresponding to these different levels.2 The levels of CRP are saved under 
the variable name crp, the sensitivities under sens, and the specificities under spec. 
The dataset is provided as both a SAS dataset and a Stata dataset (see Instructions for 
Problem 3.3: Parts A–D).

 A How do the sensitivity and specificity change across the different CRP cutoff 
values?

Instructions for Example Problem 3.3: Part A 

Viewing Data in SAS and Stata to Examine Sensitivity and Specificity of CRP Cutoff Values

How to Solve in SAS How to Solve in Stata

 1. Open the data in SAS using a libname 
statement.
LIBNAME mylib 'C:\Data';

 1. Open the data in Stata. First, make sure that 
the working directory is set to the location 
where the cr_protein dataset is saved.

 2. Explore the data using the data browser in 
SAS.

 2. Type the use command into Stata to open the 
specified dataset.

cd "C:\Data"
use cr_protein

 3. Explore the data in Stata using the data editor.

 As the cutoff increases, sensitivity decreases and specificity increases.

 B Create a variable that is the probability of a false positive result for each of 
the cutoff points of CRP.
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Instructions for Example Problem 3.3: Part B 

Creating a New Variable for False Positives in SAS and Stata

How to Solve in SAS How to Solve in Stata

 1. Use a data step, and create a new variable 
called falsepos, which is 1 − specificity. Then, 
run the code.

 1. Use a generate command, which will generate 
a new variable. In this example, create the 
variable falsepos; it is equal to 1 − specificity.

DATA cr_protein2;
 SET mylib.cr_protein;
 falsepos = 1-spec;
RUN;

generate falsepos = 1-spec

 2. After running the code, check the log and 
dataset to verify that the new variable was 
created correctly. 

 2. After running the code, check in the data 
editor to verify that the new variable was 
created.

BOX 3.2 CHECKING THE CREATION OF A NEW VARIABLE IN SAS

• After running the SAS code in Part B of Example Problem 3.3, check the log and 
dataset to verify that a new variable was created.

• The screenshot in Figure 3.2 shows what we should see in our log. Note that 
there are no error or warning messages.

• Next, let’s check our dataset to look for the new variable (Figure 3.3).

Figure 3.2  SAS Log after creating falsepos variable. The snapshot of our SAS log after running 
the code to create the falsepos variable shows no errors or warnings.
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Figure 3.3  SAS data view after creating falsepos variable. The snapshot of our SAS data viewer 
shows the falsepos variable in the far right column. We can see that values have popu-
lated for all rows and that the values are equal to 1 – specificity.
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 C Plot an ROC curve.

Instructions for Example Problem 3.3: Part C 

Plotting an ROC Curve Using SAS and Stata

How to Solve in SAS How to Solve in Stata

 1. Choose falsepos as the X variable and sens as 
the Y variable. Then, run the code.

 1. Use a scatter command to make a scatterplot 
in Stata, specifying the Y variable first, sens, 
and the X variable, falsepos.

PROC SGPLOT DATA= cr_protein2;
  SCATTER x = falsepos y = 

sens;
RUN;

scatter sens falsepos

 2. Run the code to obtain the graph, as displayed 
in Figure 3.5.

 2. Run the code to obtain the graph, as 
displayed in Figure 3.6.

Note: Remember that in SAS the results must be in HTML mode to automatically obtain the graph displayed in the 
Results Viewer window (if it is not displayed, go to View/Results, and navigate to the sgplot procedure that we just 
ran to open our graph). 

 D The researchers in this study concluded that a CRP level greater than 25 mg/L 
should prompt physicians to investigate for pneumonia, whereas a CRP level 
greater than 65 mg/L had the “highest diagnostic accuracy to justify consid-
eration of this threshold as a diagnostic marker of poststroke pneumonia.”2 
Should we agree with this choice? Why or why not?

Instructions for Example Problem 3.3: Part D

Displaying Cutoff Value Labels on Data Points of an ROC Curve

How to Solve in SAS How to Solve in Stata

 In order to see which data points correspond to 
which cutoff values on our ROC curve we made 
using SAS, we can add a datalabel = option to our 
PROC SGPLOT code to show this. We are 
labeling the points with the crp variable (Figure 
3.7).

In order to see which data points correspond to which 
cutoff values on our ROC curve we made using 
Stata, we can add an mlabel option to our scatter 
command to show this. We are labeling the points 
with the crp variable, which we put in parentheses 
after the mlabel option is specified (Figure 3.8).

PROC SGPLOT DATA= cr_protein2;
  SCATTER x = falsepos y = 

sens / datalabel=crp;
RUN;

scatter sens falsepos, mlabel 
(crp)

BOX 3.3 CHECKING THE CREATION 
OF A NEW VARIABLE IN STATA

• After running the above Stata code in Part B of Problem 3.3, we should check our 
dataset to verify that a new variable was created (see Figure 3.4).

• As we can see from the dataset in our explorer window, the variable falsepos was 
created.
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Figure 3.4  Stata data view after creating falsepos variable. The snapshot of our Stata data viewer 
shows the falsepos variable in the far right column. We can see that values have populated 
for all rows and that the values are equal to 1 – specificity. 
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Figure 3.5  ROC curve for CRP test for poststroke pneumonia from SAS. The ROC curve made in 
SAS shows the sensitivity for the CRP test by the false positive values. The cutoff level for CRP 
that we would want to choose is the data point closest to the upper left-hand corner of the graph.
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Figure 3.6  ROC curve for CRP test for poststroke pneumonia from Stata. The ROC curve made in 
Stata shows the sensitivity for the CRP test by the false positive values. The cutoff level for CRP 
that we would want to choose is the data point closest to the upper left-hand corner of the graph.
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Figure 3.7  Cutoff-labeled ROC curve for CRP test for poststroke pneumonia from SAS. This 
ROC curve is the same as that presented in Figure 3.5; however, now we have data labels 
on our graph so that we can know which CRP cutoff value the data point is referring to.
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Figure 3.8  Cutoff-labeled ROC curve for CRP test for poststroke pneumonia from Stata. This 
ROC curve is the same as that presented in Figure 3.6; however, now we have data labels 
on our graph so that we can know which CRP cutoff value the data point is referring to.
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  When choosing a cutoff point, we want to choose a value that is in the upper 
left-hand corner of the graph that maximizes the sensitivity and minimizes the 
probability of a false positive result. The researchers concluded that 25 mg/L 
should prompt physicians to investigate for pneumonia, which makes sense in 
accordance with the graphs in Figure 3.7 (SAS version) and Figure 3.8 (Stata 
version), as the cutoff point of 25.6 mg/L maximizes sensitivity while mini-
mizing false positives as much as possible. However, there is still a fairly high 
probability of false positives.

The researchers also concluded that 65 mg/L were associated with the highest 
diagnostic accuracy if considering CRP levels to diagnose poststroke pneumo-
nia. Although sensitivity is not as high with 65 mg/L as it is with 25 mg/L, the 
probability of a false positive result is much lower. 

PRACTICE PROBLEM 3.1

One study completed in Suffolk County, New York, was conducted to investigate self-
reported measures of racial or ethnic neighborhood composition, as compared to census 
data.3 The study showed that for Hispanic individuals who reported a “mostly white” 
neighborhood, the sensitivity of the measure was 0.91, and the specificity was 0.77.

 A What is the probability of a false negative result?

 B What is the probability of a false positive result?

In the same study, the researchers also showed that for black individuals who reported 
a “mostly white” neighborhood, 0.16 was the false positive rate, and 0.22 was the false 
negative rate.3

 A What is the sensitivity?

 B What is the specificity?

PRACTICE PROBLEM 3.2

During 2015, there was an ongoing Ebola virus disease outbreak in Sierra Leone. In order 
to best identify patients who had Ebola, one study proposed the Cepheid GeneXpert Ebola 
assay (Cepheid, Sunnyvale, California) in whole blood as a better way to test for Ebola than 
the standard reverse transcription polymerase chain reaction (RT-PCR) assay (also known as 
the Trombley assay), which was then the standard.4 The 22 people who had Ebola accord-
ing to the Trombley assay were confirmed to have the virus with the GeneXpert Ebola 
assay. The number of people who did not have Ebola according to the Trombley assay was 
189, and of those 189, 181 tested negative for Ebola using the GeneXpert Ebola assay.4
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 A What is the sensitivity of the GeneXpert Ebola assay test?

 B What is the specificity of the GeneXpert Ebola assay test?

 C Suppose that the probability of having Ebola at a given time in a small village in 
Sierra Leone was 0.04. What is the probability that an individual in this village has 
Ebola given that his or her GeneXpert Ebola assay is positive?

 D What is the name for the probability found in Part C?

 E After the initial testing of the whole blood samples, the authors state that seven of 
the eight samples that had a negative result for the Trombley assay but a positive 
result for the Gene Xpert assay had been follow-up tests from an originally positive 
Trombley assay. Assuming that these seven samples should not have been included 
in the calculation of the specificity of the Gene Xpert assay, how does the value of 
specificity change from the previous value in Part B?

PRACTICE PROBLEM 3.3

Table 3.5 shows data taken from a study investigating a score for predicting individuals 
at risk for vitamin D deficiency. For a number of different cutoff points of the score, the 
observed sensitivities and specificities are given.5

Table 3.5 Vitamin D risk cutoff scores

Vitamin D risk score Sensitivity Specificity

≥12 0.03 0.99
≥11 0.07 0.99
≥10 0.12 0.97
≥9 0.27 0.88
≥8 0.38 0.81
≥7 0.61 0.66
≥6 0.74 0.50
≥5 0.82 0.36
≥4 0.93 0.20
≥3 0.98 0.10

≥2 0.99 0.08

Source: Deschasaux, M., Souberbielle, J.-C., Andreeva, V. A. 
et al., Medicine (Baltimore), 2016;95(7).

Note: Vitamin D Risk Score cutoff levels and the sensitivity 
and specificity values for each level are presented. Use 
these values to solve Practice Problem 3.3.
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 A As the cutoff point for the score gets lower, how does the probability of a false posi-
tive result change? 

 B How does the probability of a false negative result change?

 C Plot an ROC curve in SAS or Stata.

 D Based on the ROC curve, what cutoff point would be good to use? Why?

PRACTICE PROBLEM 3.4

Detecting colorectal cancer early is very important. In a review on stool-based pyruvate 
kinase isoenzyme M2 (M2-PK) as a diagnostic tool for colorectal cancer, researchers 
found an average sensitivity of 0.79 and an average specificity of 0.80.6

 A In 2013, the estimated prevalence of colorectal cancer in the USA7,8 was 0.37%. 
Considering the sensitivity and specificity values of M2-PK, what is the predictive 
value of a positive test result?

 B How does this predictive value change with a prevalence of 5%?

 C How does this predictive value change with a prevalence of 10%?

 D The authors of the review reported that they obtained a confidence interval of (0.73–
0.83) for sensitivity and (0.73–0.86) for specificity.6 What would the positive predic-
tive value be if the sensitivity and specificity were at the upper ends of the confidence 
intervals, at (0.83 and 0.86), respectively? How does the positive predictive value 
compare to what we found in Part (A)? Use 0.37% as the prevalence.

 E Construct a diagram illustrating the results of the diagnostic testing process. Assume 
that you start with a population of 1,000,000 individuals residing in the United 
States and that the prevalence of colorectal cancer in the United States is 0.37%.

PRACTICE PROBLEM 3.5

Prostate cancer can be detected using various medical tests. Three of these tests are 
the digital rectal examination (DRE), the transrectal ultrasound (TRUS), and the 
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prostate-specific antigen (PSA) test. The data in Table 3.6 were obtained from a study 
in which researchers reviewed the diagnostic properties of these tests.9 

Suppose that researchers were trying to choose between the three tests for suspected 
prostate cancer on the basis of the results of this review.

 A What are the sensitivity and specificity of the DRE?

 B What are the sensitivity and specificity of the TRUS?

 C What are the sensitivity and specificity of the PSA test?

 D Which test would you consider most ideal based only on the sensitivity and speci-
ficity of each test? Why?
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Table 3.6 Results of tests of prostate cancer by test type

Test type
People with 
cancer, no.

People without 
cancer, no.

Positive results of those 
with cancer, no.

Negative results of those 
without cancer, no.

DRE 199 9320 77 8981
TRUS 200 9313 131 8606

PSA 195 9000 135 8059

Source: Mettlin, C., Murphy, G. P., Babaian, R. J. et al., Cancer, 77(1), 150–159, 1996. 

Note: The table shows the results of three prostate cancer tests (i.e., digital rectal examination [DRE], transrec-
tal ultrasound [TRUS], and prostate-specific antigen [PSA]) and the corresponding numbers of people 
with and without cancer and with positive and negative results. Use these numbers to solve Practice 
Problem 3.5.
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4 Discrete probability distributions

This chapter will discuss problems that can be put in a probabilistic framework, and the 
following topics will be discussed:

• Measures of location and spread for random variables
• Permutations and combinations
• Binomial distribution
• Poisson distribution

Terms

• Bernoulli trial (a Bernoulli random 
variable)

• binomial distribution
• continuous random variable
• dichotomous random variable
• discrete random variable
• factorials
• longitudinal studies

• permutations
• person-year
• Poisson distribution (distribution of rare 

events)
• probability mass function (probability 

distribution)
• random variable

Introduction

In Chapter 2, we introduced probability and some basic tools used when working with 
probabilities. In this chapter, we introduce some basic definitions that are essential to 
the understanding of statistics. These basic definitions will be incorporated throughout 
this chapter and will be used later in this workbook. We will introduce the concept of 
probability distributions with a focus on discrete probability distributions. Continuous 
probability distributions will be explored in Chapter 5.

Random Variable: A numeric function that assigns probabilities to different events in 
sample space.

Discrete Random Variable: A random variable for which there exists a discrete set of 
values with specified probabilities.
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Examples of discrete random variables

• The number of cases of Zika virus in South America in the past five years
• The birth order of infants born in Suffolk County, New York, in 2000

Continuous Random Variable: A random variable whose possible values cannot be 
enumerated.

Examples of continuous random variables

• Weights of the members of a basketball team
• Annual budget (US$) for Departments of Public Health, by U.S. state

Probability Mass Function: A mathematical relationship, or rule, that assigns to any 
possible value r of a discrete random variable X the P(X = r). This assignment is made 
for all values r that have positive probability. The probability mass function is some-
times called the probability distribution.

For any probability mass function, the probability of any particular value must be 
between 0 and 1.

• 0 < P(X = r) ≤ 1
• The sum of the probabilities of all values must equal exactly 1 1→ = =∑ P( )X r

Measures of location and spread for random variables

In Chapter 1, we talked about measures of location and spread for samples of data. Here, 
we take those same concepts and apply them to random variables.

The expected value of a discrete random variable is defined as

 E X r X ri i

i

R

( ) P( )= = =
=

∑µ
1

 (4.1)

where ′ri
s are the values the random variable assumes with positive probability. 

Remember, μ is the population mean.
The variance of a discrete random variable, denoted by Var (X), is defined by

 Var X r X ri i

i

R

( ) ( )= = − =
=

∑σ µ2 2

1

P( )  (4.2)

where ′ri
s are the values for which the random variable takes on positive probabilities 

and where σ2 is the population variance.

• The standard deviation of a random variable X, denoted by sd (X) or σ, is defined by 
the square root of the variance.

• The cumulative distribution function (CDF) of a random variable X is denoted by 
F(X) and, for a specific value r of X, is defined by P (X ≤ r).
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• CDF is a step function for discrete random variables (Figure 4.1).
• CDF shows a smooth continuous curve for continuous random variables 

(Figure 4.2).

Permutations and combinations

Factorials: Represented with an exclamation point (!); n factorial would be written as n! 
and is defined as n × (n – 1) ×… × 2 × 1.

The quantity 0! has no intuitive meaning, but it is defined as 1 (0! = 1).

Permutations: The number of permutations of n things taken k at a time is nPk = n × 
(n – 1) ×…× (n – k + 1). A permutation represents the number of ways of selecting k 
items out of n, where the order of selection is important.  Permutations can be expressed 
in terms of factorials as follows:

 n kP
n

n k
=

−
!

( )!
 (4.3)

Combinations: The number of combinations represent the number of ways of selecting 
k objects out of n where the order of selection does not matter. The formula for calculat-
ing n things taken k at a time is the following:

 n kC n
k

n n n k

k
=







= − × × − +( ) ( )

!

1 1  (4.4)
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Figure 4.1  Cumulative distribution function for a discrete random variable. The cumulative 
distribution function for a discrete random variable is a step function.
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In this workbook, we will use the more common notation for combinations n
k







. 

In words, this is expressed as “n choose k.”
Properties of combinations:

 

n n
0

1






= for any

 

n
k

n
n k







=

−







Dichotomous Random Variable: Y must assume one of two possible values. These 
mutually exclusive outcomes could represent life or death, heads or tails, adult or 
child, sick or healthy, and so on. For simplicity, they are commonly referred to as 
failure or success. A dichotomous random variable of this type is known as a Bernoulli 
random variable.1

Bernoulli Trial: A type of random variable that takes the value 1 with probability p and 
the value 0 with a probability q = 1 – p.

EXAMPLE PROBLEM 4.1

Suppose that we have a hospital with six trauma rooms in the ER, each with a patient 
inside who needs to be seen by a physician.
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Figure 4.2  Cumulative distribution function for a continuous random variable. The cumula-
tive distribution function for a continuous random variable is a smooth continuous curve.
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 A In how many ways can we order when the patients are seen?

 6 6 5 4 3 2 1 720! = × × × × × =

 B If the order in which the patients are seen is not important, in how many 
ways can we select two of the six patients in trauma rooms? What is another 
name for this?

  The term for this is the number of combinations. In the following example, 
n = 6, and k = 2:

 n kC n
k

n

k n k
=







=

−
=

−
=

×
=!

!( )!

!

!( )!

6

2 6 2

720

2 24
15

 C If the order in which the patients are seen is important, in how many ways 
can we select two of the six patients in trauma rooms? What is another term 
for this?

  The term for this is the number of permutations. Again, n = 6, and k = 2.

 n kP
n

n k
=

−
=

−
= =!

( )!

!

( )!

6

6 2

720

24
30

Binomial distribution

Binomial Distribution: The distribution of the number of successes in n sta-
tistically independent trials, where the probability of success on each trail is p. 
Binomial distribution has the probability mass function given by the following 
formula:

 
P X x n

x
p p x nx n x( ) ( ) , ,= =







− =−1 0 1 2for and n=1 ,,2

 (4.5)

 

P x successes
of trials

of successes
( )

#

#
=











− −p pof successes of trials of successe# # #( )1 ss

Properties of the binomial distribution

• A sample has a fixed number of trials, n, each with one of two mutually exclusive 
outcomes.

• Each trial has a constant probability of success, p.
• The outcome of each trial is independent.
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Parameters of binomial distribution

• p = probability of success (0 ≤ p ≤ 1).
• n = number of trials (0, 1, 2 . . ., n).
• The expected value of successes in n trials is simply the probability of success in 1 

trial multiplied by n. The expected value of a binomial random variable is np.
• The variance of a binomial random variable is np(1 – p).
• The binomial distribution is used with discrete random variables.
• A Bernoulli trial is a special case of the binomial random variable where n = 1.
• The binomial distribution is the sum of Bernoulli (dichotomous or binary) random 

variables that have only two mutually exclusive and exhaustive outcomes (e.g., life/
death, sick/healthy, success/failure).

• The binomial distribution represents the number of successes in n trials.
• The distribution is skewed for all p, except p = 0.5, which has a symmetric distribution.

EXAMPLE PROBLEM 4.2

In the United States, in accordance with the NHANES survey (2009–2012),2 7.6% of 
the population age 12 and older had depression during the survey period. The rate of 
depression was reported to vary by income level; 15% of the population who were living 
below the federal poverty line had depression, and 6.2% of the population living above 
the federal poverty line had depression.2 Suppose that we have a sample of five unrelated 
people living below the poverty line. Let X be the random variable denoting how many 
of the five people living below the poverty line have depression.

 A Why would the binomial distribution provide an appropriate model?

  The binomial distribution would provide an appropriate model because 
there are two mutually exclusive outcomes (has depression or does not have 
depression), there are a fixed number of trials (5), the events are independent 
(whether one person has depression does not depend on whether others have 
depression), and there is a constant p of “success” (in this example, p = 0.15).

BOX 4.1 HELPFUL HINT FOR MUTUALLY 
EXCLUSIVE AND EXHAUSTIVE SETS

Use probability statement complements for mutually exclusive and exhaustive sets. For 
example, 

P(X > 3) = 1 − P(X < 3) (continuous)
P(X > 3) = P(X ≥ 4) = 1 − P(X ≤ 3) (discrete)
P(X ≥ 3) = 1 − P(X < 3) (continuous)
P(X ≥ 3) = 1 − P(X ≤ 2) (discrete)

For continuous random variables P(X ≤ 3) = P(X < 3) and P(X ≥ 3) = P(X > 3) because 
P(X = x) = 0.
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 B What are the parameters of the distribution of the values of X?

  n = 5 and p = 0.15

 C List the possible values for X.

  The possible values for X are 0, 1, 2, 3, 4, and 5.

 D What is the mean number of people who will have depression?

 Mean np= = × =5 0 15 0 75. .

  An average, we expect <1(0.75) of the 5 people to have depression

 E What is the typical departure from this mean number? (The typical depar-
ture from the mean refers to the standard deviation.)

 Standard Deviation np p= − = × × = =( ) . . .1 5 0 15 0 85 0 6375 0..798

 F In how many ways can the five people be ordered?

 5 5 4 3 2 1 120! = × × × × =

 G Without regard to order, in how many ways can you select one person from 
this group of 5?

 n kC n
k

n

k n k
=







=

−
=

−
=

×
=!

!( )!

!

!( )!

5

1 5 1

120

1 24
5

 H What is the probability that exactly one person has depression? First, use the 
formula. Then, use the binomial probability table (Appendix Table A.1), and 
compare.

 
P X n

x
p px n x( ) ( ) . ( . )= =







− =







−−1 1 5

1
0 15 1 0 151 55 1

45 0 15 0 85 5 0 15 0 522 0 3915

−

= × × = =( . ) ( . ) ( . )( . ) .

  In accordance with the binomial probabilities table found in the Appendix 
Table A.1, we have n = 5 and x = 1, with p = 0.15. In the table, we find 5 in 
the n column, 1 in the k column, and 0.15 across the top of the table. We see that 
the probability is 0.3915, the same as what we found using the formula. We can 
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also solve Part (H) of Problem 4.2 by using SAS or Stata. Both have functions 
that allow us to calculate binomial probabilities using the information that we 
have been provided.

Instructions for Using SAS or Stata to Find a Binomial Probability

How to Solve in SAS How to Solve in Stata

SAS Code Stata Code

DATA prob4_2h;
 prob=PROBBNML(0.15,5,1) -      
 PROBBNML(0.15,5,0);

RUN;
PROC PRINT DATA=prob4_2h;
RUN;

display binomialp(5,1,0.15)

SAS Output Stata Output

Observation Probability .39150469

1 0.39150

 The PROBBNML function in SAS gives us the 
probability that the number of successes is less 
than or equal to a specified number, under a 
binomial distribution with parameters n and p.

 The binomialp function in Stata gives us the 
binomial probability that we will see a certain 
number of successes—in this example, one case 
of depression when we have n = 5 and a probability 
of success (having depression) of 0.15.

 In this example, we have a probability of success 
(having depression) of 0.15 and an n of five people, 
and we want to know the probability that 
exactly one person will have depression. Because 
SAS gives us the probability of less than or equal 
to a number, we must use two functions and 
subtract the probabilities. Thus, in the above 
code, we are finding prob = P(X ≤ 1) – P(X ≤ 0), 
which equals P(X = 1).

 There is also a function binomial(n,x,p) that 
would give us the probability that we would see 
x or fewer successes, when we have our 
parameters n and p.

We, then, use PROC PRINT to print our 
resulting probability and get the above output.

 I What is the probability that none of the people will have depression? First, 
use the formula. Then, use the binomial table (Appendix Table A.1), and 
compare.

 P X n
x

p px n x( ) ( ) . ( . )= =






− =







−−0 1 5

0
0 15 1 0 150 55 0 51 1 0 85 0 4437− = =( )( . ) .

  Using the binomial probabilities table found in the Appendix, we have n = 5 
and x = 0, with p = 0.15. In the table, we find 5 in the n column, 0 in the k col-
umn, and 0.15 across the top of the table. We see that the probability is 0.4437, 
the same as what we found using the formula.
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 J What is the probability that all five of the people will have depression? First, 
use the formula. Then, use the binomial table (Appendix Table A.1), and 
compare.

 

P X n
x

p px n x( ) ( ) . ( . )= =






− =







−−5 1 5

5
0 15 1 0 150 55 5 1 0 0000759 1 0 0001− = =( . )( ) .

  In accordance with the binomial probabilities table found in the Appendix, 
we have n = 5 and x = 5, with p = 0.15. In the table, we find 5 in the n column, 5 
in the k column, and 0.15 across the top of the table. We see that the probability 
is 0.0001, the same as what we found using the formula and rounding to four 
decimal places.

 K What is the probability that at least three of the people have depression (use 
binomial table in the Appendix)?

 
P X P X P X P X( ) ( ) ( ) ( )

. . .

≥ = = + = + =
= + +

3 3 4 5

0 0244 0 0022 0 00011 0 0267= .

 L What is the probability that no more than one of the people has depression 
(use the binomial table in the Appendix)?

 P X P X P X( ) ( ) ( ) . . .≤ = = + = = + =1 0 1 0 4437 0 3915 0 8352

 M If we observed that all five people have depression, would we consider that 
such an event is rare enough to reassess the assumption of 15% probability?

  Since we know that P(X = 5) = 0.0001 if p = 0.15—meaning that all five 
would get the disease 0.01% of the time—we should reassess the assumption 
of p = 0.15, given the reality that all five have the disease and given that the 
probability of that occurring with this assumption is very rare. It is likely that p 
would be greater than 0.15.

BOX 4.2 UNDERSTANDING PART (M) OF PROBLEM 4.2

To better understand this, let’s look at two scenarios: (1) what would happen if p = 0.25 
and (2) what would happen if p = 0.50. 

Scenario 1: p = 0.25
P(X = 5) = 0.001 (from binomial table) → so all five would get the disease 0.1% of 

the time, which is higher than the 0.01% when p = 0.15.
Scenario 2: p = 0.50
P(X = 5) = 0.0313 (from binomial table) → so all five would get the disease 3% 

of the time, which is again higher than the 0.01% when p = 0.15 and the 0.1% 
when p = 0.25. 

As p increases, the probability of all five having the disease also increases.
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PRACTICE PROBLEM 4.1

In Chapter 2, we saw a table of diabetes prevalence by race or ethnicity and education 
level (Table 2.4).3 Consider a group of five individuals selected from the population of 
non-Hispanic whites with a high school diploma or general education diploma (GED) 
in the United States. The number of persons in this sample who have diabetes is a bino-
mial random variable with parameters n = 5 and p = 0.081.

 A If you wish to make a list of the five persons chosen, in how many ways can they be 
ordered?

 B Without regard to order, in how many ways can you select three individuals from 
this group of five?

 C What is the probability that exactly three of the individuals in the sample have 
diabetes?

 D What is the probability that two of them have diabetes?

Poisson distribution

Poisson Distribution: A discrete probability distribution commonly used with variables 
that represent a count or rate—for example, the number of visits to a clinic in one 
week.

The Poisson distribution is the second most frequently used discrete distribution 
after the binomial distribution. The Poisson distribution is usually associated with rare 
events and is also known as the distribution of rare events.

Poisson distribution properties

• The probability that an event occurs in the interval is proportional to the length of 
the interval.

• An infinite number of occurrences are possible.
• Events occur independently at rate λ.
• The probability of x events occurring in a time period t for a Poisson random vari-

able with parameter λ is

 P X x
e

x
x

x

( )
!

, , , ,= = =
− λ λ

 0 1 2  (4.6)

where e is approximately 2.718 (Euler’s number).
• For a Poisson distribution with parameter λ, the mean and variance are both equal to λ.
• If we have a dataset from a discrete distribution where the mean and variance are 

about the same, then we can preliminarily identify it is a Poisson distribution and 
use various tests to confirm this hypothesis.
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• Since we are looking at a rate, there is an effect of time as well. If we look at the 
same town with the same population, but for 2 years rather than one, the value of 
λ must be doubled. Often, this is not mentioned because the length of the time of 
interest matches the length from the rate.

• The Poisson distribution is used with discrete random variables and represents the 
number of events in a specified interval/cross-section of time/space.

• The shape of the distribution can be skewed or symmetric.

Poisson distribution estimation

The following definitions will be helpful in our understanding of the estimation of the 
Poisson distribution:

Person-Year: A person-year is a unit of time defined as one person being followed for 
one year. This unit of follow-up time is commonly used in longitudinal studies.

Longitudinal Studies: Studies in which the same individual is followed over time.

• Let’s assume the number of events X over T person-years is a Poisson distribution 
with parameters μ = λT.

• An unbiased estimator of λ is given by λ̂ = X

T
, where X is the observed number of 

events over T person-years and λ is the incidence rate per T person-years.

• The Poisson distribution has a mean = λ, variance = λ, and standard deviation = λ .

• It can take on possible values 0, 1, 2, 3, …., ∞.

EXAMPLE PROBLEM 4.3

In Missouri in 2014, there were 1067 drug overdose deaths. This equates to a rate of 
about 2.9 drug overdose deaths per day.4 Let X denote the number of drug overdose 
deaths per day in Missouri.

 A Why would the Poisson distribution provide an appropriate model?

  The Poisson distribution would provide an appropriate model because we 
have independent events and a number of events over time.

 B What is the parameter of the distribution for X?

  The parameter of the distribution for X is λ = 2.9 deaths/day.

 C What are possible values of X?

  The possible values of X are 0, 1, 2, … , ∞.

 D What is the mean number of drug overdose deaths in Missouri in a one-day 
period?

 Mean = =λ 2 9.
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 E What is the typical departure from this mean number?

 Standard deviation = λ = =2 9 1 7. .

 F What is the probability that no drug overdose deaths will occur in Missouri 
on a given day?

 P X
e

x

ex

( )
!

.

!

.
.

.

= = = × = × =
− −

0
2 9

0

0 05502 1

1
0 05502

2 9 0λ λ

BOX 4.3 USING POISSON PROBABILITY TABLES

Suppose that we wanted to use the Poisson probability tables (see Appendix Table A.2) 
to find the probability that no drug overdose deaths will occur in Missouri in a given day.

• Looking at the Poisson probabilities table, we find 0 in the k column, which is 
on the left-hand side of the table.

• We see that across the top of the table, we have only values of 2.5 and 3.

• The probabilities for those are 0.0821 and 0.0498, respectively. 

• Therefore, we know the actual probability is between 0.0821 and 0.0498, closer 
to 0.0498 because 2.9 is closer to 3. 

• Using the formula, we found the exact probability = 0.05502 (in Part F of 
Problem 4.4). 

• The exact probability, 0.05502, is between 0.0821 and 0.0498 and closer to 
0.0498 as we expect. 

• If λ would have been equal to 3, then we simply would have found our prob-
ability to be 0.0498, using the Poisson table.

• Let’s check this with the equation:

 P X
e

x

ex

( )
! !

.
.= = = × = × =

− −

0
3

0

0 0498 1

1
0 0498

3 0λ λ
 

• The calculated value, 0.0498, is the same as the value we determined using the 
table.
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G What is the probability that exactly four drug overdose deaths will occur in 
Missouri on a given day?

 P X
e

x

ex

( )
!

.

!

. .
.

.

= = = × = × =
− −

4
2 9

4

0 05502 70 73

24
0 1

2 9 4λ λ
662

 H What is the probability that no more than four drug overdose deaths will 
occur in Missouri on a given day?

 P X P X P X P X P X P X( ) ( ) ( ) ( ) ( ) ( )≤ = = + = + = + = + =4 0 1 2 3 4

P(X=0) = 0.05502 (from Part F)
P(X=4) = 0.162 (from Part G)

 P X
e

( )
.

!

.

!
.
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= = × = =
−

1
2 9

1
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1
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2 9 1

 P X
e
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!
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0 4627

2
0 23135

2 9 2

 P X
e

( )
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!
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!
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.

= = × = =
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3
2 9

3

1 34188

6
0 22365

2 9 3

 
P X P X P X P X P X P X( ) ( ) ( ) ( ) ( ) ( )

.

≤ = = + = + = + = + =
=

4 0 1 2 3 4

0 055002 0 159558 0 23135 0 22365 0 162 0 8316+ + + + =. . . . .
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Instructions for Using SAS or Stata to Find a Poisson Probability

We can also solve Example Problem 4.3—Part (H) by using SAS or Stata. Both have functions that 
allow us to calculate Poisson probabilities using the information we have been provided.

Using SAS Using Stata

SAS Code Stata Code

DATA prob4_4h;
 prob=POISSON(2.9,4);

RUN;
PROC PRINT DATA=prob4_4h;
RUN;

display poisson(2.9,4)

SAS Output Stata Output

Observation Probability .83177708

1 0.83178

The POISSON function in SAS gives us the 
probability that the rate is less than or equal to 
a specified number. Inside the parentheses of the 
function, we insert the mean of the Poisson 
distribution (in this example, 2.9) and the rate 
we want the probability being less than or equal 
to (in this example, 4).

The Poisson function in Stata gives us the 
probability of observing a rate of 4 or less (in 
this case, deaths per day) under a Poisson 
distribution with a mean of 2.9.

We, then, use PROC PRINT to print our 
resulting probability and obtain the above 
output. 

Similar to the binomial function we saw 
previously in this chapter, there is also a 
poissonp(λ,x) function that would give us the 
probability of observing a rate (x), under a 
Poisson distribution with a mean (λ). 

 I What is the probability that at least six drug overdose deaths will occur in 
Missouri on a given day?

 

P X P X P X P X P X

e
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 J What is the number of drug overdose deaths such that the chance of seeing 
at least that many on a given day is less than 1 in 20?

  We need to find r such that P(X ≤ r) < 0.05. We already know that P(X ≥ 6) = 
0.074, which is close to 0.05, but not under.

  We need to figure out what P(X ≥ 7) is.
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  Since P(X ≥ 7) is less than 0.05 and P(X ≥ 6) is more than 0.05, we can con-
clude that six is the minimum number of drug overdose deaths—such that the 
chance of seeing at least that many on a given day is less than 1 in 20.

PRACTICE PROBLEM 4.2

The New York Times reported that there are approximately 27 gun homicides per day in 
the United States and approximately five gun homicides per day in Canada, after adjust-
ing for population size differences.5

 A What is the probability that no one will die of a gun homicide on a given day in the 
United States?

 B What is the probability that no one will die of a gun homicide on a given day in 
Canada?

 C What is the probability that, at most, five gun homicides will happen in Canada on 
a given day?

 D What is the probability that seven or more gun homicides will be happen in Canada 
on a given day?

PRACTICE PROBLEM 4.3

Review the properties of the binomial distribution.

 A What are the two parameters that characterize a binomial distribution?

 B What are the possible values of the two parameters named in Practice Problem 
4.3—Part (A)?

RECAP

• Probability distributions show the probability associated with the pos-
sible outcomes.

• Binomial distribution is used to find the probability of x successes in n 
trials when the trials are independent and have the same probability.

• Poisson distribution is used to find the probability of x successes when 
the n is large and the p is small.
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 C What are the assumptions of the binomial distribution?

 D What are the mean, variance, and standard deviation of the binomial distribution?

PRACTICE PROBLEM 4.4

According to the National Institutes of Health (NIH),6 in 2014, about 71% of people 
aged 18 and older reported that they drank alcohol in the past year.

 A Suppose that you select nine individuals from this population. In how many ways 
can these nine persons be ordered?

 B If order was important, in how many ways can you select three individuals from this 
group of nine?

 C What is the probability that exactly four of the nine persons have consumed alcohol 
in the past year?

 D What is the probability that at least seven of the nine persons have consumed alco-
hol in the past year?

 E What is the probability that at most two individuals have consumed alcohol in the 
past year?

PRACTICE PROBLEM 4.5

Review the properties of the Poisson distribution.

 A How many parameters characterize the Poisson distribution? Name the parameter(s).

 B What are the assumptions of the Poisson distribution?

 C What are the possible values of the Poisson distribution?

 D What are the mean, variance, and standard deviation of the Poisson distribution?
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PRACTICE PROBLEM 4.6

Crohn’s disease is estimated to have an incidence rate of 3.1 to 14.6 cases per 100,000 
person-years.7

Suppose that we suspect the incidence of Crohn’s disease is on the lower end of the 
estimate at exactly 3.1 cases per 100,000 person-years.

 A What is λ?

 B What is the probability that no Crohn’s disease cases will occur per 100,000 
person-years?

 C What is the probability that three or fewer Crohn’s disease cases will occur per 
100,000 person-years?

 Suppose that we suspect the incidence of Crohn’s disease is near the upper end of 
the estimate at 14.5 cases per 100,000 person-years. 

 D What is λ?

 E What is the probability that no Crohn’s disease cases will occur per 100,000 
person-years?

 F What is the probability that eight or more Crohn’s disease cases will occur per 
100,000 person-years (use the Poisson probability table in Appendix Table 
A.2)?
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This chapter will focus on probability distributions for continuous random variables 
and will include the following:

• Continuous probability distributions
• Standard normal distribution

Terms

• cumulative distribution function
• inverse normal function
• normal distribution

• probability density function
• standard normal distribution

Introduction

Throughout this chapter, we will expand on what we learned in Chapter 4 and discuss 
continuous probability distributions, specifically the normal distribution. We will then 
learn how a specific normal distribution—the standard normal distribution—can be 
adapted and used to solve problems.

Distribution functions

The probability density function (PDF) of the random variable X is a function such 
that the area under the density–function curve between any two points a and b is equal 
to the probability that the random variable X falls between a and b. Figure 5.1 shows 
the area that represents the probability.

• Thus, the total area under the density function curve over the entire range of pos-
sible values for the random variable is 1.

• The cumulative distribution function (CDF) for the random variable X evaluated at 
point a is defined as the probability that X will take on values ≤ a. It is represented 
by the area under the PDF to the left of a. Figure 5.2 shows the area that represents 
the probability.

Continuous probability 
distributions

5
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Figure 5.1  Probability density function of random variable X. The area between points a and b, 
represented by the shaded area in the figure, is equal to the probability that the random 
variable X falls between points a and b.
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Figure 5.2  Cumulative distribution function of random variable X. The area to the left of a, rep-
resented by the shaded area in the figure, is the probability that X will take on values ≤ a.
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Normal distribution

Normal Distribution: The normal distribution is the most widely used distribution in 
statistics. Normal distribution (also referred to as Gaussian or bell-shaped distribution) is 
the cornerstone of most methods of estimation and hypothesis testing. It is defined by 
its PDF, which is given as

 f x e
x
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= ∞ < < ∞
− −
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π σ

µ
σ where x–  (5.1)

for parameters μ (mean), σ (standard deviation), where σ > 0. Figure 5.3 shows the 
normal curve.

• Many distributions that are not themselves normal can be made approximately 
normal by transforming the data onto a different scale.

• The normal density function follows a bell-shaped curve, with the mode at μ and 
the most frequently occurring values around μ.

• The curve is symmetric about μ.
• The area under the normal density function is equal to 1.
• A normal distribution with mean μ and variance σ2 will be referred to as a N(μ, σ2) 

distribution.
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Figure 5.3  Normal distribution curve. The normal distribution curve is a continuous curve that 
takes on a “bell” shape. In this curve, μ would be at 0.
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Standard normal distribution

• A normal distribution with mean 0 and variance 1, N(0,1), is called a standard nor-
mal distribution.

• The CDF for the standard normal distribution is denoted by Φ(x) = P (X ≤ r) where 
X follows an N(0,1) distribution.
• The CDF of the normal distribution is often used for power calculations (dis-

cussed in Chapter 7).
• The symbol ~ is used as shorthand for the phrase “is distributed as.”
• Thus, X ~ N(0,1) means that the random variable X is distributed as a N(0,1) 

distribution.
• The (100u)th percentile of a standard normal distribution is denoted by Zu. It is 

defined by the relationship P (X<Zu) = u where X~N(0,1) and 0 ≤ μ ≤ 1. The func-
tion Zu is sometimes referred to as the inverse normal function.

• Remember, the distribution of values is symmetric and unimodal in the standard 
normal distribution. Therefore, the empirical rule (see Chapter 1) is valid. The 
“empirical rule” states: approximately 67% of observations will lie within one stan-
dard deviation of the mean, approximately 95% of observations will lie within two 
standard deviations of the mean, and almost all observations will lie within three 
standard deviations of the mean.

Standardization of a normal variable

 If X~N(μ, σ2) and Z
X= − µ

σ
,  then Z ~ N(0,1).

If a variable is normally distributed and we need to find a probability, the first step is 
to convert to the standard normal (see Figure 5.4):

• We will need to slide left or right (horizontal) to line up at 0 (i.e., subtract mean).
• We will also need to stretch or squish (vertically) to obtain a spread (standard devia-

tion) of 1 (i.e., divide by standard deviation).

Why use the standard normal?

• We use the standard normal distribution because it has been tabulated.
• All other normal distributions can be adjusted by sliding and stretching to fit the 

standard normal. Then, tables from the standard normal distribution can be used.
• We use the standard normal tables to obtain probabilities instead of the probability 

distribution formula (i.e., we transform an arbitrary normal random variable to a 
standard normal random variable, usually denoted by Z). These tables can be found 
in the Appendix (Appendix Table A.3). Besides, no one wants to use that formula 
(Equation 5.1)!

• When looking at the standard normal distribution table (Appendix Table A.3), we 
can see that there are only positive numbers. Why is this so? Remember that the 
normal curve is symmetric, so P (Z > 1.96) = P (Z < − 1.96) = 0.025.

• It is helpful to draw out the distribution when calculating normal probabilities. 
Visualization helps and will be useful for future concepts. See Figure 5.5 for an 
example.
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Figure 5.4  Variation of normal distribution curves. Several variations of the normal distribution curves 
are represented. The solid line represents a distribution with a mean of 0 and a standard devia-
tion of 1. This curve is similar to the one presented in Figure 5.3. The dashed line represents a 
distribution with a mean of 0 and a standard deviation of 2. We can see that with an increase 
in standard deviation, the curve becomes wider. The dash-dot line represents a distribution 
with a mean of 2 and a standard deviation of 0.5. We can see that with an increase in the mean, 
the curve shifts and with a decrease in the standard deviation, the curve becomes narrower.

0.4

0.3

0.2

0.1

0.0

Pr
ob

ab
ili

ty

–2 0 2

Z = 1.96

Area = 0.025

Normal

Figure 5.5  Standard normal distribution. The figure shows where the z-score is on the standard 
normal curve and the area of which (shaded) define, the probability.
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EXAMPLE PROBLEM 5.1

Using the NHANES 2014 data,1 a representative sample of the U. S. population, 
we find that the diastolic blood pressure of individuals aged 18 and over is approxi-
mately normally distributed, with a mean of 69.7 mm Hg and a standard deviation 
of 15.5 mm Hg.

Suppose that we want to know the probability that a randomly selected individual 
has a diastolic blood pressure less than 75 mm Hg.

 A Draw a normal curve representing this scenario.

  In Figure 5.6, we have the mean of 69.7 mm Hg and the value of 75 mm 
Hg to the right of the mean. We want to know the probability that the blood 
pressure is less than 75 mm Hg, which is represented by the shaded section to 
the left of the value.

 B Find the probability that a randomly selected individual has a diastolic blood 
pressure less than 75 mm Hg.

BOX 5.1 EXAMPLE PROBLEM 5.1 DATA EXPLAINED

The 2014 National Health and Nutrition Examination Survey (NHANES) measured par-
ticipants’ blood pressures after participants were seated for 5 minutes. The measurements 
were taken 3 times consecutively by trained personnel. Both diastolic and systolic blood 
pressures were recorded in millimeters of mercury (mm Hg). For the mean and standard 
deviation presented in this problem, the first reading of diastolic blood pressure was used. 
Data were excluded for those who were under the age of 18.

69.7 75

Figure 5.6  Example Problem 5.1 Part (A). To solve the first section of Example Problem 5.1, it can 
be helpful to draw a normal curve with the mean and value we are considering. Then, on 
the basis of the problem, we can shade in the area of the probability we are wanting to 
obtain, in this case the area to the left of 75 because we want to find the probability that a 
randomly selected individual has a diastolic blood pressure less than 75 mm Hg.
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  Use the standardization equation to find a z-score. Then, use the stan-
dard normal distribution table to find 0.3 (the tenths place) in the z column 
and 0.04 (the hundredths place) across the top. The values across the top 
represent the hundredths place in the z-score. Because we want the area that 
is less than our z-score of 0.341, we subtract 0.367 from 1 to get the prob-
ability. Table  A.3 provides areas in the upper tail of the standard normal 
distribution.

 C Suppose that we want to know the probability that a randomly selected indi-
vidual has a diastolic blood pressure greater than 65 mm Hg. Draw a normal 
curve representing this scenario.

  In Figure 5.7, we have the mean of 69.7 mm Hg and the value of 65 mm Hg 
to the left of the mean. We want to know the probability that the blood pressure 
is greater than 65 mm Hg, which is represented by the shaded section to the 
right of the value.

 D Find the probability that a randomly selected individual has a diastolic blood 
pressure greater than 65 mm Hg.
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65 69.7

Figure 5.7  Example Problem 5.1 Part (C). To solve the second section of Example Problem 5.1, 
it can be helpful to draw a normal curve with the mean and value we are considering. 
Then, on the basis of the problem, we can shade in the area of the probability we are 
wanting to obtain, in this case the area to the right of 65 because we want to find the 
probability that a randomly selected individual has a diastolic blood pressure greater 
than 65 mm Hg.
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65 69.7 75

Figure 5.8  Example Problem 5.1 Part (E). To solve the third section of Example Problem 5.1, it can be 
helpful to draw a normal curve with the mean and values we are considering. Then, on the 
basis of the problem, we can shade in the area of the probability we are wanting to obtain, in 
this case the area in between 65 and 75 because we want to find the probability that a ran-
domly selected individual has a diastolic blood pressure between 65 mm Hg and 75 mm Hg.

BOX 5.2 USING SAS OR STATA TO FIND 
A STANDARD NORMAL PROBABILITY

We can also solve Part (D) of Example Problem 5.1 by using SAS or Stata. Both have functions 
that allow us to calculate standard normal probabilities once we have calculated a Z value.

Using SAS Using Stata

SAS Code: Stata Code:

DATA prob5_2d;
 prob=PROBNORM(0.3032);

RUN;
PROC PRINT DATA=prob5_2d;
RUN;

display normal(0.3032)

SAS Output: Stata Output:

Observation Probability .61913128

1 0.61913

The PROBNORM function in SAS gives us the 
probability that Z is less than or equal to 0.3032, 
under a standard normal distribution.

The normal function in Stata gives us 
the probability that Z is less than or 
equal to 0.3032, under a standard normal 
distribution.

We, then, use PROC PRINT to print our resulting 
probability and get the above output.

The values we obtained from SAS and Stata are the same; however, the value is slightly different 
from the one we obtained by hand because of the more precise calculation that is done in SAS 
and Stata and the need to round Z to 2 decimal places when using the standard normal Table 
(Appendix Table A.3).
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  We use the standardization equation to find a z-score. Then, we use the stan-
dard normal distribution table to find 0.3 in the z column and 0.00 across the 
top. Since we have only positive values in our table, we switch the sign on our 
z-score, thus greater than becomes less than. Because we want the area that is less 
than our z-score of 0.3032, we subtract 0.382 from 1 to get the probability.

 E Suppose that we want to know the probability that a randomly selected indi-
vidual has a diastolic blood pressure between 65 mm Hg and 75 mm Hg. 
Draw a normal curve representing this scenario (see Figure 5.8).

 F Find the probability that a randomly selected individual has a diastolic blood 
pressure between 65 mm Hg and 75 mm Hg.

 P X P X( ) ( . . ) . . .65 75 0 3032 0 3419 1 0 382 0 367 0< < = − < < = − − = 2251

  We calculated the shaded area by subtracting the unshaded areas from 1.

 G What diastolic blood pressure would be the 90th percentile?

  Being in the 90th percentile means that the tail area of our curve would 
be  0.10. We want to find Z such that P(Z < z) = 0.90 or P(Z > z) = 0.10, 
where capital Z represents the random variable Z and lowercase z represents the 
z-score. To do this, we look for 0.10 in the body of the standard normal distribu-
tion table. We see that 0.10 is represented in the body of the table with a z-score 
of 1.28.
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  We use the standardization equation to solve for x and find that the 90th 
percentile would be 89.5 mm Hg (see Figure 5.9).

Area = 0.10

69.7 89.5

Figure 5.9  Example Problem 5.1 Part (G). To solve Part (G) of Example Problem 5.1, it can be 
helpful to draw a normal curve representing the area of the curve that corresponds to the 
value we want to obtain. In this case, we are looking for the 90th percentile, which cor-
responds to the tail area of our curve being 0.10. We mark the area that would be 0.10 by 
shading and marking the place where the value we are looking for would be. In solving the 
problem, we find that our value is 89.5 mm Hg.
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 H What is the probability that among five individuals selected at random from 
this population, exactly one will have a diastolic blood pressure between 
65 mm Hg and 75 mm Hg?

   X~binomial (n = 5, p = 0.251). We know that p = 0.251 from Example Problem 
5.1—Part (F).
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EXAMPLE PROBLEM 5.2

Using the same NHANES data1 from Example Problem 5.1, we find that the 60-second 
pulse of individuals aged 18 and over is approximately normally distributed, with a 
mean of 72.8 beats and a standard deviation of 35.9 beats.

 A What 60-second pulse would be the 97th percentile?

  As in Example Problem 5.1—Part (G), we are looking for a specific percen-
tile here. The 97th percentile means that the tail area of our curve would be 0.03. 
We look for 0.03 in the body of the standard normal distribution table and use 
that value in the standardization equation to solve for x.
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  The 97th percentile would be 140.3 beats.

 B What is the probability that a randomly selected individual has a 60-second 
pulse between 70 beats and 75 beats?
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BOX 5.3 EXAMPLE PROBLEM 5.2 DATA EXPLAINED

In the 2014 NHANES survey, a trained health technician also measured participants’ 
pulse rates during the same examination as when the participants’ blood pressure was 
measured. The 60-second pulse rate was calculated by multiplying a 30-second pulse rate 
by 2. For this example, if participants were under the age of 18, their data were excluded 
from the mean and standard deviation calculation.
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  The probability that a randomly selected individual has a 60-second pulse 
between 70 beats and 75 beats is 0.056.

 C What is the probability that a randomly selected individual has a 60-second 
pulse of 50 beats or fewer?
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  The probability that a randomly selected individual has a 60-second pulse of 
50 beats or fewer is 0.261.

 D How would a lower standard deviation in this population affect the prob-
ability that we found in Example Problem 5.2—Part (C)? What about if the 
standard deviation were higher?

  If the standard deviation were lower, the z-score would be higher. Thus, the 
probability would be lower. If the standard deviation were higher, the z-score 
would be lower. Thus, the probability would be higher.

Review of probability distributions

We have covered the binomial, Poisson, and normal distributions so far in this work-
book. As a review and summary, Table 5.1 contains key information for each of the 
distributions.

What are the relationships among all the probability distributions?

• Looking at Figure 5.10, we can see that there are relationships among the probabil-
ity distributions that we have discussed in this workbook.

• First, the normal distribution can be used to approximate the binomial when np ≥ 5 
and n(1 – p) ≥ 5.

• The binomial can be approximated by Poisson when n is large and p is small—the 
conservative rule says when n ≥ 100 and p ≤ 0.01.

• The normal distribution can be used to approximate Poisson when λ ≥ 10.

RECAP OF PROBABILITY DISTRIBUTIONS

• Binomial and Poisson distributions start to look normally distributed 
(large n).

• Almost all kinds of data start to look normally distributed (large n).
• Tables of probabilities exist for binomial, Poisson, and standard normal 

(mean of 0, sd of 1) distributions.
• Probabilities can be obtained by converting from general normal to stan-

dard normal.
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Table 5.1 Probability distribution review table

Binomial Poisson Normal

Type of random 
variable

Discrete Discrete Continuous

Parameters n & p λ μ & σ

Possible values 0, 1, 2, … , n 0, 1, 2, … , ∞ -∞ to ∞

Mean np λ μ

Standard deviation np p( )1− λ σ

Shape of the 
distribution

Skewed or symmetric 
(when p = 0.5)

Skewed or symmetric Symmetric about 
the mean, 
unimodal bell 
curve

Assumptions Fixed number (n) of 
independent trials with 
two mutually exclusive 
and exhaustive outcomes 
and a constant 
probability of success (p)

The probability an event 
that occurs in the interval is 
proportional to the length 
of the interval, an infinite 
number of occurrences are 
possible, and events occur 
independently at rate λ

Independence

Note: A review of the three types of probability distributions covered in this book are contained in this table, including 
features of the distributions such as parameters, assumptions, and shape of the distributions.

Binomial(n, p)

Normal(µ, σ)

Poisson(λ)

λ = np

µ = np,

µ = λ, σ = √ λσ = √ np(1–p)

Figure 5.10  Probability distribution relationships. The normal distribution can be used to approxi-
mate both the binomial distribution and Poisson distribution. The Poisson can also be used 
to approximate the binomial. The parameter estimates for each approximation are shown.
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PRACTICE PROBLEM 5.1

Review the standard normal distribution.

 A What are the parameters that characterize the standard normal distribution?

 B What kinds of random variables can be used with the standard normal distribution?

 C What is the shape of the standard normal distribution?

 D What are the possible values for the standard normal distribution?

PRACTICE PROBLEM 5.2

Using the representative sample of the U. S. population from the 2014 NHANES data,1 
we find that the weight of individuals aged 18 and over is approximately normally dis-
tributed, with a mean of 82.6 kg and a standard deviation of 34.4 kg.

Suppose that we want to know the probability that a randomly selected individual 
has a weight greater than 85 kg.

 A Draw a normal curve representing this scenario.

 B Find the probability that a randomly selected individual has a weight greater than 
85 kg.

 C Suppose that we want to know the probability that a randomly selected individual 
has a weight less than 60 kg. Draw a normal curve representing this scenario.

 D Find the probability that a randomly selected individual has a weight less than 
60 kg.

BOX 5.4 PRACTICE PROBLEM 5.2 DATA EXPLAINED

In the 2014 NHANES survey, a trained health technician measured participants’ weight. 
Body weight was measured in kilograms (kg). For this example, if participants were under 
the age of 18, their data were excluded from the mean and standard deviation calculation.
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 E What is the probability that a randomly selected individual has a weight between 
60 kg and 85 kg?

 F What weight would be the 95th percentile?

 G What is the probability that among three individuals selected at random from this 
population, exactly one will have a weight between 60 kg and 85 kg?

PRACTICE PROBLEM 5.3

Using a representative sample of the U. S. population from the 2014 NHANES data,1 
we find that for individuals aged 18 and over with diabetes, the age when they were first 
told they had diabetes is approximately normally distributed, with a mean of 48.1 years 
and a standard deviation of 10.9 years.

 A What is the probability that a randomly selected individual was older than 65 years 
when first told that he or she had diabetes?

 B What is the 90th percentile of age when first told of having diabetes?

 C If six individuals were randomly selected from this population, what is the prob-
ability that two of them were older than 65 years when they were first told they had 
diabetes?

PRACTICE PROBLEM 5.4

In a study of the playground conditions in the neighborhoods of St. Louis, Missouri,2 
researchers found the neighborhoods to have an overall playground safety score that was 
approximately normally distributed, with a mean of 67.0 and a standard deviation of 15.7.

BOX 5.5 PRACTICE PROBLEM 5.3 DATA EXPLAINED

In the NHANES survey, participants who have diabetes were asked “How old {were you/
was SP} when a doctor or other health professional first told {you/him/her} that {you/he/
she} had diabetes or sugar diabetes?” The response was in age, with the possible answers 
being 1 to 79 years, with 80 and over responses coded as 80. Responses less than 1 year 
were recoded to 1. Data for participants who refused to answer or who responded that they 
did not know were excluded from the calculation, along with data for those under the age 
of 18 at the time of the NHANES survey.
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 A What is the probability that a neighborhood has a playground safety score between 
80 and 90 in this population of neighborhoods?

 B What is the probability that a neighborhood has a playground safety score between 
60 and 70 in this population of neighborhoods?

 C Suppose that we are considering moving to one of six randomly selected neighbor-
hoods in St. Louis, Missouri. What is the probability that the playground safety 
score will be between 80 and 90?

 D What is the probability that the safety score will be between 60 and 70?

PRACTICE PROBLEM 5.5

For each of the example scenarios, state which distribution (binomial, Poisson, or nor-
mal) would be the best to apply. Why?

 A We know the probability of developing hypertension in a certain population is 
0.15. We have randomly selected ten individuals from this population and want to 
know the probability that five of them have hypertension.

 B We know the mean and standard deviation of the birth weight in a population, and 
we want to know the probability that a randomly selected infant has a birth weight 
within a certain range.

 C We know the probability that an individual is ambidextrous in a certain popula-
tion. Specifically, we want to know the probability that at least two individuals are 
ambidextrous among eight randomly selected individuals.

 D We know the rate per year of a rare disease and want to know the probability that 
no cases of the disease will occur in a given year.

PRACTICE PROBLEM 5.6

In Chapter 4, Practice Problem 4.2, we used the Poisson distribution to answer ques-
tions regarding the probability of gun homicides occurring in the United States and 
Canada. The rate of gun homicides in the United States was reported to be 27 per day.3

 A Could we use another distribution (besides Poisson) to estimate probabilities? If we 
can, which distribution could we use and why?
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 B Using the distribution specified in Practice Problem 5.6—Part (A), what are the 
parameters characterizing the distribution?

 C Using the distribution specified in Practice Problem—Parts (A) and (B), what is 
the probability that more than 20 people will die of a gun homicide in a given day 
in the United States?
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To recap the binomial, Poisson, and normal distributions, fill in Table B.1.

PRACTICE PROBLEM B.1

Let X be a random variable that represents the number of infants in a group of 2000 who 
are exclusively breastfed at 6 months. According to the World Health Organization, in 
the United States the probability that a child is exclusively breastfed at 6 months is 0.19.1

 A What is the mean number of U.S. infants who would be exclusively breastfed in a 
group of this size?

 B What is the standard deviation of X?

 C What is the probability that a maximum of 300 infants out of 2000 are exclusively 
breastfed at 6 months of age?

 D What is the probability that between 350 and 400 infants are exclusively breastfed 
at 6 months?

PRACTICE PROBLEM B.2

The number of cases of rubella reported monthly in 2013 in the United States2 follow a 
Poisson distribution with parameter λ = 0.75. 

 A What is the mean number of cases of rubella reported each month?

 B What is the standard deviation?

Lab B: Probability distributions
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 C What is the probability that no cases of rubella will be reported during a given 
month?

 D What is the probability that a maximum of one case will be reported?

 E What is the probability that two or more cases of rubella will be reported?

PRACTICE PROBLEM B.3

The distribution of weights among women in the United States from 2013 through 2014 
is approximately normal with a mean of 168 pounds and standard deviation of 48 pounds.3

 A What is the z-score corresponding to the 95th percentile of weight?

 B What is the weight value corresponding to the 95th percentile of weight from 
2013 through 2014?

 C What is the probability that a randomly selected woman weighs more than 190 
pounds?

 D What is the probability that a randomly selected woman weighs less than 130 
pounds?

 E What is the probability that among five women selected at random from the popu-
lation, at least one will weigh either less than 130 pounds or more than 190 
pounds?

Table B.1 Probability distributions

Binomial Poisson Normal

Parameters
Possible values
Mean
Standard deviation
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6 Estimation

This chapter will focus on estimation for means and proportions and will include the 
following:

• Statistical inference
• Sampling
• Randomized clinical trial
• Sampling distribution of the mean
• Central limit theorem
• Confidence intervals for means
• Using SAS to construct confidence intervals for a mean
• Using Stata to construct confidence intervals for a mean
• The t-distribution
• Obtaining critical values in SAS and Stata
• Sampling distribution for proportions
• Confidence intervals for proportions
• Using SAS to obtain confidence intervals for proportions
• Using Stata to obtain confidence intervals for proportions

Terms

• central limit theorem
• double-blinded clinical trial
• estimation
• hypothesis testing
• interval estimation
• point estimates
• population mean
• population proportion
• population standard deviation
• population variance
• random sample
• randomization
• randomized clinical trial
• reference (also target or study population)
• sample mean

• sample proportion
• sample standard deviation
• sample variance 
• sampling distribution of x
• simple random sample
• single-blinded clinical trial
• standard error of the mean (standard 

error)
• statistical inference
• t-distribution
• triple-blinded clinical trial
• unbiased estimator
• unblinded clinical trial
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Introduction

The problem discussed in this chapter and the rest of this book is the basic problem 
of statistics: we have a dataset (data sample), and we want to infer properties about 
the underlying distribution (i.e., population) from this dataset. This inference usually 
involves inductive reasoning. A variety of probability models must be explored to see 
which model best “fits” the data. In this chapter, we will explore some key terms and 
methods for statistical inference.

Statistical inference

Statistical Inference: The theory and methods used to make judgments about the char-
acteristics of a population, distribution of variables, and relationships between vari-
ables based on sample data. Statistical inference can be divided into two main areas: 
Estimation and hypothesis testing. 

Estimation: The act of approximating the values of specific population parameters. 

Hypothesis Testing: The act of assessing whether the value of a population parameter is 
equal to some specific value.

When we are interested in obtaining specific values as estimates of our parameters, 
these values are often referred to as point estimates. However, sometimes we want to spec-
ify a range within which the parameter values are likely to fall. If this range is narrow, 
then we may feel that our point estimate is better than if the range is wide. This type of 
problem involves interval estimation.

Point Estimates: Specific values as estimates of parameters.

Interval Estimation: Specifies a range of values for which the parameter is likely to be 
inside.

Sampling

Sampling consists of selecting part of a population to observe so that one may estimate 
the characteristics of that entire population. A good sample is a miniature of the popula-
tion, which has the same general characteristics of that population.

Random Sample: The selection of some members of a population such that each mem-
ber is independently chosen and has a known nonzero probability of being selected. 

Simple Random Sample: A random sample in which each group member has the same 
probability of being selected. 

Reference Population: The group we want to study. The random sample is selected 
from the reference population (also called the target or study population).

• In practice, there is rarely an opportunity to enumerate each member of the refer-
ence population in order to select a random sample. The researcher must assume 
that the sample selected has all the properties of a random sample without formally 
being a random sample. If the members of a population cannot be formally enumer-
ated, then the population is effectively infinite. 
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• For the purposes of this workbook, we will assume that all reference populations 
discussed are effectively infinite. Although some reference populations are finite 
and well defined, many are finite but very large.

Randomized clinical trials

Randomized Clinical Trial (RCT): A type of research design for comparing differ-
ent treatments in which the assignment of treatments to patients is by some random 
mechanism. 

Randomization: The process of assigning treatments to patients on a random basis. 
Patients can be assigned to treatment groups by using a random number table or by 
using computer-generated random numbers. 

When the sample sizes are large, using randomization yields treatment groups in 
which the types of patients are approximately equivalent. However, if sample sizes are 
small, patient characteristics of treatment groups may not be comparable.

It is customary to present a table of characteristics of different treatment groups 
in RCTs to check that the randomization process is working well. Table 6.1 presents 
such a table from a study comparing culturally specific cognitive behavioral therapy 
(CBT) to standard CBT for smoking cessation among low-income African Americans.1,2 
Descriptive statistics are calculated and stratified by type of CBT. Then, the appropriate 

Table 6.1 A table of characteristics of treatment groups in randomized controlled trials

Characteristic

Condition

Statistical test P-value
Culturally specific Standard CBT
CBT (n = 168) (n = 174)

Demographics
Female/male, % 39/61 48/52 χ 2 (1, N = 340) = 2.83 .09
Age, M (SD) 49.48 (9.44) 49.52 (8.73) t(338) = 0.04 .97
At least high school, % 83.20 80.10 χ 2 (7, N = 339) = 1.82 .97
Single, % 63.50 64.20 χ 2 (4, N = 340) = 6.14 .19
Household income ≤ 
$10,000, %

61.80 59.90 χ 2 (9, N = 337) = 4.39 .88

Smoking history, M (SD)
Cigarettes per day 18.20 (11.53) 17.88 (10.03) t(335) = −0.27 .78
Years of smoking 25.83 (12.07) 26.78 (12.23) t(336) = −0.71 .47
FTND score 5.42 (2.42) 5.40 (2.32) t(330) = −0.11 .91
Menthol smokers, % 96 95 χ 2 (1, N = 342) = 0.19 .66

Intra-CBT variables, M (SD)
Session attendance 6.14 (2.31) 5.91 (2.54) t(340) = .88 .38

Patch use 17.18 (7.34) 16.22 (7.28) t(340) = 1.21 .23

Source: Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., and Fagerstrom, K. O., Br J Addict, 86, 1119–1127, 1991. 
doi:doi:10.1111/j.1360-0443.1991.tb01879.x.

Note: There were no statistically significant differences among conditions. Possible session attendance range = 0–8. 
Possible patch use range = 0–25.

Abbreviations: CBT, cognitive behavioral therapy; FTND, Fagerström Test for Nicotine Dependence.
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statistical test is used to compare the two groups. Both the value of the test statistic and 
the p-value are typically shown.

Types of clinical trials

Unblinded Clinical Trial: A type of clinical trial in which both the patient and physi-
cian are aware of the treatment assignment. 

Single-Blinded Clinical Trial: A type of clinical trial in which the patient is unaware 
of the treatment assignment, but the physician is aware. 

Double-Blinded Clinical Trial: A type of clinical trial in which neither the patient nor 
the physician knows the treatment assignment. The gold standard of clinical research is 
the randomized, double-blind study.

In rare cases when there are extremely strong concerns about bias, a triple-blinded 
clinical trial is performed. In this type, the patient, the physician, and the person ana-
lyzing the data are unaware of the treatment assignment. 

Population and sample mean

Suppose that we have a sample of patients from whom we have taken blood pressure 
measurements. From what we know about our sample, we would like to be able to esti-
mate the mean and variance of blood pressure measurements for the larger population. 
In statistical terms, we have a specific random sample with observations x1, x2,…, xn, 
where n is the number of observations and where we will estimate the population mean 
μ and variance σ2 of the underlying distribution.

Population Mean (μ): The average value of some random variable X for the whole 
population.

We are often interested in estimating the mean of a variable for a population. A natu-
ral estimator to use for estimating the population mean is the sample mean x .

Sample Mean (x): The average value calculated from a sample of the population. We 
will use x  to estimate the true population mean. To get the sample mean, we use the 
formula

 x
x

n

i
i

n

= =∑ 1 .  (6.1)

Sampling distribution of the mean 

Sampling Distribution of x : The distribution of values of x  over all possible samples 
of size n that could have been selected from the reference population.

Unbiased estimators

• We refer to an estimator of a parameter θ as θ̂. 
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Unbiased Estimator: An estimator θ̂  of a parameter θ is unbiased if the expected value 
of the estimator is equal to the parameter: E(θ̂) = θ. This means that the average value 
of θ̂ over a large number of repeated samples of size n is θ.

• Let x1, x2,…, xn be a random sample drawn from some population with mean μ. The 
expected value of the sample mean, E( )X , is μ. 

• This property of the expected value holds for any population regardless of its under-
lying distribution. Because of this, we refer to X  as an unbiased estimator of μ.

• Although X is an unbiased estimator of μ for any sample size n, it is preferable to 
estimate parameters from large samples rather than from small ones. This is because 
the precision of X increases as the sample size increases. 

Population and sample measures of spread

In order to describe a distribution, we typically use a measure of central tendency (e.g., 
mean) to tell us where the center of the distribution is, along with a measure of spread 
that tells us how much the data points depart from the center of the distribution.

Population Variance: Let x1, x2,…, xn be a random sample drawn from some population 
with variance (σ2). 

Sample Variance: Denoted by s2, an unbiased estimate of σ2. In other words, the 
expected value of the sample variance is the population variance.

Population Standard Deviation: The square root of the population variance, denoted by σ. 

Sample Standard Deviation: The standard deviation calculated directly from the sam-
ple of our population, denoted by s.

Standard Error of the Mean (SEM) or Standard Error (SE): A figure that represents 
the estimated standard deviation obtained from a set of sample means from repeated 
samples of size n from a population with underlying variance (σ2). The SE is not the 
standard deviation of an individual observation Xi, but rather the standard deviation of 
the sample mean ( )X . The SEM, or the SE, is given by

 SE mean( ) = σ
n

 (6.2)

and is estimated by 
s

n
.

See Table 6.2 for a summary of the symbols and terms used in this section on the 
sampling distribution of the mean.

EXAMPLE PROBLEM 6.1 

Suppose that we take a sample of size n and calculate a sample mean ( x1). Then we take 
a second sample and calculate that sample mean ( x2). Would we expect x1  and x2  to 
be exactly the same? Why or why not?
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We would not expect to find the same sample mean in both groups as long as the 
two samples are different. However, it is possible (although not probable) for the two 
sample means to be equal. For example, this would happen if everyone in the population 
has the same value.

Central limit theorem

If the underlying distribution is normal, then it can be shown that the sample mean is 

itself normally distributed with mean (μ) and variance σ2

n
. This is written as 

 X N
n

~ , .µ σ2



  (6.3)

However, if the underlying distribution is not normal, we would still like to make 
some statement about the sampling distribution of the sample mean. We can do this 
through the use of the central limit theorem.

Central Limit Theorem (CLT): Let X1,…,Xn be a random sample from some popu-

lation with mean (μ) and variance (σ2). Then, for large n, X N
n



~ , µ σ2



 , even if the 

underlying distribution of individual observations in the population is not normal. 

• The symbol 


~ means “approximately distributed.”

The CLT is so important because many of the distributions encountered in practice 
are not normal. In such cases, the CLT often can be applied. This lets us perform statisti-
cal inference based on the approximate normality of the sample mean, despite the non-
normality of the distribution of individual observations. In other words, even when the 
individuals in the sample have values that are not normally distributed, the CLT allows 
for inference when the sample is large enough.

Table 6.2 Key statistical symbols

Notation Description Use

μ Population mean
x Sample mean To estimate μ
σ Population standard deviation
s Sample standard deviation To estimate σ

σ
n

True standard error of the mean

s
n

Estimate of standard error of the mean To estimate
 σ

n

p Population proportion

p̂ Sample proportion To estimate p
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EXAMPLE PROBLEM 6.2

Suppose that we take repeated samples of size n from a population with population 
mean μ and standard deviation σ and calculate sample means for each sample. What 
does the CLT say about the following:

 A The mean of the distribution of sample means?

  The CLT says that the mean of the distribution of the sample means will be 
equal to μ.

 B The standard deviation of the distribution of sample means?

  This is the SE of the mean, 
σ
n

.

 C The shape of the distribution of sample means?

  Provided that n is large enough, the distribution will be approximately nor-
mally distributed.

 D Does this work even when we are sampling from populations that are not 
normally distributed?

  Yes, but the further the population departs from being normally distributed, 
the larger the sample size n needs to be.

Confidence intervals for means

Frequently, we wish to obtain an interval estimation for the mean. 

Interval Estimation (Mean): An interval of plausible estimates of the mean and the 
best estimate of the mean’s precise value.

• Our interval estimates will hold exactly if the underlying distribution is normally 
distributed but approximately if the underlying distribution is not normal, as 
stated in the CLT.

• When the population standard deviation (σ) is known, the CLT 
tells us that if n is sufficiently large, the formula for a two-sided test 

P X Z
n

X Z
n

− ≤ ≤ +






= −− −1
2

1
2

1α α
σ µ σ α .

• In this notation, Z
1

2
−α  is the value corresponding to the 1

2
−( )α

th

 percentile of 

the normal distribution (Figure 6.1). In the vast majority of cases, α is chosen to be 
0.05. Thus, the corresponding Z value is 1.96.

• We can rewrite the equation to obtain the 100(1 – α)% confidence interval 
(Table 6.3).
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P X Z
n

X Z
n

− ≤ ≤ +






= −

→ −

− −1
2

1
2

1

100 1

α α
σ µ σ α

α( ) % conffidence interval

= − +




− −X Z

n
X Z

n1
2

1
2

α α
σ σ

,  

(6.4)

• For example, a 95% confidence interval takes the following form:

 X
n

X
n

− +






1 96 1 96. , . .
σ σ

 

• We interpret the confidence interval by saying, “We are 95% confident that the 

interval X
n

X
n

− +






1 96 1 96. , .
σ σ

   will cover μ.”

α/2 1  α α/2

Zα/2 Z1–α/2

Figure 6.1  Critical values of the standard normal distribution. The value Z
1

2
−α  is the 1

2
− α th

 

percentile of the normal distribution, also expressed as the Z value, which cuts off an area 

of α
2  in the upper tail of the distribution. Similarly, Zα

2
, the α

2

th
 percentile, cuts off 

an area of α
2  in the lower tail.

Table 6.3 Equations for 100(1 – α)% confidence intervals for a mean

Type of confidence interval σ Known σ Unknown

Two-sided
x Z

n
x Z

n
− +






− −1
2

1
2

α α
σ σ

, x t
s

n
x t

s

nn n
− +





− − − −1 1

2
1 1

2
,  , 

,α α

One-sided lower limit
x Z

n
− −1 α

σ
x t

s

n
n− − −1 1,  α

One-sided upper limit
x Z

n
+ −1 α

σ
x t

s

n
n+ − −1 1,  α
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• Note that X  is random, unlike μ. Remember that μ is the unchanging mean of the 
underlying population from which you draw your sample. The population mean is 
some unknown value.

What the confidence interval does not imply

The statement of the confidence interval does not imply that μ is a random variable that 
assumes a value within the interval 95% of the time. Nor does it imply that 95% of the 
population values lie between these limits. 

What the confidence interval does imply

The meaning of the confidence interval is that if we were to select 100 random samples from 
the population and use these samples to calculate 100 different confidence intervals for μ, 
approximately 95 of the intervals would cover the true population mean, and 5 would not. 

Example demonstrating the meaning of confidence interval

We took 100 random samples from a dataset containing total cholesterol levels (mg/
dL).3 Figure 6.2 shows sample mean cholesterol (indicated by dots) and the correspond-
ing 95%  confidence intervals for each of the 100 random samples. A dashed reference 
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Figure 6.2  Confidence intervals from repeated sampling. The figure shows the variation in the 
95% confidence intervals calculated using 100 random samples of 100 subjects each. 
Theoretically, we would expect 5 out of 100 of the 95% confidence intervals not to cover 
the true mean value in the population. In this example, 4 out of 100 did not cover the 
population mean, represented by the dashed line.
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line at 179.81 mg/dL shows the true mean total cholesterol value from the population. We can 
see that 4 of the 100 confidence intervals do not cover the true mean value of 179.81 mg/dL.

Hand calculation of one-sided confidence interval

In some situations, we are primarily interested in determining whether a quantity is 
larger or smaller than some value. Thus, we are interested in only one bound (lower 
limit or upper limit) of a confidence interval.

• To calculate one-sided confidence intervals, we use Z1−α for the Z value, as opposed 
to traditional two-sided confidence intervals, which use Z1−α/2. 

• If we are interested in a one-sided lower limit, we use 

 µ σ
α> − −x Z

n
1  (6.5)

• If the upper limit is of interest, we use 

 µ σ
α< + −x Z

n
1  (6.6)

Width of confidence interval

The width of a confidence interval depends on a variety of factors.

• The higher the level of confidence [100(1 – α)%], the wider the interval.
• Increasing variability in the population (σ) will also result in a wider confidence interval.
• However, as the sample size (n) gets larger, the confidence interval narrows, as there 

is more information available.
• It should be noted that the size of the confidence interval does not depend on the 

value of the sample mean ( )x .

Using the standard normal distribution for a mean

We can express X  in standardized form by 

 Z
X

n
= − µ

σ
 (6.7)

where Z follows a standard normal distribution.
• Of repeated samples of size n, 95% of the Z-values will fall between −1.96 and 

+1.96 because these values correspond to the 2.5th and 97.5th percentiles from the 
standard normal distribution (Figure 6.3).

Using SAS to construct confidence intervals for a mean

Instead of calculating confidence intervals by hand, we can also use SAS. There are several 
procedures that will output confidence limits for a mean, one of which is PROC MEANS. 
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The PROC MEANS procedure

• Specify the level of significance (ALPHA) and the continuous variable in the VAR 
statement. 

• By default, α is 0.05 if the ALPHA option is not included. By default, the level of 
significance is set at 0.05, and a 95% confidence interval is produced. 

• The ALPHA option can be added to change the significance level.
• The CLM option requests confidence limits, which will be given in addition to the 

sample size (N), sample mean (MEAN), and sample standard deviation (Std Dev). 

PROC MEANS DATA = dataset_name N MEAN STD CLM;
 VAR continuous_variable;
RUN;

If a 90% confidence interval is desired instead of a 95% confidence interval, we 
would use the following code that adds the ALPHA option.

PROC MEANS DATA = dataset_name N MEAN STD CLM ALPHA = 0.10;
 VAR continuous_variable;
RUN;

The following box gives the output with the corresponding headings noted in paren-
theses: The total sample size (N), the sample mean (Mean), the sample standard devia-
tion (Std Dev), and the lower bound (Lower 95% confidence limit for mean [CLM]) and 
upper bound (Upper 95% CLM) of the confidence interval.

The MEANS Procedure

Analysis Variable : continuous_variable 

N Mean Std Dev
Lower 95% 

CL for Mean
Upper 95% 

CL for Mean

100 2.4909631 4.8883862 1.5210012 3.4609250

0.025 0.0250.95

z = –1.96 z = 1.96

Figure 6.3  Critical values of the standard normal distribution. When α = 0.05. When α is set to 

0.05, the Z value that cuts off an area of α
2

0 025= .  in the upper tail of the distribution 

is 1.96. The value that cuts off an area of α
2

0 025= .  in the lower tail is −1.96.
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• If a one-sided confidence interval is desired, specify either the lower CLM (LCLM) 
or the upper CLM (UCLM) instead of the CLM (see sample code below). 

• The output table will give the desired confidence limit.

PROC MEANS DATA = dataset_name UCLM;
 VAR continuous_variable;
RUN;

The MEANS Procedure

Analysis Variable: 
continuous_variable

Upper 95% 
CL for Mean

3.3026264

Using Stata to construct confidence intervals for a mean

In Stata, there are two options for calculating a confidence interval for a mean. 

 1 If we have a dataset with a continuous variable, we use the ci command: 

ci means variable_name, level(1 – α)

where we specify the name of the continuous variable and the value of 1 – α.

 2 If we have only the sample size (n), sample mean ( )x , and sample standard deviation 
(s), we can use the cii command: 

cii means n sample_mean s, level(1 – α)

where we specify the sample size, sample mean, sample standard deviation, and 
the value of 1 – α.

For example, if we would like the 95% confidence interval for the continuous vari-
able named continuous_variable used in the SAS example, we would type one of the fol-
lowing two options:

ci means continuous_variable, level(95)

    Variable |    Obs       Mean   Std. Err.   [95% Conf. Interval]
---------------+----------------------------------------------------
continuous~e |    100   2.490963    .4888386   1.521001   3.460925

Or:
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cii means 100 2.490963 4.888386, level(95)

    Variable |    Obs       Mean   Std. Err.   [95% Conf. Interval]
-------------+----------------------------------------------------
             |    100   2.490963    .4888386   1.521001   3.460925

The output gives the sample size (Obs), sample mean (Mean), standard error (Std. 
Err.), and upper and lower bounds (both bounds indicated by 95% Conf. Interval). We 
can see that both methods produce a 95% confidence interval of (1.52, 3.46).

Requesting a one-sided confidence interval

To request a one-sided confidence interval, we use the same approach but change the 
value of the level option.

• In order to request a one-sided limit, multiply the α level by 2. A two-sided test 
with twice the desired alpha level is equivalent to a one-sided test with the desired 
alpha level, as Z Z1 2 1

2− −=α α.

• For example, if a 95% one-sided confidence interval is desired, specify level(90).
• For a 99% one-sided interval, specify level(98). Stata will, then, produce the correct 

upper or lower limit of interest.

Using either of the Stata commands, we can get the desired lower or upper bound 
from the output.

ci means variable_name, level(1 – 2α)
cii means n sample_mean s, level(1 – 2α)

Note that the line in the output will say “[100(1 – 2α)% Conf. Interval]” even 
though we are trying to get a bound for a 100(1 – α)% confidence limit, but this can be 
ignored. Taking one bound in the 100(1 – 2α)% interval is equivalent to the upper or 
lower bound of the 100(1 – α)% confidence limit.

    Variable |  Obs       Mean    Std. Err.    [90% Conf. Interval]
-------------+----------------------------------------------------
continuous~e |  100   2.490963    .4888386       1.6793   3.302626

In this example, the upper bound of the one-sided 95% confidence interval is 3.30.

The t-distribution

The assumption that σ is known is somewhat artificial because σ is rarely known in prac-
tice. When σ is unknown, it is reasonable to estimate σ by the sample standard devia-
tion (s). Thus, it would seem logical to construct confidence intervals using the equation 
X

s n

− µ
/

 because we are using the same standardization formula but are replacing the 

unknown σ with known s. However, this quantity is no longer normally distributed.
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This dilemma was first solved in 1908 by a statistician named William Gossett, who 
chose to identify himself by the pseudonym “student.” This is why the distribution of 
X

s n

− µ
/

 is usually referred to as the “student’s t-distribution.” 

t-distribution: A family of distributions indexed by one parameter referred to as the 
degrees of freedom (df ) of the distribution. Therefore, it is not itself a unique distribution.

• The shape of the t-distribution depends on the sample size (n), with df = n – 1.
• The shape of the t-distribution is a symmetric bell curve (like the Z distribution) 

with wider tails than the normal distribution because the population standard devi-
ation (σ) is estimated by the sample standard deviation (s).

• As the degrees of freedom increase, the t-distribution approaches the normal 
distribution.

• When we compare values in the standard normal table with values for infinite 
degrees of freedom in the t-distribution table, we see that they are very similar.

• The difference between the t-distribution and the normal distribution is greatest 
for small values of n (n < 30).

• For a sample of size n drawn from an underlying normally distributed population, 
we use the following notation for the t-statistic. Note the similarities and differ-
ences between this formula and the calculation of a z-score.

 t
X

s n
tn= −

−
µ

/
~ 1  (6.8)

Obtaining critical values in SAS and Stata

Table 6.4 displays critical values for the normal distribution that correspond to com-
monly used levels of significance. 

When working with the t-distribution, you have a choice between using the t table 
(Appendix Table A.4) and using SAS or Stata to calculate probabilities.

Suppose that you have a random variable, T, which follows a t-distribution with n – 1 
degrees of freedom. You can calculate cutoffs for the t-distribution using SAS functions 
in a data step or by typing the Stata function into the command window. For example, 
in SAS, complete the following procedure:

DATA;
   cutoff = <insert function here>;
RUN;

Table 6.4 Common critical values of the 
standard normal distribution

α 1 – α Z1 – α Z1 2−α

0.10 0.90 1.28 1.645
0.05 0.95 1.645 1.96
0.01 0.99 2.33 2.58
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• After running the data step, simply open the dataset, and see the value for the vari-
able “cutoff ” or use PROC PRINT.

• If you want to calculate the probability that T takes on a value greater than some 
value k—i.e., P(T > k), type 

1 - PROBT(k, df)in SAS

or

di ttail(df, k) in Stata.

• If you want the probability that T is less than some value k—i.e., P(T < k), then 
make use of the fact that P(T < k) + P(T > k) = 1, and use the command 

PROBT(k, df)in SAS

or

di 1 – (ttail(df, k))in Stata.

• To find the value T of a t-distribution with n – 1 degrees of freedom that cuts off an 
area of p in the right tail, use

TINV(1 – p, df) in SAS

or

di invttail(df, p) in Stata.

Table 6.5 provides a summary of these commands.
• For example, to find the value of a t-distribution with n – 1 = 11 degrees of freedom 

that cuts off p = 0.10 to the right, you would type the following:

Using SAS Using Stata

SAS Code Stata Code

DATA example;
 cutoff = TINV(0.90,11);
RUN;

PROC PRINT DATA = example;
 VAR cutoff;

di invttail(11, 0.10)

RUN;

SAS Output

Obs Cutoff

1 1.36343

Stata Output

1.3634303

Check that the value of 1.36 is in agreement with the cutoff value from Table A.4 in 
the Appendix.
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EXAMPLE PROBLEM 6.3

Suppose that you are interested in estimating the mean total cholesterol of the popula-
tion of obese persons in the United States. Assume that the total cholesterol levels fol-
low a normal distribution with unknown mean μ but with known standard deviation σ = 
39.7 mg/dL. A random sample of 353 obese patients is selected from the underlying 
population.3 The mean total cholesterol for these individuals is x  = 189.9 mg/dL.

 E What is the point estimate for μ?

  The sample mean, x  = 189.9 mg/dL, is the point estimate and our best guess 
for μ.

 F Construct a 95% confidence interval for μ.

  Since σ is known, we will use the normal distribution and not the t-distribution 
for the confidence interval. Because we are calculating a 95% confidence inter-
val, we will use 1.96 as the Z value. We also know n = 353. 

  Then, we will use the formula for the two-sided 95% confidence interval for 
a mean, and we will substitute our values.

 
95 1 96 1 96 1 96

39 7
189 9% . ,  .   .

.
.CI = − +







= −x
n

x
n

σ σ
3353

1 96
39 7

353

185 8

189 9,  .
.

( . , )

. +







= 194.0
 

 G Interpret the confidence interval.

  We are 95% confident that the interval (185.8, 194. 0 mg/dL) covers the true 
mean total cholesterol for the population of obese persons in the United States.

EXAMPLE PROBLEM 6.4

A genetic self-efficacy measure was administered to a sample of 192 patients at a pri-
mary care center.4 The scale ranged from 1 (low genetic knowledge and awareness) to 
5 (full ability to assess genetic risk and understand genetic issues). The genetic self-
efficacy score in this sample had a mean of x  = 3.37 with a standard deviation s = 1.09. 

Table 6.5 Software commands for calculating t-distribution cutoffs

Probability SAS Stata

P(T > k) 1 - PROBT(k, df) di ttail(df, k)
P(T < k) PROBT(k, df) di 1 – (ttail(df, k))

Value that cuts off an area of p in the 
right-tail use

TINV(1 – p, df) di invttail(df, p)
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 A Calculate a 90% confidence interval for the true mean of the genetic self-
efficacy score in this population.

  We know that n = 192, x  = 3.37, and s = 1.09. Because σ is unknown, we 
will use the t-distribution. We can find the critical t-value by either using the 
t-distribution tables or by using SAS or Stata.

Problem 6.4 Part (A) t-Distribution Cutoff Calculation 

Using SAS Using Stata

SAS Code Stata Code

DATA a;
 cutoff = TINV(0.95,191);
RUN;

PROC PRINT DATA = a;
RUN;

di invttail(191, 0.05)

SAS Output

Obs Cutoff

1 1.65287

Stata Output

1.6528705

  Thus, the t-value when α = 0.10 with n – 1 = 192 – 1 = 191 degrees of 
freedom is tn− −1 1 2,  α  = t192 1 1 0 10

2− −,  .  = t191, 095= 1.65.

90

3 3

1 1 1 12 2
% ,  

.

, ,CI: x t
s

n
x t

s

n
n n− +







=

− − − −α α

77 1 65
1 09

192
3 37 1 65

1 09

192

3 37

− +






= −

.
.

, . .
.

( . 0.113, 3.37+0.13 3.50) ( . , )= 3 24

 B Interpret the 90% confidence interval.

  We are 90% confident that the true mean genetic self-efficacy score in this 
population lies in the interval (3.24, 3.50).
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 C Construct a 99% confidence interval for the mean.

  First, we will find the t-value that corresponds to α = 0.01 with n – 1 = 
192 – 1 = 191 degrees of freedom.

Problem 6.4 Part (C) t-Distribution Cutoff Calculation

Using SAS Using Stata

SAS Code Stata Code

DATA c;
 cutoff = TINV(0.995,191);

RUN;

PROC PRINT DATA = c;
RUN;

di invttail(191, 0.005)

SAS Output

Obs Cutoff

1 2.60181

Stata Output

2.6018143

  Thus, we will use the value tn− −1 1 2,  α  = t192 1 1 0 01
2− −,  . = t191, 0.995= 2.60.

99

3 3

1 1 1 12 2
% ,  

.

, ,CI: x t
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n
x t

s

n
n n− +







=

− − − −α α

77 2 60
1 09
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3 37 2 60

1 09

192

3 37

− +






= −

.
.

, . .
.

( . 0.220, 3.37+0.20 3.57) ( . , )= 3 17

 D Interpret the 99% confidence interval.

  We are 99% confident that the interval (3.17, 3.57) covers the true mean 
genetic self-efficacy score in this population.

 E How do the 90% and 99% confidence intervals compare?

  The 99% confidence interval is wider than the 90% confidence interval. 
The 99% confidence interval has a width of 0.40, whereas the 90% confidence 
interval has a width of 0.26.

PRACTICE PROBLEM 6.5

Data from the National Air Toxics Assessment (NATA) is used to calculate an environ-
mental health hazards index for all census tracts in the United States; NATA measures 
potential exposure to harmful toxins in the environment.5 The index takes into account 
carcinogenic, respiratory, and neurologic hazards, and indicates the national percentile 
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rank of the census tract. The lowest value is 0, indicating maximum exposure to toxins 
harmful to health; the highest value is 100, indicating the best environmental qual-
ity and least exposure to toxins. There are 305 census tracts in the city of St. Louis, 
Missouri, but we have a sample of 210 census tracts with values of the environment 
health hazards index. The average score of the sample environmental health hazards 
index is 25.30 with a standard deviation of 12.30. Data for this problem are in the data-
sets ch6_health_hazards.sas7bdat and ch6_health_hazards.dta.

 A What is the point estimate for μ?

 B Construct a 95% confidence interval for μ by hand.

 C Interpret the interval from Practice Problem 6.1—Part (B).

 D Given that the average environmental health hazards index of all census tracts in 
the United States is 49.49, what can we say about the level of environmental health 
hazards in St. Louis compared to the United States as a whole?

 E Write and run the SAS or Stata code to produce a 95% confidence interval for the 
mean. Check that the output agrees with the hand calculation in Practice Problem 
6.1—Part (B).

Sampling distribution for proportions

In Chapter 4, we introduced the binomial distribution. To recap, this distribution is 
used in a scenario in which we have a random variable, X, that counts the number of 
successes in n independent trials where each trial has probability p of success. 

• The mean of the distribution is μx = np, and the standard deviation is σ x np p= −( )1 .
• We know that we can use the normal approximation to the binomial distribution 

when there is a large sample size. 
• The rule of thumb is that the sample size is sufficiently large if both np and n(1− p) ≥ 5. 

If this condition is met, then X follows an approximately normal distribution with 

mean np and standard deviation np p( )1− , written X ~ N np np p, ( )  1−( ).

BOX 6.1 DESCRIPTION OF ch6_health_hazards DATASET

In this problem, we will use the variable health_hazards_index, which is a numeric vari-
able. Each census tract has a unique identifier, called a FIPS code, which is composed of 
a 2-digit state code, a 3-digit county code, and a 6-digit tract code, for a total identifier 
length of 11 digits. This identifier variable is named census_tract.
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• Using the standardized form, we have Z
X np

np p
= −

−( )1
, where Z follows a standard 

normal distribution, Z ~ N(0,1).

In many cases, we may want to estimate the true unknown population proportion or 
probability of outcome, p. 

Population Proportion: A parameter, denoted by p, that estimates the proportion of the 
population with some characteristic. Similar to other population parameters, popula-
tion proportions are unknown and we often want to estimate them. In order to estimate 
the population proportion, we use the sample proportion, p̂.

Sample Proportion, p̂: An estimate of p calculated from a random sample drawn from 
the population. This is similar to the case with continuous data described previously in 
the chapter where x  is an estimate of μ. 

• If we perform n number of trials and observe x successes, we have p̂
x

n
=  for the 

sample. 
• As a result of the CLT, we conclude that the sampling distribution of p̂  is approxi-

mately normal with mean p and standard deviation p p

n

( )1− . This is often written 
as 

 
ˆ ~ ,

( )
.p N p

p p

n

1−





 (6.9)

Thus,

 Z
p p

p p

n

= −
−

ˆ

( )1
 (6.10)

follows a standard normal distribution.

Confidence intervals for proportions

As in the continuous case, it is often desired to calculate an interval around the point 
estimate. We can use the application of the CLT to get an interval estimate around p̂:

 ˆ
ˆ ( ˆ )

.p Z
p p

n
± −



−1 2

1
α  (6.11)

We can interpret the confidence interval by saying, “We are 100(1 – α)% confident 

that the interval ˆ
ˆ ˆ

ˆ
ˆ( )

,
( ˆ )

p Z
p p

n
p Z

p p

n
− − + −



− −1 12 2

1 1
α α  will cover p.”

• Unlike in the estimation of the mean, estimates for proportions follow a standard 
normal distribution (instead of a t-distribution) since only one parameter, p, needs 
to be estimated from the data.
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• We can also construct one-sided confidence limits (bounds) for a proportion. The 
interval estimator should be used only if n p̂(1 – p̂) ≥ 5. 

• If we assume the normal approximation to the binomial holds, then a one-sided 
lower limit 100(1 – α)% confidence interval is of the form

 p > − −
−

ˆ
ˆ ( ˆ )

p Z
p p

n1

1
α .  (6.12)

• The one-sided upper limit 100(1 – α)% confidence interval is of the form 

 p > + −
−

ˆ
ˆ ( ˆ )

p Z
p p

n1

1
α . (6.13)

• The formulas for both one-sided and two-sided confidence intervals for a proportion 
are displayed in Table 6.6.

Using SAS to obtain confidence intervals for proportions

We can use PROC FREQ to calculate confidence intervals for a proportion if we have a 
dataset with a binary variable that specifies whether the subject has the event of interest. 

• In the TABLES statement, specify the event indicator and the level of significance 
(ALPHA). The default is α = 0.05, which will produce a 95% confidence interval.

• The BINOMIAL option tells SAS that we are in a binomial (proportion) situation.
• By default, the proportion calculated will be for the first level of the one-way fre-

quency table. If we would like to switch the proportion calculated, we use the 
LEVEL option after the BINOMIAL statement: 

PROC FREQ DATA = dataset_name;
 TABLES binary_variable / BINOMIAL (LEVEL = "1") ALPHA = 0.05;
RUN;

• There will be multiple tables in the output, but the one with the heading “Binomial 
Proportion” gives the confidence interval.

Table 6.6 Equations for 100(1 – α)% confidence intervals for a proportion

Type of confidence interval Formula

Two-sided
ˆ ( )

, ˆ ( )ˆ ˆ ˆ ˆ
p Z

p p

n
p Z

p p

n
− − + −



− −1

2
1

2

1 1
α α

One-sided lower limit
ˆ ( )ˆ ˆ
p Z

p p

n
− −

−1

1
α

One-sided upper limit
ˆ ( )ˆ ˆ
p Z

p p

n
+ −

−1

1
α
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• The line “95% Lower Conf Limit” gives the lower limit, and “95% Upper Conf 
Limit” gives the upper limit. 

• This assumes that the normal approximation is appropriate; if not, the exact confi-
dence interval is given at the bottom of the output table.

Binomial Proportion

binary_variable = 1

Proportion 0.4000

ASE 0.0828

95% Lower Conf Limit 0.2377

95% Upper Conf Limit 0.5623

Exact Conf Limits

95% Lower Conf Limit 0.2387

95% Upper Conf Limit 0.5789

• Unlike for confidence intervals around a mean, we cannot use the SIDES option if 
we would like a one-sided confidence interval.

• However, we can manipulate the level of significance in the ALPHA option to 
receive the correct limit in the output. In order to do so, let the ALPHA option be 
ALPHA = 2α. Then, find the corresponding lower or upper bounds in the output. 

• Note that the line in the output will say “100(1 – 2α) % Lower Conf Limit” or 
“100(1 – 2α)% Upper Conf Limit,” but as long as one bound is selected it is equiva-
lent to the upper or lower bound of the 100(1 – α)% confidence limit.

Using Stata to obtain confidence intervals for proportions

Just as for confidence intervals for means, in Stata, we can compute confidence intervals 
for a proportion by simply entering the parameters or by calculating from a dataset.

• If we have a dataset with a binary variable, we use the ci function:

ci proportions binary_variable, level(1 - α) Wald

where we specify the name of the binary variable and the desired confidence level.
• If we have the sample size (n) and probability of success ( )p̂ , we use the cii function:

cii proportions n p, level(1 - α) wald

where we specify the sample size (n) first, then the value of p̂ and the desired con-
fidence interval. You can also input x (the number of success) instead of p̂  in 
the Stata command above.
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• The wald option overrides the default option of an exact confidence interval. If we 
would like the exact confidence interval instead, then the wald option can be left 
out.

Mirroring the example in SAS, we want to find the 95% confidence interval for a binary 
variable called binary_variable. We know that out of 35 observations there are 14 successes. 
Thus, we can use either of the following two lines of code to get the same output.

ci proportions binary_variable, level(95) wald

                                             -- Binomial Wald ---
    Variable |  Obs  Proportion    Std. Err.   [95% Conf. Interval]
---------------+---------------------------------------------------------------
binary_var~e |   35          .4    .0828079    .2376996   .5623004

Or: 

cii proportions 35 14, level(95) wald

                                         -- Binomial Wald ---
  Variable |   Obs  Proportion   Std. Err.   [95% Conf. Interval]
------------+---------------------------------------------------------------
           |    35          .4    .0828079   .2376996    .5623004

We see that both approaches give a 95% confidence interval of (0.24, 0.56).
To produce a one-sided confidence interval for a proportion, we use the same approach 

as when calculating one-sided intervals for a mean. Let the level option be level(1 – 2α). 
Then, find the corresponding lower or upper bounds in the output. Note that the line 
in the output will say “[100(1 – 2α)% Conf. Interval]” even though we are trying to 
get a bound for a 100(1 – α)% confidence limit, but this can be ignored. Taking one 
bound in the 100(1 – 2α)% interval is equivalent to the upper or lower bound of the 
100(1 – α)% confidence limit.

EXAMPLE PROBLEM 6.6

The Youth Risk Behavior Surveillance System (YRBSS) monitors health risk behaviors of 
9th through 12th grade students in the United States.6 Students who reported having at 
least one drink of alcohol on at least one day in the month before the survey were classi-
fied as currently drinking alcohol. In 2013, the percentage of high school students who 
reported that they had at least one drink of alcohol in the previous month was 34.9%. We 
wish to examine drinking behavior for students who reported missing school because of 
feeling unsafe either at school or on their way to or from school. Out of a sample of 200 
high school students who reported missing school because of unsafe conditions, 90 were 
currently drinking alcohol. Data for the problem are in the dataset ch6_youth_drinking.
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 A Find a point estimate for the true proportion p.

 ˆ .p
x

n
= = =90

200
0 45

 B First, check that the normal approximation is appropriate, and construct a 
99% confidence interval for p.

  For the normal approximation to hold, we must check that n p̂  ≥ 5 and 
n(1 – p̂) ≥ 5. In this case, we have n = 200 and p̂ = 0.45, so n p̂ = 200(0.45) = 90 
and n(1 – p̂) = 200(1 – 0.45) = 200(0.55) = 110. This means that the normal 
approximation can be used since both numbers are greater than or equal to 5.

  For a two-sided 99% confidence interval, the Z value is Z1 2− α = Z1 0 01
2− . = 2.58.
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 C Interpret the confidence interval.

  We are 99% confident that the true proportion of students lies in the inter-
val (0.36, 0.54) for those who had at least one alcoholic drink in the previous 
month among those who missed at least 1 day of high school in the previous 
month because of unsafe conditions. 

 D Calculate a 95% confidence interval for p.

  For a two-sided 95% confidence interval, the Z value is Z1 2− α  = Z1 0 05
2− .  = 1.96.

BOX 6.2 DESCRIPTION OF ch6_youth_drinking DATASET

The Youth Risk Behavior Surveillance System (YRBSS) asks each student, “During the 
past 30 days, on how many days did you have at least one drink of alcohol?” The response 
is a 7-level categorical variable, ranging from “0 days” to “All 30 days.” Students report-
ing that they currently drank at least one drink of alcohol on at least 1 day during the 
30 days before the survey were classified as current drinkers (variable alcoholic_drink = 1). 
Those who reported not having at least one drink any day in the prior month were coded 
as alcoholic_drink = 0. All students surveyed were asked, “During the past 30 days, on how 
many days did you not go to school because you felt you would be unsafe at school or on 
your way to or from school?” The sample in the dataset (ch6_youth_drinking) is limited to 
those students reporting at least “1 day” of missed school.
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  We are 95% confident that the interval (0.38, 0.52) covers p, the true pro-
portion of students who are current drinkers among those who missed at least 
1 day of high school in the previous month because of unsafe conditions. 

 E How do the 99% and 95% confidence intervals compare?

  The 99% confidence interval is wider than the 95% confidence interval. The 
99% confidence interval has a width of 0.18, whereas the 95% confidence inter-
val has a width of 0.14.

 F Write the SAS or Stata code to calculate the 99% and 95% confidence inter-
vals. Check that the output matches the hand calculations in Example 
Problem 6.6—Parts (B) and (D).

In SAS, we can use PROC FREQ to find the confidence intervals. Since our indicator 
of youth drinking has levels 0 and 1, by default SAS will calculate the proportion of the 
lowest level. Using the LEVEL option, we can override the default and specify that the 
proportion we are interested in is the proportion of 1s rather than the proportion of 0s.

PROC FREQ DATA = ch6_youth_drinking;
 TABLES alcoholic_drink / BINOMIAL (LEVEL = "1") 
  ALPHA = 0.01;
RUN;

Binomial Proportion

alcoholic_drink = 1

Proportion 0.4500

ASE 0.0352

99% Lower Conf Limit 0.3594

99% Upper Conf Limit 0.5406

Exact Conf Limits

99% Lower Conf Limit 0.3590

99% Upper Conf Limit 0.5434
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We can see that SAS calculates the 99% confidence interval to be (0.3594, 0.5406), 
and this matches the hand calculation in Example Problem 6.5—Part (B) after 
rounding.

PROC FREQ DATA = ch6_youth_drinking;
 TABLES alcoholic_drink / BINOMIAL (LEVEL = "1");
RUN;

Binomial Proportion

alcoholic_drink = 1

Proportion 0.4500

ASE 0.0352

95% Lower Conf Limit 0.3811

95% Upper Conf Limit 0.5189

Exact Conf Limits

95% Lower Conf Limit 0.3798

95% Upper Conf Limit 0.5218

SAS calculates the 95% confidence interval to be (0.38, 0.52), and this matches the 
hand calculation in Example Problem 6.5—Part (D).

To perform the calculations in Stata, we use the ci command. We need to specify the 
confidence interval (99% and 95%) in the level option.

ci proportions alcoholic_drink, level(99) wald
                                              -- Binomial Wald ---
    Variable |   Obs  Proportion   Std. Err.   [99% Conf. Interval]
-------------+----------------------------------------------------
alcoholic_~k |   200         .45    .0351781   .3593872   .5406128

ci proportions alcoholic_drink, level(95) wald
                                         -- Binomial Wald ---
    Variable |   Obs  Proportion   Std. Err.   [95% Conf. Interval]
-------------+----------------------------------------------------
alcoholic_~k |   200         .45    .0351781   .3810522   .5189478

The 99% confidence interval from the output is (0.36, 0.54) and the 95% confi-
dence interval is (0.38, 0.52). These intervals match the hand calculations in Example 
Problem 6.5—Parts (B) and (D).
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PRACTICE PROBLEM 6.2 

Consider the t-distribution with 21 degrees of freedom.

 A What proportion of the curve lies to the left of t = 2.518?

 B What proportion of the area lies to the right of t = 1.323?

 C What proportion of the area lies between t = −1.721 and t = 2.831?

 D What value of t cuts off the lower 2.5% of the distribution?

PRACTICE PROBLEM 6.3

In the United States, laws mandating seat belt use in cars resulted from findings that 
seat belts can significantly reduce injuries and death during car crashes. Even decades 
after these laws were passed, some drivers and passengers do not wear seat belts while in 
a vehicle. Among a sample of 459 U.S. adults, 395 reported always wearing a seat belt.7 
The dataset for this sample is ch6_seat_belt.

 A Find the point estimate for the true proportion of U.S. adults who always use a seat 
belt.

 B We are interested in determining the one-sided lower limit for seat belt use. To do 
this, construct a 99% one-sided confidence interval for p by hand. 

 C Interpret the interval from Practice Problem 6.3—Part (B). 

 D Construct a 90% two-sided confidence interval for p by hand.

 E Interpret the confidence interval in Practice Problem 6.3—Part (D).

BOX 6.3 DESCRIPTION OF ch6_seat_belt DATASET

The Behavioral Risk Factor Surveillance System (BRFSS) asks each participant, “How 
often do you use seat belts when you drive or ride in a car?” Those who answered “Always” 
received a value of 1 for the variable wear_seat_belt. Those who reported “Nearly always,” 
“Sometimes,” “Seldom,” or “Never” were coded as wear_seat_belt = 0. 
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 F Use a statistical software package to check the confidence intervals calculated in 
Practice Problem 6.3—Parts (B) and (D).

PRACTICE PROBLEM 6.4

We are interested in examining the birthweights of a sample of 247 male babies.3 The 
sample mean is x  = 7.37 lbs., and the sample standard deviation is s = 1.28 lbs. Data 
for this problem are in the dataset ch6_birth_weight.

 A What is the point estimate for μmale, the mean birthweight in pounds among male 
babies?

 B By hand, calculate a 95% confidence interval for the true mean birthweight for 
male babies.

 C Interpret the 95% confidence interval for the true mean birthweight for males.

 D Using SAS or Stata, calculate the 95% confidence interval for the true mean birth-
weight for males. Does the confidence interval match the hand calculation?
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7 One-sample hypothesis testing

This chapter will focus on one-sample hypothesis tests and will include the following 
topics:

• Basics of hypothesis testing
• Confidence intervals and hypothesis tests
• One-sample tests for the mean using software
• Inference for proportions
• One-sample test for proportions using software
• Determining power and calculating sample size

Terms

• critical value
• one-sided test
• p-value
• power

• rejection region
• two-sided test
• type I error
• type II error

Introduction

In the last chapter, we discussed methods of point and interval estimation for param-
eters of various distributions. Often, researchers have preconceived ideas about what 
these parameters might be and wish to test whether the data conform to these ideas. 
Hypothesis testing provides an objective framework for making decisions using proba-
bilistic methods. People can form different opinions by looking at data, but hypothesis 
tests provide a uniform decision-making criterion that is consistent. With hypothesis 
tests, the research question is formulated in a framework by specifying a null hypoth-
esis, H0, and an alternative hypothesis.

In this workbook, we will consistently use H1 to refer to the alternative hypothesis, but 
be aware that it can also be written as HA. In a hypothesis test, we wish to compare the 
relative probabilities of obtaining the sample data under each of these hypothesis cases. 
In other words, hypothesis tests allow us to formally evaluate whether the data are consis-
tent with the null hypothesis. In a one-sample problem, hypotheses are specified about a 
single distribution. In a two-sample problem, two different distributions are compared.
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Basics of hypothesis testing

Hypothesis Testing: The process by which we draw some conclusion about a population 
parameter using information contained in a sample of observations.

• Hypothesis tests are always done under the assumption that the null hypothesis is 
true.

• They ask the question, “Is it likely that I would have observed my test statistic if 
the null hypothesis were true?” If it is likely, then we do not reject the null hypoth-
esis. If it is unlikely, then we have evidence to reject the null hypothesis.

When we conduct a hypothesis test, we perform the following steps:

 1 State the hypotheses (both the null and alternative).
 2 Specify the significance level (α).
 3 Draw a sample of size n.
 4 Compute the test statistic.
 5 Determine the p-value, compare the p-value to the significance level, and decide 

whether to reject or fail to reject H0.
 6 State conclusions regarding the subject matter.

We will go into each of these steps in more detail.

Step 1: State the hypothesis

• Identify the null hypothesis. This is a claim that the population parameter is equal 
to some quantity. For example, if we are interested in testing a mean, we can express 
the null hypothesis in symbols as H0: μ = μ0. The null hypothesis is usually what we 
want to disprove. It is what we don’t believe, which leads to a proof by contradiction.

• Formulate the alternative hypothesis (H1), a statement that contradicts H0. This is 
usually what we do believe, or what we want to believe.

We need to set up the two hypotheses (null and alternative) to cover all possibilities 
for μ. This leads to a choice of three possible sets of null and alternative hypotheses, 
depending on the question we want to answer, as shown in Table 7.1.

Hypothesis tests can be either one-sided (two possible sets of null and alternative 
hypotheses) or two-sided (one possible set of null and alternative hypotheses).

Table 7.1 Null and alternative hypotheses for means

Confidence interval Null Alternative

Two-sided H0: μ = μ0 H1: μ ≠ μ0

One-sided H0: μ ≥ μ0 H1: μ < μ0

One-sided H0: μ ≤ μ0 H1: μ > μ0

Note: There are three sets of null and alternative hypotheses 
for tests for the mean. In a two-sided test, the alterna-
tive hypothesis is that the mean is not equal to the null 
mean. If the test is one-sided, the mean under the alter-
native is either less than or greater than the null mean.
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One-Sided Test: A test in which the values of the parameters being studied under the 
alternative hypothesis are allowed to be on one side of the value of the parameter under 
the null hypothesis, or in one direction. When we look at the values being studied in a 
one-sided test, we consider whether the values are greater than or less than the values of 
the parameter under the null hypothesis, but we don’t consider both cases.

• If the null hypothesis is μ ≥ μ0 and our alternative hypothesis is μ < μ0, here we are 
performing a one-sided test. In our alternative hypothesis, we are examining only 
whether μ is less than μ0 but not whether μ is greater than μ0.

• If the null hypothesis is μ ≤ μ0 and our alternative hypothesis is μ > μ0, here we are 
performing a one-sided test. In our alternative hypothesis, we are examining only 
whether μ is greater than μ0 but not whether μ is less than μ0.

Two-Sided Test: A test in which the values of the parameter being studied are sought 
in two directions (or on two sides), where the values can be greater than or less than the 
value of the parameter under the null hypothesis. This is the case in a scenario where 
the null hypothesis is μ = μ0 and the alternative hypothesis is μ ≠ μ0. In the alternative 
hypothesis, values of μ can be greater or less than μ0. In other words, in a two-sided test, 
we are examining both μ < μ0 and μ > μ0 for the alternative hypothesis.

There are various reasons for choosing a two-sided versus a one-sided test. In practice, 
two-sided tests are much more common. Unless the question implies that a one-sided 
test is more appropriate, a two-sided test should always be used.

• Two-sided tests are also more conservative; the p-value for a two-sided test is gener-
ally twice that of a one-sided test, making it harder to reach the significance level.

Regardless of the chosen option, always state a priori which type of test will be used. 
Once the null and alternative hypotheses are specified, we take a sample and evaluate 
whether the sample is more consistent with the null or with the alternative hypothesis. 
In other words, is the difference between the estimate of a population parameter and 
hypothesized value too large to be attributed to chance alone? Specifically, is the prob-
ability of obtaining the observed estimate or one that is even more extreme under the 
null hypothesis sufficiently small?

In actual practice, it is impossible, using the hypothesis-testing method, to prove 
that the null hypothesis is true. Because of this, we do not accept the null; rather, we fail to 
reject it. This difference in wording may seem trivial, but it is important to keep this in 
mind when interpreting the outcome of the test.

Step 2: Specify the significance level

The significance level of the test is also chosen a priori. By convention, the significance 
level is set to 0.05, or 5%. However, a smaller or larger alpha may be desirable. Other 
significance levels that we may see are 0.10 (10%) or 0.01 (1%). If multiple tests are 
involved, the level of significance for each test may be reduced to account for multiple 
testing (to be discussed later in Chapter 11). It is important to note that, when consid-
ering your conclusions, a distinction must be made between clinical (or scientific) and 
statistical significance because the two terms do not necessarily coincide. Results can be 
statistically significant but clinically unimportant. When sample sizes are large, small 
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differences that are not clinically meaningful can be statistically significant. However, 
statistically nonsignificant results can be an indicator for more research or the need to 
test hypotheses with a larger sample size.

Step 3: Draw sample of size n

The sample is drawn from the general population about which we want to make an 
inference. In practice, the size of the sample may be determined by a variety of con-
straints, from practical to financial.

Step 4: Compute the test statistic

In order to get a p-value and to determine the outcome of the test, we must compute 
the test statistic. The formula for the test statistic will vary, depending on the test being 
used. So far, we have only discussed Z- and t-test statistics, but there are others that are 
applicable in different situations.

In Table 7.2, we see that when we are performing a one-sample test of the mean, we 
have a choice between using a normal test (Z-test) or a t-test. We use Z when σ is known 
and t when we have estimated σ with the sample standard deviation (s).

Let’s assume that we have a scenario in which we know the population standard devia-
tion; a normal test is appropriate. The test statistic Z follows a standard normal distribu-
tion, and we want to evaluate it under H0. That is, how extreme is our statistic, assuming 
that the null hypothesis is true?

We know that if the null is true, 95% of the time, Z should be between −1.96 and 
1.96. Therefore, if Z > 1.96 or Z < −1.96, we assume that the null hypothesis cannot be 
true (since such could happen only with a 5% chance). Thus, we would reject H0 because 
Z has fallen in the rejection region.

Rejection Region: The range of test statistic values for which H0 is rejected.
Finally, the critical value method of hypothesis testing is the general approach in 

which we compute a test statistic and determine the outcome of the test by comparing 
the test statistic to a critical value determined by the significance level of the test.

Table 7.2 One-sample test for the mean

Component Known variance Unknown variance

Test Z-test t-test
Test statistic

Z
x

n

= − µ
σ

0 t
x

s

n

= − µ0

Distribution of test statistic under H0 Standard normal t-distribution with n – 1 df

Confidence interval (two-sided)
x Z

n
±







−1 2α
σ

/ x t
s

n
n

±




− −11

2
, α

Note: There are two cases of the one-sample test for the mean: known variance and unknown variance. 
When the variance is known, we use a Z-test. If the variance is unknown, we use a one-sample t-test.

Abbreviation: df, degrees of freedom.
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Critical Value: The value of a test statistic such that if the outcome is greater than or 
less than that value, the null hypothesis will be rejected. The critical value will change, 
depending on the significance level chosen for the test. Critical values for Z when α = 
0.05 are given in Table 7.3.

Step 5: Compare p-value to α and determine to reject or fail to reject 
the null hypothesis

p-Value: The probability of obtaining the observed estimate, or one that is even more 
extreme, under the null hypothesis.

• The p-value answers the question, “What is the probability of getting as large, or 
a larger, discrepancy?” We compute p-values to assess the strength of the evidence.

• Once the p-value is determined, it is evaluated relative to the a priori selected level 
of significance of α (e.g., 0.05).

• If the p-value is less than α, then we reject the null hypothesis.
• However, if the p-value is greater than α, we fail to reject the null hypothesis.

Types of errors

Four outcomes of the hypothesis test are possible (Table 7.4).

• Two of the possible outcomes result in errors (type I and type II).
• If we fail to reject the null hypothesis and the null hypothesis is true or if we reject 

the null hypothesis when the alternative hypothesis is true, then there is not an error.

Type I Error (rejection error or α error): A false positive, the error that occurs when 
H0 is rejected although H0 is true. It is symbolized by α ≡ P (reject H0 | H0 is true). 
The type I error is usually set by the investigator to be 0.05 or 0.01, depending on the 
significance level of the test.

Type II Error: A false negative, which occurs when we fail to reject H0 when H0 is false. 
It is symbolized by β, where β ≡ P (do not reject H0 | H0 is false). β is associated with a 
particular value in the alternative hypothesis.

Table 7.3 Critical Z values at the 5% level of significance

Null and alternative Rejection criteria

H0: μ = μ0 Reject if |z| > 1.96

H1: μ ≠ μ0

H0: μ ≥ μ0 Reject if z < –1.645

H1: μ < μ0

H0: μ ≤ μ0 Reject if z > 1.645

H1: μ > μ0

Note: The Z-value for the rejection region depends on the choice 
of null and alternative hypotheses and the significance 
level. When α = 0.05, the outcome of the test depends on 
the relationship of the test statistic to z = 1.96 (two-sided) 
or z = 1.645 (one-sided).
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Asymmetry of errors

Conventionally, a type I error is set smaller than a type II error. Because of this, we can 
feel confident about rejecting H0 but not about accepting H0. For example, if α is set 
at 0.05, then the probability of incorrectly rejecting H0 is only 0.05 whereas the prob-
ability of incorrectly accepting H0 is four times as much, 0.2.

We generally want a statistical test that makes α and β as small as possible, but this is a 
difficult goal because as α decreases, β increases, and vice versa. Our general strategy is to 
fix α at some specific level and to use the test that minimizes β or equivalently maximizes 
power. (See the Determining Power and Calculating Sample Size later in the chapter.)

Step 6: State conclusions regarding subject matter

The last step in conducting a hypothesis test is to state conclusions about the results. 
This should be done in the context of the hypothesis being tested and the available data.

Confidence intervals and hypothesis tests

A relationship exists between hypothesis testing and confidence intervals. Hypothesis 
testing uses the observed data to determine whether the sample statistic (e.g., the 
sample mean) could have happened by chance alone under the assumption that the 
hypothesized value is the truth. However, confidence intervals are intervals that contain 
values for the fixed population parameter (e.g., μ) that are plausible based on the data. 
Through their width, confidence intervals convey the amount of available information 
used to estimate a population parameter (e.g., mean) from a sample. Despite the differ-
ences, we should draw the same conclusion from a confidence interval as we would from 
a hypothesis test. In addition to examining the p-value, another way to determine the 
outcome of the hypothesis test is by using the confidence interval. Suppose that we have 
a problem in which we are interested in the population mean. If the null value μ0 is in 
the confidence interval, we will not reject H0 if we perform a hypothesis test. Thus, we 
do not reject the null hypothesis for any value of μ0 that is contained in the confidence 
interval. In contrast, we would reject the null hypothesis for any value of μ0 that is out-
side of the confidence interval.

Table 7.4 Four possible outcomes of a hypothesis test

Truth

Decision Null Alternative

Fail to reject Fail to reject the null and the null 
is true

Fail to reject the null and the alternative is true 
(Type II error, β)

Reject Reject the null and the null is true 
(Type I error, α)

Reject the null and the alternative is true

Note: There are four possible outcomes of a hypothesis test, two of which are erroneous. We can commit a type I or 
type II error if the decision from the test does not align with the truth. It is often hard or impossible to know 
whether an error has been committed.
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One-sample tests for the mean using software

One-sample tests for the mean using SAS

We can use SAS to perform a one-sample test for the mean in addition to or instead of 
doing it by hand. To do so, we use PROC TTEST and the following syntax. (The mean 
under the null hypothesis should be specified in the “H0 =” option unless we want the 
default of 0.)

PROC TTEST DATA = dataset_name H0 = nullmean;
 VAR continuous_var;
RUN;

• For example, if we want to perform a one-sample t-test where μ0 = 7.5, we type the 
following:

PROC TTEST DATA = dataset_name H0 = 7.5;
 VAR continuous_var;
RUN;

• The output gives the following tables as well as a histogram and a Q–Q plot.

The TTEST Procedure
Variable: continuous_var

N Mean Std Dev Std Err Minimum Maximum

100 6.0982 0.9777 0.0978 3.7416 8.6702

Mean 95% CL Mean Std Dev 95% CL Std Dev

6.0982 5.9042 6.2922 0.9777 0.8584 1.1357

DF t Value Pr > |t|

99 –14.34 <.0001

• The test statistic (“t Value”), degrees of freedom (“DF”), and the p-value for the test 
(“P > |t|”) are provided in the third output box.

• Two-sided tests are the default, so if we are interested in a one-sided test, we must 
specify SIDES = U (alternative mean is greater than null) or SIDES = L (alternative 
mean is lower than null) on the PROC TTEST line.

• We can also change the alpha level if we do not want the default of 0.05.
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• The following code will run a one-sided test for the mean at the 0.01 level of sig-
nificance where the null hypothesis is that the mean is less than or equal to 7.5:

PROC TTEST DATA = dataset_name H0 = 7.5 SIDES = U ALPHA = 0.01;
 VAR continuous_var;
RUN;

The TTEST Procedure
Variable: continuous_var

N Mean Std Dev Std Err Minimum Maximum

100 6.0982 0.9777 0.0978 3.7416 8.6702

Mean 95% CL Mean Std Dev 95% CL Std Dev

6.0982 5.8670 Infty 0.9777 0.8251 1.1928

DF t Value Pr > |t|

99 –14.34 1.0000

• The output for a one-sided test looks almost identical in structure to that from a 
two-sided test, but the confidence interval will also be one-sided and will give only 
a lower or upper bound.

One-sample tests for the mean using Stata

Stata can be used in two ways to conduct one-sample tests for the mean: manual input 
of the parameters or with a dataset loaded into the program.

• The first option is to use the calculator function and manually input the sample 
mean, population mean, sample standard deviation or population standard devia-
tion (depending on whether we want a t-test or Z-test), and the alpha level.

• To do so, use the ztesti command for a Z-test and use the ttesti command for a 
t-test.

• Stata outputs both the one-sided and two-sided p-values by default, so there is no 
need to specify a one-sided or two-sided test in the code.

• The default alpha level is 0.05, so the level option can be left out unless a different 
alpha level is desired.

ztesti n mean sigma null mean, level(95)
ttesti n mean std nullmean, level(95)

• For example, if we want to perform a one-sample t-test using a sample of 100 
observations where α = 0.05, x = 6 1. , μ0 = 7.5, and s = 0.98, we type the following:

ttesti 100 6.10 0.98 7.5, level(95)
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The following is the output:

One-sample t test
------------------------------------------------------------------------------
     |   Obs   Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
-  - -  -  -  +-----------------------------------------------------------------------
   x |   100    6.1        .098         .98     5.905547  6.294453
------------------------------------------------------------------------------
    mean = mean(x)                                     t = -14.2857
Ho: mean = 7.5                        degrees of freedom =       99

   Ha: mean < 7.5          Ha: mean != 7.5         Ha: mean > 7.5
Pr(T < t) = 0.0000     Pr(|T| > |t|) = 0.0000    Pr(T > t) = 1.0000

• The output shows test statistic (“t =”) and the degrees of freedom on the right 
side.

• The p-values for two-sided and one-sided tests are provided. “P(T < t)” and “P(T > t)” 
give the one-sided p-values, and “P(|T| > |t|)” gives the two-sided p-value.

• The confidence interval is shown on the right side of the output above the test 
statistic.

The second option is to use a dataset loaded into Stata. In this case, we use the 
ztest or ttest command instead of ztesti or ttesti. This allows Stata to determine the 
sample mean, sample size, and sample standard deviation (only for t-test) directly 
from a continuous variable in a dataset without the need to manually input the 
values.

• The continuous variable in our dataset is specified after the ztest or ttest command.
• Two equal signs separate the name of the continuous variable from the value of the 

null mean.
• For a Z-test, the population standard deviation is also required in the sd option.

ztest continuous_var == nullmean, sd(pop_std) level(95)
ttest continuous_var == nullmean, level(95)

• To run the same one-sample test that we ran previously using the ttesti function, we 
use the following code:

ttest continuous_var == 7.5, level(95)

The output is below:

One-sample t test
------------------------------------------------------------------------------
Variable | Obs      Mean  Std. Err.  Std. Dev. [95% Conf. Interval]
----- - - - - -  + -------------------------------------------------------------------
contin~r | 100  6.098193  .0977677   .9776772    5.9042    6.292185
------------------------------------------------------------------------------
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  mean = mean(continuous_var)                          t = -14.3381
Ho: mean = 7.5                        degrees of freedom =       99

   Ha: mean < 7.5          Ha: mean != 7.5         Ha: mean > 7.5
Pr(T < t) = 0.0000     Pr(|T| > |t|) = 0.0000    Pr(T > t) = 1.0000

• The output from the ttest function is essentially identical to that from the ttesti func-
tion described previously.

• Output from the ztest command is very similar to that from the ttest command.

One-sample z test
------------------------------------------------------------------------------
Variable | Obs      Mean   Std. Err.  Std. Dev. [99% Conf. Interval]
- - - - - -----+-------------------------------------------------------------------
contin~r | 100  6.098193        .15        1.5  5.711818   6.484567
------------------------------------------------------------------------------
    mean = mean(continuous_var)                        z =  -9.3454
Ho: mean = 7.5

   Ha: mean < 7.5         Ha: mean != 7.5            Ha: mean > 7.5
Pr(Z < z) = 0.0000    Pr(|Z| > |z|) = 0.0000     Pr(Z > z) = 1.0000

• The test statistic is shown on the right after “z = .”
• The lines “P(Z < z)” and “P(Z > z)” give the one-sided p-values, and “P(|Z| > |z|)” 

gives the two-sided p-value.

To illustrate the process of a one-sample test of the mean, we will look at an example.

EXAMPLE PROBLEM 7.1

We want to investigate the question, “What is the mean blood calcium level for women 
with hypertension?” We know that blood calcium levels of U.S. residents are normally 
distributed with μ = 9.47 mg/dL and σ = 0.37 mg/dL.1 We have a sample of 487 women 
who have hypertension and whose average blood calcium level is x. Our null hypothesis 
is that the mean calcium level for women with hypertension is the same as that of the 
general U.S. population. The alternative is that the mean calcium level of women with 
hypertension is not the same as that of the general U.S. population. In symbols, we can 
write H0: μ = 9.47 mg/dL and H1: μ ≠ 9.47 mg/dL. We will assume the standard sig-
nificance level of α = 0.05.

 A We will look at three scenarios to see how the test outcomes change depend-
ing on the sample data. What do we conclude if the following is true:

 1 x = 9 48. ?mg/dL
 2 x = 9 52. ?mg/dL
 3 x = 9 41. ?mg/dL
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 1 Our next step is to compute the test statistic. Since we know the population 
standard deviation, we will use a Z-statistic (as opposed to a t-statistic). 
We substitute in our sample mean ( . ),x = 9 48 mg/dL  the hypothesized 
population mean (μ0 = 9.47 mg/dL), the population standard deviation 
(σ = 0.37 mg/dL), and the sample size (n = 487).

 H0 9 47: µ = .  

 H1 9 47: µ ≠ .  

 α = 0 05.  

 Z
x

n

= − = − =µ
σ

0 9 48 9 47
0 37

487

0 60
. .

.
.

  Once we have the value of the test statistic, we can use it to find 
the corresponding p-value. The p-value is the probability that Z is 
greater than 0.60 or less than −0.60. Since the normal distribution is 
symmetric, the probability that Z is greater than 0.60 is the same as 
the probability that Z is less than −0.60. Expressed in symbols, this 
is P(Z > 0.60 or Z < −0.60) = 2 × P(Z > 0.60). From here, we turn to 
the normal distribution table to find the probability that Z is greater 
than 0.60.

 P Z( . ) .> =0 60 0 2743

 2 0 60 2 0 2743 0 5485× > = × =P Z( . ) . .

 p-value = 0 5485.

BOX 7.1 DESCRIPTION OF EXAMPLE PROBLEM 7.1 DATA

The National Health and Nutrition Examination Survey (NHANES) collects laboratory 
measurements on the participants. The blood calcium level is reported in mg/dL. The 
survey also asks, “Have you ever been told by a doctor or other health professional that 
you had hypertension, also called high blood pressure?” Subjects can respond “Yes,” “No,” 
or “Don’t know,” or they can refuse to answer the question. Sex of each participant was 
recorded as either “Male” or “Female.” The sample used for the data is limited to those 
who answered “Yes” to the hypertension question and “Female” to the sex question.
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  Once we have the p-value, we compare it to the significance level to 
determine whether to reject H0. Because p is greater than α, 0.5485 > 
0.05, we fail to reject the null hypothesis. We conclude that there is no 
evidence to suggest that the mean blood calcium level for women with 
hypertension is different from that of the general U.S. population.

 2 Now, let the sample mean be 9.52 mg/dL. We will follow the same 
hypothesis- testing steps as in the scenario in Example Problem 7.1—
Part (A).1 by first stating the null and alternative hypotheses and specify-
ing alpha, then computing the test statistic given the new value of x.

 H0 9 47: µ = .

 H1 9 47: µ ≠ .

 α = 0 05.

 Z
x

n

= − = − =µ
σ

0 9 52 9 47
0 37

487

2 98
. .

.
.

  Next, we find the p-value. The p-value is P(Z > 2.98 or Z < −2.98) = 
2 × P(Z > 2.98). Using the normal distribution table, we need to look 
up the probability that Z is greater than 2.98.

 P Z( . ) .> =2 98 0 0014

 2 2 98 2 0 0014 0 0029× > = × =P Z( . ) . .

 p-value = 0 0029.

  In this scenario, p < α since 0.0029 is less than 0.05. Therefore, we 
reject the null hypothesis. We conclude that the mean blood calcium 
level for women with hypertension is different from that of the general 
U.S. population. Since Z is positive, the mean blood calcium level for 
women with hypertension is higher than that of U.S. residents in general.

 3 Next, we will determine the test statistic in the case where x = 9 41. .mg/dL

 H0 9 47: µ = .

 H1 9 47: µ ≠ .

 α = 0 05.

 
Z

x

n

= − = − = −µ
σ

0 9 41 9 47
0 37

487

3 58
. .

.
.
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  Next, we will determine the p-value. The p-value is P(Z > 3.58 or 
Z < −3.58) = 2 × P(Z > 3.58). Using the normal distribution table, we 
find the following:

 P Z( . ) .> =3 58 0 0002

 2 3 58 2 0 0002 0 0004× > = × =P Z( . ) . .

 p-value = 0 0004.

  In this scenario, p < α since 0.0004 is less than 0.05. Therefore, we 
reject the null hypothesis. We conclude that the mean blood calcium 
level for women with hypertension is different from that of the gen-
eral U.S. population. Since Z is negative in this case, the mean blood 
calcium level for women with hypertension is lower than that of the 
general U.S. population.

 B Now, we will use the confidence interval approach. We can compute a 95% confi-
dence interval in each of the three scenarios in Example Problem 7.1—Part (A) and 
use the confidence intervals to determine whether to reject the null hypothesis.

 P x Z
n

x Z
n

− +






=
− −

1
2

1 2 0 95α α
σ σ

, ./

 
x x x x x± → ± = ± = − +−1 2 1 96

0 37

487
0 03 0 03 0 03α

σ
/ .

.
. ( . , . )

Scenario 95% CI

x = 9 48. mg/dL (9.45, 9.51 mg/dL)

x = 9 52. mg/dL (9.49, 9.55 mg/dL)

x = 9 41. mg/dL (9.38, 9.44 mg/dL)

  What does it mean if the 95% confidence interval based on our sample does 
not include the assumed value for the population parameter (i.e., μ)? It could 
mean that we are in the 5% region of possibilities. Alternatively, it could mean 
that the assumed value of μ is not correct (i.e., the null hypothesis is not cor-
rect). Which is more plausible? It is more plausible that the null hypothesis is 
not correct. So, if the confidence interval does not include 9.47 mg/dL, we will 
reject the null hypothesis in favor of the alternative hypothesis. If the confidence 
interval contains 9.47 mg/dL, we fail to reject the null hypothesis.

Scenario 95% CI Outcome

x = 9 48. mg/dL (9.45, 9.51 mg/dL) Fail to reject
x = 9 52. mg/dL (9.49, 9.55 mg/dL) Reject

x = 9 41. mg/dL (9.38, 9.44 mg/dL) Reject
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  When we calculate confidence intervals, we should not forget to interpret 
the confidence interval in words and to state the conclusion in terms of the sub-
ject matter.

  If x = 9 48. mg/dL:
  We are 95% confident that the interval (9.45, 9.51 mg/dL) covers the true mean 

blood calcium level for women with hypertension. Since this interval contains μ0, we 
conclude that there is no evidence to suggest that the mean blood calcium level for 
women with hypertension is different from that of the general U.S. population.

  If x = 9 52. mg/dL:
  We are 95% confident that the interval (9.49, 9.55 mg/dL) covers the true 

mean blood calcium level for women with hypertension. Since this interval does 
not contain μ0, we conclude that the mean blood calcium level for women with 
hypertension is different from that of the general U.S. population. There is evi-
dence to suggest that the mean blood calcium level for women with hypertension 
is greater than that of U.S. residents as a whole (because the entire interval is higher 
than μ0).

  If x = 9 41. mg/dL:
  We are 95% confident that the interval (9.38, 9.44 mg/dL) covers the true 

mean blood calcium level for women with hypertension. Since this interval does not 
contain μ0, we conclude that the mean blood calcium level for women with hyper-
tension is different from that of the general U.S. population. There is evidence to 
suggest that the mean blood calcium level for women with hypertension is less than 
that of the general U.S. population (because the entire interval is lower than μ0).

EXAMPLE PROBLEM 7.2

Medical residents at a university-affiliated hospital are required to take a cultural com-
petency self-assessment survey. For the population of hospital residents, the distribution 
of survey scores is approximately normal with unknown mean μ and unknown standard 
deviation σ. A sample of 30 residents from this hospital have a mean score x = 85 0.  and 
a standard deviation s = 4.7.

 A Construct a 95% confidence interval for the population mean μ.

  Since σ is unknown, we will use a t-distribution with n – 1 = 30 – 1 = 29 
degrees of freedom.
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  We are 95% confident that the true mean cultural competency self- assessment 
survey score for hospital residents lies within the interval (83.2, 86.8).
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 B At the 0.05 level of significance, test whether the mean cultural competency 
self-assessment survey score for hospital residents is equal to 88.0, the mean 
cultural competency self-assessment survey score for hospital employees. 
What is the p-value of the test?

  First, we will list what we know:
  x = 85 0.
  α = 0.05
  μ0 = 88.0

  We would like to perform a two-sided test where H0: μ = 88.0 and H1: 
μ ≠ 88.0.

 
t

x
s

n

= − = − = − = −µ0 85 0 88 0
4 7

30

3

0 9
3 5

. .
. .

.

  We can use the t table to find the corresponding p-value. Our test statistic fol-
lows a t-distribution with 29 degrees of freedom. From the table, we can determine 
that 2 × 0.0005 < p < 2 × 0.005, which is equivalent to 0.001 < p < 0.01.

 C What do we conclude?

  Since p < α = 0.05, we reject H0 and conclude that the mean cultural com-
petency self-assessment score for hospital residents is not equal to 88.0, the mean 
cultural competency self-assessment score for hospital employees. In fact, there 
is evidence to suggest that the mean cultural competency self-assessment sur-
vey score for hospital residents is lower than that of the general population of 
employees (since t is negative).

 D On the basis of the 95% confidence interval, would you have expected to 
reject or not reject the null hypothesis? Why?

  The null value 88.0 does not lie inside the 95% confidence interval for 
μ (83.2, 86.8), so we would have expected that the null hypothesis would be 
rejected.

PRACTICE PROBLEM 7.1

We are concerned that there is an association between diet and total cholesterol 
levels and would like to investigate the possible association using hypothesis test-
ing. We measured the total cholesterol level, in mg/dL, in a group of people who 
reported eating at fast food or pizza places in the last year. In a sample of 286, the 
mean total cholesterol level was x = 188 30. mg/dL with a standard deviation s = 
40.46 mg/dL.1 In the general population, the total cholesterol levels are normally 
distributed with mean 183.37 mg/dL. Data for this problem are in the dataset 
ch7_cholesterol_diet.
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 A By hand, test the hypothesis that people who report eating at fast food restaurants 
or pizza places in the last year have mean cholesterol levels different from the gen-
eral population. Let α = 0.05.

 B Compute a 95% confidence interval for the true mean cholesterol level among peo-
ple who have eaten at fast food or pizza places in the last year.

 C Compare the results from the hypothesis test with the information available from 
the confidence interval.

 D Write the code to run the appropriate hypothesis test in a statistical package. Check 
the answers to Practice Problem 7.1—Parts (A)–(C) using the output.

Inference for proportions

In the previous section, we conducted one-sample hypothesis tests for the mean. In this 
section, we will discuss the one-sample hypothesis test for a proportion. In Chapter 4, 
we introduced the binomial distribution where X is a random variable that counts the 
number of successes in n independent trials where each trial has probability p of success. 
The normal approximation to the binomial distribution holds when the sample size is 
sufficiently large, meaning that both np and n(1 – p) are greater than or equal to 5.

Using the normal approximation to the binomial, we can say that X follows an 
approximately normal distribution with mean np and standard deviation np p( ).1−  

Thus, Z = −
−

X np

np p( )1
 follows a standard normal distribution with a mean of 0 and a 

standard deviation of 1.
The one-sample hypothesis test for a proportion is used for the estimation of p, the 

true unknown population proportion or probability of outcome. We estimate p by ˆ,p  
which is calculated from a random sample drawn from the population. To calculate ˆ,p  
we divide the observed number of successes by the number of trials performed. In sym-
bols, this is represented by ˆ .p

x

n
=  As a result of the CLT, the sampling distribution of 

BOX 7.2 DESCRIPTION OF ch_cholesterol_diet DATASET

The National Health and Nutrition Examination Survey (NHANES) collects the total 
cholesterol level of participants in mg/dL. The survey also asks, “In the past 12 months, 
did you buy food from fast food or pizza places?” The participant can respond “Yes,” 
“No,” or “Don’t know,” or can refuse to answer the question. The sample in the dataset 
ch7_diet_cholesterol is limited to those who reported buying food from fast food or pizza 
places in the past 12 months.
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p̂ is approximately normal with mean p and standard deviation σ = −p p

n

( )
.

1  Thus, 

Z
p p

p p
n

= −
−

ˆ

( )1
 follows a standard normal distribution.

Hypothesis testing for proportions

A one-sample test for a proportion can be one sided or two sided. The two-sided test 
is the most common, where we are testing the null hypothesis H0: p = p0 versus the 
alternative hypothesis H1: p ≠ p0. After specifying the null and alternative hypotheses, 
we compute the test statistic. The test statistic depends on the value of ˆ,p  p0, and n, 
and follows a standard normal distribution. The test statistic for proportions follows a 
standard normal distribution (instead of a t-distribution) since only one parameter (p) 
needs to be estimated from the data. Note that the estimates of standard deviation used 
in hypothesis testing are different from those used to construct confidence intervals. The 
components of the hypothesis test for proportions are shown in Table 7.5.

There are two methods for computing p-values for the one-sample test for propor-
tions: The normal theory method and the exact method. Both methods have two cases, 
the choice of which depends on the relationship between p̂ and p0. Either p̂ p≤ 0 or 
ˆ ,p p≥ 0  and the formula for the p-value is specific to each case. The equations for calcu-
lating p-values for two-sided, one-sample proportion tests are shown in Table 7.6.

First, decide whether the normal theory method or the exact method is appropriate. 
Then, select the equation that corresponds to the correct relationship between p̂ and p0. 
Use the normal theory method when np > 5 and n(1 – p) > 5. Note that (ϕ) refers to the 
CDF of the standard normal distribution.

Table 7.5 One-sample test for a proportion

Component Formula

Hypotheses H0: p = p0 vs. H1: p ≠ p0

H0: p ≥ p0 vs. H1: p < p0

H0: p ≤ p0 vs. H1: p > p0

Test statistic
Z

p p

p p

n

= −
−

ˆ

( )

0

0 01

Distribution of test statistic under H0 Standard normal

Confidence interval (two-sided)
ˆ

ˆ ( ˆ )
p Z

p p

n
± −




−1
2

1
α

Confidence interval (one-sided)
ˆ

ˆ ( ˆ )
p Z

p p

n
± −




−1

1
α

Note: The components of the one-sample test for proportion are shown. There are 
three sets of null and alternative hypotheses for the test. The Z value in the 
confidence interval depends on whether the test is one-sided or two-sided.
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One-sample tests for a proportion using SAS

We can use PROC FREQ to run a hypothesis test for a proportion. Unfortunately, there 
is no way to do this in SAS unless we have a dataset with a binary variable indicating the 
event. Some other software packages will run a test without an actual dataset as long as 
all of the necessary parameters are specified.

Enter the value of p0 under the null hypothesis in the P = option and the variable 
name after the TABLES statement. The following code will run a one-sample test for 
proportions using the normal theory method.

PROC FREQ DATA = dataset_name;
 TABLES binary_variable / BINOMIAL(P = 0.032);
RUN;

If the exact method is desired, include the EXACT BINOMIAL option. The default 
level of significance is 0.05, but it can be specified using the ALPHA option for a dif-
ferent level of significance.

SAS calculates the proportion p̂ using the lowest level of the variable by default. Thus, 
if we have a binary variable with levels 0 and 1, the proportion will be the proportion with 
binary_variable = 0. In order to get p̂ to be the proportion with the event (proportion where 
binary_variable = 1), we need to add another BINOMIAL statement with a LEVEL option.

PROC FREQ DATA = dataset_name;
 TABLES binary_variable / BINOMIAL(P = 0.032) 
  BINOMIAL (LEVEL = "1") ALPHA = 0.01;
 EXACT BINOMIAL;
RUN;

Table 7.6 Obtaining p-values for two-sided, one-sample proportion tests

Method Relationship between p̂ and p0 Two-sided p-value

Normal p̂ p≤ 0
p = 2 × ϕ(Z) 

p̂ p≥ 0
p = 2 × [1 – ϕ(Z)]

Exact p̂ p≤ 0

=






−













= ×
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Note: The two methods for a one-sample test for proportions are the normal approximation 
method and the exact method. The formula for the p-value depends on the choice of 
method and the value of p̂ relative to p0.
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One-sample tests for a proportion using Stata

Unlike SAS, Stata can run a one-sample test for proportion using a binary input variable 
or using a series of manual inputs. If we have a dataset with a binary variable, we use the 
prtest command. We must specify the binary variable and the proportion under the null 
hypothesis after two equal signs.

prtest binary_var == nullprop, level(95)

If we do not have a dataset with the binary variable and instead want to manually 
input the parameters for the test, we use the prtesti command. We specify the sample size 
(n), sample proportion p̂ (prop), and proportion under the null hypothesis p0 (nullprop).

prtesti n prop nullprop, level(95)

The default alpha level for both versions is 0.05, so the level option can be omitted 
unless a different alpha is desired. For example, we would use the following code if we 
had a sample of 100 subjects (20% of whom had the event) and if it was known that 
25% in the general population had the event. We also want to set α = 0.01.

prtesti 100 0.20 0.25, level(99)

The output is below:

One-sample test of proportion           x: Number of obs =      100
------------------------------------------------------------------------------
  Variable  |   Mean   Std. Err.                [99% Conf. Interval]
-------------+----------------------------------------------------------------
         x  |     .2         .04                .0969668    .3030332
------------------------------------------------------------------------------
    p = proportion(x)                                   z = -1.1547
Ho: p = 0.25

   Ha: p < 0.25             Ha: p != 0.25           Ha: p > 0.25
Pr(Z < z) = 0.1241     Pr(|Z| > |z|) = 0.2482    Pr(Z > z) = 0.8759

The output shows the test statistic z = on the right side. Both the one-sided 
(“P(Z < z)” or “P(Z > z)”) and two-sided (“P(|Z| > |z|)”) p-values are given by default. 
The confidence interval for the proportion is displayed above the test statistic on the 
right side of the output.

EXAMPLE PROBLEM 7.3

Suppose that we would like to examine the relationship between smoking status and 
education level. In particular, we wish to estimate the proportion of adults (p) who did 
not graduate from high school and who are current smokers. To estimate the propor-
tions, we selected a random sample of 500 adults who did not graduate from high 
school. Of the adults sampled, 130 were current smokers.2
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 A Find a point estimate for the true proportion p.

 ˆ .p
x

n
= = =130

500
0 26

 B Construct a 99% confidence interval for p̂ after first checking that the nor-
mal approximation is appropriate.

  For the normal approximation to be valid, we must check that np and n(1 – p) 
are both at least 5.

  np = 500 × 0.26 = 130 > 5 and n(1 – p) = 500(1 – 0.26) = 370 > 5. 
Therefore, the normal approximation is appropriate.

  The 99% confidence interval is
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 C Interpret the confidence interval.

  We are 99% confident that the interval (0.21, 0.31) captures the true 
proportion of current smokers among adults who did not graduate from high 
school.

  We do not know the true value of p for this population, but we do know 
that 16% of adults are current smokers. We would like to know whether the 
proportion of adults who did not graduate from high school and who smoke 
is the same as the proportion of adults who smoke in the general population. 
Since we are concerned with deviations that could occur in either direc-
tion, conduct a two-sided test at the 0.01 level of significance. Use a normal 
approximation.

BOX 7.3 DESCRIPTION OF EXAMPLE PROBLEM OF 7.3 DATA

The Behavioral Risk Factor Surveillance System (BRFSS) asks each participant, “Have you 
smoked at least 100 cigarettes in your entire life?” Those who answer “Yes” are asked the 
follow-up question, “Do you now smoke cigarettes every day, some days, or not at all?” 
The response options are “Every day,” “Some days,” “Not at all,” “Don’t know/Not sure,” 
or “Refused.” Subjects who report smoking at least 100 cigarettes in their lifetime and 
who say that they currently smoke every day or some days are classified as current smok-
ers. Education level is ascertained from the question, “What is the highest grade or year of 
school you completed?” Those who report “Never attended school or only kindergarten,” 
“Grades 1 through 8 (Elementary),” or “Grades 9 through 11 (Some high school)” are clas-
sified as not having graduated from high school. The sample is limited to those who did 
not graduate from high school.
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 D What are your null and alternative hypotheses?

 H p0 0 16: = .

 H p1 0 16: ≠ .

 E What is the value of your test statistic?

 Z = −
−

= −
−

=
ˆ

( )

. .

. ( . )

.p p

p p

n

0

0 01

0 26 0 16

0 16 1 0 16
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0 10

0..
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016
6 10=

 F Draw a conclusion using the critical value method.

  The critical Z value is 2.58 when α = 0.01.
  Since z = 6.10 > 2.58, we reject the null hypothesis.

 G What is the distribution of your test statistic and the p-value of the test?

  The test statistic follows a standard normal distribution. To calculate the 
p-value of the test, we use the code in Table 7.7.

 p P Z-value = × > = × × = ×− −2 6 10 2 5 30 10 1 06 1010 9( . ) ( . ) .

 H Do you reject or fail to reject the null hypothesis?

  Because the p-value < α = 0.01, we reject the null hypothesis.

 I What do you conclude?

Table 7.7 p-value calculation for Example Problem 7.3

Using SAS Using Stata

SAS Code Stata Code
DATA g;
 p-value = 2*(1 - PROBNORM(6.10));
RUN;

PROC PRINT DATA = g;
RUN;

di 2*(1 - (normprob(6.10)))

SAS Output Stata Output

Obs p-value

1 1.0607E-9

1.061e-09

Note: The table shows the code and output used to find the p-value for Example Problem 7.3 Part (G).
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  We have statistically significant evidence that the proportion of current 
smokers among adults who did not graduate from high school is not equal to 
the proportion of current smokers in the general population. There is evidence 
to suggest that the proportion of smokers among adults who did not graduate 
from high school is higher than the proportion of smokers in the general adult 
population (the test statistic is positive).

 J Does the confidence interval contain p0? Would you expect it to?

  The confidence interval does not contain the null value p0 = 0.16, and we 
would not expect it to since we reject the null hypothesis.

PRACTICE PROBLEM 7.2

Suppose that we are interested in investigating the prevalence of regular secondhand 
smoke exposure in the United States and its association with race. In particular, we wish 
to estimate the proportion of African American children between ages 3 and 11 who 
are regularly exposed to secondhand smoke. To do this, a random sample of 600 African 
Americans aged 3 to 11 years was chosen, and of the 600 children, 420 were regularly 
exposed to secondhand smoke.

 A Find a point estimate for the true proportion p.

 B Construct a 95% confidence interval for p after first checking that the normal 
approximation is appropriate.

 C Interpret the confidence interval.
  Although we do not know the true value of p for this population, we know 

that in the United States, 40% of children between ages 3 and 11 are regularly 
exposed to secondhand smoke according to the CDC.3 We would like to know 
whether the proportion of African American children regularly exposed to sec-
ondhand smoke is the same as that of the general population. Conduct a two-
sided test at the 0.05 level of significance using the normal approximation.

 D What are the null and alternative hypotheses?

 E What is the value of the test statistic?

 F Draw a conclusion using the critical value method.

 G What is the distribution of the test statistic?
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 H What is the p-value of the test?

 I Do we reject or fail to reject the null hypothesis? What do we conclude?

 J Does the confidence interval contain p0? Would we expect it to?

Determining power and calculating sample size

We previously introduced the two types of errors that can arise from an incorrect con-
clusion of a hypothesis test. A type I error, called α, occurs when we reject H0 although 
H0 is true. The type I error rate is usually set by the investigator. A type II error, denoted 
as β, occurs when we fail to reject H0 although H0 is false. The complement of the type II 
error is power.

Power: The probability of rejecting the null hypothesis when it is false. Mathematically, 
power = P (reject H0 | H0 is false) = 1 – β.

• In practice, we would like the power to be as high as possible; power levels are typi-
cally set at 80% or 90%.

• The power of a test tells us how likely it is that a statistically significant difference 
will be detected based on a finite sample size (n) if the alternative hypothesis is true. 
For example, in the case of a test for the mean, power indicates how likely it is that 
we will detect a statistically significant difference based on the sample size if the 
true mean differs from the mean under the null hypothesis.

• Power is often used to plan a study before any data have been obtained. It is impor-
tant to make sure that the study is not underpowered, meaning that a null finding 
is due to having too few observations.

• If the power is too low, there is little chance of finding a significant difference even 
if real differences exist between the true mean and the null mean.

• Inadequate sample size is usually the cause of low power. However, obtaining a 
larger sample is not the only aspect that contributes to increased power.

Power depends on four factors: The distance between real μ and the hypothesized μ0, 
the sample size, the standard deviation, and the type I error rate. The power of a test 
increases as the following occur:

 1 |μ0 – μ1| increases
 2 n increases
 3 σ decreases
 4 α increases

Calculating power

When we calculate power, we assume the standard deviation is known without having 
any data to estimate it. Like a hypothesis test, power calculation requires that specified 
steps be performed.
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Power is the area under the curve of a normal distribution with the mean equal to 
the specified alternative that falls into the rejection region. The formulas for calculating 
power are in Table 7.8. Figure 7.1 illustrates the case if μ1 > μ0. In this situation, the 
area under the alternative curve to the night of the cut-off is the power, or 1 – β, shown 
at the bottom of the figure. Figure 7.2 shows the opposite situation, where μ1 < μ0. We 
can see from the bottom of the figure that the area under the alternative curve to the 
right of the cut-off is β; the area to the left of the cut-off is power

Table 7.8 Power formulas for one-sample tests

Situation Type Power
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Note: The power of a one-sample test for a mean depends on alpha, the null and alternative 
means, the sample size, and the standard deviation. For a one-sample test for a propor-
tion, the power depends on the alpha, the null and alternative proportions, and the 
sample size. Before computing power for a proportion, check np0(1 – p0) ≥ 5.

Fail to reject null Reject null

Cutoff
Null mean = µ0

1 – α

1 – ββ

α

Alternative mean = µ1

P(do not reject H0|H0 is true)

Type II error
P(do not reject H0|H0 is false)

Type I error
P(reject H0|H0 is true)

Power
P(reject H0|H0 is false)

Figure 7.1  Power diagram for case where μ1 > μ0. The figure illustrates the four possible outcomes 
of the hypothesis test using normal curves. When μ1 > μ0, the power of a test is the area 
under the curve to the right of the test statistic under the alternative mean.
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The 10 steps to finding the power of a test are below:

 1 State the null and alternative hypothesis.
 2 Determine whether the test will be one sided or two sided.
 3 Specify the significance level (α).
 4 Write down the information you are given in the problem.
 a n—sample size
 b μ0—mean under the null hypothesis
 c μ1—mean under the alternative hypothesis
 d σ—standard deviation
 5 Find the corresponding Z value for the significance level of your test.
 6 Determine the cutoff value equivalent to the Z value in Step 5 under the null 

hypothesis.
 7 Use the cutoff from Step 6 to find the Z-statistic under the alternative hypothesis.
 8 Specify β.
 a If μ1 > μ0, the area under the curve to the left of the test statistic is β.
 b If μ1 < μ0, the area under the curve to the right of the test statistic is β.
 9 Calculate power = 1 – β.
 10 Interpret the power in words.

EXAMPLE PROBLEM 7.4

Participants are enrolled in a health coaching program for eight weeks to try to improve 
physical health and overall wellness. At the end of the trial period, the participants take 
a personal health improvement survey. The mean health improvement survey score for 
all participants in the program is 74.4 with a standard deviation of 10.3. We have rea-
son to think that one of the health coaches (Coach A) who participated in an additional 

Fail to reject nullReject null

Type I error
P(reject H0|H0 is true)

Power
P(reject H0|H0 is false)

Null mean = µ0

Cutoff
P(do not reject H0|H0 is true)

1 – αα

Type II error
P(do not reject H0|H0 is false)

Alternative mean = µ1

1 – β β

Figure 7.2  Power diagram for case where μ1 < μ0. The figure illustrates the four possible outcomes 
of the hypothesis test using normal curves. When μ1 < μ0, the power of a test is the area 
under the curve to the left of the test statistic under the alternative mean.
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training program will have subjects who have higher health improvement survey scores 
than the overall program average. We know that Coach A trains 30 subjects, but, among 
a sample of five of those subjects, the average health improvement survey score is 80.1. 
We want to test the hypothesis that subjects who work with Coach A have higher health 
improvement survey scores compared with the rest of the program participants. We are 
also interested to know what the power of the test is at the 0.05 level of significance.

 A What is the null hypothesis? What is the alternative hypothesis?

  The null hypothesis is that the average health improvement survey score 
among Coach A’s trainees is less than or equal to the overall program average. 
We want to test this against the alternative hypothesis that the mean health 
improvement survey score among Coach A’s trainees is greater than the overall 
program average.

 B Would you conduct a one-sided or two-sided test?

  In this situation, a one-sided test is appropriate.

 C What would be the power of the test? Interpret the power in words.

  To find the power of the test, we use the following steps for finding the 
power of a test. We have a case where μ1 > μ0.

10 steps to finding the power of a one-sample, one-sided test

 1 Write down the null and alternative hypotheses.

 H0 74 4: µ ≤ .

 H1 74 4: µ > .

 2 Is your test one sided or two sided?
  Here, a one-sided test is appropriate based on the hypotheses.

 3 Specify alpha.

 α = 0 05.

 4 List other parameters that you are given in the problem.

 n = = = =5 74 4 80 1 10 30 1, . , . , .µ µ σ

 5 Find the corresponding Z value for the significance level of your test.

 z = 1 645.

 6 Determine the cutoff value equivalent to the Z value in Example Problem 7.4—
Part (C) Step 5 under the null hypothesis. In other words, for what values of x  
would you reject the null hypothesis?
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 Z
x

n

x
x x= − → = − → = × + →µ

σ
0 1 645

74 4
10 3

5

1 645 10 3

5
74 4.

.
.

. .
. == 81 98.  

is the cutoff.
  We would reject the null hypothesis if the mean among Coach A’s trainees is 

greater than 81.98.

 7 Use this same cutoff to find the Z statistic under the alternative hypothesis.

 Z
x

n

= − = − = =µ
σ

1 81 98 80 1
10 3

5

1 88

4 6
0 41

. .
.

.

.
.

 8 The area under the curve to the right of the test statistic is 1 – β, since μ1 > μ0. 
Specify β.

  Figure 7.3 shows the power diagram when Z = 0.41 and μ1 > μ0.

 β φ= =( . ) .0 41 0 659

 9 Power is 1 – β. Specify the power.
  Power = 1 – 0.659 = 0.341

 10 Interpret the power in words.
  The power is 34.1% to detect a mean health improvement survey score 

greater than 74.4 under the alternative of 80.1 with a sample size of 5.

 D How could you increase the power?

  Increase μ1 − μ0 (difference between null and alternative mean).
  Increase n (sample size).
  Decrease s (standard deviation).

  Increase α (significance level of the test).

β = 0.659

Z = 0.41

1 – β = 0.341

–2 20

Figure 7.3  Power diagram for Problem 7.6—Part (C). The Z value under the alternative hypoth-
esis is Z = 0.41. In this case μ1 > μ0, so the area under the curve to the right of 0.41 is equal 
to the power, or 1 – β. β is the area that lies to the left of 0.41.
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Calculating sample size

We frequently need some idea of an appropriate sample size before a study begins. With 
sample size calculations, we want to know what sample size is needed to be able to 
detect a significant difference with probability 1 – β, given a set level of significance α 
and a true alternative mean expected to be μ1. That is, we want to solve for n given α, 
β, σ, μ0, and μ1.

It is also necessary to know whether the test will be one sided or two sided, as the 
sample size for a two-sided test is always larger than the sample size for a one-sided test. 
When performing a sample size calculation, it is important to always round up to the 
nearest whole number. Just as with power calculations, many factors affect the sample 
size. The sample size increases as the following occur:

 1 σ increases
 2 α decreases
 3 power = 1– β increases
 4 |μ1 − μ0| decreases

The formulas for sample size are shown in Table 7.9.

Table 7.9 Sample size formulas for one-sample tests

Situation Type Sample size

Mean One-sided

n
Z Z

=
+
−
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Note: The sample size for a one-sample test for a mean depends on alpha, power, the null and alterna-
tive means, and the standard deviation. An alternative method allows us to find the sample size 
from the sample standard deviation, width of the confidence interval, and alpha level. For a 
one-sample test for a proportion, the sample size depends on alpha, power, and the null and 
alternative proportions.
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EXAMPLE PROBLEM 7.5

Let’s continue with the situation introduced in Example Problem 7.4, the health- 
coaching intervention. We would like to find the sample size needed to detect a signifi-
cant difference in health improvement survey scores at various levels of power.

 A How many health improvement survey scores do we need from participants 
who had Coach A in order to have 90% power for the hypothesis test?

  We have a one-sided test at the α = 0.05 level of significance with 90% 
power, so we will use Z1−α = 1.645 and Z1−β = 1.28. Once again, μ0 = 74.4, μ1 = 
80.1, and σ = 10.3.

 n
Z Z

=
+

−








 = +− −[ ]

( )

[ . . ] .

(
1 1

1 0

2
1 645 1 28 10 3

8
α β σ

µ µ 00 1 74 4
27 9

2

. . )
.

−






=

  We should always round the sample size up, so we need health improvement 
survey scores from 28 participants who trained with Coach A.

 B Suppose that we are willing to have 80% power. What value does this 
change?

  Changing to 80% power means that β changes from 0.10 to 0.20.

 C How will the sample size change?

  For β = 0.20, Z1−β = 0.84.

 n
Z Z

=
+

−








 = +− −[ ]
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(
1 1

1 0

2
1 645 0 84 10 3
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α β σ

µ µ 00 1 74 4
20 2

2

. . )
.

−






=

Thus, in order to have 80% power, we will need health improvement survey scores 
from 21 participants who trained with Coach A.

Approximate sample size based on confidence interval width

It is also possible to estimate the required sample size, given how wide we would like 
the confidence interval to be. Suppose that we wish to estimate the mean of a normal 
distribution with sample variance s2 and require the two-sided 100%(1 – α) confidence 
interval for μ to be no wider than a set number of units (L).

The number of subjects needed is approximately n Z
s

L
= −4

1
2

2
2

2α .
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Power and sample size for one-sample tests for the mean using SAS

We can calculate power and sample size for a one-sample test for the mean using PROC 
POWER in SAS. The SIDES = U option specifies that it is a one-sided test (U [upper] 
indicates that the alternative mean is higher than the null; L [lower] indicates that the 
alternative is lower than the null). For a two-sided test, omit the SIDES option.

Enter the null mean value, sample mean, standard deviation, desired power, alpha 
(not necessary as default is 0.05), and sample size. PROC POWER can calculate either 
the sample size or the power, depending on which value is set to missing. For example, 
the following will calculate the total number of subjects needed for a one-sided, one-
sample test for the mean at 90% power:

PROC POWER;
  ONESAMPLEMEANS TEST = T
  SIDES = U
  NULLMEAN = 11.79
  MEAN = 12.29
  STDDEV = 0.85
  POWER = 0.90
  ALPHA = 0.05
  NTOTAL = . ;
RUN;

The POWER Procedure
One-Sample t Test for Mean

Fixed Scenario Elements

Distribution Normal

Method Exact

Number of Sides U

Null Mean 11.79

Alpha 0.05

Mean 12.29

Standard Deviation 0.85

Nominal Power 0.9

Computed N Total

Actual Power N Total

0.908 27

The “Computed N Total” box provides the sample size in the “N Total” column. If, 
instead, we would like to calculate the level of power that corresponds to a certain num-
ber of subjects, we can set the POWER = option to missing.
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PROC POWER;
  ONESAMPLEMEANS TEST = T
  SIDES = U
  NULLMEAN = 11.79
  MEAN = 12.29
  STDDEV = 0.85
  POWER = .
  ALPHA = 0.05
  NTOTAL = 20;
RUN;

The POWER Procedure
One-Sample t Test for Mean

Fixed Scenario Elements

Distribution Normal

Method Exact

Number of Sides U

Null Mean 11.79

Alpha 0.05

Mean 12.29

Standard Deviation 0.85

Total Sample Size 20

Computed Power

Power

0.813

The “Computed Power” box shows the power of the test.

Power and sample size for one-sample tests for the mean using Stata

The power command with the onemean option will perform power or sample size calcula-
tions for a one-sample test for a mean. The mean under the null hypothesis is specified 
first and then the alternative mean. Enter the standard deviation in sd( ). The onesided 
option will produce a calculation assuming a one-sided hypothesis test. For a two-sided 
test, omit the onesided option. If we would like a sample size calculation, specify the 
power level in power( ).

power onemean 11.79 12.29, power(0.9) sd(0.85)
power onemean 11.79 12.29, power(0.9) sd(0.85) onesided

The output below is for a one-sided test:
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Estimated sample size for a one-sample mean test
t test
Ho: m = m0  versus  Ha: m > m0

Study parameters:

        alpha =    0.0500
        power =    0.9000
        delta =    0.5882
           m0 =   11.7900
           ma =   12.2900
           sd =    0.8500

Estimated sample size:

            N =        27

The output shows the null and alternative hypotheses at the top and the input param-
eters below. The estimated sample size is shown at the bottom of the output. For power 
calculations, specify the sample size in n( ).

power onemean 11.79 12.29, n(20) sd(0.85)
power onemean 11.79 12.29, n(20) sd(0.85) onesided

The output below is for a one-sided test:

Estimated power for a one-sample mean test
t test
Ho: m = m0  versus  Ha: m > m0

Study parameters:

        alpha =    0.0500
            N =        20
        delta =    0.5882
           m0 =   11.7900
           ma =   12.2900
           sd =    0.8500

Estimated power:

        power =    0.8134

The estimated power is shown at the bottom of the output.

Power and sample size for one-sample tests for a proportion using SAS

We can also use PROC POWER to do power and sample size calculations for tests for 
a proportion. The ONESAMPLEFREQ option specifies that the test is a one-sample 
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test for a proportion, and the METHOD = normal option indicates that the normal 
approximation will be used.

Specify the NULLPROPORTION (p0) and the PROPORTION (p1), also as either 
the level of power or the total sample size. The option set to missing will be calculated. 
The SIDES = option can also be added if we are interested in conducting a one-sided 
test. For example, the following sample codes calculate the power (when n = 500) or 
sample size (when power = 80%) for a two-sided, one-sample test for proportion where 
p0 = 0.25 and p1 = 0.30.

PROC POWER;
 ONESAMPLEFREQ TEST = z METHOD = normal
    NULLPROPORTION = 0.25
     PROPORTION = 0.30
     NTOTAL = 500
     POWER = .;
RUN;

The POWER Procedure
Z Test for Binomial Proportion

Fixed Scenario Elements

Method Normal approximation

Null Proportion 0.25

Binomial Proportion 0.3

Total Sample Size 500

Variance Estimate Null Variance

Number of Sides 2

Alpha 0.05

Computed Power

Power

0.722

The power level is shown in the bottom box labeled “Computed Power.” If we need 
to calculate a sample size rather than a power level, we leave the NTOTAL option blank.

PROC POWER;
 ONESAMPLEFREQ TEST = z METHOD = normal
     NULLPROPORTION = 0.25
     PROPORTION = 0.30
     NTOTAL = .
     POWER = 0.80;
RUN;
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The POWER Procedure
Z Test for Binomial Proportion

Fixed Scenario Elements

Method Normal approximation

Null Proportion 0.25

Binomial Proportion 0.3

Nominal Power 0.8

Variance Estimate Null Variance

Number of Sides 2

Alpha 0.05

Computed N Total

Actual Power N Total

0.800 610

The sample size needed is shown in the “Computed N Total” output box in the “N 
Total” column.

Power and sample size for one-sample tests for a proportion using Stata

To perform power or sample size calculation for a one-sample test for a proportion, we 
use the power command with the oneproportion option. Specify the null proportion and 
the alternative proportion after the oneproportion option. For a power calculation, input 
the sample size in n( ). If we want another alpha level besides 0.05, we can add an alpha 
option to the code. The default is a two-sided test. If a one-sided test is desired, use the 
onesided option.

power oneproportion 0.25 0.30, n(500) alpha(0.01) onesided
power oneproportion 0.25 0.30, n(500)

The output below is for a two-sided test:

Estimated power for a one-sample proportion test
Score z test
Ho: p = p0  versus  Ha: p != p0

Study parameters:

        alpha =    0.0500
            N =       500
        delta =    0.0500
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           p0 =    0.2500
           pa =    0.3000

Estimated power:

        power =    0.7217

The power of the test is shown at the bottom of the output in the “power =” line. For 
a sample size calculation, we omit the n( ) statement and instead specify the power level. 
Otherwise, the structure of the command is identical to the power calculation command. It 
is possible to omit the power( ) statement if we wish to accept the default power level of 80%.

power oneproportion 0.25 0.30, alpha(0.01) power(0.9) onesided
power oneproportion 0.25 0.30, power(0.9)

The output is below is for a two-sided test:

Estimated sample size for a one-sample proportion test
Score z test
Ho: p = p0  versus  Ha: p != p0

Study parameters:

        alpha =    0.0500
        power =    0.9000
        delta =    0.0500
           p0 =    0.2500
           pa =    0.3000

Estimated sample size:

            N =       825

The necessary sample size is on the bottom line of the output.

RECAP

• Always draw a conclusion for each hypothesis test in context, and state the direc-
tion when you reject the null hypothesis. For example, “The mean cholesterol 
level in men with heart disease is significantly higher than that of the disease-
free population.”

• Be sure to follow all of the steps for a hypothesis test, including stating the null 
and alternative hypotheses. This is important to do even if the question does not 
specifically ask for H0 and H1.

• Always interpret the confidence interval in words.
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PRACTICE PROBLEM 7.3

The Gini index is a measure of income inequality in a location, ranging from a value 
of 0 (total equality) to 1 (total inequality). According to the American Community 
Survey (ACS) 2009 to 2014 estimates,4 the mean Gini index among counties in the 
United States was 0.442 with a standard deviation σ = 0.036. We are interested 
in determining whether the mean Gini index of counties in southern states is dif-
ferent from the mean Gini index in the country as a whole. A random sample of 
50 counties in southern states has a mean Gini index of 0.460. Assume α = 0.05 for 
all analyses.

 A What are the null and alternative hypotheses that we would like to test?

 B Perform the hypothesis test.

 C What is the power of the test in Practice Problem 7.3—Part (A)?

 D What is the minimum sample size necessary to have 80% power?

 E Suppose that we take a random sample of 100 counties and the mean Gini index is 
0.451. Would we reject or fail to reject the null hypothesis?

 F Suppose that we take a random sample of 100 counties and the mean Gini index is 
0.448. Calculate a 95% confidence interval. On the basis of this interval, would we 
reject or fail to reject the null hypothesis?

 G What is the power of the test in Practice Problem 7.3—Part (F)?

PRACTICE PROBLEM 7.4

A national survey from 2014 reports that 39% of U.S. adults had received a flu shot 
or a flu vaccine sprayed in the nose in the past 12 months.2 We want to conduct a 
study to test whether the proportion of men who received flu vaccinations is the same 
as the proportion of all adults who received flu vaccinations in the general popula-
tion. We have data from a sample of 200 men, and 88 of the 200 men reported 
receiving a flu vaccine in the past 12 months. Assume α = 0.05. The data are in the 
file ch7_flu_shot.
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 A We would like to conduct a one-sample, two-sided hypothesis test. What are the 
null and alternative hypotheses?

 B Find a point estimate for the true proportion p of men who received the flu vaccine 
in the past 12 months.

 C What are the value and distribution of the test statistic?

 D What is the p-value of the test?

 E Do we reject or fail to reject the null hypothesis? What do we conclude?

 F Write the SAS or Stata code to perform the hypothesis test. Then, check that the 
output matches the hand calculations.

 G What is the 95% confidence interval for p?

PRACTICE PROBLEM 7.5

The birthweight for the population of babies born in the United States has a mean μ = 
7.32 lbs.1 We are interested in determining whether there is an association between 

BOX 7.4 DESCRIPTION OF ch7_ flu_shot DATASET

The Behavioral Risk Factor Surveillance System (BRFSS) asks each participant, “During the 
past 12 months, have you had either a flu shot or a flu vaccine that was sprayed in your nose? (A 
new flu shot came out in 2011 that injects vaccine into the skin with a very small needle. It is 
called Fluzone Intradermal vaccine. This is also considered a flu shot.)” Participants can answer 
“Yes,” “No,” or “Don’t know,” or they can refuse to respond. Those who respond “Yes” are given 
a value of flu_shot = 1, and those who respond “No” are coded flu_shot = 0. All respondents are 
categorized as male or female sex. The sample in the dataset ch7_flu_shot is limited to those 
who indicate they are of male sex and report receiving a flu vaccination in the past 12 months.
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babies’ birthweight and mothers’ age at birth using a sample of birthweights from 100 
babies born to mothers age 35 and older. In the sample, the sample mean birthweight 
is x = 7 23. .,lbs  and the sample standard deviation is s = 1.35 lbs. Assume α = 0.05 for 
the analyses. Data for this problem are in the dataset ch7_birth_weight.

 A By hand, test the hypothesis that babies born to mothers age 35 and older have 
mean birthweights different from the general population.

 B Compute a 95% confidence interval for the true mean birthweight among babies 
born to mothers age 35 and older.

 C Compare the results from the hypothesis test with the information available from 
the confidence interval.

 D Write the SAS or Stata code that will run the appropriate hypothesis test. Check the 
answer to Practice Problem 7.5—Parts (A) and (B) against the output.

PRACTICE PROBLEM 7.6

In the United States in 2014, 9.5% of residents aged 65 and older were living in pov-
erty, according to the ACS.5 We would like to determine whether the proportion of resi-
dents aged 65 and older living in poverty in our city is different from the national 
population. Of 400 local seniors surveyed, 28 were living in poverty. In all analyses, we 
will assume α = 0.05.

 A Compute the power of the test by hand.

 B What sample size would be needed if we want 80% power? Compute n by hand.

BOX 7.5 DESCRIPTION OF ch7_birth_weight DATASET

The National Health and Nutrition Examination Survey (NHANES) conducted by the 
Centers for Disease Control and Prevention (CDC) asks caregivers of children aged 15 or 
younger, “How much did he/she weigh at birth?” Responses are recorded in pounds and 
ounces. We converted ounces to fractions of a pound to create the variable birth_weight 
(birthweight in pounds). In order to determine the age of the mother at the time of the 
child’s birth, the respondents are asked the question “How old was {participant’s name} 
biological mother when {she or /he} was born?” The sample in the dataset ch7_birth_weight 
is limited to those whose mothers were at least aged 35 at the time of birth.
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 C Write and run the SAS or Stata code to determine the power of the test, and check 
your answer to Practice Problem 7.6—Part (A) against the output.

 D Check the sample size calculation in Practice Problem 7.6—Part (B) using SAS or 
Stata.
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Lab C: One-sample hypothesis testing, 
power, and sample size

PRACTICE PROBLEM C.1

Along with exercise, consuming a healthy diet is a key part of maintaining a healthy 
weight. The weights of U.S. men aged 18 or older who self-report having an excellent, 
very good, or good diet were measured.1 In a sample of 216 adult men who self-report 
having an excellent, very good, or good diet, the mean weight is 83.74 kg with a stan-
dard deviation of 19.98 kg. The data can be found in the labc_diet_weight file.

 A Assume that the distribution of weight in the general population is normal. If the 
mean weight in the general population of adult males is 89.02 kg, test the hypoth-
esis that the group of men who report excellent, very good, or good diets have 
weights different from those in the general population.

 B What is the 95% confidence interval for the true mean weight among men who 
report an excellent, very good, or good diet?

 C Use the confidence interval to make a conclusion about whether adult men with 
excellent, very good, or good diets have weights different from those of the general 
population of adult males.

BOX C.1 DESCRIPTION OF labc_diet_weight DATASET

The National Health and Nutrition Examination Survey (NHANES) asks, “In general, 
how healthy is your overall diet?” The response is a seven-level categorical variable with 
options “Excellent,” “Very Good,” “Good,” “Fair,” “Poor,” “Don’t know,” and “Refused.” 
Those who reported having an excellent, very good, or good diet were classified as eating a 
healthy diet ( good_diet = 1). Respondents who selected “Fair” or “Poor” were given a value 
of good_diet = 0. The body weight of each respondent was also measured during the survey 
and was captured in the variable weight. The sample in the dataset labc_diet_weight was 
additionally limited to those who selected “Male” as their gender.
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PRACTICE PROBLEM C.2

In 2014, the age-adjusted percentage of women who had ever been diagnosed with breast 
cancer was 1.3%.2 Suppose that among 10,000 black women, 90 reported having been 
diagnosed with breast cancer. Since we are concerned about racial variations in cancer preva-
lence, we wish to determine whether there is a difference between the proportion of black 
women who have been diagnosed with breast cancer and the proportion in the general 
population. The data are in the file labc_breast_cancer. The variable cancer is 1 for women who 
reported ever being diagnosed with breast cancer and 0 for women who did not.

 A State the hypothesis to use in answering this question.

 B Is a one-sided or two-sided test appropriate here?

 C Perform the hypothesis test using a statistical package. What is your conclusion?

 D Interpret the confidence interval for the true proportion of black women who have 
received a diagnosis of breast cancer.

PRACTICE PROBLEM C.3

We know that the proportion of women who have ever been diagnosed with breast can-
cer in the general population is 0.013 or 1.3%. We think that a meaningful difference 
in proportion of women who have ever been diagnosed with breast cancer is | p0 − p1| = 
0.02, or two percentage points difference. For all calculations, let α = 0.05.

 A What sample size is needed to have 90% power to detect this difference, assuming 
that we use a two-sided test?

 B If we have a set sample size of 280 subjects, how much power does the test have?

PRACTICE PROBLEM C.4

We created a series of materials with the goal of increasing health literacy in a medically 
underserved population, and we enrolled participants to see whether there is a change 
in their health literacy before and after using the materials. Ten participants took a 
health literacy assessment before and after receiving the materials. The mean change 
in health literacy score on the assessment was 3.50 points with a standard deviation of 
4.12 points. We would now like to implement this health literacy intervention again.
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 A Let μd be the true mean difference in the health literacy assessment score before and 
after the intervention. How many participants are needed to have a 90% chance 
of detecting a significant difference using a one-sided test with a significance level 
of 5%? Assume that the true mean and standard deviation of the difference in the 
health literacy assessment score are the same as observed in the initial study of 
10 subjects.

 B Suppose that the sample size is set at 13 participants. What is the probability that 
we will be able to reject H0 using a one-sided test at the 5% level if the true mean 
and standard deviation of the health literacy score difference are the same as in the 
initial study of 10 subjects?

 C Suppose that we would like to do the test with 90% power but would like to 
perform a two-sided test as opposed to a one-sided test. How many participants 
would be needed? Are more or fewer needed compared to those needed for a 
one-sided test?

PRACTICE PROBLEM C.5

Suppose that we are interested in the distribution of the mother’s age at the child’s birth 
for low birthweight babies. Low birthweight babies are those with a weight less than 
5.5 pounds at birth. Assume that the distribution of the mother’s age is approximately 
normal with unknown mean and standard deviation. Furthermore, we know that in the 
general population, the mean mother’s age at the child’s birth is 27.52 years, and we 
want to know whether the mean mother’s age at the child’s birth for low birthweight 
babies is equal to that in the general population.3 A random sample of 50 low birth-
weight babies has a mean mother’s age at child’s birth of x = 28 00.  years and standard 
deviation s = 7.61 years. Perform an appropriate hypothesis test at the 0.05 level of 
significance.

BOX C.2 DESCRIPTION OF PRACTICE PROBLEM C.5 DATA

The National Health and Nutrition Examination Survey (NHANES) asks, “How much 
did he/she weigh at birth?” to caregivers of respondents aged 15 and younger. Responses 
were recorded in pounds and ounces. Ounces were converted to fractions of a pound to 
create the variable birth_weight (birthweight in pounds). The survey also asks, “How old 
was the respondent’s mother when he/she was born?” Answers could be a numeric value, or 
the response could be “Don’t know” or a refusal to answer the question. The sample of low 
birthweight babies was limited to respondents who weighed less than 5.5 pounds at birth.
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 A Is a one-sided or two-sided test more appropriate?

 B State the null hypothesis.

 C State the alternative hypothesis.

 D Calculate the test statistic by hand. What is the distribution of the test statistic?

 E Calculate and interpret the p-value of your test statistic.

 F Write the SAS or Stata code to test the hypothesis.

 G Compare the results from the hand calculation to the following output:

  SAS output:

The TTEST Procedure

Variable: mothers_age (Motherʼs Age at Childʼs Birth)

N Mean Std Dev Std Err Minimum Maximum

50 28.0000 7.6104 1.0763 16.0000 45.0000

Mean 95% CL Mean Std Dev 95% CL Std Dev

28.0000 25.8371 30.1629 7.6104 6.3572 9.4836

DF t Value Pr > |t|

49 0.45 0.6576

Stata output:
One-sample t test
------------------------------------------------------------------------------
Variable |   Obs    Mean   Std. Err.  Std. Dev.   [95% Conf. Interval]
----------+-------------------------------------------------------------------
mother~e |    50      28    1.076275  7.610412    25.83714    30.16286
------------------------------------------------------------------------------
    mean = mean(mothers_age)                              t =   0.4460
Ho: mean = 27.52                         degrees of freedom =       49

 Ha: mean < 27.52          Ha: mean != 27.52         Ha: mean > 27.52
Pr(T < t) = 0.6712      Pr(|T| > |t|) = 0.6576      Pr(T > t) = 0.3288
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PRACTICE PROBLEM C.6

Next, we wish to look at birthweight in relation to maternal smoking status. The mean 
birthweight in the population of babies is known to be 7.18 pounds.3 We want to inves-
tigate whether the mean birthweight of babies whose mothers did smoke while pregnant 
is lower than that of the general population of babies. In a sample of 100 babies whose 
mothers smoked while pregnant, the sample mean birthweight is x = 6 75.  pounds 
with a sample standard deviation of s = 1.26. The data are in the file labc_smoking_bw.

 A Is a one-sided or two-sided test more appropriate?

 B State the null hypothesis.

 C State the alternative hypothesis.

 D Calculate the test statistic by hand. What is the distribution of the test statistic?

 E Calculate and interpret the p-value of your test statistic.

 F Perform the hypothesis test in SAS or Stata. Do the results match?

 G What is the 95% confidence interval for the true mean birthweight of babies whose 
mothers smoked while pregnant?

 H Would your conclusion have changed if you had performed a different test from 
Practice Problem C.6—Part (A) (one sided or two sided)?

BOX C.3 DESCRIPTION OF THE labc_smoking_bw DATASET

The National Health and Nutrition Examination Survey (NHANES) asks, “How much did he/
she weigh at birth?” to caregivers of respondents age 15 and younger. Responses were recorded 
in pounds and ounces. Ounces were converted to fractions of a pound to create the variable 
birth_weight (birth weight in pounds). The survey also asks, “Did the respondent’s biological 
mother smoke at any time while she was pregnant with him/her?” The response options were 
“Yes,” “No,” “Don’t know,” or refusal to answer the question. The sample in the dataset labc_smoking_ 
bw was limited to records where the mother was reported to be a smoker (mother_smoked = 1).
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PRACTICE PROBLEM C.7

Suppose that we are planning a new study to determine the mean blood lead level for 
the population of families living below the poverty line. We know that the mean blood 
lead level in the general population is μ = 1.10 ug/dL, and the standard deviation is 
σ = 2.95 ug/dL.1 We want to design the study so that we have 80% power to detect a 
difference in means of 0.50 ug/dL.

 A Assuming that we would like to conduct a two-sided test with α = 0.05, what is the 
sample size needed to achieve the desired power?

 B Suppose that we have evidence that the mean blood lead levels will be higher for those 
whose families are in poverty. What sample size would be needed for a one-sided test?

 C What sample size would be needed to achieve 90% power for the one-sided test?

PRACTICE PROBLEM C.8

 A List three ways in which the power of a test can be increased.

 B Which of these are under the control of the investigator?
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BOX C.4 DESCRIPTION OF PRACTICE PROBLEM C.7 DATA

Respondents in the National Health and Nutrition Examination Survey (NHANES) 
reported their annual family income and the number of people in the family. These values 
were then used to calculate a ratio of the family income to the federal poverty guide-
lines. The laboratory component of the survey measured the blood lead level, in μg/dL, of 
participants.
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8 Two-Sample Hypothesis Testing

This chapter will focus on two-sample hypothesis testing and will include the following 
topics:

• Dependent samples (paired tests)
• Independent samples
• Sample size and power for two-sample test of means

Terms

• cross-sectional study
• independent data

• longitudinal (follow-up) study
• paired (dependent) data

Introduction

In Chapter 7, we discussed one-sample hypothesis testing, where we generate a hypoth-
esis about a single distribution. A two-sample hypothesis testing problem allows the 
comparison of the underlying parameters of two different populations, neither of whose 
values is assumed known. Two-sample tests are appropriate in many common study 
designs, including longitudinal and cross-sectional studies.

Longitudinal (Follow-Up) Study: A study in which the same group of people is fol-
lowed over time.

Paired (Dependent) Samples: Term used to describe two samples where each data 
point of the first sample has a corresponding unique data point in the second sample. In 
this case, there are two measurements taken on the same sample.

Let’s say that we are interested in comparing an individual’s body weight before and 
after an exercise intervention. The subject’s body weight is measured initially (Sample 1) 
and then again after a set number of weeks (Sample 2). In order to test whether there is a 
difference in weight due to the intervention, we must use a test that takes into account 
the dependent nature of the data. The observations (body weights) from the second 
sample are not independent from the observations from the first sample since they are 
measured in the same individual. This is a case of paired, or dependent, samples.
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Cross-Sectional Study: A study in which the participants are seen at only one point in 
time. Cross-sectional studies are considered suggestive because other confounding fac-
tors may influence the outcome and cause an apparent difference to be found when none 
is actually present.

Independent Samples: Term used to describe two samples where the data points in one 
sample are unrelated to the data points in the second sample. In this case, there are two 
samples with the same measurement taken on different participants.

Let’s examine a variation on the exercise intervention just described. Instead of fol-
lowing the same subjects over time, we enrolled one group of participants in the exercise 
intervention and kept one group as an inactive control. To compare whether there is 
a difference in mean body weight between the two groups, we will use a two-sample 
test for independent data. The subjects in the intervention group are not related to the 
subjects in the control group, and we are not examining measures within subjects over 
time.

When comparing means from two samples, we need to determine whether to use 
normal tests or t-tests just as we did in the one-sample situation. If the population vari-
ance is known, we use a normal test (Z-test). If the population variance is unknown, 
a t-test will be appropriate. The t-test does assume that the underlying distribution is 
normally distributed. Keep in mind that when the sample size is sufficiently large, the 
CLT holds; therefore, a normal test can be used even if the variance is unknown.

Dependent samples (paired tests)

With two-sample tests that have dependent data, we want to investigate whether the 
two populations have equal means.

• We will denote the difference between the means of the two populations, μ1 − μ2, 
by the Greek letter delta (δ).

• We estimate δ = μ1 − μ2 with d x x= −1 2.

We follow the same basic steps of hypothesis testing as we did in the one-sample case, 
starting with specifying the null and alternative hypotheses.

• The null hypothesis is that the difference in the population means is 0, or H0: 
δ = 0.

• The corresponding two-sided alternative hypothesis is that the difference in popu-
lation means is not equal to zero, or H1: δ ≠ 0.

• Once the hypotheses and significance level are specified, we use the sample to com-
pute the test statistic.

• The formulas for the test statistics that are appropriate for paired data are in 
Table 8.1.

• Note that the tests for dependent data are essentially one-sample hypothesis tests 
based on the differences.

• When using paired data, n is the number of pairs.
• For the paired t-test, we must calculate d  (Equation 8.1) and the sample standard 

deviation of the observed differences (sd; Equation 8.2).
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Using SAS with dependent samples

Two primary ways exist to conduct a two-sample test for dependent data in SAS. These 
approaches give identical results. The first way is to run a one-sample t-test on the dif-
ference variable, and another is to run a t-test using a PAIRED statement. In either 
option, by default, SAS will run a two-sided test.

• If a one-sided test is desired, add the SIDES = U or SIDES = L option into the 
PROC TTEST line.

• Note that the confidence interval output will also be one sided when using the 
SIDES option.

• The first approach is to create a difference variable equal to the difference between 
the first and second observation and to, then, perform a one-sample t-test to test 
whether the difference is equal to 0.

• The H0 option will always be set to 0.

PROC TTEST DATA = dataset_name H0 = 0;
    VAR diff;
RUN;

Table 8.1 Tests for dependent (paired) data

Component Known variance Unknown variance

Hypotheses H0: δ = 0 vs. H1: δ ≠ 0
H0: δ ≥ 0 vs. H1: δ < 0
H0: δ ≤ 0 vs. H1: δ > 0

H0: δ = 0 vs. H1: δ ≠ 0
H0: δ ≥ 0 vs. H1: δ < 0
H0: δ ≤ 0 vs. H1: δ > 0

Hypothesis test Paired normal test Paired t-test
Test statistic

Z
d

n
d

= − δ
σ

t
d

s
n

d

= − δ

Distribution of test statistic Standard normal t-distribution with n – 1 df
Confidence interval (two-sided)

d Z
n
d±

−1
2

α
σ

d t
s

n
n

d±
− −11

2
, α

Note: There are two cases of the two-sample test with dependent data: Known variance and unknown variance. When 
the variance is known, we use a paired normal test. If the variance is unknown, we use a paired t-test.

Abbreviation: df, degrees of freedom.
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The TTEST Procedure
Variable: diff

N Mean Std Dev Std Err Minimum Maximum

50 –1.1842 2.6371 0.3729 –7.7213 4.5146

Mean 95% CL Mean Std Dev 95% CL Std Dev

–1.1842 –1.9337 –0.4348 2.6371 2.2028 3.2861

DF t Value Pr > |t|

49 –3.18 0.0026

• The output is identical in format to the output from the one-sample t-tests intro-
duced in Chapter 7.

• The p-value is shown in the third output box under the “Pr > |t|” heading.
• The second approach is to use the PAIRED statement. Both the variable of interest 

from Sample 1 (pre) and the variable from Sample 2 (post) must be specified.

PROC TTEST DATA = dataset_name;
 PAIRED x_post*x_pre;
RUN;

The TTEST Procedure
Difference: x_post − x_pre

N Mean Std Dev Std Err Minimum Maximum

50 –1.1842 2.6371 0.3729 –7.7213 4.5146

Mean 95% CL Mean Std Dev 95% CL Std Dev

–1.1842 –1.9337 –0.4348 2.6371 2.2028 3.2861

DF t Value Pr > |t|

49 –3.18 0.0026

• The output is very similar, but notice the “Difference” heading after the “The 
TTEST Procedure” title. This tells us the variables that are being used to calculate 
the difference for the paired t-test.

• The p-value is shown in the third output box under the “Pr > |t|” heading.

Using Stata with dependent samples

To perform a paired t-test in Stata, we create a variable for the difference between 
the two sets of observations and, then, perform a one-sample t-test where the mean 
difference under the null hypothesis is equal to 0. The code to run this test was 
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described in Chapter 7, but to recap, we can either manually input the sample size, 
the mean of the differences, the standard deviation of the differences, and the null 
mean, or we can set the difference variable as the continuous variable and simply 
specify the null mean.

ttesti n mean std nullmean, level(95)
ttest diff_var == nullmean, level(95)

• Remember that the level option can be dropped as long as we are assuming α = 0.05.
• Since the null mean will always be 0 for the paired test, we have the following:

ttest diff_var == 0

The output follows:

One-sample t test
------------------------------------------------------------------------------
Variable |  Obs       Mean   Std. Err.  Std. Dev.  [95% Conf. Interval]
----------+--------------------------------------------------------------------
  diff   |   50  -1.184235   .3729389   2.637076   -1.933684  -.4347865
------------------------------------------------------------------------------
    mean = mean(diff_var)                                  t =  -3.1754
Ho: mean = 0                          degrees of freedom =       49

    Ha: mean < 0             Ha: mean != 0              Ha: mean > 0
Pr(T < t) = 0.0013      Pr(|T| > |t|) = 0.0026       Pr(T > t) = 0.9987

• The output for the ttest and ttesti commands is almost identical.
• The one-sided and two-sided p-values are shown on the last line of the output.

EXAMPLE PROBLEM 8.1

We are interested in examining health insurance coverage rates before and after 
the passage of the Patient Protection and Affordable Care Act. Data on prevalence 
of health insurance coverage for all 50 states plus Puerto Rico and the District of 
Columbia come from the American Community Survey.1,2 We are interested in com-
paring the prevalence rates for each state in 2009 versus 2014. The dataset is called 
ch8_insurance_coverage.

Let μ1 be the true mean prevalence of insurance coverage in 2014 and μ2 be the 
true mean prevalence of insurance coverage in 2009. The observed average difference 
in prevalence of health insurance coverage was 3.20 percentage points with a sample 
standard deviation of 1.53 percentage points. Assume that we are only interested in 
determining whether the coverage rates have increased over time. Conduct a test at the 
α = 0.05 significance level.

 A What type of test will you perform?

  A paired t-test is appropriate for this scenario, as the data in the two “sam-
ples” are measurements on the same states at different time points (years).
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 B State the null and alternative hypotheses.

  Let δ = μ2014 − μ2009. We would like to test the null hypothesis H0: δ ≤ 0 
versus the alternative hypothesis H1: δ > 0 since the premise of the problem 
indicates a one-sided test (Have insurance rates increased over time?).

 C What is the value of your test statistic?
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 D What is the distribution of your test statistic?

  The test statistic follows a tn−1 distribution. Because 52 observations are in 
our sample, the test statistic follows a t52−1 = t51 distribution.

 E What is the p-value for your test?

  The p-value is P(t51 > 15.08) < 0.0001.

 F Do you reject or fail to reject the null hypothesis?

  Because p < 0.0001 < α = 0.05, we reject the null hypothesis.

 G What conclusion can you draw from this test?

  We have statistically significant evidence to conclude that the mean preva-
lence of health insurance coverage was higher in 2014 compared to 2009.

 H What code would be used to perform the desired test in SAS or Stata?

  To run the test in SAS, we use PROC TTEST with the mean under the null 
hypothesis set to 0. We also include the SIDES option for a one-sided test.

PROC TTEST DATA = ch8_insurance_coverage H0 = 0 SIDES = U;
 VAR coverage_difference;
RUN;

The TTEST Procedure
Variable: coverage_difference

N Mean Std Dev Std Err Minimum Maximum

52 3.2027 1.5281 0.2119 0.3800 7.2800

Mean 95% CL Mean Std Dev 95% CL Std Dev

3.2027 2.8477 Infty 1.5281 1.2806 1.8951
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DF t Value Pr > |t|

51 15.11 <.0001

  From the last box in the SAS output for the TTEST procedure, we can check 
that the value of the test statistic is t = 15.11 (our hand calculation is off due to 
rounding) and that the p-value is < 0.0001.

  In Stata, we use the ttest command, specifying the variable coverage_ difference 
as  the continuous difference variable and 0 as the mean under the null 
hypothesis.

ttest coverage_difference == 0

  The output follows:

One-sample t test
------------------------------------------------------------------------------
Variable |  Obs       Mean    Std. Err.    Std. Dev.    [95% Conf. Interval]
---------+-------------------------------------------------------------------
covera~e |  52    3.202692     .2119129     1.528126     2.777259   3.628125
------------------------------------------------------------------------------
    mean = mean(coverage_difference)                            t =  15.1132
Ho: mean = 0                                   degrees of freedom =       51

    Ha: mean < 0               Ha: mean != 0                 Ha: mean > 0
Pr(T < t) = 1.0000        Pr(|T| > |t|) = 0.0000          Pr(T > t) = 0.0000

  The test statistic calculated by Stata is t = 15.11. The p-value is shown next 
to “Pr(T > t)” and is <0.0001.

 I How could you have used the confidence interval for the true difference in 
means to test the null hypothesis?

  We can either calculate the confidence interval by hand or use a statistical 
package. In SAS, the code from Example Problem 8.1—Part (H) produces a con-
fidence interval in addition to the test for the mean. Because we are interested in 
whether rates have increased over time, we have a one-sided confidence interval 
with a lower bound.

Mean 95% CL Mean Std Dev 95% CL Std Dev

3.2027 2.8477 Infty 1.5281 1.2806 1.8951

  The output from the Stata code in Example Problem 8.1—Part (H) gives 
the two-sided 95% confidence interval rather than the one-sided interval. Since 
the lower bound of a one-sided 95% confidence interval is equal to the lower 
bound of a 90% two-sided confidence interval, we set alpha to 0.10 and ran the 
code again to get the lower bound.

ttest coverage_difference == 0, level(90)
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  The output follows:

One-sample t test
------------------------------------------------------------------------------
Variable |  Obs      Mean    Std. Err.    Std. Dev.     [90% Conf. Interval]
---------+--------------------------------------------------------------------
covera~e |  52   3.202692    .2119129     1.528126       2.847678   3.557707
------------------------------------------------------------------------------

  We can see from the abbreviated output that the lower bound of the 95% 
confidence interval is 2.85.

  We are 95% confident that the true mean difference in health insurance cov-
erage prevalence between 2009 and 2014 is more than 2.85. This interval does 
not contain the null value of 0; therefore, we reject H0.

PRACTICE PROBLEM 8.1

Data on life expectancy were collected for 77 communities in Chicago, Illinois, at two 
time points: 2000 and 2010. We are interested in determining whether the mean life 
expectancy was the same in 2010 as it was in 2000. Let α = 0.01 for this analysis. The 
dataset is called ch8_life_expectancy. The dataset includes a variable for the life expec-
tancy at 2000 (life_expectancy_2000), a variable for the life expectancy at 2010 (life_ 
expectancy_2010), and a variable for the difference in life expectancy between 2000 and 
2010 (change_2000_2010 = life_expectancy_2010 – life_expectancy_2000).

 A What type of test is appropriate? State the corresponding null and alternative 
hypotheses.

 B Perform the hypothesis test using a statistical package. What is the value of the test 
statistic and its distribution?

 C What is the p-value for the test? What conclusion can we draw from this?

 D Check that the outcome of the test matches the conclusion drawn from the confi-
dence interval.

Independent samples

For independent samples, it seems reasonable to base the significance test on the dif-
ference between the two sample means. If the difference is far from zero, then the null 
hypothesis will be rejected. There are two cases of two-sample tests for independent 
data: situations in which we assume the two samples have equal variances and situations 
in which we assume the two samples have unequal variances.

Tests assuming unequal variances are more conservative. Therefore, tests with 
unequal variances are usually chosen unless we are certain that the variances are equal. 
Before conducting a two-sample test, we could perform a test for the equality of two 
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variances to determine which case we have, or we could just conduct a test for unequal 
variances (being conservative) and skip this step.

Testing for the equality of two variances

When testing for the equality of variances, we make the assumption that the two sam-
ples are independent random samples from a N µ σ1 1

2,( ) and a N µ σ2 2
2,( ) distribution. 

We would like to test the null hypothesis that the two variances are equal, H0 1
2

2
2: σ σ= . 

The alternative hypothesis is that the two variances are not equal, H1 1
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 follows an F distribution under the null hypothesis (Table 8.2).

Like the t distribution, there is no unique F distribution; instead, there is a family of 
F distributions. The F distributions are indexed by two parameters termed the numera-
tor degrees of freedom and the denominator degrees of freedom. Let n1 be the sample size of the 
first sample and n2 the sample size of the second sample. The variance ratio follows an 
F distribution with n1 − 1 (numerator df) and n2 − 1 (denominator df), which is written 
as an Fn n1 21 1− −,  distribution.

Since we are conducting a two-sided test, it does not make a difference which sample is 
selected as the numerator or the denominator. However, variance ratios greater than 1 are usually 
more convenient, so the sample with the larger variance is generally chosen to be Sample 1. To 
find values of the F distribution, we can use either the F table (Table A.6) or statistical software.

The F table is a matrix with the numerator df (df1) in the first row and the denomi-
nator df (df2) in the first column. The various percentiles (p) are shown in the second 
column. Note that the F table gives only the area in the upper tail of the distribution, 
but the symmetric properties of the F distribution make it possible to derive the area in 
the lower tail of any F distribution from the corresponding upper tail value. The lower 
pth percentile of an F distribution is the same as the inverse of the upper pth percentile of 
an F distribution with the degrees of freedom reversed. In symbols:

 F
Fd d p

d d p
1 2

2 1

1

1
, ,

, ,

=
−

 (8.3)

Table 8.2 Test for the equality of two variances

Component Formula

Hypotheses H H0 1
2

2
2

1 1
2

2
2: :σ σ σ σ= ≠vs.

Test statistic
F

s

s
= 1

2

2
2

Distribution of test statistic F distribution with n1 − 1, n2 − 1 df

Note: We conduct the test for the equality of two variances before the two-sample 
test of means with independent data. If the conclusion is to reject the null 
hypothesis, we assume unequal variances.
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If the p-value is significant and the conclusion of the test is to reject the null hypoth-
esis, then, subsequently, a two-sample test for independent data with unequal variances 
should be used. If the test for equality of variances fails to reject the null hypothesis, then 
a two-sample test with equal variances is appropriate. In SAS, the hypothesis test for the 
equality of two variances will be conducted by default as a part of the two-sample t-test 
procedure. Figure 8.1 is a flowchart of the testing process for two independent samples.

Test for equality of variances in stata

• The sdtest command runs the test for equality of variances.
• Specify the continuous variable and the grouping variable after sdtest.
• If alpha is not 0.05, we can include the level option.

sdtest continuous_variable, by(group_variable) level(95)

The output follows:

Variance ratio test
------------------------------------------------------------------------------
  Group |  Obs    Mean   Std. Err.  Std. Dev.  [95% Conf. Interval]
---------+--------------------------------------------------------------------
   0    |  50  16.91534    .15896    1.124017   16.59589   17.23478
   1    |  50  15.13702  .1269282    .8975182   14.88195   15.39209
---------+--------------------------------------------------------------------
combined| 100  16.02618  .1350043    1.350043   15.7583    16.29406
------------------------------------------------------------------------------
    ratio = sd(0) / sd(1)                              f =   1.5684
Ho: ratio = 1                         degrees of freedom =   49, 49

    Ha: ratio < 1          Ha: ratio != 1             Ha: ratio > 1
Pr(F < f) = 0.9407      2*Pr(F > f) = 0.1186     Pr(F > f) = 0.0593

The p-value for the test is listed after “2*Pr(F > f ).” If the p-value is less than α, we 
will assume that the variances are not equal for the two-sample t-test. If the p-value is 
greater than α, we assume that the variances are equal for the two-sample t-test.

Perform F test for the
equality of two variances

Perform two-sample test
with equal variances

Perform two-sample test
with unequal variances

Not significant Significant

Figure 8.1  Steps for choosing a hypothesis test for two independent, normally distributed samples. 
Because the two-sample test of means with independent data depends on whether the vari-
ances are equal, we typically first conduct a test for the equality of variances. If the p-value 
is significant, we perform a two-sample test with unequal variances. If the p-value is not 
significant, we perform a two-sample test with equal variances.
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CASE I: EQUAL VARIANCES

After the equality of variance test is performed and we have failed to reject the null 
hypothesis that the variances are equal, we can perform a two-sample test for indepen-
dent data with equal variance. In a two-sided situation, we would like to test the null 
hypothesis that the mean in Group 1 is equal to the mean in Group 2, H0: μ1 = μ2. Note 
that this equation can be rearranged and written as H0: μ1 − μ2 = 0. Our alternative 
hypothesis is that the means in the two groups are not equal: H1: μ1 ≠ μ2 or H1: μ1 − 
μ2 ≠ 0. In this test, we make three key assumptions:

 1 The two samples are independent of each other.
 2 Both samples are normally distributed.
 3 The samples have equal variance, which we have previously tested and have reason 

to believe is the case.

Under the equal variances assumption, we can find the distribution of the difference 

in the sample means. We know X N
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1
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When the variance of the population is unknown, which is most often the case, we must 
find the pooled variance before computing the test statistic. The pooled variance, s p

2, is 
a weighted average of the two sample variances, where the weights are the number of 
degrees of freedom in each sample (Equation 8.4).
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2
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+ −
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 (8.4)

If the conclusion of the test is to reject the two-sided null hypothesis, we can con-
clude that there is evidence of a statistically significant difference in means in the two 
groups. Failing to reject the null hypothesis means that there is no evidence to suggest 
that there is a difference in the means of the two groups.

t-Test with equal variances in SAS

In SAS, the test for independent data with equal variances is done using PROC TTEST. 
Sample code and output are shown below. The continuous variable of interest goes in 
the VAR line, and the dichotomous variable that indicates the two groups goes in the 
CLASS statement.

PROC TTEST DATA = dataset_name;
    VAR continuous_variable;
 CLASS group_variable;
RUN;
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The TTEST Procedure
Variable: continuous_variable

group_variable N Mean Std Dev Std Err Minimum Maximum

0 50 16.9153 1.1240 0.1590 14.1380 20.0997

1 50 15.1370 0.8975 0.1269 13.1709 17.6702

Diff (1–2) 1.7783 1.0171 0.2034

group_
variable Method Mean 95% CL Mean Std Dev 95% CL Std Dev

0 16.9153 16.5959 17.2348 1.1240 0.9389 1.4007

1 15.1370 14.8819 15.3921 0.8975 0.7497 1.1184

Diff (1–2) Pooled 1.7783 1.3746 2.1820 1.0171 0.8925 1.1825

Diff (1–2) Satterthwaite 1.7783 1.3744 2.1822

Method Variances DF t Value Pr > |t|

Pooled Equal 98 8.74 <.0001

Satterthwaite Unequal 93.424 8.74 <.0001

Equality of Variances

Method Num DF Den DF F Value Pr > F

Folded F 49 49 1.57 0.1186

The first step in interpreting the output is to look at the test for equality of vari-
ances in the last section of the output. The p-value should not be significant in order to 
continue with a two-sample test with equal variances. After this is confirmed, look at 
the test for the “Pooled” method in the third output box. The degrees of freedom, test 
statistic value, and p-value are given on the “Pooled” line.

t-Test with equal variances in Stata

The ttest and ttesti commands will run a t-test assuming equal variances. List the name 
of the continuous variable after the ttest command, and specify the grouping variable in 
the by statement. The level option can be used to change the α level, if desired.

ttest continuous_variable, by(group_variable) level(95)

For the ttesti command, specify the sample size, mean, and standard deviation in the 
first sample, and then the sample size, mean, and standard deviation in the second sample.

ttesti n1 xbar1 std1 n2 xbar2 std2, level(95)
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The output follows:

Two-sample t test with equal variances
------------------------------------------------------------------------------
 Group   | Obs    Mean    Std. Err.  Std. Dev. [95% Conf. Interval]
-----------+--------------------------------------------------------------------
     0   |  50  16.91534  .15896    1.124017   16.59589    17.23478
     1   |  50  15.13702 .1269282   .8975182   14.88195    15.39209
-----------+--------------------------------------------------------------------
combined | 100  16.02618  .1350043  1.350043    15.7583    16.29406
---------+--------------------------------------------------------------------
    diff |      1.778316  .2034184             1.374639    2.181993
------------------------------------------------------------------------------
    diff = mean(0) - mean(1)                           t =   8.7422
Ho: diff = 0                          degrees of freedom =       98

    Ha: diff < 0           Ha: diff != 0           Ha: diff > 0
Pr(T < t) = 1.0000    Pr(|T| > |t|) = 0.0000     Pr(T > t) = 0.0000

The test statistic and degrees of freedom are shown towards the lower right side. 
Both one-sided and two-sided p-values are given. The two-sided p-value appears in the 
“Pr(|T| > |t|)” line.

CASE II: UNEQUAL VARIANCES

If we have a situation with unequal variances, we need to take that into account when 
performing the hypothesis test. Two of the three assumptions for a two-sample test for 
independent data with unequal variance are the same as in the equal variance case. We 
assume the following:

 1 The samples are independent.
 2 Both samples come from data that are normally distributed (have a normal 

distribution).
 3 The variances of the two samples are unequal.

The null and alternative hypotheses are the same as in the equal variance case. Under 
the null hypothesis, the exact distribution of the test statistic t is difficult to derive 
when the variances are assumed not to be equal. Several approximate solutions have 
been proposed that have the appropriate type I error.

Here, we present only the commonly used Satterthwaite approximation for calculat-
ing the degrees of freedom for the test statistic. A major advantage of the Satterthwaite 
approximation is its easy implementation using the ordinary t table. When the variance 
is unknown, the test statistic follows a t distribution with ν degrees of freedom. The 
degrees of freedom ν are a function of the sample standard deviations and the sample 
sizes.

The following formula is used to calculate ν. The degrees of freedom should be 
rounded down to the nearest integer.
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The conclusion of the test under the unequal variance assumption is the same as the 
conclusion under the equal variance assumption. Table 8.3 provides a summary for con-
ducting hypothesis test under the equal variance assumption and Table 8.4 for conduct-
ing hypothesis test under the unequal variance assumption.

t-Test with unequal variances in SAS

The same SAS code that is used to run a two-sample test for independent data with 
equal variance is also used for the test assuming unequal variance.

The TTEST Procedure
Variable: continuous_variable

group_variable N Mean Std Dev Std Err Minimum Maximum

0 50 22.9153 1.1240 0.1590 20.1380 26.0997

1 50 25.5481 3.5901 0.5077 17.6834 35.6808

Diff (1–2) –2.6327 2.6601 0.5320

group_variable Method Mean 95% CL Mean Std Dev 95% CL Std Dev

0 22.9153 22.5959 23.2348 1.1240 0.9389 1.4007

1 25.5481 24.5278 26.5684 3.5901 2.9989 4.4737

Diff (1–2) Pooled –2.6327 –3.6885 –1.5770 2.6601 2.3341 3.0927

Diff (1–2) Satterthwaite –2.6327 –3.6975 –1.5680

Method Variances DF t Value Pr > |t|

Pooled Equal 98 –4.95 <.0001

Satterthwaite Unequal 58.515 –4.95 <.0001

Equality of Variances

Method Num DF Den DF F Value Pr > F

Folded F 49 49 10.20 <.0001
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Table 8.4 Tests for independent data with unequal variances

Component Known variance Unknown variance

Hypotheses H0: μ1 = μ2 vs. H1: μ1 ≠ μ2

H0: μ1 ≤ μ2 vs. H1: μ1 > μ2

H0: μ1 ≥ μ2 vs. H1: μ1 < μ2

H0: μ1 = μ2 vs. H1: μ1 ≠ μ2

H0: μ1 ≤ μ2 vs. H1: μ1 > μ2

H0: μ1 ≥ μ2 vs. H1: μ1 < μ2

Test Two-sample normal test with unequal 
variances

Two-sample t-test with unequal variances

Test statistic
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Note: There are two cases of the two-sample test of means assuming unequal variances: known variance and unknown 
variance. When the variance is known, we use a two-sample normal test with unequal variances. If the variance 
is unknown, we use a two-sample t-test with unequal variances.

Table 8.3 Tests for independent data with equal variances

Component Known variance Unknown variance

Hypotheses H0: μ1 = μ2 vs. H1: μ1 ≠ μ2

H0: μ1 ≤ μ2 vs. H1: μ1 > μ2

H0: μ1 ≥ μ2 vs. H1: μ1 < μ2

H0: μ1 = μ2 vs. H1: μ1 ≠ μ2

H0: μ1 ≤ μ2 vs. H1: μ1 > μ2

H0: μ1 ≥ μ2 vs. H1: μ1 < μ2

Test Two-sample normal test with equal 
variances

Two-sample t-test with equal variances

Test statistic
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Note: There are two cases of the two-sample test of means assuming equal variances: Known variance and unknown 
variance. When the variance is known, we use a two-sample normal test with equal variances. If the variance is 
unknown, we use a two-sample t-test with equal variances.
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In the output, there should be a significant p-value in the “Equality of Variances” 
box. For the t-test, the appropriate output appears on the “Satterthwaite” line in the 
third section. This line shows the degrees of freedom, the test statistic value, and the 
p-value for the two-sample t-test assuming unequal variances.

t-Test with unequal variances in Stata

The two-sample test with unequal variances uses the same code as the t-test with equal 
variances with the addition of the unequal option.

ttesti n1 xbar1 std1 n2 xbar2 std2, unequal level(95)
ttest continuous_variable, by(group_variable) unequal level(95)

The output follows:

Two-sample t test with unequal variances
------------------------------------------------------------------------------
 Group   |   Obs      Mean    Std. Err.    Std. Dev.    [95% Conf. Interval]
---------+--------------------------------------------------------------------
   0     |   50   22.91534       .15896    1.124017     22.59589    23.23478
   1     |   50   25.54808     .5077129    3.590073     24.52779    26.56837
---------+--------------------------------------------------------------------
combined |  100   24.23171     .2958865    2.958865      23.6446    24.81881
---------+--------------------------------------------------------------------
    diff |      -2.632743     .5320157                 -3.697489   -1.567997
------------------------------------------------------------------------------
    diff = mean(0) - mean(1)                                    t =  -4.9486
Ho: diff = 0                   Satterthwaite’s degrees of freedom =  58.5151

    Ha: diff < 0               Ha: diff != 0                 Ha: diff > 0
Pr(T < t) = 0.0000        Pr(|T| > |t|) = 0.0000          Pr(T > t) = 1.0000

The test statistic t and corresponding degrees of freedom (Satterthwaite’s degrees of 
freedom) are in the lower right. The bottom line of the output shows the p-value for 
both the one-sided and two-sided tests.

EXAMPLE PROBLEM 8.2

We are interested in the association between body mass index (BMI) and smoking. 
Suppose that we wish to determine whether the mean BMI among adults who have 
smoked at least 100 cigarettes in their lifetime is equal to the mean BMI among adults 
who have not smoked at least 100 cigarettes. For brevity, we will call the former group 
“ever smokers” and the latter group “nonsmokers.” In each group, the distribution of 
BMI is approximately normal, but we cannot assume that the variances are equal. We 
obtained a random sample of 139 ever smokers and 128 nonsmokers.3 The ever smokers 
had mean BMI x1

226 88= . kg/m  with standard deviation s1 = 4.80 kg/m2; the non-
smokers had mean BMI x2

227 36= . kg/m  with standard deviation s2 = 6.67 kg/m2. 
Assuming α = 0.05, use a statistical software package to conduct the appropriate 
hypothesis test. The dataset name is ch8_bmi_smoking.
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 A What type of test will you perform?

  A two-sample t-test for independent data is appropriate.

 B State your null and alternative hypotheses.

 H0 1 2: µ µ=

 H1 1 2: µ µ≠

 C Does the assumption of equal variances appear reasonable?

  The variance in the ever smoker group is 4.802 = 23.04.
  In the sample of nonsmokers, the variance is 6.672 = 44.49.

  Because these two variances are fairly different from each other, we suspect 
that the assumption of equal variances is not reasonable.

 D Write the appropriate SAS or Stata code, and test for the equality of variances.

  In SAS, the test for equality of variances comes as part of the output from PROC 
TTEST. The continuous variable is bmi, and the grouping variable is smoke100.

    PROC TTEST DATA = bmi_smoking;
    VAR bmi;
 CLASS smoke100;
RUN;

Equality of Variances

Method Num DF Den DF F Value Pr > F

Folded F 213 152 1.93 <.0001

  The “Equality of Variances” output table shows the results of the test for equal-
ity of variances. Because p < 0.0001 < α = 0.05, we reject the null hypothesis that 
the variances are equal and conduct a two-sample t-test with unequal variances.

  The sdtest command runs the test in Stata. The grouping variable smoke100 
goes in the by option.

sdtest bmi, by(smoke100)

BOX 8.1 DESCRIPTION OF THE ch8_bmi_smoking DATASET

The Behavioral Risk Factor Surveillance System (BRFSS) asks each respondent, “Have 
you smoked at least 100 cigarettes in your entire life?” The response categories are “Yes,” 
“No,” or “Don’t know/Not sure,” or the respondent can refuse to answer the question. Those 
who reported smoking at least 100 cigarettes are considered ever smokers (smoke100 = 1). 
Those who answered “No” are coded as smoke100 = 0. Respondents were also asked to 
report their weight and height, which was used to calculate their body mass index (BMI). 
Those who had a recorded BMI and who answered “Yes” or “No” to having smoked 100 
cigarettes in their lifetime were eligible for the sample in the dataset ch8_bmi_smoking.
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  The output follows:

Variance ratio test
------------------------------------------------------------------------------
   Group |   Obs       Mean    Std. Err.   Std. Dev.    [95% Conf. Interval]
---------+--------------------------------------------------------------------
       0 |   214   27.36333     .4558699    6.668802    26.46474    28.26193
       1 |   153    26.8775     .3878745    4.797743    26.11118    27.64382
---------+--------------------------------------------------------------------
combined |   367   27.16079     .3110098    5.958091    26.5492     27.77238
------------------------------------------------------------------------------
    ratio = sd(0) / sd(1)                                       f =   1.9321
Ho: ratio = 1                                  degrees of freedom = 213, 152

    Ha: ratio < 1              Ha: ratio != 1                Ha: ratio > 1
  Pr(F < f) = 1.0000       2*Pr(F > f) = 0.0000           Pr(F > f) = 0.0000

  The p-value calculated by Stata is <0.0001. Because p < α = 0.05, we reject 
the null hypothesis that the variances are equal and conduct a two-sample t-test 
with unequal variances.

 E From the output, what are the value and distribution of the test statistic for 
the two-sample t-test?

The TTEST Procedure
Variable: bmi (Body Mass Index [BMI])

SMOKE100 N Mean Std Dev Std Err Minimum Maximum

0 214 27.3633 6.6688 0.4559 15.6955 54.8576

1 153 26.8775 4.7977 0.3879 12.1616 42.5879

Diff (1–2) 0.4858 5.9614 0.6311

SMOKE100 Method Mean 95% CL Mean Std Dev 95% CL Std Dev

0 27.3633 26.4647 28.2619 6.6688 6.0912 7.3684

1 26.8775 26.1112 27.6438 4.7977 4.3137 5.4051

Diff (1–2) Pooled 0.4858 –0.7553 1.7270 5.9614 5.5586 6.4277

Diff (1–2) Satterthwaite 0.4858 –0.6912 1.6629

Method Variances DF t Value Pr > |t|

Pooled Equal 365 0.77 0.4419

Satterthwaite Unequal 364.98 0.81 0.4175
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Two-sample t test with unequal variances
------------------------------------------------------------------------------
   Group |   Obs       Mean    Std. Err.    Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
       0 |   214   27.36333    .4558699     6.668802    26.46474    28.26193
       1 |   153    26.8775    .3878745     4.797743    26.11118    27.64382
---------+--------------------------------------------------------------------
combined |   367   27.16079    .3110098     5.958091    26.5492     27.77238
---------+--------------------------------------------------------------------
    diff |         .4858297    .5985516               -.6912131     1.662872
------------------------------------------------------------------------------
    diff = mean(0) - mean(1)                                    t =   0.8117
Ho: diff = 0                   Satterthwaite’s degrees of freedom =  364.982

    Ha: diff < 0               Ha: diff != 0                 Ha: diff > 0
Pr(T < t) = 0.7912        Pr(|T| > |t|) = 0.4175          Pr(T > t) = 0.2088

  In Example Problem 8.3—Part (D), we determined that the two-sample 
test with unequal variances is appropriate. In SAS, the results on the line labeled 
“Satterthwaite” are for the unequal variance test using the Satterthwaite approxi-
mation. The value of the test statistic is t = 0.81. The test statistic follows a t distri-
bution with 364.98 degrees of freedom. We see similar results in the Stata output.

 F What is the p-value for your test?

  The p-value is 0.4175.

 G Do you reject or fail to reject the null hypothesis? What conclusion can you 
draw from this study?

  Since p > α = 0.05, we fail to reject the null hypothesis. We do not have 
evidence to suggest that the mean BMI among persons who have smoked at least 
100 cigarettes in their lifetime is different from that of the mean BMI among 
persons who have never smoked at least 100 cigarettes.

 H How could you have used the confidence interval for the true difference in 
means to test the null hypothesis?

  The confidence interval for the true difference in means is (–0.69, 1.66). 
This is found in the SAS output in the line beginning “Diff(1 – 2) Satterthwaite” 
under the heading “95% CL Mean” or in the Stata output in the “diff” line under 
“95% Conf. Interval.” This confidence interval contains the null value, 0; there-
fore, we fail to reject H0.

 I Would your results have changed if you had incorrectly assumed equal variances?

  The SAS output in Example Problem 8.2—Part (E) shows that if we had 
incorrectly assumed equal variances, the p-value would have been 0.4419.

  To find the p-value in Stata, we can run the same code for the ttest command 
again but leave out the unequal option.

ttest bmi, by(smoke100)
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  The abbreviated output is shown:

    Ha: diff < 0            Ha: diff != 0           Ha: diff > 0
Pr(T < t) = 0.7790    Pr(|T| > |t|) = 0.4419     Pr(T > t) = 0.2210

  We see that Stata gives 0.4419 as the p-value, assuming equal variances.
  Thus, the test assuming equal variances leads to the same conclusion as the 

unequal variances test. However, this is not always the case. There are situations 
in which the variance assumption will lead to contradictory hypothesis test out-
comes, so it is important to check the test for equality of variances before assum-
ing equal variances.

  Modern convention says that there is no need to conduct a variance ratio test. 
Always assume unequal variances, as this is the more conservative test.

PRACTICE PROBLEM 8.2

We have a sample of 266 adults with diabetes who are from an outpatient clinic.4 
Among the calculated variables from the data collected was the Medication Regimen 
Complexity Index (MRCI), a scale used to quantify the complexity of a patient’s 
medication-taking routine. We are interested in exploring whether the mean MRCI is 
different in adults with diabetes who have had at least one visit to the ED in the past 
year versus adults with diabetes who have had no ED visits. Of the 266 subjects, 105 
did not visit the ED, and 161 subjects did have at least one visit to an ED in the past 
year. Let α = 0.05. The dataset is called ch8_mrci_ed_visits.

 A What type of test is appropriate in this situation?

 B State the null and alternative hypotheses.

 C Test for the equality of variances. Can we assume equal variances in this situation?

 D Perform the hypothesis test. What is the value of the test statistic and its 
distribution?

 E What is the p-value for the test?

 F Do you reject or fail to reject the null hypothesis? State the results in terms of the 
subject matter.

 G What is the confidence interval for the difference in means?

 H Check to make sure that the conclusion from the confidence interval matches that 
from the hypothesis test.
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Sample size and power for two-sample test of means

Chapter 7 introduced the notion of sample size and power for a one-sample test. Here, 
we expand the concept to two-sample tests. Let Δ be the absolute value of the true 
difference in means between the two groups, |μ1 − μ2|. Displayed in Table 8.5 is the 
sample size needed for comparing the means of two normally distributed samples 
using one-sided or two-sided tests with significance level α and power 1 – β. In other 
words, the appropriate sample size in each group to have a probability of 1 – β of 
finding a significant difference when one exists, based on a test with significance level 
α, if the absolute value of the true difference in means between the two groups is Δ = 
|μ1 − μ2|.

In many instances, we anticipate an imbalance between the groups, and we predict in 
advance that the number of people in one group will be k times the number of people in 
the other group for some number k ≠ 1. In other words, k

n

n
= 2

1

 is the projected ratio of 

the two sample sizes. In this scenario, there is a different formula for the sample size of 
each group, which yields a smaller sample, n1, and a larger sample, n2.

In many situations, a predetermined sample size is available for study. In this case, 
we need to determine how much power the study will have for detecting specific alter-
natives. Power for comparing the means of two normally distributed samples with 

Table 8.5 Sample size for two-sample test of means
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Note: The sample size for the two-sample test of means with a balanced design 
depends on the variance of each group, the significance level, power, and the 
difference between the group means. If we would like unequal groups, then we 
also take into account the allocation ratio.



242 Biostatistics for clinical and public health research

significance level α is shown in Table 8.6. The variances σ1
2  and σ2

2  are assumed known 
along with the specified alternative, Δ = |μ1 − μ2|.

Because the calculations can get very complicated, we usually use statistical software 
to calculate sample size and power.

Using SAS for sample size and power for two-sample test of means

Many options can be specified in the SAS code, depending on the design (balanced 
or unbalanced), level of power, equal or unequal variance assumption, and so forth. 
By default, the level of significance is set at 0.05, so the ALPHA option is optional 
unless a different level of significance is desired. The TEST = diff_satt option speci-
fies that we will have a t-test with unequal variances that uses the Satterthwaite 
approximation.

The GROUPMEANS option specifies the means of the two groups, and the 
GROUPSTDDEVS indicates the standard deviations of the two groups. For a balanced 
design with unequal variances, sample code may look like the following.

PROC POWER;
 TWOSAMPLEMEANS TEST = diff_satt
 GROUPMEANS = 10 | 20
 GROUPSTDDEVS = 5 | 8
 POWER = 0.90
 ALPHA = 0.05
 NPERGROUP = .;
RUN;

Table 8.6 Power for two-sample test of means

Type Formula

One-sided
φ

σ σ
α− +

+

















−Z

n n

1

1
2

1

2
2

2

∆

Two-sided
φ

σ σ
α− +

+

















−Z

n n

1
2

1
2

1

2
2

2

∆

Note: Power for a two-sample test of means depends 
on the significance level, the variance of each 
group, the difference between the group means, 
and the sample size of each group.
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The POWER Procedure
Two-Sample t Test for Mean Difference 

with Unequal Variances

Fixed Scenario Elements

Distribution Normal

Method Exact

Nominal Alpha 0.05

Group 1 Mean 10

Group 2 Mean 20

Group 1 Standard Deviation 5

Group 2 Standard Deviation 8

Nominal Power 0.9

Number of Sides 2

Null Difference 0

Computed N per Group

Actual Alpha Actual Power N per Group

0.0496 0.909 11

The “N per Group” column shows the number of subjects needed in each group. From 
the total sample size, we can calculate the sample size for each of the unbalanced groups. For 
an unbalanced design with unequal variances, the NPERGROUP option can be replaced 
by NTOTAL, and the GROUPWEIGHTS option is needed to specify the ratio of subjects. 
If we would like to input the difference between the group means rather than the means of 
the two groups, we can use the MEANDIFF option instead of the GROUPMEANS option.

PROC POWER;
 TWOSAMPLEMEANS TEST = diff_satt
 MEANDIFF = 10
 GROUPSTDDEVS = 5 | 8
 GROUPWEIGHTS = (1 3)
 POWER = 0.90
 NTOTAL = .;
RUN;
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The POWER Procedure
Two-Sample t Test for Mean Difference 

with Unequal Variances

Fixed Scenario Elements

Distribution Normal

Method Exact

Mean Difference 10

Group 1 Standard Deviation 5

Group 2 Standard Deviation 8

Group 1 Weight 1

Group 2 Weight 3

Nominal Power 0.9

Number of Sides 2

Null Difference 0

Nominal Alpha 0.05

Computed N per Group

Actual Alpha Actual Power N Total

0.0501 0.911 24

The total sample size is given under the “N Total” column. Just as in the one-sample 
hypothesis test described in Chapter 7, if we are interested in finding the power instead 
of the sample size, we can switch the option that is omitted.

PROC POWER;
 TWOSAMPLEMEANS TEST = diff_satt
 GROUPMEANS = 10 | 20
 GROUPSTDDEVS = 5 | 8
 POWER = .
 NTOTAL = 15;
RUN;
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The POWER Procedure
Two-Sample t Test for Mean Difference 

with Unequal Variances

Fixed Scenario Elements

Distribution Normal

Method Exact

Group 1 Mean 10

Group 2 Mean 20

Group 1 Standard Deviation 5

Group 2 Standard Deviation 8

Nominal Total Sample Size 15

Actual Total Sample Size 14

Null Difference 0

Nominal Alpha 0.05

Group 1 Weight 1

Group 2 Weight 1

Nominal Alpha 0.05

Computed Power

Actual Alpha Power

0.0487 0.708

The “Computed Power” box shows the power level of the test.

Using Stata for sample size and power for two-sample test of means

The power command with the twomeans option runs power and sample size calculations. 
To determine the necessary sample size, we must specify the means of the two groups 
after the twomeans option, followed by the standard deviations of the groups. The default 
alpha level is 0.05, and the default power level is 0.80.

power twomeans 10 20, sd1(5) sd2(8) alpha(0.05) power(0.9)

The output follows:

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
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Ho: m2 = m1  versus  Ha: m2 != m1
Study parameters:

        alpha =    0.0500
        power =    0.9000
        delta =   10.0000
           m1 =   10.0000
           m2 =   20.0000
          sd1 =    5.0000
          sd2 =    8.0000

Estimated sample sizes:

            N =        22
  N per group =        11

We can also specify the difference between the means rather than both means, but 
unlike SAS, we must also specify the mean in Group 1 after the twomeans statement.

power twomeans 10, diff(10) sd1(5) sd2(8) alpha(0.05) power(0.9)

• If the groups are unbalanced, the nratio option is added to specify the ratio k
n

n
= 2

1

.

power twomeans 10 20, sd1(5) sd2(8) alpha(0.05) power(0.9) nratio(3)

The output follows:

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
Ho: m2 = m1  versus  Ha: m2 != m1

Study parameters:

        alpha =    0.0500
        power =    0.9000
        delta =   10.0000
           m1 =   10.0000
           m2 =   20.0000
          sd1 =    5.0000
          sd2 =    8.0000
        N2/N1 =    3.0000

Estimated sample sizes:

            N =        24
           N1 =         6
           N2 =        18
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The total sample size and the size of each of the groups appear at the bottom of the 
output. To compute power rather than sample size, we substitute the n option for the 
power option.

power twomeans 10 20, sd1(5) sd2(8) alpha(0.05) n(15)

The output follows:

Estimated power for a two-sample means test
Satterthwaite’s t test assuming unequal variances
Ho: m2 = m1  versus  Ha: m2 != m1

Study parameters:

        alpha =    0.0500
            N =        15
        delta =   10.0000
           m1 =   10.0000
           m2 =   20.0000
          sd1 =    5.0000
          sd2 =    8.0000

Actual sample sizes:

            N =        14
  N per group =         7

Estimated power:

        power =    0.7159

The power of the test is shown on the bottom line of the output.

EXAMPLE PROBLEM 8.3

Suppose that we are planning a new study to determine the difference between mean 
fasting glucose levels (mg/dL) among U.S. adults older than 18 years old who eat a 
healthy diet and those who eat a poor diet. We know that the standard deviation of fast-
ing glucose level in the general population of U.S. adults who eat a healthy diet is σ1 = 
28.58 mg/dL.5 The mean for those eating a healthy diet is 102.83 mg/dL. Among U.S. 
adults eating a poor diet, we know that the standard deviation of fasting glucose level 
is σ2 = 22.28 mg/dL. We want to design the study so that it will have 80% power to 
detect a difference in means of 5.00 mg/dL.
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 A Assuming that we do a two-sided test at the 0.05 level of significance, what 
is the sample size needed to achieve the desired power? We would like to 
have balanced groups. Calculate the sample size by hand, and use a statistical 
package.

  First, we should list the information that we know. Then, we will use the 
equation for a two-sided test with equal groups.

 α = 0 05.  Z1 0 84− =β .

 Z1
2

1 96− =α .
 

σ1 28 58= . mg/dL

 β = 0 20.  σ2 22 28= . mg/dL

 ∆ = − =µ µ1 2 5 00. mg/dL

n
Z Z

=
+( ) +( )

= + +− −σ σ α β1
2

2
2

1
2

1

2

2 228 58 22 28 1 96

∆

( . . )( . 00 84

5 00

10295 60

25 00
411 82

2

2

. )

.

.

.
.= =

  To achieve 80% power, 412 subjects in each group are needed.
  Using SAS, we can check our calculation. Because both groups will be equal, 

we can use the NPERGROUP option to get the sample size in each group.

PROC POWER; 
     TWOSAMPLEMEANS TEST = diff_satt
     MEANDIFF = 5.00
     GROUPSTDDEVS = 28.58 | 22.28
     POWER = 0.80
     ALPHA = 0.05
     NPERGROUP = .; 
RUN;

BOX 8.2 DESCRIPTION OF EXAMPLE PROBLEM 8.3 DATA

The laboratory component of the National Health and Nutrition Examination Survey 
(NHANES) collects respondents’ fasting glucose levels in mg/dL. Respondents are also 
asked, “In general, how healthy is your overall diet?” The response is a seven-level cat-
egorical variable, ranging from “Excellent” to “Poor” with options for “Don’t know” and 
“Refused.” Those who reported having an excellent, very good, or good diet were classified 
as eating a healthy diet. Respondents who selected “Fair” or “Poor” were categorized as 
having a poor diet. Additionally, the age of each respondent was recorded during the survey.
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The POWER Procedure
Two-Sample t Test for Mean Difference 

with Unequal Variances

Fixed Scenario Elements

Distribution Normal

Method Exact

Nominal Alpha 0.05

Mean Difference 5

Group 1 Standard Deviation 28.58

Group 2 Standard Deviation 22.28

Nominal Power 0.8

Number of Sides 2

Null Difference 0

Computed N per Group

Actual 
Alpha

Actual 
Power

N per 
Group

0.0501 0.801 414

  The output shows that 414 subjects are needed in each group in order to 
achieve 80% power. A slight difference between the hand calculations and the 
output from the statistical packages is due to the use of the Z distribution in the 
hand calculations.

  In Stata, we use the power command with the twomeans option. Since alpha is 
0.05 and power is 0.80, we can drop the alpha and power options from the code. 
We specify the mean in the first group, the difference that we want to detect, and 
the standard deviation in each group.

power twomeans 102.83, diff(5) sd1(28.58) sd2(22.28)

  The output follows:

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
Ho: m2 = m1  versus  Ha: m2 != m1

Study parameters:

        alpha =    0.0500
        power =    0.8000
        delta =    5.0000
           m1 =  102.8300
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           m2 =  107.8300
         diff =    5.0000
          sd1 =   28.5800
          sd2 =   22.2800

Estimated sample sizes:

            N =       828
  N per group =       414

  The output gives a value of 414 subjects per group, for a total sample size of 
828 subjects.

 B Let’s take a variation on the scenario. Assume that, instead of a balanced 
design, we know that there will be an unbalanced design in which there will 
be only one subject with a healthy diet for every two subjects with a poor 
diet. What sample size is needed in each of the groups in this case, assuming 
all of the other parameters are the same?

  Once again, we first write out what we know.

 α = 0 05.  ∆ = − =µ µ1 2 5 00. mg/dL

 Z1
2

1 96− =α .
 

β = 0 20.

 σ1 28 58= . mg/dL  Z1 0 84− =β .

 σ2 22 28= . mg/dL  k /= =2 1 2

  For Group 1, those with healthy diets:
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  After rounding up, 334 adults with healthy diets will be needed.
  For Group 2, those with poor diets:
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  After rounding up, 668 adults with poor diets are needed to achieve 80% 
power.

  We can check this calculation using the following SAS code. The un balanced 
design means that we should use the GROUPWEIGHTS option to specify the 
subject ratio of the two groups and the NTOTAL option to find the total sample 
size.

PROC POWER;
     TWOSAMPLEMEANS TEST = diff_satt
     MEANDIFF = 5.00
     GROUPSTDDEVS = 28.58 | 22.28
     GROUPWEIGHTS = (1 2)
     POWER = 0.80
     ALPHA = 0.05
     NTOTAL = .;
RUN;

The POWER Procedure
Two-Sample t Test for Mean Difference with 

Unequal Variances

Fixed Scenario Elements

Distribution Normal

Method Exact

Nominal Alpha 0.05

Mean Difference 5

Group 1 Standard Deviation 28.58

Group 2 Standard Deviation 22.28

Group 1 Weight 1

Group 2 Weight 2

Nominal Power 0.8

Number of Sides 2

Null Difference 0

Computed N Total

Actual Alpha Actual Power N Total

0.05 0.801 1008

  SAS calculates that 1008 total subjects are required to have 80% power. 
Given our ratio of one healthy diet to two poor diets, we need 336 adults with 
healthy diets and 672 adults with poor diets.
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  In Stata, we add in the nratio option to specify that the design is unbalanced 
with twice as many adults with poor diets.

power twomeans 102.83, diff(5) sd1(28.58) sd2(22.28) nratio(2)

  The output follows:

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
Ho: m2 = m1  versus  Ha: m2 != m1

Study parameters:

        alpha =    0.0500
        power =    0.8000
        delta =    5.0000
           m1 =  102.8300
           m2 =  107.8300
         diff =    5.0000
          sd1 =   28.5800
          sd2 =   22.2800
        N2/N1 =    2.0000

Estimated sample sizes:

            N =      1008
           N1 =       336
           N2 =       672

  The output shows that to have 80% power we need 336 adults who eat a 
healthy diet and 672 who do not, for a total sample size of 1008 total subjects.

  The calculation done in statistical software requires more participants since 
they are based on the t-test (unknown variance) while hand calculations use 
z-statistic (known variance). In practice we always use statistical software for 
power and sample size calculations.

BOX 8.3 DESCRIPTION OF PRACTICE PROBLEM 8.3 DATA

The National Health and Nutrition Examination Survey (NHANES) asks each respon-
dent aged 20 and older, “What is the highest grade or level of school you have completed 
or the highest degree you have received?” The response is a seven-level categorical vari-
able, ranging from “Less than 9th Grade” to “College Graduate or Above” with options for 
“Don’t know” and “Refused.” The survey also asks, “During the past 30 days, how much 
money {did your family/did you} spend at supermarkets or grocery stores? Please include 
purchases made with food stamps.” Numerical values are specified for the answers. Also, 
participants can report that they do not know or can refuse to answer the question.
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PRACTICE PROBLEM 8.3

We are planning a study to investigate the association between food consumption behav-
iors and education levels. Monthly spending at grocery stores or supermarkets will be 
measured and compared between adults with no college degree and college graduates. 
Among U.S. adults aged 20 years and older with no college degree, the mean amount 
spent at grocery stores or supermarkets is $453.88/month with a standard deviation 
of σ1 = $324.80/month.5 For U.S. adults aged 20 years and older who have a college 
degree, the standard deviation is σ2 = 310.20.

 A There is a predetermined sample size of 200 U.S. adults in each education group, 
for a total of 400 subjects. What level of power would we need to have to detect a 
difference in grocery spending of $100/month? Set the level of significance at 0.05.

 B Assume now that we want to have 80% power to detect a difference in grocery 
spending of $100/month. Keep α = 0.05. How many subjects are needed in each 
group in order to achieve the desired level of power?
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9 Nonparametric hypothesis testing

This chapter will focus on nonparametric statistical methods and will include the fol-
lowing topics:

• Types of data
• Parametric vs. nonparametric tests
• Nonparametric tests for paired data
• Nonparametric tests for independent data

Terms

• cardinal data
• interval scale
• nominal scale
• nonparametric statistical methods

• ordinal data
• parametric statistical methods
• ratio scale

Introduction

Thus far, we have assumed that data come from some underlying distribution, such as 
the normal or binomial distribution, whose general form is known. The methods of 
estimation and hypothesis tests introduced up to this point have been based on these 
assumptions. These procedures are called parametric statistical methods because the para-
metric form of the distribution is assumed to be known.

Parametric Statistical Methods: Methods that assume the data come from a probabil-
ity distribution.

If these assumptions about the shape of the distribution are not made, or if the CLT 
seems inapplicable because of small sample size, we must use nonparametric statisti-
cal methods. Nonparametric methods make fewer assumptions about the distribution 
shape.

Nonparametric Statistical Methods: Methods that do not assume that data follow a 
particular probability distribution.
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Types of data

Another assumption is that it is meaningful to measure the distance between possible 
data values. This assumption is particularly characteristic of cardinal data.

Cardinal Data: Numeric data where it is meaningful to measure the distance between 
possible data values.

There are two types of cardinal data:

• Interval scale data
• Ratio scale data

Interval Scale: For cardinal data, if the 0 point is arbitrary, then the data are on an inter-
val scale. For example, degrees in Fahrenheit are on an interval scale.

Ratio Scale: If the 0 point is meaningful, then the cardinal data are on a ratio scale. 
Money is one common example of data measured on a ratio scale.

For data on a ratio scale, it is meaningful to measure ratios between specific data 
values, but such measurement is not meaningful on an interval scale. However, it is 
appropriate to use means and standard deviations for cardinal data of either scale type.

Ordinal Data: Data that can be ordered but that do not have specific numeric values.
Therefore, common arithmetic cannot be performed with ordinal data as it would be 

with a cardinal data. For example, means and standard deviations are not meaningful for 
ordinal data. Specifically, methods of estimation and hypothesis testing based on normal 
distributions cannot be used. For ordinal data, we can measure the relative ordering of 
different categories of a variable.

Nominal Scale: A scale used for different data values that can be classified into catego-
ries without the categories having specific ordering. For instance, race and gender are 
commonly used nominal variables, as there is no inherent order to the levels.

Parametric vs. nonparametric tests

Parametric tests can be used only if the underlying distributions of the data are known 
or can be assumed to be normally distributed based on the CLT. In nonparametric tests, 
there are fewer assumptions about the underlying distribution. At most, in nonparametric 
tests, the populations must have the same shape. Nonparametric tests are less sensitive to 
measurement error because they rely only on signs and ranks, rather than the specific val-
ues of the variables. They can also be used for ordinal as well as continuous data, and they 
generally compare medians rather than means. In addition, the basic steps for hypothesis 
testing that we introduced in Chapter 7 still hold when conducting a nonparametric test.

It is also important to note disadvantages of nonparametric methods. If parametric 
assumptions are valid (i.e., the data really are normally distributed), then nonparametric 
tests are less powerful. This means that they need larger sample sizes to reject a false null 
hypothesis. For example, the Wilcoxon rank-sum test has 95% the power of a t-test (its para-
metric counterpart) if data are approximately normal. Nonparametric tests have less specific 
hypotheses and do not use all of the information provided by the data. Additionally, ties in 
ranks lead to overestimates of σ and require a correction term (beyond the scope of this book).
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Nonparametric tests for paired data

Nonparametric tests extend our work on the comparison of two samples in the case 
where there are two groups to be compared but the assumption of normality is question-
able. The two main nonparametric tests for continuous paired data are the sign test and 
the Wilcoxon signed-rank test. Both test the null hypothesis that the median difference 
is equal to 0. Table 9.1 outlines the two tests.

Sign test

The sign test uses the plus (+) or minus (–) sign for the differences only and does 
not consider the magnitude of the differences. It should be noted that the test is not 
used often. The null and alternative hypotheses for the test can be seen as a special 

case of the one-sample binomial test where H p0

1

2
: =  and H p1

1

2
: ≠ . Under H0, p = 1

2
, 

E( ) ,C np
n= =
2

 Var( ) ,C npq
n= =
4

 thus C N
n n∼





2 4

, .

To carry out the sign test, perform the following four steps:

 1 Calculate the difference for each pair of observations.
 2 Assign a sign to each pair.
 a If the difference is greater than 0, the pair is assigned a plus sign.
 b If the difference is less than 0, the pair is assigned a minus sign.

Table 9.1 Nonparametric tests for paired data

Component Sign test Wilcoxon signed-rank test

Hypotheses H0: median difference = 0 vs.
H1: median difference ≠ 0

H0: median difference = 0 vs.
H1: median difference ≠ 0

Summary of observed 
data

D: # positive differences T: smaller of the sums of the positive or 
negative ranks

Mean µ D

n=
2 µT

n n= +( )1

4

Standard deviation
σ D

n=
4 σT

n n n= + +( )( )1 2 1

24

Test statistic
Z

D D

D
+ = − µ

σ Z
T

T
T

T

= − µ
σ

Distribution of test 
statistic (large n)

Standard normal Standard normal

Valid if np(1 – p) ≥ 5

n

4
5≥

where n is the number of 
nonzero differences

n > 6
where n is the number of nonzero 

differences

Note: The sign test and the Wilcoxon signed-rank test are two nonparametric tests for paired data.
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 c Differences of exactly 0 provide no information and are, thus, excluded from 
the analysis. Note that if differences are excluded, the sample size must be 
adjusted accordingly.

 3 Count the number of plus signs in the sample. This total is denoted by D.

 4 When the number of nonzero differences divided by 4 is less than 5 n

4
5<





 ,  the 

exact method is appropriate. In this case, use binomial distribution to calculate 

p-value for D. If n is large such that 
n

4
5≥ ,  then the normal approximation to the 

binomial distribution holds. In this case, use the test statistic Z
D D

D
+ = − µ

σ
 and 

find the corresponding p-value.

Wilcoxon signed-rank test

The Wilcoxon signed-rank test is the nonparametric analogue to the paired t-test. This 
test incorporates the magnitude of the differences via ranks and is more powerful than 
the sign test. Thus, it is preferable to use the Wilcoxon signed-rank test when given a 
choice between the two. The test is nonparametric because it is based on the ranks of the 
observations rather than the actual values of the observations.

To conduct the Wilcoxon signed-rank test, perform the following steps:

 1 Calculate the difference for each pair of observations.
 2 Ignoring the signs of the differences, rank the pairs in terms of their absolute values 

from smallest to largest.
 a A difference of 0 is not ranked and is eliminated from the analysis. If this 

occurs, the sample size must be reduced by 1 for each pair eliminated.
 b If two observations have the same absolute value, then they are assigned an 

average rank. For example, if we have 4 difference values of 4.5, 4.8, 4.8, and 
5.0, then 4.5 is ranked 1, 4.8 is ranked 2.5 (the average of ranks 2 and 3), 4.8 
is ranked 2.5 (the average of ranks 2 and 3), and 5.0 is ranked 4.

 3 Assign each rank a minus or plus sign, depending on the sign of the difference.
 4 Compute the sum of the positive ranks.
 5 Compute the sum of the negative ranks.
 a The smaller of the quantities from Steps 4 and 5 is denoted T.
 6 Depending on the sample size, use the table of critical values (Appendix Table A.7) 

to calculate a p-value or compute the test statistic.
 a For a small n, use the Wilcoxon signed-rank table in the Appendix (Table A.7) to 

calculate the p-value of T. This method should be used if the number of nonzero dif-
ferences is 6 or less. To use the table, find the column corresponding to n, the number 
of nonzero differences, and the row corresponding to the value of T. The entries in 
the table give the one-sided p-value for the given sample size and T. For a two-sided 
hypothesis test, multiply the value found in the table by 2 to get the p-value.

 b If n is sufficiently large (i.e., the number of nonzero differences is more than 6), 

use the test statistic Z
T

T
T

T

= − µ
σ

 and obtain the corresponding p-value for the 

test using the standard normal table (Appendix Table A.3).
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 c Sometimes, a − 1

2
 term is added when computing the test statistic, which serves 

as a continuity correction to better approximate the binomial distribution 
(a discrete distribution) by the normal distribution (a continuous distribution).

Performing nonparametric tests for paired data in SAS

We can use PROC UNIVARIATE to perform the sign test and the Wilcoxon signed-
rank test in SAS. It is necessary to first create a variable that is the difference for each 
pair of observations.

PROC UNIVARIATE DATA = dataset_name;
 VAR difference_variable;
RUN;

The UNIVARIATE Procedure
Variable: difference_variable

Moments

N 16 Sum Weights 16

Mean 6.875 Sum Observations 110

Std Deviation 7.02258262 Variance 49.3166667

Skewness –0.6376653 Kurtosis –0.512439

Uncorrected SS 1496 Corrected SS 739.75

Coeff Variation 102.146656 Std Error Mean 1.75564566

Basic Statistical Measures

Location Variability

Mean 6.875000 Std Deviation 7.02258

Median 8.500000 Variance 49.31667

Mode . Range 23.00000

Interquartile Range 10.00000

Tests for Location: Mu0=0

Test Statistic p-Value

Student’s t t 3.915938 Pr > |t| 0.0014

Sign M 5 Pr >= |M| 0.0213

Signed Rank S 55 Pr >= |S| 0.0027
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A table with quantiles and extreme observations will also be produced. By default, 
SAS will provide three tests for location in the output in the box with the heading “Tests 
for Location: Mu0=0.”

The second test listed is the sign test, and the third test is the Wilcoxon signed-rank 
test. The two-sided p-value for the sign test is in the “Pr >= |M|” line, and the two-sided 
p-value for the Wilcoxon signed-rank test is in the “Pr >= |S|” line. We should note that 
for the sign test, SAS gives a test statistic M, where

M = + − −# #of differences of differences

2

SAS calculates the p-value from the binomial distribution (exact test), so the output 
may differ from the p-value when the normal approximation is used. For the Wilcoxon 
signed-rank test, SAS gives a test statistic S equal to T − μT and will compute the exact 
p-value when n ≤ 20. When there are more than 20 nonzero differences, SAS uses the 
t-distribution to estimate the p-value. Because of this, the p-value that SAS gives for the 
Wilcoxon signed-rank test may be somewhat different from the one computed by hand 
using the method described in this chapter.

Performing nonparametric tests for paired data in Stata

To perform the sign test, we use the signtest command and specify the names of the two 
variables that we would like to compare.

signtest post_variable = pre_variable

The output follows:

Sign test

        sign |    observed    expected
-------------+------------------------
    positive |          13           8
    negative |           3           8
        zero |           0           0
-------------+------------------------
         all |          16          16

One-sided tests:
  Ho: median of post_var~e - pre_variable = 0 vs.
  Ha: median of post_var~e - pre_variable > 0
      Pr(#positive >= 13) =
         Binomial(n = 16, x >= 13, p = 0.5) =  0.0106

  Ho: median of post_var~e - pre_variable = 0 vs.
  Ha: median of post_var~e - pre_variable < 0
      Pr(#negative >= 3) =
         Binomial(n = 16, x >= 3, p = 0.5) =  0.9979
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Two-sided test:
  Ho: median of post_var~e - pre_variable = 0 vs.
  Ha: median of post_var~e - pre_variable != 0
      Pr(#positive >= 13 or #negative >= 13) =
         min(1, 2*Binomial(n = 16, x >= 13, p = 0.5)) =  0.0213

The output gives information for both one-sided and two-sided tests. The p-value for 
the sign test is given on the last line of the output. Stata calculates the p-value from the 
binomial distribution (exact test), so the output may differ from the p-value when the nor-
mal approximation is used. The Wilcoxon signed-rank test is performed with the signrank 
command. The two variables whose medians are being compared are placed on either side 
of the equals sign.

signrank post_variable = pre_variable

The output follows:

Wilcoxon signed-rank test

        sign |      obs   sum ranks    expected
-------------+---------------------------------
    positive |       13         123          68
    negative |        3          13          68
        zero |        0           0           0
-------------+---------------------------------
         all |       16         136         136

unadjusted variance      374.00
adjustment for ties        0.00
adjustment for zeros       0.00
                     ----------
adjusted variance        374.00

Ho: post_variable = pre_variable
             z =   2.844
    Prob > |z| =   0.0045

The number of positive and negative differences are shown in the column labeled 
“obs,” and the sums of the ranks are in the “sum ranks” column. The smaller of the 
sums of the ranks is T. The value of μT appears in the “expected” column on the line 
corresponding to the smaller sum of ranks. The variance σT

2  appears on the “adjusted 
variance” line. The test statistic, ZT, is shown on the second to the last line. The last line 
of the output shows the two-sided p-value.

EXAMPLE PROBLEM 9.1

Suppose that we are interested in examining mental health resources in Europe and 
the change in the number of resources over time. We have data from the World Health 
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Organization on the number of psychiatrists working in the mental health sector per 
100,000 population, and we wish to look at data from 2011 and 2014 from 15 coun-
tries.1 Table 9.2 gives the country name, value for 2011, and value for 2014. The cor-
responding dataset is ch9_europe_mental_health.

 A Are the data dependent or independent? Why?

  We have dependent data because each country is measured at two time 
points. Therefore, each observation from 2011 is paired with a corresponding 
observation from 2014 for that country.

 B Using the sign test, evaluate the null hypothesis that the median difference in 
the number of psychiatrists working in the mental health sector per 100,000 
population is 0 for the two time points.

  H0: median difference = 0
  H1: median difference ≠ 0

  First, we must calculate the difference between the value at 2011 and the 
value at 2014. So that increases in mental health resources over time are positive 
values, the difference will be the value in 2014 minus the value in 2011. Once 
we calculate the difference, we assign each observation either a positive or nega-
tive sign, depending on the difference (Table 9.3).

Table 9.2 Data for Example Problem 9.1

Psychiatrists working in the mental health 
sector (No./100,000 pop.)

Country 2011 2014
Belarus 8.77 7.66
Denmark 14.12 9.57
Finland 28.06 18.37
France 22.35 14.12
Greece 12.88 14.09
Italy 7.81 10.85
Latvia 10.85 12.05
Monaco 36.47 40.98
Norway 30.77 29.69
Poland 5.13 5.07
Portugal 6.14 4.49
Romania 6.45 5.98
San Marino 15.85 15.8
Serbia 9.61 7.35
Slovenia 7.06 10.21

Note: The table shows the number of psychiatrists per 100 000 
population working in the mental health sector in 2011 
and in 2014. A sample of 16 countries is displayed.

Abbreviation: pop., population.
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  There are no differences of exactly 0 in our dataset. Next, we count the 
number of plus signs; D is 5. We should check to see whether our sample size 
allows use of the normal approximation to the binomial. There are 15 nonzero 

differences, so 
15

4
3 75 5= <. . Thus, we must use the exact method.

  We found that ˆ ,p+ = 5

15
 and under the null hypothesis p0

1

2
= .

  If ˆ ,p p+ < 0  then p-value = 2 × P[X ≤ x] where X n p∼ = =
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1

20, .
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  Since p-value = 0.30176 > α = 0.05, we fail to reject the null hypothesis. We 
have no evidence of a statistically significant change in the number of psychia-
trists per 100,000 population working in the mental health sector in European 
countries between 2011 and 2014.

Table 9.3 Sign test for Example Problem 9.1

Country

Psychiatrists working in the mental 
health sector (No./100,000 pop.)

2011 2014 Difference Sign

Belarus 8.77 7.66 –1.11 –
Denmark 14.12 9.57 –4.55 –
Finland 28.06 18.37 –9.69 –
France 22.35 14.12 –8.23 –
Greece 12.88 14.09 1.21 +
Italy 7.81 10.85 3.04 +
Latvia 10.85 12.05 1.2 +
Monaco 36.47 40.98 4.51 +
Norway 30.77 29.69 –1.08 –
Poland 5.13 5.07 –0.06 –
Portugal 6.14 4.49 –1.65 –
Romania 6.45 5.98 –0.47 –
San Marino 15.85 15.8 –0.05 –
Serbia 9.61 7.35 –2.26 –
Slovenia 7.06 10.21 3.15 +

Note: The difference column is equal to the value in 2014 minus the value in 2011. 
The sign column indicates whether the difference is positive or negative.

Abbreviation: pop., population.
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 C Evaluate the same hypothesis using the Wilcoxon signed-rank test.

  First, we need to calculate the difference between the 2011 and 2014 values and 
rank the differences lowest to highest in terms of absolute value. We then assign each 
rank a plus or minus sign, depending on the sign of the difference (Table 9.4).

  The sum of the positive ranks is 7 + 10 + 6 + 12 + 11 = 46.
  The sum of the negative ranks is 5 + 13 + 15 +14 + 4 + 2 + 8 + 3 + 1 + 

9 = 74.
  Thus, T is the sum of the positive ranks since 46 < 74.
  We have 15 nonzero differences, so the normal approximation is valid for 

the Wilcoxon signed-rank test (n > 6). Next, we must compute the mean and 
standard deviation of T.

 
µT

n n= + = + =( ) ( )1

4

15 15 1

4
60

 
σT

n n n= + + = + × + = =( )( ) ( )( )
.

1 2 1

24

15 15 1 2 15 1

24
310 17 61

Table 9.4 Wilcoxon signed-rank test for Example Problem 9.1

Country

Psychiatrists working in the mental 
health sector (No./100,000 pop.)

2011 2014 Difference |Difference| Rank Sign

Belarus 8.77 7.66 –1.11 1.11 5 –
Denmark 14.12 9.57 –4.55 4.55 13 –
Finland 28.06 18.37 –9.69 9.69 15 –
France 22.35 14.12 –8.23 8.23 14 –
Greece 12.88 14.09 1.21 1.21 7 +
Italy 7.81 10.85 3.04 3.04 10 +
Latvia 10.85 12.05 1.20 1.20 6 +
Monaco 36.47 40.98 4.51 4.51 12 +
Norway 30.77 29.69 –1.08 1.08 4 –
Poland 5.13 5.07 –0.06 0.06 2 –
Portugal 6.14 4.49 –1.65 1.65 8 –
Romania 6.45 5.98 –0.47 0.47 3 –
San Marino 15.85 15.8 –0.05 0.05 1 –
Serbia 9.61 7.35 –2.26 2.26 9 –

Slovenia 7.06 10.21 3.15 3.15 11 +

Note: The difference column is equal to the value in 2014 minus the value in 2011. The absolute value of the 
difference is also shown. The absolute values of the differences are then ranked, with “1” signifying the 
smallest absolute difference. The sign of the difference indicates whether it is positive or negative.

Abbreviation: pop., population.
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  The test statistic follows a standard normal distribution and has a value of 
the following:

 
Z

T
T

T

T

= − = − = −µ
σ

46 60

17 61
0 80

.
.

  The p-value is P(Z ≤ –0.80 or Z ≥ 0.80) = 2 × P(Z ≥ 0.80) = 2 × 0.21 = 0.42.
  Since p-value = 0.42 > α = 0.05, we fail to reject the null hypothesis. We 

have no evidence that the median difference in number of psychiatrists working 
in the mental health sector per 100,000 population between 2011 and 2014 in 
Europe is not equal to 0.

 D Do we reach the same conclusion in each case? Which test is preferable?

  Yes, both the sign test and the Wilcoxon signed-rank test led to the same 
conclusion. In both cases, we failed to reject the null hypothesis. The Wilcoxon 
signed-rank test considers both the magnitude and the direction of the differ-
ences, so it is preferable to the sign test.

 E Run both the sign test and Wilcoxon signed-rank test in SAS or Stata.

  To run the tests in SAS, we must first make a variable that is the difference 
between the number of psychiatrists per 100,000 population in 2011 and in 
2014.

DATA europe_mental_health;
 SET europe_mental_health;
 difference = psychiatrists_2014 - psychiatrists_2011;

RUN;

PROC UNIVARIATE DATA = europe_mental_health LOCCOUNT;
  VAR difference;

RUN;

Tests for Location: Mu0=0

Test Statistic p-Value

Student’s t t -1.04942 Pr > |t| 0.3118

Sign M -2.5 Pr >= |M| 0.3018

Signed Rank S -14 Pr >= |S| 0.4543

The “Tests for Location” box gives the results from the tests. The sign test has a 
p-value of 0.3018, which is identical to the p-value that we calculated by hand in 
Example Problem 9.1—Part (A). The p-value for the signed-rank test is 0.4543, which 
is similar to the value calculated by hand.
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In Stata, we use the signtest command to run the sign test. The two variables being 
compared are psychiatrists_2011 and psychiatrists_2014.

signtest psychiatrists_2014 = psychiatrists_2011

The output follows:

Sign test

        sign |    observed    expected
-------------+------------------------
    positive |           5         7.5
    negative |          10         7.5
        zero |           0           0
-------------+------------------------
         all |          15          15

One-sided tests:
  Ho: median of psych~2014 - psychiatrists_2011 = 0 vs.
  Ha: median of psych~2014 - psychiatrists_2011 > 0
      Pr(#positive >= 5) =
         Binomial(n = 15, x >= 5, p = 0.5) =  0.9408

  Ho: median of psych~2014 - psychiatrists_2011 = 0 vs.
  Ha: median of psych~2014 - psychiatrists_2011 < 0
      Pr(#negative >= 10) =
         Binomial(n = 15, x >= 10, p = 0.5) =  0.1509

Two-sided test:
  Ho: median of psych~2014 - psychiatrists_2011 = 0 vs.
  Ha: median of psych~2014 - psychiatrists_2011 != 0
      Pr(#positive >= 10 or #negative >= 10) =
         min(1, 2*Binomial(n = 15, x >= 10, p = 0.5)) =  0.3018

The p-value is shown in the last line of the output. The sign test has a p-value of 
0.3018, which is identical to the p-value that we calculated by hand in Example Problem 
9.1—Part (A).

To run the Wilcoxon signed-rank test, we use the signrank command.

signrank psychiatrists_2014 = psychiatrists_2011

The output follows:

Wilcoxon signed-rank test

        sign |      obs   sum ranks    expected
-------------+---------------------------------
    positive |        5          46          60
    negative |       10          74          60
        zero |        0           0           0
-------------+---------------------------------
         all |       15         120         120
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unadjusted variance      310.00
adjustment for ties        0.00
adjustment for zeros       0.00
                     ----------
adjusted variance        310.00
Ho: psychiatrists_2014 = psychiatrists_2011
             z =  -0.795
    Prob > |z| =   0.4265

We see that T = 46 (first row under “sum ranks”) and μT = 60 (first row under “expected”). 
The variance σT

2 310= ,  which is the square of the standard deviation of σT = 17.61 cal-
culated by hand. The test statistic for the Wilcoxon signed-rank test is z = –0.795. The 
p-value for the test is 0.4265, which is similar to the value calculated by hand.

PRACTICE PROBLEM 9.1

As part of an intervention to train community members about research methods and 
public health, tests were administered before and after each training session.2 We are 
interested in determining whether there was a significant change in knowledge about 
the subject from before the instruction to afterward. The pretest and posttest scores for 
a session on clinical trials and biobanks are shown in Table 9.5. The data are also in the 
dataset ch9_clinical_trials_session. We do not wish to assume that the data are normally 
distributed. All tests should be two sided with α = 0.05.

 A We want to conduct a Wilcoxon signed-rank test to evaluate our research question. 
What are the null and alternative hypotheses?

Table 9.5 Data for Practice Problem 9.1

ID Pretest score Posttest score Difference |Difference| Rank Sign

1 60 70
2 70 100
3 90 90
4 90 90
5 90 90
6 80 80
7 90 90
8 50 70
9 30 70
10 50 90
11 50 60
12 60 90
13 90 80
14 50 70
15 60 100

16 50 50

Note: Sixteen community members enrolled in a research training program have a pretest score and post-
test score. We want to examine whether the session caused a change in scores.



268 Biostatistics for clinical and public health research

 B Calculate the difference between the pretest and posttest scores for each subject, and 
rank the differences from smallest to largest in terms of absolute value. Assign signs 
to each subject.

 C Compute the sum of both the positive and negative ranks. What is T?

 D Compute the test statistic, ZT.

 E What is the p-value of the test?

 F What do you conclude?

 G Compare the results of the Wilcoxon signed-rank test to the outcome of the sign 
test using a statistical package. Do we come to the same conclusion?

 H If we had made the assumptions necessary for a parametric test, what test would we 
have used instead?

Nonparametric tests for independent data

We can use nonparametric tests when we have independent data as well. The Wilcoxon rank-
sum test is commonly used in scenarios where we have two samples but do not want to make 
the assumptions about their distributions that are necessary to conduct a two-sample t-test.

Wilcoxon rank-sum test

The Wilcoxon rank-sum test, also called the Mann–Whitney test, is the nonparametric 
equivalent to the two-sample t-test. The test assumes that the distributions of the two 
populations have the same shape, but it does not make assumptions about what specific 
distribution the samples follow. The null hypothesis for the Wilcoxon rank-sum test is 
that the medians of the two samples are equal. The alternative hypothesis is that the 
medians are not equal.

The Wilcoxon rank-sum test can be conducted with the following steps:

 1 Combine the two samples into one large group, and order the observations from 
smallest to largest.

 2 Assign a rank to each observation.
 a The smallest value is ranked “1,” and the largest value is ranked “n,” where n is 

the total number of observations from both groups combined.
 b If there are tied observations, assign an average rank to all measurements with 

the same value.
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 3 Calculate the sum of the ranks corresponding to the original samples. Denote the 
smaller of the two sums by W.

 4 Use the test statistic given in Table 9.6 or use Table A.8 in the Appendix to deter-
mine the p-value.

 a If both samples have at least 10 data points, then we calculate the test statistic 
ZW, which follows a standard normal distribution. Then, the two-sided p-value 
is 2 × P(Z > |ZW|). The one-sided p-value is P(Z > |ZW|).

 b However, if either sample size is less than 10, the normal approximation is not 
valid. Thus, if n is small, use the W distribution table to calculate a p-value for 
W. Find the values that corresponds to W, n1, and n2. The entries in Table A.8 
in the Appendix give the one-sided p-value for the given sample sizes and W. 
For a two-sided hypothesis test, multiply the value found in Table A.8 in the 
Appendix by 2 to get the p-value.

Performing nonparametric tests for independent data in SAS

The Wilcoxon rank-sum test is performed in SAS using PROC NPAR1WAY. The 
WILCOXON option requests the Wilcoxon rank-sum test, and use of the continu-
ity correction can be specified in the CORRECT = option. For small samples, the line 
requesting the exact test can be added.

PROC NPAR1WAY DATA = dataset_name WILCOXON CORRECT = NO;
 CLASS binary_var;
 VAR continuous_var;
 **EXACT WILCOXON;
RUN;

Table 9.6 Nonparametric tests for independent data

Component Wilcoxon rank-sum test

Hypotheses H0: median1 = median2 vs. H1: median1 ≠ median2

Summary of observed data W: smaller of the sums of the ranks in the two samples
Mean

µW
S S Ln n n= + +( )1

2
where nS = sample size in the smaller of the two samples and nL = sample 
size in the larger of the two samples

Standard deviation
σW

S L S Ln n n n= + +( )1

12

Test statistic
Z

W
W

W

W

= − µ
σ

Distribution of test statistic 
(large n)

Standard normal

Valid if Min(n1, n2) ≥ 10
Underlying distribution is continuous

Note: The Wilcoxon rank-sum test is a nonparametric test for independent data. The test compares the medians of two 
populations.
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The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable continuous_var Classified by Variable binary_var

binary_var N Sum of Scores Expected Under H0 Std Dev Under H0 Mean score

1 47 2280.50 2185.50 128.017957 48.521277

2 45 1997.50 2092.50 128.017957 44.388889

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 1997.5000

Normal Approximation

Z –0.7421

One-Sided Pr < Z 0.2290

Two-Sided Pr > |Z| 0.4580

t Approximation

One-Sided Pr < Z 0.2300

Two-Sided Pr > |Z| 0.4599

Kruskal–Wallis Test

Chi-Square 0.5507

DF 1

Pr > Chi-Square 0.4580

The first two boxes of output are most relevant for the Wilcoxon rank-sum test. The 
sums of the ranks in each group are shown under “Sums of Scores” in the first output 
box, and W is the smaller of the two values. W can also be found in the “Statistic” line 
in the second output table.

The “Expected under H0” column of the first table shows the value of μW in the row 
corresponding to the group with the smaller sum of ranks. The value of σW appears in 
the “Std Dev under H0” column in the row corresponding to the group with the smaller 
sum of ranks. The two-sided p-value for the test, using the normal approximation, can 
be found in the line “Two-Sided Pr > |Z|” under the “Normal Approximation” heading 
in the second table.

Performing nonparametric tests for independent data in Stata

We perform the Wilcoxon rank-sum test in Stata using the ranksum command. The 
continuous variable is specified after the ranksum statement and then the binary variable 
indicating the two groups is listed in a by option.
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ranksum continuous_var, by(binary_var)

The output follows:

Two-sample Wilcoxon rank-sum (Mann-Whitney) test
  binary_var |      obs    rank sum    expected
-------------+---------------------------------
           1 |       47      2280.5      2185.5
           2 |       45      1997.5      2092.5
-------------+---------------------------------
    combined |       92        4278        4278
unadjusted variance    16391.25
adjustment for ties       -2.65
                     ----------
adjusted variance      16388.60
Ho: contin~r(binary~r==1) = contin~r(binary~r==2)
             z =   0.742
    Prob > |z| =   0.4580

The sum of the ranks are shown in the “rank sum” column of the output table, and the 
smaller of the two sums is W. The “expected” column of the output table shows the value of 
μW in the row corresponding to the group with the smaller sum of ranks. The value of σW

2  
appears in the “adjusted variance” line. The output gives the test statistic Zw on the second to 
last line. Note that the value of the test statistic in the output is the absolute value of the test 
statistic calculated by hand or in SAS. This is due to the way Stata presents the test statistic, 
but it will not affect the p-value. The two-sided p-value of the test is on the last line.

EXAMPLE PROBLEM 9.2

From a nationally representative sample of U.S. residents, we obtained information on self-
reported asthma and the ratio of family income to the poverty level for a subset of the respon-
dents.3 We are interested in looking at socioeconomic status (SES) among those with asthma 
and those without asthma. We are not willing to assume that these distributions are neces-
sarily normal. In the dataset, there are 427 respondents without self-reported asthma and 73 
respondents with self-reported asthma. Use a two-sided test conducted at the α = 0.05 level 
of significance to test the hypothesis that the median family income-to-poverty level among 
those with and without asthma is equivalent. The dataset is called ch9_income_asthma.

BOX 9.1  DESCRIPTION OF ch9_income_asthma DATASET

The National Health and Nutrition Examination Survey System (NHANES) asks, “Has a 
doctor or health professional ever told you that you have asthma?” Possible responses are 
“Yes,” “No,” or “Don’t know,” or participants could refuse to answer the question. Those 
who report having been told they had asthma by a doctor or health professional are coded 
as asthma = 1. Those who answer “No” are coded asthma = 0. Respondents also report their 
annual family income and the number of people in the family. These values are, then, used 
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 A Are the data independent or dependent? What parametric and nonparamet-
ric tests are available for this type of data?

  In this case, we have independent data. The appropriate parametric test for 
this situation would be a two-sample t-test, and the nonparametric equivalent is 
the Wilcoxon rank-sum test.

 B Which type of statistical test is most appropriate for this type of data and 
why?

  The nonparametric test, the Wilcoxon rank-sum test, should be used because 
the problem states that we should not assume normality.

 C What are the null and alternative hypotheses?

  We want to test the null hypothesis that the median family income-to- 
poverty level ratio among those with self-reported asthma is equal to the median 
family income-to-poverty level ratio among those without self-reported asthma.

 
H median medianasthma no asthma0: =

 
H median medianasthma no asthma1: ≠

 D Run the test in SAS or Stata. What is the value of W?

  In SAS, we use PROC NPAR1WAY to run the Wilcoxon rank-sum test. 
The binary variable indicating the two groups is called asthma, and the continu-
ous variable is income_ poverty_ratio.

PROC NPAR1WAY DATA = ch9_income_asthma WILCOXON CORRECT = NO;
  CLASS asthma;
  VAR income_poverty_ratio;
RUN;

to calculate the ratio of the family income to the federal poverty guidelines. This variable 
is called income_  poverty_ratio. All respondents in the sample ch9_income_asthma had non-
missing information on the income-to-poverty ratio and answered either “Yes” or “No” to 
the asthma question.
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THE NPAR1WAY PROCEDURE

Wilcoxon Scores (Rank Sums) for Variable income_poverty_ratio Classified by 
Variable Asthma

Asthma N Sum of 
Scores

Expected under 
H0

Std Dev under 
H0

Mean Score

0 427 110267.50 106963.50 1138.76057 258.237705

1 73 14982.50 18286.50 1138.76057 205.239726

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 14982.5000

Normal 
Approximation

Z -2.9014
One-Sided Pr < Z 0.0019
Two-Sided Pr > |Z| 0.0037

t Approximation

One-Sided Pr < Z 0.0019

Two-Sided Pr > |Z| 0.0039

  In Stata, we use the ranksum command and specify the variable income_ 
poverty_ratio as the continuous variable and asthma as the binary variable.

ranksum income_poverty_ratio, by(asthma)
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  The output follows:

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

      asthma |      obs    rank sum    expected
-------------+---------------------------------
           0 |      427    110267.5    106963.5
           1 |       73     14982.5     18286.5
-------------+---------------------------------
    combined |      500      125250      125250

unadjusted variance  1301389.25
adjustment for ties    -4613.62
                     ----------
adjusted variance    1296775.63

Ho: income~o(asthma==0) = income~o(asthma==1)
             z =   2.901
    Prob > |z| =   0.0037

  W is the smaller of the sums of the ranks of the two samples. Thus, W = 
14982.50 which is the sums of the ranks in the asthma group since 14982.5 < 
110,267.50.

 E What are μW and σW?

  The value of μW can be found in the SAS output in the “Expected under H0” 
column or in the Stata output in the “expected” column. We can see that μW = 
18286.5. The standard deviation is shown in the SAS output “Std Dev Under 
H0.” In Stata, we take the square root of the variance provided in the “adjusted 
variance” line. Thus, σW = 1138.76.

 F What is the p-value of the test?

  The p-value for the test is 0.0037.

 G What conclusion can we make?

  Because the p-value is 0.0037, which is less than α = 0.05, we reject the null 
hypothesis. We conclude that the median family income-to-poverty level ratio 
for those with asthma is not equal to the median family income-to-poverty level 
ratio for those without asthma. We have reason to believe that the median family 
income-to-poverty level ratio is higher among persons without asthma (sum of 
ranks = 110267.5 for no asthma vs. 14982.5 for asthma in this sample).

PRACTICE PROBLEM 9.2

A sample of 32 adults were asked whether they participate in vigorous physical activity 
(VPA).3 Of the 32 respondents, 11 said that they do engage in VPA, and the remaining 
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21 reported no VPA. All of the subjects had their 60-second pulse rate measured. The 
measurements are recorded in Table 9.7.

 A Conduct a Wilcoxon rank-sum test to test the null hypothesis that the median 
60-second pulse rate of the population of individuals who engage in VPA is equal 
to the median 60-second pulse rate of individuals who get no VPA. What are the 
null and alternative hypotheses?

BOX 9.2  DESCRIPTION OF PRACTICE PROBLEM 9.2 DATA

The National Health and Nutrition Examination Survey System (NHANES) asks, “Do 
you do any vigorous-intensity sports, fitness, or recreational activities that cause large 
increases in breathing or heart rate like running or basketball for at least 10 minutes 
continuously?” Possible responses are “Yes,” “No,” or “Don’t know,” or participants can 
refuse to answer the question. Those who report engaging in a vigorous physical activity 
(VPA) are coded as vpa = “yes,” and those who say that they do not participate in VPA are 
coded as vpa = “no.” The examination component of the survey measures the 60-second 
pulse rates of the respondents, and this information is contained in the variable pulse_rate. 
The data given in the problem come from a random sample of 32 adults whose pulse rates 
were measured and who answered “Yes” or “No” to the VPA question.

Table 9.7 Data for Practice Problem 9.2

60-Second pulse rate

Vigorous physical 
activitya (n = 11)

No. vigorous physical 
activityb (n = 21)

54 70 58 74 80
58 76 60 76 82
64 82 64 76 82
64 90 66 76 84
66 66 76 84
68 72 76 84

68 72 78 100

Note: Eleven subjects reported engaging in vigorous 
physical activity, and their 60-second pulse rates 
are shown in the left columns. The right columns 
shows the pulse measurements for 21 individuals 
who reported that they do not get vigorous physi-
cal activity.

a Each number represents the pulse rate of a person who 
reported vigorous physical activity.

b Each number represents the pulse rate of a person who 
reported no vigorous physical activity.
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 B In Table 9.8, we combine all of the observations and rank them from smallest to 
largest. There are many tied pulse rate values, so those observations are given aver-
age ranks.

  Calculate the sum of the ranks corresponding to the original samples. What 
is W?

 C Show that the normal approximation valid in this cases?

 D Calculate μW, σW, and the test statistic ZW.

 E What is the p-value?

 F What do we conclude?

 G Check the answers against the following SAS or Stata output.
  SAS:

PROC NPAR1WAY DATA = ch9_vpa_pulse WILCOXON CORRECT = NO;
  CLASS vpa;
  VAR pulse_rate;
RUN;

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable pulse_rate Classified by Variable vpa

vpa N Sum of 
Scores

Expected Under 
H0

Std Dev Under 
H0

Mean 
Score

0 21 392.0 346.50 25.086092 18.666667 

1 11 136.0 181.50 25.086092 12.363636

Average scores were used for ties.
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Table 9.8 Wilcoxon rank-sum test for Practice 
Problem 9.2 

VPA 60-Second pulse rate Rank

yes 54 1
yes 58 2.5
no 58 2.5
no 60 4
yes 64 6
yes 64 6
no 64 6
no 66 9
no 66 9
yes 66 9
yes 68 11.5
yes 68 11.5
yes 70 13
no 72 14.5
no 72 14.5
no 74 16
no 76 19.5
no 76 19.5
no 76 19.5
no 76 19.5
no 76 19.5
yes 76 19.5
no 78 23
no 80 24
no 82 26
no 82 26
yes 82 26
no 84 28.5
no 84 28.5
yes 90 30
no 94 31

no 100 32

Note: The 32 subjects are listed from lowest pulse rate to 
highest. Then, a rank is assigned to each line. If 
multiple subjects have the same pulse rate, they 
receive the average rank.

Abbreviation: VPA, vigorous physical activity.
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Wilcoxon Two-Sample Test

Statistic 136.0000

Normal 
Approximation

Z –1.8138
One-Sided Pr < Z 0.0349
Two-Sided Pr > |Z| 0.0697

t Approximation

One-Sided Pr < Z 0.0397

Two-Sided Pr > |Z| 0.0794

  Stata:

ranksum pulse_rate, by(vpa)

  The output follows:

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

         vpa |      obs    rank sum    expected
-------------+---------------------------------
          no |       21         392       346.5
         yes |       11         136       181.5
-------------+---------------------------------
    combined |       32         528         528
unadjusted variance      635.25
adjustment for ties       -5.94
                     ----------
adjusted variance        629.31

Ho: pulse_~e(vpa==no) = pulse_~e(vpa==yes)
             z =   1.814
    Prob > |z| =   0.0697

PRACTICE PROBLEM 9.3

The modified retail food environment index (mRFEI) is a measure of healthy food 
options in an area.4 The mRFEI is calculated as the percentage of healthy food retailers 
out of the total number of food retailers in a census tract. We have census tracts from 
two parts of the same city, and we are interested in investigating whether there is a 
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significant difference in the median mRFEI between the two samples. There are 7 cen-
sus tracts in the north part of the city and 10 census tracts in the south part. The data 
are in the dataset ch9_mrfei.

 A What type of nonparametric test is appropriate for this scenario?

 B What are the null and alternative hypotheses?

 C Perform the test. Because of the small sample size, use the tables rather than the 
normal approximation to determine the p-value.

 D What do you conclude from the test?

 E Perform the test in SAS or Stata, and compare your output to the calculations in 
Practice Problem 9.3—Part (C).

 F If you were to use a two-sample t-test instead of the nonparametric alternative, 
would the conclusion be different? Use a statistical package to perform a two- 
sample t-test for comparison.

PRACTICE PROBLEM 9.4

The Social Security Administration (SSA) releases claim information for SSA disability 
benefits by state and fiscal year.5 The data include the filing rate of eligible adults, which 
is the number of claims received by the state during that fiscal year per 100 eligible 
adults (i.e., those who are aged 18 to 64 years and not already receiving benefits). We 
are interested in the change in the filing rate for eligible adults over time, specifically 
between 2010 and 2015. The dataset includes data from all 50 states plus the District 
of Columbia and Puerto Rico and is called ch9_disability_claims. We do not have prior 
knowledge about the direction of the change, and all analyses should be conducted at 
the 5% level of significance.

 A If we wish to use a parametric test to analyze the data, which test is appropriate in 
this scenario?

 B What are the null and alternative hypotheses for the parametric test?

 C Conduct the parametric test in SAS or Stata. What do you conclude?
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 D Now suppose that we do not wish to make the assumptions necessary to conduct a 
parametric test. What is the nonparametric equivalent to use in the situation?

 E What are the null and alternative hypotheses for the nonparametric test?

 F Conduct the nonparametric test in SAS or Stata. What do you conclude?

 G Compare the results of the parametric and nonparametric tests.
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PRACTICE PROBLEM D.1

As the demographic makeup of the United States changes, certain areas of the country 
are becoming minority-majorities: Places where racial and ethnic minority populations 
together make up a majority of the residents. We would like to look at the relationship 
between minority-majority status and unemployment rates. Our data uses Metropolitan 
Statistical Area (MSA) as the geographical unit of analysis. Specifically, we will test 
whether the employment rate in MSAs with a minority-majority is the same as in MSAs 
without a minority-majority. The data are in the file labd_metro_areas.1 The variable 
minority_majority takes a value of 1 for minority-majority MSAs and 0 for non-minority-
majority MSAs. The variable unemployment_rate is the unemployment rate in the MSA.

 A What are the null and alternative hypotheses?

 B Write and run the SAS or Stata code to perform the test.

 C Look at the output. How many of the MSAs are minority-majorities? How many 
still have a population that is majority non-Hispanic white?

 D What is the mean unemployment rate in minority-majority MSAs? What is the 
mean in MSAs without a minority-majority?

 E Can we make the equal variance assumption for these data?

 F What are the value and distribution of the test statistic?

 G What is the p-value of the test?

 H Do you reject or fail to reject the null hypothesis? What is your conclusion from the study?

Lab D: Two-sample (parametric and 
nonparametric) hypothesis testing



282 Lab D: Two-sample (parametric and nonparametric) hypothesis testing

PRACTICE PROBLEM D.2

The World Health Organization monitors vaccination rates for preventable diseases around 
the world. Table D.1 contains information on measles immunization coverage in 19 coun-
tries among children aged 1 year.2 The percentage of coverage among the population in 
each country for the years 2000 and 2014 are shown. The data are also saved in the file 
labd_measles_vaccinations.

 A We would like to perform a nonparametric test at the α = 0.05 level of signifi-
cance to compare the measles immunization coverage in 2000 to the coverage in 
2014. What test should we use, and what are the null and alternative hypotheses 
of the test?

 B Perform the hypothesis test in a statistical package. What is the median difference 
in the sample?

Table D.1 Data for Problem D.2

Country

Measles immunization coverage (%)

2000 2014

Argentina 91 95
Austria 75 76
Bangladesh 74 89
Belarus 98 99
Benin 70 63
Dominican Republic 85 88
Eritrea 76 96
Georgia 73 92
Guatemala 86 67
Kuwait 99 94
Luxembourg 93 99
Madagascar 57 64
Mexico 96 97
Micronesia 85 91
Nepal 71 88
Niue 99 99
Pakistan 59 63
Senegal 48 80
Serbia 89 86
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 C What is the value of the test statistic?

 D What is the p-value?

 E What do we conclude?

 F It is a common mistake to assume data are independent when they are, in fact, 
dependent. What would happen if we did not account for the paired nature of the 
data? Perform a nonparametric hypothesis test for independent data. The data for 
this procedure are in the dataset labd_measles_vaccinations_2.

 G What do we conclude if we assume independent samples?

PRACTICE PROBLEM D.3

We are interested in examining the association between birthweight and obesity and 
birthweight and overweight in childhood. Table D.2 shows birthweights from 11 chil-
dren who have been classified as overweight by a health professional at some point.3 
Also, 16 birthweight measurements are included from children who have never been 
told that they are overweight. We do not want to assume that the underlying distribu-
tions are normally distributed. The data are in the dataset labd_birth_weights.

 A What test is appropriate for the data?

BOX D.1  DESCRIPTION OF labd_birth_weights DATASET

The National Health and Nutrition Examination Survey (NHANES) asks caregivers of 
respondents aged 2 to 15 years, “Has a doctor or health professional ever told you that he/
she was overweight?” Possible responses are “Yes,” “No,” “Don’t know,” or refusal to answer 
the question. Those who answered “Yes” to the question were coded overweight_kid = 1, 
and those who answered “No” were given a value of overweight_kid = 0. The caregivers are 
also asked, “How much did he/she weigh at birth?” Responses were recorded in pounds 
and ounces, and the value was converted to pounds and fractions of a pound in the vari-
able birth_weight. The sample in the dataset labd_birth_weights is limited to those who had 
nonmissing birthweights and who answered “Yes” or “No” to the question about being 
overweight as a child.
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 B What are the null and alternative hypotheses for the test?

 C What is the median birthweight among children who have been told at some point 
that they are overweight? What is the median birthweight among children who 
have never been told that they are overweight?

 D What code is used to perform the hypothesis test?

 E Look at the output. What is the value of the test statistic?

BOX D.2 DESCRIPTION OF labd_vpa_pulse DATASET

The National Health and Nutrition Examination Survey System (NHANES) asks, “Do 
you do any vigorous-intensity sports, fitness, or recreational activities that cause large 
increases in breathing or heart rate like running or basketball for at least 10 minutes 
continuously?” Possible responses are “Yes,” “No,” “Don’t know,” or refusal to answer the 
question. Those who reported engaging in a vigorous activity were coded as vpa = 1, and 
those who said they do not participate in VPA were coded as vpa = 0. The examination 
component of the survey measures the 60-second pulse rates of the respondents, and this 
information is contained in the variable pulse_rate. The data given in the problem come 
from a random sample of 32 adults who had measured pulse rates and answered “Yes” or 
“No” to the VPA question.

Table D.2 Data for Problem D.3

Birthweight (pounds)

Overweight children Normal weight children

6.50 10.50 7.38
7.63 8.31 6.44
7.00 9.25 8.00
7.56 4.69 7.00
6.44 6.56 6.00
7.81 6.69
7.31 7.44
8.81 8.00
8.25 7.31
7.25 6.31
9.44 6.00
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 F What is the p-value of the test?

 G What do we conclude?

 H Create histograms for birthweight stratified by whether the child has ever been 
categorized as overweight. Upon examination of the histograms, do you feel that it 
would have been appropriate to use the two-sample t-test to analyze these data?

PRACTICE PROBLEM D.4

Let’s return to the data presented in Practice Problem 9.2 regarding pulse rates and physi-
cal activity.3 In that problem, we analyzed the data using the Wilcoxon rank-sum test to 
test the null hypothesis that the median 60-second pulse rate of the population of individu-
als who engage in vigorous physical activity (VPA) is equal to the median 60-second pulse 
rate of individuals who get no VPA. We failed to find statistically significant evidence to 
suggest that the difference in median 60-second pulse rate is different between those who 
engage in VPA and those who do not. The data are in the dataset labd_vpa_ pulse.

Suppose that we would like to reanalyze the data, given that the assumptions for a 
parametric test are not violated (we will ignore the fact that the sample size is small).

 A What type of hypothesis test will we use to compare the mean pulse rates among 
those who engage in VPA with those who do not engage in VPA?

 B What are the null and alternative hypotheses?

 C Can we make the equal variance assumption?

 D Run the two-sample t-test and examine the output. What is the mean 60-second 
pulse rate for those who engage in VPA? What is the mean for those who report not 
engaging in VPA?

 E What is the difference in means between the two groups?

 F What are the value and distribution of the test statistic?
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 G What is the p-value?

 H What do we conclude from this test?

 I How do the results compare to the conclusion from the nonparametric test in 
Chapter 9?

PRACTICE PROBLEM D.5

The age-adjusted premature death rate, calculated as the number of deaths among resi-
dents under the age of 75 years per 100,000 population, is a measure of the health of a 
population. We have a sample of 200 U.S. counties and their age-adjusted premature 
death rates for the years 2013 and 2016.4,5 The sample is in the dataset labd_ premature_
death. We are interested in comparing the data from the two years to look for trends in 
the premature death rate.

 A Are the data independent or dependent?

 B The value of variable rate_difference is the premature death rate in 2016 minus the 
premature death rate in 2013. Make a histogram for the difference variable, and 
state whether we can assume that the difference is normally distributed.

 C Given the nature of the data, we would like to perform a two-sided paired t-test. 
What are the null and alternative hypotheses?

 D Write the code to perform the test.

 E Look at the output. What is the value of d ?

 F What is the value of the test statistic? What type of distribution does it follow?

 G What is the p-value? What do you conclude?

 H What is the 95% confidence interval for the true difference in means?
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 I Say that we instead hypothesized that the mean age-adjusted premature death rate 
in 2016 was lower than the rate in 2013. What are the null and alternative hypoth-
eses for this test?

 J Run the test again as a one-sided test. What are the value and distribution of the 
test statistic?

 K What is the p-value? What is the conclusion from the one-sided test?

 L Compare the p-values from the two-sided and one-sided tests.
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10 Hypothesis testing with categorical 
data

This chapter will focus on hypothesis testing with categorical data and will include the 
following topics:

• Two-sample test for proportions
• The chi-squared distribution
• Odds ratios
• Sample size and power for comparing two binomial proportions

Terms

• 2 × 2 contingency table
• column marginal total (column margin)
• concordant pair
• confounder
• contingency-table method
• continuity correction
• discordant pair
• drop-out rate
• drop-in rate
• grand total

• McNemar’s test
• odds ratio
• Pearson’s chi-squared test (goodness 

of fit test)
• R × C contingency table
• row marginal total (row margin)
• type A discordant pair
• type B discordant pair
• Yates continuity correction

Introduction

In Chapters 8 and 9, we introduced two-sample tests and several different ways to 
compare two samples where a continuous variable is the outcome of interest. However, 
often the outcome variable is a categorical variable, particularly a dichotomous variable. 
In such a case, we can use the alternate methods discussed here to compare the two 
samples. We will also introduce a new probability distribution (chi-squared distribu-
tion) that is commonly used for hypothesis tests for categorical data.
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Two-sample test for proportions

The two-sample test for proportions is an extension of the one-sample test for pro-
portions that was introduced in Chapter 7. There are two approaches for testing the 
hypothesis: The normal theory method and the contingency-table method. The two 
approaches are equivalent in that they will always yield the same p-value, so the choice 
of method is usually based on convenience. 

Normal theory method

It is reasonable to base the hypothesis test on the difference between the sample propor-
tions. If this difference is very different from 0 (far in the positive or negative direction), 
then the null hypothesis is rejected. We assume the samples are large enough so that the 
normal approximation to the binomial distributions is valid (Table 10.1).
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Intuitively, this estimate of p makes sense since each of the sample proportions is 
weighted by the number of people in the sample. The test statistics for proportions 

Table 10.1 Two-sample test for proportions using the normal theory 
method
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Note: The two-sample test for proportions is an extension of the one-sample test for 
a proportion introduced in Chapter 7. In the two-sample test, we test 
whether or not the proportion in one group is equal to the proportion in 
another group.
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follow a standard normal distribution, instead of a t-distribution, since only one param-
eter (p) needs to be estimated from the data.

Note that the estimates of standard deviation used in hypothesis testing are differ-
ent from those used to construct confidence intervals. A continuity correction equal 

to 
1

2

1

21 2n n
+







 may be subtracted from the numerator of the test statistic to better 

accommodate the normal approximation to the binomial distribution. That is, a con-
tinuous distribution may be used to approximate a discrete distribution.

EXAMPLE PROBLEM 10.1

In a yearly survey of U.S. adults,1 information is collected on medical care and health behav-
iors, and we are interested in analyzing a sample of the data to determine whether having 
Medicare affects satisfaction with the medical care received. In particular, we want to know 
whether the proportions of adults who say that they are very satisfied with the care that 
they received are identical between those who have Medicare and those who do not. The 
sample has 653 adults. Of the 288 with Medicare, 213 reported being very satisfied with 
their medical care. Among the 365 adults not covered by Medicare, 242 were very satisfied 
with the medical care that they received. The dataset is called ch10_medicare_satisfaction.

 A What are the point estimates of the true proportion of adults who are very 
satisfied with their medical care in each insurance group?

  Let Group 1 be adults with Medicare and Group 2 be adults without 
Medicare coverage. 

Then, ˆ .p
x

n1
1

1

213

288
0 74= = =  and ˆ .p

x

n2
2

2

242
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0 66= = = .

BOX 10.1  DESCRIPTION OF ch10_medicare_satisfaction DATASET

The Behavioral Risk Factor Surveillance System (BRFSS) asked each participant, “Do you 
have Medicare? (Medicare is a coverage plan for people 65 or over and for certain disabled 
people.)” Respondents could answer “Yes,” “No,” or “Don’t know,” or they could refuse to 
answer the question. Those who reported having Medicare received a value of medicare = 1, 
while those who said that they did not have Medicare were coded as medicare = 0. The sur-
vey also asked, “In general, how satisfied are you with the healthcare you received?” The 
response had three satisfaction options, “Very satisfied,” “Somewhat satisfied,” and “Not 
at all satisfied,” as well as an options for “Don’t know,” Not Applicable, and Refused. The 
variable care_satisfied indicates whether or not the subject was very satisfied with medical 
care. Those who reported being only somewhat satisfied or not at all satisfied were coded as 
care_satisfied = 0, and those who reported being very satisfied were coded as care_satisfied = 1. 
The sample in the dataset ch10_medicare_satisfaction is limited to those who responded “Yes” 
or “No” to having Medicare and who indicated a level of satisfaction with their healthcare.
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 B What is the estimate of the true difference in population proportions?
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 C Construct an interval estimate with 95% confidence for the true difference in 
population proportions. Does this interval contain 0?
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  We are 95% confident that the true difference in proportions lies in the 
interval (0.01, 0.15). This interval does not contain the null value of 0, which 
would indicate that we would reject the null hypothesis p1 = p2.

 D Now we will conduct a hypothesis test to see whether the proportion of 
adults who are very satisfied with their medical care is the same in both 
populations. What are the null and alternative hypotheses?

  We wish to test the null hypothesis that the true proportion of adults with 
Medicare who are very satisfied with their medical care is equal to the true pro-
portion of adults without Medicare who are very satisfied with the medical care 
they receive. In symbols: 

 H p p0 1 2: =

 H p p1 1 2: ≠

 E What are the value and distribution of the test statistic?

  First, we must calculate p to determine whether the normal approximation 
is appropriate. 

 
p

n p n p

n n
= +

+
= × + ×

+
=1 1 2 2

1 2

288 0 74 365 0 66

288 365

45ˆ ˆ . . 44 02

653
0 70

.
.=

  Thus, n1
p(1 − p) = 288(0.70)(1 − 0.70) = 60.48 > 5 and n2

p(1 − p) = 365(0.70)
(1 − 0.70) = 76.65 > 5. Therefore, the normal approximation is appropriate.
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The test statistic has a value of 2.11 and follows a standard normal distribution.
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 F What is the p-value of the test?

  Table 10.2 demonstrates the use of statistical software to calculate the 
p-value for this test.

p value Z- = × ≥ =2 2 11 0 0349P( . ) .

 G Do we reject or fail to reject the null hypothesis? What do we conclude?

  Because p-value < α, we reject the null hypothesis. We conclude that the 
proportion of adults with Medicare who report being very satisfied with their 
medical care is not equal to the proportion of adults without Medicare who are 
very satisfied with the care they receive. Because ˆ ˆp p1 2> , we have evidence that 
adults with Medicare are more likely to report being very satisfied with their 
medical care.

 H How does the interval estimate reflect the conclusion of the hypothesis test? 

  The interval estimate did not include 0, which matches the conclusion of the 
hypothesis test to reject the null hypothesis. The values in the 95% confidence 
interval are positive, which indicates p1 > p2.

PRACTICE PROBLEM 10.1

We are running a study to compare two regimens. The first table in our analysis will 
show descriptive statistics by treatment group for demographic variables and whether 
the characteristics differ between the treatment groups. There are 250 subjects in the 

Table 10.2 P-value calculation for Example Problem 10.1

Using SAS Using Stata

SAS Code Stata Code
DATA f;
pvalue = 2*(1 - PROBNORM(2.11));
RUN;

PROC PRINT DATA = f;
RUN;

di 2*(1 - (normprob(2.11)))

SAS Output

Obs p-Value
1 0.034858

Stata Output
.03485836

Note: The p-value for Example Problem 10.1 can be calculated in SAS or Stata using the PROBNORM or 
normprob functions, respectively.
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trial, 130 of whom are receiving the active treatment and 120 of whom are receiving the 
placebo. Of the 130 subjects receiving active treatment, 76 are female.1 In the placebo 
group, 67 are female. We wish to compare the percentage of female subjects in both 
groups using a two-sample test for proportions.

 A What are the point estimates of the proportion of female subjects in each of the 
treatment groups?

 B What is the estimate of the difference in population proportions?

 C Construct an interval estimate with 99% confidence for the true difference in popu-
lation proportions. Does this interval contain 0? 

 D Now we will conduct a hypothesis test to see whether the proportion of female 
subjects is the same in both treatment groups. What are the null and alternative 
hypotheses?

 E What are the value and distribution of the test statistic?

 F What is the p-value of the test?

 G Do we reject or fail to reject the null hypothesis? What do we conclude?

Contingency table methods

An alternative to the normal theory method, a contingency table is used to examine 
associations between categorical variables. The table is a cross-tabulation of two vari-
ables where one variable is assigned to the rows and the other variable is assigned to the 
columns. Thus, each cell corresponds to a level of both of the variables. The most com-
mon form of the table has two rows and two columns, but the methods can be extended 
to larger dimensions. The number of rows in the table is denoted by r, and the number 
of columns is denoted by c. The chi-squared distribution is often used for hypothesis 

BOX 10.2  DESCRIPTION OF PRACTICE PROBLEM 10.1 DATA

The gender and race variables used in Practice problems 10.1 and 10.6 come from the 
Behavioral Risk Factor Surveillance System (BRFSS). However, the variable treatment is 
not a BRFSS variable and was randomly assigned to respondents for example purposes.
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tests regarding contingency tables. Note that contingency tables are not used to analyze 
continuous variables.

Contingency-Table Method: A set of analytical methods used to determine the relation-
ship between two categorical variables using a table matrix with one variable as the row 
variable and the other variable as the column variable.

The contingency table method is valid only if there is no confounding present. 

Confounding: The process in which a variable that is related to both the exposure and 
outcome variables, called a confounder, affects the association between the exposure and 
outcome.

In this chapter, we assume no confounding is present.

2 × 2 Contingency table

2 × 2 Contingency Table: A table composed of two rows cross-classified by two  columns; 
an appropriate way to display data that can be classified by two different binary vari-
ables, each of which has only two possible outcomes. 

In a 2 × 2 contingency table, one variable is assigned to the rows, and the other vari-
able is assigned to the columns. Each of the four cells represents the number of units 
with a specific value for each of the two variables. The cells are sometimes referred to 
by number, as labeled in Table 10.3. The row is referenced by the first number of the 
ordered pair, and the second number refers to the column. 

The cells can also be referred to by letter, as in Table 10.4.
The observed number of units in the four cells is likewise referred to as O11 (obser-

vation row 1, column 1), O12 (observation row 1, column 2), O21 (observation row 2, 
column 1), and O22 (observation row 2, column 2). 

Row Marginal Total (Row Margin): The total number of units in each row, displayed 
in the right margin; in a 2 × 2 contingency table, the row margin total is equal to a + 
b for the first row and c + d for the second row.

Column Marginal Total (Column Margin): The total number of units in each column, 
displayed in the bottom margin; in a 2 × 2 contingency table, the column marginal 
total is equal to a + c in the first column and b + d in the second column.

Table 10.3 Table of observed counts 
with number notation

Outcome

Yes No

Group 1 (1, 1) (1, 2)

Group 2 (2, 1) (2, 2)

Note: With number notation, each cell in 
the contingency table is labeled 
with an ordered pair indicating the 
row and column of the cell.
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Grand Total: The total number of units in the four cells. The grand total is displayed 
in the lower right corner of the table; in a 2 × 2 contingency table, the grand total is 
equal to a + b + c + d.

R × C contingency table

R × C Contingency Table: A table that displays the relationship between two variables 
using rows and columns, where the variable in the rows has R > 2 categories and the 
variable in the columns has C > 2 categories. 

Eij = the expected number of units in the cell; the product of the number of units 
in the ith row multiplied by the number of units in the jth column, divided by the total 
number of units in the table.

The sum of the expected values across any row or column must equal the correspond-
ing row or column total, as was the case for 2 × 2 tables. This provides a good check that 
the expected values are computed correctly, but be aware that your numbers may be off 
slightly due to round-off error.

The chi-squared distribution

For tests with categorical data, we often use the chi-squared distribution. The distribu-
tion has one parameter—the number of degrees of freedom, symbolized by k. Random 
variables with such a distribution are written as X k~ χ2. Unlike the normal distribution, 
the chi-squared distribution is not symmetrical. The chi-squared distribution does not 
have negative values and can be thought of as the square of the normal distribution. 
Table 10.5 provides commands for calculating cutoffs of the chi-squared distribution 
using statistical software.

In SAS, p-values for chi-squared statistics can be calculated using the PROBCHI 
function. The PROBCHI function will return the probability that the observation 
is less than or equal to the value selected, so 1 – PROBCHI is the probability that 
the observation is greater than or equal to the value. The first argument in the SAS 
function is the value of the test statistic; the degrees of freedom constitute the second 
argument. 

Table 10.4 Table of observed counts with letter 
notation

Outcome

Yes No Total

Group 1 a b a + b
Group 2 c d c + d

Total a + c b + d a + b + c + d

Note: With letter notation, each cell in the contin-
gency table is labeled with a letter. In a 2 × 2 
table, letters a through d are used. The grand 
total is the sum of a, b, c, and d.
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In Stata, the chi2 function will return the probability that the observation is less than 
or equal to the value selected, and chi2tail returns the probability that the observation is 
greater than or equal to the value. The degrees of freedom constitute the first argument 
in the Stata function, and the second is the value of the test statistic.

METHOD 1: PEARSON’S CHI-SQUARED TEST

Pearson’s Chi-Squared Test (Goodness of Fit Test): A method of analysis that is used when 
there are two independent groups; referred to as a “goodness of fit” test because it compares 
how close the observed counts are to the expected counts under the null hypothesis.

The null hypothesis of the Pearson’s chi-squared test is H0: p1 = p2 (Table 10.6), 
the same as in the two-sample test for proportions. An alternate way to state the null 
hypothesis of Pearson’s chi-squared test is that there is no association between exposure 
and outcome. 

The chi-squared test is a two-sided test although the critical region based on the chi-
squared distribution is one sided. The rationale is that large values of |O − E| and, corre-
spondingly, the test statistic will be obtained under the alternative regardless of whether 
p1 < p2 or p1 > p2. Small values of the test statistic are evidence in favor of the null.

For a 2 × 2 table, r = c = 2, so the test has (r − 1) × (c − 1) = 1 × 1 = 1 degree of 
freedom. Eij is the expected number in the ijth cell, assuming that there is no association 
between exposure and outcome (i.e., H0 is true). Do not round to whole numbers. See 
Table 10.7 for formulas for the expected number in each cell.

BOX 10.3  USING STATISTICAL SOFTWARE FOR 
THE CHI-SQUARED CONTRIBUTION

For example, if we want to calculate the p-value corresponding to a test statistic χ2 = 7.5 
with 5 degrees of freedom, we could use the following code in SAS:

DATA;
 pvalue = 1 - PROBCHI(7.5, 5);
RUN; 

If we would like to find the p-value using Stata, we would use the following code:

di chi2tail(5, 7.5)

Both programs return p-value = 0.1860.

Table 10.5 Commands for calculating chi-squared distribution cutoffs

Probability SAS Stata

Pr (T > k) 1 - PROBCHI(k, df) di chi2tail(df, k)
Pr (T < k) PROBCHI(k, df) di chi2(df, k)

Note: In SAS, the PROBCHI command calculates cutoffs of the chi-squared distribution. 
The analogous function in Stata is the chi2tail function.
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The total of the expected number of units in any row or column should be the same 
as the corresponding observed row and column total. This relationship provides a useful 
check that the expected values are computed correctly.

In some cases, we apply a continuity correction to the chi-squared test statistic by 
subtracting 0.5 inside the squared term in the numerator. This correction is called the 
Yates continuity correction. Thus, the test statistic is equal to the following:

 χ2

2

11

0 5
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− −( )
==

∑∑ O E
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ij ij

ijj

c

i

r .
 (10.2)

Table 10.7 Expected counts in a 2 × 2 table

Outcome

TotalYes No 

Group 1
E

a b a c

a b c d11 = + +
+ + +

( )( )

   ( )
E

a c c d

a b c d21 = + +
+ + +

( )( )

( )

a + b

Group 2
E

a b b d

a b c d12 = + +
+ + +

( )( )

( )
E

c d b d

a b c d22 = + +
+ + +

( )( )

( )

c + d

Total a + c b + d a + b + c + d

Note: The formulas for the expected value in each cell depend on the observed cell 
values (a, b, c, and d). The expected cell counts are used to calculate the chi-
squared test statistic and to check assumptions for the test.  If the expected 
cell values are too small, an exact test is necessary.

Table 10.6 Pearson’s chi-squared test

Component Formula

Hypotheses H0: There is no association between exposure and outcome.
H1: There is an association between exposure and outcome.
(Alternatively, H0: p1 = p2 vs. H1: p1 ≠ p2)

Test statistic
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Distribution of test statistic Chi-squared (χ2) with (r – 1)(c – 1) degrees of freedom
Assumptions For 2 × 2 tables, none of the expected cell values are <5. 

For R × C tables, no more than 20% of the cell counts are 
<5, and no cell counts are equal to 0.
Exact tests are necessary if cell counts are too small.

Note: Pearson’s chi-squared test is a commonly used hypothesis test for categorical data. It can be used for 
both 2 × 2 tables and larger R × C tables.
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There is another version of the Yates-corrected statistic that is easier to calculate with 
a hand calculator and does not require the computation of the expected table. The for-
mula for this test statistic follows:

 χ2

2

2=
− −







+ + + +

n ad bc
n

a b c d a c b d( )( )( )( )  (10.3)

In the analysis of 2 × 2 tables, the chi-squared statistic without the Yates correction 
is mathematically equivalent to the square of the test statistic from the two-sample 
test of proportions. The p-values of the two tests are identical. It should be noted that 
statisticians disagree widely about whether a continuity correction is needed for the 
contingency table test. The p-values for test with the continuity correction are slightly 
larger, and the results obtained are slightly less significant. For large sample sizes, this 
difference should be small.

In R × C contingency tables, the Pearson’s chi-squared test statistic is used for analy-
sis just as for a 2 × 2 table. In order for the test to be valid, no more than 

1

5
 of the cells 

can have expected values that are less than 5, and no cell should have an expected value 
less than 1. If cell counts are too small, an exact test is necessary. Although the Yates-
corrected statistic can be generalized to any number of groups and outcomes, it is not 
commonly used in R × C situations.

Pearson’s chi-squared test in SAS
PROC FREQ is the SAS procedure used to perform the Pearson’s chi-squared test. If the 
row and column variables are specified in the TABLES statement, the CHISQ option 
will output both the Pearson’s chi-squared result and the Yates correction.

PROC FREQ DATA = dataset_name;
 TABLES row_var*column_var / CHISQ;
RUN;

When the expected cell counts are smaller than 5, we can request the Fisher’s exact 
chi-squared test with the EXACT option. The EXPECTED option will show the 
expected cell counts.

PROC FREQ DATA = dataset_name;
 TABLES row_var*column_var / CHISQ EXACT EXPECTED;
RUN;

The output includes the 2 × 2 table as well as the statistics requested.
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The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of row_var by column_var

row column

0 1 Total
0 17 11 28

17.00 11.00 28.00
60.71 39.29
29.31 26.19

1 41 31 72
41.00 31.00 72.00
56.94 43.06
70.69 73.81

Total 58 42 100

58.00 42.00 100.00

Statistics for Table of row_var by column_var

Statistic DF Value Prob

Chi-Square 1 0.1176 0.7316
Likelihood Ratio Chi-Square 1 0.1181 0.7311
Continuity Adj. Chi-Square 1 0.0138 0.9066
Mantel–Haenszel Chi-Square 1 0.1164 0.7329
Phi Coefficient 0.0343
Contingency Coefficient 0.0343
Cramer’s V 0.0343

Fisher’s Exact Test

Cell (1,1) Frequency (F) 17
Left-sided Pr <= F 0.7137
Right-sided Pr >= F 0.4555

Table Probability (P) 0.1692

Two-sided Pr <= P 0.8231

The Pearson’s chi-squared test results are in the “Chi-Square” line of the “Statistics 
for Table of row_var by column_var” table. The “value” column is the test statistic, and 
“Prob” is the p-value. The “Continuity Adj. Chi-Square” is the chi-squared result with 
the Yates correction. The results from the Fisher’s exact test are in the last output box; 
the p-value is in the line “Two-sided Pr <= P.” Because it is an exact test, there is no test 
statistic value that corresponds to the p-value.

In addition to using individual-level data, we can also use PROC FREQ with a 
WEIGHT statement when we have aggregate data. The counts in the individual cells 
can be input by hand. 
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For example, if we want to manually input the data shown in Table 10.8, we can use 
the following SAS code to read in the data. We have both a row and column variable 
that indicates the cell position in the table, and the variable count indicates the number 
in each cell.

DATA dataset_name;
 INPUT row_var column_var count;
 DATALINES;
1 1 17
0 1 11
1 0 41
0 0 31
;
RUN;

Then, in PROC FREQ, include a WEIGHT statement with count as the weight 
variable.

PROC FREQ DATA = dataset_name ORDER = DATA;
 TABLES row_var*column_var / CHISQ EXPECTED;
 WEIGHT count;
RUN;

The output using aggregate data looks identical to the output using individual-level 
data.

Pearson’s Chi-Squared Test in Stata
To perform the Pearson’s chi-squared test, we use the tab (tabulate) command. After the 
tab command, the row and column variables should be specified. Then, the chi2 option 
is to be added to the end of the code.

tab row column, chi2

When the expected cell counts are smaller than 5, we can request the Fisher’s exact 
test with the exact option. Additionally, the expected option will show the expected cell 
counts. To obtain the row percentages or column percentages for each cell, insert the 
row or column options to the side of the code after the comma.

Table 10.8 Sample 2 × 2 table

Column

1 0
Row 1 17 11

41 310

Note: The sample 2 × 2 table shows cell 
counts. Here, both the row variable 
and column variable have two pos-
sible values, 0 or 1.
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tab row_var column_var, chi2 exact expected row column

+--------------------+
| Key                |
|--------------------|
|     frequency      |
| expected frequency |
|   row percentage   |
| column percentage  |
+--------------------+

           |        column_var
   row_var |         0          1 |     Total
-----------+----------------------+----------
         0 |        17         11 |        28 
           |      16.2       11.8 |      28.0 
           |     60.71      39.29 |    100.00 
           |     29.31      26.19 |     28.00 
-----------+----------------------+----------
         1 |        41         31 |        72 
           |      41.8       30.2 |      72.0 
           |     56.94      43.06 |    100.00 
           |     70.69      73.81 |     72.00 
-----------+----------------------+----------
     Total |        58         42 |       100 
           |      58.0       42.0 |     100.0 
           |     58.00      42.00 |    100.00 
           |    100.00     100.00 |    100.00 

          Pearson chi2(1) =   0.1176   Pr = 0.732
           Fisher’s exact =                 0.823
   1-sided Fisher’s exact =                 0.456

The key at the beginning of the output shows the order in which the various counts 
and percentages appear in each cell. In this case, the number of observations in each cell 
is shown on the top line, the expected count is on the second line, the row percentage 
is on the third line, and the column percentage is on the bottom line. The chi-squared 
test statistic appears on the “Pearson chi2( ) =” line, and the corresponding p-value is 
“Pr =e” The degrees of freedom for the test are shown in the parentheses on the “Pearson 
chi2(1) =” line. For 2 × 2 tables, there will always be 1 degree of freedom. The p-value 
for the exact test is provided on the line below the Pearson’s chi-squared statistic. Both 
two-sided (top) and one-sided (bottom) Fisher’s exact p-values are given.

In addition to using individual-level data, we can also use the tabi command when we 
have aggregate data rather than individual-level data. The counts in the individual cells 
can be input by hand. For example, if we have the 2 × 2 table shown in Table 10.8, we 
can use the following Stata code to read in the data.
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tabi 17 11\41 31, chi2 expected

The output from the tabi method looks identical to the output from the tab command.

EXAMPLE PROBLEM 10.2 

The United States Preventive Services Task Force (USPSTF) recommends screening for 
colorectal cancer, which involves fecal occult blood tests, sigmoidoscopies, or colonos-
copies, in the general public at age 50 years and later. Suppose that we are interested in 
learning whether sex is associated with colorectal cancer screening. In particular, per-
haps, we are interested in comparing the proportion of females and males aged 50 to 75 
years who have fully met the USPSTF recommendations for screening in 2014. Sex and 
screening measurements were taken for a random sample of 250 subjects, and the data 
can be found in the dataset ch10_crc_screening.1 Use these data to test the null hypothesis 
that the proportion of adults aged 50 to 75 years who meet the screening recommenda-
tions is the same for males and females. Use a 0.05 level of significance.

 A What is the outcome of interest? What are the two populations that we are 
interested in comparing?

  The outcome is the dichotomous variable of compliance with screening rec-
ommendations. We will compare males and females.

 B Tabulate the data into a 2 × 2 table. How many males and females are there? 
How many females met the screening guidelines? How many males met the 
screening guidelines?

  Using SAS, we can request a cross tabulation of the variable female and the 
variable screened.

PROC FREQ DATA = ch10_crc_screening;
 TABLES female*screened;
RUN;

BOX 10.4  DESCRIPTION OF chi10_crc_screening DATASET

The Behavioral Risk Factor Surveillance System (BRFSS) asked each participant ques-
tions regarding colorectal cancer screening, from this we calculated a variable indicating 
whether each respondent aged 50 to 75 years had fully met the USPSTF recommenda-
tions. Those who met the screening recommendations have a value of screened = 1, and 
those who did not meet the recommendations were coded as screened = 0. The sex of each 
respondent was also recorded during the survey. The variable female takes a value of 1 for 
women and 0 for men. The dataset ch10_crc screening is limited to a sample of 250 men and 
women who had nonmissing age and screening information.
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The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Female by Screened

female(Female) screened(Met USPSTF guidelines for 
colorectal cancer screening)

0 1 Total
0 31 67 98

12.40 26.80 39.20
31.63 68.37
41.89 38.07

1 43 109 152
17.20 43.60 60.80
28.29 71.71
58.11 61.93

Total 74 176 250

29.60 70.40 100.00

In Stata, we use the tab command, specifying the two variables of interest.

tab female screened

           | Met USPSTF guidelines
           | for colorectal cancer
           |       screening
    Female |         0          1 |     Total
-----------+----------------------+----------
         0 |        31         67 |        98 
         1 |        43        109 |       152 
-----------+----------------------+----------
     Total |        74        176 |       250 

  Of the 250 subjects, 98 are male and 152 are female; 67 males and 109 
females met the USPSTF screening guidelines. (See Table 10.9.)

Table 10.9 Data for Example Problem 10.2

Met screening recommendations

TotalNo Yes

Sex Male 31 67
43 109

98
Female 152

Total 74 176 250

Note: The 2 × 2 table shows a cross-tabulation of the data used in 
Example Problem 10.2. The respondents’ sex is the row vari-
able, and whether or not the respondent met the colorectal can-
cer screening recommendations is the column variable.
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 C By hand, find the expected counts for each cell in Table 10.9.

 D What are the null and alternative hypotheses for the Pearson’s (see 
Table 10.10) chi-squared test?

  We want to test the following null and alternative hypotheses:

H0: No association between sex and colorectal cancer screening compliance. 
H1: There is an association between sex and colorectal cancer screening 

compliance.

 E What is the value of the test statistic? Do not use the Yates correction. What 
distribution does the test statistic follow?

  The test statistic follows a chi-squared distribution with (r – 1)(c – 1) = (2 – 1)
(2 – 1) = 1 degree of freedom.
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 F What is the p-value? What do you conclude?

  The p-value is P(χ2 ≥ 0.32) = 0.5716.
  The p-value is greater than alpha, so we fail to reject the null hypothesis. We 

have no evidence that colorectal cancer screening rates are associated with sex 
for U.S. adults aged 50 to 75 years.

 G Write the SAS or Stata code to perform the test.

  In SAS, we request the CHISQ option in PROC FREQ. We can also include 
the EXPECTED option to check that the expected counts calculated in Example 
Problem 10.2—Part (C) are correct.

PROC FREQ DATA = ch10_crc_screening;
 TABLES female*screened / EXPECTED CHISQ;
RUN;

  In Stata, we add the chi2 option to the tab command to request the Pearson’s 
chi-squared test. The expected option can also be inserted to get the expected 
counts.

tab female screened, chi2 expected
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 H Does the output match the hand calculation?
  SAS:

The FREQ Procedure

Frequency
Expected
Percent
Row Pct
Col Pct

Table of Female by Screened

female(Female) screened(Met USPSTF guidelines for 
colorectal cancer screening)

0 1 Total
0 31 67 98

29.008 68.992
12.40 26.80 39.20
31.63 68.37
41.89 38.07

1 43 109 152
44.992 107.01
17.20 43.60 60.80
28.29 71.71
58.11 61.93

Total 74 176 250

29.60 70.40 100.00

Statistics for Table of Female by Screened

Statistic DF Value Prob

Chi-Square 1 0.3196 0.5719
Likelihood Ratio Chi-Square 1 0.3182 0.5727
Continuity Adj. Chi-Square 1 0.1793 0.6720
Mantel–Haenszel Chi-Square 1 0.3183 0.5726
Phi Coefficient 0.0358
Contingency Coefficient 0.0357

Cramer’s V 0.0358

Fisher’s Exact Test

Cell (1,1) Frequency (F) 31
Left-Sided Pr <= F 0.7609
Right-Sided Pr >= F 0.3348

Table Probability (P) 0.0957

Two-sided Pr <= P 0.5739

  The “chi-square” line of the output provides the Pearson’s chi-squared test 
result, and we can see that the test statistic has a value of 0.3196 with 1 degree 
of freedom. The corresponding p-value is 0.5719. These numbers are within 
rounding error of the hand calculations.
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  Stata:

+--------------------+
| Key                |
|--------------------|
|     frequency      |
| expected frequency |
+--------------------+

           | Met USPSTF guidelines
           | for colorectal cancer
           |       screening
    Female |         0          1 |     Total
-----------+----------------------+----------
         0 |        31         67 |        98 
           |      29.0       69.0 |      98.0 
-----------+----------------------+----------
         1 |        43        109 |       152 
           |      45.0      107.0 |     152.0 
-----------+----------------------+----------
     Total |        74        176 |       250 
           |      74.0      176.0 |     250.0 

          Pearson chi2(1) =   0.3196   Pr = 0.572

  The bottom line of the output provides the Pearson’s chi-squared test, and 
we can see that the test statistic has a value of 0.3196 with 1 degree of freedom. 
The corresponding p-value is 0.572. These numbers are within rounding error 
of the hand calculations.

PRACTICE PROBLEM 10.2

We are concerned that people with lower education levels have limited access to health-
care resources, and we would like to see whether there is an association between educa-
tion level and having a routine place for healthcare. A sample of 349 adults were asked 
whether there is a place that they usually go when they are sick or need advice about 
health.2 Their education level was also recorded. The dataset is called ch10_edu_healthcare.

BOX 10.5  DESCRIPTION OF ch10_edu_healthcare DATASET

The National Health and Nutrition Examination Survey (NHANES) asked respondents, 
“Is there a place that you usually go when you are sick or need advice about your health?” 
Possible responses included “Yes,” “There is no place,” “There is more than one place,” or 
“Don’t know,” or participants could refuse to answer the question. Those who indicated 
having at least 1 place were coded as routine_healthcare = 1, whereas those who reported 
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 A What are the null and alternative hypotheses for the test?

 B Write the code to perform the test in a statistical package. Is an exact test necessary?

 C What is the value of the test statistic? What distribution does the test statistic 
follow?

 D What is the p-value? What do you conclude?

 E Which education group has the highest percentage of subjects with a routine place 
for healthcare? 

 F Which education group has the lowest percentage of subjects with a routine place 
for healthcare?

METHOD 2: MCNEMAR’S TEST

McNemar’s Test: A contingency table method used for paired (dependent), dichoto-
mous data.

In a McNemar’s 2 × 2 contingency table, the entries represent a single pair, as opposed 
to the entries in a Pearson’s chi-squared 2 × 2 table for independent data where each 
entry represents one subject. The pair can be concordant or discordant (Table 10.11).

Concordant Pair: A matched pair in which the outcome is the same for each member 
of the pair. 

Discordant Pair: A matched pair in which the outcomes differ for the members of the 
matched pair.

not having a place to go when sick or for health advice were coded as routine_healthcare = 0. 
The survey also asked adults aged 20 and older, “What is the highest grade or level of 
school you have completed or the highest degree you have received?” Possible responses 
ranged from “Less than 9th grade” to “College graduate or above” with a refusal option 
and a “Don’t know” option. In the dataset ch10_edu_healthcare, the variable education has 
four levels: (1) less than high school, (2) high school graduate or GED, (3) some college or 
associate degree, or (4) college graduate or above. Those who did not answer the education 
question or did not know their education level are excluded from the sample in the dataset.
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Concordant pairs provide no information about the differences between treatment 
groups and are not used in the assessment. Instead, we focus on discordant pairs, which 
can be divided into two types: type A and type B. 

Type A Discordant Pair: A discordant pair in which the treatment A member of the 
pair has the event and the treatment B member of the pair does not. 

Type B Discordant Pair: A discordant pair in which the treatment B member of the 
pair has the event and the treatment A member does not.

Let p = probability that a discordant pair is of type A. If the treatments are equally 
effective, then about an equal number of type A and type B discordant pairs would be 

expected, and p should equal 
1

2
. If treatment A is more effective than treatment B, then 

fewer type A than type B discordant pairs would be expected. Thus, p should be less 

than 
1

2
. However, if treatment B is more effective than treatment A, then more type 

A than type B discordant pairs would be expected, and p should be greater than 1

2
. 

Therefore, we wish to test the following hypotheses:

 H p0

1

2
: =

 H p1

1

2
: ≠

Another way to phrase the null hypothesis is that there is no association between the 
exposure and outcome; the alternative is that there is an association between exposure 
and outcome. 

Like the Pearson’s chi-squared test, McNemar’s test is a two-sided test despite the 
one-sided nature of the critical region. When cell counts are small, the test statistic can 
be adjusted by subtracting 1 from the numerator before taking the square in order to 
approximate the exact binomial p-value. See Table 10.12.

McNemar’s Test in SAS
In SAS, we run McNemar’s test with PROC FREQ. The AGREE option in the tables 
statement will request the output from McNemar’s test. For small counts, the exact 

Table 10.11 Table setup for McNemar’s test

Control

Exposed Unexposed

Case Exposed Concordant Discordant (r)

Discordant (s) ConcordantUnexposed

Note: The table setup for McNemar’s test is different from the 
typical 2 × 2 table setup. Each entry in a cell represents a 
pair, which is either concordant or discordant.
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p-value for McNemar’s test can be requested by adding an EXACT line with the 
MCNEM option. It will appear in the output in the “Exact Pr >= S” line.

PROC FREQ DATA = dataset_name;
 TABLES row_var*column_var / AGREE;
 EXACT MCNEM;
RUN;

The FREQ Procedure

Frequency
Expected
Percent
Row Pct
Col Pct

Table of row_var by column_var

row_var column_var

0 1 Total
0 405 88 493

321.82 171.18
62.50 13.58 76.08
82.15 17.85
95.74 39.11

1 18 137 155
101.18 53.819

2.78 21.14 23.92
11.61 88.39
4.26 6089
423 225 648

Total 65.28 34.72 100.00

Table 10.12 McNemar’s test

Component Formula

Hypotheses H0: There is no association between exposure and outcome.
H1: There is an association between exposure and outcome.

Alternatively  vs  ,  : . :H p H p0 1

1

2

1

2
= ≠







Test statistic
χ2

2

= −
+

( )r s

r s

Continuity corrected estimate: χ2

2
1= − −( )

+
r s

r s
Distribution of test statistic Chi-squared (χ2) with 1 degree of freedom

Assumptions Normal approximation to the binomial holds if r + s ≥ 20

Note: McNemar’s test is used for paired, dichotomous data. The null and alternative hypotheses are the 
same as in the Pearson’s chi-squared test. The number of discordant pairs determines the test sta-
tistic, which follows a chi-squared distribution.
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Statistics for Table of row_var by column_var

McNemar’s Test

Statistic (S) 46.2264
DF 1
Asymptotic Pr > S <.0001

Exact Pr >= S <.0001

Simple Kappa Coefficient

Kappa 0.6108

ASE 0.0331

95% Lower Conf Limit 0.5459

95% Upper Conf Limit 0.6757

McNemar’s Test in Stata
We use the mcc command in Stata to conduct McNemar’s test for paired data. The two 
categorical variables should be specified after the mcc statement. The exact p-value is 
given by default.

mcc row_var column_var

                 | Controls               |
Cases            |   Exposed   Unexposed  |      Total
-----------------+------------------------+------------
         Exposed |       137          18  |        155
       Unexposed |        88         405  |        493
-----------------+------------------------+------------
           Total |       225         423  |        648

McNemar’s chi2(1) = 46.23    Prob > chi2 = 0.0000
Exact McNemar significance probability       = 0.0000

Proportion with factor
        Cases       .2391975
        Controls    .3472222     [95% Conf. Interval]
                   ---------     --------------------
        difference -.1080247     -.1395771  -.0764722
        ratio       .6888889      .6183318   .7674971
        rel. diff. -.1654846     -.2169854  -.1139838

        odds ratio  .2045455       .115896    .342342   (exact)
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If we do not have the data set but have cell counts, we can use the McNemar’s calcula-
tor command (mcci) in Stata.

mcci a b c d

If we input the cell values from the table in the example Stata output for McNemar’s 
test above, we will see the resulting output is the same.

mcci 137 18 88 405

                 | Controls               |
Cases            |   Exposed   Unexposed  |      Total
-----------------+------------------------+------------
         Exposed |       137          18  |        155
       Unexposed |        88         405  |        493
-----------------+------------------------+------------
           Total |       225         423  |        648

McNemar’s chi2(1) = 46.23    Prob > chi2 = 0.0000
Exact McNemar significance probability       = 0.0000

Proportion with factor
        Cases       .2391975
        Controls    .3472222     [95% Conf. Interval]
                   ---------     --------------------
        difference -.1080247     -.1395771  -.0764722
        ratio       .6888889      .6183318   .7674971
        rel. diff. -.1654846     -.2169854  -.1139838

        odds ratio  .2045455       .115896    .342342   (exact)

The value of the test statistic appears in the “McNemar’s chi2( ) =” line, with the 
degrees of freedom in parentheses. The p-value of the test is in the “Prob > chi2 =” line 
of the output. The “Exact McNemar significance probability =” line shows the exact 
p-value. The last line of the output will be covered later in this chapter in the section 
Method 3: Odds Ratio Methods.

EXAMPLE PROBLEM 10.3

We have data from 500 subjects enrolled in a study at an outpatient care center.3 Each 
subject was asked, “Has a doctor (or other health professional) ever told you that you have 
diabetes?” Subsequently, information on their personal history of diabetes was obtained 
from their medical record. There is concern that there is a fair amount of inconsistency 
between the self-reported measure and the medical record measure. Each entry in the 
table corresponds to the paired response of a single individual (See Table 10.13). The 
data are also in the dataset ch10_diabetes.
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 A What type of test is appropriate?

  Because we have paired, dichotomous data, McNemar’s test is appropriate.

 B Write the appropriate null and alternative hypotheses.

H0: There is no association between the self-reported diabetes indicator and the 
medical record diabetes indicator.

H1: There is an association between the self-reported diabetes indicator and the 
medical record diabetes indicator.

 C What are the value and distribution of the test statistic?

  The test statistic follows a χ2 distribution with 1 degree of freedom. 
  We should also note that the normal approximation to the binomial holds 

since 

 r s+ = + = >20 12 32 20.

 χ2

2 2
20 12

20 12

64

32
2= −( )

+
= −( )

+
= =r s

r s( ) ( )

 D What is the p-value? What can we conclude from this?

 p-value = ≥( )P χ1
2 2

  We can either use a statistical package or the chi-square distribution table. 
Using the chi-square table (Appendix Table A.5), we get p > 0.10. Using SAS or 
Stata (Table 10.14), we get p = 0.1573.

  Because 0.1573 > α = 0.05, we fail to reject the null hypothesis. We do not 
have evidence of an association between the self-reported diabetes measure and 
the medical record diabetes indicator.

Table 10.13 Data for Example Problem 10.3

Medical record

TotalHas diabetes No diabetes

Self-Reported Has Diabetes 183 20
12 285

203
No Diabetes 297

Total 195 305 500

Note: The 2 × 2 table shows a cross-tabulation of the data used in Example 
Problem 10.3. The row indicates whether or not the subject self-reported 
having diabetes. The column indicates if the medical record showed a 
history of diabetes.
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 E Check the hand calculation results against SAS or Stata results.

  The variable self_diabetes is coded such that a value of 1 indicates a response 
of “yes” to the question, “Has a doctor (or other health professional) ever told you 
that you have diabetes?” A value of 0 indicates a response of “no.” The variable 
mr_diabetes takes a value of 1 if the medical record indicated a personal history of 
diabetes and a value of 0 if it did not.

  In SAS, we use PROC FREQ with the AGREE option. Selected output 
boxes are shown after the code.

PROC FREQ DATA = ch10_diabetes;
 TABLES self_diabetes*mr_diabetes / AGREE;
RUN;

Frequency
Percent
Row Pct
Col Pct

The FREQ Procedure

Table of self_diabetes by mr_diabetes

self_diabetes(Self-Reported 
Having Diabetes)

mr_diabetes(Medical Record Indicates 
Diabetes)

0 1 Total

0 285 12 297
57.00 2.40 59.40
95.96 4.04
93.44 6.15

1 20 183 203
4.00 36.60 40.60
9.85 90.15
6.56 93.85

Total 305 195 500

61.00 39.00 100.00

Table 10.14 P-value calculation for Example Problem 10.3

Using SAS Using Stata

SAS Code Stata Code
DATA d;
   pvalue = 1 - PROBCHI(2, 1);
RUN;

PROC PRINT DATA = d;
RUN;

di chi2tail(1, 2)

SAS Output Stata Output

Obs p-value

1 0.15730

.15729921

Note: The p-value for Example Problem 10.3 can be calculated in SAS or Stata using the 
PROBCHI or chi2tail functions, respectively. Note that the p-value is two-sided, 
there is no need to multiply the function by 2.
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Statistics for Table of self_diabetes by mr_diabetes

McNemar’s Test

Statistic (S) 2.0000
DF 1

Pr > S 0.1573

  SAS calculates a test statistic of 2 1
2~ χ . The corresponding p-value is 0.1573, 

which is within rounding error of the p-value from the hand calculation.
  In Stata, we use the mcc command and specify self_diabetes and mr_diabetes as 

the two binary variables.

mcc self_diabetes mr_diabetes

                 | Controls               |
Cases            |   Exposed   Unexposed  |      Total
-----------------+------------------------+------------
         Exposed |       183          20  |        203
       Unexposed |        12         285  |        297
-----------------+------------------------+------------
           Total |       195         305  |        500

McNemar’s chi2(1) =      2.00    Prob > chi2 = 0.1573
Exact McNemar significance probability       = 0.2153

Proportion with factor
        Cases           .406
        Controls         .39     [95% Conf. Interval]
                   ---------     --------------------
        difference      .016     -.0081301   .0401301
        ratio       1.041026      .9846002   1.100685
        rel. diff.  .0262295     -.0096422   .0621012

        odds ratio  1.666667      .7759543   3.739329   (exact)

The output from Stata shows a test statistic of 2 1
2~ χ . The corresponding p-value is 

0.1573, which is within rounding error of the hand calculation.

METHOD 3: ODDS RATIO METHODS

If p is the probability of the outcome, then 
p

p1−
 equals the odds of the outcome. 
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Odds Ratio (OR): A ratio that compares the odds of a given outcome in two groups; a 
measure of the strength of association between the outcome and membership in one of 
two groups (e.g., esposed/unexposed, case/control).

The OR is a valid measure of association for cohort as well as case-control studies. 
Recall that the risk ratio is not valid for case-control studies. The OR is interpreted in 
slightly different ways, depending on the type of study. When the OR is greater than 1, 
we say that one group has X times the odds of the other group, where X = OR.

For cohort or cross-sectional studies, we interpret the OR as the odds of having the 
outcome. We might say that those exposed have X times the odds of the outcome com-
pared with those unexposed. For case-control studies, the odds refer to the odds of being 
exposed rather than having the outcome. Thus, the interpretation is that those with the 
outcome have X times the odds of being exposed compared with those who do not have 
the outcome. For example, if the OR = 1.20, then those with the outcome have 1.20 
times the odds of being exposed compared with those who do not have the outcome.

If the OR is less than 1, we often interpret the OR in terms of reduced odds. For 
a cohort or cross-sectional study, this means that those exposed have X reduced odds 
of having the outcome compared with those who are not exposed, where X = (1 – 
OR)100%.  In a case-control study, we say that those with the outcome have X reduced 
odds of being exposed compared to those who do not have the outcome. For example, if 
the OR = 0.70 in a cohort study, those exposed have 30% reduced odds of having the 
outcome compared with those who are not exposed.

The estimated OR is calculated as

 OR = −

−

=

ˆ

( ˆ )
ˆ

( ˆ )

p

p
p

p

ad

bc

1

1

2

2

1

1

 (10.4)

When there is no association, the OR = 1. This means that the odds of the outcome 
(or exposure) are the same in both groups. Table 10.15 shows the hypotheses and formu-
las for ORs and confidence intervals for both independent and paired data. The standard 
error and confidence interval for ORs are calculated by first finding the standard error 
and confidence interval for the natural log of the OR and then exponentiating (taking 
the antilogarithm) the result. Note that eln(X) = X, and thus eln(OR) = OR.

Odds ratio methods in SAS
We can obtain ORs in PROC FREQ using the RELRISK option. The EXPECTED 
option can also be inserted if we want to see the expected cell counts.

PROC FREQ DATA = dataset_name;
 TABLES row_var*column_var / RELRISK;
RUN;
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Frequency
Percent
Row Pct
Col Pct

The FREQ Procedure

Table of row_var by column_var

row_var column_var

0 1 Total
0 17 11 28

17.00 11.00 28.00
60.71 39.29
29.31 26.19

1 41 31 72
41.00 31.00 72.00
56.94 43.06
70.69 73.81

Total 58 42 100

58.00 42.00 100.00

Table 10.15 Odds ratio and confidence intervals

Component Independent data Paired data

Hypotheses H0: OR = 1
H1: OR ≠ 1

(Alternatively, H0: There is no association between exposure 
and outcome vs. H1: There is an association between 

exposure and outcome)
Estimated OR

OR = −

−

=

ˆ

( ˆ )
ˆ

( ˆ )

p

p
p
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1

2

2

1
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Assumptions All expected cell counts should be ≥ 5 for the normal 
approximation to be reasonable.

Note: The hypothesis test for the odds ratio uses the same hypothesis as in the Pearson’s 
and McNemar’s tests, but the null and alternative hypotheses can also be stated in 
terms of the odds ratio. The assumptions and hypotheses are the same for indepen-
dent and dependent data, but the other aspects of the test are not.
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Statistics for Table of row_var by column_var

Odds Ratio and Relative Risks

Statistic Value 95% Confidence Limits

Odds Ratio 1.1685 0.4797 2.8466
Relative Risk (Column 1) 1.0662 0.7444 1.5272

Relative Risk (Column 2) 0.9124 0.5362 1.5527

The output gives the 2 × 2 table as well as the OR, the relative risk, and their confidence 
intervals. The OR appears on the “Odds Ratio” line under the “Value” column. The 
95% confidence interval for the OR is also given.

Note that if we are interested in the relative risk, the correct output depends on the 
order of the levels of the binary variables in the table. If the table is set up with 1/yes 
in the first column/row and 0/no in the second column/row, then the “Relative Risk 
(Column 1)” is the correct relative risk. Tables set up with 0/no in the first column/row 
and 1/yes in the second column row have a relative risk equal to the inverse of “Relative 
Risk(Column 2).”

Odds Ratio Methods in Stata
To calculate an OR in Stata, specify the two variables to be tabulated in the cc com-
mand. The woolf option requests that the Woolf approximation (most similar to hand 
calculations) is used to calculate the standard error and confidence interval for the OR. 
By default, Stata calculates the exact confidence intervals if the woolf option is left out. 
The exact option can also be specified if the cell counts are small. This will request the 
Fisher’s exact test p-value in the output.

cc row_var column_var, woolf

                       | column_var        |        Proportion
                       | Exposed Unexposed |   Total     Exposed
-----------------+------------------------+------------------------
                 Cases |     31        41  |       72     0.4306
              Controls |     11        17  |       28     0.3929
-----------------+------------------------+------------------------
           Total       |     42       58   |       100      0.4200
                       |                   |
                       |   Point estimate  |  [95% Conf. Interval]
                       |-------------------+-----------------------
Odds ratio (Woolf)     |      1.168514     |    .4796675   2.846609
Attr. frac. ex. (Woolf)|      .1442125     |   -1.084777   .6487049 
Attr. frac. pop        |      .0620915     |
                    +-----------------------------------------------
                               chi2(1) =     0.12  Pr>chi2 = 0.7316
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The output shows the 2 × 2 table as well as the OR, 95% confidence intervals, and 
results from the Pearson’s chi-squared test. The OR appears in the second half of the 
table under the “Point Estimate” column. The 95% confidence interval for the OR is 
also given on the same line. The bottom line of the output, “chi2( ) =”, shows the test 
statistic and p-value for the Pearson’s chi-squared test for the 2 × 2 table. The degrees of 
freedom for the test are shown in parentheses.

If we have aggregate cell counts rather than an individual-level dataset, we can use 
the cci command to input the 2 × 2 table and obtain an OR. We list all four cell counts: 
a, b, c, and d.

cci a b c d, woolf

The output from the cci command is identical in structure to the output from the cc 
command.

EXAMPLE PROBLEM 10.4

A total of 450 U.S. high school students were asked whether, in the past year, they had 
been bullied on school property and whether they felt so sad or hopeless almost every 
day for two weeks or more in a row that they were prevented from doing some usual 
activities.4 Of the 86 high schoolers who reported being bullied on school property, 45 
indicated that they felt so sad or hopeless almost every day for two or more weeks in a 
row that they were prevented from doing some usual activities. Of the 450 high school-
ers surveyed, 364 did not report being bullied on school property, but 84 of the 364 did 
indicate feeling so sad or hopeless almost every day for two or more weeks in a row that 
their feeling interfered with participation in usual activities. The corresponding dataset 
is called ch10_mh_bullying.

 A What are the null and alternative hypotheses?

  The null hypothesis is that the odds of feeling so sad or hopeless almost every 
day for two or more weeks in a row that it affected participation in usual activities 
were equal for high school students who reported being bullied on school grounds 
and for those who did not report being bullied on school grounds. The alternative 

BOX 10.6  DESCRIPTION OF ch10_mb_bullying DATASET

The Youth Risk Behavior Surveillance System (YRBSS) asked each student, “During the 
past 12 months, have you ever been bullied on school property?” Those who responded 
“Yes” received a value of 1 for the variable bullied. If the student reported not having been 
bullied, he or she was coded as bullied = 0. The survey also asked, “During the past 12 
months, did you ever feel so sad or hopeless almost every day for two weeks or more in a 
row that you stopped doing some usual activities?” The variable sad indicates the response 
to this question, with a value of 1 indicating “Yes” and 0 indicating “No.” The dataset 
ch10_mh_bullying contains a sample of 450 students.
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hypothesis is that the odds of feeling so sad or hopeless almost every day for two 
or more weeks in a row that it affected participation in usual activities were not 
the same for high school students who reported being bullied on school grounds 
and for those who did not report being bullied on school grounds. In symbols, 

 H0 1: OR =

 H1 1: OR ≠

 B Make a 2 × 2 table for the data.

 C What were the odds of feeling so sad or hopeless (see Table 10.16) almost 
every day for two or more weeks in a row that it affected participation in 
usual activities for those who reported being bullied on school property? 
What were the odds for high schoolers who did not report bullying?

  The odds of feeling sad or hopeless among high schoolers who have been 
bullied:
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p
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  The odds of feeling sad or hopeless among high schoolers who did not indi-
cate any bullying:
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Table 10.16 Data for Example Problem 10.4

Felt sad or hopeless

TotalNo Yes

Report Bullying No 280 84
41 45

364
Yes 86

Total 321 129 450

Note: The 2 × 2 table shows a cross-tabulation of the data used in 
Example Problem 10.4. The row variable indicates whether or 
not the subject reported being bullied on school property, and 
the column variable indicates whether the student felt so sad 
or hopeless almost every day for two or more weeks in a row 
that it affected participation in usual activities.
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 D What was the OR?

OR = −

−

= = ×
×

=

ˆ

( ˆ )
ˆ

( ˆ )

.

p

p
p

p

ad

bc

1

1

2

2

1

1

280 45

84 41
3 66

  High schoolers who reported being bullied on school property in the past 
year had 3.66 times the odds of feeling so sad or hopeless almost every day for 
two or more weeks in a row that it affected participation in usual activities com-
pared to those who reported not being bullied.

 E Do we meet the assumption about small cell counts?

  We need to calculate the expected counts in each cell (see Table 10.17).
  All of the expected counts are greater than 5, so the normal approximation 

is valid.

 F Calculate a 95% confidence interval around the OR. What can we conclude 
from the interval?

  We will use Z1 2
1 96− =α .  to calculate the confidence interval around the OR 

since α = 0.05.

e

e

Z
a b c d

ln

ln( . ) .

OR( )± + + +
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=

1
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1 1 1 1

3 66 1 96
1

α

2280

1
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1
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1

45

1 30 0 49 2 24 5 96

+ + +










±= =e . . ( . , . )

Table 10.17 Expected counts for Example Problem 10.4

Felt sad or hopeless

TotalNo Yes

Report Bullying No 364 321

450
259 65

 
.

× = 364 129

450
104 35

 
.

× =
364

Yes 86 321

450
61 35

 
.

× = 86 129

450
24 65

 
.

× =
86

Total 321 129 450

Note: The expected counts for each cell are calculated from the observed cell counts presented in 
Table 10.16.
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  We are 95% confident that the true OR lay in the interval (2.24, 5.96). As 
this interval does not conclude the null value of 1, we reject the null hypothesis 
that the odds ratio was equal to 1. Compared with high school students who 
were not bullied, high school students who reported being bullied had higher 
odds of feeling so sad or hopeless almost every day for two or more weeks in a row 
that it affected participation in usual activities.

 G Use SAS or Stata to check the OR and confidence interval (CI).

  We can obtain the OR and CI in SAS using PROC FREQ with the RELRISK 
option. We will include the EXPECTED option so that we can check the expected 
cell count calculations we made in Example Problem 10.4—Part (E).

PROC FREQ DATA = ch10_mh_bullying;
 TABLES bullied*sad / EXPECTED RELRISK;
RUN;

The FREQ Procedure

Frequency
Expected
Percent
Row Pct
Col Pct

Table of Bullied by Sad

bullied(Bullied 
on school 
property in the 
past year)

sad(Felt so sad or hopeless almost 
every day for two weeks or more in a 
row in the past year that you stopped 
doing some usual activities)

0 1 Total

0 280 84 364
259.65 104.35
62.22 18.67 80.89
76.92 23.08
87.23 65.12

1 41 45 86
61.347 24.653

9.11 10.00 19.11
47.67 52.33
12.77 34.88

Total 321 129 450

71.33 28.67 100.00

Statistics for Table of bullied by sad

Odds Ratio and Relative Risks

Statistic Value 95% Confidence Limits

Odds Ratio 3.6585 2.2450 5.9622
Relative Risk (Column 1) 1.6135 1.2840 2.0276

Relative Risk (Column 2) 0.4410 0.3348 0.5809
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  The first table in the output is the 2 × 2 table with the expected frequencies. 
The “Statistics for Table of bullied by sad” table shows an OR of 3.66 and a 95% 
confidence interval of (2.25, 5.96). These match the hand calculations done in 
Example Problem 10.4—Part (D) and (F).

  In Stata, we will use the cc command with the woolf option to obtain the OR 
and confidence interval.

cc bullied sad, woolf

  Alternatively, we could input the cell counts by hand using the cci com-
mand. The output from the cci command is identical to the output produced 
by the cc command.

cci 45 41 84 280, woolf

                       | sad              |             Proportion
                       | Exposed Unexposed |   Total   Exposed
-----------------+------------------------+------------------------
                 Cases |     45       41  |         86       0.5233
              Controls |     84      280  |        364       0.2308
-----------------------+------------------+-------------------------
           Total       |     129     321  |        450       0.2867
                       |                  |
                       |   Point estimate | [95% Conf. Interval]
                       |------------------+------------------------
Odds ratio (Woolf)     |     3.658537     |    2.244959    5.962198
Attr. frac. ex. (Woolf)|      .7266667    |    .5545576    .8322766
Attr. frac. pop        |      .3802326    |
                 +-------------------------------------------------
                               chi2(1) =    29.10  Pr>chi2 = 0.0000

  The OR appears on the first line under the “Point estimate” column. The OR 
is 3.66, with a 95% confidence interval (2.24, 5.96). These estimates match the 
hand calculations done in Example Problem 10.4—Parts (D) and (F).

PRACTICE PROBLEM 10.3 

The following data are taken from an investigation regarding an outbreak of 
Salmonella enteritidis infections.5 Of the 85 people who became ill during the out-
break, 62 reported eating bean sprouts in the week prior to becoming sick. In a 
survey of healthy people, six people reported eating bean sprouts in the week prior 
to the interview. The number of Salmonella enteritidis infections in each group is 
shown in Table 10.18.
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 A Perform a chi-square test without the Yates correction to test the association 
between consumption of bean sprouts and the onset of gastroenteritis. What are 
the null and alternative hypotheses?

 B Fill in the expected counts in Table 10.19.

 C What are the value and distribution of the test statistic?

 D What is the p-value? Do we reject or fail to reject the null hypothesis? What is your 
conclusion?

 E What are the estimated odds of becoming ill among those who ate bean sprouts? 

Table 10.19 Expected counts for Practice Problem 10.3

Ate bean sprouts

TotalYes No

Ill 85

Not Ill 100

Total 68 117 185

Note: Fill in the expected counts for each cell using the 
observed cell counts presented in Table 10.18.

Table 10.18 Data for Practice Problem 10.3

Ate bean sprouts

TotalYes No

Ill 62 23 85
Not Ill 6 94 100

Total 68 117 185

Note: The 2 × 2 table shows a cross-tabulation of 
the data used in Practice Problem 10.3. The 
row variable indicates whether or not the 
subject became ill with a Salmonella enteriti-
dis infection, and the column variable indi-
cates whether or not the subject ate bean 
sprouts.
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 F What are the estimated odds of becoming ill among those who did not eat bean 
sprouts?

 G What is the estimated OR of becoming ill, comparing those who ate bean sprouts 
to those who did not? Interpret the OR in words.

 H Check the results in a statistical package.

 I By hand, construct a 95% confidence interval for the true OR. Check that the con-
fidence interval matches the SAS or Stata output.

Sample size and power for comparing two binomial proportions

INDEPENDENT SAMPLES

To estimate the sample size and power needed for a two-sided test comparing binomial 
proportions, we must first have a sense of the projected true probabilities of success in 
the two groups, symbolized by p1 and p2. The absolute value of the difference of the 
projected true probabilities of success is delta. In symbols, Δ = |p2 − p1|. We also must 
calculate p as in Equation 10.5:

 p
p kp

k
= +

+
1 2

1  (10.5)

The sample size needed to compare two binomial proportions using a two-sided test 
with significance level α and power 1 – β, where 1 sample (n2) is k times as large as the 
other sample (n1), is shown in Table 10.20. The table also shows the power achieved in 
comparing two binomial proportions with significance level α and samples of size n1 and 

n2 for the specific alternative Δ. To do calculations for a one-sided test, replace 
α
2

 with α.

PAIRED SAMPLES

Before calculating sample size and power for McNemar’s test for correlated proportions, 
we need to establish the projected proportion of discordant pairs among all pairs, pD, and 
the projected proportion of discordant pairs of type A among discordant pairs, pA. The 
sample size and power needed to compare two binomial proportions using a two-sided 
McNemar’s test with significance level α and power 1 – β are shown in Table 10.21.

For the power calculation, note that n is the number of matched pairs. Replace 
α
2

 

with α to calculate values for a one-sided test. Note that the crucial element in calcu-
lating sample size and power for matched-pair studies based on binomial proportions 
is the knowledge of the probability of discordance between outcomes for members of a 
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Table 10.21 Sample size and power for paired two-sided, two-sample proportions test

Term Formula

pD pD = projected proportion of discordant pairs among all pairs
pA pA = projected proportion of discordant pairs of type A among discordant 

pairs
Sample size (matched pairs)

n
Z Z p p

p p
=

+ −





−
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2
2

2 1

4 0 5

α β A A
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Note: The sample size and power for a paired two-sided, two-sample binomial proportions test depend on the projected 
proportions of discordant pairs.

Table 10.20 Sample size and power for independent two-sided, two-sample 
proportions test

Term Formula

Δ Δ = |p2 − p1|

p
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p kp
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+
1 2

1
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Note: Before calculating the sample size and power for an independent two-sided, two-sample test 
for proportions, we calculate the quantities Δ and p . The allocation ratio, k, also influences 
the sample size calculation.
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matched pair. This probability depends on the strictness of the matching criteria and 
how strongly related the matching criteria are to the outcome variable.

Sample size and power for two binomial proportions in SAS

INDEPENDENT SAMPLES

To perform a sample size or power calculation for a two-sample binomial propor-
tions test or the Pearson’s chi-squared test in SAS, we use PROC POWER with 
the TWOSAMPLE FREQ and TEST = PCHI options. We specify p1 and p2 in the 
GROUPPROPORTIONS statement. By default, the NULLPROPORTIONDIFF is set 
to 0, and ALPHA is set to 0.05. 

If both groups have the same size, n1 = n2, then we can either request the sample 
size in each group (n1) using the NPERGROUP statement, or we can get the total 
sample size (ntotal = 2n1) using the NTOTAL statement. Similar to other power calcu-
lations we have seen, the SIDES = U or SIDES = L options may be used to request a 
one-sided test.

PROC POWER;
 TWOSAMPLEFREQ TEST = PCHI
 GROUPPROPORTIONS = (0.45 0.60) 
 NULLPROPORTIONDIFF = 0
 ALPHA = 0.05
 POWER = 0.80
 NPERGROUP =.;
 *NTOTAL =.;
RUN;

The POWER Procedure
Pearson Chi-Squared Test for Proportion Difference

Fixed Scenario Elements

Distribution Asymptotic normal
Method Normal approximation
Null Proportion Difference 0
Alpha 0.05
Group 1 Proportion 0.45
Group 2 Proportion 0.6
Nominal Power 0.8

Number of Sides 2

Computed N per Group

Actual Power N per Group

0.800 173
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The output gives a table summarizing the input parameters and then a table with 
the sample size per group (“Computed N per Group”). If we use the NTOTAL option 
instead, the output shows the “Computed N Total” in the final output box. If the groups 
are not the same size, this is specified in the GROUPWEIGHTS statement. For example, 
if Group 1 is twice as large as Group 2 (n1 = 2n2), then the GROUPWEIGHTS state-
ment should be written as it is in the following code. (Note that if GROUPWEIGHTS 
is used, only the total sample size can be requested. Also, note that the NPERGROUP 
option will not work with unbalanced groups.)

PROC POWER; 
 TWOSAMPLEFREQ TEST = PCHI 
 GROUPPROPORTIONS = (0.45 0.60)
 GROUPWEIGHTS = (2 1)
 POWER = 0.80
 NTOTAL =.;
RUN;

The POWER Procedure
Pearson Chi-Squared Test for Proportion Difference

Fixed Scenario Elements

Distribution Asymptotic normal
Method Normal approximation
Group 1 Proportion 0.45
Group 2 Proportion 0.6
Group 1 Weight 2
Group 2 Weight 1
Nominal Power 0.8
Number of Sides 2
Null Proportion Difference 0
Alpha 0.05

Computed N per Group

Actual Power N Total

0.801 390

The output gives the total sample size, so the allocation ratio must be used to obtain 
the sample size in each of the groups. For power calculations, leave the power option 
blank. Either the NTOTAL or NPERGROUP options can be used with a balanced 
design, but only the NTOTAL option is available if n1 ≠ n2.
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PROC POWER;
 TWOSAMPLEFREQ TEST = PCHI
 GROUPPROPORTIONS = (0.45 0.60)
 NULLPROPORTIONDIFF = 0
 ALPHA = 0.05
 POWER = .
 NTOTAL = 400;
RUN;

The POWER Procedure
Pearson Chi-Squared Test for Proportion Difference

Fixed Scenario Elements

Distribution Asymptotic normal
Method Normal approximation
Null Proportion Difference 0
Alpha 0.05
Group 1 Proportion 0.45
Group 2 Proportion 0.6
Total Sample Size 400
Number of Sides 2
Group 1 Weight 1

Group 2 Weight 1

Computed Power
Power
0.854

The final output box gives the power of the test given the input parameters.

PAIRED SAMPLES

To do the calculations in SAS, we use the PAIREDFREQ statement in PROC POWER. 
The DIST = NORMAL and METHOD = CONNOR options request a normal 
approximation McNemar’s test; the default DIST option requests an exact test. The 
DISCPROPORTIONS statement is where we specify the two discordant proportions 
(pr and ps) with a vertical bar between them.

PROC POWER;
 PAIREDFREQ DIST = NORMAL METHOD = CONNOR
 DISCPROPORTIONS = 0.10 | 0.15
 POWER = 0.80
 NPAIRS = .;
RUN;
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The POWER Procedure
McNemar Normal Approximation Test

Fixed Scenario Elements

Distribution Asymptotic normal
Method Connor normal approximation
Success–Failure Proportion 0.1
Failure–Success Proportion 0.15
Nominal Power 0.8
Number of Sides 2
Alpha 0.05

Computed N Pairs

Actual Power N Pairs

0.800 783

The “Computed N Pairs” output box gives the number of pairs needed to achieve the 
specified level of power. For the sample code, 783 pairs are needed to have 80% power 
when the discordant proportions are 0.10 and 0.15, and α = 0.05. If we want a power 
calculation rather than a sample size calculation, we set the POWER option to missing 
and fill in the NPAIRS option.

PROC POWER;
 PAIREDFREQ DIST = NORMAL METHOD = CONNOR
 DISCPROPORTIONS = 0.10 | 0.15
 POWER = .
 NPAIRS = 900;
RUN;

The power of the test appears in the final output box.

The POWER Procedure
McNemar Normal Approximation Test

Fixed Scenario Elements

Distribution Asymptotic normal
Method Connor normal approximation
Success–Failure Proportion 0.1
Failure–Success Proportion 0.15
Nominal Power 900
Number of Sides 2
Alpha 0.05

Computed Power
Power
0.852



332 Biostatistics for clinical and public health research

Sample size and power for two binomial proportions in stata

INDEPENDENT SAMPLES

To perform a sample size or power calculation for a two-sample binomial proportions 
test or the Pearson’s chi-squared test in Stata, we use the power command with the 
twoproportions option. Next, we specify the proportions in the two groups, p1 and p2. The 
alpha and power levels are specified after the comma in order to request a sample size 
calculation. The default alpha level is 0.05, and the default power level is 0.80. The 
onesided option requests the calculation corresponding to a one-sided test. This assumes 
balanced groups.

power twoproportions 0.45 0.60, test(chi2) alpha(0.05) power(0.8)

Estimated sample sizes for a two-sample proportions test
Pearson’s chi-squared test 
Ho: p2 = p1  versus  Ha: p2 != p1

Study parameters:

        alpha =    0.0500
        power =    0.8000
        delta =    0.1500  (difference)
           p1 =    0.4500
           p2 =    0.6000

Estimated sample sizes:

            N =       346
  N per group =       173

With balanced groups, the total sample size is shown on the “N =” line, and the “N 
per group=” line shows that many subjects are needed in each group. If the groups are 
not the same size, insert the nratio option. The value is the ratio of n2 to n1. For example, 
if Group 1 is twice as large as Group 2 (n1 = 2n2), then the sample size ratio would 
be 0.5.

power twoproportions 0.45 0.60, test(chi2) nratio(0.5)

Estimated sample sizes for a two-sample proportions test
Pearson’s chi-squared test 
Ho: p2 = p1  versus  Ha: p2 != p1

Study parameters:

        alpha =    0.0500
        power =    0.8000
        delta =    0.1500  (difference)
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           p1 =    0.4500
           p2 =    0.6000
        N2/N1 =    0.5000

Estimated sample sizes:

            N =       390
           N1 =       260
           N2 =       130

The “N =” line shows the total sample size, and the “N1 =” and “N2 =” lines show 
the sample sizes needed in the first and second groups, respectively. To request a power 
calculation rather than a sample size calculation, drop the power option and insert the 
n option showing the total sample size. Insert the nratio option if the groups are not bal-
anced. The onesided option performs a power calculation for a one-sided test.

power twoproportions 0.45 0.60, test(chi2) alpha(0.05) n(400)

Estimated power for a two-sample proportions test
Pearson’s chi-squared test 
Ho: p2 = p1  versus  Ha: p2 != p1

Study parameters:

        alpha =    0.0500
            N =       400
  N per group =       200
        delta =    0.1500  (difference)
           p1 =    0.4500
           p2 =    0.6000
Estimated power:

        power =    0.8545

The “power =” line shows the power of the test.

PAIRED SAMPLES

For paired samples, we use the power command with the pairedproportions option. The 
two discordant proportions, pr and ps, are specified next. The alpha and power levels are 
specified after the comma, although they can be omitted if the default level is accept-
able. The onesided option can be inserted at the end of the code line to request a calcula-
tion for a one-sided test.

power pairedproportions 0.10 0.15, alpha(0.05) power(0.8)
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Estimated sample size for a two-sample paired-proportions test
Large-sample McNemar’s test
Ho: p21 = p12  versus  Ha: p21 != p12

Study parameters:

        alpha =    0.0500
        power =    0.8000
        delta =    0.0500  (difference)
          p12 =    0.1000
          p21 =    0.1500

Estimated sample size:

            N =       783

The output shows the estimated number of pairs needed to achieve the given level 
of power. To request a power calculation, the power option is dropped, and the n option, 
specifying the sample size, is inserted.

power pairedproportions 0.10 0.15, n(900)

Estimated power for a two-sample paired-proportions test
Large-sample McNemar’s test
Ho: p21 = p12  versus  Ha: p21 != p12

Study parameters:

        alpha =    0.0500
            N =       900
        delta =    0.0500  (difference)
          p12 =    0.1000
          p21 =    0.1500

Estimated power:

        power =    0.8521

The power of the test appears on the last line of the output.

Sample size and power in a clinical trial setting

In the previous estimations of power and sample size, we have assumed perfection in 
the compliance (ability to follow) treatment regimens. To be more realistic, we should 
examine how these estimates will change if compliance is not perfect. 

Suppose that we are planning a clinical trial comparing an active treatment versus a 
placebo. There are two types of noncompliance to consider:
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• Drop-out Rate (λ1): The proportion of participants in the active-treatment group 
who do not actually receive the active treatment.

• Drop-in Rate (λ2): The proportion of participants in the placebo group who actu-
ally receive the active treatment outside of the study protocol.

In the presence of noncompliance, sample size and power estimates should be based 

on the compliance-adjusted rates p p1 2
*,  *( )  rather than on the perfect compliance rates 

(p1, p2). Table 10.22 shows the sample sizes for each group, accounting for drop-out and 
drop-in rates. To adjust the sample size in each group for noncompliance in a clinical 
trial setting, we replace p1, p2, Δ, and p with p1

*, p1
*, Δ*, and p*, respectively. If non-

compliance rates are low (λ1, λ2 each ≤ 0.10), then the approximate sample size formula 
can be used. In the approximate formula, nperfectcompliance is the sample size in each group 
under the assumption of perfect compliance.

EXAMPLE PROBLEM 10.5

We are interested in racial disparities in hypertension and would like to compare 
the prevalence of hypertension among black patients to the prevalence among white 
patients. Before we collect the sample, we need to conduct sample size calculations to 
know how many subjects to enroll. From national estimates, we think that reasonable 
estimates are p1(black) = 0.39 and p2(white) = 0.32 for the proportion with hypertension.2

 A What is the value of Δ?

  Delta is the absolute value of the difference of the projected true probabili-
ties of success.

 
∆ = − = − = − =p p2 1 0 32 0 39 0 07 0 07. . . .

 B If we plan to enroll equal numbers of black and white participants, what is 
the value of p?

  To calculate p, we need to know k. Because we plan to enroll equal numbers 
of black and white subjects, n1 = n2; thus, k = 1.

 
p

p kp

k
= +

+
= +

+
= =1 2

1

0 39 1 0 32

1 1

0 71

2
0 355

. ( . ) .
.

 C How many subjects are necessary to achieve 90% power if we perform a 
two-sided test with α = 0.05?

  We have p1 = 0.39, p2 = 0.32, Δ = 0.07, p = 0.355, k = 1, α = 0.05, Z1 2− α  = 
1.96, β = 0.20, and Z1−β = 1.28.
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  Because n1 = n2, 980 subjects are needed in each group. The total number of 
participants needed to achieve 90% power assuming no drop-out is ntotal = 2n1 = 
2 × 980 = 1960.

 D Using SAS or Stata, perform the sample size calculation in Example Problem 
10.5—Part (C).

  To do the sample size calculation in SAS, we use PROC POWER with the 
TWOSAMPLEFREQ option. Because we have a situation where n1 = n2, we can 
either use the NPERGROUP option and then multiply the output by 2 to obtain 
the total sample size, or we can use the NTOTAL option to obtain the total sample 
size. The GROUPWEIGHTS option is not necessary since we plan to enroll equal 
numbers of black and white participants. Thus, both groups have weight = 1.

PROC POWER;
  TWOSAMPLEFREQ TEST = PCHI
  GROUPPROPORTIONS = (0.32 0.39)
  NULLPROPORTIONDIFF = 0
  POWER = 0.90
  NPERGROUP =.;
RUN;

The POWER Procedure
Pearson Chi-Squared Test for Proportion Difference

Fixed Scenario Elements

Distribution Asymptotic normal
Method Normal approximation
Null Proportion Difference 0
Group 1 Proportion 0.32
Group 2 Proportion 0.39
Nominal Power 0.9
Number of Sides 2

Alpha 0.05



338 Biostatistics for clinical and public health research

Computed N per Group

Actual Power N per Group

0.900 980

  The “Computed N per Group” output box gives the required sample size per 
group. To achieve 90% power, 980 subjects in each group are necessary; 980 is 
the number that we calculated by hand in Example Problem 10.5—Part (C).

  Using Stata, we run the power command with the twoproportions option. We 
have a balanced design since we plan to enroll equal numbers of black and white 
participants. Thus, the nratio option is not needed. We can also drop the alpha 
option since α = 0.05 is the default.

power twoproportions 0.32 0.39, test(chi2) power(0.9)

Estimated sample sizes for a two-sample proportions test
Pearson’s chi-squared test 
Ho: p2 = p1  versus  Ha: p2 != p1

Study parameters:

        alpha =    0.0500
        power =    0.9000
        delta =    0.0700  (difference)
           p1 =    0.3200
           p2 =    0.3900

Estimated sample sizes:

            N =      1960
  N per group =       980

The total sample size and the sample size in each group appear at the bottom of the 
output. To achieve 90% power, 1960 total subjects or 980 subjects in each group are 
necessary; 980 is the number that we calculated by hand in Example Problem 10.5—
Part (C).

PRACTICE PROBLEM 10.4

Select which methods are appropriate for the type of data. See Table 10.23.
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PRACTICE PROBLEM 10.5

Let’s return to the data presented in Example Problem 10.3 regarding sex category and 
colorectal cancer screening. Table 10.24 is a 2 × 2 table with the counts, and the cor-
responding dataset is ch10_crc_screening.

 A Comparing females with males, what is the estimated OR for meeting screening 
recommendations? Interpret the OR in words. 

 B What is the 95% confidence interval for the OR? How do you interpret this?

 C Does there appear to be an association between sex category and meeting colorectal 
cancer screening recommendations? Why or why not?

PRACTICE PROBLEM 10.6

Let’s return to the data presented in Practice Problem 10.1 regarding the study com-
paring two regimens. There are 250 subjects in the trial, 130 of whom are on the 
active treatment and 120 of whom are on the placebo. The corresponding dataset is 
ch10_demographics.

 A Sex is the first variable of interest. We already analyzed sex using a two-sample test 
for proportions in Practice Problem 10.1, but we will now try a slightly different 
approach. Using SAS or Stata, determine how many males and females are in the 
active treatment group. How many males and females are in the placebo group?

Table 10.23 Practice Problem 10.4

Method Independent Dependent
Two-Sample Test for Proportions
Pearson’s Chi-Squared Test
McNemar’s Test
Odds Ratio

Table 10.24 Data for Practice Problem 10.5

Met screening recommendations

TotalNo Yes

Men 31 67 98
Women 43 109 152
Total 74 176 250
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 B To see whether there is a difference in sex composition between the two regimens, we wish 
to conduct a Pearson’s chi-squared test. What are the null and alternative hypotheses?

 C Write the code to run the test.

 D What are the values for the test statistic and the degrees of freedom? 

 E What is the p-value?

 F Do we reject or fail to reject  the null hypothesis? What is the conclusion?

 G Compare the test statistic and p-value with the calculations in Practice Problem 
10.1.

 H Next, we would like to know whether there is a difference in race of the subjects on 
the two regimens. What type of test is appropriate for the data?

 I What are the null and alternative hypotheses for the appropriate test?

 J Perform the test using SAS or Stata. What are the value and distribution of the test 
statistic?

 K What is the p-value, and what can we conclude?
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11 Analysis of variance (ANOVA)

This chapter will focus on one-way analysis of variance and will include the following 
topics:

• Within- and between-group variation
• ANOVA assumptions
• Testing for significance
• Multiple comparisons

Terms

• ANOVA
• between-group variation
• grand mean

• one-way
• within-group variation

Introduction

An analysis of variance (ANOVA) is appropriate when we seek to compare the means of 
three or more groups.

ANOVA: Compares the means of three or more independent groups used with a con-
tinuous outcome and categorical factor of interest that distinguishes the independent 
groups from each other.

It is an extension of the two-sample t-test when there are more than two groups 
(k > 2). For example, suppose that we have a weight loss trial where one group is ran-
domized to nutrition counseling, one group is randomized to a group exercise program, 
and a third control group is randomized to no intervention. After several weeks, the 
study staff records the body fat percentage of each participant. We would calculate the 
mean body fat percentage of each group and use an ANOVA to compare those means.

The null hypothesis of an ANOVA is that all k means are equal. The alternate hypoth-
esis (H1) is that at least one group mean is different from the others. This does not mean 
that all group means are necessarily different from each other. As long as one of the 
group means is unequal to at least one of the others, the null hypothesis is rejected.

 H k0 1 2: µ µ µ= = … =

In this chapter, we will focus on the one-way ANOVA.
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One-Way ANOVA: A reference to the single factor or characteristic that distinguishes 
the populations from each other.

In the weight loss trial example, we assume that the only difference between the 
groups is the intervention type. If we wanted to look at more than one factor between 
the groups at the same time (e.g., intervention type and race), we would use a two-way 
ANOVA (not covered in this book).

Within- and between-group variation

ANOVA is dependent on estimates of spread or dispersion. In other words, the proce-
dure analyzes the variances of the data. There are two sources of variation in the data: 
Within-group and between-group.

Within-Group Variation: The variation of individual values around their group 
mean (Figure 11.1).

Recall from Chapter 8, the chapter on two-sample t-tests, that sP
2  is the pooled 

variance (σ2). The within-group variance sW
2( ) is an extension of sP

2 to k groups. It is 
calculated as the weighted (by sample size) average of the variances of the k groups 
(Equation 11.1). It can also be thought of as the mean square error (MSE), or the within-
group (error) sum of squares divided by the within-group degrees of freedom.

 s
SS

df

n s n s n s

n nW
E

E

k k2 1 1
2

2 2
2 2

1 2

1 1 1= = − + − + … + −
+

( ) ( ) ( )

++ … + −n kk

 (11.1)

Between-Group Variation sB
2( ) :  The variation of the group means around the grand 

mean; an estimate of the common variance (σ2); see Figure 11.2.
The between-group variance is calculated as the average of the squared deviations of 

the sample means xi from the grand mean x  (Equation 11.2). It can also be thought of 
as the mean square model (MSM), or the between-group (model) sum of squares divided 
by the between-group degrees of freedom.

 s
SS

df

x x n n x x

kB
M

M

k k2 1
2

1
2

1
= = − + … + −

−
( ) ( )

 (11.2)

Grand Mean: The overall average of the N = n1+n2+…+nk observations that make up 
the k different samples (Equation 11.3).

 x
n x n x n x

n n n
k k

k

= + + … +
+ + … +

1 1 2 2

1 2

 (11.3)

In the case that the null hypothesis is true and the means of the groups are all equal, 
then the variability within the k different populations should be the same as the vari-
ability among their respective means. In other words, the ANOVA procedure analyzes 
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the variances of the groups in the context of the variance of the whole dataset. Under the 
null hypothesis, we would expect s sW B

2 2≈ .
If the value of sB

2  is large relative to the value of sW
2 ,  then at least one of the means 

is different from the others (a rejection of the null hypothesis). When the variability 
within the k different populations is small relative to the variability of their respective 
means, this suggests that the population means are, in fact, different.

ANOVA assumptions

To perform an ANOVA, we make three assumptions about the underlying data. If any of 
the assumptions do not hold, then an ANOVA might not be the most appropriate way 
to analyze the data at hand. It is important to note that the ANOVA is a fairly robust 
procedure and will tolerate some minor violations of the following assumptions.

 1 Samples from the k populations are independent.
 2 Samples from the k populations are normally distributed.
 3 Variances in the k populations are equal (i.e., σ1 = σ2 = … σk).

Independence

The independence assumption requires that samples from the k populations are inde-
pendent. The design of the study is a good indicator of whether the data meet this 
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Figure 11.1  Visualization of variation of individual values around the group mean. Each school’s 
percent proficiency in mathematics is plotted as an open dot. These are the individual 
values. The group mean is illustrated by the horizontal line. Some individual values are 
closer to the group mean than others are.
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assumption. For example, ascertaining differences in the mean resting heart rate of those 
who exercise vigorously, moderately, or lightly would be an appropriate case for which 
to use an ANOVA. Ascertaining differences in the mean heart rate of a population 
before, during, and after exercise would not be a good candidate for an ANOVA because 
the same participants are in each of the three populations (dependent data).

Normality

To meet the normality assumption, the outcome variable should be normally distrib-
uted in each of the k populations. We can check this assumption by plotting the data in 
a histogram using the HISTOGRAM statement of PROC UNIVARIATE in SAS or the 
histogram command in Stata.

Equal variance

The third assumption specifies that the variances in the k populations are equal. We 
can compare the variances of the k different groups using PROC MEANS or PROC 
UNIVARIATE in SAS or the summarize command in Stata. To be thorough, however, 
we should statistically test the differences in the variance.

In SAS, the HOVTEST option in PROC GLM requests the Levene test for homo-
geneity of variance. In Stata, the Bartlett test for equal variances is included by default 
when using the oneway command.

The null hypothesis for both of these tests is that the variances of all k groups are 
equal. If the null hypothesis is rejected and we find that there is a difference in the vari-
ances between the k groups, we can use the Welch’s ANOVA in SAS (output included 
when WELCH is requested as an option in the MEANS statement of PROC GLM) or 
the W test in Stata (the wtest command is part of the wtest package and must be down-
loaded using findit wtest), which are robust to the homogeneity of variance assumption 
but beyond the scope of this book.

Testing for significance

Once we have established that our analysis meets the three assumptions, we are ready to 
test the null hypothesis that the means of the k populations are all equal. To do this, we 
use an F-statistic (Equation 11.4).

 F
s

s
B

W

=
2

2  (11.4)

We want to know whether the group means vary around the grand mean more than 
the individual observations vary around the group means. Under the null hypothesis, 
both the between- and within-groups variation will estimate the common variance (σ2); 
therefore, F will be close to 1. If there is a difference among populations, the between-
groups variance exceeds the within-groups variance, and F will be greater than 1.

The F-statistic cannot assume negative values, so we do not double the final p-value. In 
the case in which we are only comparing two independent samples, the F-test reduces to 
a two-sample t-test. The F-statistic is drawn from the F distribution, which has two types 
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of degrees of freedom. There are numerator degrees of freedom which correspond to the 
degrees of freedom between groups (the Model df in SAS output and Between-group df in Stata 
output) and denominator degrees of freedom, which correspond to the degrees of freedom 
within the groups (the Error df in SAS output and the Within-group df in Stata output). To 
determine the critical value of the F-statistic, we can use a table of the F distribution (see 
the Appendix, Table A6). Table 11.1 shows the information provided in an ANOVA table.

Multiple comparisons

If the null hypothesis is rejected, we conclude that at least one of the means is different 
from the others. The F-test indicates that there is a difference, but in order to discover 
which mean is different from the others, we should perform pairwise comparisons.

We must perform all k
2







 pairwise comparisons of the means with a series of two-

sample t-tests to detect which groups are different. Performing multiple tests, however, 
increases the probability of making a type I error. To compensate for this issue, we must 
be more conservative in each of the individual comparisons. If we reduce the α level for 
each of the pairwise tests, we ensure that the overall level of significance is kept at a 
predetermined level. Because these tests are not independent, we will adjust the overall 
significance level using a Bonferroni correction (α*) as shown in Equation 11.5.

 α α
* =







k
2

 (11.5)

The adjusted significance level for the individual comparisons depends on the num-
ber of tests being conducted. As the number of tests increases, the corrected significance 
level will decrease. The Bonferroni correction is highly conservative, meaning that it 
reduces statistical power. Thus, it may fail to reject a difference between means when 
one actually exists.

Instead of using the pooled variance estimate sP
2( ) when conducting the t-test, we use 

the within-groups variation sW
2( ) to take advantage of the additional information that 

is available by estimating the pooled variance of all k samples instead of just the two 

Table 11.1 ANOVA table and equations

Source DF Sum of squares Mean square F-value

Model k − 1 SSM

s MS
SS

kB M
M2

1
= =

−
MS

MS
M

E

(Between-group)
Error n − k SSE

s MS
SS

n kW E
E2 = =

−
(Within-group)
Total n − 1 SST
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samples being tested. The degrees of freedom for each t-test will be n–k. Don’t forget to 
double the p-value for two-sided tests.

Using SAS to conduct an ANOVA

In this chapter, we rely on PROC GLM to conduct an ANOVA. PROC ANOVA can 
handle only balanced designs (equal number of observations in each group), whereas 
PROC GLM can handle both balanced and unbalanced designs. To run an ANOVA, we 
need a continuous outcome and a categorical grouping variable. The following SAS code 
will run an ANOVA on the data.

PROC GLM DATA=dataset;
 CLASS group_variable;
 MODEL outcome_variable = group_variable;
RUN;

The MODEL statement is where we will specify the continuous variable whose mean 
we are interested in comparing between the groups (outcome_variable). We will also spec-
ify the categorical variable ( group_variable) in the MODEL statement, after the equal 
sign. The grouping variable ( group_variable) must also go in a CLASS statement so that 
it is treated as a categorical variable and not as a continuous variable.

Results from this procedure include the overall ANOVA table, model fit statistics, 
and the type I and III sum of squares ANOVA tables. Because we are running a one-
way ANOVA, these tables will be identical to the overall ANOVA. A histogram is also 
presented.

Homogeneity of variance in SAS

The MEANS statement will give us a summary of the mean and standard deviation of 
each of the levels and also allows us to request the test for homogeneity of variance (the 
HOVTEST option) so that we can check the assumption for the equality of variance.

PROC GLM DATA=dataset;
 CLASS group_variable;
 MODEL outcome_variable = group_variable;
 MEANS group_variable / HOVTEST;
RUN;

Running this procedure will output the same results as the previous code, with the 
addition of a table containing the results of the Levene test for homogeneity of variance.

Multiple comparisons in SAS

In the event that we detect a significant difference between groups, we could subset 
the data and run individual PROC TTEST analyses, or we could request the multiple 
comparisons and the Bonferroni correction from SAS by adding the BON option to the 
MEANS statement.



348 Biostatistics for clinical and public health research

PROC GLM DATA=dataset;
 CLASS group_variable;
 MODEL outcome_variable = group_variable;
 MEANS group_variable / BON;
RUN;

SAS will not give the actual Bonferroni-corrected p-values in the associated output. 
Instead, it denotes which pairs are significant by marking the significant pairs with 
asterisks in the final column of the output table.

Using Stata to conduct an ANOVA

To run an ANOVA in Stata, we use the oneway command. This command reports one-
way ANOVA models and has the capacity to perform multiple comparison tests. For 
more complicated ANOVAs, we would use the anova command. In the command, the 
continuous outcome variable (outcome_variable) is specified first, followed by the cat-
egorical grouping variable (group_variable)

oneway outcome_variable group_variable

Results from the oneway command include the overall ANOVA table and the results 
from the Bartlett test for equal variances.

Multiple comparisons in stata

In the event that we detect a significant difference between groups, we could subset the 
data and run individual t-test analyses, or we could request the multiple comparisons 
and the Bonferroni correction from Stata by adding the bonferroni option to the oneway 
command.

oneway outcome_variable group_variable, bonferroni

Stata returns a k by k table containing the difference in means between each pair of 
levels and the Bonferroni-corrected p-value.

EXAMPLE PROBLEM 11.1

Suppose that we are interested in comparing the hemoglobin HbA1c levels (%) of peo-
ple who have diabetes and who are either taking no medication, taking just insulin, tak-
ing just diabetic pills, or who are taking both insulin and diabetic pills. The outcome is 
the A1c level (measured continuously), and the categorical variable is the participant’s 
medication group. A random sample of 200 people who have diabetes was taken from 
the National Health and Nutrition Examination Survey (NHANES).1 Use the diabetics 
dataset to answer the questions.

 A What are the null and alternate hypotheses of an ANOVA?

 
H Both medications Insulin only Pills only No0: µ µ µ µ= = = mmedication
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  The alternate hypothesis is that at least one group’s mean is different from 
the others.

  Use the code in Table 11.2 to conduct an ANOVA.
  First, we will investigate the homogeneity of variance assumption. We are 

interested in whether the variance in mean HbA1c level is different in the four 
medication groups.

Levene’s Test for Homogeneity of A1c Variance ANOVA of Squared Deviations 
from Group Means

Source DF Sum of Squares Mean Square F Value Pr > F

medication_group 3 74.5895 24.8632 1.21 0.3073

Error 196 4027.2 20.5469

 B Are the variances in the populations equal?

  Using the Levene test, we fail to reject the null hypothesis that the variances 
are equal because p = 0.3073, which is larger than our cutoff of 0.05.

BOX 11.1 DESCRIPTION OF DIABETES DATASET

The National Health and Nutrition Examination Survey (NHANES) assesses the health 
and nutritional status of adults and children in the United States. Participants included 
in our sample self-identified as having diabetes (responded “yes” to “Other than during 
pregnancy, have you ever been told by a doctor or other health professional that you have 
diabetes or sugar diabetes?”). The continuous variable is hemoglobin A1c levels (A1c) 
and the categorical variable is medication group (medication_group). The medication group 
variable was created from the responses to two questions on the survey: (1) Are you tak-
ing insulin now? and (2) Are you now taking diabetic pills to lower your blood sugar? 
Medication_group has four levels: (1) participants who are taking both insulin and diabetic 
pills to lower their blood sugar; (2) participants who are only taking insulin; (3) partici-
pants who are only taking diabetic pills; and (4) participants who are taking neither.

Bartlett’s test for equal variances:  chi2(3) =   7.2750  
Prob>chi2 = 0.064

Table 11.2 Code for ANOVA (Example Problem 11.1)

SAS code Stata code

PROC GLM DATA=diabetics;
CLASS medication_group;
MODEL A1c = medication_group;
MEANS medication_group / HOVTEST;
RUN;

oneway a1c medication_group
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  Using the Bartlett test, we fail to reject the null hypothesis that the vari-
ances are equal because p = 0.064, which is larger than our cutoff of 0.05.

  On the basis of these results, we assume that the equal variance assumption 
is not violated, and we proceed with our ANOVA. We examine the ANOVA 
table that was output when we ran the code in Table 11.2.

Source DF Sum of Squares Mean Square F Value Pr > F

Model 3 30.8547264 10.2849088 4.89 0.0027

Error 196 412.2088236 2.1031062

Corrected Total 199 443.0635500

 C What is the estimate of the within-groups variance?

  The ANOVA output tables display the within-group variation as the Mean 
Square Error (SAS) or Within groups MS (Stata). The within-group variation is 2.10.

 D What is the estimate of the between-groups variance?

  The ANOVA output tables display the between-group variation as the Model Mean 
Square (SAS) or Between groups MS (Stata). The between-group variation is 10.28.

 E What are the value and distribution of the test statistic?

  The F-statistic is 4.89. It is distributed with three numerator degrees of freedom 
(the Model df in SAS output and Between-groups df in Stata output) and 196 denominator 
degrees of freedom (the Error df in SAS output and the Within-groups df in Stata output).

 F What is your conclusion for the hypothesis test from Example Problem 
11.1—Part (A)?

  The p-value of the test is 0.0027. Therefore, we can reject the null hypothesis 
and conclude that at least one of the means is significantly different from the others.

  We now know that there is a significant difference in the mean A1c, but 
we are not sure between which medication groups the difference lies. To figure 
this out, we will perform multiple pairwise two-sample t-tests comparing each 
medication group with all of the others.

                        Analysis of Variance
    Source           SS       df      MS         F     Prob > F
------------------------------------------------------------------------
Between groups   30.8547264     3   10.2849088   4.89     0.0027
Within groups    412.208824   196   2.10310624
------------------------------------------------------------------------
    Total        443.06355    199   2.22645
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G How many pairwise tests should you perform?

  There are four levels in the medication regimen category variable, so we 

should perform k
2

4
2

6






=







=  t-tests.

 H What type I error rate should you use?

  The adjusted significance level, using the Bonferroni correction (Equation 
11.5), is the following:

 α
α

*
.

.=







= =
k
2

0 05

6
0 008

  In order to reject the null hypothesis that both groups’ means are the same, 
the p-value obtained from the t-test would need to be less than 0.008.

  To perform the multiple pairwise tests, we run our ANOVA again and adjust 
the syntax as follows (Table 11.3).

BOX 11.2  FORMATTING VARIABLES

Temporarily Formatting Variables in SAS:
To make our output easier to interpret, we can format our variables within a PROC state-
ment. This assigns temporary formats to the variables, but will not permanently format 
them in the dataset.

First, we assign the format class using PROC FORMAT. Use the VALUE statement 
to name your format (e.g., formatname), and assign a formatted label to each value of the 
variable. Refer to Lab A for more information.

PROC FORMAT;
 VALUE formatname 1 = "First Format" 2 = "Second Format";
RUN;

Table 11.3 Code for multiple pairwise tests (Example Problem 11.1)

SAS code Stata code

PROC GLM DATA=diabetics;
CLASS medication_group;
MODEL A1c = medication_group;
MEANS medication_group / BON;
RUN;

oneway a1c medication_group, 
bonferroni
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Comparisons significant at the 0.05 level are indicated by ***.

medication_group
Comparison

Difference 
between Means

Simultaneous 95% 
Confidence Limits

Insulin only—Both medications 0.5670 –0.2774 1.4115

Insulin only—No medication 0.7943 –0.5216 2.1103

Insulin only—Diabetic pills only 1.0144 0.2962 1.7326 ***

Both medications—Insulin only –0.5670 –1.4115 0.2774

Both medications—No medication 0.2273 –1.0757 1.5302

Both medications—Diabetic pills only 0.4474 –0.2468 1.1415

No medication—Insulin only –0.7943 –2.1103 0.5216

Then, assign the format within the PROC GLM for nicely formatted output. Do not 
forget the period after the format name; this tells SAS that it is a format, not a variable.

PROC GLM DATA=diabetics;
 CLASS medication_group;
 MODEL A1c = medication_group;
 MEANS medication_group / BON;
 FORMAT medication_group formatname.;
RUN;

Formatting Variables in Stata:
Use the label define command to state the labels associated with each level of the variable.

label define formatname 1 "First Format" 2 "Second Format"

Then, assign that label to a specific variable using the label values command.

label values medication_group formatname

When you run your ANOVA again for multiple pairwise testing, the labels will be 
displayed automatically.

oneway a1c medication_group, Bonferroni

If you wish to suppress the label in further analyses, add the nolabel option to your 
oneway command. Refer to Lab A for more information.

oneway a1c medication_group, bonferroni nolabel
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No medication—Both medications –0.2273 –1.5302 1.0757

No medication—Diabetic pills only 0.2201 –1.0049 1.4450

Diabetic pills only—Insulin only –1.0144 –1.7326 –0.2962 ***

Diabetic pills only—Both medications –0.4474 –1.1415 0.2468

Diabetic pills only—No medication –0.2201 –1.4450 1.0049

 I What is your conclusion after the pairwise testing?

  In the SAS output, we can see that there is a statistically significant dif-
ference between the “Insulin only” (2) and “Diabetic pills only” (3) groups. 
Conversely, there is no difference between the other pairwise tests. For example, 
the difference between the mean HbA1c levels in the “Insulin only” (2) and 
“Both medications” (4) groups is not statistically significant.

  The table output by the BON option assesses twice as many pairwise tests as 
are necessary based on our calculation in Example Problem 11.1—Part (H). This 
is because it allows for both directions of the relationship between groups. For 
instance, the difference and confidence limits of “Insulin only” (2) versus “Both 
medications” (4) are the inverse of that of “Both medications” (4) versus “Insulin 
only” (2). The doubling of the output allows us to easily choose which direction 
is most meaningful to report, without having to manipulate the code to give us 
the directionality that we desire.

  In the Stata output, we can see that there is a statistically significant difference 
( p = 0.001) between the “Insulin only” (2) and “Diabetic pills only” (3) groups. 
Conversely, there is no statistically significant difference between the other pair-
wise tests. For example, the difference between the mean HbA1c levels in the 
“Insulin only” (2) and “Both medications” (4) groups is not statistically significant.

Comparison of a1c by medication~p
(Bonferroni)

Row Mean-|
Col Mean |   Both med   Insulin    Pills on
---------+---------------------------------
Insulin  |    .567045
         |      0.450
         |
Pills on |   -.447359    -1.0144
         |      0.525      0.001
         |
No medic |   -.227273   -.794318    .220087
         |      1.000      0.656      1.000
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EXAMPLE PROBLEM 11.2

We selected a random sample of 1000 adults from the NHANES dataset.1 The sample 
of 306 average-weight (or less than average-weight) participants had an average total 
cholesterol of 181.2 mg/dL and standard deviation of 39.6 mg/dL. The sample of 316 
overweight participants had an average total cholesterol of 191.9 mg/dL and a standard 
deviation of 43.7 mg/dL. Finally, the sample of 378 participants who were obese had an 
average total cholesterol of 193.3 mg/dL with a standard deviation of 40.6 mg/dL. Data 
for this problem are stored in the cholbmi dataset.

 A Why is an ANOVA an appropriate method for analyzing these data?

  We are interested in comparing the means of three independent groups (i.e., 
average or less-than-average weight, overweight, or obese). Using a t-test would 
not be appropriate because we have more than two groups that we are interested 
in comparing.

  Before we proceed, we need to check that the three assumptions for an 
ANOVA are met.

  Assumption 1: Samples from k populations are independent.
  This is true. We know that the observations are independent from the struc-

ture of our dataset. Each participant can be in only one of the groups, and we 
have no reason to believe that the participants are correlated with each other.

  Assumption 2: Samples from the k populations are normally distributed.
  We will check this assumption by creating a histogram of the outcome 

 (cholesterol) for each BMI group. Use the code in Table 11.4, as appropriate.

BOX 11.3  DESCRIPTION OF THE cholbmi DATASET

The cholbmi dataset contains a random sample of 1000 adults from the National Health 
and Nutrition Examination Survey (NHANES). The continuous variable is cholesterol 
level (cholesterol), measured in mg/dL. The group variable (bmi_cat) was created from the 
continuous value of each participant’s reported BMI. The group variable has three levels: 
(1) average weight or less (BMI < 25); (2) overweight (BMI ≥ 25 and BMI < 30); and 
(3) obese (BMI of 30 or greater).

Table 11.4 Code to check normal distribution assumption (Example Problem 11.2)

SAS code Stata code

PROC SORT DATA= cholbmi;
BY bmi_cat;
RUN;

PROC UNIVARIATE DATA= cholbmi;
VAR cholesterol;
HISTOGRAM cholesterol;
BY bmi_cat;
RUN;

twoway histogram cholesterol, 
by(bmi_cat)
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  Examining the histograms by eye (Figure 11.3), we can see that the distribu-
tion of total cholesterol for each group is approximately normal. By comparing 
the means and medians to see whether they are relatively close to each other for 
each group, we also conclude that our outcome variable is approximately nor-
mally distributed in each of the three groups.

  Assumption 3: Variances in the k populations are equal.
  We want the standard deviation of total cholesterol to be approximately 

equal in each of our three groups. We can check the standard deviations of each 
group and see whether they are relatively close (Figures 11.3 and 11.4), but a 
more objective way is to perform a homogeneity of variance test. We include the 
HOVTEST option in the MEANS statement of PROC GLM in SAS and examine 
the Levene test table in the output. In Stata, we examine the Bartlett test p-value.

Levene’s Test for Homogeneity of cholesterol Variance ANOVA of 
Squared Deviations from Group Means

Source DF Sum of Squares Mean Square F Value Pr > F

bmi_cat 2 20493888 10246944 1.46 0.2336

Error 997 7.0154E9 7036543

  Per the Levene test in SAS, the p-value is 0.2336; thus, we fail to reject the 
null hypothesis that the variances are equal. Per the Bartlett test in Stata, the 
p-value is 0.181; therefore, we fail to reject the null hypothesis that the variances 
are equal. We can proceed with the ANOVA.

 B What are the null and alternative hypotheses for this ANOVA?

  Our null hypothesis is that the average total cholesterol is the same in each 
of the three BMI categories.

 H avg wgt overwgt obese0: µ µ µ= =

  Our alternative hypothesis is that the average total cholesterol for at least 
one of the BMI categories is different from the others (at least one group mean is 
different).

 H1: at least one mean is different

 C What is the estimate of the within-groups variance s ?W
2( )  Calculate by hand.

  The within-groups variance is the weighted average of the three BMI cat-
egories’ sample variances. Use Equation 11.1.

Bartlett's test for equal variances:  chi2(2) =   3.4197  
Prob>chi2 = 0.181
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s

n s n s
W

avg wgt avg wgt overwgt overwgt2
2 21 1

=
− + − +( ) ( ) (nn s

n n n k
obese obese

avg wgt overwgt obese

−
+ + −

1 2)

 = − + − + −( )( . ) ( )( . ) ( )(306 1 39 61156 316 1 43 74325 378 12 2 440 58424

306 316 378 3

2. )

+ + −

 = + +478568 08412 602743 65498 620949 36221

997

. . .

 
= 1702261 10131

997

.

 = 1707 383.

We can check this calculation using the code in Table 11.5.

Source DF Sum of Squares Mean Square F-Value Pr > F

Model 2 28017.344 14008.672 8.20 0.0003

Error 997 1702261.095 1707.383

Corrected Total 999 1730278.439

  In SAS, the within-groups variance can be found in the ANOVA table, as 
the mean square error. The mean square (MS) is 1707.383, which is the same as 
the within-groups variance that we obtained by hand.

                       Analysis of Variance
    Source          SS        df       MS         F    Prob > F
------------------------------------------------------------------------
Between groups   28017.3438     2   14008.6719   8.20    0.0003
Within groups     1702261.1   997   1707.38324
------------------------------------------------------------------------
    Total        1730278.44   999   1732.01045

Table 11.5 Code for ANOVA (Example Problem 11.2)

SAS code Stata code

PROC GLM DATA=cholbmi;
CLASS bmi_cat;
MODEL cholesterol = bmi_cat;
RUN;

oneway cholesterol bmi_cat
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  In Stata, the within-groups variance can be found in the ANOVA table, as 
the within-groups mean square (MS). This is 1707.383, which is the same as the 
within-groups variance that we obtained by hand.

 D What is the estimate of the between-groups variance s ?B
2( )  Calculate by hand.

  The between-groups variance is the variation of each BMI category’s group 
mean away from the grand mean.

  First, we calculate the grand mean (Equation 11.3), which is the overall 
average of the 1000 observations.

 x
n x n x n xavg wgt avg wgt overwgt overwgt obese=

+ +( ) ( ) ( ) oobese

avg wgt overwgt obesen n n+ +

 = + +( )( . ) ( )( . ) ( )( .306 181 2418 316 191 9335 378 193 2751))

306 316 378+ +

 = + +55459 9908 60650 986 73057 9878

1000

. . .

 = 189168 9646

1000

.

 = 189 16896.

  Then, we calculate the variation between each BMI category’s mean from the 
grand mean (Equation 11.2).

 s
n x x n x x

B
avg wgt avg wgt overwgt overwgt2

2

=
− + −( )( ) ( )( )) ( )( )2 2

1

+ −
−

n x x

k
obese obese

 
= − + −( )( . . ) ( )( . .306 181 2418 189 16896 316 191 9335 1892 116896 378 193 2751 189 16896

3 1

2 2) ( )( . . )+ −
−

 = × − + × + ×306 7 92716 316 2 76454 378 4 10614

2

2 2 2( . ) ( . ) ( . )

 = + +19228 99890 2415 08733 6373 22580

2

. . .

 = 28017 31203

2

.

 = 14008 656.
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  We can check this calculation using the same ANOVA table output from 
Example Problem 11.2—Part (C).

  In SAS, the between-groups variance can be found in the ANOVA table, 
as the model mean square. This is 14008.672. This is similar to the between-
groups variance that we obtained by hand.

  In Stata, the between-groups variance can be found in the ANOVA table, 
as the between-groups MS. This is 14008.672. This is similar to the between-
groups variance that we obtained by hand.

 E What is the value of the test statistic? Calculate by hand.

  The appropriate test statistic for an ANOVA is the F-statistic.

 F
s

s
B

W

= = =
2

2

14008 7

1707 4
8 20

.

.
.

  Referring back to our ANOVA table, we see that in both SAS and Stata that 
the F-statistic is also 8.20.

 F What is the p-value for the test? Draw a conclusion for the test.

  The p-value can be obtained from the ANOVA output and is 0.0003.
  Alternately, we can approximate the p-value from the F distribution table in 

the Appendix, Table A.6. There are 2 numerator degrees of freedom (k–1) and 
997 denominator degrees of freedom (n–k). From the table, we can use 2 as our 
numerator degrees of freedom and 120 as our denominator degrees of freedom. 
The F-statistic that we obtained by hand is between the critical values of 8.18 
and 11.38. Therefore, our p-value falls between 0.005 and 0.001.

  The p-value, obtained through either method, is less than 0.05 and indicates 
that we should reject the null hypothesis that the mean total cholesterol is the 
same for all three BMI categories. At least one group mean is different.

 G Given your conclusion, should other tests be conducted? Explain.

  If we are interested in which mean is different from the others, we should 
perform pairwise tests to compare the population means. We will have to per-

form 
k
2







 pairwise tests. Since we have three groups, we will need to perform 

three pairwise tests and also adjust the α level to correct for multiple testing 
errors.

 H What is the new type I error rate after adjusting for multiple tests?

  To adjust for multiple tests, we will use the Bonferroni correction to calcu-
late the new type I error rate (Equation 11.5).
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 α α
* =








= =
k
2

0 05

3
0 017

.
.

  This result means that in order to reject the null hypothesis that a pairwise dif-
ference is statistically significant, the p-value for that t-test must be less than 0.017.

 I Perform the pairwise tests. What is your conclusion after the pairwise testing?

  To determine which groups are significantly different from each other, we 
could subset the data and perform a series of t-tests using PROC TTEST (SAS) 
or ttest (Stata). We have previously shown that the equal variances assumption 
holds, so we would use the pooled method of estimation to obtain the p-values 
(in SAS). We would, then, compare these p-values to our new type I error rate 
of 0.017, which we calculated in Example Problem 11.2—Part (H).

  Run the following code for each pairwise comparison. There should be three 
totals: average weight versus overweight, average weight versus obese, and over-
weight versus obese. First, we compare the “Average weight” and “Overweight” 

Table 11.6 SAS code and output for multiple t-tests (Example Problem 11.2)

SAS code SAS output

“Average vs. Overweight”
PROC TTEST DATA=cholbmi;
WHERE bmi_cat IN (1,2);
VAR cholesterol;
CLASS bmi_cat;
RUN;

Equality of Variance

Method Num DF Den DF F Value Pr > F
Folded F 315 305 1.22 0.0815

Method Variances DF t Value Pr > |t|

Pooled Equal 620 –3.19 0.0015
Satterwaithe 315 305 –3.20 0.0015

“Average vs. Obese”
PROC TTEST DATA=cholbmi;
WHERE bmi_cat IN (1,3);
VAR cholesterol;
CLASS bmi_cat;
RUN;

Equality of Variance

Method Num DF Den DF F Value Pr > F
Folded F 377 305 1.05 0.6593

Method Variances DF t Value Pr > |t|

Pooled Equal 620 –3.19 0.0015
Satterwaithe 315 305 –3.20 0.0015

“Overweight vs. Obese”
PROC TTEST DATA=cholbmi;
WHERE bmi_cat IN (2,3);
VAR cholesterol;
CLASS bmi_cat;
RUN;

Equality of Variance

Method Num DF Den DF F Value Pr > F
Folded F 315 377 1.16 0.1635

Method Variances DF t Value Pr > |t|

Pooled Equal 692 –0.42 0.6757
Satterwaithe Unequal 650.16 –0.42 0.6777
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groups. In SAS (Table 11.6), we compare the pooled p-value of 0.0015 to the 
adjusted type I error rate of 0.017. In Stata (Table 11.7), we compare the p-value 
(0.0015) for the alternate hypothesis that the difference is not equal to zero (Ha: 
diff !=0) to the adjusted type I error rate of 0.017. The “Average weight” and 
“Obese” groups are also significantly different, with a p-value of 0.0015.
Conversely, we could adjust for multiple testing within PROC GLM (SAS) or the 
oneway command (Stata); see code provided in Table 11.8.

Comparisons significant at the 0.05 level are indicated by ***.

bmi_cat Comparison Difference Between Means Simultaneous 95% 
Confidence Limits

Obese—Overweight 1.342 –6.211 8.894

Obese—Average weight 12.033 4.414 19.653 ***

Overweight—Obese –1.342 –8.894 6.211

Overweight—Average weight 10.692 2.745 18.639 ***

Average weight—Obese –12.033 –19.653 –4.414 ***

Average weight—Overweight –10.692 –18.639 –2.745 ***

Again, we see that the difference between the mean total cholesterol for the over-
weight and obese groups is not statistically significant, but the mean total cholesterol 
in the average or less than average-weight group is significantly different from both the 
overweight and obese groups.

EXAMPLE PROBLEM 11.3

Suppose that we are interested in comparing the HbA1c levels (%) of a sample of 
patients who receive treatment for their diabetes in a primary safety net clinic.2 The 
outcome is the HbA1c level (measured continuously), and the categorical variable is 
the participant’s education status. The analytic sample is made up of the 261 partici-
pants who had nonmissing HbA1c levels and education status values. Use the coh_a1c 
dataset to answer the questions. From the study design, we know that the observations 
are independent. Assume that the HbA1c level is normally distributed in each of the 
education groups.

Row Mean-|
Col Mean |   Average    Overweig
---------+----------------------
Overweig |    10.6917
         |      0.004
         |
   Obese |    12.0333    1.34159
         |      0.000      1.000
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Table 11.7 Stata code and output for multiple t-tests (Example Problem 11.2)

Stata code and output

“Average vs. Overweight”
ttest cholesterol if bmi_cat == 1 | bmi_cat == 2, by(bmi_cat)

Two-sample t test with equal variances
------------------------------------------------------------------------------
   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
Average  |     306    181.2418    2.264442    39.61156    176.7859    185.6977
Overweig |     316    191.9335     2.46075    43.74325     187.092    196.7751
---------+--------------------------------------------------------------------
combined |     622    186.6736    1.686841     42.0697     183.361    189.9862
---------+--------------------------------------------------------------------
    diff |           -10.69171    3.349427               -17.26931   -4.114117
------------------------------------------------------------------------------
    diff = mean(Average) - mean(Overweig)                         t =  -3.1921
Ho: diff = 0                                     degrees of freedom =      620
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0
Pr(T < t) = 0.0007         Pr(|T| > |t|) = 0.0015          Pr(T > t) = 0.9993

“Average vs. Obese”
ttest cholesterol if bmi_cat == 1 | bmi_cat == 3, by(bmi_cat)

Two-sample t test with equal variances
------------------------------------------------------------------------------
   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
Average  |     306    181.2418    2.264442    39.61156    176.7859    185.6977
   Obese |     378    193.2751    2.087428    40.58424    189.1707    197.3796
---------+--------------------------------------------------------------------
combined |     684    187.8918     1.55112    40.56706    184.8463    190.9374
---------+--------------------------------------------------------------------
    diff |            -12.0333    3.087666               -18.09578   -5.970829
------------------------------------------------------------------------------
    diff = mean(Average) - mean(Obese)                            t =  -3.8972
Ho: diff = 0                                     degrees of freedom =      682
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0
Pr(T < t) = 0.0001         Pr(|T| > |t|) = 0.0001          Pr(T > t) = 0.9999

“Overweight vs. Obese”
ttest cholesterol if bmi_cat == 2 | bmi_cat == 3, by(bmi_cat)

Two-sample t test with equal variances
------------------------------------------------------------------------------
   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
Overweig |     316    191.9335     2.46075    43.74325     187.092    196.7751
   Obese |     378    193.2751    2.087428    40.58424    189.1707    197.3796
---------+--------------------------------------------------------------------
combined |     694    192.6643    1.595309    42.02663     189.532    195.7965
---------+--------------------------------------------------------------------
    diff |           -1.341588    3.205335               -7.634937    4.951761
------------------------------------------------------------------------------
    diff = mean(Overweig) - mean(Obese)                           t =  -0.4185
Ho: diff = 0                                     degrees of freedom =      692
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0
Pr(T < t) = 0.3378         Pr(|T| > |t|) = 0.6757          Pr(T > t) = 0.6622

Table 11.8 Code for bonferroni correction (Example Problem 11.2)

SAS code Stata code

PROC GLM DATA=cholbmi;
CLASS bmi_cat;
MODEL cholesterol = bmi_cat;
MEANS bmi_cat / BON;
RUN;

oneway cholesterol bmi_cat, 
Bonferroni
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We still need to check that the variances in the k populations are equal. We include 
the HOVTEST option in the MEANS statement of PROC GLM in SAS and examine the 
Levene test table in the output. In Stata, we examine the Bartlett test p-value. Use the code 
in Table 11.9 to determine whether the assumption of homogeneity of variances is valid.

A What is the result of a test for homogeneity of variance in these data?

Levene’s Test for Homogeneity of HbA1c Variance ANOVA of Squared 
Deviations from Group Means

Source DF Sum of Squares Mean Square F Value Pr > F

education 2 571.3 285.6 3.20 0.0423

Error 258 23022.3 89.2336

  Using the Levene test in SAS, we reject the null hypothesis that the vari-
ances are equal because the p-value = 0.0423, which is less than 0.05. Using the 
Bartlett test in Stata, we reject the null hypothesis that the variances are equal 
because the p-value = 0.001, which is less than 0.05.

  Therefore, we should not proceed with an ANOVA and must use a more 
robust test. In SAS, we will request the Welch’s test by adding the WELCH 
option to the MEANS statement. In Stata, we will request the W test by first 
downloading the wtest package and then running the wtest command. See 
Table 11.10 for the code.

B Bartlett’s test for equal variances:  chi2(2) =  13.3921  
Prob>chi2 = 0.001

BOX 11.4  DESCRIPTION OF coh_a1c DATASET

The Center for Outpatient Health survey took place in the waiting room of a primary care 
safety net clinic affiliated with an urban teaching hospital. Eligible participants were 18 years of 
age or older and English speaking. A researcher abstracted hemoglobin A1c levels (hba1c) from 
consenting participants’ medical records. Education was self-reported on the written survey, 
and the categories were collapsed into three categories for analytic purposes: (1) less than high 
school degree; (2) high school degree or equivalent; and (3) some college or more education.

Table 11.9 Code for testing homogeneity of variance (Example Problem 11.3)

SAS code Stata code

PROC GLM DATA=coh_a1c;
CLASS education;
MODEL a1c = education;
MEANS education / HOVTEST;
RUN;

oneway a1c education
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Welch’s ANOVA for HbA1C

Source DF F Value Pr > F

education 2.0000 0.87 0.4209

Error 129.9

 B What is the value of the test statistic, and what is your conclusion for your 
test? State your p-value in your answer.

  The Welch’s ANOVA output table displays the adjusted F-statistic and its 
p-value. The F-statistic is 0.87, with a p-value = 0.4209. The Wtest output 
displays the adjusted F-statistic and its p-value. The F-statistic is 0.87, with a 
p-value = 0.4209. Therefore, we fail to reject the null hypothesis and conclude 
that we do not have evidence to show that any of the means are significantly dif-
ferent from the others.

 C Should you perform multiple pairwise tests? If so, what type I error rate should 
you use?

  No, you should not perform multiple pairwise tests because you failed to 
reject the null hypothesis.

PRACTICE PROBLEM 11.1

 A What distribution does an ANOVA test statistic follow?

 B List the assumptions for an ANOVA.

----------------------------------------------------------------------
Dependent Variable is hba1c and Independent Variable is 
education
WStat(  2, 129.92) =   0.871, p= 0.4209

----------------------------------------------------------------------

Table 11.10 Code for welch ANOVA / W test (Example Problem 11.3)

SAS code Stata code

PROC GLM DATA=coh_a1c;
CLASS education;
MODEL a1c = education;
MEANS education / WELCH;
RUN;

findit wtest
Download the wtest package
wtest a1c education
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PRACTICE PROBLEM 11.2

Evaluate the following scenarios, determine whether an ANOVA would be a suitable 
procedure to analyze the data, and state why or why not.

 A We are interested in the rate of incidents that are due to driving while intoxicated 
(DWI) in a particular city. Researchers would like to know whether these rates dif-
fer by educational attainment. A representative sample of citizens are surveyed and 
divided into four educational attainment groups (i.e., less than high school, high 
school/GED, some college, college degree or greater). Most participants reported no 
drunk-driving incidents.

 B Researchers would like to investigate the difference in colorectal cancer incidence 
between men and women in the United States.

 C Researchers are conducting a three-arm clinical trial for the treatment of depres-
sion. Participants are randomized to one of three treatments (i.e., Drug A, Drug B, 
or placebo). After six weeks of taking the prescribed treatment, they are assessed for 
depression severity using a validated continuous scale.

 D A sample of patients in an emergency room reported their distress level before 
seeing a healthcare professional, after seeing the triage nurse, and after being dis-
charged. Researchers would like to compare the mean distress level of these three 
time points.

PRACTICE PROBLEM 11.3

Birth data can be obtained from the Centers for Disease Control and Prevention.3 
The National Vital Statistics Report of the fertility rates in the 50 states in 2014 is 
summarized by region in Table 11.11.4 We are interested in comparing fertility rates 
across the four regions. Use Table 11.11 and the birthdeath_byregion dataset to answer 
the questions.

BOX 11.5  DESCRIPTION OF birthdeath_byregion DATASET

The United States Department of Health and Human Services releases annual statistics 
on births and fetal deaths. The data are reported on the state level and aggregated to the 
region level. The fertility rate ( fertilityrate) is the estimated number of births over a wom-
an’s lifetime, per 1000 women. The number of deaths (deaths) is the estimated number of 
resident deaths in the 1000s.
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 A State the null and alternate hypotheses.

 B Construct 95% confidence intervals for the mean fertility rate per region (refer 
back to Chapter 6—Equation 6.4). Do you notice anything that suggests that the 
regions’ means may not be the same?

 C What is the value of the within-groups variance?

 D What is the value of the between-groups variance?

 E What are the value and distribution of the test statistic?

 F What is your conclusion for your test? State your p-value in your answer.

 G Fill in the ANOVA table (Table 11.12).

 H Should you perform multiple pairwise tests? If so, what type I error rate should 
you use?

Table 11.12 Blank ANOVA table for Practice Problem 11.3

Source DF Sum of squares Mean square F-value Pr > F

Model
(Between-group)

Error
(Within-group)

Total

Table 11.11 Fertility rate per 1000 women by region 
(Practice Problem 11.3)

Region n Mean Standard deviation

Midwest 12 67.50 6.30
Northeast 9 54.74 3.60
South 16 63.68 3.58
West 13 67.38 6.30
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PRACTICE PROBLEM 11.4

Data on deaths can also be obtained from the Centers for Disease Control and Prevention.5 
The National Vital Statistics Report of the number of resident deaths in the 50 states in 
2014 is summarized by region in Table 11.13.4 We are interested in comparing the 
number of resident deaths across the four regions. Use the birthdeath_byregion dataset to 
answer the questions.

 A State the null and alternate hypotheses.

 B Construct 95% confidence intervals for the mean number of deaths per region 
(refer to Chapter 6—Equation 6.4). Do you notice anything that suggests that the 
regions’ means may not be the same?

 C What is the value of the within-groups variance?

 D What is the value of the between-groups variance?

 E What are the value and distribution of the test statistic?

 F What is your conclusion for your test? State your p-value in your answer.

 G Fill in the ANOVA table (Table 11.14).

 H Should you perform multiple pairwise tests? If so, what type I error rate should you use?

PRACTICE PROBLEM 11.5

We selected a random sample of 2000 adults from the NHANES dataset.1 We catego-
rized the adults into three groups: Those who had never been told they had high blood 
pressure (n = 1466), those who had been told once (n = 124), and those who had been 

Table 11.13 Number of resident deaths in the 1000s 
by region (Practice Problem 11.4)

Region n Mean Standard deviation

Midwest 12 50.78 37.30
Northeast 9 52.80 54.03
South 16 63.78 51.16
West 13 39.74 64.03
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told two or more times (n = 404). We are interested in how long these adults spend 
doing sedentary activities in any given day. The sample of participants who had normal 
blood pressure spent, on average, 409 minutes per day doing sedentary activities, with 
a standard deviation of 193 minutes. Those who had been told once that they had high 
blood pressure spent about 410 minutes per day doing sedentary activities, with a stan-
dard deviation of 191 minutes. The participants who had been told at least twice that 
they had high blood pressure engaged in sedentary activities about 447 minutes per day, 
with a standard deviation of 201 minutes. Use the anova_pa_htn dataset to answer the 
following questions. You may assume that the data are normally distributed.

 A What code should be specified to test the assumption for homogeneity of variance?

 B Conduct an ANOVA, and fill in the ANOVA table using Table 11.15.

 C What code did you use to run the ANOVA in Practice Problem 11.5—Part (B)?

 D What are the null and alternative hypotheses?

 E What are the value and distribution of the test statistic?

BOX 11.6  DESCRIPTION OF anova_ pa_htn DATASET

The anova_pa_htn dataset comes from a random sample of 2000 adults who participated 
in the NHANES. The outcome is minutes of sedentary activity (sedentary) in one day, and 
the grouping variable is how often a participant has been told that he or she has high 
blood pressure (bloodpressure). The grouping variable was created from responses to two 
questions in the survey: “Have you ever been told by a doctor or other professional that 
you had high blood pressure?” and “Were you told on two or more different visits that 
you had high blood pressure?” Bloodpressure has three levels: (0) never told had high blood 
pressure, (1) told once that had high blood pressure, and (2) told at least twice had high 
blood pressure.

Table 11.14 Blank ANOVA table for Practice Problem 11.4

Source DF Sum of squares Mean square F-value Pr > F

Model
(Between-group)

Error
(Within-group)

Total
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 F What is your conclusion for your test? State your p-value in your answer.

 G Should any additional test be conducted? If so, what test and how many?

 H What option should be specified to obtain the adjusted significance of pairwise tests?

 I What is the significance level of these tests?

 J What is the distribution of the test statistic?
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This chapter will focus on linear correlation between two continuous variables and will 
include the following topics:

• Population correlation coefficient (ρ)
• Pearson correlation coefficient (r)
• Spearman rank correlation coefficient (rs)

Term

• correlation

Introduction

In Chapter 10, we used the odds ratio (OR) to measure the strength of association 
between two dichotomous variables. In this chapter, we will use a correlation coefficient 
to measure the strength of a linear association between two continuous variables.

Population correlation coefficient (ρ)

The population correlation coefficient quantifies the true strength of the linear associa-
tion between two continuous variables, X and Y. It is denoted using the Greek letter 
rho (ρ) and is a dimensionless number, meaning that it has no units of measurement. 
The values for the population correlation coefficient can fall between −1 and 1. A ρ of 
0 indicates no linear correlation between the two continuous variables. A positive cor-
relation coefficient indicates a positive linear relationship, whereas a negative correla-
tion coefficient indicates a negative linear relationship. The strength of the correlation 
ranges from negligible to very high, as shown in Table 12.1.1

It is important to note that a ρ of 0 does not imply a lack of a relationship between 
the two variables; the relationship is just not a linear one (e.g., quadratic as in Figure 
12.1c). However, a ρ of 1 or −1 implies that if all the pairs of outcomes (xi, yi) were 
plotted, they would fall on a straight line (an exact linear relationship).

Keep in mind that a strong correlation does not imply causation. In fact, a signifi-
cant correlation of any magnitude does not necessarily imply causation between the two 
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Table 12.1 Interpreting the correlation coefficient

Absolute value of correlation coefficient Interpretation

0.90 to 1.00 Very high correlation

0.70 to 0.90 High correlation

0.50 to 0.70 Moderate correlation

0.30 to 0.50 Low correlation

0.00 to 0.30 Negligible correlation

Source: Mukaka, M. M., Malawi Med J., 24(3), 69–71, 2012. doi:10.1016/j.cmpb.2016.01.020.

(a) (b)

(c) (d)

Y

X

Y

X

Y

X

Y

X

Negative correlation
Negative linear relationship

ρ < 0

No correlation
No linear relationship

ρ ≈ 0

No correlation
No linear relationship

ρ ≈ 0

Positive correlation
Positive linear relationship

ρ > 0

Figure 12.1  Four correlation coefficients and their implied linear relationships. Graph (a) shows 
a negative correlation (ρ < 0) between X and Y, implying a negative linear relationship 
between the X and Y variables. Graph (b) shows no correlation (ρ ≈ 0), implying no linear 
relationship between the X and Y variables. Graph (c) also shows no correlation (ρ ≈ 0), 
implying no linear relationship between the X and Y variables. The relationship in Graph 
(c) appears to be quadratic. Graph (d) shows a positive correlation (ρ > 0) between X and 
Y, implying a positive linear relationship between the X and Y variables.
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continuous variables X and Y. Correlation will only quantify the association between 
the two variables; it cannot be used to claim that one variable causes another. Therefore, 
even when we do observe correlation between two variables, we do not assume the asso-
ciation extends beyond the range of the observed data.

Visualizing correlated data

It is useful to plot the variables to get a quick idea of how the data in the sample are 
associated. We can see whether the association between our X and Y variables is approx-
imately linear and whether there appears to be a positive or negative correlation present.

We use PROC SGPLOT in SAS with the SCATTER statement or the scatter com-
mand in Stata to get a visualization of the relationship between the variables in our 
data (see Table 12.2 for sample code).

Pearson correlation coefficient (r)

To estimate the population correlation, we will calculate a correlation coefficient for a 
sample of the population. This estimate is known as the Pearson correlation coefficient 
(r) and can be thought of as the average of the product of the standard normal devia-
tions. In other words, it is calculated using the difference between each pair of out-
comes (xi, yi) and the respective means ( , )x y  of the continuous variables X and Y. See 
Equation 12.1 for the formula:
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Like the population correlation, this estimation will quantify only the strength of the 
linear association. If the relationship between X and Y is nonlinear, correlation will not 
be a valid measure of the association. 

The estimated correlation cannot be extrapolated beyond the observed range of 
the X and Y variables. The relationship between X and Y may change outside of our 
observed region, and we, therefore, must limit our conclusions to the observed range of 
the variables.

We can, then, use the sample correlation coefficient to test the null hypothesis that 
no correlation exists in the population. Our null hypothesis is that the true population 
correlation is equal to zero.

Table 12.2 Code for scatterplot to visualize correlated data

SAS code Stata code

PROC SGPLOT DATA = dataset;
SCATTER Y = var_1 X = var_2;
RUN;

scatter var_1 var_2
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 H0 0: ρ =

 H1 0: ρ ≠

To test the null hypothesis, we must meet two assumptions: 

 1 The pairs of observations X and Y are obtained randomly.
 2 The pairs of observations X and Y are normally distributed.

We use a test statistic (Equation 12.2) that follows a t-distribution with n − 2 degrees 
of freedom.

 
t r

n

r
= −

−
2

1 2  (12.2)

Once we obtain the critical value t, we can compare it to the t table in Appendix 
Table A.4 to find our p-value and determine whether we should reject or fail to reject 
our null hypothesis. A failure to reject the null hypothesis (and conclude that the popu-
lation correlation is not different from 0) would not imply that our variables X and Y 
are independent. A rejection of the null hypothesis only implies that the nature of the 
relationship between the two variables is linear. 

Using SAS to calculate the Pearson correlation coefficient

We use PROC CORR to calculate the Pearson correlation coefficient for pairs of vari-
ables. When k variables are specified in the VAR statement, SAS will display a k × k 
table with the correlation coefficients and p-values for each pair of variables. 

When using the following code, the output will be a 2 × 2 table with the Pearson 
correlation coefficient and significance for the association between two variables (var_1 
and var_2).

PROC CORR DATA = dataset; 
 VAR var_1 var_2; 
RUN;

The first output table (Simple Statistics) is a summary statistics table of each of the 
input variables. This table contains useful statistics such as the mean, standard devia-
tion, minimum, and maximum for each variable.

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

var_1 10 0.52135 0.26692 5.21346 0.07968 0.96353

var_2 10 0.48251 0.26385 4.82505 0.16525 0.95988
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The second table (Pearson Correlation Coefficients) is the k × k table of the Pearson 
correlation coefficient and, below that, the p-value addressing the test of the null 
hypothesis that there is no correlation. The values are symmetric along the diagonal. 
For example, the correlation coefficient between var_1 and var_2 is −0.17587, and the 
p-value is 0.6270. We can conclude that there is a negligible and nonsignificant rela-
tionship between var_1 and var_2.

Pearson Correlation Coefficients, N = 10
Prob > |r| under H0: Rho = 0

var_1 var_2

var_1 1.00000 –0.17587

0.6270

var_2 –0.17587 1.00000

0.6270

The following table is an extension of the 2 × 2 table, to include four variables. 
The first row of the table shows the relationship between var_1 and the other variables 
(including itself), the second row shows the relationship between var_2 and all of the 
other variables (including itself), and so on. 

Pearson Correlation Coefficients, N = 10
Prob > |r| under H0: Rho = 0

var_1 var_2 var_3 var_k

var_1 1.00000 –0.17587 0.09700 –0.20123

0.6270 0.7898 0.5772

var_2 –0.17587 1.00000 0.12614 –0.24910

0.6270 0.7284 0.4877

var_3 0.09700 0.12614 1.00000 –0.13877

0.7898 0.7284 0.7022

var_k –0.20123 –0.24910 –0.13877 1.00000

0.5772 0.4877 0.7022

Testing a different “Null” hypothesis about the Pearson correlation coefficient, 
using SAS

Occasionally, we are interested in determining whether the correlation in our data 
is similar to an established correlation in the literature. In this case, testing the 
correlation of our data against the population correlation coefficient of 0 is not as 
useful. To change the null population correlation coefficient to a different value, use 
the option of the Fisher Z transformation with RHO0 = value. The value must be 
between −1 and 1. This option can be used only when calculating a Pearson cor-
relation coefficient.
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To investigate whether the correlation in the data is significantly different from 0.7, 
we would run the following code:

PROC CORR DATA = dataset FISHER(RHO0=0.7);
 VAR var_1 var_2;
RUN;

Pearson Correlation Statistics (Fisher’s z Transformation)

Variable
With 

Variable N
Sample 

Correlation Fisher’s z
Bias 

Adjustment
Correlation 

Estimate 95% Confidence Limits
H0:Rho = Rho0

Rho0 p-Value

var_1 var_2 10 –0.17587 –0.17771 –0.00977 –0.16638 –0.720527 0.517452 0.7 0.0041

From the output, we look at the last two columns to see whether we should reject or 
fail to reject our null hypothesis that the correlation in the data is significantly differ-
ent from the population correlation coefficient of 0.7. The last column shows that the 
p-value for Rho0 is 0.0041, which is less than 0.05. We can reject the null hypothesis 
and determine that the correlation in our data is significantly different from 0.7.

Using Stata to calculate the Pearson correlation coefficient

We use the pwcorr command with the sig option to calculate the Pearson correlation 
coefficient for pairs of variables. If k variables are specified in the variable list, Stata 
will display a k × k table with the correlation coefficients and p-values for each pair of 
variables. 

When using the following code, the output will be a 2 × 2 table with the Pearson 
correlation coefficient and significance for the association between two variables (var_1 
and var_2).

pwcorr var_1 var_2, sig

             |    var_1    var_2
-------------+------------------
       var_1 |   1.0000 
             |
             |
       var_2 |  -0.1759   1.0000 
             |   0.6270

The top value in the table is the Pearson correlation coefficient and, below that, the 
p-value addressing the null hypothesis that there is no correlation. For example, the cor-
relation coefficient between var_1 and var_2 is −0.1759, and the p-value is 0.6270. We 
can conclude that there is a negligible and nonsignificant relationship between var_1 
and var_2.

The following Stata output table is an extension of the 2 × 2 table, to include four 
variables. The first column of the table shows the relationship between var_1 and the 
other variables (including itself ), the second column shows the relationship between 
var_2 and all of the other variables (including itself ), and so on.
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             |    var_1    var_2    var_3    var_k
-------------+------------------------------------
       var_1 |   1.0000 
             |
             |
       var_2 |  –0.1759   1.0000 
             |   0.6270
             |
       var_3 |   0.0970   0.1261   1.0000 
             |   0.7898   0.7284
             |
       var_k |  –0.2012  –0.2491  –0.1388   1.0000 
             |   0.5772   0.4877   0.7022

EXAMPLE PROBLEM 12.1

Suppose that we wish to examine the relationship between weight and the HbA1c levels 
of adults.2 The values for a random sample of 15 adults appear in Table 12.3, as well 
as scatterplots of the data (Figure 12.2). Assume the data are approximately normally 
distributed.

We can see from the scatterplots (Figures 12.2a,b) that there is a decrease in HbA1c 
that corresponds to an increase in weight. There appears to be a negative correlation. 
The distribution looks approximately linear.

To determine the correlation of our sample, we calculate the Pearson correlation 
coefficient. First, we will calculate the mean of our X variable (weight) and our Y vari-
able (HbA1c). This is displayed in the last row of Table 12.4 (columns 2 and 5). Then, 
we will calculate x xi −  and y yi −   for each observation, as shown in columns 3 and 6 
of Table 12.4.

Next, we will take the product of x xi −  and y yi − , as shown in Table 12.4, column 
8. To get the numerator for the Pearson correlation coefficient, we sum that calculated 
product over all observations (last row of column 8).

The final component is the calculation of each observation’s squared deviation from 
the mean (Table 12.4, columns 4 and 7).

BOX 12.1 DESCRIPTION OF EXAMPLE PROBLEM 12.1 DATA

The Center for Outpatient Health survey took place in the waiting room of a primary care 
safety net clinic affiliated with an urban teaching hospital. Eligible participants were aged 
18 years or older and English speaking. A researcher abstracted hemoglobin A1c (hba1c) 
and weight (weight) from consenting participants’ medical records. This dataset contains 
a random sample of 15 adult participants with reported values for HbA1c and weight.
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We now have all the components to calculate the Pearson correlation coefficient, 
using Equation 12.1.
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We can, then, test our hypothesis that no correlation exists in the total population 
using our test statistic, calculated from Equation 12.2.
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Because the t-distribution is symmetrical, we know that the probability of falling 
below a critical value of −2.59 corresponds to the probability of falling above a criti-
cal value of 2.59. Using the t table in Appendix Table A.4, with n − 2 = 13 degrees 
of freedom, we can see that our test statistic of 2.59 is between 2.160 (p = 0.025) and 
2.650 (p = 0.01). Because these are the p-values for the upper tail, we double them and 
determine that p is between 0.05 and 0.02. These values are below our cutoff of 0.05. 
We, therefore, reject the null hypothesis that there is no correlation (ρ = 0) and conclude 
that weight and HbA1c levels are significantly correlated. We can check our work using 
the code in Table 12.5 and the corr_hba1c dataset.

Table 12.3 HbA1c and weight in an adult sample

ID Weight (pounds) HbA1c level (%)

126 269 7.3

177 120 12.1

193 224 7.5

207 223 9.4

283 211 5.9

308 307 5.5

354 296 7.2

362 111 7.8

368 162 6.9

703 187 7.4

728 230 6.5

810 238 6.8

871 252 7.6

967 163 10.3

994 341 6.6
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We get the following 2 × 2 correlation table (output table), depending on which 
software you use.

Pearson Correlation Coefficients, N = 15
Prob > |r| under H0: Rho = 0

Weight HbA1C

Weight 1.00000 –0.58350

Subject’s Weight, pounds 0.0224

HbA1C –0.58350 1.00000

Average Blood Glucose Level—
HbA1c measurement, %

0.0224

Table 12.4 Hand calculation of Pearson correlation coefficient

ID Weight (X) ( )x xi − x xi −( ) 2 HbA1c (Y) ( )y yi − ( )y yi − 2 ( )* ( )x x y yi i− −

126 269 46.7 2180.9 7.3 –0.4 0.2 –18.7

177 120 –102.3 10465.3 12.1 4.4 19.4 –450.1

193 224 1.7 2.9 7.5 –0.2 0.0 –0.3

207 223 0.7 0.5 9.4 1.7 2.9 1.2

283 211 –11.3 127.7 5.9 –1.8 3.2 20.3

308 307 84.7 7174.1 5.5 –2.2 4.8 –186.3

354 296 73.7 5431.7 7.2 –0.5 0.3 –36.9

362 111 –111.3 12387.7 7.8 0.1 0.0 –11.1

368 162 –60.3 3636.1 6.9 –0.8 0.6 48.2

703 187 –35.3 1246.1 7.4 –0.3 0.1 10.6

728 230 7.7 59.3 6.5 –1.2 1.4 –9.2

810 238 15.7 246.5 6.8 –0.9 0.8 –14.1

871 252 29.7 882.1 7.6 –0.1 0.0 –3.0

967 163 –59.3 3516.5 10.3 2.6 6.8 –154.2

994 341 118.7 14089.7 6.6 –1.1 1.2 –130.6

x  = 222.3 Σ = 61447.0 y  = 7.7 Σ = 41.8 Σ = –934.2

Table 12.5 Code for calculating the Pearson correlation coefficient (Example Problem 12.1)

SAS code Stata code

PROC CORR DATA = corr_hba1c;
VAR weight hba1c;
RUN;

pwcorr weight hba1c, sig
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             |   weight    hba1c
-------------+------------------
      weight |   1.0000 
             |
             |
       hba1c |  -0.5835   1.0000 
             |   0.0224
             |

The Pearson correlation coefficient is −0.58, which is equal to our hand-calculated 
coefficient. The p-value is 0.0224, which falls within our calculated p-value range.

EXAMPLE PROBLEM 12.2

A random sample of countries was taken from the World Health Organization’s Global 
Health Observatory (GHO) data repository.3,4 We are interested in the association 
between the availability of family planning and the total fertility rate in rural residence 
areas of these sampled countries. Our X variable is a percent of demand for family plan-
ning that has been satisfied, and our Y variable is the total fertility rate per woman 
(Table 12.6). Use the familyplanning dataset (Box 12.2).

First, we visualize the data to get an idea of the association between our variables 
(Figure 12.3). See Table 12.7 for code.

BOX 12.2 DESCRIPTION OF THE familyplanning DATASET

The Global Health Observatory (GHO) is a repository of health-related data from over 194 
countries. The familyplanning dataset contains data on reproductive health in rural areas 
of 13 countries in 2012. Demand for family planning satisfied (familyplan) is the percent 
of women of reproductive age who are sexually active and who have their need for family 
planning satisfied with modern methods. This is a measure of contraception coverage. Total 
fertility rate per woman (fertilityrate) is the number of children who would be born per 
woman during her childbearing years if she kept to a schedule of age-specific fertility rates.

BOX 12.3 LABEL DATA VALUES

In SAS, using the DATALABEL= option allows us to see which countries are at the 
low or high end of our data.

In Stata, the mlabel (variable_name) allows us to see which countries are at the low 
or high end of our data. This is not a necessary option, but produces graphs that 
allow for interpretation in context of the data.
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We can see a slight negative trend in our data but cannot draw any statistical conclu-
sions or quantify the relationship.

Next, we will calculate the Pearson correlation coefficient using the code in Table 
12.8.

Pearson Correlation Coefficients, N = 13
Prob > |r| under H0: Rho = 0

FamilyPlan FertilityRate

FamilyPlan 1.00000 –0.75185

Demand for Family Planning 
Satisfied, %

0.0030

FertilityRate –0.75185 1.00000

Total Fertility Rate, 
children per woman

0.0030

             | family~n fertil~e
-------------+------------------
  familyplan |   1.0000 
             |
             |
fertilityr~e |  -0.7519   1.0000 
             |   0.0030
             | 

Table 12.6 Family planning and fertility rate in rural residential areas

Country Demand for family planning satisfied (%) Total fertility rate (per woman)

Comoros 29.1792 4.84204

Gabon 39.8277 5.89397

Guinea 16.6430 6.07371

Haiti 48.2659 4.38506

Indonesia 88.9133 2.68521

Jordan 87.2955 3.87219

Kyrgyzstan 65.5658 3.88812

Mali 24.7210 6.78738

Niger 42.3201 8.23990

Pakistan 60.1399 4.44694

Peru 88.8425 3.58494

Senegal 25.8924 6.49117

Tajikistan 53.1131 3.76948
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From the output table, we can see that the Pearson correlation coefficient is −0.75. 
This implies a strong, negative correlation between satisfied demand for family plan-
ning and total fertility rate. This conclusion corresponds to our observations from the 
scatterplot. The p-value is 0.0030 for the test to determine whether there is correlation 
between our two variables in the population. The p-value is less than 0.05, so we reject 
our null hypothesis and determine that satisfied demand for family planning and total 
fertility rate are significantly correlated.

PRACTICE PROBLEM 12.1

During the diagnosis and treatment of renal and liver diseases, doctors frequently use 
creatinine and albumin measurements. A battery of measurements was taken using 
serum specimens on a probability sample of the civilian noninstitutionalized population 
of the United States as part of the National Health and Nutrition Examination Survey 
(NHANES).5 Using a random sample of 250 respondents (the biochem dataset, see Box 
12.4), answer the questions.

 A What can you say about the relationship between the two serum measurements 
(creatinine and albumin) based on the scatterplots in Figure 12.4?

BOX 12.4 DESCRIPTION OF biochem DATASET

The laboratory component of the 2014 National Health and Nutrition Examination 
Survey (NHANES) collects a standard biochemistry profile. Albumin (albumin) is a con-
tinuous variable and is measured in g/dL. Creatinine (creatinine) is a continuous variable 
and is measured in mg/dL.

Table 12.8 Code to calculate the Pearson correlation coefficient (Example Problem 12.2)

SAS code Stata code

PROC CORR DATA = familyplanning;
VAR familyplan fertilityrate;
RUN;

pwcorr familyplan 
fertilityrate, sig

Table 12.7 Code for scatterplot (Example Problem 12.2)

SAS code Stata code

PROC SGPLOT DATA = familyplanning;
SCATTER Y = fertilityrate X = 
familyplan / DATALABEL=country;
RUN;

scatter fertilityrate 
familyplan, mlabel(country)
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 B What is the Pearson correlation coefficient for these data? Use the following SAS or 
Stata output.

Pearson Correlation Coefficients, N = 250
Prob > |r| under H0: Rho = 0

Albumin Creatinine

albumin 1.00000 0.01067

Albumin Level, g/dL 0.8667

creatinine 0.01067 1.00000

Creatinine Level, mg/dL 0.8667

             | creatinine  albumin
-------------+--------------------
  creatinine |   1.0000 
             |
             |
     albumin |   0.0107     1.0000 
             |   0.8667
             |

 C Is there a significant linear relationship between creatinine and albumin levels 
based on these data? Why or why not?

Spearman rank correlation coefficient (rs)

The Pearson correlation coefficient is a widely used measure of correlation, but it is 
sensitive to outliers. This means that it can be heavily influenced by observations that 
are extremely distant from the other observations in the sample. If the data we are 
interested in analyzing have outliers, it might be best to use a nonparametric correla-
tion, such as the Spearman rank correlation coefficient (rs). As a nonparametric measure, 
the Spearman rank correlation coefficient uses the ranked values of X and Y instead of 
the actual values of X and Y. Thus, the Spearman rank correlation coefficient is a more 
robust (i.e., not as sensitive to outliers) estimate of the population correlation than the 
Pearson correlation coefficient. However, the Spearman rank correlation coefficient is 
less powerful when the data are normally distributed. The Spearman rank correlation 
coefficient can also be used when one or more variables are ordinal, whereas the Pearson 
correlation coefficient is appropriate only when both variables are continuous. 

As with the Pearson correlation coefficient, values of the Spearman rank correlation 
coefficient that are near 0 imply a lack of linear association between X and Y. Values 
that are close to the extremes of −1 or 1 indicate a high degree of correlation between 
the variables. The strength of the correlation is interpreted in the same manner as with 
the Pearson correlation coefficient (see Table 12.1).

The Spearman rank correlation coefficient can be calculated in the same general way 
as the Pearson correlation coefficient, but by using the ranked values of X and Y (xri, yri) 
instead of xi and yi. We rank X and Y independently, giving the rank of 1 to the lowest 



Correlation 387

value of each variable and n to the highest. In the event of a tie, we take the average of the 
ranks that the observations would have otherwise occupied. For example, if two observa-
tions were tied for the fourth rank, they would each be given a rank of 4.5. This is the aver-
age of ranks 4 and 5, which are the ranks that the two observations would have occupied.

Equation 12.5 computes the Spearman rank correlation coefficient, where xri and yri 
are the ranks associated with the ith observation (rather than the actual values of xi and yi).
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An equivalent method for computing rs is provided by Equation 12.6, where di is 
the difference between the rank of xi and yi, and n is the number of data points in the 
sample.
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As with the Pearson correlation coefficient, we can test the null hypothesis that no 
correlation exists in the population. Our null hypothesis is that the true population cor-
relation is equal to 0.

 H0: 0ρ =

 H1: 0ρ ≠

The test statistic (Equation 12.7) to test this null hypothesis, like with the Pearson 
correlation coefficient test, follows a t-distribution with n − 2 degrees of freedom. The 
test also assumes that the pairs of observations, X and Y, were obtained randomly. 
However, X and Y do not need to be normally distributed because the Spearman rank 
correlation coefficient is a nonparametric measure, and this is a nonparametric test. Use 
this test statistic only if there are at least 10 observations in your dataset.
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Using SAS to calculate Spearman rank correlation coefficient

SAS will calculate the Spearman rank correlation coefficient for a set of variables, along 
with the p-value associated with testing the null hypothesis that the population cor-
relation coefficient is 0. The output generated will be similar in format to the out-
put obtained with the Pearson correlation coefficient. The default correlation in PROC 
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CORR is Pearson, but we can obtain the k × k table of the Spearman rank correlation 
coefficients and p-values by specifying the SPEARMAN option.

PROC CORR DATA = dataset SPEARMAN;
 VAR var_1 var_2;
RUN;

As before, the output is a k × k table of the Spearman rank correlation coefficient 
and, below that, the p-value addressing the null hypothesis that there is no correlation. 
The values are symmetric along the diagonal. For example, the correlation coefficient 
between var_1 and var_2 is −0.16364, and the p-value is 0.6515. We can conclude that 
there is a negligible and nonsignificant relationship between var_1 and var_2.

Spearman Correlation Coefficients, N = 10
Prob > |r| under H0: Rho = 0

var_1 var_2

var_1 1.00000 -0.16364

0.6515

var_2 -0.16364 1.00000

0.6515

Using Stata to calculate Spearman rank correlation coefficient

Stata will calculate the Spearman rank correlation coefficient for a pair of variables and the 
p-value associated with testing the null hypothesis that the population correlation coefficient 
is 0 with the spearman command. For a pair of variables, the output presented will be a 
summary of the number of observations, the estimate of the correlation coefficient, and the 
p-value. 

spearman var_1 var_2

To obtain the k-by-k table that we obtained when calculating the Pearson correla-
tion coefficient output, we specify the stats(rho p) option. With this option specified, 
the output generated will be similar in format to the output obtained with the Pearson 
correlation coefficient.

spearman var_1 var_2 var_3 var_k, stats(rho p)

For a pair of variables, the spearman command generates the following output. For 
example, the correlation coefficient (Spearman’s rho) between var_1 and var_2 is −0.1636, 
and the p-value (Prob > |t|) is 0.6515. We can conclude that there is a negligible and 
nonsignificant relationship between var_1 and var_2.

Number of obs =      10
Spearman’s rho =     -0.1636

Test of Ho: var_1 and var_2 are independent
    Prob > |t| =       0.6515
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For k variables, the spearman command generates the following default output. It 
displays only the correlation coefficients; if you want to also have p-values in the out-
put, include the stats(rho p) option. The first column of the table shows the relationship 
between var_1 and the other variables (including itself), the second column shows the 
relationship between var_2 and all of the other variables (including itself), and so on.

             |    var_1    var_2    var_3    var_k
-------------+------------------------------------
       var_1 |   1.0000 
       var_2 |  -0.1636   1.0000 
       var_3 |   0.1758  -0.1030   1.0000 
       var_k |  -0.2364  -0.4303  -0.0061   1.0000 

EXAMPLE PROBLEM 12.3

Revisiting Example Problem 12.1, we would like to recalculate our correlation coef-
ficient nonparametrically. First, we will rank each X observation and then rank each Y 
observation, with 1 being the rank of the smallest value and 15 being the rank of the 
largest value. In this dataset, there are no ties.

We, then, will compute the difference between each observation’s X and Y rank (di) 
and square that difference (Table 12.9). We will need the sum of the individual squared 
differences to compute the Spearman rank correlation coefficient.

We will now compute the Spearman rank correlation coefficient, using Equation 12.6.

Table 12.9 Computing the difference in ranks by hand for Example Problem 12.3

ID Weight (X) X Rank (xri) HbA1C (Y) Y Rank (yri) di di
2

126 269 12 7.3 8 4 16

177 120 2 12.1 15 –13 169

193 224 8 7.5 10 –2 4

207 223 7 9.4 13 –6 36

283 211 6 5.9 2 4 16

308 307 14 5.5 1 13 169

354 296 13 7.2 7 6 36

362 111 1 7.8 12 –11 121

368 162 3 6.9 6 –3 9

703 187 5 7.4 9 –4 16

728 230 9 6.5 3 6 36

810 238 10 6.8 5 5 25

871 252 11 7.6 11 0 0

967 163 4 10.3 14 –10 100

994 341 15 6.6 4 11 121

Σ = 874



390 Biostatistics for clinical and public health research

 
r

d

n n
s

i
i

n

= −
−

= −
−( ) = −=∑

1
6

1
1

6 874

15 15 1
1

524
2

1
2 2( )

( )

( )

44

3360
0 56= − .

 

The correlation is negative and moderately strong. This coefficient is also similar to 
our previously calculated Pearson correlation coefficient. We can calculate our test sta-
tistic (Equation 12.7) to test our null hypothesis that our two variables are uncorrelated.
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Due to the symmetrical nature of the t-distribution, the probability of falling below 
the critical value of –2.44 is equivalent to the probability of being above the critical 
value of 2.44. Referencing the t table in Appendix Table A.4, with n – 2 = 13 degrees of 
freedom, we find that our test statistic of 2.44 is between 2.160 ( p = 0.025) and 2.650 
( p = 0.01). We must double the p-values because they are only for the probability in 
the upper tail. Thus, we determine p is between 0.05 and 0.02. We, therefore, reject the 
null hypothesis that there is no correlation (ρ = 0) and conclude that weight and HbA1c 
levels are significantly correlated.

EXAMPLE PROBLEM 12.4

We are interested in the association between diphtheria tetanus toxoid and pertussis 
(DTP3) immunization coverage and the mortality rate of children younger than 5 years. 
The dataset corr_dtp3 comprises data from 194 countries in the GHO data repository 
that reported on both measures in 2014.6,7 (See Box 12.5.) Upon examining the data 
(Figures 12.5 and 12.6), we can see that neither the immunization variable nor the 
mortality rate variable is normally distributed. Therefore, the Spearman rank correla-
tion coefficient is the appropriate measure to examine the level of association between 
these two variables.

Our null hypothesis is that there is no linear relationship between DTP3 immuniza-
tion and mortality rate of children younger than 5 years. To calculate the Spearman rank 
correlation coefficient, we will use the code in Table 12.10.

BOX 12.5 DESCRIPTION OF corr_dtp3 DATASET

The Global Health Observatory (GHO) is a repository of health-related data from over 
194 countries. The corr_dtp3 dataset contains data on childhood health for 194 countries. 
Immunization coverage (dtp3) is the percentage of children aged 1 year who have had the 
diphtheria tetanus toxoid and pertussis immunization. The mortality rate (under5_mortality) 
is the number of deaths of children who are under five years old, in the thousands.
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Spearman Correlation Coefficients, N = 194
Prob > |r| under H0: Rho = 0

DTP3 Under5_Mortality

DTP3 1.00000 –0.53684

Immunization Coverage, % <.0001

Under5_Mortality –0.53684 1.00000

Probability of Dying by Age 
5 Years, per 1000 live births

<.0001

Number of obs =     194
Spearman’s rho =      -0.5368

Test of Ho: dtp3 and under5_mortality are independent
    Prob > |t| =       0.0000

From the output, we can see that the Spearman rank correlation coefficient is −0.54. 
This implies a strong, negative correlation between DTP3 immunization coverage and 
the probability of dying by 5 years of age. The p-value is <0.0001, so we reject our null 
hypothesis and determine that DTP3 immunization coverage and the mortality rate for 
those younger than 5 years is negatively (moderate) correlated.

PRACTICE PROBLEM 12.2

For testing the significance of a correlation coefficient, what distribution does the appro-
priate test statistic follow?

PRACTICE PROBLEM 12.3

Evaluate the following scenarios and determine whether correlation would be a suitable 
procedure to analyze the data. Why or why not?

 A Researchers are interested in investigating the association between a mother’s age at 
conception (measured in years) and her infant’s birthweight (measured in ounces).

 B We are interested in determining the relationship between maternal mortality rate 
and race.

Table 12.10 Code to calculate the Spearman correlation coefficient (Example Problem 12.4)

SAS code Stata code

PROC CORR DATA = corr_dtp3;
VAR dtp3 under5_mortality;
RUN;

spearman dtp3 under5_mortality
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 C Researchers are interested in investigating the relationship between BMI and patient-
reported satisfaction with their health (measured on a five-point Likert scale).

 D The health department has compiled state-level data on cigarettes sold (measured in 
packs) and lung cancer prevalence. They would like to show that increased tobacco 
sales cause an increase in lung cancer prevalence.

PRACTICE PROBLEM 12.4 

Which correlation coefficient is very sensitive to outliers and should be used only if the 
X and Y variables of interest are normally distributed?

PRACTICE PROBLEM 12.5

We are interested in the correlation between watching TV and drinking soda or pop 
among students in grades 9 through 12. Data on nutrition, physical activity, and obe-
sity on the state level can be accessed through the Centers for Disease Control and 
Prevention using estimates obtained from the Youth Risk Behavior Surveillance 
System.8 (See Box 12.6.) Use the soda_ pa dataset for this problem.

 A Figure 12.7 are scatterplots of soda drinking versus television watching. On the 
basis of the scatterplots, what can you say about the relationship between the two 
variables? 

 B Do there appear to be any outliers?

BOX 12.6 DESCRIPTION OF soda_ pa DATASET

Data from the Youth Risk Behavior Surveillance System (YRBSS) (individual level) were 
aggregated to the state level. The soda_ pa dataset contains the percentage of students 
who drank regular soda/pop at least one time per day (dranksoda), the percentage of stu-
dents watching three or more hours of television each school day (TV_3hours), and the 
percentage of students who attended physical education classes daily in an average week 
(daily_ pe). Data on soda drinking and TV watching are available from 38 states; data on 
attending physical education classes are available from 33 states.
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 C What is the Pearson correlation coefficient for these variables? What does it tell you 
about the strength of the association? Use SAS and Stata output below.

Pearson Correlation Coefficients
Prob > |r| under H0: Rho = 0

Number of Observations

DrankSoda TV_3hours

DrankSoda 1.00000 0.63396
Students Drinking Regular Soda at <.0001
Least Once per Day, % 38 38
TV_3hours 0.63396 1.00000
Students Watching 3+ Hours of TV <.0001
per School Day, % 38 40

             | tv_3ho~s dranks~a
-------------+------------------
   tv_3hours |   1.0000 
             |
             |
   dranksoda |   0.6340   1.0000 
             |   0.0000
             |

 D To determine whether there is a significant linear relationship between the two vari-
ables, what test should we use? State the null and alternate hypotheses for this test.

 E Calculate the test by hand, then check your answer using the output in Practice 
Problem 12.5—Part (C). What is your conclusion for your test? State your p-value 
in your answer.

 F To calculate a more robust measure of association between the two variables, we 
will calculate the Spearman rank correlation coefficient. If you are using SAS, what 
option should be specified? If you are using Stata, what command should you use?

 G What is the Spearman rank correlation coefficient for these variables (see output 
below)? What does it tell you about the strength of the association?
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Spearman Correlation Coefficients
Prob > |r| under H0: Rho = 0

Number of Observations

DrankSoda TV_3hours

DrankSoda 1.00000 0.56251
Students Drinking Regular Soda at
Least Once per Day, %

.0002
38 38

TV_3hours 0.56251 1.00000
Students Watching 3+ Hours of TV
per School Day, %

.0002
38 40

Number of obs =      38
Spearman’s rho =       0.5625

Test of Ho: tv_3hours and dranksoda are independent
    Prob > |t| =       0.0002

 H Using the Spearman rank correlation coefficient, test the null hypothesis that the 
underlying population correlation is equal to 0. Calculate the test statistic by hand 
and then check against the software output in Practice Problem 12.5—Part (G).

 I How do the Pearson and Spearman correlation coefficients compare?

 J Which estimation of correlation do you think is best for these data? Why?

PRACTICE PROBLEM 12.6

Now, using the same dataset (soda_ pa) as in Practice Problem 12.5, we will investigate 
the relationship between drinking soda and participation in daily physical education. 
Data are available for 33 states. 

 A Figure 12.8 are scatterplots of the two variables. What can you say about the distri-
bution? Are there any outliers?

 B What is the Pearson correlation coefficient for these variables (see output below)? 
What does it tell you about the strength of the association?
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Pearson Correlation Coefficients
Prob > |r| under H0: Rho = 0

Number of Observations

DrankSoda TV_3hours

DrankSoda 1.00000 0.13276
Students Drinking Regular Soda at .4614
Least Once per Day, % 38 33
Daily_PE 0.13276 1.00000
Students Participating in Daily .4614
Physical Education, % 33 37

             | daily_pe dranks~a
-------------+------------------
    daily_pe |   1.0000 
             |
             |
   dranksoda |   0.1328   1.0000 
             |   0.4614
             |

 C What is the Spearman rank correlation coefficient for these variables (see output 
below)? What does it tell you about the strength of the association?

Spearman Correlation Coefficients
Prob > |r| under H0: Rho = 0

Number of Observations

DrankSoda TV_3hours

DrankSoda 1.00000 0.25995
Students Drinking Regular Soda at 
Least Once per Day, %

.1440
38 33

Daily_PE 0.25995 1.00000
Students Participating in Daily .1440
Physical Education, % 33 37

Number of obs =      33
Spearman’s rho =       0.2599

Test of Ho: daily_pe and dranksoda are independent
      Prob > |t| =       0.1440

 D How do the Pearson and Spearman correlation coefficients compare? Which is most 
appropriate for the data?

 E Conduct a test for significance using the most appropriate test for this data. What 
do you conclude?



400 Biostatistics for clinical and public health research

References

 1.  Mukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. 
Malawi Med J. 2012;24(3):69–71. doi:10.1016/j.cmpb.2016.01.020.

 2.  Fan JH, Lyons S, Goodman MS, Blanchard MS, Kaphingst KA. Relationship between health literacy 
and unintentional and intentional medication nonadherence in medically underserved patients with 
type 2 diabetes. Diabetes Educ. 2016;42(2):199–208. doi:10.1177/0145721715624969.

 3.  World Health Organization. Global Health Observatory Data Repository: Total fertility rate. http://
apps.who.int/gho/data/node.main.HE-1548?lang=en. Updated May 15, 2015. Accessed August 1, 
2016.

 4.  World Health Organization. Global Health Observatory Data Repository: Demand for family planning 
satisfied. http://apps.who.int/gho/data/view.main.94330. May 15, 2015. Accessed August 1, 2016.

 5.  National Health and Nutrition Examination Survey. Hyattsville, MD: Centers for Disease Control and 
Prevention, National Center for Health Statistics. 2014. https://wwwn.cdc.gov/Nchs/Nhanes/Search 
/nhanes13_14.aspx. Accessed August 1, 2016.

 6.  World Health Organization. Global Health Observatory Data Repository: Diptheria tetanus tox-
oid and pertussis (DTP3). http://apps.who.int/gho/data/view.main.80200. Updated July 17, 2015. 
Accessed August 1, 2016.

 7.  World Health Organization. Global Health Observatory Data Repository: Number of under-five 
deaths. http://apps.who.int/gho/data/node.main.ChildMort-1?lang=en. Updated August 27, 2015. 
Accessed August 1, 2016.

 8.  Youth Risk Behavior Surveillance System. Atlanta, GA: Centers for Disease Control and Prevention. 
2013. www.cdc.gov/yrbs. Updated August 11, 2016. Accessed August 1, 2016.

http://apps.who.int
http://apps.who.int
http://apps.who.int
https://wwwn.cdc.gov
https://wwwn.cdc.gov
http://apps.who.int
http://apps.who.int
http://www.cdc.gov


Linear regression13

This chapter will focus on investigating the change in a continuous variable in response 
to a change in one or more predictor variables and will include the following topics:

• Simple linear regression
• Regression concepts
• Methods of least squares
• Linear relationship
• Inference for predicted values
• Evaluation of the model
• Multiple linear regression
• Model evaluation
• Other explanatory variables
• Model selection

Terms

• collinearity
• indicator variable

Simple linear regression

Simple linear regression measures the association between two continuous variables.

• One variable is treated as the response (dependent or outcome) variable, commonly 
denoted as y.

• The other is the explanatory (independent or predictor) variable, commonly denoted 
as x.

The concept is similar to correlation; however, regression enables us to inves-
tigate how a change in the response variable corresponds to a given change in the 
explanatory variable. Correlation analysis makes no such distinction. It can only 
determine whether a linear relationship exists between the two variables of interest, 
and it determines the strength of that association. The objective of regression is to 
predict the value of the response variable that is associated with a fixed value of an 
explanatory variable. Linear regression is used to examine the relationship between 
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a variable (continuous, categorical, or binary) and a continuous outcome, specifi-
cally how a change in the explanatory (predictor) variable affects a change in the 
response (outcome) variable.

Regression concepts

The equation for a line is given by the formula y = a + bx.

• The y-intercept is denoted by a and is the value of y when x = 0.
• The slope of a line represents the change in y that corresponds to a one-unit change 

in x and is denoted by b.
• If the slope is positive, then y increases as x increases.
• If the slope is negative, then y decreases as x increases.

The mean of all of the values for the response (outcome or dependent) variables 
is denoted as μy (the mean of y). The standard deviation of all of the responses is 
denoted as σy (the standard deviation of y). The mean of the responses given the 
explanatory variable is μy|x (mean of y given x). σy|x = standard deviation of y given x, 
the standard deviation of the responses given the explanatory variable. The relation-
ship among the standard deviation of y given x, the standard deviation of y, and the 
Pearson correlation coefficient is known to be the following: σ ρ σy x y| ( ) .2 2 21= −  By 
definition, −1 ≤ ρ ≤ 1; therefore, σy|x ≤ σy. As such, confidence intervals for the mean 
value of y given a value of x are smaller (narrower) than the confidence intervals for 
the mean value of y.

BOX 13.1 LINEAR REGRESSION ASSUMPTIONS

In order to use the linear regression model for analysis, we make assumptions of normality, 
linearity, homoscedasticity, and independence of the underlying data. Linear regression 
is an extension of ANOVA, so it will also tolerate minor violations of these assumptions.

• Normality
• The normality assumption refers to the normal distribution of the outcomes.
• For a specific predictor value x, which is considered to be measured without 

error, the distribution of outcome values (y) is normal with mean μy|x and 
standard deviation σy|x.

• We can check this assumption by plotting the data in a histogram. 
• Linearity

• The relationship between the mean of the outcome given the predictor (μy|x) 
and the predictor (x) can be described by the straight line: μy|x = α + βx.

• The linear relationship between the two variables can be assessed visually 
by plotting a scatter graph (Chapter 1, Lab A, Chapter 12).
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Method of least squares

The true population regression line is given by Equation 13.1.

 
µ α βy x x| = +  (13.1)

Because we are interested in finding the best estimate of the population regression 
line, we estimate the coefficients (α, β) of the population regression line using a single 
sample of observations.

The least squares regression line is given by Equation 13.2. The hats on the param-

eters ( ˆ, ˆ , ˆ )y α β  denote that they are estimates of the population parameters (y, α, β).

 
ˆ ˆ ˆy x= +α β  (13.2)

We would like to be able to use the least squares regression line ( )ˆ ˆ ˆy x= +α β  to make 
inferences about the population’s regression line (μy|x = α + βx). As with any other point 

estimates, if we used a different sample, we would obtain different estimates ( , ).ˆ ˆα β

• α̂ is a point estimate of the population intercept α.
• β̂ is a point estimate of the slope β.

Residuals are the difference between the observed value pair (xi, yi) and the least squares 

regression line (Figure 13.1). They are denoted by the following: e y y y xi i i i i= − = − +ˆ ˆ ˆ( ).α β  
If ei = 0, this implies that the point (xi, yi) lies directly on the fitted line. Since it is rarely 
true that all points will lie directly on the fitted line, we choose a criterion for fitting 
a line that minimizes the residuals (makes the residuals as small as possible). We use a 
mathematical technique called the method of least squares (MLS) for fitting a straight 

line to a set of points. MLS finds the values of α̂ and β̂ that minimize the sum of the 
squared residuals. The sum of squared residuals, also called error sum of squares or residual 
sum of squares, is given by the following formula:

 
e y y y xi i i i i

2 2 2∑ ∑ ∑= − = − −( ˆ ) ( ˆ ˆ )α β  (13.3)

• Homoscedasticity
• Assumption of constant variability across all values of x.
• Analogous to the assumption of equal variances in the two-sample t-test or 

the one-way ANOVA.
• Independence

• Outcomes (y) must be independent observations.
• Check the distribution of the residuals. They should be randomly distributed.
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Linear relationship

The slope is usually the most important coefficient in the linear regression equation. It 
quantifies the average change in y that corresponds to each one-unit change in x. If β = 0, 
then μy|x = μy. This means that there is no linear relationship between y and x. We use 
a t-test to investigate whether there is a linear relationship between y and x. The null 
hypothesis is that the slope is 0.

 H0 0: β =

 H1 0: β ≠

To test the null hypothesis, we calculate a t-statistic, using Equation 13.4. The test 
statistic follows the t-distribution with n-2 degrees of freedom.

 
t

se
=

ˆ

( ˆ )

β
β

 (13.4)
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Figure 13.1  Graphical depiction of observed values, least squares regression line, and residu-
als. The open circle points represent the observed values of the data (x is DTP3 coverage 
among 1-year-olds, y is the probability of dying by age 5 years). The least squares regres-
sion line is represented by the solid line. The predicted values ( ˆ )yi  for each xi lie along 
the least squares regression line. The residuals (ˆ )ei  are the difference between the observed 
value (yi) and the predicted value ( ˆ ).yi



Linear regression 405

Where, se
S

x x

y x

i
i

n

( ˆ )

( )

β =
−

=∑
|

2

1

and S
y y

ny x

i
i

n

|

( )
=

−

−
=∑ 2

1

2

The confidence interval for β is given by Equation 13.5.

 
ˆ ( ˆ )β β± −t sen 2

  (13.5)

If we are interested in testing whether the population intercept is equal to a 
specified value, we use calculations that are analogous to those for the slope. We 
would use α̂ and se( ˆ )α  in place of β̂  and se( ˆ ).β  If the observed data points tend to 
be far from the intercept, there is very little practical value in making inferences 
about the intercept. In some instances, a value of x = 0 does not make sense. This 
makes the y-intercept uninterpretable (e.g., if x is the weight of a human). It is not 
recommended to extrapolate the fitted line beyond the range of observed values of 
x because the relationship between x and y might be quite different outside of this 
range.

Inference for predicted values

Predicting a mean outcome value

We can also use the least squares regression line to estimate the mean value of y corre-
sponding to a particular value of x. We can construct a confidence interval for that mean 
using Equation 13.6.

 
ˆ ( ˆ)y t se yn± − 2

  (13.6)

Where ŷ is the predicted mean value (i.e., fitted value) of normally distributed out-
comes and the standard error of ŷ is estimated by
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note the term ( )x x− 2  in the expression for the standard error. This quantity assumes a 
value of 0 when x x=  and grows large as x moves farther away from the mean. In other 
words, we are more confident about the mean value of the response when we are closer 
to the mean value of the explanatory variable.
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Predicting an individual outcome value

Instead of predicting the mean value of y for a given value of x, we may prefer to predict 
an individual value of y for a new member of the population not in the current sample. 
The predicted individual value is given as y and is identical to the predicted mean ˆ.y

 y x y= + =ˆ ˆ ˆα β  (13.7)

However, the standard error of y is not the same as the standard error of ˆ.y

 σ σŷ y≤


 (13.8)

When computing se y( ˆ), we are interested only in the variability of the estimated mean 
of the y-values. When considering an individual y, we have an extra source of variability 
to account for—namely, the dispersion of the y-values themselves around the mean ˆ.y
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The prediction interval (PI) for an individual outcome y is given by Equation 13.10.

 � � �y t se yn± − 2 ( )  (13.10)

The PI for y is wider than the CI for ˆ.y  This is due to the extra source of variability.

Evaluation of the model

Now that we have a least squares regression line, we evaluate the model to determine 
whether it is a good fit that is appropriate for modeling our data. There are several ways 
to do this, including quantitatively (calculating the coefficient of determination) and 
visually (examining the residual plots).

• Coefficient of determination (R2)
• The percentage of total variability that is explained by the model.
• It is the square of the Pearson correlation coefficient (see Chapter 12).
• The range is 0 ≤ R2 ≤ 1.
• If R2 = 1, all data points in the sample fall directly on the least squares regres-

sion line.
• If R2 = 0, there is no linear relationship between x and y.
• It can be thought of as the proportion of the variability among the observed 

values of y that is explained by the linear regression of y on x.
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• Residual plots
• We can create a two-way scatterplot of the residuals (ei) versus the fitted (pre-

dicted) values of the response variable ( ˆ )yi  to examine whether a model is a good 
fit for the data.

• These plots serve three purposes:
– Detect outlying observations in the sample.

– MLS can be very sensitive to outliers, especially if they correspond to 
relatively large or small values of x.

– If an outlier is the result of an error in measuring or recording a par-
ticular observation (e.g., data entry typo), removal of this point will 
improve the fit of the regression line.

– Do not throw away unusual data points that are valid—they might be 
the most interesting ones in the dataset.

– Evaluate the assumption of heteroscedasticity.
– A fan-shaped scatterplot implies that σy|x does not take the same value 

for all values of x.
– A fan shape is evidenced by the magnitudes of the residuals either 

increasing or decreasing as ŷ becomes larger.
– Evaluate the linearity assumption.

– Do the residuals exhibit a random scatter or follow a distinct trend?
– A trend suggests that the relationship between x and y might not be 

linear. A transformation of x, y, or both might be appropriate in this 
case (see Box 13.2 and Figure 13.2).

BOX 13.2 TRANSFORMATIONS— CORRECTING 
FOR NONLINEARITY

• Often, a curved linear relationship between two variables can be transformed 
into a more straightforward linear one.

• If this is possible, we can conduct a linear regression to fit a model to the trans-
formed data.

• When transforming a variable, we are simply measuring it on a different scale.
• Common transformations include ln(x), x p, or y p where p =…−3, −2, −½, ½, 

2, 3….
• The circle of powers graph provides a general guideline for choosing a 

transformation (see Figure 13.2). If the plotted data resembled the data in 
Quadrant II, an appropriate transformation would be down in x (raised to a 
power of p < 1) or up in y (raised in power to p > 1). The more curvature in 
the data, the higher (or lower) the value of p will need to be to achieve linear-
ity in the transformation.



408 Biostatistics for clinical and public health research

EXAMPLE PROBLEM 13.1

Research findings show that breastfed babies have reduced risks of diseases, infections, 
and death.1 Evidence also exists that hospital practices can make a difference in breast-
feeding rates.2 We are interested in whether state-level participation in best maternity 
care practices affects infant mortality rate. Specifically, we want to investigate whether 
the proportion of hospitals that limit the use of breastfeeding supplements (e.g., for-
mula, glucose water, or water) is related to the state-level infant mortality rate. Going 
forward, this will be referred to as Example Problem Model 1. Data come from the 2007 
Maternity Practices in Infant Nutrition and Care (mPINC) survey,3 and the infant mor-
tality statistics come from the 2010 period linked birth and infant death dataset.4 Use 
the mpinc_mortality dataset for the following problems.

BOX 13.3 STRATEGY FOR REGRESSION ANALYSIS

 1. Draw a scatterplot of the data.
 2. Fit the regression line.
 3. Check residuals.
 a. Plot residuals versus predicted values (denoted as ŷ).
 b. Check for lack of pattern.

y up

y down

x upx down

Quadrant IQuadrant II

Quadrant III Quadrant IV

Figure 13.2  Circle of powers graph. The graph provides a general guideline for choosing a transfor-
mation. If the plotted data resembled the data in Quadrant II, an appropriate transforma-
tion would be down in x (raised to a power of p < 1) or up in y (raised in power to p > 1). The 
more curvature in the data, the higher (or lower) the value of p will need to be to achieve 
linearity in the transformation.
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First, we want to visualize the data and the potential relationship between our vari-
ables of interest. To do this, we will create a scatterplot of exclusive breastfeeding versus 
the infant mortality rate per 1000 live births using the code in Table 13.1.

 A What can we say about the relationship between exclusive breastfeeding and 
the infant mortality rate? Does the relationship appear to be linear? Draw a 
line of best fit on the graph in Figure 13.3.

  The relationship between the percentage of hospitals complying with exclu-
sive breastfeeding practices and the infant mortality rate appears to be negative 
and linear (see Figure 13.4).

BOX 13.4 MATERNITY PRACTICES IN INFANT 
NUTRITION AND CARE (mPINC) SURVEY

On the mPINC survey, a hospital is indicated as complying with the exclusive breastfeed-
ing benchmark if less than 10% of healthy, full-term, breastfed infants are supplemented 
with formula, glucose water, or water. The variable exclusivebf is the proportion of all hos-
pitals in the state that comply with that standard.

A hospital is indicated as complying with the teaching benchmark if at least 90% 
of mothers who currently or intend to breastfeed are taught breastfeeding techniques. 
The variable teach is the proportion of all hospitals in the state that comply with that 
standard.

In the mPINC survey results, subscale scores were calculated for each of the seven 
domains of interest. The facility discharge care subscale score is a composite of a hospi-
tal’s assurance of ambulatory breastfeeding support (i.e., physical contact, active reaching 
out, referrals), and distribution of discharge packs that do not contain infant formula. A 
dichotomous variable (discharge) was created to indicate states with a facility discharge care 
subscale score greater than or lower than the national average of 43.33 out of 100. A value 
of 1 indicates that the state has a facility discharge care score that is greater than or equal 
to the national average. A value of 0 indicates that the state has a facility discharge care 
score that is less than the national average.

The infant mortality rate is the total number of deaths per 1000 live births 
(infant_mortality2010).

Table 13.1 Code for scatterplot (Example Problem 13.1)

Using SAS Using Stata

PROC SGPLOT DATA =
mpinc_mortality;
SCATTER Y = infant_mortality2010
X = exclusivebf;
RUN;

scatter infant_mortality2010
exclusivebf
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  To be more precise, we will use computer software to calculate the least 
squares regression line (Table 13.2). Our response variable is infant mortality 
rate (infant_mortality2010), and our explanatory variable is exclusive breastfeed-
ing (exclusivebf ).

 B What is the least squares estimate of the true population intercept ( )?α̂  
Interpret this value in words.

  The least squares estimate of the true population intercept is 8.48 infant 
deaths per 1000 live births. This means that the estimated infant mortality rate 
is 8.48 when exclusive breastfeeding is 0 (zero percent of hospitals in a state meet 
the benchmark for exclusive breastfeeding).

Parameter Estimates

Variable Label DF Parameter 
Estimate

Standard 
Error

t 
Value

Pr > |t|

Intercept Intercept 1 8.48020 0.76212 11.13 <.0001

ExclusiveBF Proportion of hospitals meeting 
exclusive breastfeeding 
benchmark

1 −0.03602 0.01370 −2.63 0.0114

  In SAS, this value is found in the Parameter Estimates table. It is denoted as 
the “parameter estimate” for the intercept ( ˆ . ).α = 8 48020

------------------------------------------------------------------------------
infant_~2010 |     Coef.   Std. Err.     t    P>|t|     [95% Conf. Interval]
-------------+--------------------------------------------------------------
 exclusivebf | –.0360227   .0137039  –2.63    0.011     –.0635618  –.0084836
       _cons |  8.480204   .7621157  11.13    0.000      6.948675  10.01173
------------------------------------------------------------------------------

Table 13.2 Code for simple linear regression (Example Problem 13.1)

Using SAS Using Stata

In SAS, we use PROC REG. The response variable 
goes in the MODEL statement, on the left side of 
the “=” sign. The explanatory variable also goes in 
the MODEL statement, but after the “=” sign.

PROC REG is a procedure that allows for RUN-
group processing (i.e., you can run another model 
without issuing another PROC REG). To prevent 
your computer from continuing to run, add a QUIT 
statement to end PROC REG.

PROC REG DATA = mpinc_mortality;
MODEL infant_mortality2010 = 
exclusivebf;
RUN; QUIT;

In Stata, we use the REGRESS command. 
In this command, the response variable comes 
first, followed by the explanatory variable.

regress infant_mortality2010
exclusivebf
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  In Stata, the estimated value of the intercept is found in the bottom portion 
of the output. It is denoted as the “coef.” for _cons ( ˆ . ).α = 8 480204

 C What is the least squares estimate of the true population slope ( )?β̂β  Interpret 
this value in words.

  The least squares estimate of the true population slope is −0.036. This 
means that for every unit increase in exclusive breastfeeding (1%), the infant 
mortality rate decreases by 0.036.

  In the SAS output in the response to Example Problem 13.1—Part (B), 
this value is also found in the Parameter Estimates table. It is denoted as the 

“parameter estimate” for exclusiveBF ( ˆ . ).β = −0 03602  It is located below the 
least squares estimate of the true population intercept ( ˆ ).α

  In the Stata output in the response to Example Problem 13.1—Part (B), 
this value is also found in the bottom portion of the output box. It is denoted as 

the “coef.” for exclusivebf ( ˆ . ).β = −0 0360227  It is located above the least squares 
estimate of the true population intercept ( ˆ ).α

  To test whether there is a significant linear relationship between infant mor-
tality rate and the proportion of hospitals meeting the exclusive breastfeeding 
benchmark, we test to see whether the estimate of the slope is equal to 0.

 H0 0: β =

 H1 0: β ≠

 D Calculate the test statistic by hand, and compare to the SAS or Stata output.

  To calculate the test statistic, we use Equation 13.4.

 
t

se
= = − = −

ˆ

( ˆ )

.

.
.

β
β

0 036

0 0137
2 63

  Our test statistic follows the t-distribution with n – 2 degrees of freedom. In 
this case, n = 51, so we have 49 degrees of freedom.

 t t= − ∼2 63 49.

  Our test statistic is the same as the t-value in the SAS and Stata output. The 
test statistic can be found as the “t value” for exclusivebf in the SAS output in the 
response to Example Problem 13.1—Part (B). It can be found as “t” for exclusivebf 
in the Stata output in the response to Example Problem 13.1—Part (B).

  After we have calculated our test statistic, we calculate a p-value and draw a 
conclusion about the linear relationship between the two variables.
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 E Find the p-value, and compare it to the SAS or Stata output. Draw a conclu-
sion from your test.

  From the t-distribution table in Appendix Table A.4, we can see that 0.01 < 
p < 0.005. Therefore, we reject the null hypothesis that the slope is equal to 0 
and conclude that there is a significant linear relationship. As the proportion of 
hospitals with exclusive breastfeeding practices increases, the rate of infant mor-
tality decreases.

  In SAS, the p-value for the slope is 0.0114. This can be found as the “Pr > 
|t|” value of exclusiveBF. In Stata, the p-value for the slope is 0.011. This can be 
found as the “P > |t|” value of exclusivebf.

  The p-values given by both SAS and Stata fall within our calculated range of 
0.01 < p < 0.005.

 F Calculate a 95% confidence interval for the slope of the true population 
regression line. How does it compare to the result of the hypothesis test?

  Recall that t ~ tn−2 = t51–2 = t49, which we will estimate by t40 (remember to 
always round down degrees of freedom). A 95% confidence interval for the slope 
is calculated using Equation 13.5.

 
ˆ ( ˆ )β β± t se40



 − ± ×0 036 2 021 0 0137. . .

 − ±0 036 0 0277. .

 95 0 064 0 008% : ( . , . )CI − −

  We are 95% confident that the interval (–0.064, –0.008) covers the slope of 
the true population regression line.

  Because the confidence interval does not contain 0, it is consistent with our 
decision to reject the null hypothesis based on the p-value in Example Problem 
13.1—Part E.

  Now that we have a fitted regression line, we can recreate the scatterplot 
(Figure 13.3) and include the fitted regression line. First, we need to calculate 
the predicted outcome value (infant mortality) for each observation based on the 
regression equation. See Table 13.3, for sample code.

  We then overlay the linear regression line on top of the original scatterplot. 
See Table 13.4 provides SAS and Stata code and Figure 13.5  shows the resulting 
graphs.
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Table 13.3 Code for calculating predicted values (Example Problem 13.1)

Using SAS Using Stata

In SAS, we request an output dataset within our 
PROC REG that includes the predicted values. Use 
the keyword PREDICTED to request the predicted 
outcome value, and give it an appropriate name, such 
as yhat.

PROC REG DATA = mpinc_mortality;
MODEL infant_mortality2010 = 
exclusivebf;
OUTPUT OUT=pred_data PREDICTED = 
yhat;
RUN; QUIT;

In Stata, the PREDICT command requests 
the predicted outcome value. It is stored as 
a new variable that we give an appropriate 
name, such as yhat. This command must 
follow our previous REGRESS command 
(Table 13.2).

predict yhat

Table 13.4 Code for scatterplot with regression line (Example Problem 13.1 and Figure 3.5)

Using SAS Using Stata

Make sure to use the dataset that was output from 
the PROC REG in Table 13.3. Graphs can be 
overlaid by adding multiple statements to PROC 
SGPLOT. In this instance, we will have a 
SCATTER statement (between the observed 
infant mortality rate and the observed exclusive 
breastfeeding variable) and a SERIES statement 
(between the predicted yhat and the observed 
exclusive breastfeeding variable).

PROC SGPLOT DATA = pred_data;
SCATTER Y = infant_mortality2010 
X = exclusivebf;
SERIES Y = yhat X = exclusivebf;
RUN;

Alternatively, we can use the original dataset and 
use a REGRESSION statement in PROC 
SGPLOT to get the overlaid regression line. In 
this case, the Y variable will be our original 
infant mortality rate variable 
(infant_mortality2010).

PROC SGPLOT DATA =
mpinc_mortality;
SCATTER Y = infant_mortality2010 
X = exclusivebf;
REGRESSION Y = infant_
mortality2010 X = exclusivebf;
RUN;

Use the TWOWAY command to overlay our 
SCATTER and LINE graphs. The SCATTER 
graph is between our observed response variable 
(infant mortality rates) and our observed 
explanatory variable (exclusive breastfeeding). The 
LINE graph uses the predicted value (yhat) as the 
response variable and the observed explanatory 
variable (exclusive breastfeeding).

graph twoway (scatter
infant_mortality2010 exclusivebf)
(line yhat exclusivebf)
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 G What is the predicted mean mortality rate ( ˆ)y  for states where 72% of hospitals 
meet the exclusive breastfeeding benchmark?

  To find the predicted mean mortality rate, we will use Equation 13.2. We 
plug in 72% as our x value and use the least squares estimates of the true popula-
tion intercept and slope that we calculated in Parts B and C of Example Problem 
13.1.

 
ˆ ˆ ˆy exclusive breastfeeding= + ×α β

 
ˆ . .y = − ×8 48 0 036 72

 
ˆ .y = 5 888

  The mean infant mortality rate is 5.9 deaths per 1000 live births for states 
where 72% of hospitals meet the exclusive breastfeeding benchmark.

 H Suppose that you want to predict the infant mortality rate ( )y  for a state 
that has 72% of its hospitals in compliance with the exclusive breastfeeding 
benchmark. What value would you predict?

  The prediction for an individual value ( )y  is the same as the prediction for 
the mean value ( ˆ).y  As in Example Problem 13.1—Part G, the infant mortality 
rate would be 5.9 per 1000 live births for a state with 72% of hospitals meeting 
the breastfeeding benchmark.

 y y exclusive breastfeeding= = + × =ˆ ˆ ˆ .α β 5 888

  The difference between ŷ and y becomes apparent when we plot the confi-
dence intervals for both values (Table 13.5; Figure 13.6).

 I How do the two types of confidence intervals compare?

  The prediction interval is wider than the confidence interval.
  Now that we have a model of our data, we want to see how well our least squares 

regression line fits our data. We do this using the coefficient of determination.

 J What is the coefficient of determination, and how does it indicate the ade-
quacy of this model (Example Problem Model 1) in fitting the data?

  The coefficient of determination is the percentage of total variability 
explained by the model. It can be found as “R-Square” in the SAS output box 
and as “R-squared” in the Stata output box.

 R2 0 12= .
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  This means that 12% of the variability among the observed values of infant 
mortality is explained by the linear relationship between infant mortality and 
proportion of hospitals meeting the exclusive breastfeeding benchmark. The 
remaining 88% of the variability is not explained by this relationship.

Root MSE 1.21987 R-Square 0.1236

Dependent Mean 6.52784 Adj R-Sq 0.1057

Coeff Var 18.68713

  Source |       SS           df       MS      Number of obs   =        51

---------+----------------------------------   F(1, 49)        =      6.91

   Model |  10.2822261         1  10.2822261   Prob > F        =    0.0114

Residual |  72.9156366        49  1.48807422   R-squared       =    0.1236

---------+----------------------------------   Adj R-squared   =    0.1057

   Total |  83.1978627        50  1.66395725   Root MSE        =    1.2199

  Another way to consider the fit of the model is to produce a plot of the 
residuals versus the fitted (or predicted) values. SAS displays this plot as the first 
graph in the Fit Diagnostics panel, which is a default output for output that is 
being written to an HTML file (ods html;). In Stata, use the command rvfplot to 
obtain the desired plot (Figure 13.7).

Table 13.5 Code for scatterplot with confidence and prediction limits (Example Problem 13.1)

Using SAS Using Stata

We can request the upper and lower bounds of the 
confidence intervals for ŷ (CLM) and for y (CLI) to 
be drawn on the scatterplot. The REG statement 
of PROC SGPLOT plots the regression line of our 
Y and X variables. We can, then, request the CLI 
and CLM options to display the confidence 
intervals around ŷ and y. This plot (called a Fit 
Plot in the SAS output) is also part of the default 
output in PROC REG.

PROC SGPLOT DATA =
mpinc_mortality;
SCATTER Y = infant_mortality2010 
X = exclusivebf;
REG Y = infant_mortality2010 X = 
exclusivebf / CLI CLM;
RUN;

Or

PROC REG DATA = mpinc_mortality;
MODEL infant_mortality2010 = 
exclusivebf;
RUN; QUIT;

We use the GRAPH TWOWAY command to 
overlay multiple plots. The LFITCI command 
allows us to plot the confidence limits for ˆ.y  
The CIPLOT(RLINE) allows us to designate the 
confidence limits as lines instead of being shaded. 
The second LFITCI command specifies the STDF 
option, which will create the confidence interval 
around y.

graph twoway (scatter
infant_mortality2010 exclusivebf)
(lfitci infant_mortality2010
exclusivebf, ciplot(rline))
(lfitci infant_mortality2010
exclusivebf, stdf ciplot(rline))

Abbreviations: CLI, confidence interval; CLM, confidence limit.
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ŷ  
an

d
  y

 f
ro

m
 E

xa
m

p
le

 P
ro

b
le

m
 1

3.
1,

 u
si

n
g 

St
at

a.
 T

he
 c

on
fid

en
ce

 i
nt

er
va

l 
co

rr
es

po
nd

s 
to

 t
he

 m
ea

n 
ou

tc
om

e 
va

lu
e 

(ˆ
)y
 a

nd
 is

 r
ep

re
se

nt
ed

 b
y 

th
e—

cu
rv

ed
 li

ne
s 

ar
ou

nd
 t

he
 fi

tt
ed

 v
al

ue
s 

(r
eg

re
ss

io
n)

 li
ne

. T
he

 p
re

di
ct

io
n 

in
te

rv
al

 
co

rr
es

po
nd

s 
to

 t
he

 p
re

di
ct

ed
 in

di
vi

du
al

 o
ut

co
m

e 
va

lu
e 

(
).

y

 I
t 

is
 r

ep
re

se
nt

ed
 b

y 
th

e 
sh

or
t 

da
sh

 li
ne

s.



420 Biostatistics for clinical and public health research

4 2 0 –2Residual

4 2 0 –2

–2
–1

Residual

5.
5

6.
0

6.
5

7.
0

7.
5

Pr
ed

ic
te

d 
va

lu
e

5.
5

6.
0

6.
5

7.
0

7.
5

Pr
ed

ic
te

d 
va

lu
e

4 3 2 1 0 –1 –2RStudent

4 3 2 1 0 –1 –2RStudent

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Le
ve

ra
ge

Fi
t d

ia
gn

os
tic

s 
fo

r i
nf

an
t_

m
or

ta
lit

y2
01

0

0
1

2
Q

ua
nt

ile

10 9 8 7 6 5 4

Observed

4
5

6
7

8
9

10
Pr

ed
ic

te
d 

va
lu

e

0.
4

0.
3

0.
2

0.
1

0.
0

Cook’s D
0

10
20

30
40

50
O

b
se

rv
at

io
n

30 20 10 0

Percent

–4
–2

0
2

4
Re

si
du

al
(a

)

Fi
t–

m
ea

n
Re

si
du

al
4 2 0 –2

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

Pr
op

or
tio

n 
le

ss

O
b

se
rv

at
io

ns
Pa

ra
m

et
er

s
Er

ro
r D

F
M

SE
R-

sq
ua

re
A

dj
. R

-s
qu

ar
e

51 2 49
1.

48
81

0.
12

36
0.

10
57

 

4 2 0 –2Residuals
5.

5
6

(b
)

6.
5

7
7.

5
Fi

tt
ed

 v
al

ue
s

F
ig

ur
e 1

3.
7 

 (a
) R

es
id

u
al

 p
lo

t f
or

 E
xa

m
p

le
 1

3.
1,

 u
si

n
g 

SA
S.

 T
he

 re
si

du
al

 p
lo

t o
f i

nt
er

es
t i

s t
he

 to
p,

 le
ft

 g
ra

ph
 in

 th
e 

de
fa

ul
t o

ut
pu

t o
f P

R
O

C
 R

E
G

. (
b

) R
es

id
u

al
 

p
lo

t 
fo

r 
E

xa
m

p
le

 1
3.

1,
 u

si
n

g 
St

at
a.

 T
hi

s 
pl

ot
 s

ho
w

s 
th

e 
di

st
ri

bu
ti

on
 o

f 
th

e 
re

si
du

al
s 

ve
rs

us
 t

he
 fi

tt
ed

 (
or

 p
re

di
ct

ed
) 

va
lu

es
. I

n 
or

de
r 

to
 m

ee
t 

th
e 

as
su

m
pt

io
ns

 o
f h

om
os

ce
da

st
ic

it
y 

or
 li

ne
ar

it
y,

 t
he

 g
ra

ph
 s

ho
ul

d 
be

 r
an

do
m

 s
ca

tt
er

, w
it

h 
no

 o
bv

io
us

 p
at

te
rn

.



Linear regression 421

 K What does the plot suggest about whether the assumptions of simple linear 
regression are met?

  There is no obvious pattern. There is no evidence that the assumptions of 
homoscedasticity or linearity have been violated.

PRACTICE PROBLEM 13.1

Safe and high-quality playgrounds are an important component in the promotion of 
youth physical activity.5 Public playgrounds in St. Louis, Missouri were assessed for 
safety, access, quality, and usability, and summary scores were calculated. These scores 
were summarized at the neighborhood level. We are interested in the relationship 
between a neighborhood’s overall playground safety score and the percentage of owner-
occupied housing in that neighborhood. Going forward, this model will be referred to as 
Practice Problem Model 1. Use the pastl_score dataset to answer the following problems.

 A Create a scatterplot comparing the overall playground safety score and the percentage of 
owner-occupied housing. What can you say about the relationship based on this plot?

 B What is the least squares estimate of the true population intercept ( ˆ )?α  Interpret 
this value in words. Is it meaningful?

 C What is the least squares estimate of the true population slope ( ˆ )?β  Interpret this 
value in words.

BOX 13.5 PLAY ACROSS ST. LOUIS DATA

Each neighborhood was assigned an overall playground safety score (noscore) equal to the 
score of its playground. If there was more than one playground in a neighborhood, the 
overall playground safety score was made up of the average of the playground scores for 
that neighborhood. If the neighborhood did not have a playground, the scores from the 
nearest playground were used. The overall playground safety score was measured as the 
proportion of safety standards that were met.

The percentage of owner-occupied housing ( perownerocc), the percentage of vacant buildings 
( pervacant), and the percentage of the population that is under 18 ( peryouth) were measured at 
the neighborhood level as well. These data estimates were taken from the 2010 Census.

The north variable is an indicator that describes whether the neighborhood is geograph-
ically north (value of 1) or south (value of 0) of Delmar Boulevard.

Note: Estimates in the journal article account for the multilevel nature of the data, which 
we will not take into account here, as they are beyond the scope of this book. Therefore, the 
estimate obtained in this problem will be different from what was published.5



422 Biostatistics for clinical and public health research

 D Test to see whether there is a significant linear relationship between percentage of 
owner-occupied housing and overall neighborhood playground score. Be sure to 
state the null and alternate hypotheses, the value and distribution of the test statis-
tic, and p-value. What do you conclude?

 E What is the 95% confidence interval for the population slope? How does this 
compare to your conclusion from the statistical test in Practice Problem 13.1—
Part D?

 F What is the predicted mean overall playground score for a neighborhood where 
50% of houses are owner occupied?

 G Suppose that you want to predict a new overall playground score for a neighborhood 
with 82% owner-occupied housing. What value would you predict?

 H What is the coefficient of determination for this model (Practice Problem Model 1), 
and what does it say about the model fit?

PRACTICE PROBLEM 13.2

Using the same data from Practice Problem 13.1, we consider whether another 
neighborhood- level factor, the percentage of vacant buildings, could influence play-
ground scores. This model will be referred to as Practice Problem Model 2. Continue 
using the pastl_score dataset to answer the following problems.

 A Create a scatterplot comparing the percentage of vacant buildings and the overall 
playground safety score. What can you say about the relationship based on this 
plot?

 B What is the least squares estimate of the true population intercept ( ˆ )?α  Interpret 
this value in words. Is it meaningful?

 C What is the least squares estimate of the true population slope ( ˆ )?β  Interpret this 
value in words.

 D Test to see whether there is a significant linear relationship between percentage of 
vacant buildings and overall neighborhood playground score. Be sure to state the 
null and alternative hypotheses, the value and distribution of the test statistic, and 
p-value. What do you conclude?
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 E What is the 95% confidence interval for the slope of the true population slope? How 
does this compare to your conclusion from the statistical test in Practice Problem 
13.1—Part D (Practice Problem Model 2)?

 F What is the predicted mean overall playground score for a neighborhood where 
50% of the buildings are vacant?

 G Suppose that you want to predict an overall playground score for a new neighbor-
hood with 12% vacant buildings. What value would you predict?

 H What is the coefficient of determination for this model (Practice Problem Model 2), 
and what does it say about the model fit?

Multiple linear regression

Multiple linear regression involves more than one explanatory variable. Again, we are esti-
mating the population regression line using MLS. We can expand the simple linear regres-
sion equation (Equation 13.1) to account for multiple explanatory variables:

 
µ α β β βy x q qx x x| = + + + … +1 1 2 2

The slope βi is the change in the mean of y that corresponds to a one-unit increase in 
xi, given that all other explanatory variables remain constant. For hypothesis testing, the 
t-test is based on n-q-1 degrees of freedom.

• n is the number of observations.
• q is the number of explanatory variables.

In multiple linear regression, multiple tests are necessary. We are testing whether the 
slope of each explanatory variable is equal to 0, while holding the rest of the factors (vari-
ables) constant. Multiple tests are not independent, so the overall P(Type I error) > α, 
if they are all evaluated at the same α.

Model evaluation

When evaluating the model, the coefficient of determination (R2) is not useful because 
R2 will always increase as the number of explanatory variables increases.

• Using adjusted R2:
• Adjusted R2 increases when the inclusion of a variable improves our ability to 

predict the response and decreases when it does not.
• Adjusted R2 allows for more valid comparisons between models that contain 

different numbers of explanatory variables.
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• Adjusted R2 is an estimator of the population correlation.
• However, because of the adjustment, it cannot be directly interpreted as the 

proportion of the variability among the observed values of y that is explained 
by the linear regression model.

• Residual plots:
• These are the same as the ones produced for simple linear regression.

EXAMPLE PROBLEM 13.2

Recall that in Example Problem 13.1 we were interested in how hospital-level factors 
might influence a state’s infant mortality rate.3,4 We concluded that having a high pro-
portion of hospitals adhering to an exclusive breastfeeding standard was related to a 
lower infant mortality rate.

We now wish to investigate whether the proportion of hospitals that teach breast-
feeding techniques affects the infant mortality rate. Given that we have already 
accounted for the proportion of hospitals that comply with the exclusive breastfeed-
ing benchmark (denoted as x1), does the inclusion of the proportion of hospitals 
that teach breastfeeding techniques (denoted as x2) in the regression model further 
improve our ability to predict infant mortality? This updated model will be referred 
to as Example Problem Model 2. Use the mpinc_mortality dataset for the following 
problems.

The population regression model is denoted as the following:

 
µ α β βy x x x| = + +1 1 2 2

 
µ α β βy x exclusive breastfeeding teach techni| = + × + ×1 2 qques

To fit Example Problem Model 2 using code (Table 13.6), we simply add the teaching 
techniques variable (teach) to our model and code from Example Problem 13.1 (Table 
13.2).

Parameter Estimates

Variable Label DF Parameter 
Estimate

Standard 
Error

t 
Value

Pr > |t|

Intercept Intercept 1 8.00811 0.87773 9.12 <.0001

ExclusiveBF Proportion of hospitals 
meeting exclusive 
breastfeeding benchmark

1 –0.05086 0.01940 –2.62 0.0117

Teach Proportion of hospitals 
teaching breastfeeding 
techniques

1 0.02072 0.01921 1.08 0.2861



Linear regression 425

------------------------------------------------------------------------------

infant_~2010 |     Coef.  Std. Err.      t    P>|t|     [95% Conf. Interval]

--------------+----------------------------------------------------------------

 exclusivebf | –.0508596  .0193993    –2.62   0.012    –.0898646   –.0118547

       teach |  .0207213  .0192083     1.08   0.286    –.0178996    .0593422

       _cons |  8.008106  .8777265     9.12   0.000     6.243318    9.772893

------------------------------------------------------------------------------

 A What is the equation of the estimated line?

 
ˆ ˆy x x= + +α β β1 1 2 2

 

 infant mortality exclusive breastfeedi = − ×8 01 0 05. . nng teach+ ×0 02.

  We now test the null hypotheses that the slopes associated with exclusive 
breastfeeding and teaching techniques are equal to 0. Because there are two 
parameters, this requires two separate tests.

  Our test statistics follow the t-distribution with n-q-1 degrees of freedom. In 
this sample, n = 51, and q = 2, so we have 48 degrees of freedom.

 B What is the conclusion for each of these tests?

  For exclusive breastfeeding, we test the following hypothesis:

 H0 1 0: β =

 H1 1 0: β ≠

  To calculate the test statistic, we use Equation 13.4.

 
t

se
=

ˆ

( ˆ )

β
β
1

1


 
t = −0 051

0 0194

.

.

 t t= − ∼2 63 48.

Table 13.6 Code for multiple linear regression (Example Problem 13.2)

Using SAS Using Stata

PROC REG DATA = mpinc_mortality;
MODEL infant_mortality2010 = 
exclusivebf teach;
RUN; QUIT;

regress infant_mortality2010 
exclusivebf teach
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  From the t-distribution table in Appendix Table A.4, we can see that 0.01 < 
p < 0.005. In SAS, the p-value for the slope is 0.0117, and, in Stata, the p-value 
is 0.012. Therefore, we reject the null hypothesis that the slope is equal to 0 
and conclude that there is a significant linear relationship. As the proportion of 
hospitals with exclusive breastfeeding practices increases, the rate of infant mor-
tality decreases.

  We now perform a second hypothesis test. For the teaching techniques 
benchmark, we test the following hypothesis:

 H0 2 0: β =

 H1 2 0: β ≠

 
t

se
=

ˆ

( ˆ )

β
β
2

2


 
t = 0 021

0 0192

.

.

 t t= ∼1 09 48.

  From the t-distribution table in Table A.4 of the Appendix, we can see that 
p > 0.1. The p-value for the slope is 0.286 (for both SAS and Stata). Therefore, 
we fail to reject the null hypothesis that the slope is equal to 0 and conclude that 
there is not a significant linear relationship.

 C Recall that in Example Problem 13.1 Model 1 (Example Problem Model 1), 
exclusive breastfeeding alone accounted for 12% of the variability in the 
model. What percentage of variability do exclusive breastfeeding and teach-
ing techniques together (Example Problem Model 2) explain?

Root MSE 1.21783 R-Square 0.1443

Dependent Mean 6.52784 Adj R-Sq 0.1087

Coeff Var 18.65598

    Source |       SS           df       MS      Number of obs   =        51

-----------+----------------------------------   F(2, 48)        =      4.05

     Model |  12.0081905         2  6.00409524   Prob > F        =    0.0237

  Residual |  71.1896723        48  1.48311817   R-squared       =    0.1443

-----------+----------------------------------   Adj R-squared   =    0.1087

     Total |  83.1978627        50  1.66395725   Root MSE        =    1.2178
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  The R2 for Example Problem Model 2 is 0.1443, according to SAS and 
Stata. This means that 14.43% of the variability among the observed values 
of infant mortality is explained by the linear relationship between infant mor-
tality and the proportion of hospitals meeting the benchmarks for exclusive 
breastfeeding and teaching techniques. The remaining 85.6% is not explained 
by this relationship.

  We can see that the R2 for Example Problem Model 2 is larger than 
the R2 for Example Problem Model 1, but does this have meaning? Is R2 
the most  appropriate measure for models with more than one explanatory 
variable?

  No, this is not the most appropriate measure because the R2 always increases 
with the addition of more variables. We should use the adjusted R2 when com-
paring the models.

 D Find the adjusted R2 for Example Problem Model 1 (exclusive breastfeeding 
practices only) and Example Problem Model 2 (exclusive breastfeeding prac-
tices and teaching techniques). How does this change in value indicate whether 
the addition of the teaching techniques variable improves our ability to predict 
infant mortality rates?

  The adjusted R2 for Example Problem Model 1 is 0.1057.
  The adjusted R2 for Example Problem Model 2 is 0.1087.
  These values can be found below the R-Square value in the SAS output 

box and below the R-Squared value in the Stata output box. In SAS, it is the 
“Adj R-Sq” value, and in Stata, it is the “Adj R-Squared” value.

  Since the adjusted R2 for Example Problem Model 2 is larger than the 
adjusted R2 for Example Problem Model 1, our ability to predict infant mor-
tality marginally improves (given the small increase) with the addition of the 
teaching techniques variable.

 E Would you leave teaching techniques in a final model to predict infant mor-
tality rates? Why or why not?

  Because we failed to reject H0: β2 = 0 and because the adjusted R2 only mar-
ginally improved from Example Problem Model 1 to Example Problem Model 2, 
we would not leave teaching techniques in a final model to predict infant mor-
tality rates.

PRACTICE PROBLEM 13.3

In Practice Problem 13.1, we used the percentage of owner-occupied houses in a neigh-
borhood to predict the overall playground score. We now wish to determine whether the 
addition of the percentage of youth in a neighborhood improves our ability to predict 
playground scores. This model will be referred to as Practice Problem Model 3. Use the 
pastl_score dataset to answer the following problems.
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 A What is the equation of the estimated line?

 B At the α = 0.05 significance level, test the null hypothesis that the slope associ-
ated with the percentage of owner-occupied housing and the percentage of youth is 
equal to 0. Note: These are two separate tests.

 C Recall that in Practice Problem 13.1—Part (H) (Practice Problem Model 1) we 
calculated the amount of variability in the model that was attributed to the explan-
atory variable for percentage of owner-occupied housing. What percentage of vari-
ability do percentage of owner-occupied housing and percentage of youth together 
(Practice Problem Model 3) explain?

 D What would you use to compare this model to Practice Problem Model 1? Compare 
the values for both models.

 E Would you leave percentage of youth in a final model to predict neighborhood 
playground scores? Why or why not?

Other explanatory variables

Indicator variables

So far, our predictor variables have been continuous, but regression analysis can be gen-
eralized to incorporate discrete or nominal explanatory variables as well. One example 
is the indicator variable.

Indicator Variable (Dummy Variable): A dichotomous (0,1) variable with values that 
do not have any quantitative meaning.

A regression model with one continuous explanatory variable and one dichotomous 
explanatory variable can be thought of as two different models.

• Each model corresponds to a different level of the two possible values for the dichot-
omous variable.

• The intercepts of each model’s regression line will be different, but both models’ 
regression lines will have the same slope.

Categorical variables

The concept of dichotomous variables can be extended to include categorical variables. 
For each categorical variable with m levels, create m – 1 indicator variables, and enter 
them all into the model.
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• Each level will be represented by the set of indicator variables.
• The mth level will be represented when all the m – 1 indicators are set to 0. This 

representation is the reference level for the categorical variable.

Interaction terms

In some situations, one explanatory variable has a different effect on the predicted 
response y, depending on the value of a second explanatory variable; this is referred to as 
moderation or effect modification. To model this relationship, we create an interaction 
term.

Interaction Term: A variable generated by multiplying together the values of two vari-
ables xi and xj to create a third variable, xi xj.

Do this in a DATA step in SAS, or use the generate command in Stata to create the 
new variable. When entering an interaction term (xi xj) into the model, the main effects 
(xi and xj) must remain in the model.

BOX 13.6 TRANSFORMING A CATEGORICAL 
VARIABLE INTO INDICATOR VARIABLES

If we have a categorical variable with five levels indicating race ethnicity (non-Hispanic 
White, non-Hispanic Black, Asian, Hispanic, and other), we would create four indica-
tor variables (non-Hispanic Black, Asian, Hispanic, and other). This would leave non- 
Hispanic White as our reference level. Table 13.7 displays the transformation from a 
five-level categorical variable to a series of four indicator variables. Notice that non-
Hispanic Whites receive a value of 0 for each of the indicators. Those who are non-
Hispanic Black receive a value of 1 for the non-Hispanic Black indicator and a 0 for the 
Asian, Hispanic, and other indicators. All four indicator variables will be entered into 
the model as predictors.

Table 13.7 Transformation of a categorical variable into indicator variables

Categorical variable Indicator variable

Non-Hispanic Black Asian Hispanic Other

Non-Hispanic White 0 0 0 0

Non-Hispanic Black 1 0 0 0

Asian 0 1 0 0

Hispanic 0 0 1 0

Other 0 0 0 1
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EXAMPLE PROBLEM 13.3

Recall the model that we established in Example Problem 13.2, using the mpinc_mortal-
ity dataset.3,4 We concluded that having a high proportion of hospitals adhering to an 
exclusive breastfeeding standard was related to a lower infant mortality rate but that 
the addition of the proportion of hospitals that teach breastfeeding techniques did not 
improve the model. Another hospital factor that might influence infant mortality rates 
is the overall facility discharge score and whether that score is above the national average 
(denoted as x3). This model will be referred to as Example Problem Model 3.

To fit Example Problem Model 3 using code (Table 13.8), we add the discharge vari-
able to our model that only contains the exclusive breastfeeding variable (Example Problem 
Model 1).

Parameter Estimates

Variable Label DF Parameter 
Estimate

Standard 
Error

t 
Value

Pr > |t|

Intercept Intercept 1 8.25254 0.69826 11.82 <.0001

ExclusiveBF Proportion of hospitals meeting 
exclusive breastfeeding benchmark

1 –0.02486 0.01294 –1.92 0.0607

Discharge Above national facility discharge 
care score average

1 –1.13215 0.34221 –3.31 0.0018

------------------------------------------------------------------------------
infant_~2010 |     Coef.   Std. Err.      t   P>|t|     [95% Conf. Interval]
--------------+----------------------------------------------------------------
 exclusivebf | –.0248591  .0129422    –1.92   0.061    –.0508811    .0011629
   discharge | –1.132148  .3422121    –3.31   0.002    –1.820212   –.4440843
       _cons |   8.25254  .6982564    11.82   0.000     6.848601    9.656478
------------------------------------------------------------------------------

 A What is the equation of the estimated line?

 
ˆ ˆy x x= − +α β β1 1 3 3

 

 infant mortality exclusive breastfeedi = − ×8 25 0 02. . nng discharge− ×1 13.

Table 13.8 Code for multiple linear regression with indicator variable (Example Problem 13.3)

Using SAS Using Stata

PROC REG DATA = mpinc_mortality;
MODEL infant_mortality2010 = 
exclusivebf discharge;
RUN; QUIT;

regress infant_mortality2010 
exclusivebf discharge
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 B Interpret the estimated coefficients for exclusive breastfeeding and for the 
facility discharge score in words.

  Within each level of discharge, the mean infant mortality rate decreases by 
0.02 for each percentage point increase in the proportion of hospitals meeting 
the exclusive breastfeeding benchmark.

  States with a facility discharge score that is lower than the national average 
have a mean infant mortality rate that is 1.13 infant deaths per 1000 live births 
higher than for states with a score greater or equal to the national average, when 
the proportion of hospitals meeting the exclusive breastfeeding benchmark is the 
same.

  We now test the null hypothesis that the slope associated with facility dis-
charge care is equal to 0.

  Our test statistic follows the t-distribution with n-q-1 degrees of freedom. In 
this case, n = 51 and q = 2, so we have 48 degrees of freedom.

 C What is the conclusion for this test?

  For facility discharge care, we test the following hypothesis:

 
H0 3 0: β =

 H1 3 0: β ≠

  Using the test statistic,

 

t
se

=
ˆ

( )

β

β
3

3
� �

 
t = −1 132

0 3422

.

.

 t t= − ∼3 31 48.

  Using statistical software (SAS or Stata), we see that the test statistic is 
−3.31. In SAS, the p-value for the slope is 0.0018. In Stata, the p-value for the 
slope is 0.002. Therefore, we reject the null hypothesis that the slope is equal to 
0 and conclude that there is a significant linear relationship. We conclude that 
states with a facility discharge score that is lower than the national average have 
a higher mean infant mortality rate than states that are at or above the national 
average.

 D How has Example Problem Model 1 (Example Problem 13.1) changed by 
adding the indicator for facility discharge score?
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 In order to compare the two models, we use the adjusted R2 value.

Root MSE 1.11221 R-Square 0.2863

Dependent Mean 6.52784 Adj R-Sq 0.2566

Coeff Var 17.03794

    Source |       SS           df       MS      Number of obs   =        51
-----------+----------------------------------   F(2, 48)        =      9.63
     Model |  23.8213086         2  11.9106543   Prob > F        =    0.0003
  Residual |  59.3765541        48  1.23701154   R-squared       =    0.2863
-----------+----------------------------------   Adj R-squared   =    0.2566
     Total |  83.1978627        50  1.66395725   Root MSE        =    1.1122

  The adjusted R2 for Example Problem Model 1 is 0.1057.
  The adjusted R2 for this model (Example Problem Model 3) is 0.2566.
  Since the adjusted R2 for Example Problem Model 3 is larger than the 

adjusted R2 for Example Problem Model 1, we conclude that our ability to pre-
dict infant mortality rates improves with the addition of the dichotomous vari-
able for the facility discharge score.

  Since our results indicate a significant relationship between infant mortal-
ity rates and the facility discharge score dichotomous variable, the model can be 
thought of as two regression lines (one for states with a facility discharge score 
below the national average and one for states at or above the national average).

  When x3 = 1 (at or above the national average),

 
ˆ . . . ( )y exclusive breastfeeding= − × − ×8 25 0 02 1 13 1

 
ˆ . .y exclusive breastfeeding= − ×7 12 0 02

  When x3 = 0 (below the national average),

 
ˆ . . . ( )y exclusive breastfeeding= − × − ×8 25 0 02 1 13 0

 
ˆ . .y exclusive breastfeeding= − ×8 25 0 02

  If we sketch this relationship, it will look like Figure 13.8.
  We could add another variable to the model to determine whether an 

increase in proportion of hospitals meeting the exclusive breastfeeding bench-
mark has a different effect in states that have a facility discharge score that is 
lower than the national average versus states that have a facility discharge score 
higher or equal to the national average. This added variable would be an inter-
action between the exclusive breastfeeding variable and the facility discharge score 
indicator.

  If the interaction variable significantly adds to the model, that means that 
the effect of exclusive breastfeeding on infant mortality rates would be different 
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in states that have facility discharge scores that are lower than the national aver-
age versus states with scores higher or equal to the national average.

  Upon adding the interaction term to the model, the regression equation will 
look like the following:

 
ˆ ˆ ( )y x x x x= + + + ×α β β β1 1 3 3 4 1 3

� � �

 
ˆ ˆ (y exclusivebf discharge exclusive= + + +α β β β1 3 4

� � � bbf discharge× )

  If discharge = 1, then the following is true:

 
ˆ ˆ ( ) ( )y exclusivebf exclusivebf= + + + ×α β β β1 3 41 1� � �

 
ˆ ( ˆ ) ( )y exclusivebf= + + +α β β β3 1 4

� � �

  If discharge = 0, then the following is true:

 
ˆ ˆ ( ) ( )y exclusivebf exclusivebf= + + + ×α β β β1 3 40 0� � �

 
ˆ ˆy exclusivebf= +α β1
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Figure 13.8  Indicator variables and their effect on the regression model for Example 
Problem 13.3. The top line can be thought of as the regression line of the model 
when facility discharge scores are below the national average, and the bottom line is a 
representation of the regression line of the model when facility discharge scores are at 
or above the national average.
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  The interaction term makes the slope and the intercept different in the two 
regression equations.

  If we sketch this relationship, it will look like Figure 13.9. Also see Table 13.9 
for code to create on interaction term.

  Add the interaction term to Example Problem Model 3 (see Table 13.10). 
The resulting model (with the added interaction term) will be referred to as 
Example Problem Model 4.

Parameter Estimates

Variable Label DF Parameter 
Estimate

Standard 
Error

t 
Value

Pr > |t|

Intercept Intercept 1 7.51435 1.18273 6.35 <.0001

ExclusiveBF Proportion of hospitals meeting 
exclusive breastfeeding benchmark

1 –0.01064 0.02249 –0.47 0.6384

Discharge Above national facility discharge 
care score average

1 0.02542 1.53261 0.02 0.9868

ebf_discharge 1 –0.02136 0.02756 –0.78 0.4422

-------------------------------------------------------------------------------
infant_m~2010 |      Coef.  Std. Err.      t   P>|t|    [95% Conf. Interval]
---------------+----------------------------------------------------------------
  exclusivebf |  –.0106358  .0224878   –0.47   0.638   –.0558754    .0346037
    discharge |   .0254216  1.532611    0.02   0.987   –3.057793    3.108636
ebf_discharge |  –.0213563  .0275556   –0.78   0.442   –.0767911    .0340784
        _cons |   7.514353  1.182728    6.35   0.000    5.135011    9.893695
-------------------------------------------------------------------------------
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Figure 13.9  Regression model for Example Problem 13.3 with moderation (interaction). The top 
line can be thought of as the regression line of the model when facility discharge scores are 
below the national average, and the bottom line is a representation of the regression line of 
the model when facility discharge scores are at or above the national average.
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  To determine whether the interaction term improves our ability to pre-
dict infant mortality rates, we need to test the null hypothesis that the slope 
of the interaction term is 0 and examine the change in the value of the 
adjusted R2.

 E Test to see whether there is a significant linear relationship between the 
interaction term and the overall neighborhood playground score in 
Example Problem Model 4. Be sure to state the null and alternate hypoth-
eses, the value and distribution of the test statistic, and p-value. What do 
you conclude?

 H0 4 0: β =

 H1 4 0: β ≠

 
t

se
= β

β
4

4

�
� �( )

 
t = −0 021

0 0276

.

.

 t t= − ∼0 76 48.

Table 13.9 Code for calculating an interaction term (Example Problem 13.3)

Using SAS Using Stata

To create an interaction term, use a DATA step.

DATA mpinc_mortality_1;
SET mpinc_mortality;
ebf_discharge = exclusivebf * 
discharge;
RUN;

To create an interaction term, use the generate 
command. The new variable is added to your 
working dataset.

generate ebf_discharge = 
exclusivebf*discharge

Table 13.10 Code for regression with an interaction term (Example Problem 13.3)

Using SAS Using Stata

Remember to run your PROC REG on the new 
dataset that you created.

PROC REG DATA = 
mpinc_mortality_1;
MODEL infant_mortality2010 = 
exclusivebf discharge 
ebf_discharge;
RUN; QUIT;

regress infant_mortality2010 
exclusivebf discharge ebf_discharge
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  Using statistical software (SAS or Stata), we get t = −0.78 and p = 0.442. 
Therefore, we fail to reject the null hypothesis that the slope is equal to 0 and 
conclude that there is not a significant linear relationship.

 F What is the adjusted R2 value, and how does it compare to the adjusted R2 
found for Example Problem Model 3 in Example Problem 13.3—Part D?

  The adjusted R2 for Example Problem Model 3 is 0.2566.
  The adjusted R2 for this model (Example Problem Model 4) is 0.2503.

  Because the adjusted R2 for this model is less than the adjusted R2 for 
Example Problem Model 3, we can conclude that adding the interaction 
does not increase our ability to predict infant mortality rates. On this 
basis—and our failure to reject the null hypothesis in Example Problem 
13.3—Part E—we would decide to exclude the interaction term from the 
final model.

Model selection

When you have many variables of interest, how do you choose the final model?

• You should have some prior idea about what is important, based on some subject 
area knowledge.

• You could construct all possible models.
• This is thorough but time consuming.
• Perform a regression analysis for each possible combination of variables.

• You could perform stepwise model selection.

Automatic Model Selection: An automatic approach to finding a subset of explanatory 
variables that produces the best fit regression line.

The three types of selection discussed in this book are forward selection, backward 
elimination, and stepwise selection. It is possible to end up with different final models 
from each of the stepwise approaches.

• Forward selection
• Start with no explanatory variables in the model, and introduce variables one 

at a time.
• The model is evaluated after the introduction of each variable.
• The process continues until some specified statistical criterion is achieved.

• Backward elimination
• Begin with all explanatory variables in the model, and drop variables one at a 

time.
• The model is evaluated after each variable has been dropped.
• The process continues until some specified statistical criterion is achieved.

• Stepwise selection
• This method uses both forward selection and backward elimination techniques.
• Start with no explanatory variables in the model, and introduce variables into 

the model, one at a time.
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• All previous variables in the model are checked at each step to ensure that they 
maintain their statistical significance.

• A variable entered in one step might be dropped out in a later step.

BOX 13.7 USING SAS FOR AUTOMATIC MODEL SELECTION

In SAS, use the SELECTION=option in the MODEL statement of PROC REG to specify 
which type of automatic model selection the program should use to determine a final model. 
For forward selection, use SELECTION=FORWARD. For backward elimination, use 
SELECTION=BACKWARD. Finally, for stepwise selection, use SELECTION=STEPWISE.

You can also adjust the inclusion and exclusion criteria, but this is optional. For the 
inclusion criterion, use the SLENTRY=value option to adjust the significance level for 
entry into the model. The default is 0.5 for forward selection and 0.15 for stepwise selec-
tion. For the exclusion criterion, use the SLSTAY=value for the significance level to stay 
in the model. The default is 0.1 for backward elimination and 0.15 for stepwise selection. 
The order of the variables that are specified in the model statement is the order that they 
will be entered into the model, if forward selection is specified.

The output of PROC REG using automatic model selection is an abbreviated version 
of the PROC REG output that we discussed previously. For each step in the process, SAS 
provides an ANOVA and a parameter estimates table for the resulting model. The final 
table provides a summary of what happened at each step (which single variable was added 
or removed). See Table 13.11 for the code to run each of these methods.

Once you are satisfied with your final model, it is a good idea to run it again (including 
only the variables in the final model) without the automatic selection method specified. 
SAS deletes observations list-wise at each step, and, if a more restrictive variable does 
not end up in the final model, it is possible that observations were deleted that could be 
included in the final model.

BOX 13.8 USING STATA FOR AUTOMATIC MODEL SELECTION

To run automatic model selection in Stata, use the stepwise command with the appropriate 
option before your regress command. The pr(value) option allows you to specify the signifi-
cance level for removal from the model. For example, if you specified pr(0.05), variables that 
had a p-value of greater than 0.05 would be kicked out of the model. The pe(value) option 
allows you to specify the significance level for addition into the model. You must specify at 
least one pr(value) or pe(value), as this indicates to Stata which automatic model selection 
method to use. See Table 13.11 for the code to run each of these methods.

In Stata, the output is the same as a regular regress command, with the exception of a 
statement at the beginning summarizing the variables that were added and dropped.
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Collinearity

Regardless of the strategy used when selecting a model, we should always check for 
collinearity.

Collinearity: A condition that occurs when two or more of the explanatory variables 
are correlated to the extent that they convey essentially the same information about the 
observed variability in the outcome y.

• One symptom of collinearity is the instability of the estimated coefficients and their 
standard errors.

• Standard errors often become very large, implying that there is a great deal of sam-
pling variability in the estimated coefficients.

• The variance inflation factor (VIF) quantifies the degree of severity of collinearity 
in the model.

PRACTICE PROBLEM 13.4

Upon examining the neighborhoods further in the pastl_score dataset,5 we notice that 
the neighborhoods with high percentages of vacant buildings are clustered in the north 
of the city, north of Delmar Boulevard. We are interested in whether an interaction 

Table 13.11 Example code to run automatic model selection on three explanatory variables

Automatic model 
selection method Software code

Backward 
elimination

SAS Code:
PROC REG DATA = dataset;
MODEL outcome = var1 var2 var3 / selection=backward;
RUN; QUIT;

Stata Code:
stepwise, pr(value): regress outcome var1 var2 var3

Forward selection SAS Code:
PROC REG DATA = dataset;
MODEL outcome = var1 var2 var3 / selection=forward;
RUN; QUIT;

Stata Code:
stepwise, pe(value): regress outcome var1 var2 var3

Stepwise selection SAS Code:
PROC REG DATA = dataset;
MODEL outcome = var1 var2 var3 / selection=stepwise;
RUN; QUIT;

Stata Code:
stepwise, pr(value) pe(value) forward: regress 
outcome var1 var2 var3
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between the geographic location of the neighborhood (north or south of Delmar 
Boulevard) affects the neighborhood playground score.

 A What is the regression equation for a model that includes the percentage of vacant 
buildings and the indicator for north or south of Delmar Boulevard (Practice 
Problem Model 4)?

 B Interpret the estimated coefficients for the slopes in words.

 C Test to see whether there is a significant linear relationship between the indicator 
(north) and the overall neighborhood playground score in Practice Problem Model 4. 
Be sure to state the null and alternate hypotheses, the value and distribution of the 
test statistic, and p-value. What do you conclude?

 D How has Practice Problem Model 2 from (Practice Problem 13.2) changed by add-
ing the indicator?

 E Create an interaction term between the percentage of vacant buildings and the 
indicator for north or south of Delmar Boulevard. What is the regression equation 
for this model (Practice Problem Model 5)?

 F Test to see whether there is a significant linear relationship between the interaction 
term and the overall neighborhood playground score in Practice Problem Model 5. 
Be sure to state the null and alternate hypotheses, the value and distribution of the 
test statistic, and p-value. What do you conclude?

 G What is the adjusted R2 value for Practice Problem Model 5, and how does it 
compare to the adjusted R2 value found for the model in Practice Problem 13.2 
(Practice Problem Model 2)?

PRACTICE PROBLEM 13.5

 A What is the equation for the true population regression line for simple linear 
regression?

 B What is the equation for the true population regression line for multiple linear 
regression?
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PRACTICE PROBLEM 13.6

Compare and contrast when you use the R2 value versus when you use the adjusted R2 
value.
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This chapter will focus on logistic regression analysis and will include the following 
topics:

• Interpretation of coefficients
• Hypothesis tests and confidence intervals for estimated regression coefficients
• Model evaluation

Term

• c statistic

Introduction

There are many situations in which the response of interest is dichotomous rather than 
continuous. Most commonly, the binary variable is a yes/no variable indicating an event 
or condition. If we use linear regression in a case in which the outcome is dichotomous, 
we can have predicted values that are less than 0 or greater than 1 even though the 
outcome can take only values 0 or 1. Thus, we need a different model for dichotomous/
binary data than we used for linear regression with a continuous outcome. In these cases 
in which the response variable Y is dichotomous, we use logistic regression.

Many of the concepts in logistic regression are the same as in linear regression, a topic 
that was introduced in Chapter 13. Following is a list of the shared concepts:

• Indicator variables
• Interactions
• Model selection techniques

However, some concepts are different from the linear regression model:

• Residuals
• Model evaluation
• Interpretation of coefficients

In linear regression, it is helpful to look at two-way scatterplots to get a sense of 
the correlation between the predictor and the outcome. However, when the outcome is 
dichotomous, all points on the scatterplot will be on the two lines corresponding to the 
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two levels of the outcome. Thus, two-way scatterplots in a logistic regression case do 
not give us much useful information about the relationship between the predictor and 
the outcome. (See Figure 14.1.)

The mean of a dichotomous random variable Y, designated by p, is the proportion 
of times that Y takes the value 1. In symbols, mean of Y = P(Y = 1) = p. Just as we 
estimated the mean value of the response when Y was continuous, we would like to be 
able to estimate the probability p (its mean) associated with a dichotomous response.

If an event occurs with probability p, the odds in favor of the event are 
p

p1
1

−
: .  

Modeling the probability with a logistic function is equivalent to fitting a linear regres-
sion model in which the continuous response Y has been replaced by the logarithm 
of the odds of success for a dichotomous random variable. Instead of assuming that 
the relationship between p and X is linear, we assume that the relationship between 

ln
p

p1−






 and X is linear. Thus, in logistic regression, we are modeling the log odds 

of an event.
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Figure 14.1  Two-way scatterplot with dichotomous outcome. When the outcome variable is 
dichotomous, it is difficult to assess the association between the explanatory variable and 
the outcome using a two-way scatterplot.
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We cannot apply the method of least squares, which assumes that the response is 
continuous and normally distributed. Instead, we use maximum likelihood estimation 
(MLE). MLE uses the information in a sample to find the parameter estimates that are 
most likely to have produced the observed data. We can start with the basic logistic 
regression equation and solve for ˆ.p

 

ln
ˆ

ˆ
ˆ ˆ ˆ

ˆ

ˆ
ˆ ˆ

p

p
x x

p

p
e

q q

x

1

1

1 1

1 1

−






= + + … +

−
= +

α β β

α β ++ +

+ +…+

+

= −

=



ˆ

ˆ ˆ ˆ

ˆ ˆ

ˆ ( ˆ )

ˆ

β

α β β

α β

q q

q q

x

x x

x

p e p

p e

1 1

1 1

1
++…+ + +…+

+ +…+

−

+

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆβ α β β

α β β

q q q q

q

x x x

x x

e p

e

1 1

1 11 qq q q

q q

p e

p
e

e

x x

x x

( ) =

=
+

+ +…+

+ +…+

ˆ

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

α β β

α β β

1 1

1 1

1
ˆ̂ ˆ ˆα β β+ +…+1 1x xq q

 (14.2)

The expression for p̂  is called a logistic function. Some of the properties of a logistic 
function are:

• It cannot yield a value that is either negative or greater than 1. This is beneficial 
because it restricts the estimated value of p to the required range.

• It is S-shaped, with a steeper slope in the middle and a shallower slope as the pre-
dicted probability approaches 0 or 1. (See Figure 14.2.)

In addition to graphing the data, we can create a table of probabilities to see the rela-
tionship between the explanatory variable and the predicted probability of the outcome. 
Table 14.1 shows how the association between the outcome and explanatory variable can 
be assessed by examining a table of the values of the explanatory variable, x1, and the 
corresponding predicted probability of the outcome, ˆ.p  In the table, we can see that as 
x1 increases, so does ˆ.p 1
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Figure 14.2  Logistic distribution function. The relationship between the predicted probability of 
the outcome and the values of the explanatory variable is an S-shaped function. The slope 
of the logistic function is shallow when the predicted probability is near 0 or 1 and is 
steeper in the middle. Data for the figure come from National Health and Nutrition 
Examination Survey, Centers for Disease Control and Prevention, National Center for 
Health Statistics, Hyattsville, MD, 2014, https://wwwn.cdc.gov/Nchs /Nhanes /Search 
/nhanes13{_}14.aspx.

Table 14.1 Relationship between explanatory variable and predicted 
probability of the outcome

x1 p̂

13.1 0.00001
32.6 0.00030
43.5 0.00165
53.8 0.00817
58.1 0.01586
63.2 0.03451
74.9 0.18178
80.7 0.35466
86.6 0.58000
97.6 0.88499

129.9 0.99916

https://wwwn.cdc.gov
https://wwwn.cdc.gov
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If we take the natural logarithm, then we eliminate the exponentiation and have 
a function for the log odds dependent only on the values of α, β, and the explanatory 
variables xi.
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i
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= ( ) = ++α β α β  (14.4)

Interpretation of coefficients

The logistic regression model can be generalized to include discrete or nominal explana-
tory variables in addition to continuous ones. The estimated regression coefficient β̂ 
is the change in the log odds of the outcome corresponding to a one-unit increase in 
x. When we have a dichotomous variable, the interpretation is slightly different since 
there are only two levels of x. Thus, the log odds change by β̂ when increasing from xi = 
0 to xi = 1, which means β̂ is the difference in the log odds between the two levels of the 
binary predictor. Table 14.2 shows that the type of explanatory variable influences the 
interpretation of the estimated log odds and estimated odds ratio ( ).OR

We can also transform the estimated regression coefficient β̂ into an OR  by calculat-
ing the antilogarithm of the regression coefficient.

 OR = e β̂  (14.5)

The result is the OR  or relative odds comparing a one-unit increase in the explana-
tory variable. Sometimes, it is preferable to report an odds ratio corresponding to more 
than one unit of change in the predictor variable. For example, the odds ratio corre-
sponding to a five-pound increase in weight might be more meaningful than the odds 
ratio corresponding to a one-pound increase in weight. In this case, OR = e c ˆ

,β  where c 
is the number of units of the explanatory variable. For the weight example, the OR cor-
responding to a five-pound increase in weight is

 OR = ×e5 ˆ
.β

For dichotomous explanatory variables, the antilogarithm of β̂i, e i
ˆ
,β  is the estimated 

odds ratio for the response y comparing the two possible levels of xi. The same results 
could be obtained by arranging the sample data in a 2 × 2 contingency table. The OR  

Table 14.2 Interpretations for estimated coefficients

Type of predictor Interpretation of β̂ Interpretation of e β̂

Continuous For each one-unit increase in x, the log 
odds of y changes by ˆ.β

e β̂ = OR  is the relative odds of y 
comparing a one-unit increase in x.

Dichotomous The log odds of y changes by β̂  when 
increasing from xi = 0 to xi = 1 (β̂  is 
the difference in the log odds of y 
between the two levels of x).

e β̂ = OR  is the estimated odds ratio for 
y comparing the two possible levels of 
xi.
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is estimated by computing the cross-product of the entries in the contingency table 
ad

bc





  that was introduced in Chapter 10 and is identical to that obtained from the 

logistic regression model.
In order to estimate the odds of the event given predictor values, plug in the appro-

priate values of ˆ ,α  xi, and β̂i  into Equation 14.3. To determine the predicted probabil-
ity of the event given values of xi, we plug in α̂, xi, and β̂i  into Equation 14.2.

Hypothesis tests and confidence intervals for estimated regression coefficients

The hypothesis test for the estimated regression coefficient tests the null hypothesis that 
there is no relationship between the predictor and the outcome, H0: β = 0, against the 
alternative H1: β ≠ 0. The null and alternative hypotheses can also be written in terms 
of the OR: H0: OR = 1 versus H1: OR ≠ 1.

Test statistic Z
se

=
ˆ

( ˆ )

β
β

 follows a standard normal distribution. A confidence interval 

for the OR can be calculated from the model by computing a confidence interval for the 
coefficient β̂  and taking the antilogarithm of its upper and lower limits. Table 14.3 
provides a summary of hypothesis testing and confidence intervals for logistic regres-
sion. In a hypothesis test for the coefficient, we wish to test whether β = 0. In a hypoth-
esis test for the odds ratio the null value is 1.

Model evaluation

In linear regression, the R2 and adjusted R2 indicate the proportion of variation in the 
outcome explained by the predictor variables. Unfortunately, we do not have an analogous 
measure for logistic regression. However, the c statistic can be used to assess model fit.

c Statistic: The area under the ROC curve that indicates how well the model predicts 
who will have the outcome and who will not. The c statistic ranges from 0.5 (poor dis-
crimination) to 1 (perfect discrimination).

As a guideline, a c statistic ≥ 0.70 is considered acceptable.

Table 14.3 Hypothesis tests and confidence intervals for estimated regression coefficients

Component Formula

Hypotheses H0: β = 0 vs. H1: β ≠ 0
(alternatively, H0: OR = 1 vs. H1: OR ≠ 1)

Test statistic
Z

se
=

ˆ

( ˆ )

β
β

Distribution of test statistic under H0 Standard normal

Odds ratio (OR)
OR = e β̂

Confidence interval for OR
e elower CI for lower CI forˆ ˆ

,β β( )
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Logistic regression in SAS

We run logistic regressions in SAS using PROC LOGISTIC. The MODEL statement 
specifies the dichotomous outcome on the left side of the equals sign. When the binary 
outcome has levels 0 and 1, the SAS default is to calculate the probability that the 
outcome = 0. However, typically, binary variables are set up so that outcome = 1 indi-
cates “yes” to the event, and it is the level that we want to model. When we insert the 
EVENT option, SAS models the probability that the outcome equals that level. Thus, 
specifying EVENT = “1” means that the probability that the outcome = 1 is modeled 
rather than outcome = 0.

We list predictor variables to the right of the equals sign. For continuous, binary, or 
ordinal predictor variables, we do not need a CLASS statement. However, if we have a 
categorical predictor variable and want SAS to produce dummy variables for the vari-
ous levels, we use a CLASS statement. The CLASS statement includes the name of the 
categorical variable and an indication of the reference level.

The output will show estimates comparing all levels of the categorical variable to 
the level specified in the REF = option. The default parameterization method in PROC 
LOGISTIC is effect coding rather than reference coding. To change this, specify the 
PARAM = REF option in the CLASS statement. When we use reference coding, we can 
interpret e β̂  as summarized in Table 14.2.

PROC LOGISTIC DATA = dataset_name;
 CLASS pred_cat (REF = "1") / PARAM = REF;
 MODEL outcome (EVENT = "1") = pred_cont pred_bin pred_cat;
RUN;

The LOGISTIC Procedure

Model Information

Data Set WORK.DATASET_NAME
Response Variable outcome
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 75
Number of Observations Used 75

Response Profile

Ordered 
Value

Outcome Total 
Frequency

1 0 46
2 1 29
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Probability modeled is outcome = 1.

Class Level Information

Class Value Design Variables

pred_cat 1 0 0
2 1 0
3 0 1

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion Intercept Only Intercept and 
Covariates

AIC 102.085 95.672
SC 104.403 107.260
-2 Log L 100.085 85.672

Testing Global Null Hypothesis: BETA = 0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 14.4127 4 0.0061
Score 13.0680 4 0.0109
Wald 10.8986 4 0.0277

Type 3 Analysis of Effects

Effect DF Wald 
Chi-Square

Pr > ChiSq

pred_cont 1 1.2285 0.2677
pred_bin 1 6.2501 0.0124
pred_cat 2 7.4064 0.0246
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Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard 
Error

Wald 
Chi-Square

Pr > ChiSq

Intercept 1 –1.1595 1.1410 1.0327 0.3095
pred_cont 1 –0.0226 0.0204 1.2285 0.2677
pred_bin 1 1.4101 0.5640 6.2501 0.0124
pred_cat 2 1 1.7579 0.7837 5.0314 0.0249
pred_cat 3 1 1.8992 0.7190 6.9764 0.0083

Odds Ratio Estimates

Effect Point Estimate 95% Wald 
Confidence Limits

pred_cont 0.978 0.939 1.017
pred_bin 4.096 1.356 12.373
pred_cat 2 vs 1 5.800 1.248 26.947
pred_cat 3 vs 1 6.680 1.632 27.343

Association of Predicted Probabilities and 
Observed Responses

Percent Concordant 75.4 Somers’ D 0.508
Percent Discordant 24.6 Gamma 0.508
Percent Tied 0.0 Tau-a 0.244
Pairs 1334 c 0.754

Many output tables are produced by default. The “Response Profile” box gives the 
number of observations in each level of the outcome. The “Type 3 Analysis of Effects” 
table shows tests for each predictor, including a chunk test for categorical variables. 
The test statistic follows a chi-squared distribution, and the p-value appears under the 
“Pr > ChiSq” column.

The parameter estimates from the model are found in the “Analysis of Maximum 
Likelihood Estimates” output box. The “Estimate” column shows the value of β̂  for 
each variable. The standard error column shows the standard error of the parameter 
estimate. The value of the test statistic and the p-value for the hypothesis test for each 
predictor (H0: β = 0) appear in the “Wald Chi-Square” and “Pr > ChiSq” columns, 
respectively. Notice that the test statistic calculated by SAS follows a chi-squared distri-
bution, rather than a Z-distribution as in Table 14.3.

The “Odds Ratio Estimates” box shows the OR  in the “Point Estimate” column 
and the confidence interval for the OR in the “95% Wald Confidence Limits” column. 
When there is a categorical predictor in a CLASS statement, there is a separate line in 
the “Analysis of Maximum Likelihood Estimates” and “Odds Ratio Estimates” tables 
for each level that is compared to the reference level. The name of the level is shown 
after the variable name. The final output box, “Association of Predicted Probabilities 
and Observed Responses,” shows the value of the c statistic in the bottom right cell.
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Logistic regression in Stata

The logistic command in Stata runs a logistic regression. We first specify the outcome 
variable, followed by one or more predictor variables. For categorical predictors, we use 
i. before the variable name to tell Stata to use dummy variables for the various levels.

logistic outcome pred_cont pred_bin i.pred_cat

Logistic regression Number of obs = 75
 LR chi2(4) = 14.41
 Prob > chi2 = 0.0061
Log likelihood = -42.836153 Pseudo R2 = 0.1440
------------------------------------------------------------------------------
   outcome | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------+-------------------------------------------------------------------
 pred_cont | .9776963 .019897 -1.11 0.268 .9394663 1.017482
 pred_bin | 4.096224 2.310354 2.50 0.012 1.35609 12.37311
 |
 pred_cat |
 2 | 5.800111 4.545464 2.24 0.025 1.248423 26.94702
 3 | 6.680461 4.803496 2.64 0.008 1.632155 27.34333
 |
 _cons | .3136386 .3578648 -1.02 0.310 .033512 2.935343

------------------------------------------------------------------------------

The global test for the regression, including the test statistic, degrees of freedom, 
and p-value, appears in the upper right corner of the output. The OR for each predictor 
is shown in the “Odds Ratio” column. The 95% confidence interval for the OR appears 
in the “[95% Conf. Interval]” column. The value of the test statistic and the p-value 
for the hypothesis test for each predictor (H0: β = 0) are shown in the “z” and “Pr>|z|” 
columns, respectively.

If there is a factor variable as a predictor, the levels being compared to the reference 
level are listed in the left-most column under the name of the categorical variable. In 
the example shown, we are comparing levels 2 and 3 of pred_cat with level 1. To get the 
estimated coefficients ˆ ,βi  we can run the logit command directly after the logistic com-
mand. This will run the regression and produce the estimated regression coefficients 
rather than the OR.

logit

Logistic regression Number of obs = 75
 LR chi2(4) = 14.41
 Prob > chi2 = 0.0061
Log likelihood = -42.836153 Pseudo R2 = 0.1440
------------------------------------------------------------------------------
   outcome |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------+-----------------------------------------------------------------
 pred_cont | -.0225562 .0203509 -1.11 0.268 -.0624433 .0173309
 pred_bin | 1.410065 .5640205 2.50 0.012 .3046056 2.515525
 |
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 pred_cat |
 2  | 1.757877 .7836857 2.24 0.025 .2218814 3.293873
 3  | 1.899187 .7190366 2.64 0.008 .4899011 3.308473
 |
 _cons | -1.159514 1.14101 -1.02 0.310 -3.395852 1.076824
------------------------------------------------------------------------------

The “Coef.” column shows the value of the estimated regression coefficients. The 
standard error of β̂i  appears in the “Std. Err.” Column. The test statistic and p-value 
for the test corresponding to the null hypothesis β = 0 appear in the “z” and “Pr|z|” col-
umns. A 95% confidence interval is produced by default in the “[95% Conf. Interval]” 

column. Note: To request the estimated coefficients rather than OR,  we could also add 
the coef option to the end of the logistic command, separated by a comma, as shown in 
the following code:

logistic outcome pred_cont pred_bin i.pred_cat, coef

In order to get the c-statistic in Stata, we use the lroc command after a logistic or logit 
command:

lroc, nograph

EXAMPLE PROBLEM 14.1

Suppose that we are interested in identifying factors that influence the probability that 
an adult will develop diabetes. In our data, diabetes is a dichotomous random variable 
that takes the value of 1 if the condition is present and 0 if it is not. We use a sample 
of 400 adults to estimate the probability, p, of diabetes.1 To begin, we would like to 
determine whether BMI affects p. The data are in the dataset ch14_diabetes.

 A Why is logistic regression an appropriate method for investigating the asso-
ciation between probability of diabetes and BMI?

  Diabetes is a dichotomous outcome, so logistic regression is the appropriate 
analysis method. In this case, y = 0 indicates no diabetes; y = 1 indicates diabetes.

 B Write the logistic regression model.

  ln
p

p1−






=  ln(odds of diabetes) = α + β × body mass index

 C Fit this model using SAS or Stata.

  We use PROC LOGISTIC in SAS to run the logistic regression model. In 
the MODEL statement, we specify diabetes as the outcome and bmi as the pre-
dictor. We want to model the probability that an adult has diabetes, so we add 
(EVENT = “1”) in the model line to the left of the equals sign. We do not need 
a CLASS statement since bmi is a continuous variable.
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PROC LOGISTIC DATA = ch14_diabetes;
 MODEL diabetes (EVENT = "1") = bmi;
RUN;

The LOGISTIC Procedure

Model Information

Data Set WORK.CH14_DIABETES

Response Variable Diabetes Diabetes
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 400

Number of Observations Used 400

Response Profile

Ordered 
Value

Diabetes Total 
Frequency

1 0 352

2 1 48

Probability modeled is diabetes=1.

BOX 14.1 DESCRIPTION OF ch_diabetes DATASET

The National Health and Nutrition Examination Survey (NHANES) asked respondents, 
“Other than during pregnancy, have you ever been told by a doctor or a health professional that 
you have diabetes or sugar diabetes?” Respondents could answer “Yes,” “No,” “Borderline,” 
“Don’t know,” or could refuse to answer the question. Those who indicated “Yes” are coded 
as diabetes = 1, whereas those who reported “No” are represented by diabetes = 0. Respondents 
who selected a level other than “Yes” or “No” were excluded from the sample. The survey also 
asked, “Including living and deceased, were any of your close biological that is, blood relatives 
including father, mother, sisters or brothers, ever told by a health professional that they had 
diabetes?” Response options included “Yes,” “No,” “Don’t know,” or refusal to answer. The 
variable family_risk takes a value of 1 for those who answered affirmatively and 0 for those 
who answered negatively. Respondents who refused to answer or didn’t know were excluded 
from the sample. Finally, measured weight and height were used to calculate BMI, which is 
recorded in the continuous variable bmi. The sample in the dataset ch14_diabetes is further 
limited to those respondents more than 18 years old with nonmissing BMI.
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Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion Intercept Only Intercept and 
Covariates

AIC 295.540 271.291
SC 299.531 279.273
–2 Log L 293.540 267.291

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 26.2495 1 <.0001
Score 30.5642 1 <.0001
Wald 25.7293 1 <.0001

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard 
Error

Wald 
Chi-Square

Pr > ChiSq

Intercept 1 –5.0596 0.6583 59.0651 <.0001

bmi 1 0.1003 0.0198 25.7293 <.0001

Odds Ratio Estimates

Effect Point Estimate
95% Wald 

Confidence Limits

bmi 1.105 1.063 1.149

Association of Predicted Probabilities and 
Observed Responses

Percent Concordant 71.7 Somers’ D 0.436
Percent Discordant 28.0 Gamma 0.438
Percent Tied 0.3 Tau-a 0.092
Pairs 16896 c 0.718
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  The logistic command in Stata runs a logistic regression. We first specify the 
outcome, diabetes, followed by the predictor variable, bmi. We are interested in 
the estimated coefficient β̂  as well as the OR,  so we can run the logit command 
after the logistic command.

logistic diabetes bmi

logistic diabetes bmi

Logistic regression Number of obs = 400
 LR chi2(1) = 26.25
 Prob > chi2 = 0.0000
Log likelihood = -133.64526 Pseudo R2 = 0.0894

------------------------------------------------------------------------------
  diabetes | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-----------+----------------------------------------------------------------
       bmi | 1.105471 .0218523 5.07 0.000 1.06346 1.149141
     _cons | .0063462 .0041781 –7.69 0.000 .0017463 .0230631
------------------------------------------------------------------------------

logit

Logistic regression Number of obs = 400
 LR chi2(1) = 26.25
 Prob > chi2 = 0.0000
Log likelihood = –133.64526 Pseudo R2 = 0.0894

------------------------------------------------------------------------------
  diabetes |      Coef. Std. Err. z P>|z| [95% Conf. Interval]
-----------+----------------------------------------------------------------
       bmi | .1002714 .0197674 5.07 0.000 .0615281 .1390147
     _cons | –5.0599 .6583682 –7.69 0.000 –6.350278 –3.769522
------------------------------------------------------------------------------

 D Write the equation for the estimated log-odds of diabetes for an adult with a 
BMI of xi.

 
ln

ˆ

ˆ . .
p

p
xi1

5 06 0 10
−







= − + ×

 E Interpret the coefficient of BMI in this model using the fitted values and the 
appropriate units of measurement.

  For each one-unit increase in BMI, the log odds of having diabetes increases 
by 0.10, on average.

 F At the α = 0.05 significance level, test the null hypotheses that the coefficient 
associated with BMI is equal to 0, using the output from the statistical soft-
ware. What do you conclude?
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  We wish to test H0: βbmi = 0 versus H1: βbmi ≠ 0.
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  The p-value is P(|Z| > 5.00) <0.0001, which means that we reject the null 
hypothesis. We have evidence that the probability of having diabetes differs 
depending on an adult’s BMI.

 G What is the OR  for diabetes associated with a one-unit increase in BMI?

 OR e e = = =
ˆ . .β 0 10 1 11

 H What is the OR  for diabetes associated with a five-unit increase in BMI?

 OR e e e = = = =× ×5 5 0 10 0 50 1 65
ˆ . . .β

 I Given an adult from this population whose BMI is 28, what is the predicted 
probability (i.e., predicted from the model in Example Problem 14.1—Part 
(C)) that this adult will have diabetes?
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  An adult with a BMI of 28 has a 9% probability of having diabetes.

EXAMPLE PROBLEM 14.2

We are interested in investigating—using logistic regression—the association between 
employment status and whether someone has ever been tested for HIV. The data are 
contained in the dataset ch14_hiv_test.2

 A Using the variable hiv_test as the outcome, which indicates ever been tested 
for HIV, fit a logistic regression model with employment status as the single 
explanatory variable.

  PROC LOGISTIC runs a logistic regression in SAS. We specify hiv_test as 
the outcome in the MODEL statement and indicate that the event of interest is 
having an HIV test by adding the EVENT = “1” option. Employed is the pre-
dictor variable, which is listed to the right of the equals sign in the MODEL 
statement.

PROC LOGISTIC DATA = ch14_hiv_test;
  MODEL hiv_test (EVENT = "1") = employed;
RUN;
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The LOGISTIC Procedure

Model Information

Dataset WORK.CH14_HIV_TEST

Response Variable hiv_test Ever Had Been Tested for HIV
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read    250
Number of Observations Used 250

Response Profile

Ordered 
Value

hiv_test Total 
Frequency

1 0 182
2 1 68

Probability Modeled Is hiv_test=1.

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

BOX 14.2 DESCRIPTION OF ch14_test DATASET

The Behavioral Risk Factor Surveillance System (BRFSS) asked respondents, “Have you ever 
been tested for HIV? Do not count tests you may have had as part of a blood donation. 
Include testing fluid from your mouth.” Respondents could answer “Yes,” “No,” “Don’t 
know,” or could refuse to answer the question. Those who indicated “Yes” are coded as hiv_
test = 1, whereas those who reported “No” are represented by hiv_test = 0. Respondents who 
selected a level other than “Yes” or “No” were excluded from the sample. The survey also 
asked about employment status. Respondents who answered that they were employed for 
wages or were self-employed were coded as employed = 1. Respondents were considered not 
employed (employed = 0) if they reported being out of work for one year or more, out of work 
for less than one year, a homemaker, a student, retired, or unable to work. Respondents who 
refused to answer the question were excluded from the sample.
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Model Fit Statistics

Criterion Intercept Only Intercept and 
Covariates

AIC 294.619 296.202
SC 298.140 303.245

–2 Log L 292.619 292.202

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 0.4173 1 0.5183
Score 0.4171 1 0.5184
Wald 0.4166 1 0.5186

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard 
Error

Wald 
Chi-Square

Pr > ChiSq

Intercept 1 –1.0776 0.2047 27.7197 <.0001
employed 1 0.1837 0.2847 0.4166 0.5186

Odds Ratio Estimates

Effect Point Estimate 95% Wald 
Confidence Limits

employed 1.202 0.688 2.099

Association of Predicted Probabilities and 
Observed Responses

Percent Concordant 27.3 Somers’ D 0.046
Percent Discordant 22.8 Gamma 0.092
Percent Tied 49.9 Tau-a 0.018

Pairs 12376 c 0.523

  We will use the logistic command to run the logistic regression in Stata. The 
outcome variable hiv_test is listed first after the logistic command, followed by 
the predictor variable employed. Including the coef option requests the estimated 
regression coefficients rather than the OR,  and, then, we can run the command 
again without the coef option to get the OR.
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logistic hiv_test employed, coef

Logistic regression Number of obs = 250
 LR chi2(1) = 0.42
 Prob > chi2 = 0.5183
Log likelihood = –146.10085 Pseudo R2 = 0.0014

------------------------------------------------------------------------------
 hiv_test | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-----------+-----------------------------------------------------------------
 employed | .183741 .2846572 0.65 0.519 –.3741768 .7416588
 _cons | –1.077559 .2046663 –5.26 0.000 –1.478697 –.6764203
------------------------------------------------------------------------------

logistic hiv_test employed

Logistic regression Number of obs = 250
 LR chi2(1) = 0.42
 Prob > chi2 = 0.5183
Log likelihood = –146.10085 Pseudo R2 = 0.0014

------------------------------------------------------------------------------
 hiv_test | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-----------+-----------------------------------------------------------------
 employed | 1.201705 .3420738 0.65 0.519 .6878553 2.099415
 _cons | .3404255 .0696736 –5.26 0.000 .2279344 .5084338

------------------------------------------------------------------------------

 B Interpret the estimated coefficient of employment status.

  The log odds of ever having an HIV test are higher by 0.18, on average, for 
those who are employed versus those who are not employed.

 C What are the estimated odds of ever being tested for HIV for individuals 
who are employed relative to those who are not?

  The output in Example Problem 14.2—Part (A) gives OR = 1 20. .  Those 
who are employed have 1.20 times the odds of ever having been tested for HIV 
compared with those who are not employed.

 D What is the 95% confidence interval for the population OR?

  The 95% confidence interval for the odds ratio is (0.69, 2.10). We are 95% 
confident that the OR comparing those who are employed to those who are 
unemployed lies in the interval (0.69, 2.10).



Logistic regression 459

 E Does this interval contain the value 1? What does this tell us?

  The 95% confidence interval for the OR contains the null value of 1. Thus, we 
would fail to reject the null hypothesis that there is no association between ever hav-
ing an HIV test and employment status (H0: OR = 1) at the 0.05 level of significance.

PRACTICE PROBLEM 14.1

Let’s return to the dataset used in Example Problem 14.1. We, now, attempt to determine 
whether having a close relative with diabetes (from here on referred to as “family risk”) 
influences the probability that an adult has diabetes. To do this, we fit a logistic regression 
as before, but this time including the predictor family_risk instead (let’s denote it as x2 = 1, 
indicating a close relative has diabetes; x2 = 0 indicates no close relatives with diabetes).

 A Run the regression in a statistical program.

 B At the α = 0.05 significance level, test the null hypothesis that the coefficient associated 
with family risk is equal to 0, using the output from SAS or Stata. What do we conclude?

 C Use the estimated regression coefficient to calculate the estimated relative odds of 
having diabetes for those with a family risk of diabetes versus those without a fam-
ily risk of diabetes. Interpret the OR in words.

 D How does the reported OR for family risk from the program output compare with 
what we calculated in Practice Problem 14.1—Part (C)?

 E Now, suppose that instead of receiving the entire dataset, we receive a 2 × 2 table 
(Table 14.4). What would be the estimate of the OR relating the odds of diabetes 
for those with a family risk versus those without a family risk? The 2 × 2 table in 
Table 14.4 shows counts for 400 subjects and information on their diabetes status 
and family risk of diabetes.

 F How does this value compare to the OR estimated using logistic regression?

Table 14.4 Data for Practice Problem 14.1

Diabetes

Yes No Total

Family risk Yes 37 116 153

No 11 236 247

Total 48 352 400
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EXAMPLE PROBLEM 14.3

Many Americans have activity limitations due to health problems, and we are interested 
in the factors that influence the presence of these limitations. In particular, we would 
like to investigate the association between activity limitations and race, BMI, and sex 
using a sample of 600 subjects.2 The data are in the dataset ch14_limitations.

 A Fit a logistic regression with the presence of an activity limitation as the 
response and with race, BMI, and sex as explanatory variables. For race, 
make “White” the reference group.

  In SAS, we specify the variable limitation as the outcome and race, bmi, and 
female as the predictors. Because race is a categorical variable, we must include 
a CLASS statement, which also specifies “White” as the reference group in the 
REF = option.

PROC LOGISTIC DATA = ch14_limitations;
  CLASS race (REF = "White") / PARAM = REF;
  MODEL limitation (EVENT = "1") = race bmi female;
RUN;

BOX 14.3 DESCRIPTION OF ch14_limitations DATASETS

The Behavioral Risk Factor Surveillance System (BRFSS) asked, “Are you limited in any 
way in any activities because of physical, mental, or emotional problems?” Respondents 
could answer “Yes,” “No,” “Don’t know,” or could refuse to answer the question. Those 
who indicated “Yes” are coded as limitation = 1, whereas those who reported “No” are 
coded as limitation = 0. Respondents who selected a level other than “Yes” or “No” were 
excluded from the sample. Measured weight and height were used to calculate BMI, 
which is recorded in the continuous variable called bmi. The variable female takes a value 
of 1 for female respondents, and the value 0 is for male respondents. The survey asked, 
“What is the highest grade or year of school you completed?” Responses for this question 
were categorized into a three-level variable, excluding those who did not report their 
education level. The levels of the variable education are “No College,” “Some College,” 
and “Graduated College.” Finally, the variable race categorizes respondents on the basis 
of their self-reported racial category and information on Hispanic origin. The three cat-
egories of the variable race are “White,” “Black,” and “Other.” Note that the “White” and 
“Black” categories only include non-Hispanic respondents; Hispanic respondents are in 
the “Other” category. The sample in the dataset ch14_limitations is limited to subjects who 
have nonmissing values for the limitations, bmi, education, and race variables.
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The LOGISTIC Procedure

Model Information

Dataset WORK.CH14_LIMITATIONS

Response Variable Limitation Activity Limitation
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 600
Number of Observations Used 600

Response Profile

Ordered 
Value

Limitation Total 
Frequency

1 0 448
2 1 152

Probability modeled is limitation = 1.

Class Level Information

Class Value Design Variables

race Black 1 0
Other 0 1
White 0 0

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion Intercept Only Intercept and 
Covariates

AIC 681.161 668.450
SC 685.558 690.435
–2 Log L 679.161 658.450
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Testing Global Null Hypothesis: BETA = 0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 20.7112 4 0.0004
Score 21.3790 4 0.0003
Wald 20.1051 4 0.0005

Type 3 Analysis of Effects

Effect DF
Wald 

Chi-Square Pr > ChiSq

race 2 0.1834 0.9124
bmi 1 14.6933 0.0001
female 1 6.5940 0.0102

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard 
Error

Wald 
Chi-Square

Pr > ChiSq

Intercept 1 -3.0312 0.4712 41.3891 <.0001
race Black 1 0.1420 0.3325 0.1823 0.6694
race Other 1 0.00445 0.3114 0.0002 0.9886
bmi 1 0.0569 0.0149 14.6933 0.0001

female 1 0.5147 0.2004 6.5940 0.0102

Odds Ratio Estimates

Effect Point Estimate 95% Wald 
Confidence Limits

race Black vs White 1.153 0.601 2.212
race Other vs White 1.004 0.546 1.849
bmi 1.059 1.028 1.090
female 1.673 1.130 2.478

Association of Predicted Probabilities and 
Observed Responses

Percent Concordant 60.3 Somers’ D 0.207
Percent Discordant 39.6 Gamma 0.207
Percent Tied 0.1 Tau-a 0.078
Pairs 68096 C 0.603

  In Stata, we use the logistic command to run the regression. However, we 
must first transform the variable race into a format that Stata can understand. In 
the dataset, race has three levels: “White,” “Black,” and “Other.” We need to use 
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the egen command with the label option to make a new variable called race_cat 
that takes values 1, 2, and 3 but retains the names (called labels) of the levels. The 
race_cat variable now has levels 1 = Black, 2 = other race, and 3 = White.

egen race_cat = group(race), label

  Once we have the new categorical variable, we can run the logistic regression. 
We, first, specify the outcome variable, limitation, followed by the explanatory 
variables race_cat, bmi, and female. Because race_cat is categorical, we use the i. 
function to make it into a factor variable in the regression. We would also like the 
reference level of race_cat to be “White,” so we specify ib3. before race_cat, indicat-
ing that the reference level is the third level of the variable. We will subsequently 
run the logit command to get the estimated regression coefficients.

logistic limitation ib3.race_cat bmi female

Logistic regression Number of obs = 600
 LR chi2(4) = 20.71
 Prob > chi2 = 0.0004
Log likelihood = –329.22497 Pseudo R2 = 0.0305

------------------------------------------------------------------------------
limitation | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-----------+-----------------------------------------------------------------
 race_cat |
 Black  | 1.152568 .3832716 0.43 0.669 .6006344 2.211682
 Other  | 1.004457 .3127767 0.01 0.989 .545603 1.849209
 |
 bmi | 1.058595 .0157256 3.83 0.000 1.028218 1.08987
 female | 1.673172 .3353815 2.57 0.010 1.129588 2.47834
 _cons | .0482563 .0227368 –6.43 0.000 .0191644 .1215102
------------------------------------------------------------------------------

logit

Logistic regression Number of obs = 600
 LR chi2(4) = 20.71
 Prob > chi2 = 0.0004
Log likelihood = –329.22497 Pseudo R2 = 0.0305

------------------------------------------------------------------------------
limitation | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-----------+-----------------------------------------------------------------
 race_cat |
 Black  | .1419921 .3325372 0.43 0.669 –.5097689 .7937531
 Other  | .0044472 .3113888 0.01 0.989 –.6058636 .614758
 |
 bmi | .0569427 .0148552 3.83 0.000 .027827 .0860583
 female | .5147211 .2004465 2.57 0.010 .1218531 .907589
 _cons | –3.03123 .4711683 –6.43 0.000 –3.954703 –2.107757
------------------------------------------------------------------------------
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 B Interpret the estimated coefficients for race, adjusted for sex and BMI.

  Holding all the other variables in the model constant, the log odds of having 
an activity limitation are higher by 0.14, on average, for blacks versus whites. 
Holding all the other variables in the model constant, the log odds of having 
an activity limitation are higher by 0.004, on average, for people of other races 
versus whites.

 C What is the adjusted OR comparing black individuals to white individuals? 
What about comparing people of other races to whites?

  OR b vs w. . .= 1 15  Blacks have 1.15 times the odds of having an activity limi-
tation due to a health problem compared to whites, adjusting (controlling) for 
BMI and sex.

  OR o vs w. . .= 1 00  People of other races have 1.00 times the odds of having an 
activity limitation due to a health problem compared to whites, adjusting (con-
trolling) for BMI and sex.

 D Now let’s look at sex. What is the estimated relative odds for an activity limi-
tation comparing females and males, adjusting for race and BMI?

  Females have 1.67 times the odds of an activity limitation compared with 
males, adjusting for race and BMI.

 E What is the 95% confidence interval for the OR for sex that adjusts for race 
and BMI? Does the interval contain the null value of 1? What does this tell us?

  The 95% confidence interval for the OR is (1.13, 2.48). We are 95% con-
fident that the adjusted OR comparing females and males lies in the interval 
(1.13, 2.48). This interval does not contain the null value of 1, which leads us to 
reject the null hypothesis. We have statistically significant evidence of an asso-
ciation between presence of an activity limitation and sex, controlling for race 
and BMI.

 F We are curious to see whether the relationship between presence of an 
activity limitation and BMI differs for females and males. Run the regres-
sion again, this time including an interaction term between BMI and sex. 
Interpret the output for the interaction term.

  To add the interaction term in SAS, we put a vertical pipe (“|”) between the 
variables bmi and female.

PROC LOGISTIC DATA = ch14_limitations;
 CLASS race (REF = "White") / PARAM = REF;
 MODEL limitation (EVENT = "1") = race bmi|female;
RUN;
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  Selected output boxes follow.

The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA = 0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 20.8307 5 0.0009
Score 21.8500 5 0.0006
Wald 20.3266 5 0.0011

Type 3 Analysis of Effects

Effect DF Wald 
Chi-Square

Pr > ChiSq

race 2 0.1488 0.9283
bmi 1 3.8979 0.0483
female 1 0.0442 0.8334
bmi*female 1 0.1194 0.7297

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard 
Error

Wald 
Chi-Square

Pr > ChiSq

Intercept 1 –2.8200 0.7693 13.4369 0.0002
race Black 1 0.1283 0.3351 0.1467 0.7017
race Other 1 –0.00056 0.3119 0.0000 0.9986
bmi 1 0.0499 0.0253 3.8979 0.0483
female 1 0.1975 0.9388 0.0442 0.8334
bmi*female 1 0.0109 0.0314 0.1194 0.7297

Odds Ratio Estimates

Effect Point Estimate 95% Wald 
Confidence Limits

race Black vs White 1.137 0.589 2.193
race Other vs White 0.999 0.542 1.842

  In Stata, we use two pound signs (“##”) between the variables bmi and female 
to create an interaction in the model. We also add c. to the beginning of the 
bmi variable to indicate that it should be treated as a continuous variable in the 
interaction.
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logistic limitation ib3.race_cat c.bmi##female, coef

Logistic regression Number of obs = 600
 LR chi2(5) = 20.83
 Prob > chi2 = 0.0009
Log likelihood = -329.16525 Pseudo R2 = 0.0307
------------------------------------------------------------------------------
  limitation | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
 race_cat |
 Black  | .1283473 .3351365 0.38 0.702 –.5285082 .7852029
 Other  | –.0005618 .311918 –0.00 0.999 –.6119098 .6107862
 |
 bmi | .0498725 .0252607 1.97 0.048 .0003624 .0993826
 1.female | .1974524 .9387537 0.21 0.833 –1.642471 2.037376
 |
 female#c.bmi |
 1  | .0108576 .0314211 0.35 0.730 –.0507265 .0724418
 |
 _cons | –2.819972 .7692984 –3.67 0.000 –4.327769 –1.312174
------------------------------------------------------------------------------

  Note that when we model an interaction between two variables, the main 
effects of these variables are also included in the regression model. From the 
output, the estimated regression coefficient for the bmi × female interaction is 
ˆ . .βint = 0 01  The interaction term is not significant at the α = 0.05 level of sig-

nificance, as the p-value is 0.7297 (SAS) or 0.730 (Stata).

PRACTICE PROBLEM 14.2

We will continue with the dataset introduced in Example Problem 14.3 regarding 
activity limitations due to health problems, ch14_limitations. We want to see whether 
there is an association between education level and presence of an activity limitation. 
We also want to adjust for BMI in the model.

 A Run the logistic regression with education and bmi as the explanatory variables and 
limitations as the outcome. Make “Graduated College” the reference level for the 
education variable.

 B What is the estimated OR comparing those with no college education with those 
who graduated from college? Interpret the value in words.

 C What are the estimated odds of an activity limitation for those who have some col-
lege education relative to those who graduated from college? Interpret the value in 
words.
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 D What is the 95% confidence interval for the OR comparing those with some college 
education with those who graduated from college? What information can we obtain 
from the interval?

 E Interpret the regression coefficient for BMI.

 F What are the relative odds of an activity limitation corresponding to a five-unit 
change in BMI?

 G What is the predicted probability of having an activity limitation for someone who 
has no college education and a BMI of 34?
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Survival analysis15

This chapter will focus on a basic introduction to survival analysis and will include the 
following topics:

• Log-rank test
• Survival curve
• Survival table
• The life-table method
• The product-limit method
• Using statistical software for survival analysis

Terms

• censoring 
• failure

• life-table method
• product-limit method

Introduction

Survival analysis is used when we want to study a time to an event. The variable of inter-
est is the time, T, to an event; this time is sometimes referred to as the survival time or 
failure time. Examples include time to death, time to diagnosis of diabetes, time from 
start of therapy to remission of a cancer, and time from HIV diagnosis to onset of AIDS.

Although measurements of survival times are continuous, their distributions are 
rarely normal. Analysis of this type of data generally focuses on estimating the probabil-
ity that an individual will survive for a given length of time. A common circumstance 
in working with survival data is that some people in the sample are not observed up to 
their time of “failure.” 

Failure: The occurrence of the event in question (e.g., death, diagnosis of diabetes, 
remission of cancer, onset of AIDS).

Censoring: The incomplete observation of a time to “failure.”
An observation is censored if the event time is not observed. This may happen for 

many reasons. For example, a patient may drop out of a study before her cancer goes 
into remission. The presence of censoring distinguishes the analysis of survival data 
from other types of analysis. A distribution of survival times can be characterized by a 
survival function represented by S(t). The graph of S(t) versus t is called a survival curve. 
Figure 15.1 shows an example of a survival curve.
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The goal is to estimate the distribution of the survival times or, equivalently, the sur-
vival function S(t). S(t)=P(T>t)= proportion of individuals who have not experienced 
the event by time t. There are two methods to estimate S(t): The life-table method and 
the product-limit method.

Life-Table Method: The classical method of estimating a survival curve. In the life 
table, the following elements are included: 

• The time interval is represented as [t, t+n].
• Survival times are grouped within intervals of fixed length.
• The proportion of individuals alive at time t who “fail” prior to t + n (also called the 

hazard function) is represented as nqt.
• The number of individuals still alive at time t is represented as lt.
• If l0 is the number of individuals alive at time 0 and lt is the number of these indi-

viduals still alive at time t, the proportion of individuals who have not yet “failed” 
at time t can be calculated as

 
S t

l

l
t( ) =
0

 (15.1)

• The proportion of individuals who do not fail during a given interval is represented 
by 1 – nqt.

• For the time intervals in the life table not containing an event, the estimated hazard 
function is 0, and the estimated proportion of individuals who do not “fail” is equal 
to 1.
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Figure 15.1  Example of a life-table survival curve. On the y-axis is the survival probability, and 
on the x-axis is time.
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• From the life table, we can use the proportion of individuals who do not “fail” in each 
interval to estimate the survival function using the multiplicative rule of probability.

 
ˆ ˆ( ) ( ) ( )S t S t tn q= − × −1 1  (15.2)

• The estimated survival function ˆ( )S t  changes only during the time intervals in 
which at least one “event” occurs.

• For smaller datasets, there can be many intervals without a single event. In these 
instances, it might not make sense to present the survival function this way.

Product-Limit Method (also called the Kaplan–Meier method): A nonparametric 
technique that uses the exact survival time for each individual in a sample instead of 
grouping the times into intervals.

• ˆ( )S t  is assumed to remain the same over the time period between events. It changes 
precisely when someone “fails.” Using the multiplicative rule of probability, the 
proportions of individuals who do not fail can be used to estimate the survival func-
tion just as in the life-table method.

• The estimated survival function will look different for different samples. It is an 
estimate of the true population survival function.

• This method can be adjusted to account for partial information about survival times 
that is available from censored observations.
• A censored observation is denoted by a plus (+) sign.
• ˆ( )S t  does not change from its previous value if the observation at time t is censored.
• The censored observation is not used to calculate the probability of failure at 

any subsequent time point.
• For the product-limit survival table, the following conditions are true:

• Time equals the exact times at which events occur.
• The proportion of patients alive just prior to time t who, then, fail at time t is 

represented by qt.
• The proportion of individuals who do not fail at t is represented by 1 – qt.

Comparing two survival functions

• Instead of simply characterizing survival times for a single group of subjects, we often 
want to compare the distributions of survival times for two different populations.

• Our goal is to determine whether survival differs systematically between the groups.
• If there are no censored observations in either group, we can use the Wilcoxon rank-

sum test (Chapter 9) to compare the median survival times.
• If censored observations exist, one method that can be used is a nonparametric tech-

nique known as the log-rank test.
• We want to test the null hypothesis: H0: S1(t) = S2(t).
• To do this, we start by plotting survival curves for both groups on the same graph.
• Does one curve consistently lie above the other? Or do the curves overlap?
• Next, we conduct the log-rank test.
• Is the difference between the two curves greater than might be observed by 

chance alone?
• Care must be taken not to ignore important confounding variables when pres-

ent as they may mask the true effect.
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EXAMPLE PROBLEM 15.1

Suppose that we are interested in the age at which people are diagnosed with asthma. 
A random sample of 25 participants in the 2014 NHANES survey1 is presented in 
Table 15.1.

We begin our analysis by summarizing the asthma diagnosis time data using the 
classic life-table method which is shown in Table 15.2. Using the previous information 
we were given on participants’ age at diagnosis of asthma (see Table 15.1), we create a 

Table 15.1 Age at diagnosis of asthma for 25 randomly selected 
participants with asthma from the 2014 NHANES surveya

Participantb Agec

75583 1
76766 1
77031 1
79583 1
80385 1
81154 1
75802 2
80540 2
81572 3
80806 4
76799 5
78909 5
80178 5
80938 5
81402 6
79506 9
75872 12
82199 12
77805 17
83278 19
79669 20
79386 22
79902 30
75523 50
75070 72

Source: National Health and Nutrition Examination Survey, Centers for 
Disease Control and Prevention, National Center for Health 
Statistics, Hyattsville, MD, 2014, https://wwwn.cdc.gov/Nchs 
/Nhanes/Search/nhanes13_14.aspx.

a The data can be used to estimate the survival functions. The data are 
presented in three segments for the sake of efficiency.

b An identification number represents each participant.
c Each number represents the age at which the participant was diagnosed 

as having asthma.

https://wwwn.cdc.gov
https://wwwn.cdc.gov
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survival table using the life-table method (see Table 15.2). We can see in Table 15.2 that 
as the time (age) interval increases, the survival function decreases.

Review the contents of each column. The first column specifies the time interval in 
years (t to t + n); the second column specifies the number of individuals who have not 
been diagnosed as having asthma at that time period (lt).

 A For the time intervals in the life table not containing a failure (diagnosis of 
asthma), the estimated proportion of individuals diagnosed with asthma is 
equal to what number?

  Zero

 B What does the life table indicate as the probability that a patient will be diag-
nosed with asthma after age 5 years? After age 30 years?

 
ˆ( ) ( ) .S P t5 5 0 60= > =

 
ˆ( ) ( ) .S P t30 30 0 12= > =

BOX 15.1 DESCRIPTION OF DATA ON THE 
AGE AT DIAGNOSIS OF ASTHMA1

The dataset (age_asthma_15_1b) for Example Problem 15.1 and Example Problem 15.2 
come from the 2014 National Health and Nutrition Examination Survey (NHANES). 
The data presented in Table 15.1 consist of a random sample of 25 participants who had 
received a diagnosis of asthma and had nonmissing data. Table 15.4 includes the data 
in Table 15.1 combined with a random sample of 10 participants who had not received 
a diagnosis of asthma and who had nonmissing data—these data are also in the dataset 
age_asthma_15_1b. The main variable that we are considering in these examples—age 
at diagnosis of asthma—comes from the NHANES question “How old {were you/was 
SP} when {you were/s/he was} first told {you/he/she} had asthma (az-ma)?” The response 
options were ages 1 to 79 years, and values of 80 years or more were all coded as 80 years. 
The respondent could also refuse to answer or respond that he or she did not know—
participants in these two response categories (and other categories with missing responses) 
were excluded from this sample. Further along in this chapter, we will also use the vari-
ables asthma and gender. Asthma, used as the censoring variable, comes from the NHANES 
question “The following questions are about different medical conditions. Has a doctor or 
other health professional ever told {you/SP} that {you have/s/he/SP has} asthma (az-ma)?” 
The responses were yes, no, refused, or don’t know. Refused, don’t know, and other miss-
ing responses were excluded from this sample. Gender responses come from the NHANES 
question “Gender of the participant.” Responses were “male” or “female,” and there were 
no missing responses for this question.
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  Since we are dealing with a relatively small group of participants, we might 
prefer to estimate the survival function using the product-limit method. The 
product-limit method of estimating S(t) is a nonparametric technique that uses 
the exact recurrence time for each individual instead of grouping the times into 
intervals. In this case, the participants who were diagnosed with asthma at age 
1 year would not be grouped with the participants who were diagnosed with 
asthma at the age of 2 years.

  Table 15.3 displays the product-limit estimate of S(t) for the sample of 25 
participants. Review the contents of each column. We can see that as the time 
(age) interval increases, the survival function decreases.

 C What does the product-limit estimate indicate as the probability that a par-
ticipant will be diagnosed with asthma after age 5 years? After age 30 years?

 
ˆ( ) ( ) .S P t5 5 0 44= > =

 
ˆ( ) ( ) .S P t30 30 0 08= > =

 D How do the values in Example Problem 15.1—Part (C) compare with what was 
predicted using the life-table method in Example Problem 15.1—Part (B)?

  The values in Example Problem 15.1—Part (C) are somewhat lower than 
the values predicted using the life-table method.

  The product-limit method for estimating a survival curve can be modified to 
take into account the partial information about age at diagnosis of asthma that is 

Table 15.2 Life-table method of estimating S(t) for age at diagnosis of asthma

t to t + na
nqt

b lt
c 1 – nqt

 d Estimate of S(t)e

1–5 0.40 25 0.60 1.00

5–10 0.40 15 0.60 0.60

10–15 0.22  9 0.78 0.36

15–20 0.29  7 0.71 0.28

20–25 0.40  5 0.60 0.20

25–30 0.00  3 1.00 0.12

30–35 0.33  3 0.67 0.12

35–40 0.00  2 1.00 0.08

40–45 0.00  2 1.00 0.08

45–50 0.00  2 1.00 0.08

50–55 0.50  2 0.50 0.08

55–60 0.00  1 1.00 0.04

60+ 1.00  1 0.00 0.04
a The time frame in years.
b The proportion of individuals alive at time t who “fail” prior to t + n.
c The number of individuals still alive at time t.
d The proportion of individuals who do not “fail” during the given interval.
e The estimate of the survival function.
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available from censored observations. Censored survival times for an additional 
10 participants who were never diagnosed with asthma are reported in Table 
15.4. They are considered censored observations in this example because they 
never experienced a “failure,” meaning that they were never diagnosed as having 
asthma.

  The calculation for the product-limit estimate of the survival function is shown 
in Table 15.5. Using the previous information that we were given on participants’ 
age at diagnosis of asthma in Table 15.4, including the additional censored obser-
vations, we can create a survival table using the product-limit method. We can see 
that as the time (age) increases, the survival function decreases. 

 E What does Table 15.5 indicate as the probability that a participant will be 
diagnosed as having asthma after age 5 years? After age 30 years?

 
ˆ( ) ( ) .S P t5 5 0 59= > =

 
ˆ( ) ( ) .S P t30 30 0 26= > =

 F Is this estimate of survival function at age 5 years different from the previous 
estimate? Why would you expect this?

  Yes, the estimate that contains the censored observations is higher than the 
one without. We would expect this to change because there are censored observa-
tions that occur before age 5 years.

Table 15.3 Product-limit method of estimating S(t) diagnosis of asthma

Timea qt
b 1 – qt

 c Estimate of S(t) d

0 0.00 1.00 1.00

1 0.26 0.74 0.76

2 0.11 0.89 0.68

3 0.06 0.94 0.64

4 0.06 0.94 0.60

5 0.27 0.73 0.44

6 0.09 0.91 0.40

9 0.10 0.90 0.36

12 0.22 0.78 0.28

17 0.14 0.86 0.24

19 0.17 0.83 0.20

20 0.20 0.80 0.16

22 0.25 0.75 0.12

30 0.33 0.67 0.08

50 0.50 0.50 0.04

72 1.00 0.00 0.00
a Time (i.e., age) in years.
b The proportion of patients alive just prior to time t who have “failed” at that time.
c The proportion of individuals who do not “fail” at t.
d The estimate of the survival function.
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Table 15.4 Age of randomly selected NHANES 2014 participants 
(10 without reported asthma and 25 with reported asthma)a 

Participantb Agec

75583 1
76766 1
77031 1
79583 1
80385 1
81154 1
75802 2
80540 2
76085 2+
80914 2+
81572 3
80806 4
76799 5
78909 5
80178 5
80938 5
81402 6
79506 9
77412 9+
75872 12
82199 12
74658 12+
79792 13+
77805 17
83278 19
79669 20
79386 22
79100 28+
79902 30
79217 33+
75523 50
76877 52+
82963 60+
80379 67+
75070 72

Source: National Health and Nutrition Examination Survey, Centers for 
Disease Control and Prevention, National Center for Health Statistics, 
Hyattsville, MD, 2014, https://wwwn.cdc.gov/Nchs/Nhanes/Search 
/ nhanes13_14 .aspx.

a The data are presented in three segments for the sake of efficiency. Also, the 
25 participants with asthma were reported in Table 15.1.

b An identification number represents each participant. 
c Each number represents the age at which the participant was diagnosed as 

having asthma. Participants without asthma are denoted by a plus (+) sign.

https://wwwn.cdc.gov
https://wwwn.cdc.gov
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 G Is it also different at age 30 years? Did you expect this?

  Yes, the estimate that contains the censored observations is higher than the 
one without. We would expect this to change because there are censored observa-
tions that occur before age 30 years.

 H We can also create a table similar to Table 15.5 using SAS or Stata. Create 
tables for the survivor functions using both the product-limit method and 
the life-table method using SAS or Stata. The data presented in this problem 
are saved in the dataset asthma_age_15b.

Table 15.5 Product-limit method of estimating S(t) diagnosis of asthma, with censoringa

Timeb qt
c 1 – qt

d S(t)e

0 0.00 1.00 1.00

1 0.17 0.83 0.83

2 0.07 0.93 0.77

3 0.04 0.96 0.74

4 0.04 0.96 0.71

5 0.17 0.83 0.59

6 0.05 0.95 0.56

9 0.06 0.94 0.52

12 0.13 0.88 0.46

13 0.00 1.00 0.46

17 0.08 0.92 0.42

19 0.09 0.91 0.38

20 0.10 0.90 0.34

22 0.11 0.89 0.31

28 0.00 1.00 0.31

30 0.14 0.86 0.26

33 0.00 1.00 0.26

50 0.20 0.80 0.21

52 0.00 1.00 0.21

60 0.00 1.00 0.21

67 0.00 1.00 0.21

72 1.00 0.00 0.00
a The estimates here are slightly different from the estimates calculated in Table 15.3 because of the 

additional censored observations that were included.
b Time (i.e., age) in years.
c The proportion of patients alive just prior to time t who have “failed” at that time.
d The proportion of individuals who do not “fail” at t.
e The estimate of the survival function.
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Instructions for Example Problem 15.1—Part H

Generating Survival Tables in SAS and Stata 

SAS Stata

In order to create survivor function tables in SAS, 
we will use PROC LIFETEST. This procedure 
will allow us to compute tables, along with 
several other items we will learn about later in 
this chapter, for both the life table and product-
limit methods. 

After making sure that we have our dataset 
asthma_age_15b saved in our mylib library, we 
will use PROC LIFETEST:

PROC LIFETEST
DATA=mylib.asthma_age_15b;
 TIME age_time*asthma(0);
RUN;

The default method for PROC LIFETEST is the 
product-limit method. To get the life-table 
method, we would simply add METHOD=life to 
the PROC LIFETEST line:

PROC LIFETEST
DATA=mylib.asthma_age_15b 
METHOD=life INTERVALS=0 to 60 
by 5;;
 TIME age_time*asthma(0);
RUN;

To get the life-table method table similar to what 
we presented in Table 15.2, we can use the 
INVERVALS option. We want to see a table from 
0 to 60 with interval lengths of 5 (see SAS code 
above).

The SAS output created after running PROC 
LIFETEST, using the product-limit method, is 
shown after this table. The survival function 
estimate is presented in the Survival column. The 
life-table method output is shown after the 
product-limit method output.

In order to create survivor function tables in Stata, 
we can use the sts list command. This will create a 
survival function table using the product-limit 
method. In order to use this command, we first 
have to declare our data as survival data by using 
the stset command:

stset age_time, failure(asthma)

After the stset command, we type our time 
variable, age_time in this example, then let Stata 
know our failure (censor) variable, asthma in this 
example. Since asthma is already coded as 1 = 
asthma/failure, 0 = no asthma/censored, Stata 
knows that 0 is the censored observation. If 
asthma was coded differently, we would have to 
let Stata know the censored observation value. 
Next, to create the product-limit table, we use the 
sts list 
command:

sts list

If we wanted to get the survival function table 
using the life-table method, we could use the 
ltable command:

ltable age_time asthma, 
intervals(5)

The intervals(5) option tells Stata that we would 
like our intervals at a length of 5.
The Stata output created after running the sts list 
command, using the product-limit method, is 
shown after this table, following the SAS output. 
The life-table method output is shown after the 
product-limit method output.
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SAS Product-Limit Output:

The LIFETEST Procedure

Product-Limit Survival Estimates

age_time Survival Failure

Survival 
Standard 

Error
Number 
Failed

Number
Left

0.0000 1.0000 0 0 0 35
1.0000 . . . 1 34
1.0000 . . . 2 33
1.0000 . . . 3 32
1.0000 . . . 4 31
1.0000 . . . 5 30
1.0000 0.8286 0.1714 0.0637 6 29
2.0000 . . . 7 28
2.0000 0.7714 0.2286 0.0710 8 27
2.0000 * . . . 8 26
2.0000 * . . . 8 25
3.0000 0.7406 0.2594 0.0745 9 24
4.0000 0.7097 0.2903 0.0776 10 23
5.0000 . . . 11 22
5.0000 . . . 12 21
5.0000 . . . 13 20
5.0000 0.5863 0.4137 0.0852 14 19
6.0000 0.5554 0.4446 0.0861 15 18
9.0000 0.5246 0.4754 0.0867 16 17
9.0000 * . . . 16 16

12.0000 . . . 17 15
12.0000 0.4590 0.5410 0.0874 18 14
12.0000 * . . . 18 13
13.0000 * . . . 18 12
17.0000 0.4208 0.5793 0.0880 19 11
19.0000 0.3825 0.6175 0.0880 20 10
20.0000 0.3442 0.6558 0.0871 21 9
22.0000 0.3060 0.6940 0.0854 22 8
28.0000 * . . . 22 7
30.0000 0.2623 0.7377 0.0836 23 6
33.0000 * . . . 23 5
50.0000 0.2098 0.7902 0.0817 24 4
52.0000 * . . . 24 3
60.0000 * . . . 24 2
67.0000 * . . . 24 1
72.0000 0 1.0000 . 25 0

Note: The marked (asterisk) survival times are censored observations.
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Life-Table Survival Estimates

Survival 
Standard 

Error

Median 
Residual 
Lifetime

Median 
Standard 

Error

Evaluated at the Midpoint of the Interval

PDF

PDF 
Standard 

Error Hazard

Hazard 
Standard 

Error

0 11.2784 6.2120 0.0588 0.0156 0.068966 0.021482
0.0781 16.3986 4.9756 0.0376 0.0138 0.061538 0.024824
0.0873 24.3750 7.2618 0.0138 0.00938 0.028571 0.020151
0.0882 37.5568 5.7571 0.0150 0.0101 0.036364 0.025607
0.0879 . . 0.0150 0.0101 0.044444 0.031232
0.0848 . . 0 . 0 .
0.0848 . . 0.00920 0.00886 0.033333 0.033217
0.0833 . . 0 . 0 .
0.0833 . . 0 . 0 .
0.0833 . . 0 . 0 .
0.0833 . . 0.0112 0.0106 0.05 0.049608
0.0816 . . 0 . 0 .
0.0816 . . . . . .

Stata Product-Limit Method Output:

 failure _d: asthma
 analysis time _t: age_time

           Beg.           Net        Survivor      Std.
  Time    Total   Fail   Lost        Function     Error     [95% Conf. Int.]
-------------------------------------------------------------------------------
 1 35 6 0 0.8286 0.0637 0.6577 0.9191
 2 29 2 2 0.7714 0.0710 0.5946 0.8785
 3 25 1 0 0.7406 0.0745 0.5603 0.8558
 4 24 1 0 0.7097 0.0776 0.5271 0.8323
 5 23 4 0 0.5863 0.0852 0.4025 0.7310
 6 19 1 0 0.5554 0.0861 0.3732 0.7041
 9 18 1 1 0.5246 0.0867 0.3445 0.6767
 12 16 2 1 0.4590 0.0874 0.2845 0.6173
 13 13 0 1 0.4590 0.0874 0.2845 0.6173
 17 12 1 0 0.4207 0.0880 0.2490 0.5833
 19 11 1 0 0.3825 0.0880 0.2152 0.5481
 20 10 1 0 0.3442 0.0871 0.1831 0.5118
 22 9 1 0 0.3060 0.0854 0.1527 0.4742
 28 8 0 1 0.3060 0.0854 0.1527 0.4742
 30 7 1 0 0.2623 0.0836 0.1183 0.4322
 33 6 0 1 0.2623 0.0836 0.1183 0.4322
 50 5 1 0 0.2098 0.0817 0.0784 0.3838
 52 4 0 1 0.2098 0.0817 0.0784 0.3838
 60 3 0 1 0.2098 0.0817 0.0784 0.3838
 67 2 0 1 0.2098 0.0817 0.0784 0.3838
 72 1 1 0 0.0000 . . .
-------------------------------------------------------------------------------
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Stata Life-Table Method Output:

 Beg. Std.
 Interval Total Deaths Lost Survival Error [95% Conf. Int.]
-------------------------------------------------------------------------------
 0 5 35 10 2 0.7059 0.0781 0.5224 0.8296
 5 10 23 6 1 0.5176 0.0873 0.3370 0.6712
 10 15 16 2 2 0.4486 0.0882 0.2735 0.6092
 15 20 12 2 0 0.3739 0.0879 0.2076 0.5402
 20 25 10 2 0 0.2991 0.0848 0.1477 0.4668
 25 30 8 0 1 0.2991 0.0848 0.1477 0.4668
 30 35 7 1 1 0.2531 0.0833 0.1111 0.4235
 50 55 5 1 1 0.1968 0.0816 0.0686 0.3731
 60 65 3 0 1 0.1968 0.0816 0.0686 0.3731
 65 70 2 0 1 0.1968 0.0816 0.0686 0.3731
 70 75 1 1 0 0.0000 . . .
-------------------------------------------------------------------------------

EXAMPLE PROBLEM 15.2

Rather than work with survival times drawn from a single population, we often want to 
compare the distributions of times for two different groups. For example, we might wish 
to compare the age of diagnosis of asthma for participants who are male versus those 
who are female. For this problem, we will continue using the dataset asthma_age_15b. 

 A Using statistical software, plot the survival curves of both males and females 
using the product-limit estimates.

B  Look at the plotted results. Does either curve drop down to the horizontal 
axis?

Instructions for Example Problem 15.2—Part (A)

Plotting Survival Curves in SAS and Stata

SAS Stata

In order to plot a survival curve in SAS, we will use 
PROC LIFETEST. This procedure will allow us to 
compute survival curves, along with tables, for both 
the life-table and product-limit methods. 
After making sure that we have our dataset asthma_
age_15b  saved in our mylib library, we will use 
PROC LIFETEST:

PROC LIFETEST
DATA=mylib.asthma_age_15b;
 TIME age_time*asthma(0);
 STRATA gender;
RUN;

In order to plot a survival curve in Stata, we 
can use the sts graph command. First, we have 
to make sure that our data are declared as 
survival data, which should already be the 
case if you followed the process presented in 
Example Problem 15.1. 

Next, to create the graph, we use the sts graph 
command, with a by(gender) option:

sts graph, by(gender)
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Along with other tables, including the survivor 
function estimates discussed in Example Problem 
15.1—Part (H), we obtain the survival curve 
presented in Figure 15.2. The graph shows the 
survival curves for both males and females.

If we wanted to plot a survival curve using the 
life-table method, we could just add the 
METHOD=life option to our PROC LIFETEST 
statement.

We will obtain the survival curve presented in 
Figure 15.3. The graph shows the survival 
curves for both males and females.

If we wanted to plot a survival curve using the 
life-table method, we could use the ltable 
command with a graph option:

ltable age_time asthma, graph 
by(gender)

  The curve for the females drops to the horizontal axis; however, the curve for 
the males does not.

 C What does this indicate about each of the estimated survival probabilities?

  This indicates that the estimated survival probability for females reaches 0, 
whereas the male survival probability does not reach 0.

 D Why did this occur in this case for the male group?

  This occurred in the male group because the last observation is censored.
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Figure 15.2  SAS product-limit survival curve of age at diagnosis of asthma by sex. The SAS-
made product-limit survival curve (also known as Kaplan–Meier curve) of age at diagno-
sis of asthma, stratified by sex is presented in the figure. The solid black line represents 
females, and the dashed black line represents males. Both curves trend downward as age 
increases; however, the male curve appears to decrease slightly faster than the female curve.
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E Based on the plotted survival curves alone, which group of participants 
appears to fare better?

  On the basis of the curve, females appear to fare better because the curve is 
higher at almost all time points, except for at the very end, so there is a higher 
probability of not being diagnosed with asthma.

  We can conduct a log-rank test to determine whether the apparent differ-
ence is statistically significant.

 F What is the appropriate null and alternative hypothesis?

  The null hypothesis for the log-rank test would be

 H : S S0 M F( ) ( )t t=  H : S S1 M F( ) ( )t t≠

 where SM(t) is the survival function of the females and SF(t) is the survival func-
tion of the males.

 G Conduct the test at the α=0.05 level. What do you conclude?

  In order to conduct a log-rank test, we can use statistical software.

1.00

0.75

0.50
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Analysis time
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Kaplan–Meier survival estimates

Figure 15.3  Stata product-limit survival curve of age at diagnosis of asthma by gender. The 
black line represents females and the light gray line represents males.
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Instructions for Example Problem 15.2—Part G

How to Conduct a Log-Rank Test in SAS and Stata

SAS Stata

To obtain the log-rank test in SAS, we can use the 
same code that we ran in Example Problem 
15.2—Part (A):

PROC LIFETEST
DATA=mylib.asthma_age_15b;

 TIME age_time*asthma(0);
 STRATA gender;

RUN;

Within the output, we will see the box “Test for 
Equality over Strata” like below:

Test of Equality over Strata

Test Chi-
Square

DF Pr > 
Chi-Square

Log-Rank 1.8429 1 0.1746

Wilcoxon 2.6115 1 0.1061

–2Log(LR) 1.5616 1 0.2114

To obtain the log-rank test in Stata, we can use 
the sts test command:

sts test gender

We specify that we want to test by gender and 
obtain the resulting output:

Log-rank test for equality of 
survivor functions

       |   Events         Events
gender |  observed       expected
-------+-------------------------
Female |        13          16.08
Male   |        12           8.92
-------+-------------------------
Total  |        25          25.00
             chi2(1) =       1.84
             Pr>chi2 =     0.1746

We see the p-value is 0.1746, which is greater 
than 0.05. Thus, we would fail to reject the null 
hypothesis and would conclude that there is no 
evidence to suggest that the distribution of age at 
diagnosis of asthma is different in males and 
females.

The first line gives us the log-rank test. Here, we 
see that the p-value is greater than 0.05; thus, we 
would fail to reject the null hypothesis and 
conclude that there is no evidence to suggest that 
the distribution of age at diagnosis of asthma is 
different in males and females.

PRACTICE PROBLEM 15.1

Suppose that we are interested in age at first heart attack. Listed here are the ages in 
years when a participant had a heart attack: 35, 46, 23, 71, 41, 64, 50, 70. The group 
is composed of eight randomly selected NHANES1 participants with nonmissing data. 
None of the observations are censored in the list of the ages in years when a participant 
had a heart attack.

 A What is the median survival time for these patients?

 B For fixed intervals of length 10 years, use the life-table method to estimate the sur-
vival function S(t).
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 C Construct a survival curve based on the life-table estimate of S(t).

 D Use the product-limit method to estimate the survival function.

 E Construct a survival curve based on the product-limit estimate.

PRACTICE PROBLEM 15.2

In 2012, an additional survey was conducted as part of the NHANES survey that tar-
geted youths. That survey was called the NHANES National Youth Fitness Survey 
(NNYFS).2 In the dataset nnyfs_ plank is a stratified random sample of 60 participants 
in the NNYFS survey who completed both a plank hold test and a cardiovascular fit-
ness test. There are five variables included in this sample dataset. The variable ID 

BOX 15.2 DESCRIPTION OF DATA FOR PRACTICE PROBLEM 15.11

The data presented in Practice Problem 15.1 come from a random sample of 2014 
NHANES participants that had a valid response option for the age at first heart attack. 
The question asked in the 2014 NHANES survey was “How old {were you/was SP} when 
{you were/s/he was} first told {you/s/he} had a heart attack (also called myocardial infarc-
tion)?” The age responses ranged from 16 to 79 years, and ages 80 and older were all coded 
as 80 years. The respondent could also refuse to answer or respond that he or she did not 
know—participants in these two response categories (and other categories with missing 
responses) were excluded from this sample.

BOX 15.3 DESCRIPTION OF DATA FOR PRACTICE PROBLEM 15.22

In the dataset nnyfs_ plank is a stratified random sample of 60 participants in the NNYFS 
survey who completed both a plank hold test and a cardiovascular fitness test. The variable 
ID comes from the NNYFS variable seqn, which is the ID number given to each participant. 
The variable bmi comes from the NNYFS variable BMI category for children/adolescents 
that classifies the youths as underweight, normal weight, overweight, or obese. The first 
two categories were combined to create the underweight/normal weight category, and the 
latter two categories were combined to create the overweight/obese category. The variable 
cardiofit comes from the NNYFS variable cardiovascular fitness level and was left as coded 
by NNYFS. The variables plank and plank_time come from the NNYFS variable for the 
number of the seconds that plank position is held. If participants did not have missing 
values for these variables, the variable plank was coded as 1. Plank_time contains values that 
appeared in the NNYFS variable for the number of seconds that plank position was held. 



Survival analysis 487

is an identification number for each participant. The variable bmi is a two-category 
(dichotomous) variable, where 0 = underweight or normal weight and 1 = overweight 
or obese, as classified by the NNYFS survey administrators. The variable cardiofit is a 
three-category variable, where 1 = healthy fitness zone, 2 = needs improvement—some 
risk, and 3 = needs improvement—high risk. According to the NNYFS,2 this variable 
is based on gender- and age-specific cutoff points of an estimated VO2max. The variable 
plank contains a 1 for youths who completed the plank hold test and a 0 for the youths 
who did not. In this sample, all youths completed the plank hold test, so they all have a 
value of 1. The final variable in the dataset plank_time is the number of seconds that the 
youth held the plank position.

 A Use the product-limit method to estimate the survival function in each BMI group.

 B Construct survival curves based on the product-limit estimate.

 C On the basis of the survival curve, does it appear that the youths in one group have 
a longer plank hold time than those in the other group?

 D Test the hypothesis that the distributions of plank hold times are identical in the 
two BMI groups.

 E For the overweight or obese children, test the null hypothesis that the distributions 
of plank hold times are identical for youths in each cardio fitness category. What do 
you conclude?
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A random sample of 1,000 births from the 2010 birth cohort-linked birth and infant 
death dataset is provided in the labe_births_2010 dataset.1 Use the sample to answer 
the following questions. The questions are just a guide, and it is important to conduct 
descriptive analyses to explore the dataset, write the null and alternative hypotheses, 
interpret confidence intervals, and draw conclusions. Include all assumptions, justifica-
tions, interpretations, and explanations in the answers.

Part one

First, we will look at the variables of interest and then recode missing values. (Note: 
Table E.1 shows the variables that we will use in this lab. A description of each variable 
and the values of each variable are shown.)

 A Run basic descriptive statistics for the variables gest_age, birth_wt, del_method, mothers_ 
age, wt_gain, and preg_htn.

 B Using Table E.1, recode the unknown values of each variable so that they are under-
stood to be missing by SAS or Stata.

 C Now, run the descriptive statistics again. Are all of the unknown variables excluded 
from the analysis?

Part two

Suppose that we are interested in finding whether babies born prematurely had the 
same mean birthweight as the general population. We already know that the true mean 
birthweight of the population of babies born in the United States in 2010 is 3261 
grams. Create a subsample of premature babies (gestational age < 36 weeks).

 A How many premature babies are there in the sample?

 B What are the sample mean and sample standard deviation of birthweight among 
premature babies?

 C Use the sample to construct a 95% confidence interval for the true mean birthweight 
of premature babies. Interpret the confidence interval. Does the interval contain the 

Lab E: Data analysis project
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true mean birthweight of the general population? What do you conclude about the 
mean birthweight of the population of babies born at less than 36 weeks gestational 
age compared with the general population?

 D Using the random sample, test the null hypothesis that premature babies had a 
mean birthweight of 3261 grams, the mean birthweight of the general population. 
Use a two-sided test at the α = 0.05 level of significance. What type of test do we 
perform? What is the test statistic? What distribution does the test statistic follow? 
What is the p-value? What do we conclude? 

 E Do the conclusions drawn from the confidence interval and hypothesis test agree? 
Would we expect that they would?

 F Because we have data on all babies born in the United States in 2010, we know that 
the true mean birthweight for the population of premature babies is 2283 grams. 
Did we make a correct conclusion with the hypothesis test based on the sample of 
babies? If not, what type of error did we make?

Part three

Investigate whether the mean birthweight of male babies was the same as that of female 
babies in the 2010 U.S. cohort. Since we do not know what the true mean birthweight 
is in either population, we will perform a hypothesis test using the sample. Use a two-
sided test at the α = 0.05 level of significance.

Table E.1 Variables for Lab E

Variable Description Level

gest_age Gestational age in weeks 22–47 = Weeks of gestation
99 = Unknown

birth_wt Birthweight in grams 227–8165
9999 = Unknown

del_method Delivery method 1 = Vaginal 
2 = C-section
9 = Unknown

mothers_age Mother’s age in years 12 = 10 to 12 years
13 = 13 years
14 = 14 years
…
49 = 49 years
50 = 50 to 54 years

wt_gain Weight gain during 
pregnancy in pounds

0–97 = Weight gain in pounds
98 = ≥ 98 Pounds
99 = Unknown

preg_htn Pregnancy-associated 
hypertension

1 = Yes
2 = No
9 = Unknown
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 A What are the two populations that we are comparing?

 B What are the null and alternative hypotheses?

 C What is the probability that we will reject the null hypothesis if, in fact, the null 
hypothesis is true?

 D What are the sample mean and sample standard deviation for each group? How 
many boys and how many girls are in the sample? Recall that female = 1 for females 
and female = 0 for males.

 E Does it appear as if the assumption of equal variances is valid?

 F Using the random sample, test the null hypothesis that male babies and female 
babies had the same mean birthweight. What type of test do we perform? What 
is the value of the test statistic? What distribution does the test statistic follow? 
What is the p-value? What do we conclude?

 G What is the 95% confidence interval for the true difference in mean birthweight 
between males and females? Does the confidence interval contain 0? Would we 
expect it to? Why or why not?

Part four

Next, we will use several statistical methods to investigate whether there is an associa-
tion between vaginal birth and gestational age in the population of babies born in the 
United States in 2010. Specifically, do babies born after 40 weeks gestational age have 
the same proportion of vaginal births as babies born at 40 weeks gestational age or less? 
For each test, use the sample of babies. Please, note that multiple tests are valid for this 
analysis; in fact, some are algebraically identical. 

To answer these questions, we will work with two variables, gest_age and del_method. 
Refer to Table E.1 for the variable names as well as the range of observed values and the 
values for unknown measurements.

In order to compare the proportion of vaginal births for babies born at a gestational 
age ≤ 40 weeks, the variable gest_age needs to be dichotomized, and del_method will be 
used to create a new indicator. Create a new variable called gest_lte40, which will recode 
gest_age into a binary variable as shown in Table E.2. Likewise, recode del_method into a 
new variable called vag_birth. (Note: Table E.2 shows a description and values for two 
new indicator variables that we will use in the analysis.)

Using the sample, test the null hypothesis that the proportion of vaginal births for babies 
born at a gestational age ≤ 40 weeks is the same as the proportion for babies born at a gesta-
tional age > 40 weeks. Use a two-sample test of proportions at the 0.05 level of significance.
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 A Write the code to create the new variables gest_lte40 and vag_birth.

 B State the null and alternative hypotheses.

 C For each group of babies, what is the point estimate of the population proportion of 
vaginal births?

 D What is the point estimate for the true difference in proportion of vaginal births 
between the two groups?

 E What is the 95% confidence interval for the difference in proportions?

 F Draw a conclusion about the null hypothesis based on the confidence interval.

 G What are the value and distribution of the test statistic?

 H What is the p-value?

 I Draw a conclusion about the null hypothesis based on the results of the hypoth-
esis test.

Part five

Test the same null hypothesis as in Part Four, this time using a chi-square test.

 A Display the sample data as a 2 × 2 contingency table.

 B Why is McNemar’s test not an appropriate method for analyzing these data?

Table E.2 New indicator variables

Variable Description Level

gest_lte40 Gestational age ≤ 40 indicator 1 = Yes (gest_age ≤ 40)
0 = No (gest_age > 40)
. = Unknown (gest_age = .)

vag_birth Vaginal delivery indicator 1 = Yes (del_method = 1)
0 = No (del_method = 2)
. = Unknown (del_method = .)
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 C Perform the hypothesis test using an appropriate statistic.

 D What are the value and distribution of the test statistic?

 E What is the p-value?

 F Draw a conclusion about your null hypothesis based on the results of the hypothesis 
test. 

 G How does the chi-square test statistic compare with the test statistic from the two-
sample test of proportions?

 H How does the p-value of the chi-squared test compare with that of the two-sample 
test of proportions?

 I Under what situation is the chi-square test not a valid way to test for an association 
between two dichotomous variables?

Part six

Test the same hypothesis as in part four, this time using odds ratios to analyze these data.

 A What are your null and alternative hypotheses in terms of the odds ratio?

 B What are the estimated odds of vaginal birth for babies born at a gestational age 
≤ 40 weeks in the sample? Note: This can be calculated by hand using a 2 × 2 table 
or through a logistic regression.

 C What are the estimated odds of vaginal birth for babies born at a gestational age 
> 40 weeks in the sample?

 D What is the estimated odds ratio of vaginal birth in a comparison of babies born at 
a gestational age ≤ 40 and babies born at a gestational age > 40?

 E Interpret the odds ratio in words.

 F Construct a 95% confidence interval for the true odds ratio, and interpret the con-
fidence interval in words.
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 G Use the confidence interval for the odds ratio to test the null hypothesis. Be sure to 
clearly state the conclusion.

 H How do the results based on the confidence interval of the odds ratio compare with 
the results based on the two-sample test of proportions and the chi-square test?

Part seven

Investigate whether there is a linear relationship between a mother’s age and the amount 
of weight gained during pregnancy for the population of babies born in the United States 
in 2010. The two variables that we will be working with are mothers_age and wt_ gain. 

 A Create a scatterplot of mother’s age versus weight gain. Let weight gain be on the 
y-axis. Be sure to label each axis properly. 

 B Does there appear to be a linear relationship between the two variables?

 C What is the Pearson coefficient of correlation?

 D Use the sample Pearson correlation coefficient to test the null hypothesis that there 
is no linear relationship between the two variables. State the null and alternative 
hypotheses for the test.

 E What is the p-value of the test statistic?

 F Draw a conclusion for the test.

 G What is the Spearman’s rank correlation coefficient?

 H Now, we will use the Spearman’s correlation coefficient to test the same hypothesis. 
What is the p-value of the test statistic?

 I Draw a conclusion for the test.

 J Do the conclusions of the two tests agree? Briefly explain why you think that is so. 

 K Under what situations should we use Spearman’s correlation coefficient in place of 
the Pearson?
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Part eight

Suppose that we are interested in the relationship between mother’s weight gain during 
pregnancy and gestational age. For all analyses, let weight gain be the dependent variable.

 A Create a scatterplot of gestational age and weight gain during pregnancy. What can 
we say about the relationship between weight gain and gestational age? 

 B What would be the equation for the true population regression line predicting 
weight gain from gestational age?

 C Obtain the least squares regression line.

 D What is the least squares estimate of the true population intercept (α̂)? Interpret 
this value in words.

 E What is the least squares estimate of the true population slope (β̂)? Interpret this 
value in words.

 F Test whether there is a significant linear relationship between the mother’s weight gain 
and gestational age. State the null and alternative hypotheses, calculate the test statis-
tic, state the distribution of the test statistic, state the p-value, and draw a conclusion.

 G Calculate a 95% confidence interval for the slope of the true population regression line.

 H How does it reflect the result of the hypothesis test?

 I Now recreate the scatterplot, this time including the fitted values from the regression.
• First, we must create a predicted value for each observation.
• Then, create a scatterplot with the predicted values overlaid.
• Label each axis.

 J What is the predicted mean weight gain ( ŷ) for all mothers with babies born at 
29 weeks gestational age?

 K What is the coefficient of determination for the model, and how does it indicate the 
adequacy of this model in fitting the data?

 L Produce a scatterplot of the residuals versus the fitted values. How does it indicate 
that assumptions of simple linear regression are met or violated?
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Part nine

We now wish to determine whether the mother’s weight gain also depends on the age 
of the mother.

 A Write the form of the population regression model in terms of the predictor variables. 
Keep gestational age in the model, but add mother’s age as an explanatory variable.

 B Fit the model using SAS or Stata. Keep gestational age in the model, and add 
mother’s age as an additional explanatory variable.

 C What is the equation of the estimated line?

 D At the α = 0.05 level of significance, test the null hypothesis that the slope associ-
ated with each gestational age and mother’s age is equal to 0 while holding the 
other factor constant. (Note: two separate tests.)

 E What percentage of the variability do gestational age and mother’s age together 
explain?

 F Is this the most appropriate measure for models with more than one explanatory 
variable? If not, what is the most appropriate measure?

 G Find the most appropriate measure in this case, and discuss how the change in its 
value indicates whether adding mother’s age as an explanatory variable may or may 
not improve the ability to predict mother’s weight gain for infants in the population.

 H Would you leave mother’s age in a final model to predict weight gain? Why or why 
not?

Part ten

Now add a variable indicating pregnancy-associated hypertension to the model that 
includes gestational age as the only other explanatory variable to see whether a mother’s 
diagnosis of hypertension during pregnancy affects her weight gain after controlling 
for gestational age. Recode the preg_htn variable so that the values are x3 = 1 for yes 
(pregnancy-associated hypertension), x3 = 0 for no, and x3 = for unknown.

 A Fit this model in SAS or Stata.
 B Report the equation of the estimated regression line.
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 C At the α = 0.05 significance level, test the null hypothesis that the coefficient asso-
ciated with hypertension is equal to 0 using the output from your regression. What 
do you conclude?

 D Interpret the estimated coefficients for gestational age and hypertension in words.

 E Compare this to the model that contains only gestational age using the adjusted R2. 
How has it changed by adding the indicator for hypertension?

 F Plot the residuals of this model versus its fitted values, and comment on the appro-
priateness of the model.

 G To determine whether an increase in gestational age has a different effect on weight 
gain for mothers who were diagnosed with hypertension versus mothers who were 
not, we could add an additional variable to the model. What is this additional 
variable?

 H If this variable significantly added to the model, what does this mean in terms of 
how gestational age and hypertension each relate to the weight gain of mothers in 
this population?

 I Create an interaction term for gestational age and hypertension. Examine the val-
ues of the interaction term. Add the interaction term into the previous model, and 
determine whether it improves our ability to predict the weight gain of a mother in 
the population using the following criteria:

 1 Test the null hypothesis that the variable’s coefficient is 0.
 2 Examine the change in the value of the adjusted R2 with previous models.

 J Of the models examined, what model are you most comfortable using for predic-
tion? Why did you choose it?

Reference

 1.  Vital Statistics Data Available Online. Hyattsville, MD: Centers for Disease Control and Prevention, 
National Center for Health Statistics. 2016. http://www.cdc.gov/nchs/data_access/vitalstatsonline 
.htm. Accessed November 22, 2016. 

http://www.cdc.gov
http://www.cdc.gov


http://taylorandfrancis.com

http://taylorandfrancis.com


Appendix: Statistical tables



500 Appendix

Ta
bl

e A
.1

 B
in

om
ia

l d
is

tr
ib

ut
io

n 
pr

ob
ab

il
it

ie
s

n
k

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

2
0

0.
90

20
0.

81
00

0.
72

25
0.

64
00

0.
56

25
0.

49
00

0.
42

25
0.

36
00

0.
30

25
0.

25
00

1
0.

09
50

0.
18

00
0.

25
50

0.
32

00
0.

37
50

0.
42

00
0.

45
50

0.
48

00
0.

49
50

0.
50

00
2

0.
00

25
0.

01
00

0.
02

25
0.

04
00

0.
06

25
0.

09
00

0.
12

25
0.

16
00

0.
20

25
0.

25
00

3
0

0.
85

74
0.

72
90

0.
61

41
0.

51
20

0.
42

19
0.

34
30

0.
27

46
0.

21
60

0.
16

64
0.

12
50

1
0.

13
54

0.
24

30
0.

32
50

0.
38

40
0.

42
20

0.
44

10
0.

44
40

0.
43

20
0.

40
80

0.
37

50
2

0.
00

71
0.

02
70

0.
05

74
0.

09
60

0.
14

06
0.

18
90

0.
23

89
0.

28
80

0.
33

41
0.

37
50

3
0.

00
01

0.
00

10
0.

00
34

0.
00

80
0.

01
56

0.
02

70
0.

04
29

0.
06

40
0.

09
11

0.
12

50

4
0

0.
81

45
0.

65
61

0.
52

20
0.

40
96

0.
31

64
0.

24
01

0.
17

85
0.

12
96

0.
09

15
0.

06
25

1
0.

17
15

0.
29

16
0.

36
85

0.
40

96
0.

42
19

0.
41

16
0.

38
45

0.
34

56
0.

29
95

0.
25

00
2

0.
01

35
0.

04
86

0.
09

75
0.

15
36

0.
21

09
0.

26
46

0.
31

05
0.

34
56

0.
36

75
0.

37
50

3
0.

00
05

0.
00

36
0.

01
15

0.
02

56
0.

04
69

0.
07

56
0.

11
15

0.
15

36
0.

20
05

0.
25

00
4

0.
00

00
0.

00
01

0.
00

05
0.

00
16

0.
00

39
0.

00
81

0.
01

50
0.

02
56

0.
04

10
0.

06
25

5
0

0.
77

38
0.

59
05

0.
44

37
0.

32
77

0.
23

73
0.

16
81

0.
11

60
0.

07
78

0.
05

03
0.

03
13

1
0.

20
36

0.
32

81
0.

39
15

0.
40

96
0.

39
55

0.
36

02
0.

31
24

0.
25

92
0.

20
59

0.
15

63
2

0.
02

14
0.

07
29

0.
13

82
0.

20
48

0.
26

37
0.

30
87

0.
33

64
0.

34
56

0.
33

69
0.

31
25

3
0.

00
11

0.
00

81
0.

02
44

0.
05

12
0.

08
79

0.
13

23
0.

18
11

0.
23

04
0.

27
57

0.
31

25
4

0.
00

00
0.

00
05

0.
00

22
0.

00
64

0.
01

46
0.

02
84

0.
04

88
0.

07
68

0.
11

28
0.

15
63

5
0.

00
00

0.
00

00
0.

00
01

0.
00

03
0.

00
10

0.
00

24
0.

00
53

0.
01

02
0.

01
85

0.
03

13

6
0

0.
73

51
0.

53
14

0.
37

71
0.

26
21

0.
17

80
0.

11
76

0.
07

54
0.

04
67

0.
02

77
0.

01
56

1
0.

23
21

0.
35

43
0.

39
93

0.
39

32
0.

35
60

0.
30

25
0.

24
37

0.
18

66
0.

13
59

0.
09

38
2

0.
03

05
0.

09
84

0.
17

62
0.

24
58

0.
29

66
0.

32
41

0.
32

80
0.

31
10

0.
27

80
0.

23
44

3
0.

00
21

0.
01

46
0.

04
15

0.
08

19
0.

13
18

0.
18

52
0.

23
55

0.
27

65
0.

30
32

0.
31

25
4

0.
00

01
0.

00
12

0.
00

55
0.

01
54

0.
03

30
0.

05
95

0.
09

51
0.

13
82

0.
18

61
0.

23
44

(C
on

ti
nu

ed
 )



Appendix 501

Ta
bl

e A
.1

 (
C

on
ti

nu
ed

) 
B

in
om

ia
l d

is
tr

ib
ut

io
n 

pr
ob

ab
il

it
ie

s

n
k

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

5
0.

00
00

0.
00

01
0.

00
04

0.
00

15
0.

00
44

0.
01

02
0.

02
05

0.
03

69
0.

06
09

0.
09

38
6

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

02
0.

00
07

0.
00

18
0.

00
41

0.
00

83
0.

01
56

7
0

0.
69

83
0.

47
83

0.
32

06
0.

20
97

0.
13

35
0.

08
24

0.
04

90
0.

02
80

0.
01

52
0.

00
78

1
0.

25
73

0.
37

20
0.

39
60

0.
36

70
0.

31
15

0.
24

71
0.

18
48

0.
13

06
0.

08
72

0.
05

47
2

0.
04

06
0.

12
40

0.
20

97
0.

27
53

0.
31

15
0.

31
77

0.
29

85
0.

26
13

0.
21

40
0.

16
41

3
0.

00
36

0.
02

30
0.

06
17

0.
11

47
0.

17
30

0.
22

69
0.

26
79

0.
29

03
0.

29
18

0.
27

34
4

0.
00

02
0.

00
26

0.
01

09
0.

02
87

0.
05

77
0.

09
72

0.
14

42
0.

19
35

0.
23

88
0.

27
34

5
0.

00
00

0.
00

02
0.

00
12

0.
00

43
0.

01
15

0.
02

50
0.

04
66

0.
07

74
0.

11
72

0.
16

41
6

0.
00

00
0.

00
00

0.
00

01
0.

00
04

0.
00

13
0.

00
36

0.
00

84
0.

01
72

0.
03

20
0.

05
47

7
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

02
0.

00
06

0.
00

16
0.

00
37

0.
00

78

8
0

0.
66

34
0.

43
05

0.
27

25
0.

16
78

0.
10

01
0.

05
76

0.
03

19
0.

01
68

0.
00

84
0.

00
39

1
0.

27
93

0.
38

26
0.

38
47

0.
33

55
0.

26
70

0.
19

77
0.

13
73

0.
08

96
0.

05
48

0.
03

13
2

0.
05

15
0.

14
88

0.
23

76
0.

29
36

0.
31

15
0.

29
65

0.
25

87
0.

20
90

0.
15

69
0.

10
94

3
0.

00
54

0.
03

31
0.

08
39

0.
14

68
0.

20
76

0.
25

41
0.

27
86

0.
27

87
0.

25
68

0.
21

88
4

0.
00

04
0.

00
46

0.
01

85
0.

04
59

0.
08

65
0.

13
61

0.
18

75
0.

23
22

0.
26

27
0.

27
34

5
0.

00
00

0.
00

04
0.

00
26

0.
00

92
0.

02
31

0.
04

67
0.

08
08

0.
12

39
0.

17
19

0.
21

88
6

0.
00

00
0.

00
00

0.
00

02
0.

00
11

0.
00

38
0.

01
00

0.
02

17
0.

04
13

0.
07

03
0.

10
94

7
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
04

0.
00

12
0.

00
33

0.
00

79
0.

01
64

0.
03

13
8

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

02
0.

00
07

0.
00

17
0.

00
39

9
0

0.
63

02
0.

38
74

0.
23

16
0.

13
42

0.
07

51
0.

04
04

0.
02

07
0.

01
01

0.
00

46
0.

00
20

1
0.

29
85

0.
38

74
0.

36
79

0.
30

20
0.

22
53

0.
15

56
0.

10
04

0.
06

05
0.

03
39

0.
01

76
2

0.
06

29
0.

17
22

0.
25

97
0.

30
20

0.
30

03
0.

26
68

0.
21

62
0.

16
12

0.
11

10
0.

07
03

3
0.

00
77

0.
04

46
0.

10
69

0.
17

62
0.

23
36

0.
26

68
0.

27
16

0.
25

08
0.

21
19

0.
16

41
4

0.
00

06
0.

00
74

0.
02

83
0.

06
61

0.
11

68
0.

17
15

0.
21

94
0.

25
08

0.
26

00
0.

24
61

(C
on

ti
nu

ed
 )



502 Appendix

Ta
bl

e A
.1

 (
C

on
ti

nu
ed

) 
B

in
om

ia
l d

is
tr

ib
ut

io
n 

pr
ob

ab
il

it
ie

s

n
k

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

5
0.

00
00

0.
00

08
0.

00
50

0.
01

65
0.

03
89

0.
07

35
0.

11
81

0.
16

72
0.

21
28

0.
24

61
6

0.
00

00
0.

00
01

0.
00

06
0.

00
28

0.
00

87
0.

02
10

0.
04

24
0.

07
43

0.
11

60
0.

16
41

7
0.

00
00

0.
00

00
0.

00
00

0.
00

03
0.

00
12

0.
00

39
0.

00
98

0.
02

12
0.

04
07

0.
07

03
8

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
04

0.
00

13
0.

00
35

0.
00

83
0.

01
76

9
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

03
0.

00
08

0.
00

20

10
0

0.
59

87
0.

34
87

0.
19

69
0.

10
74

0.
05

63
0.

02
82

0.
01

35
0.

00
60

0.
00

25
0.

00
10

1
0.

31
51

0.
38

74
0.

34
74

0.
26

84
0.

18
77

0.
12

11
0.

07
25

0.
04

03
0.

02
07

0.
00

98
2

0.
07

46
0.

19
37

0.
27

59
0.

30
20

0.
28

16
0.

23
35

0.
17

57
0.

12
09

0.
07

63
0.

04
39

3
0.

01
05

0.
05

74
0.

12
98

0.
20

13
0.

25
03

0.
26

68
0.

25
22

0.
21

50
0.

16
65

0.
11

72
4

0.
00

10
0.

01
12

0.
04

01
0.

08
81

0.
14

60
0.

20
01

0.
23

77
0.

25
08

0.
23

84
0.

20
51

5
0.

00
01

0.
00

15
0.

00
85

0.
02

64
0.

05
84

0.
10

29
0.

15
36

0.
20

07
0.

23
40

0.
24

61
6

0.
00

00
0.

00
01

0.
00

12
0.

00
55

0.
01

62
0.

03
68

0.
06

89
0.

11
15

0.
15

96
0.

20
51

7
0.

00
00

0.
00

00
0.

00
01

0.
00

08
0.

00
31

0.
00

90
0.

02
12

0.
04

25
0.

07
46

0.
11

72
8

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

04
0.

00
14

0.
00

43
0.

01
06

0.
02

29
0.

04
39

9
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
05

0.
00

16
0.

00
42

0.
00

98
10

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

03
0.

00
10

11
0

0.
56

88
0.

31
38

0.
16

73
0.

08
59

0.
04

22
0.

01
98

0.
00

88
0.

00
36

0.
00

14
0.

00
05

1
0.

32
93

0.
38

35
0.

32
48

0.
23

62
0.

15
49

0.
09

32
0.

05
18

0.
02

66
0.

01
25

0.
00

54
2

0.
08

67
0.

21
31

0.
28

66
0.

29
53

0.
25

81
0.

19
98

0.
13

95
0.

08
87

0.
05

13
0.

02
69

3
0.

01
37

0.
07

10
0.

15
17

0.
22

15
0.

25
81

0.
25

68
0.

22
54

0.
17

74
0.

12
59

0.
08

06
4

0.
00

14
0.

01
58

0.
05

36
0.

11
07

0.
17

21
0.

22
01

0.
24

28
0.

23
65

0.
20

60
0.

16
11

5
0.

00
01

0.
00

25
0.

01
32

0.
03

88
0.

08
03

0.
13

21
0.

18
30

0.
22

07
0.

23
60

0.
22

56
6

0.
00

00
0.

00
03

0.
00

23
0.

00
97

0.
02

68
0.

05
66

0.
09

85
0.

14
71

0.
19

31
0.

22
56

7
0.

00
00

0.
00

00
0.

00
03

0.
00

17
0.

00
64

0.
01

73
0.

03
79

0.
07

01
0.

11
28

0.
16

11
8

0.
00

00
0.

00
00

0.
00

00
0.

00
02

0.
00

11
0.

00
37

0.
01

02
0.

02
34

0.
04

62
0.

08
06

(C
on

ti
nu

ed
 )



Appendix 503

Ta
bl

e A
.1

 (
C

on
ti

nu
ed

) 
B

in
om

ia
l d

is
tr

ib
ut

io
n 

pr
ob

ab
il

it
ie

s

n
k

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

9
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

05
0.

00
18

0.
00

52
0.

01
26

0.
02

69
10

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

02
0.

00
07

0.
00

21
0.

00
54

11
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
02

0.
00

05

12
0

0.
54

04
0.

28
24

0.
14

22
0.

06
87

0.
03

17
0.

01
38

0.
00

57
0.

00
22

0.
00

08
0.

00
02

1
0.

34
13

0.
37

66
0.

30
12

0.
20

62
0.

12
67

0.
07

12
0.

03
68

0.
01

74
0.

00
75

0.
00

29
2

0.
09

88
0.

23
01

0.
29

24
0.

28
35

0.
23

23
0.

16
78

0.
10

88
0.

06
39

0.
03

39
0.

01
61

3
0.

01
73

0.
08

52
0.

17
20

0.
23

62
0.

25
81

0.
23

97
0.

19
54

0.
14

19
0.

09
23

0.
05

37
4

0.
00

21
0.

02
13

0.
06

83
0.

13
29

0.
19

36
0.

23
11

0.
23

67
0.

21
28

0.
17

00
0.

12
08

5
0.

00
02

0.
00

38
0.

01
93

0.
05

32
0.

10
32

0.
15

85
0.

20
39

0.
22

70
0.

22
25

0.
19

34
6

0.
00

00
0.

00
05

0.
00

40
0.

01
55

0.
04

01
0.

07
92

0.
12

81
0.

17
66

0.
21

24
0.

22
56

7
0.

00
00

0.
00

00
0.

00
06

0.
00

33
0.

01
15

0.
02

91
0.

05
91

0.
10

09
0.

14
89

0.
19

34
8

0.
00

00
0.

00
00

0.
00

01
0.

00
05

0.
00

24
0.

00
78

0.
01

99
0.

04
20

0.
07

62
0.

12
08

9
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
04

0.
00

15
0.

00
48

0.
01

25
0.

02
77

0.
05

37
10

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
02

0.
00

08
0.

00
25

0.
00

68
0.

01
61

11
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

03
0.

00
10

0.
00

29
12

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
02

13
0

0.
51

33
0.

25
42

0.
12

09
0.

05
50

0.
02

38
0.

00
97

0.
00

37
0.

00
13

0.
00

04
0.

00
01

1
0.

35
12

0.
36

72
0.

27
74

0.
17

87
0.

10
29

0.
05

40
0.

02
59

0.
01

13
0.

00
45

0.
00

16
2

0.
11

09
0.

24
48

0.
29

37
0.

26
80

0.
20

59
0.

13
88

0.
08

36
0.

04
53

0.
02

20
0.

00
95

3
0.

02
14

0.
09

97
0.

19
00

0.
24

57
0.

25
17

0.
21

81
0.

16
51

0.
11

07
0.

06
60

0.
03

49
4

0.
00

28
0.

02
77

0.
08

38
0.

15
35

0.
20

97
0.

23
37

0.
22

22
0.

18
45

0.
13

50
0.

08
73

5
0.

00
03

0.
00

55
0.

02
66

0.
06

91
0.

12
58

0.
18

03
0.

21
54

0.
22

14
0.

19
89

0.
15

71
6

0.
00

00
0.

00
08

0.
00

63
0.

02
30

0.
05

59
0.

10
30

0.
15

46
0.

19
68

0.
21

69
0.

20
95

7
0.

00
00

0.
00

01
0.

00
11

0.
00

58
0.

01
86

0.
04

42
0.

08
33

0.
13

12
0.

17
75

0.
20

95
8

0.
00

00
0.

00
00

0.
00

01
0.

00
11

0.
00

47
0.

01
42

0.
03

36
0.

06
56

0.
10

89
0.

15
71

(C
on

ti
nu

ed
 )



504 Appendix

Ta
bl

e A
.1

 (
C

on
ti

nu
ed

) 
B

in
om

ia
l d

is
tr

ib
ut

io
n 

pr
ob

ab
il

it
ie

s

n
k

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

9
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
09

0.
00

34
0.

01
01

0.
02

43
0.

04
95

0.
08

73
10

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
06

0.
00

22
0.

00
65

0.
01

62
0.

03
49

11
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
03

0.
00

12
0.

00
36

0.
00

95
12

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

05
0.

00
16

13
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01

14
0

0.
48

77
0.

22
88

0.
10

28
0.

04
40

0.
01

78
0.

00
68

0.
00

24
0.

00
08

0.
00

02
0.

00
01

1
0.

35
93

0.
35

59
0.

25
39

0.
15

39
0.

08
32

0.
04

07
0.

01
81

0.
00

73
0.

00
27

0.
00

09
2

0.
12

29
0.

25
70

0.
29

12
0.

25
01

0.
18

02
0.

11
34

0.
06

34
0.

03
17

0.
01

41
0.

00
56

3
0.

02
59

0.
11

42
0.

20
56

0.
25

01
0.

24
02

0.
19

43
0.

13
66

0.
08

45
0.

04
62

0.
02

22
4

0.
00

37
0.

03
49

0.
09

98
0.

17
20

0.
22

02
0.

22
90

0.
20

22
0.

15
49

0.
10

40
0.

06
11

5
0.

00
04

0.
00

78
0.

03
52

0.
08

60
0.

14
68

0.
19

63
0.

21
78

0.
20

66
0.

17
01

0.
12

22
6

0.
00

00
0.

00
13

0.
00

93
0.

03
22

0.
07

34
0.

12
62

0.
17

59
0.

20
66

0.
20

88
0.

18
33

7
0.

00
00

0.
00

02
0.

00
19

0.
00

92
0.

02
80

0.
06

18
0.

10
82

0.
15

74
0.

19
52

0.
20

95
8

0.
00

00
0.

00
00

0.
00

03
0.

00
20

0.
00

82
0.

02
32

0.
05

10
0.

09
18

0.
13

98
0.

18
33

9
0.

00
00

0.
00

00
0.

00
00

0.
00

03
0.

00
18

0.
00

66
0.

01
83

0.
04

08
0.

07
62

0.
12

22
10

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

03
0.

00
14

0.
00

49
0.

01
36

0.
03

12
0.

06
11

11
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

02
0.

00
10

0.
00

33
0.

00
93

0.
02

22
12

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
05

0.
00

19
0.

00
56

13
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
02

0.
00

09
14

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

15
0

0.
46

33
0.

20
59

0.
08

74
0.

03
52

0.
01

34
0.

00
47

0.
00

16
0.

00
05

0.
00

01
0.

00
00

1
0.

36
58

0.
34

32
0.

23
12

0.
13

19
0.

06
68

0.
03

05
0.

01
26

0.
00

47
0.

00
16

0.
00

05
2

0.
13

48
0.

26
69

0.
28

56
0.

23
09

0.
15

59
0.

09
16

0.
04

76
0.

02
19

0.
00

90
0.

00
32

3
0.

03
07

0.
12

85
0.

21
84

0.
25

01
0.

22
52

0.
17

00
0.

11
10

0.
06

34
0.

03
18

0.
01

39
4

0.
00

49
0.

04
28

0.
11

56
0.

18
76

0.
22

52
0.

21
86

0.
17

92
0.

12
68

0.
07

80
0.

04
17

(C
on

ti
nu

ed
 )



Appendix 505

Ta
bl

e A
.1

 (
C

on
ti

nu
ed

) 
B

in
om

ia
l d

is
tr

ib
ut

io
n 

pr
ob

ab
il

it
ie

s

n
k

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

5
0.

00
06

0.
01

05
0.

04
49

0.
10

32
0.

16
51

0.
20

61
0.

21
23

0.
18

59
0.

14
04

0.
09

16
6

0.
00

00
0.

00
19

0.
01

32
0.

04
30

0.
09

17
0.

14
72

0.
19

06
0.

20
66

0.
19

14
0.

15
27

7
0.

00
00

0.
00

03
0.

00
30

0.
01

38
0.

03
93

0.
08

11
0.

13
19

0.
17

71
0.

20
13

0.
19

64
8

0.
00

00
0.

00
00

0.
00

05
0.

00
35

0.
01

31
0.

03
48

0.
07

10
0.

11
81

0.
16

47
0.

19
64

9
0.

00
00

0.
00

00
0.

00
01

0.
00

07
0.

00
34

0.
01

16
0.

02
98

0.
06

12
0.

10
48

0.
15

27
10

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

07
0.

00
30

0.
00

96
0.

02
45

0.
05

15
0.

09
16

11
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

06
0.

00
24

0.
00

74
0.

01
91

0.
04

17
12

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

04
0.

00
16

0.
00

52
0.

01
39

13
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

03
0.

00
10

0.
00

32
14

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
05

15
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00

16
0

0.
44

01
0.

18
53

0.
07

43
0.

02
81

0.
01

00
0.

00
33

0.
00

10
0.

00
03

0.
00

01
0.

00
00

1
0.

37
06

0.
32

94
0.

20
97

0.
11

26
0.

05
35

0.
02

28
0.

00
87

0.
00

30
0.

00
09

0.
00

02
2

0.
14

63
0.

27
45

0.
27

75
0.

21
11

0.
13

36
0.

07
32

0.
03

53
0.

01
50

0.
00

56
0.

00
18

3
0.

03
59

0.
14

23
0.

22
85

0.
24

63
0.

20
79

0.
14

65
0.

08
88

0.
04

68
0.

02
15

0.
00

85
4

0.
00

61
0.

05
14

0.
13

11
0.

20
01

0.
22

52
0.

20
40

0.
15

53
0.

10
14

0.
05

72
0.

02
78

5
0.

00
08

0.
01

37
0.

05
55

0.
12

01
0.

18
02

0.
20

99
0.

20
08

0.
16

23
0.

11
23

0.
06

67
6

0.
00

01
0.

00
28

0.
01

80
0.

05
50

0.
11

01
0.

16
49

0.
19

82
0.

19
83

0.
16

84
0.

12
22

7
0.

00
00

0.
00

04
0.

00
45

0.
01

97
0.

05
24

0.
10

10
0.

15
24

0.
18

89
0.

19
69

0.
17

46
8

0.
00

00
0.

00
01

0.
00

09
0.

00
55

0.
01

97
0.

04
87

0.
09

23
0.

14
17

0.
18

12
0.

19
64

9
0.

00
00

0.
00

00
0.

00
01

0.
00

12
0.

00
58

0.
01

85
0.

04
42

0.
08

40
0.

13
18

0.
17

46
10

0.
00

00
0.

00
00

0.
00

00
0.

00
02

0.
00

14
0.

00
56

0.
01

67
0.

03
92

0.
07

55
0.

12
22

11
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
02

0.
00

13
0.

00
49

0.
01

42
0.

03
37

0.
06

67
12

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
02

0.
00

11
0.

00
40

0.
01

15
0.

02
78

13
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
02

0.
00

08
0.

00
29

0.
00

85
14

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

05
0.

00
18

(C
on

ti
nu

ed
 )



506 Appendix

Ta
bl

e A
.1

 (
C

on
ti

nu
ed

) 
B

in
om

ia
l d

is
tr

ib
ut

io
n 

pr
ob

ab
il

it
ie

s

n
k

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

15
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

02
16

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

17
0

0.
41

81
0.

16
68

0.
06

31
0.

02
25

0.
00

75
0.

00
23

0.
00

07
0.

00
02

0.
00

00
0.

00
00

1
0.

37
41

0.
31

50
0.

18
93

0.
09

57
0.

04
26

0.
01

69
0.

00
60

0.
00

19
0.

00
05

0.
00

01
2

0.
15

75
0.

28
00

0.
26

73
0.

19
14

0.
11

36
0.

05
81

0.
02

60
0.

01
02

0.
00

35
0.

00
10

3
0.

04
15

0.
15

56
0.

23
59

0.
23

93
0.

18
93

0.
12

45
0.

07
01

0.
03

41
0.

01
44

0.
00

52
4

0.
00

76
0.

06
05

0.
14

57
0.

20
93

0.
22

09
0.

18
68

0.
13

20
0.

07
96

0.
04

11
0.

01
82

5
0.

00
10

0.
01

75
0.

06
68

0.
13

61
0.

19
14

0.
20

81
0.

18
49

0.
13

79
0.

08
75

0.
04

72
6

0.
00

01
0.

00
39

0.
02

36
0.

06
80

0.
12

76
0.

17
84

0.
19

91
0.

18
39

0.
14

32
0.

09
44

7
0.

00
00

0.
00

07
0.

00
65

0.
02

67
0.

06
68

0.
12

01
0.

16
85

0.
19

27
0.

18
41

0.
14

84
8

0.
00

00
0.

00
01

0.
00

14
0.

00
84

0.
02

79
0.

06
44

0.
11

34
0.

16
06

0.
18

83
0.

18
55

9
0.

00
00

0.
00

00
0.

00
03

0.
00

21
0.

00
93

0.
02

76
0.

06
11

0.
10

70
0.

15
40

0.
18

55
10

0.
00

00
0.

00
00

0.
00

00
0.

00
04

0.
00

25
0.

00
95

0.
02

63
0.

05
71

0.
10

08
0.

14
84

11
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
05

0.
00

26
0.

00
90

0.
02

42
0.

05
25

0.
09

44
12

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
06

0.
00

24
0.

00
81

0.
02

15
0.

04
72

13
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
05

0.
00

21
0.

00
68

0.
01

82
14

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
04

0.
00

16
0.

00
52

15
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
03

0.
00

10
16

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

17
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00

18
0

0.
39

72
0.

15
01

0.
05

36
0.

01
80

0.
00

56
0.

00
16

0.
00

04
0.

00
01

0.
00

00
0.

00
00

1
0.

37
63

0.
30

02
0.

17
04

0.
08

11
0.

03
38

0.
01

26
0.

00
42

0.
00

12
0.

00
03

0.
00

01

(C
on

ti
nu

ed
 )



Appendix 507

Ta
bl

e A
.1

 (
C

on
ti

nu
ed

) 
B

in
om

ia
l d

is
tr

ib
ut

io
n 

pr
ob

ab
il

it
ie

s

n
k

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

2
0.

16
83

0.
28

35
0.

25
56

0.
17

23
0.

09
58

0.
04

58
0.

01
90

0.
00

69
0.

00
22

0.
00

06
3

0.
04

73
0.

16
80

0.
24

06
0.

22
97

0.
17

04
0.

10
46

0.
05

47
0.

02
46

0.
00

95
0.

00
31

4
0.

00
93

0.
07

00
0.

15
92

0.
21

53
0.

21
30

0.
16

81
0.

11
04

0.
06

14
0.

02
91

0.
01

17
5

0.
00

14
0.

02
18

0.
07

87
0.

15
07

0.
19

88
0.

20
17

0.
16

64
0.

11
46

0.
06

66
0.

03
27

6
0.

00
02

0.
00

52
0.

03
01

0.
08

16
0.

14
36

0.
18

73
0.

19
41

0.
16

55
0.

11
81

0.
07

08
7

0.
00

00
0.

00
10

0.
00

91
0.

03
50

0.
08

20
0.

13
76

0.
17

92
0.

18
92

0.
16

57
0.

12
14

8
0.

00
00

0.
00

02
0.

00
22

0.
01

20
0.

03
76

0.
08

11
0.

13
27

0.
17

34
0.

18
64

0.
16

69
9

0.
00

00
0.

00
00

0.
00

04
0.

00
33

0.
01

39
0.

03
86

0.
07

94
0.

12
84

0.
16

94
0.

18
55

10
0.

00
00

0.
00

00
0.

00
01

0.
00

08
0.

00
42

0.
01

49
0.

03
85

0.
07

71
0.

12
48

0.
16

69
11

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

10
0.

00
46

0.
01

51
0.

03
74

0.
07

42
0.

12
14

12
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
02

0.
00

12
0.

00
47

0.
01

45
0.

03
54

0.
07

08
13

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
02

0.
00

12
0.

00
45

0.
01

34
0.

03
27

14
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
02

0.
00

11
0.

00
39

0.
01

17
15

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
02

0.
00

09
0.

00
31

16
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

06
17

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

18
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00

19
0

0.
37

74
0.

13
51

0.
04

56
0.

01
44

0.
00

42
0.

00
11

0.
00

03
0.

00
01

0.
00

00
0.

00
00

1
0.

37
74

0.
28

52
0.

15
29

0.
06

85
0.

02
68

0.
00

93
0.

00
29

0.
00

08
0.

00
02

0.
00

00
2

0.
17

87
0.

28
52

0.
24

28
0.

15
40

0.
08

03
0.

03
58

0.
01

38
0.

00
46

0.
00

13
0.

00
03

3
0.

05
33

0.
17

96
0.

24
28

0.
21

82
0.

15
17

0.
08

69
0.

04
22

0.
01

75
0.

00
62

0.
00

18
4

0.
01

12
0.

07
98

0.
17

14
0.

21
82

0.
20

23
0.

14
91

0.
09

09
0.

04
67

0.
02

03
0.

00
74

5
0.

00
18

0.
02

66
0.

09
07

0.
16

36
0.

20
23

0.
19

16
0.

14
68

0.
09

33
0.

04
97

0.
02

22
6

0.
00

02
0.

00
69

0.
03

74
0.

09
55

0.
15

74
0.

19
16

0.
18

44
0.

14
51

0.
09

49
0.

05
18

7
0.

00
00

0.
00

14
0.

01
22

0.
04

43
0.

09
74

0.
15

25
0.

18
44

0.
17

97
0.

14
43

0.
09

61
8

0.
00

00
0.

00
02

0.
00

32
0.

01
66

0.
04

87
0.

09
81

0.
14

89
0.

17
97

0.
17

71
0.

14
42

(C
on

ti
nu

ed
 )



508 Appendix

Ta
bl

e A
.1

 (
C

on
ti

nu
ed

) 
B

in
om

ia
l d

is
tr

ib
ut

io
n 

pr
ob

ab
il

it
ie

s

n
k

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

9
0.

00
00

0.
00

00
0.

00
07

0.
00

51
0.

01
98

0.
05

14
0.

09
80

0.
14

64
0.

17
71

0.
17

62
10

0.
00

00
0.

00
00

0.
00

01
0.

00
13

0.
00

66
0.

02
20

0.
05

28
0.

09
76

0.
14

49
0.

17
62

11
0.

00
00

0.
00

00
0.

00
00

0.
00

03
0.

00
18

0.
00

77
0.

02
33

0.
05

32
0.

09
70

0.
14

42
12

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

04
0.

00
22

0.
00

83
0.

02
37

0.
05

29
0.

09
61

13
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

05
0.

00
24

0.
00

85
0.

02
33

0.
05

18
14

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

06
0.

00
24

0.
00

82
0.

02
22

15
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

05
0.

00
22

0.
00

74
16

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

05
0.

00
18

17
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

03
18

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

19
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00



Appendix 509

Ta
bl

e A
.2

 P
oi

ss
on

 d
is

tr
ib

ut
io

n 
pr

ob
ab

il
it

ie
s

k

λ

0.
5

1
1.

5
2

2.
5

3
3.

5
4

4.
5

5

0
0.

60
65

0.
36

79
0.

22
31

0.
13

53
0.

08
21

0.
04

98
0.

03
02

0.
01

83
0.

01
11

0.
00

67
1

0.
30

33
0.

36
79

0.
33

47
0.

27
07

0.
20

52
0.

14
94

0.
10

57
0.

07
33

0.
05

00
0.

03
37

2
0.

07
58

0.
18

39
0.

25
10

0.
27

07
0.

25
65

0.
22

40
0.

18
50

0.
14

65
0.

11
25

0.
08

42
3

0.
01

26
0.

06
13

0.
12

55
0.

18
04

0.
21

38
0.

22
40

0.
21

58
0.

19
54

0.
16

87
0.

14
04

4
0.

00
16

0.
01

53
0.

04
71

0.
09

02
0.

13
36

0.
16

80
0.

18
88

0.
19

54
0.

18
98

0.
17

55
5

0.
00

02
0.

00
31

0.
01

41
0.

03
61

0.
06

68
0.

10
08

0.
13

22
0.

15
63

0.
17

08
0.

17
55

6
0.

00
00

0.
00

05
0.

00
35

0.
01

20
0.

02
78

0.
05

04
0.

07
71

0.
10

42
0.

12
81

0.
14

62
7

0.
00

00
0.

00
01

0.
00

08
0.

00
34

0.
00

99
0.

02
16

0.
03

85
0.

05
95

0.
08

24
0.

10
44

8
0.

00
00

0.
00

00
0.

00
01

0.
00

09
0.

00
31

0.
00

81
0.

01
69

0.
02

98
0.

04
63

0.
06

53
9

0.
00

00
0.

00
00

0.
00

00
0.

00
02

0.
00

09
0.

00
27

0.
00

66
0.

01
32

0.
02

32
0.

03
63

10
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
02

0.
00

08
0.

00
23

0.
00

53
0.

01
04

0.
01

81
11

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
02

0.
00

07
0.

00
19

0.
00

43
0.

00
82

12
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
02

0.
00

06
0.

00
16

0.
00

34
13

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
02

0.
00

06
0.

00
13

14
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
02

0.
00

05
15

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
02

16
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
17

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

18
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
19

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

20
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
21

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

22
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
23

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

24
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00

(C
on

ti
nu

ed
 )



510 Appendix

Ta
bl

e A
.2

 (
C

on
ti

nu
ed

) 
P

oi
ss

on
 d

is
tr

ib
ut

io
n 

pr
ob

ab
il

it
ie

s

k

λ

0.
5

1
1.

5
2

2.
5

3
3.

5
4

4.
5

5

25
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
26

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

27
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
28

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

29
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
30

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

31
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
32

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

33
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00

k

λ

5.
5

6
6.

5
7

7.
5

8
8.

5
9

9.
5

10

0
0.

00
41

0.
00

25
0.

00
15

0.
00

09
0.

00
06

0.
00

03
0.

00
02

0.
00

01
0.

00
01

0.
00

00
1

0.
02

25
0.

01
49

0.
00

98
0.

00
64

0.
00

41
0.

00
27

0.
00

17
0.

00
11

0.
00

07
0.

00
05

2
0.

06
18

0.
04

46
0.

03
18

0.
02

23
0.

01
56

0.
01

07
0.

00
74

0.
00

50
0.

00
34

0.
00

23
3

0.
11

33
0.

08
92

0.
06

88
0.

05
21

0.
03

89
0.

02
86

0.
02

08
0.

01
50

0.
01

07
0.

00
76

4
0.

15
58

0.
13

39
0.

11
18

0.
09

12
0.

07
29

0.
05

73
0.

04
43

0.
03

37
0.

02
54

0.
01

89
5

0.
17

14
0.

16
06

0.
14

54
0.

12
77

0.
10

94
0.

09
16

0.
07

52
0.

06
07

0.
04

83
0.

03
78

6
0.

15
71

0.
16

06
0.

15
75

0.
14

90
0.

13
67

0.
12

21
0.

10
66

0.
09

11
0.

07
64

0.
06

31
7

0.
12

34
0.

13
77

0.
14

62
0.

14
90

0.
14

65
0.

13
96

0.
12

94
0.

11
71

0.
10

37
0.

09
01

8
0.

08
49

0.
10

33
0.

11
88

0.
13

04
0.

13
73

0.
13

96
0.

13
75

0.
13

18
0.

12
32

0.
11

26
9

0.
05

19
0.

06
88

0.
08

58
0.

10
14

0.
11

44
0.

12
41

0.
12

99
0.

13
18

0.
13

00
0.

12
51

10
0.

02
85

0.
04

13
0.

05
58

0.
07

10
0.

08
58

0.
09

93
0.

11
04

0.
11

86
0.

12
35

0.
12

51
11

0.
01

43
0.

02
25

0.
03

30
0.

04
52

0.
05

85
0.

07
22

0.
08

53
0.

09
70

0.
10

67
0.

11
37

(C
on

ti
nu

ed
 )



Appendix 511

Ta
bl

e A
.2

 (
C

on
ti

nu
ed

) 
P

oi
ss

on
 d

is
tr

ib
ut

io
n 

pr
ob

ab
il

it
ie

s

k

λ

5.
5

6
6.

5
7

7.
5

8
8.

5
9

9.
5

10

12
0.

00
65

0.
01

13
0.

01
79

0.
02

63
0.

03
66

0.
04

81
0.

06
04

0.
07

28
0.

08
44

0.
09

48
13

0.
00

28
0.

00
52

0.
00

89
0.

01
42

0.
02

11
0.

02
96

0.
03

95
0.

05
04

0.
06

17
0.

07
29

14
0.

00
11

0.
00

22
0.

00
41

0.
00

71
0.

01
13

0.
01

69
0.

02
40

0.
03

24
0.

04
19

0.
05

21
15

0.
00

04
0.

00
09

0.
00

18
0.

00
33

0.
00

57
0.

00
90

0.
01

36
0.

01
94

0.
02

65
0.

03
47

16
0.

00
01

0.
00

03
0.

00
07

0.
00

14
0.

00
26

0.
00

45
0.

00
72

0.
01

09
0.

01
57

0.
02

17
17

0.
00

00
0.

00
01

0.
00

03
0.

00
06

0.
00

12
0.

00
21

0.
00

36
0.

00
58

0.
00

88
0.

01
28

18
0.

00
00

0.
00

00
0.

00
01

0.
00

02
0.

00
05

0.
00

09
0.

00
17

0.
00

29
0.

00
46

0.
00

71
19

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

02
0.

00
04

0.
00

08
0.

00
14

0.
00

23
0.

00
37

20
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

02
0.

00
03

0.
00

06
0.

00
11

0.
00

19
21

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

01
0.

00
03

0.
00

05
0.

00
09

22
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

01
0.

00
02

0.
00

04
23

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
02

24
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
25

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

26
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
27

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

28
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
29

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

30
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
31

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

32
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
33

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

(C
on

ti
nu

ed
 )



512 Appendix

Ta
bl

e A
.2

 (
C

on
ti

nu
ed

) 
P

oi
ss

on
 d

is
tr

ib
ut

io
n 

pr
ob

ab
il

it
ie

s

k

λ

10
.5

11
11

.5
12

12
.5

13
13

.5
14

14
.5

15

0
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
1

0.
00

03
0.

00
02

0.
00

01
0.

00
01

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

2
0.

00
15

0.
00

10
0.

00
07

0.
00

04
0.

00
03

0.
00

02
0.

00
01

0.
00

01
0.

00
01

0.
00

00
3

0.
00

53
0.

00
37

0.
00

26
0.

00
18

0.
00

12
0.

00
08

0.
00

06
0.

00
04

0.
00

03
0.

00
02

4
0.

01
39

0.
01

02
0.

00
74

0.
00

53
0.

00
38

0.
00

27
0.

00
19

0.
00

13
0.

00
09

0.
00

06
5

0.
02

93
0.

02
24

0.
01

70
0.

01
27

0.
00

95
0.

00
70

0.
00

51
0.

00
37

0.
00

27
0.

00
19

6
0.

05
13

0.
04

11
0.

03
25

0.
02

55
0.

01
97

0.
01

52
0.

01
15

0.
00

87
0.

00
65

0.
00

48
7

0.
07

69
0.

06
46

0.
05

35
0.

04
37

0.
03

53
0.

02
81

0.
02

22
0.

01
74

0.
01

35
0.

01
04

8
0.

10
09

0.
08

88
0.

07
69

0.
06

55
0.

05
51

0.
04

57
0.

03
75

0.
03

04
0.

02
44

0.
01

94
9

0.
11

77
0.

10
85

0.
09

82
0.

08
74

0.
07

65
0.

06
61

0.
05

63
0.

04
73

0.
03

94
0.

03
24

10
0.

12
36

0.
11

94
0.

11
29

0.
10

48
0.

09
56

0.
08

59
0.

07
60

0.
06

63
0.

05
71

0.
04

86
11

0.
11

80
0.

11
94

0.
11

81
0.

11
44

0.
10

87
0.

10
15

0.
09

32
0.

08
44

0.
07

53
0.

06
63

12
0.

10
32

0.
10

94
0.

11
31

0.
11

44
0.

11
32

0.
10

99
0.

10
49

0.
09

84
0.

09
10

0.
08

29
13

0.
08

34
0.

09
26

0.
10

01
0.

10
56

0.
10

89
0.

10
99

0.
10

89
0.

10
60

0.
10

14
0.

09
56

14
0.

06
25

0.
07

28
0.

08
22

0.
09

05
0.

09
72

0.
10

21
0.

10
50

0.
10

60
0.

10
51

0.
10

24
15

0.
04

38
0.

05
34

0.
06

30
0.

07
24

0.
08

10
0.

08
85

0.
09

45
0.

09
89

0.
10

16
0.

10
24

16
0.

02
87

0.
03

67
0.

04
53

0.
05

43
0.

06
33

0.
07

19
0.

07
98

0.
08

66
0.

09
20

0.
09

60
17

0.
01

77
0.

02
37

0.
03

06
0.

03
83

0.
04

65
0.

05
50

0.
06

33
0.

07
13

0.
07

85
0.

08
47

18
0.

01
04

0.
01

45
0.

01
96

0.
02

55
0.

03
23

0.
03

97
0.

04
75

0.
05

54
0.

06
32

0.
07

06
19

0.
00

57
0.

00
84

0.
01

19
0.

01
61

0.
02

13
0.

02
72

0.
03

37
0.

04
09

0.
04

83
0.

05
57

20
0.

00
30

0.
00

46
0.

00
68

0.
00

97
0.

01
33

0.
01

77
0.

02
28

0.
02

86
0.

03
50

0.
04

18
21

0.
00

15
0.

00
24

0.
00

37
0.

00
55

0.
00

79
0.

01
09

0.
01

46
0.

01
91

0.
02

42
0.

02
99

22
0.

00
07

0.
00

12
0.

00
20

0.
00

30
0.

00
45

0.
00

65
0.

00
90

0.
01

21
0.

01
59

0.
02

04
23

0.
00

03
0.

00
06

0.
00

10
0.

00
16

0.
00

24
0.

00
37

0.
00

53
0.

00
74

0.
01

00
0.

01
33

24
0.

00
01

0.
00

03
0.

00
05

0.
00

08
0.

00
13

0.
00

20
0.

00
30

0.
00

43
0.

00
61

0.
00

83

(C
on

ti
nu

ed
 )



Appendix 513

Ta
bl

e A
.2

 (
C

on
ti

nu
ed

) 
P

oi
ss

on
 d

is
tr

ib
ut

io
n 

pr
ob

ab
il

it
ie

s

k

λ

10
.5

11
11

.5
12

12
.5

13
13

.5
14

14
.5

15

25
0.

00
01

0.
00

01
0.

00
02

0.
00

04
0.

00
06

0.
00

10
0.

00
16

0.
00

24
0.

00
35

0.
00

50
26

0.
00

00
0.

00
00

0.
00

01
0.

00
02

0.
00

03
0.

00
05

0.
00

08
0.

00
13

0.
00

20
0.

00
29

27
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
01

0.
00

02
0.

00
04

0.
00

07
0.

00
11

0.
00

16
28

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
01

0.
00

02
0.

00
03

0.
00

05
0.

00
09

29
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
01

0.
00

02
0.

00
03

0.
00

04
30

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

01
0.

00
02

31
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

01
32

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

33
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
34

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

35
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00

k

λ

15
.5

16
16

.5
17

17
.5

18
18

.5
19

19
.5

20

0
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
1

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

2
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
3

0.
00

01
0.

00
01

0.
00

01
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

4
0.

00
04

0.
00

03
0.

00
02

0.
00

01
0.

00
01

0.
00

01
0.

00
00

0.
00

00
0.

00
00

0.
00

00
5

0.
00

14
0.

00
10

0.
00

07
0.

00
05

0.
00

03
0.

00
02

0.
00

02
0.

00
01

0.
00

01
0.

00
01

6
0.

00
36

0.
00

26
0.

00
19

0.
00

14
0.

00
10

0.
00

07
0.

00
05

0.
00

04
0.

00
03

0.
00

02
7

0.
00

79
0.

00
60

0.
00

45
0.

00
34

0.
00

25
0.

00
19

0.
00

14
0.

00
10

0.
00

07
0.

00
05

8
0.

01
53

0.
01

20
0.

00
93

0.
00

72
0.

00
55

0.
00

42
0.

00
31

0.
00

24
0.

00
18

0.
00

13
9

0.
02

64
0.

02
13

0.
01

71
0.

01
35

0.
01

07
0.

00
83

0.
00

65
0.

00
50

0.
00

38
0.

00
29

10
0.

04
09

0.
03

41
0.

02
81

0.
02

30
0.

01
86

0.
01

50
0.

01
20

0.
00

95
0.

00
74

0.
00

58

(C
on

ti
nu

ed
 )



514 Appendix

Ta
bl

e A
.2

 (
C

on
ti

nu
ed

) 
P

oi
ss

on
 d

is
tr

ib
ut

io
n 

pr
ob

ab
il

it
ie

s

k

λ

15
.5

16
16

.5
17

17
.5

18
18

.5
19

19
.5

20

11
0.

05
77

0.
04

96
0.

04
22

0.
03

55
0.

02
97

0.
02

45
0.

02
01

0.
01

64
0.

01
32

0.
01

06
12

0.
07

45
0.

06
61

0.
05

80
0.

05
04

0.
04

32
0.

03
68

0.
03

10
0.

02
59

0.
02

14
0.

01
76

13
0.

08
88

0.
08

14
0.

07
36

0.
06

58
0.

05
82

0.
05

09
0.

04
41

0.
03

78
0.

03
22

0.
02

71
14

0.
09

83
0.

09
30

0.
08

68
0.

08
00

0.
07

28
0.

06
55

0.
05

83
0.

05
14

0.
04

48
0.

03
87

15
0.

10
16

0.
09

92
0.

09
55

0.
09

06
0.

08
49

0.
07

86
0.

07
19

0.
06

50
0.

05
82

0.
05

16
16

0.
09

84
0.

09
92

0.
09

85
0.

09
63

0.
09

29
0.

08
84

0.
08

31
0.

07
72

0.
07

10
0.

06
46

17
0.

08
97

0.
09

34
0.

09
56

0.
09

63
0.

09
56

0.
09

36
0.

09
04

0.
08

63
0.

08
14

0.
07

60
18

0.
07

73
0.

08
30

0.
08

76
0.

09
09

0.
09

29
0.

09
36

0.
09

30
0.

09
11

0.
08

82
0.

08
44

19
0.

06
30

0.
06

99
0.

07
61

0.
08

14
0.

08
56

0.
08

87
0.

09
05

0.
09

11
0.

09
05

0.
08

88
20

0.
04

89
0.

05
59

0.
06

28
0.

06
92

0.
07

49
0.

07
98

0.
08

37
0.

08
66

0.
08

83
0.

08
88

21
0.

03
61

0.
04

26
0.

04
93

0.
05

60
0.

06
24

0.
06

84
0.

07
38

0.
07

83
0.

08
20

0.
08

46
22

0.
02

54
0.

03
10

0.
03

70
0.

04
33

0.
04

96
0.

05
60

0.
06

20
0.

06
76

0.
07

27
0.

07
69

23
0.

01
71

0.
02

16
0.

02
65

0.
03

20
0.

03
78

0.
04

38
0.

04
99

0.
05

59
0.

06
16

0.
06

69
24

0.
01

11
0.

01
44

0.
01

82
0.

02
26

0.
02

75
0.

03
28

0.
03

85
0.

04
42

0.
05

00
0.

05
57

25
0.

00
69

0.
00

92
0.

01
20

0.
01

54
0.

01
93

0.
02

37
0.

02
85

0.
03

36
0.

03
90

0.
04

46
26

0.
00

41
0.

00
57

0.
00

76
0.

01
01

0.
01

30
0.

01
64

0.
02

02
0.

02
46

0.
02

93
0.

03
43

27
0.

00
23

0.
00

34
0.

00
47

0.
00

63
0.

00
84

0.
01

09
0.

01
39

0.
01

73
0.

02
11

0.
02

54
28

0.
00

13
0.

00
19

0.
00

28
0.

00
38

0.
00

53
0.

00
70

0.
00

92
0.

01
17

0.
01

47
0.

01
81

29
0.

00
07

0.
00

11
0.

00
16

0.
00

23
0.

00
32

0.
00

44
0.

00
58

0.
00

77
0.

00
99

0.
01

25
30

0.
00

04
0.

00
06

0.
00

09
0.

00
13

0.
00

19
0.

00
26

0.
00

36
0.

00
49

0.
00

64
0.

00
83

31
0.

00
02

0.
00

03
0.

00
05

0.
00

07
0.

00
10

0.
00

15
0.

00
22

0.
00

30
0.

00
40

0.
00

54
32

0.
00

01
0.

00
01

0.
00

02
0.

00
04

0.
00

06
0.

00
09

0.
00

12
0.

00
18

0.
00

25
0.

00
34

33
0.

00
00

0.
00

01
0.

00
01

0.
00

02
0.

00
03

0.
00

05
0.

00
07

0.
00

10
0.

00
15

0.
00

20
34

0.
00

00
0.

00
00

0.
00

01
0.

00
01

0.
00

02
0.

00
02

0.
00

04
0.

00
06

0.
00

08
0.

00
12

35
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

01
0.

00
02

0.
00

03
0.

00
05

0.
00

07
36

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

01
0.

00
02

0.
00

03
0.

00
04

37
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

01
0.

00
01

0.
00

02
38

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

01
0.

00
01



Appendix 515

Ta
bl

e A
.3

 S
ta

nd
ar

d 
no

rm
al

 p
ro

ba
bi

li
ty

 d
is

tr
ib

ut
io

n,
 a

re
a 

in
 t

he
 u

pp
er

 t
ai

l

z
0.

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09

0.
0

0.
50

0
0.

49
6

0.
49

2
0.

48
8

0.
48

4
0.

48
0

0.
47

6
0.

47
2

0.
46

8
0.

46
4

0.
1

0.
46

0
0.

45
6

0.
45

2
0.

44
8

0.
44

4
0.

44
0

0.
43

6
0.

43
3

0.
42

9
0.

42
5

0.
2

0.
42

1
0.

41
7

0.
41

3
0.

40
9

0.
40

5
0.

40
1

0.
39

7
0.

39
4

0.
39

0
0.

38
6

0.
3

0.
38

2
0.

37
8

0.
37

4
0.

37
1

0.
36

7
0.

36
3

0.
35

9
0.

35
6

0.
35

2
0.

34
8

0.
4

0.
34

5
0.

34
1

0.
33

7
0.

33
4

0.
33

0
0.

32
6

0.
32

3
0.

31
9

0.
31

6
0.

31
2

0.
5

0.
30

9
0.

30
5

0.
30

2
0.

29
8

0.
29

5
0.

29
1

0.
28

8
0.

28
4

0.
28

1
0.

27
8

0.
6

0.
27

4
0.

27
1

0.
26

8
0.

26
4

0.
26

1
0.

25
8

0.
25

5
0.

25
1

0.
24

8
0.

24
5

0.
7

0.
24

2
0.

23
9

0.
23

6
0.

23
3

0.
23

0
0.

22
7

0.
22

4
0.

22
1

0.
21

8
0.

21
5

0.
8

0.
21

2
0.

20
9

0.
20

6
0.

20
3

0.
20

0
0.

19
8

0.
19

5
0.

19
2

0.
18

9
0.

18
7

0.
9

0.
18

4
0.

18
1

0.
17

9
0.

17
6

0.
17

4
0.

17
1

0.
16

9
0.

16
6

0.
16

4
0.

16
1

1.
0

0.
15

9
0.

15
6

0.
15

4
0.

15
2

0.
14

9
0.

14
7

0.
14

5
0.

14
2

0.
14

0
0.

13
8

1.
1

0.
13

6
0.

13
3

0.
13

1
0.

12
9

0.
12

7
0.

12
5

0.
12

3
0.

12
1

0.
11

9
0.

11
7

1.
2

0.
11

5
0.

11
3

0.
11

1
0.

10
9

0.
10

7
0.

10
6

0.
10

4
0.

10
2

0.
10

0
0.

09
9

1.
3

0.
09

7
0.

09
5

0.
09

3
0.

09
2

0.
09

0
0.

08
9

0.
08

7
0.

08
5

0.
08

4
0.

08
2

1.
4

0.
08

1
0.

07
9

0.
07

8
0.

07
6

0.
07

5
0.

07
4

0.
07

2
0.

07
1

0.
06

9
0.

06
8

1.
5

0.
06

7
0.

06
6

0.
06

4
0.

06
3

0.
06

2
0.

06
1

0.
05

9
0.

05
8

0.
05

7
0.

05
6

1.
6

0.
05

5
0.

05
4

0.
05

3
0.

05
2

0.
05

1
0.

04
9

0.
04

8
0.

04
7

0.
04

6
0.

04
6

1.
7

0.
04

5
0.

04
4

0.
04

3
0.

04
2

0.
04

1
0.

04
0

0.
03

9
0.

03
8

0.
03

8
0.

03
7

1.
8

0.
03

6
0.

03
5

0.
03

4
0.

03
4

0.
03

3
0.

03
2

0.
03

1
0.

03
1

0.
03

0
0.

02
9

(C
on

ti
nu

ed
 )



516 Appendix

Ta
bl

e A
.3

 (
C

on
ti

nu
ed

) 
St

an
da

rd
 n

or
m

al
 p

ro
ba

bi
li

ty
 d

is
tr

ib
ut

io
n,

 a
re

a 
in

 t
he

 u
pp

er
 t

ai
l

z
0.

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09

1.
9

0.
02

9
0.

02
8

0.
02

7
0.

02
7

0.
02

6
0.

02
6

0.
02

5
0.

02
4

0.
02

4
0.

02
3

2.
0

0.
02

3
0.

02
2

0.
02

2
0.

02
1

0.
02

1
0.

02
0

0.
02

0
0.

01
9

0.
01

9
0.

01
8

2.
1

0.
01

8
0.

01
7

0.
01

7
0.

01
7

0.
01

6
0.

01
6

0.
01

5
0.

01
5

0.
01

5
0.

01
4

2.
2

0.
01

4
0.

01
4

0.
01

3
0.

01
3

0.
01

3
0.

01
2

0.
01

2
0.

01
2

0.
01

1
0.

01
1

2.
3

0.
01

1
0.

01
0

0.
01

0
0.

01
0

0.
01

0
0.

00
9

0.
00

9
0.

00
9

0.
00

9
0.

00
8

2.
4

0.
00

8
0.

00
8

0.
00

8
0.

00
8

0.
00

7
0.

00
7

0.
00

7
0.

00
7

0.
00

7
0.

00
6

2.
5

0.
00

6
0.

00
6

0.
00

6
0.

00
6

0.
00

6
0.

00
5

0.
00

5
0.

00
5

0.
00

5
0.

00
5

2.
6

0.
00

5
0.

00
5

0.
00

4
0.

00
4

0.
00

4
0.

00
4

0.
00

4
0.

00
4

0.
00

4
0.

00
4

2.
7

0.
00

3
0.

00
3

0.
00

3
0.

00
3

0.
00

3
0.

00
3

0.
00

3
0.

00
3

0.
00

3
0.

00
3

2.
8

0.
00

3
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
2

2.
9

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
1

0.
00

1
0.

00
1

3.
0

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

3.
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

3.
2

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

3.
3

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

3.
4

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0



Appendix 517

Table A.4 t Distribution, area in the upper tail

df 0.10 0.05 0.025 0.01 0.005 0.0005

1 3.078 6.314 12.706 31.821 63.657 636.619
2 1.886 2.920 4.303 6.965 9.925 31.599
3 1.638 2.353 3.182 4.541 5.841 12.924
4 1.533 2.132 2.776 3.747 4.604 8.610
5 1.476 2.015 2.571 3.365 4.032 6.869
6 1.440 1.943 2.447 3.143 3.707 5.959
7 1.415 1.895 2.365 2.998 3.499 5.408
8 1.397 1.860 2.306 2.896 3.355 5.041
9 1.383 1.833 2.262 2.821 3.250 4.781
10 1.372 1.812 2.228 2.764 3.169 4.587
11 1.363 1.796 2.201 2.718 3.106 4.437
12 1.356 1.782 2.179 2.681 3.055 4.318
13 1.350 1.771 2.160 2.650 3.012 4.221
14 1.345 1.761 2.145 2.624 2.977 4.140
15 1.341 1.753 2.131 2.602 2.947 4.073
16 1.337 1.746 2.120 2.583 2.921 4.015
17 1.333 1.740 2.110 2.567 2.898 3.965
18 1.330 1.734 2.101 2.552 2.878 3.922
19 1.328 1.729 2.093 2.539 2.861 3.883
20 1.325 1.725 2.086 2.528 2.845 3.850
21 1.323 1.721 2.080 2.518 2.831 3.819
22 1.321 1.717 2.074 2.508 2.819 3.792
23 1.319 1.714 2.069 2.500 2.807 3.768
24 1.318 1.711 2.064 2.492 2.797 3.745
25 1.316 1.708 2.060 2.485 2.787 3.725
26 1.315 1.706 2.056 2.479 2.779 3.707
27 1.314 1.703 2.052 2.473 2.771 3.690
28 1.313 1.701 2.048 2.467 2.763 3.674
29 1.311 1.699 2.045 2.462 2.756 3.659
30 1.310 1.697 2.042 2.457 2.750 3.646
40 1.303 1.684 2.021 2.423 2.704 3.551
50 1.299 1.676 2.009 2.403 2.678 3.496
60 1.296 1.671 2.000 2.390 2.660 3.460
70 1.294 1.667 1.994 2.381 2.648 3.435
80 1.292 1.664 1.990 2.374 2.639 3.416
90 1.291 1.662 1.987 2.368 2.632 3.402
100 1.290 1.660 1.984 2.364 2.626 3.390
110 1.289 1.659 1.982 2.361 2.621 3.381
120 1.289 1.658 1.980 2.358 2.617 3.373
∞ 1.282 1.645 1.960 2.327 2.576 3.291
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Table A.5 Chi-squared distribution, area in the upper tail

df 0.1 0.05 0.025 0.01 0.001

1 2.71 3.84 5.02 6.63 10.83
2 4.61 5.99 7.38 9.21 13.82
3 6.25 7.81 9.35 11.34 16.27
4 7.78 9.49 11.14 13.28 18.47
5 9.24 11.07 12.83 15.09 20.52
6 10.64 12.59 14.45 16.81 22.46
7 12.02 14.07 16.01 18.48 24.32
8 13.36 15.51 17.53 20.09 26.12
9 14.68 16.92 19.02 21.67 27.88
10 15.99 18.31 20.48 23.21 29.59
11 17.28 19.68 21.92 24.72 31.26
12 18.55 21.03 23.34 26.22 32.91
13 19.81 22.36 24.74 27.69 34.53
14 21.06 23.68 26.12 29.14 36.12
15 22.31 25.00 27.49 30.58 37.70
16 23.54 26.30 28.85 32.00 39.25
17 24.77 27.59 30.19 33.41 40.79
18 25.99 28.87 31.53 34.81 42.31
19 27.20 30.14 32.85 36.19 43.82
20 28.41 31.41 34.17 37.57 45.31
21 29.62 32.67 35.48 38.93 46.80
22 30.81 33.92 36.78 40.29 48.27
23 32.01 35.17 38.08 41.64 49.73
24 33.20 36.42 39.36 42.98 51.18
25 34.38 37.65 40.65 44.31 52.62
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Page numbers followed by f and t indicate figures and tables, respectively.

A

Addition law, of probabilities, 79–80
α error, 179, 197
Age-adjusted premature death rate, 286
Albumin, 384–386
ALPHA option, 155, 166, 192
Alternative hypothesis

of ANOVA, 341, 348–349, 355
equality of variances, 229
for means, 176–177
one-sample hypothesis testing, 200–201
for Pearson’s chi-squared test, 305
two-sample hypothesis testing, 226
unequal variances, 233
Wilcoxon rank-sum test, 268

Analysis of variance (ANOVA), 341–370
assumptions, 343–345

equal variance, 345
independence, 343, 345
normality, 345

between-group variance, 342, 344f, 350, 359–360
defined, 341
examples, 348–365
grand mean, 342–343
multiple comparisons, 346–347
one-way, 341–342
overview, 341
in Stata, 348
table and equations, 346t
testing for significance, 345–346
using SAS, 347–348

homogeneity of variance, 347
within-group variation, 342, 343f, 350, 355, 

358–359
ANOVA, see Analysis of variance
anova command, 348
Applied statistics, defined, xviii
Arithmetic mean

defined, 2
median vs., 4, 5

Asterisk (*), 25, 37, 40, 296
Asthma

age at diagnosis, example, 472–485
grouped mean and standard deviation, 

example, 10–11
self-reported, example, 271–274
status by weight group, 9, 10t

Asymmetry, of errors, 180
Automatic model selection, linear regression, 

436–438
Average, defined, 2
Average total cholesterol, example, 354–362

B

Backward elimination, linear regression, 436–438
Bar graph, 11–12
Bartlett test, 345, 350, 355
Bayes theorem, 91
Behavioral Risk Factor Surveillance System 

(BRFSS) data
activity limitations and race, BMI, and sex, 460
colorectal cancer screening, 303
flu shot/flu vaccine, 211
gender and race variables, 294
grouped data, 9, 10t
HIV test, 456
Medicare, 291
seat belts, using, 171
smoking, 194, 237

Bernoulli random variable, 110
Bernoulli trial, 110
Between-group variance, ANOVA, 342, 344f, 

350, 359–360
Binomial distribution, 111–116

example, 112–115
overview, 111
parameters, 112
probabilities, 500–508
properties, 111
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Binomial proportions, sample size and power for
in clinical trial setting, 334–335
comparing, 326–335
example, 335–338
independent samples, 326, 328–330, 

332–333
paired samples, 326–328, 330–331, 333–334
in SAS, 328–331
in Stata, 332–334

BINOMIAL statement, 165, 192
Biostatistics, defined, xix
Body mass index (BMI)

average total cholesterol, 355–356
diabetes and, 451–455
smoking and, example, 236–240

Bonferroni correction, 346, 348, 351, 360, 363t
Bonferroni option, 348
BON option, 347–348, 353
Box plots, 15, 16f, 40–41, 64–65
Breast cancer, 216
Breastfeeding techniques, example, 408–421, 

424–427, 430–436
Bureau of Health Care Analysis and Data 

Dissemination, 27, 53
BY statement, 43, 44

C

Cardinal data, 256
Categorical data, hypothesis testing with, 

289–340
chi-squared distribution, 296–309

overview, 296–297
Pearson’s chi-squared test (goodness of fit 

test), 297–309
McNemar’s test, 309–316

concordant pair, 309
defined, 309
discordant pair, 309–310
example, 313–316
in SAS, 310–312
in Stata, 312–313
table setup for, 310t

OR methods, 316–326
defined, 317
example, 320–324
in SAS, 317–319
in Stata, 319–320

overview, 289
sample size and power for comparing two 

binomial proportions, 326–335
sample size and power for two binomial 

proportions
in clinical trial setting, 334–335
example, 335–338
independent samples, 326, 328–330, 

332–333

paired samples, 326–328, 330–331, 
333–334

in SAS, 328–331
in Stata, 332–334

two-sample test for proportions, 290–296
contingency table methods, 294–296
normal theory method, 290–294

Categorical variables, 428–429
cc command, 319
cci command, 320
Censoring, 469, 470, 475, 477
Center for Outpatient Health survey, 364, 377
Central limit theorem (CLT), 150–151
Central tendency, measures of, 2–6

arithmetic mean, 2, 4
example, 3, 5
geometric mean, 4, 5
median, 2–3
mode, 3–4

Cepheid GeneXpert Ebola assay, 102–103
Chebyshev inequality, 19
CHISQ option, 299, 305
Chi-squared distribution, 296–309

area in upper tail, 518
overview, 296–297
Pearson’s chi-squared test (goodness of fit test), 

297–309
example, 303–308
overview, 297–299
in SAS, 299–301
in Stata, 301–303

ci command, 156, 166
cii command, 156, 166
CLASS statement, 347, 447, 451
Clinical trial(s)

setting, sample size and power in, 334–335
types, 148

Coefficients, interpretation of, logistic regression, 
445–467

c statistic, 446
examples, 451–459
hypothesis tests and confidence intervals, 446, 

447t
model evaluation, 446
overview, 445–446
in SAS, 447–449
in Stata, 450–451

Cognitive behavioral therapy (CBT), 147
Collinearity, 438
Colorectal cancer, 104, 303–308, 339
Column marginal total (column margin), 295
Combinations, 109, 110
Command window, Stata, 51–52, 55
Comments, SAS code, 25
Complement, of event, 76
Concordant pair, 309
Conditional probability, 80
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Confidence intervals
for estimated regression coefficients, 446, 447t
hypothesis testing and, 180–189

examples, 184–189
one-sample tests for mean using SAS, 

181–182
one-sample tests for mean using Stata, 

182–184
for means, 151–154

example, 153–154
implication, 153
interval estimation, 151–153
one-sided, hand calculation of, 154
one-sided, requesting, 157
SAS to construct, 154–155
Stata to construct, 156–157
width, 154

for proportions, 164–170
example, 167–170
SAS, 165–166
Stata, 166–167

width, approximate sample size based on, 203
Confidence limit for mean (CLM), 155–156
Confounder, defined, 295
Confounding, 295
2 × 2 Contingency table, 295
Contingency table methods, 294–296
Continuous data, 12, 13
Continuous probability distributions, 125–136

distribution functions, 125, 126f
normal distribution, 127–135

curve, 127
defined, 127
examples, 130–135
overview, 127
standard, 128
standardization of normal variable, 128, 

129f
standard normal, use, 128, 129f

overview, 125
review, 135–136

Continuous random variables, 108, 110f
Continuous variables, xx
Correlation, 371–399

overview, 371
Pearson correlation coefficient (r), 373–377

using SAS, 374–376
population correlation coefficient (ρ), 371–373
Spearman rank correlation coefficient (rs), 

386–399
examples, 389–393
overview, 386–387
using SAS, 387–388
using Stata, 388–389

visualizing correlated data, 373
Correlation coefficients

Pearson, 373–377

examples, 377–384
using SAS, 374–376
using Stata, 376–377

population, 371–373
Spearman rank, 386–399

examples, 389–393
overview, 386–387
using SAS, 387–388
using Stata, 388–389

C-reactive protein (CRP), 92–94, 95–102
Creating new variables with formulas

SAS, 39–40, 96, 97f
Stata, 64, 98, 99f

Creatinine, 384–386
Critical values

in SAS and Stata, obtaining, 158–162
test statistic, 179

Cross-sectional studies, 222
c Statistic, 446
Cumulative distribution function (CDF) of random 

variable, 108–109, 110f, 125, 126f
Cumulative incidence, 90

D

Data
analysis project, 489–497
correlated, visualizing, 373
defined, xix
discrete/continuous, 12, 13
inputting

SAS, 29–31
Stata, 55–56

nominal/ordinal, 11–12
summarizing

Stata, 58–62
SAS, 32–38

types of, 256
vector and raster, 16, 18f

Data Browser button, Stata, 55
Data editor

SAS, 27–29
Stata, 55

Data files
in SAS, 25–27
Stata, 52–54

Deciles, 7
Degrees of freedom (df), 158, 346, 347
delimiters ( ) option, 53
Delta, 335
Denominator degrees of freedom, 229
Dependent samples (paired tests), 222–228

defined, 221
example, 225–228
overview, 222–223
using SAS, 223–224
using Stata, 224–225
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Depression, 112–115
describe command, 57
Descriptive statistics, 1–21

defined, 1
examples, 3, 5, 7, 9, 10–11, 13–14
graphs, types of, 11–17
measures of central tendency (location), 2–6
measures of spread, 6–8
measures of variability, 8–11
outliers and standard distribution rules, 17, 19
overview, 1

Diagnostic testing/screening, 89–102
Bayes theorem, 91
cumulative incidence, 90
examples, 92–94, 95–102
false negative error, 90
false positive error, 90
negative predictive value of screening test, 89
overview, 89
positive predictive value of screening test, 89
prevalence of disease, 90
ROC curve, 94–102

example, 95–102
overview, 94–95

sensitivity, 89
specificity, 90
terms and concepts, 89–94

Dichotomous variables
explanatory, 445–446
random, 110

Digital rectal examination (DRE), 104–105
Diphtheria tetanus toxoid and pertussis (DTP3), 

example, 390–393
Discordant pair, 309–310
DISCPROPORTIONS statement, 330
Discrete data, 12, 13
Discrete probability distributions, 107–121

Bernoulli trial, 110
binomial distribution, 111–116

example, 112–115
overview, 111
parameters, 112
properties, 111

combinations, 109, 110
continuous random variables, 108
dichotomous random variable, 110
discrete random variable, 107–108
examples, 110–111, 112–115, 117–121
factorials, 109
measures of location and spread for random 

variables, 108–109
overview, 107
permutations, 109
Poisson distribution, 116–121

estimation, 117
example, 117–121
longitudinal studies, 117

overview, 116
person-year, 117
properties, 116–117

probability mass function, 108
random variable, 107

Discrete random variable, 107–108
Discrete variables, xx
Distribution functions, 125, 126f
Distribution, of rare events, 116
Do Editor, in Stata, 54–55
Double-blinded clinical trials, 148
Drop-in rate, 335, 336t
Drop-out rate, 335, 336t
Drug overdose, 117–121
Dummy variables, 428, 429

E

Ebola virus, 102–103
Editor window, in SAS, 24, 25
Effect modification/moderation, 429
Empirical rule, 17, 19
Equality of variances, testing for, 229–240

in SAS, 231–232
in Stata, 230–231
t-test, in Stata, 232–233
unequal variances, 233–236

example, 236–240
overview, 233–234
t-test, in SAS, 234–236
t-test, in Stata, 236

Equal variance, ANOVA assumption, 345
Error(s)

asymmetry, 180
log, 44
log window with, 28
message, 61
SEM and SE, 149
sum of squares, 403
types, 179–180

Estimation, 145–170
for means

central limit theorem, 150–151
confidence intervals, 151–154
interval estimation, 151–153
obtaining critical values in SAS and Stata, 

158–162
one-sided confidence intervals, 154, 157
population and sample measures of spread, 

149–150
population mean, 148
PROC MEANS procedure, 155–156
random sample, 146
RCT, 147–148
reference population, 146–147
sample mean, 148
sample variance, 149
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sampling, 146–147
sampling distribution, 148–149
SAS to construct confidence intervals, 

154–155
SEM and SE, 149
standard normal distribution, 154–157
Stata to construct confidence intervals, 

156–157
statistical inference, 146
t-distribution, 157–158

overview, 146
for proportions

confidence intervals, 164–170
population proportion, 164
sample proportion, 164
sampling distribution, 163–164
SAS to obtain confidence intervals, 165–166
Stata to obtain confidence intervals, 166–167

Estimators, unbiased, 148–149
Evaluation, model

linear regression, 423–428
logistic regression, 447
simple linear regression, 406–408

EVENT option, 447
Events

complement of, 76
defined, 73
exhaustive, 81–83
intersections, 76–77
mutually exclusive, 75, 81–83, 112–113
null event, 76
union, 77, 78t

EXACT BINOMIAL option, 192
Exact method, 191, 192
EXACT option, 299
Exhaustive events, 81–83
EXPECTED option, 299, 305, 317, 323
Expected value, of discrete random variable, 108
Explanatory (independent/predictor) variables, 

428–436
categorical variables, 428–429
change in, 401–402
example, 430–436
indicator variables, 428, 429
interaction terms, 429, 432–436
predicted probability of outcome and, 443, 

444t, 445
Explorer window, in SAS, 24, 27, 33

F

Factorials, 109
Failure, defined, 110, 469
Failure time, defined, 469
False error

negative, 90
positive, 90

Fasting glucose levels, example, 247–252
F distribution, 229, 345–346, 519–523
Formatting, variables, 38–39, 351–352
Formulas, creating new variables with, 39–40, 

64
Forward selection, linear regression, 436–438
F-statistics, 345, 365
F table, 229

G

Gaussian/bell-shaped distribution, 127
Generalized multiplication law, of probability, 

80
GeneXpert Ebola assay, 102–103
Geometric mean

blood lead levels, 5, 6f
defined, 4
examples, 5–6

Gini index, 210
Global Health Observatory (GHO) data, 

381–384, 390–393
Goodness of fit test (Pearson’s chi-squared test), 

297–309
example, 303–308
overview, 297–299
in SAS, 299–301
in Stata, 301–303

Grand mean, 342–343, 359
Grand total, defined, 296
Graphical information system (GIS) maps, 16, 

18f
Graphs, SAS procedures, 40–47

box plots, 40–41
histogram, 43–46
saving, 47
scatterplot, 46–47
stem-and-leaf plot, 41–42

Graphs, Stata commands, 64–69
box plots, 64–65
histograms, 65–66
saving, 68–69
scatterplots, 67–68
stem-and-leaf plot, 65

Graphs, types of, 11–17
bar graph, 11–12
box plots, 15, 16f
GIS maps, 16, 18f
histograms, 12–13
scatterplots, 15, 16, 17f
stem-and-leaf plot, 13–15

Graph window, Stata, 52
Grouped data, 9
Grouped mean, 9, 10–11
Grouped variance, 10–11
GROUPPROPORTIONS statement, 328
GROUPWEIGHTS statement, 329, 337
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H

Hazard function, defined, 470
Health coaching program, example, 200–201
Health insurance coverage, example, 225–228
Health literacy assessment, 216–217
Hemoglobin HbA1c levels, examples, 348–353, 

362–365, 377–381
Histograms, 12–13, 43–46, 65–66, 356f, 357f, 

391f, 392f
HISTOGRAM statement, 43, 345
Homogeneity, of variances, 347, 364–365
Homoscedasticity, ANOVA assumption, 403
Hospital-level factors, example, 423–428
HOVTEST option, 345, 347, 355, 364
Hypertension, racial disparities in, example, 

335–338
Hypothesis testing

basics, 176–180
with categorical data, see Categorical data, 

hypothesis testing with
confidence intervals and, 180–189

examples, 184–189
one-sample tests for mean using SAS, 

181–182
one-sample tests for mean using Stata, 

182–184
critical values, 179
for estimated regression coefficient tests, 446, 

447t
nonparametric, see Nonparametric hypothesis 

testing
one-sample, see One-sample hypothesis testing
outcomes, 179–180
for proportions, 191–192
p-value, 179
rejection region, 178, 179
sample of size, drawing, 178
significance level, specifying, 177–178
stating, 176–177
statistical inference, 146
test statistics, computation, 178–179
two-sample, see Two-sample hypothesis testing

I

Independence, ANOVA assumption, 343, 345, 403
Independent data

nonparametric tests for, 268–280
example, 271–274
in SAS, 269–270
in Stata, 270–271
Wilcoxon rank-sum test, 268–269

Independent samples, 228–241
defined, 222
equality of variances, testing for, 229–240

in SAS, 231–232

in Stata, 230–231
t-test, in Stata, 232–233
unequal variances, 233–236

overview, 228–229
sample size and power for two binomial 

proportions, 326
in SAS, 328–330
in Stata, 332–333

Indicator variables, 428, 429
Individual outcome value, predicting, 406
Infant mortality statistics, example, 408–421, 

424–427, 430–436
Inference

for predicted values, 405–406
individual outcome value, 406
mean outcome value, 405

for proportions, 190–196
example, 193–196
hypothesis testing, 191–192
overview, 190–191
using SAS, 192
using Stata, 193

Inputting data
SAS, 29–31
Stata, 55–56

Interaction terms, 429, 432–436
Interpretation, of coefficients, logistic regression, 

445–467
c statistic, 446
examples, 451–459
hypothesis tests and confidence intervals, 446, 

447t
model evaluation, 446
overview, 445–446
in SAS, 447–449
in Stata, 450–451

Interquartile range
defined, 7
examples, 7–8

Intersections, of events, 76–77
Interval estimation

defined, 146
for means, 151–153

Interval scale data, 256
Inverse normal function, 128

K

Kaplan–Meier method (product-limit method), 
471, 474–485

L

Label data values, 381
Label define command, 352
Labels

SAS
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creating, 31–32
defined, 31
using, 46

Stata, 56–57
value, 63

Label values command, 352
Laws of probabilities, 78–83

addition law, 79–80
conditional probability, 80
exhaustive events, 81–83
generalized multiplication law, 80
multiplication law, 78–79
mutually exclusive events, 81–83
relative risk, 80
total probability rule, 80–81

Leaf, 13, 14
Least squares, method of, 403, 404f
Levene test, 349, 355, 364
LFITCI command, 418t
Librefs, 26
Life-table method, 470–471
Linearity, ANOVA assumption, 402
Linear regression, 401–440

model evaluation, 423–428
model selection, 436–440

automatic, 436–438
collinearity, 438

multiple, 423
other explanatory variables, 428–436

categorical variables, 428–429
example, 430–436
indicator variables, 428, 429
interaction terms, 429

simple, 401–423
assumptions, 402–403
evaluation of model, 406–408
example, 408–421
inference for predicted values, 405–406
linear relationship, 404–405
MLS, 403, 404f
overview, 401–402
regression concepts, 402–403

LINE graph, 415t
list command, 62
Location, measures of, 2–6

arithmetic mean, 2, 4
example, 3, 5
geometric mean, 4, 5
median, 2–3
mode, 3–4
for random variables, 108–109

log command, 57–58
Log files, Stata, 57–58
logistic command, 450, 451, 454, 457
Logistic function

defined, 443
properties, 443

Logistic regression, 441–467
interpretation of coefficients, 445–467

c statistic, 446
examples, 451–459
hypothesis tests and confidence intervals, 

446, 447t
model evaluation, 446
overview, 445–446
in SAS, 447–449
in Stata, 450–451

overview, 441–445
logit command, 450, 451, 454
Log-rank test, 471, 484
Log window, in SAS, 24, 25, 27, 28, 45
Longitudinal studies, Poisson distribution, 117
Longitudinal (follow-up) study, 221
Lower CLM (LCLM), 156
lroc command, 451

M

Mann–Whitney test, 256, 268–269
Maternity Practices in Infant Nutrition and Care 

(mPINC) survey, example, 408–421
Mathematical statistics, defined, xviii
MATLAB, xx
Maximum likelihood estimation (MLE), 443
mcc command, 312
McNemar’s test, 309–316

concordant pair, 309
for correlated proportions, 326
defined, 309
discordant pair, 309–310
example, 313–316
in SAS, 310–312
in Stata, 312–313
table setup for, 310t

MCNEM option, 311
mean command, 59, 347, 355, 364
Mean outcome value, predicting, 405
Means

confidence intervals for, 151–154
example, 153–154
implication, 153
interval estimation, 151–153
one-sided, hand calculation of, 154
width, 154

examples, 184–189
null and alternative hypotheses for, 176–177
one-sample tests

using SAS, 181–182
using Stata, 182–184

one-sample tests, power and sample size for
using SAS, 204–205
using Stata, 205–206

sample size and power for two-sample test of, 
241–252



552 Index

example, 247–252
overview, 241–242
using SAS, 242–245
using Stata, 245–247

sampling distribution of, 148–149
standard normal distribution for, 

154–157
one-sided confidence interval, requesting, 

157
PROC MEANS procedure, 155–156
SAS to construct confidence intervals, 

154–155
Stata to construct confidence intervals, 

156–157
Measures

central tendency (location), 2–6
of location and spread for random variables, 

108–109
spread, 6–8
variability, 8–11

Median
arithmetic mean vs., 4, 5
calculation, 3
defined, 2–3
example, 3

Medical care and health behaviors, example, 
291–293

Medicare, 291–293
Medication Regimen Complexity Index (MRCI), 

240
Mental health resources, example, 261–267
Menus

SAS, 24
Stata, 52

Method of least squares (MLS), 403, 404f
Metropolitan Statistical Area (MSA), 281
Missouri Information for Community Assessment 

(MICA), 26, 53
Mode, 3–4
Model evaluation, logistic regression, 447
Model, linear regression

evaluation, 423–428
simple, 406–408

selection, 436–440
automatic, 436–438
collinearity, 438

MODEL statement, 347, 437, 447, 451, 455
Moderation/effect modification, 429
Modified retail food environment index (mRFEI), 

278–279
MODIFY statement, SAS, 31
Multiple comparisons, ANOVA, 346–348
Multiple linear regression, 423
Multiplication law, of probabilities, 78–79
Mutually exclusive events, 75, 81–83, 

112–113
Mylib, 27

N

National Air Toxics Assessment (NATA), 
162–163

National Health and Nutrition Examination 
Survey (NHANES)

asthma, 472–482
average total cholesterol, 354–362
birthweight, 212, 217–219, 283
blood lead levels, geometric mean, 5, 6f
blood pressures, 29, 130–134
depression rate, 112
diabetes dataset, 348–353, 452
fasting glucose levels, 247–252
glucose dataset description, 48, 69
healthcare resources, access to, 308–309
healthy diet, dataset, 215
pulse rates, 134–135
renal and liver diseases, treatment, 384–386
sample dataset description, 33, 58, 185
self-reported asthma, 271–274
Stata data description, 56
total cholesterol level, dataset, 190
vigorous physical activity, 275, 284–285
weight, 29, 137

National Vital Statistics Report, 366, 368
Negatively skewed distribution

arithmetic mean, 4, 5
median, 4, 5

Negative predictive value, of screening 
test, 89

NHANES National Youth Fitness Survey 
(NNYFS), 486–487

NNYFS (NHANES National Youth Fitness 
Survey), 486–487

Nominal data, 11, 12, 256
Nominal variables, xx
Nonlinearity, correcting for, 407, 408f
Nonparametric hypothesis testing, 255–287

data, types of, 256
independent data, nonparametric tests for, 

268–280
example, 271–274
in SAS, 269–270
in Stata, 270–271
Wilcoxon rank-sum test, 268–269

overview, 255
parametric vs. nonparametric tests, 256–267

overview, 256–257
for paired data, 257–261

Nonparametric statistical methods, 255
Nonparametric tests, parametric vs., 256–267

overview, 256–257
for paired data, 257–261

example, 261–267
in SAS, 259–260
sign test, 257–258
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in Stata, 260–261
Wilcoxon signed-rank test, 258–259

Normal distributions, 127–135
curve, 127, 130
defined, 127
examples, 130–135
overview, 127
standard, 128

for means, 154–157
probability distribution, area in upper tail, 

515–516
use, 128, 129f

standard, for means, 154–157
one-sided confidence interval, requesting, 

157
PROC MEANS procedure, 155–156
SAS to construct confidence intervals, 

154–155
Stata to construct confidence intervals, 

156–157
standardization of normal variable, 128, 

129f
Normality, ANOVA assumption, 345, 402
Normal theory method, 191, 290–294
Normal variable, standardization of, 128, 129f
NPERGROUP statement, 328, 329, 337
nratio option, 332, 333, 337
NTOTAL statement, 328, 329, 337
Null hypothesis

of ANOVA, 341, 348–349, 355
equality of variances, 229
for means, 176–177
one-sample hypothesis testing, 200–201
Pearson correlation coefficient using SAS, 

375–376
for Pearson’s chi-squared test, 305
of Pearson’s chi-squared test, 297
two-sample hypothesis testing, 226
unequal variances, 233
for Wilcoxon rank-sum test, 268

NULLPROPORTION, 207
Numerator degrees of freedom, 229

O

Obtaining critical values in SAS and Stata, 
158–162

Odds ratio (OR) methods, 316–326, 445–446
defined, 317
example, 320–324
in SAS, 317–319
in Stata, 319–320

onemean option, 205
ONESAMPLEFREQ option, 206–207
One-sample hypothesis testing, 175–220

basics, 176–180
confidence intervals and, 180–189

examples, 184–189
for mean using SAS, 181–182
for mean using Stata, 182–184
overview, 180

critical values, 179
hypothesis, stating, 176–177
inference for proportions, 190–196

example, 193–196
hypothesis testing, 191–192
overview, 190–191
using SAS, 192
using Stata, 193

overview, 175
power and sample size

for mean using SAS, 204–205
for mean using Stata, 205–206
for proportion using SAS, 206–208
for proportion using Stata, 208–209

power, determining, 197–209
calculating, 197–199
defined, 197
example, 199–201
formulas, 198

p-value, 179
rejection region, 178, 179
sample of size, drawing, 178
sample size

approximate sample size based on 
confidence interval width, 203

calculating, 202–203
example, 203
formulas, 202

significance level, specifying, 177–178
test statistics, computation, 178–179

One-sided confidence intervals
hand calculation, 154
requesting, 157

onesided option, 205, 332, 333
One-sided test, 177
One-way ANOVA, 341–342
oneway command, 348
One-way scatterplot, 15
Opening data files

in SAS, 25–27
Stata, 52–54

Ordinal data, 11, 12, 256
Ordinal variables, xx
Outcomes

dichotomous, two-way scatterplot with, 
441–442

explanatory variable and, 443, 444t
hypothesis test, 179–180

Outliers, 17
Outpatient care center, example, 313–316
Output Delivery System (ODS), 39, 41–42
Output, SAS, printing, 39
Output window, in SAS, 24, 25, 39
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P

Paired data, nonparametric tests for, 
257–261

example, 261–267
in SAS, 259–260
sign test, 257–258
in Stata, 260–261
Wilcoxon signed-rank test, 258–259

PAIREDFREQ statement, 330
pairedproportions option, 333
Paired samples, sample size and power for two 

binomial proportions, 326–328
in SAS, 330–331
in Stata, 333–334

PAIRED statement, 223, 224
Paired tests (dependent samples), see Dependent 

samples (paired tests)
Pairwise tests, 351, 353, 361, 365
Parameters, binomial distribution, 112
Parametric statistical methods, 255
Parametric tests, nonparametric vs., 256–267

overview, 256–257
for paired data, 257–261

example, 261–267
in SAS, 259–260
sign test, 257–258
in Stata, 260–261
Wilcoxon signed-rank test, 258–259

Pearson correlation coefficient (r), 373–377
examples, 377–384
hand calculation, 380t
using SAS, 374–376

null hypothesis about, 375–376
using Stata, 376–377

Pearson’s chi-squared test (goodness of fit test), 
297–309

example, 303–308
overview, 297–299
in SAS, 299–301
in Stata, 301–303

Percentiles, 6–7
Permutations, 109
Person-year, defined, 117
Point estimates, defined, 146
Poisson distribution, 116–121

estimation, 117
example, 117–121
longitudinal studies, 117
overview, 116
person-year, 117
probabilities, 509–514
properties, 116–117

Population
mean, 148
proportion, 164
sample measures of spread and, 149–150

standard deviation, 149
variance, 149

Population correlation coefficient (ρ), 
371–373

Positively skewed distribution
arithmetic mean, 4, 5
median, 4, 5

Positive predictive value, of screening test, 89
Poststroke pneumonia, 98–102
Power, determining

for comparing two binomial proportions, 
326–335

one-sample test, 197–209
calculating, 197–199
defined, 197
example, 199–201
formulas for one-sample tests, 198
for mean using SAS, 204–205
for mean using Stata, 205–206
for proportion using SAS, 206–208
for proportion using Stata, 208–209

for two binomial proportions
in clinical trial setting, 334–335
example, 335–338
independent samples, 326, 328–330, 

332–333
paired samples, 326–328, 330–331, 

333–334
in SAS, 328–331
in Stata, 332–334

two-sample test, for means, 241–252
example, 247–252
overview, 241–242
using SAS, 242–245
using Stata, 245–247

Predicted values, inference for, 405–406
individual outcome value, 406
mean outcome value, 405

Prediction interval (PI), 406
Prevalence, of disease, 90
Printing

SAS output, 39
Stata, 63

Probabilities, 73–83
binomial distribution, 500–508
defined, 73
to diagnostic testing/screening, see Diagnostic 

testing/screening
discrete probability distributions, see Discrete 

probability distributions
examples, 74–75, 78–79, 79–80, 81–83
laws of, 78–83

addition law, 79–80
conditional probability, 80
exhaustive events, 81–83
generalized multiplication law, 80
multiplication law, 78–79
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mutually exclusive events, 81–83
relative risk, 80
total probability rule, 80–81

overview, 73–75
Poisson distribution, 509–514
properties, 75–78

complement of event, 76
intersections, 76–77
mutually exclusive events, 75
null event, 76
reference guide on, 78t
union, 77, 78t

standard normal distribution, area in upper 
tail, 515–516

Probability density function (PDF), 125, 126f
Probability distributions, 141–142

continuous probability distributions, see 
Continuous probability distributions

defined, 108
Probability mass function, 108
PROBCHI function, 296
PROC ANOVA, 347
PROC BOXPLOT, 40–41
PROC CONTENTS, 31–32
PROC CORR, 374, 387–388
PROC FORMAT statement, 38–39, 351
PROC FREQ, 36–37, 165, 192, 299, 300, 301, 

305, 310, 317, 323
PROC GLM, 345, 347, 352, 355, 362, 364
PROC LIFETEST, 478, 482, 485
PROC LOGISTIC, 447, 451–452, 455
PROC MEANS, 33, 35–36, 154–155, 345
PROC NPAR1WAY, 269–270, 272–273, 276
PROC POWER, 204, 206, 337
PROC PRINT, 37–38
PROC REG, 415t, 418t, 437
PROC SGPLOT, 46–47, 373, 415t, 418t
PROC SORT, 29, 43
PROC TTEST, 181, 223, 226, 231, 347, 361
PROC UNIVARIATE, 34, 35–36, 40–44, 259, 

345
Product-limit method (Kaplan–Meier method), 

471, 474–485
Programs, SAS, 25
Properties

binomial distribution, 111
logistic function, 443
Poisson distribution, 116–117
probabilities, 75–78

complement of event, 76
intersections, 76–77
mutually exclusive events, 75
null event, 76
reference guide on, 78t
union, 77, 78t

of sample mean, 2
sample variance, 9

Proportions
binomial, sample size and power for

in clinical trial setting, 334–335
example, 335–338
independent samples, 326, 328–330, 

332–333
paired samples, 326–328, 330–331, 

333–334
in SAS, 328–331
in Stata, 332–334

confidence intervals for, 164–170
example, 167–170
SAS, 165–166
Stata, 166–167

inference for, 190–196
example, 193–196
hypothesis testing, 191–192
overview, 190–191
using SAS, 192
using Stata, 193

population proportion, 164
power and sample size for one-sample tests

using SAS, 206–208
using Stata, 208–209

sample proportion, 164
sampling distribution for, 163–164
two-sample test for, 290–294

example, 291–293
normal theory method, 290–291

Prostate cancer, 104–105
Prostate-specific antigen (PSA) test, 104–105
prtest command, 193
prtesti command, 193
p-values, 179, 185–187, 191, 230, 260–261, 

293, 332
pwcorr command, 376
Pyruvate kinase isoenzyme M2 (M2-PK), 

104

Q

Quantiles, 6
Quartiles, 7
Quintiles, 7

R

Racial disparities in hypertension, example, 
335–338

Randomization, 147–148
Randomized clinical trial (RCT), 147–148
Random sample, 146
Random variables

Bernoulli, 110
CDF of, 108–109, 110f, 125, 126f
continuous, 108, 110f
defined, 107
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dichotomous, 110
discrete, 107–108
measures of location and spread for, 108–109
PDF of, 125, 126f

Range, 6
Ranked variables, xx
ranksum command, 270
Rare events, distribution of, 116
Raster data, 16, 18f
Ratio scale data, 256
R × C contingency table, 296
Receiver operating characteristic (ROC) curve, 

94–102
example, 95–102
overview, 94–95

Reference population, 146–147
Regression analysis, strategy for, 408
Regression, concepts, 402–403
REGRESSION statement, 415t
Rejection error, 179
Rejection region, 178, 179
Relationship, linear, 404–405
Relative risk, 80
RELRISK option, 317, 323
Residual plots, 407, 408f
Residual sum of squares, 403
Response (dependent/outcome) variable, 401
Results Viewer window, in SAS, 24
Results window

SAS, 24, 32, 39
Stata, 52, 57, 62

Reverse transcription polymerase chain reaction 
(RT-PCR) assay, 102–103

Review, of probability distributions, 135–136
Review window, Stata, 52, 61
Risk ratio, 80
Row marginal total (row margin), 295
RUN statement, 33, 36, 38

S

Salmonella enteritidis infections, 324–325
Sample mean

calculation, 148
properties, 2

Sample measures of spread, population and, 
149–150

Sample median, defined, 3
Sample proportion, 164
Sample size

for comparing two binomial proportions, 
326–335

one-sample test
based on confidence interval width, 203
calculations, 202–203
example, 203
formulas, 202

for mean using SAS, 204–205
for mean using Stata, 205–206
for proportion using SAS, 206–208
for proportion using Stata, 208–209

for two binomial proportions
in clinical trial setting, 334–335
example, 335–338
independent samples, 326, 328–330, 

332–333
paired samples, 326–328, 330–331, 

333–334
in SAS, 328–331
in Stata, 332–334

two-sample test, for means, 241–252
example, 247–252
overview, 241–242
using SAS, 242–245
using Stata, 245–247

Sample space, defined, 73
Sample standard deviation, 149
Sample variance, 149
Sampling

defined, 146
distribution

of mean, 148–149
for proportions, 163–164

random sample, 146
reference population, 146–147

SAS, statistical software, 23–49
ANOVA in, 345, 347–348, 355

formatting variables, 351–352
homogeneity of variance, 347
multiple comparisons in, 347

automatic model selection, 437, 438t
binomial probability, 114
commenting, 25
confidence intervals for proportions, 165–166
to construct confidence intervals for mean, 

154–155
creating new variables with formulas, 39–40
data editor, 27–29
defined, 23
equal variances, t-test with, 231–232
examples, 33–38, 40–47
extension, 24
formatting, 38–39
graphs, 40–47

box plots, 40–41
histogram, 43–46
saving, 47
scatterplot, 46–47
stem-and-leaf plot, 41–42

inputting data into, 29–31
labels, 31–32
logistic regression in, 447–449
McNemar’s test in, 310–312
menus, 24
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multiple linear regression, 425
with indicator variable, 430

nonparametric tests for independent data, 
performing, 269–270

obtaining critical values in, 158–162
one-sample tests for mean using, 181–182
one-sample tests for proportion using, 192
opening data files, 25–27
OR methods in, 317–319
overview, 23, xviii
Pearson correlation coefficient, calculation, 

374–376
null hypothesis about, 375–376

Pearson’s chi-squared test (goodness of fit test), 
299–301

performing nonparametric tests for paired 
data, 259–260

Poisson probability, 120
power and sample size for one-sample tests

for mean, 204–205
for proportion, 206–208

printing SAS output, 39
programs, 25
purpose, 23
ROC curve, 95–102
sample size and power for two binomial 

proportions, 328–331
independent samples, 328–330
paired samples, 330–331

sample size and power for two-sample test of 
means using, 242–245

sign test and Wilcoxon signed-rank test, 
265–266

simple linear regression, 409–421
Spearman rank correlation coefficient (rs), 

calculation, 387–388
standard normal probability, 132
starting, 23
summarizing data, 32–38
survival analysis, 478, 480, 482–485
unequal variances, t-test with, 234–236
using, with paired (dependent) samples, 

223–224
variable names, 30
windowing environment, 24

Satterthwaite approximation, 233
Saving graphs, 47
Scatterplots

overview, 15, 16, 17f
Pearson correlation coefficient, 373t, 377, 

379f, 383f, 384, 384t, 385f
residuals, 407, 408f
simple linear regression, 410f, 411f, 415t, 

416f
two-way, in logistic regression, 441–442
variables, relationship between two, 46–47, 

67–68

SCATTER statement, 46–47, 373, 415t
Screening test

colorectal cancer, 303–308, 339
negative predictive value of, 89
positive predictive value of, 89

sdtest command, 230
Semicolon, 25, 26, 30, 31, 38
Sensitivity, of symptom, 89, 95–102
SERIES statement, 415t
SET statement, 40
SIDES option, 166, 204, 223, 226
signrank command, 261, 265
Sign test, 257–258, 265
signtest command, 260, 266
Simple linear regression, 401–423

assumptions, 402–403
evaluation of model, 406–408
example, 408–421
inference for predicted values, 405–406

individual outcome value, 406
mean outcome value, 405

linear relationship, 404–405
MLS, 403, 404f
overview, 401–402
regression concepts, 402–403

Simple random sample, 146
Single-blinded clinical trials, 148
Smoking and BMI, example, 236–240
Social Security Administration (SSA), 279
sort command, 55, 60
SPEARMAN option, 388–389
Spearman rank correlation coefficient (rs), 

386–399
examples, 389–393
overview, 386–387
using SAS, 387–388
using Stata, 388–389

Specificity, of symptom, 90, 95–102
Spread

measures of, 6–8
for random variables, measures, 108–109
sample measures, population and, 149–150

Standard deviation
defined, 8
example, 9
grouped, 10–11
population, 149
sample, 149

Standard distribution rules, 17, 19
Chebyshev inequality, 19
empirical rule, 17, 19

Standard error (SE), 149
Standard error of mean (SEM), 149
Standardization, of normal variable, 128, 129f
Standard normal distribution, 128

for means, 154–157
one-sided confidence interval, requesting, 157
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PROC MEANS procedure, 155–156
SAS to construct confidence intervals, 154–155
Stata to construct confidence intervals, 

156–157
probability distribution, area in upper tail, 

515–516
Stata statistical software, 51–69

ANOVA in, 345, 348, 355
formatting variables, 352

automatic model selection, 437, 438t
basics, 51
binomial probability, 114
confidence intervals for proportions, 166–167
construct confidence intervals for mean, 

156–157
creating new variables with formulas, 64
Data Editor, 55
defined, 51
Do Editor, 54–55
examples, 59–62, 64–68
extension, 53
graphs, 64–69

box plots, 64–65
histograms, 65–66
saving, 68–69
scatterplots, 67–68
stem-and-leaf plot, 65

inputting data into, 55–56
labels, 56–57
log files, 57–58
logistic regression in, 450–451
McNemar’s test in, 312–313
menus, 52
multiple linear regression, 425
multiple linear regression with indicator 

variable, 430
nonparametric tests for independent data, 

performing, 270–271
obtaining critical values, 158–162
one-sample tests for mean using, 182–184
one-sample tests for proportion using, 193
opening existing Stata data files, 52–54
OR methods in, 319–320
output for multiple t-tests, 363
Pearson correlation coefficient, calculation, 

376–377
Pearson’s chi-squared test (goodness of fit test), 

301–303
performing nonparametric tests for paired 

data, 260–261
Poisson probability, 120
power and sample size for one-sample tests for 

mean, 205–206
power and sample size for one-sample tests for 

proportion, 208–209
printing, 63
purpose, 51

ROC curve, 95–102
sample size and power for two binomial 

proportions, 332–334
independent samples, 332–333
paired samples, 333–334

sample size and power for two-sample test of 
means using, 245–247

sign test and Wilcoxon signed-rank test, 265–266
simple linear regression, 409–421
Spearman rank correlation coefficient (rs), 

calculation, 388–389
standard normal probability, 132
starting, 51
summarizing data, 58–62
survival analysis, 478, 482–485
test for equality of variances in, 230–231
t-test with equal variances in, 232–233
t-test with unequal variances in, 236
using, with paired (dependent) samples, 

224–225
value labels, 63
variable names, 56
windows, 51–52

Statistical inference
defined, 146
estimation, 146
hypothesis testing, 146

Statistical methods
nonparametric, 255
parametric, 255

Statistical package
defined, xviii
SAS, see SAS, statistical software
Stata, see Stata statistical software

Statistics
basic problem, xix
branches, xviii
defined, xviii
descriptive, see Descriptive statistics

Stem, 13, 65
Stem-and-leaf plot, 13–15, 41–42, 65
Stepwise selection, linear regression, 436–438
stset command, 478
sts graph command, 482
sts list command, 478
sts test command, 485
Student’s t-distribution, 157–158
Study population, 146–147
Success, defined, 110
summarize command, 59–61, 345
Summarizing data

SAS, 32–38
Stata, 58–62

Sum of squared residuals, 403
Survival analysis, 469–487

censoring, 469, 470, 475, 477
examples, 472–485



Index 559

failure, 469
life-table method, 470–471
overview, 469–471
product-limit method (Kaplan–Meier 

method), 471, 474–485
two survival functions, comparing, 471–487

Survival curve
defined, 469
example, 470f

Survival time, defined, 469
Symmetric distribution

arithmetic mean, 4, 5
median, 4, 5

T

tab command, 61–62, 301
TABLES statement, 192, 299
Target population, 146–147
t-distribution, 157–158, 517
Tertiles, 7
Testing for significance, ANOVA, 345–346
Test statistics, computation, 178–179, 185–187, 

191, 226, 305, 350, 360, 365
Total probability rule, 80–81
Transformations, correcting for nonlinearity, 407, 

408f
Transrectal ultrasound (TRUS), 104–105
Triple-blinded clinical trial, 148
Trombley assay, 102–103
ttest command, 182–184, 225, 226, 232
ttesti command, 182–184, 225, 226, 232
twoproportions option, 332, 337
TWOSAMPLEFREQ option, 337
Two-sample hypothesis testing, 221–253

cross-sectional studies, 222
independent samples, 228–241

defined, 222
equality of variances, testing for, 229–240
overview, 228–229

longitudinal (follow-up) study, 221
overview, 221–222
paired (dependent) samples, 222–228

defined, 221
example, 225–228
overview, 222–223
using SAS, 223–224
using Stata, 224–225

sample size and power, for means, 241–252
example, 247–252
overview, 241–242
using SAS, 242–245
using Stata, 245–247

Two-sample test for proportions, 290–294
contingency table methods, 294–296
normal theory method, 290–294

example, 291–293

Two-sided test, 177
TWOWAY command, 415t, 418t
Two-way scatterplot, 15, 16, 17f, 441–442

U

Unbiased estimators, 148–149
Unblinded clinical trials, 148
Unequal variances, 233–236

example, 236–240
overview, 233–234
t-test, in SAS, 234–236
t-test, in Stata, 236

Union, of events, 77, 78t
United States Department of Health and Human 

Services, 366
United States Preventive Services Task Force 

(USPSTF), recommendations, 303
Units, xix–xx
Upper CLM (UCLM), 156
use command, 52–53, 54

V

Vaccination rates, for preventable diseases, 282
Value labels, Stata, 63
VALUE statement, 351
Variability, measures of, 8–11
Variable names

SAS, 30
Stata, 56

Variables
categorical, 428–429
continuous random, 108
defined, xix–xx
discrete random, 107–108
explanatory (independent/predictor), 401, 443, 

444t, 445
formatting, 351–352
with formulas, creating new, 39–40, 64
indicator (dummy), 428, 429
normal, standardization of, 128, 129f
random, 107–108
types, xx

Variables window, Stata, 52, 55
Variance inflation factor (VIF), 438
Variances

defined, 8
discrete random variable, 108
example, 9
grouped, 10–11
homogeneity of, 347, 364–365
population, 149
in populations, 349–350
sample, 9, 149

VAR statement, 38, 374
Vector data, 16, 18f



560 Index

Vigorous physical activity (VPA), 275, 284–285
Visualizing correlated data, 373

W

Wald option, 167
Weight, HbA1c and (example), 377–381
WEIGHT statement, 300, 301
Welch’s ANOVA, 345, 364, 365
Width, of confidence intervals, 154
Wilcoxon rank-sum test, 256, 268–270, 471, 

524–543
Wilcoxon signed-rank test, 258–259, 264, 265
Windowing environment

SAS, 24
Stata, 51–52

Within-group variation, ANOVA, 342, 343f, 
350, 355, 358–359

woolf option, 319
WORK library, defined, 26
wtest command, 345, 364

Y

Yates continuity correction, 298–299, 305
Youth Risk Behavior Surveillance System 

(YRBSS), 167–168, 320, 394

Z

Zika virus, 13, 108
ztesti command, 182–184
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