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Preface

The present monograph is devoted to the chemistry of nitroazoles, one of the most 
interesting series of heteroaromatic compounds. The azoles hold a special position 
in the chemistry of heterocycles. Their unique properties and specific biological 
activity attract much attention of research chemists all over the world. During the last 
years the interest in the chemistry of nitroazoles has increasing. The nitro derivatives 
of azoles have found a wide application in various fields of industrial chemistry, 
agriculture, and medicine. Medical products developed by nitroazoles incluce azo-
mycin, metronidazole, misonidazole, tinidazole, nitazole, etc., ionic liquids, high-
energy materials, synthons for nanocompounds, universal bases in peptide nucleic 
acids, plant growth regulators, and intermediates for organic synthesis.

The investigations in the field of energetic compounds have received enormous 
interest in recent years. Energetic materials on the base nitroazoles – explosives, 
propellants, and pyrotechnics – are widely used for both civilian and military 
applications. Nitroazoles, especially polynitroazoles, possess higher heat of forma-
tion, density, and oxygen balance than their carbocyclic analogs. A number of 
ongoing research programs worldwide are aimed for the development of new 
explosives and propellants with higher performance characteristics or enhanced 
insensitivity to thermal or shock insults and pyrotechnics with reduced smoke. The 
preparation of nitroazoles demonstrates its great synthetic potential. At the same 
time, feasibility and availability of the starting molecules make this strategy a pow-
erful method for high-energy material construction. The introduction of electron-
withdrawing nitro groups into azole cycle tends to produce energetic materials with 
high density, low sensitivity, and good thermal stability. Synthesis, molecular 
design, and explosive characteristics of new energetic compounds based on nitroa-
zole have been studied in the famous Lawrence Livermore National Laboratory 
(USA). The investigations of research teams of A. Katritzky, A. Pozharskii,  
J. Elguero, S. Shevelev, V. Semenov, A. Sheremetev and so on, unveil the wide 
synthetic possibility of producing nitroazoles.

We consider azoles as five-membered heteroaromatic compounds and their 
annelated derivatives containing at least two endocyclic heteroatoms, one of which 
is nitrogen (pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, oxazole, thiazole, 
selenazoles, tetrazole, indazole, benzimidazole, benzoxazole, benzothiazole, ben-
zoselenazoles, benzotriazole, etc.).
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A large body of information on the methods of synthesis, application, structure, 
and properties of all known five-membered nitroazoles – pyrazoles, imidaz- 
oles, triazoles, tetrazoles, oxazoles, isoxazoles, oxadiazoles, thiazoles, isothiazoles, 
thiadiazoles, selenazoles, selenadiazoles, and their benzo analogs – indazoles,  
benzimidazoles, benzoxazoles, benzisoxazoles, benzoxadiazoles, benzothiazoles, 
benzoisothiazoles, benzothiadiazoles, benzotriazoles, benzoselenazoles, and ben-
zoselenadiazoles has been systematized, summarized, and critically discussed in 
this monograph.

Chapters 1 and 2 give comprehensive data on the preparation methods of all 
known C- and N-nitroderivatives of five-membered azoles and their condensed ana-
logs. This book focuses on the nitration reaction, one of the main synthetic routes to 
nitroazoles. General information on the theory of nitration is given prior to the chapter 
covering synthetic methods. A separate section in the monograph is given to the special 
class of nitroazoles – polynitroazoles.

The critical evaluation of a large body of the information on the study of nitroa-
zoles by physical/chemical methods (NMR, NQR, ESR, UV, IR- spectroscopy, 
X-ray, mass spectrometry, polarography, dipole moments, and other methods) is 
presented in Chap. 3.

Chapter 4 is devoted to the application of nitroazoles, many of which are impor-
tant building blocks in drug discovery, well-known medicines, and hypoxic cell 
radiosensitizers.

Special attention is paid to those nitroimidazole derivatives among which are 
medicines with a vividly expressed therapeutical activity (azomycine, metronida-
zole, ipronidazole, carnidazole, dimetridazole, secnidazole, and many others) and 
to nitrotriazoles, nitrotetrazoles, and polynitroazoles used as high-energy 
compounds.

Our extensive investigations of the tautomerism, reactivity, electrochemistry, 
and structure of nitro derivatives of azoles are also included. Enormous number of 
facts are covered in the book.

This treatise constitutes the first complete collection of information on the 
chemistry of azoles containing a nitro group in the cycle. The monograph of Prof. 
Boyer (1986) on nitroazoles deals with only the C-nitro derivatives of N- and N,O-
containing five-membered heterocycles, whereas the N-nitro derivatives presenting 
a new class of the oxide nitrogen generators (in particular, N-nitropyrazoles), as 
well as also thia- and selenazoles and all benzazoles remained unheeded. Prof. J.H. 
Boyer has noted that “that ‘rapid development’ of the chemistry of the nitroazoles 
in the Soviet Union began about 1960 and has provided more journal publications 
of research in the area than were found for any other country” and “the Russian 
emphasis on investigating” nitroazoles “has been outstanding.”

This monograph provides comprehensive systematization of data on C- and 
N-nitroazole chemistry with in-depth information on structure and preparation, that 
is, nitration reactions and heterocyclization.

The monograph is mainly addressed to research professionals, research scien-
tists (chemists, physicists, pharmaceutics, biochemists, chemical technologists), 
engineers, and “physicians—especially those dealing with oncology”. This book can 
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be used as a textbook for postdoctorals and graduate students in chemistry, bio-
chemistry, medical pharmacology, agricultural bioapplications, and for all who 
want to get acquainted with the chemistry and structure of nitroazoles.

The book may be of interest for the specialists dealing with the production of 
high-energy compounds (gas generators for air-bags, explosives, propellants, and 
pyrotechnics), nanomaterials, polymers, fibers, superelectrophiles, nonlinear opti-
cal materials, dyes (including fluorescent and cyanine dyes), and inhibitors of metal 
corrosion. It is also useful for people working in pharmaceutical industry.

We hope that it will be an invaluable reference for professionals in the field of 
heterocyclic chemistry, and that this book will initiate new investigations in this area. 

The recent nature of the material and a large number of references (~2,200) 
make the book interesting for a wide range of specialists.

The authors would greatly appreciate receiving from readers any suggestions, 
comments, and recommendations.

Irkutsk Institute of Chemistry  	 Lyudmila Larina
Siberian Branch	 Valentin Lopyrev
Russian Academy of Sciences
Irkutsk, Russia
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Introduction

Vigorous development of the chemistry of nitro compounds can be explained in 
terms of the practical and theoretical significance of these compounds. It can be 
said with assurance that the chemistry of nitro compounds has transformed into an 
independent area of organic chemistry. Many nitro compounds are used as explosives, 
ignition mixtures, and rocket fuels. Nitro aromatics serve as initial compounds for 
numerous dyers and pharmaceutical preparations. Nitro group-containing sub-
stances are constituents of many medicines. There are known nitro-containing 
pesticides and anticorrosion additives, technical solvents, etc.

From the theoretical viewpoint, compounds containing the nitro group are of inter-
est due to their peculiar reactivity. They are very convenient in the investigation of 
structure–composition relationships. The reaction of electrophilic nitration is one of 
the most important and popular directions in organic chemistry.

Nitro compounds were the objective of much research. Certain aspects of this 
field of organic chemistry are discussed in many monographs and reviews. Well 
known treatise is a monograph on the chemistry of nitro and nitroso groups edited 
by Feuer [1]. The chemistry and technology of aromatic nitro compounds is con-
sidered in monographs [2–4]. Much attention has been given to unsaturated [5], 
aliphatic and alicyclic nitro compounds [6].

A great number of publications deal with the reaction of nitration [7–20]. At the 
same time, volumes literature on nitro heterocycles has not been systematized until 
the present time. Direct nitration of some five-membered heterocycles such as pyr-
roles, furans, thiophenes, pyrazoles, imidazoles, and thiazoles has been discussed 
by Katritzky [21, 22]. Some synthetic routes to nitrated six-membered nitrogen-
containing aromatic heterocycles [23], as well as the nitration of oxo-pyrimidines 
and -imidazoles [24], and quantum-chemical studies of the nitration of benzazoles 
[25] have been reported.

The present monograph is devoted to the chemistry of a fascinating class of hetero
cyclic compounds, that of nitroazoles. The presence of the nitro group in the heterocyclic 
ring containing two or more hetero atoms points to a unique character of this cycle.

Some little data on the nitroazoles have been published in monographs and reviews 
dealing with the derivatives of pyrazole [26, 27], oxazole [28], thiazole [29], 1,2,4-tri-
azole [30], 1,2,3-triazole [31], tetrazoles [32], benzimidazole [33], and benzotriazole 
[34]. Some representatives of nitroazoles are described in a comprehensive and 
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excellent book on heterocycles by Katritzky and Pozharskii [35] and in reviews on 
five-membered ring systems with two and more heteroatoms [36–39]. Recently 
Elguero and colleagues have surveyed some problems on tautomerism investigation of 
azoles [40]. Special monographs and reviews are dedicated to the chemistry, biological 
properties, and clinical application of nitroimidazoles [41–43]. In a monograph 
devoted to nitroazoles [44], only five-membered heterocycles with N- and N,O-
endocyclic heteroatoms have been considered, whereas thia- and selenazoles, 
N-nitroazoles (a new class of the oxide nitrogen generator [45]), and all the nitroben-
zoazoles were ignored. We have published some reviews on the synthesis of five-
membered nitroazoles [46, 47] and their fused analogs [48, 49], on NMR spectroscopy 
[50] and mass spectrometry of nitroazoles [51], and on electronic substituent effects in 
five-membered, nitrogen-containing aromatic heterocycles [52].

Thus, azoles represent five-membered heteroaromatic compounds and they’re 
benzanalogs with two or more heteroatoms of which at least one is nitrogen. 
According to Albert’s classification subdividing all heteroaromatic compounds into 
p-rich and p-deficient ones, the azoles occupy an intermediate position, as they do 
not show clearly expressed p-donating or p-deficient properties [53]. It should be 
noted that this classification reflects the p-electron density distribution in the 
ground state of a molecule. Though reactivity is determined by the difference in 
energy of the ground and the transition state of the reaction, in practice a correlation 
of p-sufficiency change and the facility of electrophilic substitution is frequently 
observed. Really, as the number of “pyridine” nitrogen atoms increases the 
p-donating properties of azoles decrease and thus their reactivity in electrophilic 
substitution reactions is reduced [54]. However, this is not the case sometimes. 
Thus, 1H-imidazo[1,2]benzimidazole, for example, is less active than its 9H-isomer 
in the reactions of this type, though the donating ability of the latter is lower [55].

Nitroazoles possess a very broad array of practical applications. They can be used as 
anticancer preparations, antiseptics, radiosensitizers, herbicides, fungicides, dyes, ionic 
liquids, etc. The significant number of applications of nitroazoles makes them rather 
promising for research and requires deep understanding of their peculiar electronic 
structure, spectral properties, and chemical and tautomeric transformations [56, 57].

All this provoked us to write a monograph considering from unified positions all 
the literature available and our own data concerning the methods of synthesis, 
structure, properties, and application of C- and N-nitroderivatives of azoles and 
their condensed analogs.

An extensive volume of literature related to the question under consideration 
made us exclude a number of references to earlier publications and patents cited in 
the aforementioned monographs and reviews as well as in later publications.
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Abstract  Synthesis methods of various C- and N-nitroderivatives of five-membered 
azoles – pyrazoles, imidazoles, 1,2,3-triazoles, 1,2,4-triazoles, oxazoles, oxadiazoles, 
isoxazoles, thiazoles, thiadiazoles, isothiazoles, selenazoles and tetrazoles – are 
summarized and critically discussed. The special attention focuses on the nitration 
reaction of azoles with nitric acid or sulfuric–nitric acid mixture, one of the main 
synthetic routes to nitroazoles. The nitration reactions with such nitrating agents as 
acetylnitrate, nitric acid/trifluoroacetic anhydride, nitrogen dioxide, nitrogen tetrox-
ide, nitronium tetrafluoroborate, N-nitropicolinium tetrafluoroborate are reported. 
General information on the theory of electrophilic nitration of aromatic compounds 
is included in the chapter covering synthetic methods. The kinetics and mechanisms 
of nitration of five-membered azoles are considered. The nitroazole preparation 
from different cyclic systems or from aminoazoles or based on heterocyclization is 
the subject of wide speculation. The particular section is devoted to the chemistry of 
extraordinary class of nitroazoles – polynitroazoles. Vicarious nucleophilic substitu-
tion (VNS) reaction in nitroazoles is reviewed in detail.

Electrophilic Nitration of Azoles

The most widespread method of introducing nitro group in aromatic compounds, 
i.e., electrophilic substitution, is mainly used for the preparation of nitrodiazoles 
and benzazoles. The accumulation of “pyridine” nitrogen atoms in the cycle 
reduces the electrophilic substitution ability of compounds. Therefore, some 
indirect methods of introducing the nitro group are employed for the synthesis of 
triazole and tetrazole nitro derivatives.

Synthesis of Five-Membered Nitroazoles

L. Larina and V. Lopyrev, Nitroazoles: Synthesis, Structure and Applications,
Topics in Applied Chemistry,
DOI 10.1007/978-0-387-98070-6_1, © Springer Science+Business Media, LLC 2009
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The ability of azoles to electrophilic substitution reactions is determined by the 
activity of reagents, the basicity of substrates, and the acidity of media. This caused 
some uncertainty in the interpretation of results and complicated a comparison of 
the reactivity of various azoles. The situation has changed after Katritzky and 
Johnson [1] have reported the criteria allowing, with a sufficient degree of reliance, 
the establishment in what form (base or conjugative acid) the compound reacts. The 
information on the mechanism of nitration of azoles was basically borrowed from 
the extensive literature on the nitration of aromatic hydrocarbons [2–8]; therefore, 
we have found expedient to discuss briefly some works in this field.

Nitration of aromatic compounds is an immensely important industrial process. 
The nitroaromatic compounds so produced are themselves widely utilized and act 
as chemical feedstocks for a great range of useful materials such as dyes, pharma-
ceuticals, perfumes, and plastics [6, 7].

Electrophilic Nitration Mechanism

As commonly accepted, the nitration of aromatic compounds is a typical reaction 
of electrophilic substitution, with the NO

2
+ nitronium ion serving as a directly 

attacking moiety. On nitration by only nitric acid, the nitronium cation is formed 
via autoprotolysis according to Scheme 1:

In a sulfuric–nitric mixture the protonation of nitric acid occurs at the expense 
of a stronger sulfuric acid.

HNO
3
 + 2H

2
SO

4
 ® NO

2
+ + H

3
O+ + 2HSO

4
–

There are many kinetic evidences for the fact that the nitronium cation and the 
aromatic substrate are involved in a reversible bimolecular reaction to form a s-complex, 
which, being a strong acid, undergoes fast deprotonation (Scheme 2).

HNO3  +  HNO3 H2NO3
+  +  NO3

-

H2NO3
+

fast
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+

H2O  +  HNO3 H3O
+  

+  NO3
-fast

3 HNO3 NO2
+  +  2 NO3

-  +  H3O
+

Scheme 1   
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The nitration pathway of this type was mainly supported by the data reported by 
Ingold [2]. Later this Scheme has been slightly modified by introducing one more stage, 
that of the formation of p-complex between the reagent and the substrate (Scheme 3).

Numerous kinetic investigations of the formation of p-complexes carried out on 
model compounds have shown a high reaction rate and a low energy of activation 
of these interactions [3, 9]. As seen from the X-ray available data, the residue of 
aromatic substrate in p-complexes is structurally similar to the initial compound. 
All this has allowed a suggestion that in most cases elementary stages with partici-
pation of p-complexes do not play an essential role in electrophilic substitution 
[10]. The limiting stage of the process is the formation of s-complex that is con-
firmed, in particular, by correlation of the arene basicity determining the stability 
of s-complexes and the reaction rate [9–11]. The energy profile of the reaction is 
presented in Fig. 1, where DE* is the total energy of activation.

Except for nitric acid and the nitrated mixture, the nitration of aromatic com-
pounds can be carried out with nitronium salts as well [12].

NO
2

+ c–, Where c– = BF
4

–, ClO
4
– and etc

W

σ-complex 
∆E*

π1−complex π2−complex 

χ

Fig. 1  The energy profile of the reaction of electrophilic substitution: W is energy, c denotes the 
reaction coordinate 

R + NO2 NO2

NO2 NO2

+

NO2H

.
R +

R + H+

R +

π1-complex σ-complex
(aronium ion)

R H+

π2-complex

Scheme 3   
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Olah et al. have found out that the reaction rates on the nitration with nitronium 
salts are in good agreement with the stability of p-complexes [6, 13–16]. On this 
basis the authors have assumed that the nitronium salts serve as the nitrating agent; 
the stage limiting the reaction rate is the formation of p-complex (Fig. 2) that is 
rather uncommon in aromatic substitution.

These works have caused intensive polemic discussed in detail in a review [12] 
and a monograph [24].

Another nitration mechanism has been offered by Perrin for arenes oxidized 
more easily than toluene [17]. In his opinion, a one-electron transfer from the aro-
matic substrate to the nitronium cation takes place (Scheme 4).

The resultant radical cation of aromatic compound reacts with a nitrogen dioxide 
radical (Scheme 5).

Ross et  al. have reported some discrepancy between the experimental data and 
generally accepted mechanism of nitration [18–20]. The authors paid special attention to 
the participation of the radical cation of the aromatic substrate during nitration. It has 
been shown [20] that in the gas phase the nitronium cation does not act as a nitrating 

W

π1−complex π2−complex

χ

σ-complex
∆E*

TSσ

Fig. 2  The energy profile of nitration with nitronium salts: W is energy, c stands for the reaction 

coordinate, and DE* denotes the total energy of activation
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agent and generates, by means of one-electron transfer, the aromatic radical cations, 
which react with NO

2
· to form nitroaromatic products. Thus, a serious experimental 

support for the participation of aromatic radical cations in the process of nitration has 
been provided. The formation of the aromatic radical cation on the initial step of nitra-
tion has been considered in a special review by Morkovnikov [21].

Without going into further discussion on the role of one-electron transfer in  
the mechanism of nitration of aromatic compounds, it should be noted that the 
nitration mechanism, which seemed to be strictly proved and clear after Ingold’s 
studies [2], now again attracts steadfast attention. The research in this direction is 
worth further development.

Nitration with Nitric Acid or Sulfuric–Nitric Acid Mixture

Pyrazoles

In 1893 Büchner and Fritsch [22] obtained 4-nitropyrazole for the first time by 
heating pyrazole with a mixture of oleum and nitric acid. This method with slight 
modifications has been used for the synthesis of 4-nitropyrazole up to the present 
time [23, 24]. During the nitration of substituted pyrazoles the nitro group usually 
enters at position 4, if it is free [25–53]. Such a process is consistent with the data 
from quantum-chemical calculations, i.e., the maximum p-electron density at the 
C-4 atom of the pyrazole ring [54]. The presence of alkyl substituents in the pyra-
zole ring facilitates the nitration process [25, 26, 39, 51, 52, 55], and here the steric 
factors are not determining. In fact, the presence of a tert-butyl group at position 
3 or 5 does not prevent nitration at position 4 [42]. The nitration of 5-chloropyra-
zoles with a mixture of 100% nitric acid and 65% oleum (or a mixture of 60% 
nitric acid and polyphosphoric acid) affords substituted 5-chloro-4-nitropyrazoles 
in 45–91% yield [53].

The nitration of aryl- and thienylpyrazoles leads to the corresponding 4-nitropyrazoles. 
In this case, however, nitration of the aryl and thienyl substituents also occurs [22, 
35, 37, 38, 52]. The nitration of 3-aryl-5-halopyrazoles is accompanied by introduc-
tion of a nitro group into the aromatic ring. 4-Chloropyrazoles failed to undergo 
nitration under these conditions [53]. Thus, 3- and 5-substituted 1-phenylpyrazoles 
usually form the corresponding 1-(4-nitrophenyl)-4-nitropyrazoles during nitration 
with a nitrating mixture [35–38]. At the same time nitration with nitric acid or a 
nitrating mixture under mild conditions leads to the corresponding para-nitrophe-
nylpyrazoles [56–61]. 1-(4-Nitropheny)-4-nitropyrazoles are only formed if the 
concentration of nitric acid in the nitrating mixture is increased (or if the mixture is 
heated) [33, 34, 61]. 5(3)-Substituted 3(5)-(3-pyridyl)pyrazoles are nitrated at position 
4 of the pyrazole ring [27–29]. During the nitration of 3(5)-methylpyrazole [51, 
52], 3(5)-trimethylsilylpyrazole [43], 3(5)-halogeno-5(3)-methylpyrazole [44, 48, 
49], pyrazole-3-carboxylic acid [30, 62], and 3(5)-nitropyrazole [29, 63] the 
corresponding 4-nitro derivatives are obtained.
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The introduction of such electron-withdrawing groups as 2,4-dinitrophenyl, 
picryl, or nitroguanidyl at position 1 of pyrazole does not hinder the nitration of 
pyrazole at position 4 [32, 41, 64].

The nitration of 3-hydroxy- or 5-hydroxypyrazoles (pyrazolones) also takes place 
at position 4 [65–67]. Although it was considered for a long time that pyrazoles are 
only nitrated at position 4, in rare cases the nitro group enters at position 3 or 5 [41, 
45–47, 63, 68–72]. This usually occurs when position 4 is already occupied. Thus, 
for example, 1-methyl-3-nitro-4-(2,4,6-trinitrophenyl)pyrazole is formed when 
1-methyl-4-(2,4,6-trinitrophenyl)pyrazole is heated in nitric acid (Scheme 6).

At the same time the use of a sulfuric–nitric acid mixture leads to the 3,5-dinitro 
derivative [68]. Analogically dinitro compounds with high yield (70–80%) are observed 
on the nitration of 4-methyl-, 4-cloropyrazole and polypyrazoles [71, 73] (Scheme 7).
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When 1-methylpyrazole is heated for a long time with a sulfuric–nitric acid 
mixture, 1-methyl-4-nitropyrazole and 1-methyl-3,4-dinitropyrazole are formed in 
a ratio of 4:1. Here the dinitro derivative is formed as a result of further nitration of 
1-methyl-3-nitropyrazole [45] (Scheme 8).

The introduction of electron-donating substituents into the pyrazole ring facilitates the 
nitration process, while the introduction of electron-withdrawing substituents retards it. 
In fact, 4-nitropyrazole, 1-methyl-4-nitropyrazole, 1,3-dimethyl-4-nitropyrazole, and 
1-methyl-4-nitro-5-pyrazole carboxylic acid are not nitrated to the dinitro-substituted 
compounds [47, 63]. However, when heated with a mixture of nitric acid and oleum, 
1,5-dimethyl-4-nitropyrazole changes to the 1,5-dimethyl-3,4-dinitro derivative [47].

The simultaneous introduction of two nitro groups into the pyrazole ring is 
rarely observed [29, 45–47, 63, 68]. This occurs under considerably more rigorous 
conditions than mononitration. Thus, 1-alkyl-4-bromo-3,5-dinitropyrazoles are also 
formed together with 1-alkyl-4-nitropyrazoles (as a result of ipso-substitution) dur-
ing the nitration of l-alkyl-4-bromopyrazoles [46]. Here, it was assumed that the 
nitro group enters first at position 3. However, it was established more recently that 
the nitration rate of 4-bromo- and 4-chloro-1-methylpyrazoles with the sulfuric–
nitric acid mixture is higher at position 5 than at position 3 [74] (Scheme 9)

The “pyrrole” nitrogen atom activates the pyrazole ring toward electrophilic reagents 
to a greater degree than the “pyridine” nitrogen atom deactivates it. This is confirmed 
by the higher rate constant for substitution of the hydrogen atom at position 3 of 
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1,4-dimethylpyrazole than the rate constant for the substitution of hydrogen at the ortho 
position of toluene [64].

Some examples of the nitration of pyrazole N-oxides are known [75, 76]. The 
result of nitration is determined by the ratio of the components in the nitrating 
mixture (Scheme 10).

In some cases 1-methyl-5-nitro- and 1-methyl-3,5-dinitropyrazole can form as a 
result of deoxygenation [76]. Nevetheless, the nitration of 2-benzylpyrazole 1-oxide 
by sulfuric–nitric acid mixture leads to 2-benzyl-3-nitropyrazole 1-oxide in quanti-
tative yield. Further nitration takes place in the phenyl 4-position forming 3-nitro-
2-(4-nitrobenzyl)pyrazole 1-oxide and then in the pyrazole 5-position to give 
3,5-dinitro-2-(4-nitrobenzyl)pyrazole 1-oxide as the final product [77].

Imidazoles

In spite of extensive investigations into the electrophilic substitution of imidazoles, 
no rational explanation has yet been found for certain features of the reaction [78]. 
The nitration of imidazoles takes place exclusively at position 4 or 5. In reaction 
with the sulfuric–nitric acid mixture imidazole itself forms the 4(5)-nitro derivative 
[79–85]. A large number of papers have been devoted to the production of 
2-methyl-4(5)-nitroimidazole by the nitration of 2-methylimidazole [79, 82, 
86–94]. This is due to the fact that 2-methyl-4(5)-nitroimidazole is an important 
intermediate product in the synthesis of highly effective medical products (metron-
idazole, tinidazole, dimetridazole, etc.).

The nitration of other 2-alkyl-substituted imidazoles takes place similarly:  
2-ethylimidazole [86, 87, 92, 95], 2-propylimidazole [87], 2-isopropylimidazole 
[87, 89–92, 96], and 2-butylimidazole [87, 89]. During the nitration of 2-phenylimi-
dazole with the sulfuric–nitric acid mixture the nitro group enters first at position 4 
of the benzene ring [97, 98], and nitration at position 4(5) of the imidazole ring only 
takes place under more rigorous conditions [82, 91]. In cases where the aryl group 
is passivated by electron-withdrawing substituents the nitration takes place exclu-
sively in the imidazole ring [86, 99–102]. The presence of other substituents at 
position 2 does not change the direction of nitration [88, 93, 103–108].

The presence of a substituent at position 4(5) of the imidazole ring does not 
prevent entry of the nitro group at position 5(4) [87, 95, 109–121]. The size of the 
substituent does not play a part (isopropyl, cyclopentyl, and cyclohexyl) [113].
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In some cases the nitration is accompanied by oxidation of the side groups 
[122, 123]. Thus, for example, depending on the conditions, 4(5)-hydroxym-
ethylimidazole is converted by the action of the sulfuric–nitric acid mixture 
into the corresponding aldehyde [124–126], into 4(5)-imidazolecarboxylic 
acid [124, 125], or into 4(5)-nitro-5(4)-imidazolecarboxylic acid [122, 123] 
(Scheme 11).

The oxidation of the hydroxymethyl group probably takes place more readily 
than nitration of the ring [124–127]. However, the entry of a nitro group into the 
imidazole ring without oxidation of the hydroxymethyl group has been reported 
[107, 110]. Imidazolecarboxylic acids are not nitrated, and their nitro derivatives 
are therefore obtained by different methods. Nevertheless, the 4- and 5-mononitro-
substituted compounds were isolated with the 4,5-dinitro derivative as impurity 
during the nitration of ethyl 1-methylimidazole-2-carboxylate with a mixture of 
100% nitric and sulfuric acids at 95°C [128].

The imidazole ring has high resistance to the destructive action of various oxidizing 
agents, including nitric acid. It is not possible to introduce the nitro group into the 
position 2 of imidazole ring, but the reaction  4,5-diphenylimidazole in HNO

3
 

(1–2 moles) and AcOH with quantitive yield leads to 2-nitro-4,5-diphenylimidazole 
[129] (Scheme 12).

However N-acetyl-4,5-diphenylimidazole obtained by boiling in acetic anhy-
dride does not react with excess HNO

3
 (1–6 moles) during 4 h [129].
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The action of the nitrating mixture on 1-alkylimidazoles gives the 4-and 5-nitro 
derivatives with a preference for the former [130–132]. The sizes of the substituent 
have practically no effect on the ratio of the isomers [132]. At the same time this 
effect is quite noticeable in the series of carbocyclic substrates (Scheme 13).

The introduction of a substituent at position 1 of the imidazole ring hinders nitration, 
and most nitro-N-methylimidazoles have been prepared by the N-methylation of the 
corresponding nitroimidazoles. Thus, of the two possible nitration products only 
1-methyl-2-(4-nitro-2-imidazolyl)imidazole is formed by the action of one equivalent 
of nitric acid on 1-methyl-2-(2-imidazolyl)imidazole [133] (Scheme 14).

In this case, probably, nitration takes place through the monocation, and the nitro 
group attacks the less basic fragment of the molecule.

The nitration of 1,2-disubstituted imidazoles also leads to a mixture of 4-nitro 
and 5-nitro derivatives [128, 134–139]. The nature of the substituents in the imida-
zole ring has an effect on the ratio of the isomers. However, specific investigations 
in this direction have not yet been undertaken. During the nitration of 1,2-disubsti-
tuted imidazoles only the 4-nitro [140–143] or the 5-nitro [144–148] derivatives 
were isolated. It is not impossible that a mixture of isomers was obtained here.

The nitration of 1-methyl-2-(2-furyl)- and 1-methyl-2-(2-thienyl)imidazoles 
in polyphosphoric acid was described [149, 150]. At room temperature the nitro 
group enters at position 5 both of the furan and of the thiophene rings. Nitration 
of the furan derivative by 2  moles of nitric acid leads mainly to the dinitro 
derivative 1-methyl-2-(5-nitro-2-furyl)-5-nitroimidazole [149]. The introduction 
of a second nitro group into the thienyl derivative requires more rigorous condi-
tions (80°C, 2 moles of nitric acid). Its position in the imidazole ring was not 
established [150].

As in the 1,2,4-trisubsrituted derivatives, during the nitration of 1,4-disubstituted 
imidazoles the nitro group only enters at position 5 [151–154]. If the substituents 
contain double bonds or hydroxyl groups, a transformation of the side chain can 
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occur in addition to nitration [152]. On the other hand, during the nitration of 1,5-
di- and 1,2,5-trisubstituted imidazoles the nitro group enters at the free position 4 
[151, 155–157].

The nitration of 1-alkyl- and 1,2-dialkyl-5-halogenoimidazoles [151, 155, 158], 
which are used as intermediates in the pharmaceutical chemistry industry, has been 
investigated in greatest detail. For instance, the immunodepressant azathioprine 
(“imuran”) was obtained from 1-methyl-4-nitro-5-chloroimidazole [158].

For many years it was not possible to introduce two nitro groups into the imidazole 
ring [159]. By the use of a somewhat unusual nitration condition (by heating  
the substrate first with nitric acid and then with the sulfuric–nitric acid mixture) it  
was possible to obtain 4,5-dinitroimidazole [79]. The method has now also been used 
for the production of 4,5-dinitroimidazoles [84, 93, 160]. It was also shown that 
C-polynitrobisimidazoles [79] and not N-nitroimidazoles, as considered earlier [161], 
are formed during the nitration of 2,2¢-bisimidazole and its bromine derivatives. As 
already mentioned earlier, during the nitration of ethyl l-methylimidazole-2-carboxylate 
the 4,5-dinitro derivative was also isolated together with the other nitration products 
[128]. Increase in the reaction time increases the amount of the dinitro derivative.

The nitration of 1,4,5-trimethylimidazole 3-oxide with the sulfuric–nitric acid 
mixture leads to the 2-nitro derivative [76, 162]. Both this compound and 1-meth-
ylpyrazole 2-oxide enter into reaction in the form of the free base [76]. The nitra-
tion of 2-aryl-1-hydroxyimidazole 3-oxides leads either to cleavage of the imidazole 
ring or to the formation of the 4-nitro or 4,5-dinitro derivatives, depending on the 
reaction conditions [162] (Scheme 15).

1-Hydroxyimidazole 3-oxide, which does not have substituents at position 2, is 
unstable under the conditions of nitration. Uncommon nitration of 1-hydroxy-2-cy-
anoimidazole 3-oxide and 1-hydroxy-2-carbamoylimidazole 3-oxide was observed 
in [162] (Scheme 16).
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During the nitration of the cyano derivative the nitrile group is transformed into 
an amide group, simultaneously with the introduction of the nitro group at position 
4, and 1-hydroxy-2-carbamoyl-4-nitroimidazole 3-oxide is formed. During nitra-
tion of the corresponding carbamoyl derivative two nitro groups enter the molecule 
with simultaneous deoxygenation, resulting in the formation of 1-hydroxy-4,5-
dinitroimidazole.

Oxazoles and Isoxazoles

The direct entry of a nitro group into the oxazole ring (1,3-oxazole) (exclusively at 
position 5) has only been reported twice [163, 164]. Thus, 2-dimethylamino-4-(4-
nitrophenyl)-5-nitrooxazole was isolated when 2-dimethylamino-4-phenyloxazole 
was heated [163] (Scheme 17).

The nitro group probably enters first at the para-position of the phenyl ring, after 
which the oxazole ring is nitrated. The action of nitric acid on 2-phenyloxazole in boil-
ing dichloroethane gives 5-nitro-2-phenyloxazole with a yield of 15% together with 
the products from nitration of the benzene ring [164]. The nitration of the same com-
pound under certain conditions excluding protonation by the action of N-nitropicolinium 
fluoroborate in acetonitrile gives a 90% yield of 5-nitro-2-phenyloxazole [164].

The isoxazoles (1,2-oxazoles) are nitrated exclusively at position 4. Isoxazole 
itself is nitrated with difficulty, and the yield of the nitro derivative does not exceed 
3.5% [165, 166]. With nitronium tetrafluoroborate as nitrating agent it is possible 
to increase the yield of 4-nitroisoxazole to 35% [167].

The introduction of electron-donating substituents into the isoxazole ring facili-
tates the nitration process. Thus, the nitration of 3,5-dialkylisoxazoles [168–171] or 
bis(3-methylisoxazolyl-5) [172] gave the corresponding 4-nitro derivatives Under 
the same conditions, however, 3-methyl-5-(2-methoxy-2-phenylethyl)isoxazole 
was only nitrated in the phenyl ring [173]. Conversely, even at room temperature 
the nitration of 3-methyl-5-dichloromethyl- and 3-dichloromethyl-5-methylisox-
azole gives the corresponding 4-nitro derivatives [174]. The nitration of 3-bromo-
5-methylisoxazole is similar [175].

Only the benzene ring is nitrated during the action of the sulfuric–nitric acid 
mixture on 3-phenylisoxazole. At the same time a mixture of nitric and acetic acids 
converts it into 3-phenyl-4-nitroisoxazole [176]. Earlier Musante [177] isolated a 
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compound melting at 174–177°C during the nitration of 3-phenylisoxazole and 
assigned it the structure of 3-(4-nitrophenyl)isoxazole. More recently, however, it 
was shown [178] that this compound was 5-(4-nitrophenyl)isoxazole. The latter is 
formed during the nitration of 5-phenylisoxazole present in the initial reagent as 
impurity. The fact is that the 3- and 5-phenylisoxazoles have very similar melting 
points, and the 3- and 5-substituted isomers are formed in the selected method for 
the synthesis of the initial phenylisoxazole. This explains the error in the interpreta-
tion of the results from the nitration of 5-phenylisoxazole [179]. It was considered 
that a mixture of 5-(4-nitrophenyl)isoxazole (45%) and 4-nitro-5-phenylisoxazole (30%) 
was formed here. In fact, however, the latter was 4-nitro-3-phenylisoxazole formed 
as a result of nitration of the other isomer [178].

The contradictory data on the direction of nitration have been checked many 
times [178, 180–182]. It was shown that small amounts of 5-(3-nitrophenyl)isox-
azoles and 4-nitro-5-(4-nitrophenyl)isoxazoles were formed together with the 
5-(4-nitrophenyl)isoxazole [178, 180]. The structure of 4-nitro-5-(4-nitrophenyl)
isoxazole was demonstrated by the nitration of 5-(4-nitrophenyl)isoxazole [178, 
181]. During a more thorough investigation of this process it was found that an 
equimolar mixture of 5-(2-nitrophenyl)-, 5-(3-nitrophenyl)-, and 5-(4-nitrophenyl)
isoxazoles is formed as a result of the reaction [182]. They are accompanied by a 
small amount of a mixture of difficultly separated 4-nitro-5-(4-nitrophenyl)- and 
5-(3-nitrophenyl)isoxazoles.

The kinetics of the nitration of 3-methyl-5-phenyl- and 5-methyl-3-phenylisoxazoles 
[183] and 5,5-dimethylisoxazole [184] were studied. During the nitration of 
3,5-diphenylisoxazole by the sulfuric–nitric acid mixture only the phenyl group 
enters into the reaction [177, 185]. In acetic anhydride, however, the main nitration 
product is 3,5-diphenyl-4-nitroisoxazole [185].

Initially it was considered that 3-phenylamino-5-phenylisoxazole and 3- 
phenylamino-5-phenylpyrazole were nitrated exclusively in the phenyl ring [186]. 
More recently, however, it was shown that the nitro group also enters at position 4 
of the heterocycle [187, 188].

Thiazoles and Isothiazoles

The nitration of the isothiazole (1,2-thiazole) ring takes place exclusively at posi-
tion 4. The 4-substituted isothiazoles are either not nitrated at all [189, 190] or, as 
in the case of 4-phenylisothiazole, are nitrated in the benzene ring [191].

The action of the sulfuric–nitric acid mixture on isothiazole gives a high yield 
of the corresponding 4-nitro derivative [190, 192, 193] (Scheme 18).
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The nitration of 3-alkylisothiazoles [190, 193, 194], 5-alkylisothiazoles [190, 
193], and other derivatives of isothiazole containing halogen atoms or electron-
donating substituents at positions 3 and 5 [183, 193–197] takes place similarly.

Thiazole itself is not nitrated even under fairly rigorous conditions [198, 199]. 
However, many of its derivatives containing electron-donating substituents are 
nitrated smoothly.

Table 1 gives the relative rate constants for the nitration of thiazoles and isothi-
azoles. They demonstrate the higher reactivity of the thiazoles during nitration 
[190, 200]. Such high regioselectivity is not observed during the nitration of thiaz-
oles, as during the nitration of isothiazoles.

Electron-donating substituents at position 2 or positions 2,4 of the thiazole ring 
direct the entering nitro group toward position 5 of the ring [201–218] (Scheme 19).

If, however, this position is occupied, e.g., in the case of 5-substituted or 
2,5-disubstituted thiazoles, the 4-nitro derivative is formed [201, 202, 205, 207, 
208, 210, 211, 219, 220] (Scheme 20).

Only one example of the nitration of thiazoles at position 2 has been des-
cribed; the action of the sulfuric–nitric acid mixture on 4,5-dimethylthiazole 
gave 4,5-dimethyl-2-nitrothiazole [199].

The nitration of 2-amino- and 2-acetamidothiazoles has been studied particu-
larly widely [202–205, 220–226]. This is explained by the wide range of biological 
activity in the respective nitro derivatives. Here, nitroamines can also form in addi-
tion to nitration of the thiazole ring [203, 204, 225] (Scheme 21).

Table 1  The relative nitration rates (F) of thiazoles and isothiazoles

Thiazoles Isothiazoles

R F R F

2,4-Me
2

1 3,5-Me
2

0.16
2,5-Me 0.5 5-Me 0.0094
4-Me 0.066 3-Me 0.0055
5-Me 0.04 H 0.0024
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The conditions required for the isolation of such nitroamines have been described 
[204]. In concentrated sulfuric acid they readily rearrange to 2-amino-5-nitrothiazoles. 
The isomerization rate depends strongly on the sulfuric acid concentration [204]. Thus, 
the formation of 2-amino-5-nitrothiazoles may be the result both of direct electrophilic 
substitution in the thiazole ring and of the aforementioned rearrangement.

A study of the kinetics of isomerization of nitroaminothiazoles [227–229] 
showed that both intramolecular and intermolecular migration of the nitro group 
occur [228]. The following reaction mechanism was proposed (Scheme 22).

This gave rise to some objection concerning, in particular, the structure of the 
intermediates ([230], part 2, p. 73). It would be more logical to suppose the inter-
mediate formation of radical cations according to the following Scheme ([230], part 
2, p. 83) (Scheme 23).
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However, the formation of free radicals in the rearrangement process was denied 
[231], and this makes it possible to introduce certain corrections into the previously 
proposed mechanism (Scheme 24).

It would probably be useful to carry out a more detailed investigation of these 
reactions using ESR and CIDNP techniques. Further nitration of 2-nitroamino-5- 
nitrothiazole leads to 2-nitroimino-3,4,5-trinitro-3H-thiazoline [203] (Scheme 25).

When position 5 is occupied as, for example, in the case of 2-acetamido-5-meth-
ylthiazole, the 4-nitro derivative is formed with a small yield [223] (Scheme 26).

2-Acetamido-4-phenylthiazole is nitrated at position 5 of the thiazole ring [232], 
in contrast to 2-amino-4-phenylthiazole, which is nitrated in the phenyl ring [233]. 
This agrees with existing data on the reactivity of thiazoles during electrophilic 
substitution. N-(2-Thiazolyl)-2-aminopyridine is nitrated exclusively in the thiaz-
ole ring [222].

The nitration of 2-, 4- and 5-phenylthiazole with 1 mole of HNO
3
 in concen-

trated H
2
SO

4
 occurs at para-position of the phenyl ring, but not to thiazole cycle 

[203, 247]. It can be explained then that these compounds react in so-called conju-
gated acid form (protonated form), but not in base form. Analogically, 2-substituted 
4-(2-furyl)thiazole is nitrated into furyl cycle 5 position; however, further nitration 
with two moles HNO

3
 leads to 2-substituted 5-nitro-4-(5-nitro-2-furyl)-thiazoles 

along with other products [234] (Scheme 27).
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Steric factors also have a specific effect on the nitration process. Thus, 2-amino-
4-mesitylthiazole is not nitrated, whereas 2-amino-4-tert-butylthiazole forms the 
corresponding 5-nitro derivative [204]. The 2-amino-, 2-dimethylamino-, 2-piperi-
dino-, and 2-morpholinothiazoles are nitrated at position 5 of the thiazole ring [209, 
224]. At the same time 2-dipropylamino-, 2-diallylamino-, and 2-dibutylaminothi-
azoles are destroyed under these conditions ([230], part 2, p. 72). Such a strong 
effect from the nature of the substituents at the exocyclic nitrogen atom on the 
direction of the reaction cannot as yet be explained unambiguously. It was sug-
gested, it is true, that a somewhat unusual nitration mechanism is realized in this 
case, i.e., that initial nucleophilic attack occurs at the N=C-2 bond of the thiazole 
ring ([230], part 2, p. 85) (Scheme 28).

However, no evidence for this was given. A thorough kinetic investigation and 
analysis of the side products would make it possible to check this hypothesis.

2-Amino-4-phenyl-5-benzoylthiazole is nitrated by nitric acid with the forma-
tion of the 2-nitroamino derivative [235]. During the nitration of 5-acetamidothia
zole a compound melting at 197–198°C was obtained. It was assigned the structure 
of 2,4-dinitro-5-acetamidothiazole [221]. In fact, it was the mononitration product 
4-nitro-5-acetamidothiazole [201] (Scheme 29).

Selenazoles

Data on the nitration of selenazoles are extremely limited. The 4-methyl- and 2,4- 
dimethylselenazoles are nitrated more quickly than their thiazole analogs [236]. 
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Ring opening occurs during the direct nitration of 2-amino-4-methylselenazole 
[237]. However, protection of the amino group by acylation or alkylation makes it 
possible to obtain good yields of the corresponding 5-nitro derivatives [237–239].

The nitration of 2-phenylamino-4-phenylselenazole takes place in a more com-
plicated way ([230], part 3). A very vigorous reaction with the formation of several 
nitration products is observed even with careful addition of this compound to the 
sulfuric–nitric acid mixture. It was possible to separate and partly to identify the 
products by column chromatography and thin-layer chromatography. The products 
from opening of the heterocycle were not detected (Scheme 30).
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Triazoles

The presence of three heteroatoms in the azole ring reduces its reactivity in electro-
philic substitution reactions more. 1,2,3-Triazole itself could not be nitrated [240]. An 
attempt to introduce a nitro group into the heterocyclic ring 1-phenyl- and 4-phenyl-
1,2,3-triazoles was also unsuccessful. In both cases only the phenyl group was nitrated 
[241, 242]. Nevertheless, several examples of the entry of a nitro group directly into 
the triazole ring have been described. Thus, 2-methyl-4-nitro-1,2,3-triazole was formed 
during the nitration of 2-methyl-1,2,3-triazole with a sulfuric-nitric acid mixture under 
conditions (20°C). Under harsher nitration conditions (100°C) 2-methyl-4,5-dinitro-
1,2,3-triazole was formed [243]. The nitration of 2-phenyl-1,2,3-triazole led to a 
mixture of the mono- and dinitro derivatives [244] (Scheme 31).

Under mild conditions  2-(4-nitrophenyl)-1,2,3-triazole forms the dinitro 
derivative, and under harsh conditions it forms the trinitro derivative. In turn, 
2-(4-nitrophenyl)-4-nitro-1,2,3-triazole, which was initially assigned the structure 
of 2-(2-nitrophenyl)-1,2,3-triazole [245], also forms 2-(2,4-dinitrophenyl)-4-ni-
tro-1,2,3-triazole during further nitration [244, 246]. At the same time 
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2-(4-bromophenyl)-1,2,3-triazole formed 2-(4-bromo-2-nitrophenyl)-4-nitro-
1,2,3-triazole immediately (yield 73%) even under mild conditions (15°C) [240]. 
In fact, the nature of the substituent and its position in the heterocycle have a 
significant effect on the process. Thus, for example, 4-methyl-2-phenyl-l 
,2,3-triazole is converted by the action of the sulfuric–nitric acid mixture into 
4-methyl-5-nitro-2-(2,4-dinitrophenyl)-1,2,3-triazole [246]. 4-Hydroxy-2-phenyl-
1,2,3-triazole [247] and 4-picrylamino-1,2,3-triazole [248] are nitrated exclu-
sively in the azole ring with the formation of the corresponding 5-nitro derivatives. 
2-(2,4,6-Trinitrophenyl)-1,2,3-triazole is nitrated with a high yield, whereas its 
1-isomer does not react with the sulfuric–nitric acid mixture [249].

It is not possible to introduce a nitro group into the 1,2,4-triazole ring by the 
action of the sulfuric–nitric acid mixture because of the disactivation of the cycle 
by two “pyridine” nitrogen atoms; furthermore, their disactivation effect is aggra-
vated by the heterocycle protonation in the acid medium. The only exception is the 
nitration of 1,2,4-triazolon-5 [250–264]. This is probably due to the specific elec-
tronic structure of the substrate (the azolone form) (Scheme 32).

3-Nitro-1,2,4-triazolon-5 (NTO) is one of the popular and widely used in the last 
time the explore compound [263–268].

In aryl- or amino-substituted 1,2,4-triazols the nitro group enters the side chain 
[269–271]. An attempt to realize the nitration of 3,5-bisphenylamino-1,2,4-triazole led to 
opening of the triazole ring. Picrylurea was isolated as the only reaction product [272].

The nitration products of 2-methyl-1,2,3-triazole 1-oxide under mild conditions 
(20°C) are a mixture of 5-nitro (75%) and 4-nitro (23%) derivatives. Under more 
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rigorous conditions (100°C) 4,5-dinitro-2-methyl-1,2,3-triazole 1-oxide (77%) is 
formed [243, 273]. During the nitration of 5-R-2-methyl-1,2,3-triazole 1-oxide 
(R = CH

3
, Br) the nitro group enters at position 4 of the triazole ring. The bromine 

atom disactivates the ring, as a result of which rigorous conditions are required for 
the nitration of 5-bromo-2-methyl-1,2,3-triazole 1-oxide (100°C) [243, 273]. The 
nitration of 2-phenyl-1,2,3-triazole 1-oxide under the same conditions leads to 
2-(2,4-dinitrophenyl)-4-nitro-1,2,3-triazole 1-oxide with a yield of 65% [240].

Oxadiazoles, Thiadiazoles, and Tetrazoles

As a rule, oxadiazoles and thiadiazoles are not nitrated. Reports on the production 
of 2-nitro-5-amino-1,3,4-thiadiazole during the nitration of 2-amino-l,3,4-thiadiaz-
ole [274] proved erroneous [275]. The compound obtained in this case was 2-nit-
ramino-1,3,4-thiadiazole [275]. There is only a single paper on the nitration of 
derivatives of 1,3,4-oxa- and 1,3,4-thiadiazoles [276]. 2-Dimethylamino-1,3,4-oxa- 
and 2-dimethylamino-l,3,4-thiadiazoles react with the nitrating mixture with the 
formation of 2-dimethylamino-5-nitro derivatives. Aryl-substituted oxadiazoles 
and thiadiazoles are nitrated in the phenyl ring [277, 278].

Until now no example of the nitration of the tetrazole ring by the action of nitrat-
ing agents has been described. During the nitration of substituted tetrazoles the 
nitro group enters exclusively in the side chain [279–281].

Kinetics and Mechanism of Nitration of Azoles  
by Sulfuric–Nitric Acid Mixture

Determination of the mechanism of nitration of azoles is complicated by the fact 
that they can be nitrated both in the free form and in the protonated form. The kinet-
ics of the nitration of azoles in media with various acidities is therefore compared 
with the kinetics of the nitration of related model compounds known to exist in the 
form of ions (e.g., the quaternary salt of the investigated azole). If nitration takes 
place through the protonated form, the rate initially increases with increase in the 
acidity on account of the increase in the concentration of the nitronium ion. After 
reaching a maximum the rate then remains almost unchanged or decreases slightly. 
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If, however, the free base is nitrated, the increase in the rate before reaching the 
maximum is less clearly defined. (The increase in the concentration of the nitron-
ium ions is compensated by a decrease in the concentration of the unprotonated 
molecules.) After reaching the maximum, the curve falls sharply, since further 
increase in the acidity only reduces the concentration of the free base [184].

The kinetics and mechanism of the nitration of azoles have been studied in a fair 
amount of detail [56–60, 64, 70, 75, 76, 184, 193, 205, 207, 208, 210, 211, 251, 
282–287]. The reactivity of various mono- and dialkylthiazoles compared with 
benzene was studied by the competing nitration method (Table 2) [207].

It follows from Table 2 that nitration at position 5 of the thiazole ring is realized 
~1.5 times more vigorously than at position 4. The presence of the methyl group at 
position 2 increases the nitration rate at position 5 by approximately 15 times and 
at the C-4 atom by eight times. These data agree with the selectivity of the nitration 
of 2-alkylthiazoles (Table 3) [208, 288].

Similar results were obtained during the nitration of 2-methoxythiazole [289].
Katritzky et  al. proposed the use of so-called “standardized” rate constants (k

2
0), 

obtained during the nitration of various aromatic heterocycles by nitric acid in 75% sul-
furic acid at 25°C (H

0
 – 6.6) [59]. These constants make it possible to compare quantita-

tively the reactivity of various types of heterocyclic compounds in nitration. The 
calculated “standardized” rate constants for the nitration of azoles are given in Table 4.

Analysis of ~130 reaction profiles for the nitration of various aromatic and het-
erocyclic compounds made it possible to propose a direct qualitative test for estab-
lishing the reaction mechanism from the slope of the log k

2
 = −aH

0
 + b relation  

[59, 290]. If the slope is larger that 1.7, nitration takes place through the protonated 
form; if it is smaller than 1.7, nitration takes place through the free base. However, 
there are exceptions from this rule.

Table 2  The relative reactivity (F) of alkylthiazoles (compared 
with benzene, F = 1) in nitration (sulfuric–nitric acid mixture, 
70°C)

Compound Reaction center F × 103

5-Methylthiazole 4 6
4-Methylthiazole 5 9
2,5-Dimethylthiazole 4 46
2-Methyl-5-ethylthiazole 4 59
2-Ethyl-5-methylthiazole 4 63
2-tert-Butyl-5-methylthiazole 4 83
2,4-Dimethylthiazole 5 150

Table 3  The selectivity of nitration of 2-alkylthiazoles and the yields of nitro products

Compound Nitrating agent

Selectivity (%)

Yield (%) Refs4-NO2 5-NO2

2-Methylthiazole NO
2
+BF

4
− or N

2
O

4
·BF

3
31 69 86 [288]

2-Methylthiazole H
2
SO

4
/HNO

3
 70°C 23 77 12 [208]

2-n-Propylthiazole H
2
SO

4
/HNO

3
 70°C 29 71 14 [208]
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The “standardized” rate constants for the nitration of some azoles and their 
cations are presented in Fig. 3 for clarity [291]. Here the data for the nitration of 
benzene (log k

2
 0.45) and the pyridinium cation are also given for comparison.

It is quite difficult to compare the reactivity of imidazole and pyrazole during 
nitration. The fact is that imidazole always enters into nitration in the form of the 
cation, whereas for pyrazole this only occurs at a sulfuric acid concentration of 
more than 90% [282, 284]. In fact, in 99% sulfuric acid the nitration rate of pyra-
zole is rather lower than that of 1,2-dimethylpyrazolium, while in 76% sulfuric 
acid, on the other hand, the nitration rate of pyrazole is higher [284]. Attempts to 
draw a correlation between the “standardized” rates of nitration and hydrogen 
exchange for the same compounds were unsuccessful [285, 290]. It has not yet been 
possible to create any general scale of reactivity for these compounds during electrophilic 
substitution.

Nitration by Other Nitrating Agents

In addition to the sulfuric–nitric acid mixture, acetylnitrate (or a mixture of acetic 
anhydride with nitric acid) is used quite widely for the introduction of a nitro group 
into the azole ring. Azoles not containing a “pyrrole” nitrogen atom are nitrated by 
acetylnitrate in the same way as by the sulfuric–nitric acid mixture. Data have been 
published on the nitration of isoxazoles [176, 181–183, 185, 292, 293] and thiazoles 
[203, 206, 215] by acetylnitrate. 1-Substituted pyrazoles [48, 61, 294–301], imida-
zoles [116, 133, 302–305], and isoxazoles [306] are nitrated by the nitric acid–acetic 
anhydride system in the same way as by the sulfuric–nitric acid mixture.

During the nitration of azoles with an unsubstituted “pyrrole” heteroatom under 
these conditions it is often possible to isolate the N-nitroazoles. Thus, with acetyl-
nitrate in glacial acetic acid it was possible to obtain N-nitropyrazoles [63, 307–317], 
N-nitro-1,2,4-triazoles [318, 319], and N-nitro-1,2,4-triazolon-5 [264] (Scheme 33).

0
lg k2

0

NO2

S
N

O
N

S

N

S
N

H

S
N

N

N

H

H

N N

H

H
N

H

�5�10

Fig. 3  The “standardized” constants for the nitration (k
2
o) of some heteroaromatic substrates by 

the sulfuric–nitric acid mixture



26 Synthesis of Five-Membered Nitroazoles

BookID 161900_ChapID 1_Proof# 1 - 19/08/2009 BookID 161900_ChapID 1_Proof# 1 - 19/08/2009

N-nitropyrazoles possess the spazmolitic and antihypertensive activity,  
compared with mono- and dinitrate isosorbite that is caused by the ability of 
N-nitropyrazoles to generate nitrogen monoxide (NO) at biotransformation in 
organism [320]. N-nitropyrazoles are a new type of a stable source NO; therewith, 
generation of the NO happens in the reduce conditions. The ease of the elimination 
of NO depends from the structure of azole: the availability of the neighbouring 
substituents with N–NO

2
-fragment facilitates the ejecting of NO. With connection 

to this problem the investigation of the influence of the pyrazole structure and reac-
tion condition on the formation of N-nitropyrazoles is carried out [321].

For the nitration, the authors [321] had used two known sources of acetylnitrate: 
mixture of HNO

3
 and Ac

2
O in AcOH (a) and Cu(NO

2
)

3
 with Ac

2
O (b). Usually 

“acidic” mixture (a) is applied and as a rule the N-nitration proceeds on the nitrogen 
atom more remaining from substituents. Using “unacidic” nitration mixture (b) 
changes the nitration direction and in case 3(5)-methylpyrazole NO

2
-group involved  

to nitrogen atom neighboured with substituent. Aryl substituent interferes N-nitration 
of neighboured nitrogen atom: 3(5)-methyl-5(3)-phenylpyrazole forms 1-nitro-5-methyl-
3-phenylpyrazole; therefore, 3,5-diphenylpyrazole does not form N-nitropyrazole 
[321].

The N-nitro derivatives of imidazole can only be isolated in the case where the 
imidazole ring contains strong electron-withdrawing substituents (e.g., NO

2
)  

[79, 322–329]. In other cases the C-nitro derivatives are formed directly [101, 133, 
330–335]. It was suggested that the N-nitro derivative is formed during the nitration 
of the intermediate 1,2,3-triazole [336]. However, no evidence was presented for 
this mechanism.

The kinetics of the nitration of azoles by acetylnitrate has not been studied sys-
tematically. Mention has only been made of the complex nature of the reaction 
kinetics and the low yield of the nitration products, which hinders correct interpre-
tation of the results [56].
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The N-nitroazoles are extremely reactive compounds and enter into all kinds of 
sometimes quite unexpected reactions. For this reason they are valuable intermedi-
ate products in many syntheses. Thus, for example, the thermal rearrangement of 
N-nitropyrazoles makes it possible to produce the difficultly obtainable 
3(5)-nitropyrazoles [63, 310–313, 315]. In addition, N-nitropyrazoles [6, 337] and 
N-nitro-1,2,4-triazolon-5 [263, 264] have been used successfully as nitrating agents 
and this is due to the high lability of the N–NO

2
 bond. The length of the N–NO

2
 

bond is 1.40  A, whereas the bond in other nitroamines is appreciably shorter 
(1.37  A). The attempt to use the synthesis way of C-nitro compound through 
N-nitro compound rearrangement for obtaining 5,5¢-dinitro-3,3¢-azo-1,2,4-triazole 
[338, 339] was undertaken. The nitration of 5,5¢-azo-1,2,4-triazole by HNO

3
/Ac

2
O 

leads to 1,1¢-dinitro-3,3¢-azo-1,2,4-triazole; however, the rearrangement in C-nitro 
triazole has not happened (Scheme 34).

4-Nitro-5-nitrimino-1H-1,2,4-triazole (46%) forms on the nitration of 5-nitrimino-
1,4H-1,2,4-triazole by HNO

3
/Ac

2
O only at –8 to –10°C [340]. The following nitration 

of the product gives 1,1¢-dinitro-3,3¢-azo-1,2,4-triazole.
Nitronium tetrafluoroborate is often used to introduce a nitro group into the 

molecule of azoles. In some cases it is not even isolated in the individual form, but 
the azole is added to a mixture of concentrated nitric acid and boron trifluoride 
[334, 341–345]. Nitronium tetrafluoroborate is used particularly often for the selec-
tive nitration of a heterocycle in aryl-substituted azoles [101, 102, 164, 346, 347] 
(Scheme 35).

During the reaction of isoxazole with nitronium tetrafluoroborate 4-nitroisoxazole 
is isolated with a yield of 35% [167]. With nitronium tetrafluoroborate as nitrating 
agent it is possible to realize nitration in a neutral medium without protonation of 
the azole ring. In this case it was possible to isolate N-nitroimidazoles [324] and 
1,2,4-triazoles [348], or their formation as intermediate products was inferred [349, 
350] (Scheme 36).

The yields of C-nitroazoles are usually low as a result of the denitration of the 
N-nitro compounds by the action of the released fluoroboric acid. To eliminate this 
undesirable effect it was proposed to use the N-trimethylsilyl derivatives of azoles 
[324, 348] (Scheme 37).
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By the nitration of 1-trimethylsilyl-1,2,4-triazoles by nitronium tetrafluorobo-
rate it was possible to obtain the 5-nitro derivative with a yield of up to 90% [348] 
(Scheme 38).
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During nitration with nitronium tetrafluoroborate or ethyl nitrate 4-amino-1,2,4-
triazole is converted into the corresponding nitroimide [351] (Scheme 39).

2-Aminothiazole is converted by the action of ethyl nitrate into the 5-nitro 
derivative [352]. As already mentioned 2-phenyloxazole and 2-phenylthiazole are 
nitrated into benzene ring by the sulfuric–nitric acid mixture. At the same time their 
nitration under conditions excluding protonation of the azole ring (with the use of 
acetylnitrate or N-nitropicolinium tetrafluoroborate as nitrating agent) leads to the 
5-nitro derivatives [353] (Scheme 40).

The reaction of the corresponding 2-lithioimidazoles with nitrogen tetroxide has been 
used for the production of 1-substituted 2-nitroimidazoles [354, 355] (Scheme 41).

However, it was not possible to obtain l-trityl-2-nitroimidazole by this method 
as, for example, also during the nitration of the lithium derivative of 1-tritylimida-
zole by nitronium tetrafluoroborate [356]. This is probably due to the elimination 
of the triphenylmethyl group during nitration. However, it was possible to obtain 
l-trityl-2-nitroimidazole by using propyl nitrate as nitrating agent [356]. The product 
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was converted by acid hydrolysis into 2-nitroimidazole with a yield of 30%. 
4-Substituted 2-nitroimidazoles were synthesized by a similar method [356–358] 
(Scheme 42).

During the action of dinitrogen tetraoxide (nitrogen dioxide) on the oximes of 
formylimidazole the nitro group unexpectedly entered at position 2 of the imidazole 
ring [359, 360] (Scheme 43).

The nitration of thiazoles can also be conducted in organic solvents (e.g., dichlo-
roethane) with a nitrating mixture consisting of trifluoromethanesulfonic acid, its 
anhydride, and potassium nitrate. Here the yields of the nitro derivatives are sub-
stantially higher than with the sulfuric–nitric acid mixture [361].

A novel methodology for preparative aromatic nitration in which nitrogen dioxide 
acts a good nitrating agent for aromatic hydrocarbons and derivatives in the presence 
of ozone (“kyodai” nitration) [362] has been applied for azoles [363] (Scheme 44).

At low temperature pyrazole is easily N-nitrated giving 1-nitropyrazole in con-
trast to classical nitration based on the use of mixed acid; 4-nitropyrazole is not 
formed. On prolonged reaction, a mixture of 4(5)-nitro- and 1,4-dinitropyrazole is 
obtained, whereas the last is prepared in the kyodai nitration of 4-nitropyrazole 
[363]. The kyodai nitration of imidazoles gave a mixture of 4-nitro- and 1,4-dini-
troimidazoles and 1,2,4-triazole – only a few percent of mononitro derivatives even 
after prolonged reaction [363].

Direct nitration of pyrazoles, imidazoles, isoxazoles, and thiazoles has been car-
ried out by Katritzky et al. with a new nitrating agent – nitric acid/trifluoroacetic 
anhydride [364, 365]. This method allows obtaining mononitro derivatives of 
azoles in good yield (Table 5).
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Table 5  Nitration of azoles with HNO
3
/(CF

3
CO)

2
O

Trifluoroacetic anhydride (10 mL) was cooled in an ice bath and the substrate azole (17 mmol) 
was slowly added. After 1 h, concentrated nitric acid (3 mL) was added dropwise with cooling. 
After stirring for 12 h at room temperaturte, the excess trifluoroacetic acid and nitric acid were 
removed under vacuum to get the nitroazole [364]
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Ipso-Nitration of Azoles

Electrophilic agents and nitrating reagents, in particular, can displace other func-
tional groups apart from hydrogen. Such processes are usually called substitutive 
nitration or ipso-nitration. Ipso-nitration has also been used in the chemistry of azoles. 
The first example of ipso-nitration in the pyrazole series was described in 1925. 
The action of nitric acid on 4-(4-tolylazo)-3,5-dimethylpyrazole led to the forma-
tion of 3,5-dimethyl-4-nitropyrazole [366] (Scheme 45).

The halogen atom acts as a functional group more often than others during sub-
stitutive nitration. During the nitration of 4-bromo-3-methylpyrazole with a mixture 
of nitric acid and oleum 3-methyl-4-nitropyrazole is formed [62] (Scheme 46).

4,5-Dibromo-3-methylpyrazole is nitrated similarly [367, 368].

Ipso-nitration of 4-bromopyrazoles by the sulfuric–nitric acid mixture is approxi-
mately 100 times slower than normal nitration of the corresponding unsubstituted pyra-
zoles [46]. Substitutive nitration of 4-halogeno-1-alkylpyrazoles takes place in parallel 
with normal nitration at positions 3 and 5 of the heterocycle [46, 74] (Scheme 47).

Parallel ipso-nitration at position 4 and nitration at position 5 of the pyrazole ring 
were also observed during the action of the sulfuric–nitric acid mixture on 1,3-dim-
ethyl-4-bromopyrazole [369]. The released bromine cation partly brominates the 
initial reagent with the formation of 1,3-dimethyl-4,5-dibromopyrazole. The latter is 
subsequently transformed into 1,3-dimethyl-5-bromo-4-nitropyrazole (see the 
Scheme later). The nitration of 1,3-dimethyl-4,5-dibromopyrazole leads to the for-
mation of 1,3-dimethyl-5-bromo-4-nitropyrazole and 1,3-dimethyl-4-nitropyrazole 
[369] (Scheme 48).

A convenient synthetic procedure for the preparation of 4-nitroiodopyrazoles 
(useful synthons) – nitrodeiodination of polyiodopyrazoles with sulfuric-nitric acid 
mixture – has been proposed [370] (Scheme 49).
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Interestingly that the ipso-nitration of the pyrazole in the presence of a carboxylic 
group takes place, whereas 3-iodo-4-nitro-1,5-dimethylpyrazole has also obtained 
by nitrodecarboxylation of 3-iodo-1,5-dimethylpyrazole-4-carboxylic acid [370] 
(Scheme 50).
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The ipso-nitration of substituted azoles can also take place during the action of 
acetylnitrate [46]. The substitutive nitration of halogenopyrazoles was investigated 
comprehensively, and the important role of the electronic effect of the substituents 
on the process was established [44, 46, 369–374]. Thus, during the nitration of 
4-halogenopyrazolecarboxylic acids containing carboxyl groups at positions 3 or 5 
of the pyrazole ring the nitro group enters at positions 5 and 3, respectively. Thus, 
substitutive nitration cannot occur in this case [373]. During the nitration of 
l-methyl-3-nitro-4-halogenopyrazole-5-carboxylic acids the halogen atom is retained, 
while the nitro group displaces the carboxyl group, leading to l-methyl-3,5-dinitro-
4-halogenopyrazoles [373]. The nitration of 3-nitro-4-cyanopyrazole by the sulfu-
ric–nitric acid mixture at 100°C leads to 3,4-dinitropyrazole. In the opinion of the 
authors direct substitution of the nitrile group does not occur, but it undergoes pre-
liminary hydrolysis followed by nitrodecarboxylation [375]. The rate of nitrodecar-
boxylation of 5-substituted 4-bromo-l-methylpyrazole-3-carboxylic acids is 
determined by the nature of the substituent at position 5, being accelerated with 
decrease in the electron-withdrawing characteristics of the substituent [374]. 
Examples of the ipso-nitration of halogenopyrazoles are not restricted to those 
described earlier [50, 371, 372].

The substitutive nitration of iodoimidazoles has been described in detail  
[376–382]. However, the structure assigned to the obtained nitro imidazoles proved 
erroneous [367, 377, 379, 382]. The correct structure was established later [140, 
141]. The error was due to the fact that the initial compound was assigned the 
structure of 2,4-diiodoimidazole. In fact, 4,5-diiodoimidazole undergoes nitration 
and is converted into 4,5-dinitroimidazole. 2,4,5-Triiodoimidazole and 1,2,4,5- 
tetraiodoimidazole are nitrated to 2,4,5-trinitroimidazole by the action of nitric acid 
[383] (Scheme 51).

Substitutive nitration of halogenoimidazoles has been widely used for the synthesis 
of various nitroimidazoles [40, 378–385]. When 2-benzylthio-5(4)-bromo-4(5)-
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methylimidazole is boiled with dilute nitric acid, oxidation of the benzylthio group 
with the formation of the corresponding sulfoxide takes place in addition to ipso-
nitration [386] (Scheme 52).

3,5-Dimethyl-4-halogenoisoxazoles also enter into substitutive nitration. Here, 
only the iodine derivatives react with the sulfuric–nitric acid mixture. Both the 
bromine and the chlorine derivatives react slowly with a mixture of acetic anhy-
dride and nitric acid [169].

Examples of the ipso-nitration of halogen-substituted isothiazoles [387] and 
thiazoles [388–390] are known. 2,4-Disubstituted 5-bromo- and 5-iodooxazoles 
react with nitrogen tetroxide to form the 5-nitro derivatives [391].

Synthesis from Aminoazoles

In cases where it is not necessary to introduce the nitro group directly at a position 
of the azole ring poorly susceptible to electrophilic attack it is possible to use the 
Sandmeyer reaction or its modifications (Scheme 53). The use of copper salts as 
catalysts is not essential in a number of cases [392, 393].

Derivatives of pyrazole containing a nitro group at position 3 or 5 were obtained 
in this way [393–400]. Nevertheless, the diazotiation of 3,5-dimethyl-4-aminopyra-
zole does not lead to the formation of nitro derivatives [398].

2-Nitroimidazole (the natural antibiotic azomycin) was synthesized from 
2-aminoimidazole [401–405] (Scheme 54).
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The Sandmeyer’s reaction has been used many times for the synthesis of 
2-nitroimidazole and many of its derivatives [335, 395, 406–413]. Nucleophilic 
substitution of the diazo group has been used for the synthesis of derivatives of 
5-nitroisothiazole [414] (Scheme 55).

2-Nitrothiazole and also 4- and 5-substituted 2-nitrothiazoles were obtained 
from the corresponding 2-amino derivatives [415–420] (Scheme 56).

2-Methyl-5-(2-furyl)-4-nitrothiazole and 2-methyl-4-nitrothiazole were isolated 
from the mixture of products from the reaction of 5-amino-2-methylthiazole-4-
carboxylic acid with isoamyl nitrite in the presence of furan [421].

The nitro derivatives of 1,2,4-triazole [262, 269, 392, 422–427], 1,3,4-oxadiazole [392], 
1,2,5-oxadiazole [428, 429], 1,2,3-thiadiazole [430], and 1,3,4-thiadiazole [392, 417, 
431–435] were obtained by the reaction of the corresponding diazonium salts with 
sodium nitrite.

Nucleophilic substitution of the diazo group is practically the only method for 
the production of nitro derivatives of tetrazole [392, 436–443]. 5-Nitrotetrazole 
itself was isolated and identified in the form of metallic salts [436–440, 442, 443].

The mechanism of substitution of the diazo group by a nitro group in heterocyclic 
compounds has not been studied specially. As already mentioned, in many cases the 
reaction takes place as catalytic nucleophilic substitution and does not require the 
use of a catalyst (copper salts) [392, 444]. The results from investigation of the kinet-
ics of the substitution of the diazonium group by the nitro group in compounds of 
the benzene series make it possible to suppose that the diazonitrite is formed inter-
mediately and quickly reacts with a second nitrite anion [392, 444]. Some difference 
between the kinetics of the reaction of 3-diazonium-5-carboxy-1,2,4-triazole and 
3-diazonium-5-methoxycarbonyl-1,2,4-triazole with sodium nitrite in hydrochloric 
acid and the analogous process in the benzene series is probably due to prototropic 
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processes in the triazoles [444]. However, it is not possible to obtain 2-nitroimida-
zole from 2-aminoimidazole in the absence of the copper salts [392]. The normal 
Sandmeyer’s reaction can probably be used in this and in certain other cases.

Diazotiation 3-amino-5-acetamido-1,2,4-triazole and following substitution diazo 
group on nitro group on the method [392] leads to corresponding nitrotriazole 
[445], which on the acyl protection relieving gives 5-amino-3-nitro-1,2,4-triazole 
[262, 446] (Scheme 57).

The convenient method of 3-nitro-5-cloro-1,2,4-triazole synthesis from corresponding 
3-aminoderivative [447] was worked out. The aforementioned way [348] is very 
laborious and dangerous (Scheme 58).
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3-Amino-5-cloro-1,2,4-triazole is obtained from guanazol (3,5-dinitro-1,2,4-tri-
azole) by the direction diazotiation in hydrochloric acid (a), but at first it more 
rationally is the guanazol mononitrosation with treatment followed by heated HCl (b).

Another method of transforming aminoazoles into nitroazoles, i.e., oxidation, is 
significantly less widely used. 1-Phenyl-3- and l-phenyl-5-aminopyrazoles are oxi-
dized to nitro derivatives by peroxytrifluoroacetic acid (CF

3
CO

3
H) [448]. Under 

these conditions unsubstituted 3(5)-aminopyrazole is oxidized more extensively 
with opening of the pyrazole ring, while l-methyl-5-aminopyrazole forms a small 
yield of the N-oxide of the corresponding nitro derivative [448]. Another example 
of the use of peroxytrifluoroacetic acid in the synthesis of nitropyrazoles is the 
oxidation of 3-amino-4-cyanopyrazole [375]. Here, 3-nitro-4-cyanopyrazole is 
formed with a yield of 90%, whereas the authors were unable to obtain it by the 
Sandmeyer’s reaction. The amino group in 2-amino-4,5-imidazoledicarboxylic acid 
is easily oxidized, being converted into a nitro group by the action of hydrogen 
peroxide in oleum (Caro’s acid) [449]. It is assumed that 2-aminoimidazole is a 
precursor of azomycin during its microbiological synthesis [450].

3(5)-Nitro-1,2,4-triazole (45%) [451] and 1-methyl-4-cyano-5-nitropyrazole 
(42%) [452] were isolated during the oxidation of corresponding aminoazole 
derivatives by a solution of hydrogen peroxide in trifluoroacetic acid. One of the 
amino groups in l-acyl-3,5-diamino-1,2,4-triazole is oxidized by hydrogen peroxide 
in the presence of sodium tungstate [453] (Scheme 59).

1-Methyl-3-nitro-5-methoxycarbonyl pyrazole was prepared by the addition  
of meta-chloro-perbenzoic acid to 1-methyl-5-methoxycarbonyl pyrazole [454] 
(Scheme 60).
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Nitrofurazans and -furoxans – high-density energetic compounds – have been 
obtained by oxidation of the corresponding aminooxadiazoles mainly in the pres-
ence of H

2
O

2
/H

2
SO

4
 [455–465]. For example, the series of Sheremetev’s work 

opens the widespread possibility of the preparation of new energetic compounds on 
the base of nitrofurazans and nitrotriazoles [460–464, 466, 467] (Scheme 61).

It should be noted that dinitroazofurazan has resulted from available diamino-
furazan in two steps in practically same conditions and on X-ray data exist in two 
modifications [457] (Scheme 62).
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Nonselective attacks at the carbon combined with a nitro group and carbon com-
bined with the N(O) atom of the azoxy group were observed in the reaction of 
4,4¢-dinitroazoxyfurazan with bases and nucleophiles [468]. The preparation of 
dinitro polyfurazans shows the great synthetic potential of the construction 
sequence. The simplicity and availability of the starting substances (compounds) 
makes this strategy a powerful method for high energetic material construction.

5-Nitrotetrazole has been obtained by the diazotiation of 5-aminotetrazole with 
following addition of 20% H

2
SO

4
 [469]. 2-Methyl-5-nitrotetrazole has been pre-

pared by the oxidation of the 5-amino derivative by dinitrogen peroxide [470].

Synthesis Based on Heterocyclization

The construction of a heterocyclic ring from two reagents, one of which contains a 
nitro group, is widely used in the synthesis of the nitro derivatives of pyrazole, 
isoxazole, and 1,2,3-triazole. Thus, for example, the reaction of sodionitromalonal-
dehyde with substituted hydrazines leads to the corresponding derivatives of 
4-nitropyrazole [33, 61, 471–473] (Scheme 63).

This reaction was extended to other b-dicarbonyl compounds containing a nitro 
group [474–476]. The mechanism of the reaction of hydrazine with 1,3-dicarbonyl 
compounds is still largely unclear. Nevertheless, important evidence was obtained 
to indicate that a dihydroxypyrazolidine intermediate is formed in this reaction 
[477]. If hydroxylamine is used instead of free hydrazine in the reaction with 
nitromalonaldehyde, the product is 4-nitroisoxazole [471]. When a mixture of 
nitrocyanoacetic ester with one equivalent of hydrazine hydrate and a small amount 
of water is boiled, 5-amino-4-nitro-3-pyrazolone is formed [478].

Nitroalkenes are valuable starting reagents for the synthesis of nitroazoles [479]. 
Thus, l,3-diphenyl-4-nitropyrazole is formed in the reaction of l-nitro-2-morpholinoethene 
with a-chlorobenzylidenephenylhydrazine [480]. However, the yield is not greater 
than 20% (Scheme 64).

H

C

O

C

NO2

C

O

H
..

Na+ + NH2NHR

N
N

O2N

R

Scheme 63   



41Synthesis Based on Heterocyclization

BookID 161900_ChapID 1_Proof# 1 - 19/08/2009

N

O2N

O

+ N

Cl

HN N
N

O2N C6H5

C6H5C6H5

C6H5

N(C2H5)3

Scheme 64   

N
N

H

O2N

C C

O2N N

O

ArN3

N
N

N

R

R

O2N

R = H, CH3, N(CH2CH2)2O; Ar = C6 H5, 3-NO2C6H4, 4-NO2C6H4, 3,5-(NO2)2C6H3

C6H5 CH CHNO2 + C6H5N3

N
N

N

C6H5

C6H5

O2N

+
N

N

N

C6H5

C6H5

H R

4-CH3C6H4SO2N3

Scheme 65   

N
N

H

R

NO2

NO2

NO2

RCHN2 C C

H

Cl H
CH2N2

N
N

H

H

Cl

−HCl N
N

H

NO2

R = COOC2 H5

Scheme 66   

Certain other a-chlorohydrazones react similarly with nitromorpholinoethene 
[480]. The reaction of aryl azides with 1-nitro-2-organoethenes leads to C-nitro-
1,2,3-triazoles [249, 480–484] (Scheme 65).

Even wider possibilities for the production of various nitroazoles are presented by 
1-nitro-2-halogenoethenes. Thus, the product from the cycloaddition of diazomethane 
to trans-1-nitro-2-chloroethene is 3-nitropyrazole (yield 65%) [485] (Scheme 66).

trans-1-Nitro-2-chloroethene also reacts with diazoacetic acid at room temperature 
to form 3-nitro-5-ethoxycarbonylpyrazole (yield 43%) [485]. 1-Bromo-1-nitro-2-
phenylethene is converted by the action of diazomethane into 3-bromo-3-nitro-4-
phenylpyrazoline, which is converted either into 3-bromo-4-phenylpyrazole or into 
3-nitro-4-phenylpyrazole, depending on the pH of the medium [486] (Scheme 67).



42 Synthesis of Five-Membered Nitroazoles

BookID 161900_ChapID 1_Proof# 1 - 19/08/2009 BookID 161900_ChapID 1_Proof# 1 - 19/08/2009

The reaction of sodium azide with l-bromo-l-nitro-2-arylethenes takes place by a 
formal 1,3-cycloaddition Scheme leading to 4(5)-aryl-5(4)-nitro-1,2,3-triazoles [487–489]. 
During the synthesis of nitrotriazoles the bromonitroarylethenes can be replaced 
successfully by the more readily obtainable 1,2-dibromo-l-nitro-2-arylethanes [489].

The intermediate product in the synthesis of 3-nitropyrazoles from 2,2-dinitroethanol 
and diazo ketones or diazoacetic ester is 1,1-dinitroethene [490, 491] (Scheme 68).

In certain cases 1,2-dinitro-2-phenylethene also forms the corresponding nitro-
pyrazoles in reaction with diazoalkanes [492–494] (Scheme 69).

The products from the reaction of 2,2-dinitro-1,3-propanedione with hydrazino-
acetic esters are derivatives of 4-nitropyrazole [495] (Scheme 70).
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1-Organyl-4-nitropyrazoles have been prepared by the reaction of b-nitroenamines 
having a formyl group at the b-position and hydrazines in methanol [496] (Scheme 71).

Analogically, the interaction of the same nitroenamine with hydroxylamine 
hydrochloride in methanol gives 4-nitroisoxazole [496].

Nitroenamines have also been used for the synthesis of nitroimidazoles [497] 
(Scheme 72).

5-Nitrothiazoles can be obtained by the reaction of nitroaminoethenes with 
dithiocyanogen [498] or thiourea [499] (Scheme 73).
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The yields of the products from the reaction of phenylthiourea derivatives with 
bromonitromethane depend largely on the nature of substitution at the nitrogen 
atom [500] (Scheme 74).

It was possible to obtain 2-amino-5-nitrothiazole while avoiding the risk of 
explosion at the nitration stage [499]. The nitroaminoethene used for this purpose 
cannot be isolated in the pure form and is generated from nitromethane and dime
thylformamide during the reaction.

Nitroketene aminals react with organic thiocyanates to form the amides of b,b-bis-
amino-a-nitrothioacrylic acid [501]. The latter proved valuable starting compounds 
for the synthesis of various heterocycles [502]. It was not possible to obtain nitropy-
razoles by the direct action of hydrazine hydrate on these amides [502, 503]. However, 
the corresponding derivatives of 3,5-diamino-4-nitropyrazole were synthesized after 
previous methylation of the hydrazine hydrate with methyl iodide or dimethyl sulfate 
(without isolating the S-methyl intermediate) [504] (Scheme 75).

3,3-Di(benzylammo)-2-nitroacrylonitrile is converted by the action of hydrazine 
into 3(5)-benzylamino-5(3)-amino-4-nitropyrazole [502, 503] (Scheme 76). Cyclic 
nitroenamines react similarly with hydrazine [502] (Scheme 76).
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By using nitroenamines as initial reagents it is possible to obtain the quaternary 
salts of 4-nitroisothiazoles [502, 505] and 4-nitro-1,2,3-triazoles [506]. Phenylazide 
and methylazide react with olefines and form corresponding 4-nitro-1,2,3-triazole 
and also two isomeric triazoles [507] (Scheme 77).

A convenient preparative method for the synthesis of 2-substituted 4-nitro-1,2,3-triaz-
oles is based on the condensation of diazonium salts with metazonic acid. The latter is in 
turn synthesized by the action of alkali on nitromethane [423, 508–510] (Scheme 78).

4-Aryl-5-nitro-1,2,3-triazoles with high yield in mild conditions (room temperature, 
2.5–4.5 h) were prepared by the reaction b,b -dinitrostyroles with NaN

3
 in acetonitrile 

or interaction of b-brom-b-nitrostyroles with NaN
3
 in DMF [511] (Scheme 79).
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The first representative of 3-nitroisoxazoles – 3-nitro-5-phenylisoxazole – was 
obtained by the condensation of the magnesium derivative of b-bromophenylacet-
ylene with chloronitroformaldehyde oxime [512, 513] (Scheme 80).

It is much easier to obtain 3-nitroisoxazole and its derivatives by the action of 
sodium or silver nitrites on the corresponding derivatives of propargyl bromide 
[514–517] (Scheme 81).

The use of secondary alkynyl bromides such as 3-bromo-1-phenyl-1-butyne in 
this reaction leads to 5-methyl-3-phenyl-4-nitroisoxazole [518] and not 3-methyl-
5-phenyl-4-nitroisoxazole [515] (Scheme 82).
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Such a reaction path is explained by regiospecific reaction of the intermediately 
formed ambident anion with the esters of nitrous acid [518].

When boiled with water or dilute mineral acids, 1,1,1,3-tetranitroalkanes 
undergo cyclization to 3,5-dinitroisoxazoles [519]. The intermediate products of 
this reaction are probably the N-oxides of 3,5-dinitroisoxazolines, which are easily 
dehydrated to the corresponding nitroisoxazoles (Scheme 83).

The cycloaddition of 1-halogeno-1-nitroethene with nitrile N-oxides leads to the 
nitro derivatives of isoxazole [520–524]. Thus, for example, the reaction of 
equimolar amounts of 1-chloro- or 1-bromonitroethene with benzonitrile N-oxide 
gave 5-nitro-3-phenylisoxazole [520]. The same compound is formed in the reac-
tion of nitrile N-oxides with trans-2-chloro-1-nitroethene [485]. The formation of 
nitroisoxazoles in these reactions can be explained by the fact that the initial prod-
ucts from the cycloaddition of halogenonitro-D2-isoxazolines more readily elimi-
nate a molecule of hydrogen halide and not HNO

2
.

During thermolysis diacylfuroxans are transformed into the N-oxides of a-keto 
nitriles, which form cyclic adducts in situ with various dipolarophiles [525]. This 
method was used for the production of 4-nitro-3-(2-acetoxybornyl-2-carbonyl)
isoxazole (yield 50%) by boiling bis(2-acetoxybornyl-2-carbonyl)furoxan with an 
excess of trans-b-dimethylammonitroethene in toluene (Scheme 84).

The reaction of tetranitroethene with acetylene and its trimethylsilyl derivatives 
leads to 3-nitroisoxazoles [526] (Scheme 85).
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With dinitrogen trioxide unsaturated ketones form dimeric vicinal nitronitroso deriva-
tives, which are converted into 4-nitroisoxazoles when heated [527] (Scheme 86).

Another path to such vicinal nitronitroso derivatives and then to 4-nitroisox-
azoles is based on the treatment of a-nitro ketones with hydroxamoyl chlorides 
[528] (Scheme 87).

This reaction is convenient for preparative synthesis, since it can be conducted 
in a single stage [529]. a-Halogeno-a-nitro ketones are also used for the synthesis 
of 5-nitrothiazoles [213] (Scheme 88).

Certain 2-aminoaryl-4-phenyl-5-nitroselenazoles were obtained from these ketones 
[530].

4-Nitro-3,5-diarylisoxazoles were isolated with low yields during the nitration 
of 1,2-diarylcyclopropanes with copper nitrate [531–533] (Scheme 89).

Finally, it is necessary to mention another method for the production of 
4-nitroisoxazoles according to the following Scheme [534] (Scheme 90).
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In this way it was possible to obtain 4-nitroisoxazoles with extremely reactive 
furanosyl substituents [534].

Interaction of methylmalein acid with HNO
3
 leads to next nitrated isoxazoles 

and oxadiazoles [535] (Scheme 91).

Synthesis from Various Cyclic Systems

The mutual transitions of various types of hetero cycles (recyclizations) are fairly 
widespread in the chemistry of azoles. Reaction of 1,4-dinitropyrazole with hydrox-
ylamine liberated from corresponding salt in the presence of sodium methoxide 
resulted in 4-nitroisoxazole (77%) and a small amount of 5-methoxy-4-nitropyrazole 
[535]. 4-Nitroisoxazoles, like incidentally their unnitrated analogs, are transformed 
into derivatives of 4-nitropyrazole by the hydrazine or its monosubstituted derivatives. 
Thus, 3(5)-amino-5(3)-methyl-4-nitropyrazole or its 1-organo derivative was 
obtained from 5-methyl-4-nitroisoxazole [28, 34, 35, 536] (Scheme 92).
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During the reaction of 3,5-disubstituted 4-nitroisoxazoles with hydrazine the 
isoxazole ring is opened initially. The obtained monoxime of the b-diketone then 
undergoes cyclization again with an excess of the hydrazine with the elimination of 
the hydroxylamine and the corresponding pyrazole [174, 536, 537] (Scheme 93).

New oligonucleotides containing 5-guanidino-4-nitroimidazole were obtained 
from deoxyguanosine with peroxynitrite [538].

3-Pentafluorophenyl-5-phenyl-4-nitroisoxazole reacts with phosphorus pentasulfide 
to form 3-pentafluorophenyl-5-phenyl-4-nitroisothiazole [539] (Scheme 94).

5-Substituted 3-phenyl-4-nitroisoxazoles unexpectedly undergo thermal isomer-
ization (with mild heating in an inert solvent), leading to the previously unknown 
4-nitrooxazole derivatives [540–542] (Scheme 95).

Recyclization can also take place with a change in the ring size. Thus, 3(5)-methyl-
5(3)-(2-hydroxyphenyl)-4-nitropyrazole is obtained with a high yield in the reaction 
of 2-methyl-3-nitrochromone with hydrazine [543, 544]. Instead of hydrazine it is 
possible to use its alkyl or aryl derivatives. In this case 1-substituted 4-nitropyrazoles 
are isolated [543, 545] (Scheme 96).
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4-Methoxy-5-nitropyrimidines react with hydrazine hydrate, being converted 
into 3-amino-4-nitropyrazoles [546, 547] (Scheme 97).

5-Nitropyrimidine itself is converted by the action of hydrazine into 4-nitropyra-
zole. In this case the hydrazine initially attacks the pyrimidine ring at position 4 [548]. 
The following mechanism is proposed for this rearrangement [547] (Scheme 98).

The action of hydrazine or hydroxylamine on certain other nitropyrimidine sys-
tems leads to 4-nitropyrazoles and 4-nitrooxazoles [549]. When 1,5-disubstituted 
4-nitro-6-pyridazinone derivatives are heated in an alkaline medium the derivatives 
of 4-nitropyrazole are formed with high yields. 1-Substituted 4-nitropyrazole-5-
carboxyiic acids [550, 551] or 1-substituted 4-nitropyrazoles [552–554] can be 
obtained, depending on the conditions. Another promising method of synthesis has 
been opened up for the production of 4-nitropyrazole derivatives. 4-Nitropyrazole 
is obtained with a high yield in the reaction of 3,5-dinitro-2-pyridone with hydra-
zine [555] (Scheme 99).
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3-Aryl-4-nitrosydnones react with acetylenedicarboxylic esters with the forma-
tion of l-aryl-3-nitro-4,5-pyrazoledicarboxylate [556] (Scheme 100).

In contrast to reactions with alkynes [507] that are nonregioseletive, methylazide 
reacts regiospecifically with a-nitro-olefines and forms only 4-nitro-5-phenyl-
1,2,3-triazole after elimination of HNO

2
 [557] (Scheme 101).

Thermal recyclization of the 4,4¢-bis(acetamido)-3,3¢-azofuroxan leads to 
4-acetamido-3-(5-acetamido-4-nitro-1,2,3-triazol-2-yl)furoxan [558]. This trans-
formation is probably initiated by the nucleophilic attack of an amide anion or 
amine on the nitrogen atom of the furoxan. The oxidation of the latter results in two 
isomers 4-nitro-3- and 3-nitro-4-(4,5-dinitro-1,2,3-triazol-2-yl)furoxan in the 8:1 
ratio, which were separated by chromatography on SiO

2
 (Scheme 102).
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Bis(acetamido) derivative of furoxan undergoes the aforementioned rearrange-
ment to form a mixture of two isomeric nitrotriazolylfuroxans in the 1:2 ratio [558] 
(Scheme 103).

The rearrangement is the transformation of one of the acetamidofuroxan cycles 
into the 1,2,4-oxadiazole ring with the cleavage of the O(1)-N(5) bond of the 
furoxan and the formation of a nitromethylene fragment [558] (Scheme 104).

The thermal cleavage of O(1)-N(1) bond under the action of nucleophiles lead-
ing to, in particular, 1,2,3-triazole is the typical reaction of 1,2,4-oxadiazoles, 
including intramolecular reaction [558].

Various 1-aryl(hetaryl)-4-nitro-1,2,3-triazoles are obtained in result of heterocy-
clic rearrangements of uncondenced furoxans with the use of ionic liquids as reac-
tion media [559–564].

5-Nitro-1,2,3-triazole 1-oxide derivatives may be obtained directly from furox-
ans [565] (Scheme 105).

It has been supposed [565] that the primary amine attacks the nitrogen atom of 
the N-oxide fragment to open the furoxan cycle, then dehydrative cyclization fol-
lows to form the 1,2,3-triazole 1-oxide ring (Scheme 106).
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It should be noted that 3-amino-4-nitrofurazan has been isolated as a side prod-
uct of 1,2,3-triazole 1-oxide in all cases of this reaction. For example, 2-ethyl-4-
ethylamine-5-nitro-1,2,3-triazole 1-oxide with excess ethylamine transforms 
quantitatively into nitroaminofurazan [565] (Scheme 107).
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The chemistry of nitrofuroxans has been presented in detail in monograph [566] 
and review [567]; therefore, here we consider works published after.

Other Methods of Preparation

The oxidation of nicotine by nitric acid gave a product that was initially assigned 
the structure of 4-nitro-3(5)-(3-pyridyl)pyrazole [568, 569]. Later on, however, it 
was established that this substance was 3(5)-nitro-5(3)-(3-pyridyl)pyrazole [27–29]. 
The mechanism of this reaction can be represented by the following Scheme [570] 
(Scheme 108).

It is assumed that the elimination of HNO from the nitrosium salt of nicotine (II) 
leads to the formation of the pyrrolium salt (III). Hydration of this imine salt and 
oxidation of the obtained carbinolamine give cotinine (IX). C-Nitrosation of the 
imine salt (III) at the C-4¢ atom and N-nitrosation at the secondary amine can lead 
to the formation of the intermediate (IV), which then undergoes cyclization to the 
pyrazolidine derivative (V). The nitroso group is then oxidized to a nitro group, 
while the aldehyde group is oxidized to a carboxyl group, forming compound (VI). 
Decarboxylation and dehydration of the latter lead to the formation of the pyrazo-
line (VII). Dehydrogenation of the pyrazoline ring gives the final product (VIII), 
the yield of which amounts to 8–9%.
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3-Substituted 1,5-diphenyl-4-nitropyrazoles are obtained from corresponding 
3-pyrazolines, which slowly oxidize on standing in air [571].

The 3- and 4-nitrosopyrazoles are easily oxidized to the corresponding nitro 
derivatives [22, 572, 573]. 1-Aryl substituted 4-dimethylaminopyrazoles are con-
verted into the 5-nitro derivatives by the action of nitrous acid [574, 575].

As already mentioned, a convenient method for the synthesis of 3- and 4-nitro-
pyrazoles is isomerization of N-nitropyrazoles [63, 309, 310, 313, 314, 576] 
(Scheme 109).

This reaction acquires special significance as a result of the fact that it is possible 
to introduce a nitro group at position 3(5) of the pyrazole ring. This is impossible 
during direct nitration. N-Nitroimidazoles [323, 326] and 1,2,4-triazoles [318, 577] 
enter into such a rearrangement. In a similar way N-nitroaminothiazoles isomerize 
to 2-amino-5-nitrothiazoles [231] (Scheme 110).

2-(N-Methylamino)-5-nitro-4-phenylthiazole has been prepared by interaction 
of 2-(N-methyl-N-nitroamino)-4-phenylthiazole with 50% sulfuric acid [578]. The 
result indicates that migration of the N-nitro group occurs on the intramolecular 
path; however, in concentrated sulfuric acid, formation of nitronium ion and ring 
nitration also takes place [578]. 4-Nitro-5-azidoimidazole has been obtained from 
corresponding 5-diazo compound, and hydrazone steroids passed anticancer and 
antibacterial activity [579].

Azido derivatives nitro-bis-1,2,4-triazoles a perspective hight energetic com-
pounds have been prepared by functionalization or defunctionalization of (relative) 
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corresponding compounds [580]. For examples, 5-(3-azido-1,2,4-triazol-1-yl)-3-
nitro-1,2,4-triazole forms as the result of hydrolysis in alkaline medium of bis-triazole 
ketone [580] (Scheme 111).

The salts of 3,5-diaryl-D
2
-isoxazolinyl-4-nitronic acids are readily transformed 

into 4-nitroisoxazoles during oxidation with bromine [581] or potassium perman-
ganate [582, 583] (Scheme 112).

4-Nitroisoxazolines are also aromatized by the action of other oxidizing agents 
(MnO

2
, [584], CrC

3
 [540], HSO

3
F [540], and C(NO

2
)

4
 [585]). In some cases 

4-nitroisoxazoles can be obtained by the thermolysis of the respective isoxazolines. 
Thus, 3,5-disubstituted 4-nitroisoxazolines form 4-nitroisoxazoles when heated in 
DMF. At the same time nitrous acid is eliminated during the thermolysis of the 
4-nitroisoxazolines in the absence of a solvent [586] (Scheme 113).

4-Chloro- and 4-bromo-4-nitroisoxazolines are converted into the corresponding 
nitroisoxazoles by the action of bases while 4-iodo-4-nitrooxazoline is converted 
spontaneously during storage [587] (Scheme 114).

O
N

Ar

H

ArO2N

H

DMFA

∆

O
N

Ar

O2N Ar

O
N

Ar

Ar

Ar = C6H5, 3-FC6H4

Scheme 113   

N
N

N

N N

N

O2N N3

CH2CH2COMe

N
N

N

N N

N

O2N N3

H

HO , H+

Scheme 111   

O
N

Ar

H
HO

H Ar

KOH or CH3OK

O
N

Ar

Ar

H

KOON

O
N

O2N Ar

Ar

Br2 or KMnO4

Scheme 112   



58 Synthesis of Five-Membered Nitroazoles

BookID 161900_ChapID 1_Proof# 1 - 19/08/2009 BookID 161900_ChapID 1_Proof# 1 - 19/08/2009

The product from the reaction of citraconic acid (or its anhydride) with nitric 
acid was initially assigned the structure of 3-methyl-5-(1,1,2-trinitroethyl)isoxazole 
[588]. However, it was subsequently established that this compound was 5-methyl-
4-nitro-3-(1,1-dinitroethyl)isoxazole [589]. As mentioned earlier, the antibiotic 
azomycin (2-nitroimidazole) and some of its derivatives can be obtained by micro-
biological synthesis [331, 450, 590, 591].

2,5-Diphenyl-4-nitrosoimidazole is oxidized by amyl nitrate to the correspond-
ing 4-nitro derivative [592]. An unusual reaction is observed when 4,5-diphenylim-
idazole and 2-bromo-4,5-diphenylimidazole are boiled with amyl nitrite. Instead of 
nitrosation the substrate undergoes nitration with the formation of 2-nitro-4,5-di-
phenylimidazole [593] (Scheme 115).

The reaction of 1-methoxy-2-phenyl-1,2,3-triazole tetrafluoroborate with alkali-
metal nitrites or silver nitrite gives 5-nitro-2-phenyl-1,2,3-triazole [594].

For a long time it was considered that the only method for the production of 
N-nitroazoles was the nitration of azoles with acetylnitrate. Comparatively recently 
it was found that 4,4-dibromo-4H-pyrazoles form 3,5-disubstituted 4-bromo-1-ni-
tropyrazoles with the complex of silver nitrate and trimethyl phosfite. 4-Bromopyrazole 
derivatives are formed as impurities [595] (Scheme 116).

4-Nitrofuroxans can be obtained by oxidation of 4-dimethylsulfuliminofuroxans 
by treatment of trifluoroperacetic acid [596] (Scheme 117).

The yield of the nitrofuroxans is 70%.
Transformation of bis(3-nitrofurazan-4-yl) disulfide by oxidation-destructive 

nitration with nitric acid leads to 3,4-dinitrofurazan and 4,4¢-dinitroazoxyfurazan 
[597] (Scheme 118).

The first act in the process is the cleavage of S–S bond; in contrast to this, decom-
position of bis(3-nitrofurazan-4-yl) sulfide does not occur in these conditions [597].
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1,4-Dimethoxy-2-(3-nitro-1,2,4-triazol-1-yl)benzene and 1,1,4-trimethoxy-4-
(3-nitro-1,2,4-triazol-1-yl)cyclohexane-2,5-diene have been prepared by indirect 
electrochemical method [598].

1-Methyl-3-nitro- and 1-methyl-5-nitro-1,2,4-triazole derivatives with high yield 
(50–90%) have been obtained by the alkylation of corresponding triazoles [599].
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Polynitroazoles

Polynitroazoles have attracted major attention of chemists all over the world due to 
their antibiotic, radiosensitizing, antiprotozoan, and, mainly, energetic properties 
[364, 365, 600–608]. In recent years, the investigations in the field of energetic 
heterocyclic compounds have received considerable interest. Energetic materials – 
explosives, propellants, and pyrotechnics – are widely used for both civilian and 
military purposes. A number of ongoing research programs worldwide are aimed 
to the development of new explosives and propellants with higher performance 
characteristics or enhanced insensitivity to thermal or shock insults and pyrotech-
nics with reduced smoke. Polynitroazoles and nitroazoles, as heterocycles as a 
whole, possess higher heat of formation, density, and oxygen balance than their 
carbocyclic analogs.

Synthesis, molecular design, and explosive performance prediction codes to 
guide the synthesis of new energetic compounds based on nitroazole or polynitroa-
zole and other systems have been studied in the famous Lawrence Livermore 
National Laboratory (USA) [604].

The synthesis and chemical properties of 1,4-dinitroimidazoles [363], 4,5-dini-
troimidazoles [383, 609–611], 2,4-dinitro-, and 2,4,5-trinitroimidazoles and their 
1-substituted derivatives [84, 383, 612–617] have been described. 1-Substituted 
2,4-dinitroimidazoles have been synthesized and tested as potential radiosensitizing 
agents for selective sensitizing of hypoxic mammalian cells to the lethal effect of 
radiation. The reaction of 2,4(5)-dinitroimidazole with oxirane derivatives upon 
heating in absolute ethanol affords the expected 1-substituted 2,4-dinitroimidazoles 
as well as results in a novel class of isomeric nitroimidazo(2,1b)oxazoles due to the 
intramolecular cyclization. The study of radiosensitizing activity of these agents 
against hypoxic Chinese hamster cells (V-79) indicates that 2,4-dinitroimidazoles 
are better sensitizers than the other nitroimidazoles, thus suggesting the necessity of 
the 2-nitro function in the molecule. The 1-(2-hydroxy-3-methoxypropyl)-2,4- 
dinitroimidazole is found to be the most effective radiosensitizer of this series [615]. 
At the same time dinitroimidazoles (DNI) are powerful insensitive highly explosive 
compounds with explosive force greater than that of triamino-trinitrobenzene 
(TATB) or trinitrotoluene. DNI has both excellent thermal sensitivity and impact 
insensitivity, and yet it is still a powerful high-performance explosive. DNI exists as 
three isomers, 1,4-dinitroimidazole, 2,4-dinitroimidazole, and 4,5-dinitroimidazole, 
while 2,4-dinitroimidazole delivers the best explosive performance. DNI is consid-
ered as a replacement for TATB as the initiating explosive in nuclear warheads.

1-Methyl-2,4,5-trinitroimidazole has been synthesized from 4-nitroimidazole 
using stepwise nitration and further methylation by dimethylsulfate or from com-
mercially available imidazole. 1-Methyl-2,4,5-trinitroimidazole is relatively insen-
sitive to impact, and its thermal stability is excellent. The calculated detonation 
properties point to the fact that its performance is about 30% better than that of 
TATB. The data of impact sensitivity, friction sensitivity, time-to-explosion tem-



61Polynitroazoles

BookID 161900_ChapID 1_Proof# 1 - 19/08/2009

perature, vacuum stability tests, good oxygen balance, and measured heat of forma-
tion of this material denote that its propellant performance should be good [616].

Energetic salts on the base of 3,5-dinitropyrazole, 2,4-dinitroimidazole, 4,5-dini-
troimidazole, 2,4,5-trinitroimidazole, 3,5-dinitro-1,2,4-triazole (azolium cations 
and azolate anions), and their mononitro analogs have been synthesized and char-
acterized [161, 613, 618–637]. Azolyl salts exhibit good physical properties includ-
ing relatively high densities (1.38–1.75 g/cm) and high positive heats of formation 
as well as moderate detonation properties. To design salts with the most potent 
energetic properties, both cation and anion should have the highest nitrogen con-
tent, which in turn enhances the density and detonation characteristics [636]. The 
synthesis and application of new members of heterocyclic-based energetic, low-
melting salts are of special interest. Energetic materials, i.e., salt-based, often hold 
advantages over nonionic molecules since these salts tend to exhibit lower vapor 
pressure and higher densities than their atomically similar nonionic analogs. The 
cation is generally a bulky organic nitrogen-containing heterocycle with low sym-
metry. The anions are usually inorganic, such as nitrates, perchlorates or organic, 
such as pyrazolate, imidazolate, triazolate, and tetrazolate [623, 637]. The standard 
enthalpies of formation of hexamethylenetetrammonium salts composed of ener-
getic anions 3,5-dinitropyrazolate, 4,5-dinitroimidazolate, 3,5-dinitro-1,2,4-triazolate, 
and 5-nitrotetrazolate were calculated by the computationally feasible DFT(B3LYP) 
and MP2 methods along with an empirical approach based on the densities of the 
salts [628]. Most of the salts possess such physical properties as good hydrolytic 
stabilities, relatively high densities (>1.50 g/cm3), and high positive heats of forma-
tion [623, 628, 636]. 2,4,5-Trinitroimidazolate salts with “high-nitrogen” cations 
are prone to be highly hydrogen bonded and have the formation heats in the range 
of 616 kJ/mol. Thermostability, density, and oxygen balance are improved by the 
presence of 2,4,5-trinitroimidazolate. Theoretical calculations show that all of the 
new salts are promising propellants [633].

Novel energetic salts, alkylimidazolium cations paired with 3,5-dinitro-1,2,4-triaz-
olate, 4-nitro-1,2,3-triazolate, 2,4-dinitroimidazolate, 4,5-dinitroimidazolate, 4-nitroim-
idazolate, and tetrazolate anions have been prepared and studied by single crystal 
X-ray diffraction, differential scanning calorimetry, and thermogravimetry method 
[161, 626, 627]. The effects of cation and anion type as well as structure on the physi-
cochemical properties of the resulting salts, including several ionic liquids (defined as 
having m.p. < 100°C), have been examined and discussed. The ionic liquid, 1-butyl-3-
methylimidazolium 3,5-dinitro-1,2,4-triazolate with relatively large, rigid heterocyclic 
anion has unexpectedly low melting point (35°C) [626]. The presence of electron-
withdrawing nitro-substituents in the triazole ring favors the formation of stable aro-
matic charge delocalized anions, compared with unsubstituted triazoles, which interact 
only weakly through hydrogen bonding with the cation [626].

Thermal decomposition of energetic compounds, 1,4-dinitroimidazole [638–640], 
1-nitro-3-(b,b,b-trinitro-ethyl)-4,5-dinitroiminoimidazolidine-2-one [641] and its 
4-nitroiminoimidazole [642], 1-dinitromethyl-3-nitro-1,2,4-triazole derivatives 
[643], and C-nitro- and N-nitro-1,2,4-triazoles [644–646], has been studied. The 
critical temperature of thermal explosion of imidazole derivative is 155.7°C [641].
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The kinetics of hydrolysis of energetic material precursors – mono- and dinitro 
derivatives of pyrazole, imidazole, 1,2,4-triazole, and isoxazole has been studied by 
the polarographic and photometric methods [647]. The alkaline hydrolysis rate 
constants experimentally determined depend on the nature of the heterocycle.  
A possible mechanism for hydrolytic transformations of nitroazoles is proposed on 
the basis of the calculated thermodynamic parameters of the reaction.

Investigations of new energetic materials of oxazole series of azoles have been 
carried out [429, 648–653]. Detonation characteristics including heats of detona-
tion, heats of formation in gas phase, detonation velocities and pressures, and 
crystal densities of dinitrofurazans and -furoxans – so-called high energy density 
materials (HEDM) were calculated by quantum chemistry, molecular mechanics, 
and Monte Carlo methods [648]. 3,4-Dinitrofurazan and 3-nitro-4-nitroaminofura-
zan are recommended to be promising energetic compounds. The crystal densities, 
specific impulses, detonation properties, and sensitivities of most nitrofurazans and 
-furoxans are quite high. The author [648] supposes that it is not an efficient way 
to augment detonation properties by increasing molecules. Therefore, the smaller 
molecules are preferentially recommended, and the type, order, and quantities of 
the linking groups in polyfurazans and polyfuroxans can affect the detonation prop-
erties. Computational correlation approach to predict impact sensitivity of dinitro-
furazans, nitroimidazoles, nitropyrazoles, nitrotriazoles, etc. has been proposed 
[652]. The approach is based on elemental composition and two structural parameters 
of C

a
H

b
N

c
O

d
 energetic nitroazoles. The results obtained for compounds mentioned 

are compared with complex neural network computations, which use compositional 
and topological descriptors [652].

Mono- and dinitrofurazans and -furoxans are the important objects in designing 
and synthesizing HEDM. As it is shown earlier, they can be prepared by oxidation 
of the corresponding aminooxadiazoles in the presence of H

2
O

2
/H

2
SO

4
 [455–465]. 

For instance, the Sheremetev’s works report the great synthetic possibility of produc-
ing energetic materials on the base of dinitrofurazans and -triazoles [429, 460–464, 
466, 467, 644, 653] (see Scheme  61). The preparation of dinitro polyfurazans 
unveils the wide synthetic potential of the energetic compounds construction.

The chemical properties of 1,4-dinitropyrazole [654] and 1,4-dimethyl-3,5-dini-
tropyrazole obtained by the nitration of 1,4-dimethylpyrazole [655], nitrotriazoles 
[656–663], and other nitroazoles [662, 664–666] have been studied. 1,4-Dinitro
pyrazole undergoes ring transformation reactions with primary amines, hydrazines, 
hydroxylamine, and amidines [654]. Acid hydrolysis of dinitropyrazole leads to 
(1-methyl-3,5-dinitropyrazol-4-yl)acetaldehyde, and the reaction with sodium 
nitrite in hydrochloric acid furnishes 2-hydroxymino-2-(1-methyl-3,5-dinitropyra-
zol-4-yl)acetaldehyde [655].

3,5-Dinitro-1,2,4-triazole has been synthesized from 3,5-diamino derivative 
with sodium nitrite excess [667], and the protocol was proposed for the preparation 
of 3,5-dinitro-1,2,4-triazole from dicyanodiamide and hydrazine without isolation 
of 3,5-diamino-1,2,4-triazole.

The design and synthesis of 1,4-dinitropyrazole C-nucleosides possessing anti-
tumor, antibacterial, antifungal, and antiviral activity have been reported [668–670]. 
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The use of 2,7-dimethyl-3,8-dinitrodipyrazolo[1,5-a,1¢,5¢-d]pyrazine-4,9-dione – a 
new labeling reagent for liquid chromatographic analysis of amino acids – is 
offered [671]. Application of the method to quality control of commercially available 
oral polyaminoacid formulations is described. 1,2-Diacetyl-4,4-dinitropyrazolidine 
and products of its further nitration have been obtained [672].

The structure of 4,4¢-dinitro-2,2¢-biimidazole dimethylformamide solvate [673] 
and 1-(4-chlorophenacyl)-2-methyl-4,5-dinitro-1H-imidazole [674] has been deter-
mined by X-ray diffraction analysis. Both nitro groups in the latter product are 
deviated significantly from the imidazole plane, and the C4–NO

2
 bond length is 

only slightly shorter than the value for a normal single C
sp

2–NO
2
 bond, and the 

C5–NO
2
 bond length is much shorter than C4–NO

2
 [674]. The C-4-nitro group is 

easily replaced by morpholine, while the C-5-nitro group shows a high stability on 
treatment with the amine. In the crystal structure, the molecules are coupled via 
C–(HO)–O–hydrogen bonds.

The structure of 1,2,5-trinitroimidazole and 1,2,4,5-tetranitroimidazole has been 
studied with various levels of ab initio and density functional (DF) theories [675, 
676]. The second-order perturbation method (MP2) with the 6-31G** basis set has 
predicted considerably long N–N bond lengths in nitroimidazoles that is 1.737 and 
1.824 Å, respectively. According to the analyses with bonding natures and CHELPG 
charges at the MP2 level, the N–N bonds of 1,2,5-trinitro- and 1,2,4,5-tetranitroimidazole 
appear to have ionic nature, and the 1-nitro group bears some positive charge and 
has attractive electrostatic interactions with O atoms of adjacent nitro groups. 
Although all the theories utilized in this study predict that both compounds are stable 
in their potential-energy surfaces, significantly long N–N bond lengths calculated 
with MP2 and DF theories imply a strong hyperconjugation effect, which the authors 
explain for the tendency to form a salt in these compounds easily [675].

The electrochemical reduction of dinitroazoles [677–680] has been investigated 
by polarography and ESR spectroscopy. Upon electrochemical reduction in ace-
tonitrile, all N-alkylnitroazoles form stable radical anions and all N-unsubstituted 
nitroazoles give stable radical dianions. 1-Nitro- and 1,4-dinitropyrazoles are 
reduced upon splitting the NO

2
 anion [678], while the electrochemical reduction of 

1,4-dinitropyrazole allows to observe the well-resoluted ESR spectrum, and the 
splitting character proves a dimeric radical product [678]. The presence of two nitro 
groups in the azole molecule substantially changes the electrochemical behavior as 
compared with the behavior of its mononitro analogs [678–681]. The electrochemi-
cal reduction of 1-methyl-3,5-dinitro-1,2,4-triazole proceeds unusually [679]. The 
latter in acetonitrile is reduced to deliver radical trianion with well-resoluted ESR 
spectrum [679].

The neutron inelastic scattering spectra of 2,4-dinitroimidazole have been regis-
tered and calculated by solid-slate calculation methods at BLYP/dnd, BP/dnd, and 
PWC/dnd theory levels [682]. Comparison of the observed and calculated neutron 
spectra reveals that the BLYP/dnd calculations provide the best description of the 
experimental spectrum.

In conclusion, the preparation of polynitroazoles shows the great synthetic poten-
tial. Advantageous approaches for the syntheses of polynitro derivatives of five-
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membered heterocycles broaden the range of their utility [683, 684]. The feasibility 
and availability of the starting compounds make this strategy a powerful method for 
high energetic material construction. The presence of electron-withdrawing nitro 
groups in the azole ring tends to produce energetic materials with high energy, high 
density, low sensitivity, and good heat resistance, while the enhancement of ring 
aromaticity can also increase thermal stability. The ongoing works in the field of 
energetic salts will extend the range of anions, develop systems with higher density 
heterocyclic cations, and evaluate the properties of these materials.

Conclusions

The basic procedure of the preparation of nitroazoles is the nitration reaction. 
The nitration of organic compounds, known for a century and a half, is still very 
enigmatic and attracts the attention of many researchers due to the interest in the 
nitration of heterocyclic compounds, in particular, of azoles. The reaction 
mechanism is the subject of heated discussions; the methods of nitration are 
being constantly developed and modified, and the range of nitrating agents is 
ever expanding.

Therefore, in spite of the great number of studies devoted to the nitration of 
azoles, the interest in this issue has never waned. This is mainly because many 
nitroazoles are of great practical value. Mechanistic aspects of the ipso-nitration of 
azoles remained poorly understood until recently. Further extensive research of the 
kinetics and mechanism of the nitration of azoles, especially with novel nitrating 
agents, is desired. It should be expected that the N-nitropyrazoles will find ever 
increasing use as nitrating agents.
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Abstract  A great deal of information on the methods of synthesis of nitrated benzo 
analogs – indazoles, benzimidazoles, benzoxazoles, benzisoxazoles, benzoxadiazoles, 
benzothiazoles, benzoisothiazoles, benzothiadiazoles, benzotriazoles, benzoselenazoles, 
benzoselenadiazoles – is systematized, summarized, and critically discussed. Major 
attention is paid to electrophilic nitration, a much used and convenient method for the 
preparation of nitrobenzazoles. The nitration of benzazoles is a complex process in 
which the experimental conditions can modify the product orientation. The existence 
of an annelated benzene ring in the benzazole molecule influences much of its ability 
for electrophilic substitution – all benzazoles are more easily nitrated than their five-
membered analogs, and the nitro group is generally introduced into the arylene fragment 
of the molecule. Vicarious nucleophilic C-amination of benzazoles, practically, the single 
method of direct introduction of the amino group into nitro compounds is presented.

Introduction

The nitro derivatives of benzazoles have found wide applications in various branches 
of medicine, technology, and agriculture. For a long time they were used as radiosen-
sitizers, anesthetics, anticancer medications, dyes, plasticizers, ionic liquids, pesti-
cides, herbicides, and plant growth regulators. The nitrobenzazoles are convenient 
synthons and intermediates in organic synthesis. Benzotriazole, in particular, is a use-
ful synthetic auxiliary: it is easily introduced, activates molecules toward numerous 
transformations, and can be removed readily at the end of the reaction sequence [1].

The syntheses of nitrobenzazoles have been critically discussed in our reviews 
[2]. Some representatives of nitrobenzazoles are described in Katritzky’s works [3, 
4] and reviews [6–8].

Synthesis of Nitrobenzazoles
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The enormous amount of literature related to this topic made it necessary to 
exclude a series of references on earlier investigations and patents cited in the 
aforementioned reviews and monographs and also in more recent publications.

Some pioneering papers dealing with the synthesis of nitrated benzazoles have 
been included in the present chapter.

The most widespread and convenient method for the preparation of nitrobenza-
zoles is the reaction of nitration. Electrophilic substitution of azoles is a complex 
reaction in which the experimental conditions can modify the product orientation. 
The ability of azoles to electrophilic substitution is determined by the activity of 
reagents, the basicity of substrates, and the acidity of medium. This caused some 
uncertainty in interpreting the results and complicated comparison of the reactivity 
of various azoles among them. The situation has changed after Katritzky and 
Johnson [7] had reported the criteria allowing, with a sufficient degree of reliance, 
the establishment in what form (base or conjugative acid) the compound reacts. The 
information on the mechanism of nitration of azoles is basically borrowed from the 
extensive literature on the nitration of aromatic and heteroaromatic compounds [8]; 
therefore, it does not make sense to discuss this point in the review.

The existence of an annelated benzene ring in the benzazole molecule influences 
much its ability for electrophilic substitution. All benzazoles are more easily 
nitrated than their five-membered analogs, and the nitro group is generally intro-
duced into the arylene fragment of the molecule.

Nitration of Benzazoles

Indazoles

Indazoles are nitrated, mainly into the position 5 by a mixture of sulfuric and nitric 
acids or just by nitric acid (Scheme 2.1) with formation of 5-nitroindazole deriva-
tives that are a part of so-called universal nucleosides [9].

The presence of substituents mainly affects the direction of the process and not 
its rate. 1-Phenylindazole with 86% nitric acid gives a tetranitro derivative, which 
has one nitro group in the position 5; the second nitro group is in the para-position 
of the phenyl ring, with the position of the other two being not determined reason-
ably well [10]. If the nitration is performed by potassium nitrate in sulfuric acid, 
1-(4-nitrophenyl)-5-nitroindazole is formed. Both the electron-donating and electron-
withdrawing substituents at the indazole cycle C-3 atom direct the coming nitro 

N
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R

N
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O2N
R

HNO3 / H2SO4

R = H, CH3, CH2COOH, Cl, COOH, COOCH3, CN

Scheme 2.1   
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group to the position 5 in the nitration by nitric acid or by the mixture of sulfuric 
and nitric acids (Scheme 2.1) [10–16].

As mentioned in a patent [17], the nitration of 3-trifluoromethylindazole results 
in a mixture of 5-nitro- and 7-nitro-isomers. If the mixture of nitric and sulfuric 
acids is used as a nitrating agent, the formation of 3-methyl-7-nitroindazole as a 
by-product is observed [11]. Nitration of 3-chloro-2-phenylindazole with a mixture 

of fuming nitric acid and concentrated sulfuric acid at 0°C gives 3-chloro-5-nitro-
2-(4-nitrophenyl)indazole in yield 73% (Scheme 2.2) [18].

The nitration of 2-phenylindazole at 0°C with sulfuric–nitric acid mixture leads 
to 5-nitro-2-phenylindazole and 7-nitro-2-phenylindazole. These compounds have 
been identified using NMR spectroscopy [19]. In spite of the fact that the indazole 
positions 5 and 7 are most reactive with respect to electrophilic substitution [20] it 
is difficult to know beforehand the competition between the aromatic positions of 
the indazole ring (C-4, C-5, C-6, C-7) and the N-phenyl ring.

Electron-donating substituents in the indazole cycle positions 5 and 7 direct the 
coming nitro group to the position 4 [21, 22], and 6-acetylaminoindazole is nitrated 
to the position 7 [21]. It is known that 7-nitroindazoles are potent building blocks 
in divergent syntheses of bioactive compounds [23]. Under further nitration of 
mononitroindazoles the site of introduction of the second nitro group depends on 
both the position of the already present one and reaction conditions. For example, 
5-nitroindazole is nitrated by the sulfuric–nitric acid mixture into 5,7-dinitro 
derivative, whereas in 6-nitroindazole the second nitro group enters into the posi-
tion 5 [24]. After the nitration 7-nitroindazole forms 5,7-dinitro derivative [25].

The information about indazoles containing three or more nitro groups is 
rather scarce [26, 27]. Tetranitroindazole has been first assigned a wrong struc-
ture [26], but then it has been established to be 2,3,5,6-tetranitroindazole 
(Scheme 2.3) [27].

NO2
HNO3/H2SO4
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O2N
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Scheme 2.2   
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The formation of N-nitroazoles under the effect of sulfuric–nitric mixture is a 
rather seldom phenomenon [15, 27], since the N–NO

2
 bond is unstable in acids. 

The most convenient way to N-nitroindazoles is nitration by acetyl nitrate [15, 
27–37].

2-Nitroindazoles, the products of nitration with nitric acid in acetic anhydride, 
are easily rearranged to 3-nitro derivatives that make these isomers fairly accessible 
[28]. This method has been modified by Pozharskii [38] with a main goal to 
increase the yield of the reaction product. So 3-nitroindazole has been obtained 
without the intermediate 2-nitroindazole.

Kinetics and mechanism of nitration of indazoles with acetyl nitrate have not 
been specially investigated. In the sulfuric–nitric mixture indazoles are nitrated in 
the cation form [39].

Benzimidazoles

Benzimidazole is nitrated to the position 5(6) [40–44]. The same orientation is observed 

in the nitration of different 2-substituted benzimidazoles (Scheme 2.4) [45–67].
In a boiling mixture of nitric (d 1.50) and concentrated sulfuric acids 2-chloroben-

zimidazole gives 2-chloro-5,6-dinitrobenzimidazole in a 75–80% yield [67].  
In analogous conditions, benzimidazole and 2-alkyl substituted benzimidazoles are 
also transformed into 5,6-dinitro derivatives; however, in this case simultaneous 
formation of 4,6-dinitro isomers, which can be separated by fractional crystalliza-
tion, has been fixed [48, 68]. 5(6)-Nitro-2-heterylbenzimidazoles (thiazolyl-4-, 
furyl-4-, and pyrrolyl-4-) having antihelminthic activity were obtained by nitration 
with sulfuric–nitric mixture on cooling [69].

2-Trifluoromethyl- and 2-amino-4,7-dimetoxybenzimidazoles are nitrated to 
5,6-dinitro derivatives already at 0°C (Scheme 2.5) [70].
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The nitration of 5-nitrobenzimidazole under severe conditions gives two isomeric 
5,6-dinitro- and 4,6(5,7)-dinitrobenzimidazoles. The structures of these products are 
identified only spectroscopically in the solution. The solid state structure of the major 
isomer 5,6-dinitrobenzimidazole has been determined by X-ray diffraction [71].

The nitration of 5-substituted benzimidazoles affords both mono- and dinitro 
derivatives. The two nitro groups occupy exclusively the positions 4 and 6 to form 
5-substituted 4,6-dinitrobenzimidazoles [72–75]. It is interesting to note if in the nitra-
tion of 5-hydroxybenzimidazole the nitro group enters into the 4 position [74], whereas 
in the nitration of 5-chloro-, 5-ethyl-, and 5-ethoxybenzimidazole [73] and also 
5-chloro- and 5-methyl-2-alkylbenzimidazoles [76, 77] it will occupy the 6 position. 
These data indicate that under the influence of electronic effects of the substituent in 
the position 5, the reactivity of C-4 and C-6 atoms of the benzimidazole ring is slightly 
equalized. That is why among the products of mononitration of 5-substituted benzimi-
dazoles one can find 5-substituted 6-nitrobenzimidazoles [49, 75–80], 5-substituted 
4-nitrobenzimidazoles [74, 75], and a mixture of these isomers [54, 75, 81, 82].

The nitration of 2-alkyl-5(6)-chloro(or methyl)-6(5)-halobenzimidazoles with 
excess nitric acid (~3 equivalents) in sulfuric acid leads to a mixture of 4-nitro- and 
7-nitrobenzimidazoles except for 2-methyl-5,6-dibromobenzimidazole [76], as 
shown in Scheme 2.6. It is natural that 2-methyl-5,6-dibromobenzimidazole in the 
nitration under the same conditions gives 4(7)-nitro-2-methyl-5,6-dibromobenzim-
idazole in good yield.

Preparation of 2,5(6)-dimethyl-4(7)-nitrobenzimidazole by nitration of 
2,5(6)-dimethyl derivative has been reported in a patent [83], but there is no  
supporting evidence for the correctness of the assigned structures.

On nitration of 1-substituted benzimidazoles 5- and 6-nitro isomers [84–91] are 
formed. At the same time the nitration of 1-alkyl-5-tosylaminobenzimidazole with 
nitric acid in a solution of acetic acid leads to the formation of one isomer, the nitro 
group being involved in the position 4 (Scheme 2.7) [92].
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The nitration of 1-picrylbenzimidazole with 100% nitric acid and 96% sulfuric 
acid gives, instead of the expected 5,7-dinitro derivative, the hydrolytically unstable 
5,6-dinitro-1-picrylbenzimidazole that opens to the correspondent amine, as shown 
in Scheme 2.8 [93].

On nitration of 2-methyl-4(7)-acetylaminobenzimidazole two isomeric nitro 
products were obtained; the amount of 2-methyl-4(7)-acetylamino-7(4)-nitro isomer 
was twice as large (Scheme 2.9) [94].

Prevailing formation of the 7-nitro derivative was observed in the nitration of 
4-fluoro- [95] and 4-tert-butylbenzimidazole [96, 97]. When the benzimidazole 
ring has its 4 and 6 positions substituted, the nitration proceeds across the C-4 or 
C-7 atom [98–101].

In a medium of bromine in acetic acid and nitric–sulfuric mixture the benzimi-
dazole derivatives are nitrated only to position 4 [102]. In this case the bromine is 
introduced into the position 5 or 6 (Scheme 2.10).

Mechanism of the nitration of benzimidazoles has not been studied much, but 
there are weighty arguments to conclude that they are nitrated as conjugated acids 
[51, 103]. Kinetic studies of the nitration of benzimidazole and some of its 
2-substituted derivatives have confirmed that the protonated form is involved in the 
process [104]. Recent results of quantum chemical studies of the nitration of ben-
zazoles indicate the importance of the protonated benzimidazolium cations in the 
nitration process [43].
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It has been noted that in the nitration of 2-phenylbenzimidazole, the rate of nitra-
tion into the benzimidazole 5 position is about three orders of magnitude higher 
than that of the phenyl ring [51].

Benzimidazolone-2 and benzimidazolthione-2 derivatives are more prone  
to nitration [105, 106], and in this case the nitro group enters the position 5(6).  
It should be noted that depending on the reaction conditions, it is possible to obtain 
benzimidazolone dinitro, trinitro, or tetranitro derivatives [103, 107]. 5-Nitrobenzimi- 
dazolone-2 is nitrated with concentrated nitric acid on heating (80–90°C) only to 
the position 6 to give 5,6-dinitrobenzimidazolone-2 [108].

In the reaction of nitronium tetrafluoroborate with 1-aminobenzimidazole the nitro 
group enters the side chain with the formation of N-nitroimides [109]. In some cases the 
nitration of benzimidazoles with acetylnitrate leads to 1-nitrobenzimidazoles [110].

Some examples of the nitration of benzimidazole derivatives have been reported 
[110–114].

Benzisoxazoles, Benzoxazoles, and Benzoxadiazoles

1,2-Benzisoxazole and its 3-substituted derivatives are nitrated into the position 5 
(Scheme 2.11) [115–125].

The nature of substituent in the arylene fragment significantly influences the 
nitration direction. For example, 3,5-dialkyl-1,2-benzisoxazoles are nitrated into 
the position 4 (the data about the formation of 3,5-dimethyl-7-nitro-1,2-benzisox-
azole presented in [115] turned out to be wrong [119], whereas 3-alkyl-5-nitro 
derivatives occupy the position 7 [119]). The nitration of 7-methoxy-2-phenylben-
zisoxazole affords 7-methoxy-2-phenyl-4-nitro derivative [126].

The mechanism of the nitration of benzisoxazoles in sulfuric–nitric acid mixture 
has been studied with 3-methyl-1,2-benzisoxazole [121]. It has been found that at 
a sulfuric acid concentration of about 80–90% the substrate reacts as a free base, 
and at a higher concentration the conjugated acid undergoes nitration. It is worth 
mentioning that in 1,2-benzisoxazole and its 3-methyl derivative the higher electron 
density is concentrated on the C-7 atom and in the case of charge-controlled reac-
tions the nitration would lead to 7-nitro isomers. Since 5-nitro derivatives are 
formed, the process of nitration seems to be of orbital-controlled character [121].
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The nitration of 2,1-benzisoxazoles (anthranils) and their thioanalogs is poorly 
understood. Unsubstituted anthranil and its 3-methyl and 3-chloro derivatives  
are nitrated, generally, on the C-5 atom (in the first two cases, along with the main 
product small amounts of 7-nitro isomer were obtained) [127, 128]. When  
heated, 6-chloro-2,1-benzoxazole (6-chloranthranil) forms only 7-nitro derivative  
[129]. The nature of substituent significantly influences the site of the nitro group 
introduction. For example, on heating 5-chloroanthranil forms 5-chloro-4-nitroan-
thranil, but its 3-phenyl derivative is nitrated into the position 7 (along with the nitro 
group entering into the phenyl ring) [130].

It was impossible to introduce the second nitro group into 6-nitroanthranil 
because of the heterocycle ring opening, as shown in Scheme  2.12; however, 
3-carbomethoxy-6-nitro-2,1-benzisoxazole is more easily nitrated to 4,6-dinitro 
derivative [130].

In benzoxazoles and their 2-substituted derivatives the nitro group is presumably 
introduced into the position 6 [131–135]. In the nitration of 2-methylbenzoxazole  
a mixture of 80% of 6-nitro- and 20% of 5-nitro isomer was isolated. 2-Phenylbenz- 
oxazole is first nitrated to the position 6 [136, 137]. The nitration of benzoxazolones-2 
and benzoxazolthiones-2 proceeds in an analogous way [138–141].

The reaction of cooled nitric acid with benzoxazole results in the formation of a 
mixture of 2-hydroxy-4-nitro- and 2-hydroxy-5-nitroformylanilines. On heating the 
same reaction gives a mixture of 5- and 6-nitrobenzoxazoles – the latter being  
prevailing [131]. Here, a question arises whether the formation of nitrohydroxy-
formylaniline results from the hydrolysis of the nitrobenzoxazole formed or it is due 
to the nitration of hydroxyformylaniline (the product of benzoxazole hydrolysis). 
The authors have shown the nitration precedes to the hydrolysis [131]. If the posi-
tion 6 in benzoxazole is occupied, the nitration goes into the position 5 [142]. In the 
same work an example of nitrolysis (substituting nitration, ipso-nitration) of 
2-methyl-5,7-dihalogeno-6-hydroxybenzoxazoles is given (Scheme 2.13).

Substituted benzoxazoles are also nitrated with nitric–sulfuric mixture into the 
6 position, if it is vacant [143, 144]. In earlier publications it has been stated that 
benzofurazans (2,1,3-benzoxadiazoles) are nitrated exclusively to the 4(7) position 

KNO3 / H2SO4

KNO3 / H2SO4

N
O

O2N

R

NO2

O2N N N

R

NO2

NO2

OR = COOH

N
O

O2N

COOCH3

N
O

O2N

COOCH3
NO2

Scheme 2.12   



89

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

Nitration of Benzazoles

BookID 161900_ChapID 2_Proof# 1 - 19/08/2009

[145–147]. If the 4 and 7 positions are occupied, as in 4,7-dichloro-2,1,3-benzox-
adiazoles, for example, the nitration is impossible. At the same time, 4,6-dichloro-
7-nitrobenzofurazan was obtained in good yield from 4,6-dichlorobenzofurazan 
[148]. Later it has been shown that in the presence of strong electron-donating 
substituents (like OCH

3
) and along with nitration to the position 7 the addition of 

the nitro group to the C-5 atom takes place (Scheme 2.14) [149].

As expected, strong electron-deficient substituents in the position 5 orient the 
incoming nitro group exclusively to the position 7 [150, 151]. 7-Nitrobenzofurazans 
possess fluorescent properties and may be useful as biochemical fluorescent probes 
[152]. Some examples of obtaining dinitrobenzofurazans by nitration are described 
in references [153, 154].

The benzofuroxan phenylene ring is subjected to electrophilic substitution, in 
particular, nitration reaction. If the nitro group is introduced into the position neigh-
boring to the heterocycle, the nitro compound formed undergoes the so-called 
Boulton–Katritzky rearrangement [155–161].

The nitration of 5-methylbenzofuroxan results in a 4-nitro derivative, which on 
heating is transformed to a more stable 7-methyl isomer according to the Boulton–
Katritzky rearrangement. As shown in Scheme  2.15, the latter compound is 
obtained by direct nitration of 4-methylbenzofuroxan [159].

Similarly, 5-chloro-4,6-dinitrobenzofuroxan prepared by the nitration of 5- 
chlorobenzofuroxan by HNO

3
/H

2
SO

4
, 0®21°C [162] undergoes the Boulton–Katritzky 

rearrangement (28°C, 51 h, CHCl
3
) to give 7-chloro-4,6-dinitrobenzofuroxan.

It has been pointed out [155] that in the presence of fluorine atom in the position 
5 in 4-nitrobenzofuroxan no Boulton–Katritzky rearrangement occurs. Later it has 
been established [161] that fluoro-containing benzofuroxans are fairly easily 
nitrated; however, not all nitration products are involved in the Boulton–Katritzky 
rearrangement. 5,6-Difluorobenzofuroxan and 5(6)-amino substituted 6(5)-fluo-
robenzofuroxans are nitrated with HNO

3
 (d 1.54) and H

2
SO

4
 acids on cooling to 

form 4-nitro-5-hydroxy-6-fluorobenzofuroxan (Scheme 2.16) [161].
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Under nitration conditions the substituted fluorine (or the amine group) in the 
position 5 is easily hydrolyzed to hydroxy group. 4-Nitro-5-hydroxy-6-fluorobenz- 
ofuroxan, on dissolving in a polar solvent (DMSO), partly transforms to 
4-hydroxy-5-fluoro-7-nitrobenzofuroxan as a result of the Boulton–Katritzky 
rearrangement (Scheme 2.16) [161]. Under nitration of 5(6)-alkoxy-6(5)-fluoro- 
benzofuroxans the corresponding 4-nitrobenzofuroxans were obtained. In this 
reaction the C-4 atom in the ortho-position to the electron-donating substituent 
and remote from the N-oxide group is also the center of electrophilic attack. In 
this case, however, no products of the Boulton–Katritzky rearrangement are 
formed.

4,6-Dichlorobenzofuroxan is nitrated by HNO
3
 and oleum 30% to form 

4,6-dichloro-5,7-dinitrobenzofuroxan, one of the most perspective precursors of 
explosive compounds [162].
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Benzisothiazoles, Benzothiazoles, and Benzothiadiazoles

Like 1,2-benzoselenazole [163], 1,2-benzothiazole [164–166] on heating forms a 
mixture of 5-nitro- and 7-nitro isomers (Scheme 2.17).

The introduction of substituents into the position 3 does not change the reaction 
course [165, 167–169]. 4-Amino-7-nitrobenzisothiazole in the sulfuric–nitric 
mixture forms 5,7-dinitro derivative in low yield [170]. 4-Chloro-7-nitro-1,2-
benzisothiazole was obtained as a result of the nitration of 4-chloro-1,2- 
benzisothiazole [171, 172]. 5-Hydroxy-1,2-benzothiazole is nitrated to the position 
4, and in case of 5-hydroxy-4,6-dibromo-1,2-benzisothiazole a substitutive nitra-
tion to form 5-hydroxy-6-bromo-4-nitro isomer occurs [173].

The main product of the nitration of 2,1-benzisothiazole (thioanthranil) is 
5-nitro-2,1-benzisothiazole (57%); however, alongside significant amounts of other 
isomers such as 7-nitro- (26%) and 4-nitro-2,1-benzisothiazole (17%) are formed 
[174]. The nitration of several other substituted thioanthranils has also been carried 
out [128, 174–176].

6-Nitrobenzothiazole is the main product of the nitration of benzothiazoles 
[177–183]. In several works it has been noted that along with this product some 
other hardly separable isomers are formed. Ward and Poshe [177] have developed 
a method to separate mixtures of isomers and showed that on nitration four isomers 
can be formed (Table 2.1).

2-Substituted derivatives of benzothiazole are also nitrated principally into the 
position 6 [134, 184–192]. Nevertheless, nitration of 2-aryl-4,7-dimethoxy benzo-
thiazoles results in a mixture of 5- and 6-nitrobenzothiazoles [193]. In 2-phenyl 
substituted benzothiazoles the nitro group first enters into the benzothiazole cycle 
[178, 187, 194]. Like 2-aminothiazoles, 2-aminobenzothiazoles first form with 
the sulfuric–nitric mixture nitramines, which later are rearranged to 2-amino-6-
nitrobenzothiazoles. If the benzothiazole position 6 is already occupied by a rather 
strong electron-withdrawing substituent (NO

2
, RSO

2
), the nitro group enters into 

X = S, Se

+
X

N

NO2

HNO3

X
N

O2N

X
N

Scheme 2.17   

Table 1  Isomers ratio in the nitration of benzothiazole with sulfuric–nitric mixture

t (°C) Total yield (%)

Yield of isomeric nitrobenzothiazoles (%)

4-NO2 5-NO2 6-NO2 7-NO2

10 ± 2 83.0 22.6 6.4 49.6 21.3
35 ± 2 91.6 21.4 8.5 50.1 20.0
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the position 4. Strong electron-donating substituents at the C-6 atom (NH
2
, OCH

3
) 

orient the incoming nitro group mainly to the position 7 [194–197]. Nitration of 
other benzothiazole derivatives has also been carried out [134, 198–202].

As a result of the nitration of benzothiazolones-2 [136, 203, 204] and benzo-
thiazolylthiones-2 [205, 206] with the sulfuric–nitric mixture 6-nitro isomers are 
obtained.

The nitration of benzothiazoles with ethyl nitrate [207] is analogous to that with 
the sulfuric–nitric mixture.

Unlike 1,2,3-benzoxadiazoles the existence of which is open to question [208–210], 
1,2,3-benzothiadiazoles are well known and their nitration has been described in the 
literature. On nitration of 1,2,3-benzothiadiazoles with sulfuric–nitric mixture 
Overberger et al. [211] have obtained 4-nitro-1,2,3-benzothiadiazole.

Freis and Reitz, using potassium nitrate in sulfuric acid on heating, have 
obtained two mononitrated products and assigned to them the structures of 4- and 
7-nitro isomers [212]. Later, this structure has been proved by a secondary synthesis 
[213], and the other isomer turned out to be 5-nitro-1,2,3-benzothiadiazole [214, 
215]. On a more careful study all three isomers were found among the reaction 
products, as shown in Scheme 2.18 [216].

Substituted 1,2,3-benzothiadiazoles are nitrated to the position 5 or 7 if they are 
vacant [197, 217–219]. The data [218] on the synthesis of 4-nitro-substituted 
1,2,3-benzothiadiazoles need to be checked.

Like benzofurazan, 2,1,3-benzothiadiazole is also nitrated to the position 4(7) 
[220, 221]. If there are electron-donating substituents (CH

3
, OH, OCH

3
) at the 

C-5 atom, 4-nitro derivatives are readily obtained in high yield [222–229]. The 
electron-withdrawing substituents (nitro group) at the same carbon atom direct 
the incoming nitro group to the 7(4) position [230]. So, on heating 5-nitro- and 
7-nitro-2,1,3-benzothiadiazoles turn into 5,7-dinitro-2,1,3-benzothiadiazole 
(Scheme 2.19).
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Electron-donating substituents at the C-4 atom direct the incoming nitro group 
to the position 5 or 7; however, the amount of 7-nitro isomer is higher than that of 
4-nitro isomer [222–234]. The direction of the nitration of di- and tri-substituted 
2,1,3-benzothiadiazoles is determined by the position and electron nature of sub-
stituents [223, 227, 229, 230, 232, 235–239]. Ipso-nitration of 4,7-dibromo-2,1,3-
benzothiadiazole to form 4-bromo-7-nitroderivative has been reported [235].

Benzoselenazoles and Benzoselenodiazoles

Benzoselenazoles and their derivatives are also nitrated at the position 6 [240, 241]. 
The nitration can be accompanied by the oxidation of the azole ring, and 6-nitroben-
zoselenazolone-2 can be isolated as a by-product.

The nitration of 2,1,3-benzoselenodiazoles proceeds in the same way as with 
their thio analogs. For example, 2,1,3-benzoselenodiazole, in the sulfuric–nitric 
mixture, is transformed into a 4-nitro derivative with a yield of 90–98% (Scheme 2.20) 
[223, 230, 242–245].

From the preparative point of view, especially when working with small amounts 
of the substrate, it is reasonable to use nitration with a mixture of sodium nitrate and 
sulfuric acid [245, 246]. This method allows simultaneous introduction of two nitro 
groups into 4 and 7 positions of the annelated benzene ring. Under nitration of 
5,6-disubstituted 2,1,3-benzothia- and 2,1,3-benzoselenodiazoles a regular enhance-
ment of deactivating effect of the substituent on the reactivity of 2,1,3-benzothia- and 
2,1,3-benzoselenodiazole is observed (in the following order: CH

3
  <Cl  <NO

2
). 

Under these conditions neither 5,6-dinitro-2,1,3-benzoselenodiazole or its thio analog 
undergo nitration [246].

The direction of substitution upon nitration of 2,1,3-benzoselenodiazole deriva-
tives [230, 247–249] is the same as that for their thio analogs.

Benzotriazoles

On nitration of unsubstituted benzotriazole the nitro group enters into the position 
4(7) [43, 250–254]. 6(5)-Methyl-5,7(4,6)-dinitrobenzotriazole has been synthe-
sized by nitration of 6(5)-methyl-7(4)-nitrobenzotriazole under thermal conditions 
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and by novel mode – microwave irradiation [255]. Advantages of the microwave 
irradiation method are shown.

Earlier the nitration of 1-methylbenzotriazole was considered to lead to 7-nitro 
isomer [250, 252], but later the formation of 1-methyl-4-nitrobenzotriazole was 
proved [256]. Other 1-substituted benzotriazoles are also nitrated to the position 4 
[257–261]. Arguments of Feldman and Usovskii in favor of their synthesis of 
5-alkoxy-6-nitrobenzotriazoles turned out to be incorrect [262]; actually, the 
authors obtained 4-nitro isomers [263]. On boiling in the mixture of sulfuric and 
nitric acids 1-picrylbenzotriazole is nitrated into 5,7-dinitro-1-picrylbenzotriazole 
[264]. It is interesting to note that 6-nitro-1-picrylbenzotriazole in nitric acid gives 
5,6-dinitro derivative, whereas in sulfuric–nitric mixture 5,6,7-trinitro derivative is 
formed. In fact, we can prove the formation of the latter only indirectly, since one 
of the nitro groups is easily substituted by the methoxy group on dissolving the 
reaction product in methanol [264]. At the same time 1-(2,4-dinitrophenyl)-5- 
nitrobenzotriazole was obtained from 1-(2,4-dinitrophenyl)benzotriazole with sulfuric–
nitric mixture [265]. The main product of the nitration of 5-R-benzotriazole is 
5-R-4-nitrobenzotriazole [250, 255, 266, 267].

Previously it was believed that only one 4-nitro isomer was obtained on nitration 
of 2-methylbenzotriazole [268]; however, later it was shown that the authors dealt 
with a mixture of 4- and 5-nitro isomers (Scheme 2.21) [269].

Under nitration, benzotriazolyl-2 acetic acid gave only one 4-nitro isomer [270]. 
The same results were achieved with the nitration of 2-(4-nitrophenyl)benzotriaz-
ole [271]. Structure of the nitration products of some benzotriazoles has not been 
determined till the present time [272].

The use of acetyl nitrate in place of sulfuric–nitric mixture as a nitrating agent 
leads to 1-nitro derivatives [28]. These compounds have also been obtained by the 
nitration of 1-chlorobenzotriazole with a silver nitrate complex with trimethylphos-
phite [273].

1-Hydroxybenzotriazole is nitrated with nitric acid in glacial acetic acid to give 
6-nitro derivative, whereas the use of sulfuric–nitric mixture does not lead to posi-
tive results [274]. 1- and 2-Aminobenzotriazoles react with nitronium boron fluo-
ride to form nitroimides isolated as alkali metal salts, involving no nitro group in 
the phenylene fragment [109].

Quantum chemical studies (MP2/cc-pVDZ treatment) of the reactivity of benza-
zoles indicate the preferred nitration of benzotriazoles and their protonated cations 
into the 4- and/or 7-position that is in good agreement with the experiment [43].
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So-called Kyodai nitration – a novel methodology of nitration with nitrogen 
dioxide and ozone – has been applied to several benzimidazoles with formation of 
1-nitrobenzimidazoles and following conversion to 1-nitrobenzotriazoles [275].

The nitration of benzotriazole N-oxide with dilute nitric acid gives the 7-nitro 
derivatives, whereas nitration with a mixture of nitric and acetic acids leads to 
5-nitro- and 7-nitro isomers in a ratio of 1:9 [276].

Synthesis of Nitrobenzazoles via Heterocyclization

Nitroindazoles

The reactions of heterocyclization also have a wide preparative usage in the syn-
thesis of nitrobenzazoles. Here, the nitro group first enters into one of the fragments 
from which the heterocyclic system is being built. In this case the presence of the 
nitro group often influences much of the course of the process. The diazotization of 
ortho-toluidine results in the formation of indazole in a yield not more than 5%. At 
the same time, 4-nitro-2-aminotoluene under the same conditions transforms to 
6-nitroindazole in high yield, as shown in Scheme 2.22 [277–279].

4-Nitro- [280], 5-nitro- [277, 278, 281], and 7-nitroindazoles [278, 280, 282–
285] are obtained in an analogous manner. The diazonium salt, obtained from 
2-amino-6-nitro-meta-xylole, gives a mixture of 7-methyl-4-nitro- and 7-methyl-6-
nitroindazole. It should be noted that the reaction of diazotization of ortho-toluid-
ines, having other substituents apart from the nitro group, is often used to obtain 
different nitroindazoles [11, 18–22, 24, 25, 279, 280, 286, 287]. An original method 
of the synthesis of nitroindazoles involves the reaction of ortho-tolyldiazonium 
tetrafluoroborate with potassium acetate in the presence of crown ethers (18-
crown-6) (Scheme 2.23) [288–290]. The reaction of cyclization has a high rate at 
room temperature (yield 60–90%).
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The diazotization of 2-alkylaminoanilines containing the nitro group in the phenyl 
ring leads to 3-substituted indazoles (Scheme 2.24) [11, 17, 282, 291, 292].

Diazoamino compounds are formed, and sometimes they can be obtained as 
intermediates [282]. In some cases nitroindazoles as by-products are determined on 
diazonation of nonnitrated ortho-toluidines with isoalkylnitrite [293]. 2-Phenylazo-
4-nitrotoluene gives 2-phenyl-6-nitroindazole on boiling with para-nitrosodime
thylaminobenzene (Scheme 2.25) [294].

In this case the activation of the methyl group by the nitro group is a necessary 
reaction condition. Moreover, the nitro group has to be in the ortho- or para-position 
to the methyl group [294, 295]. If it is in the meta-position, no indazole is formed. 
This is in good agreement with larger yields of 6-nitroindazole in comparison with 
the ones of 5-nitroindazole (Scheme 2.26) [296].

It means that more drastic reaction conditions are necessary for the cyclization 
with a methyl group in the meta-position.
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Another widespread synthetic route to nitroindazoles is the reaction of intermo-
lecular cyclization of ortho-substituted arylhydrazones, as shown in Scheme 2.27 
[10, 297–304].

Besides, in this case the aromatic ring nitro group influences the reaction path-
way much. 2-Bromobenzophenone, when heated up to 200°C with hydrazinium 
hydrate, gives 3-phenylindazole in a very small yield, whereas bromo-5-nitroben-
zophenone reacts at 140°C to form 5-nitro-3-phenylindazole in a yield of 65% 
[298]. In analogous conditions the corresponding indazole is obtained from 
2-bromo-3,5-dinitrobenzophenone in high yield [298].

1-Aryl-4,6-dinitroindazoles are obtained by treatment with alkaline metal car-
bonates of the corresponding hydrazones [302–304]. The latter are formed from 
picryl acetal aldehydes with aryldiazonium salts. Scheme 2.28 demonstrates that 

X = Cl, Br, OCH3, NO2; R, R' = H, Alk, Ar    

O2NOH−O2N
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the cyclization of hydrazones occurs due to intramolecular nucleophilic substitution 
of the nitro group.

Stable semiacetals can be formed in parallel with dinitroformylindazoles in the 
absence of electron-donating groups such as 4-MeO-C

6
H

4
, for example, in the N-aryl 

substituent. Dinitroformylindazoles readily transform to the corresponding semiac-
etals when boiled in ethanol for 30 min. At the same time, on heating of crystalline 
semiacetal (Ar = Ph) in the air (80°C, 8 h) an ethanol molecule is abstracted and the 
corresponding dinitroformyl indazole is regenerated [302, 303].

The pathway of the reaction of 2-chloro-5-nitrobenzophenone with excess N,N-
dimethylhydrazine is rather interesting (Scheme 2.29). In this case 1,3-dimethyl-5-
nitroindazole is formed fast and in high yield [305].

When boiled with hydrazine hydrate, the esters of nitrated ortho-halogenoben-
zene acids transform to corresponding nitroindazolones-3 [306, 307]. 2-Halogeno- 
or 2-methoxy-X-nitrobenzonitriles are also involved in an analogous reaction 
(Scheme 2.30) [308–314].

It should be noted that in earlier publications the reaction products were wrongly 
assigned a structure of 2-cyano-4-nitrophenylhydrazine [308–310] (see [312]).

To simplify the synthetic technology of 3-amino-5-nitroindazole and to improve 
the target product quality it is reasonable to use 2-cyano-4-nitroaniline. The latter 
is subjected to diazotization, and the azo compound thus formed is reduced with 
simultaneous closure of the indazole cycle with sulfur dioxide in 5–15% sulfuric 
acid [315].
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There are some ways of preparing nitroindazoles by the reactions of heterocycl-
ization and recyclization. For example, if some Schiff’s bases containing a nitro 
group in the ortho-position to the methylene fragment are boiled in an ethanolic 
sodium carbonate solution, nitro derivatives of indazole are formed (Scheme 2.31) 
[285, 316–318].

Chemical utilization of explosive 2,4,6-trinitrotoluene (TNT) can lead to 
4,6-dinitroindazoles. An original method of preparing 2-substituted 4,6-dinitroin-
dazole involves the formation of C-(2,4,6-trinitrophenyl)-N-R-azomethines from 
TNT or the product of its transformation, 2,4,6-trinitrobenzaldehyde with further 
regiospecific substitution of the nitro group under the action of NaN

3
 [319]. 

Thermolysis of the azides in ethylene glycol at 150–180°C gives the corresponding 
4,6-dinitroindazole derivatives in high yields (Scheme 2.32) [319].

An interesting event of intermolecular cyclization has been found on nitrating 
4-nitrobenzyldimethylaniline [320]. On standing, the 2,4-dinitro-N,N-dimethylben-
zylamine formed spontaneously transforms to 2-methyl-6-nitroindazole, which is 
also obtained in the reaction of dimethylamine with 2,4-dinitrobenzylchloride 
(Scheme 2.33).

Previously, 2-methyl-6-nitroindazole N-oxide was suggested to be the reaction 
intermediate. However, it was not possible to determine its formation in the 
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experimental conditions by means of IR and NMR spectroscopy [321]. That is why 
a more probable reaction pathway seems to be as follows. The reaction is catalyzed 
with bases and slowed down with acids that prove the suggested Scheme [321].

For the synthesis of antioxidants containing fragments of sterically hindered 
phenol and indazole a method involving thermal decomposition of 2-azidobenzylide-
namines to 1,2-dichloro- or 1,2,4-trichlorobenzene and resulting in 2-substituted 
indazoles was used [321]. So, as seen from Scheme 2.34, 2-chloro-5-nitrobenzalde-
hyde gives the corresponding azidoaldehyde and then 2-(3,5-di-tert-butyl-4-
hydroxyphenyl)-5-nitroindazole.

Intermediate azomethine could not be isolated. Heating of N-(2-azido-5-
nitrobenzyliden)aniline in dimethylformamide affords to 2-phenyl-5-nitroindazole, 
the structure of which has been confirmed by X-ray diffraction [322].

The pyrolysis of 4-arylhydrazono-3-methylisoxazolone-5 forms isocyanoam-
ines, which undergo rearrangement to cyanoamides and corresponding indazoles 
(Scheme 2.35). Among other compounds 5-nitroindazole was obtained in an analo-
gous way [323].

2-(2,4-Dinitrophenyl)-3-oxazolinones-5 behave in a similar way on heating: the 
elimination of carbon dioxide leads to (2,4-dinitrophenyl)-nitrylimide from which 
(2-nitrozo-4-nitrophenyl)-N-acylimine is formed after intermolecular oxygen 
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migration. The N-acylimine undergoes cyclization to unstable 2-acetyl-6-nitroinda-
zole N-oxide with a fast migration of the acyl group to 3-substituted 1-acyloxy-6-
nitroindazole (Scheme 2.36) [324].

a-Methyl-3-nitro-4-nitrophenylazobenzylacetate on heating with sodium butoxide 
transforms to 3-methyl-5-nitro-1-(4-nitrophenyl)indazole (Scheme  2.37), but the 
yield of the final product is 15% in this case [300].

6-Nitroanthranils react with primary amines or with phenylhydrazine to form 
2-substituted 6-nitroindazoles [325, 326]. 6,6¢-Dinitro-2,2¢-bis-indazolyls were 
obtained in the reaction with hydrazine (Scheme 2.38) [325, 326].
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Nitroindazolones are prepared on heating from the corresponding 2-bromo-3-
nitrobenzoates with hydrazine hydrate [327].

Stable nitroindazolyl-3 oxides (betaines) were obtained in 80–90% yield from 
the corresponding 2-halogenobenzohydrazides (Scheme  2.39); moreover, from 
chlorobenzohydrazides betaines are formed in more rigorous conditions [328].

The treatment of betaines with concentrated sulfuric acid leads to the corresponding 
derivatives of 5-nitroindazole (products of alkylhalogenides elimination). Heating 
of betaines results in other nitroindazoles: a product of Steven’s rearrangement or a 
mixture of N,O- and N,N-alkyl shift products, as shown in Scheme 2.40 [328].

Nitrobenzimidazoles

Benzimidazoles containing nitro group in the arylene fragment are obtained in the 
reaction of carboxylic acids or their derivatives with nitro-substituted 1,2-diamino
benzenes. This method is especially often used for the synthesis of 4-nitro- and 
7-nitrobenzimidazoles, since the latter cannot be obtained by direct nitration of 
benzimidazoles. In most cases the reaction is carried out in the presence of HCl 
(the Phillips reaction) [46, 47, 52, 53, 75, 79, 100, 329–340]. Nitrobenzimidazoles 
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can also be obtained by simple boiling of 1,2-phenylendiamine nitro derivatives 
with excess lower aliphatic acids (formic or trifluoroacetic acid, for example)  
[61, 341–344]. Sometimes nitrobenzimidazoles can be obtained by heating the 
nitrated ortho-phenylendiamines, but in this case more rigorous conditions should 
be applied (the yields are significantly lower) [50, 345–347]. The cyclization is 
even a more difficult process when aromatic or heterocyclic acids are used [345]. 
In these conditions polyphosphoric acid is used as a condensing agent [329–340, 348]. 
Derivatives of acids may be employed in the synthesis of nitrobenzimidazoles in 
place of the acids themselves. More often anhydrides or chloroanhydrides are used 
for this purpose [44, 45, 50, 59, 256, 341–344, 349–352]. Usually this reaction is 
carried out in two stages: acylation of the correspondent 1,2-diaminonitrobenzenes 
with anhydrides or chloroanhydrides of carboxylic acids followed by cyclization of 
the forming ortho-aminoacylanilines [45, 50, 256, 349–353]. 1,2-Diaminobenzene 
nitro derivatives react with iminoesters [59, 354–362], nitriles [360, 363], hydraz-
ides [364], and ortho-esters [365, 366] to form nitrobenzimidazoles.

A reaction of 4-nitro-1,2-phenylendiamine with benzotrichloride in the presence 
of sodium methylate [367] has been described. In this case 2-phenyl-5(6)-nitroben-
zimidazole is obtained without preliminary extraction of the ortho-ester of benzoic 
acid. Sometimes acylated polynitroanilines, with one of the groups in the ortho-
position to the amino group, are used as the initial products. On partial reduction of 
such compounds the cyclization to benzimidazoles takes place [85, 368]. For 
example, the reduction of 2,4-dinitroacetanilyde with ammonium sulfide has 
afforded 2-methyl-5(6)-nitrobenzimidazole (Scheme 2.41) [85].

5(6)-Nitro-2-cyanomethylbenzimidazole, an intermediate in the synthesis of 
cyanine dyes, was prepared from 1,2-diamine-4-nitrobenzene and methyl cyanoac-
etate in nitrobenzene (Scheme 2.42) [369].

The introduction of the nitro group in azoles leads to a long-wave shift of the 
visible absorption maximum and an enhancement of the sensitizing properties of 
cyanine dyes. A long-wave shift of the sensitivity of photographic materials is 
observed as well [369].
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7-Nitrobenzimidazoles can be obtained in the reaction of primary amines with 
2-R-3-nitroacetanylides (Scheme 2.43). On nucleophilic substitution the forming 
2-NHR-3-nitroacetanylides transform to benzimidazoles without isolation [370].

An interesting reaction has been described by Simonov and his colleagues [371]. 
Studying the reaction of some aromatic ortho-dinitro- and trinitrocompounds with 
benzylamine they have discovered that under special conditions the reaction of 
substitution of the nitro group with the benzylamine group is accompanied by 
reduction of the second nitro group and cyclization into 2-phenylbenzimidazole 
derivatives. In this case benzyl alcohol forming from benzylamine serves as a 
reducer. By the way it was obtained 4,5-dimethoxy-7-nitro-2-phenylbenzimidazole 
in 89% yield from 3,4,5-trinitroveratrole [371].

The reaction of 1,2-diaminonitrobenzenes with aldehydes is a widely accepted 
synthetic route to nitrobenzimidazoles [57, 62, 63, 66, 350, 372–383]. This reaction 
passes sequentially through a stage of the formation of azomethines (Schiff’s base) 
and benzimidazolines. On oxidation the latter forms the corresponding benzimidazole 
derivatives (Scheme 2.44).

Copper (II) salts are often used here as an oxidizer [62, 63, 66, 350, 374–379, 
381–383], and atmospheric oxygen can also be used for this purpose [383]. For the 
preparation of nitrobenzimidazole derivatives the corresponding Shiff’s bases are 
often boiled [57, 62, 63, 66, 372, 373, 380].

An easy and convenient method has been employed for the synthesis of 
1-methyl-4-nitrobenzimidazole (Scheme 2.45) [384].
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A one-stage reaction of 3-nitro-1,2-phenylendiamine with formaldehyde in an 
ethanol solution of hydrochloric acid leads to the formation of nitrobenzimidazole 
in high yield (77%) [384].

Nitroanilines react with organic cyanides in the presence of dry aluminum chloride. 
Under the influence of sodium hypochlorite in the presence of a base, the resultant 
amidines undergo cyclization to the corresponding benzimidazoles (Scheme 2.46) 
[385–388].

2,4-Dinitroalkylanilines react with acetic anhydride in the presence of zinc 
chloride to form 2-acetoxymethyl-1-alkyl-5-nitrobenzimidazoles (Scheme 2.47) 
[389].

On thermal decomposition 3-substituted-4-nitrophenyl-1,2,4-oxadiazolones-5 
form 2-substituted-4-nitrobenzimidazoles (Scheme 2.48) [390–393].
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The reaction of N-butyl-2,4,6-trinitroaniline with NaOH in 60% 1,4-dioxane/
H

2
O affords 5,7-dinitro-2-propylbenzimidazole 3-oxide [394].
1,1-Dichloro-2-nitroethylene and trichloronitroethylene react with 4-nitro-1,2-

phenyldiamine to afford nitrobenzimidazoles with the nitro group in both the pheny
lene fragment and side chain [395]. Evidently, the reaction mechanism consists in 
nucleophilic substitution of halogen atoms at the multiple bonds with subsequent 
prototropic rearrangement to the benzimidazole system, as shown in Scheme 2.49.

2-Methyl-5-nitrobenzimidazole is formed on heating 4-nitro-1,2-phenylendi-
amine and its derivatives with the ester of acetoacetic acid (Scheme 2.50) [396, 397]. 
Depending on the experimental conditions, isomeric 8-nitro-4-methyl-2,5-dihydro-
1H-1,5-benzodiazepinone-2 and 8-nitro-4-methyl-2,3-dihydro-1H-1,5-benzodiaze-
pinone-2 easily transform into each other, and 5-nitro-1-isopropenylbenzimidazolone 
can be obtained (in this case).

In a similar manner the bis(5-nitrobenzimidazolyl-2) derivatives were obtained 
(Scheme 2.51) [398].
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In the synthesis of aromatic derivatives polyphosphoric acid is used [398]. The 
synthesis of 1-(5-nitrobenzimidazolyl)-3-benzimidazolyl-2-oxapropane by the 
reaction of 4-(2-benzimidazolyl)-2-oxabutanoic acid hydrochloride and 4-nitro-
ortho-phenylendiamine has been reported [399].

Like unsubstituted ortho-phenylendiamine, its nitro derivatives react with bro-
mocyane to form the corresponding 2-aminobenzimidazoles (Scheme  2.52) 
[400–403].

Diarylcarbodiimines or derivatives of S-methylurea react with nitrated 
1,2-diaminobenzenes in a similar way to lead to 2-arylaminobenzimidazoles 
(Scheme 2.53) [404, 405].

The same products can be obtained with carboimidoyldichlorides as a reagent 
(Scheme 2.54) [406].

A convenient synthesis of 2-amino-5(6)-nitrobenzimidazole involves reductive 
cyclization of 2,4-dinitrophenylcyanamide (Scheme 2.55) [407, 408].
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2-(5-Nitrobenzimidazolyl-2-amino)-benzothiazoles are obtained from ortho-
phenylenediamines and S,S-dimethyl-N-(2-bensothyazolyl)-carbonimido-dithioates 
in dimethylformamide (Scheme 2.56) [409].

The most widely spread synthetic route to benzimidazolone-2 nitroderivatives is 
provided by the reaction of ortho-phenylenediamine with phosgene or urea 
(Scheme 2.57) [105, 405, 407, 408, 410–412].

1-Methyl-5- or 6-nitroderivatives were obtained as a result of intermolecular 
cyclization of N,N-dimethyl-2-nitro-5- or 5-nitroaniline with zinc chloride in acetic 
anhydride (Scheme 2.58) [411].

Benzimidazolthione-2 nitroderivatives are obtained in a similar way under the 
influence of CS

2
 (Scheme 2.59) [100, 407, 408, 413].
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A simple method for the preparation of 5-nitrobenzimidazolone-2, based on 
chemical [407, 408] or electrochemical reduction of 2,4-dinitrophenylurea [414], 
has been proposed. The electrochemical reaction occurs in a cell with an interelectrode 
space in aqueous solution of mineral acid at 85–95°C in the range of potentials 
from 0 to −200 mV relative to the silver electrode.

Nitrobenzisoxazoles, Nitrobenzoxazoles, and Nitrobenzoxadiazoles

The main method of producing 1,2-benzisoxazoles with the nitro group in the 
arylene fragment of the molecule is intermolecular condensation in an alkaline 
medium of the corresponding oxymes containing an easily eliminated group in the 
ortho-position (Scheme 2.60) [119, 298, 415–424].

The same is true for halogens (bromine in most cases), hydroxy-, aryloxy-, or 
nitro group. The reaction of 4-hydroxycumarines with hydroxylamine proceeds in 
the same way (Scheme 2.61) [167, 419].

An attempt to substitute hydroxynitrocumarines by nitrocumarines failed: the 
yield of the final products fell to 5–17% [425].
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In 1912, Borsche found out that the esters and amides of 6-nitro-1,2-benzisox-
azole-3-carboxylic acid could be obtained in high yield in the reaction of isoamyl-
nitrite with 2,4-dinitrophenylacetic acid derivatives in the presence of sodium 
methoxide [426].

This reaction was successfully used for the preparation of arylamides of 6-nitro-
1,2-benzisoxazole-3-carboxylic acid (Scheme 2.62 and Table 2.2) [427, 428].

6-Nitro-1,2-benzisoxazolylketones can be obtained in an analogous manner [426]. 
5-Nitrosalicilic aldehyde in an acid medium reacts with HN

3
 to form a mixture of 

5-nitro-1,2-benzisoxazole and 5-nitrobenzoxazole [429] – the latter being formed 
from 5-nitrosalicylic acid nitryl, a product of 5-nitro-1,2-benzisoxazole hydrolysis.

On heating with concentrated sulfuric acid 2,4-dinitrophenylacetone turns into 
6-nitro-2,1-benzisoxazoles (Scheme 2.63) [430].

Table 2  Characteristics of 3-substituted 6-nitro-1,2-benzisoxazoles

Ar
Yield 
(%)

mp (°C)  
(recryst.) Ar

Yield 
(%)

mp (°C)  
(recryst.)

60 214–216 
(benzene) Cl

50 236 (alcohol/
acetic acid)

CH3

58 205–206 (CCl
4
)

H3CO
50 220–222 (alcohol/

acetic acid)

Cl

40 211–214 (CCl
4
)

H3C

CH3

65 228–230 (alcohol/
acetic acid)

OCH3

50 202 (CCl
4
)

Cl

Cl

57 232 (alcohol/acetic 
acid)

C5H11ONO / CH3ONai

NO2

CH2CONHAr

O2N O
N

O2N

5 3−
2

CONHAr

Scheme 2.62   
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2,4-Dinitrophenylacetic acid reacts in a similar way and involves partial decar-
boxylation to form a mixture of 6-nitroanthranil-3-carboxylic acid and 6-nitroan-
thranil [431–433]. The reaction mechanism is a nucleophilic attack of the methylene 
carbon by the nitro group oxygen atom, as shown in Scheme  2.64. The formed 
cyclic product undergoes dehydration or dehydration with simultaneous 
decarboxylation.

The methylene ester of 6-nitro-2,1-benzoxazole-3-carboxylic acid is obtained in a 
similar manner [434]. The reaction of oxidation of 1,3,5-trinitrobenzene s-complexes, 
containing the C–C bond in the side chain, follows an interesting pathway [434].

Under the influence of oxidizing systems [copper(I) bromide – CCl
4
] these sys-

tems are oxidized into the corresponding 1,3,5-trinitrobenzene derivatives, whereas 
in the presence of the same system and crown esters (e.g., 18-crown-6) 4,6-dinitroan-
thranils are formed (Scheme  2.65). So, the presence of the group in the geminal 
center of the s-complex is a necessary condition for conversion of this type [435].

3-Aryl-6-nitroanthranils are obtained on heating of 2,4-dinitrobenzaldehydes in sul-
furic acid or polyphosphoric acids with aromatic carbohydrates [436–440]. Reductive 
heterocyclization of 2,6-dinitrobenzaldehyde in the presence of 2-bromo-2-nitropropane 
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and indium (2:5) in an MeOH/H
2
O solution leads to 4-nitro-2,1-benzisoxazole in good 

yield [425]. 3,6-Dichloro-2,5-dinitro-p-xylol on heating in oleum transforms to 
4,7-dichloro-5-nitro-6-methyl-2,1-benzisoxazole [442, 443].

In the reaction with sodium acetate 2,2¢,4,4¢,6,6¢-hexanitrodiphenylmethane 
undergoes an intermolecular cyclization, giving in a good yield 3-picryl-4,6-dinitro
anthranil, a rather thermally stable explosive (Scheme 2.66) [444].

2,1-Benzisoxazoles are obtained from ortho-nitroacetylbenzenes in the reaction 
with 3-phenylphosphate. 2-Amino-4-nitropropiophenone was obtained in the presence 
of a nitro group in the benzene ring along with nitroanthranil [445]. In hydrochloric 
acid the cyclization is accompanied by chlorination of the phenylene fragment 
[446]. The nitriles of ortho-halogenonitrobenzoic acids react with hydroxylamine 
to form nitrated 3-amino-2,1-benzisoxazoles (Scheme 2.67) [447].

(6-Nitro-2,1-benzisoxazolyl-3)pyrilium perchlorates have been obtained from 
the corresponding oxaspiroindolines (Scheme 2.68) [448].
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A mild and novel reaction route to 2,1-benzisoxazoles from 2-nitrobenzalde-
hydes in the presence of allyl bromide and zinc dust has been established [449]. 
The reductive cyclization of 2,6-dinitrobenzaldehyde was strongly retarded prob-
ably because of the inhibitory effect of the second nitro group [441, 449]. The 
authors assume a radical mechanism of the reaction, as demonstrated in 
Scheme 2.69 [449].

This way would provide a useful synthetic technique along with reductive N,O-
diallylation of nitrobenzene.

6-tert-Butyl-5-methoxy-4-nitro-2,1-benzisoxazole along with other products have 
been isolated on photolysis of 4-tert-butyl-3-methoxy-2,6-dinitrotoluene [450].

Nitrobenzoxazoles possessing nonlinear optical properties [451], like their nonni-
trated analogs, are easily obtained in the reaction of the corresponding ortho-amino-
phenols with carboxylic acids [452–458], aldehydes [459, 460], or chloroanhydrides 
[134, 461–464] (Scheme 2.70).

Mono- or diacyl derivatives that undergo cyclization to benzoxazoles on heating 
or under the influence of dehydrating agents are formed as intermediates in this 
reaction [134, 452, 453, 459, 461–473]. Phosphorus oxychloride [453, 457], boric 
anhydride [455, 461, 462], or polyphosphoric acid [134, 471] are used as condens-
ing agents. In particular, 2-hydroxy-5-nitrobenzoxazole, used for the synthesis of 
antivirus medicines, has been obtained by the reaction of condensation of 4-nitro-
2-aminophenol with (NH

2
)

2
CO in pyridine [474].
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To prepare 2-trichloromethylbenzoxazole, nitrated ortho-aminophenoles are 
treated with iminoesters of trichloroacetic acid [52, 475, 476]. Some other 2-substi-
tuted nitrobenzoxazole derivatives were obtained in the same way [134, 360, 361].

For the formation of the benzoxazole cycle, compounds containing trichloro
methyl [477, 478] or trialkoxymethyl groups can be made use of (Scheme 2.71) 
[478–480].

Nitrated ortho-aminophenols react with aldehydes to form Schiff’s bases, which 
are easily oxidized into the corresponding benzoxazoles (Scheme 2.72) [481].

Lead acetate [134, 482–484], nickel peroxide [445, 485,  486], and some other 
substances [487–489] are used as oxidants in most cases.

Sometimes, the corresponding ortho-bromo- or ortho-nitroacylanilides are used 
in place of aminophenols for the synthesis of nitrobenzoxazoles (Scheme  2.73) 
[490, 491].

N-aryloxypyridinium salts or diazotized aryloxyamines on heating generate 
aryloxene ions, which turn into benzoxazoles in the presence of acetonitrile or 
benzonitrile, as shown in Scheme 2.74 [492, 493].

Suschitzky et  al. have proposed an original synthesis of benzoxazole nitro 
derivatives in a mixture of carboxylic and polyphosphoric acids by heating aromatic 
aldehydes containing the nitro group in the para-position [471].

7-tert-Butyl-2-methyl-5-nitrobenzoxazole has been synthesized by electrochemical 
oxidation of 4-nitro-2,6-di-tert-butylphenol in acetonitrile (Scheme 2.75) [494].

7-tert-Butyl-4-methyl-5-nitrobenzoxazole and 6-tert-butyl-5-methoxy-4-nitro-
2,1-benzisoxazole were found among the products of photolysis of 4-tert-butyl-3-
methoxy-2,6-dinitrotoluene [450].
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When heated, benzoxadiazines give benzoxazoles in good yield [495, 496]. The 
intermediate formation of ortho-quinonimine has been suggested on the basis of the 
proposed recyclization mechanism (Scheme 2.76).

Heating of 7-nitro-1,2,4-benzoxadiazine-3-carboxylic acid or basic hydrolysis of 
its ethyl ester results in 2-amino-6-nitrobenzoxazole [495, 496]. Earlier this com-
pound was wrongly ascribed the structure of 7-nitro-1,2,4-benzoxadiazine [497].

Nitrated 2-aminobenzoxazoles are obtained in good yield in the reaction of 
ortho-aminophenols with cyanogen bromide [498–500] or with S-methylisothiourea 
derivatives (Scheme 2.77) [501].
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5- or 6-Nitrobenzoxazoline-2-thiones react with morpholine and aromatic 
amines to form 2-aminobenzoxazoles [502]. When butylamines and some other 
amines are used the reaction stops at a stage of the formation of thiourea 2-oxyphenyl 
derivatives and for further cyclization to 2-aminobenzoxadiazoles the presence of 
silver salts is necessary (Scheme 2.78).

The nitrile of salicylic acid and its nitroderivatives reacts with HN
3
 to form 

2-aminobenzoxazoles, as illustrated in Scheme 2.79 [503, 504].

2-(3-Cyclopentyloxy-4-methoxybenzyl)-7-nitrobenzoxazole used in the therapy 
of asthma has been obtained by condensation of N-(2-hydroxy-3-nitrophenyl)-3-
cyclopentyloxy-4-methoxyphenylacetamide (Scheme 2.80) [505].

2-Thiol-5-nitrobenzoxazole, the structural material for the preparation of poten-
tial enantioselective inhibitors of leukotriene biosynthesis, has been synthesized by 
condensation of nitro-ortho-aminophenole with CS

2
 [506].

Nitroderivatives of ortho-aminophenols react with phosgene and thiophosgene 
to form benzoxazolones-2 [507] and benzoxazolthiones-2, [508] respectively 
(Scheme 2.81).

Synthesis of nitrobenzoxazolones-2 by Beckman’s rearrangement of 4-nitrosalicylhy-
droxamine acid has been reported [509]. The process is carried out on heating (4-nitro-
2-oxyphenyl)-urea [510] or 4-(4-nitro-2-oxyphenyl)semicarbazide [511] with mineral 
acids and by oxidation of 6-nitro-2-hydroxymethylquinoline and its derivatives.
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The most widespread preparative synthetic route to nitrobenzoxazolothione-2 is 
the reaction of nitroaminophenols with CS

2
 [501, 512, 513].

Nitroderivatives of ortho-aminophenole on diazotization form the corresponding 
ortho-diazophenols, which readily undergo cyclization into 1,2,3-benzoxadiazoles 
(Scheme 2.82) [513–518].

On pyrolysis of methyl-N-(2,4-dinitrophenyl)carbamate 5-nitro-2,1,3-benzoxadi-
azole (5-nitrobenzofurazan) was isolated in a yield of 35% (Scheme 2.83) [519].

The key product in this process is ortho-nitrozophenylnitrene from which ben-
zofurazan is formed later. The reaction of 2-chloro-5-nitronitrozobenzene with 
sodium azide in an aqueous acetone medium is likely to follow a similar pathway. 
In this case the yield of 5-nitrobenzofurazan reaches 73% (Scheme 2.84) [520].
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In the reaction of nitric acid with tetraoximecyclohex-5-ene-1,2,3,4-tetraone, the 
oxidation of two oxyme groups with simultaneous cyclization to 4,7-dinitro-2,1, 
3-benzoxadiazole takes place (Scheme 2.85) [521].
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The most common method of the synthesis of nitrobenzofurazans is reduction of 
benzofuroxan nitroderivatives. A lot of examples of the synthesis of nitro-2,1, 
3-benzoxadiazoles from the corresponding N-oxides have been described [149, 155, 
156, 522–526]. Here, the results of electrochemical investigations of a more difficult 
reduction of exocyclic N→O bond, in comparison with the endocyclic one, look 
unexpected [527]. The following explanation for this apparent contradiction can be 
given. On the one hand, the process of chemical reduction can differ significantly 
from the mechanism of electrochemical reduction. On the other hand, the primary 
opening of the furoxan cycle with subsequent closing into furazan is possible; it is the 
endocyclic N→O bond that undergoes primary opening. Triphenylphosphine is used 
as a reducing agent in most cases [149, 155, 523, 524].

On heating of sodium azide with benzofuroxans in ethylenglycole or DMSO the 
corresponding benzofurazans are formed [523, 525]. If the reaction is carried out in 
a medium of acetic or iso-butyric acids, that is, actually using HN

3
, the nitrobenzo-

furazans sought are formed in good yield (Scheme 2.86) [526].
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4,6-Dinitrobenzofurazan 7-aminoderivatives have been obtained by the reaction 
of 4,6-dinitrobenzofuroxan with alkali metal salts of the corresponding formanyli-
dines (Scheme 2.87) [527–529].

On oxidation of 4-nitro-7-arylthiobenzofuroxanes with excess hydrogen peroxide 
the corresponding sulfonylbenzofurazans are obtained, whereas in mild conditions 
(meta-chloroperoxobenzoic acid, 0–20°C) intermediate nitro derivatives of sulfo-
nylbenzofuroxan were isolated (Scheme 2.88) [530].

On heating, the latter form 4-nitro-7-arylsulfonylbenzofurazans in high yield. In this 
case the observed migration of the furoxan cycle exocyclic oxygen to the neighboring 
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sulfoxide group follows an intermolecular mechanism. The rate of this rearrangement 
increases with introducing electron-donating substituents into the phenyl ring of the 
sulfoxide fragment. It should be noted that the oxygen atom migration from the furoxan 
ring moves only to the sulfoxide group and not to the sulfide one. In some cases the 
reaction goes without intermediate isolation of the furoxan cycle. For example, on heat-
ing 1,3-diamino-2,4,6-trinitrobenzene 4-amino-5,7-dinitrobenzofurazan is formed.

In recent years, particular attention focuses on reactivity of nitrobenzofuroxans and 
nitrobenzofurazans [531]. The latest are represented as a class of neutral 10-p-elec-
tron-deficient heteroaromatic substrates that exhibit an extremely high electrophilic 
character in many covalent nucleophilic addition and substitution processes.

Nitrobenzisothiazoles, Nitrobenzothiazoles,  
and Nitrobenzothiadiazoles

Nitroderivatives of aromatic aldehydes or ketones, containing sulfohalogen group 
in the ortho-position, undergo cyclization into the corresponding 1,2-benzisothiaz-
oles under the influence of ammonia (Scheme 2.89) [173].

Later this process has been significantly simplified by using ortho-chloro sub-
stituted aldehydes or ketones as the initial products [532–536].

Another rather widely accepted synthesis of the aforementioned compounds is 

the condensation of oximes of aldehyde or ketone nitro derivatives, containing sulfo-
hydryl or sulfoalkyl groups in the ortho-position (Scheme 2.90) [166, 537, 538].

4,6-Dinitrobenzisothiazole derivatives and salts were prepared in the course  
of utilization of explosive 2,4,6-trinitrotoluene [539–541]. 3-Cloro-4,6-
dinitrobenzisothiazole was prepared on using 2,4,6-trinitrotoluene, which can eas-
ily be transformed to 2,4,6-trinitrobenzonitrile (TNBN) by treatment with nitrosyl 
chloride [539]. The reaction of TNBN in the presence of K

2
CO

3
 led to both ortho 

and meta isomers, the products of substitution of NO
2
 groups by a PhCH

2
S unit, 

with the ratio of isomers being dependent on the solvent polarity (Scheme 2.91).
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The fraction of ortho substitution considerably is increased with decreasing solvent 
polarity. The mixture (5:1) of ortho and meta isomers prepared in toluene was 
treated with SO

2
Cl

2
 to give 3-cloro-4,6-dinitrobenzisothiazole as a result of intra-

molecular cyclization [539].
2-Aryl-4,6-dinitrobenzisothiazolium chlorides can be obtained even at room 

temperature by treatment of the corresponding sulfuryl chlorides in dichloroethane 
without separation, as shown in Scheme 2.92 [540].
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Similarly to 1,2-benzisoxazoles, 1,2-benzisothiazoles with the nitro group in the 
arylene fragment can be obtained from 4-mercaptotocumarines and from hydroxy-
lamine [167].

Synthesis of 5-nitro-1,2-benzisothiazolone-3 possessing thrombolytic and anti-
bacterial activity has been described in reference [542].

The data on the synthesis of nitrated 2,1-benzisothiazoles are rather scarce in 
comparison with the corresponding benzisoxazoles. It has been reported that, like 
other 2-aminotoluenes, 2-amino-4-nitrotoluene reacts with thionyle chloride in 
xylene to form 6-nitro-2,1-benzisothiazole, whereas 2-amino-5-nitrotoluene does 
not enter into this reaction (Scheme 2.93) [543].

3-Amino-5-nitro-2,1-benzisothiazole and its 7-substituted derivatives are obtained 
on oxidation of 5-nitro-2-amino-3-R-thiobenzamides with hydrogen peroxide or 
bromine (Scheme 2.94) [544–546].

In these conditions  5-nitrothioanthranilic acid is oxidized to 5-nitro-2,1-benzis
oxazolone-3 [128, 547].

One of the most convenient and widespread syntheses of benzothiazole 
nitroderivatives is the reaction of the corresponding ortho-aminothiophenols with 
acids [134, 548–551], their anhydrides [195, 550, 552], chloroanhydrides [553] or 
benzaldehydes [554] according to Scheme 2.95.
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ortho-Acetylaminothiophenols, which readily undergo cyclodehydratation, are 
intermediate products in these reactions [134, 555]. In this case ortho-acetylamin-
othiophenols are often not separated; instead, ortho-halogenoacylanilines are 
treated with alkali metal sulfides [183, 556–561]. In a modification of this process, 
ortho-halogenothioacylanilines are boiled with phosphorus pentasulfide in benzene, 
and the products, nitroaniline thioacylderivatives, undergo cyclization to nitroben-
zothiazoles in amide solvents in the presence of bases (Scheme 2.96) [562, 563].

Like other benzothiazoles, nitrobenzothiazoles can easily be obtained by 
Yakobson’s method from thioacylanylides under the influence of potassium ferri-
cyanide (Scheme 2.97) [564–567].

Later 2-methyl-6-nitrobenzothiazole was obtained by electrochemical oxidation 
of 4-nitrothioacetanylide [568]. Interestingly, there is no cyclization under the 
influence of potassium ferricyanide when arylthioureas are used. In this case other 
cyclizating agents have to be used as oxidizers. Bromine-induced oxidation of 
nitroarylthiourea with the formation of the corresponding 2-aminobenzothiazole 
nitroderivatives (Hugershoff’s method) is used for preparative purposes [182, 
569–574]. Sometimes sulfur monochloride is used as an oxidizer in place of bro-
mine (Scheme 2.98) [575, 576].
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Introduction of the diazoarylamino groups into position 2 of 6-nitrobenzothiazoles 
leads to the thermal stability of nonlinear optical organic materials on the base 
nitrobenzazoles [577].

With N,N¢-diarylthioureas the cyclization direction is determined by the character 
of substituents, and the introduction of a nitro group or other electron-withdrawing 
substituents decreases the reactivity of the aromatic ring [179]. This can be illus-
trated by the following Scheme 2.99.

The use of a mixture of Pb
3
O

4
 with ortho-phosphoric acid as an oxidizer allows 

the preparation of both 2-aryl- and 2-aminonitrobenzothiazoles (Scheme  2.100) 
[487].

On heating in polyphosphoric acid 1-phenylthiosemicarbazides with alkyl or 
halogen substituent in the benzene ring turn into 2-aminobenzothiazoles in good 
yield (Scheme 2.101) [578].
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However, the presence of the nitro group in the para-position to the thiosemi-
carbazide group blocks the process of cyclization, and only the products of N–C 
and N–N bond splitting are obtained as a result.

4-Nitroaniline reacts with ammonium rhodanide and bromine to form 2-rhodanyl-
4-nitroaniline, which undergoes cyclization into 2-amino-6-nitrobenzothiazole 
under the reaction conditions on Scheme 2.102 [579–582].

Other derivatives of 2-nitroaminobenzene were obtained in the same way [550, 
580, 583], and in some cases the aforementioned rhodanylaniniles could be isolated 
[550, 583].

It should be taken into consideration that the rhodanation of substituted anilines 
goes mainly to the position 4. The reported synthesis of 2-amino-4-nitrobenzothi-
azole by rhodanation of ortho-nitroaniline [583] turned out to be incorrect. In fact, 
the authors obtained 2-nitro-4-rhodanylaniline of the same empirical formula [584, 
585]. 2,4-Dinitrophenylthiocyanate is reduced to 2-amino-5-nitrobenzothiazole in 
acetic acid by iron (Scheme 2.103) [407, 408].

The same compound can be obtained on heating 2,4-dinitrochlorobenzene with 
thiourea in sulfolane [586]. In the same manner 2-amino-7-trifluoromethyl-5-ni-
trobenzothiazole and 2-amino-7-nitrobenzothiazole were synthesized.

2-Amino-6-nitrobenzothiazole as a sodium flux inhibitor (anticonvulsant activity) 
has been synthesized from nitroaniline via a one-pot procedure (Scheme 2.104) 
[587].

In this route, the thiourea is produced in situ and then oxidatively cyclized to the 
nitrobenzothiazole. This method failed for anilines containing an electron-with-
drawing substituent in the meta-position.
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Nitrobenzothiazole chromophores [588, 589] and their precursors [590] are 
building blocks of nonlinear optical materials, which are extensively used in the 
field of optical information processing, optical sensing, data storage, and telecom-
munications [588, 591]. 5-Nitro- [590] and 6-nitro-2-(methyamino)benzothiazole 
[589] have been prepared from 3-nitro- and 4-nitrophenylthiourea correspondingly, 
as illustrated in Scheme 2.105.

Preparation method of the chromophore involves the condensation of para-
nitroaniline with thiocyanate in methanol and the bromine radical cyclization using 
bromine in acetic acid. In this case only one product – 2-(methylamino)-6-nitroben-
zothiazole – was obtained, which is easily purified over column chromatography 
using neutral alumina [589].

6-Methyl-5-nitrobenzothiazolone-2 has been obtained from (5-methyl-2,4-dinitro-
phenylthio)acetic acid and acetic anhydride [592]. Benzothiazolethione-2 nitroderiva-
tives can readily be obtained by the following Scheme (Scheme 2.106) [184, 559].

An analogous reaction takes place with ortho-nitroanilines. For example, 
4-amino-3,5-dinitrobenzotrifluoride and its N-alkylsubstituted derivatives react 
with CS

2
 in dry dimethylformamide in the presence of sodium hydride to form the 

corresponding benzothiazolethiones (Scheme 2.107) [593].
2,4-Dinitrophenyl ester of N,N-dimethyldithiocarbamic acid is reduced with iron 

powder in glacial acetic acid with the formation of 5-nitrobenzothiazolethione-2 [407, 
408] (Scheme 2.108), which is extensively used in coordinating chemistry [594–597].
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The heteroaromatic thioles, in particular 2-mercapto-6-nitrobenzothiazole, were 
studied in regard to their abilities to function as coinitiators in free-radical photo-
polymerizations induced by camphorquinone and isopropylthioxanthone [598].

Formation of 2-propyl-5-nitrobenzothiazole on reduction of 2,4-dinitro-butylth-
iobenzene with sodium polysulfite or trimethylphosphite has been observed [599]. 
para-Toluenesulfonate 2,5-dimethyl-7-nitrobenzothiazole was obtained under the 
action of excess thioacetic acid on N-(4-methyl-2,6-dinitrophenyl)pyridinium 
[600]. The reaction involves the formation of 4-methyl-2,6-dinitrothiophenol acetate 
in which, under experimental conditions, one of the nitro groups is reduced to an 
amino group with subsequent cyclization, as shown in Scheme 2.109.
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Kinetics of the formation of 2-methoxycarbonyl-5,7-dinitrobenzothiazole-3-
oxide by cyclization of S-(2,4,6-trinitrophenyl)mercaptoacetate in acetate, methoxy
acetate, or N-methylmorfoline buffers has been studied [601]. In the first two 
buffers the cyclization follows two reaction pathways, which differ in the order of 
reaction steps, with the proton splitting off from the C–H group being the rate-
limiting step in either pathway (Scheme 2.110).

In N-methylmorpholine buffer an increase in the concentration of the base 
results in a gradual decrease of the reaction order in the base and a change in the 
rate-limiting step of cyclization [601].

The synthesis, structure, and superoxide dismutase mimetic activity in vitro and the 
protection against reactive oxygen species in vivo of mononuclear copper complexes 
with 2-(4-methylphenylsulfamoyl)-6-nitrobenzothiazole have been reported [602].

Like 1,2,3-benzoxadiazoles, nitroderivatives of 1,2,3-benzothiadiazoles were 
obtained on diazotization of the corresponding ortho-aminothiophenoles [213, 218, 
583]. The initial ortho-thiophenols for this reaction were synthesized by nucleo-
philic substitution of halogen in ortho-halogenoanilines. It turned out that 4-nitro- and 
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6-nitrobenzothiazoles on boiling with hydrazine in ethanol transformed to the 
corresponding disulfides, which form 4- or 6-nitro-1,2,3-benzothiadiazoles under 
the effect of nitrous acid (Scheme 2.111) [214].

An attempt to synthesize 5- or 7-nitro-1,2,3-benzothiadiazoles in this way was 
unsuccessful. meta-Nitroaniline reacts with sulfur monochloride (Herz’s reaction), 
while 1,2,3-benzothiazathiolium chloride reacts with nitrous acid to give a small 
amount of 5-nitro-1,2,3-benzothiadiazole, according to Scheme 2.112 [218, 603].

Different derivatives of 2,1,3-nitrobenzothiadiazole (earlier called nitropiazthiole) 

are obtained in the reaction between thionylchloride and the corresponding 1,2-diamin-
obenzenes [220, 223, 231, 246, 604–607]. Some of them, in particular, 4-nitro-2,1,3-
benzothiadiazole (and also 4-nitro-2,1,3-benzoselenodiazole-nitropiazselenols) are 
effective against fungus diseases of cotton plants and grapes (Scheme 2.113) [607].

Sulfinylaniline [605, 608] or sulfur monochloride [609] can be used as cyclizat-

ing agents. The formation of 5-nitro-2,1,3-benzothiadiazole in the reaction of 
2,4-dinitroaniline with sulfur monochloride has been observed. Here, the reduc-
tion of substrate to 4-nitro-1,2-diaminobenzene followed by cyclization takes 
place [609].
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Nitrobenzisoselenazoles, Nitrobenzoselenazoles,  
and Nitrobenzoselenodiazoles

Analogously to the formation of 5-nitrobenzisothiazole [173], 5- and 7-nitroben-
zisoselenazoles can be obtained in the reaction of 3- or 5-nitro-2-methylseleno-
benzaldehyde with bromine and ammonia (Scheme 2.114) [163].

para-Nitroaniline reacts with potassium selenocyanate in the presence of iron 
(III) salts to form 2-amino-6-nitrobenzoselenazole (Scheme 2.115) [610].

The reaction of selenium dioxide or selenic acid with nitro-1,2-diaminobenzenes 
leads to the corresponding nitro-2,1,3-benzoselenodiazoles (Scheme 2.116) [223, 
243, 244, 246, 366, 607, 611–620].

In the literature [615–619] there are the results of quantitative investigations into 
the reaction of complex formation of H

2
SeO

3
 and aromatic ortho-diamines, 

–R–C
6
H

3
(NH

2
)

2
, which allow an accurate determination of the composition of the 

mixture at any pH, which is widely used in analytical chemistry of selenium.

Nitrobenzotriazoles

The most common and convenient way of obtaining nitro-1(H)-benzotriazoles is 
the condensation of nitro-1,2-phenylendiamines with nitrous acid [251, 252, 256, 
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259–265, 342, 365, 366, 620–622]. In most cases this reaction is undertaken in the 
medium of hydrochloric acid or lower carboxylic acids – HCOOH, CH

3
COOH 

(Scheme 2.117).

High-energy materials such as 4,6-dinitro-1-(2¢,4¢,6¢-trinitrophenyl)- and 
5,6-dinitro-1-(2¢,4¢,6¢-trinitrophenyl)benzotriazole have been obtained by treating 
the corresponding ortho-phenylenediamines with sodium nitrite in sulfuric and 
acetic acids, respectively (Scheme 2.118) [623].

The derivatives of nitrobenzotriazole a-aminothionic acids, used as thioacylating 
agents in the synthesis of thiopeptides and nitrobenzotriazole thioacylating reagents, 
have been obtained in a similar way (Scheme 2.119) [624, 625].

Thioanilides are treated with sodium nitrite either in the medium of glacial 
acetic acid or in 70% acetic acid to form the corresponding nitrobenzotriazoles in 
good yield (72–83%). In general terms, the stability of nonbenzenoid thiocarbo-
nylbenzotriazoles is poor. Rapoport [624, 625] obtained aliphatic nitrated thio-
carbonylbenzotriazoles. Probably, the electron-withdrawing nitro group in the 
benzotriazole ring improves the stability and allows isolating aliphatic thiocarbony
lbenzotriazoles.

Following this method, the Katritzky team has prepared several novel aliphatic and 
aromatic thiocarbonyl-1H-6-nitrobenzotriazoles, as shown in Scheme 2.120 [5].

Interaction of 4-nitro-1,2-phenylendiamines with the respective acid chlorides 
gave regioselectively amides (83–99%). Resonance and inductive effect of the nitro 
group lowered the nucleophilicity of the amino group in the para-position, leaving 
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the meta-amino group to attack the carbonyl of acid chloride. Intermediated amides 
were converted to thiocarbonyl-1H-6-nitrobenzotriazoles crude yields by stirring at 
room temperature with phosphorus pentasulfide [5].

Benzotriazoles including nitrobenzotriazoles have been widely utilized by the 
research group of Katritzky as a synthetic auxiliary in a multitude of reactions 
[5, 626]. Benzotriazole is an inexpensive, stable, and biologically active compound, 
which can be easily introduced into organic molecules. The benzotriazole ring is 
extremely stable, and only rarely was ring cleavage encountered to give mostly 
products of nitrogen extrusion [626].
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1-Alkyl-5-nitro-1H-benzotriazoles in excellent yield (90%) and purities (95%) 
were obtained, as illustrated in Scheme 2.121 [627].

Commercially available 2-fluoro-5-nitroaniline was diazotized and coupled to 
benzylaminomethylpolystyrene to give the immobilized triazene. After nucleo-
philic displacement with primary amines to furnish an aniline resin, the cleavage 
with trifluoroacetic acid in dichloromethane proceeded smoothly at room tempera-
ture within minutes, resulting in nitrobenzotriazoles [627].

4-Nitrobenzotriazole possessing an excellent herbicidal activity [628] has been 
prepared on oxidizing 2-acetylamino-6-nitrophenylhydrazine with chlorine [522]. 
N-Chloro derivative of 4-nitrobenzotriazole is used as an oxidizer of alkylamines 
[629]. 1-Acetyl-4-nitrobenzotriazole is the excellent selective N-acetylation agent 
for nucleosides [630].

The most widely accepted way to the synthesis of 2H-benzotriazole nitroderiva-
tives is the condensation of ortho-substituted halogenodinitro- or halogenopolyni-
trobenzenes with phenylhydrazine (Scheme 2.122) [260, 265, 271, 631–641].

The initial stage of this reaction involves a nucleophilic halogen substitution 
followed by intermolecular redox cyclization of ortho-nitrohydrazobenzenes [642]. 
Instead of halogen the substrate can contain another group (NO

2
, OAlk) [643–645]. 

It has been shown that in ethanol the aforementioned reaction proceeds with the 
formation of 2H-benzotriazole nitro derivatives, whereas in acetic acid their 
N-oxides are formed and, when boiled in ethanol, turn into the final products 
(Scheme 2.123) [637, 638, 646].

The reduction of 2,4-dinitroazobenzene by hydrazine in ethanol to 6-nitro-2-
phenylbenzotriazole has been carefully studied [647]. The authors have proved that it 
goes via the formation of two intermediate products, that is, 2,4-dinitrohydrazobenzene 
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and 6-nitro-2-phenylbenzotriazol-1-oxide, which is obtained from the former as a 
result of cyclization (Scheme 2.124).

The reaction of cyclization of 2,4-dinitrohydrazobenzene is described with a 
first order kinetic equation. The reaction rate depends on the pH value. In the pH 
range of 6.5–9.5 the rate constant is linearly dependent on the concentration of 
OH− ions.

Synthesis of 1-hydroxy-6-nitrobenzotriazole from 2,4-dinitrophenylhydrazine 
has been described (Scheme 2.125) [647].

1-Hydroxy-4,6-dinitrobenzotriazole [648, 649] and 1-hydroxy-4-nitro-6-trif-
luorome-thylbenzotriazole [649] have been synthesized in a similar manner. 
Later [650], an improved synthesis of these compounds from the corresponding 
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chlorinated nitrobenzenes with excess hydrazinium hydrate has been proposed 
(Scheme 2.126).

The melting points of these compounds are significantly higher than those of 
compounds obtained by the method described in reference [649].

1-(2,4-Dinitrophenyl)-5-phenyltetrazole on heating turns to 2-phenyl-5- 
nitrobenzotriazole according to the Scheme 2.127 [392, 651].

At the same time, the pyrolysis of its isomeric 2-substituted tetrazole results in 
1-aroyloxy-6-nitrobenzotriazoles, as demonstrated in Scheme 2.128 [652].

4-Azobenzofuroxanes undergo intermolecular rearrangement to form 2-aryl-7-
nitrobenzotriazoles (Scheme 2.129) [522].

2-Aryl-4,7-dinitrobenzotriazoles are formed as a result of two rearrangements as 
shown in Scheme 2.130 [653].

The second transformation is a version of the aforementioned Boulton–Katrizky 
rearrangement [522]. Benzofuroxan was not isolated but appeared as an intermediate 
on heating 2,6-dinitro-3-azidoaryldiazenobenzene. The reaction starts with nucleo-
philic attack of the diazene fragment on the furoxan cycle nitrogen atom [653].

2,5-Diamino-4-nitroazobenzene turns into 2-phenyl-5-amino-6-nitrobenzotriazole 
in the presence of copper sulfite [654].
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Other Methods of Synthesis

The Sandmeyer Reaction

The main method of introducing the nitro group into the benzazole cycle position 
2 is Sandmeyer reaction (Scheme 2.131) [655–658].
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Pozharskii and his colleagues have established that 1-benzyl-2-aminobenzimi-
dazole in liquid ammonia in the presence of metallic sodium turns into 2-nitroben-
zimidazole and 2,2¢-azobenzimidazole, as shown in Scheme 2.132 [659–661].

The first stage of this unusual reaction involves debenzylation of the substrate to 
form 2-aminobenzimidazole polyaniones. The formation of 2,2¢-azobenzimida-
zolone is the result of autooxidation of 2-aminobenzimidazole di- and trianiones, 
when 2-nitrobenzimidazole is formed on oxidizing of radical anions [660].

Recyclization

It is known that 5- and 8-nitrozinecolynes are oxidized to 4-nitro- and 7-nitroinda-
zoles, respectively, by hydrogen peroxide in acetic acid (Scheme 2.133) [662].

This is the way the synthesis of 4-nitro[3-14C]- and 7-nitro[3-14C]indazole has 
been performed [662].

A possible mechanism of the recyclization of 1,2,4-benzoxadiazones to form the 
corresponding benzoxazoles has been described, as illustrated in Scheme 2.134 [663].

The nitration of oxyindole leads to 3,3,5,7-tetranitrooxindole, which transforms 
with ring-opening and undergoes decarboxylation to form 4,6-dinitro-2-
(dinitromethyl)aniline. The latter is cyclized into 3,5,7-trinitroindazole [664]. The 
mechanism of ring transformation leading to nitroindazole is not clear yet and 
needs detailed examination (Scheme 2.135).
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Interconversions of nitroanthranils equilibrated on heating with benzofurazan 
N-oxides lead to the formation of the corresponding nitroindazoles (Scheme 2.136) 
[665, 666].

Selective reduction of nitrobenzothiazole N-oxides makes it possible to synthe-
size nitrobenzothiazoles, which so far were difficult or inaccessible to prepare 
[667–670].

Nitrated benzotriazole and benzofurazan were obtained as a result of an interesting 
rearrangement in the reaction of 5-dimethylaminobenzofuroxan with 2,4-dinitroben-
zenediazonium sulfate or with HNO

2
 in H

2
SO

4
/H

2
O-C

2
H

5
OH (Scheme 2.137) [671].
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Similarly, heating of 2-NO
2
-3-N

3
-C

6
H

3
COCH

3
 in AcOH to 120° gave nitroanthranyl 

and not the intermediate benzofuroxan system, as shown in Scheme 2.138 [671].

4,6-Dichloro-5,7-dinitrobenzofuroxan was transformed to 4,6-dichloro-5,7-dini-
trobenzofurazan by PPh

3
 polymer support [672].

5(6)-Nitrobenzotriazole was obtained by reduction of benzo-1,2,3,4-tetrazine 
1,3-dioxides (BTDOs) with Na

2
S

2
O

4
 or SnCl

2
 via intermediate N-nitrosobenzo

triazoles (Scheme 2.139) [162].

The 15N-labeling experiments have shown that the 15N-3-labeling atom of N → O 
fragment of the tetrazine ring is incorporated into the nitroso group of benzotriazole. The 
authors [162] have suggested the biological activity of BTDOs to be due to their ability 
to release nitrosating species, that is, N-nitrosobenzotriazole, in the course of reduction.

It has already been shown that the nitration with nitric acid in acetic anhydride 
provides the general way of obtaining N-nitroheterocycles. As an alternative syn-
thesis of the aforementioned compounds, and, in particular, 1-nitrobenzotriazole, 
the reaction of 1-chlorobenzotriazole with the silver nitrate–triphenylphosphite 
complex can be suggested [273].

Conclusions

The azoles occupy an important place in the chemistry of heterocyclic compounds. 
Their unique properties and specific biological activity attract much attention 
of scientists worldwide. A much used and convenient method for the preparation of 
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nitroazoles is the electrophilic nitration. Electrophilic substitution reaction of 
azoles and benzazoles is a complex process in which the experimental conditions 
can modify the product orientation. The ability of azoles to electrophilic substitu-
tion is determined by the activity of reagents, the basicity of substrates, and the 
acidity of medium. The existence of an annelated benzene ring in the benzazole 
molecule influences much of its ability for electrophilic substitution – all benzazoles 
are more easily nitrated than their five-membered analogs, and the nitro group is 
generally introduced into the arylene fragment of the molecule.

The nitration of benzazoles is usually effected using concentrated (65%) to fuming 
(100%) nitric acid generally at temperature between 0 and 5°C. Indazoles are usually 
nitrated into 5 position, benzimidazoles – as a rule – into 5- or 6-position of the 
phenylene fragment whereas benzotriazole into position 4 or 7. For the preparation 
of other nitrobenzazoles the reaction of heterocyclization is used.

The nitroazoles are widely used in the reaction of vicarious nucleophilic substi-
tution of hydrogen. Vicarious nucleophilic C-amination is, practically, the single 
method of direct introduction of the amino group into nitro compounds. Using  
the vicarious nucleophilic substitution reaction we have successfully carried out the 
C-amination of some representatives of nitrobenzazoles, nitroazoles, and model 
compounds thereof and studied the structure of aminated products and the 
C-amination mechanism [673–678].

Recently, the investigations of nitrobenzisoxazoles mainly 6-nitrobenzisoxazole-
3-carboxilate ions have received considerable interest due to their participation in 
reverse micellar systems [679–682]. Reverse micelles are of considerable interest 
as reaction media because they are powerful models for biological compartmental-
ization, enzymatic catalysis, and separation of biomolecules. Solutions of ionic 
surfactants in apolar media may contain reverse micelles, but they may also contain 
ion pairs or small clusters with water of hydration [679]. Molecular design of non-
linear optical organic materials based on 6-nitrobenzoxazole chromophores has 
been developed [451].

The polynitrobenzazoles are adequate precursors for the preparation of high-energy 
compounds. The investigations in the field of polynitro annelated azoles – dinitroben-
zimidazoles [683], 4,6-dinitrobenzisoxazoles [684], 4,6-dinitrobenzisothiazoles [685], 
4,6-dinitro-2,1,3-benzothiadiazole, 4,6-dinitrobenzo-2,1,3-selenadiazole, 4,6-dini-
trobenzotriazoles [686], 4,6-dinitrobenzofurazans [686, 687], 4,6-dinitrobenzofuroxans 
[686, 688–692] – have great future prospect.
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Abstract  The critical evaluation of a large body of the information on five-membered 
nitroazoles and nitrobenzazoles study by physical chemical methods – nuclear 
magnetic resonance (NMR), nuclear quadrupole resonance (NQR), electron spin reso-
nance (ESR), ion-cyclotron resonance, UV and IR- spectroscopy, X-ray analysis, mass 
spectrometry, polarography, dipole moments, chromatography, luminescence, pho-
tolysis, etc. is presented. The extensive investigations of structure, tautomerism, and 
properties of nitroazoles by multinuclear 1H, 13C, 15N, 19F, 31P, 29Si and two-dimensional 
NMR spectroscopy are reviewed. A great emphasis is given to tautomerism studies 
of nitroazoles by multinuclear dynamic NMR because prototropic transformations 
of almost all azoles in solutions proceed so quickly. The mechanisms of electrochemi-
cal reactions and vicarious nucleophilic C-amination of nitroazoles are discussed. 
Quantum-chemical investigations of nitroazoles are covered in detail.

Molecular and Crystalline Structure

It is known that C-nitropyrazoles are more stable than N-nitropyrazoles. Nevertheless 
it is quite strange that 1-nitropyrazole was among the first of nitropyrazoles, which 
has been studied using X-ray technique. Bond lengths, valence (O–N–O), and tor-
sion (N2–N1–N–O) angles for the 1-nitropyrazole molecule as well as the same 
parameters for some other N-nitroazoles are given in Table 3.1.

X-ray analysis data indicate that five-membered ring of 1-nitropyrazole remains 
planar in unsubstituted pyrazole, while nitro group is located in the plane of the ring [1]. 
The N1–NO

2
 bond (1.399 Å) is longer than that of dinitramides O

2
N–N–NO

2
 (1.370 Å, 

n = 17), saturated five-membered cycles (1.385 Å, n = 52), and almost coincides with 
the bond length of the compounds containing 1,3-diazacyclopentan-2-one moiety 
(1.399 Å, n = 22). The N–NO

2
 bond length is considerably longer than that in dimethyl 

Structure and Physical–Chemical  
Properties of Nitroazoles
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amine (1.30 Å) and other nitramines (average of 1.372 Å) [6]. This tends to indicate a 
greater lability of the N–NO

2
 bond in N-nitropyrazoles than in other aliphatic nitramines. 

N-Nitropyrazoles in the presence of Lewis or Bronsted acid catalysts were found to be 
effective transfer nitrating agent for aromatic substrates [7].

The N1–N2 (1.357 Å) and N1–C5 (1.364 Å) bonds in 1-nitropyrazole are slightly 
longer than the corresponding bonds in unsubstituted pyrazoles (1.349 Å and 
1.330 Å), which were studied by different authors under various conditions. It is 
suggested [1] that this fact can be explained by electron-withdrawing character of 
the nitro group that decreases the double bond degree of these atoms. The absence 
of these bonds extension during the introduction of bulky substituent into position 1 
favors this suggestion. For example, the bond lengths in 1-(adamantyl)-pyrazole are 
1.349 and 1.343 [9]. The results of ab initio quantum chemical computations of the 
pyrazole nitro derivatives (6-31G*) [10] also support this hypothesis (Table 3.2).

Table 3.1  Bond lengths (Å), valence, and torsion angles for 
the N-nitroazole molecules a

X
4

N1

Q2X3

N
O

O5
Compound N1-NO

2
N1-Q N1-C5 O-N-O Q-N1-N-O Refs

N-Nitropyrazole 1.399 1.357 1.364 128.536 1.64 [1]
1,4-Dinitroimidazole 1.420 1.374 1.371 129.255 9.84 [2]
1,4-Dinitro-2-isopropyl-

imidazole
1.426 1.367 1.392 127.650 4.71 [3]

6.22b

1,1¢-Dinitro-3,3¢-azo-1,2,4-
triazole orange polymorph

1.445 1.339 1.376 130.672 3.97 [4]

1,1¢-Dinitro-3,3¢-azo-1,2,4-
triazole yellow polymorph

1.445 1.347 1.349 130.989 3.56 [4]

1,5-Dinitro-1H-indazole 1.393 1.366 1.380 127.695 0.23 [5]
aX-ray average data in this table; the following tables and text are derived from Cambridge 
Structural Database [8]
bNitro group in position 4

N
N

NN

O

O

O

O
O

O
O

1.451 1.444

1.349

1.326
1.400

1.363

1.337

113.127

103.742

N

N N

N

O

O

O O

O

O

O

117.563
11.645

130.604

106.544

104.911

123.481

131.581
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Nitro group of most compounds given in Table 3.2 is either located in the plane 
or slightly rotated with respect to the pyrazole cycle. When the substituents are 
introduced into neighbor positions of nitro group, the dihedral angle differs signifi-
cantly from zero. So, for 3,5-di-tert-butyl-4-nitropyrazole [5] it equals to 47.7°, for 
3-ethoxycarbonyl-2-ethyl-5-methyl-4-nitro-1-phenylpyrazolidine – 54.7° [11], 
4-nitropyrazole-3,5-dicarboxylic acid bis(dioxane) clathrate – 75° [12], and in 
catena-(4-nitropyrazole-3,5-dicarboxylic acid)-bis(dioxane)-sodium) nitro group is 
perpendicular to the ring plane (89.6°) [12] (Table 3.2).

Despite the large amount of works dedicated to 4-nitropyrazole derivatives (and 
maybe owing to this) it was quite difficult to reveal unambiguous trends of geometrical 
parameter change. Meanwhile it is pertinent to note that geometry of the cycle is not 
substantially changed during the formation of coordinated compounds that may speak 
in favor of almost similar crystallographic and coordinated interaction effects.

In 3-nitropyrazoles the C–NO
2
 bond is longer than that of 4-nitroderivatives, 

while the N2–C3–C4 angle is significantly greater (Table 3.2).
Cationic complexes Ag with 3,5-dimethyl-4-nitropyrazole containing tetrafluorobo-

rate, trifluoromethanesulfonate, or nitrate as counterions [13] and with 3,5-di(isopropyl)-
4-nitropyrazole [14] have been studied by X-ray diffraction. The hydrogen bonding 
between the pyrazole moieties and the appropriate counterion and the orientation of the 
NH groups of the pyrazole ligands are determinant of one-dimensional polymeric arrays. 
3,5-Dimethyl-4-nitropyrazole serves as N-monodentate ligand, which coordinates to the 
Ag center through its pyrazole nitrogen atom giving rise to an almost linear N-Ag-N 
geometry. The planar NO

3
-counterion bridges two adjacent Ag centers to form a one-

dimensional zigzag-shaped chain which is also supported by the presence of N–H...O 
bonds between the pyrazole NH group of adjacent cationic entities and the remain-
ing O-atom of the bridging NO

3
−. The chains are further extended to a two-dimensional 

layer-like structure through additional Ag...O interactions involving the NO
2
 substituents 

at the pyrazole ligands [13].
N-unsubstituted pyrazoles form hydrogen-bond networks of great complexity.  

It is known not less than four fundamental motifs – dimers, trimers, tetramers, and 
chains – and they are called catemers. One of the most fascinating properties of 
N-unsubstituted pyrazole crystals is the possibility that they present dynamic disorder 
involving the NH proton of the N–H…N hydrogen bond. This takes place only in 
cyclic structures (dimers, trimers, tetramers); moreover, the substituents in positions 
3 and 5 should be identical. The triclinic unit cell of 3-nitropyrazole contains twelve 
molecules which form four hydrogen-bonded N–H…N trimers [33]. Each trimer 
comprises a pseudo ring in a flattened envelope distorted toward a chair conforma-
tion. The crystal packing consists of layers formed by centrosymmetric-related 
trimers joined through C–H…O interactions [33]. The dimer formed by 3,5-di-
isopropyl-4-nitropyrazole was a good candidate for solid-state proton transfer [34] 
considering that 3,5-di-tert-butyl-4-nitropyrazole, a dimer [35], shows proton dis-
order [36]. However 3,5-di-isopropyl-4-nitropyrazole does not present solid-state 
proton transfer and the NH proton is clearly localized, may be due to the fact that 
the two isopropyl groups have different orientations [34].
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Desmotropy phenomenon (two tautomers crystallize in two different crystals) 
has been found for 3-methyl-4-nitropyrazole and its tautomer, 5-methyl-4-nitropyrazole 
by X-ray and 13C CP/MAS NMR spectroscopy [16].

1-Methyl-3-nitropyrazole has crystallographic m-symmetry, while 1-methyl-4-
nitropyrazole has no imposed symmetry [37]. The significant differences in bond 
distances and angles between the structures are ascribable to the electron-with-
drawing effects of the nitro group attached to C-3 or C-4, respectively. In both 
structures, the molecules are organized into layers by an extensive network of 
C-H…O or C–H…N hydrogen interactions. Within a layer, the molecules are 
arranged in a similar way, although differences of up to 0.3 Å in the analogous 
H…O or H…N intermolecular distances are observed. The cohesion of the layers 
is due to Van der Waals and C–H…O contacts [37].

The structure of nitroimidazoles has been studied more thoroughly and can be 
explained by wide application of these compounds, especially in medicine. In 
Table 3.3 some structural characteristics (X-ray and neutron study) for the imida-
zole and 2-nitroimidazole derivatives are given.

Molecules of 2-nitroimidazole (azomycin) are almost plane [41]. They are 
packed in layers due to the formation of either N1–H...N3 or C–H...O hydrogen 
bonds, caused by dipole-dipole interactions [41]. Intramolecular hydrogen bonds 
N1–H...N3 were also found in 2-methyl-4-nitroimidazole [54]. Availability of such 
bond provides for easy migration of proton from N1 to N3 during the dissolution 
in the corresponding solvents. The bond lengths in the imidazole ring are not practi-
cally changed when the nitro group is introduced into position 2. At the same time, 

Structural characteristics of nitropyrazolone A and its anion B are essentially differed [8].

A B

N1--N2 1.397 1.406
N2--C3 1.337 1.318
C3--C4 1.416 1.428
C4--C5 1.446 1.429
C5--N1 1.362 1.342
C4--NO2 1.367 1.368
C5--N1--N2 111.393 113.961
N1--N2--C3 108.670 105.252
N2--C3--C4 107.265 110.105
C3--C4--C5 108.697 107.061
C4--C5--N1 103.658 103.615

N
N1

O

NO2H2N

H

H NH4

1.242

1.321 1.356

1.263
N

N1

O

NO2H2N

H

A B

2

3 4

5
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the valence angles are altered significantly. The increase of angle of the imidazole 
ring at the atom attached to the nitro group as well as decrease of the adjacent 
angles is caused by electron-acceptor effect of the nitro group. Similar effect is 
observed for the most other nitroimidazoles (see tables). The exception is some 
compounds, such as, complexes with platinum, 1-(2-(3-(4-(1,2-dicarba-closo-
dodecaboran(12)-1-ylmethoxy)phenyl)isoxazol-5-yl)ethyl)-2-nitroimidazole, 
where this angle is lower than in the imidazole.

Geometrical deformations in adduct of 2-nitroimidazole with sodium deriva-
tives of crown ether (15-crown-5)-(2-nitroimidazolato)-sodium are observed [48].

O

O

O

O

O

Na
NN

N
OO

The crystal structure of 4(5)-nitro-5(4)-methoxyimidazole contains a 1:1 mixture 
of two tautomers, 4-nitro-5-methoxy- and 5-nitro-4-methoxyimidazole [55]. This is 
one of the very few cases of 4,5-disubstituted imidazoles for which there are two 
annular tautomers in the crystal. The molecular structure is the superposition of 
these tautomer forms. The structure is centrosymmetric and the N-H hydrogen atoms 
are disordered over two ring N atoms. Owing to the hydrogen-bond pattern, the 
values of their site occupation factors have to be exactly equal to 1/2. The molecules 
are connected into a three-dimensional network by means of N–H…N and C–H…O 
hydrogen bonds [55].

The molecules of 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole are bound by 
hydrogen bonds O–N...N3 (2.816 Å) into crystalline structure [56]. In this com-
pound the nitro group is rotated by 4.3° with respect to the imidazole ring plane, 
while the effect of NO

2
 on valence angles of the imidazole cycle is similar to that 

of 2-nitroimidazole [41], О-methyl-[2-(2-methyl-5-nitroimidazole-1-yl)-ethyl]thio-
carbamate (sulnidazole) [57], and О-methyl-[2-(2-methyl-5nitroimidazole-1-yl)
ethyl]thiocarbamate monohydrate (carnidazole) [58]. In the latter case the role of 
water in the formation of three types of hydrogen bonds, i.e., with oxygen atoms of 
the nitro group (O–H...N, 3.062 Å), nitrogen atoms of the imidazole cycle (О–Н...N; 
2.818 Å), and thiocarbamate groups (N–H...O; 2.806 Å), was noted. Rather high 
deviation of the nitro group from the ring plane (8.2°) is observed for 5-methoxy-
1-methyl-4-nitroimidazole [59] (Table 3.4), which results from steric interactions.

In this connection the results of the work [3] dedicated to the determination of 
2-isopropyl-1,4-dinitroimidazole look quite unexpected. It is an open question why 
the angle between the nitro group plane at the N-1 atom and the imidazole ring 
plane (7.3°) is lesser than the analogous angle of the nitro group at the C-4 atom 
(10.0°). In addition, one should bear in mind that steric hindrances might appear 
between isopropyl substituent and the nitro group at the N-1 atom. From other side, 
in 1,4-dinitroimidazole, where such interactions are absent, rotation angle of the 
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nitro group at the N-1 atom is higher than at the С-4 atom (9.4 and 1.9°, respec-
tively) [2] (Table 3.4).

In 1-methyl-2,4,5-trinitroimidazole the bonds of C2-N2, C4-N4 and C5-N5 of 
nitro groups are not coplanar with the imidazole ring and displaced −0.0975 Å, 
−0.0676 Å and 0.1100 Å from the imidazole ring, respectively. The 2-, 4-, and 
5-nitro groups are also twisted out of the imidazole plane by 24.2°, 9.8°, and 39.5°, 
respectively [102]. The bond lengths within the planar imidazole ring are similar to 
those of 2,4-dinitroimidazole [66]. The shortest C–N bond in 1-methyl-2,4,5-trini-
troimidazole is C2–N3 – 1.2970(18) Å which means a double bond localization, 
and this is in good agreement with those reported in 2,4-dinitroimidazole [66] and 
1,4-dinitroimidazole [2].

The determination of X-ray structure of 2-methyl-5-nitro-1-phenacyl-4-phenylam-
inoimidazole has been carried out [103]. The nitro and phenylamino groups on the one 
hand and the phenacyl residue on the other hand subtend very different interplanar 
angles to the imidazole ring. The dihedral angles between the planar phenylamino and 
nitro groups and the imidazole ring are 8.82(7) and 3.77(11)°, respectively, showing 
conjugation between these groups and the imidazole moiety. The resonance interaction 
is reflected in a significant shortening of the C–NO

2
 bond length [1.3577(19) Å] [103], 

compared with the regular single bond Csp2–NO
2
 (1.468 Å [104]). Deformation of 

aromaticity in ammonium 1-(2-(ethylsulfonyl)ethyl)-4,5-dihydro-2-methyl-4-nitro-1-
H-imidazol-5-one leads to the dramatic changes in the bond lengths.

The formation of 4-nitroimidazole complexes, such as pentamine-(4-nitroimida-
zolato)cobalt chloride, involves no deformation of coplanarity between the nitro 
group and the imidazole ring [70].

X-ray studies were also performed for bis(1,2,3,5-tetramethyl-4-nitropyrazolium 
salt [105], 1-methyl-4(5)-nitro-5(4)-styrylimidazole [82], 1-(N-morpholino)-4-
nitroimidazole [83], 1-sodium salt of 4-[2-[(1-methyl-5-nitro-2-imidazolyl)thio]
ethoxy]-benzoic acid [106], 1-methyl-4-nitro-5-chloroimidazole [107], ornidazole 
[81], megazole [108], 1-methyl-2-nitro-5-vinylimidazole [42], 1-[2-(ethylsulfonyl)
ethyl]-2-methyl-5-nitroimidazole (tinidazole) and one of the basic tinidazole 
metabolites – ammonium salt of 1-[2-(ethylsulfonyl)ethyl]-4, 5-dihydro-2-methyl-
4-nitroimidazole-5on [109], morpholino nitroimidazole derivatives [110, 111], 
1-(2-bromoethyl)-2-methyl-5-nitroimidazole [112], 1-(4-chlorophenacyl)-2-methyl-
4,5-dinitroimidazole [113], 4-methylacetophenone [(2-methyl-4-nitro-1H-
imidazol-1-yl)acetyl] hydrazone [114], 2-(5-bromo-2-methyl-4-nitroimidazol-1-yl) 
1-(2-chlorophenyl)ethanone [115], dimethyl (2E)-2-(4-nitroimidazol-1-yl)but-2-ene-
dioate [116], 2-(1-methyl-5-nitroimidazol-4-ylmethylene)malonate [117], and 
other nitroimidazoles [118, 119]. Three polymorphic modifications of 1-methyl-2-
nitro-5-vinylimidazole were found and investigated [42].

It is interesting to note that the bond lengths C-S in two structurally related com-
pounds 1-(mesityl-2-sulfonyl)-3-nitro-1,2,4-triazole [120] and 1-(mesitylsulfonyl)-
4-nitroimidazole [121] are similar (1.761 and 1.758 Å), while the S-N bond in 
imidazole analog is significantly shorter (1.736 and 1.708 Å).

In the crystals of 1-methoxy-3-(2-nitro-1-imidazolyl)-2-propanole (misonida-
zole) molecules are located as “head to tail,” while imidazole cycles are almost 
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parallel to each other, and nitro group is rotated by 7.9° with respect to the imida-
zole ring plane [44].

The dihedral angles between the imidazole ring and the attached nitro group in 
1-(2-chloroethyl)-2-methyl-5-nitroimidazole (chlorometronidazole) [122] and 
1-(2-iodoethyl)-2-methyl-5-nitroimidazole (iodometronidazole) [123] are 6.5 and 
7.8°, correspondently.

1-(4-Nitrophenyl)-2-methyl-4-nitroimidazole and 1-phenyl-2-methyl-4-nitro-5-
bromoimidazole have been studied by X-ray crystallography [124]. Crystals of 
1-phenyl-2-methyl-4-nitro-5-bromoimidazole have undergone two reversible phase 
transitions between 295 and 100 K. Neither the molecular geometry nor the crystal 
packing shows any dramatic changes during these phase transitions. Halogen bonds 
C–Br…N and dihalogen interactions Br…Br play a crucial role in crystal packing 
determination and compete successfully with other kinds of weak intermolecular 
interactions [124]. The crystal structures of 1-allyl- and 1-(2-bromoethyl)-2-
methyl-4-nitroimidazole have been determined by means of X-ray diffraction at 
100 K [125]. In both cases the compounds crystallize with two different symmetry-
independent molecules in the asymmetric part of the unit cell. The main motifs of 
crystal packing-molecular tapes are created by C-(HN)-N-... and strengthened by 
secondary C-(HO)-O-... hydrogen bonds. The tapes form bilayers via p,p-interac-
tion. The creation of these bilayers, the primary building blocks of the crystal 
structures, is possible because two symmetry-independent molecules have different 
conformations or take part in different intermolecular interactions [125].

X-ray analysis data of platinum metronidazole complexes [126, 127] and other 
5-nitroimidazole derivatives – pharmaceutical products [53, 73, 128–134] have 
been described. The molecules of ronidazole [(1-methyl-5-nitro-2-imidazolyl)
methyl carbamate] are stacked in planes parallel to crystallographic b axis [135]. 
These molecular layers are built up by three hydrogen bonds. A fourth hydrogen 
bond connects these layers perpendicularly. The nitro group is turned by 11.1(1)° 
from the imidazole ring plane [128]. The molecules of 2-(5-nitro-2-styryl-1-imida-
zolyl)ethanol are linked in chains through hydrogen bonds O–H…N [1.99(3) Å] 
[133]. Nitro group is slightly rotated [4.7(1)°] with respect to the imidazole ring.

The structure of various nitrofurazans, high energetic compounds has been 
established in detail by an X-ray monocrystal investigation [135–142]. 3-Amino-4-
nitrofurazan in the crystal cell has two independent molecules with some different 
conformations therewith the molecules are bound by hydrogen bonds N-H...N 
(2.68 Å) in chain dimers [135]. The crystal of bis(3-nitrofurazan-4-yl) ether 
(C4N6O7) has two independent molecules which consist of two approximately 
planar nitrofurazan moieties [140]. The intramolecular nonbonded contacts of 
nitrogen atoms N5–N5¢ of both molecules are equal to 2.74 and 2.94 Å and are 
shorter than the two-fold Van der Waals radius (3.2 Å). The bond lengths and bond 
angles in the independent molecules are close to the standard values. The packing 
coefficient in the crystal is 0.653 [140]. In the sulfur analog of this compound the 
furazan rings are also planar and the nitro groups are almost coplanar with their 
heterocycles; the dihedral angles cycle/nitro group are 2.6 and 12.3° [142].  
The dihedral angle between the nitrofurazan moieties is 107.8°. The S…O (NO

2
) 
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intramolecular distance is shorter than the sum of the Van der Waals radius 
(2.922 Å). This distance corresponds to a S…O secondary bond which supplements 
the coordination of the S atom to a T-shape [142].

The structure of the nitroazofurazan derivatives has been studied in [137–139, 143].
Dinitroazofurazan A and dinitroazoxyfurazan B have two independent mole-

cules in their crystal cells, but nitroaminoazoxyfurazan C – only one molecule 
[139, 143]. As expected the azo linkage possessed a trans geometry. The N=N 
double bond length (1.243 Å) in dinitroazofurazan A [139, 143] was comparable to 
the N=N double bond length of azobenzene and was slightly shorter than the azoxy 
N=N bond length of B (1.30 Å [143]) and C (1.31 Å [137, 143]).

N
O

N

N N

N
O

N

NO2O2N

N
O

N

N N

N
O

N

NO2O2N

O

N
O

N

N N

N
O

N

NO2H2N

O
CBA

The C=C bond length in the furazan rings of B (1.402, 1.409, 1.409, 1.403 Å) 
was shorter than those observed on other furazan derivatives (1.413 to 1.446 Å) 
reported in the Cambridge Crystal Structure Database, including 3-amino-4-nitro-
furazan [135]. Molecules of A are planar (±0.05 Å) throughout their azofurazan 
system [139]. The nitro groups on rings make dihedral angles of 4.8° and 85.4° 
with the azofurazan plane. In the other molecule, the dihedrals in rings are 8.1 and 
81.9°. So, there is one nitro group which is perpendicular to the azofurazan p-system. 
This orientation is one way to minimize the electrostatic repulsion between the 
close electron-rich oxygen atoms of the two nitro groups [139].

The 1:1 cocrystal of 2-amino-5-nitrothiazole with 4-aminobenzoic acid com-
prises two constituent molecules associated by a hydrogen-bonded graph set dimer 
through the carboxylic group across the N/N site of the thiazole [O–H…N, 
2.614(3) Å; N–H…O, 2.991(3) Å] [144]. 2-Bromo-5-nitrothiazole [145], tetrakis 
(meta-acetato)bis[2-(2-thionyl)-amino-5-nitrothiazole]-dirhodium-II-dihydrate 
[146], and N-(4-methoxybenzyl)-N¢-(5-nitro-1,3-thiazol-2-yl) urea [147] have been 
studied by X-ray analysis.

Crystalline and molecular structure of 3-nitro-1,2,4-triazole [148, 149] and its 
derivatives have been investigated (Table  3.5). Intermolecular hydrogen bonds 
between the N-1 and the N-4 atoms were found. It was also shown that in crystal-
line form only 5-nitroisomer exists, while the nitro group is rotated by 2.94° with 
respect to the ring plane [149]. In 1-methyl-3,5-dinitro1,2,4-triazole the distance 
from the 1,2,4-triazole cycle to the nitro group in position 5 is shorter than the 
distance to the nitro group in position 3. At the same time the latter is deviated from 
the ring plane by the higher angle than the nitro group at the C-5 atom. Thus, the 
date obtained has revealed a spatial nonequivalence of the nitro group in positions 
3 and 5, but the previous suggestions [150, 151] on noncoplanarity of the nitro 
group in position 5 of this compound were not proven.
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Structural analog of 3-nitro-1,2,4-triazole – bis-(3-nitro-1,2,4-triazole-5-yl) is 
crystallized as dihydrate, which is bound to the triazole cycle by strong hydrogen 
bond N–1–H...O (water) [155]. Bond lengths and valence angles of the triazole cycle 
are similar to these of 3-nitro-1,2,4-triazole, but the angle between plane triazole 
cycle and nitro group is slightly higher than 4.3о [155]. On the other hand a molecule of 
3-nitro-1-nitromethyl-1,2,4-triazole consists of three planar fragments twisted in 
relation to each other, namely a triazole cycle, nitromethylene fragment, and nitro 
group [168]. Molecular conformation analysis shows that the first stage of thermal 
decomposition is a breakage of the H

2
C–NO

2
 bond.

The crystal cell of 5-acetylamino-3-nitro-1,2,4-triazole contains two molecules with 
identical planar form which have intramolecular hydrogen bond N–H…O [169].

The molecule of 3-nitro-3¢-chloro-1Н-bi-1,2,4triazole-5,1¢-yl has transoid con-
formation, where the substituents (chlorine and nitro group) are most distant from 
each other and the rotation angle of two triazole rings is 5°, while the nitro group 
is rotated by 4° with respect to the triazole cycle [156]. Molecular and crystalline 
structures of 1-methyl-3,5-dinitro-1,2,4-triazole [153] and 1-(mesityl-2-sulfonyl)-
3-nitro-1,2,4-triazole were determined [119].

X-ray crystal structure of the potassium dihydrobis(3-nitro-1,2,4-triazolyl)
borate is reported [170]. The potassium salt is polymeric and shows several K...N 
and K...O interactions.

The crystal structures of coordinated compounds 1,2,4-triazolone-5 – Li(NTO) 
2H

2
O and Rb(NTO) H

2
O have been studied [171]. The crystals belong to mono-

clinic system. The coordinate bonds in Li(NTO) 2H
2
O possess a certain extent of 

covalent character, at that oxygen atom of NTO anion is bonded to Li atom. On the 
basis of calculations the nitro group will be lost when the NTO is decomposed. The 
trigondodecahedron configuration of Rb (NTO) H

2
O is formed by nitrogen coming 

from NTO and oxygen from water molecule which is an eight-coordination com-
pound around Rb+, i.e., a deformed sixgonal bi-pyramid. The radius of Rb+ is 
0.147 nm, that of oxygen atom is 0.044 nm, and that of nitrogen is 0.070 nm. It is 
reasonable that the bond distances from Rb+ to O and N are about 0.3 nm [171].

For 1,1¢-dinitro-3,3¢-azo-1,2,4-triazole two modifications were obtained – yellow 
and orange. X-ray analysis has shown that in more dense orange modifications 
the bands formed by parallel molecules with intermolecular hydrogen bond were 
found [4].

The structure of 3,5-disubstituted 1,2,4-triazole, including 5-amino-3-nitro-1, 
2,4-triazole [172], silver(I)-organophosphane complexes of the dihydridobis(3-nitro-
1,2,4-triazolyl)borate ligand [173], 1,3-diaminoguanidinium salt of 3-nitro-1, 
2,4-triazolone-5 [158], and ethylene diammonium salt of 3-nitro-1,2,4-triazolone-5 
[157], and other salts of 3-nitro-1,2,4-triazolone-5 [174] has been determined. 
The X-ray diffraction study of 3(5)-mono- and 3,5-disubstituted 1,2,4-triazoles 
having nonequivalent substituents in crystals exist as a tautomer in which the 
electron-acceptor substituent NO

2
 occupies the 3 position, while the electron-

donor substituent NH
2
 resides in the 5 position. Symmetric 3,5-disubstituted 

1,2,4-triazoles could give rise to tautomeric equilibrium between the 1H- and 
2H-structures even in crystal [172]. The authors [157] have found that one of the 
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ammonium cations is located in the symmetry center. Around the cation are 
placed three independent triazole anions, whose geometrical parameters are 
almost identical (see table). Triazole rings are practically planar (with an accu-
racy of 0.01 A). The nitro groups are located in the planes bounded with the triaz-
ole cycle (deviation is lesser than  1°). All hydrogen atoms of the NH bond 
participate in hydrogen coupling.

The molecule of 4-amino-2-methyl-5-nitro-1,2,3-triazole 1-oxide is nearly planar, 
except that the hydrogen atoms of the methyl group deviate from the ring plane by 
0.505, 0.918, and 0.324 Ǻ [175]. Coplanarity of the nitro group with the ring plane 
(1.8°) is caused by intramolecular hydrogen bond O…H…N (the O…N distance 
is 2.851 Ǻ). This fact also explains an elongation of N6–O8 bond (1.233 Ǻ) relative 
to N6-O7 (1.225 Ǻ).
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The amine atom N9 has planar trigonal geometry, and deviation of the N9 from 
the H10, H11, and C4 plane is 0.05 Ǻ [175]. The molecule of 2-methyl-4,5-dinitro-1, 
2,3-triazole 1-oxide has a similar structure [176]:

120.056

N

N

N

N

O

O

N

O

O

O

H3C

106.567

111.195

105.617

109.955

106.666

120.937

132.932

129.707

N

N

N

N

O

O

N

O

O

O

H3C
1.339

1.331

1.319

1.369

1.336

1.442

1.431

1.268

X-ray diffraction analysis of 2-(3-carboxamidofuroxan-4-yl)-4-nitro-5-carbox-
amido-2H-1,2,3-triazole shows that furoxan and 1,2,3-triazole rings are arranged at 
an angle of 70.2° [177]. The geometry parameters of this compounds are signifi-
cantly different from those of the aforementioned 1,2,3-triazole 1-oxide derivatives 
[175]. This manifests itself in considerable differences between N–N and N–C 
bond lengths (0.03 and 0.04 Å, respectively) and in the pyramidalization of the N2 
atom. The distance between the N2 atom and the planes N1, N3, and C4

fur
 is 0.09 Ǻ, 
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which is maximum for not only this heterocycle but also all 1,2,3-triazoles, in 
which maximum deviation of nitrogen atoms is 0.05 Ǻ, as found by statistical data 
processing. The angle between the plane of 1,2,3-triazole and the N2-C4

fur
 is 11.2° 

[177]. Amide groups participate in the intramolecular interactions and in the forma-
tion of intermolecular N–H…O bonds [2.820(2)–3.191(2) Ǻ], which join molecules 
in hydrogen-bonded layers parallel to the crystallographic plane. The layers are 
joined in a three-dimensional framework through O…O contacts [2.839 Ǻ], formed 
by NO

2
 groups [177].

Nickel [178] and mercury salts of 5-nitrotetrazole [179] were studied using 
X-ray analysis technique.

Crystalline and molecular structure of benzazole nitro derivative has not been 
adequately explored.

5-Nitroindazole has a planar indazole ring, with the N1-bound nitro group 
almost coplanar with the ring [twist angle 3.9(2)°], while the C5-bound nitro 
group is twisted by 19.2(2)° out of the plane of the molecule. The molecules in the 
crystal structure are arranged in plane and connected to each other by weak C–H...O 
hydrogen bonds, with C...O distances of 3.276(3) Ǻ [5]. X-ray analysis data of 
1-tetrazolyl-4,6-dinitroindazole was reported [180], but no details except for the 
presence of three molecules of crystallization water in the compounds are given in 
the work.

X-ray crystallographic structures of nitric oxide synthases cocrystallized with 
nitroindazole – 5-nitro-, 6-nitro-, 7-nitro-, or 3-bromo-7-nitroindazole have been 
established [181].

The molecule of 2-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-nitroindazole in the 
crystal is almost planar: dihedral angles between the plane of the nitro group, phenyl 
substituent, and indazole system are 4.5(8) and 2.5(8)°. The C5–NO

2
 bond length 

is 1.46(1) Ǻ [182].
Wrzeciono et al. have investigated the structure of 4-nitro-7-phenylsulfonylin-

dazole [183] and molecular complexes of 3,5-dinitroindazole with morpholine in 
the ratio of 2:1 [184], with thiomorpholine in the ratio of 1:1 [185], with pyrrolidine 
in the ratio of 1:1 [186], with piperidine and water 2:1:2 [187], with 
N-methylpiperazine and water 2:1:2 [188]. The indazole systems in the complexes 
are approximately planar.

Rapt attention has been focused on the structural studies of benzimidazoles 
exhibiting versatile pharmacological activities [189–204]. The crystal structure of 
5,6-dinitrobenzimidazole monohydrate has been reported [189]. The crystal includes 
one water molecule and one 5,6-dinitrobenzimidazole molecule which form short 
intermolecular N-H…N hydrogen bond [N1…N1¢ 2.883(4), H1…N1 2.03(5) Ǻ, 
N1-H1…N1 172.8(4.5)°], and O

water
-H…O hydrogen bond [O

water
…O

nitro
 2.954(6), 

H
water

…O
nitro

 1.98(5) Ǻ, O–H
water

…O
nitro

 153(9)°] [189]. These hydrogen bonds are 
very effective in holding the molecule in a stable state as a whole, at the same time 
the dipole-dipole and Van der Waals interactions are also effective in molecular 
packing. The close contacts O

nitro
…O

nitro
 2.791(4), O

nitro
…H4 2.551(3), O

nitro
…H7 
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2.724(3) Ǻ cause unavoidable crowding leading to steric hindrances between nitro 
groups, which prevents their rotations freely since there is no space. The phenylene 
fragment is close to planarity while the five-membered ring is planar [189].

5-Nitrobenzimidazole-2-carboxylate 3-oxides on X-ray diffraction data exist in 
N-hydroxy tautomers [190]. In the crystal a strong O-(HN)-N-...intermolecular 
bond gives rise to supramolecular polymeric chains in the lattice.

The phenyl and benzimidazole rings in 6-nitro-1-(2-phenylethyl)benzimidazole 
are each planar and have a dihedral angle of 43.9(1)° [195]. Its crystal structure is 
stabilized by weak intermolecular C–H…N hydrogen-bond interactions [195]. The 
piperidine ring in 5-nitro-1-(2-piperidinoethyl)benzimidazole has the usual chair 
conformation, and the benzimidazole cycle is almost planar [198]. The NO

2
 group 

plane is almost coplanar with the benzimidazole plane. The nitrogen atom of NO
2
 

group deviates from this latter plane by 0.018(2) Ǻ [198]. The bond lengths and 
angles in 1-methoxyethyl-5-nitrobenzimidazole are also unexceptional [197]. The 
dihedral angle between the phenylene and five-membered rings is 0.88(11)°. The 
crystal structure of 1-[2-(5-nitrobenzimidazol-1-yl)ethyl]morpholinium chloride 
exhibits an intramolecular N–H…Cl, and intermolecular C–H…Cl and C–H…O 
interactions [193].

Bond lengths and angles in bis[1-(but-2-enyl)-5-nitrobenzimidazole-kN3]-
dichlorocobalt(II) [200], diaqua-bis(3-hydroxybenzoato-kO)bis(5-nitrobenzimida-
zole-kN3)cobalt(II) bis(5-nitrobenzimidazole) dihydrate [199] and diaqua 
(5-nitrobenzimidazole-kN3)(oxydiacetato-kO,O¢,O″)cobalt(II) monohydrate [194] 
have been reported. The nitro group in the last compound is coplanar with the ben-
zimidazole ring, the maximum atomic deviation being 0.034(2) Ǻ for one of oxy-
gen atoms of NO

2
 group [194]. The Co(II) atom in this compound is coordinated 

by one tridentate oxydiacetate dianion, one monodentate nitrobenzimidazoles mol-
ecule, and two water molecules in a distorted octahedral geometry. The face-to-face 
distance of 3.345(14) Ǻ between parallel nitrobenzimidazole ligands of neighbor-
ing complexes indicates the existence of strong p-p stacking interactions. An exten-
sive hydrogen-bonding network occurs in the compound, and atom H2 is involved 
in a bifurcated C–H O (NO

2
) bond [194].

The structures of 5-nitro-1-(2-piperidinoethyl)-benzimidazole [205],  
1-[2-(5-nitrobenzimidazol-1-yl)ethyl]morpholinium chloride [206], 1-(4-methyl
phenylsulfo-nyl)-5-nitrobenzimidazole [207], 1-(4-methylphenylsulfonyl)-5-nitro-
2-propenyl-benzimidazole [208] and Co-II-containing complexes, accompanied 
by uncoordinated 5-nitrobenzimidazoles and water molecules [209], have been 
determined by X-ray analysis.

The crystal structures of 4-(6-nitro-2-benzoxazolyl)phenyl 4-(acryloyloxyhexyloxy)
benzoate, 2-[4-N,N-bis(2-hydroxyethyl)] phenyl-6-nitrobenzoxazole monohydrate 
(A) and 2-[4-N-(6-hydroxyhexyl)-N-methyl] phenyl-6-nitrobenzoxazole (B) have 
been determined at room temperature by direct methods and refined by full-matrix 
least-squares method [210]. These compounds are monomer precursors of polymers 
with nonlinear optical properties of the second order.
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A

B

N

OO2N

N
(CH2)2OH

(CH2)2OH

N

OO2N

N
(CH2)6OH

CH3

The planar geometry is observed around the nitrogen atom of amino group in A 
and B. Some differences have been found in the molecular geometry of A and B as 
compared on similar benzoxazole derivatives. These differences are caused by the 
strong electron donor effect of the amino group and indicate enhanced conjugation 
in the molecules. The pattern of hydrogen bonding in the two compounds is also 
discussed [210].

The crystal and molecular structure of the potassium methoxide adduct of 
4-methoxy-5,7-dinitrobenzofurazan, K+[(CH

3
O)

2
C

6
H(NO

2
)N

2
O)]− (Meisenheimer 

Complex), has been determined [211]. The two methoxy groups are covalently 
bonded to the same ring carbon atom with an average C–O bond length 1.415(6) Ǻ. 
The sp

3
-hybridized carbon atom (C4) in the ring produces distortions throughout the 

entire molecule. The electron-withdrawing influence of the coplanar furazan ring 
has a pronounced effect on the benzene ring system. The presence of the NO

2
 group 

adjacent to the C1 atom makes a discussion of steric repulsions extremely difficult 
[211]. In 4,6-dinitrobenzofuroxan the 6-nitro group is very nearly coplanar with the 
benzofuroxan ring to give a short “nonbonded” N…O contact of 2.63 Ǻ [212].

In [213] are given the X-ray analysis data related to 4-chloro-7-nitrobenzofurazan. 
The maximal differences in geometry of both independent molecules are observed for 
bond lengths C2–N3 (1.470 and 1.444 Ǻ) and angles of the rotation of nitro groups 
with respect to plane condensed nucleus. The authors explain these differences by the 
effect of neighborhood in the crystal.

The structure of copper(II) complexes of N-substituted nitrobenzothiazole-
sulfonamides has been reported [214].

The crystal structure of 2-amino-4-nitrobenzothiazole consists of centrosymmetric 
dimers, the principal intradimer interaction being two pairs of three-center hydrogen 
bonds involving the amino group, the ring N atom, and one O atom of the nitro group. 
The molecule exists as a resonance hybrid of two tautomers, one neutral and the 
other dipolar. Probably, p-density localized in the N-amino-C-N-ring portion of 
the molecule is in part transferred to the nitro group [215].

The structure of 5,7-dinitro-1-picrylbenzotriazole has been determined by single-
crystal X-ray crystallography [216]. The nitro groups on C5, C7 and C

para
 are 

practically coplanar with their aromatic cycles, while those on two C
ortho

 atoms are 
rotated out of the plane of phenyl ring by approximately 50 and 27°. The phenyl 
and benzotriazole cycles of the molecule are twisted out of coplanarity by rotation 
about the N1–C

ipso
 bond. The four torsion angles about this bond deviate from planar 
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values (0 or 180°) on 78.7–87.4°, with an average deviation (twist) being 83.1°. 
Very similar geometry was also noted for the comparable structure 4,6-dinitro-2-
(2¢,4¢,6¢-trinitrophenyl)benzotriazole 1-oxide. The picryl group in the last com-
pound is substituted onN2 rather N1, and there is an oxygen on N1. The plane of 
nitro groups is twisted by only 27 and 37°, and there is less twist between the phenyl 
and benzotriazole rings than in 5,7-dinitro-1-picrylbenzotriazole, with a range of 
torsions from 60.2 to 116.3° and an average deviation from planarity of 65.9°. This 
difference may be small enough to be due to dissimilarities in the packing of the 
two molecules, but probably indicates increased steric hindrance in 5,7-dinitro-1-
picrylbenzotriazole [216].

Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) spectroscopy provides one of the most powerful 
tools for the investigation of the electron structure, stereo dynamic and chemical 
behavior of organic (including heteroaromatic) compounds. NMR is the most con-
vincing and fastest technique for structure determination in solution, since it can 
provide a wealth of data that can be related to chemical structure, conformation, and 
their relationship or interaction with the surroundings. During the past years due to 
the rapid progress in experimental engineering the performance of previously very 
difficult investigations on poorly abundant 13C, 15N, 17O nuclei which are of key 
importance to the azoles (and heterocycles), has become quite possible and even 
routine procedure. This has greatly extended the capabilities and enhanced the infor-
mation potential of NMR spectroscopy. The matter is that the range of variations (as 
well as the sensitivity toward electron density redistribution) of the chemical shifts of 
these nuclei is some scores as high as that of protons. As a rule, the shielding of these 
nuclei is more strongly dependent on the electron density, hybridization, and surround-
ing of a given atom, the relative influence of outside factors (magnetic anisotropy and 
electric field of neighboring fragments and bonds) being lower compared with that of 
protons. At the same time, in studying the electronic structure of aromatic heteroatom 
compounds by NMR spectroscopy it should be borne in mind that even minor 
changes in tautomer equilibrium constants and conformation of the molecule, tempera-
ture variations, or substitution of solvent can change markedly (and not always in line 
with the degree of electron redistribution) the nuclei shielding.

Multinuclear 1H, 13C, 14N, 15N, 17O NMR spectroscopy is widely used for the 
structural determination of nitroazole derivatives. Some NMR data on the nitroa-
zoles have been published in monographs [217–219], thesis [220], and reviews 
dedicated to five-membered heterocycles [221, 222], the derivatives of pyrazole 
[223–225], isoxazole [226], oxazole [227, 228], thiazole [229], 1,2,4-triazole [230], 
1,2,3-triazole [231, 232], indazole [233], and our reports on trimethylsilylazoles 
[234], NMR of nitroazoles [235], etc. [236–240].

In the following we will dwell upon the most essential results achieved by the use 
of NMR spectroscopy in structural and analytical studies of azole nitro derivatives.
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Pyrazoles

The chemical shift of equivalent H-3 and H-5 signals in unsubstituted pyrazole 
(Scheme 3.1) is 7.61 ppm, those of d 13C-3,5 and d 13C-4 signals being 133.8 and 
104.9 ppm, respectively (acetone-d

6
). The introduction of the nitro group into the 

pyrazole ring position 4 leads to an approximately 1 ppm shift of the H-3,5 signals, 
C-4 (or C-ipso) being shifted by 30 ppm downfield (Table 3.6–3.9) [20, 24, 220, 
221, 225, 241–246]

N
N

H

O2N

N
N

O2N

H

34

5 3

4 5

2 1
21

Scheme 3.1   

Table 3.6  13C NMR Chemical shifts (ppm) and coupling constants (J, Hz) of nitropyrazoles

Compound C-3 C-4 C-5 Solvent Refs

N
N

H

133.71 104.82 133.77 DMSO-d
6

[241]
133.82 104.91 133.83 (CD

3
)

2
CO [243]

N
N

H

O2N 132.53 135.62 132.51 (CD
3
)

2
CO [247]

132.41 136.0 132.44 DMSO-d
6

[241]

N
N

H

NO2 156.62 101.75 133.11 (CD
3
)

2
CO [241]

155.31 102.64 132.82 (CD
3
)

2
CO [243]

155.70 103.42 132.80 CD
3
OD [220]

N
N

H

NO2O2N 135.38 133.58 132.38 CDCl
3

[221]a

N
N

NO2

H

Cl

C

O

CH3

151.45 108.10 134.62 DMSO-d
6

[244]

(continued)
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Compound C-3 C-4 C-5 Solvent Refs

N
N

NO2

H

Br

C

O

CH3

153.27 92.18 136.09 DMSO-d
6

[244]

N
N

H

NO2

O2N

151.5 100.1 151.5 DMSO-d
6

[225]

N
NH3C

CH3

H

O2N 130.04 143.46 130.04 CDCl
3

[221]a

N
N

CH3

NO2 154.9 102.7 134.5 DMSO-d
6

[225]
155.37 103.14 132.64 CDCl

3
[221]a

N
N

CH3

NO2Br 151.5 89.5 136.5 DMSO-d
6

[248]

N
N

NO2

OCH3

148.9 101.6 124.4 CDCl
3

[225]

N
N

CH3

O2N 135.0 134.9 130.6 DMSO-d
6

[225]

N
N

CH3

O2N
137.6 106.3 145.8 DMSO-d

6
[225]

N
N

CH3

O2N

Br 139.5 93.6 142.5 DMSO-d
6

[248]

(continued)

Table 3.6  (continued)
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Compound C-3 C-4 C-5 Solvent Refs

N
N

O2N

CPh3

135.8 134.7 131.4 CDCl
3

[225]

N
N

O2N

Si(CH3)3

138.78 133.96 137.61 Neat liquid [220]

N
N

O2N

SO2Ph

139.85 137.00 131.75 DMSO-d
6

[225]

N
N

NO2

O2N

NF2

153.28 t 
4J

C–F
 1.7

103.80 d 1J
C–H

 199.8 144.24 td 
3J

C–F
 1.8 

2J
C–H

 3.3

(CD
3
)

2
CO [24]

N
N

NO2

O2N

NF2

Cl d19F = 109.87b, pK
a
 (H

2
O) = 2.92 (CD

3
)

2
CO [24]

N

NH2O2N

MeNHCN N

Me

150.3 110.0 147.4 CDCl
3

[20]

N
N

NO2

NC

NF2

O2N d13C = 107.01, 123.18 (CD
3
)

2
CO [24]

d19F 110.96; pK
a
 (H

2
O) 4

N
N

NO2

O2N

NF2

O2N

NO2

O2N

150.34 121.00 142.40 (CD
3
)

2
CO [24]

d13C
108.47 (C-1¢), 125.94 (dd C-3¢, 1J

C–H
 

181.5, 3J
C–H

 7.0), 150.42 (C-4¢), 152.55 
(C-2¢)
d19F 101.11; pK

a
 (H

2
O) 3.5

Table 3.6  (continued)

(continued)
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Compound C-3 C-4 C-5 Solvent Refs

N N N N

NO2
O2N

NO2

NO2

NF2NF2

148.10 128.03t 122.20 (CD
3
)

2
CO [24]

4J
C–F

 1.5

N

N N

N

NO2 NO2

NF2

NO2NO2

F2N

150.45 102.32t 141.43 (CD
3
)

2
CO [24]

4J
C–F

 2.1

N N
N

N

N
O2N

NF2

d19F 111.69; pK
a
 (H

2
O) 3 (CD

3
)

2
CO [24]

a We took the liberty to assign 13C NMR signals of nitroazoles
b d19F are referred to as d19F (CFCl

3
); all pK

a
(H

2
O) values are given for the starting azoles

Table 3.6  (continued)

(continued)

Table 3.7  13C and 15N NMR chemical shifts (ppm) of nitropyrazoles in DMSO-d
 6
a

Compound C-3 C-4 C-5 N-1 N-2 NO
2

Refs

N
N

NO2

CH2COCH
3

155.28 102.80 135.30 −174.0 −76.2 −20.4 [261]

N
N

CH2COCH3

O2N 134.8 134.6 131.1 −174.0 −69.7 −18.8 [261]

N
N

CH2COCH3

O2N NO2
147.06 126.40 135.04 −181.0 −78.1 −26.8(3)-

26.7(4)(14N)
[261]

N
N

NO2NC

H b

156.33 89.58 139.51 −177.0 − −26.2 [262]
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Compound C-3 C-4 C-5 N-1 N-2 NO
2

Refs

N
N

NO2H2NOC

H

153.44 112.93 132.80 − − −19.6 [262]

N
N

NO2HOOC

H b

156.34 108.44 135.71 −182.2 − −20.1 [262]

N
N

NO2Br

H b

153.97 89.47 134.62 −178.2 − −23.6 [262]

N
N

NO2H2N

H

141.61 130.90 119.30 − − −20.3 [262]

N
N

NO2MeO2CHN

H

144.35 129.3 131.99 − − −11.8 [262]

N
N

NO2MeO2CHN

H

O2N

b

144.38 113.29 144.38 − − −27.6 [262]

N
N

C6H5

O2N

Cl

Cl

c

137.0 137.95 137.12 −158.1d − − [263]

N
N

NH2

COCH3

O2N

b

148.55 118.17 138.53 −302.62 NH
2

−18.6 (14N) [264]

a 15 N and 14N chemical shifts are referred to as CH
3
NO

2
b In (CD

3
)

2
CO

c In CDCl
3

d In DMSO-d
6

Table 3.7  (continued)
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Table 3.8  13C, 15N, 17O NMR chemical shifts of N-nitropyrazoles (ppm) a

Compound C-3 C-4 C-5 N-1 N-2 NO
2

17O Refs

N
N

NO2

141.90 110.10 126.71 −108.2 −83.8 −56.6 481.8 [249]
142.0 110.3 128.9 −107.8 −82.9 [243]

N
N

NO2

NO2

153.92 105.40 129.83 −113.1 −93.5 −63.2 482.2 [249]
−25.1 (3) 594.7

N
N

O2N

NO2

135.51 137.09 125.61 −109.9 −84.2 −63.0 – [249]
−23.2 (4)

N
N

CH3

NO2

152.17 110.55 127.40 −112.5 −88.1 −55.7 478.1 [249]

N
N

NO2O2N

NO2

154.08 128.35 128.25 −117.0 −95.5 −68.6 – [249]
−31.0 (3)
−30.7 (4)

N
N

CH3

NO2

O2N 146.40 126.48 135.24 −116.5 −88.6 −62.3 482.5 [249]
−21.1(4) 592.5

N
N

NO2

NO2

H3C

151.96 105.30 143.75 −113.9 −92.3 −59.7 494.6 [249]
−24.2(3) 593.2

N
N

NO2NC

NO2

151.52 92.70 135.38 −113.3 −91.6 −68.0 – [249]
−30.2(3)
−109.4(CN)

(continued)
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Compound C-3 C-4 C-5 N-1 N-2 NO
2

17O Refs

N
N

CH3

NO2

O2N

H3C

144.98 133.43 140.67 −114.8 −91.7 −58.8 497.8 
595.5

[249]
−18.9(4)

N
N

NO2

NO2

H3C

O2N 144.75 126.51 142.21 −118.8 −98.5 −65.7 – [249]
−29.8(3)
−28.8(4)

N
N

NO2

NH2O2N 150.28 130.83 128.24 – – −64.6 – [264]
−26.6 
(4)14N

N
N

NO2

NHCOCF3O2N 137.64 130.57 127.49 – – −65.2 – [264]
−25.2(4)

N
N

NO2

N
N

O2N

NO2 137.07 134.18 128.10 −113.5 (−83.3) −64.5 – [265]
(140.6) (113.95) (127.65) (−107.2) −23.7(4)

(−60.1)

a 17 O – in acetonitrile, 13C, 14N, 15N – in acetone-d
6

Table 3.8  (continued)

The C-3,5 carbon chemical shifts, on the contrary, change only slightly 
(Dd ~ 1  ppm) when the nitro group is introduced into position 4 [221, 241, 243, 
247]. It should be noted that the change in the ipso-carbon chemical shift both in 
nitrobenzenes (Dd ~ 20 ppm) and nitropyrazoles (Dd ~ 30 ppm) is likely to be caused 
by some factors having nothing to do with the electron density on this carbon atom. 
The introduction of the nitro group into the pyrazole ring position 3 does not affect 
much C-4 and C-5 compared with unsubstituted pyrazole. At the same time, the 
substitution of the proton in position 1 by a nitro group considerably redistributes 
the chemical shifts of protons and carbons in the pyrazole ring (Tables 3.6–3.8) 
[225, 240, 243, 249].
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Table 3.9  13C, 15 N NMR chemical shifts of N-aminonitropyrazoles (DMSO-d
6
) [266]

Compound C-3 C-4 C-5 N-1 N-2 N-NH
2

NO
2
 (NH

2
)

N
N

NO2

NH2

152.96 102.17 132.80 −158.3 −78.3 −290.3 −20.4

N
N

NH2

O2N

133.60 104.72 142.26 − − − −

N
N

O2N

NH2

132.96 133.33 128.32 −156.7 −69.9 −29.3 −18.7

N
N

O2N

NH2

CH3 142.89 130.84 129.34 −163.5 −73.6 −292.2 −

N
N

O2N

NH2

H3C

132.86 130.84 129.34 −163.5 −73.6 −292.2 −

N
N

NO2

NH2

H3C

150.24 100.36 140.75 −159.5 −65.3 −296.6 −

N
N

NH2

O2N

CH3 142.11 103.03 142.05 − −79.8 −311.6 −

N
N

O2N

NH2

H2N

131.13 116.16 144.67 −190.3 −88.1 −306.8 (−326.9)

(continued)
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Compound C-3 C-4 C-5 N-1 N-2 N-NH
2

NO
2
 (NH

2
)

N
N

O2N

NH2

NH2 149.10 118.65 126.18 – – −291.1 (−320.1)

N
N

NO2NC

NH2

150.62 87.30 137.91 −156.6 −74.5 −287.13 −26.2

N
N

O2N

NH2

COOH 136.97 131.29 129.79 – – – –

N
N

O2N

NH2

CONH2
140.11 130.09 129.10 −160.8 – −291.0 (−268.8)

N
N

O2N

NH2

H2NOC

132.46 130.12 134.71 −159.9 −73.6 −293.5 (−264.6)

N
N

NH2

O2N

NO2Cl 155.19 115.03 149.90 – – −236.2 −28.6

A new class of N-substituted azoles, the nitrated N-(difluoroamino)azoles (pyra-
zoles, imidazoles and 1,2,4-triazoles), were synthesized from NH-azoles, whose 
NH-acidity is pK

a
 < 5, and their structures were confirmed by 1H, 13C, 14N, 15N, and 

19F NMR spectroscopy (Tables 3.6, 3.10, 3.21) [24, 25]. The compounds are ther-
mally unstable and highly sensitive to mechanical impact. The chemical shifts of 
the N–NF

2
–group in the 19F NMR spectra of nitrated N-(difluoroamino)azoles have 

a small sensitivity to changing the azole-cycle (+99 to +111 ppm) (Tables 3.6, 3.10, 
3.21) [24]. The 19F NMR spectrum of bis-dinitropyrazole (Table 3.6) shows two 
doublets with 2J = 500 Hz rather than a singlet as in the spectra of other compounds 
containing the N-(difluoroamino)-groups. Probably some magnetic nonequivalence 

Table 3.9  (continued)
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Table  3.10  13C, 14N, and 15N NMR chemical shifts (ppm) and coupling constants (J, Hz) of 
nitroimidazoles (DMSO-d

6
)

Compound C-2 C-4 C-5 14N or 15N Refs

N

N

H

2

4

5

3 135.8 122.2 122.2 −167(3) [339]
135.4 121.9 121.9 [321]

N

N

H

O2N 136.0 −149.2 119.2 −202(5) [102]
136.7 119.8 −16(2) NO

2
[339]

N

N

H

O2N

CH3

145.8 148.0 119.5 −203(5) [322],
−16(2) NO

2
[339]

N

N

CH3

O2N 136.61 148.0 120.19 −208(5) [221]a

138.6 147.8 123.1 −17(2) NO
2

[322,  
339]

N

N

CH3

O2N

H2N

143.97 b 132.46 −218.8 N-1 [220]
−126.3 N-3
−26.1 NO

2

N

N

CH2CH2OH

O2N 137.80 147.03 121.99 −217.0 N-1 [220]
−120.2 N-3

N

N

CH2CH2OH

O2N

CH3

151.7 133.2 138.4 −217.0 N-1 [329]
−120.2 N-3

N

N

CH2CH(OH)CH3

O2N

CH3

151.9 132.9 138.5 −216.2 N-1 [329]
−120.4 N-3

(continued)
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Compound C-2 C-4 C-5 14N or 15N Refs

N

N

CH2CH2N

O2N

O

143.4 133.1 138.4 −211.8 N-1 [329]
−120.3 N-3
−341.7 N

mor

−25 NO
2

N

N

CH2CH2SO2CH2CH3

O2N

CH3

151.4 133.0 138.3 −219.0 N-1 [329]
−119.7 N-3

N

N

CH3

O2N

CH3

146.10 145.07 120.71 13C others [221]a 
[322]145.66 145.66 12.85 CH

3
 

35.02 NCH
3

122.91

N

N

CH3

O2N

141.52 132.87 138.87 13C others [221]a

143.52 133.11 139.45 35.02 NCH
3

[322]

N

N

CH3

O2N CH3

149.98
151.14

131.89
132.23

Not 
observed

13C others [221]a 
[322]13.70 CH

3

35.83 NCH
3

N

NO2N CH3

CH2CHO

138.82 132.85 152.22 13C others [323]
196.14 CHO
54.99 CH

2

14.04 CH
3

N

NO2N CCl3

CH3 c

145.82 129.12 145.82 13C others [323]
35.83 NCH

3

87.31 CCl

N

NO2N C

CH3

C

Cl

CH3

CH3
c

143.07 131.87 139.87 13C others [323]
21.23, 21.66 
CH

3

34.02 NCH
3

111.71 CCl
147.65 CCH

3

Table 3.10  (continued)

(continued)



193Nuclear Magnetic Resonance

Compound C-2 C-4 C-5 14N or 15N Refs

N

N

O2N

O2N

H  d

133.4 134.9 134.9 −158(3) [339]
−28(1) NO

2

N

N

H

NO2

O2N 144.0 – 123.1 – [102]

N

N

NO2

O2N 132.5 – 115.5 – [102]

N

N

O2N

O2N

H

CH3

d

144.0 133.9 133.9 −160(3) [339]
−27(1) NO

2

N

N

CH2COCH3

O2N 138.20 146.80 122.6 −208.0 N-1 [261]
−126.7 N-3
−18.3 NO

2

N

N

CH2COCH3

O2N

O2N

137.20 140.90 129.90 −213.5 N-1 [261]
−130.7 N-3
−32.6 5-NO

2

−24.0 4-NO
2

N

N

CH3

NO2

136.63 128.63e 127.59e – [220]

N

N

CH2COCH3

NO2O2N

– – – −213.10 N-1 [261]
−129.7 N-3
−31.10 
2-NO

2

−22.7 4-NO
2

Table 3.10  (continued)

(continued)
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of the fluorine atoms in the NF
2
 group is observed. The presence and mutual 

arrangement of the difluoroamino and nitro groups in N-(difluoroamino)azoles was 
confirmed by 13C–{1H, 14N} triple heteronuclear resonance.

NMR spectroscopy is known to be practically the only convenient method for 
the investigation of tautomerism, which allows evaluation of the thermodynamical 

Compound C-2 C-4 C-5 14N or 15N Refs

N

N

CH2COCH3

O2N

O2N N

N

CH2COCH3

NO2

NO2

132.38 139.89 133.81 −35.0 5-NO
2

[261]
−27.6 4-NO

2

N

N

O2N

N

N

Cl

F

119.0 149.8 136.6 13C other [340]
144-1 C–N
147.8 C–Cl
149.8 C–F
151.4 C–H

f

N

N

O2N

NF2

NO2

f

137.58 d 
3J

C–H
 8.2

142.87 d 
2J

C–H
 2.6

115.11 dt 
1J

C–H
 213.2 

J
C–F

 4.9

−36.67 
2-NO

2

[24]

−25.68 
4-NO

2

−127.55 N-3
−62.50 t, NF

2
1J

N–F
 168, in 

CDCl
3

N

N

O2N

NF2

O2N

g

129.54 dt 
1J

C–H
 233.9 

3J
C–F

 5.0

138.37 d 
3J

C–H
 12.8

128.37 −32.41 
4-NO

2

[24]

−42.95 
5-NO

2

−127.92 d, 
N-3,
2J

N–F
 12.6

−69.07 t, NF
2

1J
N–F

 166, in 
CDCl

3

a CDCl
3
 assignment of 13C signals was made here

b Signal C-4 is not seen due to a broadening caused by the presence of neighboring nitro group
c In CDCl

3
d In (CD

3
)

2
CO

e Assignment of these signals may be reversed
f In (CD

3
)

2
CO, d19F = 99.51, d1H = 8.79, pK

a
(H

2
O) 2.85

g In (CD
3
)

2
CO, d19F 100.46, d1H = 8.29 (t, H-2, 4J

H–F
 1.1), pK

a
(H

2
O) 3.39 – all pK

a
(H

2
O) values are 

given for the starting azoles

Table 3.10  (continued)
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characteristics of exchange processes. This is also stated in the known monograph 
on tautomerism [219] and a series of works by Elguero and coauthors [for example, 
250–253]. Therefore let us consider briefly some of these statements.

In normal conditions the 3,5-protons of 4-nitropyrazole (for example) are equivalent 
as a result of prototropic exchange (Scheme 3.2). A decrease in temperature splits 
the H-3,5 signal into two. The barrier of this tautomeric process in 4-nitropyrazole 
in acetone, free energy of activation ( ¹D cG ) was evaluated to be 10 kcal/mol [247, 
254]. This value does not change much with introducing the methyl groups into the 
4-nitropyrazole positions 3 and 5 ( ¹D cG  = 9.5 kcal/mol, acetone) [247]. In methanol 
the barrier value is significantly higher both for 3,5-dimethyl-4-nitropyrazole 
(12.1 kcal/mol) [251] and 4-nitropyrazole (12 kcal/mol) [220]. A prototropic process 
depends upon a solvent nature.

The silylotropic exchange process in azoles is known to be rather slow in the 
NMR time scale. The migration dynamics can be observed only at high temperatures. 
With increasing temperature, the Me

3
Si group in N-trimethylsilylazoles is prone to 

reversible 1,2-migration (Scheme 3.3) [220, 234, 255].

The free energy activation of silylotropy in 4-substituted N-trimethylsilylpyrazoles 
(4-R-1-TMC-pyrazoles) determined by dynamic NMR method is poorly dependent 
on the nature of substituent in position 4 [220, 255]. Whereas the d29Si in 

N
N

H

R

R

O2N

N
N

R

R

O2N

H

R = H, CH3

∆Gc
≠ =9.5 – 12 kcal/mol 

Scheme 3.2   

N
N

SiMe3

R

N
N

R

SiMe3

R = NO2, Cl, Br, I, H, CH3, SiMe3

34

5 3

4
5

∆Gc
≠ = 22-24 kcal/mol 

R = NO2

δ1H (ppm): 0.56 (CH3), 8.15 (H-5), 8.41 (H-3) 
δ13C (ppm): −1.37 (CH3), 133.96 (C-5), .137.61 (C-4), 138.78 (C-3) 
δ29Si (ppm): 22.1 

Scheme 3.3   
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N-trimethylsilylpyrazoles is sensitive to the influence of substituent in position 4, 
the increasing electron-withdrawing properties of those decrease the screening of 
silicone nucleus (12–22 ppm) [220].

The substituent effects in 4-substituted N-trimethylsilylpyrazoles are transmitted 
from position 4 to the silicon atom by the inductive mechanism in large measure 
(a>b) (~60%) by using substituent constants (XY) sI sR

, sI sR
o , sI sR

−, and sI sR
+ 

according to equation (3.1) [220]:

N
N

SiMe3

R d 29Si = aX + bY + d (3.1)

R = OCH
3
, CH

3
, H, Ph, Cl, Br, I, CN, NO

2

By use of 13C CP MAS NMR (crosspolarization/magic angle spinning) and 
X-ray diffraction the structure of 3(5)-methyl-4-nitropyrazole in the solid state was 
examined [252]. Desmotropy in azoles has been revealed for the first time. This 
means that the two tautomers, 3-methyl-4-nitro- and 5-methyl-4-nitropyrazole, are 
crystallized in two different crystals [252, 256]. The problem of proton transfer in 
solid-state heterocycles, including nitropyrazoles, was studied by CP MAS NMR 
and X-ray structural analysis [253, 257]. The kinetics of degenerate intermolecular 
triple proton and deuteron transfers in the cyclic trimer of polycrystalline 4-nitrop-
yrazole (15N-labeled) has been studied as a function of temperature and is compared 
to the kinetic of triple proton transfer in bulk solid 3,5-dimethylpyrazole. The 
results show that the transfer kinetics in the new trimer is much faster than that in 
3,5-dimethylpyrazole. Nevertheless, the kinetics of HHH/HHD/HDD/DDD isotope 
effects of 4-nitropyrazole is similar to that of 3,5-dimethyl derivative [257].

It has been noted [258–260] that the introduction of the electron-withdrawing 
nitro group into the 1-vinylpyrazole ring shifts downfield the signals of all protons. 
To evaluate the portion of S-cis (N-2) (I) and S-trans (N-2) (II) isomers of 1-vinyl
pyrazoles the DJ parameter has been proposed (DJ = 1J CbHa

–1J CbHb
) 

(Scheme 3.4).

On the basis of DJ analysis approximately equal proportions of forms I and II 
for the earlier-mentioned compounds have been suggested by the authors. The 

N
N

C
C

Ha

Hb
Hx

R

N
N

C
C

Hx

Ha

Hb

R

I II

R = Br, CH3, NO2

Scheme 3.4   
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introduction of the methyl group into the pyrazole ring position 5 leads to stabiliza-
tion of the S-cis (N-2) conformer. The presence of the nitro group in the pyrazole 
ring position 4 considerably weakens the ring-vinyl group p-p conjugation both in 
1-vinylpyrazoles and their 5-methyl derivatives, the conformer occupation remaining 
unchanged.

A large series of nitrated pyrazoles has been studied by 1H, 13C, 14N, 15N NMR 
spectroscopy at the Moscow Institute of Organic Chemistry (Tables 3.7–3.9) [249, 
261, 262, 264, 265, 267–271]. Comparison of the 13C chemical shifts of 1-nitropy-
razole [249], 1-acetonyl- [261], 1-amino- [266], and 1-methylpyrazole [225] shows 
that dC-3 > dC-5 > dC-4. This seems to be due to different electronegativities of the 
“pyridine” and “pyrrole” nitrogen atoms [249]. The substitution of the methyl 
group in position 1 by NO

2
 causes a 60–70 ppm increase in d 15N-1 and a 12–18 ppm 

decrease in d 15N-2.
Comparing the 15N chemical shifts of the nitro group in N-nitropyrazoles with 

those in N-nitramines of the aliphatic series and nitronium tetrafluoroborate, it has 
been suggested [229, 268] that the N–NO

2
 bond ionicity increases on going from 

N-nitramines to N-nitropyrazoles.
The resonance signal of 15N-1 in pyrazoles depends primarily on the nature of 

substituent attached to this atom (ipso-substituent). For example, if a nitro group is 
introduced into position 1, the d15N is in a range from −108.2 to −117 ppm depend-
ing on the pyrazole ring substituent, whereas with an analogous introduction of 
NH

2
–, C

6
H

5
–, CH

2
COCH

3
– groups or H, d 15N-1 is observed in a range of −156.8 

to −190.4, −158.13, −174 to −181, and −177 to −182 ppm, respectively. The 15N-2 
chemical shifts depend on the substitution in position 1 to a smaller extent and are 
mainly caused by the effect of substituent in position 3.

The nitro group N-15 chemical shift is chiefly dependent on the nature of atom 
attached to the NO

2
 – group (d15N of the N–NO

2
 fragments is in the −55 to −69 ppm 

range, while that of C–NO
2
 can be seen in the −11.9 to −30.8 ppm range). As seen 

from Tables 3.7–3.10, d15NO
2
 of C-nitropyrazoles is fairly sensitive to the effect of 

substituents at neighboring atoms. Evidently, this can be explained by disturbance 
of the nitro group pyrazole ring plane coplanarity.

There has been some interest in the chemistry of aminonitroazoles when used as 
high energetic compounds. Data concerning direct introduction of the amino group 
into the nitroazole cycle have been absent in the literature till the present time. We 
have studied the vicarious nucleophilic substitution of 1-methyl-4-nitropyrazole 
and also 1-methyl-4-nitroimidazole (Table  3.10), 4-nitro-2-phenyl-1,2,3-triazole 
(Table 3.24), and nitrobenzimidazoles (Table 3.25) under the effect of 1,1,1-trim-
ethylhydrazinium halides and 4-amino-1,2,4-triazole by NMR spectroscopy 
(DMSO-d

6
) (Scheme 3.5) [220, 272–278]:

In the case of using 4-amino-1,2,4-triazole as an aminated agent an additional 
product was obtained – (1-methyl-4-nitropyrazol-5-yl)(1,2,4-triazol-4yl)amine. To 
our surprise the nitrogen chemical shift of the NO

2
 group in these compounds is in 

higher field than the ones in the nitropyrazoles. Probably, the shielding of the nitro-
gen nuclear of nitro group is increased by sacrificing the formation of hydrogen-
bond type N–H…O–N:
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N
N

CH3

N
H

O N

N

N N

O

1'
2'

3'
4'

5'
1

2

34

5

In [267] some data on 17O NMR study of nitropyrazoles are presented. The 17O 
chemical shifts of N–NO

2
 and C–NO

2
 groups (478–498 and 592–596 ppm, respec-

tively) are in lower field compared with NO
2
BF

4
 (420 ppm).

1H and 13C NMR spectroscopy provides a convenient tool for the identification 
of the nitration products of methylpyrazole [279, 280] and 1,3- and 1,5-diphe-
nylpyrazoles [281]. C.L. Habraken et al. have investigated the reactions of “cine”-
substitution of a large series of N-nitroazoles (including C-nitropyrazoles) 
[282–287] by 13C NMR spectroscopy. It should be mentioned that in [285] the 
characteristics of the proton spectra of 4-nitro-3(5)-(4¢-nitro-1¢-pyrazolyl)pyrazole 
and 4-nitro-3(5)-(4¢-nitro-1¢-pyrazolyl)-5(3)-(1″-pyrazolyl)pyrazole are presented. 
Analysis of the 19F NMR spectra of fluorinated nitropyrazoles has been carried out 
[288, 289].

The assignment of the H-3 and H-5 signals in several N-substituted nitropyrazoles 
was made by the use of NOE (Nuclear Overhauser Enhancement) difference spec-
troscopy [290]. NMR spectroscopy was employed for the investigation of metallotropic 
transitions in nitropyrazole organomercury derivatives [291]. By means of 1H NMR 
spectroscopy the solvation effects of 4-substituted-1,3,5-trimethylpyrazoles in binary 
solvents (CCl

4
/C

6
H

6
, benzene molar fractions) were studied [292]. The author of this 

N
N

O2N

CH3

N
N

O2N

CH3

H2N

(CH3)3N NH2    X

X = Cl, Br, I

NN

N

NH2N
N

O2N

CH3

N

H

N

N
N

δ13C, ppm δ15N, ppm δ13C, ppm δ15N, ppm 

34.02 CH3

128.39 C-3 
146.20 C-4 
155.04 C-5 

−41.0 NO2

−64.3 N-1',2' 
−117.0 N-2 
−180.8 N-4' 
−220.5 N-1 
−305.5 NH

35.04 CH3

117.84 C-4
134.37 C-3
146.01 C-5

−40.5 NO2

−92.1 N-2 
−207.2 N-1 
−316.9 NH2

Scheme 3.5   
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work also carried out a quantitative evaluation of the effect of substituents in position 
4 on the CH

3
 group protons in position 1 with respect to the s

p
- and s

m
-Hammett 

constants (R = 0.95, r = 0.159). The conclusions on correlation equations analysis [56] 
should be treated with care, since the Hammett constants in their initial form are 
shown to be of little use with heterocycles [293].

On the basis of NMR spectroscopy data the internal rotation barriers for N(CH
3
)

2
 

groups in twenty 1-(N,N-dimethylthiocarbamoyl)pyrazole derivatives were deter-
mined [294].

The internuclear distance between the carbon atoms attached to the nitro group 
and the methyl group of 3-nitro- and 5-nitro-1-methyl-4-bromopyrazole (3.7 and 
2.9 Å, respectively) was estimated by use of measured values of dipolar relaxation 
times T

1
 DD [248].

The structure of 4-substituted 3,5-bis(2-pyridyl)pyrazoles [245], seventeen 
C-nitropyrazoles affected ocular blood flow and retinal function recovery after 
ischemic insult [244], and a large series of nitroazoloanhydrosacchares [295] has 
been determined by 1H and 13C NMR method.

The proton spectra of 1-substituted 3-nitropyrazoles [296], 5-substituted 
3-methyl-1-aryl-4-nitropyrazoles [297, 298], 1,3- and 1,5-diphenyl-4-nitropyra-
zoles [281], 5-iodo-4-nitro-1,3-dimethylpyrazole [299], 1-methyl-3-nitro-4- and 
1,3-methyl-4-nitro-5-phenylethynylpyrazoles [300], 1-methyl-3-nitro-5-methoxy-
carbonylpyrazole [301], 1-methyl-3-nitro- and 1-methyl-5-nitro-4-cyanopyrazoles 
[302], N-(2,4-dinitrophenyl)nitropyrazoles [303], a− and b−anomers of 3-nitro- 
and 4-nitropyrazolyl-1-ribonucleosides [304, 305], 3-substituted 1,5-dimethyl- [306] 
and 5-substituted 1,3-dimethyl-4-nitropyrazoles [279], 1-acetyl-3-anilino-4-nitro-5-
dimethylaminopyrazoles [307], 3-substituted 4-nitro-5-carboxylic acid derivatives 
[308, 309], 4-nitropyrazolo[4,3-e][1, 4]diazepin-5,8-diones showing antimicrobial 
activity [310], 1-heteryl-4-nitropyrazole derivatives [311], 3-nitro- and 5-nitro-1-
methylpyrazole [312], 4-nitro-5-(trimethylsilyl)pyrazole [313], 3-methyl-4-nitro-
pyrazol-5-ones [298], and some other nitropyrazoles [248, 314–320] have been 
examined.

Imidazoles

As with pyrazoles, the introduction of the nitro group into the imidazole ring position 
4(5) leads to an approximately 30 ppm lowfield shift of the ipso-carbon signal reso-
nance (Tables 3.6 and 3.10) [24, 321–329]. Thus, the chemical shift of the carbon 
atom bonded to the NO

2
 group (C-ipso) is 149.2 ppm, whereas that of neighboring 

carbon (C-5) is 119.8 ppm. In 1-substituted 4-nitroimidazoles (Table 3.11) the shifts 
of the same carbons are 146 ± 1 and 122 ± 2 ppm, while in 1-substituted 5-nitroimida-
zoles they are 138 ± 1 and 132 ± 1 ppm, respectively (Table 3.12). All this may be 
indicative of the possible existence of 4(5)-nitroimidazole as a 4-nitro tautomer. 
Moreover, another support for the structure may be provided by comparison of the 
proton spin-spin coupling constants – 1J, 2J and 3J (1H–1H) [321, 322, 330].
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The problem of structural identification of 1-substituted nitroimidazoles by 
NMR spectroscopy has been considered in many works [322, 328, 331–336]. In 
[333] an interesting approach to the structure determination of isomeric 4-nitro- and 
5-nitro-1-organylimidazoles has been proposed (Tables 3.13 and 3.14). It is based 
on different directions of the shifts of ring proton and carbon signals in going from 
neutral molecule to the cation. The 5-nitro derivatives possess a much higher bio-
logical activity than the 4-nitro isomers; hence, it is important that an unambiguous 
method of structure assignment be available [79]. To our great surprise the 13C 
NMR spectrum of 1-(2¢,4¢-dichlorophenyl)-2-(4-nitro-1H-1-imidazolyl)ethanone 
(acetone-d

6
, 56.1, 123.0, 128.0, 130.9, 132.2, 132.7, 133.1, 138.1, 138.9, 147.1, 

192.7 ppm) is presented without signal assignment [328].
13C, 14N, and 15N NMR spectroscopy was used for the examination of nitroimi-

dazole derivatives (Table 3.10) and their cations and anions (Table 3.15) [337, 338]. 
As seen from Table 3.10, the chemical shifts of the “pyridine” nitrogen atom of 
nitroimidazoles lie in the −130 ppm range, whereas those of the “pyrrole” nitrogen 
are located in the −208 to −219 ppm range. This is in higher field compared with 
the corresponding nitropyrazoles.

Table 3.11  13C NMR chemical shifts of 1,2-disubstituted  
4-nitroimidazoles in DMSO-d

6
 (ppm)

N R
1

R
2

C-2 C-4 C-5 Ref.

1 CH
3

CH
3

145.66 145.66 122.91 [322]
2 CH

2
CH

3
CH

3
144.94 145.80 121.57 [322]

3 CH
2
CH

2
Cl CH

3
145.16 145.76 121.79 [322]

4 CH
2
CH

2
OH CH

3
145.69 145.46 122.44 [322]

5 CH
2
CO

2
H CH

3
145.75 145.16 122.75 [322]

6 CH
2
CO

2
CH

3
CH

3
145.56 145.56 121.34 [322]

7 CH
2
CO

2
C

2
H

5
CH

3
1465.16 146.16 122.98 [322]

8 CH
2
CH

2
CN CH

3
145.29 145.63 121.81 [322]
146.1 146.5 122.0 [344]

9 CH
2
CH

2
CO

2
H CH

3
145.37 145.62 121.89 [322]
145.76 146.0 122.43 [344]

10 CH
2
CH

2
CO

2
CH

3
CH

3
145.23 145.66 121.59 [322]

11 CH
2
C

6
H

5
CH

3
145.14 145.14 122.48 [322]

12 CO
2
CH

2
C

6
H

5
CH

3
147.29 145.80 119.31 [322]

13 CO
2
C

2
H

5
CH

3
145.69 145.46 122.44 [322]

14 (C
6
H

5
)

3
C CH

3
147.76 145.54 121.71 [322]

15 CH
3

CH(CH
3
)

2
153.23 146.69 123.07 [322]

16 CH
2
C

6
H

5
CH

3
145.02 145.39 122.43 [345]

17 CH
2
CH

2
SO

2
C

2
H

5
CH

3
146.3 146.3 122.7 [344]

18 CH
2
CH

2
CO

2
C

2
H

5
CH

3
145.95 146.41 122.41 [344]

19 CH
2
CH

2
COCH

3
CH

3
146.23 146.51 122.57 [344]

N

N

R1

O2N

R2
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Table 3.12  13C NMR chemical shifts of 1,2-disubstituted-5-nitroimidazoles 
in DMSO-d

6
 (ppm) .

N R
1

R
2

C-2 C-4 C-5 Ref.

1 H CH
3

145.0 147.0 119.2 [346]
2 CH

3
a CH

3
150.1 132.2 139.8 [346]

CH
3

CH
3

151.14 132.23 – [322]
3 CH

2
CH

2
OH CH

3
151.8 132.8 138.3 [346]
151.09 132.90 138.54 [322]
152.46 131.26 139.47 [347]b

4 CH
2
CH

2
Cl CH

3
151.7 133.1 138.4 [346]
151.90 133.20 138.48 [322]

5 CH
2
CH

2
NH

2
CH

3
151.1 129.1 138.5 [346]

6 CH
2
CH(OH)CH

2
Cl CH

3
151.9 132.5 139.0 [346]

7 CH
2
CH

2
 +NC

5
H

5
a CH

3
151.7 133.5 138.4 [346]

8 CH
2
CH

2
 +NC

5
H

5
c CH

3
152.4 133.4 138.3 [346]

9 CH
2
CH

2
+NC

5
H

2
(CH

3
)

3
CH

3
151.1 133.5 138.5 [346]

10 CH
2
CH

2
+NC

5
H

4
(C(CH

3
)

3
) CH

3
151.7 133.6 138.5 [346]

11 CH
2
CH

2
 +NC

5
H

2
(C

6
H

5
)

3
CH

3
151.0 131.1 138.2 [346]

12 CH
2
CH

2
+NC

5
H

4
(CONH

2
)c CH

3
153.0 134.3 138.9 [346]

13 CH
2
CH

2
+NC

3
H

3
NCH

3
CH

3
151.3 133.2 138.3 [346]

14 CH
2
CH

2
NC

5
H

8
CH

3
151.6 133.0 138.6 [348]

15 CH
2
CH

2
+NC

5
H

9
CH

3
150.9 131.1 138.2 [348]

16 CH
2
CH

2
NC

5
H

7
(C(CH

3
)

3
) CH

3
151.3 131.5 138.4 [348]

17 CH
3

CH
2
+NC

5
H

9
145.41 120.52 146.27 [348]

18 CH
2
CH

2
(OH)CH

3
a CH

3
145.41 120.52 146.27 [349]

19 CH
2
CH

2
OH CH

2
OH 147.56 123.22 145.11 [349]

20 CH
2
COOCH

3
CH

2
OH 147.62 123.99 145.11 [349]

21 CH
2
COOC

2
H

5
a CH

2
Br 142.87 122.50 146.28 [349]

22 CD
2
COOCD

3
d CH

2
OH 146.56 123.79 151.83 [349]

23 CH
2
COOCH

3
CH

3
151.43 131.60 138.59 [322]

24 CH
2
COOH CH

3
151.56 132.21 138.61 [322]

25 CH
2
COOC

2
H

5
CH

3
151.53 132.10 138.70 [322]

26 CH
3

CH(CH
3
)

2
157.84 132.04 138.60 [322]

27 CH
2
CH

2
CN CH

3
152.48 134.1 139.20 [344]

28 CH
3

COH 141.2 132.1 143.1 [350]
141.4 131.8 143.4 [350]b

29 CH
3

C(OH)
2
H 152. 3 130. 8 – [350]

aIn CDCl
3

bIn CD
3
COOD

cIn D
2
O

dIn CD
3
OD

N

N

R1

R2O2N

The N-NF
2
–group in 15N NMR spectra of nitrated N-(difluoroamino)imidazoles 

manifests itself as a triplet with chemical shifts from –60 to –70  ppm and 1J
N–F

 
coupling constants of 166–168 Hz (see Table 3.10) [24].
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The chemical shifts of the carbon atom bonded to the nitro group qualitatively 
correlate with the carbon electron density. When several nitro groups are introduced 
a considerably worse additivity of 13C chemical shifts compared with benzene 
derivatives is observed. The experimental 13C shielding in dinitroimidazoles is 
smaller than that calculated by the additive scheme, and this points to a less clearly 
displayed conjugation between the nitro group and the imidazole ring compared 
with the benzene ring [339].

Compared with neutral molecules, the anions and cations of nitroimidazoles are 
characteristic of correspondingly low field and high field 14N and 13C nuclei reso-
nance shift (Table 3.15) [337]. This trend in the NMR signal shifts of all nuclei can 
only be explained in terms of a change in average excitation energy, E, and this is 
supported by UV spectroscopy data. On the basis of qualitative evaluation it is 
stated that approximately one-third of the anion total negative charge is localized 
on the nitro group, thus giving rise to an anomalous change in the 13C shift [337].

Table 3.13  1H NMR chemical shifts (ppm) of 4-nitroimidazoles (DMSO-d
6
) and their cat-

ions (CF
3
CO

2
D) [333]

R
1

R
2

N

N

R1

R2

O2N
N

N

R1

R2

HO2N

DdH DdC

H-5 C-5 H-5 C-5

p-C
6
H

4
NO

2
CH

3
8.72 122.06 8.37 123.54 −0.34 1.48

p-C
6
H

4
NO

2
H 8.67 119.23 8.55 121.35 −0.11 2.12

p-C
6
H

4
COOH CH

3
8.66 122.06 8.34 123.32 −0.36 1.26

p-C
6
H

4
NH

2
CH

3
8.38 122.36 8.36 123.39 −0.02 1.03

p-C
6
H

4
NCOCH

3
CH

3
8.52 122.20 8.27 123.19 −0.25 0.99

Table 3.14  1H NMR chemical shifts (ppm) of 5-nitroimidazoles (DMSO-d
6
) and their cations 

(CF
3
CO

2
D) [336]

R
1

R
2

N

N

R1

R2O2N

N

N

R1

RO2 2N

H

DdH DdC

H-4 C-4 H-4 C-4

p-C
6
H

4
NO

2
CH

3
8.22 132.45 8.51 122.52 0.28 −9.93

CH
2
CH

2
OH H 8.02 132.65 8.36 122.99 0.34 −9.41

CH
2
CH

2
SO

2
C

2
H

5
CH

3
8.04 122.80 8.40 123.39 0.35 −9.66

CH
2
CH

2
N(CH

2
CH

2
)O H 8.06 132.88 8.52 124.46 0.45 −8.42
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Table 3.15  13C and 14N NMR chemical shifts of nitroimidazole anions and cations (H
2
O, ppm) 

[337]

Compound C-2 C-4 C-5 14N

N

N

143.8 125.9 125.9 −147(3)

N

N

O2N 147.5 147.8 133.4 −129(5)
−14.2 

NO
2

N

N

O2N

CH3

157.5 147.0 134.7 −129
−19 NO

2

N

N

O2N

O2N

140.9 140.3 140.3 −17 NO
2

N

N

H

H

134.1 119.7 119.7 −207(2)

N

N

O2N H

H

136.4 139.3 121.0 −201(5)

Thermal and solvent effects on the chemical shifts 13C and 15N of metronidazole 
[329] and transition-metal complexes with dimetridazole [341] were studied com-
putationally with appropriate quantum-chemical methods. These effects can be 
notable, in particular for N-3 atom, which bears a lone pair amenable to hydrogen 
bonding with aprotic solvent. A DFT-based molecular dynamics simulation of the 
bulk aqueous solution offers a realistic description of the system, and good agree-
ment is obtained between observed chemical shifts 13C and 15N and computed val-
ues averaged over the MD trajectory. A similar accord is obtained with a much less 
involved approach based on geometry optimization and chemical shift calculation 
in a polarizable continuum. This apparent inconsistency notwithstanding, theoreti-
cal computations of NMR parameters are emerging as useful complements to NMR 
spectroscopic studies of radiosensitizers [329].

A kinetic investigation of base-catalyzed exchange of C-methyl protons has 
been carried out for six possible C,N-dimethylnitroimidazole isomers [342]. In 
determining the exchange rate a change in the integral intensity of 1H NMR signals 
relative to that of unexchangeable N-methyl groups was made. The proton exchange 
rates (K

OD
, M−1 min−1) decrease in the following order (Scheme 3.6) [342]:
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H-D exchange processes occurring in some imidazole nitro derivatives and 
their salts were studied by NMR spectroscopy [343]. A comparison of the chemical 
shifts and spin-spin coupling constants indicates that in going from neutral 
molecules to the salts the hydrogen exchange in the imidazole ring position 2 
becomes easier. In the author’s opinion this process simulates the carboxylation of 
5-aminoimidazoleribo-nucleotide [343].

Complexes of type [PtL
2
X

2
], where L are chemotherapeutic agents, 5-nitroimi-

dazole derivatives, have been studied by 1H, 195Pt NMR spectroscopy, X-ray 
diffraction, electronic absorption spectroscopy, and polarography (Table  3.16) 
[351]. The 195Pt chemical shifts of the dichloro-bis(5-nitroimidazole)-platinum(II) 
complexes are within the range from −2049 to −2075 ppm. The 195Pt chemical shift 
of the metronidazole complex (X = Cl) cis- and trans- isomers differs by as small as 
4 ppm, whereas 1H by 0.22 ppm (H-4) and −0.09 ppm (2-CH

3
) (Table 3.16). 

A considerably greater shift of 195Pt NMR signals is observed with a change either 
in substituents attached to the platinum atom (X = Cl, Br, I, etc.) or in the nitro group 
position in the ring (from 5-nitro- to 4-nitro- or 2-nitro-). The latter is responsible 
for different donating ability of the “pyridine” nitrogen atom N-3 and the N-Pt bond 
“strength”. The 4-nitro- and 2-nitroimidazole complexes show nearly the same 195Pt 
chemical shifts (−1850 and −1856  ppm, respectively) reflecting a lower donor 
strength of these ligands [351].

A large series of 5-nitroimidazoles used for radiosensitization of hypoxic cells 
in cancer chemotherapy has been studied by 1H and 13C NMR spectroscopy (in 
Table 3.12 only 13C data are presented) [346, 348].

The hyperfine-shifted proton resonance of metmyoglobin and methemoglobin 
complexes with imidazoles, in particular, 4-nitroimidazole, was studied in order 
to obtain an insight into the structural features of the iron-bound imidazole [352]. 
The structure of 1-(1,3-dihydroxy-2-propyl)-4-nitroimidazoles, so called acyclic 
nucleosides, has been established by 1H and 13C NMR [327].

N

N

CH3

O2N

H3C

N

N
O2N

CH3

CH3

N

N

CH3

O2N

H3C

1485

> >

137352

N

N

CH3

O2N

CH3

N

N
H3C

CH3

NO2

N

N

CH3

H3C

NO2

0.003

>

0.0350.60

~

Scheme 3.6   
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A full assignment of the proton resonance of substituted 2-styryl-5-nitroimidazoles 
was carried out by the use of an addition increment method for chemical shift 
prediction [353]. Some 4-styryl-5-nitroimidazoles have been studied in [354].

The products of nitration of 1-hydroxyimidazol-3-oxides were identified by 
proton resonance along with other methods [355].

Aryl 1-methyl-4-nitro-5-imidazolyl sulfones, a new class of radiosensitizing 
pharmaceuticals [356–359], an extensive series of nitro derivatives of methylthio- 
[109] and ethylsulfonylimidazoles [360, 361], 1-alkyl [362]-, 1-trialkylsilylalkyl)-
2-methyl-4-nitroimidazoles [363], allylated 4-nitroimidazoles [364], 5-amino 
derivatives of 4-nitroimidazoles [365], 5-azido-4-nitroimidazole [366], 15N-labeled 
4-nitroimidazoles [367], 1-methyl-5-nitro-2-(5-nitrofuryl-2)- [368] and 1-methyl-
5-nitro-2-(5-nitrothienyl-2)-imidazole [369], 1-[2-(diarylmethoxy)ethyl]-2-
methyl-5-nitroimidazoles targeted at HIV-1 reverse transcriptase [370], 
2-heteryl-5-nitroimidazoles [371], triazolyl nitroimidazoles [372], 4-substituted 

Table 3.16  1H and 195Pt NMR chemical shifts of5-nitroimidazole   

N

N
R2

R1

O2N

2

PtX2

 
PtII complexes, cis-[PtL

2
X

2
] (ppm) a 

N L R
1

R
2

X
2

d1H d195Pt

H-4 R-2

1 CH
3

H Cl
2

8.24 8.58 –
2 Dimetridazole CH

3
CH

3
Cl

2
8.30 3.01 −2060

3 Dimetridazoleb CH
3

CH
3

Cl
2

8.05 3.0 –
4 CH

3
CH

2
OH Cl

2
8.30 5.45 –

5 CH
3
CO

2
H CH

3
Cl

2
8.45 2.99 −2074

6 Ronidazole CH
3

CH
2
OC(O)NH

2
Cl

2
8.40 5.86 –

7 Metronidazole CH
2
CH

2
OH CH

3
Cl

2
8.32 2.98 −2071

8 Metronidazole CH
2
CH

2
OH CH

3
Cl

2
8.10 3.07 −2067

9 Metronidazole CH
2
CH

2
OH CH

3
Br

2
8.43 3.04 −2401

10 Metronidazole CH
2
CH

2
OH CH

3
I

2
8.52 3.06 −3290

11 CH
2
CH

2
OH CH

2
OH Cl

2
8.40 5.43 –

12 Bamnidazole CH
2
CH

2
OC(O)NH

2
CH

3
Cl

2
8.34 3.05 –

13 Ornidazole CH
2
CH(OH)CH

2
Cl CH

3
Cl

2
8.32 3.0 –

14 Ipronidazole CH
3

CH(CH
3
)

2
Cl

2
8.41 4.98 –

15 Secnidazole CH
2
CH(OH)CH

3
CH

3
Cl

2
8.30 2.95 –

16 Tinidazole CH
2
CH

2
S(O

2
)C

2
H

5
CH

3
Cl

2
8.34 2.96 −2075

17 Metronidazole CH
2
CH

2
OH CH

3
c 8.32 2.94 −1614

18 Metronidazole CH
2
CH

2
OH CH

3
d 8.30 3.88 –

19 Nimorazole CH
2
CH

2
N(CH

2
CH

2
)

2
O H Cl

2
8.03 8.76 −2049

20 Flunidazole CH
2
CH

2
OH p-C

6
H

4
F Cl

2
7.4-8.0 -

aAll d1H in acetone-d
6
 except: 1 in DMF-d

6
, 17 and 18 in D

2
O, all d195Pt in DMF except: 5 and 17 

in H
2
O; d195Pt are referenced to Na

2
[PtCl

6
]

btrans-Complex
cEthylmalonate
dCyclobutane-1,1-dicarboxylate
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1,2-dimethyl-5-nitroimidazole [373], N-(2,4-dinitrophenyl)-nitroimidazole [303], 
the products of conversion of the 2-methyl group to nitrile in 1,2-dimethyl-5-ni-
troimidazoles [374], morpholino-substituted 5-nitroimidazoles [375], rhodium 
(III) complexes of 5-nitroimidazoles [376], ruthenium (II) complexes containing 
4-nitroimidazoles [377, 378], halogen-substituted nitroimidazoles [379–383], 
carborane-containing 2-nitroimidazole compounds [384–386], 2-nitroimidazoles 
as radiosensitizers [387–389], nitroimidazole-substituted alkyl- and arylboronic 
acids [390], N-alkyl- [391] and other 4-nitroimidazoles [392–402], steroidal 
nitroimidazoles as potential site-selective radiosensitizers [403], 5-(nitroimida-
zolyl-1)-1,6-naphthyridin-2(1H)-ones [404], macromolecular products of metron-
idazole [405, 406], some antiprotozoal compounds – nitroimidazolylthiadiazoles, 
nitroimidazolyloxadiazoles [407], 5-guanidino-4-nitroimidazole [408–411], 
1-(1-methyl-5-nitroimidazolyl-2)-2-oxotetrahydroimidazoles [412], 1-alkyl-5-ni-
troimidazoles (with a longer alkyl chain) exhibited antibacterial activity, especially 
against Gram-positive bacteria [413, 414], 2-nitroimidazoles [415, 416], 1-substi-
tuted- [417], vinyl-substituted- [418] and fluorinated 2-nitroimidazoles [419], 
bioreductive hypoxia markers – 2-nitroimidazoles with biotinylated 1-substituents 
[420], complexes of 99m Technetium-(2-nitroimidazoles) [421], 1-amino- and 
1-benzylidenamino-2-nitroimidazoles [422], 1-picryl-2- and -4-nitroimidazoles 
[423], nitroimidazolyl ribonucleosides [304, 305], 3¢-(4-nitroimidazol-1-yl)-2¢,3;-
dideoxynucleosides of pyridine analogs [424], the products of hydroxymethylation 
and cyanoethylation of nitroimidazoles [425], dinitroimidazoles [2, 103, 426–
428], nitroimidazolium perchlorates [248] have been synthesized and studied by 
NMR spectroscopy.

Some Indian researchers made use of NMR spectroscopy for the identification 
of compounds during the synthesis of a large series of nitroimidazole derivatives 
possessing many valuable properties [321, 380, 429–441]. Suwinski and coworkers 
have investigated a large amount of different nitroimidazoles used in tumor radio-
therapy or as tuberculosis inhibitors [442–451].

NMR spectroscopy is widely accepted to prove the structure of diverse bioactive 
nitroimidazoles [282, 316, 332, 346, 373, 452–479].

Isoxazoles, Oxazoles, and Oxadiazoles

Insertion of the nitro group into the isoxazole ring position 4 significantly shifts 
low-fields the signals of protons in positions 3 and 5, the largest shift being 
observed for the proton in position 5 [480, 481]. The hydrogen isotope exchange in 
the CH

3
 groups of 3,5-dimethyl-4-nitroisoxazole with diethylamine-D

N
 has been 

studied by Sokolov et al. [482]. A decrease in the integral intensity of signals of the 
methyl group protons in position 5 indicates a selective character of deutero-exchange 
in nitroisoxazole [482].

In [483] the structure of the products of condensation of 3,5-dimethyl-4-nitroisoxazole 
and aromatic aldehydes was investigated by NMR, IR, and electron spectroscopy.
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The introduction of NO
2
 into the isoxazole position 3 also shifts to down-fields 

the ring proton signals (H-4 by 0.7 and H-5 by 0.4 ppm) [484]. The same shift value 
is observed for isostructural pyrazoles.

The proton spectra of 4-methyl- and 3,5-dinitroisoxazoles are presented in 
[485], those of nitroisoxazolines in [486] and nitroisoxazolidines in [487]. The 13C 
and 14N NMR spectra of 3,5-dinitroisoxazole have been considered in [488].

O
NO2N

NO297.7

The 13C–NO
2
 chemical shifts are equal to 165.6 and 167.0 ppm, the 14N values 

of the nitro group being −30.9 and −35.4 ppm. Carbon-13 and nitrogen-15 chemical 
shifts, close to the earlier values, are also observed for C-nitrotetrazoles (see 
Table 3.23).

The authors [489] managed to prove the structure of previously unknown bi(3-
methyl-4-nitroisoxazolyl-5) (A) and its isomer bi(5-methyl-4-nitroisoxazolyl-3) 
(B) by use of multinuclear NMR spectroscopy.

N O O N

NO2NO2

CH3H3C
133.7

152.7

156.8

δ14N -26.7

δ14N 0.9

A

O N N O

NO2NO2

CH3H3C
129.8

146.8

174.16

δ14N -24.1

B

The values of C-3 and C-5 chemical shifts are dependent on both the methyl 
group position and isoxazole ring joint. With 5-5¢-joint (A) the difference between 
C-3 and C-6 chemical shifts is 4  ppm, whereas with joint B this value is 
27 ppm.

A large difference between d13C-3 and d13C-5 is also the case in unsymmetrical 
substituted isoxazole:

N O

H3C

NO2
NO2

NO2

CH3

128.75
176.3

150.07

δ14N = –25.1

The C-4 chemical shifts in the compounds studied are poorly sensitive to struc-
tural changes [489].

The data of proton spectroscopy (chemical shifts and coupling constants) 
were used for the structural assignment of 3-methyl-4-nitro-5-arylisoxazoles 
[490–492].

In the synthesis of 3,5-dimethyl-5,6,7,8-tetrahydroisoxazolo[4,5-b]quinoline 
from 3,5-dimethyl-4-nitroisoxazole R. Nesi et al. [493] established the structure of 
the intermediates I-III by 1H and 13C NMR spectroscopy (Scheme 3.7).
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The C-3 chemical shifts show low sensitivity to changes in structure and charge 
of the molecule. The amplitude of changes of C-4 and C-5 chemical shifts caused 
by the earlier transformation of I-III is practically the same (Table 3.17).

13C NMR spectroscopy was used in the investigation of 5-substituted 3-phenyl-
4-nitroisoxazoles (Table 3.17) [494–497].

The 1H and 13C NMR spectra of 3-methyl-4-nitro-5-styrylisoxazole photodimers 
[498] and other nitroisoxazole derivatives [499, 500] have been examined.

The structure of 5-substituted 4-nitro-2-phenyloxazoles obtained by recyclization 
of the corresponding isoxazoles was determined by 1H and 13C NMR [501, 502] 
(Table 3.18).

The chemical shift of the CH
3
 group protons of 3-methyl-4-nitro-1,2,5-oxadiazole 

(3-methyl-4-nitrofurazan) is 2.72 ppm (acetone-d
6
) [503]. The 13C and 14N NMR 

spectral characteristics of some nitrofurazans and –furoxans are presented in 
Table 3.19 [136, 488, 504–516].

The 13C and 14N chemical shifts of C–NO
2
 are in the 153 to 160 and −28 to −45 ppm 

range, respectively, and have very small changes in both carbon and nitrogen NMR 
scales depending on the substituents in neighboring position of the furazan cycle 
(Table  3.19). The d13C (C–NO

2
) value in nitrofuroxans is shifted upfield by 

~30  ppm in comparison to nitrofurazans. The presence of electron-withdrawing 
N→O group in furoxan decreases the order of C=N(→O) double bond and 
increases the screening of the C–NO

2
-group carbon. Indeed, our quantum-chemical 

PM3 calculations* on 3-nitro-4-methylfurazan and –furoxan show a significant 
increase of the negative charge on the carbon attached to the nitro group in 
nitrofuroxan:

O
N

H3C N

O

O

0.01

0.59
1.35

0.16

0.01

0.49

N
O

N

H3C N

O

O

O

0.591.40

1.08

0.87

0.400.25

0.03N0.03

0.02

O
N

MeO2N

O
N

MeO2N

HX

O
N

MeO2N
XH2

+

I II III

34

5

Scheme 3.7   

* PM3 calculations with geometry optimization (SPARTAN 5.0) have been carried out at 
Universite L. Pasteur, Chemistry Department, Strasbourg, France (with kind help of Dr. A. Varnek).
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Table 3.17  13C NMR chemical shifts of nitroisoxazoles in CDCl
3
 (ppm)

Compound C-3 C-4 C-5 Refs

O
N

O2N 157.84 144.44 157.84 [221]a

O
N

O2N

Me

145.88 131.08 170.66 [221]a

O
N

O2N

Me

Me 155.50 130.14 171.89 [221]a

O
N

O2N Ph 156.4 133.9 160.7 [494]

O
N

O2N Ph

Ph

158.02 126.16 168.05 [495]

O
N

O2N Ph

EtO2C

154.7 133.5 157.05 [496]

O
N

O2N MeMe

Et2N

155.47 121.86 168.65 [493]

O
N

O2N Me 153.06 111.39 154.22 [493]

O
N

O2N Ph

N

N

O

O N NMe2

151.8 83.9 94.0 [497]

O
N

O2N Me 155.49 126.60 168.05 [493]

O
N

O2N Me 155.52 128.20 168.14 [493]

O
N

O2N Me 155.65 129.50 173.36 [493]

a We took the liberty to assign 13C signals
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Table 3.18  13C NMR chemical shifts of 4-nitrooxazoles in CDCl
3
 (ppm) a

Compound C-2 C-4 C-5 Other

5

4

2

N

O

O2N

Ph

161.5 137.7 149.4 125.15, 127.0, 129.0, 132.25 (Ph)

N

O

O2N

PhC

O

MeO
2

4

5

155.5 134.9 148.5 53.4 (OCH
3
), 124.3, 127.6, 129.1, 

133.05 (Ph), 160.9 (CO)

5

4

2

N

O

O2N

PhC

O

Ph

160.6 134.9 142.5 127.5, 129.1, 129.2, 129.5, 132.9, 
135.0, 147.3, (Ph), 181.2 (CO)

a We took the liberty to assign 13C NMR signals of nitrooxazoles

Table 3.19  13C and 14N NMR chemical shifts (ppm) and coupling constants (J, Hz) of nitrofura-
zans and nitrofuroxans

Compound C-3 C-4 14N-NO
2
 (Dn

0.5
, Hz) Solvent Refs

4 3

1N
O

N

NH2O2N 152.3 153.9 1J
CN

 17 −28.6 (16) (CD
3
) 

2
CO

[488]

N
O

N

NHMeO2N
34

151.6 151.5 – CDCl
3

[136]

N
O

N

NO2O2N 153.5 153.5 −44.0a CD
2
Cl

2
[506]
[513]152.9 152.9 −44.0

N
O

N

O2N Cl 141.9 157.2 −45.5 (10) CDCl
3

[511]

N
O

N

FO2N 159.0 d 150.5 −35.4 (9) CDCl
3

[504]
1J

СF
 291.2

d19F −138.1

N
O

N

O2N OH 158.3 153.2 – CDCl
3

[508]
[509]

NN
O

O2N C6H4Cl-4

a)

b 148.3 158.6 t −30.5 (14) CDCl
3

[488]
1J

СN
 17

(continued)
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(continued)

Compound C-3 C-4 14N-NO
2
 (Dn

0.5
, Hz) Solvent Refs

34

N
O

N

N
O

N

NO2

O2N 2 1

137.0 158.8 t −35.8 (7) CDCl
3

[488]
1J

CN
 19

34

N
O

N

N
O

N

Cl

O2N 2 1

137.2 158.7 −40.0 (7) CDCl
3

[511]

146.2 C-2 140.5 C-1

34

N
O

N

N
O

N

F

O2N 2 1

136.7 158.4 −40.3 (15) CDCl
3

[504]
(132.5 d 

C-2
(160.1 d C-1
1J

СF
 276.1)

2J
СF
 21.6)

d19F −140.0

N
O

N

O2N N N

N
O

N

Cl 153.17 155.91 −39.0 (9.5) (CD
3
)

2
CO [511]

N
O

N

O2N N N

N
O

N

F
1234

153.0 153.4 −39.7 (22) CDCl
3

[504]
(153.3 d 

C-2
(159.1 d C-1

2J
СF
 13.8) 1J

СF
 280.5)

d19F −141.3

N
O

N

O2N N N

N
O

N

OH 150.3 157.1 – (CD
3
)

2
CO [508]

(158.2 C-2) (156.2 C-1) [509]

N
O

N

O2N O

N
O

N

CN 156.1 153.8 −38.6 (10.2) (CD
3
)

2
CO [514]

(128.9 C-2) 
(106.4 
C≡N)

(162.2 C-1)

N
O

N

O2N O

N
O

N

CH3 157.1 153.9 −37.8 (20) (CD
3
)

2
CO [514]

(146.6 C-2) 
(7.5 
CH

3
)

(162.1 C-1)

NN
O

O2N COCBr

NOH
153.17 155.91 – (CD

3
)

2
CO [515]

NN
O

O2N SCN

b)

c 145.9 160.8 −35.6 (CD
3
)

2
CO [516]

Table 3.19  (continued)
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Compound C-3 C-4 14N-NO
2
 (Dn

0.5
, Hz) Solvent Refs

N
O

N

O–O2N
Ph

I+

Ph

157.6 153.7 – (CD
3
)

2
CO [512]

N
O

N

SO2N
N

N

H

5

4 3

6
7

8

c)

d

149.6 160.3 −35.1 (CD
3
)

2
CO [516]

N
O

N

NO2O2N

O

122.7 153.6 −47.7 CDCl
3

[516]
(3-NO

2
)

−42.5 (4-NO
2
)

N
O

N

NO2N3

O

128.3 148.1 – (CD
3
)

2
CO [516]

N
O

N

NO2H2N

O

128.0 152.3 −34.30e CDCl
3

[516]

N
O

N

NH2O2N

O

158.0 126.7 −31.38e CDCl
3

[516]

N
O

N

NO2H3CHN

Oe)

f 125.59 159.16 – CDCl
3

[516]

N
O

N

NO2H3CO

O f)

g 123.10 158.87 – CDCl
3

[516]

N
O

N

O2N COMe

O  g

h 108.8 158.0 – DMSO-d
6

[510]

N
O

N

O2N N NBut

O

h)

i 151.8 154.2 −42 (5) CDCl
3

[507]
2J

CN
 3.3 1J

CN
 20.2 (−79 N→O)

N
O

N

O2N N N

N
O

N

Cl
O 148.0 155.0 −38.4 (13) CDCl

3
[511]

(156.1 C-2) (142.1 C-l) (−65 N→O)

Table 3.19  (continued)

(continued)
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Compound C-3 C-4 14N-NO
2
 (Dn

0.5
, Hz) Solvent Refs

N
O

N

O2N N N

N
O

N

F
O

1234

128.3 155.0 −38.7 (13)  
(−66 N→O)

CDCl
3

[504]
(148.0 d 

C-2
(159.1 d C-l

2J
СF
 22.1) 1J

СF
 279.2)

d19F −136.6)

N
O

N

O2N N N

N
O

N

OH
O 149.8 157.0 −36.3 (10) CDCl

3
[508]

(152.4 C-2) (158.4 C-1) (−61 N→O)

N
O

N

O2N N N

N
O

N

O

NO2

149.8 157.4 −37.2,-41.6 (CD
3
)

2
CO [513]

(153.6 C-2) (155.2 C-1) NO
2

(−69 N→O)

N
O

N

O2N N
N

N

N

Me

O i

j 108.17 156.00 – CDCl
3

[510]

N
O

N

CC
O O

N
O

NN
O

N

O2NNO2

O

1 2
3 4

146.06 (C-1) −38.63 (CD
3
)

2
CO [515]

146.41 (C-2)
143.71 (C-3) −38.31
144.21 (C-4)

2

1

3

N
O

N

OO

N
O

N

N

O
N

NO2 O2N 153.6 (C-1) −38.4 (10) (CD
3
)

2
CO [505]

156.3 (C-2)
154.2 (C-3)

3

N
O

N

N=NO N
O

NN
O

N

O2NNO2

1

2

4

5

6
153.0 (C-1), 154.9 (C-2) −39.9 (15) (CD

3
)

2
CO [505]

154.2 (C-3), 158.6 (C-4) −41.4 (15)
157.4 (C-5), 156.2 (C-6)

3

N
O

N

N=NO N
O

NN
O

N

O2NNO2

O

1

2

4

5

6
153.6 (C-1), 156.7 (C-2) −39.0 (30) (CD

3
)

2
CO [505]

155.9 (C-3), 153.1 (C-4) −37.2 (30)
149.7 (C-5), 157.2 (C-6) (−68.1N→O)

Table 3.19  (continued)

(continued)
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Compound C-3 C-4 14N-NO
2
 (Dn

0.5
, Hz) Solvent Refs

3

N
O

N

N=NN=N
N

O
NN

O

N

O2NNO2

1

2

156.1 (C-1) −38.1 (40) (CD
3
)

2
CO [505]

157.6 (C-2)
158.9 (C-3)

3

N
O

N

N=NN=N
N

O
NN

O

N

O2NNO2

O

1

2

4

5

6
157.0 (C-1), 149.5 (C-2) −38.1 (40) (CD

3
)

2
CO [505]

154.8 (C-3), 158.0 (C-4) (−66.1N→O)
157.5 (C-5), 156.1 (C-6)

3

N
O

N

N=NN=N
N

O
NN

O

N

O2NNO2

O

O1

2

4

5

6
157.3 (C-1), 149.8 (C-2) −38.7

(1-NO
2
)

−44.2
(6-NO

2
)

(−65.1
3-N→O)
(−70.2
5-N→O)

(CD
3
)

2
CO [505]

156.3 (C-3), 149.8 (C-4)
153.6 (C-5), 154.9 (C-6)

3

N
O

N

N=NN=N
N

O
NN

O

N

O2NNO2

OO

1

2

155.2 (C-1)
153.4 (C-2)
150.7 (C-3)

−43.2 (30)
(−69.7N→O)

(CD
3
)

2
CO [505]

N
O

N

N=NN=N
N

O
NN

O

N

O2NNO2

O O1

2

3

156.9 (C-1)
149.5 (C-2)
153.8 (C-3)

−37.6 (15)
(−69.9N→O)

(CD
3
)

2
CO [505]

a Private communication of Dr. A. Sheremetev (N.D. Zelinsky Institute of Organic Chemistry, 
RAS, Moscow)
b d13C (Ph) 120.2, 129.7, 130.4, 138.6
c d13C (CN) 104.9
d d13C (BIM-cycle) 139.3 (C-5), 140.7 (C-6), 116.5 (C-7), 124.5 (C-8)
e In (CD

3
)

2
CO

f d13C (Me) 30.25
g d13C (OMe) 59.42
h d13C (Me) 28.50, 186.8 (CO)
i d15N (NO

2
) −41.21

j d13C (Me) 8.98, d13C (C-tetraz) 184. 65

Table 3.19  (continued)
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To the contrary, the d14N (NO
2
) is not practically changed in going from nitro-

furazans to nitrofuroxans (Table 3.19) as the calculated charges on the nitro group. 
As a rule, the carbon signal of the C-NO

2
 in nitroazoles shows quadrupole broadening 

owing to spin-spin coupling 13C–14N (NO
2
) [235, 261, 272, 510]. This broadening 

disappears in a triplet resonance experiment 13C–{1H,14N} [510]. Nevertheless, 
there are rare examples of coupling between the 13C of the nitro carbon and the 14N 
of the nitro groups in nitrofurazans [488, 517]. The 13C NMR spectra of 3-amino-, 
3-(4-chlorophenyl)-4-nitrofurazan and 4,4¢-dinitro-3,3¢-bifurazan show well-
resolved carbon triplets (17–19 Hz) (Table 3.19) and, what is more important, the 
14N signal in the latter was split into a doublet with the same coupling constant as 
the 13C triplet (19 Hz) [517]. The N(O) atom of the azoxy group in bi- and trifura-
zans has narrow signals in the 14N NMR spectra, and their chemical shifts are 
within the range from −60 to −70 ppm (Table 3.19) [505]. In these compounds due 
to 13C–14N coupling, the carbon spectra show broadened signals of the carbon atoms 
bonded to the azoxy group (as and with nitro).

The structure of high energetic materials – nitroazo(azoxy)furazans showing 
high crystal density and excellent energetic properties of detonation velocity and 
detonation pressure – has been studied by NMR spectroscopy [137, 139, 505, 508, 
509, 511, 518, 519].

The nitro group position in the phenyl ring of 3-aryl-4-nitrofurazans during 
nitration was determined by proton resonance [520]. The structure of a large series 
of 3-(R-amino)-4-nitrofurazans formed by nucleophilic substitution of nitro group 
in dinitrofurazan with secondary and tertiary amines has been established by 1H and 
13C NMR method [136].

13C and 14N NMR spectroscopy was successfully used for the investigations of 
some 4-nitro- and 3-nitrofuroxan isomers [521, 522].

The internal rotation barriers of the dimethylamino groups in substituted azoles 
including 5-nitro-2-dimethylamino-1,3,4-oxadiazole (DG¹ = 9  kcal/mol, 133oC) 
were also defined by NMR spectroscopy [523].

Isothiazoles, Thiazoles, and Thiadiazoles

The introduction of the nitro group into the isothiazole ring position 4 gives, as with 
the earlier isoxazoles, an analogous picture with even a stronger downfield shift of 
signals [524–528]. A comparison of the 1H NMR spectra of some nitroisothiazoles 
and their cations has been carried out [526]. The protonation of isothiazole and 
nitroisothiazole gives rise to a downfield (like with other heterocycles) shift of the 
resonance protons.

1H and 13C NMR shifts (DMSO, ppm) and spin-spin coupling constants (Hz) of 
isothiazole 4-derivatives, including 4-nitroisothiazole, have been examined [527, 529]:
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S
N

O2N H

H

1JCH 196.0

1JCH 197.0
3JCH 3.9

3JCH 7.9152.8146.8
151.9

The NMR data have been compared with the calculated total charge densities for 
isothiazoles.

NMR study of nitrothiazoles has been the subject of few number of works [525, 
530–540]. The proton chemical shifts of about 30 thiazole derivatives including 
5-nitrothiazole and 2-nitrothiazole are presented in [536]. The authors have found the 
coupling constants between H-2 and H-4 in most 5-substituted thiazoles to be negli-
gible with the exception of 5-nitrothiazole and 5-thiazolecarboxylic acids [536]. The 
change in the H-4 chemical shifts of the 2-substituted 5-nitrothiazole fragment enables 
the ratio of isomeric products of the reaction of 5-nitrothiazole 2-(1¢,3¢-dicarbonyl) 
derivatives with hydrazine and hydroxylamine to be established (Scheme 3.8) [537].

The structure of a new alkylating agent, 2-(1-methyl-1-nitroethyl)-5-nitrothiazole and 
its C-alkylation product of the reaction with 2-nitropropane anion by S

RN
1 mechanism 

has been assigned by proton and carbon NMR spectroscopy (Table 3.20) [541, 542].

N

S
O2N C CH2COR

O
H2NXH

N

S
O2N

N
X

R
N

S
O2N

N
X

R

+

R = CH3, C6H5;  X = NH, NR, O 

Scheme 3.8   

Table 3.20  13C NMR chemical shifts of nitrothiazoles (CDCl
3
, ppm)

Compound C-2 C-4 C-5 other Refs

N

S CH3

O2N

H3C
2

4

5

161.29 150.84 138.36 13.10 5-CH
3

[221]a

19.08 2-CH
3

CH3

N

S CO2N

NO2

CH3

2

4

5

172.17 142.15 144.69 26.88 (CH
3
) [541]

88.78 (–CNO
2
)

CH3C

NO2

CH3

N

S CO2N

CH3

CH32

4

5

187.11 143.29 144.94 29.63 (CH
3
) [541]

31.95 (CH
3
)

53.48, 74.05

a We took a liberty to assign 13C signals
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The 13C (C-5) chemical shifts in these nitrothiazoles are significantly displaced 
toward lower frequency field in comparison with other azoles.

The tautomerism in 5-nitrothiazole 2-amino derivatives has been examined by 
1H NMR spectroscopy in DMSO-d

6
 [538]. The amino form I in the tautomeric 

equilibrium is found to be prevalent (Scheme 3.9).

The structure of 2-substituted 4-(2-furyl)-5-nitrothiazoles [543], 5-nitrothiazolyl-
2-semicarbazides (homolog of strong antitrichomonade agent) [539] was proved by 
1H NMR spectroscopy. The NMR spectra were used for the identification of 5-ni-
trothiazole 2-amino derivatives [532, 544, 545]. The polymorphic azodyes contain-
ing 2-amino-5-nitrothiazole have been investigated by multinuclear NMR 
spectroscopy in solution and in solid-state (13C CP/MAS) [544, 545].

Products of vicarious nucleophilic substitution of hydrogen in nitrothiazoles 
have been studied by NMR [546]:

N

S X

HC

O2N

R
Y

The VNS reaction on the author’s opinion [546] proceeds via fast and reversible 
formation of the sH adducts followed by usually slower base-induced b-elimination.

The data of the NMR spectra of 1-{[(5-nitro-1,3,4-thiadiazol-2-yl)methylen]-
amino}-2-imidazolidinone [540], 2-[(2-methyl-5-nitrothiazol-4-yl)methylene]-
malonate and its imidazole analogs [547, 548] have been reported.

Triazoles and Tetrazoles

1H, 13C, 14N, 15N NMR spectroscopy is extensively used for the structural determi-
nation of nitrotriazoles [232, 261, 549–556]. Thus, for example, in the case of 
N-acetonylnitrotriazoles and -tetrazoles (see Tables 3.21–3.23) the proton spectra 
are poorly informative, whereas the presence of one or two nitro groups in the azole 
molecules leads to broadening of 13C–NO

2
 signals [261]. Therefore the authors [261] 

worked out a heteronuclear triple resonance regimen, which means that 13C 

N

S
O2N NHR

R = H, C6H5,  p-CH3OC6H4

N

S
O2N NR

H

I II

Scheme 3.9   
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Table  3.21  13C and 15N NMR chemical shifts (ppm) and coupling constants (J, Hz) of 
1,2,4-nitrotriazolesa

Compound C-3 C-5 15N Solvent Refs

N

N
N

NO2

Cl

H3C

160.85 159.25 −197.6 N-1 (CD
3
)

2
CO [550]

−82.2 N-2
−133.2 N-4
−28.4 NO

2

N

N
N

NO2

CH2COCH3

161.90 147.90 −166.3 N-1 DMSO-d
6

[261]
−84.1 N-2
−135.9 N-4
−26.6 NO

2

N

N
N

NO2

CH2COCH3

O2N

158.50 152.10 172.9 N-1 DMSO-d
6

[261]
75.4 N-2
−141.4 N-4
−31.2, −35.9 NO

2

N

N
N

CH2COCH3

NO2

H2N

159.59 157.27 −204.3 N-1 DMSO-d
6

[261]
−99.5 N-2
−177.8 N-4
−23.9 NO

2

−324.2 NH
2

N

N
N

NO2

C6H5

162.5 144.5 −151.6 N-1 DMSO-d
6

[551]
−92.5 N-2
−133.9 N-4
−26.7 NO

2

C-3 C-5

N

N
N

NO2

Cl

163.72 146. 60 (CD
3
)

2
CO [550]

N

N
N

NO2

Cl

Br

161.53 135.40 (CD
3
)

2
CO [550]

N

N
N

NO2

Cl

Cl

160.26 146.90 (CD
3
)

2
CO [550]

(continued)
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Compound C-3 C-5 Solvent Refs

N

N
N

NO2

H

164.23 147.0 DMSO-d
6

[557]

N

N
N

NO2

H

H2N

161.08 157.63 DMSO-d
6

[220]

N

N
N

NO2

H

H3CO

160.95 159.26 DMSO-d
6

[220]

N

N
N

NO2

H

H3CO

156.66 147.68 DMSO-d
6

[220]

N

N
N

COOH

CH3

O2N

151.00 152.69 DMSO-d
6

[220]

N

N
N

NO2

149.7 138.5 DMSO-d
6

[240]

N

N
N

NO2

H2N
143.1 163.1 DMSO-d

6
[558]

N

N
N

NO2

CH2C6H5

162.55 144.71 CDCl
3

[559]

N

N
N

CH2C6H5

O2N
149.61 151.5 CDCl

3
[559]

Table 3.21  (continued)

(continued)
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Compound C-3 C-5 Solvent Refs

NN

N

CH2C6H5

O2N

153 146.14 CDCl
3

[559]

N

N
N

NO2

H

O

H 148.0 154.0 DMSO-d
6

[560]

N

N
N

NO2

O

159–160 164.4–165 DMSO-d
6

[560]

N

N
N

NF2

NO2

Br

d19F = 110.59, pK
a
 (H

2
O) = 3 (CD

3
)

2
CO [24]

N

N
N

NF2

NO2

O

MeO

160.10 145.65 d13C (CD
3
)

2
CO [24]

55.0 q, Me, 1J
CH

 150.3
153.86 q, CO, 2J

CH
 4.2

d19F 110.2, d1H 4.31 Me
pK

a
 (H

2
O) = 3.55

N

N N N N

N
O2N

NF2

NO2

O
Me

d13C (CD
3
)

2
CO [24]

160.29 (C-3), 141.41 (t, C-5, 3J
C-CH2

 2.7)
162.05 (C-3), 143.14 (C-5), 27.19 (q, Me, 1J

CH
 

129.0), 61.86 (t, CH
2
, 1J

C–H
 145.3), 197.69 

(qt, CO, 2J
C–Me

 5.0, 2J
C-CH2

 4.2),
d19F 111.69, d1H 2.46 (Me), 5.74 (CH

2
)

pK
a
 (H

2
O) = 2

apK
a
 (H

2
O) values are given for the starting azoles

Table 3.21  (continued)

nuclei detection was undertaken at a wide band proton decoupling and selective 
nitro group 14N nuclei decoupling. This made it possible to detect a narrow 13C 
NMR signal of the carbon atom bonded to the NO

2
 group. Interestingly, the 15N 

chemical shifts of the nitroazole nitro group are changed in a fairly narrow range 
from −18 to −35 ppm (Tables 3.21–3.23) [261, 550, 551], i.e., structural factors do 
not affect much the nitro group 15N resonance. For 1,2,4-nitrotriazoles the 15N 
chemical shifts of “pyridine” N-2 and N-4 atoms change in the −68 to −99 and 
−121 to −177 ppm regions, respectively, and in the −150 to −204 ppm range in the 
case of a more shielded “pyrrole” nitrogen atom [261, 550, 551]. In contrast to 
1,2,4-triazole nitro derivatives, the “pyrrole” 15N chemical shifts for 1,2,3-nitrotri-
azoles, less sensitive to structural changes, are observed in the −130 to −140 ppm 
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range, whereas the “pyridine” nitrogen shifts changed in a wider range, thus indi-
cating a smaller shielding (−16 to −53 ppm) [261].

The known [561, 562] difference in the 15N chemical shifts of “pyrrole” and 
“pyridine” nitrogen atoms in azoles (~100 ppm) is widely used in signal assignment. 
However, this difference decreases for nitrotetrazoles as well as for 1,2,3-nitrotriazoles 
(see Tables 3.21–3.23). An unexpected presence of a low-field signal corresponding 
to nitrogen-15N-3 in tetrazoles should also be mentioned. The 15N–1H coupling 
constant values between the nuclei of exocyclic nitrogen and hydrogen atoms in 
each two or three bonds in N-acetonylazoles provide some information concerning 
the CH

2
COCH

3
 group position in the cycle. Geminal coupling constant values of the 

hydrogen atom having a “pyrrole” nitrogen atom are 10.8 Hz, whereas those with 
“pyridine” atom range from 11.9 to 14.5 Hz. Vicinal coupling constants of the hydrogen  
atom with “pyrrole” nitrogen are of 6.7–10.2 Hz, while those with “pyridine” nitrogen 
are less than 1 Hz [261].

The main problem of azole chemistry is a selectivity of the reaction. In series 1,2,4-
triazole nitro derivatives the reaction selectivity has been sufficiently investigated 
[554–556]. 3(5)-Nitro-5(3)-R-1,2,4-triazoles have at least three nitrogen atoms able 
to alkylate. It has been reported [563, 564] that the alkylation of 3(5)-nitro-5(3)-R-
1,2,4-triazole salts by alkyl halides or dimethylsulfate is a regioselective process, 
and the author’s opinions about an attack place in heterocycle differ. Some authors 
[554] with the help of 1H NMR method have been shown where alkylation leads to 
a mixture of 1-methyl-3-nitro- and 1-methyl-5-nitro-1,2,4-triazole isomers. All H-5 
signals in spectra of 1-alkyl-3-nitro-1,2,4-triazoles are in more down field and pro-
ton signals of CH

3
 group in position 1 – in more high field than the same signals in 

spectra of isomeric 1-methyl-5-nitro-1,2,4-triazole [554].
A complete structural assignment of some nitrotriazoles has been carried out 

[565]. The tautomerism and the isomerism of triazoles make the structure analysis of 

Table 3.23  13C and 15N NMR chemical shifts of nitrotetrazoles (DMSO-d
6
 ppm) [261]

Compound N-1 N-2 N-3 N-4 N-5 Other

N

N
N

N

CH2COCH3

1

2

3

4 5 −72.76 −103.61 0.77 −46.60 154.20 8.62 (H-5)

N

N
N

N

CH2COCH3

NO2 −75.10 −99.20 8.70 −53.70 166.00 −33.8 NO
2

N

N
N

N

CH2COC6H5

NO2 −73.81 −99.05 10.34 −52.40 166.15 −33.4 NO
2
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such compounds a difficult problem. A definite structure determination of nitro-1,2,4- 
and -1,2,3-triazoles was achieved by combined application of nitrogen-15 NMR 
spectroscopy and increment calculations: an evaluation of the shift data and coupling 
modes gave systematic references to structure and substituent effects. The method is 
also needed in cases when the equilibrium of tautomers is presented [565].

Pevzner et al. widely used NMR spectroscopy in their structural investigations 
of diverse 1,2,4-triazole nitro derivatives [566–581]. In the series of 5-substituted 
1-methyl-3-nitro-1,2,4-triazoles the correlation between the N-methyl group proton 
chemical shifts induced by 5-substituents (Dd) and the substituent Hammett con-
stants has been found to divide into two branches [577]. This nonordinal event is 
explained by impossibility of any additional contribution to the shielding of sub-
stituents having two and more lone electron pairs [577].

In the reaction of 3-nitro-1H-1,2,4-triazole with benzyl chloride it was possible to 
obtain 1-benzyl-3-nitro-1H-1,2,4-triazole (60%), 1-benzyl-5-nitro-1H-1,2,4-triazole (10%), 
and 4-benzyl-3-nitro-1H-1,2,4-triazole (4%), whose structures were determined by 1H 
and 13C NMR with homonuclear NOE difference spectroscopy (Table 3.21) [559].

The tautomerism of C-nitro-substituted 1,2,4-triazoles was studied by NMR and 
IR spectroscopy [582]. 31P NMR spectroscopy was employed for the identification 
of nitrated triazolyl-1 phosphates [583, 584].

In the reaction of 3-nitro-5-R-1,2,4-triazolate-anion with 3,5-dinitro-1-(2-oxo-
propyl)-1,2,4-triazole both the products of nucleophilic substitution in position 5 
and condensed compounds [5-methyl-5-(3-nitro-5-R-1,2,4-triazol-1-yl)-5,6-
dihydroxazolo[3,2-b]-1,2,4-triazoles] are formed. Their structures were established 
by 1H NMR and IR spectroscopy [585].

1,3-Dimethyl-2-(3-nitro-1,2,4-triazol-1-yl)-2-pyrrolidin-1-yl-1,3,2-diazaphospho-
lidinium hexafluorophosphate – a powerful condensing reagent for phosphate and 
phosphonate esters – has been studied by 1H and 31P NMR technique [586].

Proton spectra were used for establishing the structure of thermal decomposition 
product of 15N-labeled 3-nitro-1,2,4-triazol-5-one [587], 1,4-dimethoxy-2-(3-nitro-1, 
2,4-triazol-1-yl)benzene and 1,1,4-trimethoxy-4-(3-nitro-1,2,4-triazol-1-yl)cyclo-
hexane-2,5-diene [588], 4-(3-nitro-1,2,4-triazol-1-yl)-1-(b-D-2,3,5-tri-O-acetylarabino-
furanosyl)-pyrimidin-2-(1H)-ones [589], 1-glucosyl-nitro-1,2,4-triazoles [590], 
3-nitro-5-amino-1-(3-oxobutyl)-1,2,4-triazole [591], 3-nitro-1,2,4- triazol-5-yl carboxylic 
acids [592], 3-nitro-5-(N-methyl-N-nitroso)amino-1,2,4-triazole [593], bis(3,5-dinitro-
1,2,4-triazol-1-yl)methyl ether [594], 1-organyl-3-nitro-5-amino-1,2,4-triazoles [595].

The 13C NMR spectra of 1-nitro-1,2,4-triazole [240] and 1-nitro-5-amino-1,2, 
4-triazole [558] are presented (see Table 3.21).

4-Nitro-1,2,3-triazole was synthesized from gem-dinitro compounds and studied 
by 1HН, 13CС, 14N, and 15N NMR spectroscopy [549] (Table 3.22).

1H NMR spectroscopy was used for the investigation of 2-(2,4-dinitrophenyl)-
4-nitro-1,2,3-triazole [600], 4-amino-3-(4-nitro-1,2,3-triazol-1-yl)furazan 
[601], 2-aryl(heteryl)-4-acetylamino-5-nitro-1,2,3-triazoles [141, 177, 602–604], 
nucleophilic substitution in the series of 4,5-dinitro-2-alkyl-1,2,3-triazoles [605] 
and 4,5-dinitro-2-aryl-1,2,3-triazole-1-oxides [606].



228 Structure and Physical–Chemical Properties of Nitroazoles 

BookID 161900_ChapID 3_Proof# 1 - 20/08/2009

The structural, theoretical, and NMR spectroscopic assessments of differences 
in the properties of and the likely origin of the differences in the impact sensitivity 
of isomeric 4-nitro-1-picryl- and 4-nitro-2-picryl-1,2,3-triazoles have been 
discussed [607]:

N

N
N

O2N

NO2

NO2

O2N

N
N

N

NO2

NO2

NO2

O2N

157.1
135.4

155.0

128.8

1H NMR spectra of 4- and 5-nitro-2-methyl-1,2,3-triazoles [608], 1,2-disubsti-
tuted 4-nitro-1,2,3-triazoles [609, 610] have been run.

13C NMR spectra of 3-nitro-1,2,4-triazol-5-one and seven of its salts with different 
amines have been studied. The chemical shifts of C-3 and C-5 are independent of 
the nature of the cation (Table 3.21) [560]. NMR spectra of 1-nitro-1,4-dihydro-1-
H-1,2,4-triazol-5-one, 5-(3-azido-1,2,4-triazol-3-yl)-3-nitro-1,2,4-triazoles [611], 
1-alkyl-3-nitro-1,2,4-triazol-5-one [612], some 3-nitro-2-methyl-1,2,4-triazolone 
derivatives [613–615], and their mono- and dinitro energetic salts [616] have been 
discussed.

The products of the trimethylsilylation of 3-nitro-1,2,4-triazol-5-one and its 
methylated analog by hexamethyldisilazane have been supported by 1H, 13C, 15N 
and 29Si, NMR spectroscopy [220, 617].

NMR spectroscopy is a powerful instrument in the identification of various 
1,2,4-nitrotriazoles [574–576, 582, 618–631] and 1,2,3-triazole nitro derivatives 
[620, 632–634].

Products of silylation 1H, ppm 13C, ppm 15N, ppm 29Si, ppm

N

N
N

Me

Me3SiO

NO2

1
25

4 3

0.47 OSiMe
3

−0.48 OSiMe
3

−23.20 NO
2

25.6 OSiMe
3

2.48 NMe 32.20 NMe −94.82 N-2
155.53 C-3 −167.44 N-4
157.87 C-5 −194.85 N-1

1

N

N
N

SiMe3

Me3SiO

NO2
34

5
2

0.46 OSiMe
3

−0.32 OSiMe
3

−23.20 NO
2

22.2 NSiMe
3

0.56 NSiMe
3

−1.04 NSiMe
3

−94.82 N-2
161.73 C-3 −167.44 N-4 32.2 OSiMe

3

162.06 C-5 −194.85 N-1
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The literature NMR data on nitrotetrazoles are scarce [261, 635]. This is caused 
by their extreme instability and difficulty in handling. The 1H, 13C, and 15N NMR 
spectra of N-acetonylnitrotetrazoles (Table 3.23) [261] and the proton spectrum of 
2-allyl-5-nitrotetrazole [636], levoglucosenone derivative of C-nitrotetrazole [635], 
have been studied.

Indazoles

The introduction of the nitro group into the phenylene fragment of indazole system 
gives rise to a downfield shift of the ipso-carbon in the NMR spectra (~20 ppm), 
whereas the resonance of other carbons shows low sensitivity to the introduction of 
substituents (1–6 ppm) (Table 3.24) [233, 637–650]. The NO

2
 group in the indazole 

ring position 1 shifts the C-3 signal to low fields and the C-8 signal to high fields. 
However, the nitro group introduction into position 2 leads to an upfield shift of the 
C-3 atom and to downfield shift of the C-8 atom (Table 3.24) [637, 638]. This regular-
ity has been used for establishing the structure of the products of 3-chloroindazole 
nitration [638].

An attempt at identifying the products of nitroindazole methylation was unsuc-
cessful [314]. The authors failed to distinguish the “kekule”-like (1-methyl) (I) and 
“quinoid”-like (2-methyl) (II) structures [651]:

N

N

CH3

N
N

CH3
O2N O2N

I II

15N marking of the N-2 nitrogen atom, use of 1H, 13C, and 15N NMR spectroscopy, 
and coupling constants measurements 2,3J

N–H
 allowed establishing the fact that the 

alkylation of 5-nitroindazole occurs mainly at the N-1 atom [641].

N
N

CH3

O2N

–150.9 ppm

*
N

N

O2N

H

*
–56.1 ppm

N
N

O2N

CH3

*
–47.9 ppm

A detailed study of PMR spectra in various solvents made it possible to assign 
the product of dinitroindazole nitration the structure of 2,3,5,6-tetranitroindazole 
[653]. The 1H and 13C spectra of isomeric N-1 and N-2 propanamides of 5-nitroin-
dazole have been presented (Table 3.24) [645]. By means of 13C NMR spectroscopy 
the structure of the products of 1,5- and 1,6-dinitro-3-bromoindazole thermolysis in 
benzene was established [644]. The effect of the phenyl group on the chemical 
shifts of the nitrazole ring atoms has been discussed [644].
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Table 3.24  13C NMR chemical shifts of nitroindazoles (DMSO-d6, ppm)

Compound C-3 C-4 C-5 C-6 C-7 C-8 C-9 Ref.

N
N

H

34

5

6

7
8

9
133.4 120.4 120.1 125.8 110.0 139.9 122.8 [639]

N
N

H

NO2 132.2 141.7 118.3 125.2 117.9 139.5 115.2 [639]

N
N

H

NO2 Cl 130.5 141.1 118.9a 126.7 117.7a 143.1 110.4 [638]

N
N

NO2

NO2 Cl 134.9 141.6 122.4a 132.7 119.7a 137.6 113.4 [638]

N
N

H

NO2 Br 117.1 141.1 118.5 126.4 117.1 142.7 112.2 [637]

N
N

NO2

NO2 Br 123.2 141.8 121.9a 132.4 119.2a 137.0 115.1 [637]

N
N

NO2

OOP

O

O

O

HO
OH

−
−

NH42 +
123.33 151.00 127.69 127.28 126.6 141.28 114.98 [640]b

N
N

NO2

O
O

P

O
O

OH

O

−

NH4
+

......

123.28 151.19 127.74 127.30 126.6 141.10 114.68 [640]b

(continued)
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Compound C-3 C-4 C-5 C-6 C-7 C-8 C-9 Ref.

Na

N

O2N

H

136.7 118.7 141.5 120.8 110.9 141.8 122.1 [639]
136.62 118.69 141.95 120.77 110.01 141.68 121.10 [641]

[642]

Na

N

O2N

CH3

135.7 118.7 141.7a 120.6 110.3 141.3a 122.6 [639]
[641]

N
N

H

Cl
O2N

135.4 116.2 142.8 121.9 112.0 142.0 118.7 [638]
135.4 116.46 143.00 122.12 112.19 142.34 118.46 [642]

N
N

NO2

Cl
O2N

139.8 117.0 145.5 127.0 115.8 138.3 122.3 [638]

N
N

H

Br
O2N

123.4 116.7 142.7 121.9 111.3 142.0 121.3 [637]

N
N

NO2

Br
O2N 129.7 117.4 145.3 126.8 115.5 137.8 124.7 [637]

N
N

H

NO2
O2N

149.76 117.17 144.71 122.57 113.54 143.00 114.44 [233]

N
N

O2N

CH3

OCH3 158.14 118.54 140.69 122.47 108.43 142.94 111.71 [643]a

N
N

O2N

CH3

OH 156.25 118.51 139.63 121.43 109.77 142.11 111.25 [643]

N
N

O2N

(CH2)5Cl

OH 156.39 118.63 139.78 121.55 109.84 141.96 111.23 [643]

Table 3.24  (continued)



232 Structure and Physical–Chemical Properties of Nitroazoles 

BookID 161900_ChapID 3_Proof# 1 - 20/08/2009

Compound C-3 C-4 C-5 C-6 C-7 C-8 C-9 Ref.

N
N

O2N
OH

CH2Cl

156.77 118.67 140.15 122.05 109.97 142.40 111.85 [643]

N
N

O2N
OH

CH2Cl

156.64 118.51 139.69 121.41 109.56 142.06 111.27 [643]

N
N

OH
O2N

158.38 118.60 139.69 121.49 109.72 141.91 111.20 [643]

N
N

Br
O2N

C6H5

150.1 117.8 145.4 123.8 113.9 142.0 116.2 [644]

N
N

NO2
O2N

C6H5

126.2 118.4 143.2 123.2 111.2 141.5 124.5 [644]

N
N

O2N

(CH2)2CONH2

118.7 141.0 120.7 110.8 141.6 122.5 [645]

N
N

O2N
O

CH3H3C

+

.....-
173.88 129.09 151.28 120.59 119.53 158.77 130.67 [646]b

N
N

O2N
O

+

.....-
143.91 128.72 151.20 120.42 119.94 159.41 131.01 [646]c

N
NO2N

H

134.0 121.6 114.6 145.6 106.8 138.4 125.9 [639]

134.11 121.80 114.70 145.91 106.94 138.64 126.00 [642]

(continued)

Table 3.24  (continued)
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Compound C-3 C-4 C-5 C-6 C-7 C-8 C-9 Ref.

Na

NO2N

CH3

132.7 121.6 114.3 145.4 106.4 137.9 126.2 [639]

[641]
[647]
[652]

N
N

H

Cl

O2N

133.0 120.0 115.6 146.7 107.8 139.6 122.4 [638]
132.99 120.13 115.70 146.93 107.83 139.70 122.47 [642]

[647]

N
N

NO2

Cl

O2N

138.9 122.3 121.3 149.7 110.2 135.6 125.6 [638]

N
N

H

Br

O2N

120.9 120.4 115.5 146.6 107.5 139.4 125.0 [637]

N
N

NO2

Br

O2N

128.5 122.8 121.1 149.5 109.9 134.9 127.9 [637]

N
N

C6H5

O2N

136.1 122.8 116.1 146.6 106.9 136.8 128.9 [644]

N
N

C6H5

O2N

Br 123.5 121.8 117.2 147.8 107.8 138.1 127.2 [644]b

N
N

C6H5

O2N

NO2 148.5 122.5 120.5 147.7 109.0 137.2 119.8 [644]b

N
N

HNO2

135.6 129.8 123.4 120.1 132.0a 131.9a 127.1 [639]

Table 3.24  (continued)

(continued)
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Compound C-3 C-4 C-5 C-6 C-7 C-8 C-9 Ref.

N
N

HNO2

Cl 134.8 127.6 124.8 121.1 132.4 a 133.2 a 123.5 [638]

N
N

NO2

Cl 139.5 122.0 126.8 132.6 114.3 136.1 120.3 [638]

N
N

NO2

Br 129.3 121.0 126.6 132.4 114.1 135.5 124.4 [637]

N
N

NO2

NO2 124.9 140.7 119.7 129.4 127.5 145.7 113.0 [637]

N
N

CH3

O2N 128.7 119.3 141.8 120.1 117.6 149.1 120.0 [639]

N
N

NO2

O2N 124.3 121.5 144.5 123.7 120.2 145.8 118.4 [637]

N
N

CH3

O2N

126.1 122.2 114.5 146.0 114.5 147.8 124.0 [639]
[647]
[652]

N
N

NO2

O2N

124.6 120.9 118.3 148.9 116.5 143.4 121.9 [637]

N
N

CH3

NO2

127.7 129.8 124.5 119.5 136.3 139.6 125.3 [639]

N
N

NO2

NO2

123.8 131.3 129.9 122.2 142.3 137.2 122.9 [637]

N
N

Ph

O2N

b

124.44 118.98 143.54 120.99 119.69 150.42 – [648]

N
N

Ph

NO2 b

120.72 128.95 125.77 122.74 137.89 141.43 126.11 [648]

a Assignment of these signals may be reversed
b In CDCl

3
c In D

2
O

Table 3.24  (continued)
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Analytical 13C NMR data for 4-nitro-1-b-D-ribofuranosylbenzazole 5¢-mono-
phosphate diammonium salts and 4-nitro-1-b-D-ribofuranosylbenzazole 3¢,5¢-cyclic 
monophosphate ammonium salts have been reported [640].

A series of 17O-enriched heteroaromatic nitro compounds (5- and 6-nitroindazoles 
among them) was investigated by 17O NMR spectroscopy [654]. The oxygen-17 
chemical shifts of 5- and 6-nitroindazoles are 571 and 575 ppm, respectively.

Studies of the reactivity of 1,1-disubstituted indazol-3-yl oxides allowed the 
preparation of previously unknown betaines, 5-nitroindazole derivatives (Scheme 3.10) 
identified by 13C NMR (Table 3.24) [643, 646, 655].

Ammonium 3,5-dinitroindazolates have been studied in the solid state by 13C 
and 15N CP/MAS NMR spectroscopy [656].

The proton spectra obtained by Wrzeciono et  al. in a large series of studies 
proved to be of help in establishing the structures of new nitroindazole derivatives 
[638, 657–667].

Shevelev and colleagues [649, 668, 669] have studied a large number of 3-substituted 
1-aryl-6-nitro- and 1-aryl-4,6-dinitroindazoles by 1H and 13C NMR spectroscopy 
(DMSO-d

6
/CCl

4
).

1-N–CH
3
- and 2-N–CH

3
-nitroindazoles (5-, 6-, and 7-nitro isomers) and some 

other nitrobenzazoles possessing mutagenic activity have been synthesized and 
identified by spectroscopic methods including PMR spectroscopy [670]. All 1-N-
methyl-7-nitrobenzazoles show an upfield shift of the phenylene protons in their 
NMR spectra as compared to the nonmethylated analogs. This shift arises from the 
steric crowding of the methyl group of the peri nitro group, twisting the nitro group 
out the plane of the azole ring and thus decreasing the deshielding effect of the nitro 
group [670]. This out-of-the plane conformation of the nitro group has been shown 
to affect the mutagenic activity of nitroarenes [671].

NMR spectra of vicarious N-alkylation products of 7-nitroinduzoles [672], 
1-benzylamino-3-nitroindazole [673], 1- and 6-nitroglucosylindazoles [674], 
1-acetyl-3-chloro-6-nitroindazole [675], the products of methylation and acety-
lation of 5- and 6-nitroindazoles in various solvents (CDCl

3
, DMSO, acetone) 

[676], 5-nitro-7-methylindazole [677], 2-substituted 4,6-dinitroindazole [678], 
several dinitro indazoles [679], 6-nitroindazole derivatives [680], 44 nitrated 
1- and 2-methylindazoles having H, Cl, and Br substituents in position 3 [681] 
have been obtained. 1H NMR data of some nitroindazoles are presented in a few 
studies [682–684].

N
N

O2N

R1

O

R2

N
N

O2N

R1

O

R2

Scheme 3.10  
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Benzimidazoles

The nitro group in the phenylene fragment of benzimidazole system produces down-
field shift of the ipso-carbon resonance with respect to unsubstituted benzimidazole, 
the signals of neighboring carbon atoms being shifted upfield (Table 3.25) [685–690]. 
The introduction of the nitro group into the benzimidazole position 2 gives rise to 
only a slight downfield shift of the NMR signals of the phenylene fragment carbons 
(with the exception of C-8) [691, 692]. In the series of 2-substituted 5(6)-nitrobenzimi-
dazoles (Scheme  3.11) an enhancement of the electron-withdrawing properties of 
2-substituents shifts the nitro group N-15 resonance upfield [220, 687–689].

The results of two-parameter correlations of the 13C and 15 N NMR chemical 
shifts of 2-substituted 5(6)-nitrobenzimidazoles with the induction and resonance 
constants (s

I
, s

R
) are given in Table 3.26 [688, 689]. The electronic influence of 

substituents on the chemical shifts of carbons (and protons) in positions 4 and 7 are 
mainly transmitted by a resonance mechanism, C-4 being more sensitive than C-7 
to the substituent effect. For positions 5 and 6 a slightly smaller contribution from 
the resonance component to the total transmission of substituent effects is observed. 
However, analysis of correlation between d 15 N and substituent parameters indi-
cates an approximately equal influence of the induction and resonance substituent 
effects on the nitro group shielding (see Table 3.26) [688, 689]. When other sets of 
substituent constants (F and R, s

I
 and s

R
o, etc.) are used in the correlation the 

percentage ratios of resonance and inductive contributions remain unchanged.
The information concerning the character and degree of the substituent electronic 

effect transmission from C-2 to C-5(6) and in the opposite direction can readily be 
obtained from the correlation equation (3.2) of C-5(6) chemical shifts of 2-substi-
tuted benzimidazoles and C-2 chemical shifts of the 5(6)- isomers (Scheme 3.12) 
[220, 689, 691].

 CN 

N

N
R

H

O2N
N

N
R

O2N
H

R N(CH3)2 NH2 OCH3 C2H5 CH3 H COCH3 Cl CF3

δ15NO2 −8.7 −8.2 −9.3 −9.4 −9.6 −9.8 −10.5 −10.7 −11.3 −11.7

Scheme 3.11   

N

N

H

R
N

N

H

R

R = NH2, OCH3, CH3, H, Cl, COCH3, NO2

δC-5 = (0.80±0.06)δC-2+8.19, r = 0.981, s = 0.37, n = 7 

Scheme 3.12   

(3.2)
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As seen from equation (3.2), in these benzimidazole systems the substituent effects are 
transmitted by the same mechanism but with different intensities. The degree of this 
transmission in the 2 → 5(6) direction is approximately 20% lower than that in the 
opposite direction. The reason for this nonequivalence is likely to be due to the benzyl 
fragment polarization by electronegative nitrogen atoms of the five-membered 
heterocycle [689, 691].

1H NMR spectroscopy has found use in establishing the position of N-substitution 
upon alkylation [319, 699–703], benzylation [699, 704], acylation [700], and ribo-
sylation [705–707] of nitrobenzimidazoles. On the basis of proton spectra the ratio 
of the N-1 and N-2 products of alkylation of 5(6)- and 4(7)-nitrobenzimidazoles was 
determined [701, 702]. The alkylation of 2-nitrobenzimidazole has been studied in 
[708]. The structure of nitroaminobenzimidazoles prepared by preferential reduction 
of corresponding dinitro compounds has been confirmed [709].

By methods of 1H, 13C 2D NMR and NOE difference spectroscopy dinitropicryl-
benzimidazoles possessing explosive properties were studied (d 13C in Table 3.25) 
[697, 698]. It has been found that both solvent and temperature significantly influence 
the proton chemical shifts of the benzimidazole ring [697].

N-(nitrobenzimidazol-2-yl)pyridinium derivatives have been synthesized in order 
to study their antiprotozoal activity [693–695]. A 1H and 13C NMR study has been 
carried out for structural determination of these compounds (d13C in Table 3.25). 
Quantitative structure-activity relationships (QSAR) between the in vitro antileish-
manial activity of N-benzazolylpyridinium salts and their 13C NMR chemical shifts 
have been studied in order to determine the influence of benzimidazole substituents 
upon antileishmanial activity [695].

Isomeric 5- and 6-nitro-1-para-toluene-sulfonyl-2-alkylbenzimidazoles have 
been studied by 1H and 13C NMR spectroscopy (d13С in Table  3.25) [696, 710]. 
Signal assignment has been made by means of NOE difference NMR spectroscopy 
[345]. The proton spectra of 4-, 5- and 6-nitro-1-b-D-ribofuranosylbenzimidazole-
3¢,5¢-phosphates are presented in [711].

The proton chemical shifts of 2-organyl-5(6)-nitrobenzimidazoles [712, 713], 
mono- and polysubstituted nitrobenzimidazoles [714], 2-benzyl derivatives of 
5(6)-nitrobenzimidazoles as potential antifilarial agents [715], 1-substituted-2-methyl-
5-nitrobenzimidazoles [716], mono- and dinitro-substituted 2-alkylbenzimidazoles 

Table 3.26  Parameters of the correlation equation Y = asI+bs
R
+d for 2-substituted 5(6)-nitroben-

zimidazoles [691]

Y a b d R S na % bb

DdC-4c 2.96±0.86 6.80±0.51 0.34±0.12 0.984 0.495 10 79±5
Dd C-5 2.03±0.38 3.23±0.22 −0.32±0.09 0.988 0.216 10 72±4
Dd C-6 3.00±0.59 1.95±0.35 −0.07±0.04 0.956 0.336 10 51±7
Dd C-7 2.09±0.59 4.05±0.35 −0.39±0.08 0.980 0.335 10 76±5
Dd 15N −2.78±0.42 −1.84±0.25 −1.76±0.96 0.974 0.238 10 52±5
a N(CH

3
)

2
, NH

2
, OCH

3
, CH

3
, C

2
H

5
, H, Cl, COCH

3
, CF

3
, CN

b Contribution of resonance component
c DdC = dC

x
−dC

H
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[717], 2-arylthio- and 2-arylsulfono-5(6)-nitrobenzimidazoles as potential antihel-
mintics [718], 1-[bis-(b-chloroethyl)-carbamoyl-5- and -6-nitrobenzimidazoles and 
their 2-methyl derivatives [719], 2-aminoaryl-5(6)-nitrobenzimidazoles [720], 
1-methyl-4-nitrobenzimidazole [721], mono-, di- and three nitro derivatives 2-orga-
nyl-5-hydroxybenzimidazoles [722], 2,5,6-trisubstituted 7(4)-nitrobenzimidazoles 
[723], 3-alkyl-1-[2-(4-nitro-1H-benzimidazol-2-yl)ethyl]imidazolium salts [724] 
have been reported.

Characteristics of the proton spectra of some nitrobenzimidazole derivatives are 
reported in [725–732].

The salts of benzimidazolium and nitrobenzimidazolium were examined by 
NMR spectroscopy in [690, 733, 734].

Analysis of the 13С and 15N NMR spectra of benzimidazolone and its nitro deriva-
tives in comparison with those of model 1,3-dimethyl derivatives has shown 
nitrobenzimidazolone to exist in the benzimidazolone form A rather than in the 
2-hydroxy-form B or C (Scheme 3.13, Table 3.27) [562]:

The introduction of the nitro group does not affect much the tautomeric equilibrium 
in the series of benzimidazolones studied. However, the position and number of 
nitro groups in the compounds influence markedly the values of chemical shifts and 
coupling constants of 13С and 15N nuclei [562].

Benzoxazoles, Benzisoxazoles, and Benzofurazans

A relatively small number of nitrobenzoxazoles have been studied by 13C NMR 
spectroscopy (Table 3.28) [735, 736]. Going from 5(6)-nitrobenzimidazoles to 
6-nitrobenzoxazole the C-7 signal is shifted to high fields, those of other carbon 
atoms being shifted to low fields. Interestingly, for 6-nitrobenzothiazole (see 
Table  3.30), an upfield shift relative to 5(6)-nitrobenzimidazole, is observed 
only for C-8. The inversion of signs for C-7 and C-8 going from nitrobenzox-
azoles to nitrobenzothiazoles may be explained by the significant difference in 
the electronegativity of heteroatoms, decreasing in the order: O (3.5) > N 
(3.0) > S (2.5).

The proton spectra of a number of other benzoxazole nitro derivatives are presented 
in [737, 738]. The proton chemical shifts and coupling constants are reported for 
2-methyl-5-nitro-, 2-methyl-6-nitrobenzoxazole, and 2-methyl-5-nitrobenzothiazole 

N

N
OH

H

O2Nn

N

N

H

OHO2Nn

N

N

H

O

H

O2Nn

A B C
n = 1-4

Scheme 3.13   
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[738]. The 1H NMR chemical shifts of 5- and 6-substituted benzoxazoles, benzo-
thiazoles, and benzoselenazoles were measured [737].

The chemical shifts of their 2-methyl protons satisfactorily correlate with the 
Hammett substituent constants [737].

N

O
CH3R

N

S
CH3R

N

Se
CH3R

R = NO2, Cl (or Br), H, CH3, OCH3, NH2

The chemical shifts and coupling constants of the products of nitration of 
3-alkyl- and 3,6-disubstituted 1,2-benzisoxazoles point to the formation of 5-nitro- and 
5,7-dinitro derivatives, respectively [739]. With 3,5-disubstituted 1,2-benzisoxazoles 
only 4-nitro compound is formed, the 3,7-disubstituted derivatives being nitrated 
to the corresponding 5-nitrobenzisoxazoles [739]. In studying the kinetics of 
3-methyl-1,2-benzisoxazole nitration the proton spectra of both nitrated benzisox-
azole and its salt, 2,3-dimethyl-5-nitro-1,2-benzisoxazolium tetrafluoroborate, have 
been recorded [740].

The structures of 5-nitro- [741] and 6-nitro-1,2-benzisoxazole-3-acetic acid, 
6-nitro-1,2-benzisoxazole-3-yl acetonitrile [742], 6-nitro-1,2-benzisoxazole-3-
carboxylates [742, 743] and 6-nitro-4-(R-sulfonyl)benzisoxazoles [744], 3-dini-
tromethyl-5-nitro-1,2-benzisoxazole and bis(5-nitro-1,2-benzisoxazol-3-yl)furoxan 
[741] were established with the use of proton spectra.

The oxidation of anionic s-complexes of 1,3,5-trinitrobenzene with an oxidative 
CuBr/CCl

4
 system led to the formation of 3-organyl-4,6-dinitroanthranyls (2,1-ben-

zisoxazoles) the structure of which was proved by PMR, IR spectroscopy, and mass 
spectrometry [745].

Nitro derivatives of 2,1,3-benzoxadiazole (benzofurazan) and 2,1,3-benzoxadi-
azole-1-oxide (benzofuroxan) were studied by 1H, 13C, and 15N NMR spectroscopy 
(Table 3.29) [746–759].

Table 3.28  13C NMR chemical shifts of nitrobenzoxazoles 

N

O
R2

R5

R6in DMSO-d
6
 (ppm) 

R
2

R
5

R
6

C-2 C-4 C-5 C-6 C-7 C-8 C-9 Refs

H H NO
2

158.8 120.5 120.5 145.2 107.9 148.7 144.9 [735]
CH

3
H NO

2
169.3 119.3 120.3 144.4 107.1 149.3 146.6 [735]

NH
2

H NO
2

166.4 114.1 121.0 140.4 104.5 147.2 151.0 [735]
N

3
H NO

2
161.7 118.5 121.5 144.0 107.2 148.7 146.8 [735]

H NO
2

H 157.4 116.4 – 121.7 112.1 – – [735]
CH

3
NO

2
7-t-Bu 166.2 113.6 144.9 117.4 135.4 152.9 142.2 [736]a

a In CDCl
3
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The pioneering work of Katritzky is presented as a complete interpretation for 
the proton spectra of benzofuroxan and four nitro-derivatives [757]. The temperature 
dependence of the spectra enables to calculate DG* for the tautomeric change of 
the benzofuroxan heterocyclic ring [757].

The tautomerism of nitrated 5(6)-fruorobenzofuroxans has been studied by 
Charushin and colleagues using dynamic 1H, 13C, 19F NMR spectroscopy [758]. 
It has been discovered that 4-nitro-5-hydroxy-6-fluorobenzofuroxan, on dissolving 
in DMSO, transforms to 4-hydroxy-5-fluoro-7-nitrobenzofuroxan in a result of the 
Boulton-Katritzky rearrangement [758].

Nitrobenzofurazans have been observed as powerful inhibitors of nucleic acid 
biosynthesis, with an especially toxic effect on leukocyte metabolism in  vitro. 
These compounds exhibit an extremely high electrophilic reactivity as reflected 
judging by their ability to form Meisenheimer s-complexes, investigated in detail 
in [761–773].

As evident from Table 3.29, the addition of oxygen to the nitrogen atom of the 
dinitrobenzofurazan causes a large upfield shift (34 ppm) of the resonance of C-8 
close to the N-O function, while that of the remote carbon (C-9) is only slightly 
affected [748]. This agrees with the result reported in [760]. This strong substituent 
effect is due to the presence of a partial negative charge on C-8 resulting from a 
significant contribution of the second resonance canonical form (N=O):

Indeed, the X-ray crystallography data show that the C8–N1 bond (1.40 Å) is 
appreciably longer than the C9–N3 bond (1.37 Å) [748].

The introduction of the amino group into position 7 considerably changes the 
chemical shifts of the atoms C-4, C-6, and C-7 as revealed by comparison with 
4,6-dinitrobenzofurazan (−26.3 ppm upfield shift for C-6). The effect of the aryl 
substituent on the chemical shifts of dinitrobenzofurazan is negligible [749].

N
O

N

O

R

Proton spectra of 4-methoxy-7-nitrobenzofurazan and 7-nitro-4-benzofurazanol 
and 1H and 13C spectra of 1-(7-nitro-4-benzofurazanyl)-4-hydroxy-L-proline 
(CD

3
OD, 60°C; 13C 173.2, 145.3, 144.7, 144.6, 136.1, 122.5, 102.7, 68.7, 63.2, 

59.3, 39.0 ppm) have been examined [755]:

N
O

N

NO2

N
COOH

OH
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The nitrobenzofurazans used as fluorescent probe molecules in cell membranes 
were studied by NMR spectroscopy [774–777].

Benzothiazoles, Benzothiadiazoles, and Benzoselenazoles

Some differences in the change of 13C NMR chemical shifts of nitrobenzothiazoles 
compared with nitrobenzimidazoles and nitrobenzoxazoles have been discussed. 
In Table 3.30 the 13C NMR chemical shifts of nitrobenzothiazoles are presented. 
The nitro group introduction into position 2 leads to a 10 ppm down field shift of 
the ipso-carbon resonance, whereas a similar effect of the ipso-substitution in the 
phenylene fragment of benzothiazoles is ~20  ppm [778–781]. The results of 
regression analysis of the 13C NMR chemical shifts of benzothiazoles in terms of the 
inductive and resonance constants of substituents (F and R, s

I
 and s

R
, s

I
 and s

R
0) 

provide evidence for the fact that the substituent effect transmission from posi-
tions 2–6 is approximately 30% weaker than in the opposite direction [779]. As 
stated previously, an analogous picture is observed for benzimidazoles.

The transition from 2-nitrobenzothiazole to 2-nitrothiazole is reported [780] to 
involve a 6 ppm upfield shift of the carbon atoms resonance (Scheme 3.14).

The proton chemical shifts of the CH
3
-group in 2-methylbenzothiazoles (including 

nitro derivatives) were compared with charges (q) on the C-2 calculated by the PPP 
method [782].

The 13C NMR spectra of 2-chloro-7-nitro-6-fluoromethoxybenzothiazole 
(DMSO-d

6
; 120, 123, 130, 134, 135, 140, 150, 158 ppm) and 6-amino-2-chloro-7-

nitrobenzothiazole (CDCl
3
/CH

3
OD; 114, 129, 132, 142, 147, 153 ppm) are presented 

without signal assignment [783].
Only a few examples of NMR investigation of nitrated 1,2-benzisothiazoles 

are known. 3-Substituted 4,6-dinitro-1,2-benzisothiazoles, 2-substituted 4,6-dini-
tro-1,2-benzisothiazol-3-ones and their oxides obtained using highly efficient 
technology for conversion of 2,4,6-trinitrotoluene have been identified by 1H 
NMR spectra [784].

We venture to make an assignment of aromatic proton signals in phenylene frag-
ment and have found that the changeover from 1,2-benzisothiazoles to their oxides 
and dioxides involves an increase of the chemical shift values H-7.

N

S
NO2

N

S
NO2

Scheme 3.14   
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R = Cl, OCH3, OCH2Ph, 
        OCH2CO2C2H5

R = CH3, Ph, CH2Ph, p-BrPh, 
p-OCF3Ph, p-OCClF2Ph 

8.65-8.94 8.55-8.77

R = H, CH3, Ph

9.22-9.35

R = H, CH3

9.13-9.18

N
S

ONO2

O2N

R

O

9.35-9.41

N
S

ONO2

O2N

R

O O

9.50-9.68

N
S

RNO2

O2N

9.43-9.62

N
S

ONO2

O2N

R

9.20-9.35

4
5
6

7

NMR spectra of nonlinear optical materials containing nitrobenzothiazole 
chromophores [785–787], 2-methylamino-5-nitrobenzothiazole [788], 7-alkyl-4-
nitrobenzothiazoles [789], 2-chloromethyl-6-nitrobenzothiazole and its sulfonylalky-
lation products [790], 2,7-disubstituted 4-nitrobenzothiazole used as antibacterial agents 
[791], 2-alkyl-5- and 2-alkyl-6-nitrobenzothiazole [792, 793], 2-methylmercapto-5- 
and 2-methylmercapto-6-nitrobenzothiazole [794], 1-(b-hydroxyethyl)-6-nitrobenzo-
thiazolones-2 [795], 3-methyl- and 4-nitro-6-trifluoromethylbenzothiazolinethiones 
[796], 2-ethyl-3-methyl-6-nitrobenzothiazolium iodide and tosylate [797], copper(II) 
complex of N-2-(4-methylphenylsulfamoyl)-6-nitrobenzothiazole [214], and other 
nitrobenzothiazoles [798–802] have been measured.

In the context of chemical utilization of 2,4,6,-trinitrotoluene the different 
heterocyclic compounds including 3-chloro-4,6-dinitrobenzisothiazole [803], 
2-aryl-4,6-dinitrobenzisothiazolium chlorides [804], etc. [805, 806] have been 
prepared and determined by NMR spectroscopy.

The structure of nitrosaccharine, 2-(2-hydroxyethyl)-4-nitro-2H-1,2-benzisothiazo-
lone-3-1,1-dioxide was proved by 1H NMR spectroscopy [807].

O

N

SO2

CH2CH2OH

NO2

The proton spectra of 4-amino-5-nitro- and 6-chloro-7-nitroanthranile have been 
discussed in [808] and those of 6-methyl-7-nitroanthranile in [809].

The NMR spectra of nitro-1,2,3-benzothiadiazoles have been considered in [810–813] 
and those of nitro-2,1,3-benzothiadiazoles in [352, 813–816]. For the identification of 
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the structure of compounds a full analysis of 1H and 1H-1H coupling constants of 
4-nitro-, 5-nitro-, 6-nitro-, and 7-nitro-1,2,3-benzothiadiazoles has been carried 
out [812]. The calculated and measured 1H chemical shifts of the nitration products 
of 5-chloro-6-methyl-2,1,3-benzothiadiazolone, i.e., 5-chloro-6-methyl-4-nitro- and 
5-chloro-6-methyl-7-nitro-2,1,3-benzothiadiazolones, have been compared [352].

Characteristics of the proton spectra of 5-nitro- and 7-nitrobenzisoselenazoles, 
2-methyl-6-nitrobenzoselenazole [737] and 4-nitro- and 5-nitro-2,1,3-benzoseleno-
diazoles are presented in [817] and [818], respectively.

Benzotriazoles

Benzotriazoles hold a special position in the chemistry of heterocycles. During the 
last few years, interest in the chemistry of benzazoles and, in particular, nitrobenzo-
triazoles has been increasing. Their unique properties and specific biological activity 
has attracted much attention of research chemists all over the world. Prototropic 
transformations of almost all benzazoles in solutions proceed so quickly on the NMR 
time scale that varying solution temperatures does not cause changes in the spectra. 
In all cases time-averaged signals are observed in the spectra. Speculation about the 
existence of tautomeric forms of benzotriazole in solution and in gas phase has 
persisted over a long period of time.

The investigation of nitrobenzotriazoles by NMR spectroscopy has been considered 
in works comparatively few in number [640, 819–826].

The electronic structure of tautomeric nitrobenzotriazoles and their 1-methyl- and 
2-methylbenzotriazoles (Scheme 3.15) have been studied by means of multinuclear 
one- and two-dimensional 1H, 13C and15N NMR spectroscopy (Tables 3.31–3.33) 
and quantum chemistry (Table 3.34) [826]:

A

N
N

N

H

N
N

N
H

B

C

N
N    

N

HO2N O2N

O2N

N
N

N
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2

3
4

5

6

7
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9
N

N
N

MeO2N
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9

Scheme 3.15   
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Table 3.32  13C NMR (ppm) chemical shifts and coupling constants J(13C-1H) (Hz) of nitroben-
zotriazoles and their 1-methyl- and 2-methyl derivatives (DMSO-d

6
)

No
Position  
NO

2

d 13C (ppm) and J (Hz)

C-4 C-5 C-6 C-7 C-8 C-9 N-Me

1a 4(7) 146.59  
3J = 7.0

126.88 
1J = 168.2 
3J = 7.0

123.67 
1J = 168.0

123.74 
1J = 168.1 
3J = 8.0 
2J = 2.7

126.92 
br s

133.03 
3J = 7.4

–

1b 5(6) 114.11  
1J = 175.3  
3J = 8.1

144.55 
3J = 4.4

120.90  
1J = 171.3  
3J = 4.4

113.70 
1J = 171.3

138.93 
br s

140.15 
br s

–

2a 4 137.86 
3J = 8.4

118.83 
1J = 171.7 
3J = 8.4

126.78 
1J = 168.2

121.52 
1J = 168.7 
3J = 8.4 
2J = 2.4

135.86 
3J = 6.4

137.41 
3J = 10.0

34.98

2b 5 115.67 
1J = 172.9 
3J = 4.7

143.89 121.34 
1J = 169.5 
3J = 4.4

111.26 
1J = 172.9

135.69 
3J = 5.4

143.66 34.26

2c 6 120.21 
1J = 171.2

118.60 
1J = 170.7 
3J = 4.4

147.20 
3J = 9.6 
2J = 4.8

108.64 
1J = 175.8 
3J = 4.4

132.79 146.17 35.02

2d 7 126.96 
1J = 169.0 
3J = 8.0

123.62 
1J = 169.0

125.25 
1J = 169.0 
3J = 8.4 
2J = 2.4

148.55 
3J = 10.0

125.54 
3J = 7.6

134.87 
3J = 7.6

39.19

3a 4 145.77 
3J = 10.5

125.84 
1J = 167.8 
3J = 7.6

125.01 
1J = 167.8

124.11 
1J = 167.8 
3J = 7.6 
2J = 2.1

137.01 
3J = 9.4

136.92 
3J = 7.8

44.40

3b 5 115.37 
1J = 173.4 
3J = 4.2

145.83 
3J = 9.5

120.12 
1J = 170.2 
3J = 4.8

119.01 
1J = 171.5

142.24 
3J = 5.7

136.51 
3J = 9.1

43.80

Table  3.33  15N NMR (ppm) chemical shifts of nitrobenzotriazoles and their 1-methyl- and 
2-methyl derivatives (DMSO-d

6
)

No Position NO
2

d 15N (ppm)

N-1 N-2 N-3 NO
2

BT a −96.7 7.5 −96.7 –
1a 4(7) −171.0 (or −169.0) b 8.4c −169.0 (or −171.0) b −11.4
1b 5(6) – 5.4c – −8.4
1-МеBT a −161.8 −0.9 −40.8 –
2a 4 −153.7 8.3 −42.3 −10.8
2b 5 −155.8 12.9 −32.3 −8.2
2c 6 −152.4 14.7 −38.2 −8.2
2d 7 −156.6 10.7 −38.2 −11.0
2-МеBT a −62.5 −117.0 −62.5 –
3a 4 −56.5 −106.0 −59.8 −11.3
3b 5 −52.3 −102.7 −58.3 −9.5
аBenzotriazole, d15N from [220, 561]
bBroad signals and may be reversed
cBroad signal
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Unlike methylated analogs nitrobenzotriazoles exist in tautomeric equilibria. 
The introduction of the nitro group into the benzotriazole ring leads to significant 
changes of chemical shifts. The 13С and 15N NMR spectra of 4(7)- and 5(6)-nitroben-
zotriazole show signal broadening caused by prototropic exchange. The prototropic 
exchange in 5(6)-nitrobenzotriazole did not allow detection of the N-1 and N-3 
signals in the 15N NMR spectrum (Table 3.33). In the 15N NMR spectra of 1-methyl-
substituted benzotriazoles (no tautomerism) it was possible to identify all three 15N 
signals of the benzotriazole skeleton [826].

An interesting regularity is observed in the proton spectra of 5-nitro- or 
6-nitrobenzotriazole derivatives: the H-7 chemical shifts of isomers A are lower than 
the H-6 and H-4, whereas for the C isomers the H-7 are, on the contrary, higher than 
H-5 and H-4. The d H-7 and d H-6 of its B isomer have practically equal values 
[826]. An analogous phenomenon is also observed for other nitrobenzotriazole 
derivatives [820–822, 824].

The 15N chemical shift values of the N-1, N-2 atoms in N-unsubstituted benzotriaz-
oles and their 1-methylated analogs are nearly coincident (Table 3.33). This provides 
good basis to assume that nitrobenzotriazoles exist as an equilibrium mixture:

- -ƒ ƒ1 NH 3 NH i.e., A C

but not

- -ƒ ƒ1 NH 2 NH i.e., A B

Moreover, the calculated 15N chemical shift values of nitrobenzotriazoles are 
practically coincident with calculated and some experimental (N-2, N-3, NO

2
) values 

of 1-methylated nitrobenzotriazoles (Tables 3.33 and 3.34). Thus, the experimental 
and calculated screening constant values indicate that N-unsubstituted benzotriazoles 
undergo a prototropic exchange 1 @ 3, but not 1 @ 2. The position of a nitro group at 
the phenylene fragment of benzimidazole cycle does not influence the tautomeric 
equilibrium significantly and has some impact only on screening constants of magnetic 
active nuclei of heterocycle. So, 15N NMR spectroscopy along with quantum-chemical 
calculations is the convenient approach in the examination of tautomeric processes. 
In addition, the broad NH-signal (16 ppm) in the 1H NMR spectrum of 4(7)-nitroben-
zotriazole undergoes a 4 ppm low-frequency shift (12 ppm) when the sample tem-
perature rises to +80оС (Table 3.31). This may indicate the presence of N-O…H-N 
hydrogen bond and the existence of the 7-nitro tautomer [826].

N
N  

N

HN
O O

N
N  

N

HN
O O

O

The realization of an analogous structure N-oxy-7-nitrobenzotriazole has been 
reported in the literature [827]. According to 15N NMR spectroscopy data the content of 
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the N-hydroxy tautomer in both equilibrium mixtures N-oxide  @  1-hydroxybenzotri-
azole and in the N-oxide  @ 1-hydroxybenzimidazole mixture is significantly higher 
than that of N-oxide form and is proportional to the pK

a
 value of the solvent 

employed. The latter is a good accordance with electron spectroscopy data [827].
Characteristics of the carbon spectra of 2-nitro-4,5,6,7-tetrachlorobenzotriazole 

[823] and the nitrobenzotriazole adducts with aldehydes and ketones [824] are 
presented in Table 3.35.

The 15N chemical shifts of benzotriazoles [828], including those containing the 
nitro group, are in full agreement with regularities of the change in the 15N value of 
1,2,3-triazoles.

N
N

N

R

O2N

R = 5'-phosphoribosyl

–41.2

–0.3

–146.2

NMR data were used to prove the structure of peptide-coupling reagents – 
[(6-nitrobenzotriazol-1yl)oxy]tris(dimethylamino)-, –(pyrrolidino)phosphonium 
hexafluorophosphates [829–831], 1-(2-nitrobenzenesulfonyloxy)-6-nitrobenzotri-
azole [832], and 1-(2-naphthylsulfonyloxy)-6-nitrobenzotriazole [833], complexes 
of 5-nitrobenzotriazole with palladium(II) and platinum(II) [834], some explosive 
substances such as 1-picrylbenzotriazole mono- and polynitro derivatives [835] as 
well as that of the Mesenheimer s-complexes and 4,6-dinitrobenzotriazole-1-oxide 
[836, 847].

Table 3.34  Calculated (B3LYP/6-311G+) 15N NMR chemical shifts of nitrobenzotriazoles a

Compound
Position 
NO

2

d 15N, ppm

NO
2

N-1 N-2 N-3

N
N

N

H

 O2N
1
2

3

4

5

6

7
8

9
4 –14.9 –233.2 –11.0 –63.3
5 –13.2 –234.6 –14.7 –54.1

N
N

N

Me

 O2N
4 –14.5 –228.6 –2.6 –68.6
5 –12.7 –230.0 –6.0 –58.5
6 –12.8 –226.2 5.6 –71.1
7 –11.8 –225.0 –3.5 –67.4

N
N

N
Me O2N

4 –14.3 –93.4 –156.1 –98.8
5 –12.4 –99.5 –153.7 –89.0

N
N

N
H O2N

4 –15.1 –99.0 –171.9 –98.7
5 –13.0 –105.1 –169.7 –89.1

a Chemical shifts were referenced to nitromethane
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The structure of 1-acetyl-substituted [838] and 1-thiono-substituted 6-nitroben-
zotriazoles [824, 839, 840] used as acylation and thioacylation agents, respectively, 
in the peptide synthesis has been confirmed by 1H and 13C NMR spectra.

Table 3.35  13C NMR chemical shifts of nitrobenzotriazoles in DMSO-d
6
 (ppm).

Compound C-4 C-5 C-6 C-7 C-8 C-9 Refs

N
N

N

C

O2N

C2H5

H

OH

116.3 144.3 121.9 112.8 134.4 147.7 [824]

N
N

N

O2N

C

OH

C2H5

H

– – 120.5 119.8 150.2 142.0 [824]

N
N

N

C C2H5OH

H

O2N

120.4 118.8 146.1 109.0 131.0 144.7 [824]

N
N

N
NO2

Cl

Cl

Cl

Cl b

122.6 135.2 135.2 122.6 139.4 139.4 [823]

N
N

N

NO2

OOO3P

OH

OH

2 NH4
+

c

147.79 129.26 129.26 128.58 138.27 138.71 [640]

N
N

N

NO2

O

OH
O

O

O2P

 NH4
+

147.47 128.77 128.48 128.34 137.88 138.27 [640]

a In CDCl
3

b In D
2
O
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Conclusions

The tautomerism and the isomerism of azoles make the structure analysis of such 
compounds a difficult problem. Structural investigation by 15N NMR spectroscopy 
is a convenient and unique approach in the examination of tautomerism problems 
in azoles. Furthermore, the shielding of 15N nuclei in benzazoles on going from the 
benzoic to the quinoid-like structure can be a test for the determination of the structure 
of nitrogen-containing heterocycles. However, in studying the electronic structure of 
aromatic heteroatom compounds by NMR spectroscopy it should be kept in mind 
that even minor variations in tautomeric equilibrium constants, molecular confor-
mations, temperature, or solvents can change the nuclei shielding markedly, and 
this is not always in line with the electron redistribution. So, 15N NMR spectroscopy 
provides the most convenient and foolproof method for the identification of structures 
and tautomeric forms of nitrogen-containing heterocycles.

NMR spectroscopy is a very powerful analytical method for intermolecular interac-
tion investigations and is unique in its ability to provide information on the structural, 
thermodynamic, kinetics, etc. aspects of the binding reaction. The application of NMR 
screening in drug discovery has recently attained heightened importance throughout the 
pharmaceutical industry [841–844]. NMR spectroscopy has long been a favorite tool 
of chemists interested in host-guest systems because it permits access to a wealth of 
information about the molecular recognition reaction. NMR has evolved dramatically 
in the last 15 years and, in parallel with the development of NMR methods for 
the determination of protein structure, a variety of tools aimed at detecting protein 
ligand interactions have been proposed and are being now used both in industrial and 
academic laboratories as valuable tools for drug discovery. Very recent developments 
have considerably increased the fraction of therapeutic targets that can be tackled by 
NMR and significantly reduced the amount of sample required for analysis. The new 
methodological and technical advances of recombinant DNA technology and NMR 
spectroscopy, together with the awareness that structure-based strategies will be key in 
the search of new drugs, have placed NMR in the center of a silent revolution in the field 
of drug discovery [841].

Modern inverse detection techniques have pushed the detection limits even to 
the submilligram level, especially in the case of small organic molecules. With the 
introduction of new technologies (cryogenic probes, solid-state accessories), high-
field magnets, and developments in methodology, 15N NMR spectroscopy at natural 
abundance has developed and become an approach complementary to 13C NMR [220, 
845–848]. Its strength lies in the investigation of the intermolecular interactions of 
nitrogen-containing compounds, including hydrogen bonding, tautomerism, and 
complexation with transition metals. The sensitivity of nitrogen NMR parameters to 
topological changes is primarily encoded in the direct involvement of the nitrogen 
unit in the earlier-mentioned processes. However, nitrogen NMR is also employed 
advantageously in characterizing such subtle structural changes as C-N rotations, 
ring conformation, and many other phenomena. Solid-state NMR techniques have 
opened a totally new scope in the study of the structure, dynamics, and interactions 
in solids – both amorphous and crystalline.
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Electron Spin Resonance Spectroscopy

An electron spin resonance (ESR)1 spectroscopy is an excellent method for studying 
problems of electron transfer in such fields as radiation chemistry, photochemical 
synthesis, biochemistry in vivo and etc. Nitroazoles are “fertile field” for the inves-
tigation by ESR method. The presence of the nitro group gives the possibility to 
obtain free radicals by electrochemical, photochemical, and chemical methods and 
use ESR spectroscopy for studying the electron structure peculiarities and reactivity 
of nitroazoles.

Nitro derivatives of azoles owing to electron deficiency are capable of being 
reduced with the formation of radical ions. 3-Nitropyrazole in the conditions of pulse 
radiolysis, depending on рН medium, forms radical anions (RA) or radical dianions 
(RDA), which were registered by ESR method [849] (Scheme 3.16). A hyperfine 
structure (HFS) constant (a, mT) is a main parameter in the ESR spectrum indicating 
the interaction of the unpaired electron with all magnetic active nuclei of radical.

рН 8; a(NO
2
) = 1.516 mT

a(N-1), a(N-2) = 0.218, 0.115
рН 14; a(NO

2
) = 1.605 mT

a(N-1), a(N-2) = 0.169, 0.127
a(H-1), a(H-4), a(H-5), = 0.179, 0.221, 0.063 a(H-4), a(H-5), = 0.249, 0.034,

HFS constant of hydrogen nuclear of NO
2
 group – a(NO

2
) of 3-nitropyrazole 

RDA is more than the constant of corresponding RA.
The mechanism of electrochemical reduction (ECR) of C- and N-nitroazoles in 

the aprotic solvents (the acetonitrile, DMSO) was investigated by ESR method 
[850–854]. Nitroazoles, with unsubstituted nitrogen atom, on transfer of the first 
electron to the molecule, form radical anions, which quickly break up with the 
elimination of atomic hydrogen [850–853], as illustrated in Scheme 3.17:

The formed anions at second half-wave potential are reduced up to RDA, the 
ESR signals of which could be fixed (Table 3.36).

N-Alkylnitroazoles at first half-wave potentials form stable RA and their ESR 
spectra parameters as given in Table 3.36 [850–853] (Scheme 3.18).

N
N

NO2

H
N

N

NO2

H+−

_

Scheme 3.16   

2 For electron paramagnetic resonance (EPR) spectroscopy, we prefer to use the title ESR in 
organic chemistry
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Table 3.36  Electrochemical reduction parameters of nitroazoles.

Compound
E¢

1/2,
  

E¢¢
1/2

 V
radical  
ion ESR coupling constants, mT

3-Nitropyrazole 1.55 RDA 3(NO
2
) 

1.510
2(H-4) 

0.230
3(N-2) 

0.164
3(N-1) 

0.084
2(H-5) 

0.0152.17
4-Nitropyrazole 1.46 RDA 3(NO

2
) 

1.620
3(H-3,5) 

0.251
5(N-1,2) 

0.026
– –

2.18
1-Methyl-4- 

nitropyrazole
1.72 RA 3(NO

2
) 

1.400
2(H-5) 

0.398
2(H-3) 

0.208
3(N-2) 

0.038
3(N-1) 

0.0322.54
1-Ethyl-4- 

nitropyrazole
1.73 RA 3(NO

2
) 

1.507
2(H-5) 

0.525
3(N-2) 

0.080
2(H-3) 

0.047
3(N-1) 

0.0103.10
1,4-Dinitropyrazole 0.55 RAa 3(NO

2
) 

1.430
2(H-5) 

0.470
2(H-3) 

0.170
3(N-2) 

0.046
3(N-1) 

0.0321.25
1.70
2.20
2.75

4(5)- 
Nitroimidazole

0.82 RDA 3(NO
2
) 

1.552
2(H-5) 

0.400
3(N-3) 

0.070
3(N-1) 

0.054
2(H-2) 

0.012.23
1-Methyl-4- 

nitroimidazole
1.75 RA 3(NO

2
) 

1.323
2(H-5) 

0.470
2(H-3) 

0.170
3(N-2) 

0.046
3(N-1) 

0.0322.98
1-Ethyl-4- 

nitroimidazole
1.74 RA 3(NO

2
) 

1.300
2(H-5) 

0.470
2(H-3) 

0.170
3(N-2) 

0.046
3(N-1) 

0.0323.02
2-Methyl-4(5)- 

nitroimidazole
0.93 RDA 3(NO

2
) 

1.559
2(H-5) 

0.470
2(H-3) 

0.170
3(N-2) 

0.046
3(N-1) 

0.0322.39
1,2-Dimethyl-4- 

nitroimidazole
1.75 RA 3(NO

2
) 

1.478
2(H-5) 

0.470
2(H-3) 

0.170
3(N-2) 

0.046
3(N-1) 

0.0322.95
1-Methyl-5- 

nitroimidazole
1.53 RA 3(NO

2
) 

1.270
2(H-5) 

0.470
2(H-3) 

0.170
3(N-2) 

0.046
3(N-1) 

0.0322.75
1-Ethyl-5- 

nitroimidazole
1.67 RA 3(NO

2
) 

1.488
2(H-5) 

0.470
2(H-3) 

0.170
3(N-2) 

0.046
3(N-1) 

0.0322.97
1,2-Dimethyl-5- 

nitroimidazole
1.51 RA 3(NO

2
) 

1.353
2(H-5) 

0.470
2(H-3) 

0.170
3(N-2) 

0.046
3(N-1) 

0.0322.85
2-Nitroimidazole 0.71 RDA 3(NO

2
) 

1.405
2(H-5) 

0.470
2(H-3) 

0.170
3(N-2) 

0.046
3(N-1) 

0.0322.37
1-Methyl-2- 

nitroimidazole
1.49 RA 3(NO

2
) 

1.160
2(H-5) 

0.470
2(H-3) 

0.170
3(N-2) 

0.046
3(N-1) 

0.0322.54
1-Ethyl-2- 

nitroimidazole
1.45 RA 3(NO

2
) 

1.175
2(H-5) 

0.470
2(H-3) 

0.170
3(N-2) 

0.046
3(N-1) 

0.0322.54
a RA of dimer (see below)
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The character and the hyperfine structure of ESR signals correspond to the interac-
tion of the unpaired electron with all magnetic active nuclei of radical ion. In radical 
dianions of nitroazoles 60% of the spin density is concentrated at the nitro group, and in 
RA – 45–50% (Table 3.36). So higher value of the HFS a

N
(NO

2
) of nitroazole RDA 

in comparison with its RA is connected with greater electronegativity of the first.
The character of spin density distribution in an RA of 1-ethyl-4-nitropyrazole differs 

from that in 1-methyl-isomer. 1-Nitropyrazole does not show an ESR signal in the 
conditions of both pulse radiolysis [849] and electrochemical reduction [851].

While the electrochemical reduction of 1,4-dinitropyrazole allows to observe the 
well-resolved ESR spectrum, the HFS character proves to be a dimeric radical 
product [851] (Scheme 3.19):

The spin density in the dimer radical anion is concentrated mainly at one azolyl 
cycle because of uncoplanarity of the cycles [851].

The comparison of nitro group nitrogen constants in 1-methyl-substituted 
nitroimidazole RAs shows that the spin density transmission degree to the heterocycle 
is decreased in the following order of the nitro group position in the imidazole ring 
(Table 3.36):

2- > 5- > 4-NO
2

1.16 > 1.27 > 1.32 mT
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The unexpectedly large constant a
N
(NO

2
) of the radical anion of 1-ethyl-5- 

nitroimidazole can be explained by the contribution of steric effects [852].
The electrochemical reduction process of 1-methyl-3,5-dinitro-1,2,4-triazole is 

unusually proceeded: ESR spectrum of its radical trianion in acetonitrile is identified 
[853] (Scheme 3.20).

Atom 3(NO
2
) 3(NO

2
) 3(N) 3(N) 4(CH

3
) 3(N)

a, mT 1.302 0.250 0.176 0.154 0.136 0.046

Its HFS character is caused by interaction of the unpaired electron with five 
nitrogen atoms and three equivalent protons. It is impossible to fix an ESR signal 
of its radical anion in the experimental conditions. Actually, the polarography data 
prove the fast passing reactions of primary RA dimerization [853]. The assignment 
of the HFS constants in radical ions of the nitroazoles was made with the help of 
quantum chemistry calculation [855].

The ESR spectra of radical ions of known radiosensitizers metronidazole, 
misonidazole, ornidazole, and other nitroimidazoles have been investigated in the 
conditions of photolysis [856, 857], pulse radiolysis [849, 856, 858–865], and in the 
presence of other donors of free electrons [866–872]. Radical anions of 2-nitroimi-
dazole [849] and 4(5)-nitroimidazole [860] depending on medium рН can exist in 
three forms (Scheme 3.21):

+e
_N

N
N

CH3

NO2

O2N
+e

_ N

N
N

CH3

NO2

O2N

N

N
N

CH3

NO2

O2N

N

N
N

CH3

NO2

O2N

+e
_

__

__

Scheme 3.20   

pH 2.7a(NO
2
) = 1.085 mT pH 7–9a(NO

2
) = 1.394 mT pH 12a(NO

2
) = 1.430 mT
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On going from a radical to RA and RDA the HFS constant of nitro group nitro-
gen atom grows [849, 852, 860]. In connection with this the characteristics of ESR 
spectra of 2,4(5)-dinitro- and 1-(2-hydroxyethyl)-2,4(5)-dinitroimidazoles (used as 
radiosensitizers selectively sensitizing hypoxic mammalian cells to the lethal effect 
of ionizing radiation) cause surprise [862] (Scheme 3.22).

A nitro group in position 2 being more electron deficient than the 4(5)-NO
2
 

group because of the presence of the two electronegative nitrogen atoms is reduced 
first and has a large HFS constant. Probably, the 4(5)-NO

2
 is uncoplanar with ben-

zimidazole ring. Therefore the nitrogen HFS constant of nitro group in position 
4(5) has small value.

The HFS a
N
(NO

2
) in 2-nitroimidazole RA is much less than the one in the RA of 

4(5)-nitroimidazole because the nitro group arranges between two electronegative 
nitrogen atoms. A similar regularity for these nitroimidazoles has been observed 
[852]. The ESR spectra of radicals formed by electrochemical reduction of 
2-nitroimidazole and 4(5)-nitroimidazole in mixed solvents have been studied 
[873]. The behavior of HFS a

N
(NO

2
) with the solvent composition is discussed in 

terms of equilibrium between radicals in different solvents.
The kinetics of misonidazole degradation in a model system (a solution hemo-

globin and vitamin C) has been investigated [874]. The formed RAs react with 
molecular oxygen, its superoxide radical anions, having been formed here, and can 
be the additional reason of the compound toxicity in the presence of oxygen.

N

N

H

HO2N
N

N

H

O2N

N

N

O2N

_

pH 1-3 
a(NO2) = 1.454 mT

pH 6-10 
a(NO2) = 1.597 mT

pH 13-14 
a(NO2) = 1.668 mT

N

N

H

H

NO2

N

N

H

NO2

N

N NO2

_

pH 2.7 
a(NO2) = 1.085 mT

pH 7-9 
a(NO2) = 1.394 mT

pH 12 
a(NO2) = 1.430 mT

Scheme 3.21   
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The radical anions of 2-, 4-, and 5-nitroimidazole derivatives – the most frequently 
used drug in the cases of anaerobic infections – were registered by ESR method after 
anaerobic incubation with hydrogenosomes from Trichomonas vaginalis supple-
mented with pyruvate, succinate, and ADP [872]. The metronidazole – 1-(2-hydroxy
ethyl)-2-methyl-5-nitroimidazole (METRO) radical anions have been recorded also 
in vivo in the sexually transmitted human parasite (Trichomonas vaginalis) [875]. The 
intensive signal of metronidazole radical anions has been detected in ESR spectrum 
of irradiated tumor tissue after injection METRO to animals. The radicals are on the 
trapping of electrons obtained at irradiation by METRO electron-withdrawing nitro 
group [876].

The effect of gamma irradiation on physical and chemical properties of metronida-
zole, ornidazole, and tinidazole in solid state has been studied by ESR [877, 878].

ESR spectrum characteristics of 4-nitrothiazole and 2-amino-5-nitrothiazole RAs, 
as seen in the conditions of pulse radiolysis, are obtained [849] (Scheme 3.23):

N

N

H

H

NO2

O2N
__

N

N

NO2

O2N

pH 3.3 
a(NO2) = 1.231 mT, a(NO2) = 0.236, 

pH 12.6 
a(NO2) = 0.829 mT, a(NO2) = 0.348, 

aN aN = 0.131 mT, aN = 0.088 mT  = 0.279 mT, aN = 0.019 mT 

N

N

H

CH2CH2OH

NO2

O2N

N

N

NO2

O2N

CH2CH2OH

pH 3.4 
aN(NO2) = 1.233, N = 0.225,

pH 7.6 
aN(NO2) = 1.229, aN = 0.243,

aN = 0.150 mT, aN = 0.076 mT N = 0.279 mT, aN = 0.019 mT a
a

Scheme 3.22   

S
N

O2N
N

SO2N NH2

pH 8; a(NO2) = 1.479 mT pH 9; a(NO2) = 1.349 mT

Scheme 3.23   
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The last compound does not give ESR signals in alkaline medium.
The ESR and the ENDOR investigations of radicals formed by X-ray irradiation of 

a single crystal 2-bromo-5-nitrothiazole have been carried out [145]. The experimental 
tensor HFS constants are compared with the theoretical constants, and calculated for 
azaallyl and allyl radicals.

The spin density on nitro group in nitrothiazole RA, obtained by reduction with 
the help of glucose and strong basis, decreases in the following sequence [879] 
(Scheme 3.24):

The authors [879] tried to estimate the energy of conformational transfers in 4-nitro-
5-alkyl- and 5-nitro-4-alkylthiazolyl RAs. With the help of nonlinear regression 
method it was possible to construct theoretical ESR spectra of radical anions of 
some derivatives of thiazoles, including 2-nitro-4-methylthiazole [880].

The position of N-methyl group in C-nitro-1,2,4-triazoles influences the spin density 
redistribution at the nitrogen atoms of triazole cycle and is particularly displayed in 
the changing of proton-coupling constant [881]. Nitro group passes approximately 
half of all spin density (Table 3.37).

5

4
3

2

1

N

N
N

H3C NO2
N

N
N CH3

NO2
N

N
N

CH3

NO2

A B C

The pyridine nitrogen atoms in radical anion A are practically equivalent; there-
fore, in radical anions B and C HFS nitrogen constants of pyrrole and pyridine 
nitrogen atoms are the same (Table 3.37). ESR spectra of radical anions of 3-nitro-
1,2,4-triazole N-methyl-isomers (A, B, and C) are presented in Fig. 3.1. Analogical 

Table 3.37  HFS constants of radical anions of N-methyl-C-nitro-1,2,4-triazoles (mT)

1,2,4-Triazole isomers a(NO)
2

a(N-1) a(N-2) a(N-4) a(H-5) a(CH
3
)

1-methyl-3-nitro- (A) 1.150 0.050 0.150 0.120 0.460 0.050
2-methyl-3-nitro- (B) 1.180 0.140 0.110 0.400 0.280 0.025
4-methyl-3-nitro- (C) 1.105 0.130 0.240 0.130 0.120 0.020

N

S

O2N
N

SO2N
> > N

S NO2

H3C

Scheme 3.24   
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character of spin redistribution on magnetic nuclei connected with intramolecular 
position of nitro group is reflected in LUMO structures obtained for more stable 
stationary states of isolated neutral molecules A–C [881].

Firstly, the nondegenerated tautomers of 3-nitro-1,2,4-triazole-5-one (NTO) 
radical anions were investigated by ESR method during electrochemical reduction 
of NTO in aprotic medium at different temperatures. It was shown that observed 
reversible temperature variations in the ESR spectra of radical anions were caused 
by tautomerism. Quantum chemical calculations evidence that 1,4-H-tautomer of 
radical anion is most preferable [881].

The limited number of works is devoted to the research of benzazoles by ESR 
method [689, 850, 882–887]. The ESR spectra analysis of 2-substituted 
5(6)-nitrobenzimidazoles RDA obtained by electrochemical generation method in 
acetonitrile has been carried out (Table 3.38) [689, 883, 884].

Electrochemical reduction mechanism of nitrobenzimidazoles is similar to the 
aforementioned one for the five-membered nitroazoles (Scheme 3.25):

Fig. 3.1  ESR spectra of radical anions of N-methyl-3-nitro-1,2,4-triazole isomers.
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With the help of a rotating platinum disk electrode with a ring allowing to fix fast 
processes, it has been shown that as a result of reduction of 5(6)-nitrobenzimidazoles 
the molecular hydrogen is formed because of bimolecular reaction of two primary 
radical anions [689, 888]. The assignment of HFS constants in ESR spectra of the 
corresponding RDA is made on the basis of quantum chemical calculation of spin den-
sity of their radical dianions [689, 884]. The HFS constants of nitro group nitrogen 
atom and Н-4 are most sensitive to the substituent effects in position 2 (Table 3.38). 
The a

N
(NO

2
) of nitro group decreases with the increase of electron-withdrawing 

properties of the substituents in position 2 of nitrobenzimidazoles while a(Н-4) – is 
increased (Table 3.38). The results of a

N
(NO

2
) correlations with substituent constants 

s
I
 and s

R
 show that the contribution of an inductive and resonance components to the 

general transmission of substituent effects is approximately identical (3.3):

Table 3.38  HFS constants of 2-substituted         

N

N

R

O2N

1

2

3
4

5

6

7
5(6)-nitrobenzimidazoles radical dianions (mT) 

R a(NO
2
) a(H-4) a(H-6) a(H-7) a(N-1) a(N-3) H

N(CH
3
)

2
1.458 0.356 0.267 0.089 0.020 0.015 0.015

NH
2

1.471 0.365 0.280 0.090 0.018 0.015 0.015
OCH

3
1.445 0.400 0.300 0.095 0.015 0.010 0.015

OC
2
H

5
1.419 0.400 0.297 0.105 0.015 0.010 0.015

CH
3

1.393 0.416 0.240 0.110 0.023 0.010 0.015
C

2
H

5
1.393 0.420 – – – – –

C
6
H

5
1.367 0.438 0.240 0.110 0.025 0.015 0.030

H 1.359 0.460 0.243 0.113 0.027 0.015 0.015
Cl 1.326 0.464 0.260 0.100 0.025 0.015 0.015
COOCH

3
1.290 0.546 0.215 0.100 0.058 0.046 0.020

COOC
2
H

5
1.303 0.546 0.215 0.120 0.060 0.042 0.017

COCH
3

1.316 0.550 0.210 0.100 0.060 0.042 0.030
CF

3
1.251 0.380 0.207 0.130 0.202 0.202 0.010

CN 1.225 0.562 0.190 0.089 0.063 0.046 0.030

+e
_N

N
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N
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a(NO)
2
 = (-1.865 ± 0.253) s

I
 + (-1.887 ± 0.167) s

R
 + (13.593 ± 2.128)	 (3.3)

	 r = 0.989, s = 0.125, n = 7, %s
R
= 59.4	

R = NH
2
, OCH

3
, CH

3
, H, Cl, CF

3
, CN

Therefore the electron substituent effects in radical dianions of 2-substituted 
5(6)-nitrobenzimidazoles are transmitted with approximately equal contributions of 
inductive and resonance components. A similar picture is observed for para-substi-
tuted nitrobenzene radical anions also [689, 883]. Actually, the a

N
(NO

2
) correlation 

of 2-substituted 5(6)-nitrobenzimidazoles RDA (RDA BI) with the a
N
(NO

2
) of para-

substituted nitrobenzene RA (RA Bz) indicates the same mechanism of substituent 
effects transmission but with different intensity, as shown in equation (3.4):

	 a(NO
2
)

RDA BI
 = (0.502 ± 0.025) a(NO

2
)

AR Bz
 + 8.520	 (3.4)

r = 0.991, s = 0.114, n = 7

R = NH
2
, OCH

3
, CH

3
, H, Cl, CF

3
, CN

The substituent effects in RA Bz are transmitted twice more intensively than in 
RDA BI, which is apparently connected to the inhibiting effect of electronegative 
nitrogen atoms of benzimidazole [689, 883].

Also the a
N
(NO

2
) correlation of RDA BI (ESR data) with d15N (NO

2
) BI neutral 

molecule (NMR data) is observed (equation 3.5):

	 a(NO
2
) = (0.735 ± 0.037)d15N + 20.919	 (3.5)

R = 0.987, s = 0.123, n = 10

R = N(CH
3
)

2
, NH

2
, OCH

3
, CH

3
, H, Cl, COCH

3
, COOCH

3
, CF

3
 ,CN

So, in a neutral molecule of benzimidazole the electronic substituent effects from 
position 2 to the nitro group are transmitted with greater intensity than in its radical ion. 
The unpaired electron density in ion radicals of nitro compounds (including nitroazoles) 
is concentrated approximately on 60% on nitro group, owing to that a

N
(NO

2
) RDA BI 

becomes less sensitive to electronic substituent effects.
Character of ESR spectra of 2-phenyl-5(6)-nitrobenzimidazoles RDA registered in 

DMF (Table 3.39) [885] differs from that in acetonitrile [883] and has higher value 

Table 3.39  HFS constants (mT) of 		

_

N

N

O2N R4
5

6

7

2' 3'

4'

5'
6'

2-aryl-5(6)-nitrobenzimidazoles RDA (DMF) 

R H-4 a
N
(NO

2
) H-6 H-7 H-2¢ H-3¢ or NO

2
H-4¢ or NO

2
H-5¢ H-6¢

H 0.23 1.44 0.52 0.13 a – – – –
4¢-NH

2
0.27 1.47 0.49 0.13 – – – – –

4¢-NO
2

– – – – 0.07 0.35 1.00b 0.35 0.07
3¢-NO

2
– – – – 0.40 1.23b 0.40 0.13 0.47

a The constant less 0.03 mT
b a

N
(NO

2
)
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of nitrogen HFS constant of the NO
2
 group (1.44 mT). The introduction of the donor 

substituent such as NН
2
 to the phenyl ring results only in insignificant increase of a 

constant on nitrogen atom of nitro group (1.47 mT). At the same time the splitting from 
hydrogen atoms of a phenyl ring in ESR spectra is not observed (see Table 3.39). 
It proves the absence of direct conjugation of the earlier-mentioned molecules. 
The mononitration in a phenyl ring results in essential redistribution of unpaired 
spin density in RDA. Moreover as is visible from Table 3.39, spin density is located 
mainly in a phenyl part of a molecule [885].

The ESR spectrum 2-azido-6-nitrobenzothiazole (77К), obtained by a UV irradia-
tion consists of two signals 1.62 (g = 4.0) and 3.200 (g = 2) mT [882]. The first signal 
the authors [882] assign to nitren in triplet state, and the second – to a free radical 
(Scheme 3.26).

Thus, the equilibrium between nitren with unpaired electron and biradical with 
a conjugated system bond is supposed.

The radical anions of five isomers of nitrobenzothiazole (4-NO
2
-, 5-NO

2
-, 

6-NO
2
-, 7-NO

2
- and 2-NO

2
-) have been obtained by electrochemical reduction in 

DMSO and easily characterized by ESR spectroscopy [889]. To the contrary, the 
chemical reduction in alkaline solution (t-BuOK in DMSO or glucose and MeOK 
in MeOH) presented some problems with 6-NO

2
- and 4-NO

2
-benzothiazoles, and 

2-NO
2
-benzothiazole did not provide any detectable paramagnetic species [889].

Copper(II) complexes of 6-nitrobenzothiazole-N-sulfonamides as protective 
agents against superoxide anion have been investigated by ESR spectroscopy [890].

The ESR spectrum of 5-nitro-2,1,3-benzothiadiazole RA obtained by electro-
chemical generation in DMF was reported [886]. Unfortunately, the HFS constants 
of this radical anion are absent and we estimated the HFS constants from simulated 
spectrum (Table 3.40).

Table 3.40  Simulated splitting constants (mT) in ESR spectra of 5-nitro-2,1,3-benzothiadiazole 
RA (DMF)a

N
S

N

O2N

1

2

34
5

6

7

a
N
(NO

2
) = 0.77

a
H
(H-4) = 0.59

a
H
(H-6) = 0.39

a
N
(N-1 or N-3) = 0.03 or 0.02

a
H
(H-7) = 0.02

a The simulation of the spectrum was carried out by Dr. T. Vakulskaya with the use of Bruker 
program WINEPR SimPhonia 1.26, 1996
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To our surprise, nitrogen HFS constant of nitro groups has a little value in comparison 
with other nitrobenzazole radical ions, whereas proton constants are sometimes 
increased. Perhaps the nitro group exists in a significant conjugation with anthranil 
cycle and because of that the delocalization of spin electron density is observed.

One-electron reduction of misonidazole – 2-nitroimidazole radiosensitizer 
[891], (nitroimidazolyl)succinic esters [892] and nitroindazoles [893, 894] has been 
studied by ESR and polarography. Misonidazole is participated in the determina-
tion of potentiation degree of the anticancer agent cytotoxicity [891].

Vicarious nucleophilic substitution (VNS) of hydrogen is a convenient method for 
the introduction of different functional groups into aromatic or heterocyclic systems 
[894–898]. The introduction of amino group into nitroazoles and their model 
compounds via reaction of vicarious nucleophilic C-amination [272–278, 899, 900] is 
the only method of direct introduction of amino group into nitroazoles. Amino
nitroazoles containing simultaneously nitro and amino groups have essentially enriched 
the arsenal of previously hard-hitting high energy azoles. Vicarious C-amination 
proceeding in the condition of super base medium is attended by processes of one-
electron transfer with formation of radical anions of initial nitroazoles [273–277].

The interaction of 1-methyl-4-nitroimidazole [273], 1-methyl-4-nitropyrazole 
[272, 276], 2-pheny-4-nitro-1,2,3-triazole [274, 277] with 1,1,1-trimethylhydro-
zinium iodide or 4-amino-1,2,4-triazole in t-BuOK/DMSO or MeONa/DMSO 
leads exceptionally to 5-amino derivatives corresponding to nitroazoles, as shown 
in Scheme 3.27 for nitroimidazole.

C-amination of 1-methyl-5-nitro- and 1-methyl-6-nitrobenzimidazoles in the 
analogous conditions gives 1-methyl-4-amino-5-nitro-, 1-methyl-7-amino-6-nitro-, and 
1-methyl-2-amino-6-nitrobenzimidazoles [275].

The observation of ESR signals of nitroazoles radical anions during ESR moni-
toring and the appearance of blue color in the reactions of substrates with 1,1,1-trim-
ethylhydrozinium iodide or 4-amino-1,2,4-triazole in t-BuOK/DMSO or MeONa/
DMSO suggests that the reaction includes a one-electron transfer stage. ESR spectra 
of radical anions of 1-methyl-4-nitropyrazole, 1-methyl-4-nitroimidazole and  
2-phenyl-4-nitro-1,2,3-triazole are presented in Figs. 3.2–3.4, correspondingly.

Except for the substrate RA, the radical cation of reagent (CH
3
)

3
N+–N•H has 

been registered and identified in the reaction mixture of 2-phenyl-4-nitro-1,2,3-
triazole with 1,1,1-trimethylhydrazinium iodide (Fig. 3.4) [274, 277].

It should be noted that ESR spectra of radical anions of 1-methyl-4-nitroimidazole 
[850, 852], 1-methyl-4-nitropyrazole [850, 851], and 1-methyl-5-nitrobenzimidazole 
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Fig. 3.3  ESR spectrum of 1-methyl-4-nitropyrazole radical anions recorded in the reaction obtained 
in vicarious C-amination condition (top); simulated ESR spectrum of 1-methyl-4-nitropyrazole 
RA (bottom) for HFS-coupling constants (a, mT): 1.430 (1N, NO

2
), 0.352 (1H, H-5), 0.220 

(1H, H-3), 0.033 (1N, N-2), 0.0275 (1N, N-1), 0.060 (3H, N-CH
3
)

Fig.  3.2  ESR spectrum of 1-methyl-4-nitroimidazole radical anion recorded in the reaction 
obtained in vicarious C-amination condition (top); simulated ESR spectrum of 1-methyl-4-ni-
troimidazole RA (bottom) for HFS-coupling constants (a, mT): 1.388 (1N, NO

2
), 0.477 (1H, H-5), 

0.070 (2N, N-1,3), 0.056 (1H, H-2), 0.020 (3H, N–CH
3
)
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[689, 883] independently obtained by electrochemical reduction (Table 3.36) are 
practically identical with the spectra recorded in vicarious C-amination conditions. 
ESR signals are not observed when any reagent is absent in the reaction mixture.

ESR spectral parameters of radical anions of 2-phenyl-4-nitro-1,2,3-triazole, 
1-methyl-5-nitrobenzimidazole, and 1-methyl-6-nitrobenzimidazole are illustrated 
in Scheme 3.28.

Ab initio (B3LYP/6-31G* or UHF/6-31G*) quantum-chemical calculations of 
spin density distribution in nitroazole radical anions (Scheme  3.29) are in a good 
agreement with experimental data (Scheme 3.28, Figs. 3.2 and 3.3) and show that 
the largest positive spin density is located at the carbon atom of azole ring, where the 
vicarious C-amination is realized [277].

Fig.  3.4  The ESR spectrum recorded in the reaction of 2-phenyl-4-nitro-1,2,3-triazole with 
1,1,1-trimethylhydrazinium iodide in t-BuOK-DMSO: after 25 minutes (top) and after 45 minutes 
(bottom left) from the beginning of reaction, computer simulation of ESR signal of radical anion 
(bottom right)
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The mechanism of vicarious C-amination of nitroazoles is presented in 
Schemes  3.30 (1-methyl-4-nitropyrazole), 3.31 (2-phenyl-4-nitro-1,2,3-triazole), 
3.32 (1-methyl-5-nitrobenzimidazole), and 3.33 (1-methyl-6-nitrobenzimidazole) 
[273, 275–278].

First the mechanism of vicarious nucleophilic substitution of hydrogen in nitroazoles 
and nitrobenzene has been discussed in terms of an electron transfer [273–277]. 
Community of the observed effects in vicarious C-amination of nitroazoles allows 
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considering that the channel of a one-electron transfer in VNS processes was disclosed 
by ESR spectroscopy. This point of view gives a chance to explain the orientation of 
nucleophile anion to the largest spin density place (position) of substrate RA.

Free radicals may be reaction intermediates in biological systems in more situations 
than are presently recognized. However, progress in detecting such species by ESR 
has been relatively slow. ESR is a very sensitive technique for free radical detection 
and characterization. It can be used to investigate very low concentrations of radicals 
provided that they are stable enough for their presence to be detected. For unstable 
radicals special techniques have to be employed [901]. One of these methods is 

ion radical pair
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called Spin Trapping. The special review [902] summarizes some of the more rele-
vant achievements of ESR and Spin Trapping applications in parasitic diseases studies. 
The use of ESR spectroscopy to obtain relevant information about free radical 
characterization and the analysis of the mechanisms of action of drugs involved in 
several parasitic diseases is also presented.

So, nitroazoles are beneficial materials to be investigated by ESR method. The 
presence of the nitro group causes the possibility of obtaining free radicals (radical 
anions, radical cations, and neutral radicals) by chemical, electro-, and photochemical 
methods and of use of ESR spectroscopy for studying the structure peculiarities and 
chemical behavior of nitroazoles. Unfortunately, until now, the ESR method, 
because of its specific character, does not find comprehensive application as an 
express method as, for example, does NMR spectroscopy. Therefore it has wide 
perspectives, justifying carrying out a labor-intensive, long, and fine experiment. 
ESR monitoring can shed light on the mechanism of the action of different drugs 
on the basis of nitroazoles.

Free radicals may be reaction intermediates in biological systems in more situations 
than are presently recognized. However, progress in detecting such species by Electron 
Spin Resonance has been relatively slow. ESR is a very sensitive technique for free 
radical detection and characterization. It can be used to investigate very low concen-
trations of radicals provided they are stable enough for their presence to be detected. 
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For unstable radicals special techniques have to be employed. One of these methods 
is called Spin Trapping.

Parasitic diseases in tropical and subtropical areas constitute a major health and 
economic problem. The range of antiparasitic drugs varies widely in structural com-
plexity and action at the subcellular and molecular levels. However, a number of these 
drugs are thought to exert their action by generating free radicals. Most of the free 
radicals producing drugs used against parasites are nitroheterocyclic compounds.

Polarography

The electron transfer is a main stage in the chemical reaction mechanism, photo-
synthesis, catalysis, transfer energy, etc.

Dumanovic with colleagues carried out polarographic investigation of various 
derivatives 3-, 5-nitropyrazoles and 2-, 4-, 5-nitroimidazoles in aqueous buffer 
solutions (pH 1.8–9.3) and 0.1 M solution NaOH [903–912]. On polarograms all 
the investigated nitroazoles have one or two waves of reduction both in acid and 
neutral medium. The first four-electron wave corresponds to reduction of nitro 
group to hydroxylamine one. The second two-electron wave corresponds to further 
reduction of hydroxylamine derivative to aminoazole (Scheme 3.34).

By increasing the medium pH the first half-wave potential (E¢
1/2

) value of all 
investigated compounds is displaced in the negative region (Table 3.41). Besides, 
for N-substituted nitroazoles a considerably greater displacement is observed, as 
in alkaline media these compounds form anions. This allows the determination in 
alkaline media the presence of both N-substituted and N-unsubstituted forms of nitroa-
zoles. The authors also utilized the E

1/2
/pH dependence for identification of the 

earlier-stated nitroazole forms (Table 3.41) [903, 904, 909, 910].
As seen from Table  3.41, the half-wave potentials of 3(5)-nitropyrazole and 

1-methyl-3-nitropyrazole are practically identical at all рН values. In the authors’ 
opinion, this may be due to the fact that 3(5)-nitropyrazole contains, mainly, 3-nitro 
tautomer [904]. A similar regularity is observed for 4(5)-nitroimidazole and 1-methyl-
4-nitroimidazole [903]. The E

1/2
 values of 1-methyl-3-nitropyrazole lie in more a nega-

tive region than those of 1-methyl-5-nitropyrazole. Probably it is related to the fact that 
nitro group in 1-methyl-3-nitropyrazole is located near electron-donative “pyridine” 
nitrogen atom (N-2). This is also the case for imidazoles: 1-methyl-4-nitro- and 
1-methyl-5-nitroimidazole.
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1-Alkyl-4-amino-5-nitroimidazoles and 1-alkyl-4-nitro-5-aminoimidazoles are 
reduced in a single six-electron wave [910]. The dehydration of the hydroxylamino 
derivative is favored, apparently due to an internal base catalysis. The shifts of half-
wave potentials with pH differ principally from those of all other nitroimidazoles and 
indicate the predominant role of the amino group in the proton transfer [910]. The 
reduction of 1-nitropyrazole in acidic media leads to cleavage of the N-N bond and 
formation of nitrous acid, which is further reduced at more negative potentials [908].

Correlation dependences between half-wave potentials of nitroimidazoles and 
their рН values are found out (Table 3.42) [913, 914].

Satranidazole (1-methylsulfonyl-3-(1-methyl-5-nitro-2-imidazolyl)-2-imidazo-
lidinone) is reduced more easily at pH 7 and is more sensitive to pH than other nitroa-
zoles (Table 3.42). Based on the comparison of the reduction potentials of satranidazole 
(at pH 7) with the potentials of 5-nitro- and 2-nitroimidazole derivatives and on the 

Table 3.41  The dependence of nitropyrazoles E
1/2

 (V) values on media pH

Compound

pH 0.1M 
NaOH1.83 3.20 6.06 7.04 9.30

N
N

H

O2N −0.24 −0.33 −0.56 −0.63 −0.73 −0.92

N
N

CH3

O2N −0.21 −0.29 −0.53 −0.57 −0.69 −0.72

N
N

H

NO2 −0.18 −0.25 −0.44 −0.56 −0.62 −0.83

N
N

CH3

NO2 −0.17 −0.23 −0.42 −0.49 −0.61 −0.65

N
N

CH3

O2N
−0.09 −0.15 −0.31 −0.39 −0.49 −0.51

N
N

NO2

−0.21 −0.22 −0.25 −0.25 −0.25 −0.24
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analysis of electronic stoichiometry of complete reduction of these compounds, the 
authors [914] have concluded this compound to be closer to 2-nitro derivative than to 
its 5-nitroisomere. However, it should be noted that there are no compounds with the 
electron-withdrawing substituents among the analyzed 5-nitroimidazole derivatives. 
This should decrease the Е

LUMO
 energy and, consequently, move E

1/2
 to the region of 

positive values.
In polymerization reactions by methyl methacrylate [915] a relationship between 

the reduction potentials of 1-methyl-3-nitropyrazole, 1-methyl-5-nitropyrazole, and 
1,2-dimethyl-5-nitropyrazole and their inhibited properties has been established.

The electrochemical reduction of 2-nitroimidazole in an aqueous mixed [916] 
and aprotic [917] medium has been carried out using cyclic voltammetry at a mercury 
electrode. The voltammetric behavior of 2-nitroimidazole in the aqueous mixed medium 
is substantially different from that in nonaqueous medium; in fact, only in the aqueous 
medium is it possible to study in isolation the nitro radical anion.

The electrochemical reduction of C- and N-nitroazoles has been investigated 
in detail in an aprotic media [850–853]. The reduction potentials of nitropyrazoles 
in acetonitrile are presented in Section 3.3 (Table 3.36). N-substituted 3(5)-nitro- and 
-4-nitropyrazoles in acetonitrile are reduced in two one-electron stages [850, 851]. 

Table 3.42  Half-wave electrochemical potentials of some nitroazoles and their depen-
dence on pH (Ag/AgCl)

Compound E
1/2

 (pH 7.0) (V) Equation

N

N

CH2CH2OH

O2N

CH3

−0.385 E
1/2

 = −0.065pH + 0.07

N

N

CH3

O2N

CH3

−0.475 E
1/2

 = −0.065pH + 0.02

N
N

CH2CH2OH

O2N −0.500 E
1/2

 = −0.060pH + 0.08

N

N

H

O2N −0.540 E
1/2

 = −0.070pH + 0.05

N

N

CH3

N N

O

SO2CH3O2N

−0.230 E
1/2

 = −0.047pH + 0.100
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The first and the second waves on the polarogram correspond to irreversible and 
reversible electron transfer, respectively. The addition of the first electron results in 
the generation of radical anions, which break up on the N-Н-bond with elimination 
of atomic hydrogen and the formation of anions. At the second half-wave potential 
the nitroazole anions are reduced to the corresponding radical dianions registered 
by the ESR method [852–854].

N-Alkylnitropyrazoles are also reduced in two stages: the first stage corresponds 
to reversible one-electron transfer (Scheme 3.35). In comparison with nitropyrazoles 
not substituted on nitrogen atom, the first half-wave potentials of N-alkylnitro
pyrazoles are essentially moved in cathodic region. Using the ESR method the 
signals of primary radical anions are recorded.

The second wave corresponds to the irreversible process. It is identical to the second 
polarographic wave of nitrobenzene obtained in the same conditions [851].

The presence of N-NO
2
 fragment in 1-nitropyrazole significantly facilitates the 

process of electrochemical reduction E¢
1/2

 = −0.95, E¢¢
1/2

 = −1.73  V (acetonitrile). 
The first wave corresponds to a one-electron irreversible transfer; the second wave 
is approximately 3.5 times higher and shows sharp drop prior to background discharge 
(Scheme 3.36). Analysis of the dependence of 1-nitropyrazole reduction potentials 
on pH shows that the second wave corresponds to the reduction of the NО

2
 anion 

(nitrite ion) formed [851].

ESR Signal of the intermediate radical anion was not observed [851].
The polarogram of 1,4-dinitropyrazole is considerably more complex and has five 

waves (Table 3.36, Section 3.3). This compound is reduced more easily than all the 
investigated nitroazoles. The first wave corresponds to an irreversible one-electron 
transfer (Scheme 3.19). As with 1-nitropyrazole, at this stage an unstable anion radical 
is formed and then breaks up at bond N–NО

2
. The NО

2
 anion is reduced at potential 

−1.7 V. 4-Nitropyrazolyl radical further is dimerized with subsequent reduction [851].

N
N

Alk

O2N

+e−
+ 4H++3e−, 

N
N

Alk

O2N

products 
of reduction

Scheme 3.35   

N
N

NO2

+e−

N
N

NO2

N
N

fast + NO2
−

Scheme 3.36   
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N-nitropyrazoles (1-nitro-, 1-nitro-3-methyl-, 1-nitro-5-methyl- and 1-nitro-3,5-
dimethylpyrazoles), a new class of NO-generating activators of soluble guanylate 
cyclase, have been studied [918]. NO (nitrogen oxide) forms from nitrite ion as a 
result of chemical or electrochemical reduction. Correlation between spasmolytic 
activity of N-nitropyrazoles and their ability to activate guanylate cyclase indicates 
biological effect of the compounds is based on nitrogen oxide released during their 
biotransformation and subsequent guanylate cyclase activation [918].

Comparison of the reduction potentials of some nitroazoles including nitropyrazoles 
with their radiosensitizing properties has been carried out (Table 3.43) [919].

The sensitization threshold is at half-wave potential −0.50 V of a sensitizer; with 
displacement E

1/2
 to more positive region the sensitizing properties of nitroazoles 

are nonlinearly growing (see Table 3.43) [919]. The best sensitizing properties are 
marked on nitroazoles, reduced in the potentials E

1/2
 range from −0.2 to −0.35 V. 

A linear dependence has been found out between one-electron redox potentials of 
nitroimidazoles and – log 1/R37 values (r = 0.96, n = 6). Parameter R37 characterizes 
an activity of a drug (37% of DNA Х174 population survival) [919].

Electrochemical (EC) oxidation of nitroazole anions in acetonitrile by a rotating 
platinum electrode has been investigated (Table 3.44) [920].

The EC oxidation first wave is diffusive and corresponds to one-electron transfer. 
An increase in the number of ring nitrogen atoms (the number of nitro group being the 
same) in a series of imidazole, pyrazole, triazole, tetrazole, as well as an increase 
in the number of nitro groups in the series nitroazole, di-, and trinitroazole essentially 
complicates the ability of nitroazole anions to electrochemical oxidation. [920]. In case 
of bicyclic C–C bound nitroazole dianions there is a dramatic decrease in E

1/2
 that 

Table 3.43  Reduction half-wave potentials of nitroazoles and their radiosensitizing abilities

Radiosensitizer E
1/2

 (V) P a

1-(5-Nitro-2-thiazolyl)-2-imidazolidenon −0.26 1.64
2-Brom-5-nitrothiazole −0.30 1.60
2-Nitro-5-pyridinylthiadiazole −0.20 1.52
5-Cyano-1,3-dimethyl-4-nitropyrazole −0.45 1.47
5-Nitrothiazolyl-2-1-methylimidazolyl-2-sulfide −0.40 1.37
1-(2-Nitro-1-imidazolyl)-3-methoxy-2-propanol −0.30 1.18
4-Nitroisothiazole −0.45 1.10
3-Nitrotriazole −0.55 1.05
1-Nitropyrazole −0.33 1.03
2-Nitroimidazole −0.40 1.00
2-Amino-5-nitrothiazole −0.50 1.00
2-Nitropyrazole −0.53 1.00
2-Nitro-5-aminothiadiazole −1.16 1.00
2-Methyl-5-nitroimidazole −0.56 1.00
4-Nitroimidazole −0.60 1.00
2-Piperidino-5-nitrothiazole −0.50 0.94
2-Amino-4-methyl-5-nitrothiazole −0.49 0.90
a Coefficient of radiosensitizing ability
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seems to be caused by an increase in stability of anion radical formed due to 
unpaired electron delocalization on two azolyl rings [920].

The mechanism of nitroimidazole EC reduction has been fairly well considered 
in the literature [921–926]. The way of N-substituted nitroimidazoles EC reduction 
at the first half-wave potentials is presented in Scheme 3.37:

Irreversibility of the first wave is caused by decomposition of nitroimidazole primary 
radical anions owing to fast protonation of initial nitroimidazole (reactions such 
as “the father with the son”) with the formation of anion and neutral radical. 
The last radical at same potential is quickly reduced to a hydroxylamine derivative. The 
process includes 4 electrons on 5 nitroimidazole molecules, i.e., only one-fifth of the 

Table 3.44  E
1/2

 Values of electrooxidation of nitroazole anions (V)

Anion E 
1/2

Anion E 
1/2

N
NO2N

−1.17
N

N

O2N

NO2O2N

1.94

N
NO2N

NO2 1.60 N

N
NO2N

1.77

N
N

NO2O2N 1.85
N

N
N

NO2
N

N
N

O2N 0.90

N

NO2N

1.05
N

N
NO2N

NO2 2.22

N

NO2N

O2N 1.26 N

N
NO2N NO2

1.86

N

N

O2N

NO2

1.36
N

N
N

N

O2N 2.30

N

N
R1

H

O2N

R2

N

N R1

H

HOHN

R2
+4e−

−H2O

N

N R1

O2N

R2

4+

R1, R2 = Alk, Hal

Scheme 3.37   
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initial molecules are exposed to electrochemical reaction [921, 923]. Deprotonated 
molecules are reduced at potential of the second half-wave potential to form radical 
dianions detected by ESR spectroscopy (Table 3.45) [850, 852, 923].

Table 3.45  The reduction potentials of some nitroazoles

Compound E¢
1/2

 (V) E″
1/2

 (V) Refs

N

N

H

O2N 1.14 1.97 [921]a

0.82 2.23 [852]b

N

N

H

O2N CH3

1.18 2.00 [921]
0.93 2.39 [852]

N

N

CH3

O2N

1.14 2.05 [921]
1.53 2.75 [852]

N

N

CH3

O2N 1.36 2.23 [921]
1.75 2.98 [852]

N

N

CH3

O2N CH3

1.18 2.13 [921]
1.51 2.85 [852]

N

N

CH3

O2N

CH3

1.39 2.23 [921]
1.75 2.95 [852]

N

N

H

NO2

0.71 2.37 [852]

N

N

CH3

NO2

1.49 2.54 [852]

N

N

C2H5

NO2

1.45 2.54 [852]

aDMF, TEAP refer to calomel electrode
bAcetonitrile, TBAP refer to mercury bottom
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Thus, N-substituted nitroimidazoles are reduced to form radical anions [852, 
921, 924], the ESR signals of which are fixed [852].

On EC reduction, ionization of the N-H bond of nitroimidazole derivatives in 
buffer solutions (pH 7.0–7.4) occurs (Table 3.46) (Scheme 3.38) [919, 927–929].

The anions formed are reduced to radical dianions. As should be expected, N-H 
nitroimidazoles are more difficult to reduce than N-substituted ones (not exposed 
to ionization) (Table 3.46) [928].

2-Nitroimidazoles are reduced more easily than 4(5)-nitroimidazoles. The nitro 
group is located between two electronegative nitrogen atoms in ring (see ESR 
Section). At the same time, 1-substituted 2-nitroimidazoles are reduced with more 
difficulty than the corresponding 2-nitrobenzimidazoles. The presence of phe-
nylene fragment in the latter increases the delocalization degree of electron density 
in the cycle and facilitates, thereby, the reduction processes [928].

Polarographic reduction of pH dependence of metronidazole [931], 2-nitroimi-
dazoles, 4(5)-nitroimidazoles, 4-nitro- and 5-nitro-1-methylimidazoles [932–936] 
N-nitroimidazoles [937], and 1-aryl-4-nitroazoles [938] has been investigated. 
A smaller diffusive current for 2-nitroimidazoles in comparison with other isomers 
noted by the authors is thought to be possibly due to its increased acidity [932]. 
Electrochemical reduction of the nitro group in 1-aryl-4-nitroazoles occurs in 

N

N

H

O2N −H+

+H+ +e
_O2N N

N

O2N N

N

Scheme 3.38   

Table 3.46  The reduction potentials of some nitroimidazoles

Compound R E¢
1/2

 (V) pH Refs

N

N

R

NO2

H 0.481 7.4 [928]
CH

2
CONHCH

2
OH 0.413 – [928]

CH
2
CONHCH

2
CH(OH)CH

2
OH 0.386 7.0 [928]

CH
2
CH

2
CH(OH)CH

2
OH 0.370 – [928]

CH
2
CH

2
SOCH

3
0.360 7.0 [928]

CH
2
CON(CH

2
CH

2
OH)

2
0.353 – [928]

CH
2
CH(OH)CH

2
NHCH

2
CH

3
.HCl 0.348 7.0 [928]

CH
2
CH(OH)CH

2
OCH

3
0.337 7.0 [919]
0.300 7.0 [929]
0.395 7.2

N

N

R

O2N CH3

H 0.550 7.4 [927]
CH

2
CH

2
OH 0.465 7.0 [928]

0.486 7.0 [930]
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slightly acidic medium as an untypical four-electron process leading to hydroxylamine 
group formation [938].

The increased interest to study of one-electron reduction process of nitroimida-
zoles is caused, in particular, by their use as radiosensitizers [53, 395, 913, 919, 
930, 939–947].

Analyses of the electrochemical data for 2-, 5-, and 4-nitroimidazoles show them 
to be the weakest oxidants with one-electron redox potentials (E

7
1) of only −0.517 V 

[940]. The potentials E
7
1 for 2-nitroimidazoles and 5-nitroimidazoles vary within a 

range from −0.243 to 0.423 and −0.457 to −0.486 V, respectively (Table 3.47) 
[940, 941]. A linear dependence of one-electron reduction potentials of substituted 
2- and 5-nitroimidazoles on the sizes [S] is observed (Table 3.47) [940, 941].

This dependence may be useful in search of potential radiosensitizers.
Determined with the help of pulse radiolysis, the thermodynamic potentials of 

one-electron reduction of 2-, 4-, and 5-nitroimidazoles (pH 7) have a higher negative 
values than those obtained by classical polarography (pH 7.4) [946]. Probably, it is 
generated by the fact that the process of electrochemical reduction involves irre-
versible stages of the decomposition of nitroimidazole anion radicals. The correlation 
of E

7
1 (and E

1/2
) of nitroimidazoles and their radiosensitizing properties is discussed. 

With E
7

1 values the correlation is found to be better [946].
The electrocatalytic mechanism of the reduction of 2-nitro- and 4-nitroimidazole 

[948, 949] and 3-nitro-1,2,4-triazole [950] on gold (Au) potential deposition electrode 
proceeds through chemisorption of the nitro group and reductive cleavage of one of 
the two N–O bonds and gives diffusion-controlled limiting currents.

The electron affinity of 2- and 5-nitroimidazoles calculated by a semiempirical 
quantum-mechanical method satisfactorily correlates with experimental values of 
one-electron reduction potentials measured by pulse radiolysis [942].

Pulse radiolysis has been used to measure the bimolecular rate constants of the 
electron transfer reaction for substituted 2- and 5-nitroimidazoles of interest as 
antiprotozoal drugs and radiosensitizers [951]. The mechanism of inhibition of 

Table 3.47  One-electron redox potentials and radiosensitizing properties of nitroimidazoles [941]

Compound R1 R2 −E1
7
a (V) [S]

1.6
b, mmol.dm−3

N

N

R1

NO2R2

CH
3

CHO 0.243 0.02
CH

2
CO

2
CH

2
CH

3
CH

2
CH

3
0.388 0.35

CH
2
CH(OH)CH

2
OH H 0.389 0.90

CH
2
CH(OH)CH

2
OCH

3
H 0.389 0.30

CH
2
CH

2
OH H 0.398 0.30

CH
2
CH

2
OCOCH

3
CH

3
0.420 1.0

CH
2
CH

2
OH CH

3
0.423 1.0

N

N

R1

O2N R2

CH
2
CH

2
OH CH

3
0.479 1.0

CH
2
CH(OH)CH

2
OCH

3
CH

3
0.486 1.0

a One-electron redox potentials at pH 7
b Sensitizer concentration at which the radiosensitization factor is 1.6
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many nitroreductases by oxygen can be explained in terms of electron transfer to 
oxygen from the nitroazole radical anions identified as the first intermediate in 
some reductase systems.

One-electron redox potentials of 2-substituted 1-methyl-4-nitroimidazoles correlate 
with their antiparasitic activity (Entamoeba histolytica): the activity is increased with 
decreasing redox potentials [952].

Misonidazole and its azo- and azoxy derivatives have been investigated in detail 
by polarography, cyclic voltammetry, and pulse radiolysis methods [947].

It is offered a polarographic method for the determination of the nitro group 
position in 4- and 5-nitroimidazole derivatives [953].

The microquantitative determination of some medicinal drugs such as metronidazole 
[927, 954–957], misonidazole [958], dimetridazole [959], and other nitroazoles 
[912] is carried out with the help of classical and differential pulse polarography.

The application of polarographic methods for the measurement of dissolution 
rate of medicinal drugs (ornidazole, isonidazole) in 0.1 N НСl is described [960]. 
Electrode kinetic parameters for metronidazole and azathioprine (immunosuppressor) 
– 6-(1-methyl-4-nitroimidazolyl-5)-mercaptopurine have been determined [961]. 
A comparison of reduction potentials of nitroimidazoles with their cytotoxicity, 
[962–965], mutagenity [966], and antimicrobial activity properties [967, 968] has 
been carried out. The polarographic behavior of metronidazole at mercury [969, 
970], Pt [971], glassy carbon [970] electrodes and also in the presence of DNA 
bases [970, 972–976] has been studied. All electrodes showed a similar trend in the 
reduction mechanism for metronidazole, dependent on pH in the acid and neutral 
media and independent in alkaline media [970]. Electrochemical parameters of 
1-[2-(ethylsulfonyl)ethyl]-2-methyl-5-nitro-1H-imidazole (tinidazole) [977] and 
rhodium-nitroimidazoles complexes [978] have been determined. The processes of 
polarographic and cyclic voltammetric behavior [979–981] and enzymatic reduction 
[982] of megazole [1-methyl-2-(5-amino-1,3,4,-thiadiazole)-5-nitroimidazole] and 
related nitroimidazoles have been studied.

Polarography investigations of nitrothiazoles are carried out in some works 
[535, 929, 931, 983, 984]. The investigation of fourteen 2-R-5-nitrothiazoles it is shown 
that the compounds of greater toxicity have higher negative reduction potential 
values [535]. The polarographic characteristics of 2-acetamido-5-nitrothiazole 
[931, 983] and niridazole (ambilhar) [929] have been obtained.

N

SO2N
N N

O

ambilhar 

The dependence of the E
1/2

 values of 4-nitroisoxazole of media pH has been 
described [985, 986].

The mechanism of electrochemical reduction of 3(5)-nitro-1,2,4-triazoles in 
acetonitrile has been investigated [850, 853]:
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N
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3
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2
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2

Principally, two waves are observed on polarograms of these compounds. 
The reduction mechanism of nitrotriazoles is similar to that of the described earlier 
for nitropyrazoles and nitroimidazoles. The bimolecular process of interaction of 
nitroazole primary anion radicals not substituted in nitrogen atoms accompanying 
molecular hydrogen elimination, apparently, is most probable and for nitrobenzimi-
dazoles and is proved by a method of a rotating disk electrode with a ring [888]. 
The presence of electron-withdrawing substituents in the investigated series of 
compounds essentially facilitates ECHR process [853].

EC reduction of complexes of 3-nitro-1,2,4-triazoles with Ni (II), Zn (II), and Cd 
(II) is investigated in the buffer Britton-Robinson (pH 1.7–9.5) and in DMF [987]:

pH 1.7 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

−E
1/2

0.45 0.48 0.51 0.53 0.55 0.62 0.70 0.75 0.77

The results allowed a conclusion on the possibility of separate determination of metals 
and nitrotriazoles from the solution [987]. The influence of nitrated 1,2,4-triazoles 
on corrosion and electrochemical behavior of low-carbon steels in aqueous solution of 
sodium sulfate has been investigated [988]. The strong passivating action of nitrotri-
azoles on steel is caused by the formation of stable chemosorbed metal-azole films.

One-electron reduction potentials have been measured for regioisomer derivatives 
of 3-nitro-1,2,4-triazoles for the development of new radiosensitizers of hypoxic 
cancer cells for radiotherapy [989].

The route of polarographic reduction of 4-nitro-1,2,3-thiadiazole is presented in 
Scheme 3.39 [990].

The electron affinity of 3-(N-methylpiperazino)-5-nitroindazole, 3,5-dinitroindazole, 
and molecular complex of the last with water is discussed on the basis of their half-wave 
potentials and in connection with their eventual radiosensitizing properties [667].

The mechanism of EC behavior of 2-substituted 5(6)-nitrobenzimidazoles in 
acetonitrile has been investigated by classical polarography, cyclic voltammetry, 
and platinum rotating disk electrode with a ring (RDER) [888, 991]. It is shown that 

N

S
N

HOHN
N

S
N

O2N

products 
of reduction

+4e− +2e− N

S
N

H2N

+4e−

Scheme 3.39   
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at the first stage of reduction the formed radical anions break up on the bimolecular 
mechanism with excretion of molecular hydrogen (Scheme 3.40) [888]:

The half-wave potentials (−E¢
1/2

 and −E¢¢
1/2

) are given in Table 3.48. The E¢
1/2

 
values are changed in the region –0.75 to –1.24 V, whereas the E¢¢

1/2
 values – in the 

region –1.30 to –1.64 V [991].
The results of two parameter correlations DE¢

1/2
 and DE¢¢

1/2
 (DE

1/2
 = E

1/2
X–E

1/2
H) 

with constants of the substituents s
I
s

R
, s

I
s

R
o, FR and s

I
s

R
+ (Table 3.49) show that 

the substituent influence on the first half-wave potential follows both induction and 
resonance mechanisms, the ratio of contributions of these effects being approximately 
equal and, practically, independent of a choice of the substituent parameters. The correla-
tion results between DE¢¢

1/2
 and substituent parameters indicate that the substituent 

influence is mainly achieved by the resonance mechanism (approximately 80%) 
(Table 3.49) [991].

+e−N

N
R

O2N

H

N

N

R

O2N

H

N

N

R

O2N

H

2
H2–

N

N

R

O2N

H

2

Scheme 3.40   

Table 3.48  Electrochemical reduction data of	  

N

N

O2N

H

R

2-substituted 5(6)-nitrobenzimidazoles in acetonitrile 

R −E¢
1/2

 (V) −E˝
1/2

 (V)

N(CH
3
)

2
1.24 1.64

NH
2

1.24 1.62
OCH

3
1.16 1.62

OC
2
H

5
1.17 1.65

CH
3

1.14 1.47
H 1.13 1.47
Cl 0.95 1.43
COOCH

3
0.91 1.34

COCH
3

0.92 1.32
CF

3
0.88 1.33

CN 0.75 1.30
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Indeed the substituent effects in anions of 2-substituted benzimidazoles transmit 
mainly by resonance mechanism [691]. Probably, this is connected with the fact 
that the polarization of p-electrons in benzimidazole anion is higher than in the 
neutral molecule.

Correlations in view of the third parameter s• (the radical stabilizing factor), 
describing stabilization of the radical state, do not allow reliably to discuss about the 
contributions to common substituent effect as the dependence between resonance 
and s• parameters is found out (r

23
 = 0.7) [991].

The excellent correlation between E¢
1/2

 of 2-substitued 5(6)-nitrobenzimidazoles 
and their Е

LUMO
 (INDO approximation) [884] points out to a linear dependence 

between these sizes (3.6) [991]:

	 – E´
1/2

 = (– 0.62 ± 0.04)E
HBMO

+ 0.06	 (3.6)

r = 0.987, s = 0.02, n = 7

R = NH
2
, OCH

3
, CH

3
, H, Cl, COCH

3
, CN

The electrochemical behavior itself 5(6)-nitrobenzimidazole is investigated depending 
on media pH by classical polarography [992–994], constantly current, and variable 
current [995, 996]. The reduction 5(6)-nitro-2-arylbenzimidazoles is carried out in 
DMF and H

2
O/DMF media [997]. The polarography was utilized in a study of the 

influence of 5(6)-nitrobenzimidazole on corrosion-electrochemical behavior of 
chromos steel [998].

The oxidation potentials of 2-mercapto-6-nitrobenzothiazoles were measured in 
regard to their abilities to function as coinitiators in free-radical photopolymerizations 
induced by camphorquinone and isopropylthioxanthone [999].

The oscillographic polarography data of 4-nitro- and 6-nitro-2-aminobenzothiazole 
(in aqueous-alcoholic solutions) are reported [1000]. The electrochemical behavior of 
dyes is investigated into which 5-nitrobenzothiazole or 5-nitrobenzoselenadiazole is 
added [1001]. The authors of this work have utilized a RDER, glass-graphite, and 
mercury-dropping electrode. The oxidation potentials of 2-alkylsubstituted 6-nitroben-
zimidazoles are determined using Pt electrode [1002].

Polarographic behavior 4(7)-nitrobenzotriazole [1003], 5(6)-nitrobenzotriazole 
[1003, 1004], and 5(6)-nitro-4(7)-aminobenzotriazole [1004] has been studied at 

Table 3.49  Parameters of correlation equation DE
1/2

 = ax + by = d.

DE
1/2

xy a b d r s n b, %a

DE¢
1/2

s
I
s

R
0.49±0.06 0.26±0.03 0.03±0.01 0.984 0.03 11 54±4

s
I
s

R
o 0.49±0.05 0.38±0.03 0.02±0.01 0.990 0.02 11 55±3

FR 0.29±0.06 0.25±0.05 0.03±0.01 0.964 0.04 11 54±7
s

I
s

R
+ 0.48±0.09 0.14±0.02 0.03±0.00 0.966 0.04 11 53±6

DE¢¢
1/2

s
I
s

R
0.15±0.07 0.31±0.03 0.04±0.00 0.968 0.03 11 82±7

s
I
s

R
o 0.16±0.05 0.45±0.04 0.03±0.00 0.981 0.03 11 82±5

FR 0.16±0.07 0.31±0.05 0.04±0.00 0.941 0.05 11 87±13
s

I
s

R
+ 0.15±0.10 0.16±0.03 0.04±0.01 0.931 0.05 11 81±11

ab is the contribution of resonance effect
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various media pH. The last two compounds in acid media have one irreversible 
reduction wave [1004]. With increase in media pH (5.0–9.2) on polarogram there 
are two waves, which are shifted to a more negative potential range. This fact indicates 
dependence E

1/2
 of the compounds from media pH:

E
1/2

 = 0.41 - 0.07 рН	 E
1/2

 = 0.29 - 0.10 рН
E

1/2
 = 0.21 - 0.14 рН	 E

1/2
 = 0.47 - 0.10 рН

The reduction mechanism of these benzotriazoles can be submitted as follows 
(Scheme 3.41) [1004]:

Benzofurazans, except for nitrated ones, at reduction on a dropping mercury 
electrode (in acetonitrile or DMF) on polarogram, have the one-electron wave, 
which corresponds to reduction of furazan cycle (Scheme 3.42) [1005]:

4-Nitro- and 5-nitrobenzofurazan have two resolute peaks registered by a cyclic 
voltammetry [1005], apparently, concerning reduction: of two competitive centers, 
nitro group and furazan fragment. What is amazing is that the authors managed to 
record ESR spectra of radical anions of all investigated compounds, except for 
those nitrated [1005]. The electrochemical behavior of 4-substituted 7-nitrobenzo-
furazans depending on media pH has been investigated [1006, 1007]. The half-
wave potentials of these compounds well correlate with substituent constants 
(Table 3.50):

N
N

N

HOHN

H

HR
+2e

−
 , +2H

++4e− , +4H
+N

N
N

O2N

H

R

N
N

N

HOHN

H

R

in acid media 

+6e
−
 , +6H

+

N
N

N

H2N

H

R
in alkali media

R = H, NH2

Scheme 3.41   

N
O

N

N
O

N
R R

R = H, 4-CH3, 4-Cl, 4-OCH3, 5-CH3, 5-Cl, 5-OCH3, 5,6-(CH3)2

Scheme 3.42   
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Relationship E
1/2

 and transfer band of a charge in UV spectra of these com-
pounds in detail will be reported in Section on UV Spectroscopy [1007].

5-Nitro-2,1,3-benzothiadiazole and 4-nitro-2,1,3-benzoselenadiazole in DMF 
are reduced into half by the one-electron and reversible waves (Scheme  3.43) 
[1008, 1009].

The same compounds in aqueous solutions (pH 0.6–11.8) are reduced in the fol-
lowing way (Scheme 3.44) [1010]:

Table  3.50  Correlation of the half-wave potentials of nitrobenzofurazans with 
substituent constants (s

p 
and s*)

N
O

N

R

NO2

s
p
 = −0.00417 (−E

1/2
) + 0.64056 1006

R = 0.98, s = 0.32, n = 7

N
O

N

N

NO2

AlkR Ss* = −0.0242 (−E
1/2

) + 8.348 1007
R = 0.98, s = 0.30, n = 14

N
O

N

N

NO2

ArR Ss* = −0.00417 (−E
1/2

) + 0.64056 1007
R = 0.97, s = 0.28, n = 10

N
X

N

O2N
+4e− , +4H+ N

X
N

HOHN
+2e− , +2H+

−H2X

NH2

NH2

HOHN

X = S, Se

Scheme 3.44   

N
Se

N

NO2

+e− N
Se

N

NO2

+e– N
Se

N

NO2

E1/2 = –0.77 V  E1/2 = –1.56 V 

Scheme 3.43   
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Previously the electron transfer reactions attracted more attention of researchers 
[1011, 1012]. Electrochemical data mainly in common with ESR spectroscopy data 
are the important source of the information about the reaction mechanism and also 
about structure, reactivity, properties of intermediate free radicals of different 
classes of organic, organometallic, and inorganic reactions. Elucidation of the 
mechanism and problems of reactivity in the chemistry of one-electron transfer can 
be of main significance in such fields as synthesis and catalysis, radical chemistry, 
photochemical synthesis, biochemistry of in vivo organism.

Infrared Spectroscopy

In the infrared spectra (IR) of nitroazoles characteristic bands correspond to asym-
metric (n

as
) and symmetric (n

s
) stretching vibrations of the nitro group. It is known that 

the position of n
as
 band is more subject to the substituent influence in comparison with 

the position of n
s
 band of the complicated form. This appears to be related to some 

vibrations of the cycle. Thus, variation of the substituents is reflected in vibrations of 
the heterocycle, which, in turn, results in shifting the nitro group n

s
 frequency, even in 

cases when there are no changes of force constants or electron distribution in the NO
2
 

group. Therefore, the frequencies vary rather randomly.

Nitropyrazoles

Asymmetric vibrations of the C-nitro group in nitropyrazoles are observed in the 
1490–1560 cm-1 region and symmetric ones – in the 1315–1355 cm-1 region [245, 
295, 301, 302, 686, 1013–1021]. Similar vibrations of the N-nitro group are in a 
narrower range of frequencies, n

as
 – 1610–1650 cm-1, n

s
 – 1270–1294 cm-1 [686, 

1013, 1019]. The results of analysis of the experimental and calculated vibration 
spectra of pyrazole, 3-nitropyrazole, and 1-nitropyrazole show that a change of the 
nitro group position in the cycle renders influence on both the electron structure of 
the pyrazole ring and the character of interaction of the electron-withdrawing sub-
stituent with the heterocycle [1019]. The potential energy constants rather correlate 
well with the appropriate bond order values (Table 3.51).

Table 3.51  Force constants of pyrazole ring bonds

Coordinate 
of molecule

Bond order 
of pyrazole

K
i
·106, cm−2

Pyrazole 1-Nitropyrazole 3-Nitropyrazole

Q1 0.441 11.0 12.5 11.6
Q2 0.770 12.5 11.0 12.0
Q2 0.581 11.5 10.5 11.4
Q3 0.765 12.3 11.5 12.5
Q4 0.396 10.5 10.0 11.3
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Introduction of the nitro group into the ring changes all bond force constants of 
the cycle. Some alignment of bond force constants of the cycle in 3-nitropyrazole 
in comparison with pyrazole testifies to leveling of their bond orders that results in 
an increase of the pyrazole ring aromaticity. In 1-nitropyrazole the nitro group 
promotes division of the ring chemical bonds in double and single ones to a greater 
degree than in pyrazole. The aromaticity of 1-nitropyrazole is likely to be reduced. 
The presence of electron-withdrawing NO

2
-group in the pyrazole ring displaces 

fundamental stretching bands of the cycle (Table 3.52) [1019].
The microwave spectra and ab initio calculations (MP2/6-31G**) of 1-nitropyrazole 

indicate the planar structure of the molecule [1022]. The initial assignment of the spec-
trum was carried out using a radio frequency-microwave double resonance technique.

The NH-bond stretching vibrations in the spectra of pyrazole and 3-nitropyra-
zole have absorption maxima at 2980 and 2970 cm-1 [1021].

Two-centered H-complexes, 3,5-dimethyl-4-nitropyrazole, N-methyltrifluoro-
methanesulfonamide, etc. with protophilic solvents have been studied using 
NH-bond stretching vibrations in IR spectra (Table 3.53) [1023]:

In protophilic media, amides exist as monomeric H-complexes with a two-centered 
H-bond and 1:2 H-complexes of the open-chair dimer with a bifurcated (three-
centered) hydrogen bond. The formation of a strong bifurcated H-bond weakens the 
bridging N–H…O=S bond.

As already mentioned, the frequency of NO
2
 asymmetric absorption band 

depends on the nature of substituent, the electron-withdrawing substituents moving 
it, as a rule, to a higher frequency region, as in both N-nitro- [686, 1013], and 
C-nitropyrazoles [279, 301, 302, 1024–1027].

The IR spectra of 4-nitropyrazoles used as ligands are presented in [1016]. 
Kinetics of the heterocyclization of nitroazidopyrazoles into nitropyrazolo[1,5-d]-
tetrazoles has been studied using n

as
 of azido group (2120 cm-1) [1028]. The vibration 

spectra of aminonitropyrazoles [1014], the nitration and halogenation products of 
pyrazoles [1029], 1-alkyl-3-methyl-4-nitro-5-pyrazolecarbonylclorides [310], 
1,3-dialkyl-4-nitroisomeric arylazo-1-methylnitropyrazoles [318], N-phenyl-substituted 

Compound Frequencies, cm−1

Pyrazole 1550 1530 1460 1390 1355
1-Nitropyrazole 1525 1402 1320 1290 1262
3-Nitropyrazole 1508 1480 1430 1420 1375

Table 3.52  Stretching vibration bands 
of the pyrazole cycle.

Protophilic solvent (H-acceptor) n
NH,

 cm−1

Phenetole (C
6
H

5
OC

2
H

5
) 3305

Anisole 3300
Dioxane 3240
1,2-Dimethoxyethane 3233
Tetrahydrofuran 3180

Table 3.53  NH-stretching vibration bands of 
3,5-dimethyl-4-nitropyrazole H-complexes 
with protophilic solvents.
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3-methyl-4-nitropyrazole-5-carboxyhydrazides [1030], nitroazoloanhydrosaccha-
rides [295], and some other nitropyrazole derivatives are reported [308].

Nitroimidazoles

Similarly, in nitropyrazoles the C-nitro group n
as
 and n

s
 stretching frequencies are 

found in a range of 1510–1586 and 1320–1408 cm-1 [73, 297, 328, 362–364, 428, 
465, 1031–1041], whereas the absorption maxima of nitroimidazole anions are 
displaced to the low-frequency region – 1120–1200 and 1108–950 cm-1, respectively 
[1033]. The authors [1033] have established that the nitroimidazole sodium and 
potassium salts have a structure, with the negative charge mainly located on the 
nitro group (Scheme 3.45):

Another evidence for the benefit of this structure is provided by the displacement 
of NO

2
-group absorption maxima of n

as
 and n

s
 stretching frequencies to a lower 

frequency region compared to the neutral molecule (Table 3.54) [1033].
As seen from Table 3.54, the spectra of polynitroimidazole salts show bands of 

two types that can indicate the negative charge localization on only one of the 
groups [1033].

N

N

O2N

O2N
M

+
M

N

N

N
O

O N

N

N
O

O

M
+

Scheme 3.45   

Table 3.54  Stretching vibration bands of the nitro group of nitroimidazoles

Compound

Neutral molecule Anion

n
as
, cm−1 n

s
, cm−1 n

as
, cm−1 n

s
, cm−1

4(5)-Nitroimidazole 1561 1344 – –
4(5)-Nitroimidazole, Na-salt – – 1173, 1160 950
2-Nitroimidazole 1540, 1518 1362 – –
2-Nitroimidazole, Na-salt – – 1197 1062
4,5-Dinitroimidazole 1548, 1532 1358, 1326 – –
4,5-Dinitroimidazole K-salt – – 1187, 1528 960, 1366
2-Methyl-4,5-dinitroimidazole 1554, 1523 1334 – –
2-Methyl-4,5-dinitroimidazole K-salt – – 1197 1108
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In the vibration spectra of N-nitroimidazoles and N-nitropyrazoles the maxima of 
nitro group absorption are observed in higher frequency region in comparison with 
those of C-nitroisomers, i.e., n

as
 – 1635–1647 and n

s
 – 1286–1332 cm-1 [2, 1033].

The complex formation process of metronidazole with polyvinylpyrrolidone 
(PVP) or poly(acrylic acid) (PAA) has been studied by IR spectroscopy [1038–1041]. 
These complexes possess antibacterial properties. The absorption bands at 3100 
and 3210 cm-1, typical of the initial compound, disappeared from the IR spectra of 
the complexes, as well as from the spectrum of a solution of metronidazole in dioxane 
(film); in the latter case, the band 3430 cm-1 corresponding to vibrations of free OH 
groups retained in the spectrum. The complex metronidazole-PAA showed a broad 
absorption band 3405  cm-1 due to stretching vibrations of the acid OH groups 
involved in hydrogen bonding. The IR data suggest that metronidazole molecules 
exist as open-chain structures like -N…HO(CH

2
)

2
N – (an absorption band at 

3430 cm-1 was present together with on bands at 3100 and 3220 cm-1). However, 
the formation of dimers cannot be ruled out. Unsubstituted imidazoles are known 
to undergo association to give linear polymeric structures, but no such associates 
are formed when the hydrogen atom on the “pyrrole” nitrogen atom is replaced by 
an alkyl or aryl group. It turned out that introduction of a hydroxyethyl group into 
the 1 position favors hydrogen bonding [1038, 1041].

IR spectra, total energy, Gibbs free energy, and the highest p and s electronic 
states calculated for tautomers of 5-substituted imidazoles by ab initio (MP2, 
RHT/6-311++G**) show that such substituents as NO

2
, NH

2
, CN, etc. stabilize the 

N3-H tautomer more [1042]. Therefore the conclusions derived from these data 
are related to molecules in the gas state and cannot be extended to the imidazoles in 
the solvated state.

Infrared spectroscopy is widely used for the structural determination of tautomers, 
isomers conformers of various nitroimidazoles [42, 1043]. Vibration spectra of 
different 1-alkyl [362]-, 1-(trialkylsilylalkyl)-2-methyl-4-nitroimidazoles [363], 
allylated 4-nitroimidazoles [364], dinitroimidazoles [428] have been studied. The 
vibration frequencies of some medicinal compounds on the base nitroimidazoles, for 
example, diasteriomeric nido-carboranyl misonidazole congeners [389], antiviral 
agents [452], and adrenergic-receptor agonists [454] are analyzed. In the literature 
the number of publications devoted to vibration spectra is rather limited and, as a 
rule, the absorption band frequencies of nitroimidazoles are considered in synthetic 
works concerned with structure identification such as, for example, [354, 429, 
461–464, 468–471, 1044–1047].

Nitroisoxazoles, Nitrooxazoles, and Nitrooxadiazoles

Stretching bands corresponding to the nitro group in nitroisoxazole and nitroox-
azole derivatives are observed in the 1520–1570 (n

as
) and 1360–1380  cm-1 (n

s
) 

regions [501, 502, 1048–1050].
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4-Nitro-2-phenyloxazole was isolated (29%) as a result of temperature transfor-
mation (155°C) of corresponding nitroisoxazole in xylene with a trace amount of 
same acid and confirmed by IR spectroscopy (Scheme 3.46) [501, 502]:

IR (KBr): 3163 (Ph), 1608 (C=C), 1561 (C=N), 1530, 1377 (NO
2
) cm-1

IR NO
2
 stretching vibrations of 5-substituted 4-nitro-2-phenyloxazoles are in the 

region [502]:

N

O
Ph

O2N

R

R = H, CO2Me, COPh

1530–1570 n
as
, 1360–1380 n

a
 cm-1

The nature of substituents in aryl fragments of 3,5-diaryl-4-nitroisoxazole 
practically does not influence either the nitro group n

as
 or the band frequencies of 

the isoxazole ring itself (Table 3.55) [486, 1048, 1049].
The characteristic frequency of asymmetric stretching vibrations of methyl 

groups (2900–3000 cm-1) is widely applied in the studies of organic compounds, for 

O N

NO2

R1R2

Table 3.55  Absorption bands in the IR spectra  
of 4-nitroisoxazoles (cm−1) .

R1 R2 n
as
(NO

2
) n

s
(NO

2
) n(C≡N) n(C=C) Other bands

H H 1517 1362 1612 1574–1583 1182, 1153, 1020, 940, 876
1520

OCH
3

H 1515 1360 1612 1572–1585 1174, 1156, 1028, 942, 882
CH

3
H 1515 1365 1600 1565–1574 1182, 1146, 1018, 938, 898

Cl H 1535 1365 1615 1585–1590 1184, 1156, 1020, 943, 876
1540

OC
2
H

5
H 1512 1360 1610 1570–1580 1172, 1155, 1034, 940, 895

H CH
3

1520 1360 1615 1565–1575 1185, 1150, 1020, 940, 885
H OCH

3
1518 1358 1608 1575–1590 1174, 1150, 1024, 940, 880

H Cl 1530 1366 1615 1565–1574 1184, 1168, 1012, 942, 875

N

O
Ph

O2N

O
N

O2N Ph

Scheme 3.46   
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example, for the determination of the number of CH
3
-groups. The examination of 

methyl group reactivity in 4-nitro-3,5-dimethylisoxazole indicates that the methyl 
group in position 5 is highly reactive in condensation reactions compared to analo-
gous compounds. The introduction of nitro group into position 4 results in increas-
ing the n

as
 (CH

3
) frequency up to 20 cm-1. A shift of this kind as well as chemical 

behavior of the aforementioned compound can be explained by C-H bond polariza-
tion in the methyl group in position 5, arising under action of the adjacent electron-
withdrawing substituents. The analysis of integrated intensity (A

CH
s)1/2 of the n

as
 

(CH
3
) band in the IR spectra of some investigated azoles, including nitrated ones 

(Table 3.56), shows that the influence of several substituents and heteroatoms is 
subject to the principle of additivity (3.7) [1051]:

	
( ) ( )1/2 1/2

.
4.8 0.8

0.946, 18

S S
CH CHA A

R n

= +

= =

å 	 (3.7)

The dependence between the (A
CH

s)1/2 band and calculated charges on the ethyl 
group atoms shows that the dominant role in the intensity change of C–H stretching 
bands belongs to electronic effects [1051].

Vibration spectra characteristics of 3-nitroisoxazoline N-oxides and other 
nitroisoxazole derivatives are reported [499, 1052, 1053].

When going to nitrofurazans and nitrofuroxans, the n
as
(NO

2
) frequency is 

reduced by approximately 20 cm-1 (Table 3.57) [136, 137, 506, 508, 511, 518].

Nitroisothiazoles and Nitrothiazoles

Vibration spectra of several isothiazoles have been reported [1054]. IR NO
2
 absorption 

bands of nitrothiazole derivatives have been analyzed (Table  3.58) [534, 535, 

Table  3.56  The intensities of symmetric vibration bands of 
C–H–methyl group in some nitroazoles (n

CH
 = 2935 ± 10 cm-1)

Compound

A
CH

s

Dq(CH
3
), a.u.Experimental Calculated

N
N

CH3O2N

H3C

CD3

18.9 18.4 0.0616

N

NO2N

CD3

CH3

17.0 17.1 0.0236

O
N

CH3O2N

H3C

11.6 7.9 0.0580
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Table 3.57  IR Absorption bands of nitrofurazans and nitrofuroxans (cm−1)

Compound n
as
(NO

2
) n

s
(NO

2
) Ring bands and others Refs

N
O

N

O2N Cl 1570 1330 1610, 1180, 860 [511]

N
O

N

O2N Ph 1580 1355 1465, 1230, 1020 [520]

N
O

N

NHMeO2N 1530 1355 1615, 1530, 1480, 1375, 1315, 
1242, 1210, 1035, 1004

[136]

N
O

N

NHCH2PhO2N 1520 1360 3384, 2904, 2872, 1616, 1456, 
1440, 1400, 1304, 1200, 1064, 
1048

[136]

N
O

N

NO2O2N 1557 1360 1591, 1460, 1145, 1040, 849, 812 [506]

N
O

N

O2N N N

N
O

N

Cl 1540 1360 - [511]

N
O

N

O2N N N

N
O

N

Cl
O 1550 1350 1580, 1170, 1105, 915, 870 [511]

N
O

N

O2N N N

N
O

N

OH
O 1580 1345 1495, 1425, 1245, 1180, 1120, 

1090, 1020
[508]

1055, 1056]. The range of changing n
as
 and n

s
 NO

2
 in nitrothiazoles is the same as for 

other nitroazoles.
The structure of some medicines containing nitrated 1,3,4-thiazole fragments 

was confirmed by IR spectroscopy [1057, 1058].
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Nitrotriazoles

Structure and ratio of N-1- and N-2-alkyl isomers of 4-nitro-1,2,3-triazole obtained 
by alkylation reaction in various solvents have been investigated by IR spectros-
copy [620]. The structure of 4-aryl-5-nitro-1,2,3-triazoles [1610–1615 (double 
bonds), 1510–1530 and 1374–1380 (NO

2
), 990–1022 (triazole ring) cm-1] [553], 

1-aryl(heteryl)- and 2-aryl(heteryl)-4-nitro-1,2,3-triazoles [141, 177, 602–604] 
have been confirmed by infrared spectra.

The vibration spectra of nitrated 1,2,4-triazoles were investigated most widely and 
completely [554–556, 566–573, 580, 581, 585, 1057, 1059–1070]. The nitro group 
vibrations are in a range of about 1550–1580  cm-1 (n

as
) and 1300–1360  cm-1 (n

s
) 

(Table 3.59 and 3.60). For more reliable interpretation of the IR and Raman spectra 
of 1-methyl- and 3-nitro-1,2,4-triazole calculations of frequencies and normal vibra-
tion forms have been carried out [1060, 1061]. On introduction of the nitro group into 
position 3 a change of the potential energy constants of valence and angular coordi-
nates of the cycle is observed. In this case the force constants of N–N and C–N bonds 
are increased, and this should lead to an enhancement of their double-bonding degree 
[1061]. The NO

2
-group vibrations with the most characteristic frequency are located 

in rather narrow spectral intervals: asymmetric – ~1555, symmetric – 1302–1315, 
nonplanar – 680–700, and deformational – ~645  cm-1. Deformational stretching 
vibrations of the ring C–N bond are displayed in a range of 1385 and 1420 cm-1, 
whereas the exocyclic ones of C–N bond are in the 1400–1480 cm-1 region [1060, 
1061]. The band at ~1275 cm-1 is assigned by the authors to the triazole ring N–N 
bond vibrations and considered to be characteristic to some extent [1061].

S

N
R2

O2N R1Table 3.58  Stretching vibration bands of 5-nitrothiazole  
derivatives (cm−1) .

R1 R2

Nitro group

N(C=O)n
as

n
s

CH
3
CONH CHO 1500 1310 1675, 1698

CH
3
CONH CH=NNHC

6
H

5
1510 1290 1632

CH
3
CONH CH=NC

6
H

5
1540 1330 1700

Br CH
2
COPh/CH=C(OH)Pha 1612 1323 1681

1518 1277 (3443 OH)
NHNO

2
CH

2
Cl 1540 1350 –

NHCOCH
3

CH
2
Cl 1540 1330 –

NHCOCH
3

CHO 1540 1310 1698
1710

NHCOCH
3

CH=NO–C
6
H

4
–C(CH

3
)

2
1540 1320 –

aKeto-enol mixture
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Both absorption bands (n
as
) and (n

s
) in 3-nitro-1,2,4-triazole isomers are shifted to 

the lower frequency region on 25–34 cm-1 in comparison with 5-nitro isomers [554].
Splitting of the NO

2
 absorption bands in the IR spectra of 3,5-dinitro-1,2, 

4-triazole derivatives reported in [1060] may testify to dimensional and electronic 

N

N
N

NO2

R1

R
Table 3.59  Vibration frequencies of the nitro group of  
3-nitro-1,2,4-triazole derivatives (cm−1) 

R R1 n
as

n
s

Refs

H H 1570 1320 [1057]
H CH

3
1545 1310 [554, 1057]

H C
6
H

5
1560 1310 [1057]

H NO
2

1560 1310 [1057]
CH

3
H 1545 1310 [554, 1057]

C
2
H

5
H 1550 1305 [554]

C
2
H

5
a H 1562 1325 [555]

C
3
H

7
H 1550 1305 [554]

i-C
2
H

5
H 1555 1305 [554]

CH
3

CH
3

1540 1312 [554]
CH

3
b CH

3
1560 1330 [580]

CH
3
c I 1575 1320 [580]

CH
3

N
3

1560–1530 1315 [1063]
CH

3
NH

2
1510 1320 [1067]

CH
3

NHCH=CH
2

1533 1313 [1067]
CH

3
4-NO

2
C

6
H

4
1560, 1525 1360, 1315 [1067]

CH
2
COCH

3
H 1580 1315 [568]

a1,4-diethyl-3-nitro-1,2,4-triazolium perchlorate, 1080 cm−1 (ClO
4
)

b1,4,5-trimethyl-3-nitro-1,2,4-triazolium iodide
c1,4-dimethyl-5-iodo-3-nitro-1,2,4-triazolium iodide

N

N
N

R1

R

O2NTable 3.60  Vibration frequencies of  
the nitro group of 5-nitro-1,2,4-triazole  
derivatives (cm−1) 

R R1 n
as

n
s

Refs

CH
3

H 1556 1338 [554]
1555 1320 [1057]

C
2
H

5
H 1558 1336 [554, 555]

C
3
H

7
H 1560 1335 [554]

i-C
2
H

5
H 1558 1330 [554]

CH
3

CH
3

1562 1346 [554]



304 Structure and Physical–Chemical Properties of Nitroazoles 

BookID 161900_ChapID 3_Proof# 1 - 20/08/2009

nonequivalence of the nitro groups. Really, a better agreement of the calculated and 
experimental frequencies is observed for models with a turned out nitro group in 
position 5 of 3,5-dinitro-1,2,4-triazole and its 1-methyl isomer. Infrared spectra of 
nitrated azidotriazoles detected the azido group band at ~2160 cm−1 [1062, 1063]. 
The calculated data show a low sensitivity of frequencies to the nitro group turn in 
3-azido-5-nitro-1,2,4-triazole in contrast to 3,5-dinitrotriazoles. The presence of a 
strong electron-withdrawing group in position 5 results in polarization of the triaz-
ole cycle p-bonds and electron density shift from C-3 atom to C-5 along 
C-3 > N-4 > C-5 bond system of the cycle [1062].

N

N
N

N3

O2N

H

1 2

34

5

The IR spectra of nitroazole anions have some features [1064, 1065]. The n
s
 

(NO
2
) of nitrotriazole anions are in a narrow spectral region of 1300–1315 cm−1 that 

may be indicative of a coplanar arrangement of the nitro group and the triazole ring, 
the NO

2
 n

as
 frequencies are displaced by 15–20 cm−1 to the lower frequency region 

in comparison with those of neutral molecule [1060]. The decrease of vibration 
frequency can point out to an increase of the nitro group participation in both delo-
calization of the negative charge and reduction of the NO bond multiplicity [1065]. 
The nitro groups in 3,5-dinitrotriazole anions are also coplanar with the triazole 
ring plane, since no splitting of the nitro group n

as
 and n

s
 frequencies could be found 

in IR and Raman spectra [1064]. This means that in the 3,5-dinitro-1,2,4-triazole 
anion these two nitro groups are equally involved in the negative charge delocalization 
and that should lead to an increase of the anion symmetry up to C

2v
.

The nitro group vibration frequencies do not depend much on the number of 
CH

2
- units in C-bicyclic nitrotriazoles [1057] and are comparable with those  

of N-bicyclic nitrotriazoles [594].

N
N

N

H

O2N

(CH2)n
N

N
N

NO2

H
N

N
N

NO2

CH2

O2N

O H2C

N
N

N

O2N

NO2

n
as
, cm−1 1560–1555 1580

n
s
, cm−1 1320–1310 1320

The vibration spectra of nitrated 1,2,4-triazol-5-ones [611, 614, 615] and their 
energetic salts [616] are discussed. The thermal decomposition mechanism under 
rapid heating of thin films of 3-nitro-1,2,4-triazol-5-one was studied by pulsed 
infrared laser and Fourier-transform infrared spectroscopy [1071].
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All characteristic absorption bands in 1-nitro-1,2,4-triazol-5-one are shifted on 
30–50 cm−1 in comparison with 3-nitro-1,2,4-triazol-5-one [611].

N

N
N

NO2

O

H

H
N

N
N

O

NO2

H

IR (KBr), cm−1 1358, 1548 (NO
2
), 1719 (C=O) 1326, 1579 (NO

2
), 1767 (C=O)

The IR spectroscopy data for 1-(1-adamantyl)-3-nitro-1,2,4-triazole [1072] and 
other substituted nitrotriazoles [574–576, 582, 583, 621–625, 1066, 1073–1077] 
are mainly reported to confirm the structure.

Nitrotetrazoles

The structure of 5-nitrotetrazole and its N-substituted analogs has been determined 
by infrared spectra [1076–1079]. Nitro group stretching vibrations in N-substituted 
5-nitrotetrazole are observed in the 1500–1580 (n

as
) and 1315–1350  cm−1 (n

s
) 

regions [1078, 1079]. Deformational stretching vibrations of the cycle are displayed 
in a range of 1020 and 1045 cm−1. As shown by calculations, the vibration spectrum 
of 1-methyl-5-nitrotetrazole has appeared to be not sensitive to a change of turning 
angle of the nitro group in position 5 [1077]. So, the vibration spectroscopy methods 
do not yield opportunities to make a choice in favor of one or other molecular con-
formation. The NO

2
-group stretching vibration frequencies in 1-methyl-5-nitrotet-

razole are in the 1550 (n
as
) and 1330  cm−1 (n

s
) region [1077], whereas those in 

N-acetonyl-5-nitrotetrazole are observed in the ranges 1573 and 1316, 1340 cm−1, 
respectively [1076].

Nitroindazoles

The substituent electron effects in indazole and other azoles essentially influence the 
nitro group n

as
 (Table 3.60). The valence vibration bands of the C-nitro group in nitrated 

indazoles are in a frequency range of 1560–1510 (n
as
) and 1380–1310 cm−1 (n

s
) [644, 

657–664, 668, 669, 673, 679, 680]. The introduction of the nitro group into position 
1 in indazole displaces the asymmetric band to higher frequencies (~1620–1610 cm−1), 
and symmetric frequency, on the contrary, to lower frequencies (~1280–1240 cm−1) in 
comparison with C-nitroindazoles (Table 3.61) [657, 659, 663, 664]. Similar changes 
are observed in 5-membered nitroazoles.



306 Structure and Physical–Chemical Properties of Nitroazoles 

BookID 161900_ChapID 3_Proof# 1 - 20/08/2009

Table 3.61  Stretching vibration bands of nitro groups in nitroindazoles (cm−1)

Compound R R1 n
as

n
s

Refs

N
N

NO2

H

R1

R

H H 1535 1385 [679]
4-NO

2
H 1525 1348 [679]

5-NO
2

H 1540 1348 [679]
6-NO

2
H 1520 1364 [679]

7-NO
2

H 1530, 1500 1335 [679]

N
N

NO2

R

NHCH
2
Ph 1520 1389 [673]

NO2

N
N

Ar

R

O2N

CN, CHO, CO
2
H, 

CH(NH
2
)CH

2
CO

2
H, 

CH=CH(CO
2
H)

2
, 

CH=C(CN)CO
2
Et 

CH=C(CO
2
H)

2
,CH(OH)

CH
2
–2,4,6,(NO

2
)

3
–C

6
H

2

1540–1560 1340–1360 [668, 669, 
805]

N
N

R

H

R1

H 4-NO
2

1510 1325 [658]
N(CH

3
)

2
4-NO

2
1525 1355, 1330 [658]

H 7-NO
2

1550 1342, 1320 [679]
N(CH

3
)

2
7-NO

2
1510 1310 [661]

Cl 5-NO
2

1535 1335 [657]
NO

2
5-NO

2
1510 1335 [660]

N
N

O2N

CH3

H

CH3

H3C

ClO4
–

H 5-Cl 1600a 1265a [662]
H 5-NO

2
1610a 1245a [659]
1515 1340

Cl 5-NO
2

1624a 1280a [657]
1530 1340

N
N

R

NO2R1

H 5-Cl 1630 a 1256a [662]
H 5-NO

2
1650 a, 1506 1266 a, 1337 [679]

H 4-NO
2

1640 a 1275a–1270a [658, 679]
1510–1506 1340

H 7-NO
2

1650 a, 1520 1265a, 1340 [679]
H 6-NO

2
1650a, 1530 1285a–1280 a [659, 679]

1345–1340
an(N–NO

2
)

In the 2-nitroindazoles the n
as
 and n

s
 values are even more shifted to higher and 

lower frequencies, respectively (Table 3.60) [657–664, 679]. This is likely to be 
caused by the presence of quinoid structure of the following type:

N
N

NO2R
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Tautomeric processes in some nitroindazoles, 6-nitroindazole-based complexes, 
and other nitrated indazoles have been investigated by vibration spectroscopy [583, 
645, 655, 1080–1084].

Nitrobenzimidazoles

Characteristic stretching vibrations of the nitro group of 5(6)-nitrobenzimidazoles 
lie in frequency ranges of 1540–1510 (n

as
) and 1350–1330  cm−1 (n

s
) [709, 715, 

1085–1090]. The NO
2
 stretching vibration frequencies of 5(6)-nitrobenzimidazoles 

and 5- and 6-nitroindazole have been measured (Table 3.62).
As seen from Table 3.62, the asymmetric vibration frequency is sensitive to the 

position of the benzazole ring heteroatom. In 2-nitrobenzimidazole the NO
2
 asym-

metric vibration frequency is more sensitive to the nitro group position in the ring 
(Dn

as
 = 36 cm−1) than symmetric one is (Dn

s
 = −10 cm−1) [1091, 1092].

The existence of an intramolecular hydrogen bond in 2-furyl-5(6)-nitrobenzim-
idazole (n 3400–3150 cm−1) [1093], 5(6)-amino-6(5)-nitrobenzimidazole (n 3590, 
3320–3300 cm−1 ), 4(7)-amino-6(5)-nitrobenzimidazole (n 3370–3309 cm−1 ) [709] 
is proven by IR spectroscopy:

Table  3.62  The nitro group vibration frequencies of 
nitrobenzazoles (cm−1)

Compound n
as

n
s

Refs

N

N

O2N

H

1514 1345 [1088]

N
N

O2N

H

1539 1345 [1088]

N
N

H
O2N

1529 1325 [1088]

N

N

H

NO2

1551 1335 [1091, 1092]
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N

N

O2N

H
O

N

N

H

N

N

H

H

O

O

N

N

H

H2N

N
O O

The tautomerism of nitrated benzimidazolones and benzimidazolethiones is 
studied [1094, 1095]. The vibration frequencies of complexes of 5(6)-nitro- [1096], 
4(7)-nitrobenzimidazole [1097] and 5-nitrobenzotriazole [1098] with transition 
metal ions (Co, Cu, Ni, Zn, Cd, Hg) are reported. The characteristics of infrared 
spectra of other nitrobenzimidazoles are given in [1099–1101].

Nitrobenzisoxazoles, Nitrobenzoxazoles, Nitrobenzoxadiazoles

As far as nitrobenzisoxazoles are concerned, the valence vibration frequencies 
of the carbonyl group of 3-aldehydo-5-nitro-1,2-benzisoxazole and 5-nitro-1, 
2-benzisoxazolyl-3 acetic acid (1700, 1720  cm−1, correspondently) [739] and 
n(C≡N) of 6-nitrobenzisoxazolyl-3 acetonitrile [742] are reported.

Only few publications are devoted to the vibration spectra of nitrated benzox-
azoles [1102, 1103]. The authors [1102] have investigated the tautomerism in  
5- and 6-nitrobenzoxazoles (Scheme 3.47):

5-Nitrobenzoxazoles in Vaseline oil bring about only vibration bands of exocyclic 
(B) azomethine group (1675–1680  cm−1), whereas 6-nitrobenzoxazoles cause two 
bands: in the 1645–1650 (endocyclic azomethine group) (A) and 1690–1695 cm−1 
region (exocyclic azomethine group) (B). This suggests that 6-nitroisomeres in the 
solid state exist simultaneously in two forms [1102]. In the chloroform solution they 
are present as aminobenzoxazoles (n 1640–1657 cm−1) (A) [1102].

Intra- and intermolecular hydrogen interactions in 2-(2-oxyaryl)benzazoles 
including 6-nitrobenzoxazole derivative are investigated [1103]. Two intense bands 

R =  H, Alk, Ar

N

O
NR

H

O2NO2N
N

O
NHR

A B

Scheme 3.47   
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in the 3495 and the 3320 cm−1 regions in the IR spectra of this compound are related 
to the intermolecular hydrogen bond O–H…O

2
N, and a wide absorption band in the 

3200–2400 cm−1 region corresponds to the OH band which participates in the intra-
molecular hydrogen bridge O–H…N of type below [1103]:

N

OO2N

OH

At the same time in the IR spectra of 2-(2-oxyaryl)benzazoles there is a wide 
smearing band in the 3400–2400 cm−1 region, which is characteristic of intramo-
lecular hydrogen bond O–H…N. This distinction results from the introduction of 
the nitro group and is caused, in the author’s opinion, by a decrease in the p

N
-orbital 

population owing to conjugation with the nitro group.
The structure of nitrobenzoxazolone alkylammonium salts was confirmed by IR 

spectroscopy and electroconductivity measurements [1104]. The vibration spectra 
of N-(6-nitrobenzoxazolonyl)-b-propionitrile are presented in [1105].

The nitro group valence vibration bands of nitrobenzofurazans are in the fre-
quency ranges 1475–1540 (n

as
) and 1270–1350  cm−1 (n

s
) [762, 763, 769, 773, 

1106–1109]. Splitting of the NO
2
 symmetric vibration band of 7-nitrobenzofurazan 

and 4-amino-7-nitrobenzofurazan found by the authors [1104] may be connected 
with nonequivalence of the N–O bonds in the nitro group which forms a weak 
intramolecular hydrogen bond with the proton NH and by that is located in the 
benzofurazan ring plane in the two molecules.

N
O

N

N H
O O

N
O

N

N

NH2

H

OO

The rapid thermal decomposition of the energetic materials – mono- and dini-
trobenzofuroxans – has been examined by rapid-scan FTIR spectroscopy as a func-
tion of heating rate and pressure [1110]. The IR spectral assignments for these 
molecules are severely complicated by overlapping characteristic frequencies and 
coupling among the motions. The 1400–1600 cm−1 range contains modes expected 
of n(C=N→O), n

as
 (NO

2
), n(O-N→O), d (CH), n(C=C), and d (NH

2
) [1110]. 

Tentative assignments were made through correlations with known infrared spectra 
of nitrofuroxes. Kinetic measurements on pyrolysis of nitrobenzofuroxans have 
been carried out with help of IR spectroscopy [1111].
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Nitrobenzoselenodiazoles

Probably for the same reason 4-nitrobenzoselenadiazole shows two n
as
 bands in the 

IR spectrum in comparison with 5-nitro derivatives [1112].

N
Se

N

O2N N
Se

N

NO2

n
as
, cm−1 1515 1498 and 1546

n
s
, cm−1 1330 1315

Nitrobenzothiazoles

Only some publications are devoted to the vibration spectra of nitrobenzothiazoles 
[214, 785, 786, 795, 1113, 1114]. The infrared and Raman frequencies of 2-amino-
6-nitrobenzothiazole have been assigned to different modes of vibrations on the 
basis of normal coordinate calculations assuming C

s
 point group symmetry [1114]. 

The structure of Alkoxysilane Dye on the base of nitrobenzothiazole has been con-
firmed by IR spectra [786]:

N

S
N

N
O2N

N

O C N

O
Si(OCH2CH3)3

H

3389 (NH), 1699 (C=O), 1600 (C
6
H

4
), 1527, 1335 (NO

2
), 1105, 1079 (SiOCH

2
CH

3
) cm−1

Vibration spectrum of copper(II) complexes of N-2-(4-methylphenylsulfamoyl)-
6-nitrobenzothiazole 1550, 1314 (NO

2
), 1151 (SO

2
), 955 (S–N) cm−1 has been 

reported [214]. Imidomethylation of nitrobenzothiazoles with N-hydroxy
methylphthalimide in sulfuric acid has been studied with the help of infrared 
spectra [1113].

UV Spectroscopy

Nitropyrazoles

Introduction of the nitro group into the azole cycle leads to a significant bathochro-
mic shift of the absorption band maximum in the electron spectra. The absorption 
band of pyrazole is near l

max
 210 nm, whereas that of 4-nitropyrazole lies in the l

max
 



311UV Spectroscopy

269–280  nm region and the band of 3(5)-nitropyrazole is observed in the l
max

 
254–266 nm region [272, 1115–1124] (Table 3.63). It results from p→p* electron 
transition in the pyrazole ring with contribution of the charge transfer from p-system 
to the nitro group. The position of this absorption band strongly depends on the 
effects of medium and substituents, and on the ionization processes of the molecule. 

Table 3.63  The characteristics of electron absorption spectra of nitropyrazoles (ethanol).

Compound l
max

, nm lg e References

N
N

H

O2N 268, 274–275 3.91 [1115, 1116, 1119, 1120]
320a (0.1 N NaOH) 3.07
238b (71% H

2
SO

4
) 3.89

N
N

NO2

H

254–255 3.79 [1115, 1119, [1122]
261 (0.05 N HCl) 3.86
316* (0.05 N NaOH)

N
N

CH3

O2N 273 3.99 [1117]

N
N

CH3

NO2 267 3.93 [1117]

N
N

H

O2N NO2 267 (0.05 N HCl) 3.73 [1115]
312* (0.05 N NaOH) 3.79

N
N

H

NO2

O2N

270 (0.05 N HCl) – [1115]
305* (0.05 N NaOH)

N
N

H2N

O2N

CH3

287 3.63 [1117]
408 3.59

(continued)
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In neutral media the band of pyrazole nitro derivatives is in the 250–290 nm region; 
in acid media it is shifted by ~30 nm to the short-wave region; and in alkaline media 
a ~40 nm shift to the long-wave region occurs [246, 1115, 1116, 1119–1126]. These 
shifts are caused by protonation and deprotonation of nitropyrazoles that is widely 
used in studying the acid-base properties of nitroazoles since the existence of these 
shifts allows spectrophotometrical determination of the pK

a
 and pK

BH+
 values of 

these compounds.
The presence of electron-donating substituents (NR1R2) in the adjacent position 

to the nitro group in nitropyrazoles results in the appearance of an additional pad-
ding band in the area l

max
 322–408 nm in their spectra [279, 307, 1117]. This band 

corresponds, apparently, to the electron transfer with a charge transition from 
electron-donating to the nitro group. The position and the intensity of this maxi-
mum strongly depend on the mutual disposition of the amino and the nitro group in 

Compound l
max

, nm lg e References

N
N

O2N

H2N

CH3

269 3.55 [1119]
339 3.77

N
N

O2N CH3

H3C

H

287 3.93 [1115, 1125]
321a (0.05 N NaOH) 3.93
256b 3.86

N
N

O2N

CH3

CH3

H3C

282 – [1115, 1119]
303*

N
N

NO2

266 – [1119]

N
N

O2N 318a – [1119]

N
N

O2N

CH3

H

CH3

H3C

ClO4
–

259b 3.89 [1125]

aAnion
bCation

Table 3.63  (continued)
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the nitropyrazole ring [1117]. The authors have investigated the influence of sol-
vent on the position of the long-wave band in these compounds as the replacement 
of nonpolar solvent (benzene) by a polar one (ethanol) leads to a significant 
(20 nm) bathochromic displacement.

Quantum-chemical calculations satisfactorily predict the long-wave band posi-
tion in the electron absorption spectra of aminonitropyrazoles [1118]. The dominat-
ing contribution to the electron transfer corresponding to this band is brought in by 
a single-excited configuration F

6–7
 (C

1
 0.98–0.99). This means that, according to 

the accepted numeration of molecular orbitals (MO) of aminonitropyrazoles, МО
6
 is 

the highest occupied molecular orbital (HOMO), and MO
7
, accordingly, the lowest 

unoccupied one (LUMO). In this case, there is an increase in the p-charge on the 
amino group nitrogen atom that allows the assignment of the long-wave band to a 
charge-transfer band [1118].

Solvatochromism and specific features of interaction between nitropyrazoles 
and amphiprotic solvents have been studied in detail by Prof. Turchaninov’s team 
[1119–1123, 1127]. The dependence on acid-base properties of solvents of the 
electron transition in 4-nitropyrazole connected with intramolecular charge transfer 
has been analyzed [1121]. Amphiprotic solvents with a pronounced acidic function 
form with 4-nitropyrazole cyclic solvates. The results of ab initio calculations 
6-31G* show that a cyclic complex of both 4-nitropyrazole and 3-nitropyrazole 
with one water molecule is thermodynamically more stable than a linear complex 
of the same composition by 0.38 and 1.0 kcal/mol, accordingly [1120–1123]:

The solvatochromism of H-complexes of 5-amino-1-methyl-4-nitropyrazole in 
aprotic protophilic media has been described by Kamlet-Taft empirical parameters. 
Specific solvation affects only one of the two long-wave bands, namely that cor-
responding to an electronic transition involving orbital electron density transfer 
from the H-bound nitrogen atom [1123].

N
N

H

O
H H

O2N

N
N

H O

H

H

O2N

A structural study of some derivatives of 3- and 5-nitropyrazoles [1128], 4-nitro-
pyrazole [315], and 4-nitropyrazole-5-ones [1129] with the help of UV spectros-
copy has been reported.

Nitroimidazoles

Mononitration into the imidazole ring causes more significant changes in UV spec-
tra (Dl

max
 ≅ 100 nm) than the nitro group introduction into the nitropyrazole cycle 

(Dl
max

 ≅ 50 nm). In the spectra of nitroimidazoles there are usually two maxima, one 
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of which, a poorly expressed one, is situated in the area of l
max

 220–260 nm, and 
the other, rather intense and characteristic one, lies in the area of l

max
 300–360 nm 

and corresponds, apparently, to p→p* electron transfer of the imidazole ring [2, 
364, 1123, 1124, 1130]. The position and the intensity of the latter depend both on 
the nature and the position of substituents in nitroimidazoles, and on the pН of the 
medium [321, 1131, 1132]. Thus, the l

max
 values of some nitroimidazoles are given 

in the following scheme [321, 381, 1130].

N

N

H

1

2

34

5

N

N

H

NO2
N

NO2N

H

I N

N

CH3

NO2
N

N

O2N

CH3

N

NO2N

CH3

l
max

nm 207–208 325 336 325 300–303 303–305

4(5)-Nitroimidazole in solution (amphiprotic medium) is stabilized as the 
5-nitro isomer due to formation of hydrogen bond with an aprotic protophilic sol-
vent [1124]. The medium favors displacement of the tautomeric equilibrium toward 
the 4-nitro isomer via formation of a solvate complex at the same time 4-nitroimi-
dazole acts as hydrogen-bond acceptor. The specific solvatochromic effect in the 
UV spectrum of 4-nitroimidazole is caused by the electronic configuration of the 
excited p,p*-state [1124].

N-methylation of 2-nitroimidazole does not influence the absorption band. 
Methylation of 4(5)-nitroimidazole results in the formation of two isomers: 1-methyl-
4-nitroimidazole and 1-methyl-5-nitroimidazole, whose absorption spectra are 
poorly distinct [321].

It is noted [321] that alkylated 5-nitroimidazoles show more distinct maxima in a 
field of 220–260 nm than the corresponding 4-nitroisomers. This band is also slightly 
displaced to the long-wave area (7–13 nm) for 5-nitrosubstituted compounds in com-
parison with 4-nitroimidazoles. Thus, statistical analysis of the absorption spectra of 
1-alkylnitroimidazoles allows establishing the nitro group position in the ring that is 
extremely valuable in the nitration chemistry of imidazoles. The absorption bands of 
1-allyl-4-nitroimidazoles are observed in the l

max
 284–302 nm region [364].

The kinetics of hydrolysis [445] and reactivity of 1,4-dinitroimidazole [444, 
447] has been investigated by UV spectroscopy.

With the help of UV spectroscopy the acid-base properties of nitroimidazole in 
various environments have rather widely been investigated with the help of UV 
method [321, 331, 1131–1134].

Differential UV spectrophotometry is also used for quantitative determination of 
compounds that increases the accuracy of the analysis of nitroimidazole-based 
pharmaceuticals [1131].

The electron absorption spectra of well-known drugs such as 1-(2-hydroxyethyl)-
2-methyl-5-nitroimidazole (metronidazole) (Table 3.64) [351, 1131, 1132, 1135], 
1-methyl-2-isopropyl-5-nitroimidazole (ipronidazole) [1135], 1-substituted 2-methyl-
5-nitroimidazoles [325, 387, 413, 414] have been described. UV absorption spectra 



Table 3.64  Electron absorption spectrum characteristics of nitroimidazoles and some medicines 
(ethanol).

Compound l
max

, nm lg e Refs
2

N

N

NO2

O2N
208 3.89 [2]

N

N

NO2

O2N

CH3

226 4.02
275 3.64

N

N

NO2

O2N

H3C

227 4.04 [2]
288 3.68

N

N

CH3

O2N CH3

208 3.90 [2]
225 3.98
275 3.52

N

N

CH2CH2OH

O2N CH3

320–321 (pH 6) – [1135, 1156]
277b (3M H

2
SO

4
)

N

N

CH3

O2N CH(CH3)2

320 (pH 6) – [1135,1156]
277b (3M H

2
SO

4
)

N

N

CH2SO2C2H5

O2N CH3

323 (pH 6) – [1135, 1156]
277b (3M H

2
SO

4
)

N

N

CH2CH(OH)CH2Cl

O2N

318 - [1156]

N

N

H

O2N

CH3

320 - [1156]

N

N
NO2

CH2CONHCH2

313 (pH 6) - [1135]
366a (0.1M NaOH)
277b (3M H

2
SO

4
)

N

N

CH2CH(OH)CH2OCH3

NO2

323 - [1156]

O
N

O2N C6H5 324 - [1156]

aAnion
bCation
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of (2-methyl-4-nitro-1-imidazolyl)acetic acid [443], 1-alkyl- [400] and 1-aryl-4-
nitroimidazoles [395], halonitroimidazoles [381, 1136], bis-nitroimidazoles [1137], 
vinylsubstituted 2-nitroimidazoles [418], and other derivatives [248, 332, 342, 354, 
381, 412, 429, 430, 463–465, 1032, 1138–1158] have been investigated.

Nitroisoxazoles, Nitrooxazoles, and Nitrooxadiazoles

The data on UV-spectroscopy of nitroisoxazoles are rather scarce. It is known that 
l

max
 for 3,5-dimethylisoxazole is 215–220 nm, whereas that for its 4-nitroderivative 

lies in a field of 250–270 nm depending on the medium (see Table 3.65) [483, 499, 
1125, 1159]. It is shown [483] that for 5-(p-methoxystyryl)- and 5-cinnamylidene 
derivatives of 3-methyl-4-nitroisoxazole, the absorption band is moved to the long-
wave area (290 nm, lg e 4.15). The absorption band maxima of 3-methyl-4-nitro-5-
-styrylisoxazole photodimers lie in field of 268–272 nm. In works of the Italian 
authors the electron absorption spectra of some derivatives of nitroisoxazole are 
described [1160].

By means of UV-spectroscopy monoprotonated, diprotonated, and nonproto-
nated forms of 3-nitro-4-aminofurazan have also been investigated [513, 1161].

Table  3.65  The characteristics of electron absorption spectra of nitroisoxazoles and 
nitroisothiazoles.

Compound l
max

, nm lg e Refs

O
N

O2N C6H5 252 (CH
3
COOH) 3.78 [1159]

O
N

O2N CH3

H3C

267 3.73 [1125]
264 (CH

3
COOH) 3.74 [1159]

223a 3.89 [1125, 1159]

S
N

O2N 209 (Heptane) 3.95 [524]
265a 3.92

S
N

O2N

H3C

CH3 216.5 4.04 [1125]
278.5 3.82
210a 4.17
264a 3.90

ClO4

O2N CH3

CH3H3C
N

S 265a 3.89 [1125]
O2N CH3

Br
N

S

220 (Heptane) 4.01 [524]

aCation
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Nitroisothiazoles and Nitrothiazoles

The list of literature describing the electron absorption spectra of nitroisothiazoles 
is also rather limited. Only few studies of the electron spectra of nitroisothiazoles 
are known [524, 1125, 1162–1164]; some of them are presented in Table 3.65. In 
their spectra there are two maxima, one is fixed in the area of l

max
 209–220 nm and 

the other is in the long-wave area (l
max

 = 263–278 nm) [524, 1125, 1163]. The cal-
culated l

max
 values for nitroisothiazole-based diazo dyes are in rather good agree-

ment with the experimental data (536 and 558 nm, respectively) [1164].
There are some more data on the spectra of nitrothiazoles [530, 1165–1172]. 

Unlike the spectra of nitroisothiazoles, there are three maxima, l
max

 = 202–222, 
235–260, and 298–314 nm in their spectra [530, 1165, 1166].

The analysis of quantum-chemical calculations of electron density distribution 
in the molecules of 2-nitro-, 4-nitro-, and 5-nitrothiazole allows a conclusion that 
the nature of all three bands is related to p→p* electron transfers [1166].

S

N

NO2
1

2

34

5

S

N
O2N

S

N

O2N

The long-wave band in the field of 298–314 nm, corresponding to the interaction 
of the nitro-group with the ring, strongly depends on its position in the ring and 
decreases in the following order: 2 > 5 > 4 [1166]. The monomethylation of nitrothi-
azole does not influence the position of bands in the spectrum much [1166, 1167].

The influence of the medium on the optical characteristics of nitrothiazoles is 
discussed in [1166–1169, 1171] (Table 3.66). The authors [1167] note that 2-amino-
5-nitrothiazole (nitragine) in ethanol has a short-wave band with l

max
 239  nm, 

which, when compared with a similar band for 2-aminothiazole, decreases in intensity 
and is hypsochromically displaced, which corresponds to energy of 33 kJ/mole.

The calculated and experimental values of l
max

 (452 and 529 nm, correspond-
ingly) of 2-N-phenylpyrroly-dinylazo-5-nitrothiazole are reported [1164].

With the help of UV spectroscopy the formation of palladium II complexes with 
5-nitrothiazolyl-2-azoderivatives has been investigated [1169]. For the identification 
of 2-organylamino-5-nitrothiazoles UV-spectra were used [1173].

The UV spectra of nitroazole radical anions have been studied (Table 3.67) [849].
Each of the spectra is due to a single species whose rates of formation and decay 

are independent of monitoring wavelength. In each case the rate of formation of 
nitroazole radical anions was concomitant with the rate of decay of hydrated elec-
tron (e

aq
-) from which the absolute rate constant for the reaction of e

aq
− with nitroa-

zoles was obtained [849]. Hydrated electron attacks, in addition to forming a 
transient absorbing species radical anions, also destroy the UV-absorbing chro-
mophore associated with the nitro group.
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Table 3.66  The characteristics of electron absorption spectra of nitrothiazoles (ethanol).

Compound l
max

, nm lg e References

N

S
NO2

202.5 3.59 [1166]
235 3.61
308 3.68

S

N

O2N

222 3.57 [1166]
240 –
298.5 3.68

S

N

O2N Br

220 3.57 [1167]
298 3.95
229 a (0.1 N NaOH) 4.10
420 a (0.1 N NaOH) 3.70
220 b (98% H

2
SO

4
) 3.80

283 b (98% H
2
SO

4
) 4.05

N

S
NH2O2N

239 3.69 [1167]
380 4.25
231a (0.1 N NaOH) 3.96
410 a (0.1 N NaOH) 3.51
235b (98% H

2
SO

4
) 3.95

324b (98% H
2
SO

4
) 4.08

S

N

H3C

O2N 215.5 4.00 [1166]
235 3.60
281 3.70

S

N

H3C

O2N

CH3

219 4.07 [1166]
290 3.69

aAnion
bCation

Table 3.67  The characteristics of electron absorption spectra of 
radical anions of nitroazoles (tert-butanol).

Nitroazole l
max

, nm lg e

3-Nitropyrazole 340 2.1
1-Nitropyrazole 380 ~1
4-Nitroimidazole 380 ~1
2-Methyl-5-nitroimidazole 390 1.7
2-Nitroimidazole 410 1.1
4-Nitroisothiazole 510 2.0

Nitrotriazoles

The replacement of –CH by –N in heterocyclic system does not influence, as a rule, 
the absorption spectra. Actually, l

max
 for 4-nitro-2-(4-nitrophenyl)-1,2,3-triazole 

and 4-nitro-1-(4-nitrophenyl)pyrazole are 304 (lg e 4.36) and 306 nm (lg e 4.37). 
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This can be of help in structural assignments in the chemistry of heterocycles. The 
electron spectra of 1- and 2-alkylderivatives of 4-nitro-1,2,3-triazole, which show 
an identical band l

max
 257 nm also independent on the medium (pH 1 or 11 or etha-

nol), are described [634]. However for 1-alkyl-4-nitro-5-amino-1,2,3-triazoles the 
absorption maximum is shifted to the long-wave region (332–356 nm).

The ultraviolet spectra of nitrated 1,2,4-triazoles have been described in detail 
[554–556, 1174]. The absorption of unsubstituted 1,2,4-triazoles in the UV-spectrum 
is observed at 186  nm, and there are no absorption bands in the field of longer 
wave-lengths. The mononitration of 1,2,4-triazoles causes a bathochromic shift of 
the triazole ring absorption band to the 215–230 nm (lg e 3.8–4.0) region and the 
appearance of a new band at 230–340 nm (1 g e 3.6–3.9). The latter seems to be 
caused by the conjugation of the nitro group with the triazole cycle [1174]. In con-
trast to the long-wave maximum, the short-wave one is less sensitive to the sub-
stituent nature and triazole cycle ionization [554–556, 1174–1176]. The 
characteristics of long-wave bands of some nitrated 1,2,4-triazoles are given in 
Table 3.68 [554, 555, 618, 1174–1176].

The introduction of both electron-donating and electron-withdrawing substituents 
into 3-nitro-1,2,4-triazole results in a bathochromic shift of the NO

2
-group long-wave 

band in comparison with that of 3-nitro-1,2,4-triazole. The introduction of substituents 
which are capable of conjugation with the triazole ring (phenyl and acetyl) induces a 
bathochromic shift with a simultaneous increase in the absorption intensity [1174]. 
The position of the nitro-group in the cycle also has an effect on the l

max
, value, so in 

the spectra of 5-substituted 1-methyl-3-nitro-1,2,4-triazoles the absorption maximum 
is displaced by 9–16 nm to the short-wave area in comparison with the spectra of their 
5-nitroisomers. In the aforementioned series the position of absorption maximum is 
considerably more sensitive to the influence of electron-donating and electron-
withdrawing groups simultaneously present in the cycle and to the coincidence of 
polarization, caused by them, with the direction of the triazole cycle polarization.

An attempt to estimate the transmission of electronic influence of substituents R 
from positions 3–5 and from 5–3, using correlations between wave numbers and 
(s

I
, s

c
) constants of substituents R, was made in [1177]

N

N
N

R

O2N

H

N

N
N

NO2

R

H

4·10 10.153 1.179 3.886

7.70; R 0.945; 13; 0.12

s s
r
r

- = + +

= = = =

I C

C

I

n S

ν 4·10 0.425 0.936 3.560

2.21; R 0.733; 8; 0.20

s s
r
r

- = + +

= = = =

I C

C

I

v

n S

In the author’s opinion, in these compounds the main role is played by the effect 
of conjugation; however, this conclusion does not seem reasonable because of low 
correlation coefficient in the latter.
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Table 3.68  The characteristics of long-wave absorption bands of 1,2,4-triazoles (ethanol)

Compound l
max

, nm lg e Refs

N

N
N

H

NO2 230 (pH 1) 3.73 [618, 1175]
290a (pH 13) 3.81
220b (83.4% H

2
SO

4
) 3.81

282 (H
2
O)

N

N
N

CH3

NO2 255 (pH 7) 3.74 [554, 1174–1176]
230b (83.4% H

2
SO

4
) 3.75

N

N
N

NO2

Alk

255–257c - [554]

N

N
NH3C

CH3

NO2 266 - [554, 1174]
262.5

N

N
N

CH3

O2N

265 3.66 [554, 1175]
270 (pH 7) 3.70
2452 (83.4% H

2
SO

4
)

N

N
N

Alk

O2N

266–267c - [554]

N

N
N

CH3

O2N

CH3 280 3.79 [554, 1174]
279 3.90

N

N
N

H

O2N

NO2 255 3.79 [1174, 1175]
285a (H

2
O) 3.90

N

N
N

CH3

N3

NO2 290 3.63 [1174]

N

N
N

CH3

H3CO

NO2 288 3.64 [1174]

aAnion
bCation
cAlk = Et, Pr, i-Pr
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UV spectra of 3-nitro-5-carboxy-1,2,4-triazole and 1-methylsubstitutred nitro-
triazoles have been investigated [1175]. Comparison of the absorption spectra of 
these compounds at different рНs has shown that the elimination of the proton 
bound to the nitrogen atom causes a strong bathochromic shift (50 nm), while the 
dissociation to carboxylic group results only in an insignificant bathochromic shift 
(5  nm). In N-methyl-substituted nitrotriazoles not containing imine hydrogen no 
changes are observed in the spectra in going to an alkaline medium. The addition 
of a proton to a neutral molecule of nitrotriazole gives rise to a 25–35 nm hypso-
chromic shift of the absorption maximum.

The E,Z-isomerization of 1,2,4-nitrotriazole diazaderivatives has been investi-
gated with the help of ultra-violet spectroscopy in a series of works [593, 1178, 
1179].

Influence of pH medium on the UV-absorption spectra of 5-nitro-1,2,4-triazole, 
3-methyl-5-nitro-1,2,4-triazole, 4-nitro-2-(1,2,4-triazole-3-yl)-1,2,3-triazole and 
nitroderivatives of 1,2,4-triazolone-5 [611, 613, 1180] has been considered.

The absorption spectra of some other derivatives of nitrotriazole are presented 
in [589, 590, 619, 1176, 1181].

Nitrotetrazoles

The low stability of nitrotetrazoles hinders a detailed study of their spectral charac-
teristics [1078, 1182–1185]. It is known that 5-nitrotetrazole in an aqueous solution 
of sulfuric acid shows maximum absorption in the region of l

max
 235 [1183], 

whereas its anion absorbs in the region 257 nm [1182].

Nitroindazoles

The electron absorption spectra of 4-, 5-, 6-, and 7-nitroindazoles (Table 3.69) have 
been described [1186]. There are three absorption maxima in the 230–360  nm 
region (l

max
 230–250, 250–305 and 305–360 nm). Unfortunately, the data available 

by the present time do not allow establishing the relationship between the position 
of maxima in the electron spectra of nitroindazoles and the ring position of the nitro 
group. Apparently, for this purpose a systematic study of the absorption spectra of 
isomeric nitroindazoles should be carried out under unified conditions. The pres-
ence of methyl group in position 3 does not influence much the absorption spectra 
of nitroindazoles.

Comparison of the electron spectra of 3-arylazo-5-nitroindazoles and their  
1- and 2-methylderivatives suggests arylazoindazoles to exist as 1Н-tautomers [1187]. 
The ultraviolet spectra of 6-nitroindazoles and their 1- and 2-ethyl derivatives 
[1188], 1-acetonitrylnitroindazoles, and other derivatives of nitroindazole [683, 
1189] have been investigated.
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Nitrobenzimidazoles

Unsubstituted 5(6)-nitrobenzimidazole has two absorption bands in the field of 
230–235 and 300–309 nm [1186, 1190–1192]. Its long-wave band, as compared 
with the initial benzimidazole, is bathochromically moved by approximately 25 nm 
and does not show vibrational structure. The short-wave band, on the contrary, 
undergoes a hypsochromic shift (~10 nm) upon mononitration [709, 1193]. Band 
displacement of this kind and the disappearance of vibrational observed for the 
long-wave band are responsible for essential differences in the localization and, 
hence, in the nature of, at least, one of the transitions. For example, from CNDO/S 
calculations it follows that the long-wave transition of benzimidazole is multicon-
figurational (Table 3.70) and results in the total molecular excitement [1193].

The UV-spectra of 2-substituted 5(6)-nitrobenzimidazoles with R = СН
3
, С

2
Н
5
, 

СN, Cl, CF
3
, CCl

3
 look like the spectrum of unsubstituted 5(6)-nitrobenzimidazole 

and are interpreted analogously (Tables 3.70 and 3.71). The situation is more com-
plicated with the spectra of nitrobenzimidazoles having a substituent such as C

6
H

5
, 

OCH
3
, OC

2
H

5
, NO

2
, etc. in position 2.

Table 3.69  The characteristics of electron absorption spectra 
of nitroindazoles (ethanol)

Compound l
max

, nm lg e

N
N

H

NO2 228 4.09
339 3.83

N
N

H

O2N 230 4.11
244 4.20
304 3.85
390* 3.86

N
N

H
O2N

250 4.14
288 3.87
337 3.44
280a 3.76

N
N

HNO2

230 3.88
310 3.48
356 3.91
435a 3.80
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Electron absorption spectra of 4(7)-amino-, 6(5)-amino-5(6)-nitrobenzimida-
zoles and their naphthylazo derivatives have been measured [709].

In the UV-spectra of 2-nitrobenzimidazoles a stronger bathochromic shift of 
absorption bands is noticed in comparison with that of 5(6)-nitrobenzimidazole 
[1192].

Table 3.70  Experimental and theoretical characteristics of the UV spectra of benzimidazole and 
5(6)-nitrobenzimidazole

Compound
l

max
, nm (exp) 

(lg e) l f
Transition 
type Main configurations

N
N

H

279 (3.37) 276.3 0.023 p→p* 2→1* (0.34); 1→2* (0.35)
244(3.74) 247.2 0.012 p→p* 3→1* (0.40); 3→3* (0.22)

241.6 0.283 p→p* 1→1* (0.68); 1→2* (0.18)
216.6 0.241 p→p* 2→1* (0.36); 1→3* (0.29)

N
N

H

O2N 303 (4.13) 399.3 0.000 n
0
→p* 6→1* (0.92)

354.9 0.035 p→p* 1→1* (0.91)
306.9 0.459 p→p* 2→1* (0.94)

235(4.46) 253.2 0.048 p→p* 1→3* (0.38); 2→2* (0.33)
236.2 0.538 p→p* 1→2* (0.70); 1→3* (0.19)

Table 3.71  The characteristics of electron absorption 
spectra of 2-substituted 5(6)-nitrobenzimidazoles 
(ethanol) [1192] 

R l
max

, nm lg e

CH
3

240 4.48
304 4.08

Cl 235 4.43
303 4.10

CF
3

235 4.53
292 4.19

CN 251 4.55
304 4.27

C
6
H

5
268 4.50
321 4.33
333 4.32

OCH
3

230 4.40
246 4.24
322 3.98

OC
2
H

5
230 4.28
245 4.11
322 3.98

NO
2

215 4.35
277 4.32
326 4.24
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N

N

H

NO2

342 nm (methanol) 
365 nm (0.1 N NaOH) 

N

N

CH3

NO2

333 nm (ethanol) 

The electron spectra of 4(7)-nitrobenzimidazoles are investigated in works 
[1087, 1186, 1194]. They are characterized by strong hypso- and bathochromic 
displacements of the absorption bands compared to 5(6)-nitrobenzimidazole, which 
can indicate a more effective interaction of vacant p(NO

2
)-МОs of the nitro group 

and benzimidazole framework.
UV spectroscopy method was used to study the acid-base properties of 

nitroderivatives of benzimidazolones [1194] and benzimidazolthiones [1195]. 
Essential distinctions in the UV spectra of isomers I and II can be used for estab-
lishing the alkylation center of corresponding benzimidazolones [1195] and benz-
imidazolthiones [1196].

N

N

R

X

O2N
R

I

N

N

R

XR

O2N

II

R = O, S

Electron spectra of 2-(2-tosylaminophenyl)- [1197, 1198], 2-benzylidenamino-
5(6)-nitrobenzimidazole [1199] have been investigated.

Nitrobenzoxazoles and Nitrobenzoxadiazoles

It is interesting to note that 5-nitrobenzoxazole has two absorption maxima l
max

 224 
(4.39) and 270 nm (3.84), while 6-nitrobenzoxazole shows only one maximum in 
area l

max
 282  nm (4.01) [1200]. A similar pattern is observed for 5-nitro- and 

6-nitro-2-alkyl(aryl)benzoxazole too. The available experimental data are not 
enough to explain spectral differences of this kind. Apparently, it would be well to 
carry out quantum-chemical calculations or to involve other physical-chemical 
methods. An investigation of chromophoric 2-(4¢-diphenyl)-5-nitrobenzoxazole 
with the help of UV (l

max
 305 nm), fluorescence and laser spectroscopy has been 

reported by Chinese chemists [1201]. Chromophores 2-(2¢-hydroxy-4¢-
aminophenyl)-6-nitrobenzoxazole [1202], 2-{4-[4-(N,N-dihydroxyethyl-amino)-
phenylazol]-phenyl}-6-nitrobenzoxazole, 2-[4-(N-methyl,N-hydroxyethyl-amino)



325UV Spectroscopy

phenylazo]-phenyl-6-nitrobenzoxazole [1203, 1204] possessed a second-order 
nonlinear optics properties were characterized by UV-visible absorption.

In recent years nonlinear optical materials on the basis of nitroazoles, especially 
nitrobenzoxazoles and nitrobenzoxadiazoles, have investigated under intense scru-
tiny, at that and UV and fluorescence spectroscopy is widely used in studying of 
their structure and dynamics [1202–1225]. 4-Aminosubstituted 7-nitrobenzofura-
zans have a strong band in the visible region (l

max
 = 457–483  nm) due to their 

chromophore properties [777]. 4-Substituted 7-nitrobenzofurazans possess a strong 
fluorescence that has led to their use as biochemical fluorescent probes in cell 
membranes [777, 1226–1228].

A comprehensive research of a large number of benzofurazan nitro derivatives 
using UV spectroscopy and other physical-chemical methods has been carried out 
[777, 1006, 1007, 1106, 1107, 1229–1241]. The frequencies of long-wave absorp-
tion bands of hydroxy- and aminosubstituted of nitrobenzofurazans greatly depend 
on the solvent nature [1106, 1107, 1230–1233, 1235, 1236]. They are assigned to 
the bands of intramolecular charge transfer [1007, 1232]. Correlation relationships 
between the wave number (n~) and the Kamlet-Taft solvatochromic parameter (p*) 
are presented in the works cited:

I 
N

O
N

NO2

OH

O2N

n~= –4534p*+27038
r = 0.989; n = 6

1232

II N
O

N

OH

O2N

n~= –4543p*+30351
r = 0.978; n = 6

1232

III
N

O
N

NO2

N

CH3H3C

n~= –1910p*+22436
r = 0.9907; n = 13

1107

IV 
N

O
N

NO2

N

C6H5H3C

n~= –2140p*+22553
r = 0.9866; n = 13

1107
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Analysis of the correlation dependences of n~ on p* shows that the introduction 
of one nitro group into position 7 of 4-hydroxy-5-nitrobenzofurazane displaces the 
charge transfer band approximately by 3500 cm–1 to the short-wave region indepen-
dent of the solvent. It should be noted that compound IV is more sensitive to the 
solvent effect than compound III [1107]. In going from 4-hydroxy-7-nitrobenzo-
furazans to aminonitrofurazans the sensitivity of n~ to the solvent effect decreases 
twice, which provides evidence for an increase in the charge transfer degree in the 
latter. It is worth noting fairly rather good correlations of the reduction potentials 
(Е

1/2
) of nitrobenzofurazan nitro group and charge transfer bands (n~).

N
O

N

NO2

N

AlkR

–E
1/2

 = –0.0177 n~ +722.83
r = 0.965; n = 12

N
O

N

NO2

N

ArR

–E
1/2

= –0.0891 n~ +2182.95
r = 0.961; n = 10

R = H, Alk

The UV spectra of 4-hydroxy-7-nitrobenzofurazan and its conjugate anion have 
been recorded in 23 solvents and analyzed according to the Kamlet-Taft treatment 
and compared with that of some parent compounds: 4-methoxy-, 4-propylamino- 
and 4-diethylamino-7-nitrobenzofurazan [1236]. The phenolate anion of 4-hydroxy-
7-nitrobenzofurazan has been shown to exhibit the solvatochromic behavior 
characteristic for nitrobenzofurazan series in aprotic media, although in protic media 
hydrogen bonding had a drastic effect on the absorption spectra. MNDO calculations 
are given of strong negative charges located on the C-5 and C-7 atoms of the anion, 
indicating that strong hydrogen bonding may take place with solvent molecules. 
Nevertheless, the stabilization of the anion by hydrogen bonding does not seem to 
influence the dissociation equilibrium, the acidity of 4-hydroxy-7-nitrobenzofurazan 
being perfectly in line with that of other nitro phenols whatever the solvent [1236].

The absorption spectra of 4-hydroxy-5,7-dinitrobenzofurazan in solvents with 
low dielectric permeability (1,2-ethylene dichloride, chloroform) consist of two 
absorption bands with maxima at 325–328 and 370 nm, dissociation being absent 
according to conductometry data for the solvents of this type [1230]. In solvents 
with higher dielectric constant (water, methanol, etc.) in the spectra there are 
already four individual bands corresponding to different ionic forms of this com-
pound, since according to electroconductivity data 4-hydroxy-5,7-dinitrobenzo-
furazan in methanol is mainly present as ions (lg k

as
 = 1.33) [1230].
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The acid-base equilibrium constants of 3-oxy-7-nitrobenzofurazans were deter-
mined with the help of UV spectroscopy [1106, 1234]. Kinetics of the reaction of 
methoxydegalogenization and hydrolysis of 4-chloro-7-nitro-2,1,3-benzoxadiazole 
has been investigated [1106]. UV-spectra of some nitrobenzofurazan derivatives 
are described [1242–1244].

UV-visible spectra of porphyrin systems obtained on the base 4-nitro-, 4-chloro-
7-nitro-2,1,3-benzoxadiazoles or 4-nitro-2,1,3-benzoselenadiazole have been stud-
ied in detail [1241].

Nitrobenzothiazoles, Nitrobenzothiadiazoles

The UV-spectra of 6-nitrobenzothiazole are characterized by two absorption bands 
in area l

max
 219–220 and 281–285 nm [1245]. The large distance between the long-

wave and the short-wave parts of the spectrum can be caused by the presence of the 
nitro group in the molecule, as well as in the case of nitrobenzimidazoles. Similar 
but less expressed pattern is also observed and for other nitroisomers of benzothi-
azole [1245].

The intense investigations in the field of nitrobenzothiazoles have received 
significant interest due to their application in nonlinear optical materials [785–787, 
1246–1248].

The reactions of photochemical decomposition of azides of nitrobenzthiazoles 
of the following general formula have been investigated in [882, 1249].

N

S
N3O2N

The quantum yields of photochemical reactions of azides in polymeric matrixes 
and their spectral sensitivity have been determined. In the UV-spectra of the 
aforementioned azides there are two absorption bands distinguished in position 
and intensity. Highly intense bands (because of the p→p* transitions of aromatic 
system) lie in the short-wave part of the spectrum and have the absorption 
maximum in area l

max
 225–230 nm. Bands with smaller intensity in the field of 

258–342  nm are assigned [1249] to intramolecular charge transition from the 
azido group to the nitro group of aromatic system. It is possible to relate a band 
appearing in the long-wave spectral region 320–330 nm to local transfer of the 
excited azido group. The maximal quantum yield (at 313  nm) is likely to 
correspond to the excited state of a molecule with electron transfer from the azido 
group to the aromatic system [1249].

Mononuclear and dinuclear Cu(II) complexes of N-substituted nitrobenzothiazole-
sulfonamides [214], alkylation products of 2-amino-6-nitro-benzothiazole [795] 
have been studied by UV visible spectroscopy.

Questions concerning the application of UV- and IR-spectroscopy for solving 
the problem of thione-thiol dynamic tautomerism of benzothiazolinthione derivatives 
including nitrated ones have been considered in detail in [1250].
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Some characteristics of the absorption spectra of dyes based on nitrobenzothiaz-
oles are presented in [1001, 1164, 1251–1254]. UV-spectra of other nitroderivatives 
of benzothiazole can be found in [1199, 1255–1258].

The authors [1259] managed to determine the position of the absorption maxi-
mum of 4-nitro-2,1,3-benzothiadiazole; however, because of poor solubility of the 
substance (n-hexane) its concentration and extinction factor remained unknown.

Nitrobenzotriazoles

There are only few examples of the use of UV-spectroscopy for the investigations 
of nitrobenzotriazoles, while benzotriazoles have an excellent effect of absorbing 
ultraviolet rays [1260–1263]. Benzotriazoles have been widely developed at pres-
ent time as a very important industrial ingredient for absorbing UV, mainly as a UV 
absorber for plastics [1260]. A bathochromic shift in the UV-spectra of 5(6)-nitro- 
and 4(7)-nitrobenzotriazoles in the alkaline medium indicates the dissociation of 
compound and, hence, the presence of anions in the solution. The nature of alkoxy 
group (methoxy, ethoxy, n-propoxy, etc.) in 1-alkoxy-4-nitrobenzotriazoles does 
not influence the position of the absorption bands (l

max
 215 and 278 nm) [1261]. 

The coordination compounds of nitrogen-donor ligand 5-nitrobenzotriazole with 
palladium(II) and platinum(II) were characterized by physicochemical and spectro-
scopic methods. The benzotriazole acts as monodentate ligands binding through 
N-3 [1262].

Dipole Moments

The introduction of highly polar nitro group into molecule usually increases the 
dipole moment value. Dipole moments (m) of some nitroazoles are presented in 
Table 3.72. For example, the dipole moment of 1-methyl- and 3,5-dimethylpyrazole 
is 2.28 and 2.31 D [1264–1266], and those of their nitro derivatives are 6.26 and 
4.18 [1267]; and that of 1,2,4-triazole varies in the 3.16–3.29 D [1265], whereas the 
dipole moment of 3(5)-nitro-1,2,4-triazole is 6.74 D [1268], etc. (Table 3.72). But 
there are exceptions. So, the dipole moment of 3,5-dimethylisoxazole is equal to 
3.18 D, and dipole moment of its 4-nitroisomer comes out to 1.39 D [1269].

The dipole moments of nitroazoles measured in chloroform are lower than the 
values obtained in dioxane (Table 3.72) [1268]. This effect is supposed to be caused 
by mutual orientation of the substrate and chloroform dipoles, which leads to par-
tial compensation of charges and, hence, to the reduction of polarization. The sub-
stitution of hydrogen atom of the NH-fragment by a methyl group does not 
influence much the dipole moment value of nitroazole. Nevertheless, the dipole 
moment is, for example, sensitive to substitution in position 5 of the 1,2,4-triazole 
cycle [1268]. The introduction of electron-donating substituent (methyl group) 
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Table 3.72  Dipole moments (m, D) of nitroazoles (dioxane, 25ºС)

Compound m
exp

., D References

1-Methyl-3-nitropyrazole 6.20, 6.26a [1267]
3(5)-Nitropyrazole 6.19 [1124]

7.1b [1127]
4-Nitropyrazole 7.0b [1127]
Dioxane complex of 3(5)-nitropyrazole 6.19, 7.12a [1267]
1-Methyl-4-nitropyrazole 4.83 [1124]
3,5-Dimethyl-4-nitropyrazole 4.18, 3.88a [1264, 1265, 1267]
1,3,5-Trimethyl-4-nitropyrazole 4.89, 4.63a [1267]
1-Vinyl-3,5-dimethyl-4-nitropyrazole 4.19 [1124]
3(5)-Mehtyl-5(3)-chloro-4-nitropyrazole 5.92a [1265, 1266]
1-(4-Nitro-Ph)-3-methyl-5-chloro-4-nitropyrazole 2.97a [1265, 1266]
4(5)-Nitroimidazole 8.03c [1124]

7.38 [256]
1-Methyl-4-nitroimidazole 7.36 [256]

7.30 [1124]
1-Methyl-5-nitroimidazole 4.07 [256]
5-Nitroimidazole 3.8 c [1124]
1,2-Dimethyl-4-nitroimidazole 7.64 [1124]
3,5-Dimethyl-4-nitroisoxazole 1.39 a [1269]
3-Phenyl-4-nitroisoxazole 1.10 a [1269]
3(5)-Nitro-1,2,4-triazole 6.74 [1268]
3(5)-Methyl-5(3)-nitro-1,2,4-triazole 7.19 [1268]
3(5)-Propyl-5(3)-nitro-1,2,4-triazole 7.26 [1124]
1-Methyl-3-nitro-1,2,4-triazole 6.78, 4.98d [1268]
1-Methyl-5-nitro-1,2,4-triazole 3.30, 2.47d [1268]
4-Methyl-3-nitro-1,2,4-triazole 5.96, 3.76d [1268]
1-Methyl-3,5-dinitro-1,2,4-triazole 4.96, 3.32 d [1268]
1-Methyl-3-nitro-5-chloro-1,2,4-triazole 6.05, 4.40 d [1268]
1-Methyl-3-nitro-1,2,4-triazol-5-one 1.40 [1124]
4-Methyl-3-nitro-1,2,4-triazol-5-one 1.59 [1124]
1-Adamantane-3-nitro-1,2,4-triazole 7.56 [1072]
5-Nitrothazoline-2-thion 4.71 [1250]
5-Nitroindazole 4.51 [1270]
6-Nitroindazole 2.88 [1270]
5,6-Dinitroindazole 6.14 [1270]
5,7-Dinitroindazole 3.22 [1270]
1-Methyl-5,6-dinitroindazole 6.43 [1270]
2-Methyl-5,6-dinitroindazole 8.96 [1270]
3,5,7-Trinitroindazole 3.39 [1270]
3,4,6-Trinitroindazole 6.80 [1270]
3,5,6-Trinitroindazole 6.57 [1270]
2,3,5,6-Tetranitroindazole 2.19 [1270]
1-(3,4-Dinitrophenyl)-4,6-dinitroindazole 3.62 [1270]
5(6)-Nitrobenzimidazole 5.95 [1265]
2-Methyl-5(6)-nitrobenzimidazole 6.57 [1265]
2-Phenyl-6-nitrobenzoxazole 4.23 [1103, 1265]

(continued)
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causes, as expected, an increase of m, while an electron-deficient substituent in the 
same position decreases the dipole moment.

The difference in the m values of 5(6)-nitrobenzimidazole and its 2-methyl 
derivative is 0.62 D, which, obviously, can be explained by s,p-conjugation of the 
methyl group with the benzimidazole ring [1265].

In many cases knowledge of dipole moments allows a conclusion concerning the 
tautomeric equilibrium state of nitroazoles in the solution [256, 1124, 1250, 1268, 
1270, 1271]. The values of dipole moments are in agreement with the data on the 
acid-base properties of nitroazoles [1175], and also with Charton¢s assumption 
[1272] that in nitrogen-containing aromatic heterocycles with several nitrogen het-
eroatoms (able to tautomeric transformations) the tautomer having the proton at a 
heteroatom most remote from the electron-withdrawing substituent is prevailing.

The results of the tautomeric equilibrium study of 4(5)-nitroimidazole show that 
in the gas phase both tautomers have similar energy, but in the solution the 4-tau-
tomer is more stable than the 5-nitro one [256, 1124]. The dipole moment of 
4(5)-nitroimidazole is practically the same as that of 1-methyl-4-nitroimidazole 
(Table 3.72).

3(5)-Nitropyrazole is insoluble in a low-polar medium at concentrations sufficient 
for measuring the dipole moment. In solving dioxane, 3(5)-nitropyrazole forms a 
hydrogen bond with dioxane (H-complex), it is the so-called dioxane effect 
(Scheme 3.48).

Ab initio calculated (6-31G*) dipole moments of 3- and 5-nitropyrazoles and 
their H-complexes and experimentally measured values of 1-methyl-3-nitropyrazole 
(6.20 D, see Table  3.72) show that the tautomeric equilibrium is shifted to 
3-nitropyrazole in dioxane [1267]. Calculations show that the dipole moments of 
the molecule and the corresponding H-complexes slightly differ (~0.2 D) and the 
difference between the energies obtained for these complexes is 1.1  kcal/mol 
[1267].

Dipole moments, static averaged polarizabilities and hyperpolarizabilities of 
thiazole, benzothiazole, and their dipolar nitro and amino derivatives possessed 

Compound m
exp

., D References

2-(2-Oxyphenyl)-5-nitrobenzoxazole 5.50 [1103, 1265]
4-Nitrobenzothiazole 5.20 a [1245]
2-Methylthio-6-nitrobenzothiazole 4.62 [1250]
6-Nitrobenzothiazoline-2-thion 3.40 [1250]
4-Nitro-2,1,3-nitrobenzothiadizole 4.08a [1273]
5-Nitro-2,1,3-nitrobenzothiadizole 2.75a [1273]
5-Nitro-2,1,3-benzoselenadiazole 3.59 a [1273]
a In benzene (25ºС)
b In 1,2-dichloroethane (25°C)
c Calculated
d In chloroform

Table 3.72  (continued)
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nonlinear optical properties have been calculated by B3LYP and MP2 theories 
[1274]. The 6-nitrobenzothiazole-2-amine and 2-nitrobenzothiazole-6-amine show 
the largest electric properties from the investigated set of molecules. Benzothiazole 
(thiazole) as a bridging unit between NO

2
 and NH

2
 groups exhibits slightly enhanced 

nonlinear optical characteristic than para-nitroaniline. Thiazole behaves as a dipolar 
bridge rather than just an electron acceptor substituent in singly substituted 
derivatives.NO

2
 group interacts better with thiazole than NH

2
, which can result from 

the tendency to pyramidization of the NH
2
 group. The effectiveness of thiazole and 

benzothiazole as a conjugative pathway between electron acceptor NO
2
 and electron-

donor NH
2
 substituents has been compared with benzene [1274].

The calculated dipole moment values of 5-substituted (including nitrotetrazole) 
correlate well with s

p
 constants of substituents [1271].

The ab initio calculations of dipole moments of ion pairs of 4-nitropyrazolide 
anion have been carried out [1275].

Semiempirical optimization of molecular structures and ab initio calculations of 
dipole moments of nitrobenzoxazole family of potential nonlinear optic materials 
have been carried out [1202]. Clear evidence was found that conditions such as 
conjugation efficiency and electron donor/acceptor strength cannot be evaluated 
separately, due to structural changes in molecular distribution.

Dipole moments of 1,3-dimethyl-2,2-tetramthylene-5-nitrobenzimidazoline, 
perspective for photorefractive polymeric materials [1276], and some nitrobenzo-
furazans [1206, 1277] have been measured.

The electrostatic parameters for generating partial charges in the calculation of 
dipole moments were modified to achieve better correlation with experimental 
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dipole moments for a training set of 160 compounds, which included aromatic, 
heteroaromatic molecules, etc. [1278]. The conjugate nitro group parameters have 
been included in the system calculation within the MM2 force field [1279]. New 
parameters have been estimated by a statistical process from X-ray molecular struc-
tures. Comparison of the corresponding results with those given by the MM2(91) 
force field parameters shows a clear improvement for dihedral and bond angles. For 
N–O and C–N bond lengths a slight global improvement is also observed. A closer 
examination of the results for the latter bond shows that the parameters proposed 
are more adapted to five-membered ring derivatives. The introduction of a correc-
tion factor to the calculated molecular dipole moment in conjunction with a neces-
sary re-estimation of some C-bond dipole moments also leads to improved total 
molecular dipole moments [1279].

Mass Spectrometry

Mass spectrometry has been widely used for the elucidation and determination of 
the structure of heterocyclic compounds. There is no doubt that mass spectrometry 
due to its extraordinary sensitivity is one of the major tools to help solve structural 
problems of varying degrees of complexity. During the last years there has been an 
almost explosive growth in the use of mass spectrometry by organic chemists. The 
rapid growth of the technique has been accompanied by, and to a large extent 
engendered by, the development of relatively simple theories for the rationalization 
of the observed fragmentation. Nowadays, mass spectrometry together with other 
spectral methods represents an integral part of any scientific investigation in 
organic chemistry.

In a recently published book [1280] on mass spectrometry, the fragmentation of 
organic molecules under electron impact, electron capture, and other ionization 
methods is described not in the traditional way – by classes – but rather by isomer-
ization and fragmentation types with simple bond cleavage, hydrogen- and skeletal 
rearrangements with systematic thermodynamic approach and separately for posi-
tive and negative ions. Our review on mass spectrometry of nitroazoles has been 
reported in 1998 [1281].

Nitropyrazoles

Electron-impact (EI) fragmentation of nitropyrazoles gives rise to the main ions 
[M–O]+, [M–NO]+, [M–NO

2
]+ which are typical for aromatic nitro compounds 

[1282–1286]. 4-Nitropyrazole fragmentation to [C
2
H

2
N]+ follows two pathways 

(Scheme 3.49) [1285]:
The structure of 5-substituted 4-nitropyrazoles [246, 1287], 3,5-dinitropyrazole 

ammonium salt has been confirmed by mass spectrometry [1288]. Mass spectra 
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analysis of labeled 4(5)-nitro-5(4)-cyanoimidazoles (15N and 13C) shows that during 
fragmentation in mass spectrometer the labeled atoms are present in all the main 
fragmentation ions of m/z higher than 42 [1287].

Mass spectral analysis of methylated nitropyrazoles has been carried out [302, 
1282–1284]. The primary steps of fragmentation involve, as a rule, elimination of 
nitro and nitroso groups. The mass spectra of 1-methyl-substituted nitropyrazoles 
are characterized by a stable molecular ion [1282]. After CO extrusion the 
[C

4
H

3
N

2
O]+ ion with m/z 97 is transformed to [C

3
H

5
N

2
]+ with m/z 69 which further 

breaks down in two ways. On the one hand, after elimination of C
2
H

2
 a [CH

3
N

2
]+ 

ion with m/z 43 is formed. On the other hand, NCH loss leads to [C
2
H

4
N]+ with m/z 

42. Another very interesting process involves direct formation of [CH
3
N

2
]+ ion 

when the [C
3
H

2
NO

2
] fragment is expelled from [M]+ [1282].

Unlike 5-nitro-1-methylpyrazole the fragmentation of 3-nitro- and 4-nitro- 
1-methylpyrazole [M–NO

2
]+ ions results in the formation of pyrimidine and 

pyridazine radical cations, respectively (Schemes 3.50 and 3.51) [1282]:
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Methyl-substituted nitrodiazoles (nitropyrazoles and nitroimidazoles) in which 
the substituents occupy adjacent positions in the cycle are subject to several ortho 
effects [1283, 1284]. The latest are useful in structure determination and isomer 
recognition of compounds. These effects are attributed to interaction of the sub-
stituents only. As a result, in some cases loss of OH• and H

2
O [1283], and CHO• and 

CH
2
O• [1284] is observed. The way by which loss of H

2
O in 3(5)-nitro-4-meth-

ylpyrazole occurs is shown in Scheme 3.52 [1283]:
At variance with 3(5)-nitro-4-methylpyrazole, for 1-methyl-5-nitropyrazole the 

loss of CHO• is observed (Scheme 3.53) [1284]:

The mass spectra of three monomethylated isomers of N-nitropyrazole have 
been studied [1284]:
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Unlike C-NO
2
-pyrazoles the main common features of N-NO

2
-pyrazoles are the 

loss of an NO• fragment and the absence of an [M-O]+ fragment and of an [M-NO]+ 
ion. The last ion (m/z 81) has a moderate intensity and is the main source of second-
ary fragmentation. As an example, the fragmentation of 1-nitro-3-methylpyrazole 
is shown (Scheme 3.54) [1284].

The structure of N-nitration products of 3(5)-substituted pyrazoles has been 
confirmed by mass spectra [1289].

A mass spectrometric study of 3-amino- and 5-amino-1-methyl-4-nitropyrazole 
and 3-nitro-, 5-nitro-4-amino-1-methylpyrazoles has been performed [1286]. The 
highest relative intensity of the [M-NO]+ peak is observed with 5-amino-1-methyl-4-
nitropyrazole. The authors believe this to be related with the pyrazole ring p-excessive 
position 4 and the easy transmission of the electronic effect of the amino group through 
the (C-4)-(C-5) bond. The [M-NO]+ peak relative intensity is minimal for 4-amino-1-
methyl-3-nitropyrazole. This indicates a lower stabilization of the [M-NO]+ ion by the 
N-1 atom compared with that produced by the N-2 atom seemingly due to the electron-
withdrawing properties of the pyrazole ring N-2 atom [1286].

The mass spectrometric behavior of iridium(I) and iridium(II) 3,5-dimethyl-4-
nitropyrazolates was studied in detail with the aid of linked scans and mass ana-
lyzed ion kinetic energy spectra [1290].
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Mass spectrometry has been used for the structural determination of isomeric 
1-methyl-3(5)-nitro-4-pyrazolcarbonitriles [302], 1,5-dimethyl-3,4-dinitropyrazole 
[279], 4,4-dinitro-1,1-methylenedipyrazole [1291], 3-amino-5-benzylamino-4-nitro-
yrazole [317], amino derivatives of 4-nitropyrazole [1292], antibacterial compounds 
3-(3-methyl-4-nitro-1H-pyrazole-5-yl)- and 3-(3-methyl-4-nitro-1-alkylpyrazole-5-yl)-
5-methyl-4-nitroisoxazoles [500], some 1-heteroaryl-4-nitropyrazoles [311].

Nitroimidazoles

A detailed analysis of the mass spectra of methylated nitroimidazoles has been car-
ried out [321, 1283, 1284, 1293–1296]. These compounds are characterized by an 
intense molecular ion peak, the fragmentation pattern being the same as that of 
aromatic nitro compounds (Schemes 3.55 and 3.56) [1293].
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A distinctive fragmentation feature of these compounds is that the [M-NO]+ 
peak intensity of 1-methyl-2-nitroimidazole is much higher than that of isomeric 
4- and 5-nitroimidazoles [1293]. The first fragmentation stages of 1-methyl-4- 
nitroimidazole involve [NO

2
]• abstraction which does not occur in the case of 

1-methyl-5-nitroimidazole (Scheme 3.56) [1293].
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In the mass spectra of 1-aryl-4-nitroimidazole [NO
2
]• abstraction from the 

molecular ion is not observed [1297] at variance with 1-methyl-4-nitroimidazole 
[1293] (Scheme 3.57).

The main fragmentation pathway of 1-aryl-4-nitroimidazoles does not differ 
significantly from that of 1-methyl-4-nitroimidazoles [1293] and 4(5)-nitroimidazoles 
[1298]. Nevertheless, unlike 4(5)-nitroimidazoles and 1-alkyl-4-nitroimidazoles in 
the mass spectra of all 1-aryl-4-nitroimidazoles and 1-aryl-2-methyl-4-nitroimidazoles 
the peaks due to ArC+ ions appear [1297]. In this work the EI mass spectra of 2- and 
5-methyl-1-aryl-4-nitroimidazoles are also analyzed in detail.

It is interesting to notice that also the fragmentation of halogen-containing 
4-nitro- and 5-nitroimidazole isomers occurs in different ways. The fragmentation 
of the 4-nitro isomer leads to aziridine ions, whereas that of the 4-nitro isomer 
gives rise to cyclopropenone [1296]. One of the fragmentation pathways of 
1-methyl-4-nitro-5-(2,3-dichloropropyl)-thioimidazole involving loss of Cl• and 
NO• gives rise to a 1,4-oxathian cycle annealated with an imidazole ring [1299] 
(Scheme 3.58).
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In the mass spectra of 1-hydroxy-2-aryl-4-nitroimidazole-3-oxides the molecu-
lar ions and the fragments [M – O], [Ar-CH=NH], [Ar-CNH], [ArCN] were 
observed [355, 1300]. A careful mass spectrometric investigation of these oxides 
showed an unusual fragmentation. Along with an O-shift (with subsequent forma-
tion of O

2
) and the formation of the [Ar-C(O]+ the cation and other processes an 

unexpected release of N
2
O

3
 (or N

2
O + O

2
) from the molecular ion with formation of 

the [HC(CN(O)CHAr]+ fragment was noticed [1300].
The use of mass spectrometry in tautomerism studies of azoles, in particular of 

4(5)-nitroimidazoles [1297, 1301], 2-methyl-4(5)-nitroimidazoles [367] and 
3(5)-methyl-5(3)-nitropyrazole [1282], can afford only qualitative information.

When N¢-4-[bis(2-chloroehtylamino]benzylidenehydrazines of 4-nitroimidazol-
1-acetic acid are melted, they undergo rearrangement to the azines of the corre-
sponding benzaldehyde [1303].

Some fragmentation pathways of 4(5)-piperidino-, 4(5)-pyrrolidino- and 
4(5)-morpholinosubstituted 5(4)-nitro-2-methylimidazoles [1303], and 1-organyl-2-
methyl-4-nitroimidazoles and their 5-iodo derivatives have been studied [1304].

By the negative chemical ionization (NCI) mass spectral method the negative ions 
of 2-nitroimidazole are obtained [1305]. This method is much more sensitive than the 
positive chemical ionization one. The analytical potential of the NCI mass spectrometry 
for the analysis of different classes of nitro compounds has been discussed [1305].

Mass spectra of 1,4-dinitro-, 2,4-dinitro-, and 4,5-dinitroimidazoles have been 
studied [1306]. Comparisons of mass spectra (70  eV) of these compounds have 
shown that the fragment product ions have the same m/z values, but differ in their 
relative abundance and in the ion appearing the main peak. It seems that this differ-
ence is due to the nitramine functionality of 1,4-dinitroimidazole [1306].

The mechanism of electron-impact-induced loss of water from the molecular 
ion of nitroimidazoles has been studied [1295, 1307]. A possible mechanism of the 
elimination of water from 1-methyl-4-nitroimidazole-5-carboxamide [1307] is 
presented in Scheme 3.59:
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The N-methyl group is the source of one of the eliminated hydrogen. The sub-
sequent loss of water by 1,2-elimination gives rise to the formation of the nitrile 
structure. Mass spectra of mono- , di-, and trideuterated nitroimidazoles were 
investigated in order to prove the fragmentation mechanism [1307].

The formation of labeled (2-methyl-4-nitro-1-[15N-1]imidazolyl)acetic acid 
[443], 4-nitroimidazole nucleosides [1308], 1-(2¢-deoxy-2¢-D-glucopyranosyl)- 
4-nitroimidazoles [448] from 1,4-dinitroimidazole in result of ANRORC reaction 
(degenerated transformation of imidazole ring) was confirmed by mass spectral 
analysis.

Mass spectrometry is widely used to prove the structure of compounds. Mass 
spectra of misonidazole [1035, 1309], secnidazole, ronidazole, dimetridazole 
[1310, 1311], 1,4-dinitroimidazoles and their 2-, and 5-methyl derivatives [426], 
some dinitro- [380] and halonitroimidazole derivatives [373, 380, 381], 
5-guanidino-4-nitroimidazole [1312], 4(5)-(4-alkoxyphenyl)- [459] and 4(5)- 
(4-acetylaminophenyl)-5(4)-nitroimidazoles [460], 1-(2¢,4¢-dichlorophenyl)-2-
(4-nitro-1H-1-imidazolyl)ethanone [328], 5-nitroimidazole derivatives 
(antitrichomonal agents) [1313], nitroimidazole metabolites [1037, 1130], 
products of hydroxymethylation and cyanomethylation of 2-, 4-, and 5-nitroi
midazoles (potential radiosensitizers) [425], cyano derivatives of nitroimidazoles 
[471], a large series of nitro derivatives of alkylthio- and alkylsulfonylimidazoles 
[360], N-substituted products of 2-methyl-5-nitroimidazoles (chemotherapeutic 
agents) [325, 326, 344, 413, 414], (1-methyl-5-nitro-2-imidazolyl)pyrazole 
derivatives [1314], 2-(2-oxazolyl)- and 2(2-oxazolinyl)-1-methyl-5-nitroimidazole 
[475], thiazolyl nitroimidazoles [372], 1-organyl-2-nitroimidazoles [387, 389, 421], 
an oligo N-methylimidazole carboxamide containing a terminal 2-nitroimidazole 
nucleus [1315], and other nitroimidazoles [310, 1145, 1146, 1262, 1316] have 
been studied.

5-Guanidino-4-nitroimidazole formation in peroxynitrite-treated DNA was 
characterized by electrospray ionization mass spectrometry with selected reaction 
monitoring [409].

The base mass spectra peaks of 5-(2-aminoethylamino)-4-nitroimidazole [365], 
iodo and bromo derivatives of 4-nitro-, and 5-nitro-1-methylimidazoles [461], 
4(5)-nitroimidazole-5(4)-carboxaldehyde and (5(4)-nitroimidazole-4(5)-yl)methyl 
nitrate [462], and some 1-aryl(organyl)-4-nitroimidazole [394, 400, 401, 449] have 
been discussed.
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Nitroisoxazoles

Analysis of mass spectra of nitroisoxazoles has been carried out in a small number 
of works [1317–1321]. In general, the mass spectra of isoxazoles are significantly 
different from those of oxazoles because the initial fragmentation of isoxazoles 
involves N-O bond cleavage. Surprisingly, we were unable to find mass spectra of 
nitrooxazoles in the literature.

Electron-impact fragmentation of 3,5-diaryl-4-nitroisoxazoles occurs by the 
Scheme 3.60 [1317]:
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In the mass spectra of nitro compounds there are, as a rule, rather intense peaks 
due to the [M-O]+ , [M-NO]+, [M-NO

2
]+ ions, whose intensity is however negligible 

in the case of 4-nitroisoxazoles [1317, 1319, 1320]. Molecular ion fragmentation 
proceeds with cleavage of the ring N–O bond and subsequent formation of an [Ar´-
C≡O]+ ion (aroyl ion). The aroyl ion displays the highest intensity in all the com-
pounds examined [1317]. Generally, the formation of the aroyl cation is reduced 
when an electron-releasing substituent is placed on the Ar group. The arylnitrilox-
ide ion [Ar-C≡N-O]+ is stabilized and the retro-1,3-dipolar cycloaddition prevails 
over the formation of aroyl cation. The position of the Ar and Ar´ substituents in 
the isoxazole ring was established by mass spectrometry [1317].
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The fragmentation of styryl-substituted 4-nitroisoxazoles has been studied 
[1319, 1320]. One of the possible fragmentation ways of 3-methyl-4-nitro-5-
styrylisoxazole is presented in Scheme 3.61 [1319]:

In this case the isoxazole ring is transformed to an oxazole ring.
For 3-methyl-4-nitro-5-(ortho-R-styryl)isoxazoles one can observe an [M-17]+ 

peak formed upon abstraction of oxygen from the NO
2
 group and an a-hydrogen of 

the styryl fragment(Scheme 3.62) [1320]:
This fragmentation is also observed in other nitro compounds [1322].
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The mass spectra of a large series of alkyl- and arylisoxazole derivatives includ-
ing 3,5-dimethyl-4-nitroisoxazole are presented [1321].

Mass spectrometry was used for the structural identification of the bis(3-methyl-4-
nitroisoxazol-5-yl) and ethyl ether of 3-methyl-4-nitroisoxazol-5-yl pyruvic acid 
[1319], the antibacterial compounds 3-(3-methyl-4-nitro-1H-pyrazole-5-yl)- and 
3-(3-methyl-4-nitro-1-alkylpyrazole-5-yl)-5-methyl-4-nitroisoxazoles [489], 7-hydroxy-
2-methyl-3-[2-(3-methyl-4-nitro-5-isoxazolyl)-ethyl]-3-hydroxyiminobutyrate and 
7-hydroxy-2-methyl-3-[2-(3-methyl-4-nitro-5-isoxazolyl)-1-arylethyl]-chloromones 
[490], and 4-aryl-3-(3-methyl-4-nitroisoxazol-5-yl)-2-pyrazolines [1323].

Recently a number of energetic nitrofurazans have been obtained and their struc-
ture was confirmed by mass spectrometry [136, 139, 408, 504, 506, 508, 511, 514, 
519] (Table 3.73).

Table 3.73  Mass spectra of nitrofurazans

Compound m/z Refs

N
O

N

NO2O2N 160 (M+), 68, 52, 46, 44, 30 [506]
160 (M+), 114 [M – NO

2
]+, 98 [M – O–NO

2
]+, 

68 [M – 2NO
2
]+

[408]

N
O

N

FO2N 133 (M+), 87 [M – NO
2
]+, 98 [M – NO

2
–NO]+ [504]

N

N
O

N

O2N
NMe2 185 (M+), 139 [M – NO

2
]+ [511]

N
O

N

O2N O

N
O

N

CH3
213 (M+), 167 [M – NO

2
]+, 137 [M – 

NO2–NO]+

[514]

N
O

N

O2N O

N
O

N

CN 224 (M+), 178 [M – NO
2
]+ [514]

N
O

N

N=N O

N
O

N

CH3

O

N
O

N

O2N

325 (M+), 309 [M – O]+, 295 [M – NO]+, 264 
[HM – NO

2
] +

[514]

N
O

N

N=N O

N
O

N

CN

O

N
O

N

O2N

336 (M+), 320 [M – O]+, 290 [M – NO
2
]+, 244, 

214, 178 (NCFOF)
[514]

(continued)
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Compound m/z Refs

N
O

N

N=N NO2

O

N
O

N

O2N

272 (M+), 256 [M – O]+, 226 [M – NO
2
]+, 210 

[M – NO
2
–NO]+

[408]

N
O

N

N=N OH

O

N
O

N

O2N

185 [M – N
2
–NO]+ [508]

34

N
O

N

N
O

N

Cl

O2N 2 1

218, 216 [M]+ [511]

34

N
O

N

N
O

N

F

O2N 2 1

216 [M]+, 155 [M – NO
2
]+ [504]

N
O

N

N=N Cl

N
O

N

O2N 247, 245 [M]+ [511]

N
O

N

N=N F

N
O

N

O2N 229 [M]+ [504]

N
O

N

N=N

N
O

N

O2N NO2 257 [MH]+ [139]

N
O

N

N=N Cl

N
O

N

O2N

O 263, 261 [M]+ [511]

N
O

N

N=N F

N
O

N

O2N

O 245 [M+, 229 [M – O]+, 158 [O
2
NFuN

2
O]+, 153 

[M – O–NO
2
–NO]+, 142 [O

2
NFuN

2
]+, 117 

[FFuNO]+, 115 [FFuN
2
]+, 96, 95, 70, 69, 68

[504]

Table 3.73  (continued)
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Nitroisothiazoles, Nitrothiazoles, and Nitrothiadiazoles

The spectra of 16 isothiazole derivatives including 4-nitroisothiazoles have been 
examined [1324]. Electron impact induces cleavage of the S-N bond and abstraction 
of a fragment of type R

3
CN or HCN occurs [1324].

An analysis of the mass spectra of 2-substituted 5-nitrothiazoles and 2-nitrothiazole 
has been carried out (Scheme 3.63) [1325]:

It is believed that the fragmentation of the compounds studied proceeds via 1–2 
and 3–4 bond cleavage. The nitro group of the above compounds decreases the 
molecule stability, whereas the dimethylamino group stabilizes the cycle. The Cl 
and Br atoms influence the thiazole ring fragmentation in different ways [1325].

The derivatives of 2-arylthiazoles (including 2-aryl-5-nitrothiazoles) have been 
synthesized and studied by mass spectrometry [533]. The main fragmentation of 
2-aryl-5-nitrothiazoles is presented in the general view of Scheme 3.64 [533]:

The base fragmentation peaks of 4-methyl-5-nitrothiazol-2-yl derivatives of urea 
and thiourea [1165] and 4-substituted 2-halogen-5-nitrothiazoles [546] are 
discussed.

2-Amino-5-nitrothiazole is widely used as effective matrixes in matrix-assisted 
laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) 
study of oligonucleotide and protein [1326].

The route of 4-nitro-1,2,3-thiadiazole fragmentation is given in Scheme  3.65 
(peak intensities are indicated in brackets) [1327].

The fragmentation proceeds in a manner typical for unsaturated 1,2,3-thiadiazoles; 
however, an N

2
 evolution takes place and the generated ion loses either the hydroxy 

radical or the NO
2
 group [1327].
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Nitrotriazoles and Nitrotetrazoles

The mass spectral characteristics are considered as a proof of the structure of 
1-aryl(heteryl)- and 2-aryl(heteryl)-4-nitro-1,2,3-triazoles 141,177,602–604, 1-org-
anyl-4-nitro-1,2,3-triazoles [597], some 4-nitro-1,2,3-triazoles of potential interest 
as antiprotozoal agents [1328]. The molecular ion peaks of the following 4-nitro-
1,2,3-triazole derivatives are reported (Scheme 3.66) [1328].

A large series of 1,2,3-triazole-1-oxide derivatives including nitro-substituted 
ones was synthesized and studied by mass spectrometry (Table 3.74.) [177, 608].

A more intensive peak in nitro derivatives of 1,2,4-triazole is m/z 30 (NO+) that 
is caused by the presence of NO

2
-group (Scheme 3.67, Table 3.75) [1329].

As seen from the schema the available radical center in ionized nitro group 
—N+(=O)–O· gives the possibility of interaction of this center with the p-system of 
the azole cycle or migration to one the hydrogen atoms. The generation of the cation 
or cation-radical (CR) plays the great role in the formation of the final products. 
The positive charge of the CR is stabilized by lone-pair of nitrogen atom, and radical 
center – by N and O atoms and the p–system. Herewith it is observed the segregation 
of the neutral molecules N

2
, H

2
O, N

2
O, HCN, HNC, HCNO, Cl

2
, or radicals NO

2
, 

HOO, etc. having relatively low enthalpy of formation [1329].
The analogical fragmentation way shows the isomeric 1-chloro- and 5-chloro-3-

nitro-1,2,4-triazoles herewith that the isomers have some differences. 5-Chloro 
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derivative has an intensive peak of ion m/z 76/78 (30 and 9.3%, respectively) 
(Scheme 3.68):

A more intensive ion peak in mass spectrum of 1-chloro-3-nitro-1,2,4-triazole is 
[M-(Cl+N

2
)-NO

2
]+ with m/z 39 (C

2
NH+). The similarity of mass spectra of these 

isomers indicates active rearrangement processes with participation of nitro group 
and migration of Cl and H atoms (Table 3.75) [1329]. Fragmentation of bromo-
containing nitrotriazoles in comparison with chloro derivative comes more pro-
foundly: the intensity of molecular peaks and the peaks obtained by ejecting small 
fragments is essentially decreased. It is interesting that the mass spectrum of 
1,5-dichloro-3-nitro-1,2,4-triazole has a very intensive ion peak Cl–N+≡N, whereas 
the same peak in the spectrum of 1-chloro-5-bromo-derivative has a small intensity 
[1329].

Probably technical possibilities of method in those times have not allowed deter-
mining all peaks of these compounds (Tables 3.74 and 3.75).

Table 3.74  Mass spectral data of nitro-1,2,3-triazole-1-oxides and 
2-methyl-4,5-dinitro-1,2,3-triazole [608]

Compound m/z I, % Fragment

N

N
N

O2N

O2N CH3

H

173 100 M+

157 34 [M – O] +

81 26

N

N
N

O

CH3

O2N 144 62 M+

128 5 [M – O] +

114 43 [M – O
2
] +

98 27 [M – NO
2
] +

68 92
53 100

N

N
NO2N

O

CH3

144 38 M+

128 7 [M – O] +

112 9 [M – O
2
] +

98 100 [M – NO
2
] +

N

N
N

O

CH3

O2N

O2N

189 26 M+

173 2 [M – O ] +

143 16 [M – NO
2
] +

97 100

N

N
N

O

CH3

O2N

H3C

158 57 M+

128 3 [M – NO] +

112 3 [M – NO
2
] +

82 45
67 100

N

N
N

O

CH3

O2N

Br

222+224 60 M+

206+208 1 [M – O] +

176+178 7 [M – NO
2
] +

146+148 82
131+133 70
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The thermal decomposition of 3-nitro-1-nitromethyl-1,2,4-triazole [1331] and 
3-nitro-1,2,4-triazol-5-one [587, 1332] has been studied by electron impact and 
chemical ionization. Mass spectrum of 3-nitro-1,2,4-triazol-5-one consists of three 
characteristic parts: the molecular ion (m/z 130), the group at m/z 83, 84, and 85 
(the azole ring), and the azole ring fragment group (m/z 41, 42, 43, and 44) 
(Scheme 3.69) [1332].

Mass spectrum of 1-nitro-1,2,4-triazol-5-one has only two intensive peaks with 
mass m/z 101 [M-30+1]+ and m/z 85 [M-46+1]+ corresponding NO and NO

2
 

[611].
The alkylation products of N-chloro-3-nitro-1,2,4-triazole [580], heterylation 

products of nitrotriazoles [612], glycosylation products of 3-bromo-5-nitro-1,2, 
4-triazole, 2,4-dinitroimidazole and 3-nitro-1,2,4-triazolon-5 [402] were identified 
by mass spectrometry.

Scheme 3.67   
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The structure and the tautomerism of 5-nitrotetrazole and its substituted analogs 
have been investigated by mass spectrometry [1078, 1079, 1333]. According to the 
data of mass and photoelectronic spectra the 2H-tautomer prevails in the gas phase 
[1078, 1079, 1334, 1335].

Table 3.75  Mass spectral data of 3-nitro-1,2,4-triazoles

Compound m/z (I, %)

N

N
N

H

NO2 114, (M+) (30), 98 (2.3), 86 (2.0) 69 (20), 68 (2.8), 55 (2.0), 53 (3.6), 46 
(15), 45 (3.1), 44 (5.5), 43 (4.9), 42 (6.5), 41 (16), 40 (11), 30 (100), 29 
(16)

N

N
N

Cl

NO2 150 (2.5), 148 (M+) (6.7), 114 (3.1), 72 (9.5) 70 (17), 69 (4.2), 65 (3.1), 64 
(24), 63 (11), 62 (6.4), 53 (8.1), 46 (21), 44 (5.7), 43 (2.5), 42 (2.6), 41 
(3.2), 40 (3.6), 39 (21), 38 (6.7) 37 (3.6), 36 (7.6) 35 (11), 30 (100), 29 
(7.6)

N

N
N

H

NO2

Cl

150 (5.2), 148 (M+) (17), 141 (2.0), 139 (15), 137 (23), 120 (2.2), 105 (5.2), 
78 (9.3), 76 (30), 75 (2.6), 73 (7.6), 67 (4.5), 65 (2.5), 64 (5.2), 63 (10), 
62 (17), 61 (4.1), 54 (5.2), 52 (6.2), 50 (2.1), 49 (7.6), 48 (6.5), 47 (21), 
46 (13), 44 (16), 43 (8.6), 42 (2.5), 42 (7.6), 41 (7.9), 40 (3.4), 39 (4.8), 
38 (14), 37 (2.5), 36 (25), 35 (8.6), 32 (2.5), 30 (100), 29 (31)

N

N
N

Cl

NO2

Cl

184 (3.9), 182 (M+) (6.0), 147 (4.7), 103 (3.9), 89 (2.0), 87 (3.1), 75 (3.4), 
74 (3.2), 73 (8.2), 72 (19), 70 (31), 65 (12), 63 (41), 62 (3.9), 61 (6.9), 54 
(4.6), 52 (4.9), 49 (3.6), 47 (7.1), 46 (15), 44 (7.7), 43 (3.5), 41 (3.1), 40 
(2.2), 38 (11), 37 (4.9), 36 (30), 32 (3.5), 30 (100), 29 (6.5)

N

N
N

H

NO2

Br

194 (2.9), 192 (M+) (2.9), 147 (3.0), 145 (3.8), 117 (2.6), 115 (2.6), 107 (2.5), 
106 (4.2), 105 (4.1), 104 (4.2), 91 (3.2), 89 (3.2), 81 (5.5), 79 (5.6), 67 
(8.5), 54 (5.9), 52 (4.9), 47 (2.2), 46 (11), 44 (6.0), 43 (4.6), 42 (2.2), 41 
(5.7), 40 (3.6), 39 (6.1), 38 (13), 36 (10), 35 (3.1), 30 (100), 29 (25)

N

N
N

Cl

NO2

Br

226 (M+) (no), 160 (1.4), 149 (1.3), 146 (1.4), 133 (1.1), 131 (1.0), 119 (6.3), 
117 (5.4), 116 (2.4), 114 (2.0), 109 (12), 107 (16), 104 (2.6), 93 (2.6), 91 
(2.7), 81 (10), 79 (10), 72 (4.5), 70 (8.6), 63 (3.1), 54 (5.4), 52 (3.2), 49 
(2.2), 46 (15), 44 (4.2), 40 (2.9), 39 (2.8), 38 (21), 37 (3.4), 36 (4.6), 30 
(100), 29 (4.4)

N

N
N

H

N

Cl

O

O

C N

Cl

HN N C NO2
N CNO2 ClN C NH

M

Scheme 3.68   
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Nitroindazoles

A mass spectrometric study of nitroindazoles has been carried out [683, 1336–1338]. 
In Table 3.77 the spectral characteristics of five nitroindazole isomers are presented 
[1337].

The molecular ion peaks of all the compounds studied are the most intense ones, 
while the m/z 147 and 148 peak intensities are negligible. It has been shown [1337] 
that metastable ion peaks (m/z 133, [M-NO]+) can be of help in distinguishing the 
five nitroindazole isomers, but in general their spectra are much alike. The fragmen-
tation route to [M–NO]+ for the 4-nitro isomer is as follows (Scheme 3.70):

The mechanism of the formation of [MH-30]+ ions upon chemical ionization 
(methane) of 6-nitroindazole has been studied [1338]. The absence of metastable 
peaks corresponding to this abstraction as well as comparison of the mass spectra 
of coimpact-activated ions [MH-30]+ arisen from 6-nitroindazoles with MH+ ions 

m/z 85

m/z 84

NN

N

H

H

O NO2
–NO2

NN

N

H

H

O

NN

N

H

H

O
NN

NO

–HNO2

m/z 83

Scheme 3.69   

No Fragment m/z (I, %)

1. C
2
H

2
N

4
O

2
+ 114 (7) M

2. C
2
H

2
N

4
O+ 98 (1)

3. C
2
H

2
N

2
O

2
+ 86 (5)

4. C
2
H

3
N

3
+ 69 (8)

5. NO
2
+ 46 (11)

6. CH
2
NO+ 44 (13)

7. CHNO+ 43 (22)
8. CH

2
N

2
+, CNO+ 42 (10)

9. CHN
2
+ 41 (10)

10. CN
2
+, C

2
H

2
N+ 40 (6)

11. C
2
HN+ 39 (6)

Table 3.76  The partial mass spectrum of 
3-nitro-1,2,4-triazole [1330] (N

2
+ – 100%)
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from 6-aminoindazole provide evidence for the fact that the formation of [MH-30]+ 
ions in the case of chemical ionization of nitro aromatic compounds is caused not 
by NO abstraction from the protonated molecular ion, but by a reduction reaction 
in the ion source with subsequent protonation [1338].

The mass spectra of 1-methyl- (A) and 2-methyl-4-nitroindazole (B) show similar 
fragmentation patterns and differ in the relative abundance of some fragments 
[384]. The peak m/z = 116 (23.5 and 3.5%) is the most important in this respect 
(Scheme 3.71):

It is believed [384] that this difference is caused by the greater lability of the 
N-methyl bond of compound A. The rupture of this bond gives rise to the formation 
of a more stable radical in the case of A (23.5 %) than in the case of B.

1-Methyl- and 2-methylnitroindazoles (also nitrobenzimidazoles) possessed 
mutagenic activity that have been synthesized and identified by electron-impact 

Table 3.77  The base peaks in mass spectra (EI) of nitroindazoles   

N
N

H

O2N
1

2

34
5

6
7

m/z Fragment 3-NO
2

4-NO
2

5-NO
2

6-NO
2

7-NO
2

163 [M]+ 100 98a 100 100 100
147 [M–O]+ 2 2 2 <2 <2
133 [M–NO]+ 22 25 29 15 11
117 [M–NO

2
]+ 14 46 24 30 14

105 [M–NO – CO]+ 10 43 13 16 15
  90 [M–NO

2
–HCN]+ 76 100 67 73 83

  78 [M–NO – CO – HCN] + 3b 3 9 7 7
  63 [M–NO

2
–2HCN] + 28 45 34 36 27

a [M]+ N-hydroxy-4-nitroindazole m/z 193
b m/z 77 (41%)

+

N
N

H

O
+

+ +

N
N

H

O
N
O

H

N
N

H

O

N
N

H

O N
O

.+

N
N

H

NO2

Scheme 3.70   
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mass spectrometry (Table 3.78) [670]. A distinguishing feature in the mass spectra 
of the 5-, 6-, and 7-nitro-2-methylindazoles is a prominent peak at m/z 42. This 
fragment is characteristic of diazomethane and arises from the two indazole nitrogen 
atoms and the methyl group [670].

The structure of 5- and 6-nitroindazole derivatives – analogs of the biological 
active allopurinole – was established with the aid of spectral methods including 
mass spectrometry (Table 3.79) [680, 1339].

The mass spectra of 4-, 5-, 6-nitroindazoles and 7-methyl-, 7-chloro-5-nitroindazoles 
[683], and 1-tetrazolyl-4,6-dinitroindazole [1336] are reported.

Mass spectrometry has been also used for the structural determination of 1-acetyl-
3-chloro-6-nitroindazole [675] and 5-nitro- and 6-nitro-1-aminoindazole [1083].

Nitrobenzimidazoles

Nitrated benzimidazoles are less stable to electron impact than not nitrated ones 
[1340–1345]. An analogous behavior is observed with nitrobenzenes as well. We 
have studied a large series of 2-substituted 5(6)-nitrobenzimidazoles by mass spec-
trometry (Table  3.80) [1281, 1344]. In general, the molecular ion peaks (M+) of 
nitrobenzimidazoles are the most intense ones except for 2-ethoxy-, 2-methoxycar-
bonyl- and 2-ethoxycarbonyl-5(6)nitrobenzimidazoles (Table 3.80). In the spectra of 
these compounds the most intense peaks are related to ions [M-C

2
H

4
]+, [M–COOCH

2
]+, 

[M–COOC
2
H

4
]+, respectively. One of main processes of electron-impact fragmentation 

B

a

b

m/z  116   (3.5%)

  (23.5%)

.+

N
N

NO2

CH3

.
−NO2

N
N CH3

+

+
N

N

.

m/z  177 m/z  131

m/z  131

.
–CH3

.
–CH3

m/z  116m/z  177

.

N
N+

+

N
N

CH3

−NO2

.

N
N

CH3

NO2
+.

Scheme 3.71   
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Table 3.78  m/z Values and relative ion intensities (I) nitroindazoles and nitrobenzimidazole

m/z/I, % 177 147 131 119 116 104 90 77 63 51 42 39 28 15

O2 N

N
N

CH3

a 100 35 43 13   45 38 – 41 56 30 – 15 24 21

N
N CH3

O2N 100 27 39 30   – 60 94 64 54 24 83 32 33 46

O2N

N
N

b

CH3

100 10 62 21 52 45 45 34 79 23 – 16 27 23

N
N CH3

O2N

91   – 56 27 13 27 100 50 25 17 76 25 18 39

N
N

NO2 CH3

c 52   – 35 – 42 46 43 49 86 48 – 27 52 54

NO2

CH3

N
N

73 27 27 42   – 22 100 54 33 31 97 40 61 98

NO2

CH3

N

N d 49 20 – 30   – 19 – 100 – 40 – 30 96 31

a m/z 89 (42)
b m/z 30 (22)
c m/z 160 (27), 148 (15), 132 (24), 130 (100)
d m/z 92 (13), 64 (19)

Table 3.79  Mass spectral data of 5- and 6-nitroindazoles and 1-chloro-5-nitrobenzotriazole

Compound m/z I, % Fragment Ref

N
N

Me

Me

O2N

191 75 M+ [680]
174 100 [M – OH]+

N
N

SiMe3

Me

O2N

177 100 [M – SiMe
3
]+ [680]

Me

O2N N
N

COMe

219 35 M+ [680]
177 61
160 100 [M – CH

2
CO]+.

(continued)
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Compound m/z I, % Fragment Ref

N
N Me

O2N

Me 191 55 M+ [680]
174 100

O2N
N

N

H

HOOC 207 8 M+[M – OH]+ [680]
190 5
177 3 [M – NO]+

163 6 [M – CO
2
] +.

  44 100

N
N

H

MeOOC

O2N

221 47 M+ [680]
190 100 [M – CH

3
O]+

N
N

Me

O2N

O
HO

OH

OH

309 21 M+ [680]

N
N

Me

O2N

O
OCPh

PhCO

PhCO

621 0.9 M+ [680]
445 60 Tri-O-benzoyl-ribosyl+

N
N

Cl

O2N 197 62 M+ [1339]
163 100

N
N

t-Bu 

O2N 219 34 M+ [1339]
163 100

N
N

N

Cl

O2N 198 3 M+ [1339]
164 100

Table 3.79  (continued)

of nitrobenzimidazoles is elimination of the nitroso group caused by nitro-nitrite 
rearrangement [1342–1344]. In the mass spectra of 2-dimethylamino- and 2-acetyl-
5(6)-nitrobenzimidazole a CH

3
 radical migration toward the imidazole ring takes 

place, whereas in the spectra of 2-trifluoromethyl-5(6)-nitrobenzimidazole an analo-
gous migration of the fluorine atom is observed (Table 3.80).
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The mass spectra of nitro derivatives of 2-phenylbenzimidazoles show the dis-
sociative ionization to be characterized by two trends involving the formation of 
[M–NO]+ and [M–NO

2
]+ ions (Scheme 3.72) [1342]:

When the ionizing electrons are of lower energy, the probability of nitrite rear-
rangement is greater [1342].

Amjad et  al. [1341] have examined the mass spectra of a series of 
nitrobenzimidazoles.

N

N
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H

O2N

R = (CH2)OH, (CH2)2CH(OH)CH2CH2OC2H5
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The main fragmentation pathway of these compounds is as follows 
(Scheme 3.73):

The most intense ion peak in the spectra of these compounds is that due to the 
ion with m/z 177 [1341].

The fragmentation of isomeric 5- and 6-nitro-1-p-toluenesulfonyl-2-alkylbenzimida-
zoles [695, 710], S-{5(6)-nitrobenzimidazol-2-ylmethyl} N-morpholino-dithiocarbamate 
[1090], 4-, 5-, and 6-nitro-1-b-D-ribofuranosylbenzimidazole 3¢,5¢-phosphates 
[711], and the products of alkylation of 5(6)- and 4(7)-nitrobenzimidazole derivatives 
[702] has been studied. The molecular ion peaks of 2-alkylthio- and 2-ethylsulfono-
5(6)-nitrobenzimidazole are reported [718].

Nitrobenzisoxazoles, Nitrobenzoxazoles, and Nitrobenzoxadiazoles

The structure of 3-cyano-4,6-dinitrobenzisoxazole and its reaction products with 
anionic nucleophiles have been confirmed [1346]

It has been found [1347] that mass spectrometry provides useful information in 
the study of tautomerism:

N

O

N
R1

R2

X

N

O

NR1

R

X

A B

m/z  131 m/z  177

m/z  176

+

. .+

O2N
N

N

H

CH2R

+.
O2N

N

N

H

R−

−R

.

+
.

H

N

N

H

H

O2N

N

N

H

H

NO2−

+

Scheme 3.73   



358 Structure and Physical–Chemical Properties of Nitroazoles 

BookID 161900_ChapID 3_Proof# 1 - 20/08/2009

Table 3.81  Mass spectra of some nitrobenzoxazoles, nitrobenzisoxazoles, and nitrobenzofuroxans

Compound m/z (Relative intensity, %) Refs

N

O
N

C4H9

HO2N 235 (76) M+, 193 (32), 192 (70), 179 (100), 146 
(96), 133 (60), 105 (47), 91 (71), 78(48), 
77(67)

[1347]

N

O
N

C4H9

H

O2N

235 (91) M+, 193 (35), 192 (70), 179 (100), 
105(66), 91 (91), 88 (44), 77 (76), 69 (68), 
78 (74)

[1347]

N

O
N

C2H5

C2H5O2N 235 (51) M+, 220 (26), 207 (6), 206 (34), 193 (5), 
192 (100), 146 (25), 71 (20), 63 (12), 56 (14)

[1347]

N

O
N

O2N 247 (100) M+, 201 (15), 192 (19), 90 (28), 83 
(15), 79 (15), 77 (16), 69 (75), 63 (31), 55 
(69)

[1347]

N

O
N O

O2N 249 (100) M+, 203 (6), 193 (6), 192 (86), 191 
(36), 178 (2), 175 (2), 161 (5), 146 (11), 145 
(17)

[1347]

N

O
N

O2N

CH3

CH3

207 (100) M+, 206 (6), 192 (6), 161 (9), 160 (11), 
111 (4), 81 (11), 73 (19), 60 (26)

[1347]

N

O
N

O2N

CH3

C3H7

235 (8), 207 (11), 206 (100), 160 (29), 92 (4), 85 
(4), 71 (8), 69 (7), 60 (5), 57 (14)

[1347]

N

O
N

O2N

CH3

C4H9

249 (11), 207 (18) 206 (100), 160 (31), 98 (11), 
97 (10), 92 (11), 71 (15), 69 (11), 57 (29)

[1347]

N

O

CH3

O2N

N

275 (55), 258 (6) 246 (7), 233 (15), 232 (100), 
81 (11), 71 (13), 69 (21), 57 (17), 55 (11)

[1347]

N
O

CH3

O2N

O

194 (64) M+, 178 (5), 165 (33), 164 (57), 163 
(46), 147 (12), 145 (12), 138.6 (194-164), 
135 (8), 119 (12), 118 (100), 117 (36), 105 
(7), 91 (28), 90 (93), 89 (77), 79 (12), 78 
(15), 77 (17), 68.6 (118-90), 65 (19), 64 (37), 
63 (72), 62 (31)

[1348]

(continued)

The molecular ions of aminobenzoxazoles (A) (including nitrated species) 
turned out to be more stable than those of iminobenzoxazolines (B). In Table 3.81 
the mass spectral data of A and B are presented.
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Mass spectra of 5,6-dimethoxy- and 6,7-dimethoxy-4-nitrobenzofuroxan show 
an intensive molecular ion peak, intensive [M-60]+ peaks characteristic of the 
furoxan ring, and a weak [M-90]+ peaks due to loss of N

2
O

2
 and NO groups, 

characteristic of nitrobenzofuroxans [1350]. Nitrobenzofuroxans with a nitro 
group ortho to the furoxan ring exhibit predominant loss of NO from position 1 
of the furoxan ring [1350].

Mass spectral fragmentation of the products of electron-impact fragmentation of 
6-nitro-2,1-benzisoxazole (6-nitroanthranil) [1351], 3-substituted 6-nitroanthranils 
[1352], 4-arylamino-5,7-dinitrobenzofurazan [747], 4-(2-aminoethylamino)-7-ni-
trobenzofurazan [1353], 12-O-tetradecanoyl phorbol-13-O-acetate containing 
4-nitrobenzofurazan [1354], and fluorescent probes on the base nitrobenzofurazans 
[777] have been discussed.

Compound m/z (Relative intensity, %) Refs

N
O

CH3

O2N

O

194 (78) M+, 178 (11), 165 (40), 164 (55), 163 
(100), 150 (6), 147 (22), 135 (6), 121 (6), 120 
(6), 119 (12), 118 (50), 105 (12), 91 (24), 90 
(50), 89 (69), 77 (11), 76 (24), 63 (67), 51 
(29), 50 (16)

[1348]

N
O

CH3

O2N

NO2

O

239 (13) M+, 223 (4), 211 (62), 209 (8), 184 (8), 
181 (79), 167 (10), 166 (100), 165 (13), 155.2 
(211-181), 149 (26), 120 (50), 119 (22), 105 
(12), 92 (24), 91 (19), 79 (11), 78 (8), 77 
(16), 63 (31)

[1348]

N
O

C6H5

O2N

NO2

O

301 (33) M+, 285 (21), 271 (61), 270 (29), 225 
(13), 224 (8), 212 (8), 198 (18), 197 (100), 
196 (11), 67 (16), 165 (15), 151 (65), 150 
(95), 126 (9), 125 (16), 105 (14), 77 (23), 76 
(21), 75 (34), 74 (21), 63 (29), 51 (23), 50 
(15)

[1348]

N
O

N

NO2

MeO

MeO

O

242 (M+1, 7.7), 241 (76.5) M+, 225 (M-16, 7.9), 
207 (1.3), 196 (4.0), 181 (M-60, 31.5), 166 
(11.7), 165 (8.0), 151 (M-90, 6.1), 136 (11.0), 
123 (14.1), 108 (12.0), 93 (37.5), 77 (48.3), 
75 (100), 69 (18.1), 63 (13.0), 53 (14.1) 51 
(26.1)

[1349]

N
O

N

NO2

MeO

OMe O

242 (M+1, 8.5), 241 (50) M+, 225 (M-16, 5.2), 
196 (1.3), 181 (M-60, 26.4), 166 (5.2), 151 
(M-90, 2.3), 136 (7.2), 123 (13.8), 108 (10.5), 
93 (28.9), 75 (44.1), 77 (20.3), 69 (2.6), 63 
(3.2), 51 (1.8)

[1349]

Table 3.81  (continued)
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Nitrobenzoisothiazoles, Nitrobenzothiazoles,  
and Nitrobenzothiadiazoles

2-Aryl-4,6-dinitrobenzisothiazoles, 3-substituted 4,6-dinitrobenzisothiazoles, and 
their salts and oxides prepared by the utilization of 2,4,6,-trinitrotoluene or the 
transformation of 4,6-dinitrobenzamides have been investigated with help of mass 
spectrometry [784, 803–806].

Fragmentation of 2,5-disubstituted benzothiazoles (including 2-ethyl-6-
nitrobenzothiazole) has been studied in detail by mass spectrometry [1355].

An analysis of the behavior of positive and negative ions in mass spectra of 
4-nitro-, 6-nitro-, and 4,6-dinitro-2-aminobenzothiazole has been carried out 
[1356]. These compounds give rise to intense peaks due to M+ and M− molecular 
ions and display abnormal fragmentations for both positive and negative ions.  
A fragmentation scheme of 4,6-dinitro-2-aminobenzothiazole is presented in 
Scheme 3.74 [1356].

The M+ fragmentation proceeds via O, NO, NO
2
, or HNCO elimination; the 

fragments formed further abstract CO, HCN, HNCO.
In the first stage of negative molecular ion fragmentation (M-) abstraction of OH, 

NO
2
, (HNO

2
) from all the compounds studied occurs. H

2
O and NO elimination is 

also typical of M− ion of 6-nitro- and 4,6-nitro-2-aminobenzothiazole. As an 
example, we give here one of the ways of the fragmentation of the M− – ion derived 
from 4-nitro-2-aminobenzothiazole (Scheme 3.75) [1356]:

An HCN abstraction is characteristic of this compound and its 6-nitro isomer 
[1356].

Spectrometric data of 1-(6-nitrobenzothiazol-2-yl)-4-[(1H)imidazole-4-yl)]
piperidine [1357] and 6-nitro-2-oxo-3(2H)-benzothiazolineacetonitrile [1358] are 
reported.

The mechanism of electron-impact-induced sulfur dioxide elimination from the 
molecular ions of 4-nitro-2,1-benzisothiazoline and 6-nitro-2,1-benzisothiazoline 
2,2-dioxide derivatives has been examined [1359]. The light fastness of dyes based 
on 3-amino-5-nitro-2,1-benzisothiazole was studied in relation to mass spectral 
data [1251].

Nitrobenzoselenodiazoles

Mass spectra of the following series of nitro derivatives of 2,1,3-benzothiadiazole have 
been studied [1360] (Table 3.82). Their mass spectra are characterized by an intense 
peak of the molecular ion. The fragments NO

2
, NO, H, HCN, and NS are the most 

important elimination fragments. The nitro group position does not affect much the 
fragmentation outcome; the spectra of 4-nitro- and 5-nitro-2,1,3-benzothiadiazoles 
are nearly the same [1360].
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The mass spectral characteristics of 4,7-dibromo-5,6-dinitro-2,1,3-benzothiadiazoles 
and 4-bromo-5-nitro-6,7-(2¢,1¢,3¢-oxadiazole)-2,1,3-benzothiadiazole have been 
considered [1361].

The mass spectra of 5-nitro-2,1,3-benzoselenodiazole have been mentioned 
[1362, 1363]. During the synthesis of potent mutagens, the intermediates 5-chloro- and 
5-methylamino-4-nitro-2,1,3-benzoselenodiazole were studied by spectral methods 
including mass spectrometry (Table 3.83) [1364].
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Table 3.82  Mass spectra of nitrated 2,1,3-benzothiadiazoles

Compound m/z (Relative intensity, %)

N
S

N

O2N

Cl

OC6H5 309 (8), 307 (20) M+, 292 (8), 290 (10), 262 (10), 260 (6), 216 (7), 
214 (16), 206 (5), 204 (8), 186 (9), 170 (5), 119 (9), 118 (6), 94 
(6), 93 (100), 86 (8), 77 (40), 70 (5), 65 (49), 51 (34)

N
S

N

NO2 183 (7), 182 (9), 181 (100) M+, 151 (30), 136 (5), 135 (50), 123 (24), 
109 (7), 108 (23), 104 (14), 91 (7), 83 (5), 82 (5), 76 (13), 75 (5), 70 
(5), 64 (20), 52 (6), 51 (6), 50 (5), 46 (5), 45 (29)

N
S

N

O2N 183 (6), 182 (6), 181 (100) M+,151 (11), 136 (4), 135 (42), 123 (22), 
109 (5), 108 (22), 91 (5), 83 (5), 77 (5), 76 (8), 64 (16), 50 (6)

N
S

N

NO2

Cl

220 (6), 218 (8), 217 (35), 216 (9), 215 (100) M+, 204 (5), 187 (17), 185 
(50), 183 (5), 181 (7), 172 (5), 171 (7), 170 (13), 169 (20), 159 (17), 
142 (10), 135 (8), 134 (25), 133 (9), 125 (5), 108 (12), 107 (6), 98 
(7), 89 (5), 83 (12), 76 (10), 75 (10), 70 (17), 69 (8), 64 (9), 52 (5), 
51(7), 46 (7), 45 (7)

N
S

N

NO2

Cl

Cl

253 (15), 252 (11), 251 (73), 250 (10), 249 (100) M+, 233 (5), 223 (15), 
222 (13), 221 (76), 220 (20), 219 (83), 206 (16), 205 (11), 204 (22), 
203 (19), 195 (8), 193 (43), 192 (5), 171 (10), 170 (24), 169 (12), 
168 (43), 161 (13), 159 (17), 158 (5), 142 (18), 133 (12), 117 (9), 
101 (12), 100 (12), 98 (16), 83 (10), 75 (15), 74 (14), 70 (20), 59 
(19), 46 (14), 45 (15), 44 (12)

(continued)
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Compound m/z (Relative intensity, %)

N
S

N

NO2

Cl

NO2

Cl

298 (14), 297 (7), 296 (63), 295 (9), 294 (100) M+, 248 (5), 222 (5), 220 
(8), 219 (5), 206 (9), 204 (13), 202 (9), 200 (13), 186 (5), 184 (6), 
172 (8), 170 (13), 169 (6), 155 (8), 136 (7), 135 (10), 134 (8), 132 
(27), 123 (9), 117 (16), 109 (10), 100 (14), 99 (16), 85 (12), 83 (11), 
70 (9), 46 (11), 44 (17)

N
S

N

NO2

Cl

Cl

O2N

298 (12), 297 (5), 296 (19), 295 (7), 294 (80) M+, 265 (12), 263 (17), 
250 (9), 248 (13), 240 (7), 238 (7), 222 (41), 221 (7), 220 (69), 218 
(11), 208 (12), 206 (40), 205 (7), 204 (51), 202 (11), 201 (28), 200 
(9), 199 (78), 171 (25), 169 (21), 167 (16), 155 (13), 132 (31), 117 
(11), 109 (13), 79 (20), 52 (13), 44 (39), 30 (100)

N
S

N

O2N

Cl

NH2 232 (34), 231 (10), 230(100) M+, 212 (13), 202 (14), 200 (41), 186 (27), 
185 (10), 184 (70), 172 (43), 171 (9), 170 (80), 152 (14), 151 (24), 
150 (40), 135 (21), 124 (16), 108 (10), 103 (10), 98 (13), 94 (11), 78 
(9), 77 (19), 76 (9), 70 (11), 64 (13), 63 (11), 52 (20), 51 (14)

Table 3.82  (continued)

Table 3.83  Mass spectra data of 4-nitro-2,1,3-benzoselenodiazole derivatives

Compound m/z (Relative intensity, %)

N
Se

N

NO2

Cl

Me

277(54) M+, 247 (74), 140 (100), 139 (50), 124 (62), 115 (74), 88 (57), 
64 (73), 63 (54), 63 (44)

N
Se

N

NO2

MeHN

Me

272 (54) M+, 144 (40), 118 (47), 107 (71), 105 (45), 93 (58), 80 (54), 
78 (42), 66 (40), 52 (41)

Nitrobenzotriazoles

The mass spectra of 1-chloro-5-nitrobenzotriazole (EI, 70  eV; Table  3.79) [88], 
1-hydroxy 4,6-dinitrobenzotriazole [1365] and other benzotriazoles are reported 
[1366]. The characteristic ions in the mass spectrum of 1-(2-hydroxyethyl)-5-
methoxy-6-nitrobenzotriazole were observed at m/z 238 (42% ), M+ ; 208 (31), [M – 
HCHO]+; 207 (8), [M – OCH

3
]+; 193 (100), [M – CH

2
CH

2
OH]+; 192 (14), [M – NO

2
]+ 

[1367]. The mechanism of reduction of benzo-1,2,3,4-tetrazine 1,3-dioxides with 
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Na
2
S

2
O

4
 or SnCl

2
 via intermediate N-nitrosobenzotriazoles to nitrobenzotriazoles 

has been confirmed by mass spectrometry [1368].

Conclusions

The reported data show the increasing importance of mass spectrometry as a 
method of structure determination in organic chemistry. A large number of publica-
tions are devoted to the electron-impact fragmentation of C-nitroazoles, while mass 
spectra of N-nitroazoles are discussed only in some studies. Mass spectra of nitro-
triazoles and nitrothiazoles are only little studied. We are sure that works filling up 
this gap will soon appear. The isotopic labeling – 13C, 15N, and 17O is increas-
ingly important in elucidating the complex mass spectral behavior of nitroazole 
compounds.

Other Physical–Chemical Properties

Flash photolysis of misonidazole, metronidazole, and nitrobenzothiazoles has been 
carried out in [1369–1371]. Laser flash-photolysis (355 nm) allows to determine 
relatively stable anion-radicals of misonidazole and metronidazole in aqueous solutions 
[1370]. Solvated electrons have been formed at harder irradiation, the result of 
which interaction with nitroimidazole molecules is generation of their radical 
anions [1372]. The authors [1372] have also found that fluorescence intensity of 
metronidazole is about 20 times more than that of misonidazole in same conditions. 
Photochromic properties of benzothiazole derivatives containing nitro and methyl 
groups in the ortho positions with respect to each other were studied by flash pho-
tolysis [1371]. The application of the thermodynamic approach to predict the 
kinetic stability of formed nitronic acids is limited owing to specific intramolecular 
interactions. The lifetime of photoinduced nitronic acid anions tends to increase 
with rise in the chemical shift of the methyl protons. The rate constants photoin-
duced nitronic acids and their anions increase as the CH

3
C-CNO

2
 bond becomes 

longer [1371].
Nanosecond laser flash-photolysis and spectrofluorimetry have been used on 

investigation of 2-mercapto-6-nitrobenzothiazoles in regard to their abilities to 
function as coinitiators in free-radical photopolymerizations induced by cam-
phorquinone and isopropylthioxanthone [1373].

Nitro blue tetrazolium ion (NBT2+) usually used for the detection of superoxide 
anion (O

2
-) produced biologically has been studied by laser photolysis [1374]. It 

turned out that the triplet riboflavin reduced NBT2+ into nitro blue tetrazolinyl radical, 
NBT+,·which disappeared according to pseudo first-order kinetics with bimolecular 
rate constant [1374]. Therefore NBT2+ is not always a good detecting reagent for 
the O

2
− when the formation of the anion is mediated by riboflavin.
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One approach to the identification of hypoic cells has been to take advantage of 
the inhibition by oxygen of the reductive metabolism of fluorescent nitroaromatic 
compounds in cells [1375]. The nitro group quenches the fluorescence of the aromatic 
ring system, but on bioreduction of the nitro group in hypoxic cells the ring system 
becomes fluorescent. Numerous nitroazole structures have been evaluated in model 
systems in vitro. Fluorescence of alkylated 4-nitropyrazoles under the influence of 
ultraviolet has been studied in detail [1372]. The reactivity and fluorescence and 
thermodynamic properties of nitrobenzofurazans [775, 777, 1376–1393] and 
nitrobenzofuroxans [1394–1396] have been studied. 4-Aminosubstituted 7-nitroben-
zofurazans are widely used in bioanalytical chemistry due to their strong fluores-
cence properties [777, 1226–1228]. The fluorescence spectra of fluorescent probe, 
6-amino-N-(7-nitrobenzofurazan-4-yl)hexanoyl were measured in methanol, aqueous 
solution, and aqueous solution containing phospholipid vesicles [775]. The fluores-
cence of the probes depends on the environment of the pheromones and can be used 
to monitor the association of the pheromones with the lipid bilayer [775]. 
Fluorescence data of 2,5-bis-(6-nitro-2-benzothiazolyle)furan [1258], 4-cloro-7-
nitrobenzofurazan [1106, 1397, 1398], N-(4-nitrobenzofurazan)monoaza-18-
crown-6 [1399], 4-(N-methylamino)-7-nitrobenzofurazan [1400, 1401] have been 
analyzed. The last is obtained by oxidation of nonfluorescent 4-(N-methylhydrazino)-
7-nitrobenzofurazan (a novel fluorogenic peroxidase substrate) in the presence of 
H

2
O

2
 and peroxidase [1400]. The absorption and fluorescence characteristics of 

4-(a-N-L-alanine)7-nitrobenzofurazan in different solvents reveal large changes 
which correlate with medium polarity [1229]. Fluorescence emission spectra 
and quantum yield of 4-nitrobenzofurazan-lysozyme have been measured [1402]. 
Fluorescence sensor reagents and labels on the base nitrobenzofurazans show 
fluorescence emission between 382–529 nm affording various utilization possi-
bilities [1378].

Luminescence and photochemistry study of azoles is covered in the excellent 
Osipov’s and colleagues’ review [1403]. The questions concerning desactivation 
processes of electron-exited state of azole molecules, including 2-aryl-nitrobenzo-
thiazoles, are critically considered in the review.

Photochromism of 4-nitro-, 6-nitro-, and 4,6-dinitro-5-methylbenzimidazole 
bases and their quaternary salts has been examined by pulse photolysis [1404]. 
Generated neutral medium anions of aci-nitroacids have, in case of compounds with 
4-nitro groups, the lifetimes 3 orders more than those of 6-nitroisomers [1404].

Photoelectron spectra (PE) experimental of some 4-nitropyrazoles, nitroimidazoles, 
[1119, 1405] and nitrobenzimidazoles [1193, 1406] have been recorded and inter-
preted in terms of semiempirical AM-1 method. PE spectroscopy is not a widely 
used method to study tautomeric equilibria in the gas phase although it can give 
excellent results. PE spectra data and 6-31G/6-31G calculations show that in the 
gas phase tautomers 4-nitro- and 5-nitroimidazole have the similar energy [1301]. 
However in water, 4-nitroimidazole is much more stable (dDGo = 3.5  kcal/mol 
>99% at 25°C.) than the 5-nitro tautomer. The authors [1301] show that this is 
conditioned by solvation effect. Probably it is connected with the large difference 
in dipole moments of the tautomers (see Table 3.72).
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With the help of 35Cl Nuclear Quadrupole Resonance (NQR) spectroscopy and 
AM1, MNDO и PM3 calculation data of tautomers of 2-trichloromethyl-5(6)-
nitrobenzimidazole it is established that 5-nitro tautomer is more preferable than its 
6-isomer (Scheme 3.76) [1407].

The insertion of nitro group into 2-trichloromethylbenzimidazole raises the 35Cl 
NQR average frequency due to electron-withdrawing effect of NO

2
 despite its 

remoteness from the indicator atom [1407].
The formation heats of conformers A and C of 2-trichloromethyl-5(6)-nitroben-

zimidazole (Scheme 3.77) calculated by AM1, MNDO, PM3 methods and 35Cl NQR 
frequencies computed from the Townes-Dailey equation [1408] (TD) and modifi
cation Townes-Dailey equation (3.8) [1409, 1410] (MTD) have been analyzed 
(Table 3.84) [1407].

The modified Townes-Dailey theory takes out the influence of the different dif-
fusivity of the p

i
-orbital on the electric field gradient [1409, 1410].

	 ( ) ( ) ( )æ öx + x
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ç ÷è ø

33
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where n – calculated NQR frequency; k – empirical constant, p
xx

 , p
yy

; and p
zz
 – the 

population of the corresponding p-orbital of the indicator atom; x – exponent index 
of the corresponding p

i
-orbital of the Slater type.

The analyses of these data and others [1409, 1410] show that application of the 
modified Townes-Dailey equation is more preferable than Townes-Dailey equation 
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for the determination structure and assignment signals in 35Cl NQR spectra of 
chloro-containing organic compounds [1407].

The asymmetry parameter in 1,2-disubstituted 5-nitroimidazoles decreases with 
increasing the substituent size. The p–electron density and N-1 bond population 
is calculated according to the Townes-Dailey theory and described in detail by  
Dr. Lucken [1408] and Dr. Dolgushin [1409, 1410] based on height with lengthening 
of the substituent on N-1 [1411].

Electron density distribution in substituted 5-nitroimidazoles studied by 14N 
NMR-NQR double resonance spectroscopy changes insignificantly in comparing 
with one in itself imidazole [1411–1413]. The introduction of nitro group and 
others substituents into imidazole ring leads to increasing the quadrupole constants 
of N-1 and N-3 atoms (Table 3.85).

Thermodynamic stability of indazole has been studied by 14N NMR-NQR spec-
troscopy and ab initio calculations [1414].

Ion cyclotron double resonance has been usefully applied by the authors [1415] 
for structural identification of isomeric ions with m/z 152 obtained under electron 
impact of both 1-methyl-4-nitro-5-caronitrylimidazole and 1-methyl-4-nitro-5-
caroxamidimidazole. The ion cyclotron resonance and mass spectrometry data 
show that the protonation 3- and 4-nitropyrazole proceeds on the heterocyclic 
nitrogen rather than on the oxygen of the nitro group [1416].

The catalytic activity of Ag/Pd bimetallic nanoparticles immobilized on quartz 
surfaces was tested for 4-nitro-3-pyrazole carboxylic acid with help from surface 
plasmon resonance, scanning electron microscopy, and surface-enhanced Raman 
scattering (SERS) measurements [1417]. The SERS spectra showed that the nitro 
group reduces to amino group.

Table 3.84  The formation heats (H, kcal/mole) of the conformers A and C of 2-trichloromethyl-
5(6)-nitrobenzimidazole and 35Cl NQR frequencies (n, MHz), obtained from TD and MTD 
equations

Method

Angle

5-Nitro tautomer 6-Nitro tautomer

0 180 0 180

Aproximation TD MTD TD MTD TD MTD TD MTD

AM1 H 56.487 56.126 57.097 56.780
n 50.452 45.650 51.557 46.481 50.496 45.724 51.535 46.524

50.443 45.646 49.179 44.666 50.502 45.729 49.107 44.657
48.425 43.957 48.719 44.304 48.558 44.098 49.098 44.657

MNDO H 47.255 46.202 48.002 47.478
n 46.868 42.621 48.144 43.727 47.031 42.785 48.032 43.661

46.866 42.617 45.514 41.501 46.834 42.618 45.657 41.641
45.126 41.147 45.503 41.490 45.216 41.258 45.653 41.638

PM3 H 20.300 20.437 20.786 21.066
n 54.414 46.961 55.666 47.542 54.512 47.105 55.734 47.624

54.370 46.977 52.419 45.642 54.460 47.109 52.541 45.865
51.477 44.691 52.384 45.743 51.629 44.885 52.445 45.775
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Kinetics of thermodecay of mononitroderivatives of five-membered nitrogen-
containing heterocycles salts including 4-nitropyrazole and 4(5)-nitroimidazole in 
solid state and the activation energy of their thermal decomposition has been deter-
mined [1418]. The stability of the salts decreases with the increase of the nitroazole 
acidity. The decomposition of 5-nitro-1,2,4-triazole-3-one (NTO) induced by X-ray, 
UV, laser, photochemical irradiation has been described [1332, 1419]. High-speed 
photographic studies of the impact responses of the nitrotriazole and thermal decom-
position of labeled NTO have been discussed [1419]. The laser ignition measurements 
showed that the sensitivity to ignition is slightly higher than that for trinitrotoluene 
[1332]. Molecular design of the probable mechanisms of the thermolysis of nitro and 
nitramino-1,2,4-triazoles has been carried out by methods of mathematical chemistry 
[1420]. It was established that the formation is possible of a more diverse spectrum 
of products in their destruction than was previously recorded by different experi-
mental methods. Subsequent assessment of the thermochemical preference for path-
ways of decomposition of the compounds was carried out by the density functional 
method in the B3LYP/6-31G* approach. It was determined that the thermal destruction 
of C-and N-nitramino-substituted polynitrogen heterocycles, capable of tautomeric 
conversion, was most probably through the thermochemically least stable nitro- or 
nitramine form. Thermal decomposition of the considered tautomers is preferred at 
the NO

2
 or NNO

2
 fragment and not at the triazole ring [1420]. The thermal decay of 

3-nitro-1-nitromethyl-1,2,4-triazole proceeds homolytically with initial rupture 
of the CH

2
–NO

2
 bond. Activation parameters of the process were E

a
 = 172.6 kJ/mol, 

log A = 14.25. The primary pathway of fragmentation of 3-nitro-1-nitromethyl-1, 
2,4-triazole under electron impact agrees with the first step of thermal decompo-
sition [1331].

Thermal stability and some other properties of very hydroscopic 5-nitrotetrazole 
have been reported [1079, 1271, 1421]. Tetrazole possess a high enthalpy of forma-
tion: its decomposition results in liberation of two nitrogen molecules and a signifi-
cant amount of energy. The thermal stability of 5-nitrotetrazole is the intensive 
decomposition with the loss of 75% of weight, 115-120°C; impact sensitivity – 100% 

N

N
R2

O2N

R1

1

2

34

5

Table 3.85  Quadrupole-coupling constants (C = e2Qq
zz

/h) and asymmetry  
parameters (h) in 1,2-disubstituted 5-nitroimidazolesa 

Substituent N-1 N-3 NO
2

R1 R2 C h C h C h
H CH

3
3.243 0.250 1.569 0.82 1.225 0.36

CH
2
CH

2
OH CH

3
3.299 0.150 2.467 0.32 0.936 0.38

CH
2
CH

2
OCOCH

3
–CH=CHPhCH

3
O 3.755 0 2.566 0.24 0.921 0.24

Imidazole 3.222 0.119 1.391 0.93 – –
a The quadrupole constant due to a single 2p electron (C

0
 = e2Qq

0
/h) was taken to be 9.4 MHz; 

the NQR frequencies were recorded on NMR-NQR double resonance spectrometer built at the 
Department of Physics, University of Ljubljana (Slovenia) (the accuracy ~1 kHz)
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of explosions; detonation velocity – 8.5 km/s (r ~ 1.7 kg/m3 [1079, 1421]. Heats 
of formation in gas phase and detonation properties including heats of detonation, 
relative specific impulses, detonation velocities, and crystal densities of nitrofura-
zans and nitrofuroxans have been calculated by quantum chemistry, molecular 
mechanics, and Monte Carlo methods [1422]. 3,4-Dinitrofurazan and 3-nitro- 
4-nitroaminofurazan are recommended to be promising energetic compounds on a 
comprehensive account. The crystal densities, detonation properties, and sensitivi-
ties of most nitro furazans and furoxans are high, and it is not an efficient way to 
enhance detonation properties by increasing furazans or furoxans. Consequently, 
the smaller molecules are preferentially recommended, and therefore the kinds, 
orders, and quantities of the linking groups in poly-furazans and poly-furoxans can 
affect the detonation properties [1422]. The basic thermal stability of 5-nitro-1,2, 
4-triazole-3-one has been determined by differential scanning calorimetry (DSC) 
[1332]. The DSC spectra have only one peak, a very strong exothermic peak at 
253°C. Nonisothermal differential scanning calorimetry has been used for the esti-
mation of the kinetic parameters and the critical rate of temperature rise in the 
thermal explosion from the exothermic autocatalytic decomposition of 3,4-bis(4¢-
nitrofurazan-3¢-yl)-2-oxofurazan [1423]. The influence of the substituents on both 
formation and thermal properties of the ionic liquids – the salts of 1, 
3-dimethyl-4-nitroimidazolium, 1-ethyl-3-methyl-4-nitroimidazolium, 1,2,3-trim-
ethyl-4-nitroimidazolium, 1,3-dimethyl-2-nitroimidazolium, and 1-ethyl-3-
methyl-2-nitroimidazolium has been determined by DSC, TGA, and single crystal 
X-ray diffraction [1424]. These data show that an electron-withdrawing nitro sub-
stituent can be successfully appended and has a similar influence on the melting 
behavior as that of corresponding methyl group substitution. In the solid state, the 
nitro group has a suggestive effect, beyond the steric contribution, on the crystal 
packing [1424]. Differential scanning calorimetry and thermogravimetric analysis 
have used in studying thermal stability of 2,4,5-trinitroimidazole derivatives [1425], 
fluorescent molecule 2(2¢-hydroxy-4¢-aminophenyl)-6-nitrobenzoxazole [1202], and 
chromophores on the base 6-nitrobenzothizole [787].

The neural network (NN) studies to predict impact sensitivities of various types 
of explosive molecules including nitropyrazoles, nitroimidazoles, nitrotriazoles, 
and nitrofurazans have been utilized [1426]. More than two hundred explosive 
molecules have been taken from a database archived by Storm, Stine, and Kramer 
(SSK) on the basis of experimental values of impact sensitivity for a variety of 
explosive molecules. The optimization of NN architecture has been carried out by 
examining seven different sets of molecular descriptors and varying the number of 
hidden neurons. For the optimized NN architecture, 17 molecular descriptors have 
been used. These results showed that the subsets composed of compositional and 
topological descriptors provide better results than those composed of electronic 
descriptors. Optimized NN architecture will be of great use in predicting the impact 
sensitivity of novel energetic molecules and may serve as a practical solution in 
guiding of new energetic materials in terms of safety [1426].

The stability, tautomerism, and ionization of 5-substituted 1,2,3-triazoles, 
including nitroderivatives [1427], and 5-nitro-1,2,4-triazole-3-one [1428] have 
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been studied by B3LYP (or B3PW91) calculations using the 6-31+G*, 6-311+G** 
or 6-311++G** basis sets. For all studied 1,2,3-triazoles, the most stable is the 
N2-H tautomer [1427].

The electroconductivity of alkylammonium salts of nitrobenzoxazoles [1104], 
4-hydroxy-7-nitrobenzofurazan [1235], 2-amino-6-nitrobenzothiazoles, and their 
charge transfer complexes with acceptors [1429] has been studied. The positive 
temperature coefficients of the electrical conductivity of thiazoles suggested their 
semiconducting characteristics. The correlation between the activation energies of 
the charge transfer complexes and either the electron affinities of acceptors or the 
ionization potentials of donors was not found. This can be explained by assuming 
that the geometrical and not the electronic structure of the complexes is the deter-
mining factor [1429]. The conductometry measurements of 4-oxy-5,7-dinitroben-
zofurazan and its potassium salt solutions show that it exists, mainly, in ion form, 
for example, lg K

acc
 value of the first compound is 1.33 [1230].

A comparison of inelastic neutron scattering spectrum of 3-amino-5-nitro-1,2, 
4-triazole (1200  cm−1) with B3LYP/6-311G** calculations of isolated molecule 
shows generally good frequency and intensity agreement with two notable differ-
ences in intensity [1430]. Periodic density functional theory calculations are used 
to determine whether the intermolecular hydrogen bonding is the origin of these 
differences between the B3LYP/6-311G** and neutron spectrum.

The method of atomic adsorption analysis has been proposed for quantitative 
determination of mercury in the correspondent salt of 5-nitrotetrazole [1182].

Chromatography is widely used for analysis and separation of nitroazoles. For 
example, thin-layer chromatography was used for separation of nitropyrazoles 
[1431, 1432], nitroimidazoles [1133, 1309, 1431], nitrobenzoxazole derivatives 
[1433], and 5-nitro-2,1,3-benzoselenadiazole [1434].

High-performance liquid chromatography (HPLC) has been used to analyze 
metronidazole [1435–1437], misonidazole [1309, 1438], and other nitroimidazoles 
[1435, 1439] in body fluids or pharmaceutical dosage forms. HPLC analysis of 
effect of hypoxic-cell radiosensitizer misonidazole on the radiation-induced reduction 
of DNA bases (thymine, cytosine, and adenine) has been carried out [1440, 1441]. 
HPLC was employed to characterize different nitroimidazoles [327, 366, 388, 409, 
450, 1442–1444], nitropyrazoles [246, 301], nitrothiazoles [366], 1-aryl(hetaryl)- 
4-nitro-1,2,3-triazoles [601], nitrobenzimidazoles [707], nitrobenzofurazans 
[774, 1445–1449], nitrobenzotriazoles [1450].

Flash chromatography has been applied to study the vicarious nucleophilic sub-
stitution products of nitroazoles (pyrazoles, imidazoles, indazoles, and benzimida-
zoles) [319], the thermal isomerization of the nitroisoxazoles into nitrooxazoles 
(with petroleum ether/ethyl acetate 10:1 v/v as eluent) [501, 502].

Gas chromatography was used to separate a large number of N-nitro- and 
C-nitroazoles [320, 328, 1260, 1268, 1451]. Chromatographic constants R and log 
P have been determined in series of 5-nitroimidazoles. Relationship of structure and 
activity has been analyzed [1452]. 2-Substituted 4,6-diniroanthranils on cleaning 
were isolated by chromatography using a SiO column [1453].
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The Raman spectra of insensitive energetic material 5-nitro-2,4-dihydro-1,2, 
4-triazole-3-one have been measured in a high-pressure vessel diamond anvil cell 
[174]. Raman bands show a blue shift because of the nature of the molecule packing 
as a high-pressure effect, but some particular bands exhibited a red shift, disappear-
ance, split, or slight shifting in spectra. Those red-shifting bands concerning hydrogen 
bonds, i.e., carbonyl and amino groups, are likely to work as a stabilizer against 
stimuli to the molecule or crystal. This stabilizing nature might characterize the 
insensitivity of NTO [174].

Optical methods have found a wide usage for quantitative determination of 
medical drugs, like tinidazole [1134, 1454], metronidazole [1455–1458]. In particular, 
a spectrophotometric method for the estimation of metronidazole and its benzoate 
in pure form and in pharmaceutical preparations has been used [1458]. The method 
is based on the development of a stable pink color with potassium hydroxide in 
methanol-isopropyl alcohol solution which can be quantitatively measured at 
370 nm. The authors of the work [1457] have stated that the method proposed by 
them has less error (3–4%) and is less complicated than the used before. The optical 
properties of organic luminescent microcrystals on the basis of nitrobenzofurazans 
have been studied [1459].

The results of mathematical analysis, based on the methods of the theory of 
recognition types, theory of groups, and regression analysis of benzimidazole 
derivatives with antivirus activity constructing, have showed that nitro-containing 
benzimidazoles (2- and 5(6)-nitrobenzimidazole) cannot mainly have such activity 
[1460]. The N–N bond nature in 1,2,5-trinitroimidazole and 1,2,4,5-tetranitroimi-
dazole has been examined with various levels of ab initio and density functional 
(DF) theories [1461]. According to calculations the N–N bonds of these compounds 
have a significant ionic nature, at that the 1-nitro group bears a considerable positive 
charge and has attractive electrostatic interactions with O atoms of adjacent nitro 
groups. Significantly long N–N bond lengths calculated with MP2 and DF theories 
imply a strong hyperconjugation effect, which may explain a tendency to form a 
salt in these compounds easily [1461].

Computational analysis of stacking interactions of 4-nitropyrazoles and 5-nitroimi-
dazoles [1462], theoretical studies of oxidation products of guanine – 5-guanidino-4-
nitroimidazoles [1463, 1464], 1-methyl-2-(5-amino-1,3,4-thiadiazole)-5-nitroimidazole 
(megazole) [1465, 1466], 4-amino-5-nitro-1,2,3-triazole dimers [1467], and 3-nitro-
1,2,4-triazol-5-one [1468–1471] have been studied. The structure and the design of 
megazole and its azaheterocyclic analogs were described by semiempirical calculations 
to investigate the possible pharmacophoric contribution of the 1,2,4-triazole nucleus, 
the position of the heterocyclic nucleus, and presence of the nitro group, to the activity 
against the bloodstream trypomastigote forms of Trypanosoma cruzi [1466]. The cor-
relation of some stereo electronic properties with biological activity in an attempt to 
understand the possible mechanism of action of the designed series of compounds has 
been discussed.

The acidity constants (pK
a
) of the N-H sites in 2-substituted 5(6)-nitrobenzimida-

zoles (NBI) and 5,6-dinitrobenzimidazole (DNBI) were measured by potentiometric 
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method in aqueous solution [1472] and nonaqueous solvents (acetonitrile, dimeth-
ylsulfoxide) [991, 1473] (Table 3.86).

The results of correlation pK
a
 values of 2-substituted nitrobenzimidazoles with 

the sI sR
 substituent parameters show that the contribution of the inductive effect 

is significantly prevailed (3.9) [991]:

	 = - ± s + - ± s + ±

= = =
a I RpK ( 9.95 0.98) ( 1.44 0.46) (0.60 0.13);

r 0.981,s 0.48,n 11

	 (3.9)

R = N(CH
3
)

2
, NH

2
, OCH

3
, OC

2
H

5
, CH

3
, H, Cl, COOCH

3
, COCH

3
, CF

3
, CN

The stability constants of the 1:1 complexes formed between Mg2+, Mn2+, Co2+, 
Ni2+, and Cd2+ and the anionic 5(6)-nitrobenzimidazolate or 5,6-dinitrobenzimida-
zolate were obtained by the same method in aqueous solution (25°C; I = 0.5  M, 
NaNO

3
). The electron-withdrawing properties of (N-3)-bound metal ions facilitate 

the release of the proton from the (N-1)–H site in the M(NBI)(2+) and M(DNBI)
(2+) complexes, if compared to the situation in the free ligands [1472].

Acid-base titration method was employed for quantitative determination of 
metronidazole in pharmaceutical dosage forms and compared with the other methods 
[1474].

The potentiostatic polarization method has been used to study the inhibitive 
behavior of 5-nitrobenzothiazoles on the corrosion of pure aluminum in 0.1 M HCl 
[1475]. A possible mechanism for the corrosion and inhibition processes has been 
proposed based on the obtained activation parameters.

A new capillary zone electrophoresis method has been developed and used for 
the separation of enantiomers, for example, omeprazole [1476] and nitrobenzofurazans 
[1385, 1388, 1447].

Solubility nitroazoles, a prospective medicine, plays a very important role in 
medical practice. A number of works are devoted to the problem of nitroimidazole 

R

pK
a

Acetonitrile DMSO Water

N(CH
3
)

2
23.16 – –

NH
2

22.48 – –
OCH

3
21.38 – –

OC
2
H

5
21.72 – –

CH
2
OH – 12.86 2.21

CH
3

23.40 12.77 5.16
H 23.31 11.75 3.93
CH

2
Cl – 11.36 2.21

Cl 17.40 – –
COOCH

3
20.24 – –

COCH
3

20.78 – –
CF

2
Cl – 8.97 −0.77

CF
3

17.90 8.17 −0.18
CN 16.63 – –

Table 3.86  The acidity constants (pK
a
) 

values of 2-substituted 5(6)-nitrobenz-
imidazoles .

N

N

O2N

H

R
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solubility [1135, 1477–1484]. Solubility of imidazoles decreases in the following 
row (Scheme 3.78) [1478]:

Limited solubility of nitroimidazole in water and other polar solvents can be 
explained not only by hydrophobic properties of nitroimidazole, but also with 
decreased basicity of the N-3 nitrogen atom. Hydrophobic properties of nitroimida-
zole are conditioned by the presence of the nitro group; unsubstituted imidazole is, 
as known, highly hydrophilic [1478]. Solubility of azaheterocycles in protic sol-
vents is determined much by the azagroup (=N–) and less by the – NH-group, since 
the lone electron pair increases the strength of the hydrogen bond and hence the 
N-3 atom solvation.

The solubility of metronidazole, dimetridazole, ipronidazole, tinidazole, omind-
azole, and model compounds N-alkyl-2-methyl-4-nitroimidazoles has been exam-
ined [1135, 1483, 1485, 1486]. The results show that the aqueous solubility of 
ipronidazole increases exponentially following the addition of a cosolvent [1135, 
1483, 1485]. The coefficients of distribution (log P) between water and octanole for 
the large number of nitroimidazole derivatives have been determined [1479, 1481–
1483]. Analysis of correlations between distribution coefficients and Hansch con-
stants has been carried out; the possibility of using log P for evaluating the constants 
of tautomeric equilibrium in nitroimidazoles [1479]. The solubilization of three 
commercial drugs – omindazole, metronidazole, tinidazole and model compounds 
N-alkyl-2-methyl-4-nitroitnidazoles on aggregates formed by anionic polyelectro-
lytes, carrying alkyl side chains of different length, has been investigated in aque-
ous solution at pH 3.0, 7.0, and 11.0. The results indicate that solubility of 
alkyl-nitroimidazoles on polymer micelles depends mainly on the length of the 
alkyl chain and therefore is determined by the heterocyclic group. On the other 
hand, the solubilization of 1-hexyl-2-methyl-4-nitroimidazole increases with 
decreasing length of the side alkyl chain [1486].
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Abstract  The application of C- and N-nitroazoles, many of which are well-known 
medicines, hypoxic cell radiosensitizers, explorer materials, and important build-
ing blocks in drug discovery is described. Main attention is paid to nitroimidazole 
derivatives among which are medicines with a vividly expressed therapeutical 
activity (azomycine, metronidazole, ipronidazole, carnidazole, dimetridazole, 
secnidazole and many others) and also to nitrotriazoles, nitrotetrazoles, nitroben-
zazoles, and polynitroazoles used as high-energy compounds. Nitrobenzazoles are 
often used in drug design and also in nonlinear optical materials, food additives, 
and energetic compounds. They also show versatile pharmacological activities, 
such as antifungal, antibacterial, antitumor, antihelmintic, antiallergic, antineoplactic, 
local analgesic, and spazmolytic.

Introduction

The nitro derivatives of azoles have found wide applications in different fields of 
medicine, technology, chemistry, and agriculture. Various therapeutic products 
(metronidazole, tinidazole, nitazole, azomycin, ronidazole, etc.), herbicides, pesti-
cides, and plant growth regulators have been created from them. The interest in 
nitro derivatives of azoles is rising continuously because such compounds are uti-
lized as radiosensitizers, energetic materials, powerful veterinary medicines, and 
antifog additives in film and photoindustry, and organic synthesis intermediates in 
nanochemistry.

Application of Nitroazoles
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Some data on the application of nitroazole derivatives have been mentioned in 
reviews and monographs on the chemistry of nitroazoles [1], pyrazoles [2], furox-
ans [3], benzimidazole [4], and benzotriazole [5, 6], etc. Special monographs and 
reviews have been devoted to biological and clinical application of different 
nitroimidazoles [7–23] and chemotherapy of metronidazole [24]. Therefore, it is 
not given much attention to metronidazole here.

Five-Membered Nitroazoles

Nitroimidazole derivatives possess a very broad spectrum of practical application 
in medicine [25–30]. The nitroimidazole group of drugs is remarkable in two 
respects [19]:

1.	 For its spectrum of activity against Gram-positive and Gram-negative bacteria, 
protozoa, the occasional helminth, and even hypoxic tumors.

2.	 That despite its use for 40 years, the incidence of resistance in anaerobes is still 
very low.

No other group of drugs displays this range of action both in human and veterinary 
medicine or the relative lack of resistance. These characteristics explain why 
numerous researches are devoted to such interesting molecules.

More popular drugs on the base of nitroimidazoles are presented in Table 1.
The 5-nitro derivatives of imidazole, in particular metronidazole – 1-(b-hydroxy

ethyl)-2-methyl-5-nitroimidazole, the usually used, are accepted as drugs of choice 
for the radiosensitization of hypoxic tumors and also for anti-infectious chemo-
therapy against protozoa and anaerobic bacteria. Resistance to these compounds 
has been shown in Trichomonas vaginalis and Bacteroides fragilis, in both natural 
and in vitro under drug pressure-induced populations. Other nitroimidazoles have 
been found to be mutagenic and carcinogenic [7, 8, 24].

medicines

antibiotics

antiseptics

vitamines

antipyretic

antibacterial
antimicrobial

anticancer
radiosensitizers

herbicides
pesticides
fungicides

dyes
fibers
polymers
plastificators
ionic liquids

nitroazoles
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Table 2  Utilization of misonidazole in medicine and biology

Application References

Radiosensitizing effect [31]
In the presence of chemical radioprotectors [32–43]
Hypoxic cells [32–34, 36, 37–43, 44–95]
Normal tissue [44, 52, 62, 63, 93, 95, 96–99]
Toxicity to hypoxic cells [34, 44, 47, 49–51, 53, 55, 57, 60, 66, 67, 69, 

70–76, 85, 97, 99–116]
Toxicity in vivo [48, 59, 61, 64, 71, 72, 76, 99, 101, 104, 114, 

117]a

Postirradiation synthesis DNAb [32, 41, 42, 50, 51, 57, 69, 75, 90, 99, 103, 
109, 112, 118]

Antimicrobial drug [35, 40, 51, 53, 67, 88, 101, 103, 112, 119, 
120]

Others: rat brain capillary permeability [121]
Somatosensory deficits [73]
Enhancement DNA cross-linking [122]
Activity mutagenicity [114]
Structure – activity [90, 115, 116]
Veterinary [58]
aNeurotoxicity in vitro and in vivo
bEffect on single- or double-stranded

The more popular and widespread drug after metronidazole and dimetridazole is 
misonidazole – 1-(a-methoxymethyl ethanol)-2-nitroimidazole (code name Ro-7-
0582) – trichomonicide and experimental mutagen, antineoplastic, and radiosensi-
tizer, probably due to its ability to form DNA-attacking free radical under hypoxic 
conditions. Exhibiting high electron affinity, misonidazole induces the formation of 
free radicals and depletes radioprotective thiols, thereby sensitizing hypoxic cells 
to the cytotoxic effects of ionizing radiation. These single-strand breaks in DNA 
induced by this agent result in the inhibition of DNA synthesis. The various uses 
(and references) of misonidazole are given in Table 2.

The utilization and activity (antimicrobial, antiprotozoan, antibacterial, anti-
trichomonal, etc.) of other 2-nitroimidazole derivatives and also 4- and 5-nitroimidazoles 
are summarized in Table 3. The various activities of nitropyrazoles, nitrotriazoles, 
nitrotetrazoles, and nitrothiazoles are presented in Table 4.

Nitroimidazoles possess enormous arsenal of activities, for example, against 
anaerobic bacteria, whereas aerobic and facultative bacteria are generally resistant 
to it. The 5-nitroimidazoles usually have significantly greater biological activity 
than the 4-nitro isomers. 1-Substituted 4- and 5-nitroimidazoles have been prepared 
in a variety of ways, the most common of which is by alkylation of 4(5)-nitroimi-
dazoles or nitration of alkylated imidazoles. The ultimate orientation of the nitro 
group, however, depends on a number of factors, the most important of which 
appears to be the nature of the alkylating or nitrating agent used and the reaction 
conditions employed. So, it is significant that an unambiguous method of structure 
assignment be available.
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Nitrobenzazoles

Fused nitroazoles have attracted considerable attention due to their presence in a 
number of therapeutically and biologically active compounds. Nitrobenzazoles are 
often used in drug design and also in nonlinear optical materials, food additives, 
and energetic compounds. They also show versatile pharmacological activities, 
such as antifungal, antibacterial, antitumor, antihelmintic, antiallergic, antineo-
plastic, local analgesic, spazmolytic, etc. (Table 5). Some nitrobenzimidazoles are 
relatively efficient substrates for DT-diaphorase, and this enzyme is partly respon-
sible for their cytotoxicity to bovine leukemia virus-transformed fibroblast culture 
[315].

Conclusions

Nitroazoles are compounds of very considerable commercial and chemotherapeutic 
importance. The introduction of metronidazole, dimetridazole, and their condensed 
analogs has stimulated much synthetic chemistry of nitroazoles resulting in the 
discovery of a number of compounds that are important for the treatment of differ-
ent human and/or animal diseases.

Earlier the process of new drug development involved mainly either synthesis of 
new compounds based upon the existing drugs of synthetic and natural origin or 
simple biochemical concepts. It was supported by desultory screening of novel 
chemical structures and intuition (as it is even now and will always be). The com-
pounds were basically screened directly in animal models rather than against biologi-
cal targets. In vitro tests helping the chemists to find out the biological activity were 
relatively scarce. For example, in the cases of amebic and helmintic infections micro-
biology used more in  vitro tests than in  vivo studies. The compounds chosen for 
further development underwent full biological characterization, ADME (absorption, 
drug metabolism, excretion), and toxicological studies of various durations and kinds. 
According to the results of these studies the candidate drug would undergo clinical 
trials and the successful one would eventually get marketing permission [23].

Since the 1980s global changes have taken place in the search for new drugs. 
Revolution in molecular biology, the revelation of several genomes, and the arrival 
of microarray technology have made possible the isolation of some proteins, 
enzymes, and receptors that are relevant to therapy of various diseases. Binding/
inhibition by test compounds offers a rational approach as a first step toward find-
ing the drugs for these diseases. The development of high-throughput screening 
(HTS) has made this process very rapid. Unlike the earlier days, since HTS is per-
formed in vitro, only milligram quantities of the test compounds are needed [23].

Recently a large number of papers have been devoted to the preparation of nitro-
pyrazoles [377–380], nitroimidazoles [381–388], nitroisoxazoles [389–391], 
nitrothiazoles [392], nitrotriazoles [393–396], and nitrobenzazoles [397–399] due 
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to the fact that they are important intermediate products in the synthesis of highly 
effective medical products (metronidazole, dimetridazole, sanazole, etc.). Really, as 
compared to imidazole, natural pyrazoles and other azoles are rare compounds.  
At the same time a new class of azoles – N-nitropyrazoles – possess the spazmolitic 
and antihypertension activity compared with mono- and dinitrate isosorbite, which 
is caused by the ability of N-nitropyrazoles to generate nitrogen monooxide at 
biotransformation in organisms [272, 400].

It is known that 3-nitro-1,2,4-triazolon-5 is one of the most popular and widely 
used explosive compounds. Currently, wide possibilities of the preparation of new 
high-density energetic compounds on the base nitrofurazans and nitrofuroxans 
obtained by oxidation of the corresponding aminooxadiazoles in the presence of 
mainly H

2
O

2
/H

2
SO

4
 are opened up.

The substantial progress of the pharmaceutical chemistry is due in no small way 
to the creation of new drugs containing a tetrazole ring as structural fragment. 
Tetrazoles have not been found in nature. With rare exceptions these compounds do 
not exhibit appreciable biological activity, but they are at the same time resistant to 
biological degradation. It is this property that makes it possible to use tetrazoles as 
isosteric substituents of various functional groups in the development of biologically 
active substances [401, 402]. At the present phase in the development of medicine the 
creation of novel drugs is based on study of the pathogenic aspects of diseases. The 
attention of investigators is largely attracted to the processes involved in the transfer 
of information between cells, the destruction of which in many cases gives rise to the 
development of a pathological process. A similar process can be observed in many 
fields of medical science: cardiology, immunology, endocrinology, etc. The method-
ology of the search for new methods of medical intervention is predetermined by the 
fact that intercellular communication necessarily includes the transfer of a signal by 
means of chemical compounds, for which purpose there are special receiving ele-
ments (receptors) on the recipient cells. Today most of all pharmaceutical drugs 
prescribed by doctors act by a specific “receptor” mechanism. In the search for such 
drugs investigators are turning more and more to tetrazoles, since these compounds are 
hardly affected at all as a result of the metabolic processes in the organism. This 
makes it possible to create more effective and safer products capable of reaching the 
necessary receptor without undergoing any undesirable side transformations. Finally, 
analysis of the dynamics of the development of investigations into the medical appli-
cation of tetrazoles gives grounds to suppose that considerably greater attention will 
be paid to their study in the coming decade than in previous years.
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Abbreviations

B3LYP	 Becke-3 parameter density functional theory with Lee–Yang–Parr  
	 correlation functional
BP	 Becke and Perdew–Wang functionals
CIDNP	 Chemically induced dynamic nuclear polarization
CP/MAS	 Cross polarization/magic angle spinning
DF	 Density functional
DFT	 Density functional theory
DMF	 Dimethylformamide
DMSO	 Dimethylsulfoxide
EC	 Electrochemical (oxidation, reduction)
ENDOR	 Electron-nuclear double resonance
EPR	 Electron paramagnetic resonance
ESR	 Electron spin resonance
FTIR	 Fourier transformation infrared (spectroscopy)
HEDM	 High energy density materials
HFS	 Hyperfine structure
HOMO	 Highest occupied molecular orbital
HPLC	 High-performance liquid chromatography
HTS	 High-throughput screening
IR	 Infrared
LUMO	 Lowest unoccupied molecular orbital
METRO	 Metronidazole
MP2	 Moller–Plesset second-order perturbation method
NMR	 Nuclear magnetic resonance
NOE	 Nuclear Overhauser effect
NQR	 Nuclear quadruple resonance
NTO	 3-Nitro-1,2,4-triazole-5-one
PE	 Photoelectron spectra
pK

a	
Acidity constant

pK
BH+	

Basicity constant
PM3	 Parametrized model 3
PWC	 Perdew–Wang functional
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Abbreviations

QSAR	 Quantitative structure-activity relationship
RA	 Radical anion
RDA	 Radical dianion
RDER	 Rotating disk electrode with a ring
SOPPA	 Secondary order polarization propagator approximation
TNBN	 2,4,6-Trinitrobenzonitrile
TNT	 2,4,6-Trinitrotoluene
UHF	 Unrestricted Hartree Fock
UV	 Ultraviolet
VNS	 Vicarious nucleophilic substitution
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Index

A
Anthranil. See 2,1-benzisoxazole (anthranil)
Autoprotolysis, 2
Azanidazol, 409
Azathioprine, 11, 289, 409, 413
Azomycin (2-nitroimidazole), 35, 38, 58, 164

B
Bamnidazole (in NMR), 205
Benzimidazole

1-alkyl-5-tosylamino-, 85
1-amino-, 87
2-amino-, 107, 137
2-amino-4,7-dimethoxy-, 84
2-amino-5(6)-nitro-, 107
2-arylamino-, 107
1-benzyl-2-amino-, 137
2-chloro-, 84
2-chloro-5,6-dinitro-, 84
4,5-dimethoxy-7-nitro-2-phenyl-, 104
2,5(6)-dimethyl-4(7)-nitro-, 85
4,6(5,7)-dinitro-, 85
5,6-dinitro-, 85, 178, 371, 421
5-hydroxy-, 85, 245
2-methyl-4(7)-acetylamino-, 86
2-methyl-5,6-dibromo-, 85
1-methyl-4-nitro-, 104, 245
2-methyl-5(6)-nitro-, 103, 329
2-nitro-, 137, 244, 287, 307, 323
7-nitro-, 85, 102, 104, 421
5(6)-nitro-2-cyanomethyl-, 103, 421
2-phenyl-, 87, 104, 356
2-phenyl-5(6)-nitro-, 103, 272
1-picryl-, 86
2-trifluoromethyl-, 84

Benzimidazole 3-oxide
5,7-dinitro-2-propyl-, 106

Benzimidazolone-2
5-nitro-, 87, 109

5-nitro-1-isopropenyl-, 106
Benzisoselenazole

5-nitro-, 130, 256
7-nitro-, 130, 256

1,2-Benzisothiazole
4-amino-7-nitro-, 91
4-chloro-, 91
3-chloro-4,6-dinitro-, 255
4-chloro-7-nitro-, 91
4,6-dinitro-, 120
5-hydroxy-, 91
5-hydroxy-6-bromo-4-nitro-, 91
5-hydroxy-4,6-dibromo-, 91

Benzisohiazolium chloride
2-aryl-4,6-dinitro-, 121

1,2-Benzisothiazolone-3
5-nitro-, 122, 421

2,1-Benzisothiazole (thioanthranil)
3-amino-5-nitro-, 122, 360
4-nitro-, 91
5-nitro-, 91
6-nitro-, 122
7-nitro-, 91

2,1-Benzisoxazolone-3
5-nitro-, 122

1,2-Benzisoxazole
5-nitro-, 110
6-nitro-1,2-benzisoxazole-3-carboxylic 

acid, 110
6-nitro-1,2-benzisoxazolylketone, 110

2,1-Benzisoxazole (anthranil)
4,7-dichloro-5-nitro-6-methyl-, 112
4,6-dinitro-, 111
4-nitro-, 112
6-nitro-anthranil, 110, 122, 359
6-nitro-anthranil-3-carboxylic acid, 111
(6-nitro-2,1-benzisoxazolyl-3)pyrilium 

perchlorate, 112
3-picryl-4,6-dinitro-, 112
6-tert-butyl-5-methoxy-4-nitro-, 113, 114
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Benznidazole, 409, 412
Benzofurazan. See 2,1,3-Benzoxadiazole 

(benzofurazan)
Benzofuroxan. See 2,1,3-Benzoxadiazole 

N-oxide (benzofuroxan)
Benzoselenazole

2-amino-6-nitro-, 130
2,1,3-Benzoselenodiazole

5,6-dinitro-, 93
4-nitro-, 129, 256, 363

Benzothiazole
2-amino-, 91, 123, 124
2-amino-4-nitro-, 125, 180
2-amino-5-nitro-, 125
2-amino-6-nitro-, 91, 125, 310, 370, 421
2-amino-7-nitro-, 125
2-amino-7-trifluoromethyl-5-nitro-, 125
2-aryl-4,7-dimethoxy-, 91
2,5-dimethyl-7-nitro-, 127
2-(methylamino)-6-nitro-, 126
2-methyl-6-nitro-, 123
2-(4-methylphenylsulfamoyl)-6-nitro-, 128
5-nitro-, 292, 372
6-nitro-, 91, 129, 245, 327, 422
2-(5-nitrobenzimidazolyl-2-amino)-, 108
2-propyl-5-nitro-, 127

Benzothiazole 3-oxide
2-methoxycarbonyl-5,7-dinitro-, 128

1,2,3-Benzothiadiazole
4-nitro-, 92
5-nitro-, 92, 129
6-nitro-, 129
7-nitro-, 129, 256

2,1,3-Benzothiadiazole
4,7-dibromo-, 93
5,7-dinitro-, 92
5-nitro-, 129, 273, 294, 360
7-nitro-, 92

2,1,3-Benzoxadiazole (benzofurazan)
4-amino-5,7-dinitro-, 120
4,6-dichloro-5,7-dinitro-, 140
4,6-dinitro-, 141, 252
4,7-dinitro-, 118
4-nitro-, 293, 359
5-nitro-, 117, 293
4-nitro-7-arylsulfonyl-, 119

2,1,3-Benzoxadiazole N-oxide (benzofuroxan)
4,6-dinitro-, 119, 141, 180
4-nitro-7-arylthio-, 119

Benzoxazole
2-amino-, 115, 116
2-amino-6-nitro-, 115
2-(3-cyclopentyloxy-4-methoxybenzyl)-7-

nitro-, 116, 421

5-nitro-, 110, 308, 324
7-tert-butyl-2-methyl-5-nitro-, 114
2-thiol-5-nitro-, 116, 421

Benzotriazole
1-acetyl-4-nitro-, 133
1-alkyl-5-nitro-, 133
1-amino-, 94
2-amino-, 94
1-aroyloxy-6-nitro-, 135
2-aryl-7-nitro-, 135
2-aryl-4,7-dinitro-, 135
1-chloro-, 94, 140
1-(2,4-dinitrophenyl)-5-nitro-, 94
4,6-dinitro-1-(2′,4′,6′-trinitrophenyl)-, 131
5,6-dinitro-1-(2′,4′,6′-trinitrophenyl)-, 131
1-hydroxy-, 94, 260
1-hydroxy-4,6-dinitro-, 134
1-hydroxy-6-nitro-, 134
2-methyl-, 94, 256
6(5)-methyl-5,7(4,6)-dinitro-, 93
6(5)-methyl-7(4)-nitro-, 93
1-nitro-, 95, 140
4-nitro-, 133
5(6)-nitro-, 140, 259, 292
2-(4-nitrophenyl)-, 94
6-nitro-1-picryl-, 94
2-phenyl-5-amino-6-nitro-, 135
2-phenyl-5-nitro-, 135

Benzotriazol 1-oxide
6-nitro-2-phenyl-, 134

C
Calorimetry

differential scanning (DSC), 61, 369
Carnidazole, 166, 409, 417
Chlonidazole, 409
Chromatography

flash chromatography, 370
gas chromatography, 370
high performance liquid chromatography 

(HPLC), 370
σ-Complex, 2–4, 111, 260
π-Complex, 3, 4
Conductometry, 326, 370

D
Deoxygenation, 8, 12
Desmotropy, 164, 196
Diazotiation, 35, 37, 38, 40
Dimetridazole, 8, 203, 205, 289, 340, 373, 

409, 411, 416, 423, 424
Dinitrogen trioxide, 48
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E
Electroconductivity, 309, 326, 370
Energetic material, 40, 60–62, 64, 215, 309, 

369, 371, 407
Energetic salt(s), 61, 64, 228, 304
Etanidazole, 409

F
Fexinidazole, 410, 416
Flunidazole, 205, 410
Furazan. See 2,1,3-oxadiazol (furazan)
Furoxan. See 2,1,3-oxadiazole N-oxide 

(furoxan)

G
Guanazol (3,5-dinitro-1,2,4-triazole), 38, 61, 

62, 304

I
Imidazole

N-acetyl-4,5-diphenyl-, 9
1-alkyl-, 10
2-alkyl-, 8
2-amino-, 35, 37, 38
2-benzylthio-5(4)-bromo-4(5)-methyl, 34
2-bromo-4,5-diphenylimidazole, 58
2-butyl-, 8
1,4-dinitro-, 30, 60, 61, 158
4,5-dinitro-, 11, 12, 34, 60, 61, 171, 297, 339
1,4-dinitro-2-isopropyl-, 158, 167
2,4(5)-dinitro-(2,4-dinitro-), 267
4,5-diphenyl-, 9, 58
2,5-diphenyl-4-nitroso-, 58
2-ethyl-, 8
1-hydroxy-4,5-dinitro-, 12
1-(2-hydroxy-3-methoxypropyl)-2,4-

dinitro-, 60
4(5)-hydroxymethyl-, 9
2-isopropyl-, 8
2-methyl-, 8
1-methyl-2-(2-furyl)-, 10
1-methyl-2-(2-imidazolyl)-, 10
2-methyl-4(5)-nitro-, 8, 264, 339
1-methyl-4-nitro-5-chloro-, 11, 171
1-methyl-2-(5-nitro-2-furyl)-5-nitro-, 10
1-methyl-2-(4-nitro-2-imidazolyl)-, 10
1-methyl-2-(2-thienyl)-, 10
1-methyl-2,4,5-trinitro, 60, 171
2-nitro-, 30, 35–37, 58, 164–166, 204, 206, 

264, 266, 267, 274, 282, 284, 287, 288, 
297, 314, 318, 339, 340, 412

4-nitro-5-azido-, 56
2-nitro-4,5-diphenyl-, 9, 58
2,4,5-trinitro-, 34, 60, 61, 369
1-phenyl-, 24
2-phenyl-, 8
2-propyl-, 8
1-tritylimidazole, 29
l-trityl-2-nitro-, 29

Imidazole 3-oxide
2-aryl-1-hydroxy-, 11
1-hydroxy-, 11
1-hydroxy-2-carbamoyl-, 11
1-hydroxy-2-carbamoyl-4-nitro-, 12
1-hydroxy-2-cyano-, 11
1,4,5-trimethyl-, 11

Imidazolecarboxylic acid
2-amino-4(5)-, 38
4(5)-, 9
4(5)-nitro-5(4)-, 9

Indazole
6-acetylamino-, 83
1-(4-nitrophenyl)-5-nitro-, 82
1-aryl-4,6-dinitro-, 97, 235
1,3-dimethyl-5-nitro-, 98
1,5-dinitro-1H-, 158
2-methyl-6-nitro-, 99
2-nitro-, 84, 306
2-phenyl-6-nitro-, 96
2-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-

nitro-, 100, 178
2,3,5,6-tetranitro-, 83, 229, 329
3-chloro-2-phenyl-, 83
3-chloro-5-nitro-2-(4-nitrophenyl)-, 83
3-methyl-5-nitro-1-(4-nitrophenyl)-, 101
3-methyl-7-nitro-, 83
3-trifluoromethyl-, 83
3,5,7-trinitro-, 137, 329
4-nitro-, 321
4,6-dinitro-, 99
5-nitro-, 83, 96, 100, 102, 178, 229, 329, 

421
5-nitro-3-phenyl-, 97
7-nitro-, 83, 95, 137, 321, 421
5-nitro-2-phenyl-, 83
6-nitro-, 83, 95, 96, 235, 307, 321, 329, 

350, 352, 353, 421
7-methyl-4-nitro-, 95
7-methyl-6-nitro-, 95
7-nitro-2-phenyl-, 83

Indazole N-oxide
2-acetyl-6-nitro-, 101
2-methyl-6-nitro-, 99

Ionic liquid(s), 53, 61, 81, 369
Ipronidazole, 205, 314, 373, 407, 410, 417
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Ipso-nitration, 32–35
Ipso-substitution, 7, 253
Isothiazole

3-alkyl-, 14
5-alkyl-, 14
3,5-dimethyl-, 24
3-methyl-, 24
5-methyl-, 24
4-nitro-, 45, 215, 284, 318, 345
5-nitro-, 36
3-pentafluorophenyl-5-phenyl-4-nitro-, 50
4-phenyl-, 13

Isothiazolium
2,3,5-trimethylisothiazolium ion, 24

Isoxazole
3-bromo-5-methyl-, 12
3-dichloromethyl-5-methyl-, 12
3,5-dimethyl-, 316
5,5-dimethyl-, 13
3,5-dinitro-, 47, 207
3,5-diphenyl-, 328
3,5-diphenyl-4-nitro-, 13
3-methyl-5-dichloromethyl-, 12
3-methyl-5-(2-methoxy-2-phenylethyl)-, 12
5-methyl-4-nitro-3-(1,1-dinitroethyl)-, 58
3-methyl-5-phenyl-, 13, 23
5-methyl-3-phenyl-, 13
4-nitro-, 12, 40, 43, 48, 49, 57, 289, 299, 341
3-nitro-5-phenyl-, 46
5-(4-nitrophenyl)-, 13
3-pentafluorophenyl-5-phenyl-4-nitro-, 50
3-phenyl-, 12, 13
3-phenylamino-5-phenyl-, 13
3-phenyl-4-nitro-, 12, 329

Isoxazoline
4-bromo-4-nitro-, 57
4-chloro-4-nitro-, 57
4-iodo-4-nitro- 57

Isoxazolium
2,3-dimethyl-5-phenyl-, 24
2,5-dimethyl-3-phenyl-, 24

Isoxazolone-5
4-arylhydrazono-3-methyl-, 100

K
Kinetics

hydrolysis of energetic materials, 62
nitration of azoles, 21–26

“Kyodai” nitration, 30, 95

L
Luminescence, 356

M
Megazol, 171, 289, 371
Metronidazole (1-(2-hydroxyethyl)-2-methyl-

5-nitroimidazole)
chlorometronidazole (1-(2-chloroethyl)-2-

methyl-5-nitroimidazole), 172
iodometronidazole (2-iodoethyl)-2-methyl-

5-nitroimidazole), 172
Misonidazole, 171, 266, 267, 274, 289, 298, 

340, 364, 370, 411

N
Nimorazole, 205, 410, 415
Nitazole, 410
Nitrating agent

acetylnitrate, 25, 26, 29, 34, 58, 87
“acidic” mixture, 26
nitric acid, 30
nitric acid/trifluoroacetic anhydride, 30
nitrogen dioxide (dinitrogen  

tetraoxide), 30
nitrogen tetroxide, 29, 35
nitronium tetrafluoroborate, 12, 27–29
N-nitropicolinium tetrafluoroborate, 29
sulfuric-nitric acid mixture, 5–25, 29, 30, 

32, 34, 35, 83, 87
“unacidic” mixture, 26

Nitrefazole, 410, 413
Nitrodecarboxylation, 33, 34
Nitrodeiodination, 32
Nitrogen monoxide, 26
Nitroguanidyl, 6
Nitronium cation, 2, 4
Nitronium salt, 3, 4

O
Ornidazole, 171, 266, 268, 289
1,3,4-Oxadiazole

2-dimethylamino-, 21, 215
2,1,3-Oxadiazol (furazan)

3,4-dinitro-, 62, 369
4,4′-dinitroazoxy-, 40, 58
2,1,3-Oxadiazole N-oxide (furoxan)
4-acetamido-3-(5-acetamido-4-nitro-1,2,3-

triazol-2-yl)-, 52
3-nitro-4-(4,5-dinitro-1,2,3-triazol-2-yl)-, 52

Oxazole
2-dimethylamino-4-(4-nitrophenyl)-5-

nitro-, 12
2-dimethylamino-4-phenyl-, 12
5-nitro-2-phenyl-, 12, 58, 83
2-phenyl-, 12, 29
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P
Paniazole, 410, 416
Photochemistry, 365
Photochromism, 365
Photoelectron spectra, 365
Photolysis

flash, 364
Pyrazole

1-alkyl-4-bromo-3,5-dinitro-, 7
1-alkyl-4-nitro-, 7
3(5)-amino-, 38
3-amino-4-cyano-, 38
3(5)-benzylamino-5(3)-amino-4-nitro-, 44
4-bromo-, 32, 58
3-bromo-4-phenyl-, 41
4-cloro-, 6
3,5-diamino-4-nitro-, 44
4,5-dibromo-3-methyl-, 32
1,3-dimethyl-, 23
1,4-dimethyl-, 8, 62
1,5-dimethyl-, 23
1,3-dimethyl-4-bromo-, 32
1,3-dimethyl-5-bromo-4-nitro-, 32
1,3-dimethyl-4,5-dibromo-, 32
3,5-dimethyl-4-nitro-, 32, 163, 195, 296
1-(2,6-dimethylphenyl)-, 23
1,4-dinitro-, 30, 49, 62, 63, 265, 283
3,5-dinitro-, 61, 332
3,5-diphenyl-, 26
3,5-di-tert-butyl-4-nitro-, 163
3-hydroxy-, 6
5-hydroxy-, 6
3-iodo-4-nitro-1,5-dimethyl-, 33
l,3-diphenyl-4-nitro-, 40
l-methyl-5-amino-, 38
5-methoxy-4-nitro-, 49
1-methyl-, 7, 11, 197
3(5)-methyl-, 5, 26
3-methyl-, 32, 335
4-methyl-, 334
1-methyl-4-cyano-5-nitro-, 38
1-methyl-3,4-dinitro-, 7
1-methyl-3,5-dinitro-, 8
3(5)-methyl-5(3)-(2-hydroxyphenyl)-4-

nitro-, 50
1-methyl-3-nitro-, 7, 164, 280, 282, 330
1-methyl-4-nitro-, 7, 164, 197, 274, 275, 

277, 419
1-methyl-5-nitro-, 280, 282, 334
1-methyl-3-nitro-4-(2,4,6-trinitrophenyl)-, 6
3(5)-methyl-5(3)-phenyl-, 26
1-methyl-4-(2,4,6-trinitrophenyl)-, 6
1-nitro-, 30, 157, 158, 197, 265, 281, 283, 

295, 296

3(5)-nitro-, 5, 27, 280, 311, 330
3-nitro-, 41, 42, 163, 199, 263, 295, 296, 313
3-nitro-4-cyano-, 34, 38
1-nitro-5-methyl-3-phenyl-, 26
1-(4-nitropheny)-, 23
3-nitro-4-phenyl-, 41
1-(4-nitrophenyl)-3-methyl-5-methoxy-, 23
1-(4-nitropheny)-4-nitro-, 5
3(5)-nitro-5(3)-(3-pyridyl)-, 55
4-nitro-3(5)-(3-pyridyl)-, 55
4-nitroso-, 56
4-nitro-, 5, 7, 30, 40, 42, 49–51, 56, 163, 195, 

282, 310, 313, 332, 336, 365, 367, 368
1-phenyl-, 5
3-phenylamino-5-phenyl-, 13
1-phenyl-3-methyl-5-methoxy-4-nitro-, 23
1-phenyl-3-nitro-, 23
1-phenyl-4-nitro-, 23
1-phenyl-5-nitro-, 23
1-phenyl-3,5-dimethyl-, 23
1-(2-tolyl)-, 23
1,3,5-trimethyl-, 23
3(5)-trimethylsilyl-, 5

Pyrazolecarboxylic acid
3-iodo-1,5-dimethyl-4-, 33
1-methyl-4-nitro-5-, 7

Pyrazole 1-oxide
2-benzyl-, 8
3,5-dinitro-2-(4-nitrobenzyl)-, 8
3-nitro-2-(4-nitrobenzyl)-, 8

Pyrazole 2-oxide
1-methyl-, 11

Pyrazoline
3-bromo-3-nitro-4-phenyl-, 41

Pyrazolium (salt)
1-methyl-2-(4-nitrophenyl)-, 23
1-methyl-4-nitro-2-phenyl-, 23
1-methyl-2-phenyl-, 23
1-phenyl-2-methyl-, 23
1,2,3,5-tetramethyl-, 23

Pyrazolone-5
5-amino-4-nitro-3-, 40
1-phenyl-2,3-dimethyl-4-nitro-5-, 23
1-phenyl-3-methyl-4-nitro-5-, 23

R
Raman spectra, 302, 304, 371
Ronidazole, 172, 340

S
Satranidazole, 281
Secnidazole, 340



440 Index

BookID 161900_ChapID BM1_Proof# 1 - 20/08/2009 BookID 161900_ChapID BM1_Proof# 1 - 20/08/2009

Selenazole
2-aminoaryl-4-phenyl-5-nitro-, 48
2-amino-4-methyl-, 18
2,4-dimethyl-, 17
4-methyl-, 17
2-phenylamino-4-phenyl-, 18

Solubility, 328, 372, 373
“Standardized” rate constants, 22, 23, 25
Sulnidazole, 166

T
Ternidazole, 410, 415
Tetrazole

5-amino-, 40
2-methyl-5-nitro-, 40
5-nitro-, 36, 40, 178, 305, 321, 349, 368, 370

1,3,4-Thiadiazole
2-dimethylamino-, 21
2-dimethylamino-5-nitro-, 21
2-nitramino-, 21
2-nitro-5-amino-, 21

Thermogravimetry, 61
Thiazole

2-acetamido-, 14
2-acetamido-5-methyl-, 16
2-acetamido-4-phenyl-, 16
2-amino-, 29, 91, 317
2-amino-5-nitro-, 15, 44, 56, 173, 217, 

268, 317, 345
2-amino-4-phenyl-5-benzoyl-, 17
2-amino-4-tert-butyl-, 17
2-diallylamino-, 17
2-dibutylamino-, 17
2-dimethylamino-, 17
2-morpholino-, 17
2-piperidino-, 17
2,4-dimethyl-, 22, 24
2,5-dimethyl-, 22, 24
4,5-dimethyl-, 14
4,5-dimethyl-2-nitro-, 14
2,4-dinitro-5-acetamido-, 17
2-dipropylamino-, 17
2-ethyl-5-methyl-, 22
5-acetamido-, 17
5-ethyl-2-tert-butyl-, 17
2-methoxy-, 22
2-methoxy-4-methyl-, 24
2-n-propyl-, 22
4-methyl-, 22
5-methyl-, 22
2-methyl-5-ethyl-, 22
2-methyl-5-(2-furyl)-4-nitro-, 36
2-methyl-4-nitro-, 36

2-nitro-, 36, 216, 253, 345
2-nitroamino-5-nitro-, 16
5-nitro-4-(5-nitro-2-furyl)-, 16
2-phenyl-, 29
5-phenyl-, 16
2-tert-butyl-5-methyl-, 22

Thiazolone-2
3,4-dimethyl-, 24
4-methyl-, 24

Thiazoline
2-nitroimino-3,4,5-trinitro-3H-, 16

Thiazolium
2,3,4-trimethyl-, 24
2,3,5-trimethyl-, 24

N-(2-thiazolyl)-2-aminopyridine, 16
Thioanthranil. See 2,1-Benzisothiazole 

(thioanthranil)
Tinidazole, 8, 171, 268, 269, 371, 373
1,2,3-Triazole

2-alkyl-, 302
2-(4-bromo-2-nitrophenyl)-4-nitro-, 20
2-(4-bromophenyl)-, 19
2-(2,4-dinitrophenyl)-4-nitro-, 21, 227
4-hydroxy-2-phenyl-, 20
2-methoxy-, 
2-methyl-, 19
2-methyl-4,5-dinitro-, 19, 177, 347
2-methyl-4-nitro-, 19
4-methyl-5-nitro-2-(2,4-dinitrophenyl)-, 20
4-methyl-2-phenyl-, 20
4-nitro-, 45, 53, 227, 228, 302, 319, 346
2-(4-nitrophenyl)-, 19, 318
4-nitro-5-phenyl-, 20
5-nitro-2-phenyl-, 58
2-(4-nitrophenyl)-4-nitro-, 19
2-n-propyl-, 
1-phenyl-, 19
2-phenyl-, 19, 21, 58
4-phenyl-, 19
4-picrylamino-, 20
2-(2,4,6-trinitrophenyl)-, 20

1,2,3-Triazole 1-oxide
5-bromo-2-methyl-, 21
4,5-dinitro-2-methyl-, 21
2-(2,4-dinitrophenyl)-4-nitro-, 19,  

21, 227
2-ethyl-4-ethylamine-5-nitro-, 54
5-nitro-, 53
2-phenyl-, 21

1,2,4-Triazole
2-amino-, 
4-amino-, 197, 274
3-amino-5-acetamido-, 37
3-amino-5-chloro-, 38
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5-amino-3-nitro-, 37
5-(3-azido-1,2,4-triazol-1-yl)-3-nitro-, 57
5,5′-azo-, 27
3,5-bisphenylamino-, 20
3-diazonium-5-carboxy-, 36
3-diazonium-5-methoxycarbonyl-, 36
3,5-dinitro-, 38, 61, 62, 304
1,1′-dinitro-3,3′-azo-, 27, 176

5,5′-dinitro-3,3′-azo-, 27
l-acyl-3,5-diamino-, 38
l-phenyl-5-amino-, 
2-methyl-, 
3-nitro-5-cloro-, 37
1-trimethylsilyl-, 28

1,2,4-Triazolon-5-one
3-nitro-, 20, 348\
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