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Preface

This volume contains selected and peer-reviewed papers presented during the 7th
International Workshop on Simulation, held in Rimini, May 21–25, 2013. This
international conference is devoted to statistical techniques in stochastic simulation,
data collection and analysis of scientific experiments and studies representing
broad areas of interest. Since 1994, all the previous workshops took place in
St.Petersburg (Russia). In 2013, for the first time, the conference took place in
the Rimini Campus of the University of Bologna, in Rimini (Italy). The 7th
International Workshop on Simulation was sponsored by the Unit of Rimini of the
Department of Statistical Sciences of the University of Bologna in collaboration
with the Department of Management and Engineering of the University of Padova,
the Department of Statistical Modelling of Saint Petersburg State University and
INFORMS Simulation Society. The scientific program of the meeting included
186 papers presented by a large number of scientists and experts from several
countries and scientific institutes. The scientific contributions were related to several
topics related, among the others, to the following issues: new methodologies for
clinical trials for small population groups, modelling techniques in biostatistics
and reliability, optimal fixed and random experimental sizes, experimental designs
constructed by computers, simulation-based optimal design, design in computer
and simulation experiments, mixture of distributions for longitudinal data, ran-
domization, asymptotic permutation tests in heteroscedastic designs, inference
for response-adaptive design, response adaptive randomization, optimal design
and simulations in experimental design, queueing systems modelling, stochastic
modelling in various applications, random walks and branching processes, ordered
random variables and related topics, nonstandard statistical models and their
application, special simulation problems, sequential nonparametric methods, Monte
Carlo methods for nonlinear kinetics equations, Monte Carlo methods for vector
kinetics equations, Monte Carlo methods in optical probing, numerical simulation
of random fields with applications, structural change detection and analysis of
complex data, simulations and computations for parametric goodness-of-fit tests
in reliability and survival analysis, stochastic modelling in clinical trials, design
of experiments and computing, developments in design of experiments, spatial
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minimax and discrimination designs, complexity in statistical modelling, simulation
based Bayesian estimation of latent variable models, advances in estimation of com-
plex latent variable models, copula methods and complex dependence, computer
intensive methods and simulations for the analysis of longitudinal data, topics in
multilevel models, simulation issues for modelling ordinal data, simulation tools
and methods in hospital management, design of experiments: algebra, geometry and
simulation, computer intensive techniques for time series analysis, some interesting
and diverse applications. We wish to thank all the authors, the chair and the
discussants of the sessions, the Department of Statistical Sciences of Bologna
University, the Department of Management and Engineering of Padova University,
the Department of Statistical Modelling of Saint Petersburg State University, the
INFORMS Simulation Society and the Italia Statistical Society, which scientifically
sponsored the conference, and Comune di Rimini, Provincia di Rimini, Regione
Emilia-Romagna, which sponsored the conference. We also wish to thank the
Rimini Campus of the University of Bologna, for the hospitality, the Organizing
Committee and the Scientific Committee and all the persons who contributed to the
organization of the conference, in particular Stefano Bonnini (editorial assistant for
this volume) and Mariagiulia Matteucci (for the organizing work made in Rimini).

Rimini, Italy Paola Monari
St. Petersburg, Russia V.B. Melas
Padova, Italy Luigi Salmaso
Rimini, Italy Stefania Mignani
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Chapter 1
Queueing Systems with Unreliable Servers
in a Random Environment

Larisa Afanasyeva and Elena Bashtova

1.1 Introduction

We consider a single-server queueing system with unreliable server operating in a
random environment. One would like to point out that the systems with unreliable
servers have been intensively investigated for a long time now. Corresponding
models are systems with interruptions of the service. This direction of research is
represented by a vast collection of literature. The setting of the problems and the
solutions can be found in the paper of Krishnamoorty et al. [7].

In this paper one assumes that the breakdowns of the server are connected
to a certain external factor. The external environment is a regenerative stochastic
process and the breakdowns of the server occur in accordance with the points of
regeneration of this process. The similar model was investigated in the pioneering
paper [5]. It was assumed that a breakdown can appear only if the server is occupied
by a customer. The notion of completion time, which is the generalization of the
service time was introduced. This notion made it possible to apply results for a
queueing system M jGj1j1 with a reliable server to investigate a system subjected
to interruptions, i.e. with unreliable server.

Key elements of our analysis are the coupling of renewal processes [4] based
on the structure of the random environment, construction of auxiliary processes,
and relations between their characteristics and characteristics of the basic process.
Note that more general models were investigated in [1]. All the statements of this
paper are fulfilled for the model under consideration. But here we focus on another
problems. Namely, we find the stationary distribution of the virtual waiting time
process and prove the limit theorem for this distribution in heavy traffic situation.

L. Afanasyeva • E. Bashtova (�)
Lomonosov Moscow State University, Moscow, Russia
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2 L. Afanasyeva and E. Bashtova

The paper is organized as follows. In the next section the queueing system
and the random environment are described and basic relations are established.
The ergodic condition is also given. In Sect. 1.3 Laplace–Stiltjese transform (LST)
for the stationary distribution of the virtual waiting time is obtained and heavy
traffic situation is investigated. Section 1.4 is devoted to two examples. The first
one concerns the system operating in a Markov random environment. The model
can be applied for analysis of systems with a preemptive priority discipline. The
second example arose as a mathematical model of unregulated crossroads [2, 6].
The random environment is described by the number of customers in a queueing
system with infinite number of servers.

1.2 Model Description: Basic Relations

A single-server queueing system with a Poisson input A.t/ with an intensity �
and an unreliable server is considered. In such a system the service of a customer
is subjected to interruptions that are caused by a random environment U.t/ not
depending on A.t/. It is assumed that U.t/ is a regenerative stochastic process and
fuj g1jD1 is a sequence of its regeneration periods (see, e.g., [4, 10]). Besides, we
suppose that

uj D u.1/j C u.2/j

where u.1/j and u.2/j are independent random variables and

P.u.1/j 6 x/ D 1 � e�˛x; P.u.2/j 6 x/ D G.x/:

Let us introduce the sequences

s.2/n D
nX

jD1
u.2/j ; s

.2/
0 D 0; s.1/n D s

.2/
n�1 C u.1/n ; n D 1; 2; : : :

so that

0 D s
.2/
0 < s

.1/
1 < s

.2/
1 ; : : :

and

u.1/n D s.1/n � s.2/n�1; u.2/n D s.2/n � s.1/n :

The breakdowns of the server occur at time moments s.1/n and the server is
repairing till the moments s.2/n ; n D 1; 2; : : : . We suppose that the service was
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interrupted by the breakdown of the server is continued after reconstruction from the
point at which it was interrupted. Service times f�j g1jD1 are independent identically
distributed random variables not depending on A.t/ and U.t/.

To investigate the model we employ coupling method as it was done for more
general model in [1]. Introduce the following notation

B.x/ D P.�j 6 x/;

b.s/ D
1Z

0

e�sxdB.x/; g.s/ D
1Z

0

e�sxdG.x/;

b D E�1; a D 1

˛
; g1 D Eu.2/1

and assume that b < 1 and g1 < 1.
LetW.t/ be the virtual waiting time process and q.t/ be the number of customers

in the system at a time t .

Theorem 1.1. Processes W.t/ and q.t/ are ergodic if and only if traffic coefficient

� D �.1C ˛g1/b < 1: (1.1)

This result follows from Theorem 3 in [1]. The proof is based on the following
representation that will be also applied later on.

We introduce two auxiliary processes QW .t/ and QW �.t/ by the relations

QW .t/ D W
�
t C S

.2/

N1.t/

�
; QW �.t/ D W

�
t C S

.1/

N2.t/

�
(1.2)

where

S
.i/

k D
kX

jD1
u.i/j ; Ni .t/ D supfk W S.i/k 6 tg; i D 1; 2:

We see that QW .t/. QW �.t// is obtained fromW.t/ by the deletion of time intervals
when the server is restored (is in the working state). To express W.t/ by means of
QW .t/ and QW �.t/ we define the event

Ct D
1[

nD0
ft 2 Œs.2/n ; s.1/nC1/g (1.3)

and random variables

rt D .t � SN .t//�.Ct /; r�t D .t � u.1/N.t/C1 � SN .t//�.C t /
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where

N.t/ D supfk W Sk 6 tg; Sk D S
.1/

k C S
.2/

k :

Then one can easily obtain from (1.2) and (1.3)

W.t/ D QW .rt C S
.1/

N.t//�.Ct /C QW �.r�t C S
.2/

N.t//�.C t /: (1.4)

Note that the event Ct means that the server is in the working state at a time t . Let

V.t/ D j QW .rt C S
.1/

N.t// � QW �.r�t C S
.2/

N.t//j:

It follows from Lemma 1 in [1] that for any fixed t > 0

lim
y!1P.lim sup

T!1
V.tT < y// D 1: (1.5)

This relation was employed in [1] for the proof of the ergodic theorem as well as for
the asymptotic analysis of W.t/ and q.t/ in heavy traffic situation. Functional limit
theorems for these processes were also established. All the statements from [1] are
valid for our model but here we focus on the limit distribution

˚.x/ D lim
t!1P.W.t/ 6 x/:

In view of Theorem 1.1 this distribution exists if and only if � < 1. First we obtain
the expression for

'.s/ D
1Z

0

e�sxd˚.x/

and then we investigate the behavior of the function ˚.x/ in the heavy traffic
situation (� " 1). Our proofs are based on the results for a queueing system
M jGj1j1 with a reliable server (see, e.g., [8]) and relations (1.4) and (1.5).

1.3 Limit Distribution of Virtual Waiting Time

Theorem 1.2. Let � < 1. Then the following relation takes place

'.s/ D Q'.s/
�

1

1C ˛g1
C ˛g1

1C ˛g1
v.s/

�
(1.6)
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where

Q'.s/ D .1 � �/
 
1 � .�C ˛/

1 � Qb.s/
s

!�1
; (1.7)

Qb.s/ D �

�C ˛
b.s/C ˛

�C ˛
g.�.1 � b.s///; (1.8)

v.s/ D 1 � g.�.1 � b.s///
g1�.1 � b.s// : (1.9)

Proof. Denote by

Q̊ .x/ D lim
t!1P. QW .t/ 6 x/; Q̊ �.x/ D lim

t!1P. QW �.t/ 6 x/;

where QW .t/ and QW �.t/ are defined by (1.2). Let '.s/ and Q'.s/ be LST of the
distribution functions ˚.x/ and Q̊ .x/, respectively. It follows from (1.4) that

Ee�sW.t/ D Ee�s QW .rtCS
.1/

N.t//�.Ct /C Ee�s QW
�.r�

t CS.2/N.t//�.C t /: (1.10)

Now employing (1.5) and well-known limit theorems from the renewal theory
(see, e.g., [4, 10]) one can take a limit (as t ! 1 ) in (1.10). It gives the relation

'.s/ D 1

1C ˛g1
. Q'.s/C ˛g1 Q'�.s//:

To find Q'.s/ we consider an auxiliary queueing system M jGj1 with input
intensity Q� D � C ˛ and Qb.s/, defined by (1.8), as the LST of the service time
distribution. Since

� Qb0.0/ D �b

�C ˛
.1C ˛g1/

the traffic coefficient of the system Q� D .� C ˛/.� Qb0.0// D � < 1: Therefore the
system is ergodic and LST of the limit distribution of the virtual waiting time in this
system is given by (1.7) (see, e.g., [8]).

Since the input flowA.t/ of the initial system is a Poisson process and u.1/n has an
exponential distribution with a parameter ˛ the process QW .t/ is the virtual waiting
time process in the auxiliary systemM jGj1 with input intensity �C˛. Besides, one
can easy verify that LST of the service time distribution is defined by (1.8).
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To find Q'�.s/ let us denote by � a random variable with the distribution function

g�11
xR

0

.1 � G.y//dy not depending on the sequence f�j g1jD1 as well as on input

A.t/. Then the LST of the distribution of the total service time of customers arriving
during time interval .0; �/ is given by the relation

v.s/ D Ee
�s

A.�/P
jD1

�j D 1 � g.�.1 � b.s///
g1�.1 � b.s// :

Since A.t/ is a Poisson process, then for any sequence ftng1nD1, tn !
n!11 we have

lim
n!1P. QW .tn/ 6 x/ D ˚.x/:

In view of results from the renewal theory it means that

Q'�.s/ D Q'.s/v.s/:

To describe the heavy traffic situation we introduce a family of queueing systems
fS"g with input flow A".t/ with intensity

�" D 1 � "
b.1C ˛g1/

and traffic coefficient �" D 1 � " ! 1 as " ! 0:

For a system S" we mark by " stochastic processes and functions introduced
previously. So that W".t/ is the virtual waiting time process for S" and

˚".x/ D lim
t!1P.W".t/ 6 x/:

Theorem 1.3. If b2 D E�2i < 1, g2 D E.u.2/n /2 < 1, then for any x > 0

lim
"!0.1 � ˚"."x// D e

� 2x

�2

where

�2 D b2

b
C ˛g2

.˛g1 C 1/2
: (1.11)

P roof . We apply relations (1.6–1.9) to obtain the result. First we note that

v"."s/ D 1 � g.�".1 � b."s///
g1�".1 � b."s// ! 1 as " ! 0:
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It is known (see, e.g., [3]) that for M jGj1 system there exists the limit

Q'"."s/ ! 1

1C Qb2
2Qb s

where Qb2 D Qb00.0/; Qb D � Qb0.0/. Therefore it is necessary only to find these
constants from the relation (1.8).

1.4 Examples

Example 1. Here we assume that a random environment U.t/ is an ergodic Markov
chain with the set of states f0; 1; 2; : : : g. We define the points of regenerations of
U.t/ as the instants when U.t/ gets over the state zero. Then u.1/n has an exponential
distribution with a parameter ˛ D 1=Eu.1/n . Let f�j g1jD0 be a stationary distribution
of the process U.t/. Taking into account the equality

�0 D Eu.1/n

Eu.1/n C Eu.2/n
D 1

1C ˛g1

we see that a traffic coefficient of the systemM jGj1 operating in a Markov random
environment U.t/ is of the form

� D �b

�0
:

Consider a birth and death Process U.t/. Let ˛i be an intensity of birth, ˇi be an
intensity of death in the state i (i D 0; 1; : : : ), ˇ0 D 0. Then U.t/ is ergodic Markov
chain if and only if [8]

1X

jD1

jY

iD1

˛i�1
ˇi

< 1: (1.12)

In this case

�0 D
0

@1C
1X

jD1

jY

iD1

˛i�1
ˇi

1

A
�1
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so that process W.t/ for a system operating in the random environment U.t/ is
ergodic if and only if

�b

0

@1C
1X

jD1

jY

iD1

˛i�1
ˇi

1

A < 1: (1.13)

Consider the case ˛i D ˛, ˇi D ˇ so that U.t/ is the number of customers at a
time t in a system M jM j1j1. It is well known (see, e.g., [8]) that the LST of the
distribution of the busy period is of the form

g.s/ D 2ˇ.s C ˛ C ˇ �
p
.s C ˛ C ˇ/2 � 4˛ˇ/�1: (1.14)

With the help of Theorems 1.2 and 1.3 one can find the LST of the stationary
distribution of the virtual waiting time process for a system M jGj1j1 in a random
environment U.t/ and analyze its asymptotic behavior in heavy traffic situation. It is
evident that we consider, indeed, a system with preemptive priority discipline.

Example 2. Let a random environment U.t/ be the number of customers at a time t
in a queueing system M jGj1 with a Poisson input with intensity ˛ and F.x/ as a
distribution function of service time with finite mean c. The points of regenerations
ofU.t/ are the instants whenU.t/ gets over the state zero. Then the nth regeneration
period un is of the form un D u.1/n C u.2/n . Here u.1/n has an exponential distribution
with a parameter ˛, u.2/n represents the nth busy period. Besides, u.1/n and u.2/n are
independent random variables. The LST of distribution of u.2/n is defined with the
help of the relation (see [9])

g.s/ D Ee�su
.2/
n D 1 � sˇ.s/

˛.1 � ˇ.s// (1.15)

where

ˇ.s/ D ˛

1Z

0

e
�sx�˛

xR

0

F .y/dy

F .x/dx; F .x/ D 1 � F.x/:

One can verify that

g1 D �g0.0/ D ˛�1.e˛c � 1/:

and ergodicity condition is of the form

� D �be˛c < 1:
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If the distribution F.x/ has the second moment, we may apply (1.15) to calculate
g00.0/ and describe the asymptotic behavior of the limit distribution of W.t/ with
the help of Theorem 1.3. But calculations and formulas are too cumbersome to give
them here. Therefore we consider M jDj1 with a constant service time c. Then

g.s/ D s C ˛

se.sC˛/c C ˛
:

One can easily verify that the normalizing coefficient �2 from Theorem 1.3 is given
by the equality

�2 D b2

b
C 2

˛
.e˛c � 1 � ˛c/:

This model can be applied for description of the number of vehicles at the
intersection roads. Some results in this direction were obtained in [2].

Acknowledgements The research was partially supported by RFBR grant 13-01-00653.
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Chapter 2
Sequential Combining of Expert Information
Using Mathematica

Patrizia Agati, Luisa Stracqualursi, and Paola Monari

2.1 Introduction

Knowledge-gaining and decision-making in real-world domains often require
reasoning under uncertainty. In such contexts, combining information from several,
possibly heterogeneous, sources (‘experts,’ such as numerical models, information
systems, witnesses, stakeholders, consultants) can really enhance the accuracy and
precision of the ‘final’ estimate of the unknown quantity (a risk, a probability, a
future random event, . . . ).

Bayesian paradigm offers a coherent perspective from which to address the
problem. It just suggests to regard experts’ opinions/outputs as data from an
experiment [7]: a likelihood function may be associated with them to revise the
prior knowledge. A Joint Calibration Model (JCM) makes the procedure more easier
to assess [1, 6]. In such a way, the information combining process just becomes a
knowledge updating process.

An issue strictly related to information combining is how to perform an efficient
process of sequential consulting. Investigators, indeed, often prefer to consult the
experts in successive stages rather than simultaneously: so, they avoid wasting time
(and money) by interviewing a number of experts that exceed what they need. At
each stage, the investigator can select the ‘best’ expert to be consulted and choose
whether to stop or continue the consulting.

The aim of this work is to rephrase Bayesian combining algorithm in a sequential
context and use Mathematica to implement suitable selecting and stopping rules.
The paper is organized as follows. Section 2.2 gives the notation and suggests a
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recursive algorithm for information sequential combining, while Sect. 2.3 proposes
selecting and stopping criteria for the consulting process. Mathematica 4.1
[8] was used to develop the code implemented in the notebook EXPS.nb and
showed in Sect. 2.4. Finally, Sect. 2.5 presents a case-study.

2.2 A Recursive Algorithm for Information Combining

Let’s suppose that an investigator A is uncertain about the value of a random
quantity 	 and decides to consult a number of ‘experts’ with the aim of gaining
knowledge about it. According to [7], experts’ answers can be viewed as data from
an experiment: a likelihood function may be associated with them and used to revise
a prior judgment via Bayes’ theorem. In such a way, the information combining
process just becomes an information updating process.

This general principle can be applied to the aggregation of any kind of infor-
mation, ranging from the combination of point estimates to the combination of
probability distributions, and Bayes’ rule can be implemented:

– In a ‘standard’ form, to be used when the experts’ answers are combined with
the prior all at once,

– In a recursive form, to be used when the experts are consulted sequentially and
each new answer gets to update the posterior output obtained at the previous
stage.

In the following, we rephrase Morris’ approach in a sequential context and show
both the simultaneous form and the recursive form of Bayes’ rule for combining
information from different sources.

Let’s suppose that A’s body of knowledge about 	 is represented as a (possibly
uninformative) probability density function (in the following, pdf) h0.�/ on the space
of states 
 � <. Due to efficiency reasons, he chooses to consult the experts
sequentially: at each stage k.k D 1; 2; : : : ; K/, he picks an expert Qj .j D
1; 2; : : : ; n/ from a pool of size n (n > K/. The selected expert Q�j Ik (or, more
briefly,Qk) provides subjectAwith a pdf gk .�/ on the space of states. Using Bayes’
theorem, the posterior pdf of the investigator A at stage k can be written as

hk .	 jg1; : : : ; gi ; : : : ; gk / / ` .g1; : : : ; gi ; : : : ; gk j	 / � h0 .	/ (2.1)

where ` .�/ denotes the likelihood function of 	 for the experimental data
fg1; : : : ; gi ; : : : ; gkg and the constant of proportionality is

� R


` .g1; : : : ; gi ; : : : ; gk

j	 / � h0 .	/ d	
��1

.
What makes the Bayesian approach rather difficult to apply is the assessment

of the likelihood function. If the experts’ answers are processed simultaneously,
the function to be assessed is a joint probability distribution over the whole set of
functions gi .�/, for i D 1; 2; : : : ; k; on the other hand, if the expert information
are processed recursively, the likelihood is assessed at each stage as a conditional
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probability distribution given the subset of functions gi .�/ already acquired; in both
the cases, the assessment requires to account for the different performances as well
as the dependences between experts.

Some assumptions allow to express the likelihood function in a form easier to be
modeled [7]:

i) Each gi .�/ is parameterized with a location parametermi and a shape parameter
vi . For example, gi .�/ denotes the pdf of a Gaussian random variableN.mi , vi /.
Then, Eq. (2.1) becomes

hk
�
	
ˇ̌
m.k/; v.k/

	 / `
�
m.k/

ˇ̌
ˇv.k/; 	

�
� `
�
v.k/ j	

�
� h0 .	/ (2.2)

where:

– m.k/represents the event “the location parameters supplied by the first k
experts will be m1, . . . , mi ,. . . , mk”;

– Analogously, v.k/ indicates the event “the scale parameters supplied by the
first k experts will be v1, . . . , vi ,. . . , vk”;

– Both `
�
v.k/ j	 	 and `

�
m.k/

ˇ̌
v.k/; 	

	
are likelihood functions, to be viewed

as functions of 	 . The former is the likelihood function of 	 for the data
v.k/: it is defined by the probabilities assigned by subject A to the event v.k/

for 	 varying. The latter, denoted in the following by `k .	/ for notational
convenience, is the conditioned likelihood function of 	 for the data m.k/,
given the event v.k/: it represents the joint probability—conditioned upon
the event v.k/—assigned by subject A to the event m.k/, for 	 varying;

ii) The probabilities that subject A assigns to the event v.k/ do not depend on
	 : in symbols, `

�
v.k/ j	 	 D `

�
v.k/

	 D c, where c denotes a constant of
proportionality.1 Using this assumption, Eq. (2.2) takes the form:

hk
�
	
ˇ̌
m.k/; v.k/

	 / `
�
m.k/

ˇ̌
ˇv.k/; 	

�
� h0 .	/ (2.3)

where the constant of proportionality is
�R


`
�
m.k/

ˇ̌
v.k/; 	

	 � h0 .	/d	
��1

;
iii) The conditional probabilities that subject A assigns to the event “the shape

parameter given by the kth expert will be vk ,” given m.k�1/ and v.k�1/, do
not depend on 	 : in symbols, `

�
vk
ˇ̌
m.k�1/; v.k�1/; 	

	 D `
�
vk
ˇ̌
m.k�1/; v.k�1/

	
.

If such an assumption holds, then Eq. (2.3) can be written in a recursive form as

hk
�
	
ˇ̌
m.k/; v.k/

	 / `
�
mk

ˇ̌
ˇm.k�1/; v.k/; 	

�
� hk�1 .	/ (2.4)

1Due to the reciprocity of the stochastic independence assumption ii) can be also expressed as
invariance to scale about 	 , that is h

�
	
ˇ̌
v.k/

	 D h .	/: the event v.k/ alone gives no information
regarding 	 .
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where:

– `
�
mk

ˇ̌
m.k�1/; v.k/; 	

	
is the conditioned likelihood function of 	 for the

only observation mk , given the scale parameters of the first k experts (vk
included) and the location parameters of the first k � 1 experts;

– The constant of proportionality is
�R


`
�
mk

ˇ̌
m.k�1/; v.k/; 	

	 � hk�1 .	/
��1

.

For the purpose of assessing the likelihood `k .	/ D `
�
m.k/

ˇ̌
v.k/; 	

	
in Eq. (2.3),

Morris introduced the notions of performance indicator and performance function.
The performance indicator �i associated with gi .�/ is defined as the cumulative

distribution function Gi .� jmi ; vk / evaluated at the true value 	0 of 	 :

�i D �i .mi ; vi ; 	0/ D
Z 	0

�1
gi .	 jmi ; vi / d	 D Gi .	0 jmi ; vi / (2.5)

where 0 6 �i 6 1. For example, if the observed value is the 0.3-quantile of gi .�/,
then �i D 0:3.

The performance function, denoted by '
�
�.k/

ˇ̌
v.k/; 	

	
, is defined as a condi-

tional joint density on the event �.k/ “the performance indicators for the first k
experts will be �1; : : : ; �i ; : : : ; �k ,” given v.k/ and 	 .

Given v.k/, for any fixed value of 	 , a monotonic decreasing relationship exists
between corresponding elements �i andmi . So, a change of variable allows to show
that:

`
�
m.k/

ˇ̌
ˇv.k/; 	

�
D Ck .	/ �

kY

iD1
gi .	 jmi ; vi / (2.6)

where:

Ck .	/ D '
h
ŒG .	/�

.k/
ˇ̌
ˇv.k/; 	

i
D '

�
�.k/

ˇ̌
v.k/; 	

�
(2.7)

Equation (2.6) shows that the likelihood function can be obtained as the product
of the pdfs from the experts, adjusted by a joint calibration function Ck .�/ that
models the performance of the experts and their mutual dependence in assessing 	 :
Ck .�/ is nothing but the performance function '

�
�.k/

ˇ̌
v.k/; 	

	
viewed as a function

of 	 (for fixedm.k//. It expresses the admissibility degrees assigned to each possible
	 -value regarded as the realization of the event �.k/.

By substituting (2.6) into (2.3), the posterior pdf can be written as:

hk
�
	
ˇ̌
m.k/; v.k/

	 / Ck .	/ �
kY

iD1
gi .	 jmi ; vi / � h0 .	/ (2.8)

which describes the structural form of what we call “Joint Calibration
Model”(JCM).
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It is worth noting that Eq. (2.6) can be also used to assess the likelihood function
in Eq. (2.4), since the relation `

�
mk

ˇ̌
m.k�1/v.k/; 	

	 D `k .	/=`k�1 .	/ holds.
Implementing JCM requires that function Ck .	/ is properly specified. In other

words, once the scale parameters are known to subject A, a conditional pdf
'
�
�.k/

ˇ̌
v.k/; 	

	
on the k-dimensional performance indicator variate �.k/should be

specified.
This task is less demanding if function '

�
�.k/

ˇ̌
v.k/; 	

	
can be assumed to take

the same value whatever the true value of 	 be (equivariance to shift assumption):

'
�
�.k/

ˇ̌
ˇv.k/; 	

�
D '

�
�.k/

ˇ̌
ˇv.k/

�
(2.9)

However, it still remains a frustratingly difficult task, especially in the absence of
an adequate parametric modelling, which would allow to assess the entire function
by means of a relatively small number of parameters.

There exist several suitable choices about a parametric probabilistic model for the
k-dimensional performance variate �.k/. Some preliminary remarks are necessary in
order to motivate our choice:

– According to definition (2.5), each element �i is a (cumulate) probability;
– When modelling a joint pdf '

�� ˇ̌v.k/ 	 on the variate �.k/, it needs to take into
account that “values [. . . ] near 0 or 1 will ordinarily have smaller standard
errors than those around 0.5. [. . . ] A possibility is to suppose some transform
of probability, like log-odds, has constant variance” [4];

– Log-odds lie in the range �1 to C1: probabilities that are less, equal or
greater than 0.5 correspond to negative, zero, or positive log-odds, respectively.
Therefore, modelling the performance function in terms of log-odds, instead of
probabilities, is advantageous also because the range of log-odds is coherent with
a Gaussian distribution, which is attractive for its good analytic properties and the
clear interpretation of its parameters.

For these reasons, a reasonable choice is to assume:

Q�.k/ � Nk

�
Qt .k/; S

�
(2.10)

where

– Q�.k/ refers to the k-dimensional vector of log-odds Œ Q�i �0iD1;:::;k , with Q�i D
ln Œ�i = .1 � �i /� 2 < for i = 1, 2, . . . , k;

– Qt .k/and S denote the mean vector and the covariance matrix of the k-variate
Gaussian distribution, respectively.

The analytical form of function '
�
�.k/

ˇ̌
v.k/

	
can be obtained by using a change

of variable from Q�.k/ to �.k/. Denoting by  
�� ˇ̌v.k/ 	 the model in (2.10), the well-

known change formula yields:

'
�
�.k/

ˇ̌
ˇv.k/

�
D jJQ�.k/!�.k/ j �  �.k/

�
�.k/

ˇ̌
ˇv.k/

�
(2.11)
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As the Jacobian of the transformation Q�.k/ ! �.k/ is:

JQ�.k/!�.k/ D
kY

iD1

1

�i .1 � �i / (2.12)

the resulting performance function of the variate �.k/ is:

'
�
�.k/

ˇ̌
ˇv.k/

�
D c �

kY

iD1

1

�i .1 � �i / � exp



�1

2

�
Q�.k/ � Qt .k/

�0
S�1

�
Q�.k/ � Qt .k/

��

(2.13)
where c denotes the normalization constant.
Finally, the calibration function Ck .	/, defined in (2.7), can be obtained as

follows. Definition (2.5) implies that:

Q�.k/ D � QG .	/�.k/ (2.14)

By substituting Eq. (2.14) in (2.13), Ck .	/ takes the form:

Ck .	/ D '
�
ŒG .	/�

.k/
ˇ̌
ˇv.k/

�

D c �
kY

iD1

1

Gi .	/ � Œ1 �Gi .	/� � exp

�
�1
2

n� QG .	/�.k/ � Qt .k/
o0

S�1
n� QG .	/�.k/ � Qt .k/

o 
(2.15)

It’s worth noting that the calibration function, as expressed by (2.15), is
univocally defined by two parameters only: the mean vector and the covariance
matrix of the variate Q�.k/.

2.3 Selecting and Stopping Rules

In designing and performing the sequential process, the purpose of expert consulting
is reducing the uncertainty about the unknown quantity 	 . So, it is reasonable
to found the selecting and stopping rules on some criterion of informativeness.
More precisely, though no single number can convey the amount of information
carried by a density function, a synthetic measure of the (expected) additional
informative value of a not-yet-consulted expert Qj Ik is indispensable for selecting
the one to be consulted at stage k, especially when the assessment of the calibration
parameters, together with the shape parameters provided by the experts, leads to
not-coinciding preference orderings. And, analogously, as likelihood functions and



2 Sequential Combining of Expert Information Using Mathematica 17

Fig. 2.1 Flow-chart of the sequential procedure with stopping rule based on the expected KL-
divergences between contiguous stages

posterior densities can display a wide variety of form, a synthetic measure of the
knowledge level achieved about 	 is needed for picking out the ‘optilmal’ stage k�
at which data acquiring can be stopped.

Let’s suppose the investigator A is performing the process of revising beliefs
in light of new data according to the algorithm described in Sect. 2.2. The prior
h0 .	/ has already been specified; each expert Qj in the pool of size n has
revealed the variance vj—assumed as uninformative about 	 : see assumption ii)
in Sect. 2.2—of his own density gj .	/, and A has already consulted k � 1 of them,
so obtaining the locations of k�1 expert densities:A is now at stage k of the process
(Figs. 2.1 and 2.2), and must select one among the experts Qj Ik not yet consulted
(j D 1; 2; : : : ; n � k C 1).

For each Qj Ik , the investigator A assesses—conditionally on vj , on the basis
of the information at his disposal (including all the expert locations mi revealed
up to stage k � 1)—the parameters of the k-stage calibration function Cj Ik .	/:
that is, tj , sjj and the covariances sj i (or the linear correlations rj i ) between Qj Ik
and each expert Qi already consulted, i D 1; 2; : : : ; k � 1. At this point of the
procedure, noQj Ik has revealed the location valuemj of his own gj .	/: the several
‘answers’ mj which each expert can virtually give are not all equally informative,
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Fig. 2.2 Flow-chart of the sequential procedure with stopping rule based on the observed
curvature Ik.	/ of the log-likelihood valued at 	 WD 	max

so the (informative) value of each expert at stage k—to be measured with regard
to A’s current knowledge2 of 	 expressed by the posterior density hk�1 .	/ of the
previous stage—is an expected value, computed by averaging a suitable measure of
relevant information about 	 in Qj Ik’s answer over the space Mj of the virtually
possible mj values.

By reasoning in a mere knowledge context, which is an inductive context, where
an expert opinion is more relevant the more it is able to modify the posterior
distribution on the unknown quantity, a suitable measure ofQj Ik’s informative value
can be the expected Kullback–Leibler divergence of the density hj Ik .	/with respect
to the posterior hk�1 .	/ obtained at the previous stage,

E
�
KL

�
hj Ik; hk�1

	� WD
Z

Mj

f
�
mj Ikjvj Ik;m.k�1/; v.k�1/

�
�KL �hj Ik; hk�1

	
dmj

(2.16)

2In fact, all the other elements being equal, the more A is uncertain about 	 , the more an answer
mj is worthy.
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where the KL-divergence [3],

KL
�
hj Ik; hk�1

	 WD
Z




hj Ik .	/ � ln
�
hj Ik .	/ =hk�1 .	/

�
d	 (2.17)

measures indirectly the information provided by an answer mj Ik in terms of the
changes it yields on the density hk�1 .	/. The conditional density f .�/ in (2.16) is
equal to the reciprocal of the constant of proportionality of Eq. (2.4), regarded as a
function of mj Ik and normalized; when assumptions i), ii), and iii) hold, it can be
determined as

f
�
mj Ikjvj Ik;m.k�1/; v.k�1/

�
D f

�
m.j Ik/j; v.j Ik/

�
=f
�
m.k�1/jv.k�1/

�
(2.18)

where the density f
�
m.j Ik/j; v.j Ik/	, and analogously f

�
m.k�1/jv.k�1/	, is equal,

up to the normalization term, to the reciprocal
R


`
�
m.k/jv.k/; 		 � h0 .	/ d	 of the

constant of proportionality of Eq. (2.2), regarded as a function of m.k/.
The expertQ�j Ik characterized by the greatest expected KL-divergence is, at stage

k, the most informative: but is he an expert worth consulting? The answer is yes, if
the information he provides is, on average, enough different from what A already
knows about 	 , i.e. if the expected divergence of hj�Ik .	/with respect to hk�1 .	/ is
not less than a preset threshold ı.0 6 ı < 1/. About the choice of the threshold ı, a
very useful tool is the scheme proposed by McCulloch [5], who suggested to connect
any value ı of a KL-divergence to the KL-divergence of a Bernoulli distribution with

p D 0:5 from a Bernoulli with p D b.ı/ D 1Cp1�e�2ı

2
. Table 2.1 shows a range of

correspondences.
So the selecting rule can be expressed as follows. Consult the expert Q�j Ik such

that

E
�
KL

�
hj�Ik; hk�1

	�
> E

�
KL

�
hj Ik; hk�1

	�
j ¤ j � (2.19)

on condition that

E
�
KL

�
hj�Ik; hk�1

	�
> ı (2.20)

If Q�j Ik does not satisfy (2.20), then proceed to a second order analysis: that is,

consult the pair
�
Qj Ik;QuIk

	�
presenting the greatest expected KL-divergence,

provided that it is E
�
KL

�
h.j;u/�Ik; hk�1

	�
> ı.

Table 2.1 Large or small KL-divergences? Relation between ı and b.ı/ values

ı 0 0.0001 0.001 0.005 0.010 0.020 0.050 0.090 0.10 0.14

b.ı/ 0.50 0.51 0.52 0.55 0.57 0.60 0.65 0.70 0.71 0.75

ı 0.22 0.34 0.51 0.83 1 2 > 3

b.ı/ 0.80 0.85 0.90 0.95 0.96 0.99 �1.00
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Otherwise contact a new set of experts and perform a new process by using the
posterior hk�1 .	/ as a new prior h

0

0 .	/ :

The expert Q�j Ik satisfying both the Eqs. (2.19) and (2.20) becomes just Qk , the
“k-stage expert.” By consulting him, A learns the location mk of the density gk .�/:
now, the k-stage calibration functionCk .	/ is univocally defined, and consequently,
the likelihood function `k .	/ and the posterior density hk .	/ too.

It is intuitive, as well as reasonable, that the investigator stops the process only
when the knowledge about 	 , expressed by the posterior density, is ‘inertially
stable’: i.e., only when additional experts, even if jointly considered, are not able
to modify the synthesis distribution appreciably, on the contrary they contribute to
its inertiality. So, the stopping rule can be defined as follows. Stop the consulting
process at stage k� at which none of the remaining experts satisfies condition (2.20).

If too many experts are needed for realizing such a stopping condition, it can be
weakened by just requiring the knowledge about 	 deriving from expert answers
to be enough for A’s purposes. A measure of the experimental data strength in
determining a preference ordering among ‘infinitesimally close’ values of 	 is
Fisher’s notion of information. The value of the observed informationI .�/ at the
maximum of the log-likelihood function

Ik .	max/ WD �@2=@	2 ln `k .	max/ (2.21)

is a second-order estimate of the spherical curvature of the function at its maximum:
within a second-order approximation, it corresponds to the KL-divergence between
two distributions that belong to the same parametric family and differ infinitesimally
over the parameter space.

So, an alternative stopping rule can be defined as follows. Stop the consulting
at stage k* at which a preset observed curvature � of the log-likelihood valued at
	 WD 	max has been achieved,

Ik� .	max/ > � (2.22)

In order to decide whether a curvature value I .	max/ D � is a large or a
small one, a device could be the following. Let’s think of a binomial experiment
where a number x D n=2 of successes is observed in n trials and find x such that
I . OpML D 0:5/ D �, where OpML D 0:5 is the maximum likelihood estimate of the
binomial parameter p. Table 2.2 shows a range of x values with the corresponding
curvature values. The simple relation x D �=8 holds: so, for example, if � D 120,
the width of the curve ln `k .	/ near 	 WD 	max is the same as the curve ln ` .p/ at
OpML D 0:5 when x D 15 and n D 30.

Table 2.2 Large or small
curvature values? Relation
between x and � values

x 1 2 5 10 15 20 25 30 40 50

� 8 16 40 80 120 160 200 240 320 400
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2.4 Selecting and Stopping Rules Implemented:
A Mathematica Code

The procedure implemented in the notebook file EXPS.nb allows to select the
‘best’ expert to consult at each stage of a sequential process and decide the ‘best’
stage at which the process can be stopped. The program computes the expected KL-
divergencies between posterior densities at two contiguous stages, for any number
of experts: it uses condition (2.20) as stop criterion.

The choice of Mathematica package is due to complexity and accuracy
necessary in this recursive procedure [2]. The code begins by importing package
Statistics ‘NormalDistribution’ and opening declarations.

<<Statistics`NormalDistribution`;
PDF[NormalDistribution[mu_,sigma_],x_]:=1/(sigma*Sqrt[2 Pi])

Exp[-((x-mu)/sigma)2/2];
CDF[NormalDistribution[mu_,sigma_],x_]:=(Erf[(x-mu)/(Sqrt[2]sigma)]

+1)/2;

The program needs the following input quantities:

– ‘Initialdata’: it is the matrix which contains the mean mj , the variance vj , the
calibration parameters tj and s2j of each expert Qj (j D 1; : : : ; n);

– ‘R’: it is the correlation matrix. Its elements are the calibration parameters rj i ,
denoting the correlation degree between the performances of the experts Qi and
Qj ;

– ‘delta’: it is the threshold for the Kullback–Leibler divergence;
– ‘v0, m0’: they are the variance and the mean of the prior h0.	/;
– ‘mmin, mmax’: they are the lower and the upper limits for the unknown 	 ;
– ‘stagemax’: it is the size n of the pool of experts.

The code restores the input matrices: the process starts out.

numexpert=Dimensions[Initialdata][[2]];
expert=Table[k,{k,numexpert}];
Matdata=Transpose[Join[{exp,m,v,t,s2},

Transpose[Join[{expert},Initialdata]]]];
{rin,sin}=Dimensions[Matdata];
M=Initialdata[[1]];V=Initialdata[[2]];
T=Initialdata[[3]];S=Initialdata[[4]];
Cova=Table[Sqrt[S[[i]]*S[[j]]]*R[[i,j]],{i,numexpert},{j,numexpert}];

nextmax=Table[0,{i,stagemax}];
next[n_]:=Table[nextmax[[j]],{j,n-1}];
nextadd[n_,k_]:=Join[next[n],{k}];
mattV[n_]:=Table[V[[nextadd[n,k]]],{k,numexpert}];
mattT[n_]:=Table[T[[nextincr[n,k]]],{k,numexpert}];
mattM[n_]:=Table[M[[nextadd[n,k]]],{k,numexpert}];
mattS[n_]:=Table[S[[nextadd[n,k]]],{k,numexpert}];
mattCova[n_]:=Table[Cova[[nextadd[n,k],nextadd[n,k]]],{k,numexpert}];
Covamin[n_]:=Table[Cova[[next[n],next[n]]]];
nextH=Table[0,{i,stagemax}];
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g[x_,i_]:=PDF[NormalDistribution[0,Sqrt[mattV[n][[k]][[i]]]],x]
G[x_,i_]:=CDF[NormalDistribution[0,Sqrt[mattV[n][[k]][[i]]]],x]
g0[x_]:=PDF[NormalDistribution[m0,Sqrt[v0]],x]

MatrixForm[Matdata]
MatrixForm[R]

The code calculates the expected KL-divergences at stage 1 and put them in a vector.

Expect1:=(n=1; Print["Stage K ="," " , ];
Kull=Table[0,{k,numexpert}];
For[k=1,k<=numexpert,k++,Kull[[k]]=

NIntegrate[(F1[m]-H1[m]*Log[H1[m]])/K1[m],{m,-5,8}]/
NIntegrate[H1[m]/K1[m],{m,-5,8}];
Print[Kull[[k]] ];
];

MatKull=Join[Matdata,{Join[{K},Kull]}];
max=Position[Kull,Max[Kull]][[1,1]];k=max;H11=H1[M[[max]]];
nextmax[[1]]=max;nextH[[1]]=H11;
Return[MatrixForm[MatKull]]
)

likelihood1[x_,m_]:=Block[{G1x,g0x,B1x,cx,gaux,factx},
G1x=CDF[NormalDistribution[0,Sqrt[V[[k]]]],x];
g0x=PDF[NormalDistribution[m0,Sqrt[v0]],x];
B1x=(G1x+10^-20)/(1-G1x+10^-20)*(1-T[[k]])/T[[k]];
cx=Log[B1x];
gaux=Exp[-1/2*(1/S[[k]]*cx\ 2+1/V[[k]]*x\ 2)];
factx=1/(( G1x+10^-20)(1-G1x+10^-20));
likeK1=gaux*factx;
likeH1=likeK1*g0x*Exp[-1/2*m\ 2*1/v0-((x-m0)/v0)*m];
likeF1=likeH1*Log[likeK1];
Return[{likeK1,likeH1,likeF1}]
]

K1[m_]:=NIntegrate[likelihood1[x,m][[1]],{x,mmin-m,mmax-m}]
H1[m_]:=NIntegrate[likelihood1[x,m][[2]],{x,mmin-m,mmax-m}]
F1[m_]:=NIntegrate[likelihood1[x,m][[3]],{x,mmin-m,mmax-m}]

The code computes the expected KL-divergences at a generic stage and put them in
a vector.

ExpectKull[stage_]:=(n=Rationalize[stage];Print["Stage K ="," " , n];
row=Dimensions[MatKull][[1]];
If[rin+n-row>1,Print["former stage not perfoms"];
Break[]];
rownum=Delete[MatKull[[row]],1];
max=Position[rownum,Max[rownum]][[1,1]];

If[n==2,Hprec=H11,k=max;n=n-1;
matrainv=Inverse[mattCova[n][[k]] ];
Cov=Inverse[Covamin[n]];
Hprec=H[M[[max]],n] ;
nextmax[[n]]=max;nextH[[n]]=Hprec;n=n+1
];

kullback=Table[0,{k,numexpert}];
For[k=1,k<=numexpert,k++,

If[Abs[Det[mattCova[n][[k]]]]>10^-6,
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matrainv=Inverse[mattCova[n][[k]]];
Cov=Inverse[Covamin[n]];
den=NIntegrate[H[m,n]/K[m,n],{\{}m,-5,8{\}}];
num=NIntegrate[F[m,n]*H[m,n]/K[m,n],

{\{}m,-5,8{\}}];
kullback[[k]]=num/den;
];

Print[ kullback[[k]]]
];

MatKull=Join[MatKull,{Join[{K},kullback]}];
Return[MatrixForm[MatKull]]
)

likelihood[x_,m_,stage_]:=(
vetG=Join[Table[G[x+m-mattM[n][[k]][[i]],i],{i,n-1}],{G[x,n]}];
vetg=Join[Table[g[x-mattM[n][[k]][[i]],i],{i,n-1}],{g[x,n]}];
vetB=Table[(vetG[[i]]+10^-20)/(1-vetG[[i]]+10^-20)*

(1-mattT[n][[k]][[i]])/mattT[n][[k]][[i]],{i,n}];
vetC=Log[vetB];
form=-1/2*vetC.matrainv.vetC;
expo=form-Sum[(m^2/2*1/mattV[n][[k]][[i]]+

m*(x-mattM[n][[k]][[i]])/mattV[n][[k]][[i]]),{i,n-1}];
fact=Product[vetg[[i]]/((vetG[[i]]+10^-20)*

(1-vetG[[i]]+10^-20)),{i,n}];
likelihoodK=Exp[expo]*fact;
likelihoodH=likelihoodK*Exp[-1/2*m^2*1/v0-m*(x-m0)/v0]*g0[x];
vetridC=Delete[vetC,n];
expogam=form+1/2*vetridC.Cov.vetridC;
Gam=vetg[[n]]/((vetG[[n]]+10^-20)*(1-vetG[[n]]+10^-20))*

Exp[expogam];
Return[{likelihoodK,likelihoodH,Gam}]
)

H[m_,n_]:=NIntegrate[likelihood[x,m,n][[2]],{x,mmin-m,mmax-m}]
K[m_,n_]:=NIntegrate[likelihood[x,m,n][[1]],{x,mmin-m,mmax-m}]
F[m_,n_]:=(Hm=H[m,n];Fstage=1/Hm*NIntegrate[

likelihood[x,m,n][[2]]*Log[likelihood[x,m,n][[3]]],{x,mmin-m,
mmax-m}]-Log[Hm/nextH[[n-1]] ]; Return[Fstage]
)

Kullmax[stages_] := (Expect1;
maxim = {Position[Kull, Max[Kull]][[1, 1]], Max[Kull]};

MaxKull = maxim;
Print["Kmax :", maxim];
For[n = 2, n <= stages, n++, ExpectKull[n] ;

maxim={Position[kullback,Max[kullback]][[1, 1]],Max[kullback]};
Print["delta value: ", delta]; Print["Kmax ", maxim];

If[maxim[[2]] < delta, Break[], MaxKull = maxim];
]; jump = n - 1;
Return[{MatrixForm[MatKull], jump, MaxKull}]

)
Kullmax[stagemax]

Finally, the output shows:

– The expected KL-divergences of each density hj Ik .	/ from the posterior
hk�1 .	/ obtained at the previous stage;
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– The label j of the expert that satisfies the selecting criterion;
– A matrix containing the input data, KL-divergences at each stage, the number of

experts to consult, and the label of the last expert to consult together with the
corresponding expected KL divergence.

2.5 A Case-Study

The behavior of the algorithms and rules proposed in the previous sections,
and implemented in Mathematica, has been investigated in simulation and
experimental studies. Here the results from medical data are synthetically presented
to exemplify how the selecting and stopping rules work.

An orthopedistA is uncertain about the long-term failure log-odds 	 of a new hip
prosthesis. Therefore, he decides to consult a number K of colleagues, sequentially
selected from a pool of size n D 7. He learns the variance vj from each orthopedist
Qj (j D 1; Ě; n) and assesses all the calibration parameters, without modifying
them in proceeding from a stage to the successive one: these data are shown in
Table 2.3. Subject A has also (subjectively) assessed m0 D �1, v0 D 1, and
set the threshold ı D 0:035: the choice of this value means that, at stage k, the
most informative expert Q�j Ik will be consulted only if the expected KL-divergence
of hj�Ik .	/ with respect to hk�1 .	/ will be no less than the KL-divergence of
a Bernoulli distribution B.p/ with p D 0:5 from a Bernoulli distribution with
p D 0:63; or, in other words, only if stopping the process at stage k � 1 instead
of proceeding to stage k involves, on average, an information loss larger than that
one yielded by using a B.0:63/ instead of a B.0:5/.

Conditions i), ii), and iii) in Sect. 2.2 are assumed to be satisfied, so that the
combining algorithm outlined in Sect. 2.2 can be fairly applied. In fact: i) as
confirmed by experts, it rests on empirical evidence that the failure logodds 	 can
be supposed as Gaussian; ii) it is reasonable to think the probability the orthopedist
A assigns to the event v.k/ is the same for all 	 values: the surgeons’ variances
alone give no information able to change the subject A’s beliefs about 	 ; iii) it is
reasonable as well to assume the conditional probability A assigns to the event “the

Table 2.3 Initial data for the case-study

Qj vj tj sjj rj1 rj2 rj3 rj4 rj5 rj6 rj7

Q1 0.90 0.35 3.93 1

Q2 0.40 0.60 4.86 C0.20 1

Q3 2.00 0.42 1.80 �0:1 �0:60 1

Q4 2.25 0.54 1.11 0 C0.30 0 1

Q5 1.80 0.50 1.31 0 C0.10 0 0 1

Q6 2.92 0.75 3.81 0 C0.20 �0:10 0 0 1

Q7 2.35 0.60 4.53 C0.20 0 �0:60 C0.30 C0.10 0 1
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expert Qj Ik will give the variance vk ,” given the values of the shape and location
parameters provided by the k � 1 experts previously consulted, is the same for all 	
values. In order to perform an efficient sequential consulting, input data are entered
into Mathematica notebook EXPS.nb:

Initialdata={{-2, -0.8, -1, -1.5, -1.3, -1.4, -1.35},
{0.9, 0.4, 2, 2.25, 1.8, 2.92, 2.35},
{0.35, 0.6, 0.42, 0.54, 0.5, 0.75, 0.6},
{3.93, 4.86, 1.80, 1.11, 1.31, 3.81, 4.53}};

R={{1, 0.2, -0.1, 0, 0, 0, 0.2},{0.2, 1, -0.6, 0.3, 0.1,
0.2, 0},{-0.1, -0.6, 1, 0, 0, -0.1, -0.6},{0, 0.3, 0,
1, 0, 0, 0.3},{0, 0.1, 0, 0, 1, 0, 0.1},{0, 0.2, -0.1,
0, 0, 1, 0},{0.2, 0, -0.6, 0.3, 0.1, 0, 1}};

delta=0.035; v0=1; m0=-1;
mmin=-8; mmax=11; stagemax=7;

Mathematica output is the following:

Stage k = 1 Stage k = 2 Stage k = 3 Stage k = 4
0.340594 1.36673 1.57449 1.70397
0.519248 0 0 0
0.299469 1.65218 0 0
0.373058 1.37703 1.27123 1.40743
0.394185 1.47585 1.63163 0
0.102336 0.80258 0.42429 0.45441
0.121147 0.90094 1.56959 1.75234
Kmax:{2,0.5192} delta value:0.035 delta value:0.035 delta value:0.035

Kmax:{3,1.65218} Kmax:{5, 1.63163} Kmax:{7, 1.75234}

Stage k = 5 Stage k = 6 Stage k = 7
2.14744 2.17423 0
0 0 0
0 0 0
2.62677 0 0
0 0 0
0.310055 0.0533287 0.034978
0 0 0
delta value:0.035 delta value:0.035 delta value:0.035
Kmax:{4,2.62677} Kmax:{1, 2.17267} Kmax:{6, 0.034978}

The output shows that, at stage k D 1, expert Q2 is selected, due to an expected
KL-divergence equal to 0:519248. At stage k D 2, the maximum expected KL-
divergence corresponds to expert Q3, characterized by a high negative correlation
with Q2.r D �0:60/ together with a low bias (t D 0:42 Š 0:5). Expert Q5 is,
on average, the most informative at stage k D 3, and so on. At stage k D 7,
the expected KL-divergence for the last expert, Q6, is 0:034978, that is less than
the threshold ı: since Q6 does not involve a knowledge expected gaining judged
as relevant, subject A will not consult him. So, as the output matrix shows too,
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the sequential consulting stops at stage k D 6: the last expert who enters into the
process is Q1, with an expected KL-divergence equal to 0:0533287.

0

BBBBBBBBBBBBBBBBBBBBB@

exp 1 2 3 4 5 6 7

m �2 �0:8 �1 �1:5 �1:3 �1:4 �1:35
v 0:9 0:4 2 2:25 1:8 2:92 2:35

t 0:35 0:6 0:42 0:54 0:5 0:75 0:6

s2 3:93 4:86 1:80 1:10 1:31 3:81 4:53

K 0:34059 0:51925 0:29947 0:37306 0:39419 0:10234 0:12115

K 1:36673 0 1:65218 1:37703 1:47585 0:80258 0:90094

K 1:57449 0 0 1:27123 1:63163 0:42429 1:56959

K 1:70397 0 0 1:40743 0 0:45441 1:75234

K 2:14744 0 0 2:62677 0 0:310155 0

K 2:17423 0 0 0 0 0:053329 0

K 0 0 0 0 0 0:034978 0

1

CCCCCCCCCCCCCCCCCCCCCA

; 6; f1; 2:17267g

Table 2.4 shows the expected KL-divergences for each expert at each stage (the
maximum expected KL-divergence is displayed in bold), as well as the location
parameters supplied by the selected experts. Posterior distributions from stage 0
(the prior) to stage 6 are shown in Fig. 2.3. The ‘final’ pdf on the unknown log-odds
	 has mean, median, and mode equal to �0:826 and standard deviation equal to
0.202: it can be regarded as the synthesis representation of the expert knowledge
about the long-term failure log-odds of the new hip prostheses.

The behavior of the proposed rules and algorithms in the case-study appears to
be coherent with the intuition and gives an empirical support about the efficiency of
the selecting and stopping criteria.

Table 2.4 Results of the sequential process

Stage Stage Stage Stage Stage Stage

k D 1 k D 2 k D 3 k D 4 k D 5 k D 6

Qj E
�
KL

�
hj I1; h0

	�
. . . . . . . . . . . . E

�
KL

�
hj I6; h5

	�

Q1 0.34059 1.36673 1.57449 1.70397 2.14744 2.17423
Q2 0.51925 � � � � �
Q3 0.29947 1.65218 � � � �
Q4 0.37306 1.37703 1.27123 1.40743 2.62677 �
Q5 0.39419 1.47585 1.63163 � � �
Q6 0.10234 0.80258 0.42429 0.45441 0.310155 0.053329

Q7 0.12115 0.90094 0.56959 1.75234 � �
# # # # # #

Q�

j Ik Q2 Q3 Q5 Q7 Q4 Q1

mk �0:8 �1 �1:3 �1:35 �1:5 �2
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Fig. 2.3 Posterior distributions at stages 0 (i.e., the prior), 1, 2,. . . ,6 of the sequential procedure
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Chapter 3
Markov-Modulated Samples
and Their Applications

Alexander Andronov

3.1 Problem Setting

The classical sample theory supposes that sample elements are identically
distributed and independent (i.i.d.) random variables. Lately a great attention has
been granted to dependence in probabilistic structures, for example, dependence
between interarrival times of various flows, between service times, etc. Usually it
is described by the so-called Markov-modulated processes. They are used widely
in environmental, medical, industrial, and sociological researches. We restrict
ourselves by a case when elements of the sample are positive random variables. It
is convenient to consider them as lifetimes of unreliable elements.

Let us consider sample elements fXi ; i D 1; : : : ; ng, modulated by a finite
continuous-time Markov chain (see [6]). For simplicity we say that the elements
operate in the so-called random environment. The last is described by an “external”
continuous-time ergodic Markov chain J.t/; t > 0, with a final state space E D
f1; 2; : : : ; kg. Let �i;j be the transition rate from state i to state j .

Additionally, n binary identical elements are considered. Each component can be
in two states: up(1) and down(0). The elements of system fail one by one, in random
order. For a fixed state i 2 E, all n elements have the same failure rate �i .t/ and
are stochastically independent. When the external process changes its state from
i to j at some random instant t , all elements, which are alive at time t , continue
their life with new failure rate �j .t/. If on interval .t0; t/ the random environment
has state i 2 E, then the residual lifetime �r � t0 (up-state) of the r th component,
r D 1; 2; : : : ; n, has a cumulative distribution function (CDF) with failure rate �i .t/
for time moment t , and the variables f�r � t0; r D 1; 2; : : : ; ng are independent.
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We wish to get statistical estimates for the unknown parameters ˇ.i/ D .ˇ1;i ; ˇ2;i ;

: : : ; ˇm;i /
T , i D 1; : : : ; k. Note that in the above described process elements of the

sample fXi ; i D 1; : : : ; ng are no i.i.d. anymore, as it is assumed in the classical
sampling theory.

Further we make the following suppositions. Firstly, parameters of the Markov-
modulated processes f�i;j g are known. Secondly, with respect to hazard rates
�i .t/, a parametrical setting takes place: all �i .t/ are known, accurate to m

parameters ˇ.i/ D .ˇ1;i ; ˇ2;i ; : : : ; ˇm;i /
T , so we will write �i .t Iˇ.i//. Further, we

use the .m � k/-matrix ˇ D .ˇ.1/; ˇ.2/; : : : ; ˇ.k// of unknown parameters. Thirdly,
with respect to the available sample: sample elements are fixed corresponding
to their appearance, so the order statistics X.1/; X.2/; : : : ; X.n/ are fixed. Finally,
the states of the random environment J.t/ are known only for time moments
0;X.1/; X.2/; : : : ; X.n/.

The maximum likelihood estimates (see [5, 8, 9]) for the unknown parameters
ˇ are derived. Results of a simulation study illustrate the elaborated technique.
Presented paper continues our previous investigations [1, 2].

3.2 Transition Probabilities

In this section we cite a result from the paper of Andronov and Gertsbakh [3].
Define N.t/ as the number of elements which are in the up state at time moment t .
Obviously P fN.0/ D ng D 1. We denote

pr;i;j .t0; t/DP fN.t/Dr; J.t/Dj jN.t0/Dr; J.t0/ D ig; r 2 f1; : : : ; ng; i; j 2 E;
pr;i .t0; t/D.pr;i;1.t0; t/; : : : ; pr;i;k.t0; t//T; Pr.t0; t/D.pr;1.t0; t/; : : : ; pr;k.t0; t// ;

 .t; ˇ/Ddiag
�
�1.t; ˇ

.1//; : : : ; �1.t; ˇ
.k//
	
; �Ddiag

 
�

kX

iD1
�i;1; : : : ;�

kX

iD1
�i;k

!
:

(3.1)

It has been shown that

PPr.t0; t/ D � .�C r .t; ˇ// Pr.t0; t/C �T Pr.t0; t/; 0 6 t0 6 t: (3.2)

Below we consider a simple time-homogeneous case when �i .t Iˇ.i// D �i .ˇi /8i
 .t; ˇ/ D  .ˇ/ D diag.�1.ˇ.1//; : : : ; �k.ˇ.k///. Therefore,

PPr.t0; t/ D �
�T � .�C r .ˇ//

	
Pr.t0; t/; 0 6 t0 6 t:

In this case a solution can be represented by matrix exponent (see [4, 7]):

Pr.t0; t/ D exp
�
.t � t0/

�
�T � .�C r .ˇ//

		
; 0 6 t0 6 t: (3.3)
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3.3 Maximum Likelihood Estimates

In the considered case, besides the initial state j.0/ of J.0/, a sample of size n is
given: .x; j / D f.xj.r/; j.r//; r D 1; : : : ; ng, where xj.r/ is the r th order statistic of
the sample and j.r/ D J.x.r// is a corresponding state of the random environment.
Setting x.0/ D 0 we rewrite the log-likelihood function as

ll.ˇI .x; j // D
n�1X

rD0
Œlnpn�r;j.r/;j.rC1/.x.r/; x.rC1/Iˇ/

C ln.n � r/C ln �j.rC1/.x.rC1/Iˇ.j.rC1///�: (3.4)

Considering gradients with respect to the column vectors ˇ.v/, v D 1; : : : ; k, we get
maximum likelihood equations

@

@ˇ.v/
ll.ˇI .x; j // D

n�1X

rD0

1

pn�r;j.r/;j.rC1/.x.r/; x.rC1/Iˇ/

� @

@ˇ.v/
pn�r;j.r/;j.rC1/.x.r/; x.rC1/Iˇ/

C
n�1X

rD0

1

�j.rC1/.x.rC1/Iˇ.j.rC1///

� @

@ˇ.v/
�j.rC1/.x.rC1/Iˇ.j.rC1/// D 0; v D 1; : : : ; k:(3.5)

Further, we consider a time-homogeneous case when all rate intensity �i .ˇ.i// have
one unknown scalar parameter ˇi only, so �i .ˇ.i// D ˇi , i D 1; : : : ; k. We will
write pm;i;j .t � t0/ D pm;i;j .t0; t/. Then, the likelihood equations (3.5) have the
following form:

@

@ˇ.v/
ll.ˇI .x; j // D

n�1X

rD0

1

pn�r;j.r/;j.rC1/.x.rC1/ � x.r/Iˇ/

� @

@ˇ.v/
pn�r;j.r/;j.rC1/.x.rC1/ � x.r/Iˇ/

C 1

ˇv

n�1X

rD0
ıv;j.rC1/ D 0; (3.6)

where ıv;j.rC1/ is the Kronecker symbol: ıv;j.rC1/ D 1 if v D j.r C 1/, and
ıv;j.rC1/ D 0 otherwise.
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Now we must get an expression for the derivative @

@ˇ.v/
pn�r;j.r/;j.rC1/.x.rC1/ �

x.r/Iˇ/. For that we use an expression for a derivative of a matrix exponent (see
Lemma of Appendix). Let Dv be a square matrix from zero, where only one
non-zero element equals 1 and takes the vth place of a main diagonal. Then,
for the homogeneous case when  .ˇ/ D diag.�1.ˇ/; : : : ; �k.ˇ// D  D
diag.ˇ1; : : : ; ˇk/, according to (3.3), we have for v D 1; : : : ; k:

@

@ˇv
Pr.t0; t/ D @

@ˇv
expf.t � t0/.�T �� � r /g D

1X

iD1

1

i Š
.t � t0/i

i�1X

jD0
.�T �� � r /j

�
�rDv

@

@ˇv
ˇv

�
.�T �� � r /i�1�j D

�r
1X

iD1

1

i Š
.t � t0/i

i�1X

jD0
.�T �� � r /jDv.�

T �� � r /i�1�j :

Therefore

@

@ˇv
Pr.t0; t/ D �r

1X

iD1

1

i Š
.t � t0/i

i�1X

jD0

�
.�T �� � r /j 	hvi

�
.�T �� � r /i�1�j 	hvi ; (3.7)

where M hvi and Mhvi mean � th column and � th row of matrix M .
Now we can use a numerical method for the solution of the likelihood equa-

tion (3.6). Note that parameter ˇv can be non-trivially estimated if state v has been
registered as some j.r/ D v, r D 0; 1; : : : ; n.

3.4 Simulation Study

Below there are the results of a simulation study presented, they are performed for
an analysis of the described estimating procedure efficiency. As initial data, data
from the paper [3] have been used. Let us describe one. A random environment has
three states .k D 3; E D f1; 2; 3g/. Transition intensities f�i;j g from state i to state
j , .i; j D 1; 2; 3/ are given by a matrix

� D .�i;j / D
0

@
0 0:2 0:3

0:1 0 0:2

0:4 0:2 0

1

A : (3.8)
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Let a number of the considered elements n equals 5. For the environment state
i 2 E, all elements have a constant failure rate �i .t/ D ˇi and they fail
independently. Therefore, a last time till a given element failure (for the same state
i of the environment) has the exponential distribution with parameter ˇi . These
parameters must be estimated. For that purpose a sample is given. It contains a
sequence of n C 1 pairs: .x; j / D f.xj.r/; j.r//; r D 0; : : : ; ng, where xj.r/ is the
r th order statistic of n-sample, and j.r/ D J.x.r// is an environment state in the
instant x.r/. The initial pair .x.0/; j.0// equals .0; 1/.

All the mentioned sampling data are given and are used in an estimating
procedure. Own samples are simulated for the following parameter values: ˇ D
.ˇ1 ˇ2 ˇ3/

T D .0:1 0:2 0:3/T . It is convenient to present these data as 3 � .nC 1/

matrix. An example of such matrix for n D 5 is the following:

Sample D
0

@
r 0 1 2 3 4 5

x.r/ 0 0:624 1:502 2:009 8:711 9:429

J.x.r// 1 1 2 1 3 3

1

A :

In the simulation process, samples are generated one by one. Various samples
are independent. Each sample corresponds to the appointed initial state of the
environment: a sample with number 3i C j corresponds to the initial state J.0/ D
j I j D 1; 2; 3I i D 0; : : : . Further, q such three samples (with the initial states
j D 1; 2; 3) form a block, containing 3q samples. A maximum log-likelihood
estimate (MLE) Q̌ D . Q̌

1; Q̌
2; Q̌

3/
T is calculated for each block.

In broad outline, a procedure is as follows. For each sample, a changing of the
environment J.t/; t > 0, and instants of element failure x.r/, r D 1; : : : ; n, are
simulated. Then, for the sample, a logarithm of likelihood function (3.4) and its
gradient (3.5) or (3.6) are recorded. These expressions are used for MLE calculation.
As an optimization method, the gradient method has been used.

The gradient method is given by the following parameters: n is a sample size
(initial number of system elements); b0 is an initial value of parameter estimate; d is
a step of moving along the gradient; " is a maximum module of a difference between
sequential values of the parameter estimate ˇ, for which a calculation is ended; L is
a limit number of a gradient recalculation during moving from an initial point; K is
a number of addends, appreciated in an expansion of the matrix exponent (3.7); 3q
is a number of the samples in the block.

A set of such parameters numerical values .n; b0; d; "; L;K; q/ is called an
experiment design. Below, the results of simulation study are presented.

In Table 3.1 the corresponding results are presented for the design experiment
n D 5, b0 D .0:08 0:22 0:328/T , d D 0:015, " D 0:01, L D 20, K D 20,
r D 5, q D 5 and various values of total block number N . In the first column
the initial value of the estimate b0 D .0:08 0:22 0:328/T is written. The following
columns there are the estimate values given by averaging over N blocks. For a
big number of the blocks, the coefficients d and " have been changed. Namely, for
N D 15; 17; 19; 21 those values equal 0:002, and forN D 21, additionally,L D 40.
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Table 3.1 Convergence of the estimates for initial value b0 D .0:08 0:22 0:328/T

N 1 2 3 4 5 6 7 8
Q̌
1 0.080 0.076 0.103 0.119 0.111 0.097 0.088 0.098 0.101
Q̌
2 0.220 0.217 0.208 0.211 0.219 0.219 0.213 0.211 0.213
Q̌
3 0.328 0.219 0.303 0.333 0.351 0.316 0.280 0.256 0.292

N 9 10 11 12 13 15 17 19 21
Q̌
1 0.094 0.109 0.103 0.098 0.103 0.100 0.101 0.102 0.102
Q̌
2 0.209 0.210 0.207 0.209 0.209 0.208 0.208 0.208 0.208
Q̌
3 0.267 0.298 0.279 0.280 0.298 0.283 0.290 0.295 0.298

An analysis of the Table 3.1 shows that a convergence to true values .0:1 0:2 0:3/
takes place but very slow.

In conclusion we would like to remark that considered approach allows improv-
ing probabilistic predictions for functioning of various complex technical and
economical systems.

Appendix

Lemma 3.1. If elements of matrix G.t/ are differentiable function of t , then

@

@t
G.t/n D

n�1X

iD0
G.t/i



@

@t
G.t/

�
G.t/n�1�i ; n D 1; 2; : : : ;

@

@t
exp.G.t// D @

@t

1X

iD0

1

i Š
G.t/i D

1X

iD1

1

i Š

i�1X

jD0
G.t/j



@

@t
G.t/

�
G.t/i�1�j :

Proof. Lemma 3.1 is true for n D 1 and 2. If one is true for n > 1, then

@

@t
G.t/nC1 D



@

@t
G.t/

�
G.t/n CG.t/

@

@t
G.t/n

D


@

@t
G.t/

�
G.t/n CG.t/

n�1X

iD0
G.t/i



@

@t
G.t/

�
G.t/n�1�i

D
nX

iD0
G.t/i



@

@t
G.t/

�
G.t/n�i : ut
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Chapter 4
Simulating Correlated Ordinal and Discrete
Variables with Assigned Marginal Distributions

Alessandro Barbiero and Pier Alda Ferrari

4.1 Introduction and Motivation

In many research fields, data sets often include ordinal variables, e.g. measured on
a Likert scale, or count variables. This work proposes and illustrates a procedure
for simulating samples from ordinal and discrete variables with assigned marginal
distributions and association structure, which can be used as a useful computational
tool by researchers. In fact, model building, parameter estimation, hypothesis tests,
and other statistical tools require verification to assess their validity and reliability,
typically via simulated data. Up to now, a few methodologies that address this
problem have appeared in the literature. Demirtas [5] proposed a method for
generating ordinal data by simulating correlated binary data and transforming them
into ordinal data, but the procedure is complex and computationally expensive,
since it requires the iterative generation of large samples of binary data. Ruscio
and Kaczetow [10] introduced an iterative algorithm for simulating multivariate
non-normal data (discrete or continuous), which first constructs a huge artificial
population whose components are independent samples from the desired marginal
distributions and then reorders them in order to catch the target correlations. The
desired samples are drawn from this final population as simple random samples.
Recently, Ferrari and Barbiero [1] proposed a method (GenOrd) able to generate
correlated point-scale rv (i.e., whose support is of the type 1; 2; : : : ; k) with marginal
distributions and Pearson’s correlations assigned by the user.

In this work, after briefly recalling the GenOrd method, we show that it is also
able to generate discrete variables with any finite/infinite support and/or association
structure expressed in terms of Spearman’s correlations. The performance of the
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method’s extensions is assessed in terms of computational efficiency and precision
through two examples of application, which also show the utility and usability of
the method even for non-experts.

4.2 Generating Ordinal Data: The GenOrd Procedure

The objective is to simulate from a target m-dimensional rv XXX , with assigned
correlation matrix RD and marginal cumulative distributions FFF i , 0 < Fi1 < Fi2 <

� � � < Fil < � � � < Fi.ki�1/ < 1, i D 1; : : : ; m, where Fil D P.Xi 6 xil /, being
.1; 2; : : : ; ki / the support of the i th component Xi ofXXX . The method starts from an
m-dimensional variable ZZZ � N.0;RC D RD/. For each component Zi of ZZZ, the
ki � 1 probabilities inFFF i are chosen and define the corresponding normal quantiles
ri1 < ri2 < � � � < ril < � � � < ri.ki�1/. The variables Zi are converted into ordinal
variables with support 1; 2; : : : ; ki as follows:

if Zi < ri1 ! Xi D 1

if ri1 6 Zi < ri2 ! Xi D 2

: : :

if ri.ki�1/ 6 Zi ! Xi D ki : (4.1)

Let XXX.1/ D .X1; : : : ; Xm/. Although XXX.1/ has the desired marginal distributions,
unfortunately RD.1/ ¤ RD . This is a known issue, see, for example, [4, 7]. An
iterative algorithm is adopted in GenOrd in order to recover the “right” RC able
to reproduce the target RD . The final continuous correlation matrix RC is then
used to generate any n � m ordinal matrix with target ordinal correlation matrix
RD and with the desired marginals. The generation of samples is then carried out
through the inverse transform technique: given a set of marginal distributions and
a feasible correlation matrix RD , a random sample of chosen size n is drawn from
ZZZ � N.0;RC / and the ordinal data are obtained according to the discretization
process (4.1).

4.3 Extensions of GenOrd Procedure

Extensions of the GenOrd procedure can be carried out with respect to the
correlation measure and the support (non-point-scale support or infinite support).
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4.3.1 Extension to Any Finite/Infinite-Support Discrete
Distribution

The extension of the GenOrd procedure to the case of any finite-support discrete
distribution is straightforward. To this aim, the discretization process in (4.1) has to
be modified by simply substituting to the integers 1; 2; : : : ; ki the ordered values of
the finite support .xi1; : : : ; xiki /.

On the contrary, the extension to the case of unbounded discrete variables is
not straightforward, because the algorithm computing the correlation matrix of the
multivariate ordinal/discrete rv implicitly requires a finite number of cut-points. The
support of the rv has to be somehow truncated. For example, for positive rv, such as
the Poisson or the geometric, this can be carried out by right-truncating the support
to a proper value, say kmax D F �1.1 � �/, with � as small as possible. With the
(approximate) marginal distributions obtained once the support has been truncated,
the procedure follows the same steps described in Sect. 4.2 in order to compute
the proper RC . To generate the desired discrete data, a sample is drawn from the
multivariate standard normal rv with correlation matrix RC and is then discretized
directly recalling the inverse cdf of the target rv. This way, the marginal distribution
of each of the unbounded-support discrete rv is ensured, and a (possibly small)
approximation error is introduced only in terms of pairwise correlations.

4.3.2 Extension to Spearman’s Correlation

The extension of the GenOrd procedure to the case of association among variables
expressed in terms of Spearman’s correlation coefficient requires more caution.
It is well known that for a bivariate sample .xi ; yi /, i D 1; : : : ; n, Spearman
correlation is defined as �S D cor.rank.xxx/; rank.yyy//, with xxx D .x1; : : : ; xn/

0, and
similarly for yyy. For (continuous) rv X1 and X2 with cdf F1 and F2, Spearman
correlation is defined as �S.X1;X2/ D cor.F1.X1/; F2.X2//. Attention is needed
with discrete variables, characterized by a step-wise cumulative distribution func-
tion and whose observed values may present ties. Conventionally, in �S , rank of
equal sample values is the arithmetic mean of what their ranks would otherwise
be. Then, for consistency, for discrete rv, Spearman correlation should be defined
as �S.X1;X2/ D cor.F �1 .X1/; F �2 .X2// with F �i l D .Fi;l C Fi;l�1/=2, i D 1; 2,
l D 1; : : : ; ki ; if l D 1, then F �i1 D Fi1=2. The generalization of the simulation
technique is then straightforward, since for the bivariate normal distribution, the
following relationship between Pearson and Spearman’s correlations holds: �S D
6
�

arcsin.�=2/ [9].
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4.3.3 Performance

Generally speaking, the features a simulation technique should met are basically
“generality”, “accuracy”, and “computational efficiency”. With generality, we mean
the capability of covering as many feasible scenarios as possible. With accuracy we
mean the capability of producing samples coming from rv respecting some assigned
“target”, here, marginal distributions and pairwise correlations assigned by the user.
For this case, although in the literature there are not standard measures, however,
one can compute the Monte Carlo mean of each pairwise sample correlation over
all the simulated samples, and compare it with the target one. Analogously, one
can compute the Monte Carlo distribution of each variable and compare it with
the assigned one through some goodness-of-fit test. With computational efficiency,
we mean the capability of simulating samples in a short time. Focusing on the first
feature, the only limitations GenOrd is practically bounded to are those related to the
minimum and maximum admissible correlations for those marginal distributions,
which any simulation technique has to take into account. As to its accuracy, GenOrd
has been shown to produce accurate results when dealing with point-scale variables
[6]. With regard to computational efficiency, GenOrd has been assessed also as
computationally convenient [6]. In the next section, the accuracy and efficiency of
its extended version will be assessed and its usefulness will be claimed through a
new application to an inferential problem.

4.4 Examples of Application

In the following two subsections, GenOrd is further empirically explored with
regard to its extensions described in Sect. 4.3, namely discrete variables with infinite
support and correlation expressed via Spearman’s �S .

4.4.1 Example 1: Simulation of Correlated Geometric
Variables

Here we show how GenOrd is able to generate from correlated geometric dis-
tributions with assigned parameters and correlation coefficient. For the two geo-
metric rv X1 and X2, we consider all the possible combinations arising from
the values 0:3; 0:5; 0:7 for the parameters p1 and p2, combined with the values
�0:4;�0:2; 0:2; 0:4; 0:6; 0:8 for the correlation coefficient �. In applying GenOrd,
we set the value of the “threshold” parameter � at 0:0001. We generate 50,000
samples of size n D 100 under each scenario.

In order to assess the accurateness of the procedure in terms of correlation, we
focused on the sample correlation coefficient r and in its somehow bias-corrected
version r 0 D rŒ1 C .1 � r2/=.2n/�. In Table 4.1, we reported the MC mean of
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these two estimates. These values are both quite close to the target values of �;
moreover, for positive �, r 0 often sensibly reduces the sample bias in absolute
terms. In order to assess the accurateness of the procedure in terms of marginal
distribution, a goodness-of-fit test can be applied in order to verify if the two
empirical distributions actually come from the two target geometric distributions. To
this aim, we employ the test suggested by [8] for discrete variables and discussed for
the geometric distribution by [3], who empirically checked its good performance in
terms of actual significance level. Table 4.2 reports the (percentage) significance
levels, Ǫ1 and Ǫ2 of such test performed at a nominal level ˛ D 5% for the
two marginal distribution under each scenario; they all are very close to the
nominal level. Simulating 50,000 bivariate samples required just a few seconds
independently of the scenario examined.

4.4.2 Example 2: Performance of Confidence Intervals
for Spearman’s Correlation

In inferential problems involving ordinal or continuous data, it is usually necessary
to determine the sampling distribution of Spearman’s sample correlation coefficient
rS for hypotheses testing or to construct confidence intervals for �S . If observations
come from a bivariate normal rv, an approximate distribution of the sample
correlation coefficient rS can be adopted, and an approximate .1 � ˛/ confidence
interval (CI), which is claimed to work well even for small sample size and high
values of �S , is [2]

.�LS ; �
U
S / D

�
e2L � 1
e2L C 1

;
e2U � 1
e2U C 1

�
(4.2)

where

L D 0:5 Œlog.1C rS / � log.1 � rS /� � z˛=2
p
.1C rS 2=2/=.n � 3/ (4.3)

U D 0:5 Œlog.1C rS / � log.1 � rS /�C z˛=2
p
.1C rS 2=2/=.n � 3/ (4.4)

z˛=2 being the value of the standard normal rv Z such that P.Z > z˛=2 D ˛=2/.
The CI in (4.2) can be used also for any strictly monotonic transformation of
bivariate normal random variables, because of the invariance property of Spearman’s
correlation. The problem is of course more complex when �S concerns non-
normal variables that are not derived by such monotonic transformations, especially
discrete/ordinal variables. There is no evidence as to whether the performance of
the CI in (4.2) remains satisfactory in these cases. For example, the discretization
process in (4.1) from a bivariate normal variable, being a non-strictly monotonic
function, distorts the resulting Spearman correlation coefficient of final discrete
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Fig. 4.1 Marginal distributions considered in the simulation study: U=uniform, S=symmetrical,
A=asymmetrical (k=5)

variables. It is then interesting to empirically investigate the performance of the
CI (4.2) by focusing on the actual coverage and average length. Our simulation
procedure offers the possibility of finding the actual coverage probability of the CI
for discrete variables under different experimental conditions.

For this purpose, we consider a pair of ordinal variables, with k categories, and
�S D f0:2; 0:4; 0:6; 0:8g. Specifically, we consider the following three “types”
of marginal distributions: discrete uniform (U, with constant mass 1=k for each
value of the support), unimodal symmetrical (S, resembling the continuous normal
distribution), and asymmetrical (A, with mass p.i/ D ip.1/, i D 1; : : : ; k), with
k D 3; 5; 7 (see also Fig. 4.1). By combining the possible marginal distributions
and the values of �S , a number of scenarios are obtained. Under each of these
scenarios and following our procedure, we generate a matrix of bivariate ordinal
data with size n D 20; 50; 100; 200; 500, compute the sample correlation coefficient
rS , and then construct the 95% CI for �S by (4.2). We iterate these steps 20,000
times; at the end of the simulation plan, we compute the Monte Carlo distribution
of the sample correlation coefficient rS , the coverage of the CIs and their average
width. The values of the actual (MC) coverage rate for each scenario, displayed in
Fig. 4.2, indicate an effect of �S , n, and the marginal distribution. In particular, the
marginal distribution seems to play an important role. Although discrete uniform
distributions keep the coverage probability quite close to the nominal level (the
actual coverage rate is always between 0:933 and 0:967), unimodal symmetrical and
asymmetrical distributions apparently distort the coverage probability, often with a
negative “bias”, especially when the number of categories is low (k D 3). The
effect of �S is quite important too: high values of �S , combined with symmetrical
unimodal distribution with few categories, strongly reduce the coverage probability
of CIs. Note that for high values of correlation (�S D 0:8) and for small sample
size (n D 20) some difficulty may arise in the construction of the CI: in fact, rS is
likely to take value 1 in some samples, and then formulas (4.3, 4.4) are clearly no
longer applicable. This issue may dramatically decrease the actual coverage rate of
CIs, as can be seen looking at the two last plots of the panel of Fig. 4.2. The sample
size n seems to have a relevant role only for symmetrical distributions: the coverage
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Fig. 4.2 Coverage probability of the CI for Spearman’s correlation coefficient under the simulated
scenarios

probability gets close to the nominal one as n increases. Note that however even very
large values of n (namely, 500) do not ensure a convergence of the actual coverage
probability to the nominal value 0:95; this means that relaxing the hypothesis of
bivariate normality can significantly distort the actual coverage probability even
for large samples. Thus, attention should be paid when building CIs for Spearman
correlation based on non-normal samples (ordinal or discrete data), even when the
size is large. Departures from the (multi)normality assumption can lead to a severe
decrease of the actual coverage probability of such (approximate) CIs when the
cardinality of the support is very low; or, vice versa, to an increase if the support
comprises several values, and the distribution is symmetrical but unimodal. On the
contrary, uniform marginal distributions seem able to keep the coverage probability
close to the nominal one.
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Chapter 5
Probabilistic Counterparts for Strongly
Coupled Parabolic Systems

Ya. Belopolskaya

5.1 Motivation

Since the fundamental work by Amann [1] a number of people were interested in the
study of strongly coupled parabolic systems, that is systems of parabolic equations
with nondiagonal principal part. Systems of this type arise as models for various
phenomena in biology, chemistry, hydrodynamics and other fields. Let us mention,
for example, the Keller–Segel model [7] of chemotaxis which is a macroscopic
model presented via the system of parabolic equations

(
ut D divŒ~.u; v/ru � �.u; v/rv�C �.u; v/; u.0; x/ D u0.x/;

vt D divŒ˛.u; v/rv C ˇ.u; v/ru�C g.u; v/; v.0; x/ D v0.x/:
(5.1)

Here ru denotes the gradient of u, ut is the time derivative, v is the density of
the chemical substance, u is the population density and ˇ > 0; � > 0 are the
production and decay rates of the chemical, respectively. The function �.u; v/ is
the chemotactic sensitivity which generally takes the form �.u; v/ D u�.v/.

Another example is a mathematical model of cell growth, where one can observe
cases when cells closely approach and come into contact with each other. This
phenomenon is called a contact inhibition of growth between cells. The model
describing contact inhibition between normal and abnormal cells was studied in
[2]. This model is given by

(
utDdivŒur.uCv/�C.1 � u � v/u t > 0; x 2 Rd ; u.0; x/Du0.x/

vtDdivŒvr.uCv/�C�.1 � ˛.u C v//v; t > 0; x 2 Rd ; v.0; x/Dv0.x/;
(5.2)
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where functions u.t; x/, v.t; x/ represent the densities of normal and abnormal cells
while � and ˛ are positive constants.

Systems of parabolic equations of the type (5.1) and (5.2) give the macroscopic
description of the investigated phenomenon. To describe its microscopic picture one
needs to construct the probabilistic representation of a solution to the corresponding
problem. But as far as we know there is no probabilistic representations of the
Cauchy problem solution to systems of this type. Actually there is a number of
papers where nondiagonal systems of parabolic equations were studied from a
probabilistic point of view. Let us mention papers [3–6, 11] where various types
of solutions of the Cauchy problem, namely classical, weak (distributional) and
viscosity ones were studied via construction of the correspondent probabilistic
representations. In other words in [3–6] there were derived stochastic equations
for diffusion processes and their multiplicative operator functionals (MOF) that
allow to construct the corresponding probabilistic representation of the solutions
to original problems. Eventually one can generalize the model and consider for the
underlying stochastic process both a diffusion process and a Markov chain as well
as the corresponding MOF. Nevertheless it gives a possibility to consider systems
of parabolic equations specified to have mere diagonal principal parts.

Here we derive the correspondent representations for a fully coupled parabolic
system (5.2) in terms of a solution to a special system of stochastic equations.
Our approach is crucially based on the Kunita theory of stochastic flows [8–10].

5.2 Classical and Weak Solutions of Nondiagonal Parabolic
Systems and Their Stochastic Counterparts

Let D D D.Rd / be the set of all C1-functions with compact supports equipped
with the Schwartz topology, D 0 be its dual space and Z be the set of all integers.
Elements of S 0 are called Schwartz distributions. Given k 2 Z we denote by H k

the Sobolev space of real valued functions u, defined on Rd such that u and its
generalized derivatives up to the kth order belong to L2.Rd /. The completion H k

of D by the norm kukk D
�P
j˛j6k

R
Rd

kr˛u.x/k2dx
� 1
2

is a Hilbert space. We

denote by hu; hi pairing between D and D 0: Here krkuk D P
j˛j6k j @˛u

@x˛
1

1 :::@x
˛d
d

j
with

Pd
jD1 ˛j D k. We use notations y �x D Pd

iD1 yixi , hh; ui D R
Rd
h.x/u.x/dx

and hh; ui D R
Rd
h.x/ � u.x/dx for L2.Rd IRd/: A distribution u is said to belong

to H k
loc if hu 2 H k for any h 2 D . For any k 2 Z and positive l 2 Z such that

l > jkj C Œd=2� C 1 one can deduce that there exist positive constants C;C1 such
that inequalities

kf ukk 6 Ckf kk;1kukk 6 C1kf klkukk
hold for any f 2 H l ; u 2 H k:

Let H k
T D fu 2 L2.Œ0; T � �Rd IR/ W rku 2 L2.Œ0; T � �Rd IRd/g:
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Definition 5.1. A pair of functions .u; v/ 2 H 1
T � 2 H 1

T is called a weak
(distributional) solution of (5.2), provided ru;rv 2 L2loc.Œ0; T � � Rd IRd/ and for
arbitrary test functions h.t/; g.t/ 2 H 1.Œ0; T �ID/ the following integral identities
hold

�
Z 1

0

hu.	/; h	 .	/id	 � hu.0/; h.0/i C
Z 1

0

hu.	/Œru.	/C rv.	/�;rh.	/i d	

D
Z 1

0

hu.	/; .1 � u.	/ � v.	//; h.	/id	; (5.3)

�
Z 1

0

hv.	/; g	 .	/id	 � hv.0/; h.0/i C
Z 1

0

hv.	/Œrv.	/C ru.	/�;rg.	/i d	

C
Z 1

0

hv.	/�.1 � u.	/ � �v.	//; g.	/i d	: (5.4)

Denote by u1 D u and u2 D v: To construct a probabilistic representation of a weak
solution uq 2 H k

T ; q D 1; 2 of (5.2), we rewrite (5.3), (5.4) as follows

Z 1

0

�
u1;



h	 C .u1 C u2/�hC .u1 C u2/

ru1

u1
� rhC .1 � u1 � u2/h

��
d	

D hu1.0/; h.0/i; (5.5)

Z 1

0

�
u2;



g	 C .u1 C u2/�g C .u1 C u2/

ru2

u2
� rg C �.1 � u1 � ~u2/g

��
d	

D hu2.0/; h.0/i; (5.6)

where � is the Laplace operator. The above integral identities prompt that, given
functions u1; u2 2 H 2

T , one can consider the Cauchy problem for parabolic
equations

h	 C
�
1C u2

u1

�
ru1 � rhC Œu1 C u2��hC .1 � u1 � u2/h D 0; (5.7)

g	 C
�
1C u1

u2

�
ru2 � rg C Œu1 C u2�gxx C �.1 � u1 � ~u2/g D 0: (5.8)

Set

m1
u1;u2 .x/ D .u1.x/C u2.x//

ru1.x/

u1.x/
; m2

u1;u2 .x/ D .u1.x/C u2.x//
ru2.x/

u2.x/
;

(5.9)
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1

2
M2

u1;u2 .x/ D u1.x/Cu2.x/; f1 D 1�u1�u2; f2 D �.1�u1�~u2/: (5.10)

Given a probability space .˝;F ; P / and a standard Wiener process w.t/ 2 Rd , we
consider stochastic equations for 0 6 t 6 	 6 T < 1;

d�q.	/ D �mq

u1.	/;u2.	/
.�q.	//d	 �Mu1.	/;u2.	/.�

q.	//dw.	/; (5.11)

where q D 1; 2. Let �qt;x.	/ denote a solution to (5.11) such that �qt;x.t/ D x:

Assume that u; v are classical solutions of (5.3), (5.4), u0; v0 2 C2C� , � > 0, and
u0 > $ > 0; v0 > $ > 0. Then, by the SDE theory results we know that there
exists a unique solution �qt;x.	/ 2 Rd of (5.11) and by the Feynman–Kac formula
one can check that the functions

h.t; x/ D E



exp

�Z T

t

f1.u.	; �
1
t;x.	//; v.	; �

1
t;x.	///d	


h0.�

1
t;x.T //

�
;

g.t; x/ D E



exp

�Z T

t

f2.u.	; �
2
t;x.	//; v.	; �

2
t;x.	///d	


g0.�

2
t;x.T //

�
;

define the classical solution of the Cauchy problem for parabolic equations
(5.7), (5.8) with the Cauchy data h.T; x/ D h0.x/; g.T; x/ D g0.x/:

To find a link between the above processes �q.t/; q D 1; 2; and weak solutions
of (5.2) we need some additional results from the stochastic flow theory [8–10].

Under the above assumptions set 'qs;t .x/ D �
q
s;x.t/; q D 1; 2; and note that 'qs;t W

Rd ! Rd is a C2-diffeomorphism of Rd called the stochastic flow. Let Œ'qs;t �
�1 D

 
q
t;s be the inverse maps of the stochastic flows 'qs;t . We denote by O�q.	/ D �q.t�	/

the stochastic process with the stochastic flow  
q

t;	 .
Given a distribution u0 we define a distribution valued processes

T q.t/ D exp

�Z t

0

fq ı 'q0;	d	


uq0:

Next, we consider a composition T q.t/ ı  q
t;0; where

T q.t/ ı  q
t;0.x/ D exp

�Z t

0

fq. 
q

	;0.x//d	


uq0. 

q
t;0.x//;

and its generalized expectation

U q.t/ D E
�
T q.t/ ı  q

t;0

�
:

Finally, by the results from [9, 10] we know that U q.t/ is an evolution family of
bounded operators acting in H k

T . Now we are ready to state our main results.
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Theorem 5.1. Assume that u0; v0 2 H 1 \ C2 and there exists a unique weak
solution .u; v/ of the Cauchy problem (5.2) such that u.t/; v.t/ 2 H 1

T \ C2.Rd /.

Let the processes �1.t/,�2.t/ satisfy (5.11), while O�1.t/, O�2.t/ are the correspondent
reversal processes. Then, for any test functions h; g functionsc

U q.t; x/ D Et;x



exp

�Z t

0

fq. O�q.	//d	


uq0.
O�q.t//

�
; q D 1; 2; (5.12)

satisfy integral identities

Z T

t

�
U 1.	/;



h	.	/C Œu1.	/C u2.	/��h.	/C Œu1.	/C u2.	/�

ru1

u1
� rh

��
d	

D hU 1.T /; h.T /i � hU 1.t/; h.t/i C
Z T

t

hU 1.	/; .1 � u1.	/ � u2.	//h.	/id	;
(5.13)

Z T

t

�
U 2.	/;



g	.	/C Œu1.	/C u2.	/��g.	/C Œu1.	/C u2.	/�

ru2

u2

��
d	

D
�
U 2.T /; g.T /i�hU 2.t/; g.t/i C

Z T

t

hU 2.	/; �.1 � u1.	/ � ~u2.	//g.	/

�
d	:

(5.14)

Theorem 5.2. Assume that Theorem 5.1 assumptions hold and distributions
uq0; q D 1; 2; belong to H k . Then, the pair of functions uq D EŒU q.t/ı q

t;0� 2 H k
T

gives the unique distributional solution of (5.2).

We prove these statements in the next section.

Corollary 5.1. Under Theorem 5.1 assumptions the functions U 1.t; x/; U 2.t; x/

given by (5.12) are twice differentiable in space variable and

U 1.t; x/ D u1.t; x/; U 2.t; x/ D u2.t; x/: (5.15)

Hence, relations �q.t/ D x; q D 1; 2,

d�q.	/ D �mq

u1.	/;u2.	/
.�q.	//d	 �Mu1.	/;u2.	/.�

q.	//dw.	/; (5.16)

u1.t; x/ D Et;x



exp

�Z t

0

f1. O�1.	//d	


u10. O�1.t//
�
; (5.17)

u2.t; x/ D Et;x



exp

�Z t

0

f2. O�2.	//d	


u20. O�2.t//
�

(5.18)

make a closed system.
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Since both .U 1.t; x/; U 2.t; x// and .u1.t; x/; u2.t; x// satisfy the same integral
identity, the corollary statement results from the assumed uniqueness of a distri-
butional solution of (5.2).

5.3 Stochastic Flow Theory

To prove Theorem 5.1 we consider the Jacobian OJ q	;t .!// D detr O�qt;y.	/ of the map

 
q

t;	 and note that OJ q	;t .!/ > 0 and OJ qt;t .!// D 1: To simplify notations we omit
indices u1; u2 and use Stratonovich form of (5.11)

d�
q
t;x.	/ D � Qmq.�

q
t;x.	//d	 �M.�qt;x.	// ı dw.	/; (5.19)

where Qmq.x/ D mq.x/�rM.x/M.x/ andM.�q.	//ıdw.	/ D M.�q.	//dw.	/C
rM.�q.	//M.�q.	//d	: One can check that O�q.t/ D  

q

t;	 .y/; q D 1; 2 satisfy
SDE

d 
q

t;	 .y/ D Œr'q	;t ��1. q

t;	 / Qmq.y/d	 C r'qt;	 . q

t;	 /
�1M.y/ ı dw.	/; (5.20)

where Œr'qt;	 .y/��1 is the Jacobian matrix inverse to the Jacobian matrix r'qt;	 .x/
of the map 'qt;	 .x/. To be more precise, we deduce from the Kunita theorem (see
[8], Theorem 4.2.2) the following result.

Theorem 5.3. Let 'qt;	 .x/ satisfy (5.11) with mq;M 2 Ck , where .k > 3/. Then,
the inverse flow Œ'q	;t �

�1 D  
q

t;	 satisfies (5.20).

Proof. To verify the assertion we consider a stochastic equation that governs the
Jacobian matrix OJq.	/ D Œr'q	;t ��1

d OJq.	/ D rŒ Qmq.'
q

t;	 .x//�
OJq.	/d	 C rŒM.'qt;	 .x//�OJq.	/ ı dw.	/; OJq.	/ D I:

(5.21)
Consider the process

Gq.x; 	/ D
Z 	

t

Œr'qt;� ��1.x/ Qmq.'
q
t;� .x//d� C

Z 	

t

Œ'
q
t;� �
�1
x .x/M.'

q
t;� .x// ı dw.�/;

and evaluate '
q

	;t . 
q

t;	 .y//, where  
q

t;	 .y/ is a random process with stochas-
tic differential d q

t;	 .y/ D dGq. 
q

t;	 .y/; 	/: Set 'qt;	 .x/ D 'q.x; 	/: By the
Ito–Wentzel formula we have
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'
q

t;	 . 
q

	;t .y// D y C
Z 	

t

dS'q. 
q
�;t .y/; �/C

Z 	

t

r'q. q
�;t .y/; �/ ı d q

�;t .y/

D y �
Z 	

t

Qmq.'
q
t;� . 

q
�;t .y///d� �

Z 	

t

M.'
q
t;�;. 

q
�;t .y/// ı dw.�/

C
Z 	

t

r'q. q
�;t .y/; �/Œr'q. q

�;t .y/; �/�
�1 Qmq.'

q
t;� . 

q
�;t .y///d�

C
Z 	

t

r'q. q
�;t .y/; �/Œr'q. q

t;� .y/; �/�
�1M.'qt;� . 

q
�;t .y/// ı dw.�/

D y:

Hence , 'qt;	 . 
q

	;t .y// D y.

Given a distribution uq 2 D 0 we define its composition with a stochastic flow
 
q

	;t .!/ as a random variable valued in D 0. Given a function h 2 D the product
h ı 'qt;	 .!/J qt;	 .!/ belongs to D , where J qt;	 is the Jacobian of 'qt;	 . Set

T
q

t;	h.!/ D huq; h ı 'qt;	 .!/J qt;	 .!/i; h 2 D : (5.22)

One can easily check that in this way a linear functional over D is defined. We
denote it by uq ı q

	;t . Provided uq D uq.x/dx where uq.x/is a continuous function,
uq ı  q

	;t is just a composition of uq with  q

	;t due to the following integral by parts
formula
Z

Rd
uq. q

	;t .x; !//h.x/dx D
Z

Rd
uq.y/h.'qt;	 .y; !//J

q

t;	 .y; !/dy; h 2 D :

(5.23)

Let hŒL q��uq; hi D huq;L qhii: Applying the generalized Ito formula derived by
Kunita [9], we deduce the following result.

Lemma 5.1. Let uq.t/ 2 H 1
T be a nonrandom continuous function and 'qt;	 ,  q

	;t

be the above defined stochastic flows generated by solutions to (5.11). Then we have

uq.t/ ı  q

	;t D uq.	/C
Z 	

t

d�u
q.�/ ı  q

�;t C
Z 	

t

ŒL
q
0�
�Œuq.�/ ı  q

�;s�d�

C
Z 	

t

ru.�/ ı  �;t �Mdw; (5.24)

where L
q
0 f D mq � rf C 1

2
M2�f and ŒLq0�

� is defined in the distribution sense.

By Lemma 5.1 we deduce the following assertion.
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Let uq 2 H k
T . Then one can prove (see [10]) that hZq

t;0; hi D EŒhuq.t/ ı q
t;0; hi�

exists for any h 2 H �k
T , defines a continuous linear functional on H �k and hence

can be considered as an element Zq
t;0 D EŒuq.t/ ı  t;0� from H k

T which is called
the generalized expectation.

Let

�
q
0.t/ D exp

�Z t

0

fq ı  q

	;td	

�
(5.25)

and ~q0 .t/ D �
q
0.t/u

q.t/: By the generalized Ito formula we can verify that U q.t/ D
EŒ~

q
0 .t/ ı  q

t;0� is the unique generalized solution to the Cauchy problem

dU q

dt
D ŒLq��U q.t/; uq.0/ D uq0; (5.26)

where ŒLq�� is the operator defined in a distributional sense and dual to

Lq D 1

2
M2

u1;u2 .x/�Cm
q

u1;u2
.x/r C fq.x/:

This concludes the proof of Theorem 5.1.
Coming back to (5.2) recall that we have assumed that u1 D u; u2 D v are unique

distributional solutions to (5.2) as well and hence U q.t; x/ � uq.t; x/ that yields
the statement of Theorem 5.2.

Let us mention some final remarks. In this paper we have constructed a
probabilistic representation of a weak solution to the problem (5.2) which belongs to
H 1
T \C2.Rd /. Actually, Theorem 5.1 states that if we have a unique weak solution

.u; v/ of the problem (5.2) from this class, the functions u D u1; v D v1 admit the
probabilistic representations of the form

u1.t; y/ D Et;yŒ�
1
0.t/u

1.0/ ı  1
t;0.y/�; u2.t; y/ D Et;yŒ�

2
0.t/u

2.0/ ı  2
t;0.y/�:

(5.27)

Notice that relations (5.11), (5.20), (5.25) and (5.27) make a closed system and
our next problem to be discussed somewhere else is to prove that under suitable
conditions this system has a unique solution .�q.t/; �q0.t/; u

q.t; x//; q D 1; 2.
Finally we have to check that setting u D u1; v D u2 we get a distributional solution
of the problem (5.2) as well.
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Chapter 6
Algorithms for Linear Stochastic Delay
Differential Equations

Harish S. Bhat

6.1 Introduction

We consider the stochastic delay differential equation (SDDE)

dXt D AXt dt C BXt��dt C CdWt : (6.1)

Here A, B , and C are N � N constant coefficient matrices, the time delay � > 0

is constant, Wt is N -dimensional Brownian motion, and the unknown Xt is an R
N -

valued stochastic process.
System (6.1) models phenomena in neuroscience [7] and mechanics [4, 10],

among several other fields. For each t > 0, let p.x; t / denote the probability density
function of Xt . In many scientific contexts, the quantities of interest are functionals
of p—for example, the mean and variance of the solution of (6.1). In these contexts,
the sample paths Xt of (6.1) are of interest only to the extent that they help to
compute p or functionals of p.

Let � denote matrix transpose. If we remove the time delay term, say by setting
B D 0, then we can solve for p.x; t / directly via the partial differential equation

@p

@t
C trace.A/p C .Ax/�rp D 1

2
CC�r2p (6.2)

This equation is known as either the Fokker–Planck or Kolmogorov equation
associated with the stochastic differential equation dXt D AXt dt C CdWt .

The Fokker–Planck equation associated with the time-delayed equation (6.1)
suffers from a closure problem [6]. This problem prevents the application of
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deterministic methods from numerical analysis to solve for the density function
p.x; t /. As a result, Monte Carlo methods are commonly employed; in this
framework, one simulates a sufficiently large number of sample paths of (6.1) in
order to estimate the density function or functionals thereof.

In this note, we develop a new algorithm to directly solve for the density function
of (6.1). By first discretizing (6.1) in time, we bypass the closure issues of Fokker–
Planck approaches. The resulting scheme involves no sampling, and is thus capable
of computing the density function of (6.1) faster than Monte Carlo methods, for the
same desired level of accuracy.

6.2 Algorithm

Starting from (6.1), we apply the Euler–Maruyama time-discretization. Specifically,
let ` denote a positive integer, and set h D �=`. Let Yn denote the numerical
approximation to Xnh. Then, by definition, Yn�` is the numerical approximation
to Xnh�� . Set I equal to the N �N identity matrix, and let fZngn>1 denote an i.i.d.
sequence of N .0; I / random variables—here N .�; ˙/ denotes the multivariate
Gaussian with mean vector � and covariance matrix ˙ . Then the Euler–Maruyama
discretization of (6.1) is

YnC1 D .I C Ah/Yn C BhYn�` C Ch1=2ZnC1: (6.3)

Thus far we have not mentioned initial conditions. For the original differential
equation (6.1), the initial conditions consist of the segment fXt j � � 6 t 6 0g.
Discretizing this segment yields I D fYn j � ` 6 n 6 0g, where Yn D Xnh.
In what follows, we assume that I is given and that each Yn 2 R

N is a constant
(deterministic) vector.

With (6.3) together with the initial segment I , we can certainly generate sample
paths fYngn>1. Note that this involves sampling the random variables fZngn>1. See
[2] for numerical analysis of this approach.

Let us now give a convenient representation of the solution of (6.3):

Theorem 6.1. For each n > �`, there existN�N matrices f˛nmg0mD�` and fˇnr gnrD1
such that

Yn D
0X

mD�`
˛nmYm C

nX

rD1
ˇnr Zr : (6.4)

Proof. When �` 6 n 6 0, the statement is true by definition: in this range, the ˇnr
matrices are all zero, ˛nn D I , and ˛nm D 0 for m ¤ n.

The rest of the proof is by induction. For the n D 1 case, we note that (6.3)
implies

Y1 D .I C Ah/Y0 C BhY�` C Ch1=2Z1:
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Hence ˛10 D ICAh, ˛1�` D Bh, and ˛nm D 0 for �` < m < 0. Setting ˇ11 D Ch1=2,
we see that (6.4) holds for n D 1.

Next assume that (6.4) holds for 1 6 n 6 n0. For �` 6 m 6 0, set

˛n
0C1
m D .I C Ah/˛n

0

m C Bh˛n
0�`
m : (6.5)

For 1 6 r 6 n0 C 1, set

ˇn
0C1
r D

8
ˆ̂<

ˆ̂:

.I C Ah/ˇn
0

r C Bhˇn
0�`
r 1 6 r 6 n0 � `

.I C Ah/ˇn
0

r n0 � `C 1 6 r 6 n0

Ch1=2 r D n0 C 1:

(6.6)

A calculation now shows that Yn0C1 defined by (6.4), (6.5), and (6.6) satisfies the
n D n0 C 1 case of (6.3). ut

The system (6.5) and (6.6) is an algorithm for determining the solution of the
discretized equation (6.3). This algorithm does not involve sampling any random
variables. There are several points we wish to make about this algorithm:

1. The ˛ equation (6.5) is decoupled from the ˇ equation (6.6). The equations can
be stepped forward in time independently of one another.

2. The dynamics of (6.5) and (6.6) are independent of the initial conditions I . Once
we have computed ˛ and ˇ, we can evaluate the solution (6.4) for any choice of
initial conditions.

3. Once we have the solution in the form (6.4), it is simple to determine the
distribution of Yn. Each ˇnr Zr has a N .0; ˇnr .ˇ

n
r /
�/ distribution. Using the

independence of each Zr and the fact that the initial vectors fYmg0mD�` are
constant, we have

Yn � N

 
0X

mD�`
˛nmYm;

nX

rD1
ˇnr .ˇ

n
r /
�

!
: (6.7)

The upshot is that the ˛ and ˇ coefficients describe, respectively, the mean and
the variance/covariance of the computed solution.

4. The ˛ equation (6.5) can be derived in a much more direct fashion. Let us first
take the expected value of both sides of (6.1) to derive the deterministic DDE
(delay differential equation):

d

dt
EŒXt � D AEŒXt �C BEŒXt�� �:

Applying the standard Euler discretization to this equation yields (6.5). Numer-
ous prior works have studied Euler discretizations of a deterministic DDE.
Therefore, for the empirical convergence tests described below, we consider
problems where EŒXt � is zero and focus our attention on (6.6).
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5. Several methods exist to approximate SDDE by Markov chains [1, 8, 9]. Such
methods necessarily involve creating a number of discrete states to approximate
the continuous state space of (6.1); often the number of such states scales with
`, the discrete delay. While the Markov chain method of [1] is accurate and fast
for delayed random walks where ` is small and fixed, the number of states scales
like 4`. Hence the method breaks down when � is large; in this case, in order
for the time step h D �=` to be acceptable, we must choose a large value of
`. Algorithm (6.5) and (6.6) does not discretize the state space of (6.1), and it
is much less sensitive to the magnitude of the time delay � than Markov chain
methods.

6.3 Implementation and Tests

We have implemented algorithm (6.5) and (6.6) in R, an open-source framework for
statistical computing. The implementation simplifies considerably in the case of a
scalar equation, i.e., when N D 1. We therefore separate our discussion into scalar
and vector cases.

6.3.1 Scalar Case (N D 1)

When N D 1, the coefficients A, B , and C in (6.1) and the coefficients f˛nmg and
fˇnr g in (6.4) are all scalars. Then ˛n D .˛n�`; : : : ; ˛n0 / and ˇn D .ˇn1 ; : : : ; ˇ

n
n/ are

vectors, of respective dimension `C 1 and n. With this notation, (6.5) and (6.6) can
be written in matrix–vector form as

˛nC1 D .1C Ah/˛n C Bh˛n�` (6.8)

ˇnC1 D


.1C Ah/ˇn

0

�
C


Bhˇn�`

0

�
C Ch1=2enC1: (6.9)

Here 0 is the zero vector in R
`C1, and enC1 D .0; : : : ; 0; 1/ 2 R

nC1.
As explained above, algorithm (6.8) and (6.9) yields the exact probability density

function of the stochastic delay difference equation (6.3). To explore the practical
benefits of this fact, we compare our algorithm against the following Monte Carlo
procedure: (i) fix a value of the time step h D �=`, (ii) sample the random variables
fZngn>1 and step forward in time using (6.3), (iii) stop when we obtain a sample
of Yn at a fixed final time T > 0. Running this procedure many times, we obtain a
corpus of samples of Yn at time T . In what follows, we will compare the variance
of these samples against the variance computed using (6.9).
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Fig. 6.1 On the left, we fix h D 10�4, and plot in solid black the variance of the first N Monte
Carlo (MC) samples of (6.3) as a function of N , together with the variance computed using (6.9)
in dashed red. Convergence to the reference variance is not monotonic, seen more clearly on the
right log–log plot. Here we show results from runs with h D 10�2 (circles, dotted), h D 10�3

(squares, dashed), and h D 10�4 (diamonds, solid). Each point is the relative error between the
computed MC variance and the reference variance. In general, a very large number of MC samples
may be necessary to achieve the accuracy of (6.9)

For concreteness, let us fix the parameters � D 1, T D 5, A D �0:2, B D 0:3,
and C D 1:0. Recall that the time step h is determined by h D �=` where ` is a
fixed positive integer. In the left half of Fig. 6.1, we set ` D 104 (so that h D 10�4)
and plot in solid black the variance of the firstN Monte Carlo samples as a function
of N . The total number of samples computed here is N D 21;000. We also plot in
dashed red the variance computed using (6.9), which to four decimals is 4:7810.

In the right half of Fig. 6.1, we show three sets of numerical tests. Each point here
is the relative error between the computed Monte Carlo variance and the reference
variance computed using (6.9), plotted on a log–log scale. In circles (dotted line),
we have data for h D 10�2. In squares (dashed line), we have data for h D 10�3.
In diamonds (solid line), we have data for h D 10�4. The main point that we take
from this plot is that the convergence of the Monte Carlo method to the solution
computed using (6.9) is likely to be slow and non-monotonic. This implies that
algorithm (6.8) and (6.9) can be used to significantly speed up simulations of linear
SDDE. Algorithm (6.8) and (6.9) computes a solution with an accuracy that can
only be approached by Monte Carlo methods with an extremely large number of
samples.

In terms of convergence results, what we are most interested in is the h !
0 convergence of the algorithm (6.5) and (6.6) or its scalar variant (6.8) and
(6.9), without regard to any Monte Carlo scheme. In the left half of Fig. 6.2,
we plot the variance computed using (6.9) as a function of h, the time step.
The horizontal axis has been scaled logarithmically. The convergence shown is
consistent with first-order convergence, i.e., an error that scales likes h. This comes
as no surprise; the Euler–Maruyama method used to derive (6.3) exhibits first-
order weak convergence. To state this more formally, let C k

P .R
N / denote the space

of k times continuously differentiable real-valued functions on R
N , such that the



62 H.S. Bhat

h (size of time step)

va
ria

nc
e

4.
78

4.
82

4.
86

4.
90

1e−4 1e−3 1e−2 1e−1

Fig. 6.2 We compute the variance using (6.9) at T D 5 using h D 10�j for j D 1; 2; 3; 4. The
variance appears to converge as h decreases, and the rate is consistent with first-order convergence.
Note that the horizontal axis is logarithmically scaled

functions and their derivatives have polynomial growth [5]. Then it is known [3]
that there exist 0 < H < 1 and C (independent of h) such that for all 0 < h < H

and all g 2 C
2.�C1/
P .RN /,

jE.g.XT // �E.g.YT=h//j 6 Ch: (6.10)

In future work, we aim to build on this result to prove convergence of (6.5) and
(6.6).

6.3.2 Vector Case (N > 1)

Now we return to the fully vectorial algorithm (6.5) and (6.6). LetN D 2 and define

A D

�0:8 �1:25
1 0

�
; B D


�0:05 �0:21
0:19 �0:36

�
; C D



0:014 0:028

0:042 0:014

�
: (6.11)

We fix � D 1 and set the initial conditions Xt D Œ1; 0� for �� 6 t 6 0. We then
seek the solution Xt of (6.1).



6 Algorithms for Linear SDDE 63

x1

x2

−0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

−
0.

2
0.

0
0.

2
0.

4
0.

6

x1

x2

Fig. 6.3 We illustrate vector-valued solutions of (6.1) using algorithm (6.5) and (6.6) with � D 1,
h D 10�2, and initial conditions fixed at Œ1; 0�. For both plots, the black line gives the evolution
of the mean vector EŒXt �; at each point in time, the red band has total width equal to twice the
spectral norm of the variance–covariance matrix VarŒXt �. For the plot on the left, all three matrices
A, B , and C are nonzero and given by (6.11). For the plot on the right, we retain the A and C
matrices, but shut off the time delay by setting B D 0. These plots demonstrate the utility of
algorithm (6.5) and (6.6)

Using algorithm (6.5) and (6.6), we compute the ˛ and ˇ matrices up to T D 10

using a time step of h D 10�2. We then use (6.7) to compute the mean vector and
variance–covariance matrix of the solution at each point in time from t D 0 to
t D T . In the left half of Fig. 6.3, we plot using a black solid line the time evolution
of the mean vector. At each point in time at which the solution is computed, we also
plot a red line segment whose total length is twice the spectral norm of the variance–
covariance matrix at that time. These segments are intended to help visualize the
uncertainty in the mean solution, and they are plotted orthogonally to the tangent
vectors of the black line.

We see from (6.11) that if B and C were instead equal to zero, the dynamics
of (6.1) would be governed by A. The resulting linear system has a globally
attracting spiral-type equilibrium at Œ0; 0�. This stable spiral dynamic can be seen
in the left plot of Fig. 6.3. The width of the red band is due entirely to the C matrix
in (6.11). If we solve (6.1) with the noise matrix shut off (i.e., C D 0) and A and B
as in (6.11), the solution would be given by the black line.

To analyze the effect of the time-delay term governed by B , we solve the system
again using algorithm (6.5) and (6.6), but this time with B D 0. The solution in this
case is plotted in the right half of Fig. 6.3. Though the attracting fixed point at Œ0; 0�
remains, the dynamics are noticeably different. In this case, we can see that the time
delay term acts to slow the system’s approach to equilibrium.

Note that producing both plots in Fig. 6.3 requires less than 15 min on a single
core of a desktop computer with a 2.0 GHz Intel Xeon chip. To produce plots of a
similar quality using Monte Carlo simulations of (6.1) would require much more
computational effort.

Earlier we remarked that the scalar case was simpler than the vector case. In the
scalar case, we compute all “1 � 1” matrices ˇnC1r at once. Thus in the scalar
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algorithm (6.8) and (6.9), the only loop variable is n, discrete time. In the vector
case, we must loop over both n and r , since each ˇn is now a collection of n
differentN �N matrices. This last fact further complicates matters: ˇn�` contains a
different number of matrices than ˇn. At the moment, we use the list data structure
in R to store all these objects. In ongoing work, we seek large performance gains by
reimplementing the algorithm using more efficient data structures in C++.

Conclusion
In this paper, we have derived, implemented, and tested a new algorithm

for the numerical simulation of linearN -dimensional SDDE of the form (6.1).
The algorithm does not involve sampling any random variables, nor does it
compute sample paths. Instead, the algorithm computes matrices that yield the
full probability density function of the solution. Overall, the results indicate
that the new algorithm produces accurate solutions much more efficiently than
existing Monte Carlo approaches. Specific features of the algorithm include
(i) the ability to generate solutions for many different initial conditions after
running the algorithm only once, and (ii) the decoupling of the mean and
the variance portions of the algorithm. Future work shall involve establishing
the convergence and stability of the algorithm, and applying the algorithm to
realistic modeling problems.
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Chapter 7
Combined Tests for Comparing Mutabilities
of Two Populations

Stefano Bonnini

7.1 Introduction

Mutability is the aptitude of a qualitative variable to assume different categories [3].
With numerical variables, dispersion and heterogeneity of values, that is variability,
may be measured by means of range, interquartile range, variance, standard devi-
ation, coefficient of variation, mean absolute deviation, and several other indexes.
With categorical data, in particular with nominal variables, the concept of mutability
takes the place of that of variability. Mutability may be measured by other indexes
mainly based on the observed frequencies: index of Gini [3], entropy of Shannon [6],
family of indexes proposed by Rényi [5], and many others.

An index of mutability must satisfy the following properties:

• It takes value 0 if the same category is observed on all the statistical units
(degenerate distribution);

• It takes the maximum value if all the categories are observed with the same
frequencies (uniform distribution).

In general, the closer to uniform the distribution, the larger the mutability, and the
larger the differences in frequencies across categories, the smaller the mutability.
In several real problems, in presence of categorical data, the interest is focused
on the inferential problem of comparing mutabilities of two or more populations,
similarly to the comparison of variabilities for numerical variables, which is often
faced with the test on variances.

For this problem, a permutation test has been proposed by Arboretti Giancristo-
faro et al. [1]. This test is based on the computation of an index of mutability for both
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the samples and on the difference of the such sampling indexes as test statistic. After
a preliminary transformation of data, according to the rule of the Pareto diagram,
the permutation test follows a procedure similar to that of the test for stochastic
dominance (see [4]). The good power behavior under the null and the alternative
hypotheses is proved through a Monte Carlo simulation study. In [2] an alternative
nonparametric solution, based on a bootstrap resampling strategy, is studied and
compared with the permutation method. Even if, for both the permutation and the
bootstrap solution, the power behaviors of the tests based on different indexes are
similar, some differences of the rejection rates, highlighted by simulation studies,
justify the attempt of looking for an index free test, that is a test based on a statistic
which is not function of just one specific index of mutability.

In the present paper, for overcoming the cited drawback, a new permutation test,
based on the combination of different tests for mutability, is proposed. In Sect. 7.2
the testing procedure is presented. In Sect. 7.3 the results of a simulation study, for
comparing the power behavior of the proposed test with other tests based on specific
indexes, are shown and discussed. Section 7.4 is dedicated to the application of the
test to a real case study. Section 7.5 contains some final remarks.

7.2 Two-Sample Permutation Test for Mutability

Let us consider two populations and the categorical random variable X whose
support is given by the set of K categories fA1; : : : ; AKg. Let us denote the
proportion or the probability related to the kth category for the j th population with
	jk , with j D 1; 2 and k D 1; : : : ; K. In other words, by denoting the categorical
random variable under study for the j th population with Xj , it follows that

	jk D P rfXj D Akg: (7.1)

The vectors �1 D Œ	11; : : : ; 	1K�
0 and �2 D Œ	21; : : : ; 	2K�

0 are unknown
parameters of the respective populations and we are interested to compare mut.�1/

and mut.�2/, where mut.�j / denotes the mutability of the j th population. For
example, without loss of generality, let us consider the following two-sample one
sided testing problem:

H0 W mut.�1/ D mut.�2/ (7.2)

against

H1 W mut.�1/ > mut.�2/: (7.3)

According to what we said above, the mutability of a population is related
to the degree of “concentration” of the proportions or probabilities among the
categories in the population. As a matter of fact, a greater concentration implies less
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mutability and less concentration implies greater mutability. Degenerate distribution
corresponds to maximum concentration and uniform distribution corresponds to
minimum concentration. Accordingly, the comparison of mutabilities can be defined
by using the cumulative sums of the ordered parameters 	j.1/; : : : ; 	j.K/, with
j D 1; 2, where 	j.k1/ > 	j.k2/ if and only if k1 6 k2. Hence the problem can
be formally defined as follows:

H0 W
sX

kD1
	1.k/ D

sX

kD1
	2.k/ 8s 2 f1; : : : ; K � 1g (7.4)

against

H1 W
sX

kD1
	1.k/ 6

sX

kD1
	2.k/ and 9s 2 f1; : : : ; K � 1g such that

sX

kD1
	1.k/ <

sX

kD1
	2.k/:

(7.5)

The cumulative sums in (7.4) and (7.5) do not include the case s D K because
trivially

PK
kD1 	1.k/ D PK

kD1 	2.k/ D 1 is always true. In the presence of maximum
mutability in the j th population we have

Ps
kD1 	j.k/ D s=K 8s 2 f1; : : : ;

K � 1g. Instead in the presence of minimum mutability
Ps

kD1 	j.k/ D 1 8s 2
f1; : : : ; K � 1g.

Let us consider the class of indexes of mutability defined in the parameter space,
such that, when (7.2) and (7.4) are true, the index takes the same value in the two
populations and when (7.3) and (7.5) are true the index takes a greater value in the
first population. Let us denote with �j D �.�j / one of these indexes, computed for
the j th population. Among these measures of mutability we mention the following:

• Index of Gini: �G;j D 1 �PK
kD1 	2jk ;

• Index of Shannon: �S;j D �PK
kD1 	jk log 	jk ;

• Index of Rényi of order 3: �R3;j D � 1
2

log
PK

kD1 	3jk ;

• Index of Rényi of order 1: �R1;j D � log sup.	j1; : : : ; 	jK/.

Each of these indexes reaches its maximum value when the distribution in the j th
population is uniform: for the index of Gini we have maxŒ�G.�j /� D .K � 1/=K;
for the other indexes maxŒ�S .�j /� D maxŒ�R3.�j /� D maxŒ�R1

.�j /� D logK. In
case of degenerate distribution each of these indexes is equal to zero. Let us note
that such indexes are order invariant, that is

�.	j1; : : : ; 	jK/ D �.	j.1/; : : : ; 	j.K//: (7.6)

According to (7.4), under H0 the cumulative sums of the ordered parameters
for the two populations are equal. Similarly, from (7.5) follows that under H1 the
cumulative sums of the ordered parameters of the second population are greater than
or equal to those of the first population. In the latter case we speak of dominance in
mutability. Hence a two-sample directional test on mutability can be considered as
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a test on stochastic dominance for the variables transformed according to the Pareto
diagram rule by considering the ordered parameters. Formally, for each population,
the following transformation should be considered:

Yj D 'j .Xj / with 'j .Ak/ D r iff 	jk D 	j.r/: (7.7)

The transformed variables Y1 and Y2 are ordered categorical and P rfYj D rg D
	j.r/, j D 1; 2 and r D 1; : : : ; K. The testing problem under study can equivalently
be defined as H0 W Y1 Dd Y2 against H1 W Y1 >d Y2, where Dd denotes equality in
distribution and >d means stochastic dominance.

Thus a suitable permutation testing procedure is the following:

1. Compute the contingency table of the observed dataset and, for each sample,
calculate the ordered absolute frequencies fj.r/ with j D 1; 2 and r D 1; : : : ; K;

2. Consider some indexes of mutability and, for each index �, compute the observed
value of the test statistic based on the difference of the sampling indexes:
T�I0 D O�1 � O�2, where O�j D �. O	j.1/; : : : ; O	j.K//, with O	j.r/ D fj.r/=nj and
nj D P

r fj.r/;
3. Perform B independent permutations of the dataset, transformed according

to (7.7), by randomly reassigning the statistical units to the two samples;
4. For each permutation of the transformed dataset, compute the corresponding

contingency table with frequencies QfbIj.r/; each frequency corresponds to the
number of times the new transformed variable takes value r in the j th sample
after the bth permutation, thus QfbI1.r/C QfbI2.r/ D f1.r/Cf2.r/ and

P
r

QfbIj.r/ D nj
with b D 1; : : : ; B;

5. For each permutation of the transformed dataset and for each � index, compute
the corresponding permutation value of the test statistic T�Ib D Q�bI1� Q�bI2, where
Q�bIj D �. Q	bIj.1/; : : : ; Q	bIj.K//, with Q	bIj.r/ D QfbIj.r/=nj ;

6. For each � index compute the p-value according to the permutation distribution
of T� .

The permutation p-value is computed as follows:

�� D
PB

bD1 IŒT�I0;1/.T�Ib/C 0:5

B C 1
; (7.8)

where IŒa;b/.t/ denotes the indicator function of the interval Œa; b/, which takes value
1 if t 2 Œa; b/ and value 0 otherwise.

It is worth noting that the described permutation solution is data driven because
the transformation of the dataset according to the Pareto diagram rule depends
on data themselves. If the transformation considered the true order of the 	jk
parameters, underH0 exchangeability would be exact. Since the parameters’ values
are unknown, their order must be estimated with the sample observed frequencies
and exchangeability is only approximate. See [1] for a deep discussion.
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Another aspect of the described procedure is related to the test statistic. Accord-
ing to the chosen � index, the test statistic is different and the decision of rejecting
or not the null hypothesis could change according to which is the index chosen for
the procedure. For this reason, in the present paper, a different statistic based on the
combination of different �-dependent tests is proposed.

To this purpose, let us define the significance level function (SLF) of a permuta-
tion test based on the T test statistic as:

LT .t/ D
PB

bD1 IŒt;1/.Tb/C 0:5

B C 1
: (7.9)

Hence the p-value of the test based on the index of mutability � is equal to
L�.T�I0/. For each � index, after step (5) of the described procedure, compute
L�.T�Ib/, b D 1; : : : ; B . Then consider the matrix with B rows (corresponding to
the permutations) and a number of columns equal to the number of tests (indexes),
for representing the multivariate distribution of the test statistic whose marginal
components are the test statistics based on specific indexes. In other words, by
using, for example, the four test statistics defined above, the bth row of the B � 4
matrix is ŒT�G Ib; T�S Ib; T�R3 Ib; T�R1

Ib�, with b D 1; : : : ; B . The computation of the
SLF for each column of the matrix provides the B � 4 matrix whose bth row is
ŒL�G .T�G Ib/; L�S .T�S Ib/; L�R3 .T�R3 Ib/; L�R1

.T�R1
Ib/� D ŒlGIb; lS Ib; lR3Ib; lR1Ib�.

By choosing a combining function  .�/ satisfying some reasonable, intuitive
and easy to justify properties (see [4]), it is possible to derive a test statistic suitable
for solving the problem. The bth permutation value of the test statistic is

T Ib D  ŒlGIb; lS Ib; lR3Ib; lR1Ib�; (7.10)

and the permutation p-value is

� D
PB

bD1 IŒT I0;1/.T Ib/C 0:5

B C 1
; (7.11)

where T I0 D  ŒlGIb; lS Ib; lR3Ib; lR1Ib�.
Many non-increasing functions may be used for combining the tests. Assuming

that q different tests must be combined, some of the most used functions are:

• Fisher combining function:  F D �2Pq
iD1 log li Ib;

• Tippett combining function:  T D � maxŒ1 � li Ib�;
• Liptak combining function:  L D �Pq

iD1 ˚�1Œ1 � li Ib�,
where ˚.�/ denotes the standard normal cumulative distribution function.
For the two-sided test where H1 W mut.�1/ ¤ mut.�2/ the procedure may be

easily adapted by using T�I0 D jO�1 � O�2j and T�Ib D jQ�1Ib � Q�2Ibj.
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7.3 Monte Carlo Simulation Study

Let us consider the two-sample one-sided test defined in the previous section. In the
present section a Monte Carlo simulation study for comparing the power behavior
of some tests is described. The tests taken into account are the ones based on the
indexes of Gini (TG), Shannon (TS ), Rényi of order 3 (TR3) and 1 (TR1

), and the
solutions proposed in the present paper, based on the combination of the four cited
tests, through the application of the rule of Fisher (TF ), Liptak (TL) and Tippett
(TT ).

For a given simulation setting, for the j th population, data are generated by a
continuous uniform distribution:

Zj � U.0; 1/ (7.12)

and transformed according to the following rule:

Yj D int.K �Z�j
j /C 1 (7.13)

where int.x/ denotes the integer part of x and �j is a parameter taking values in
Œ1;1/ decreasingly related to mutability. When �j D 1, in the j th population the
mutability is maximum. The larger �j the lower the mutability.

Each simulation setting is defined by the number of categories K, the parameter
values �1 and �2 and the sample sizes n1 and n2. A number B D 1;000 of
permutations is considered for estimating the permutation distribution and 1;000
datasets are generated for each setting for estimating the power through the rejection
rates. Two significance levels are taken into account: ˛ D 0:05 and ˛ D 0:10.

Table 7.1 shows that, when the null hypothesis of equality in mutability is
true, in presence of small sample sizes, all the rejection rates do not exceed the
nominal alpha levels. The only exception is represented by the TR3 test which,
for large � values (low mutabilities) and small number of categories K, tends to
be anticonservative. For large sample sizes the anticonservative behavior of the
test based on the Rényi’s index of order 3, especially for low mutabilities and
small K, tends to accentuate and sometimes it extends to other tests. However the
rejection rates are in general very near the significance levels and, in particular for
the combined tests, we can speak of good approximation of the testing procedures.

In Table 7.2 the estimated powers of the tests, under the alternative hypothesis
of greater mutability for the first population, are reported. It is evident that
the power is increasing function of �1 and �2 (hence it grows as mutabilities
decrease). Furthermore, as expected, the larger the sample sizes and the difference
of mutabilities (�2 � �1) the greater the power. When the sample sizes are not equal
the rejection rates are slightly lower. In presence of unbalanced samples, when
the sample size of the first sample (which comes from the population with greater
mutability) is larger, the estimated power is greater.
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Table 7.1 Rejection rates of the two-sample tests on mutability (B D 1;000 permutations and
CMC D 1;000 generated datasets) under H0

Rejection rates

Setting Index dependent tests Combined tests

n1 n2 K �1 �2 �2 � �1 TG TS TR3 TR1
TF TL TT

˛ D 0:05

10 10 4 1:0 1:0 � 0:008 0:008 0:009 0:026 0:009 0:009 0:008

1:5 1:5 � 0:018 0:019 0:023 0:031 0:022 0:022 0:018

2:0 2:0 � 0:040 0:038 0:049 0:046 0:043 0:043 0:039

2:5 2:5 � 0:045 0:042 0:050 0:043 0:047 0:048 0:041

˛ D 0:10

1:0 1:0 � 0:040 0:046 0:052 0:062 0:044 0:044 0:044

1:5 1:5 � 0:049 0:049 0:063 0:079 0:058 0:057 0:056

2:0 2:0 � 0:102 0:101 0:108 0:095 0:103 0:103 0:099

2:5 2:5 � 0:100 0:100 0:108 0:097 0:099 0:099 0:095

˛ D 0:05

6 1:0 1:0 � 0:006 0:013 0:021 0:042 0:013 0:014 :019

1:5 1:5 � 0:026 0:029 0:039 0:043 0:029 0:029 0:029

2:0 2:0 � 0:029 0:030 0:037 0:037 0:034 0:035 0:032

2:5 2:5 � 0:041 0:040 0:047 0:041 0:042 0:042 0:037

˛ D 0:10

1:0 1:0 � 0:037 0:043 0:066 0:072 0:054 0:055 0:063

1:5 1:5 � 0:068 0:072 0:094 0:088 0:085 0:084 0:081

2:0 2:0 � 0:071 0:078 0:090 0:069 0:077 0:079 0:071

2:5 2:5 � 0:082 0:081 0:097 0:079 0:090 0:091 0:085

˛ D 0:05

50 50 4 1:0 1:0 � 0:009 0:011 0:009 0:027 0:011 0:011 0:017

1:5 1:5 � 0:044 0:038 0:054 0:055 0:050 0:050 0:044

2:0 2:0 � 0:054 0:048 0:056 0:047 0:052 0:053 0:051

2:5 2:5 � 0:055 0:046 0:060 0:049 0:052 0:052 0:051

˛ D 0:10

1:0 1:0 � 0:040 0:038 0:042 0:064 0:046 0:047 0:047

1:5 1:5 � 0:097 0:091 0:108 0:101 0:101 0:102 0:096

2:0 2:0 � 0:103 0:102 0:106 0:094 0:103 0:104 0:099

2:5 2:5 � 0:112 0:107 0:118 0:110 0:112 0:113 0:107

˛ D 0:05

6 1:0 1:0 � 0:009 0:013 0:011 0:027 0:013 0:013 0:016

1:5 1:5 � 0:038 0:037 0:044 0:050 0:044 0:044 0:045

2:0 2:0 � 0:046 0:046 0:049 0:044 0:047 0:047 0:047

2:5 2:5 � 0:056 0:052 0:060 0:055 0:056 0:056 0:054

˛ D 0:10

1:0 1:0 � 0:031 0:035 0:037 0:058 0:039 0:039 0:039

1:5 1:5 � 0:096 0:086 0:109 0:100 0:100 0:101 0:098

(continued)
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Table 7.1 (continued)

Rejection rates

Setting Index dependent tests Combined tests

n1 n2 K �1 �2 �2 � �1 TG TS TR3 TR1
TF TL TT

2:0 2:0 � 0:099 0:092 0:108 0:089 0:101 0:101 0:096

2:5 2:5 � 0:107 :106 0:110 0:102 0:107 0:108 0:105

˛ D 0:05

30 70 6 1:0 1:0 � 0:008 0:007 0:014 0:020 0:007 0:009 :007

1:5 1:5 � 0:038 0:038 0:051 0:053 0:044 0:045 0:045

2:0 2:0 � 0:046 0:040 0:048 0:049 0:048 0:048 0:044

2:5 2:5 � 0:055 0:051 0:061 0:053 0:056 0:055 0:053

˛ D 0:10

1:0 1:0 � 0:035 0:035 0:036 0:056 0:037 0:038 0:045

1:5 1:5 � 0:089 0:087 0:095 0:101 0:093 0:094 0:091

2:0 2:0 � 0:097 0:083 0:107 0:103 0:097 0:098 0:096

2:5 2:5 � 0:103 0:109 0:100 0:098 0:101 0:101 0:097

70 30 6 1:0 1:0 � 0:014 0:016 0:022 0:034 0:023 0:024 0:017

1:5 1:5 � 0:044 0:042 0:049 0:042 0:049 0:049 0:043

2:0 2:0 � 0:054 0:050 0:057 0:046 0:051 0:052 0:050

2:5 2:5 � 0:051 0:051 0:050 0:043 0:051 0:051 0:049

˛ D 0:10

1:0 1:0 � 0:058 0:058 0:069 0:078 0:063 0:063 0:059

1:5 1:5 � 0:081 0:083 0:089 0:082 0:080 0:080 0:076

2:0 2:0 � 0:110 0:098 0:117 0:102 0:109 0:110 0:102

2:5 2:5 � 0:101 0:096 0:107 0:091 0:101 0:101 0:100

When the mutability is high and when the difference of mutabilities is low, the
test based on Rényi’s index of order 1 (TR1

) seems to be the most powerful
among the compared solutions. In the other cases under H1, the rejection rates of
TR3 are in general the largest but we cannot ignore that the rejection rates of this
test tend to exceed the nominal alpha levels under H0. For this reason other tests,
which respect the ˛ levels under the null hypothesis, are preferable to TR3 . Among
the index dependent tests, TG (based on the index of Gini) seems to be the most
powerful. But in general the combined tests, in particular TF and TL (with very
similar performance), whose rejection rates under H0 are very near the significance
levels, present powers greater than TG .
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Table 7.2 Rejection rates of the two sample tests on mutability (B D 1;000 permutations and
CMC D 1;000 generated datasets) under H1

Rejection rates

Setting Index dependent tests Combined tests

n1 n2 K �1 �2 �2 � �1 TG TS TR3 TR1
TF TL TT

˛ D 0:05

10 10 4 1:0 1:5 0:5 0:018 0:017 0:020 0:028 0:020 0:020 0:015

1:5 2:0 0:5 0:060 0:056 0:061 0:074 0:061 0:061 0:049

1:5 2:5 1:0 0:127 0:125 0:138 0:140 0:136 0:136 0:117

1:5 3:0 1:5 0:193 0:178 0:212 0:202 0:208 0:208 0:169

˛ D 0:10

1:0 1:5 0:5 0:066 0:066 0:071 0:081 0:066 0:066 0:062

1:5 2:0 0:5 0:132 0:125 0:141 0:136 0:135 0:133 0:132

1:5 2:5 1:0 0:229 0:224 0:237 0:240 0:231 0:232 0:221

1:5 3:0 1:5 0:349 0:323 0:359 0:324 0:348 0:348 0:340

˛ D 0:05

6 1:0 1:5 0:5 0:034 0:045 0:055 0:072 0:051 0:051 0:054

1:5 2:0 0:5 0:063 0:076 0:093 0:070 0:083 0:083 0:077

1:5 2:5 1:0 0:118 0:130 0:151 0:103 0:129 0:130 0:122

1:5 3:0 1:5 0:216 0:221 0:250 0:195 0:230 0:231 0:215

˛ D 0:10

1:0 1:5 0:5 0:089 0:104 0:119 0:115 0:113 0:114 0:115

1:5 2:0 0:5 0:143 0:149 0:170 0:128 0:158 0:161 0:146

1:5 2:5 1:0 0:235 0:248 0:266 0:213 0:253 0:254 0:225

1:5 3:0 1:5 0:346 0:344 0:383 0:317 0:367 0:367 0:346

˛ D 0:05

50 50 4 1:0 1:5 0:5 0:189 0:179 0:195 0:219 0:207 0:207 0:203

1:5 2:0 0:5 0:252 0:250 0:258 0:252 0:258 0:258 0:249

1:5 2:5 1:0 0:586 0:548 0:594 0:561 0:594 0:594 0:579

1:5 3:0 1:5 0:758 0:734 0:764 0:752 0:760 0:762 0:753

˛ D 0:10

1:0 1:5 0:5 0:305 0:298 0:326 0:343 0:330 0:331 0:316

1:5 2:0 0:5 0:399 0:378 0:404 0:372 0:403 0:442 0:388

1:5 2:5 1:0 0:721 0:699 0:726 0:709 0:723 0:724 0:710

1:5 3:0 1:5 0:860 0:842 0:862 0:860 0:859 0:859 0:861

˛ D 0:05

6 1:0 1:5 0:5 0:170 0:139 0:188 0:209 0:184 0:185 0:179

1:5 2:0 0:5 0:294 0:250 0:312 0:294 0:301 0:300 0:288

1:5 2:5 1:0 0:607 0:566 0:612 0:575 0:610 0:609 0:594

1:5 3:0 1:5 0:826 0:786 0:832 0:815 0:828 0:827 0:814

˛ D 0:10

1:0 1:5 0:5 0:301 0:263 0:345 0:355 0:335 0:336 0:308

1:5 2:0 0:5 0:428 0:399 0:445 0:414 0:436 0:439 0:420

1:5 2:5 1:0 0:751 0:721 0:760 0:723 0:753 0:755 0:733

1:5 3:0 1:5 0:900 0:880 0:904 0:892 0:903 0:903 0:895

(continued)
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Table 7.2 (continued)

Rejection rates

Setting Index dependent tests Combined tests

n1 n2 K �1 �2 �2 � �1 TG TS TR3 TR1
TF TL TT

˛ D 0:05

30 70 6 1:0 1:5 0:5 0:119 0:109 0:134 0:142 0:134 0:133 0:130

1:5 2:0 0:5 0:242 0:221 0:260 0:239 0:250 0:254 0:230

1:5 2:5 1:0 0:511 0:489 0:530 0:521 0:519 0:520 0:519

1:5 3:0 1:5 0:769 0:728 0:778 0:740 0:776 0:777 0:758

˛ D 0:10

1:0 1:5 0:5 0:240 0:235 0:255 0:235 0:255 0:255 0:233

1:5 2:0 0:5 0:385 0:355 0:397 0:380 0:390 0:390 0:373

1:5 2:5 1:0 0:675 0:633 0:683 0:650 0:682 0:682 0:664

1:5 3:0 1:5 0:865 0:830 0:868 0:857 0:867 0:866 0:862

70 30 6 1:0 1:5 0:5 0:189 0:153 0:208 0:223 0:205 0:206 0:189

1:5 2:0 0:5 0:289 0:243 0:312 0:282 0:300 0:300 0:281

1:5 2:5 1:0 0:525 0:480 0:543 0:515 0:532 0:534 0:514

1:5 3:0 1:5 0:780 0:732 0:788 0:753 0:783 0:784 0:767

˛ D 0:10

1:0 1:5 0:5 0:315 0:276 0:345 0:362 0:340 0:343 0:330

1:5 2:0 0:5 0:426 0:371 0:440 0:423 0:434 0:432 0:419

1:5 2:5 1:0 0:680 0:608 0:686 0:664 0:682 0:683 0:667

1:5 3:0 1:5 0:866 0:842 0:871 0:868 0:869 0:870 0:865

7.4 Case Study

In 2013 a survey on student’s living and study conditions was performed by
University of Ferrara (Italy). One of the questions of the interview, performed on
a sample of 747 students, was related to the frequency of the sporting practice.
Females are expected to play sports less often than males. As a matter of fact
most of the females declared that they never do it. Here we wish to investigate
the homogeneity of the answers. We are interested in testing whether the category
of females who never play sports is very representative of the behavior of women
respect to sports, while for males the answers are much more diversified because of
a greater heterogeneity of behaviors. Formally we wish to test

H0 W mut.males/ D mut.females/ (7.14)

against

H1 W mut.males/ > mut.females/: (7.15)
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Table 7.3 Frequency of sporting practice of students by gender: contingency table

Frequency

Few times Few times Once/twice 3–5 times 6–7 times
Gender Never a year a month a week a week a week

Males 103 1 15 97 113 19

Females 170 7 18 113 76 15

Source: 2013 Survey on student’s living and study conditions at University of Ferrara
(Italy)

Table 7.4 Frequency of
sporting practice of students
by gender: table of
cumulative ordered relative
frequencies

Rank

Gender 1 2 3 4 5 6

Males 0.325 0.621 0.899 0.954 0.997 1.000

Females 0.426 0.709 0.900 0.945 0.982 1.000

Table 7.5 Normalized
indexes of mutability

Indexes

Gender Gini Shannon Rényi-3 Rényi-1
Males 0:869 0:777 0:698 0:628

Females 0:838 0:765 0:623 0:476

The contingency table shows that, as expected, most of the females never play
sports, while most of the males do it from 3 to 5 times a week (see Table 7.3).

According to the cumulative ordered relative frequencies, the curve of females is
not always over that of males, that is the former does not dominate the latter, thus,
from a descriptive point of view, it is not evident whether mutability of males is
greater (see Table 7.4).

By computing the indexes of mutability for both the samples we obtain greater
values in the sample of males (see Table 7.5). To shed light on the problem let
us perform the combined tests for mutability comparisons with B D 10;000

permutations.
At the significance level ˛ D 0:05 the null hypothesis of equality in mutability

must be rejected in favor of the alternative hypothesis of greater mutability for
males’s answers. As a matter of fact all the p-values (0:015 for TF , 0:020 for TL
and 0:005 for TT ) are less than ˛.

7.5 Conclusions

In the study of the power behavior, the combined tests for mutability comparisons
proposed in the present paper show a good approximation under the null hypothesis.
The power is increasing function of the sample sizes and of the difference between
the mutabilities, and ceteris paribus decreasing functions of the mutabilities. Among
the non anticonservative procedures, the combined tests on mutability are not only
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well approximated but, especially when using the combinations of Fisher and
Liptak, the most powerful under H1 also. The application of the combined test to
real data of a survey on living and study conditions of University students, to prove
the greater mutability of the behavior of males respect to females regards to sporting
habit, shows the usefulness of the proposed methodology.
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Chapter 8
Development of an Extensive Forensic
Handwriting Database: Statistical Components

Michèle Boulanger, Mark E. Johnson, and Thomas W. Vastrick

8.1 Introduction

The discipline of Forensics Sciences is at a crucial juncture where critical research
programs are necessary to forestall undue criticism and to strengthen the credibility
of certain areas, such as handwriting analysis. The National Research Council
(NRC) commissioned a comprehensive report (Strengthening Forensic Science in
the United States: A Path Forward, [8]) that outlined the various sub-disciplines,
evaluated them on the basis of their scientific underpinnings and identified important
research directions. Handwriting analysis received rather faint praise:

The scientific basis for handwriting comparisons needs to be strengthened. Recent studies
[7] have increased our understanding of the individuality and consistency of handwriting
and computer studies [11] suggest that there may be a scientific basis for handwriting
comparison, at least in the absence of intentional obfuscation or forgery. Although there
has been only limited research to quantify the reliability and replicability of the practices
used by trained document examiners, the committee agrees that there may be some value in
handwriting analysis.

Kam et al. [7], cited above, enlisted over 100 document examiners and a control
group of comparably educated individuals who were not trained in document
examination. Although the document examiners performed better than this control
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Table 8.1 Scientific interpretation and reporting of results [3]

Examiner finding Elaboration

Identification A definite conclusion that the questioned
writing matches another sample

Strong probability Evidence is persuasive, yet some critical
quality is missing

Probable Points strongly towards identification

Indications same person created both samples There are a few significant features

No conclusion There are limiting factors (e.g., disguise)
or lack of comparable writing

Indications Same weight as indications with a weak
opinion

Probably did not Evidence is quite strong

Strong probability did not Virtual certainty

Elimination Highest degree of confidence

group (thankfully!), they had a 6.5 % error rate in document identification. In
another study addressing forensic examiner expertise, [9] noted a 3:4% error rate
related to signature identification. Situations in which experts disagree on the source
or identification of documents could generate reasonable doubts in the minds of
jurors.

The computer study referenced in the NRC report is by Srihari et al. [11].
This paper, as the title indicates, makes a rigorous case for the individuality of
handwriting, which is a fundamental premise of forensic document examination.
Srihari’s work is pioneering in applying pattern recognition tools in the area and
extracting software defined features from handwriting specimens [10]. This study
included 1,568 such specimens whose originators ranged the gamut across the US
population, covering gender, age, and ethnicity. In contrast, our study will eventually
include 5,000 specimens and consider approximately 900 handwriting attributes
which collectively can address the handwriting individuality issue.

In response to the calls for additional forensics research, the National Institute
of Justice (NIJ) funded a large-scale study at the University of Central Florida
involving a statistically appropriate sampling of the overall US population or sub-
groups with the following objectives (taken directly from the funded proposal):

1. Develop statistically valid proportions of characteristics of handwriting and hand
printing based on specimen samples throughout the United States.

2. Provide practitioners of forensic document examination with statistical basis for
reliability and measurement validity to accurately state their conclusions.

3. Provide courts with the reliable data needed to understand the underlying
scientific basis for the examinations and the conclusions.

Ultimately, the results of this NIJ study will be incorporated into trial testimony
by forensic document examiner experts [4]. Table 8.1 provides the current wording
of document experts as standardized by [3].
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A primary objective of the study is to strengthen the underpinnings of the
statements of Table 8.1, and thus tightening the elaborations in column 2 of the
table.

Before embarking on the collection of handwriting specimens, the collaborators
dealt with some fundamental sampling issues specific to this investigation. First,
there is no sampling frame available for the study. The target population has been
defined as adults 18 years old or older who are capable of providing writing samples
in English (with some exclusions to be described). Attempts were made to obtain
samples from a constituency that is at least representative of the target population
regarding demographics and other factors known to influence handwriting. This was
accomplished by developing stratification variables corresponding to demographics
and handwriting factors. Quotas were then set to guide the collection of samples
(i.e., to avoid an over-abundance of specimens, for example, from college age
students who are readily located and coerced into participating). A substantial
number of forensic document examiners volunteered to collect these specimens with
the guidance of our protocols. Thus, the overall characteristics of the providers of the
written specimens are in accordance roughly with the proportions of characteristics
found in the target population. The determination of the surrogate population for
obtaining writing specimens is described in Sect. 8.2, including the lengths taken to
obtain samples according to our constraints.

A second fundamental issue is the reliability and replicability of the examiners
themselves in performing their review of written specimens. To assess this effort
first required a determination and delineation of the potential characteristics that
would be considered by each examiner. In particular, it was decided that multiple
characteristics would be considered for each letter in both cursive and printing
styles as well as numbers and special symbols (“?” , “,” , “;” , and so forth). As
described in Sect. 8.3, this led to over 2,500 possible features for consideration.
With a large candidate set of features for consideration, we then developed an
attribute agreement analysis study, which placed a heavy burden on three expert
examiners, but led to an evaluation of features that survive a test of agreement on
presence/absence of features between and within examiners. Ultimately, about 900
feature attributes had perfect agreement by examiners across and within examiners
for multiple written specimens. This attribute agreement analysis study is described
in Sect. 8.4. One key and original result of the attribute agreement analysis is the
elimination of characteristics that did not reach an agreement by examiners across
multiple specimens (which again would cause problems with court testimony).

With this substantial groundwork in place, the continued collection of specimens
and their detailed evaluation continues. Once this effort is completed, the authors
plan to publish the findings in a follow-up paper with an enlarged focus on statistical
results. A major contribution of this paper is a description of the attribute agreement
analysis that is essential to establishing the viability of examiner reliability with
respect to specific handwriting characteristics. The database of examiner determina-
tions of characteristics should provide a rich source of information that examiners
can draw upon to quantify more precisely their opinions regarding ownership of
specific “questioned” documents. A full discussion of how the final database will be
used in practice will be provided in future publications.
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8.2 Target Population Definition and Sampling of Writers

The first key statistical component of the study related to the identification of
what constitutes a representative sample of the US population and of appropriate
(and measurable) sub-groupings of the population. Our target sample size is 5,000
handwriting specimens.

To obtain a probabilistically valid sample, one needs to define the target popu-
lation and to develop a sampling frame for that population from which individual
units or group of units are drawn according to pre-defined set of probabilities. Our
target population is the USA population excluding children but including foreigners
traveling or living in the USA. Given the forensic nature of our project, i.e. the use of
science and data to evaluate and assess facts pertinent to handwritten specimens such
as contracts, licenses, or wills in a court of law, we defined our target population, as
follows:

i. Adults (at least 18 years of age)
ii. Residing or traveling in the USA (including foreign tourists)

iii. Able to provide writing samples in English (though not necessarily able to speak
English)

We excluded from our target population people with physiological constraints
and types of infirmities that would prevent them for being able to write the specimen
we developed. These exclusions are documented more precisely in the next section.

Having identified our target population, we quickly realized that we were facing
two major hurdles: .1/ the development of a sampling frame for that population,
and .2/ the ability to reach a person once selected from the sampling frame and to
obtain two handwritten copies of a standard letter from that person (one script and
one cursive). It takes about 20min to write both versions of the letter and the chances
that we obtained these handwritten specimen without direct contact with the person
selected are extremely low due to the effort required by the person selected, the lack
of interest or reward, the suspicions encountered with giving a handwritten sample,
and many other factors. Moreover, we must validate ownership of all handwritten
specimen before entering them in our database, and this requires that we actually
witness who writes a particular specimen. Thus, a direct contact between a data
collector and the person providing us with a handwritten specimen is necessary to
establish a viable chain of custody. All these reasons render the feasibility of a large
probabilistic sample unrealistic.

Thus our approach to data collection changed from a probabilistic sampling
process to the development of a data collection process that will lead to a large
sample of “writers” deemed representative of the target population. The approach
we followed was based on a study done to evaluate the performance of the national
telecommunications network before the breakout of the monopoly service provider,
AT&T [1, 2, 5]. There, as in our situation with handwriting, it was not possible to
construct a sampling frame of all the potential telecommunication paths in the USA
and a multi-level sampling approach based on identification of strata and clusters
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was developed to lead to a quasi-representative sample. We used a similar planning
approach that consisted of the following seven steps to guide the data collection
process specific to our study:

a. Research factors influencing handwriting
b. Define stratification variables based on

i. Key factors influencing handwriting
ii. Key variables describing target population

c. Define strata for selected stratification variables
d. Estimate proportions of strata in target population
e. Define a data collection process to obtain a sample that will be “deemed” a

representation of the target population (i.e., meet the quota specifications)
f. Provide guidelines to data collectors on the data collection process
g. Audit data collection process for adherence to data collection plan and for quality

control

8.2.1 Factors Influencing Handwriting

Huber and Headrick [6] provide a list of factors known to potentially influence
handwriting (Table 8.2). Each factor was reviewed and a decision made by the
collaborators regarding how to handle it in our sampling process: .1/ accept all
writers with any values of that factor without any recording of these values, .2/
accept all writers with any values of that factor but record the value of that factor for
each writer in the sample, or .3/ reject writers with some values for that factor from
the sample. Table 8.2 provides the disposition we made for each factor identified
in [6].

8.2.2 Definition of Stratification Variables, Strata,
and Proportion Allocation

Our next step was to identify the stratification variables we needed in order to obtain
as representative as possible a sample of 5,000 writers. The rationale for our choice
of stratification variables was to include factors known or suspected to influence
writing as defined in Table 8.2 and to provide coverage for other characteristics
of the USA population. Table 8.3 provides our selection of stratification variables,
strata, and proportion allocation in the USA. We adopted race (White, Black,
Hispanic, Asian) as one of our coverage factors and regions within the USA
(NE, NW, MW, SE, SW) as the other.
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Table 8.3 Factors used for stratification in our sampling process

Reference
in H&H

Stratification
variable Strata definition

Strata proportion in USA
(confirmed except writing
system) (%)

A Writing systems Location of third grade
schooling in USA

80.0

Location of third grade
schooling NOT in USA

20.0

B Gender Male 49.0

Female 51.0

C Age 18–30 33.0

> 30–50 36.0

> 50 41.0

D Handedness R 90.0

L 10.0

C Temporal state Night (after 8pm)

Day (before 8 pm)

D Education HS or less 49.0

> HS 51.0

N/A Race W 63.7

B 12.6

H 16.3

A 4.8

N/A US region (where
samples are taken)

North West

North East

Middle West

South West

South East

8.2.3 Data Collection Process, Guidelines, and Audit

Having identified the strata to be represented in our sample, the next step was
to provide guidelines to the data collectors to ensure their compliance with the
stratification plan developed thus far. We established the following process to
achieve representativeness of the sample:

i. Fix minimal quota specification for 80 % of the sample for each stratification
variable (Table 8.4). This was viewed as important by the collectors in order
to provide them with some flexibility in meeting the stratification quotas and
allowing them to introduce some level of randomness to cover for unforeseen
factors that could introduce a bias in the process.

ii. Pre-select type of locations to ensure quotas for representativeness are met and
randomness is achieved as much as possible at an affordable cost Within each
region, select:
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• 20 %: Universities (young adults, education at and beyond high school,
foreigner)

• 20 % Churches (mature adults). Select White churches, Black churches,
Asian temples and Hispanic churches

• 20 % Night entertainment locations (after 8 pm)
• 20 % Restaurants and Fast food (education less than high school)
• 20 % Survey or discretion

iii. Achieve coverage by letting the surveyor select places within the types and
guidelines mandated by the study

iv. Give latitude to surveyor to obtain samples
v. Collect information for potential correction during analysis

The results of these efforts led to the values given in Table 8.4.

8.2.4 Auditing the Collection Process

Finally, to ensure compliance with the data collection plan, we regularly audited the
collection of the sample specimens and provided guidance to the collectors to adjust
for deviations from the quota ranges. This process is illustrated in Table 8.5.

This data collection process is expected ultimately to provide us with 5;000
handwritten specimens, all validated by the data collectors themselves in terms of
ownership and in terms of documenting any unusual or useful criteria that may be of
use during the analysis process. The auditing process done by the collaborators of
this paper is also ensuring the validity of the overall plan and providing confidence in
the quality of the specimens whose characteristics are to be entered in the database.

8.3 Scope of Document Examiner Review

A standardized letter was used as the basis of the specimens to be provided by the
participants. Our version of the letter is a slight modification of the letter given by
Srihari et al. [11], with the exception being the addition of the middle name Raj
to the addressee (Fig. 8.1). All upper and lowercases of each letter are found in the
letter and lower case letters are found at the beginning, middle and end of words.
For each letter, our forensic document examiner (Vastrick) defined several specific
features for each letter (both cursive and printed), number and symbol and illustrated
them within an ACCESS database. All examiners in our study used this template
in order to determine presence/absence of each specified feature attribute. The
development of the attribute feature list was a major undertaking but was necessary
in order to establish a subset of attributes that examiners would find unambiguous
to determine.



88 M. Boulanger et al.

Table 8.4 Final data collection plan

Reference
in H&H

Stratification
variable Strata definition

Strata proportion
in USA (confirmed
except writing
system) (%)

Minimal quota
specification (80 %
per factor) (%)

A Writing Systems Location of third
grade schooling
in USA

80.0 >70.0

Location of third
grade schooling
NOT in USA

20.0 >10.0

B Gender Male 49.0 >40.0

Female 51.0 >40.0

C Age 18–30 33.0 >20.0

>30–50 36.0 >30.0

>50 41.0 >30.0

D Handedness R 90.0 >75.0

L 11.0 >5.0

C Temporal state Night (after 8pm) >20.0

Day (before 8 pm) >60.0

D Education HS or less 49.0 >30.0

>HS 51.0 >50.0

N/A Race W 63.7 >55.0

B 12.6 >10.0

H 16.3 >11.0

A 4.8 >4.0

N/A US region (where
samples are taken)

North West >15.0

North East >15.0

Middle West >15.0

South West >15.0

South East >15.0

N/A Location College and
universities

>20.0

Religious places >20.0

Social and non
social gathering

>40.0

Each specimen was generated by a participant using a common pen type (BIC
medium point) and 20-pound lined paper. Each participant copied the letter with
both cursive and printed styles and per Institutional Research Board protocols that
could allow the termination of participation at any time for any reason by the
specimen provider. The participation rate was found to be improved when the
examiner solicited help on the basis of a “university research project” rather than
a project to assess potential criminal behavior.
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Fig. 8.1 Typed version of specimen letter

The contents of the database are illustrated with uppercase cursive M .
Figures 8.2 and 8.3 provide a few of the characteristics given in the database
with the corresponding description. Other letters are treated similarly and will be
available in the final report to the National Institute of Justice.

8.4 Attribute Agreement Analysis

As noted in the previous section, for purposes of our study, the examiners determine
presence or absence of numerous characteristics for cursive and printed letters,
numbers and various symbols. Since only presence/absence of each feature is
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Fig. 8.2 Initial five characteristics of the capital letter “M ”

reported, particular interest is to be paid to those characteristics that are agreed
upon across several specimens (possibly some with and some without the specific
feature). An attribute agreement study was designed for which three professional
forensic document examiners reviewed several writing specimens. In this section,
this study is described and the conclusions presented.

The original design of the attribute agreement study was to provide five distinct
specimens to three examiners, and following a lag period, re-provide two of them
again to each examiner. Although the process for checking presence/absence of
characteristics is somewhat automated, completing a review for all 2;500+ features
takes on the order of 8 h per examiner per specimen. Owing to the location of the
three examiners in different regions of the country and some time constraints, the
actual specimens by examiners were performed, as follows in Table 8.6:

As can be seen from Table 8.6, seven rather than five specimens were circulated,
and the same two specimens were not considered twice by each examiner. Nev-
ertheless, in spite of imperfect balance, there are numerous instances of multiple
examiners reviewing the same specimens, so considerable data was collected in
this exercise. Further, the specific reviews for cursive and printing specimens were
slightly different, but such a discrepancy does not detract from the numerous
concurrent comparisons made. Examiner R was the only individual who looked at
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Fig. 8.3 Final five characteristics of the capital letter “M ”

Table 8.6 Actual
implementation of the
attribute agreement study

Cursive letters (both upper and lower case):

Examiner T: 4, 7, 111, 201, 222 C 4, 7

Examiner E: 4, 111, 201, 222 C 4, 111, 222

Examiner R: 4, 7, 95, 111, 201, 222 C 7

Printed letters (both upper and lower case):

Examiner T: 4, 7, 111, 201, 222, C 4, 222
Examiner E: 4, 7, 111, 201, 222 C 4, 111, 222

Examiner R: 4, 7, 95, 111, 201, 222 C 7

specimen #95, which provides no information on the agreement across examiners.
However, its inclusion did facilitate checking the algorithm for determining which
features showed agreement across all reviews (both among examiners and within
when an examiner looked at a specimen once again at a later date).

The data collected from the attribute agreement study was tabulated in a spread
sheet with 2;500 columns (one per characteristic) and 21 rows for cursive and
22 rows for printed (each row corresponding to one specimen and one examiner
review). To determine if the examiners agreed within each specimen (all true or all
false), a SAS/JMP analysis was used. The distribution of each column by specimen
was summarized and then it was determined if the number of realizations was one
(corresponding to either all true or all false) for each specimen. If this were the case
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Table 8.7 Characteristics for cursive m, M with complete agreement by the examiners

m CLCM_1. Internal or terminal letter connected to previous lower case letter

m CLCM_10. Middle leg is enclosed loop

m CLCM_17. Internal m not connected to both previous and subsequent letter

m CLCM_18. Initial and internal letter connected to subsequent letter

m CLCM_3. Left peak is clearly pointed

m CLCM_4. Left peak is enclosed loop

m CLCM_7. Left leg is enclosed loop

M CUCM_1. Counterclockwise curving initial stroke

M CUCM_3. Extraneous straight initial stroke

M CUCM_4. Initial stroke begins on staff

M CUCM_6. Upward stroke to first overcurve is retrace (open or closed)

M CUCM_7. Upward stroke to first overcurve is clearly counterclockwise curve
(no angular point)

M CUCM_10. Left overcurve is clearly taller than right overcurve

M CUCM_23. Not connected to subsequent letter

for each specimen, then the implication was that the examiners agreed across each
specimen. Thus, it is a fairly straightforward manned to determine all characteristics
that survive this scrutiny a single disagreement eliminates the characteristic from
further consideration.

Recall from the previous section the illustration with the cursive letter m. From
an initial set of 19 characteristics, there were seven characteristics for which the
examiners agreed across all specimens considered (Table 8.7). For uppercase cursive
M there were 23 characteristics considered of which seven made the final cut.

A subset of the results for the number of agreed characteristics by case for
cursive writing style is given in Table 8.8. The number of surviving characteristics
varied considerably by letter and case. The identification and specification of
handwriting characteristics represents a tour de force by our forensic document
examiner (Vastrick).

8.5 Future Directions

This paper has provided a description of the development of the handwriting
features data base and the corresponding attribute agreement analysis. These are
essential first steps to establishing the validity of the database and lay the foundation
for subsequent quantitative analyses on future documents. These unambiguously
identifiable features can be used to discriminate among documents containing these
items.
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Table 8.8 Summary results for cursive handwriting

Uppercase cursive Lowercase cursive

Letter # characteristics # agree # characteristics # agree

A 59 11 12 0

B 34 12 13 1

C 16 2 12 5

D 24 13 31 12

E 28 12 8 4

F 30 11 27 11

G 33 21 30 7

H 41 30 16 7

I 29 7 21 7

J 19 11 29 19

K 38 3 14 5

L 26 16 11 6

M 21 7 19 7

N 22 9 13 7

O 17 10 22 9

P 28 7 19 4

Q 12 3 26 11

R 19 7 14 3

S 19 5 15 4

T 42 16 20 11

U 24 7 22 6

V 19 6 24 9

W 35 15 37 11

X 27 16 17 6

Y 19 9 24 5

Z 27 14 22 4
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Chapter 9
Bayes Factors and Maximum Entropy
Distribution with Application to Bayesian Tests

Adriana Brogini and Giorgio Celant

9.1 Introduction

The Bayes factor [3–5] has taken a renewed interest in the Bayesian statistics being
an instrument less binding than the posterior probability distribution, on which is
based the Bayesian response to inferential problems as the parametric hypothesis
testing.

Although the Bayes factor, in general, depends on the a priori information of the
experimenter, it eliminates some of its influence on the likelihood, measuring the
evidence in favour of the hypothesis of interest due to the sampling observations.

It should also be noted as the context of the hypothesis testing is not compatible
with an entirely uninformative a priori Bayesian approach, since the same formula-
tion of the problem assumes the subdivision of the parametric space into at least two
subsets, involving a latent information on the chosen statistical model, in particular
toward the hypothesis that has to be tested.

For the given reasons, in this paper we propose the analysis and the solution
of some parametric two-sided tests, combining the Bayes factor’s logic with the
maximum entropy method, that allows to obtain the less informative a priori
probability distribution, taking into account the amount of initial information
available to the experimenter.
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9.2 Bayes Factor and Testing of Hypothesis

9.2.1 Definitions

Let X � 
 � R
n � R; let .X �
;BX

NB
; fP .x; 	/ W .x; 	/ 2 X �
g/ be
a Bayesian experiment in which: .X ;BX ; fP	 W 	 2 
g/ is a parametric statistical
model and f
;B
;˘g is a probability space.

Let us suppose that P	 	 � and ˘ 	 �, where � is either the Lebesgue
measure or the counter measure; dP	

d�
D f .x=	/ and d˘

d�
D � .	/ will be,

respectively, the Radon–Nikodyn derivative of P	 and ˘ respect to �.
Let Œ
0;
1� be a partition of the parametric space, 
 in which H0 W 	 2 
0 is

the subset of the hypotheses of interest, possibly reduced to a point andH1 W 	 2 
1
is the subset of the alternative hypotheses. We will suppose to explain the a priori
distribution ˘ on these two events only,

˘0 D Prob .	 2 
0/ D
Z


0

� .	/ d� .	/

and

˘1 D Prob .	 2 
1/ D
Z


1

� .	/ d� .	/ :

The problem is in the updating of the a priori information through Bayes theorem,
using the likelihood, i.e. the sampling information.

Definition 1. We define B˘ .x/, Bayes factor in favour of H0, the amount:

B˘ .x/ D ˘ .	 2 
0=x/
˘ .	 2 
1=x/ D ˘0

˘1

where˘ .	 2 
i=x/ ; i D 0; 1 is the posterior probability computed with the priori
˘ and ˘i; i D 0; 1, is the a priori probability of the parameter to belong to the
subsets 
0 and 
1.

It is evident that B˘ .x/ depends both on likelihood than from a priori informa-
tion, even if the latter is partially evaded, as we will see in formula (9.2). To highlight
this dependence, in the case of our interest, i.e. for 
0 D f	0g, it is convenient to
write the a priori distribution as follows:

˘ .	/ D
�
˘0g0 .	/ if 	 2 
0
˘1g1 .	/ if 	 2 
1 (9.1)

where gi .	/ D ˘.	/

˘i .	/
�
i .	/ (� D indicator function). The gi .	/, i D 0; 1

represents proper conditional densities, that describe how the “mass” of a priori
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probability extends on the two considered subsets; thus, the Bayes factor has the
form:

B˘ .x/ D f .x=	0/˘0R

1
f .x=	/ g1 .	/ d� .	/ .1 �˘0/

=
˘0

.1 �˘0/
(9.2)

In the case that both hypotheses are punctual, the amount B˘ .x/ coincides with
the classical likelihood rate. In fact from (9.2), setting 
1 D f	1g, we obtain:

B˘ .x/ D f .x=	0/

f .x=	1/
(9.3)

Formula (9.2) highlights how the Bayes factor, for at least a punctual hypothesis,
cannot be defined if the a priori probability distribution is absolutely continuous
respect to the Lebesgue measure or more general whenever it is˘0 D 0 or˘1 D 0.
In this case, the use of a priori distributions that are spread, vague or Jeffreys a
priori, absolutely continuous respect to the Lebesgue measure, the use of which is
consolidated in absence of a well formulated subjective a priori, is not possible.

The following example emphasizes the inadequacy of the use of the spread
distribution.

Example 1. Let X � N .	; 1/. We want to test the following hypothesis:

�
H0 W 	 D 0

H1 W 	 ¤ 0

The use of a non-informative law ˘ .	/ D 1, where 	 ¤ 0 leads to

˘ .	 D 0=x/ � e� x
2

2

e� x
2

2 C R C1
�1 e�

.x�	/2

2 d	

D 1

1C p
2�e

x2

2

if ˘0 D 1=2. Consequently the posterior probability of H0 is increased by,
1

.1Cp2�/ D 0:285 giving little advantage to the null hypothesis even in the most

favourable case. It can be stated that, in general, the use of spread probability
distributions leads to biased results in favour of the alternative hypothesis.

Below, we try to solve the problem of the description of our a priori “ignorance”
related to a system of hypothesis, through some a priori that don’t have the
inconveniences just described.

Of relevant importance it will be the entropy functional, that is defined as follows:

H .g .	// D
( �Pn

iD1 g .	i / lng .	i / (discrete case)

�R


g .	/ ln

�
g.	/

Qg.	/
�
d� .	/ (continuous case)

where Qg .	/ is a suitable function (see Sect. 9.3).
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9.3 A Priori Distribution of Maximum Entropy

The concept of entropy (untidiness, uncertainty) introduced in thermodynamics was
quantified within theory of information, since the fundamental works of [7, 8], as
measure of the degree of untidiness or the lack of information associated with the
statistical description of a system.

The maximization of the entropy was proposed by Jaynes (1968) as a method
to assign a priori probability distributions, considering the entropy as a suitable
measure of the lack of information or analogously, of the amount of uncertainty
represented by a probability distribution.

The method is based on the idea that we must assign as probability distribution
the one which is consistent with the observable evidence, i.e. with the amount of
initial information controllable and translatable in a series of constraints, leaving to
the rest of variability, maximum freedom. It should be specified, as Jaynes defines
“controllable an information about a size of a system, if for each allocation of
probability is possible to determine unambiguously if there is agreement or not with
the information itself” [6] Jaynes (1981) and that “any type of information you have
it provides the most honest description of our knowledge” Jaynes (1967) [6].

If no information is available, and the amount of interest can assume only a finite
number of values, the solution of maximum entropy reduces to that proposed by the
postulate of Bayes–Laplace (principle of indifference) and the proposed probability
distribution is the discrete uniform distribution.

If the amount of interest is continuous, one needs to choose a prior dominant
measure ( Qg), that allows the invariance of the entropy functional and that corre-
sponds to the situation which is totally uninformative. The solution of maximum
entropy will depend from this choice. For example, when a structure of group for
the model is available, you choose as Qg the right measure of Haar, defined for this
group.

In the particular case of a parameter of position, case that will be examined
in Sect. 9.4, in which there is translation invariance, the measure results that of
Lebesgue, that coincides with the invariant location measure a priori of Jeffreys.

9.4 An Application to Hypothesis Testing: The Problem
of Punctual Hypothesis

The punctual hypotheses may be considered unrealistic [2], however we observe
that:

(a) The hypotheses of the form, H0 W 	 2 Œ	0 � �; 	0 C ��, in general may be
approximated by punctual hypotheses, H0 W 	 D 	0, without any change of the
a posteriori probabilities, when the likelihood is constant around 	0 [1].
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(b) In many practical cases the hypotheses are punctual. Just think to an experiment
in which the variables are treated. In this case it is essential to check the extent
of treatment.

It is worth to assess the following problem of hypotheses testing:

�
H0 W 	 D 	0
H1 W 	 2 Œa; b� n f	0g ; a < b .a; b/ 2 R

2

Hence: 
 D 
0
S

1 and 
0 D f	0g and 
1 D Œa; b� n f	0g Let be:

� D b � a; M1 D
Z


1

	g1 .	/ d� .	/ ; M2 D
Z


1

Œ	 �M1�
2g1 .	/ d� .	/

where �1is any fixed point in the interval. Œa; b� n f	0g.
The information contained into the system of hypothesis above can be translated

in the following constraints:

1. ˘0 C˘1 D 1

2. 	 2 
1, conditionally to H1.

If we want to use the Bayes factor to solve the hypotheses testing, it is necessary
to set the values: ˘i; i D 0; 1and g1 .	/.

This clarification will occur through the method of maximum entropy.
On the basis of this method, it is easy to see that ˘1 D 1=2, since we know that

(Sect. 9.3) the solution is uniform and discrete on f
0;
1g.
To obtain g1 .	/, through the method of maximum entropy, it is necessary to

modify the constraint 2. Note that the only deduction we can draw from the relation
	 2 
1is that:

jMi � �i j 6 �; i D 1; 2:

In fact for i D 1 we obtain the Cauchy condition; for i D 2, we know 	 less than
an error �, thus the variance cannot exceed �. Hence, the constraint will become:

jM2 � �2j 6 �; �2 D 0:

This position allows us to write the Cauchy condition and those related to the
variance in the following more compact form:

2X

jD1

�
Mj � �j

�

�2
6 2: (9.4)

The g1 .	/ is determined by the following problem of optimum
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8
ˆ̂<

ˆ̂:

max
g1.	/

H .g1 .	//

˘1 D 1
2P2

jD1
�
Mj��j

�

�2
6 2

which is equivalent for convexity of (9.4) to:

8
<̂

:̂

maxg1.	/ H .g1 .	//

˘1 D 1
2P2

jD1
�
Mj��j

�

�2 � 2 D 0

In the following paragraph we show the computations in detail and the solution
of the problem of optimum in the case when the constraint (9.4) is replaced with
only the Cauchy condition. The general case with the constraint (9.4) doesn’t lead
to an explicit solution, so it is omitted.

9.5 Determination of the Distribution of Maximum
Entropy

The determination of the function g1 .	/ W Œa; b� ! R
C which satisfies the

constrained optimum problem, constraint of Cauchy, is similar to the determination
of the constrained optimum of a real function.

The following theorem holds:

Theorem 1 (Kolmogorov, Fomin). Let be X , a normed space, A an open of X ,
x0 2 A; g W A ! R, Fréchet differentiable in x0, if x0 is a point of maximum or
minimum for g, then dg .x0/ .h/ D 0, for whatever h.

Given that:

f .	/ D g .	/
R b
a
g .	/ d	

I M D
Z b

a

	f .	/ d	 (9.5)

and �1 a fixed value in Œa; b�.
The described problem is equivalent to:

2

6666666664

maxf H .f / D max
f

"
�
Z b

a

f .	/ lnf .	/ d	

#

Z b

a

f .	/ d	 � 1 D 0

1

�2
.M1 � �1/2 � 1 D 0

(9.6)
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indicating with I0 an interval around zero, and supposing that f .	/ is limited in
I0 nf0g When the Fréchet differential exists, the Gateaux differential also exists and
they coincide.

We proceed with the computation of the “directional derivative” of the
Lagrangian: L Œf .	/C dh.	/� where

L .f / D f .	/C �0

"Z b

a

f .	/ d	 � 1
#

C �1

2

4 1
�2

 Z b

a

	f .	/ d	 � �1
!2

� 1
3

5

(9.7)

We derive term by term the sum

@

@˛

(
�
Z b

a

.f .	/C ˛h .	// ln .f .	/C ˛h .	// d	

)

D �
Z b

a

@

@˛
Œ.f .	/C ˛h .	// ln .f .	/C ˛h .	//� d	

D �
Z b

a

Œh .	/ lnf .	/C ˛h .	/C h .	/� d	

D �
Z b

a

h .	/ Œln .f .	/C ˛h .	//C 1� d	

hence for ˛ D 0 we have

�
Z b

a

h .	/ Œlnf .	/C 1� d	

@

@˛

(
�0

"Z b

a

.f .	/C ˛h .	// d	 � 1
#)

D �0

"Z b

a

@

@˛
.f .	/C ˛h .	// d	

#
D �0

Z b

a

h .	/ d	

@

@˛

8
<

:�1

2

4 1
�2

 Z b

a

	 .f .	/C ˛h .	// d	 � �1
!2

� 1
3

5

9
=

;
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D �1

8
<

:
1

�2

2

4 @

@˛

 Z b

a

	 .f .	/C ˛h .	// d	 � �1
!2

� 1
3

5

9
=

;

D �1

�2

(
2

"Z b

a

	 .f .	/C ˛h .	// d	 � �1
#"Z b

a

yh .y/ dy

#)

and for ˛ D 0 we have:

2�1

�2

 Z b

a

	f .	/ d	 � �1
!

�
 Z b

a

yh .y/ dy

!

hence, we obtain

dL.f / .h/ D
Z b

a

h .	/

�
� lnf .	/ � 1C �0 C �1

�
�2	�1

�2

�

C �1

Z b

a

2
	y

�2
f .y/ dy

)
d	: (9.8)

In order to obtain the extreme points, we have to solve dL.f / .h/ D 0, whatever the
direction h for this, it is sufficient to set the term in curly brackets of (9.8) equal to
zero, i.e.

ln f .	/ D �0 � 1C �1

�
�2	�1

�2

�
C �1

Z b

a

2
	y

�2
f .y/ dy: (9.9)

Formula (9.9), since f .	/ is unknown, is a nonlinear integral equation. Since

f .	/ 2 L1 and
�
2
	y

�2

�
is a monomial, we can state that their product is a function

of L1 and we can determine a polynomial solution by setting

lnf .	/ D a0 C a1	: (9.10)

We replace this expression in both members of the integral equation (9.9) and,
applying the principle of identity between polynomials, we proceed to the deter-
mination of the coefficients a0 and a1, using the constraints

Z b

a

f .	/ d	 D 1 ) ea0 D a1

ea1 � 1 : (9.11)

For the sake of simplicity and without loss of generality of the results, we provide
the following transformation 	 D t�a

b�a ; a; b 2 R, a < b



9 Bayes Factors and Maximum Entropy Distribution 105

Computation of a1:

"
1

�2

�Z 1

0

	ea0Ca1	d	 � �1
�2

� 1
#

D 0:

where

Z 1

0

	ea0ea1	d	 D ea0


1

a1
ea1 � 1

a21
ea1 C 1

a21

�

and we obtain:

1

�2
ea0


a1e

a1 � ea1 C 1 � a21�1
a21

�2
D 1I

1

�2
a1

ea1 � 1


a1e

a1 � ea1 C 1 � a21�1
a21

�2
D 1

set ea1 D z, we obtain the following equation:

.�1/
2 .ln z/4 � �

2z�1 C �2 .z � 1/� .ln z/3 C �
z2 � 2�1 C 2z�1

�
.ln z/2

C �
2z � 2z2

	
.ln z/C 1C z2 � 2z D 0: (9.12)

Equation (9.12) is equivalent to the following:

z D
h
2 � 2 .ln z/ � �1 .ln z/2 C �2 .ln z/3 C 2	 .ln z/3 C � .ln z/2

i

�
q
4 � 4 .ln z/ � 4	 .ln z/C �2 .ln z/2 C 4	 .ln z/2=2

h
1 � 2 .ln z/C .ln z/2

i

(9.13)

9.6 Computation of the a Posterior and of the Bayes Factor

We explicit the computations and the system of hypothesis described before, with
the assumptions and the same notation. Indicating with � .	0=x/the a posterior
density under H0 and L .x=H0/, the likelihood under H0, we have:

˘ .	0=x/ D L .x=	0/˘0R 1
0
L .x=	/ � .	/ d	

(9.14)
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D L .x=	0/˘0

L .x=	0/˘0 C .1 �˘0/
R
.0;1�

L .x=	/ g1 .	/ d	

In the same way we obtain the Bayes factor that is:

B� .x/ D L .x=	0/˘0�R
.0;1�

L .x=	/ g1 .	/ d	
�
.1 �˘0/

� 1 �˘0

˘0

D
1p
2�
e
� 1

2.x�	0/
2

1p
2�

R 1
0
e
� 1

2.x�	/2 ea0Ca1	d	

D 1

ea0C1=2.a1Cx/2Œ˚.0/�˚.1/�
;

where ˚ is the cumulative distribution function of a N Œ.a1 C x/ ; 1�.

9.7 Final Observations

Formula (9.13) of the paragraph 5, which explicits the value of z shows that z is a
function of �1 and �. In order to obtain a real example, we consider the limits of
integration imposed by the transformation 	 D t�a

b�a , i.e. 	 2 .0; 1�. In this case:

� D b � a D 1I �1 D 1

2

and

H0 W � D 0

H1 W � 2 .0; 1�

Using the computer program “MATEMATICA”, we have the following two
solutions: z D 1 and z ' 8; 776. The first solution z D 1 is not acceptable
because it leads to an undetermined constant a0. In fact ea1 D 1, i.e. a1 D 0 and
ea0 D a1

ea1�1 D 0
0
.

The second solution is compatible and leads to the “approximated” determination
of the constants: a0 ' �1:275 and a1 ' 2:172.

Note that the undetermination, which follows to the trivial solution, z D 1 is a
confirmation that the uniform distribution, which reflects a more vague information,
is not acceptable as solution of the testing problem, as we had already identified in
the introduction.
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To conclude we observe that at the objection that the constraint (4) doesn’t reflect
exactly the information described by the system of hypotheses is possible to answer
back that, if we are not able to translate the information in a more precise analytic
form for the application of the method of maximum entropy, it is necessary to
consider, as source of uncertainty (and then to increase the value of the entropy),
the information not expressible by the inequality constraints.
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Chapter 10
Monte Carlo Algorithm for Simulation
of the Vehicular Traffic Flow Within the Kinetic
Model with Velocity Dependent Thresholds

Aleksandr Burmistrov and Mariya Korotchenko

10.1 Acceleration Oriented Kinetic Model

We develop our algorithms in the frame of the kinetic VTF model suggested
in [5]. A distinctive feature of this model consists in introducing of the acceleration
variable into the set of the phase coordinates along with the velocity coordinate of
the car. Such a modification of the phase space allowed to describe not only a partly
constrained traffic but also a higher car density regimes.

According to this model, in the case of homogeneous traffic flow, the probability
density f .a; v; t/ for a single car with acceleration a and velocity v solves the
integro-differential equation of Boltzmann type:

�
@

@t
C a

@

@v

�
f .a; v; t/ D

Z

Na; Nv;a0

�
˙.a0 ! ajv; Na; Nv/f .a0; v; t/ (10.1)

� ˙.a ! a0jv; Na; Nv/f .a; v; t/� f . Na; Nv; t/ d Na d Nv da0;
Here we distinguish two types of vehicles: the leader with the kinematic state . Nv; Na/
which interacts with the follower (the current car situated directly behind the leader).
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As the car acceleration a is added to the phase coordinates, there are only
acceleration jumps (no velocity jumps, as in other kinetic models) produced by
the pairwise interactions in the system, which are expressed by the Boltzmann-like
interaction integral (the right side of Eq. (10.1)).

The function ˙.�/ in the latter integral is a weighted interaction rate function.
It determines the type of interaction in the system and is a compound of the
interaction rate Q.�/, the acceleration change probability density �.�/ and the
distance correlation function D.�/:

˙.a0!ajv; Na; Nv;mf /

D
1Z

hmin

�.a0!ajh; v; Na; Nv/ �Q.h; a0; v; Na; Nv/ �D.hja0; v;mf / dh:

Here hmin is the minimal distance between two cars (a mean length of a car). The
interaction rate Q.�/ depends on a current microscopic state of the interacting car
pair and the distance h between them.

The function �.�/ defines the probability of changing the acceleration of the
follower from a0 to a when the interaction between the cars with the states .v; a0/
and . Nv; Na/ takes place at distance h.

The function D.�/ is a conditioned probability density of the distance h. It does
not depend on the leader’s state . Nv; Na/, because for the follower it is difficult to
evaluate this state even qualitatively. But the distance behavior depends on the
whole traffic flow, which is determined by the probability density f .�/ and the car
density K . The driver cannot observe f .�/ itself, but some of its moments (mean
velocity, scattering, etc.). Therefore D.�/ depends on the vector of moments mf , in
which we also include the car density K .

We would like to underline that, as the leader does not change its acceleration
after the interaction takes place, the function ˙.�/ is not symmetric, unlike in gas
dynamics.

We supplement Eq. (10.1) with the initial distribution f .a; v; 0/ D f0.a; v/ and
boundary conditions, which ensure that there are no cars with negative velocities
and there is a maximum velocity of the VTF, which cannot be exceeded.

Further we define the functions Q.�/, �.�/ and D.�/.

10.2 Integral Equation of the Second Kind

In our previous work [1] we succeeded to construct the basic integral equation of the
second kind F D KFCF0. Its solutionF is a distribution density of the interactions
in the N -particle system of vehicles. It is closely connected with the solution
f .a; v; t/ to Eq. (10.1), and the kernel K describes the evolution of the many-
particle system. The integral equation enables us to use well-developed techniques
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of the Monte Carlo simulation, including the majorant frequency principle [2], for
estimating the functionals of solution to Eq. (10.1), as well as to perform parametric
analysis [1].

Let us denote vectors A D .a1; : : : ; aN /, V D .v1; : : : ; vN / for the given
ensemble of N cars. In the phase space with coordinates .Z; t/ � .� D
.i; j /; A; V; t/ the distribution density F.Z; t/ of the interactions in the N -particle
system solves the following integral equation:

F.Z; t/ D ı.t/P0.A; V /ı.�0/C
tZ

0

Z
F.Z0; t 0/K.Z0; t 0 ! Z; t/ dZ0 dt 0:

(10.2)

Here ı.�/ is the Dirac delta function, P0.�/ is initial distribution, dZ D
dA dV d�.�/, and integration with respect to � means the summation over all
possible ordered pairs � D .i; j /. The kernel K.Z0; t 0 ! Z; t/ is a product of
transitional densities:

K.Z0; t 0 ! Z; t/

D Kt.t
0 ! t jA0; V 0/KV .V

0 ! V jA0; t � t 0/K�.�/Ka.a
0
i ! ai j�; V /:

10.2.1 Markov Chain Simulation

The transition in the Markov chain, which is related to the integral Eq. (10.2),
consists of several elementary transitions in the following order:

1. the instant t of the next interaction in the system is chosen according to the
exponential transition density (
.�/ is the Heaviside step function)

Kt.t
0 ! t jA0; V 0/ D 
.t � t 0/�.A0; V 0 C A0.t � t 0//e

(
�

tR

t0
�.A0;V 0CA0.��t 0// d�

)

;

with �.A; V / D 1

N � 1
X

i¤j

Z
˙.ai ! a00i jvi ; aj ; vj / da00i D

X

�

�.i;j /

N � 1 I

2. the velocities of all cars are calculated at time t according to the transition density
KV .V

0 ! V jA0; t � t 0/ D ı.V � V 0 � A0.t � t 0//;
3. the pair number .i; j / is chosen by the probabilities K�.i; j / D 1

N�1 � �.i;j /
�.A0;V /

;
4. the new acceleration of the car with the number i is changed according to the

transition density Ka.a
0
i ! ai j�; V / D ˙.a0i ! ai jvi ; aj ; vj /=�.i;j /.
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10.2.2 Monte Carlo Estimation of Functionals

The following functionals of the one-particle distribution function f .�/ are of our
interest:

Ih.T / D
Z Z

h.a; v/f .a; v; T / dv da D .h; f /:

By analogy with [3] we can prove that

Ih.T / D
Z TZ

0

hN .A; V C A.T � t 0//

� exp

8
<

:�
TZ

t 0

�.A; V C A.� � t 0/ d�
9
=

;F.Z; t
0/ dZ dt 0;

where hN .A; V / D 1
N

NP
iD1

h.ai ; vi /. As a result we have Ih.T / D . QhN ; F /:
For numerical estimation of Ih.T / we can use the collision or absorption

estimator, which are functionals of the Markov chain trajectory.
For estimating the velocity and acceleration distribution we choose functions

h.a; v/ equal to indicators of some partitioning of the corresponding (velocity or
acceleration) interval.

Since the interaction rate is not constant in the profiles we used for numerical
experiments, we make use of the majorant frequency principle (see [2]) in our
simulations.

10.3 Velocity Dependent Thresholds

We consider an interaction model with dependence on the distance between
cars, and study the velocity and acceleration distributions with respect to the car
density K .

For the spatially homogeneous case we use two interaction profiles based on the
velocity dependent thresholds, which were introduced in [4, 6]. In such profiles an
interaction occurs only if the distance between interacting vehicles is equal to one
of the threshold distances, which depend on the velocity of the follower. On each of
these thresholds for the follower an individual acceleration change occurs.
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10.3.1 Interaction with Single Threshold

We take the first example of interaction profile from [6]. In a given interacting car
pair the follower with velocity v interacts (i.e., changes its acceleration state) if the
distance h to the leading car is equal to threshold distance H.v/. In this case the
interaction rate is the following:

Q.h; a0; v; Na; Nv/ D jS. Nv; v; a0/j � ı.h �H.v//;

with H.v/ D Œ˛ � v C hmin� and S. Nv; v; a0/ D � Nv � v � dH
dv
.v/ � a0�. We consider

threshold parameter ˛ to be constant, though in the general case each driver in the
flow has its own ˛i and Hi.v/. Note that low values of ˛ correspond to a more
aggressive driving manner.

It is necessary to define the probability density of the follower’s acceleration
�.�/ only on the threshold h D H.v/, depending on the fact, whether the distance
increases (S. Nv; v; a0/ > 0) or decreases (S.�/ 6 0). It is given by the formula:

�.a0 ! ajH.v/; v; Na; Nv/ D 
.S. Nv; v; a0// �ı.a�aC/C
.�S. Nv; v; a0// �ı.a�a�/:

Here the acceleration aC strongly depends on the actual velocity v of the car.
It increases at very low velocities and it decreases at higher velocities, having
maximum at some given velocity vm and vanishing near the maximum velocity w.

aC D 
.v � vm/ � amax
w � v

w � vm C
.vm � v/ �


a0 C amax � a0

vm
v

�
:

In order to prevent accidents we choose the value of deacceleration a� equal to the
total braking value [6]. It means that the follower with the current velocity v should
stop in the distance ˛ � v C Nh, where Nh is the distance that the leader with current
velocity Nv covers with the maximum braking value Na D amin < 0):

a� D �v2
2.˛ � v C Nh/ ;

Nh D Nv2
2jaminj : (10.3)

Distance measurements in traffic flows are often approximated by the gamma
densities. We use the Gaussian density for convenience with the following
parameters:

• the mean distance, i.e. the mean value of QD.�/, is equal to 1=K ;
• the scattering of QD.�/ here is proportional to the mean velocity of all cars V.

The spatial correlation is given by the following distance probability density
D.hja0; v;mf /, which depends on a driver [6]:
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Fig. 10.1 Numerical estimates of the velocity (left) and acceleration (right) distributions for one
threshold

D.H.v/ja0 < 0;mf /D
QD.H.v/jmf /R

h<H.v/

QD.hjmf / dh
; D.H.v/ja0>0;mf /D

QD.H.v/jmf /R

h>H.v/

QD.hjmf / dh
:

Numerical estimates of the velocity and acceleration distributions are presented in
Fig. 10.1.

The simulation results for the velocity distribution is in a good agreement with
measured ones presented in [6]. But the acceleration distribution shows significant
deviations. To improve the interaction profile, a second, more distant threshold with
relative velocity dependence of the acceleration change is suggested in [4].

10.3.2 Interaction with Two Thresholds

In this subsection we are going to use the interaction profile suggested in [4]. For this
profile, the way how the drivers accelerate or deaccelerate depends on the relative
velocity between the leader and the follower. This behavior of the drivers makes the
traffic flow more homogeneous.

The interaction rate for two thresholds is

Q.h; a0; v; Na; Nv/ D jS1. Nv; v; a0/j � ı.h �H1.v//C jS2. Nv; v; a0/j � ı.h �H2.v//;

with H1.v/ D ˛1 � v C hmin < H2.v/ D ˛2
p
v C ˇ C � , here ˛1, ˛2, ˇ, � are

constants (see [4] for more details concerning the forms of these thresholds).
For simplicity, we use a linear velocity dependence for approximation of the first

threshold H1 as for this quantity the measured data are widely scattered. We use
a square root function for approximation of the larger threshold H2, taking into
consideration the driver’s behavior shown in the measured data.
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It is necessary to define the probability density of the follower’s acceleration �.�/
only on the thresholds h D Hi.v/, i D 1; 2.

In the deacceleration case on the first threshold H1 the value a0 is changed into
the total braking value a� according to (10.3). In the acceleration case on H1, the
value a0 changes to a � 0, i.e. the driver hesitates with accelerating and waits until
the distance is equal to H2:

�.a0 ! ajH1.v/; v; Na; Nv/ D 
.S1. Nv; v; a0// � ı.a/C
.�S1. Nv; v; a0// � ı.a � a�/:

On the second threshold H2, there are two deacceleration cases. If Nv < v, the
new deacceleration value a is calculated by a car following approach, which is
proportional to the relative velocity . Nv � v/ and inverse proportional to the distance
between the cars h D H2.v/. For Nv > v, because of the lack of information, this
deacceleration value is assumed to be uniformly distributed. In the case of increasing
distances on H2, there are two acceleration cases and the analogous approach is
used:

�.a0!ajH2.v/; v; Na; Nv/ D sgn.S2/ �



.S2 � . Nv�v// � ı

�
a� min

�
a�; "

Nv�v
H2.v/

�

C
.S2 � .v�Nv// � U.0;a�/

�
:

Here a� and " are model parameters, which are supposed to be constant.
The distance correlation function D.�/ is constructed in the same way as in the

single threshold interaction model. The basic idea is an assignment of the current
acceleration value a0 of a car to the threshold Hi , on which occurs a change to the
new value a [4]:

D
�
H1.v/

ˇ̌
v;mf ; a

0 < �a� or .a0 D 0 if v D 0/
	 D

QD.H1.v/jmf /R
h<H1.v/

QD.hjmf / dh
;

D
�
H2.v/

ˇ̌
v;mf ; a

0 > 0 or .a0 D 0 if v D w/
	 D

QD.H2.v/jmf /R
h>H2.v/

QD.hjmf / dh
;

D
�
Hi.v/

ˇ̌
v;mf ; a

0 2 Œ�a�; 0/ or .a0 D 0 if v ¤ 0;w/
	 D

QD.Hi.v/jmf /
R H2.v/
H1.v/

QD.hjmf / dh
;

i D 1; 2:

Here QD.�/ is the Gaussian distribution from previous section.
Numerical estimates of the velocity and acceleration distributions are presented

in Fig. 10.2.
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Fig. 10.2 Numerical estimates of the velocity (left) and acceleration (right) distributions for two
thresholds

Conclusion
This work is a continuation of the research and a development of simulation
methods started by the authors earlier. In particular, the approach suggested by
the authors in [1] is applied for more realistic interaction profiles. Numerical
results show practical suitability and efficiency of transition to the integral
equation of the second kind and a Markov chain simulation in the VTF
problems.

Possible directions for improving the model include consideration of
various aspects such as:

• a mixture of both driver behaviors and vehicle classes;
• multi-lane traffic with possibility of overtaking;
• cluster formation on the road;
• spatial inhomogeneities.
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Chapter 11
Importance Sampling for Multi-Constraints
Rare Event Probability

Virgile Caron

11.1 Introduction and Context

In this paper, we consider efficient estimation of the probability of large deviations
of a multivariate sum of independent, identically distributed, light-tailed, and non-
lattice random vectors.

Consider Xn
1 WD .X1; : : : ;Xn/ n i.i.d. random vectors with known common

density pX on R
d , d > 1; copies of X WD �

X.1/; : : : ;X.d/
	
: The superscript .j /

pertains to the coordinate of a vector and the subscript i pertains to replications.
Consider also u a measurable function defined from R

d to R
s : Define U WD u.X/

with density pU and

U1;n WD
nX

iD1
Ui :

We intend to estimate for large but fixed n

Pn WD P .U1;n 2 nA/ (11.1)

where A is a non-empty measurable set of Rs such as EŒu .X/� … A: In [3], the
authors consider in detail the case where d D s D 1, A WD An D .an;1/ and an is
a convergent sequence.

The basic estimate of Pn is defined as follows: generate L i.i.d. samples Xn
1 .l/

with underlying density pX and define
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fPn WD 1

L

LX

lD1
1En

�
Xn
1 .l/

	

where

En WD
n
.x1; : : : ; xn/ 2 �Rd 	n W .u .x1/C � � � C u .xn// 2 nA

o
: (11.2)

The Importance Sampling estimator of Pn with sampling density g on
�
R
d
	n

is

cPn WD 1

L

LX

lD1
OPn.l/1En

�
Y n1 .l/

	
(11.3)

where OPn.l/ is called “importance factor” and can be written

OPn.l/ WD

nQ
iD1

pX .Yi .l//

g
�
Y n1 .l/

	 (11.4)

where the L samples Y n1 .l/ WD .Y1.l/; : : : ; Yn.l// are i.i.d. with common density
g; the coordinates of Y n1 .l/ however need not be i.i.d. It is known that the optimal
choice for g is the density of Xn

1 WD .X1; : : : ;Xn/ conditioned upon
�
Xn
1 2 En

	
,

leading to a zero variance estimator. We refer to [5] for the background of this
section.

The state-independent IS scheme for rare event estimation (see [6] or [12]),
rests on two basic ingredients: the sampling distribution is fitted to the so-called
dominating point (which is the point where the quantity to be estimated is mostly
captured; see [11]) of the set to be measured; independent and identically distributed
replications under this sampling distribution are performed. More recently, a state-
dependent algorithm leading to a strongly efficient estimator is provided by [2] when
d D s, u.x/ D x and A has a smooth boundary and a unique dominating point.
Indeed, adaptive tilting defines a sampling density for the i�th r.v. in the run which
depends both on the target event .U1;n 2 nA/ and on the current state of the path up
to step i � 1: Jointly with an ad hoc stopping rule controlling the excursion of the
current state of the path, this algorithm provides an estimate of Pn with a coefficient
of variation independent upon n. This result shows that nearly optimal estimators
can be obtained without approximating the conditional density.

The main issue of the method described above is to find dominating point.
However, when the dimension of the set A increases, finding a dominating point
can be very tricky or even impossible. A solution will be to divide the set under
consideration into smaller subset and, for each one of this subset, find a dominating
point. Doing so makes the implementation of an IS scheme harder and harder as the
dimension increases.
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Our proposal is somehow different since it is based on a sharp approximation
result of the conditional density of long runs. The approximation holds for any
point conditioning of the form .U1;n D nv/ : Then sampling v in A according to
the distribution of U1;n conditioned upon .U1;n 2 nA/ produces the estimator. By its
very definition this procedure does not make use of any dominating point, since it
randomly explores the set A: Indeed, our proposal hints on two choices: first do not
make use of the notion of dominating point and explore all the target set instead (no
part of the set A is neglected); secondly, do not use i.i.d. replications, but merely
sample long runs of variables under a proxy of the optimal sampling scheme.

We will propose an IS sampling density which approximates this conditional
density very sharply on its first components y1; : : : ; yk where k D kn is very
large, namely k=n ! 1: However, but in the Gaussian case, k should satisfy
.n � k/ ! 1 by the very construction of the approximation. The IS density on�
R
d
	n

is obtained multiplying this proxy by a product of a much simpler state-
independent IS scheme following [13].

The paper is organized as follows. Section 11.2 is devoted to notations and
hypothesis. In Sect. 11.3, we expose the approximation scheme for the conditional
density of Xk

1 under .U1;n D nv/. Our IS scheme is introduced in Sect. 11.4.
Simulated results are presented in Sect. 11.5 which enlighten the gain of the present
approach over state-dependent Importance Sampling schemes.

We rely on [7] where the basic approximation (and proofs) used in the present
paper can be found. The real case is studied in [4] and applications for IS estimators
can be found in [3].

11.2 Notations and Hypotheses

We consider approximations of the density of the vector Xk
1 on

�
R
d
	k

, when the
conditioning event writes (11.1) and k WD kn is such that

0 6 lim sup
n!1

k

n
6 1 (K1)

lim
n!1.n � k/ D C1: (K2)

Therefore we may consider the asymptotic behavior of the density of the random
walk on long runs.

Throughout the paper the value of a density pZ of some continuous random
vector Z at point z may be written pZ.z/ or p .Z D z/ ; which may prove more
convenient according to the context.

Let pnv (and distribution Pnv) denote the density of Xk
1 under the local condition

.U1;n D nv/
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pnv
�
Xk
1 D Y k1

	 WD p.Xk
1 D Y k1

ˇ̌
U1;n D nv/ (11.5)

where Y k1 belongs to
�
R
d
	k

and v belongs to A.
We will also consider the density pnA (and distribution PnA) of Xk

1 conditioned
upon .U1;n 2 nA/

pnA
�
Xk
1 D Y k1

	 WD p.Xk
1 D Y k1

ˇ̌
U1;n 2 nA/: (11.6)

The approximating density of pnv is denoted gnv; the corresponding approxima-
tion of pnA is denoted gnA: Explicit formulas for those densities are presented in the
next section.

11.3 Multivariate Random Walk Under a Local
Conditioning Event

Let "n be a positive sequence such as

lim
n!1 "

2
n.n � k/ D 1 (E1)

lim
n!1 "n.logn/2 D 0 (E2)

It will be shown that "n .logn/2 is the rate of accuracy of the approximating
scheme.

We assume that U WD u .X/ has a density pU (with p.m. PU) absolutely
continuous with respect to Lebesgue measure on R

s : Furthermore, we assume that
u is such that the characteristic function of U belongs to Lr for some r > 1:

Denote 0 is the vector of R
s with all coordinates equal to 0 and V.0/ a

neighborhood of 0:
We assume that U satisfy the Cramer condition, meaning

˚U.t/ WD EŒexp < t;U >� < 1; t 2 V.0/ 
 R
s :

and define

m.t/ WD tr log.˚U.t//; t 2 V.0/ 
 R
s

and

~.t/ WD trr log.˚U.t//; t 2 V.0/ 
 R
s :

as the mean and the covariance matrix of the tilted density defined by
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�˛u .x/ WD exp < t; u.x/ >

˚U.t/
pX.x/: (11.7)

where t is the only solution of m.t/ D ˛ for ˛ in the convex hull of PU: Conditions
on ˚U.t/ which ensure existence and uniqueness of t are referred to steepness
properties (see [1], p153 ff, for all properties of moment generating function used
in this paper).

We now state the general form of the approximating density. Let v 2 A and
denote

g0.y1jy0/ WD �vu .y1/ (11.8)

with an arbitrary y0 and �vu defined in (11.7).
For 1 6 i 6 k � 1, we recursively define g.yiC1jyi1/. Set ti 2 R

s to be the
unique solution to the equation

m.ti / D mi;n WD n

n � i
�
v � u1;i

n

�
(11.9)

where u1;i D u.y1/C � � � C u.yi /:
Denote

~
j;l

.i;n/ WD d2

dt .j /dt .l/

�
logE

�
mi;n
U

exp < t;U >
�
.0/

and

~
j;l;m

.i;n/ WD d3

dt .j /dt .l/dt .m/

�
logE

�
mi;n
U

exp < t;U >
�
.0/ :

for j; l andm in f1; : : : ; sg: In the sequel, ~.i;n/ will denote the matrix with elements�
~
j;l

.i;n/

�

16j;l6s
:

Denote

g.yiC1jyi1/ WD Cins .u.yiC1/Iˇ˛ C v; ˇ/ pX.yiC1/ (11.10)

where Ci is a normalizing factor, ns .u.yiC1/Iˇ˛ C v; ˇ/ is the normal density at
u.yiC1/ with mean ˇ˛ C v and covariance matrix ˇ: ˛ and ˇ are defined by

˛ WD
 
ti C ~�2.i;n/�

2.n � i � 1/

!

and

ˇ WD ~.i;n/.n � i � 1/
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and � defined by

� WD
0

@
sX

jD1
~
j;j;p

.i;n/

1

A

16p6s

:

Then

gnv.y
k
1 / WD g0.y1jy0/

k�1Y

iD1
g.yiC1jyi1/ (11.11)

Theorem 1. Assume (E1), (E2), (K1) and (K2).

• Let Y k1 be a sample from density pnv: Then

p
�

Xk1 D Y k1 jU1;n D nv
�

D gnv.Y
k
1 /.1C oPnv .1C "n.logn/2// (11.12)

• Let Y k1 be a sample from density gnv: Then

p
�

Xk1 D Y k1 jU1;n D nv
�

D gnv.Y
k
1 /.1C oGnv .1C "n.logn/2// (11.13)

Remark 11.1. The approximation of the density of Xk
1 is not performed on the

sequence of entire spaces
�
R
d
	k

but merely on a sequence of subsets of
�
R
d
	k

which
contains the trajectories of the conditioned random walk with probability going
to 1 as n tends to infinity. The approximation is performed on typical paths. For
the sake of applications in Importance Sampling, (11.13) is exactly what we need.
Nevertheless, as proved in [7], the extension of our results from typical paths to the

whole space
�
R
d
	k

holds: convergence of the relative error on large sets imply that
the total variation distance between the conditioned measure and its approximation
goes to 0 on the entire space.

Remark 11.2. The rule which defines the value of k for a given accuracy of the
approximation is stated in Sect. 5 of [7].

Remark 11.3. When the Xi ’s are i.i.d. multivariate Gaussian with diagonal covari-
ance matrix and u.x/ D x, the results of the approximation theorem are true for
k D n � 1 without the error term. Indeed, it holds p.Xn�1

1 D xn�11

ˇ̌
U1;n D nv/ D

gnv
�
xn�11

	
for all xn�11 in

�
R
d
	n�1

.

As stated above the optimal choice for the sampling density is pnA: It holds

pnA.x
k
1 / D

Z

A

pnv
�
Xk
1 D xk1

	
p.U1;n=n D vj U1;n 2 nA/dv (11.14)
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so that, in contrast with [2] or [6], we do not consider the dominating point approach
but merely realize a sharp approximation of the integrand at any point of A and
consider the dominating contribution of all those distributions in the evaluation of
the conditional density pnA:

11.4 Adaptive IS Estimator for Rare Event Probability

The IS scheme produces samples Y WD .Y1; : : : ; Yk/ distributed under gnA, which is
a continuous mixture of densities gnv as in (11.11) with p .U1;n=n D vjU1;n 2 nA/.

Simulation of samples U1;n=n under this density can be performed through
Metropolis–Hastings algorithm, since

r.v; v0/ WD p.U1;n=n D vj U1;n 2 nA/
p.U1;n=n D v0j U1;n 2 nA/

turns out to be independent upon P .U1;n 2 nA/ : The proposal distribution of the
algorithm should be supported by A:

The density gnA is extended from
�
R
d
	k

onto
�
R
d
	n

completing the n � k

remaining coordinates with i.i.d. copies of r.v’s YkC1; : : : ; Yn with common tilted
density

gnA
�
ynkC1

ˇ̌
yk1
	 WD

nY

iDkC1
�mku .yi / (11.15)

with mk WD m.tk/ D n
n�k

�
v � u1;k

n

	
and

u1;k D
kX

iD1
u.yi /:

The last n � k r.v’s Yi ’s are therefore drawn according to the state independent
i.i.d. scheme in phase with Sadowsky and Bucklew [13].

We now define our IS estimator of Pn: Let Y n1 .l/ WD Y1.l/; : : : ; Yn.l/ be
generated under gnA: Let

cPn.l/ WD
Qn
iD1 pX.Yi .l//

gnA.Y
n
1 .l//

1En

�
Y n1 .l/

	
(11.16)
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and define

cPn WD 1

L

LX

lD1
cPn.l/: (11.17)

in accordance with (11.3).

Remark 11.4. In the real case and for A D .a;1/, the authors of [3] show that
under certain regularity conditions the resulting relative error of the estimator is
proportional to

p
n � kn and drops by a factor

p
n � kn=pn with respect to the

state independent IS scheme. In [8], the authors propose a slight modification in the
extension of gnA which allows to prove the strong efficiency of the estimator (11.17)
using arguments from both [2] and [3].

11.5 When the Dimension Becomes Very High

This section compares the performance of the present approach with respect to
the standard tilted one using i.i.d. replications under (11.7) on an extension of a
well-known example developed in [9] and in [10]. Let B WD .E100/

d which is the
d -Cartesian product of E100 defined by

E100 WD
�
x1001 W jx1 C � � � C x100j

100
> 0:28


:

We want to estimate P100 D P ŒB� and explore the gain in relative accuracy when
the dimension of the measured set increases. Consider 100 r.v.’s Xi ’s i.i.d. random
vectors in R

d with common i.i.d. N.0:05; 1/ distribution. Our interest is to show
that in this simple asymmetric case our proposal provides a good estimate, while
the standard IS scheme ignores a part of the event B: The standard i.i.d. IS scheme
introduces the dominating point a Dt .0:28; : : : ; 0:28/ and the family of i.i.d. tilted
r.v’s with common N.a; 1/ distribution. It can be seen that a large part of B is never
visited through the procedure, inducing a bias in the estimation. Indeed, the rogue
path curse (see [9]) produces an overwhelming loss in accuracy, imposing a very
large increase in runtime to get reasonable results. Under the present proposal the
distribution of the Importance Factor concentrates around P100 avoiding rogue path.

This example is not as artificial as it may seem; indeed, it leads to a 2d dominating
points situation which is quite often met in real life. Exploring at random the set of
interest avoids any search for dominating points. Drawing L i.i.d. points v1; : : : ; vL
according to the distribution of U1;100=100 conditionally upon B we evaluate P100
with k D 99; note that in the Gaussian case Theorem 1 provides an exact description
of the conditional density of Xk

1 for all k between 1 and n. The following figure
shows the gain in relative accuracy w.r.t. the state independent IS scheme according
to the growth of d: The value of P100 is 10�2d (Fig. 11.1).
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Fig. 11.1 Relative Accuracy of the adaptive estimate (dotted line) w.r.t. i.i.d. tilted one (solid line)
as a function of the dimension d for L D 1;000

Conclusion
In this paper, we explore a new way to estimate multi-constraints large

deviation probability. In future work, the author will investigate the theoretical
behavior of the relative error of our proposed estimator.
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Chapter 12
Generating and Comparing Multivariate
Ordinal Variables by Means of Permutation
Tests

Eleonora Carrozzo, Alessandro Barbiero, Luigi Salmaso,
and Pier Alda Ferrari

12.1 Introduction

In many applicative problems, it is usually necessary to compare two or more
correlation matrices. Nevertheless only few efforts have been done to find a solution,
most of them assume multivariate normality. Let us consider now the particular
case in which one is interested to define whether the variables under analysis are
uncorrelated or not. Formalizing, let us suppose to have a multivariate n � m

sample with sample correlation matrix OR we want to test if data come from an
m-dimensional random variable with correlation matrix R0 D Im, where Im is the
identity matrix. Thus the null hypothesis is H0 W R D R0 against the general
alternative.

In 1970, Jennrich proposed a test which, assuming multivariate normality,
rejects the null hypothesis for large values of the statistic, TJen D 1

2
t r
�
W2

	 �
dg0 .W/T�1dg .W/ where W D p

n � R�10
� OR � R0

�
and ŒT�ij D ıij C �ij;0��ij0

�
ij
0 D �

R�10
�
ij

and ıij is the Kronecker’s delta. TJen has an asymptotic Chi-
squared distribution with m.m � 1/ =2 degrees of freedom under H0 [7]. However,
Jennrich’s test is a large sample test and can lead to poor performance for small
samples. In 1985, Larntz and Perlman proposed a statistic which determines, under
multivariate normality assumption, a test with reasonable small sample properties
and with power comparable to that of Jennrich’s test for large samples [8]. The test
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statistic is TLP D p
n � 3�d where d D max16i<j6m jzij � �ij j and where zij is the

Fisher transform of O�ij and �ij is the Fisher transform of �ij;0. By Sidak’s theorem,
the test which rejects the null hypothesis if TLP > b˛; where b˛ > 0 is chosen such
that Œ' .b˛/ � ' .�b˛/�m.m�1/=2 D 1 � ˛, is a (possibly conservative) ˛-level test
of H0.

In this paper we propose a nonparametric approach based on permutation test and
nonparametric combination methodology (NPC). After an overview of permutation
inference and the NPC methodology, we discuss the nonparametric procedure and
we show a simulation-based comparative study among the three abovementioned
procedures. In particular, we deal with simulations from multivariate ordinal random
variables, in order to show the performance of the procedures when the assumption
of normality is not satisfied. In this regard we consider a new proposal for generating
samples from multivariate ordinal data whose details and properties are described
in the fourth section.

12.2 Nonparametric Combination

In this section, we introduce the method of the nonparametric combination (NPC)
of a finite number of dependent permutation tests as a useful tool to solve complex
problems when several variables are involved or many different aspects are of
interest. Consider an m-dimensional problem, with m > 2. With NPC method the
global null hypothesis can be broken down intom sub-hypotheses, each appropriate
for each aspect of interest and it is true if all of the sub-hypotheses are true. More
formally the null hypothesis consists of the intersection ofm partial sub-hypotheses:
m\

jD1
H0j . Similarly the alternative hypothesis can be written as the union of m

sub-hypotheses:
m[

jD1
H1j , so the global null hypothesis is false if at least one of

the sub-alternatives is true. When partial tests are stochastically independent, the
combination of them into a global test is not difficult (see [3] for a review), but
in most situations this independence is not a plausible assumption. In fact, partial
tests are typically dependent since they are function of the same dataset. When
distributional assumptions can be made (e.g., that the data are multivariate normal)
or asymptotic results hold, then this dependence may be estimated from the data,
leading to methods such as Hotelling’s T 2 statistic [5], multivariate ANOVA and
regression [13], and omnibus chi-square tests (e.g., [4]). Alternatively, a latent
variable may be estimated with factor analysis or item-response theory models
[6, ch. 9]. If their scales are comparable, responses can be combined (e.g., in a
summative index), either directly or using ranks [10,11]. Under suitable conditions,
each of the above techniques may be used to test complex hypotheses. In particular,
the NPC methodology allows the experimenter to combine tests which involve
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variables with different scales or levels of measurement (e.g., continuous and
nominal), multiple tests on different aspects of the same variable (e.g., mean and
variance), and even tests in which the number of the variables is greater than
the number of the units (for details, see [9]). All these partial p-values, after a
suitable adjustment for multiplicity, may be assessed for evidence on the sub-
hypotheses. Since the combination of tests is done nonparametrically, without the
need to explicitly model the dependence among tests, no further assumptions are
needed other than those required by the partial permutation tests themselves. If
the partial tests are exact and unbiased, also the combined global test is exact
and unbiased [9]. Once an appropriate partial test has been chosen for each sub-
hypothesis, we need to select the function with which to combine p-values. Let
�j be the p-value related to the j-th partial hypothesis, consider some practical
examples of combining function: (a) Fisher omnibus combining function based
on the statistic  F D �2Pj log

�
�j
	
; (b) Liptak combining function based on

the statistic  L D P
j ˚
�1 �1 � �j

	
, where ˚ is the standard normal CDF; (c)

Tippett combination function based on the statistic  T D max16j6K
�
1 � �j

	
.

Another combination function is the truncated combination function defined as

 trunc D Q
j �

I.�j <�/
j where � is the truncation point (usually equal to) ˛. Truncated

forms of combinations were mostly introduced to deal with multiplicity issues
in genomewide association scans and microarray studies characterized by a huge
amount of true null hypotheses and small amount of false hypotheses.

The NPC method can be carried out using the following algorithm [9]:

1. Calculate the vector T 0 D
�
T 01 ; : : : ; T

0
j ; : : : ; T

0
m

�0
of observed test statistics

corresponding to m partial tests.
2. Repeat the following B times:

(a) randomly permute the group (e.g., “treated” and “control”) labels without
replacement;

(b) calculate the vector T �b D
�
T �1b; : : : ; T �jb; : : : ; T �mb

�0
of values of the m test

statistics in permutation, b 2 f1; : : : ; Bg.

3. Presuming that the partial test statistics are expected to be large in the alternative,

let OLj .t/ D B�1
PB

bD1 I
�
T �jb > t

�
be the estimated significance level for any

test statistic value t 2 R1 corresponding to partial test j . Calculate the vector

of estimated significance levels for observed data: O� D
� O�1; : : : ; O�j ; : : : ; O�m

�0
,

where O�j D OLj
�
T 0j

�
. Then do the same for each permutation b, calculating

OL�b D
� OL�1b; : : : ; OL�jb; : : : OL�mb

�0
, where OL�jb D OLj

�
T �jb
�

4. Use a suitable function  to combine the vector of m estimated significance

levels into a global test statistic T 000 D  
� O�
�

. Calculate the analogous statistic

T 00�b D  
� OL�b

�
for each permutation b.
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5. Estimate the combined significance level (p-value) of the global test as

O�00 D B�1
BX

bD1
I
�
T 00�b > T 000

	

In practice, permutation significance levels can be estimated to an arbitrary degree
of accuracy by randomly sampling of a large number of (e.g., B D 10;000)
permutations from the permutation sample space.

12.3 Permutation Testing Procedure for Correlation
Matrices

This section has the aim to describe the procedure based on a permutation approach
to test the equality of a general correlation matrix with the identity matrix (i.e., with
the situation of no correlation among variables).

Let’s start from a simple situation where we have a bivariate random variable
.X; Y / with correlation matrix RXY , and suppose to have a random sample of
size n from this variable. For the sake of simplicity let us consider to test the null
hypothesis H0 W RXY D I2 where R2 is the 2 � 2 identity matrix. Note that, in
this case, the null hypothesis can be written as H0 W �XY D 0, where �XY is the
correlation coefficient (e.g., Pearson’s correlation coefficient) between X and Y .
A permutation procedure based on the sample correlation coefficient to test this
type of hypothesis entails the following steps:

1. Compute a sample correlation coefficient O� from the original paired data .xi ; yi /,
where i D 1; : : : ; n.

2. Compute a random permutation of one of the two vectors of the observations,
obtaining .xi ; yi 0/ where i D 1; : : : ; n.

3. Compute the sample correlation coefficient r on the permuted data.
4. Repeat steps 2–3 for B times.
5. The p-value of the permutation test is obtained as the proportion of correlation

coefficients r� computed in step 3 that are greater than robs computed on the
original data. Note that if we consider the two-sided alternative then we need to

compute
#.jr�j > jrobsj/

B
.

Let’s generalize the problem in the case where we have m > 2 variables.
Hence we wish to test H0 W R D Im against the general alternative
H1 W fR ¤ Img D ˚9 �ij ¤ 0 , i ¤ j g ; i; j D 1; : : : ; m where R is the true m �m
correlation matrix and Im is the identity matrix of order m. Now we can test this
complex hypothesis by breaking down the null hypothesis in m.m � 1/=2 sub-
hypothesis of the type H0 W �ij D 0 against the alternative H1 W �ij ¤ 0, i < j .
Note that all these sub-hypotheses can be tested by a permutation approach using
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the above algorithm. Finally we can test the global null hypothesis by applying the
NPC to the m.m � 1/=2 partial tests (see e.g., [9]).

Let us suppose to have a trivariate random variable (X, Y, Z) with a general
correlation matrix RXYZ and want to test if H0 W RXYZ D I3 against a two-
sided alternative. Note that in this case m D 3. Thus we have to consider the
following 3.3�1/

2
D 3 sub-hypotheses: H0.XY / W �12 D 0, H0.XZ/ W �13 D 0 and

H0.YZ/ W �23 D 0. After testing separately all this sub-hypotheses we obtain the

three related p-values O� D
� O�XY ; O�XZ; O�YZ

�0
on the observed data and for each

permutation b, OL�b D
� OL�.XY /b; OL�.XZ/b; OL�.YZ/b

�0
. Note that all partial tests must

be based on the same permutations. Combining the three p-values of the observed

data and of each permutation, we obtain the global test statistic T 000 D  
� O�
�

and T 00�b D  
� OL�b

�
and it is possible to compute the combined p-value O�00 and

of course, if this is less than the significance level ˛ we reject the global null
hypothesis.

12.4 A Comparative Simulation Study

In the present section we wish to evaluate and compare the performance of the
permutation procedure for testing correlation matrices described in the previous
section, with that of some competitors in the literature. To this aim, a simulation
study has been carried out where we considered the case of multivariate ordinal
variable with the aim to show the performance of the procedures when the
assumption of normality does not hold. We consider several situations to investigate
the effect of distribution shape (uniform, symmetrical or asymmetrical), number of
categories (5, 7) of the variables, sample size (100, 50, 20), and correlation matrix
(differing from the identity matrix for one or more of the m.m� 1/=2 coefficients).
To generate data, we used the R package GenOrd developed by Barbiero and Ferrari
[1] that allows to generate samples from ordinal/discrete random variables with pre-
specified correlation (Pearson/Spearman) matrix and marginal distributions. Before
showing the results of the simulation study, let us briefly outline the data generation
procedure.

12.5 Simulating Ordinal Data

The procedure focuses on ordinal variables, and can simulate data from discrete
random variables with any finite support and with a dependence structure specified
in terms of Pearson or Spearman’s correlation matrix [2].

When ordinal variables are observed, the strength of the association between two
variables is usually measured by Spearman’s correlation coefficient, defined as the
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usual Pearson correlation coefficient between the two variables converted to ranks,
assigning equal rank to tied categories (see, e.g., [12]). Spearman’s rho is sometimes
preferred to Pearson’s correlation, calculated over a point scale .1; 2; : : : ; k/,
because whereas Pearson’s correlation catches and measures the linear relationship
between two variables, Spearman’s rho can catch any monotonic relationship.

The method is based on the transformation of a multivariate normal variable into
a multivariate ordinal variable with assigned marginal distributions. It is developed
in two steps: the first step finds the correlation matrix RC D Œ�Cij � for the multivariate

normal variable ensuring the desired RO D Œ�Oij � for the correlated ordinal random
variables; the second step is devoted to the very generation of samples and ensures
the desires marginal distribution through the customary inverse transform method.
Here, variables’ association is measured through Pearson’s correlations. Let RO�
be the target correlation matrix, and let us consider a normal random variable Z �
N
�
0;RC

	
, and in the first stage RC D RO�. The original variable Z is transformed

into variable X with categorical components as follows. On the basis of the ki�1
probabilities 0 < Fi1 < Fi2 < � � � < Fil < � � � < Fi.ki�1/ < 1 of the marginal
distribution of the i -th component Xi of X , the corresponding normal quantiles
qi1 < qi2 < � � � < qil < � � � < qi.ki�1/ of Zi are defined. The values of Zi are then
converted into integer numbers Xi as follows:

if Zi < qi1 ! Xi D 1 (12.1)

if qi1 6 Zi < qi2 ! Xi D 2

:::

if qi.ki�1/ 6 Zi ! Xi D ki :

An m-dimensional point scale variable X D .X1;X2; : : : ; Xk/ is thus settled. The
single components Xi of X have a different number of categories and different
marginal probabilities, according to the number ki and the values of Fil chosen.

This procedure meets the desired marginal distributions Fi for each component
Xi , but the correlation matrix RO related to vector X may sensibly differ from the
chosen matrix RC D RO� because of the discretization process (12.1) that alters
the correlation coefficients. In order to overcome this problem it is necessary to
determine a continuous correlation matrix RC� able to assure the target correlation
matrix RO� for the transformed m-dimensional variable X . This is resolved by an
iterative algorithm that alternates the updating of RC to the discretization of Z into
X according to Eq. (12.1), until the correlation matrix of X converges to RO� (see
[2] for details).

The final continuous correlation matrix RC� is used to generate m-variate
samples of size n from the target m-variate random variable X, resorting again to
the discretization (12.1) from an m-variate standard normal
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12.6 Results and Comments

In this section the results of the simulation study for each of the different settings
are described. First of all a simulation under H0 has been considered. In particular,
4,000 random samples of sizes n D 100 have been generated from a trivariate
ordinal random variable with 5 categories (from 1 to 5) with uniform distribution,
i.e. all categories have the same probability, and a correlation matrix:

R D
0

@
1 0 0

0 1 0

0 0 1

1

A

The comparative simulation study has been performed considering the permu-
tation procedure (introduced in Sect. 12.3) the Jennrich’s test and the Larntz and
Perlman test, introduced in the first section. Permutation tests are performed with
B D 4;000 permutations.

In particular, in the following figures with “Permutation” we refer to permutation
test performance, and with terms “Jennrich” and “L&P” we refer to Jennrich and to
Larntz and Perlman tests, respectively.

As it can be seen in Fig. 12.1, all procedures have substantially a similar
behaviour and respect the nominal ˛-level.

In what follows we present all the results of the settings under H1.
We consider m D 3 random variables with discrete uniform, symmetrical (non-

uniform) and asymmetrical marginal distributions with 5 and 7 categories. We
consider the following correlation matrices:

R1 D
0

@
1 0:7 0

0:7 1 0

0 0 1

1

A ; R2 D
0

@
1 0:3 0:3

0:3 1 0:3

0:3 0:3 1

1

A ;R3 D
0

@
1 0:3 0:5

0:3 1 0:7

0:5 0:7 1

1

A

From the simulation results, we can see how generally all procedures have a
similar behaviour in particular with large sample size: the results with n D 100were
approximately the same for each procedure, with a rejection rate very close to 1.

It is worth noting that, considering a correlation matrix R1 the permutation test
always has a greater power than the other two tests even when the sample size is
small and for any considered distribution. The differences are in particular relevant
at level ˛ D 0:01. In fact, whereas the permutation test and L&P test have very
close rejection rates, Jennrich’s test shows a lower power.

With correlation matrix R2 the L&P test loses power whereas the Jennrich test
shows systematically more power in particular for ˛ D 0:01. Permutation test shows
again the best power in all situations except for level ˛ D 0:01 where Jennrich test
presents the best power.

When we consider a mixed correlation matrix as R3 the power of the three
tests increases in all situations with respect to the same situation with R2. The
permutation test has always the best power followed by Jennrich test and L&P test.
The behaviour is respected either with variables with 5 or 7 categories.
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Fig. 12.1 Rejection rate of each procedure at different values of ˛ under H0

The simulation results are synthesized in Figs. 12.2 and 12.3, corresponding to
the cases with k D 5, n D 20 and k D 5, n D 50, respectively. In Fig. 12.3, results
for matrices R1 and R3 are not displayed, because the powers for all the three tests
are always practically equal to 1. For the sake of brevity, even the results for k D 7

are not reported here, since we noted that passing from 5 to 7 categories, coeteris
paribus, hardly affects the power of the three tests.

Conclusion
We proposed a nonparametric methodology based on partial permutation
tests and NPC methodology, to test if data come from an m-dimensional
random variable with correlation matrix, R0 D Im where Im is the identity
matrix. In particular, we carried out a simulation study in order to compare
the performance of the proposed procedures. In this regard we considered
simulations from multivariate ordinal variables, generated through a new
method recently introduced by [1].

We note that, neither passing from 5 to 7 categories nor passing from a
uniform to a symmetric or an asymmetric non-uniform distribution, impacts
significantly on the behaviour of the procedures. On the contrary, the structure
of the correlation matrix may impact on the performance of the tests, but
in most cases the permutation test seems to have the best performance, in
particular when the significance level alpha is equal to 0.05 and the sample
size is small.
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Fig. 12.2 Rejection rate of each procedure at different values of ˛, for uniform (U), symmetrical
(S), asymmetrical (A) marginal distributions with k D 5 categories and n D 20, under R=R1,
R2, R3

Fig. 12.3 Rejection rate of each procedure at different values of ˛, for uniform (U), symmetrical
(S), asymmetrical (A) marginal distributions with k D 5 categories and n D 50, under R=R2
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Chapter 13
A Method for Selection of the Optimal
Bandwidth Parameter for Beran’s
Nonparametric Estimator

Victor Demin and Ekaterina Chimitova

13.1 Introduction

The most popular parametric regression models in reliability are the AFT (Accel-
erated Failure Time) model and the proportional hazards model. The construction
of any parametric model requires knowledge of the lifetime distribution and the
kind of dependence of reliability function on the observed covariates. In practice,
however, this information is usually absent. In such a situation it is advisable to use
nonparametric methods, which enable not only to estimate the reliability function
for different values of the covariate, but also can be used to construct a goodness-
of-fit test for some parametric reliability model.

One of the most popular approaches to nonparametric estimation of the regres-
sion reliability model is the estimator, proposed by Beran [1]. The investigation of
statistical properties of this estimator in the case of random plans, when the value of
covariates are not fixed, is presented in [3, 5, 8, 9]. In [10], the properties of Beran’s
estimator are studied, when the values of covariate are defined in advance.

Nowadays, a great number of publications are devoted to the problem of kernel
smoothing; the main attention is usually paid on the problem of selecting the optimal
smoothing parameter. In the context of this problem, it is important to understand,
that such methods as reference heuristic methods, substitution methods, and cross-
validation are not applicable for the nonparametric Beran estimator, as in this case
the kernel function determines only the weight of each observation according to the
value of the covariate.

However, it is known that the quality of the Beran estimator essentially depends
on the chosen value of the bandwidth parameter. In [10], a theoretical method of
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selection of the optimal bandwidth parameter is suggested, however, it is extremely
difficult to implement this method in practice, as it uses several functions, which
are usually unknown. In [7], the method of selection of the optimal bandwidth
parameter, based on the bootstrap procedure is offered, however, this approach is
applicable only to the case of the random plan. Thus, it is necessary to develop
the method of calculation of the optimal value of the bandwidth parameter for the
Beran estimator. In [4], we proposed the idea of selecting the optimal bandwidth
parameter, which is based on the minimization of the distance of failure times from
kernel estimate of the inverse reliability function. So, the purpose of this paper
is to investigate the statistical properties of the Beran estimator and to give some
recommendations on the way of application of the proposed method.

13.2 Nonparametric Beran Estimator

Denote by Tx the lifetime of the considered technical product, which depends on a
scalar covariate. The reliability function is denoted by

S.t jx/ D P.Tx > t / D 1 � F.t jx/; (13.1)

where F.t jx/ is the conditional distribution function of the random variable Tx .
The main feature of the lifetime data is the presence of right censored observa-

tions, which can be represented as

.Y1; x1; ı1/; .Y2; x2; ı2/; : : : ; .Yn; xn; ın/;

where n is the sample size, xi is the value of covariate for i -th object, Yi is the
failure time or censoring time, and ıi is the censoring indicator, which is equal to 1,
if the i -th observation is complete, and 0 if it is censored.

The Beran estimator is defined as follows [1]:

QShn .t jx/ D
Y

Y.i/6t

(
1 � W i

n .xIhn/
1 �Pi�1

jD1 W
j
n .xIhn/

) ıi
; (13.2)

where x is the value of the covariate, for which reliability function is estimated,
W i
n .xIhn/ ; i D 1; : : : ; n are the Nadaraya–Watson weights, which are defined as

follows [9]:

W i
n .xIhn/ D K

�
x � xi
hn

�, nX

jD1
K

�
x � xj
hn

�
;
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where K
�
x�xi
hn

�
is the kernel function, satisfying to the regularity conditions:

K.y/ D K.�y/, 0 6 K.y/ < 1,
R1
�1K.y/dy D 1; hn > 0 is the bandwidth

parameter, which satisfies to the conditions: lim
n!1 hn D 0, lim

n!1nhn D 1.

13.3 The Choice of Bandwidth Parameter

The choice of the bandwidth parameter determines the values of the weights
W i
n .xIhn/, which in turn determine which observations will participate in the

construction of the estimate of the conditional reliability function (13.1). Thus,
varying the bandwidth parameter, in a certain way, it is possible to drop “bad”
observations.

In this paper, we consider the method for selecting an optimal parameter, which
is based on the minimization of the mean deviation failure times Y1; Y2; : : :; Yn
from nonparametric estimation of the inverse reliability function S�1x .p/ [4]. We
denote the inverse reliability function through g.pjx/. Then, the model (13.1) can
be rewritten in the form:

Tx D g .pjx/C "; (13.3)

where p 2 .0; 1/, " is the error of observation, which, in general, may depend on p
and x.

Kernel estimator for the model (13.3) can be written as

Og . Opi jxi / D 1

n

nX

jD1
!jn . Opi / � Yj ; (13.4)

where !jn is a certain weight, which can be calculated using various weighting
functions. In particular, we consider the Nadaraya–Watson weights of the first order

!jn . Opi / D K

� Opi � Opj
bn

�, nX

kD1
K

� Opi � Opk
bn

�

and the Priestley–Chao weights of the second order [1]:

!jn . Opi / D ˚ Op.i/ � Op.i�1/
�
K

� Opi � Opj
bn

�
;

where the smoothing parameter bn can be selected using one of the methods
proposed for kernel smoothing [1,6]. Probabilities Opi are calculated using the Beran
estimates: Opi D QShn .Yi jxi /.
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Thus, the optimal value of the bandwidth parameter can be obtained by solving
the following optimization problem:

hopt
n D arg min

hn

1

n

nX

iD1
ıi � j Og . Opi jxi / � Yi j: (13.5)

13.4 Choice of Weights and Smoothing Parameter

As we consider the problem, involving the use of kernel smoothing, we can use pre-
developed approaches for the optimal bandwidth parameter for the kernel estimator
of regression. Let us consider the following method of minimal mean of integrated
error according to the smoothing parameter, which is calculated as:

bNS D
"
8�1=2R.K/

3�2.K/2n

#1=5
O�;

where �2.K/ D R
x2K.x/dx, R.K/ D R

K2.x/dx, O� is the estimate of the
variance, which can be calculated in various ways, most often used for this purpose,
for example, the sample variance:

O�2 D S2n D 1

n � 1
nX

iD1

�
Opi � NOp

�2
:

However, firstly, this estimate is not robust, and secondly, has “good” properties
only if the distribution is close to normal. Therefore, in this paper we shall also
consider the robust estimate of the variance:

O� D Srob D med
iD1::n

ˇ̌
ˇ̌ Opi � med

jD1::n; kDj::n

� Opj C Opk
2

�ˇ̌
ˇ̌ :

Let us investigate the statistical properties of the Beran estimator using the
optimal bandwidth parameter (13.5). The investigation of the properties of the Beran
estimates is carried out by the Monte Carlo simulations. The following statistic is
used as the distance between the Beran estimates and the true conditional reliability
function:

Dhn D sup
jD1::k; t<1

ˇ̌ QSh.t jxj / � Sxj .t/
ˇ̌
: (13.6)

It is obvious that the quality of estimates (13.4) directly influences on that, how well
the bandwidth parameter will be chosen. So, let us compare different weights !jn for
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the kernel estimator Og. Opi jxi /, as well as different methods of choosing smoothing
parameter from the point of view of the accuracy of the Beran estimation.

As the true reliability model we consider the parametric Cox proportional hazards
model [2]:

Sx .t/ D .S0 .t//
r.xIˇ/ ; (13.7)

with the covariate function r.xIˇ/ D ln.1 C eˇx/ and the lognormal baseline
distribution with the density function:

f0.t/ D 1p
2�	1t

exp

�
� 1

2	21
ln2
�
t

	2

��
:

Let us take the following notations for the weight functions, methods of variance
estimation, and true values of parameter ˇ used in simulation study:

• 1—the Priestley–Chao weights, variance estimate Srob, ˇ D 2;
• 2—the Priestley–Chao weights, variance estimate S2n , ˇ D 2;
• 3—the Nadaraya–Watson weights, variance estimate Srob, ˇ D 2;
• 4—the Nadaraya–Watson weights, variance estimate S2n , ˇ D 2;
• 5—the Priestley–Chao weights, variance estimate Srob, ˇ D 5;
• 6—the Priestley–Chao weights, variance estimate S2n , ˇ D 5;
• 7—the Nadaraya–Watson weights, variance estimate Srob, ˇ D 5;
• 8—the Nadaraya–Watson weights, variance estimate S2n , ˇ D 5.

We consider the case, when the covariate takes the values from the set {0, 0.11,
0.22, 0.33, 0.44, 0.56, 0.67, 0.78, 0.89, 1}, the sample size n D 100; 200; 300,
and the number of observations corresponding to different values of the covariate is
equal to each other. The samples were generated according to the model (13.7) with
parameters: 	1 D 21:5; 	2 D 1:6, ˇ D 2 or ˇ D 5. The values of the distance (13.6)
are given in Fig. 13.1; the average values of chosen bandwidth parameter hopt

n and
smoothing parameter bNS are presented in Figs. 13.2 and 13.3, correspondingly.

Fig. 13.1 The distance Dn for different sample sizes
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Fig. 13.2 Average values of the bandwidth parameter hopt
n for different sample sizes

Fig. 13.3 Average values of the smoothing parameter bn for different sample sizes

As can be seen from Fig. 13.1, the Priestley–Chao weight function allows to
get more accurate Beran estimates. Thus, when the sample size is equal to 100,
the value of distance (13.6) in the case of using Prestly–Chao weights is less by
3 % in comparison with the case of using Nadaraya–Watson weights; if n D 200

the winning is 8 % and when n D 300 the winning is 11 %. Moreover, the usage
of robust estimator Srob in calculation of the smoothing parameter bn gives better
accuracy, and accuracy of the Beran estimates increases with the sample size growth.

Figure 13.2 shows the average values of the chosen bandwidth parameter hopt
n .

It is seen that when the sample size increases, the value of optimal bandwidth
parameter reduces; it is quite natural, since the number of observations in groups
increases, and hence the number of “bad” observations increases.

Figure 13.3 illustrates the average values of smoothing parameter bn. It is curious
that the value of the smoothing parameter practically does not depend on the sample
size and the weight function.

Similar results have been obtained in experiments for the parameter value ˇ D 5

(i.e., with a stronger covariate effect). As in the considered case, the application of
the robust method in conjunction with the usage of Priestley–Chao weights result
in better accuracy of Beran estimates. It is interesting to consider apart the behavior
of optimal bandwidth parameter hopt

n : when the influence of the covariate on the
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Fig. 13.4 The distance Dn for different numbers of groups

Fig. 13.5 Average values of the bandwidth parameter hopt
n for different numbers of groups

reliability function increased, the average value of hopt
n decreased almost twice in

the case of using Priestley–Chao weights; however, in the case of Nadaraya–Watson
weights such a change is not observed.

A discrete plan of experiment depends on the number of values m of the
covariate. The following part of investigations is devoted to the study of the
dependence of the Beran estimates on m. Simulation results for the fixed sample
size n D 200 and for different numbers m are presented in Figs. 13.4 and 13.5.

As can be seen from Fig. 13.4, when the number of groups increases for the
fixed sample size, the accuracy of the Beran estimator decreases, but this fall is not
significant. This result can be explained as follows: the number of observations in
a group decreases, therefore, the amount of information for each covariate value
also becomes less, what leads to the loss of accuracy. However, the average values
of bandwidth parameter hopt

n (see Fig. 13.5) practically do not change. Similar
result was observed for the smoothing parameter bNS. This property of the optimal
parameters hopt

n and bNS extends to the case of ˇ D 5, when the degree of influence
of covariate on the reliability function was increased.

Similar investigation has been carried out for the Cox proportional hazards model
with exponential baseline distribution. The revealed regularities were almost the
same, so specific numerical results are not given here.
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Conclusions
In this paper, we have investigated the selection method of the bandwidth
parameter for the Beran estimator, which is based on minimization of the
distance between failure times and the kernel estimator of the inverse relia-
bility function. It has been shown that the accuracy of the Beran estimator is
influenced by the sample size, the number of different values of the covariate,
as well as the weight function and the method of variance estimation used in
calculation of optimal smoothing and bandwidth parameters.

The obtained results enable us to formulate a number of recommendations
for calculation of Beran’s estimator of conditional reliability function. It has
been shown that it is preferable to use the Priestley–Chao weight function and
to calculate the value of smoothing parameter by the method of minimal mean
of integrated error with the robust estimator of variance, when calculating the
kernel estimator of the inverse reliability function.

It should be noted that the methods considered in the paper do not
cover all the variety of approaches to nonparametric estimation of reliability
regression models. In particular, the development of bootstrap technique and
adaptive algorithms for the choice of optimal bandwidth parameter seem to
be interesting for future research.
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Chapter 14
Simulating from a Family of Generalized
Archimedean Copulas

Fabrizio Durante

14.1 Introduction

The search for flexible multivariate statistical models has stimulated the investiga-
tions about new families of copulas that can capture stylized facts of multivariate
data like tail dependence, non-exchangeability, asymmetries. See, for instance, the
number of different copula families discussed in [14–16, 18, 24] and the references
therein.

In such a variety of different models, it is hardly questionable that one of the
most studied (and used) models is represented by the Archimedean class of copulas.
Such copulas can be expressed in terms of a one-dimensional generating function
'W Œ0; 1� ! Œ0;C1� by means of the expression

C'.u/ D '�1.'.u1/C � � � C '.ud //; (14.1)

for all u 2 Œ0; 1�d . Conditions under which Eq. (14.1) describes a genuine copula
are discussed in detail, for instance, in [1, 21].

Now, despite its popularity, Archimedean copulas suffers from some limitations
that have been long recognized in the literature. In fact, their expression is
symmetric in its arguments, so that, if a multivariate modelH is constructed from an
Archimedean copula C and a univariate distribution function F via the expression

H.x/ D C.F.x1/; : : : ; F .xd //; (14.2)
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it turns out that H is symmetric in its arguments. Thus, H may be used only when
identically distributed random variables are supposed to be exchangeable. Several
ways have been proposed in the literature in order to overcome the exchangeability
issue by employing, for instance, ad-hoc asymmetrization procedures [5, 17] or
hierarchical structures [12, 25].

Here, instead, we focus our attention on another possible extension of Archime-
dean copulas that is more related to the issue of shock models (or models for joint
defaults). To fix ideas, suppose that .X; Y / represents a pair of identically distributed
random variables (on a suitable probability space) having the meaning of lifetimes.
Consider, for instance, X and Y as the lifetimes of two components of the same
(engineering) system; or as time-to-default of firms or time-to-payment of some
insurance contracts (i.e., house insurance against natural catastrophic events). It is
likely that a suitable requirement for a parametric model for .X; Y / would be that
the event fX D Y g may happen with a non-zero probability, so that it includes
the possibility of joint default for X and Y . However, models of this type are not
absolutely continuous and, hence, are not often considered in the literature despite
their potential interest (see, for instance, [19]).

A modification of bivariate Archimedean copulas that is able to take into account
joint default (under identical marginals) has been proposed in [10]. Here, this new
class of copulas is revisited and presented as distortion of the family of semilinear
copula, which are copulas originated for a specific shock model. Moreover, by using
a recent construction method presented in [23], a procedure is given to sample
random variates from such copulas (under some additional assumptions). Such
procedures are expected to be useful in multivariate models of lifetimes when, for
instance, the effects of a shock are relevant for the behaviour of a system. For more
details about possible use in credit risk, see also [2, 18].

14.2 The Generalized Archimedean Class of Copulas

Here we introduce the class of generalized Archimedean copulas starting with a
shock model, which will be interpreted, just for the sake of presentation, as a model
trying to describe random losses in a bivariate credit portfolio.

Suppose that some random losses X; Y are independent and identically dis-
tributed with distribution function F that is supported on Œ0; 1� (basically, we are
considering fractions of losses over a theoretical upper maximal loss). Following a
Marshall–Olkin mechanism to construct a multivariate model [20], suppose that
.X; Y / is subject to a shock represented by a random variable Z, which has
distribution function G.t/ D t=F.t/ on .0; 1/. Such a Z may be interpreted as
another loss that can hit the system. Since an external random shock occurs, we may
suppose now that the total vector of losses can be more conveniently represented in
the form

.U; V / D .maxfX;Zg;maxfY;Zg/;
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i.e. each individual loss tends to increase in view of the presence of random loss
determined by Z. Now, it can be shown that, under the given assumptions, .U; V /
is distributed according to the copula

CF .u; v/ D min.u; v/F.max.u; v//: (14.3)

The copula CF is a semilinear copula (see, e.g., [4, 11]). It describes positive
association between two random variables and, up to the case of the independence
copula ˘2.u; v/ D uv, its corresponding measure admits a singular component
along the main diagonal of Œ0; 1�2. As evident, in general semilinear copulas are not
Archimedean, but may serve as a basis to build a generalized Archimedean model.

In fact, consider a distortion function hW Œ0; 1� ! Œ0; 1�, i.e. an increasing and
concave bijection of Œ0; 1�. Following a general construction principle, each copula
C can be transformed into another copula Ch, by means of the formula

Ch.u; v/ D h�1.C.h.u/; h.v///: (14.4)

For more details, see [6, 22, 27]. By applying a distortion h to a semilinear copula
CF , we obtain the copula

.CF /h.u; v/ D h�1.h.min.u; v//F.h.max.u; v////: (14.5)

Setting h.t/ D exp.�'.t// and F.h.t// D exp.� .t// for suitable functions ' and
 , the previous expression may be rewritten in the form

C'; .u; v/ D '�1.'.min.u; v//C  .max.u; v///: (14.6)

Copulas of type (14.6) have been introduced in [10]. Here, they will be called GA
copulas (GA stands for generalized Archimedean). Simple sufficient conditions that
ensure that (14.6) defines a bona fide copula are provided in [10] and are reproduced
below. Notice that, for a continuous function f we denote by f �1 it pseudo-inverse,
which coincides with the standard inverse when f is strictly monotone.

Theorem 14.1. Let ' W Œ0; 1� ! Œ0;C1� be continuous and decreasing. Let  W
Œ0; 1� ! Œ0;C1� be continuous, decreasing and such that  .1/ D 0. If ' is convex
and . � '/ is increasing in Œ0; 1�, then C'; of Eq. (14.6) is a copula.

Obviously, in the case ' D  , copulas of type (14.6) coincide with Archimedean
copulas. However, the family of GA copulas is more general. For instance,
both Cuadras-Augé copulas [3] and MT-copulas [9] are GA copulas, but not
Archimedean copulas. Now, it can be proved that, in general, GA copulas are not
absolutely continuous, and their singular component may be often identified, as the
following result shows.
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Theorem 14.2. Let C'; be a copula of type (14.6) such that ' ¤  . Then C
contains a singular component along the main diagonal f.x; x/W x 2 Œ0; 1�g.

Proof. Since the functions ' and  are monotone, they are differentiable almost
everywhere in Œ0; 1�. Assume C.x; y/ WD C'; .x; y/ > 0 at the point .x; y/ 2
Œ0; 1�2. According to [10, Theorem 4.1],

'0.C.x; y//
@C

@x
.x; y/ D '0.x/; x < y

'0.C.x; y//
@C

@x
.x; y/ D  0.x/; x > y:

It follows that t 7! @C
@x
.x; y/ has some jump discontinuity along the main diagonal

of the unit square. Thus, in view of [16, Theorem 1.1], there is a singular component
of the probability mass associated with C'; .

It turns out that copulas of type (14.6) form a class where models with singular
components and Archimedean models can be joined together.

Example 14.1. Take '.t/ D 1 � t and, for every ˛ 2 Œ0; 1�,

 .t/ D

8
ˆ̂<

ˆ̂:

˛=2; t 2 Œ0; ˛=2�I
˛ � t; t 2 .˛=2; ˛/I
0; t 2 Œ˛; 1�:

Then C'; D C˛ is a GA copula which is an ordinal sum (see, e.g., [7]) of the
counter-monotonic copula W.u; v/ D max.u C v � 1; 0/ and the comonotone
copula M.u; v/ D min.u; v/ with respect to the partition f.0; ˛/; .˛; 1/g. It is a
singular copula that spreads the probability mass along the segments with endpoints
.0; ˛/; .˛; 0/ and .˛; ˛/; .1; 1/.

14.3 Sampling Generalized Archimedean Copulas

In view of the importance of considering copulas with singular components in
application [19], it can be useful to have sampling procedures for such copulas.
However, to the best of our knowledge, this problem has not a general solution,
being sampling procedure of these copulas limited to the classical conditional
distribution method [18]. Here, following a novel construction principle for copulas
proposed in [23], we present a sampling method for GA copulas. As it will be noted,
the stochastic mechanism is similar to the semilinear copula construction presented
above. In fact, both methods are inspired by the Marshall–Olkin mechanism [20] of
shock models (see also [8]).
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Let X; Y be identically distributed random variables with distribution function
F supported on Œ0; 1�. Suppose that .X; Y / is subject to a shock represented by a
random variable Z, which has distribution function G on Œ0; 1�. Moreover, suppose
that both the original random variables and the shock are not independent, but are
coupled by a trivariate Archimedean copula C' with additive generator '. Since
an external random shock occurs, we may suppose that the new system is more
conveniently represented in the form

.U; V / D .maxfX;Zg;maxfY;Zg/:

Now, it can be shown that the distribution function of .U; V / is given by

H.u; v/ D P.U 6 u; V 6 v/

D '�1.' ı F.u/C ' ı F.v/C ' ıG.min.u; v//:

In order to ensure that such a H is a copula, consider G.t/ D '�1.'.t/� ' ıF.t//
for all t 2 .0; 1/. Then it follows that G is a distribution function if, and only if,
t 7! .' ı F.t/ � '.t// is increasing. Under this additional assumption, H can be
rewritten as

H.u; v/ D '�1.'.min.u; v/C ' ı F.max.u; v///: (14.7)

It is not difficult to show that H of Eq. (14.7) satisfies the assumption of Theorem
14.2, so that it is a GA copula. Thanks to the previous stochastic construction, the
following algorithm follows.

The inputs for the algorithm are: an additive generator ' of a trivariate Archimedean copula, and
the distribution functions F (supported on Œ0; 1�).

(1) Simulate .U; V;W / from the Archimedean copula C' .
(2) Set

U1 D F�1.U /;

V1 D F�1.V /;

W1 D G�1.W /; where G.t/ D '�1.'.t/� ' ı F.t// for all t 2 .0; 1/.
(3) Return

.S; T / D .maxfU1;W1g;maxfV1;W1g/:
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Fig. 14.1 Scatter plot from a copula of type (14.7) where ' is a generator of a Gumbel copula
with Kendall’s � equal to 0:5, while F.t/ Dpt

Figures 14.1 and 14.2 illustrate the previous algorithms in two examples. From
the pictures, it should be noted the presence of a singular component along the main
diagonal of the unit square. In practice, the algorithm has been implemented in R
[26] by using also some useful functions from the copula package [13] (in particular,
generators and inverse generators of Archimedean copulas).

Finally, copulas H of type (14.7) represent a sub-class of GA copulas. In fact,
while the former are constructed by using generators of trivariate Archimedean
copulas, the latter are constructed via the larger class of generators of bivariate
Archimedean copulas.
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Chapter 15
PS-Algorithms and Stochastic Computations

Sergej M. Ermakov

15.1 Introduction

The need to process huge volumes of data (big data analysis), on the one hand,
imparts the necessity to create a computer with a very large number of processors
and (or) quantum computers and, on the other hand it imparts the necessity to
develop stochastic calculations that allow to draw conclusions on the basis of a
sample data of a relatively small volume. We consider a special class of algorithms
with parallel structure, including stochastic ones (the Monte Carlo methods) and
discuss their specificity and possible applications.

It is a well-known fact that effective use of the modern supercomputers imposes
certain requirements on the choice of algorithms for solving different problems.
Of course, there exists a possible approach when each algorithm is analyzed by
programmer or compiler, and the available parallel structures are used in calcula-
tions. However this approach in most cases leads to inefficient use of equipment. It
often turns out that an algorithm that has worse properties in terms of the sequential
computational structures of von Neumann is more effective if the multiprocessor
technology is used. Obviously, it is interesting to study “bad” (as defined above)
algorithms that can efficiently load the multiprocessor hardware, and to work out
new algorithms of this type.

Further we will consider one class of algorithms (parametrically separated
algorithms) that can effectively load the system with distributed memory, consisting
of a central (manager) processor and k processors with autonomous memory.
Clusters and clouds can serve as examples of such systems. It is assumed that the
time of exchange between processors is significantly greater (by several orders of
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magnitude) than the run-time of operations by each processor. In connection with
this last assumption, we note the following.

Let the optimal sequential algorithm (requiring minimum average number of
operations) for solving a problem requires time T0. As an alternative we can use an
algorithm that requires to be performed in a sequential version of time T , T > T0,
and attract k processors, each of which is occupied during the time T=k. This case,
however, will require significant additional time t for exchange of information in
the process of solving the problem.

The obvious requirement is fulfillment of the inequality

T0 >
T

k
C t;

so an alternative algorithm must fulfill

T 6 k.T0 � t /:

It is clear that there should be t < T0. Otherwise multiprocessor improves nothing.
We can also see that the growth of k and reduction of t permit involving in solving
the problem a wide range of algorithms with properties that are far from optimal in
the traditional sense. Algorithms can be “bad” but have a parallel structure.

One class of algorithms with a parallel structure and few exchanges between
processors are parametrically separable (PS)-algorithms [5].

PS-algorithm consists of three parts executed sequentially

B1 ! A.	/ ! B2;

and has the following properties

(1) Algorithm A.	/ depends on the parameter 	 (it has 	 as an input data). 	 takes
values from discrete set 
 of a fairly general nature.

(2) k independent processors can be charged for execution of algorithms A.	i /,
	i2
, i D 1; : : : ; k.

(3) Algorithm B1 gives tasks to algorithm A, and B2 computes solution of the
original problem, with results received by A.	i /, i D 1; : : : ; k.

If the execution times of algorithmsA.	i /with different i vary only slightly, then
the PS-algorithm is called homogeneous.

As one of the simplest examples of PS-algorithms we can refer to the VVR-
algorithms [1]. An algorithm of this type calculates (for example) independently
each digit of the number � .

Here 
 D N is the set of natural numbers. The computing system consisting of
k processors independently computes k digits or k groups of digits, the results come
in one of the processors (exchange), and the approximate value of � is formed with
a given accuracy.
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Many algorithms in the computational mathematics are PS-algorithms. For
example, if the computation of values f .X/, where X 2 D 
 Rs , is associated
with considerable difficulties, then the algorithm of interpolating polynomial con-

struction is the following P.X/ D
nP
iD1

li .X/f .Xi /, li .X/ are polynomials,Xi 2 D,

and calculations of the integral with the use of the cubature sum

KnŒf � D
nX

iD1
Aif .Xi /

are PS-algorithms, where the set of points Xi constitutes the parameter set 
.
The Newton’s method of solving f .x/ D 0, x 2 R1 is an example of algorithm

without the property of parametric separability, although it is possible that its
modification obtains this property, as we will see further.

In the light of the above it becomes clear that the study of PS-algorithms may
be of considerable interest, and further we will discuss a number of problems of the
computational mathematics in terms of their PS-properties. For some algorithms
that do not have the PS-property we will also point out ways to build their
modifications with the PS-property.

15.2 Solving Linear Systems

As a very simple and very important class of algorithms we consider the iteration
algorithms for solving systems of linear algebraic equations. Iteration algorithms in
their general form are not PS-algorithms. Under certain conditions, asynchronous
iterative methods have the PS-property. If a given system is

X D AX C F; X D .x1; : : : ; xn/
T ; A D kai;j kni;jD1; F D .f1; : : : ; fn/

T

(15.1)
and the majorant iterative process converges

X D jAjX C jF j; (15.2)

then the original system also has the iterative solution QX , and for each vector
H D .h1; : : : ; hn/ the scalar product .H; QX/ can be represented as an inte-
gral over trajectories of a homogeneous Markov chain �!p 0;P with n states�!p 0 D .p01; : : : ; p

0
n/, P D kpi;j kni;jD1. Here �!p 0 is the initial probability

distribution of states, and P is the transfer (substochastic) matrix whose elements
satisfy the following conditions

nX

iD1
pi;j D 1 � gi ; 0 6 gi 6 1; i D 1; : : : ; n: (15.3)
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The Markov chain is subject to the concordance conditions (the absolute continuity
of measures), which depend on the type of selected estimate of scalar product
.H; QX/—the function of trajectories. One of the simplest estimates is the follow-
ing [4]

�t D hi0ai0;i1 ; : : : ; ait�1;it fit

p0i0pi0;i1 ; : : : ; pit�1;it git
; (15.4)

where i0; i1; : : : ; it is the trajectory of the Markov chain which requires fulfillment
of conditions

p0i > 0; hi ¤ 0; gi > 0; fi ¤ 0;

pi;j > 0; ai;j ¤ 0; i; j D 1; : : : ; n:
(15.5)

There are an infinite number of functions (estimates) which can be used to represent
the scalar product .H; QX/ as a path integral. They require appropriate concordance
conditions [4]. The integral can be calculated either with the use of the Monte Carlo
method or by using the deterministic (quasi-Monte Carlo) methods. In the first case
�t is treated as a random variable whose expectation is the computed integral. The
algorithm consists in modeling the trajectories i0 ! i1 ! � � � ! it of the Markov
chain, which is selected so as to satisfy not only the concordance conditions but also
the requirement of smallness of the second moment of the estimate. t is assumed
finite with probability 1. �t is calculated on the trajectories. Calculation of the
independent groups of trajectories can be realized by different processors. The result
is the mean value of the obtained �t . Parameter set here is a set of pseudorandom
numbers that should be divided between the processors.

A widely recognized disadvantage of the Monte Carlo method is its slow
convergence. After having modeled N pathes we reduce the error

p
N times.

This disadvantage can be considered as a payment for unlimited parallelism of the
method. It must be noted that for a certain class of problems the sequential version
of the method can also be beneficial.

Indeed, the calculation of the sum .H;XM/ D �
H;

MP
lD0

AlF
	

requires � MnK

operations, where K is an average number of nonzero elements in the row of the
matrix A. The Monte Carlo estimate of the same sum requires � N.2 C ln2 K/M
operations provided application of the bisection method, and � 4NM provided
application of the Walker method [12]. It is easy to see that with the growth of n,
for fully filled matrices in particular, the application of the Monte Carlo method can
be justified to get the results with low .� 1%/ accuracy. Calculations with high-
precision, obviously, require different approaches.

If the system (15.1) has an iterative solution but the iterative process for (15.2)
diverges, then .H; QX/ cannot be represented as a path integral. Therefore we cannot
specify the PS-algorithm based on modeling the trajectories of the Markov chain.
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In our considered case the sum
1P
lD0

jAjlF is infinite, but the sum
1P
lD0

jAlF j is

finite. An iterative algorithm for computing solution of the system X D AX C F

consists in sequential calculation of vectors QX1 D AF C F , QX2 D A.AF C F /

and so on. Here it is sufficient to satisfy the condition kAk < 1.
Separately, we should mention the case when the matrix A is triangular.

Difference analogue of the evolutionary net equations is usually reduced to this
occasion. The largest eigenvalue of the modulus of this matrix is equal to the largest
diagonal element. If it is less than unity, then it is possible to formally represent
solution of the problem as a path integral. However, if other elements are large, then
the variance of estimates usually grows exponentially with the order n of the matrix,
and computations are unstable (stochastic instability).

The algorithm for calculation of matrix–vector product is the PS-algorithm (by
line number), but this cannot be said for general algorithm for computing the sum
of the Neumann series. It is required to memorize vector QXm and synchronization is
necessary in the multi-processor case. Let’s recall that the necessary convergence

condition for asynchronous iterations is finiteness of the sum
1P
lD0

jAjlF [2]. It

is possible to build PS-algorithms here if one uses methods of the numerical
integration. In particular, with the use of the Monte Carlo method one can compute
a sequence of unbiased estimates �m of vectors QXm. One of the simplest estimates
of components of QXmC1 is the following. Distribution �!p D .p1; : : : ; pm/ is given
to select number i—the number of component of the previously computed vector
�m, and stochastic matrix P D kpi;j kni;jD1 is given to select element from the i -th
row of the matrix A

�mC1l D �iai;l

pipi;l
: (15.6)

Under the concordance conditions (15.5) the following equality holds true

E�mC1 D QXmC1; �mC1 D .�mC11 ; : : : ; �mC1n /: (15.7)

After having calculated �mC11 repeatedly (Nl times) with independent random
numbers, we obtain with the required accuracy the estimate �mC1 and go to the
estimate �mC2 (and so on).

Constructed algorithm is already the PS-algorithm. Estimate �M for sufficiently
largeM can be charged to different computers (processors). Then the expectation of
�M is estimated by known methods. Simultaneously one can build the confidence
interval. Analysis of the behavior of the resulting error with Nl D N , independent
of l , can be found in [4]. N must be large enough so that the algorithm might be
stochastically stable. For smallN variance of estimates�m can increase indefinitely
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with increasing m. Here we do not discuss details of the algorithms for solving
difference equations. We only note that taking into account the property of smooth-
ness of the original problem solutions can significantly reduce the complexity of the
algorithm.

For calculating the estimates �ml , as well as for calculating estimates �t defined
by (15.4), one can use the quasi-random numbers and grid integration along with the
pseudo-random numbers. It means that we use numerical integration methods for
solving systems of linear algebraic equations in the general case. As noted above,
the Monte Carlo error is of order O

�
N�1=2

	
.

The error of the quasi Monte Carlo method decreases asO
�

lns N
N

	
, where s is the

dimension of the computed integral.
The expectation of the estimate �t is a sum of integrals of increasing multiplicity.

As a rule, the quasi Monte Carlo method is used to calculate several first compo-
nents. Its use for very large s is not effective. However, we can see that the sequential
procedure for calculating the estimates (15.6) corresponds to s D 1, which allows
to take full advantage of the quasi-random sequences.

If the system (15.1) appeared as a result of sampling a problem with smooth
data and decision, then it is possible to use methods with significantly more rapid
decrease of the error (the method of Korobov optimal coefficients for calculating
the sums [7]).

These are general features of the (quasi) stochastic algorithms for solving
systems of linear algebraic equations. It is quite obvious that appearance of the
calculators with a very large number of processors, those that have the type of SIMD
[11] in particular, makes these algorithms very attractive. Easy realization of the
programs may be an additional advantage. The multigrid methods, for example, do
not have this advantage.

It should also be noted that the vast majority of the results related to systems of
linear algebraic equations can be transferred to equations of the form

'.x/ D
Z
k.x; y/'.y/�.dy/C f .x/ .mod �/; (15.8)

where �—� -finite measure. In this case the algorithm consists in simulating the
Markov chain with transition density associated with kernel k.x; y/ by concordance
conditions [4]. Application problems of particular interest are those in which k.x; y/
is the transition density (queueing problems, radiation transport problems, etc.).

15.3 Nonlinear Problems

Some features of the PS-algorithms for nonlinear problems can be traced by the
simplest example of a quadratic equation (or rather, certain types of quadratic
equations). If quadratic equation
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x D ax2 C bx C c (15.9)

satisfies jaj C jbj C jcj 6 1, then iterations xm D ax2m C bxm C c, m D 1; 2; : : :

converge to the smallest solution of the Eq. (15.9).
If we compare Eq. (15.9) to a branching process, determined by probability

distribution p2, p1, p0 and evolving in the discrete time t D 0; 1; : : : so that at
t D 0 there is one particle, and for at t D 1:

it dies with probability p0 (breakage of the trajectory);
it remains unchanged with probability p1;
Two particles with identical properties are formed with probability p2;

then the solution of the equation can be calculated by modeling this process. It is
sufficient to calculate functional on its trajectories that is analogous to (15.4).

Everything becomes more transparent if we note that (15.9) is equivalent to
infinite system of equations [9]

ysC1 D aysC2 C bysC1 C cys; y0 D 1; s D 0; 1; : : : : (15.10)

Formal application of the methods described above to the system provides an
algorithm that can also be interpreted as a simulation of a branching process. The
difference consists in choosing the state space of the process.

Thus we have indicated the PS-algorithm for solving (15.9). This is probably the
most difficult (bad) known algorithm for solving quadratic equation. However, it
can be generalized to some complex multi-dimensional equations of the form

'.x/ D f .x/C
1P
lD1

R
�.dx1/ : : :

R
�.dxl/kl .x; x1; : : : ; xl /

�
lQ

jD1
'.xj / .mod �/;

(15.11)

under condition of convergence of the majorant iterative process

'mC1.x/ D jf .x/j C
1P
lD1

R
�.dx1/ : : :

R
�.dxl/ jkl .x; x1; : : : ; xl /j

�
lQ

jD1
'm.xj / .mod �/

(15.12)

it can be very effective in this case.
The condition (15.12) is rather restrictive, but a number of techniques, including

various types of changes of variables allow to achieve its fulfillment for several
important applications—the Navier–Stokes equations, the Boltzmann equation.

If the nonlinearity is not polynomial, but has a more complex nature, generally
speaking we can’t reduce the problem to the computation of a path integral.
Different types of sequential linearization are used here. At each stage to solve the
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linear problem, one can use the Monte Carlo and the Quasi Monte Carlo methods.
The essence of the problems emerging here can be illustrated by the following
example of system of equations

fi .x1; : : : ; xn/ D 0; i D 1; : : : ; n: (15.13)

Under certain assumptions regarding the smoothness of f2 and others, the system
can be solved by the Newton’s method—linearization by expansion in the Taylor
series. For each m D 0; 1; : : : we solve the following system of linear equations

nX

lD1

@fi .X
m/

@xl
.xmC1l � xml / D �fi .Xm/; (15.14)

Xm D .xm1 ; : : : ; x
m
n /; i D 1; 2; : : : ; n. It is possible that for large n the system

can be successfully solved by the Monte Carlo method, especially if the occupancy
of the matrix system is great. Xm, with previously computed Xm�1, is estimated as
the average of N independent estimates .�m1;j ; : : : ; �

m
n;j / D �m

j of components Xm.
In contrast to the linear case

EF

0

@ 1

N

NX

jD1
�m
j

1

A ¤ F.E�m
j /;

for any function F with non-zero nonlinear part. However, provided existence of
the second partial derivatives with N ! 1 [4] we have

EF

0

@ 1

N

NX

jD1
�m
j

1

A D F.E�m
j /CO

�
1

N

�
: (15.15)

Therefore, for large N the arising bias can be neglected, although it is possible to
conduct more accurate analysis, which requires knowledge of the second partial
derivatives in the solutions neighborhood.

Analysis of the second moments behavior is more complicated [4], but if with
the growth of m, they do not increase exponentially (stochastic stability), the
computation can be entrusted to k independent processors and then the results
are averaged. If N is independent of m and of the number of processors, then the

number of processors order should not exceed O
�

1p
N

�
.

Thus, we have pointed out a PS-variant of the Newton’s method, though with
some reservations.

It is theoretically interesting, as in the linear case, to estimate the smallest N
which ensure the stochastic stability [4, 6, 10].

Thus, randomization and the use of the quasi-random (deterministic) sequences
allow to build PS-algorithms for solving a wide range of problems in computational
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mathematics. Stochastic procedures (such as the method of stochastic approxi-
mation) can obviously be a source of PS-algorithms for solving equations and
determination of the extreme points of functions [3]. It is interesting to study the
question—how much “worse” are they in comparison with classical algorithms, and
what are the features of the quasi-random approach in these procedures.

Many randomized extremum searching algorithms have PS-properties. This is
especially true for global extremum searching algorithms for functions of a large
number of variables. Among such algorithms are so called genetic algorithms,
algorithms for simulated annealing etc.

When solving optimization problems one frequently decides to uses many
processors. Each of them is able to use its own, different from the others method.
During the data exchange it is necessary to decide about the nature of the
obtained results—whether an approximation obtained by the given processor is an
approximation of some extremum or an approximation of the global extremum, and
then the calculations are continued and completed depending on the results. Thus,
the organized algorithm is is a PS-algorithm.

The most theoretically reasonable algorithms of the global extremum search
are algorithms of determination of the distribution mode. If f .X/ is bounded and
nonnegative on the set D, that does not detract from the community, and reaches its
maximum value on the set Y 
 D [3], then it is easy to prove that

F.x/ D lim
m!1

�
f m.X/

�Z
f m.X/ dX

�
(15.16)

is the distribution density concentrated on the set Y .
The problem of obtaining points of the set Y is solved by modeling the

density Fm.X/ D f m.X/
ı R

f m.X/ dX for sufficiently large m. The only known
method that allows to do this without calculating the normalization constant is
the Metropolis method [8]. Obtaining independent realizations of Fm.X/ can be
assigned to different processors—parametric separability takes place. The described
method is widely used in problems of discrete optimization and it is, apparently, the
only reasonable method that can numerically solve problems which require to find
many (perhaps infinitely many) equal extreme points.
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Chapter 16
Laws of Large Numbers for Random Variables
with Arbitrarily Different and Finite
Expectations Via Regression Method

Silvano Fiorin

16.1 Assumptions and Basic Concepts

Given an arbitrary sequence of real random variables fYj W j > 1g satisfying the
following assumptions

A1 the Yj ’s are uniformly bounded, i.e. there exists M > 0 such that jYj j 6M ,
8j > 1;

A2 the Yj ’s are totally independent or pairwise uncorrelated;
A3 the Yj ’s have probability distributions and finite expectations which are

arbitrarily different.

The basic idea in order to construct a strong law of large numbers for the
sequence fYj W j > 1g is that of embedding each Yj as a conditional random
variable belonging to a random vector .X; Y / in such a way that we can write

Yj D .Y jX D xj / 8j > 1 (16.1)

where X denotes a random element taking values into some space X with
� -field BX . Of course the equality Yj D .Y jX D xj / implies that the probability
distribution of Yj is completely identified by the element xj , moreover, if we
consider a different probability distribution for each Yj , a reasonable choice for xj
is that of denoting the probability distribution function (p.d.f. hereafter) of Yj , i.e.

xj .t/ D P.Yj 6 t / D FYj .t/ 8t 2 R1: (16.2)
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Furthermore, if Assumption A3 holds, a very general context has to be chosen
for the elements xj ’s; in fact, for instance, it may happen that x5 and x10 denote,
respectively, any assigned discrete and continuous type probability distribution. The
problem is that of labelling by fxj W j > 1g the distributions of the arbitrarily and
countable set of r.v.’s fYj W j > 1g and a natural solution consists in giving to each
xj the meaning of probability distribution function FYj . Recalling the sequence
of random variables fYj W j > 1g as a preliminary element in our analysis, then
choosing the class of functions fxj W j > 1g as values taken by a random element
X , the random vector .X; Y / will be constructed via definition over the xj ’s of
a metric d which is directly derived from Skorohod distance and then setting X
equal to the closure of the set fxj W j > 1g under the d topology

X D fxj W j > 1g: (16.3)

With X a separable metric space of p.d.f.’s was introduced where the respective
Borel � -field BX is defined. For each fixed x 2 X let us denote the corresponding
real random variable having x as its p.d.f. by Y.x/, then the family of random
variables fY.x/ W x 2 X g, through the monotone class theorem, allows us to derive
a function P.x;B/ defined for each x 2 X and each B 2 B1 (the usual Borel
� -field over R1) and satisfying the below properties

P1 for each fixed x 2 X , P.x; �/ is a probability measure over B1, i.e. P.x; �/
denotes the measure defined by the p.d.f. x;

P2 for each fixed B 2 B1, P.�; B/ is a Borel measurable function with respect
to BX .

If a marginal probability measure PX is defined over BX , the product measure
theorem can be applied to P.x;B/ and PX and the existence is proved for product
measure P

X �R1 over the product � -field satisfying the property

P3 P
X �R1 .F / D R

X P.x; F.x//dPX .x/ where F.x/ D fy 2 R1 W .x; y/ 2
F g, for any fixed F 2 BX � B1.

16.2 The Limit Value for SLLN

The product space X � R1 with � -field BX � B1 and product measure P
X �R1

is the suitable context where the limit value for the sequence 1
n

Pn
jD1 Yj can be

defined. Given the product space X � R1, a random vector .X; Y / is easily defined
through the marginals

X.x; y/ D x and Y.x; y/ D y;8.x; y/ 2 X � R1 (16.4)

in such a way that with Y jX D x a conditional random variable exists having x as
its p.d.f. and
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.Y jX D xj / D Yj , 8xj D FYj : (16.5)

The function P.x;B/ in P3 can be now rewritten adopting a new notation:

P.Y 2 BjX D x/ D P.x;B/; 8 fixed B 2 B1 and x 2 X ; (16.6)

and the main result consists in proving the convergence

lim
n!1

1

n

nX

jD1
Yj D E.Y / almost surely (16.7)

with respect to the infinite product probability measure P having each Pj as a
marginal, noting that Pj denotes the probability measure defined by FYj .

The below proof is based on the version of E.Y / defined via Fubini theorem

E.Y / D
Z

X

Z

R1
ydP.Y jX D x/dPX .x/ D

Z

X
E.Y jX D x/dPX .x/

(16.8)

thus it is much more important the convergence to the value
R
X E.Y jX D x/

dPX .x/, where we compute the integral of the regression function E.Y jX D x/

with respect to the marginal measure PX .

16.3 The Measure PX

Before dealing with the technicalities of the rigorous proofs, some comments
are made on measure PX under an intuitive point of view. The connection of
the regression function x ! E.Y jX D x/ with the set of random variables
fYj W j > 1g is intuitively evident: in fact fE.Y jX D xj / D E.Yj /;8j > 1g
is a countable and dense subset of the set of values taken by the regression
function, whereas it may appear not to so clear why, in order to study the limit for
1
n

Pn
jD1 Yj , we need a probability measure PX over BX . We will show below

that for any n fixed 1
n

Pn
jD1 Yj can be written by means of pseudo-empirical

measure (p.e.m. hereafter) �n, where the term pseudo for �n is due to its arguments
fxj W j D 1; 2; : : : ; ng which are not observations but the p.d.f. of the assigned
random variables fYj W j D 1; 2; : : : ; ng.

Let us define the p.e.m.

�n.B/ D 1

n

nX

jD1
IB.xj / (16.9)
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for an assigned B 2 BX and where

IB.xj / D
�
1 if xj 2 B
0 if xj … B : (16.10)

Then �n.B/ depends directly on the position of the xj ’s inside the space X and
on the permutations of the xj ’s. It will be shown below that a crucial argument for
SLLN is the asymptotic behaviour for the sequences f�n.B/g.

16.4 The Space X

Given the set fYj W j > 1g of random variables, having each Yj an arbi-
trary probability distribution giving mass 1 to the interval Œ�M;M� because of
Assumption A1 above, the Yj ’s can be parametrized taking the corresponding p.d.f.
Fj .t/ D P.Yj 6 t /;8j > 1.

Definition 16.1. A probability distribution function is a real valued function F that
is increasing, right continuous, with left hand limits over .�1;C1/ and satisfying
limt!1 F.t/ D 1, F.C1/ D 1, F.�1/ D 0.

Our aim consists in defining over the space F of all p.d.f.’s a metric which is
directly derived from the Skorohod distance over the space DŒ0; 1� of real valued
functions f over Œ0; 1� which are right continuous and with left hand limits. Let us
introduce the following strictly increasing function

'1.t/ D

8
ˆ̂̂
<

ˆ̂̂
:

t
1Ct if t > 0
�jt j
1Cjt j if t < 0

1 if t D C1
�1 if t D �1

mapping NR1 onto Œ�1; 1� and then '2.t/ D '1.t/C1
2

is a continuous strictly increasing
function mapping R1 onto Œ0; 1�. With the help of '2.t/ a transformation is defined
for any assigned p.d.f. F over NR1 into a function defined over Œ0; 1�

'.F /.s/ D F.'�12 .s// s 2 Œ0; 1�: (16.11)

The transformation defined by ' on F is a very simple one: the transition from F

to '.F / is performed only taking the transformation of t into '2.t/ D s and then
'.F /.s/ D F.t/. Several interesting properties can be directly checked: '.F / is
increasing, right continuous with left hand limits and '.F /.0/ D 0; '.F /.1/ D 1

Definition 16.2. A metric d is defined over the class F of p.d.f.’s by the below
equality d.F1; F2/ D ds.'.F1/; '.F2// where ds is the Skorohod distance over
DŒ0; 1�, F1 and F2 belong to F and ' is the map defined by (16.11).
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The distance d.F1; F2/ of two assigned p.d.f.’s is computed via the corresponding
functions '.F1/; '.F2/ 2 DŒ0; 1� and thus a simple method in order to get the
topology �d and the Borel � -field Bd generated by the metric d over F is that of
giving �ds and the Borel � -field Bds defined through the Skorohod distance ds over
'.F / 
 DŒ0; 1� and then �d D '�1.�ds /;Bd D '�1.Bds / where ' W F ! '.F /,
defined by (16.11) is a bijection from F onto '.F /. Analogously the definition
of the space X on the base of the sequence of p.d.f.’s fxj W j > 1g is introduced
via the corresponding set f'.xj / W j > 1g 
 '.F / 
 DŒ0; 1� and the closure with
respect to the ds metric

X D '�1.f'.xj / W j > 1g/ (16.12)

Moreover the Borel � -field Bd defined through the metric d over X can be
assigned as preimage by ' of the Borel � -field Bds over '.X /

Bd D '�1.Bds // (16.13)

Going back to notations adopted above, notice that we take BX D Bd .

16.5 The Product Space X � R1

For any fixed p.d.f. x 2 X let us assign a real random variable Y.x/ having x as
its p.d.f.; the two sets X and fY.x/ W x 2 X g can be thought as the elements
of a regression scheme: X denotes the set of values taken by a regressor X and
each Y.x/ could be a conditional random variable .Y jX D x/ for some random
variable Y . Let us denote as P.x;B/ the function defined for each x 2 X and
B 2 B1 such that P.x; �/ is the probability measure generated by the p.d.f. x. Then
our purpose consists in proving the following result.

Lemma 16.1. For each fixed B 2 B1 P.�; B/ is a Borel measurable function with
respect to the Borel � -field BX over X .

Proof. The first step concerns the measurability with respect to BX for the function
x ! P.x; .�1; t �/ D x.t/, with fixed t 2 R1, which may be written as

�t .x/ D x.t/ (16.14)

i.e. as the function which assigns the value x.t/ to any p.d.f. x 2 X . Given
the subset A � DŒ0; 1� and any fixed s 2 Œ0; 1�, the measurability for the
map �s.f / D f .s/;8f 2 A, with respect to Bds .A/, the Borel � -field on
A in the Skorohod topology, is proved by Billingsley [2] (see p. 121). Then,
if A D '.X / with ' defined as in (16.11), the measurability for �s holds
true for any fixed s 2 Œ0; 1�, i.e. ��1s .B1/ 
 Bds . Recalling now (see (16.12)
and (16.13) above) that over X we have BX D Bd and BX D '�1.Bds / then
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'�1.��1s .B1// 
 '�1.Bds / D BX . Moreover, applying (16.11), we
have '�1.��1s .B1// D ��1t .B1/ with t D '�12 .s/, proving the inclusion
��1t .B1/ 
 BX , which shows the measurability of �t with respect to BX .
Thus the BX -measurability is proved for the class of functions P.�; .�1; s�/

and P.�; Œ�1; s�/ for all fixed s 2 R1. Consequently the BX -measurability is
obtained for any function P.�; .a; b�/ D P.�; .�1; b�/ � P.�; .�1; a�/ and also
for each function P.�; B/ with B belonging to the field F0 of all finite disjoint
unions of intervals .a; b� and Œ�1; b�. The monotone class theorem is now applied
introducing the class C D fB 2 B1 W P.�; B/ is a BX -measurable functiong. C is
a monotone class including the field F0 and then the inclusion B1 D �.F0/ 
 C
holds true where �.F0/ denotes the � -field generated by F0. And this proves
Lemma 16.1.

If the marginal probability measure PX is defined over BX , all the assumptions
are fulfilled for the product measure theorem and then there exists a unique
probability measure P

X �R1 over the product � -field BX � B1 such that

P
X �R1 .k/ D

Z

X
P.x; k.x//dPX .x/; 8k 2 BX � B1 (16.15)

where k.x/ D fy 2 R1 W .x; y/ 2 kg is the section of k at point x.

16.6 The Limit for SLLN

The product space X � R1 with product measure P
X �R1 is the setting in which to

define the main tool of our analysis.
If for each point .x; y/ 2 X � R1 the two maps are defined

X.x; y/ D x and Y.x; y/ D y (16.16)

the random vector .X; Y / is given where .Y jX D xj / D Yj ;8j .
Of course Y is a marginal random variable and its expectation E.Y /, which

is finite under Assumption A1, plays a key role. In fact, it will be shown below
that E.Y / is the limit for our SLLN and the proof developed in the sequel,
applying Fubini theorem as in (16.8), deals with convergence to the integralR
X E.Y jX D x/dPX .x/.

16.7 The Convergence Technique

A slight modification is needed avoiding some complication in proving the conver-
gence of 1

n

Pn
jD1 Yj to

R
X E.Y jX D x/dPX .x/ and this because the function

 .x/ D E.Y jX D x/ has to be integrated over the infinite dimensional space X ;
a preferable context can be found by means of the composition function
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I ıE.Y jX D x/ D I.E.Y jX D x// (16.17)

where I.v/ D v is the identity map for all v 2 Œ�M;M�. Observing that, because
of A1 and Fubini theorem,  .x/ D E.Y jX D x/ is a BX -measurable map from
X into Œ�M;M� 
 R1, the induced probability measure

PE.B/ D PX . �1.B// (16.18)

is defined over the Borel � -field BŒ�M;M� on the interval Œ�M;M�. Thus, by
integration theorem for the composition map I ı E.Y jX D x/ the equality holds
true

Z M

�M
I.v/dPE.v/ D

Z

X
I.E.Y jX D x//dPX .x/ D

Z

X
E.Y jX D x/dPX .x/

and the convergence is studied for 1
n

Pn
jD1 Yj to

RM
�M I.v/dPE.v/.

The basic idea is now shown for proving convergence of SLLN. Given �m >

0, a partition of Œ�M;M� into subintervals fHim W im D 1; 2; : : : ; hmg can be
chosen such that Him D Œ�M;a�, if im D 1, with a 2 .�M;M/ and Him D
.c; d � 
 Œ�M;M�;8im D 2; : : : ; hm where each Him is an interval with length at
most equal to �m. For n fixed 1

n

Pn
jD1 Yj involves the random variables fYj W j D

1; 2; : : : ; ng which are partitioned into subsets: for each fixed interval Him let us
denote by

fYjim W jim D 1; 2; : : : ; n.Him/g (16.19)

the set of random variables Yj such that E.Yj / 2 Him and where

n.Him/ (16.20)

is the cardinality of random variables Yj with j D 1; 2; : : : ; n and E.Yj / 2 Him.
The decomposition is then obtained

nX

jD1
Yj D

hmX

imD1

n.Him/X

jimD1
Yjim (16.21)

and then for each fixed im D 1; 2; : : : ; hm we write

Pn.Him/
jimD1 Yjim
n

D
Pn.Him/

jimD1 Yjim=n.Him/

n=n.Him/
D n.Him/

n
�
Pn.Him/

jimD1 Yjim
n.Him/

(16.22)
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and finally

1

n

nX

jD1
Yj D

hmX

imD1

n.Him/

n
�
Pn.Him/

jimD1 Yjim
n.Him/

: (16.23)

The formula (16.23) states the decomposition of 1
n

Pn
jD1 Yj into hm terms of

the type n.Him/

n
�
Pn.Him/
jimD1 Yjim
n.Him/

where both n.Him/

n
and

Pn.Him/
jimD1 Yjim
n.Him/

are arguments for
asymptotic results, when n tends to infinity. Moreover the right member of (16.23)

may be thought as the integral of the simple function taking values
Pn.Him/
jimD1 Yjim
n.Him/

over

the corresponding set Him with respect to the probability n.Him/

n
and this for each

im D 1; 2; : : : ; hm; this idea suggests the strategy in order to prove the convergence
of 1

n

Pn
jD1 Yj to

RM
�M I.v/dPE.v/.

In fact, via convergence for sequences n.Him/

n
and

Pn.Him/
jimD1 Yjim
n.Him/

, 8im D
1; 2; : : : ; hm, when n tends to infinity and the partition of Œ�M;M� into intervaIs
fHim W im D 1; 2; : : : ; hmg is assigned, it will be proved, in the sequel, that the
sequence of integrals defined by the right member of (16.23) is convergent to the
integral of a simple function which approximates

RM
�M I.v/dPE.v/, and this under

suitable assumptions for the limiting behaviour of n.Him/

n
, 8im D 1; 2; : : : ; hm.

Let us observe that the limiting behaviour is easy to study for sequences

of type
Pn.Him/
jimD1 Yjim
n.Him/

if n.Him/ ! 1, i.e. when there exist infinitely many
values E.Yj / belonging to the interval Him: under the Assumptions A1 and A2
Theorem 5.1.2 on p. 108 of Chung book [5] can be applied and then the sequence

1
n.Him/

Pn.Him/
jimD1 .Yjim �E.Yjim// is almost surely convergent to zero.

Thus, because of decomposition

Pn.Him/
jimD1 Yjim
n.Him/

D
Pn.Him/

jimD1 .Yjim �E.Yjim//
n.Him/

C
Pn.Him/

jimD1 E.Yjim/
n.Him/

(16.24)

we have that
Pn.Him/
jimD1 Yjim
n.Him/

is given by the sum of
Pn.Him/
jimD1 E.Yjim /

n.Him/
2 Him (because of

E.Yjim/ 2 Him) plus a sequence converging to zero.
The behaviour of each sequence n.Him/

n
is then a central argument for convergence

of (16.22). In the sequel two different types of behaviour for n.Him/

n
will be

considered and then different results are discussed.
In the next section we assume that, for an assigned partition of Œ�M;M� into

intervals fHim W im D 1; 2; : : : ; hmg the convergence holds to

lim
n!1

n.Him/

n
D lim

n!1

Pn
jD1 IHim.Yj /

n
D PE.Him/ (16.25)

where IHim.Yj / is 1 if E.Yj / 2 Him and zero otherwise. And PE is an assigned
probability measure over BŒ�M;M�.
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It is interesting to explain the intuitive reason suggesting the introduction
of convergence (16.25); the sequence of real values fE.Yj / W j > 1g is
supposed to satisfy a property which is very similar to the case of an i.i.d.
sequence of observations from the probability distribution PE . (See the well-
known Glivenko–Cantelli theorem). Someone could object that, under (16.25), the
deterministic values fE.Yj / W j > 1g are too close to an i.i.d. sequence of
observations. The answer to this objection concerns the second type of behaviour for
n.Him/

n
(see Sect. 16.9 below) where a more general assumption will be introduced.

Nevertheless the first type behaviour, even if dealing with a simplified situation, is
useful for the proof technique.

16.8 A Strong Law of Large Numbers

The limit (16.25) above for a class of sets Him is the content of Assumption A4
which plays a key role in the below statement.

A4 Given the set of expectations fE.Yj / W j > 1g, the existence is assumed of
positive values f�m W m > 1g with �m # 0 and such that, for each fixed �m, there
exists a finite partition of Œ�M;M� into subintervals fHim W im D 1; 2; : : : ; hmg,
where each Him has length not greater than �m and satisfies limn!1 n.Him/

n
D

PE.Him/, where PE is an assigned probability measure over BŒ�M;M�.

Theorem 16.1. If the family of random variables fYj W j > 1g satisfies Assump-
tions A1–A4, then the strong law of large numbers holds true, i.e. the sequence
1
n

Pn
jD1 Yj is almost surely convergent to

RM
�M I.v/dPE.v/ when n tends to infinity

and for an assigned probability measure PE over BŒ�M;M�.

Proof. The proof is given in case of pairwise uncorrelated and uniformly bounded
Yj ’s (see A1 and A2); then there exists M > 0 such that jYj j 6 M;8j > 1

and each Yj defines a probability measure over BŒ�M;M�. Let us consider the
infinite product space ˝ D Œ�M;M�1 embedded with the product � -field F1 D
B1Œ�M;M� and product probability measure P and, because of A4, for each
positive �m belonging to a sequence decreasing to zero there exists a finite partition
of Œ�M;M� into subintervals fHim W im D 1; 2; : : : ; hmg. For each fixed Him let

fYjim W jim > 1g (16.26)

denote the set of random variables Yj such that E.Yj / 2 Him. If the set (16.26)
contains infinitely many elements, then Theorem 5.1.2 of p. 108 of Chung is applied
to the sequence of random variables f.Yjim�E.Yjim// W jim > 1g and then we obtain
that the usual SLLN holds true, i.e.
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1

n.Him/

n.Him/X

jimD1
.Yjim �E.Yjim// is convergent to 0 (16.27)

when n.Him/ ! 1 and where n.Him/ (see (16.20)) is the number of random
variables belonging to the set fYj W j D 1; : : : ; ng and such that E.Yj / 2 Him; this
implies the existence of a set Cim 2 B1Œ�M;M� with P.Cim/ D 1 such that any
point ! 2 Cim makes the sequence (16.27) convergent to zero.

Iterating the above procedure for all m > 1 and im D 1; 2; : : : ; hm, a class of
sets Cim with P.Cim/ D 1 is given such that the intersection

C D \m>1IimD1;2;:::;hmCim (16.28)

satisfiesP.C/ D 1 and for any assigned ! 2 C each sequence (16.27) is convergent
to zero. Given � > 0, it will be proved that for any fixed ! 2 C there exists n0.!; �/
such that 8n > n0.!; �/

ˇ̌
ˇ̌
ˇ̌
1

n

nX

jD1
Yj �

Z M

�M
I.v/dPE.v/

ˇ̌
ˇ̌
ˇ̌ < �: (16.29)

Under Assumption A4, a value �m can be selected with �m < �=2 and the associated
partition of Œ�M;M� into intervals fHim W im D 1; 2; : : : ; hmg contains only sets
whose length is at most �m. Applying (16.23) the 1

n

Pn
jD1 Yj can be written as

1

n

nX

jD1
Yj D

hmX

imD1

n.Him/

n

Pn.Him/
jimD1 Yjim
n.Him/

and the convergence can be proved

lim
n!1

ˇ̌
ˇ̌
ˇ
n.Him/

n

Pn.Him/
jimD1 Yjim
n.Him/

� PE.Him/

Pn.Him/
jimD1 E.Yjim/
n.Him/

ˇ̌
ˇ̌
ˇ D 0 (16.30)

8im D 1; 2; : : : ; hm, applying Assumption A4 to each sequence n.Him/

n
and the

decomposition (16.24) jointly with Theorem 5.1.2 of Chung or Theorems 3.1.1

and 3.1.2 in Chandra [3] to the sequence
Pn.Him/
jimD1 Yjim/

n.Him/
.

Thus we have:
ˇ̌
ˇ̌
ˇ̌
1

n

nX

jD1
Yj �

Z M

�M
I.v/dPE.v/

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌
hmX

imD1

n.Him/

n

Pn.Him/
jimD1 Yjim
n.Him/

�
hmX

imD1

Z

Him

I.v/dPE.v/

ˇ̌
ˇ̌
ˇ̌
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6
hmX

imD1

ˇ̌
ˇ̌
ˇ
n.Him/

n

Pn.Him/
jimD1 Yjim
n.Him/

� PE.Him/

Pn.Him/
jimD1 E.Yjim/
n.Him/

ˇ̌
ˇ̌
ˇ

C
hmX

imD1

ˇ̌
ˇ̌
ˇPE.Him/

Pn.Him/
jimD1 E.Yjim/
n.Him/

�
Z

Him

I.v/dPE.v/

ˇ̌
ˇ̌
ˇ

Applying the limit in (16.30) the convergence holds true

lim
n!1

hmX

imD1

ˇ̌
ˇ̌
ˇ
n.Him/

n

Pn.Him/
jimD1 Yjim
n.Him/

� PE.Him/

Pn.Him/
jimD1 E.Yjim/
n.Him/

ˇ̌
ˇ̌
ˇ D 0:

For a fixed value im the below equality

PE.Him/

Pn.Him/
jimD1 E.Yjim/
n.Him/

D
Z

Him

Pn.Him/
jimD1 E.Yjim/
n.Him/

dPE.v/

is easily proved if the left hand product is thought as the intergral of a constant
function over the interval Him with respect to measure PE.Him/. Thus the
inequality

ˇ̌
ˇ̌
ˇPE.Him/

Pn.Him/
jimD1 E.Yjim/
n.Him/

�
Z

Him

I.v/dPE.v/

ˇ̌
ˇ̌
ˇ

6
Z

Him

ˇ̌
ˇ̌
ˇ

Pn.Him/
jimD1 E.Yjim/
n.Him/

� I.v/
ˇ̌
ˇ̌
ˇ dPE.v/ 6 �mP.Him/

can be shown, recalling that by (16.26)
Pn.Him/
jimD1 E.Yjim /

n.Him/
2 Him, and this implies that

hmX

imD1

ˇ̌
ˇ̌
ˇ̌PE.Him/

Pn.Him/
jimD1 E.Yjim/
n.Him/

�
Z

Him

I.v/dPE.v/

ˇ̌
ˇ̌
ˇ̌ 6

hmX

imD1
�mPE.Him/ D �m <

�

2

and this completes the proof.

16.9 A Further Result

Theorem 16.1 states an SLLN on the base of the limits limn!1 n.Him/

n
D PE.Him/.

Recalling the equality (16.25) n.Him/

n
D 1

n

Pn
jD1 IHim.Yj / where IHim.Yj / is 1 if

E.Yj / 2 Him and zero otherwise, the limits above imply for the deterministic values
fE.Yj / W j > 1g a behaviour which is very close to the case of an i.i.d. sequence of
observations from a probability distribution.
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The purpose consists now in giving an SLLN when any sequence f n.Him/
n

W n > 1g
is not necessarily convergent to PE.Him/ where PE is an assigned probability
measure on BŒ�M;M�. Given the partition fHim W im D 1; 2; : : : ; hmg of
Œ�M;M� and the value L D RM

�M I.v/dPE.v/, let us introduce the class

ML D
�
P W P is a probability measure over BŒ�M;M� (16.31)

satisfying
Z M

�M
I.v/dP.v/ D

Z M

�M
I.v/dPE.v/ D L



In the general case ML contains infinitely many probability measures and an
interesting condition leading to an SLLN is here provided.

Using the simplified notation

�n.Him/ D n.Him/

n
(16.32)

and given the quantity

S.�n;ML;m/ D inf
P2ML

s.�n; P;m/ (16.33)

where

s.�n; P;m/ D max
imD1;2;:::;hm

j�n.Him/ � P.Him/j; (16.34)

let us assume that the following condition holds true

A5

lim
n!1S.�n; P;m/ D 0 (16.35)

for each assigned partition fHim W im D 1; 2; : : : ; hmg of Œ�M;M� having at
most length �m for each interval Him and such that �m # 0.

In order to explain the meaning of A5, let us suppose that the limit (16.35) holds
true for the assigned partition; then, there exists a sequence of probability measure
Pn 2 ML such that

lim
n!1 max

imD1;2;:::;hm
j�n.Him/ � Pn.Him/j D 0: (16.36)

A direct comparison of (16.36) with (16.35) shows that, under A5, the sequence
f�n.Him/g is not still a convergent one: in fact we have j�n.Him/�Pn.Him/j ! 0

where fPn.Him/g is not necessarily convergent, and this because fPn W n > 1g
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is only a sequence of probability measure belonging to ML and then satisfyingRM
�M I.v/dPn.v/ D L; 8n.

A second argument which may be helpful in understanding the above framework
consists in giving an example of a class ML including infinitely many probability
measures. As a preliminary tool the notation of symmetric measure is introduced.

Definition 16.3. A positive measure � defined over BŒ�M;M� is said to be
symmetric if it satisfies the equality �.A/ D �.�A/ for any interval A � Œ0;M �.

For instance, if f is a positive and Borel measurable function over Œ�M;M�

such that f .x/ D f .�x/, then the integral �.B/ D R
B
f .v/dv defines a symmetric

measure. If � is a symmetric measure it descends that
RM
�M I.v/d�.v/ D 0; thus,

if P0 and � are, respectively, a probability measure and a symmetric measure over
BŒ�M;M�, ˛ > 1 an assigned constant and t0 D �

1 � P0.Œ�M;M�/

˛

	 � 1
�.Œ�M;M�/

we
have that

�
P0

˛
C t0�

�
(16.37)

is a probability measure over BŒ�M;M� and it satisfies

Z M

�M
I.v/d

�
P0

˛
C t0�

�
D
Z M

�M
I.v/d

P0

˛
C t0

Z M

�M
I.v/d� D

Z M

�M
I.v/d

P0

˛
:

The above procedure shows that, given a probability measure P0 over
BŒ�M;M� and a constant ˛ > 1, for any symmetric measure � there exists a
corresponding probability measure

�
P0
˛

C t0�
	

satisfying
RM
�M I.v/d

�
P0
˛

C t0�
	

D RM
�M I.v/d

P0
˛

D L.
If ML is the class of probability measure defined in (16.31) with

L D RM
�M I.v/d

P0
˛

, then ML includes the family

��
P0

˛
C t0�

�
W � is a symmetric measure over BŒ�M;M�


:

This implies that ML contains infinitely many probability measures.

Theorem 16.2. If the family of random variables fYj W j > 1g satisfies Assump-
tions A1–A3, A5, then the strong law of large numbers holds true, i.e. the sequence
1
n

Pn
jD1 Yj is almost surely convergent to the value L D RM

�M I.v/d
P0
˛

where P0
and ˛ > 1 are, respectively, an assigned probability measure over BŒ�M;M� and
a constant.

The proof is omitted because of its close analogy to that of Theorem 16.1.
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Conclusions
The procedure shown above is a general one: starting with the p.d.f.’s FYj ,
the product space X � R1 with the product measure P

X �R1 allows us to
derive an SLLN for the family of random variables fYj W j > 1g having

the value L D RM
�M I.v/dPE.v/ D R

X E.Y jX D x/dPX .x/ as its almost
sure limit, where a leading role is that of the marginal measure PX or PE
which is the transformed measure of PX over BŒ�M;M� through the map
x !  .x/ D E.Y jX D x/; 8x 2 X .

The measure PE is strictly connected to the pseudo empirical measures
�u.Him/ D n.Him/

n
, where n.Him/ is the number of values E.Yj /, with

j D 1; : : : ; n, and such that E.Yj / 2 Him for each interval Him of the
assigned partition fHim W im D 1; 2; : : : ; hmg of Œ�M;M�.

The central hypothesis in proving the SLLN is concerning the asymptotic
behaviour for sequences f�n.Him/ W n > 1g for each fixedHim. The first type
assumption, given in A4, is intuitively simple but it may appear as a restrictive
request: in fact it consists in the convergence

lim
n!1�n.Him/ D PE.Him/ 8Him:

The second type assumption, given by A5, looks at the class ML of
all the probability measures P on BŒ�M;M� such that

RM
�M I.v/dP.v/

D RM
�M I.v/dPE.v/ D L and the convergence above is replaced by the

existence of a sequence Pn 2 ML such that

lim
n!1 max

imD1;2;:::;hm
j�n.Him/ � Pn.Him/j D 0:

Thus the sequences f�n.Him/ W n > 1g are not necessarily convergent and
A5 seems to be not too severe. Furthermore notice that �n.Him/ depends on
the following important elements:

• the position of each value E.Yj / inside Œ�M;M�;
• the permutation of Yj ’s inside the series

P1
jD1 Yj and then of the corre-

sponding values E.Yj /’s. In fact let us observe that even if the sequence
fE.Yj / W j > 1g is completely known, different permutations of Yj ’s
and of the respective expectations E.Yj /’s may produce different values
for �n.Him/’s and then for the limit in the SLLN. Permutations of Yj ’s
in the SLLN is a well-known topic; see, for instance, Chobanyan et al. [4].
Nevertheless the context adopted in this paper is consistently different from
the literature.

(continued)
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Finally a comparison may be interesting for the result shown above
with the analogous statements available in the literature. The following
proposition, referred to as Theorem 16.3, can be found with the complete
proof at p. 281 of Ash and Doleans [1].

Theorem 16.3. Let Y1; Y2; : : : be independent, uniformly bounded random
variables. Then

P1
jD1 Yj converges a.e. iff

P1
jD1 Var.Yj / < 1 andP1

jD1 E.Yj / converges.

An SLLN can be derived by Theorem 16.3: the convergence of the seriesP1
jD1 Yj implies that 1

n

Pn
jD1 Yj is convergent to zero. The method discussed

in this paper is not dealing with the convergence of the series; moreover, the
convergence is given to a general not necessarily null value L, and this even
if the series

P1
jD1 Yj is not convergent.
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Chapter 17
D-optimal Saturated Designs: A Simulation
Study

Roberto Fontana, Fabio Rapallo, and Maria Piera Rogantin

17.1 Introduction

The optimality of an experimental design depends on the statistical model that is
assumed and is assessed with respect to a statistical criterion. Among the different
criteria, in this chapter we focus on D-optimality.

Widely used statistical systems like SAS and R have procedures for finding an
optimal design according to the user’s specifications. Proc Optex of SAS/QC [5]
searches for optimal experimental designs in the following way. The user specifies
an efficiency criterion, a set of candidate design points, a model and the size of the
design to be found, and the procedure generates a subset of the candidate set so that
the terms in the model can be estimated as efficiently as possible.

There are several algorithms for searching for D-optimal designs. They have a
common structure. Indeed, they start from an initial design, randomly generated or
user specified, and move, in a finite number of steps, to a better design. All of the
search algorithms are based on adding points to the growing design and deleting
points from a design that is too big. Main references to optimal designs include
[1, 4, 7–9, 11].
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In this work, we perform a simulation study to analyze a different approach
for describing D-optimal designs in the case of saturated fractions. For saturated
fractions, or saturated designs, the number of points is equal to the number of
estimable parameters of the model. It follows that saturated designs are often used
in place of standard designs, such as orthogonal fractional factorial designs, when
the cost of each experimental run is high. We show how the geometric structure
of a fraction is in relation with its D-optimality, using a recent result in [3] that
allows us to identify saturated designs with the points with coordinates in f0; 1g of a
polytope, being the polytope described by a system of linear inequalities. The linear
programming problem is based on a combinatorial object, namely the circuit basis of
the model matrix. Since the circuits yield a geometric characterization of saturated
fractions, we investigate here the connections between the classical D-optimality
criterion and the position of the design points with respect to the circuits.

In this way the search for D-optimal designs can be stated as an optimization
problem where the constraints are a system of linear inequalities. Within the
classical framework the objective function to be maximized is the determinant
of the information matrix. In our simulations, we define new objective functions,
which take into account the geometric structure of the design points with respect to
the circuits of the relevant design matrix. We study the behavior of such objective
functions and we compare them with the classical D-efficiency criterion.

The chapter is organized as follows. In Sect. 17.2 we briefly describe the results
of [3] and in particular how saturated designs can be identified with f0; 1g points
that satisfy a system of linear inequalities. Then in Sect. 17.3 we present the results
of a simulation study in which, using some test cases, we experiment different
objective functions and we analyze their relationship with the D-optimal criterion.
Concluding remarks are made in Sect. 17.4.

17.2 Circuits and Saturated Designs

As described in [3], the key ingredient to characterize the saturated fractions of
a factorial design is its circuit basis. We recall here only the basic notions about
circuits in order to introduce our theory. For a survey on circuits and its connections
with Statistics, the reader can refer to [6].

Given a model matrix X of a full factorial design D , an integer vector f is in
the kernel of Xt if and only if Xtf D 0. We denote by A the transpose of X .
Moreover, we denote by supp.f / the support of the integer vector f , i.e., the set of
indices j such that fj ¤ 0. Finally, the indicator vector of f is the binary vector
.fj ¤ 0/, where (�) is the indicator function. An integer vector f is a circuit of A if
and only if:

1. f 2 ker.A/;
2. there is no other integer vector g 2 ker.A/ such that supp.g/ 
 supp.f / and

supp.g/ ¤ supp.f /.



17 D-optimal Saturated Designs: A Simulation Study 185

The set of all circuits of A is denoted by CA, and is named as the circuit basis
of A. It is known that CA is always finite. The set CA can be computed through
specific software. In our examples, we have used 4ti2 [10].

Given a model matrix X on a full factorial design D with K design points and
p degrees of freedom, we recall that a fraction F 
 D with p design points is
saturated if det.XF / ¤ 0, where XF is the restriction of X to the design points
in F . With a slight abuse of notation, F denotes both a fraction and its support.
Under these assumptions, the relations between saturated fractions and the circuit
basis CA D ff1; : : : ; fLg associated with A is illustrated in the theorem below,
proved in [3].

Theorem 1. F is a saturated fraction if and only if it does not contain any of the
supports fsupp.f1/; : : : ; supp.fL/g of the circuits of A D Xt .

17.3 Simulation Study

The theory described in Sect. 17.1 allows us to identify saturated designs with the
feasible solutions of an integer linear programming problem. Let CA D .cij ; i D 1,
: : : ; L; j D 1; : : : ; K/ be the matrix, whose rows contain the values of the
indicator functions of the circuits f1; : : : ; fL, cij D .fij ¤ 0/; i D 1; : : : ; L,
j D 1; : : : ; K and Y D .y1; : : : ; yK/ be the K-dimensional column vector that
contains the unknown values of the indicator function of the points of F . In our
problem the vector Y must satisfy the following conditions:

1. the number of points in the fractions must be equal to p;
2. the support of the fraction must not contain any of the supports of the circuits.

In formulae, this fact translates into the following constraints:

1tKY D p; (17.1)

CAY < b; (17.2)

yi 2 f0; 1g (17.3)

where b D .b1; : : : ; bL/ is the column vector defined by bi D #supp.fi /; i D
1; : : : ; L, and 1K is the column vector of length K and whose entries are all equal
to 1.

Since DY D det.V .Y // D det.Xt
FXF / is an objective function, it follows that

a D-optimal design is the solution of the optimization problem

maximize det.V .Y //

subject to (17.1); (17.2) and (17.3):
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In general the objective function to be maximized det.V .Y // has several local
optima and the problem of finding the global optimum is part of current research,
[2]. Instead of trying to solve this optimization problem in this work we prefer to
study different objective functions that are simpler than the original one but that
could generate the same optimal solutions. By analogy of Theorem 1, our new
objective functions are defined using the circuits of the model matrix.

For any Y , we define the vector bY D CAY . This vector bY contains the number
of points that are in the intersection between the fraction F identified by Y and
the support of each circuit fi 2 CA; i D 1; : : : ; L. From (17.2) we know that each
of these intersections must be strictly contained in the support of each circuit. For
each circuit fi ; i D 1; : : : ; L it seems natural to minimize the cardinality .bY /i of
the intersection between its support supp.fi / and Y with respect to the size of its
support, bi . Therefore, we considered the following two objective functions:

• g1.Y / D PL
iD1.b � bY /i ;

• g2.Y / D PL
iD1.b � bY /2i .

From the examples analyzed in Sect. 17.3.1, we observe that the D-optimality
is reached with fractions that contain part of the largest supports of the circuits,
although this fact seems to disagree with Theorem 1. In fact, Theorem 1 states that
fractions containing the support of a circuit are not saturated, and therefore one
would expect that optimal fractions will have intersections as small as possible with
the supports of the circuits. On the other hand, our experiments show that optimality
is reached with fractions having intersections as large as possible with such supports.
For this reason we consider also the following objective function:

• g3.Y / D max.bY /.

As a measure of D-optimality we use the D-efficiency, [5]. The D-efficiency of
a fraction F with indicator vector Y is defined as

EY D
�
1

#F
D

1
#F
Y

�
� 100

where #F is the number of points of F that is equal to p in our case, since we
consider only saturated designs.

17.3.1 First Case: 24 with Main Effects and Two-Way
Interactions

Let us consider the 24 design and the model with main factors and two-way
interactions. The design matrix X of the full design has 16 rows and 11 columns,
the number of estimable parameters. As the matrix X has rank 11, we search for
fractions with 11 points. A direct computation shows that there are

�
16
11

	 D 4;368

fractions with 11 points: among them 3;008 are saturated, and the remaining 1;360
are not. Notice that equivalences up to permutations of factor or levels are not
considered here.
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Table 17.1 Frequency tables
of b � bY for the 24 design
with main effects and
two-way interactions

Table .b � bY / EY

1 2 3 4 5 68.29 77.46 83.38

5 15 50 60 10 192 0 0

5 18 48 55 14 1,040 0 0

5 21 46 50 18 960 0 0

5 24 44 45 22 480 0 0

5 27 42 40 26 0 320 0

5 30 40 35 30 0 0 16

Total 2,672 320 16

Table 17.2 Classification of
all saturated fractions for the
24 design with main effects
and two-way interactions

g1.Y / g2.Y / g3.Y / EY n

475 1,725 9 68.29 192

475 1,739 10 68.29 960

475 1,753 10 68.29 960

475 1,739 11 68.29 80

475 1,767 11 68.29 480

475 1,781 11 77.46 320

475 1,795 11 83.38 16

Total 3,008

The circuits are 140 and the cardinalities of their supports are 8 in 20 cases, 10 in
40 cases, 12 in 80 cases. For more details refer to [3]. This example is small enough
for a complete enumeration of all saturated fractions. Moreover, the structure of that
fractions reduces to few cases, due to the symmetry of the problem.

For each saturated fraction F with indicator vector Y we compute the vector
bY , whose components are the size of the intersection between the fraction and the
support of all the circuits, F \ supp.fi /; i D 1; : : : ; 140, and we consider b � bY .
Recall that b is the vector of the cardinalities of the circuits. The frequency table of
b�bY describes how many points need to be added to a fraction in order to complete
each circuit. All the frequency tables are displayed in the left side of Table 17.1,
while on the right side we report the corresponding values of D-efficiency.

For instance, consider one of the 192 fractions in the first row. Among the 140
circuits, 5 of them are completed by adding one point to the fraction, 15 of them by
adding two points, and so on. We observe that there is a perfect dependence between
the D-efficiency and the frequency table of b � bY .

However, analyzing the objective functions g1.Y /, g2.Y /, and g3.Y /, we argue
that the previous finding has no trivial explanation. The values of all our objective
functions are displayed in Table 17.2.

From Table 17.2 we observe that both g2.Y / and g3.Y / are increasing as
D-efficiency increases. Notice also that g1.Y / is constant over all the saturated
fractions. This is a general fact for all no-m-way interaction models.
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Proposition 17.1. For a no-m-way interaction model, g1.Y / is constant over all
saturated fractions.

Proof. We recall that CA D .cij ; i D 1; : : : ; L; j D 1; : : : ; K/ is the L � K

matrix, whose rows contain the values of the indicator functions of the supports
of the circuits f1; : : : ; fL, cij D .fij ¤ 0/; i D 1; : : : ; L; j D 1; : : : ; K. We have

g1.Y / D
LX

iD1
.b � bY /i D

LX

iD1
.b/i �

LX

iD1
.bY /i :

The first addendum does not depend on Y , and for the second one we get

LX

iD1
.bY /i D

LX

iD1

KX

jD1
cij Yj D

KX

jD1
Yj

LX

iD1
cij :

Now observe that a no-m-way interaction model does not change when permuting
the factors or the levels of the factors. Therefore, by a symmetry argument, each
design point must belong to the same number q of circuits, and thus

PL
iD1 cij D q.

It follows that

LX

iD1
.bY /i D q

KX

jD1
Yj D pq:

ut
In view of Proposition 17.1, in the remaining examples we will consider only the

functions g2 and g3.

17.3.2 Second Case: 3 � 3 � 4 with Main Effects and Two-Way
Interactions

Let us consider the 3 � 3 � 4 design and the model with main factors and two-way
interactions. The model has p D 24 degrees of freedom. The number of circuits
is 17;994. In this case the number of possible subsets of the full design is

�
36
24

	 D
1;251;677;700. It would be computationally unfeasible to analyze all the fractions.
We use the methodology described in [2] to obtain a sample of saturated D-optimal
designs. It is worth noting that this methodology finds D-optimal designs and not
simply saturated designs. This is particularly useful in our case because it allows us
to study fractions for which the D-efficiency is very high. The sample contains 500
designs, 380 different.

The results are summarized in Table 17.3, where the fractions with minimum
D-efficiency EY have been collapsed in a unique row in order to save space.
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Table 17.3 Classification of
380 random saturated
fractions for the 3� 3� 4
design with main effects and
two-way interactions

g2.Y / g3.Y / EY n

6 963,008 6 21 22.27 37

962,816 21 23.6 7

962,816 22 23.6 12

963,700 22 23.6 34

965,308 22 23.6 46

966,760 22 23.6 9

967,676 22 23.6 6

970,860 24 23.6 91

970,896 24 24.41 138

Total 380

Table 17.4 Classification of
414 random saturated
fractions for the 25 design
with main effects

g2.Y / g3.Y / EY n

11,360,866 6 76.31 31

11,342,586 6 83.99 9

11,371,834 6 83.99 126

11,375,490 5 83.99 54

11,375,490 6 90.48 194

Total 414

We observe that for 138 different designs the maximum value of D-efficiency,
EY D 24:41 is obtained for both g2.Y / and g3.Y / at their maximum values
g2.Y / D 970;896 and g3.Y / D 24.

17.3.3 Third Case: 25 with Main Effects

Let us consider the 25 design and the model with main effects only. The model has
p D 6 degrees of freedom. The number of circuits is 353;616. As in the previous
case we use the methodology described in [2] to get a sample of 500 designs, 414
different.

The results are summarized in Table 17.4. We observe that for 194 different
designs, the maximum value of D-efficiency, EY D 90:48 is obtained for both
g2.Y / and g3.Y / at their maximum values g2.Y / D 11;375;490 and g3.Y / D 6.

17.4 Concluding Remarks

The examples discussed in the previous section show that the D-efficiency of the
saturated fractions and the new objective functions based on combinatorial objects
are strongly dependent. The three examples suggest to investigate such connection
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in a more general framework, in order to characterize saturatedD-optimal fractions
in terms of their geometric structure. Notice that our presentation is limited to
saturated fractions, but it would be interesting to extend the analysis to other kinds
of fractions. Moreover, we need to investigate the connections between the new
objective functions and other criteria than D-efficiency.

Since the number of circuits dramatically increases with the dimensions of the
factorial design, both theoretical tools and simulation will be essential for the study
of large designs.
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Chapter 18
Nonparametric Testing of Saturated D-optimal
Designs

Roberto Fontana and Luigi Salmaso

18.1 Introduction

Research and applications related to permutation tests have increased in the recent
years. Several books have been dedicated to these methods [1, 5, 8, 10, 11]. A
recent review and some new results on multivariate permutation testing are available
in [12].

Unreplicated orthogonal factorial designs are often used in sciences and engi-
neering, and they become particularly useful for highly expensive experiments, or
when time limitations impose the choice of the minimum possible number of design
points.

We report here some parts of the introduction of the paper [9] since it summarizes
the common approaches for the analysis of unreplicated factorial designs.

There are two common analysis approaches recommended in many experimentale design
books, [4]. The first is to make a normal or half-normal probability plot of the estimated
effects.. . . The interpretation of the resulting plot is entirely subjective, however.. . . The
second approach is to identify, prior to the analysis, certain effects that are known or
believed to have means of 0. The variability from the estimation of these effects is then
pooled to form an estimate of the inherent process variability and this is used to test the
significance of all the effects remaining in the model. This also involves some subjectivity
in the nomination of effects for nonsignificance,. . . . Finally, all of the preceding methods
assume normality of the error distribution, which is difficult to verify in this problem.
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In the same paper, Loughin and Noble introduce a permutation test of
significance of factorial effects for unreplicated factorial design. A test statistic
is developed for each null hypothesis. In each case a reference distribution is then
generated by computing the value of the test statistic on results from many random
permutations of the responses.

In this paper we propose a modified Loughin–Noble testing procedure when
unreplicated orthogonal factorial designs are replaced by saturated D-optimal
designs. It is known that D-optimal designs do not require orthogonal design
matrices and, as a result, parameter estimates may be correlated. At first we
analyse the behaviour of the Loughin–Nobel algorithm when a non-orthogonal
design is used. Then we also describe a new algorithm that generates reference
distributions using a class of non-isomorphic D-optimal designs. This algorithm
generalizes the results presented in [3,7] where the use of nonisomorphic orthogonal
fractional factorial designs, including orthogonal arrays, for non-parametric testing
has already been studied.

The paper is organized as follows. In Sect. 18.2 we briefly describe the procedure
to build a class of D-optimal non-isomorphic designs. In Sect. 18.3 we synthesize
the Loughin–Nobel test procedure and we describe the new algorithm. In Sect. 18.4
we present the results of a simulation study. Concluding remarks are in “Conclu-
sion” section.

18.2 D-optimal Non-isomorphic Designs

Efficient algorithms for searching for optimal saturated designs are widely available
(see, for example, Proc Optex of SAS/QC, [13]). Nevertheless, they do not guarantee
a global optimal design. Indeed, they start from an initial random design and find
a local optimal design. If the initial design is changed the optimum found will, in
general, be different. In a recent work Fontana uses discovery probability methods
to support the search for globally optimal designs. The basic idea is to search for
optimal designs until the probability of finding a new one is less than a given
threshold. The methodology has been implemented in a software tool written in
SAS. We invite the interested reader to refer to [6].

When the methodology is applied toD-optimal designs, a set of non-isomorphic
designs is generated. In this work we use such set to obtain reference distributions
that are a key ingredient of non-parametric testing procedures.

18.3 Non-parametric Permutation Testing

We shortly outline the procedure proposed by Loughin and Noble for the analysis
of unreplicated factorials. The interested reader should refer to [9] for a detailed
description.

The well-known linear model corresponding to k factors, each with 2 level, is
considered:

y D Xˇ C "
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where, lettingm D 2k , X is them�m square design matrix, y is anm� 1 vector of
responses, ˇ is an m � 1 vector of unknown parameters and � is an m � 1 vector of
iid random errors.

The design matrix X is commonly defined as follows. Let us code the levels of
each factor with the integers �1 and C1. The full factorial design D becomes

D D f�1; 1g � � � � � f�1; 1g„ ƒ‚ …
k times

The design matrix is

X D �
x
˛1
1 � : : : � x˛kk W .x1; : : : ; xk/ 2 D ; ˛i 2 f0; 1g; i D 1; : : : ; k

�

Being X0X D mI, where I is the identity matrix of dimension m, the vector of the
estimates of the unknown parameters Ǒ can be computed as

Ǒ D 1

m
X0y:

The first element of Ǒ is the mean of the observed responses, the remaining elements
are contrasts corresponding to the factorial effects (main effects and interactions).
The general algorithm for the entire testing procedure can be written as follows.

1. Compute Ǒ from y and order the effects Ǒ
1; : : : ; Ǒ

m�1 and the X columns
x1; : : : ; xm�1 to correspond to the ordered absolute effects (OAE)ˇ̌
ˇ Ǒ ˇ̌ˇ

.1/
>
ˇ̌
ˇ Ǒ ˇ̌ˇ

.2/
> � � � >

ˇ̌
ˇ Ǒ ˇ̌ˇ

.m�1/.

2. At step s set OWs D
ˇ̌
ˇ Ǒ ˇ̌ˇ

s
and obtain Qys D y � Ǒ

1x1 � : : : Ǒ
s�1xs�1 with Qy1 D y.

3. Select a large number B (e.g., B D 5;000) and repeat B times.

(a) Obtain Qy?s through a random permutation of Qys .
(b) Compute Ǒ?

s from Qy?s .

(c) Obtain
ˇ̌
ˇ Ǒ?
s

ˇ̌
ˇ
.1/

from Ǒ?
s .

(d) Compute

W ?
s D

�
m � 1
m � s

� 1
2 ˇ̌
ˇ Ǒ?
s

ˇ̌
ˇ
.1/
:

4. Compute the observed significance level (OSL), Ps , for the test as

Ps D 1 �
"

#W ?
s <

OWs

B

#.m�s/=.m�1/

5. Repeat steps 2–4 for testing other OAEs.
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The procedure cannot be used for testing all factorial effects. In general for any
effect with the same estimated magnitude as the smallest effect the corresponding
Ps will be equal to 1.

The algorithm produces a vector P in which the sth element, Ps , is the OSL of
the test for nonzero mean for the sth largest of the OAE. To prevent the masking
effect, Loughin and Noble suggest a step-up procedure. This procedure examines
the OSLs in order from the smallest of the OAEs to the largest, taking all the effects
to be significant that are larger than the smallest effect for which Ps 6 p0, where
p0 is a critical value chosen to give the test procedure the desired Type I error rate.
The way in which p0 is determined is described in Sects. 2.2 and 2.3 of [9].

We consider two approaches. The first one, referred to as the LNmod-approach,
is the standard Loughin Noble testing procedure in which we suppose that the
experiments are run according to a saturatedD-optimal design. Let us denote by F0

this design. The second method, referred to as the ND-approach, is a modification
of the LNmod-approach, in which reference distributions are determined using
the non-isomorphic D-optimal designs instead of permutations of the vector
response. Let us denote by N the number of the non-isomorphic designs and by
Fs; s D 1; : : : ; N the non-isomorphicD-optimal designs. For the ND-approach the
Loughin Noble algorithm remains the same apart from the step 3 that is modified as
follows.

For each non-isomorphic D-optimal designs, Fs; s D 1; : : : ; N .

1. Compute Ǒ?
s from y using Fs .

2. Obtain
ˇ̌
ˇ Ǒ?
s

ˇ̌
ˇ
.1/

from Ǒ?
s .

3. Compute

W ?
s D

�
m � 1
m � s

� 1
2 ˇ̌
ˇ Ǒ?
s

ˇ̌
ˇ
.1/
:

18.4 A Comparative Simulation Study

We consider 7 factors, each with 2 levels. We make the hypothesis that the active
effects belong to the set of all the main effects and interactions. It follows that the
model has 1C 7C �

7
2

	 D 29 degrees of freedom.
Let us suppose that the experiments are run according to F0, a saturated

D-optimal design. The D-optimal deign F0 has been generated using Proc Optex
of SAS/QC [13] with the default setting.

We consider both the LNmod-approach, i.e. the Loughin–Noble approach with
F0 and the ND-approach, i.e. the testing procedure based on nonisomorphic
D-optimal designs. In this case the methodology described in [6] provides a set
of 315 non-isomorphic D-optimal designs.
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Twenty-seven different scenarios have been built according to different values of
ˇ and to different distributions for the error term �. In more detail each scenario has
been defined as follows:

• we set ˇ0 D 0 and then we considered the number a of active effects equal
to 5; 12 and 24. For the sake of simplicity we made the hypothesis that all the
active effects have the same size, denoted by c. The value of c has been set equal
to 0:5; 1 and 1:5. For example, the case a D 5 and c D 0:5 corresponds to
ˇ0 D 0; ˇ1 D � � � D ˇ5 D 0:5 and ˇ6 D � � � D ˇ28 D 0.

• we considered four possible distributions for the error term: standard normal,
standard Cauchy, exponential with mean equal to 1 and Student’s t-distribution
with 3 degrees of freedom.

For each scenario we run 1;000 simulations. Each simulation is based on a vector
of responses y defined as Xˇ C � where � has been generated using normally
(Cauchy/exponentially/Student’s t with 3 degrees of freedom) distributed random
numbers.

We set the experimentwise error rate (EER), which is the probability of making a
Type I error on at least one effect in the experiment, to 0.20. All testing procedures
have been calibrated according to the method suggested in [9].

For each simulation i D 1; : : : ; 1;000, we run both the LNmod-approach and
the ND-approach. We registered the number of active effects correctly detected,
Bi , and the number of nonactive effects correctly ignored, Ai . We measured the
performance of the algorithms using the ratio R between the total number of active
effects correctly detected in all the simulations

P1000
iD1 Bi and the total number of

active effects for that scenario in all the simulations, 1;000 � a, i.e.:

R D
P1000

iD1 Bi
1000 � a :

We considered an analogous ratio S for the nonactive effects, i.e. S D
P1000
iD1 Ai

1000�.28�a/ :
Tables 18.1, 18.2, 18.3 and 18.4 summarize the results of the simulations. We

observe that both the approaches perform quite well when the size of the effects is
at least one, the number of active effects is relatively small and the error terms are
not Cauchy distributed. For example, from Table 18.1, we observe that when we
have a D 5 active effects with size c D 1 and the errors are normally distributed
both procedures obtain a value of R equal to 0:94 that means that 94 % of active
effects have been correctly detected. We further investigated the case in which error
terms are exponentially distributed considering also a D 8 and a D 16 active effects
with size c D 1. The results are presented in Fig. 18.1. In the case of exponential
distributions the ND-approach is very effective. Hence, in general it could be a
useful procedure to take into account when a suitable catalogue of inequivalent
matrices is available.
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Table 18.1 Error distribution: standardized normal

Number of active effects a Size of active effects c R for LNmod R for ND

5 0.5 0.27 0.26

5 1 0.94 0.94

5 1.5 1 1

12 0.5 0.09 0.09

12 1 0.71 0.69

12 1.5 1 0.99

24 0.5 0.02 0.02

24 1 0.01 0.01

24 1.5 0 0

Table 18.2 Error distribution: standard Cauchy

Number of active effects a Size of active effects c R for LNmod R for ND

5 0.5 0.04 0.04

5 1 0.09 0.08

5 1.5 0.14 0.14

12 0.5 0.04 0.03

12 1 0.05 0.04

12 1.5 0.07 0.06

24 0.5 0.03 0.03

24 1 0.03 0.03

24 1.5 0.03 0.03

Table 18.3 Error distribution: exponential with mean equal to 1

Number of active effects a Size of active effects c R for LNmod R for ND

5 0.5 0.39 0.44

5 1 0.91 0.94

5 1.5 0.99 1

12 0.5 0.11 0.14

12 1 0.6 0.69

12 1.5 0.94 0.97

24 0.5 0.01 0.02

24 1 0 0.01

24 1.5 0 0
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Table 18.4 Error distribution: 3df Student’s T

Number of active effects a Size of active effects c R for LNmod R for ND

5 0.5 0.13 0.13

5 1 0.51 0.51

5 1.5 0.86 0.87

12 0.5 0.06 0.05

12 1 0.22 0.2

12 1.5 0.61 0.6

24 0.5 0.03 0.02

24 1 0.01 0.01

24 1.5 0.01 0.01

Fig. 18.1 R D
P1000
iD1 Bi
1000�a

vs the number of active effects a

Conclusion
We introduced a new permutation test as a modification of the well-known

Loughin and Noble test by also taking into account an innovative permutation
mechanism based on non-isomorphic designs which can be often available for
a given model and a given number of runs by means of the algorithm proposed
by Fontana [6].

As it is pointed out in [2] it is quite difficult to construct powerful
permutation tests for unreplicated factorial designs. In particular the original
Loughin and Noble test loses power when the number of active effects and/or
the error distribution is heavy tailed. Our modified procedures seem to have
a general better behaviour in terms of power especially in presence of heavy
tailed error distributions.



198 R. Fontana and L. Salmaso

References

1. Basso, D., Pesarin, F., Salmaso, L., Solari, A.: Permutation Tests for Stochastic Ordering and
ANOVA. Springer, New York (2009)

2. Basso, D., Salmaso, L.: A discussion of permutation tests conditional to observed responses in
unreplicated 2 m full factorial designs. Commun. Stat. 35(1), 83–97 (2006)

3. Basso, D., Salmaso, L., Evangelaras, H., Koukouvinos, C.: Nonparametric testing for main
effects on inequivalent designs. In: mODa 7—Advances in Model-Oriented Design and
Analysis, pp. 33–40. Springer, New York (2004)

4. Box, G.E., Hunter, W.G., Hunter, J.S.: Statistics for Experimenters: An Introduction to Design,
Data Analysis, and Model Building. Wiley, New York (1978)

5. Edgington, E.S., Onghena, P.: Randomization tests, vol. 191. CRC, New York (2007)
6. Fontana, R.: Random generation of optimal saturated designs. ArXiv e-prints (2013)
7. Giancristofaro, R.A., Fontana, R., Ragazzi, S.: Construction and nonparametric testing of

orthogonal arrays through algebraic strata and inequivalent permutation matrices. Commun.
Stat. 41(16–17), 3162–3178 (2012)

8. Good, P.: Permutation, Parametric and Bootstrap Tests of Hypotheses. Springer, New York
(2005)

9. Loughin, T.M., Noble, W.: A permutation test for effects in an unreplicated factorial design.
Technometrics 39(2), 180–190 (1997)

10. Paul Jr, W., Berry, K.J.: Permutation Methods: A Distance Function Approach. Springer,
New York (2007)

11. Pesarin, F., Salmaso, L.: Permutation Tests for Complex Data: Theory, Applications and
Software. Wiley, Chichester (2010)

12. Pesarin, F., Salmaso, L.: A review and some new results on permutation testing for multivariate
problems. Stat. Comput. 22(2), 639–646 (2012)

13. SAS Institute, Inc.: SAS/QC 9.2 User’s Guide, 2nd edn. SAS Institute, Cary (2010)



Chapter 19
Timely Indices for Residential Construction
Sector

Attilio Gardini and Enrico Foscolo

19.1 Introduction

When we deal with the study of economic variables the first problem is related to
the empirical evidence. We sometimes have little direct and lagged evidence and no
wide standard databases to observe our phenomena are available. The problem is
connected with the considerable time for collecting, processing, and releasing data.
A possible solution is represented by moving to Internet data.

In the last decades the Internet has assumed a key role in representing fashions
and consumer trends. One reason for this claim lies in the possibility of managing
(mostly free) up-to-the-minute data. The World Wide Web therefore becomes the
preferred channel for who wants to understand market dynamics. Thus, exploiting
the World Wide Web we can mimic official statistics and provide new more timely
indices. The most important contribution by Internet data consists of improving
future predictions and allowing better understanding for current unobserved dynam-
ics. Although the Internet provides an answer to this thirst for knowledge, its amount
of data may be misleading. One requires management tools and filters can indeed
help to separate the signal from noise. A simple and easy solution to represent trends
comes from the most popular and used search engine: Google. This mechanism
enables to forecast economic trends by examining the repetitive sequences that
occur in search engine-based queries. We already recognize some contributors that
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exploit Google data as exogenous variable. Choi and Varian [5] first explored
the possibility of adding the search indices to a simple autoregressive model in
order to improve the forecasting of new home sales. Askitas and Zimmermann [1],
D’Amauri and Marcucci [6] tested the relevance of a Google job-search index as an
indicator for unemployment dynamics in the USA, finding that it fruitfully increases
the precision of the forecasts. Vosen and Schmidt [11, 12] introduced monthly
consumer indicators based on Google search activity data, providing significant
benefits to forecasts compared to common survey-based counterparts. Ginsberg
et al. [8] monitored health-seeking behavior in the form of on-line Google search
queries.

In this paper we give a general framework in order to exploit search engine
based data. Our aim does not consist of replacing official statistics, but only to give
proxies for better understanding current unobserved dynamics. In order to do so,
we extract latent factors from query data and we provide a dynamic specification
based on a cointegrated Vector Error Correction Model (hereafter, VECM; see [10])
for assessing the linkage with the reference series. As an illustration, we provide
Internet indicators for the Italian Construction Production index. Lags from three to
6 months are common for quarterly indices and many of these indicators are subject
to serious and time-consuming revisions. Nevertheless, since the construction sector
has been played a central role in the Italian economy since 1999, having grown more
than twice as fast as GDP until the 2008 financial crises, updated information are
important for policy makers, firms, and investors.

The strength of the approach consists of providing new more timely indices for
target economic time series by means of Google search engine query data. In this
work, however, Google time series do not play the role of exogenous variables. With
respect to the other cited approach, for the first time the exogeneity of extracted
factors dealing with the new indices is not assumed a priori: Google indicators and
official statistics are considered as endogenous variables.

The paper is organized as follows. Section 19.2 is devoted to the presentation
of Google data and methods in order to obtain the search engine based indicators.
To evaluate the performance of Internet indices in connection with the Construction
Production index we estimate a cointegrated VECM in Sect. 19.3. Finally, some
concluding remarks are outlined in Sect. 19.4.

19.2 Managing Query Data

Google Insights for Search1 is the system provided by Google in order to analyze
portions of worldwide Google web searches from all Google domains starting from
January 2004. This mechanism computes how many searches have been sent for
the entered keywords, relative to the total number of searches processed by Google

1http://www.google.com/insights/search/?hl=en-US.

http://www.google.com/insights/search/?hl=en-US
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Table 19.1 The selected Google categories for the Italian residential
construction production

Google categories Google subcategories

Real Estate Property Inspections & Appraisals
Property Management
Property Development
Real Estate Agencies
Real Estate Listings
Timeshares & Vacation Properties
Apartments & Residential Rentals
Commercial & Investment Real Estate

Construction & Maintenance Building Materials & Supplies
Civil Engineering
Construction Consulting & Contracting
Urban & Regional Planning

over time. Insights for Search generates normalized not seasonally adjusted weekly
indexed series with values between 0 and 100. Updating is provided once a day.
Moreover, it eliminates repeated queries from a single user over a short period
of time. To determine the context of the terms, some Categories are provided.
Categories refer to a classification of industries or markets provided by an automated
classification engine.2 When filters by Category are applied, Google system only
evaluates queries that are related to that category. For our aims, the system
provides several options, such as Real Estate Agencies or Property Development
(cf. Table 19.1). In this sense, filters may be an additional guarantee for reducing
the noise generated by searches not connected with the residential construction
sector. Moreover, specific keywords are included in our queries for detecting the
construction production dynamics.

In order to investigate the structure of Google time series, we provide the
following procedure. Let qjt be the j -th query evaluated at time t obtained
by fitting together the j -th group of keywords and selected categories. Extract

common unobserved factors from
n
q
j
t W j D 1; : : : ; J; t D 1; : : : ; T

o
as in [11, 12].

To identify residential construction production factors we exploit asymptotically
distribution-free estimation methods in order to overwhelm some distributional
assumptions on latent variables; see [2, 3]. Then, we select the number of factors
by means of the parallel analysis (see [9]); i.e., we compare the decision about the
number of factors to that of random data with the same properties as the real dataset.

For our purpose, parallel analysis suggests that 3 factors for construction sector
might be most appropriate; see Fig. 19.1. Nevertheless, we only choose the latent

2See http://support.google.com/insights/?hl=enforacomprehensivedescription.

http://support.google.com/insights/?hl=en for a comprehensive description


202 A. Gardini and E. Foscolo

2 4 6 8

0
2

4
6

8

Parallel Analysis Scree Plots

Factor Number

ei
ge

nv
al

ue
s 

of
 p

rin
ci

pa
l c

om
po

ne
nt

s 
an

d 
fa

ct
or

 a
na

ly
si

s
PC  Actual Data
PC  Simulated Data
PC  Resampled Data
FA  Actual Data
FA  Simulated Data
FA  Resampled Data

10 12

Fig. 19.1 Number of factors for the Italian residential construction production

variable with higher factor loadings in correspondence with Real Estate Agencies
and Real Estate Listings subcategories, since they are, in our opinion, the best
matches with the construction production.

19.3 From Query Data to Econometric Framework

The underlying nature of the data needs to be carefully analyzed before starting to
handle the indices. Checking the connection between Google factors and official
related data is the necessary step in order to consider these indices as housing
market dynamics proxies. In order to do that, we exploit the vector autoregressive
specification (hereafter, VAR) and we test the presence of stochastic common
trends. Cointegrated variables are driven by the same persistent shocks. Thus, when
cointegration is detected, the involved variables will show a tendency to co-move
over time. Such cointegrated relations can often be interpreted as long-run economic
relations and are therefore of considerable economic interest for our purpose. In this
connection we use the VECM which gives a convenient reformulation of VARs in
terms of differences, lagged differences, and levels of variables.



19 Timely Indices for Residential Construction Sector 203

Table 19.2 The asterisks
indicate the best values of the
respective information
criteria; i.e., Akaike criterion
(shortly, AIC), Schwarz
Bayesian criterion (shortly,
BIC), and Hannan–Quinn
criterion (shortly, HQC)

Lags Log-likelihood AIC BIC HQC

1 �327.4027 7.6431 8.4056 7.9509

2 �320.3550 7.5775 8.4490 7.9294

3 �305.0129 7.3336� 8.3140� 7.7295�

4 �304.4843 7.4083 8.4976 7.8481

5 �302.3366 7.4481 8.6463 7.9319

6 �297.8367 7.4373 8.7445 7.9651

Fig. 19.2 Plot of the Google Construction factor and its first differences (the right panel)

Fig. 19.3 Plot of the construction production index provided by Eurostat and its first differences
(the right panel)

The proposed application refers to monthly Google Italian activities over the
period 2004:04–2012:07 (T D 103), hereafter denoted by St , and monthly
Construction Production index (not seasonally adjusted; shortly, cpit ) provided by
Eurostat, the Statistical Office of the European Union.

For notational reasons we include these p D 2 variables in the vector Xt D
.St ; cpit /

>. We fit the unrestricted VAR with k D 3 lags (see Table 19.2 for
the validity of the chosen lag specification) by maximum likelihood, here in the
corresponding VEC formulation,

�Xt D ˘ Xt�1 C
k�1X

iD1
i �Xt�1 C �C �t (19.1)

where �t is a Gaussian white noise process with covariance matrix ˝.
Inspection of the data in Figs. 19.2 and 19.3 shows that involved variables are

clearly nonstationary, while the differences, however, look like stationary processes.
In order to take account different seasonality we also include in matrix � centered
seasonal dummies and an unrestricted drift term which creates a linear trend in the
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Fig. 19.4 Plot of actual and fitted values of�St , the standardized residuals of�St , the standard-
ized residuals autocorrelation function of�St , and the histogram of standardized residuals of�St
(with normality assumption check)

Fig. 19.5 Plot of actual and fitted values of � cpit , the standardized residuals of � cpit , the
standardized residuals autocorrelation function of � cpit , and the histogram of standardized
residuals of � cpit (with normality assumption check)

processes. The choice of linearity in trend is of course just a simplification of the
reality. The adequacy of the model is checked by residual analysis in Figs. 19.4
and 19.5, and Table 19.3 where it can be seen that there is no autocorrelation in the
residuals and the normal distribution assumption is not rejected.

The primary hypothesis of interest is to test the presence of unit roots (i.e.,
stochastic trends) which leads to a reduced rank condition on the impact matrix
 D ˛ˇ> in Eq. (19.1), where ˛ and ˇ are p � r matrices, and r (0 < r < p) is
the cointegration rank of the system. If accepted, it would establish cointegration.
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Table 19.3 Residual diagnostic tests (p-values in the brackets)

Multivariate tests

Normality �24 D 2:9622 (0.5642)

Residual autocorrelation (lag
order = 16)

�254 D 64:9297 (0.1466)

ARCH(12) �245 D 53:5860 (0.1781)

Univariate tests

�St � cpit
Normality �22 D 0:5890 �22 D 1:8660

(0.7449) (0.3934)

Residual autocorrelation (lag
order = 16)

�216 D 13:2187 �216 D 26:0279

(0.6570) (0.0536)

ARCH(16) �216 D 10:4250 �216 D 18:7309

(0.8435) (0.2829)

Table 19.4 Rank determination of  D ˛ˇ> in case of unrestricted
constant and periodic dummies (p-values in the brackets)

Trace test corrected
Rank Eigenvalue Trace test �max test for sample (df D 78)

0 0.1107 11.5560 11.2640 11.5560

(0.1818) (0.1429) (0.1910)

1 0.0030 0.2926 0.2926 0.2926

(0.5886) (0.5886) (0.5952)

Estimation period: 2004:04–2012:03 (T D 96)

We involve testing for the cointegration rank r according to the [10] approach. The
rank of  is investigated by computing the eigenvalues of a closely related matrix
whose rank is the same as  . Two Johansen tests for cointegration are used to
quantify r ; i.e., the �max test (for hypotheses on individual eigenvalues) and the
Trace test (for joint hypotheses). In Table 19.4 we present the results including
sample size corrected Trace test statistic; see [7]. The findings are that both r D 0

and r D 1 should be not rejected for all tests. Nevertheless, the graphical inspections
and the reciprocal roots of the unrestricted VAR(3) given in Fig. 19.6 suggest to
accept the null hypothesis of one cointegration relation. Moreover, the right panel
in Fig. 19.6 suggests that the two indices move together around the identify line for
the whole period. Thus, the analysis indicates that our variables are nonstationary
but cointegrate. The most obvious choice becomes r D 1.

The error-correction term is given by

ect1t D �cpit C 19:5781
.3:4686/

St (19.2)

and the remaining parameter estimates of model in Eq. (19.1) are
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Fig. 19.6 The inverse pk D 6 roots of the unrestricted VAR(3) model for the Italian construction
production and the scatter plot between St and cpit

�St D 0:0080
.0:0053/

ect1t�1

� 0:2652
.0:1342/

�St�1�0:0019
.0:0058/

� cpit�1�0:0635
.0:1150/

�St�2 � 0:0130
.0:0052/

� cpit�2

� 0:9849
.0:6513/

C 3:7922
.0:2119/

M1t C 2:3591
.0:4453/

M2t C 2:1961
.0:4609/

M3t C 1:9661
.0:2496/

M4t

C 2:0714
.0:2210/

M5t C 1:7038
.0:2318/

M6t C 2:2762
.0:2271/

M7t C 2:5550
.0:2638/

M8t

C 3:2157
.0:4337/

M9t C 0:5611
.0:4979/

M10t C 1:5386
.0:3556/

M11t ; �21 D 0:0850

� cpit D � 0:2552
.0:0980/

ect1t�1

C 1:3897
.2:4699/

�St�1�0:5491
.0:1070/

� cpit�1C2:0409
.2:1172/

�St�2 � 0:5333
.0:0963/

� cpit�2

C 30:6396
.11:9883/

C2:5277
.3:9008/

M1tC1:6524
.8:1963/

M2tC22:8772
.8:4830/

M3t C 23:9567
.4:5948/

M4t

C 28:5055
.4:0673/

M5t C 18:5787
.4:2661/

M6t C 30:5768
.4:1804/

M7t � 42:1111
.4:8547/

M8t

C 19:4161
.7:9828/

M9t C 7:6849
.9:1634/

M10t C 40:5303
.6:5455/

M11t ; �22 D 28:8090

where standard errors are included in parentheses. The estimates of this model
suggest that cpit reacts to the disequilibrium between variables in Xt as measured
by the disequilibrium error in Eq. (19.2).

To conclude, we check parameter constancy throughout the sample period. The
largest eigenvalue which is also used in the cointegration rank tests have been
computed recursively from 2008:01 and approximate 99 % confidence intervals
are plotted in Fig. 19.7. The Chow forecast (shortly, CF) test is also considered.
The test checks for a structural break in 2008:09 (we identify September 2008 as
the beginning of the 2008 financial crises). The CF test tests against the alternative
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Fig. 19.7 Plot of the largest recursively estimated eigenvalue

that all coefficients including the residual covariance matrix ˝ may vary. Because
the sample distribution of the test statistic under the null hypothesis may be quite
different from the asymptotic distribution, we compute bootstrap p-values obtained
by means of 1,000 replications; see [4]. Anyway the null hypothesis of constant
parameters is not rejected; i.e., F .86; 67/ D 1:1987 with bootstrapped p-value D
0:1580 and asymptotic p-value D 0:2204.

19.4 Concluding Remarks

In this paper we have proposed new timelier indices based on weekly Google
search activities in order to anticipate official reports. An illustration on the Italian
residential construction production is provided in order to show how Internet data
may be useful. We recall that our aim is not to replace official statistics, but only to
give proxies for our phenomenon to better understand current unobserved dynamics.
Time series provided by statistical agencies has been showed to be related with
Google data by means of a cointegrated VAR. The long-run equation significantly
contributes to the short-run movements of both Google factor and construction
production index. Moreover, the construction production short dynamics have been
shown to be related with the Google indicator. Thus, the analysis confirms the use
of the Google index as proxy of construction production trend-cycle. The findings
permit us to monitor residential construction developments without expensive
surveys and before official data are published.

One possible limitations for this approach may be recognized. It is related
with some nonnegligible variations between samples drawn on different weeks.
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As [11, 12] pointed out, this may pose a potential problem for identifying model
parameters. We addressed this problem by considering the whole period at disposal
and by performing recursive tests for parameter constancy. We found out that the
full sample period defines a constant parameter regime and the assumed break point
(i.e., September 2008 that we identify as the beginning of the 2008 financial crises)
did not suggest a change in the structure.
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Chapter 20
Measures of Dependence for Infinite Variance
Distributions

Bernard Garel

20.1 Introduction

One of the first things a statistician does when he begins a data analysis is to
compute the empirical matrix of covariance or correlation. Indeed, the independence
and also the level of dependence constitute a fundamental information for the
modelisation of data. In the standard case, the correlation coefficient is the usual
measure of dependence. When the involved random variables have infinite variance
this coefficient does not exist and to find a good substitute continues to be of
interest. Indeed, many physical phenomena or financial data exhibit a very high
variability, showing heavy tailed distributions. Among distributions with infinite
variance we find stable distributions introduced by Lévy. Mandelbrot [6] suggested
the stable laws as possible models for the distributions of income and speculative
prices. Excellent contributions were given by Samorodnitzky and Taqqu [14] about
stable non-Gaussian random processes and by Uchaikin and Zolotarev [15] who
gave examples in telecommunications, physics, biology, genetic, and geology.

A practical guide to heavy tails was published by Adler et al. [1] with a lot of
interesting papers. Nolan [9–11] also did a huge contribution to stable laws.

In the case of stable distributions a few measures of dependence have been
proposed. Here we start from notion around covariation. Then we generalize the
contribution to arbitrary distributions with a first order moment and infinite variance.

This first section recalls a number of concepts around stability. Then in
the second section we introduce the signed symmetric covariation coefficient and
give its fundamental properties. The third and last section is devoted to the new
measure of dependence and its estimation.
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We denote the law of a stable random variable by S˛.�; ˇ; ı/, with 0 < ˛ 6 2,
� > 0;�1 6 ˇ 6 1 and ı a real parameter.

A random variable X has a stable distribution S˛.�; ˇ; ı/ if its characteristic
function has the form

'X.t/ D E exp i tX D exp
n

� �˛jt j˛ Œ1C i ˇsign.t/w.t; ˛/�C i ıt
o
;

where

w.t; ˛/ D
� � tan �˛

2
if ˛ ¤ 1;

2
�

ln jt j if ˛ D 1;

with t a real number, and sign.t/ D 1 if t > 0, sign.t/ D 0 if t D 0 and
sign.t/ D �1 if t < 0.

The parameter ˛ is the characteristic exponent or index of stability, ˇ is a measure
of skewness, � is a scale parameter and ı is a location parameter.

The special cases ˛ D 2, ˛ D 1 and ˛ D 0:5 correspond, respectively, to the
Gaussian, Cauchy and Lévy distributions and it is only in these cases that stable
laws have a closed form expression for the density.

When ˇ D ı D 0, the distribution is symmetric (i.e. X and �X have the same
law) and is denoted S˛S.�/ or for short S˛S .

Let 0 < ˛ < 2. The characteristic function of a stable random vector
X D .X1;X2/ is given by

'X.t/ D exp

�
�
Z

S2

jht; sij˛ Œ1C i sign.t; s/w.ht; si; ˛/�� .d s/C i ht;di

;

where � is a finite measure on the unit circle S2 D fs 2 R
2 W ksk D 1g and d is

a vector in R
2. Here ht; si denotes the inner product of R2 and k:k stands for the

Euclidian norm in R
2. The measure � is called the spectral measure of the ˛-stable

random vector X and the pair .� ;d/ is unique. The vector X is symmetric if, and
only if, d D 0 and � is symmetric on S2. In this case, its characteristic function is
given by

'X.t/ D exp

�
�
Z

S2

jht; sij˛� .d s/

: (20.1)

If necessary, we also denote the spectral measure of X by � X.
The spectral measure carries essential information about the vector, in particular

the dependence structure between the coordinates. So, it is not surprising that
measures of dependence rely on this spectral measure. In the sequel, unless specified
otherwise, we assume ˛ > 1 and consider symmetric stable random variables or
vectors. Miller [7] introduced the covariation as follows.
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Definition 20.1. Let X1 and X2 be jointly S˛S and let � be the spectral measure
of the random vector .X1;X2/.

The covariation of X1 on X2 is the real number defined by

ŒX1;X2�˛ D
Z

S2

s1s
h˛�1i
2 � .d s/: (20.2)

where for real numbers s and a:

• if a ¤ 0, shai D jsjasign.s/
• and if a D 0, shai D sign.s/.

Although the covariation (20.2) is linear in its first argument, it is, in general, not
linear in its second argument and not symmetric in its arguments. We also have

ŒX1;X1�˛ D
Z

S2

js1j˛� .d s/ D �˛X1 ;

where �X1 is the scale parameter of the S˛S random variable X1.
The covariation norm is defined by

kX1k˛ D .ŒX1;X1�˛/
1=˛: (20.3)

When X1 and X2 are independent, ŒX1;X2�˛ D 0.

The covariation coefficient of X1 on X2 is the quantity:

�X1;X2 D ŒX1;X2�˛

kX2k˛˛
: (20.4)

It is the coefficient of the linear regression E.X1jX2/. This coefficient is not
symmetric and may be unbounded. We see it easily by setting X2 D cX1, where
c ¤ 0 and c ¤ ś1. In this case we have

�X1;X2 D 1

c
and �X2;X1 D c:

Paulauskas [12, 13] introduced the alpha-correlation. This coefficient is applica-
ble to all symmetric stable random vectors in R

2 and has all the properties of the
ordinary Pearson correlation coefficient.

Let .X1;X2/ be S˛S , 0 < ˛ 6 2 and � its spectral measure on the unit circle S2.
Let .U1; U2/ be a random vector on S2 with probability distribution Q� D � =� .S2/.
Due to the symmetry of � , one has EU1 D EU2 D 0. The alpha-correlation is
defined as:
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Q�.X1;X2/ D EU1U2

.EU 2
1 EU

2
2 /
1=2
:

It is a measure of dependence of .X1;X2/.

20.2 Signed Symmetric Covariation Coefficient

20.2.1 Definition and First Properties

Definition 20.2. Let .X1;X2/ be a bivariate S˛S random vector with ˛ > 1. The
signed symmetric covariation coefficient between X1 and X2 is the quantity:

scov.X1;X2/ D ~.X1;X2/

ˇ̌
ˇ̌ ŒX1;X2�˛ŒX2;X1�˛

kX1k˛˛kX2k˛˛

ˇ̌
ˇ̌
1
2

;

where

~.X1;X2/ D
8
<

:

sign.ŒX1;X2�˛/ if sign.ŒX1;X2�˛/ D sign.ŒX2;X1�˛/;

�1 if sign.ŒX1;X2�˛/ D �sign.ŒX2;X1�˛/:

Remark: The value of ~.X1;X2/ above is natural in the first case. In fact, if
.X1;X2/ was a random vector with finite variance, the equality sign.ŒX1;X2�˛/ D
sign.ŒX2;X1�˛/ would always be true, because ŒX1;X2�2 D 1

2
Cov.X1;X2/.

But in the case of stable non-gaussian random vectors, we can have
sign.ŒX1;X2�˛/ D �sign.ŒX2;X1�˛/, see Garel et al. [4]. If it is so, we set
~.X1;X2/ D sign.ŒX1;X2�˛ � ŒX2;X1�˛/ D �1.

The signed symmetric covariation coefficient has the following properties:

• �1 6 scov.X1;X2/ 6 1 and if X1, X2 are independent, then scov.X1;X2/ D 0I
• jscov.X1;X2/j D 1 if and only if X2 D �X1 for some � 2 RI
• let a and b be two non-zero reals, then

scov.aX1; bX2/ D

8
<̂

:̂

sign.ab/scov.X1;X2/ if sign.ŒX1;X2�˛/ D sign.ŒX2;X1�˛/;

scov.X1;X2/ if sign.ŒX1;X2�˛/ D �sign.ŒX2;X1�˛/I
(20.5)

• for ˛ D 2, scov.X1;X2/ coincides with the usual correlation coefficient.

A more detailed study of this coefficient has been done by Kodia and Garel [5].
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20.2.2 Sub-Gaussian Case

Definition 20.3. Let 0 < ˛ < 2, let G D .G1;G2; : : : ; Gd / be zero mean
jointly normal random vector and let A be a positive random variable such

that A � S˛=2
��

cos �˛
4

	2=˛
; 1; 0/, independent of G, then X D A1=2G D

.A1=2G1; A
1=2G2; : : : ; A

1=2Gd / is a sub-Gaussian random vector with underlying
Gaussian vector G.

The characteristic function of X has the particular form:

'X.t/ D E exp
n
i

dX

mD1
tmXm

o
D exp

n
�
ˇ̌
ˇ
1

2

dX

jD1

dX

kD1
tj tkRjk

ˇ̌
ˇ
˛=2o

; (20.6)

where Rjk D EGjGk , j; k D 1; : : : ; d are the covariances of G.

Theorem 20.1. Let 1 < ˛ < 2 and X a sub-Gaussian random vector with
characteristic function (20.6).

• Then the signed symmetric covariation coefficient matrix of X coincides with the
correlation matrix of the underlying Gaussian random vector G.

• Then the signed symmetric covariation coefficient matrix coincides with the
matrix of ˛-correlation.

20.3 The New Coefficient of Dependence

Now we assume only that the distributions admit a finite 1st-order moment. Then
the variance may be infinite.

Definition 20.4. We define the coefficient RG by:

RG.X1;X2/ D ~.X1;X2/
jE.X1sign.X2//E.X2sign.X1//j1=2

.EjX1jEjX2j/1=2

~.X1;X2/ D

8
<̂

:̂

sign.E.X1sign.X2/// if sign.E.X1sign.X2/// D sign.E.X2sign.X1///;

�1 if sign.E.X1sign.X2/// D �sign.E.X2sign.X1///:
(20.7)

It is easy to show that the coefficient RG has the following properties:

• �1 6 RG.X1;X2/ 6 1 and if X1, X2 are independent, then RG.X1;X2/ D 0I
• If X2 D �X1 for some � 2 R; jRG.X1;X2/j D 1;
• If .X1;X2/ is a S˛S random vector with 1 < ˛ < 2, RG.X1;X2/ coincides with

the signed symmetric covariation coefficient.
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This last property results from the following one. If .X1;X2/ follows a stable
bivariate distribution, then the covariation coefficient of X1 on X2:

�X1;X2 D ŒX1;X2�˛

kX2k˛˛
:

satisfies for all 1 6 p < ˛

�X1;X2 D E.X1X
hp�1i
2 /

E.jX2jp/ D EX1sign.X2/

EjX2j :

The last equality is obtained by taking p D 1 in the first equality. That has been
suggested by Nikias and Shao [8] and also by Gallagher [3].

20.3.1 Estimation of this Coefficient

Let X1j and X2j 1 6 j 6 n be independent copies of X1 and X2, respectively. We
estimate RG by:

cRG.X1;X2/ D O~.X1;X2/

ˇ̌
ˇ̌
ˇ

 
nX

jD1
X1j signX2j

! 
nX

jD1
X2j signX1j

!ˇ̌
ˇ̌
ˇ

1=2

" 
nX

jD1
jX1j j

! 
nX

jD1
jX2j j

!#1=2

where O~.X1;X2/ D

8
<̂

:̂
sign

 
nX

jD1
X1j signX2j

!
if sign

 
nX

jD1
X1j signX2j

!
D sign

 
nX

jD1
X2j signX1j

!
;

�1 if not:

This estimator is convergent. Here we give some results of simulation in the sub-
Gaussian case.

Estimates of RG and Q� for n D 1600 sub-Gaussian data vectors with ˛ D 1:5,

�1 D 5, �2 D 10 and A � S˛=2
��

cos �˛
4

	2=˛
; 1; 0/,

G D .G1;G2/, .X1;X2/ D A1=2G D .A1=2G1; A
1=2G2/: Number of replica-

tions: 100.
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True value �1:00 �0:60 �0:40 �0:20 0:00 0:10 0:30 0:50 0:90
ORG �1:00 �0:60 �0:38 �0:20 �0:01 0:10 0:31 0:50 0:90

0:00 0:04 0:05 0:07 0:06 0:07 0:06 0:05 0:02

Q�.est �0:80 �0:55 �0:36 �0:18 �0:00 0:09 0:27 0:46 0:81
0:00 0:02 0:02 0:03 0:02 0:02 0:02 0:02 0:00

Programmed by Bernédy KODIA
The first number is the mean calculated over 100 replications. The second

number (in tiny) is the mean absolute deviation from the mean above. In order to
estimate Q�, we used an estimation of the spectral measure � and then a formula
given by Paulauskas [12, p. 364], having replaced the weights by their estimates.
See Kodia and Garel [5].

20.4 Stable Linear Processes

For a definition, see Brockwell and Davis [2]. In the same spirit that [3] we introduce
the signed symmetric autocovariation function (and the coefficient RG) in this
context. We assume ˛ > 1 and h 2 N.

Definition 20.5. Let fXt ; t 2 T g be a stationary S˛S process. The signed
symmetric autocovariation function at level h is defined by:

scov.h/ D scov.XtCh; Xt / D ~.XtCh;Xt /

jE.XtChsignXt/:E.Xt signXtCh/j1=2
EjXt j :

with ~.XtCh;Xt / defined as in Definition 4.

Then we obtain the following characterization:

Proposition 20.1. Let fXtg be a causal linear stationary S˛S process, with signed
symmetric autocovariation function scov.�/. Then fXtg is a MA(q) process if and
only if scov.h/ D 0 for h > q and scov.q/ ¤ 0. This means that there exists a S˛S
white noise fZtg such that:

Xt D Zt C 	1Zt�1 C � � � C 	qZt�q:

The neccessary condition is rather easy to prove. For the converse, we start from the
causal representation of the process Xt D P1

jD0  jZt�j and we show that for all
j > q we have  j D 0.

Acknowledgements I would like to thank Professor Subir Ghosh for his invitation to the Rimini
Conference and Bernedy Kodia for his help for simulations. I also thank the Referee for his
suggestions.
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Chapter 21
Design of Experiments Using R

Albrecht Gebhardt

21.1 Overview of Existing DOE Implementations

21.1.1 CRAN Task View

The R language, see [2], has become a widely used software toolkit for statisticians
and statistical applications in many fields of science. One of its advantages is the
extensibility through add-on packages, the current number (at the time of writing,
2013/2014) of available packages has passed 5000.

For a better overview of available packages, CRAN1 delivers so-called task
views, these are moderated collections of packages belonging to different tasks. The
task view on design of experiments2 at CRAN (maintained by Ulrike Grömping)
mentions a large number of general and specialized design of experiments packages
which cover:

• general purpose design of experiments,
• agricultural design of experiments,
• industrial design of experiments,
• experimental designs for computer experiments,
• and more.

1Comprehensive R Archive Network, http://cran.r-project.org, the central web archive of the R
language.
2http://cran.r-project.org/web/views/ExperimentalDesign.html.
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Beside this collection other R packages for special design of experiments applica-
tions exist, e.g. for spatial statistics: edesign (Entropy based design of monitoring
networks, also developed at university Klagenfurt, see [1]). The library optimal
design of experiments (OPDOE) (see Sect. 21.4) will be partly introduced here,
covering ANOVA and some special kind of sequential tests.

21.2 Designs for ANOVA

The task of designing ANOVA experiments consists in determining sample sizes in
order to fulfill several demands regarding the risks of 1st and 2nd kind. The tests can
be generally represented as testing a factor for no effects. For instance, in a single
factor model with a factor A at levels ai the test with the hypothesis

H0 W 8i ai D 0 HA W 9i ai ¤ 0

leads to an F -test with degrees of freedom f1, f2. The characteristics of this test
can be described by

• ˛, the risk of 1st kind,
• 1 � ˇ, the power of the F -test, risk of 2nd kind,
• �2y , the population variance,
• ı, a minimum difference between levels of the factor to be detected.

The optimal size for a given set of accuracy parameters ˛, ˇ and ı can be
determined by solving

F.f1; f2; 0; 1 � ˛/ D F.f1; f2; �; ˇ/ (21.1)

with a non-centrality parameter � D C � 1
�2y

Pq
iD1.Ei � E/2 where Ei denote the

effects of the main factor, C is a constant depending on the model. The solution is
found by iteration, see, e.g., [4].

21.2.1 R Implementation

ANOVA models can be classified according to the number of factors involved
and the type of interaction of these factors as cross, nested or mixed classifica-
tion. Additionally some of the factors can be treated as random. The function
size.anova() is called for all possible models, the parameter model describes
the ANOVA model using the characters “x” and “>” for cross and nested classi-
fication, “()” for mixed effects, small letters a,b,c for fixed and capital letters
A,B,C for random effects, e.g.
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size.anova(model="a" ,...) # One-Way
size.anova(model="axb" ,...) # Two-Way cross
size.anova(model="a>B" ,...) # Two-Way nested, B random
size.anova(model="(axb)>c" ,...) # Three-Way mixed
size.anova(model="(a>B)xc" ,...) # B random

The parameter hypothesis selects the desired null hypothesis. It is only needed
in some cases where it is not as obvious as H0 W 8j W aj D 0 which is the default.

# Two-Way cross, test for interactions
size.anova(model="axb" , hypothesis="axb", ...)
# Three-Way mixed, test for effects of A
size.anova(model="(axb)>c" , hypothesis="a", ...)
# Three-Way mixed, test for interactions AxB
size.anova(model="(axb)>c" , hypothesis="axb", ...)

Some tests need additional assumptions, e.g. given as

# Three-Way cross, test for effects of A
size.anova(model="axBXC" , hypothesis="a",

assumption="sigma_AC=0,b=c", ...)

The sizes a, b, c and n have to be given, omitting just the size to be determined.
Additionally the accuracy parameters ˛, ˇ, ı and the optimization strategy cases
(choosing maximin or minimin) have to be specified.

21.2.2 One-Way Classification

Model types for one-way ANOVA are

• Type I: factor A fixed,
• Type II: factor A random, this is not covered here.

The model equation for a type I one-way ANOVA can be given as follows, bold
symbols are associated with random terms in contrast to fixed terms in normal font:

yij D E.yij /C eij D �C ai C eij .i D 1; : : : ; aI j D 1; : : : ; n/ (21.2)

H0 W 8i ai D 0 HA W 9i ai ¤ 0

An example call for one-way ANOVA looks like

> size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")

n
9

> size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")

n
5

In this case n is omitted in the arguments which means that it should be calculated,
in this simple case this is the only possible question.
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21.2.3 Two-Way Classification

Possible model types for two-way classification A � B (cross classification) and
A � B (nested classification) are (model parameter notation for size.anova()
given in parenthesis):

• Cross classification type I: All factors fixed A � B (model =“axb”)
• Type II: All factors random, not covered here.
• Cross classification type III: A � B, B random (model =“axB”)
• Nested classification type I: All factors fixed A � B (model =“a>b”)
• Nested classification type III: A � B, A � B , A or B random (model
=“a>B”)

Taking a two-way cross-classification, model I, A�B yields the model equation
and hypothesis

yijk D �C ai C bj C .ab/ij C eijk (21.3)

H0 W 8i ai D 0 HA W 9i ai ¤ 0

A sample call with a D 6, b D 4, accuracy requirements ˛ D 0:05, ˇ D 0:1, ı D 1

asking for the size n gives for the "minimin" case:

> size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")

n
4

21.2.4 Three-Way Cross Classification

Model types for three-way cross classification A � B � C are

• Type I: A � B � C All factors fixed (model ="axbxc").
• Type II: All factors random, not covered here.
• Type III: A � B � C mixed, A and B fixed, C random (model ="axbxC").
• Type IV: A � B � C mixed, A fixed, B and C random (model ="axBxC").

Picking a three-way cross classification, model IV, A � B � C as an example leads
to the equation

yijkl D �C ai C bj C ck C .ab/ij C .ac/ij C .bc/jk C .abc/ijk C eijkl (21.4)

aX

iD1

ai D 0;8j; k
aX

iD1

.ab/ij D
aX

iD1

.ac/ij D
aX

iD1

.abc/ijk D 0

H0 W 8i ai D 0 HA W 9i ai 6D 0

This model needs additional assumptions about �AB and the sizes b and c, see [5].
In the R call fix a D 6, n D 2, assume �AB D 0 and b D c, take the precision
requirements ˛ D 0:05, ˇ D 0:1, ı D 0:5 and get:
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> size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")

b c
9 9

21.2.5 Three-Way Nested Classification

For three-way nested classification A � B � C we get even more model types
(omitting type II again):

• Type I: All factors fixed A � B � C , in OPDOE: model="a>b>c"
• Type III: A � B � C , A random, (model ="A>b>c")
• Type IV: A � B � C , B random, (model ="a>B>c")
• Type V: A � B � C, C random, (model ="a>b>C")
• Type VI: A � B � C, A fixed, (model ="a>B>C")
• Type VII: A � B � C, B fixed, (model ="A>b>C")
• Type VIII: A � B � C , C fixed (model ="A>B>c")

Taking a three-way nested classification, model IV, B random, A � B � C as
example we can test for no effects of C :

yijkl D �C ai C bj.i/ C ck.ij / C eijkl (21.5)

H0 W 8i ci D 0 HA W 9i ci 6D 0

In R again fix a D 6, c D 4, try b D 2 and b D 20, set precision requirements
˛ D 0:05, ˇ D 0:1, ı D 0:5 and calculate n:

> size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")

n
262

21.2.6 Three-Way Mixed Classification

Model types for three-way mixed classification of type .A � B/ � C are:

• Type I: All factors fixed .A � B/ � C (model ="(axb)>c")
• Type VI: .A � B/ � C , B random (model ="(axB)>c")
• Type V: .A � B/ � C , C random (model ="(axb)>C")
• Type VI: .A � B/ � C, B , C random (model ="(axB)>C")
• Type VII: .A � B/ � C, A, C random (model ="(Axb)>C")
• Type VIII: .A � B/ � C , A, B random (model ="(AxB)>c")
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Model II (all factors random) is not handled by the function, model III (only A
random) can be achieved using model IV by exchanging A and B . Similar types can
be given for .A � B/ � C :

• Type I: All factors fixed .A � B/ � C (model="(a>b)xc")
• Type III: .A � B/ � C , A random (model ="(A>b)xc")
• Type IV: .A � B/ � C , B random (model ="(a>B)xc")
• Type V: .A � B/ � C, C random (model ="(a>b)xC")
• Type VI: .A � B/ � C, B , C random (model ="(a>B)xC")
• Type VII: .A � B/ � C, A, C random (model ="(a>B)xC")
• Type VIII: .A � B/ � C, A, B random (model ="(A>B)xc")

As example take a three-way mixed classification, model I, .A � B/ � C with
model equation and hypothesis

yijkl D �C ai C bj C .ab/ij C ck.ij / C eijkl

8i; j
cX

kD1
ck.ij / D 0 (21.6)

H0 W 8i ai D 0 HA W 9i ai 6D 0

For a sample call take a D 6, b D 5, c D 4, precision requirements ˛ D 0:05,
ˇ D 0:1, ı D 0:5 test for no effect of A and get:

> size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")

n
3

21.3 Sequential Designs

The idea of sequential designs is to start with a small sample, add step by step new
data and to decide if the desired accuracy demands are fulfilled at this step so that a
decision regarding the null hypothesis can be found. The tests can be one-sided or
two-sided, one-sample or two-sample, for means or proportions.

The principle can be sketched as follows:

• An initial sample is taken (with size > 1)
• A stopping rule determines whether or not to continue sampling, sampling stops

if the actual sample size fulfills the accuracy demands, expressed in terms of risks
of 1st and 2nd kind.

• After stopping, a decision rule is applied (the test is performed).

Continuation can be done as a single step or by adding larger batches of data
(bearing the risk of overshooting the minimum required sample size).



21 OPDOE 223

21.3.1 Triangular Tests

A triangular test is a sequential test which allows for early stopping of trials, it was
introduced by John Whitehead, see [7]. The sample size is increased step by step
until a decision can be made. The decision rule can be interpreted with a graphical
representation: A derived quantity falls into a triangular shaped region (it means the
test can not yet be finished) or leaves this region on the upper or lower side (H0 is
rejected or not). Triangular tests finish after a finite number of steps because of the
finite size of the triangular shaped continuation region.

For a test for the mean of a normal distributed population with �2 unknown, a
one-sided hypothesis H0 W 	 D 	0 versus HA W 	 D 	1 the continuation region is
given by

�aC 3bvn < zn < aC bvn if 	 > 	0
�aC bvn < zn < aC 3bvn if 	 < 	0

(21.7)

with

vn D n � z2n
n
; zn D

Pn
iD1 yiq

1
n

Pn
iD1 y2i

; a D 2 ln

�
1

2˛

�
=	1; b D 	1

4

For an example initialize some heights data, taken from a male sample

> male <- c( 183, 187, 179, 190, 184, 192, 198, 182, 188,186)

Now perform a test H0 W � D �0 D 180 versus H1 > 180 C ı with ı D 5,
˛ D 0:01, ˇ D 0:1. Assume a prior �2 D 16. Take a subset of the first 8 elements
and generate a plot, see Fig. 21.1:

> tt <- triangular.test.norm(x=male[1:8], mu0=180, mu1=185,
alpha=0.01, beta=0.1,sigma=4)
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Fig. 21.1 Triangular test, yet unfinished
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Triangular Test for normal distribution
Sigma known: 4

H0: mu= 180 versus H1: mu> 185
alpha: 0.01 beta: 0.1

Test not finished, continue by adding single data via update()
current sample size for x: 8

By applying further updates to the object tt we continue the test:

> tt <- update(tt,x=male[9])
Triangular Test for normal distribution
Sigma known: 4

H0: mu= 180 versus H1: mu> 185
alpha: 0.01 beta: 0.1

Test not finished, continue by adding single data via update()
current sample size for x: 9

It is still not finished, have a look at the plot again (Fig. 21.2). Then again add
another value

> tt <- update(tt,x=male[10])
Triangular Test for normal distribution
Sigma known: 4

H0: mu= 180 versus H1: mu> 185
alpha: 0.01 beta: 0.1

Test finished: accept H1
Sample size for x: 10

Now the test finishes, H0 is rejected, the needed sample size was 10, see Fig. 21.3.
The triangular testing procedure may be reminiscent of quality control charts,

but despite of keeping the score between the borders as long as possible in case of
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Fig. 21.2 Triangular test, still not finished
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Fig. 21.3 Triangular test, finished, H0 is rejected

quality control charts the desire of the experimenter is to finish the trials as soon as
possible by leaving the continuation region with a minimal sample size.

The implementation makes use of object oriented R programming. Several
methods like update, print and plot had to be written for the new object class
triangular.test.

• First a triangular.test object is created with the triangular.test.
norm() function.

• Then the update method of that object is used to add new data.
• Plots are generated on the fly or afterwards with the plot method of that object.

In the case of a two-sided test, two triangular shaped continuation regions
overlap, see the plots in the forthcoming examples. If the acceptance region for some
reason gets modeled without symmetry, also the triangles lose their symmetry.

The triangular test principle is now applied to two groups, leading to the double
triangular test, see [6]. In this case the size of the groups is increased alternately until
a decision is found, again allowing for early stopping of the trials. For this example
first initialize two other male/female heights data sets for this two-sided, two-sample
test, start with three measurements in each group, assume �2 D 49 known, the test
is not finished at this state, see Fig. 21.4:

> heights.male <- c(179, 180, 188, 174, 185, 183, 179)
> heights.female <- c(165, 168, 168, 173, 167, 169, 162)
> tt <- triangular.test.norm(x=heights.female[1:3],

y=heights.male[1:3], mu1=170,mu2=176,mu0=164,
alpha=0.05, beta=0.2,sigma=7)

Triangular Test for normal distribution
Sigma known: 7

H0: mu1=mu2= 170 versus H1: mu1= 170 and mu2>= 176 or
mu2<= 164 alpha: 0.05 beta: 0.2

Test not finished, continue by adding single data via update()
current sample size for x: 3
current sample size for y: 3
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Fig. 21.4 Triangular test, two-sided, not finished

H1

H1

H0
ll
llllll

ll

0 2 4 6 8 10 12 14

−
5

0
5

Triangular Test

v_n

z_
n

Fig. 21.5 Triangular test, two-sided, finished, Ho is rejected

Then continue with more data, the best practice would be to add samples one by
one into each group. To save some lines of output produced by intermediate steps
let’s just add the next 4 samples (elements 4–7) into both groups:

> tt <- update(tt,x=heights.female[4:7], y=heights.male[4:7])
Triangular Test for normal distribution
Sigma known: 7

H0: mu1=mu2= 170 versus H1: mu1= 170 and mu2>= 176 or
mu2<= 164 alpha: 0.05 beta: 0.2

Test finished: accept H1
Sample size for x: 6
Sample size for y: 5

It turns out that 3 more samples for group 1 and 2 more samples in group 2 would
have been sufficient, the resulting sizes are nx D 6 and ny D 5 (Fig. 21.5)
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21.4 Summary

The previous sections give a short overview of some functions of the R library
OPDOE which is the companion package to the book [3]. It is built as a collection of
recipes for several tasks of design of experiments. It implements its own functions
and reuses existing design of experiments functions and packages and tries to
introduce a common naming scheme for these functions.

21.4.1 OPDOE Installation

Early releases of OPDOE had to be downloaded separately3 and installed manually.
Recent versions are part of the package collection at CRAN and can be installed the
standard way using the install.packages() function. This also involves the
automatic installation of some other needed libraries:

• conf.design for symmetric confounded factorial designs.
• orthopolynom for Legendre polynomials used in design of experiments for

polynomial regression.
• crossdes, gmp for BIBD (not yet finished).
• mvtnorm, nlme for implementing Bechhofers selection rules.

21.4.2 OPDOE Contents

The package covers functions for completely randomized designs, ANOVA, sequen-
tial testing, regression analysis and more. It also contains some helper functions
needed, e.g., for balanced block designs like a Hadamard matrix generator.

Acknowledgements Thanks go to the co-authors of [3], Minghui Whang, who wrote most of the
ANOVA functions, and Petr Simeček who wrote the initial version of the library.
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Chapter 22
The Influence of the Dependency Structure
in Combination-Based Multivariate Permutation
Tests in Case of Ordered Categorical Responses

Rosa Arboretti Giancristofaro, Eleonora Carrozzo, Iulia Cichi,
Vasco Boatto, and Luigino Barisan

22.1 Introduction

The comparison of two multivariate populations via hypothesis testing is a con-
siderable task in many applied research fields. For example, in some biostatistical
problem such as shape analysis the goal is at comparing two populations considering
a possible large set of two- or three-dimensional coordinates called landmarks [2];
in a similar way, quite often in genomics we want to compare two populations
using a large set of microarray data. Finally, the multivariate two-sample location
problem is the main methodological background of the multivariate control charts,
which represents one of the most important tools of Statistical Process Control
techniques [1]. In such multidimensional applications a quite important problem
occurs when the analyzed variables are correlated and their associated regression
forms are different (linear, quadratic, exponential, general monotonic, etc.).

The NonParametric Combination of a finite number of dependent permutation
tests (NPC; [5]) is a suitable approach to cover almost all real situations of practical
interest since the dependence relations among partial tests are implicitly captured
by the combining procedure itself.

One open problem related to NPC-based tests is the possibility for the exper-
imenter to manage with the impact of the dependency structure on the possible
significance of combined tests.
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The aim of this work is to investigate the influence of the dependency structure
in combination-based permutation tests for the multivariate two-sample location
problem.

The present paper is organized as follows: Sect. 22.2 provides a short overview
on multivariate permutation tests and the NPC methodology. In Sect. 22.3, the
main results of a simulation study are shown and discussed, and finally section
“Conclusions” deals with conclusions, final remarks, and future perspectives.

22.2 Multivariate Permutation Tests and Nonparametric
Combination Methodology

For any general testing problem, in the null hypothesis (H0), which usually assumes
that data come from only one (with respect to groups) unknown population distribu-
tion P , the whole set of observed data Y is considered to be a set of exchangeable
observations, taking values on sample space Y n, where Y is one observation
of the n-dimensional sampling variable and where this random sample does not
necessarily have independent and identically distributed (i.i.d.) components. We
note that the observed data set Y is always a set of sufficient statistics under H0

for any underlying distribution [5]. Since, in the null hypothesis and assuming
exchangeability, the conditional probability distribution of a generic point Y0 2 Y n,
for any underlying population distribution P 2 P , is distribution-independent,
permutation inferences are invariant with respect to the underlying distribution
in H0. Some authors, emphasizing this invariance property, prefer to give them
the name of invariant tests. However, due to this invariance property, permutation
tests are distribution-free and nonparametric. Permutation tests have general good
properties such as exactness, unbiasedness, and consistency (see [4, 5]).

In order to provide details on the construction of multivariate permutation tests
by the NPC approach, let us consider two multivariate populations and the related
two-sample multivariate hypothesis testing problem where p (possibly dependent)
variables are considered. We focus on ordered categorical variables, but any of the
presented procedures could be applied to continuous or binary data or multivariate
data that consists of some continuous/binary and some other ordered categorical
responses.

The main difficulties when developing a multivariate hypothesis testing proce-
dure arise because of the underlying dependence structure among variables, which
is generally unknown. Moreover, a global answer involving several dependent vari-
ables is often required, hence the main question is how to combine the information
related to the p variables into one global test. In order to better explain the proposed
approach let us denote the n � p, n D n1 C n2, data set with Y D ŒY1;Y2�, where
Y1 and Y2 are the n1 � p and the n2 � p samples drawn from the first and second
population, respectively. In the framework of the NPC of Dependent Permutation

Tests we suppose that, if the global null hypothesis H0 W Y1 dD Y2 of equality
in distribution of the two populations is true, the hypothesis of exchangeability of
random errors holds. Hence, the following set of mild conditions should be jointly
satisfied:
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(a) we suppose that for Y D ŒY1;Y2� an appropriate p-dimensional distribution
exists, Pj 2 P , j D 1; 2, belonging to a (possibly non-specified) family P of
non-degenerate probability distributions;

(b) the null hypothesisH0 states the equality of the mean vectors of the p variables
in the two groups:

H0 W Y1 dD Y2

The null hypothesis H0 implies the exchangeability of the individual data
vector with respect to the two groups. Moreover H0 is supposed to be properly
decomposed into p sub-hypotheses H0k , k D 1; : : : ; p, each appropriate for
partial (univariate) tests, thusH0 (multivariate) is true if all theH0k (univariate)
are jointly true:

H0 W
"

p\

kD1
Y1k

dD Y2k

#
D
"

p\

kD1
H0k

#
:

H0 is called the global or overall null hypothesis, and H0k , k D 1; : : : ; p,
are called the partial null hypotheses. It is worth noting that the decomposition
of the global null hypothesis into a set of partial null hypotheses does not
mean that the equality of all marginal means implies the equality of the mean
vectors, but it should be interpreted as a way to express an overall hypothesis
in an equivalent form [5]. Substantially, this approach corresponds to a method
of analysis carried out in two phases: the first focusing on p partial location
aspects, and the second on their combination that should be referred to the
global location aspect;

(c) the alternative hypothesis H1 can be represented by the union of partial H1k

sub-alternatives:

H1 W
"

p[

kD1
H1k

#
:

hence,H1 is true if at least one of sub-alternatives is true. In this context,H1

is called the global or overall alternative, andH1k , k D 1; : : : ; p, are called the
partial alternatives. Note that each univariate sub-alternatives can be expressed

in the form H1k W Y1k
d

¤ Y2k or H1k W Y1k d
> Y2k H1k W Y1k d

< Y2k ;
(d) let T D T .Y/ represent a p-dimensional vector of test statistics, p > 1,

whose components Tk , k D 1; : : : ; p, represent the partial univariate and
non-degenerate partial tests appropriate for testing the sub-hypothesis H0k
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against H1k . In case of ordered categorical responses (with S ordered
categories) and one-sided alternatives, a suitable test statistic is the Anderson–
Darling, i.e.:

Tk D
S�1X

sD1
N1sk ŒN�sk.n1 C n2 �N�sk/�� 12 ;

where N�sk D N1sk C N2sk are the cumulative frequencies. Without loss of
generality, all partial tests are assumed to be marginally unbiased, consistent,
and significant for large values [5].

At this stage, in order to test the global null hypothesis H0 and the p univariate
hypotheses H0k , the key idea comes from the partial (univariate) tests which
are focused on the kth component variable, and then combining them through
an appropriate combining function, to test the global (multivariate) test which is
referred to as the global null hypothesis H0.

However, we should observe that in most real problems when the sample sizes
are large enough, there is a clash over the problem of computational difficulties in
calculating the conditional permutation space. Hence, it is not possible to calculate
the exact p-value �k of observed statistic Tk0. This is usually overcome by using
the CMCP (Conditional Monte Carlo Procedure). The CMCP on the pooled data
set Y is a random sampling from the set of all possible permutations of the
same data under H0. Hence, in order to obtain an estimate of the permutation
distribution under H0 of all test statistics, a CMCP can be used. Every resampling
without replacement Y� from the data set Y actually consists of a random
attribution of the individual block data vectors to the two treatments. In every Y�b
resampling, b D 1; : : : ; B , the k partial tests are calculated to obtain the set of val-
ues

�
T�b D T.Y�bk/; k D 1; : : : ; pI b D 1; : : : ; B

�
, from the B independent random

re-samplings. It should be emphasized that CMCP only considers permutations
of individual data vectors, so that all underlying dependence relations which are
present in the component variables are preserved.

Without loss of generality, let us suppose that partial tests are significant for large
values. More formally, the steps of the CMC procedure are described as follows:

1. calculate the p-dimensional vectors of statistics, each one related to the corre-
sponding partial tests from the observed data:

Tobs
p�1 D T.Y/ D �

T obs
k D Tk.Y/; k D 1; : : : ; p

�
;

2. calculate the same vectors of statistics for the permuted data:

T�b D T.Y�b / D �
T�bk D Tk.Y�b /; k D 1; : : : ; p

�
;

3. repeat the previous step B times independently. We denote with fT�b ; b D
1; : : : ; Bg the resulting sets from the B conditional resamplings. Each element
represents a random sample from the p-variate permutation c.d.f. FT .zjY/ of the
test vector T.Y/.
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The resulting estimates are:

O�k D
"
1

2
C

BX

bD1
I
�
T�bk > T obs

k

	
#.

.B C 1/; k D 1; : : : ; p;

where I.�/ is the indicating function and where with respect to the traditional
EDF estimators, 1/2 and 1 have been added, respectively, to the numerators and
denominators in order to obtain estimated values in the open interval (0,1), so that
transformations by inverse CDF of continuous distributions are continuous, i.e. are
always well defined.

Hence, if the null hypothesis corresponding to the kth variable (H0k) is rejected
at significance level equal to ˛.

Moreover, choice of partial tests has to provide that:

1. all partial tests Tk are marginally unbiased, formally:

P fTk > zjY;H0kg 6 P fTk > zjY;H1kg;8z 2 R1

2. all partial tests are consistent, i.e.

P fTk > Tk˛jH1kg ! 1;8˛ > 0 as n ! 1
where Tk˛ is a finite ˛-level for Tk .

Let us now consider a suitable continuous non-decreasing real function, ' W
.0; 1/p ! P 1, that applied to the p-values of partial tests Tk defines the second
order global (multivariate) test T 00,

T 00 D '.�1; : : : ; �p/

provided that the following conditions hold:

• ' is non-increasing in each argument: '.: : : ; �k; : : :/ > '.: : : ; �0k; : : :/, if
�k 6 �0k , k D 1; : : : ; p;

• ' attains its supremum value N', possibly not finite, even when only one argument
attains zero:

'.: : : ; �k; : : :/ ! N' if �k ! 0; k D 1; : : : ; pI

• ' attains its infimum value ', possibly not finite, even when only one argument
attains one:

'.: : : ; �k; : : :/ ! ' if �k ! 1; k D 1; : : : ; pI

• 8˛ > 0, the acceptance region is bounded: ' < T 00˛=2 < T 00 < T 001�˛=2 < N'.

Frequently used combining function are:

• Fisher combination: 'F D �2Pk log.�k/;
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• Tippet combination: 'T D max
16k6p

.1 � �k/;
• Liptak combination: 'L D P

k ˚
�1.1 � �k/;

where k D 1; : : : ; p and ˚ is the standard normal c.d.f. It can be seen that under
the global null hypothesis the CMC procedure allows for a consistent estimation
of the permutation distributions, marginal, multivariate and combined, of the k
partial tests. Usually, Fisher’s combination function is considered mainly for its
finite and asymptotic good properties. Of course, it would be also possible to
take into consideration any other combining function (Lancaster, Mahalanobis, etc.;
see [3, 5]). The combined test is also unbiased and consistent.

It is worth noting that NPC Tests overcome some limitations of traditional mul-
tivariate hypothesis testing procedures, such as the ability to include a large number
of variables, and offer several advantages: (1) it is always an exact inferential
procedure, for whatever finite sample size; (2) it is a robust solution with respect
to the true underlying random error distribution; (3) it implicitly takes into account
the underlying dependence structure of response variables and (4) it is not affected
by the problem of the loss of the degrees of freedom when keeping fixed the number
of observations, and the number of informative variables or aspects increases.

22.3 A Simulation Study

In order to investigate the influence of the dependency structure in combination-
based permutation tests for the multivariate two-sample location problem, we
performed a Monte Carlo simulation study. The rationale of the simulation study
was focused on investigating how power of the NPC tests is affected by the different
strength of dependence for random errors in case of balanced design with small
sample sizes commonly used in real applications. More specifically, the simulation
study considered 4,000 independent data generation of samples and was designed
to take into account for different settings.

Let us consider two multivariate populations and the related two-sample multi-
variate hypothesis testing problem where three variables with different dependence
structure are considered. The number of ordered categories for each variable equals
to 6. In order to generate ordered categorical variables we rounded continuous values
to the nearest integer [6, 8].

We referred as test statistic to the Anderson–Darling permutation test and the
Fisher’s combining function with the hypotheses:

H0 W fXA
dD XBg; H1 W fXA

d
> XBg;

The null permutation distribution was estimated by B D 4;000 CMC iterations.
Tables 22.1, 22.2, and 22.3 display the simulation results in terms of rejections

rates under the alternatives. Bold values are referred to results involving correlated
variables. Rejection rates have been calculated setting ˛ D 0:05.
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Table 22.2 Simulation results: heteroscedastic non linear dependence

Setting 1 Setting 2 Setting 3

b = 0.85, �12 = 0.75 b = 0.45, �12 = 0.50 b = 0.18, �12 = 0.25
Partial tests Partial tests Partial tests

˛ T1 T2 T3 T1 T2 T3 T1 T2 T3

0:01 0:009 0:081 0:013 0:010 0:135 0:013 0:010 0:160 0:010

0:05 0:048 0:242 0:053 0:049 0:341 0:058 0:051 0:369 0:050

0:10 0:103 0:368 0:099 0:099 0:481 0:107 0:098 0:515 0:090

Combined tests Combined tests Combined tests
(pairs) (pairs) (pairs)

˛ T12 T13 T23 T12 T13 T23 T12 T13 T23

0:01 0:041 0:010 0:060 0:059 0:012 0:089 0:090 0:010 0:109

0:05 0:139 0:056 0:180 0:208 0:056 0:253 0:253 0:052 0:279

0:10 0:234 0:103 0:290 0:332 0:107 0:387 0:378 0:098 0:402

Global Global Global
Combined test Combined test Combined test

˛ T123 T123 T123

0:01 0:036 0:058 0:080
0:05 0:135 0:188 0:216
0:10 0:224 0:297 0:334

�12 D 0:69 �12 D 0:48 �12 D 0:22

Table 22.3 Simulation results: quadratic dependence

Setting 1 Setting 2 Setting 3

c = 0.82, �12 = 0.75 c = 0.42, �12 = 0.50 c = 0.15, �12 = 0.20
Partial tests Partial tests Partial tests

˛ T1 T2 T3 T1 T2 T3 T1 T2 T3

0:01 0:009 0:049 0:009 0:011 0:075 0:009 0:01 0:094 0:01

0:05 0:047 0:177 0:042 0:049 0:228 0:047 0:044 0:264 0:044

0:10 0:098 0:282 0:098 0:097 0:352 0:098 0:093 0:396 0:1

Combined tests Combined tests Combined tests
(pairs) (pairs) (pairs)

˛ T12 T13 T23 T12 T13 T23 T12 T13 T23

0:01 0:034 0:009 0:036 0:053 0:01 0:05 0:061 0:01 0:062

0:05 0:135 0:044 0:129 0:168 0:05 0:172 0:191 0:047 0:193

0:10 0:232 0:089 0:221 0:270 0:098 0:276 0:307 0:092 0:309

Global Global Global
Combined test Combined test Combined test

˛ T123 T123 T123

0:01 0:030 0:041 0:048
0:05 0:110 0:146 0:158
0:10 0:196 0:245 0:264

�12 D 0:69 �12 D 0:48 �12 D 0:22
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The first four settings concerned to an homoscedastic linear dependence among
two of the three variables, with nA D nB D 20 and YA � N3.�A;˙/, �A D
.0; 0:35; 0/, YB � N3.�B;˙/, �B D .0; 0; 0/. The correlation index �12 increased
from 0.25 to 0.75 (Table 22.1). In this situation we have one variable under the
alternative and the other two variables under the null hypothesis.

The results show how there is a decreasing power when dependence increases.
If we consider at first the combination among pairs of tests, we can see that T12 has a
lower power with respect to T23 for example, where T23 is a combined test between
two independent variables, while T12 is a combined test between two dependent
variables with different degrees of dependence showed in the table. The global
combined test which combines all the variables is less affected by the dependence
with respect to the combination in pairs. When the correlation between two of the
three variables is high then the power decreases, but when the correlation is not
so high, for example when the estimated correlation is 0.22, the power is more
or less comparable with the case of three independent partial tests. So there is an
influence of the correlation if both variables are correlated, but combining more
than two variables adding uncorrelated variables helps in decreasing the intensity of
the problem of the correlation. For the global combined test T123, the power is less
affected with respect to the power of T12.

The second set of simulation considered an homoscedastic non-linear depen-
dence among two of the three variables, with nA D nB D 20 and the following
configurations:

Y1A; Y1B;Z2A;Z2B � N .0; 1/, i.i.d.;
Y3A; Y3B � N .0; 0:52/, i.i.d., �A D .0; 0; 0/, �B D .0; 0:35; 0/;
Y2A D �2A C bY1A C f .Y1A/Z2A, f .Y1A/ D exp.�ˇjY1Aj/; ˇ D 1=2;
Y2B D �2B C bY1B C f .Y1B/Z2B , f .Y1B/ D exp.�ˇjY1B j/; ˇ D 1=2;

The correlation index �12 increased from 0.25 to 0.75 and the parameter b varied
assuming the values: 0.18, 0.45 and 0.85 (Table 22.2).

When we consider one variable under the alternative hypothesis and the other
variables under the null hypothesis and there is a correlation between two variables,
the combined test of this two variables T12 presents a decreasing power. The global
combined test T123 also shows a decreasing power, more strong when the correlation
is high, less strong when the correlation is low. The correlation influences a little bit
more the global combined test with respect the previous case showed in Table 22.1.

The next settings are related to a quadratic dependence between two of the three
variables, with nA D nB D 20 and the following configurations:

Y1A; Y1B; Y3A; Y3B;Z2A;Z2B � N .0; 1/, i.i.d.;
Y2A D �2A C c.Y1A/

2 CZ2A, Y2B D �2B C c.Y1B/
2 CZ2B ;

�A D .0; 0; 0/, �B D .0; 0:35; 0/;

The correlation index �12 increased from 0.20 to 0.75 and the parameter c varied
assuming the values: 0.15, 0.42, and 0.82 (Table 22.3).

The results of the simulations show that the combined test T12 loses power when
the correlation is intermediate or moderate. The problem in this situation is mostly
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related to the global combined test which is affected by the dependence even if the
correlation is low. With quadratic dependence the problem of correlation affects not
only the combined test of the two correlated variables but also the global combined
test.

Focusing our attention on the role played by the correlation between variables,
the results of the simulations show how as correlation among variables increases, the
performance of NPC tests is negatively affected and this is explained by the fact that
in the observed dataset we expect to have a relatively less amount of information
useful to detect the difference between the location parameters.

Conclusion
The goal of this paper was to verify the influence of the dependency structure
among variables on the power of multivariate combination-based permutation
tests in multidimensional applications.

On the basis of the results of the simulation study, correlation seems to
affect combination-based permutation tests by reducing power of multivariate
tests.

Future prospects concern some specific procedures aimed at possibly
improving power of multivariate combination-based permutation tests. The
application of special forms of combination function known as truncated
product method [7] is under investigation to verify if it is possible to
mitigate the negative effect on the power of combination-based multivariate
permutation tests produced by an increasing level of correlation/association
among responses.
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Chapter 23
Potential Advantages and Disadvantages
of Stratification in Methods of Randomization

Aenne Glass and Guenther Kundt

23.1 Motivation

Clinical trials are an established method to evaluate the effectiveness and safety of a
new medication to diagnose or treat a disease. To reduce the risk of randomization-
associated imbalance between treatment groups for known factors which might
influence therapy response, patients are randomized in strata. Besides, stratification
may help to prevent type I and type II errors via reduction of variance in several trial
constellations, e.g. protection against trial site drop out.

On the other hand, stratification requires administrative effort, and an increasing
number of strata decreases the sample size in each stratum.

Against this background the following cost-benefit-questions rise: How useful
is stratified randomization really, compared to the unstratified case? According to
which criteria should one decide whether to stratify randomization or not? Are these
criteria the prevalence of a prognostic factor, the trial size, or others? How is each
criterion to be weighted?

23.2 Methods

To investigate a shortlist of potential advantages and disadvantages of stratification
in methods of randomization, firstly, CR was considered to quantify the basical
risk of imbalance due to chance [1]. Secondly, restricting this chance by using
PBR(B), the risk of imbalance of success rates � under H0: �1 D �2 was
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Table 23.1 Simulated probability P of exceeding a clinically relevant prognostic imbalance
I D 10 pps of two treatment groups after CR, depending on trial size N and prevalence of a
prognostic factor (P 6 0:05 marked bold, underlined values are referred to in the text)

Probability of reaching I > 10% Prevalence of a prognostic factor

Trial size N 10 % 15 % 25 % 30 % 40 % 50 %

N = 30 patients 0.347 0.436 0.531 0.550 0.589 0.587

N = 50 patients 0.235 0.320 0.419 0.445 0.476 0.487

N = 100 patients 0.094 0.160 0.243 0.276 0.307 0.320

N = 200 patients 0.019 0.048 0.101 0.121 0.152 0.156

N = 500 patients <0.001 0.002 0.010 0.014 0.023 0.025
N = 1,000 patients <0.001 <0.001 <0.001 <0.001 0.0014 0.0018

simulated [2], and compared for the stratified vs. the unstratified case. Thus,
the effects of stratification could be discussed from different angles. Differently
designed hypothetical trials were computer simulated (at least 1;000 times) for two
therapy groups and two strata. We used two different simulation approaches and
calculated the probability of observing

1. a clinically relevant imbalance of a prognostic factor of more than 10 pps
between two treatment groups, caused by complete (unstratified) randomization,
cf. Table 23.1,

as well as

2. clinically relevant, cf. Tables 23.2 and 23.3, or statistically significant, cf.
Table 23.4, differences between the endpoint success rates of two treatments after
unstratified/stratified PBR(B), when both treatments were equally effective.

Now we can quantify the impact of stratification on the risk of imbalance for
particular trial situations. Thus the investigator is supported in his decision whether
stratification could be a valuable feature for the current clinical trial.

23.3 Results

1. The risk of randomization-associated imbalance that two therapy groups will
differ for the prognostic factor by more than 10 pps after CR is topping out at
almost 59% (587 of 1;000 trials), depending on trial size N and prevalence of
a prognostic factor. Table 23.1 shows the risk of prognostic imbalance between
therapy groups for a broad range of trial constellations, including small (N D 30

and 50), middle-sized (N D 100 and 200) and large (N D 500 and 1;000) trials
and different factor prevalences (10%, 15%, 25%, 30%, 40%, 50%).

The risk of imbalance is minimum for large trials (N D 1;000 patients) and/or
small factor prevalence (10%), but multiplies according to a more prevalent
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prognostic factor (up to 50%), and/or for smaller trials with down to N D 30

patients. It is at least 23:5% in small trials (N 6 50), independently of factor
prevalence, and up to 2:5% in large trials (N > 500).

In particular, for N D 30 patients the risk almost doubles (35–59 %) for
increasing factor prevalence from 10–50 %, and in larger trials with N D 100

or 200 patients it ranges between 1.9–32 %. In case of low prevalence 6 15%
and N > 200 patients the risk is acceptably small (6 5%), similarly to large
trials with N > 500 patients for any factor prevalence.

Since the risk of imbalance is highest for a high factor prevalence of 50%, for
greater insight we give some probabilities for only this prevalence for trials of
N D 400 patients (P D 4:6%) and N D 300 (P D 8:3%). Obviously, the risk
is acceptable small for 400 patients, and accepting a risk of 10%, a trial of even
N D 300 patients (150 per trial arm) is not necessarily to be stratified.

2. Since the prevalence of a prognostic factor in clinical trials is given, we
focus on other potential influencing values that could be modified to reduce
the risk of imbalance, when planning a trial. As known and depictable from
Table 23.1 this could obviously be the trial size. However more interesting with
respect to economic aspects may be the reduction of risk by pre-stratification of
randomization, processing randomization separately for each stratum.

We show in Tables 23.2, 23.3, and 23.4 the frequencies per 1;000 trials
that observed differences between treatment groups exceeded clinically relevant
and statistically significant differences, respectively, even though in populations
no difference exists .�1=�2/. Results are given for several success rates and
differences between strata. We compare the stratified vs. the unstratified case for
PBR(B) with a block size B D 10, and thus, illustrate the impact of stratification
to reduce the error risk for specific trial constellations. Unstratified permuted-
block randomization can lead to a clinically relevant imbalance (I > 10%)
in up to 296 of 1;000 hypothetical trials (P D 30%), if both the trial size
is small (N D 100 patients), and population success rate is large (50%), and
success rates in strata do not differ, cf. Table 23.2. The number of hypothetical
trials exceeding a clinically relevant difference was diminished by stratification
between minimum 0:3 pps (stratified: 199 vs. unstratified: 202 per 1;000), and
up to 16:3 pps (101 vs. 264). The reduction is proportional to differences of
success rates between strata, and occurs for differences between (30–80 pps)
for trials of N D 100. We demonstrated and specify the conclusions by [1,2]
that stratification reduces type I error rates for clinical differences, if differences
between stratum success rates are large (at least 30 pps), in small (101 vs. 264)
and middle-sized (1 vs. 32) trials as well, even if the reduction seems to be
of relevance rather in small trials. Since the error rate increases for smaller
differences, we recommend to not stratify in that case in small and middle-sized
trials.

We present the frequencies for error I again to gain a more detailed insight
into the impact of stratification. This time, we change the order of the rows
of Table 23.2 and show the frequencies based on the average success rates



23 Potential Advantages and Disadvantages of Stratification in Methods. . . 245

in Table 23.3, instead of differences between strata. This way, we grasp the
relationship between potential influences on the impact of stratification. The
effect of stratified randomization depends both on the average success rate and
differences between stratum success rates. It can obviously be maximized to
16.3 pps for a maximum success rate (50%) and a maximum difference between
stratum success rates (80 pps). In fact, high differences in success rates between
strata can only be expected for high average success rates. Thus we conclude
that the impact of stratification in randomization is related to the average success
rates, and hence to the differences of success rates between strata as stated in [2].

The frequencies of type I error for statistically significant differences are about
50 per 1;000, as expected, cf. Table 23.4. The benefit of stratification in terms
of the risk of exceeding a statistically significant difference between treatment
groups was shown by a maximum reduction of type I error for a difference of
80 pps: from 55 per 1;000 (unstratified) to 4 per 1;000 (stratified) in trials of
N D 400 patients, and from 57 to 1 per 1;000 in trials of N D 100. Although
the risk of imbalance under H0 via stratification could be reduced by 5:6 pps (57
per 1;000 to 1), the impact of stratification (very large strata differences of 80 pps
in small trials with N D 100 patients) is rather of minor practical relevance.

Conclusion
The risk of randomization-associated prognostic imbalance> 10 pps between
therapy groups of a clinical trial could be quantified in simulation studies with
maximum 59% for complete randomization, and thus, is highly important,
cf. Table 23.1. In larger trials, and/or with a factor of less prevalence this
risk decreases. Compared to the straightforward range of trial constellations
investigated by [1] we show the risk to exceed I D 10% for even border-lined
trial situations of very large trials and both very small and high prevalence of
a prognostic factor. For large trials > 500 patients, the risk will never exceed
3%, independently of any factor prevalence, and thus, this trial situation can
comfortably be conducted.

Restricted randomization as (unstratified) PBR(B) reveals results com-
parable to CR, concerning the risk of imbalance P D 32% (50% factor
prevalence, cf Table 23.1) vs. P D 29:6% (50% average success rate, cf.
Table 23.2) in small studies (N D 100).

For large superiority trials with N > 400 patients, a relevant risk
for a prognostic imbalance was not observed, independently of any factor
prevalence, and hence, it is not necessary to stratify. Our results confirm
recommendations of [1, 2] to stratify in trials withN < 400 patients. The risk
for an imbalance is <5% in trials of N D 400 patients, and <9% in trials of
N D 300 patients. If trialists accept even a 9% risk of imbalance, less effort
has to made when planning a trial of N D 300, neither by enlarging the trial
to N > 150 patients per arm, nor by pre-stratifying it.

(continued)
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Otherwise, in small trials, stratification of randomization can be helpful to
provide comparable groups with higher probability, for certain trial constel-
lations and for clinically relevant differences. Reduced probabilities of type
I error rates by maximum 16 pps due to stratification were detected for large
differences of success rates between strata (80 pps) in small trials (N D 100),
cf. Table 23.2. A reduction effect of stratification on type I error in small trials
is not detectable unless differences between strata are >30 pps, so that for
smaller differences should not be stratified.

From Table 23.3 we get more insight into the effect of stratification. The
average success rate primarily influences the impact of stratification, rather
than the differences in success rates between strata as presented in [2]. This
is caused by the fact that high differences in success rates between strata are
expected for high average success rates, if at all.

The detected effect of stratification on the frequencies of statistically
significant differences in endpoint success rates is rated less relevant, cf.
Table 23.4.

Taken together, if both trials are small (<150 patients per arm) and success
rates between strata differ by 30 pps or more, stratification is recommended
to reduce the expected risk of error I rate for clinically relevant differences
under the assumption of H0.
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Chapter 24
Additive Level Outliers in Multivariate
GARCH Models

Aurea Grané, Helena Veiga, and Belén Martín-Barragán

24.1 Introduction

The correlation structure of security returns is the keystone of both portfolio
allocation and risk management decisions. In the literature, there are several models
to estimate correlations. They often belong to the class of multivariate GARCH
models. In the univariate setting it is well known that extreme observations caused
by jumps or the presence of outliers affect the estimation of GARCH parameters
[10, 18, 19], the tests of conditional homoscedasticity [4, 13], and the out-of-sample
volatility forecasts [3, 5, 11, 12, 15]. Moreover, when there are extreme returns
standard GARCH models tend to overestimate the volatility the days following the
presence of these extreme observations. Similar biases are expected to occur when
the correlations are estimated using multivariate GARCH-type models.

The first objective of this paper is to study the effect of additive level outliers on
the estimated correlations of three well-known multivariate GARCH models. The
second aim is to propose an outlier detection procedure for multivariate GARCH
models based on wavelets that can be interpreted as a misspecification test for the
model. The procedure is based on the multivariate series of residuals and if outliers
are detected in these series this implies a rejection of the model.
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The organization of this paper is as follows. In Sect. 24.2 we present the volatility
models under study and review the concept of additive level outlier in Sect. 24.3.
The effects of outliers on the estimated correlations are analyzed in Sect. 24.4 via an
intensive simulation study. In Sect. 24.5 we propose an outlier detection algorithm
and evaluate its performance.

24.2 Models Under Study

The models under consideration are the diagonal Baba–Engle–Kraft–Kroner
(D-BEKK) model defined in Engle and Kroner [9], the constant conditional
correlation (CCC) model by Bollerslev [2], and the dynamic conditional correlation
(DCC) model by Engle [8] because they are often applied empirically to many fields
such as portfolio management, asset allocation, volatility spillover transmission,
contagion, etc. (see [1] and [17] for excellent surveys on these models). However,
the methodology developed in this paper is not restricted to these models.

Let fytg be a vector stochastic process with dimensionN �1 such thatE.yt / D 0
and Ft�1 is the information set till time t � 1. We consider that

yt D H1=2
t �t ;

where Ht is the conditional covariance matrix of yt and �t is an iid vector error
process such that E.�t�

0
t / D I, the identity matrix of order N . We assume that

there is no linear dependence in yt . Different approaches in the literature propose
different models for the dependence of Ht on past information Ft�1.

In the D-BEKK, this dependence of Ht on past information is modeled directly.
In contrast, in the CCC and DCC models, which belong to a subclass of the multi-
variate GARCH models called conditional correlation models, first the conditional
variances and correlations are modeled using univariate specifications and then Ht

is obtained by using these conditional standard deviations and correlations.

24.3 Additive Level Outliers

Additive level outliers (ALOs)1 can be caused by institutional changes or market
corrections that do not affect volatility. Then, the conditional mean equation is:

yt D ! � IT .t/C H1=2
t �t ;

1We refer to the concept of ALO that appears in [14].
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where �t is defined as before, ! D .!1; : : : ; !N /
0 is a vector containing the ALOs’

sizes and IT .t/ D 1 for t 2 T and 0 otherwise, representing the presence of ALOs at
a given set of times T . ALOs can occur simultaneously at the same time t or not and
their sizes can coincide or not. The equation of the conditional variance–covariance
remains the same, since ALOs only affect the level of the series. Regarding the
conditional correlation models, the situation is similar. ALOs affect separately each
conditional mean equation, supposing that each series of financial returns is modeled
by a univariate GARCH–type model.

In the simulation study below ALOs are set in the same positions in the N D 2

simulated series to reproduce the scenario of contagion, usual in financial markets.

24.4 Effects of ALOs on the Correlations:
A Simulation Study

In this section we implement an intensive simulation study to assess the impact of
outliers on the estimated correlations. The frequency of the simulations is daily,
outliers are placed randomly across the series and each scenario involves 1,000
replications.2 We consider the following situations: Single or multiple isolated
ALOs of two different sizes (5� y and 10� y) in simulated series from a CCC,
DCC, and a D-BEKK models with errors following, respectively, univariate or
multivariate Normal distributions. For each outlier size, the sample sizes considered
are n D 1;000; 3;000; 5;000.

From Table 24.1 and Fig. 24.1 we observe that the estimated correlations are
affected by the presence of ALOs and the relative errors are higher the higher is
the ALO size, the higher the number of ALOs included in the simulated series and
the smaller the sample sizes of the simulated time series. Moreover, the biases in
the correlations are higher for the DCC model in comparison with the CCC and
D-BEKK models. In particular, this latter model seems to be more robust to the
presence of ALOs since the correlations present small relative errors over the sample
size.

2Parameters used are: fC D .0:053; 0:042; 0:020/;A D .0:161; 0:164/;B D .0:983; 0:981/g
for the D-BEKK; f˛0 D .0:010; 0:013/;˛1 D .0:049; 0:067/;ˇ1 D .0:940; 0:926/;	 D
.1;�0:606/g for the CCC and f˛0 D .0:010; 0:013/;˛1 D .0:049; 0:067/;ˇ1 D
.0:940; 0:926/; ˛ D 0:015; ˇ D 0:981g for the DCC, which were chosen by fitting the models
to real time series of financial returns.
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Fig. 24.1 Average relative biases of the estimated (a) DCC correlations and (b) BEKK corre-
lations, for different sample sizes. (a1) DCC, n D 1;000. (a2) DCC, n D 5;000. (b1) BEKK,
n D 1;000. (b2) BEKK, n D 5;000

24.5 Wavelet-Based Detection Procedure

In Grané and Veiga [12] a general outlier detection method based on wavelets
was introduced. The method was designed for univariate time series and was
proven to be very reliable, since it detects a significantly smaller number of false
outliers compared to other competitive methods. Although in this work we face
to multivariate time series, it is of our interest to develop a procedure with as
good properties as the univariate one, effectiveness and reliability, and also of
feasible implementation in large data sets. A possible way to proceed is to translate
the multivariate problem to a univariate setting. This is achieved by applying the
random projection method. In Cuesta-Albertos et al. [6, 7] some theoretical results
were developed in the context of functional data (also of application whenever
the data can be considered as independent and identically distributed draws of a
stochastic process taking values in a Hilbert space). In practice, the number of
random projections used is low (1 or 2), which is exactly contrary to the Projection
Pursuit paradigm, avoiding implementation problems due to high dimensionality.
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24.5.1 The Procedure

The procedure we propose is based on detail coefficients resulting from the discrete
wavelet transform (DWT) of a univariate series of (standardized) residuals. The
procedure starts with fitting a multivariate GARCH model and obtaining the series
of multivariate residuals. The next step consists in transforming the multivariate
series of residuals into univariate series to which DWT will be applied. Here
we consider two different cases. Conditional correlation models, such as CCC
and DCC, are based on the decomposition of the conditional covariance matrix.
Hence, for these models, the decomposition property suggests that it is enough
to consider only the univariate marginals. However, for models that do not have
this property, as it is the case of the D-BEKK model, in addition to the marginals,
we consider one randomly chosen projection [6]. DWT is applied to each of the
univariate series under consideration and outliers are identified as those observations
in the original series whose detail coefficients are greater (in absolute value) than a
certain threshold.

In the context of financial return time series it is quite common to assume an
underlying model for the data. Then, if the fitted model has captured the structure of
the data, the residuals are supposed to be independent and identically distributed
random variables following a specified (usually standard normal) distribution.
Hence, our aim is to check whether a univariate series of (standardized) residuals
follows a standard normal distribution. Our proposal is to use the following test
statistic: the maximum of the detail wavelet coefficients (in absolute value) resulting
from the DTW of a univariate series of (standardized) residuals. If the univariate
series under consideration is obtained as the marginal of the multivariate one, the
distribution of the test statistic reported in Grané and Veiga [12] for the univariate
case is still valid. For the case in which the univariate series is obtained as a random
projection the distribution is obtained via Monte Carlo, analogously. In all cases,
threshold values are obtained as percentiles of the distribution of the test statistic
computed on 20,000 Monte Carlo samples of size n. In practice, we find that in
order to detect isolated ALOs it suffices to work with the first level detail wavelet
coefficients and from the simulation study (see Sect. 24.5.2) we recommend the 95th
percentile as a reasonable threshold to use in the detection of isolated ALOs.3 Since
in the multivariate case we are considering more than one series, the thresholds
proposed in Grané and Veiga (2010) [12] for the univariate case are not directly
applicable and the union-intersection principle [16] with Bonferroni correction is
applied.

3Other percentiles can be used leading to more conservative results.
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24.5.2 Performance of the Procedure: A Simulation Study

Here we present the results of an intensive simulation study to assess the perfor-
mance of our detection proposal. The measures used in the performance study are
the percentage of times that the localization of the outliers is correctly detected and
the percentage of false outliers.

These results are shown in Table 24.2, where we observe that when the magnitude
of the outlier is 10� y, the procedure detects more than 96% of the outliers, reaching
the 100% in two cases. When the magnitude of the outlier is relatively small, 5� y,
the detection rate goes from 36% to 43% for the BEKK model and from 68%
and 77% for the CCC and DCC models. The method is very reliable, since the
percentage of false outliers is at most 0.006%.

Concluding Remarks: The main conclusions are: First, outliers affect the estimated
correlations and the effects are stronger for the conditional correlation models.
Second, our detection procedure is effective and reliable, since the percentage of
correct detections is high and the number of false outliers is very low.
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Chapter 25
A Comparison of Efficient Permutation Tests
for Unbalanced ANOVA in Two by Two Designs
and Their Behavior Under Heteroscedasticity

Sonja Hahn, Frank Konietschke, and Luigi Salmaso

25.1 Introduction

In many biological, medical, and social trials, data are collected in terms of a
two by two design, e.g. when male and female patients are randomized to two
different treatment groups (placebo and active treatment). The data is often analyzed
by assuming linear treatment effects and ANOVA procedures. These approaches
rely on rather strict model assumptions like normally distributed error terms and
variance homogeneity. However, these model assumptions can rarely be justified.
In particular, heteroscedastic variances occur frequently in a variety of disciplines,
e.g. in genetic data. It is well known that the classical ANOVA F -test tends to
result in liberal or conservative decisions, depending on the underlying distribution,
the amount of variance heterogeneity, and unbalance. Thus, asymptotic (or approxi-
mate) procedures, which allow the data to be heteroscedastic, are a robust alternative
to the classical ANOVA F -test. An asymptotic testing procedure is the Wald-type
statistic (see, e.g., [2, 10]), which is based on the asymptotic distribution of an
appropriate quadratic form. It is even valid without the assumptions of normality and
variance homogeneity. However, very large sample sizes are necessary to achieve
accurate test results (see, e.g., [2] and the references therein). As an approximate
solution, [2] propose the so-called ANOVA-type statistic (ATS), which is based

S. Hahn
Department of Psychology, University of Jena, Jena, Germany
e-mail: hahn.sonja@uni-jena.de

F. Konietschke
Department of Mathematical Sciences, The University of Texas at Dallas, USA
e-mail: frank.konietschke@utdallas.edu

L. Salmaso (�)
Department of Management and Engineering, University of Padova, Padova, Italy
e-mail: luigi.salmaso@unipd.it

© Springer Science+Business Media New York 2014
V.B. Melas et al. (eds.), Topics in Statistical Simulation, Springer Proceedings
in Mathematics & Statistics 114, DOI 10.1007/978-1-4939-2104-1__25

257

mailto:hahn.sonja@uni-jena.de
mailto:frank.konietschke@utdallas.edu 
mailto:luigi.salmaso@unipd.it


258 S. Hahn et al.

on an Box-type approximation approach. The ATS, however, is an approximate
test and its asymptotically exactness is unknown (see, e.g., [10]). On the other
hand, permutation approaches are known to be very robust under non-normality.
In particular, under certain model assumptions, permutation tests are exact level
˛ tests. Usual permutation tests assume that the data is exchangeable, which
particularly implies homogeneous variances. Recently, Pauly et al. [10] propose
asymptotic permutation tests, which are asymptotically exact even under non-
normality and possibly heteroscedastic variances.

Various permutational approaches for factorial designs have been developed
within the last years, but a comparison of the different permutational approaches
for unbalanced factorial designs with variance heterogeneity remains.

The aim of the present paper is to investigate different parametric and permuta-
tion tests for factorial linear models. For simplicity, we focus on two by two designs
within this paper.

The paper is organized as follows: After some notational issues we summarize
different existing approaches that were developed for unbalanced ANOVA designs.
Afterwards we investigate the behavior of these procedures in a simulation study.
Here we focus on small sample sizes, heterogeneity of variances, and different error
term distributions. Finally, we discuss the results of the simulation study and add
further considerations about the procedures.

25.1.1 Notation and Hypotheses

We consider the two way factorial crossed design

XijkD�C˛iCˇjC.˛ˇ/ijC�ijk; iD1; 2I jD1; 2I kD1; : : : ; nij ; (25.1)

where ˛i denotes the effect of level i from factor A, ˇj denotes the effect of level
j from factor B , and .˛ˇ/ij denotes the .ij /th interaction effect from A�B . Here,
�ijk denotes the error term with E.�ijk/ D 0 and Var.�ijk/ D �2ij > 0. Under the
assumption of equal variances, we simply write Var.�ijk/ D �2. It is our purpose to
test the null hypotheses

H
.A/
0 W ˛1 D ˛2

H
.B/
0 W ˇ1 D ˇ2 (25.2)

H
.A�B/
0 W .˛ˇ/11 D : : : D .˛ˇ/22

For simplicity, let �ij D �C ˛i C ˇj C .˛ˇ/ij , then, the hypotheses defined above
can be equivalently written as
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H
.A/
0 W CA� D 0

H
.B/
0 W CB� D 0

H
.A�B/
0 W CA�B� D 0;

where CL;L 2 fA;B;A � Bg, denote suitable contrast matrices and � D
.�11; : : : ; �22/

0. To test the null hypotheses formulated in (25.2), various asymptotic
and approximate test procedures have been proposed. We will explain the current
state of the art in the subsequent sections.

25.1.2 Wald-Type Statistic (WTS)

Let X� D .X11�; : : : ; X22�/0 denote the vector of sample means Xij � D
1
nij

Pnij
kD1 Xijk , and let bSN D diag. O�211; : : : ; O�222/ denote the 4 � 4 diagonal matrix

of sample variances O�2ij D 1
nij�1

Pnij
kD1.Xijk � Xij �/2. Under the null hypothesis

H0 W .L/ W CL� D 0, the Wald-type statistic

WN.L/ D NX
0
�C0L.CLSNC0L/CCLX� ! �2rank.CL/ (25.3)

has, asymptotically, as N ! 1, a �2rank.CL/
distribution. The rate of convergence,

however, is rather slow, particularly for larger numbers of factor levels and smaller
sample sizes. For small and medium sample sizes, the WTS tends to result in rather
liberal results (see [2, 10] for some simulation results). However, the Wald-type
statistic is asymptotically exact even under non-normality.

25.1.3 ANOVA-Type Statistic (ATS)

In order to overcome the strong liberality of the Wald-type statistic in (25.3) with
small sample sizes, [2] propose the so-called ANOVA-type statistic (ATS)

FN .L/ D N X
0
�TLX�

trace.TLSN /
; (25.4)

where TL D C0L.CLC0L/CCL. The null distribution of FN .L/ is approximated by a
F -distribution with

f1 D Œtrace.TLSN /�2

traceŒ.TLSN /2�
and f2 D Œtrace.TLSN /�2

trace.D2
TL

S2N
/
; (25.5)
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where DT is the diagonal matrix of the diagonal elements of TL and 
 D
diagf.nij � 1/�1gi;jD1;2. The ATS relies on the assumption of normally distributed
error terms [10]. Especially for skewed error terms the procedure tends to be very
conservative [10, 16]. When the sample sizes are extremely small (nij  5), it
tends to result in conservative decisions [13]. We note that in two by two designs,
the Wald-type statistics WN.L/ in (25.3) and the ANOVA-type statistic FN .L/ are
identical. Furthermore, the ATS is even asymptotically an approximate test and its
asymptotical exactness is unknown.

25.1.4 Wald-Type Permutation Test (WTPS)

Recently, [10] proposed an asymptotic permutation based Wald-test, which is
even asymptotically exact when the data is not exchangeable. In particular, it
is asymptotically valid under variance heterogeneity. This procedure denotes an
generalization of two-sample studentized permutation tests for the Behrens–Fisher
problem [5, 6, 8, 9]. The procedure is based on (randomly) permuting the data
X� D .X�111; : : : ; X�22n22 /

0 within the whole data set. Let X
�
� D .X

�
11�; : : : ; X

�
22�/0

denote the vector of permuted means X
�
ij � D n�1ij

Pnij
kD1 X�ijk , and let bS�N D

diag. O�2�11 ; : : : ; O�2�22 / denote the 4 � 4 diagonal matrix of permuted sample variances
O�2�ij D 1

nij�1
Pnij

kD1.X�ijk �X�ij �/2. Further let

W �N .L/ D N.X
�
� /0C0L.CLS�NC0L/CCLX

�
� (25.6)

denote the permuted Wald-type statistics WN.L/. Pauly et al. [10] show that, given
the data X, the distribution of W �N .L/ is, asymptotically, the �2rank.CL/

distribution.
The p-value is derived as the proportion of test statistics of the permuted data sets
that are equal or more extreme than the test statistic of the original data set.

If data is exchangeable, this Wald-type permutation tests guarantees an exact
level ˛ test. Otherwise, this procedure is asymptotically exact due to the multivariate
studentization. Simulation results showed that this test adheres better to the nominal
˛-level than its unconditional counterpart for small and medium sample sizes
(see [10] and the supplementary materials therein). Furthermore, the Wald-type
permutation test achieves a higher power than the ATS in general. We note that
the WTPS is not restricted to two by two designs. The procedure is applicable in
higher-way layouts and even in nested and hierarchical designs.

25.1.5 Synchronized Permutation Tests (CSP and USP)

Synchronized permutation tests were designed to test the different hypotheses
in (25.2) of a factorial separately (e.g., testing a main effect when there is an
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interaction effect). There are two important differences to the WTPS approach:
(1) Data is not permuted within the whole data set, but there exists a special
synchronized permutation mechanism. (2) The test statistic is not studentized.
This procedure assumes that the error terms are exchangeable.

Basso et al. [1], Pesarin and Salmaso [11] and Salmaso [14] propose synchro-
nized permutation tests for balanced factorial designs. Synchronization means that
data is permuted within blocks built by one of the factors. In addition, the number
of exchanged observations in each of these blocks is equal for a single permutation.
For example, when testing for the main effect A or the interaction effect, the
observations can be permuted within the blocks built by the levels of factor B.
Different variants of synchronized permutations have been developed (see [3] for
details):

Constrained Synchronized Permutations (CSP). Here only observations on the
same position within each subsample are permuted. When applied to real data
set it is strongly recommended to pre-randomize the observations in the data set
to eliminate possible systematic order effects.

Unconstrained Synchronized Permutations (USP). Here also observations on
different position can be permuted. In this case it has to be ensured that the test
statistic follows a uniform distribution.

The test statistics for the main effect A and the interaction effect are

TA D .T11 C T12 � T21 � T22/2, and

TA�B D .T11 � T12 � T21 C T22/
2

with

Tij D P
k Xijk:

Due to the synchronization and the test statistic, the effects not of interest are
eliminated (e.g, when testing for main effect A, main effect B and the interaction
effect are eliminated, see [1] for more background information). When testing for
main effect B, the data has to be permuted within blocks built by the levels of A and
the test statistics have to be adapted.

For certain unbalanced factorial designs this method can be extended [4]. In the
case of CSP this leads to the situation that some observations will never be
exchanged. In the case of USP the maximum number of exchanged observations
equals the minimum subsample size.

A test statistic that finally eliminates the effects of interest is only available in
special cases [4]. For example, when n11 D n12 and n21 D n22, possible test
statistics are:

TA D .n21T11 C n22T12 � n11T21 � n12T22/2;
TA�B D .n21T11 � n22T12 � n11T21 C n12T22/

2:
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For both, the balanced and the unbalanced case, the p-value is again calculated
as the proportion of test statistics of permuted data sets greater or equal than the test
statistic of the original data set.

These procedures showed a good adherence to the nominal ˛-level as well as
power in simulation studies [1, 4]. However, this procedure is limited in various
ways:

• It is restricted to very specific cases of unbalanced designs due to assumptions
on equal sized subsamples.

• Extension to more complex factorial designs seems quite difficult (see, e.g., [1]
for balanced cases with more levels).

• It assumes exchangeability. This might not be given in cases with heteroscedastic
error variances.

As the behavior of this procedure under variance heterogeneity has not been
investigated yet, we included it in the following simulation study.

25.1.6 Summary

We outlined various procedures that aim to compensate shortcomings of clas-
sical ANOVA. Some procedures are only valid under normality and possibly
heteroscedastic variances (ATS). CSP and USP are valid under non-normally
distributed error terms and homoscedastic variances. Both the WTS and WTPS are
asymptotically valid even under non-normality and heteroscedasticity, respectively.
Most of these procedures are intended to be used for small samples (ATS, WTPS,
CSP, and USP), only the WTS requires a sufficiently large sample size.

In the following simulation we vary additionally the aspect of balanced vs.
unbalanced designs, as heteroscedasticity is especially problematic in the latter one.

25.2 Simulation Study

25.2.1 General Aspects

The present simulation study investigates the behavior of the procedures described
above (see Sect. 25.1) for balanced vs. unbalanced designs and homo- vs. het-
eroscedastic variances. A major assessment criterion for the accuracy of the
procedures is their behavior when increasing sample sizes are combined with
increasing variances (positive pairing) or with decreasing variances (negative
pairing).

We investigate data sets that did not contain any effect, and data sets that
contained an effect. In the first case we were interested if the procedures keep the
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nominal level; in the second case additionally the power behavior was investigated.
Similar to the notation introduced above we used the following approach for data
simulation:

Xijk D �C ˛i C ˇj C .˛ˇ/ij C �ijk: (25.7)

Specifications for the different data settings can be found below. Throughout all
studies we focused on the main effect A and the interaction effect.

All simulations were conducted using the freely available software R (www.r-
project.org), version 2.15.2 [12]. The numbers of simulation and permutation runs
were nsim D 5;000 and nperm D 5;000, respectively. All simulations were conducted
at 5% level of significance.

25.2.2 Data Sets Containing No Effect

25.2.2.1 Description

Table 25.1 outlines the combinations of balanced vs. unbalanced designs and
homo- vs. heteroscedastic variances. Larger sample sizes were obtained by adding a
constant number to each of the sample sizes. Those numbers were 5, 10, 20, and 25.

There was no effect in the data (i.e., for Eq. (25.7) � D ˛i D ˇj D 0). For the
error terms, different symmetric and skewed distributions were used:

• Symmetrical distributions: normal, Laplace, logistic, and a “mixed” distribution,
where each factor level combination has a different symmetric distribution
(normal, Laplace, logistic, and uniform).

• Skewed distributions: log-normal,�23, �
2
10, and a “mixed” distribution, where each

factor level combination has a different skewed distribution (exponential, log-
normal, �23, �

2
10).

To generate variance heterogeneity, random variables were first generated from
the distributions mentioned above and standardized to achieve an expected value
of 0 and a standard deviation of 1. These values were further multiplied by
the standard deviations given in Table 25.1 to achieve different degrees of variance
heteroscedasticity.

Table 25.1 Different subsample sizes and variances considered in the simulation study

Data setting n11 (SD) n12 (SD) n21 (SD) n22 (SD)

1 Balanced and homoscedastic 5 (1.0) 5 (1.0) 5 (1.0) 5 (1.0)

2 Differing sample sizes 5 (1.0) 7 (1.0) 10 (1.0) 15 (1.0)

3 Differing variances 5 (1.0) 5 (1.3) 5 (1.5) 5 (2.0)

4 Positive pairings 5 (1.0) 7 (1.3) 10 (1.5) 15 (2.0)

5 Negative pairings 5 (2.0) 7 (1.5) 10 (1.3) 15 (1.0)

Besides the data settings in the table, bigger samples were achieved by adding 5, 10, 20, or
25 observations to each subsample

www.r-project.org
www.r-project.org
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25.2.2.2 Results

Figure 25.1 shows the behavior of the different procedures in the case of symmetric
and homoscedastic error terms. Most procedures keep close to the nominal ˛-level
of 0.05 that is indicated by the red thin line. WTS tends to be quite liberal, while
ATS tends to be slightly conservative for small sample sizes.

Figure 25.2 shows the behavior for skewed but still homoscedastic error term
distributions. The picture is very similar to the previous one, but the conservative
behavior of the ATS procedure is more pronounced.

Figure 25.3 shows the behavior in the symmetric and heteroscedastic case.
For Setting 3 with equal sample sizes there is not much difference in comparison
with the previous cases. In Setting 4, the positive pairings, WTPS and ATS show a
good adherence to the level and a slightly conservative behavior in the case of the
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Fig. 25.1 Results for the different procedures testing main effect A (left-hand side) or the
interaction effect (right-hand side) for symmetric distributions and homoscedastic variances
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Fig. 25.2 Results for the different procedures testing main effect A (left-hand side) or the
interaction effect (right-hand side) for skewed distributions and homoscedastic variances
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Fig. 25.3 Results for the different procedures testing main effect A (left-hand side) or the
interaction effect (right-hand side) for symmetric distributions and heteroscedastic variances
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Fig. 25.4 Results for the different procedures testing main effect A (left-hand side) or the
interaction effect (right-hand side) for skewed distributions and heteroscedastic variances

Laplace-distribution. WTS tends to over-reject the null in small sample size settings.
Both the CSP and USP tests tend to result in conservative decisions. This is more
pronounced for small sample sizes and for the USP-procedure. In Setting 5, that
indicates negative pairings, all procedures unless ATS tends to result in a liberal
behavior—especially for small sample sizes. USP has the strongest tendency with
Type-I-error rates up to 0.08.

Figure 25.4 shows the behavior in the skewed and heteroscedastic case. In gen-
eral, the same conclusions can be drawn. For the log-normal distribution there is a
general tendency to get a more liberal decision than in the other cases. This means
that in Setting 4 with positive pairings the procedures keep the level almost well,
but in the other cases the Type-I-error rate is up to 0.10.
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25.2.3 Data Sets Containing an Effect

25.2.3.1 Description

Table 25.2 shows the different combinations of subsample sizes and standard
deviations for data sets that contained an effect. Two aspects were considered:
The power behavior as well as the level of the procedures when testing an inactive
effect. To ensure a valid comparison of the power behavior, the sample sizes and
variance heterogeneity was chosen less extreme than in the previous simulation
study (see Sect. 25.2.2).

Again different error term distributions were used:

• normal and Laplace distribution as symmetric distributions, and
• log-normal distribution and exponential distribution as skewed distributions.

Different error term variances were obtained in the same manner as described
above in Sect. 25.2.2 using the standard deviations from Table 25.2. Additionally,
there were active effects as described in Table 25.3 in the data with � D 0 and
ı 2 f0; 0:2; : : : ; 1g. The tested effects were again main effect A and the interaction
effect. In some cases where only main effect B was active the aim was to test if the
procedures kept the level in these cases.

25.2.3.2 Results

Figures 25.5, 25.6, 25.7, 25.8, and 25.9 show the behavior of the different
procedures for data sets containing an effect. The procedures show a very similar
power behavior.

Table 25.2 Different subsample sizes and standard deviations considered in the simulation
study containing effects

Data setting n11 (SD) n12 (SD) n21 (SD) n22 (SD)

1 Balanced and homoscedastic 10 (1) 10 (1) 10 (1) 10 (1)

2 Differing sample sizes 9 (1) 9 (1) 15 (1) 15 (1)

3 Differing variances 10 (1) 10 (1) 10 ( 4
p
2) 10 ( 4

p
2)

4 Positive pairings 9 (1) 9 (1) 15 ( 4
p
2) 15 ( 4

p
2)

5 Negative pairings 9 ( 4
p
2) 9 ( 4

p
2) 15 (1) 15 (1)

Table 25.3 Different effect in simulated data sets with � D 0 and ı 2 f0; 0:2; : : : ; 1g in
the simulation study containing effects

Condition ˛1 ˛2 ˇ1 ˇ2 ˛ˇ11 ˛ˇ12 ˛ˇ21 ˛ˇ22 Active effects

1 Cı �ı 0 0 0 0 0 0 Main effect A

2 0 0 Cı �ı 0 0 0 0 Main effect B

3 C ı
2
� ı
2

0 0 C ı
2
� ı
2
� ı
2
C ı

2
Main effect A

and interaction effect
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Fig. 25.5 Results for data sets containing effects (equal subsample sizes and homoscedastic
variances)
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Fig. 25.6 Results for data sets containing effects (equal subsample sizes and heteroscedastic
variances)
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Fig. 25.7 Results for data sets containing effects (unequal subsample sizes and homoscedastic
variances)

Conclusion
As the simulation study showed, the different procedures may be useful
depending on the data setting and further aspects.

The ATS procedure was the only one that never exceeded the nominal
level. On the other hand it may show a conservative behavior, but in the
simulations containing effects this was only slightly observable. Similar to the
results of previous simulation studies, the conservative behavior was higher

(continued)
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Fig. 25.8 Results for data sets containing effects (positive pairings)
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Fig. 25.9 Results for data sets containing effects (negative pairings)

for skewed distributions, especially with homoscedastic error term variances.
An advantage of this procedure is that it can be adapted for very different
designs and hypotheses (see [16] for more background information).

The WTS procedure showed in almost every data setting a liberal behavior
for small samples. It should be only applied when sample sizes are large.

The WTPS procedure overcomes this problem. In all considered simu-
lation settings this procedure controls the type-I error rate quite accurately.
In case of positive or negative pairings, this permutation test shows better
results than its competitors. Both the WTS and WTPS can be adapted to
higher-way layouts and hierarchical designs.

The CSP and the USP procedures work well for all cases with equal
subsample sizes or homogeneous variances. This implies cases where
exchangeability of the observations might not be given due to different error
term distributions (mixed distributions) or heterogeneous variances. In case of
positive and negative pairings, the behavior is similar to parametric ANOVA
with a conservative behavior for positive pairings and a liberal behavior for
negative pairings. This is more pronounced for the USP-procedure. The power
behavior of both procedures was very comparable to the other procedures.
CSP showed in some cases a slightly lower power than the other procedures.
The CSP and the USP procedures are restricted to certain hypothesis due to

(continued)
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their construction: They assumed that all cells should get the same weight in
the analysis. This corresponds to Type III sums of squares [15]. Extension
of these procedures to other kind of hypotheses, unbalancedness, or more
complex designs might be challenging.
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Chapter 26
Likelihood-Free Simulation-Based Optimal
Design: An Introduction

Markus Hainy, Werner G. Müller, and Helga Wagner

26.1 Introduction

In the past decades simulation techniques, particularly the use of Markov chain
Monte Carlo (MCMC) methods, have revolutionized statistical inference (cf. [9]).
There has, however, been little impact of this revolution on the experimental design
literature other than the pioneering work initiated by Peter Müller (cf. [7] and [8])
and his followers.

In this contribution, we consider an adaptive design situation, where some
observations have already been collected. The information obtained through these
observations can be used to update the prior information on the unknown parame-
ters. In this case, it is usually necessary to evaluate the likelihood function. If the
likelihood function is intractable, we cannot perform the standard simulation-based
MCMC scheme.

With the advent of the so-called likelihood-free (or approximate Bayesian
computation—ABC) methods, the latter issue can be overcome, and we therefore
propose to employ these techniques also for finding optimal experimental designs.
There are essentially two ways of accomplishing this: the first one is to marry
ABC with Müller’s essentially MCMC-based methods, which is also the method we
pursue in this contribution; the second one is a more basic approach that does not
make use of the MCMC methodology but allows to deal with more general design
criteria. A thorough review of the former is given in [4], on parts of which this
article is based, while the latter has been put forward in [5]. Similar ideas have been
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developed in [3] in order to conduct simulation-based design when the likelihood is
intractable. However, they do not regard the adaptive design situation, they rather
use ABC to estimate complex design criteria.

Finally, we illustrate the method outlined in this contribution on an example
which can be easily related to and understood from classic optimal design theory.

26.2 Simulation-Based Optimal Design

We extend the basic simulation-based optimal design setup introduced in [7] by
assuming that some observations have already been collected in the past. The
additional information provided by these observations may be used to update the
prior knowledge about the parameters of the model.

26.2.1 Expected Utility Maximization

For a chosen design � 2 � and parameters 	 2 
, the likelihood of the observed
data vector y 2 Y is given by p.yj	; �/. We assume that past observations
y1Ws D fyi ; i D 1; : : : ; sg measured at the design points �1Ws D f�i ; i D 1; : : : ; sg
are available and that these past observations are conditionally i.i.d., i.e., the
likelihood function for the past observations is p.y1Wsj	; �1Ws/ D Qs

iD1 p.yi j	; �i /.
Furthermore, we assume that the parameters follow a prior distribution p.	/ which
does not depend on the design. Thus, by using the past observations we can
update the prior information and obtain the posterior distribution of the parameters:
p.	 jy1Ws; �1Ws/ / p.	/

Qs
iD1 p.yi j	; �i /.

The general aim of simulation-based optimal design is to find the optimal
configuration �max D arg sup� U.�/ for the expected utility integral

U.�/ D
Z

z2Y

Z

	2

u.fz; y1Wsg; f�; �1Wsg; 	/p.zj	; �/ p.	 jy1Ws; �1Ws/d	dz ;

(26.1)

where z denotes a vector of (future) observations measured at the points of the
candidate design � 2 � . The utility function u.:/ may depend on the (current and
past) data fz; y1Wsg, the (current and past) designs f�; �1Wsg, and the parameters 	 . This
is the extended setting considered, e.g., by [8]. To simplify notation, the possible
dependence of u.:/ on y1Ws and �1Ws will be neglected for the remainder of this article.
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26.2.2 MCMC Algorithm

A particular way to tackle this optimization problem is proposed in [7]. It combines
the simulation as well as the optimization steps. To implement a stochastic search,
the integrand in (26.1) is regarded as being proportional to a joint probability
distribution of the variables # D .z; �; 	/:

h.#/ / u.#/p.zj	; �/p.	 jy1Ws; �1Ws/�.�/ ; (26.2)

where �.�/ is some (usually uniform) measure on the design region. If u.:/ is
positive and bounded, then h.:/ is a proper pdf and marginalizing over 	 and z
yields

U.�/ /
Z

z2Y

Z

	2

h.z; �; 	/d	dz ;

so the marginal distribution of � is proportional to the expected utility function.
Therefore, a strategy to find the optimum design is to sample from h.z; �; 	/, retain
the draws of � , and then search for the mode of the marginal distribution of � by
inspecting the draws.

The density function h is only known up to a normalizing constant. Therefore,
one option to obtain a sample from h is to perform Markov chain Monte Carlo
methods such as Metropolis Hastings (MH). For a review of MCMC sampling
schemes see [11]. The following proposal distribution, which generates a proposed
draw # 0 D .z0; � 0; 	 0/ given the previous draw #� D .z�; ��; 	�/, was suggested,
e.g., by [8]:

qk.#
0j��/ D p.z0j	 0; � 0/k.	 0jy1Ws; �1Ws/g.� 0j��/ :

The density function g is a random walk proposal density for � . The data z are
sampled according to the probability model. The parameters 	 are sampled from a
proposal distribution k which should resemble the posterior distribution as closely
as possible. Common choices for these proposals are normal or random walk or
independence proposals, where the scale is proportional to the inverse of the Hessian
of the log-likelihood or the unnormalized log-posterior. Specifying the proposal
distribution in this way leads to the MH acceptance ratio

˛ D min

�
1;

u.# 0/
u.#�/

p.y1Wsj	 0; �1Ws/p.	 0/
p.y1Wsj	�; �1Ws/p.	�/

k.	�jy1Ws; �1Ws/
k.	 0jy1Ws; �1Ws/

g.��j� 0/
g.� 0j��/

�
:

Due to the particular choice of the proposal distribution, the likelihood terms
p.z0j	 0; � 0/ and p.z�j	�; ��/ cancel out in the acceptance ratio. However, the
corresponding terms for the past observations, p.y1Wsj	 0; �1Ws/ and p.y1Wsj	�; �1Ws/,
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do not vanish. This poses a problem if the likelihood function is intractable.
Note that in the specific case where it is possible to sample from p.	 jy1Ws; �1Ws/
directly, it is convenient to set k.	 jy1Ws; �1Ws/ D p.	 jy1Ws; �1Ws/. Then the terms
p.y1Wsj	 0; �1Ws/p.	 0/ / p.	 0jy1Ws; �1Ws/ and p.y1Wsj	�; �1Ws/p.	�/ / p.	�jy1Ws; �1Ws/
would cancel out in the acceptance ratio.

26.3 ABC for Simulation-Based Optimal Design

If there is no explicit formula for the likelihood function or it is very cumbersome to
evaluate, one may have to resort to likelihood-free (LF) methods, also called approx-
imate Bayesian computation (ABC). These methods can be applied if simulating
the data from the probability model is feasible for every parameter 	 . Some of the
earliest applications of ABC were in the context of biogenetics (e.g., in [6]). For
further examples see [10].

One possibility to incorporate likelihood-free methods into the MCMC
simulation-based design algorithm is to modify and augment the target
distribution (26.2) in the following way:

hLF.#; x1Ws/ / u.#/p.zj	; �/p�.y1Wsjx1Ws; 	/p.x1Wsj	; �1Ws/p.	/�.�/ :

The artificial data x1Ws , which are sampled together with # , are added to the
arguments of the target distribution. Integrating over x1Ws leads to the original target
distribution if p�.y1Wsjx1Ws; 	/ is a point mass at the point x1Ws D y1Ws . Since this
event has a very small probability for higher-dimensional discrete distributions
and probability zero in the case of continuous distributions, a compromise has
to be found between exactness and practicality by adjusting the “narrowness”
of p�.y1Wsjx1Ws; 	/. Therefore, the marginal distribution of hLF with respect to
# ,
R
hLF.#; x1Ws/dx1Ws , is only an approximation to the true target distribution h.

The function p�.y1Wsjx1Ws; 	/ is usually assumed to be a smoothing kernel density
function: p�.y1Wsjx1Ws; 	/ D .1=�/K..kT.x1Ws/ � T.y1Ws/k/=�/, where T.:/ is some
low-dimensional statistic of y1Ws and x1Ws , respectively. The parameter � controls
the tightness of p�.yjx; 	/. The approximation error induced by � being positive is
often called nonparametric error.

If T is a sufficient statistic for the parameters of the probability model, integrating
over T.x1Ws/ yields the same distribution as integrating out x1Ws . Otherwise, the
application of ABC introduces a bias in addition to the nonparametric error.

The reason for augmenting the model is that using the proposal distribution

qLF.#
0; x01Wsj��/ D p.z0j	 0; � 0/p.x01Wsj	 0; �1Ws/p.	 0/g.� 0j��/ ;

leads to the MH acceptance probability
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˛ D min

�
1;

u.# 0/
u.#�/

p�.y1Wsjx01Ws; 	 0/
p�.y1Wsjx�1Ws; 	�/

g.��j� 0/
g.� 0j��/

�
;

which does not depend on the likelihood function.
A comprehensive account of likelihood-free MCMC is given in [10].

26.4 Example

We apply the simulation-based design methodology developed in the previous
sections to a standard Bayesian linear regression example. In that case the likelihood
function is of a well-known and simple form, so there is no need to invoke
likelihood-free methods. The purpose of our example is merely to demonstrate
various important aspects one has to consider when applying simulation-based
design algorithms with likelihood-free extensions. For this example the expected
utility integral can also be computed analytically. This allows us to compare the
results from the simulation-based optimal design algorithm to the exact results.

26.4.1 Bayesian Linear Regression

We assume that

zj	; � � N .D	; �2In/ :

That is, the expected value of the dependent variable is a linear combination of
the parameter values 	 2 
 � Rk and depends on the design through the design
matrix D D .f.�1/; : : : ; f.�n//T , where f.:/ is a k-dimensional function of the design
variables �i 2 Œ�1; 1�, and � D .�1; : : : ; �n/. The n observations are assumed to be
normally distributed, independent, and homoscedastic with known variance �2.

We assume that s previous observations y D .y1; : : : ; ys/ have been collected
which follow the same distribution:

yj	; � � N .K	; �2Is/ ;

where K D .f.�1/; : : : ; f.�s//T and � D .�1; : : : ; �s/.
Furthermore, the parameters 	 follow the prior normal distribution

	 � N .	0; �
2R�1/ :

The posterior distribution of 	 given the previous and current observations can
be easily obtained for this example.
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We take u.z; �; 	/ D logp.	 jfz; yg; f�; �g/ � logp.	/ as our utility function,
so that the expected utility for a specific design � is the expected gain in Shannon
information (see [2]):

U.�/ D
Z

z2Rn

Z

	2

log

�
p.	 jfz; yg; f�; �g/

p.	/

�
p.zj	; �/p.	 jy; �/d	dz :

For our particular model, the integral can be computed analytically and is given
by U.�/ D � k

2
log.2�/ � k

2
C 1

2
log det

�
��2.DTD C KTK C R/

	 C C for some
constant C . It has the same maximum as the criterion for DB optimality, which is
det.DTDCKTKCR/ (cf. [1]). Note that theDB -optimal design does neither depend
on �2 nor on the prior mean 	0 nor on the previous observations y.

We choose a setting for which the exact solution can be obtained easily, and thus
a comparison of the results of our design algorithms is feasible.

The following setting is used: the predictor is a polynomial of order two in one
factor, i.e. f.�i / D .1; �i ; �

2
i /
T and f.�i / D .1; �i ; �

2
i /
T .

The continuous optimal design for this problem puts equal weights of 1/3 on the
three design points �1, 0, and 1, see [1]. Likewise, if the number of trials of an exact
design is divisible by three, then at the optimal design 1/3 of the trials are set to �1,
0, and 1, respectively. For our example, we choose the prior information matrix R in
a way so that it represents prior information equivalent to one trial taken at the design
point 0, i.e. R D f.0/fT .0/ D .1; 0; 0/T .1; 0; 0/. A value of 10�5 is added to the
diagonal elements, thereby making it possible to invert R and thus to sample from
the prior distribution. Furthermore, we assume that one previous observation has
been collected at the design point �1, so that K D fT .�1/ D .1;�1; 1/. Therefore,
if we have n D 1 (future) trial, it is optimal to set this trial to 1.

26.4.2 MCMC Sampler for Augmented Target Distribution

As neighborhood kernel for the likelihood-free MCMC sampler we take the uniform
kernel: p�.y; x/ / Ijy�xj<�.x/.

We use the uniform distribution on the interval Œ�1; 1� as independence proposal
distribution for � . For our example this is a reasonable choice because the utility
surface is rather flat. Furthermore, we set �2 D 2, 	0 D .0; 0; 0/T , and we assume
that the previously collected observation at � D �1 is y D 40. Note that these
parameters should have no effect on the outcome in our example.

The algorithm was run for various values of � (�; 2�; 4�; 8�; 16�) and for various
lengths of the Markov chain (104; 108; 109). Due to memory allocation constraints,
the output of the Markov chains of length 108 and 109 was thinned, keeping every
10th and 100th element of the chain, respectively.

The utility function u.z; �; 	/ is not non-negative everywhere. If negative utilities
occur, the simulation step is repeated until the sampled utility is positive. This
modification distorts the output of the estimated utility surface, but we are only
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Fig. 26.1 Kernel density estimates of marginal distribution of � for MCMC sampler on the
augmented utility (solid lines); 108 iterations; � D � (left) and � D 16� (right). For illustrative
purposes, the true criterion U.�/ is also plotted (dashed lines; rescaled)

interested in regions of high expected utility anyway. If we use the utility function
u.z; �; 	/ D log.p.	 jfz; yg; f�; �g// � log.p.	//, we do not observe many cases
with negative utilities. If too many negative utilities were sampled, one could also
add a positive constant to the utility function. We did not find it necessary to add a
constant in this example.

Due to the very low acceptance rates that are usually associated with ABC
sampling, a Markov chain of length 104 was deemed to be too short to properly
represent the expected utility surface. We found that the MCMC samplers running
for 108 iterations while keeping every 10th draw produce sufficiently long Markov
chains that explore the whole design space for all values of � (see Fig. 26.1) while
being computationally not very demanding. Hence we will focus on the results for
these samplers. On a PC with an Intel Core i3 CPU (2.10 GHz) and 4 GB RAM,
they needed from 2.25 to 3 min to produce their sample.

The acceptance rate decreases from 0:017 if � D 16� to 0:0048 if � D � ,
as would be expected. On the other hand, the integrated autocorrelation time
(IAT)1 increases from 12.28 (� D 16� ) to 44.01 (� D � ). One has to find a
reasonable compromise between the accuracy of the ABC approximation and the
autocorrelation of the sample, which has a negative effect on the effective sample
size.

Figure 26.1 indicates that the maximum of the criterion is close to 1, which is the
true optimum. It also suggests that the choice of � has little impact on the marginal
distribution of � . This might be a special feature of our example and our choice of
the utility function and not the case in general. In our example the value of y does
not matter for the optimal design, and hence it is irrelevant whether the simulated
observations are close to the actual observations or not.

1The IAT of a process is defined as IATD 1C 2P1

iD1 �i , where �i denotes the autocorrelation of
the process at lag i .
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Conclusion
The integrated approach presented in this contribution is only suitable for
very low-dimensional designs, where it is relatively easy to read off the mode
of the target distribution from the sample output. In more complex design
situations, a two-stage approach may be preferable: first obtain the posterior
of the parameters using ABC, then perform simulation-based design. More
details about this extension can be found in [4]. Further complications arise
if the utility function u.:/ cannot be evaluated directly but also has to be
estimated by ABC. Suggestions for dealing with that case are provided in
[3] or [4].
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Chapter 27
Time Change Related to a Delayed Reflection

B.P. Harlamov

27.1 Introduction

Apparently Gihman and Skorokhod were the first who investigated reflection with
delaying of one-dimensional Markov diffusion processes [1, p. 197]. They applied
a method of stochastic integral equations which takes into account preserving the
Markov property while reflecting. However there exist examples of interaction
between a process and a boundary of its range of values, which can be interpreted
like reflection, when the Markov property is being lost, although the property of
continuous semi-Markov processes is preserved. Here is a simple example.

Let w.t/ .t > 0/ be Wiener process. Let us consider on the segment Œa; b� .a 6
w.0/ 6 b/ the truncated process

w.t/ D
8
<

:

b; w.t/ > b

w.t/; a < w.t/ < b
a; w.t/ 6 a

for all t > 0. It is clear that this process is not Markov. However it remains to be
continuous semi-Markov [3]: the Markov property is fulfilled with respect to the
first exit time from any open interval inside the segment, and also that from any
one-sided neighborhood of any end of the segment.

The semi-Markov approach to the problem of reflection consists in solution of the
following task: to determine a semi-Markov transition function for the process at a
boundary point for the process preserving its diffusion form inside its open range of
values, i.e. that up to the first exit time from the region and any time when it leaves
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the boundary. A more specific task to find reflection, preserving a global Markov
property, is reduced to a problem to find a subclass of Markov reflected processes
in the class of all the semi-Markov ones. Tasks of such a kind are important for
applications where one takes into account interaction of diffusion particles with
a boundary of a container, leading to a dynamic equilibrium of the system (see,
e.g., [6]).

In paper [2] all the class of semi-Markov characteristics of reflection for a given
locally Markov diffusion process is described. In paper [4] conditions for a semi-
Markov characteristic to give a globally Markov process are found. In the present
paper we continue to investigate processes with semi-Markov reflection. The aim
of investigation is to find formulae, characterizing a time change, transforming a
process with instantaneous reflection into the process with delaying reflection.

27.2 Semi-Markov Transition Function at a Boundary Point

We consider random processes on Skorokhod space D � D.Œ0;1/;R/ with a
natural filtration .F /10 . More special we will consider a diffusion process X.t/
on the half-line t > 0 with one boundary at zero. We assume that this process does
not go to infinity and from any positive initial point it hits zero with probability
one. For example, it could be a diffusion Markov process with a negative drift and
bounded local variance.

Let us denote 	t the shift operator on the set of trajectories D ; �� the operator
of the first exit time from set �. By definition ��.�/ D 0, if �.0/ 62 �, where
� 2 D . Semi-Markov process is a process which obeys Markov property at any
time �� for an open � 
 R (it is sufficiently to consider � as an open interval).
We had substantiated above why it is expedient to consider semi-Markov reflection.
Semi-Markov approach permits to consider from unit point of view an operation of
instantaneous reflection as well as an operation of truncation, besides it opens new
properties of processes interesting for applications.

In frames of semi-Markov models of reflection it is natural to assume thatX.t/ is
a semi-Markov process of diffusion type [3]. Let .Px/ .x > 0/ be a consistent family
of measures of the process, depending on initial points of trajectories. On interval
.0;1/ semi-Markov transition generating functions of the process

g.a;b/.�; x/ WD Ex

�
e���.a;b/ I X.�.a;b// D a

	 I

h.a;b/.�; x/ WD Ex

�
e���.a;b/ I X.�.a;b// D b

	

.a < x < b/ satisfy the differential equation

1

2
f 00 C A.x/f 0 � B.�; x/f D 0;
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with boundary conditions

g.a;b/.�; aC/ D h.a;b/.�; b�/ D 1I g.a;b/.�; b�/ D h.a;b/.�; aC/ D 0:

The coefficients of the equation are assumed to be piece-wise continuous functions
of x > 0, and for any x function B.�; x/ is non-negative and has completely
monotone partial derivative with respect to �. First of all reflection of the process
from point x D 0 means addition of this point to the range of values of the process.
Further all the semi-closed intervals Œ0; r/ are considered what the process can
only exit from open boundary. Corresponding semi-Markov transition generating
functions are denoted as hŒ0;r/.�; x/. In this case hŒ0;r/.�; 0/ > 0. Function
K.�; r/ WD hŒ0;r/.�; 0/ plays an important role for description of properties of
reflected processes. Using semi-Markov properties of the process, we must assume

hŒ0;r/.�; x/ D h.0;r/.�; x/C g.0;r/.�; x/K.�; r/;

and also

K.�; r/ D K.�; r � �/.h.0;r/.�; r � �/C g.0;r/.�; r � �/K.�; r//:
Assuming that there exist derivatives with respect to the second argument we have

g.a;b/.�; x/ D 1C g0.a;b/.�; aC/ .x � a/C o.x � a/;

g.a;b/.�; x/ D �g0.a;b/.�; b�/ .b � x/C o.b � x/;

h.a;b/.�; x/ D h0.a;b/.�; aC/ .x � a/C o.x � a/;

h.a;b/.�; x/ D 1 � h0.a;b/.�; b�/ .b � x/C o.b � x/;

and obtain the differential equation

K 0.�; r/CK.�; r/ h0.0;r/.�; r�/CK2.�; r/ g0.0;r/.�; r�/ D 0:

Its family of solutions are [5]

K.�; r/ D h0.0;r/.�; 0C/
C.�/ � g0.0;r/.�; 0C/

;

where arbitrary constant C.�/ can depend on �. In order forK.�; r/ to be a Laplace
transform it is sufficient that function C.�/ to be non-decreasing, C.0/ D 0, and its
derivative to be a completely monotone function [4]. Under our assumptions it is fair

K.�; r/ D 1 � C.�/ r C o.r/ .r ! 0/:

Our next task is to learn a time change in the process with instantaneous reflection
which derives the process with delayed reflection.
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27.3 Time Change with Respect to the Instantaneous
Reflection

For any Markov times �1, �2 (with respect to the natural filtration) on set f�1 < 1g
let us define the following operation

�1 PC �2 WD �1 C �2 ı 	�1 :

It is known [3] that for any open (in relative topology) sets �1, �2, if �1 
 �2,
then

��2 D ��1 PC ��2:

Let us introduce special denotations for some first exit times and their combina-
tions, and that for random intervals as � > 0

˛ WD �Œ0;�/; ˇ WD �.0;1/; �.0/ WD ˇ;

� WD ˛ PCˇ; �.n/ WD �.n � 1/ PC � .n > 1/;

b.0/ WD Œ0; ˇ/; a.n/ WD Œ�.n � 1/; �.n � 1/ PC˛/; b.n/ D Œ�.n � 1/ PC˛; �n/:

The random times ˛; �.n/; and intervals a.n/; b.n/ .n D 1; 2; : : : / depend on �. In
some cases we will denote this dependence by the lower index.

Let us remark that sequence .�.n// forms moments of jumps of a renewal
process. Besides if X.t/ > 0 then for any t > 0 there exist � > 0, and n > 1 such
that t 2 b�.n/. It implies that for � ! 0 random set [1kD1b�.k/ covers all the set
of positive values of process X with probability one. On share of supplementary set
(a limit of set [1kD1a�.k/) there remain possible intervals of constancy and also a
discontinuum of points (closed set, equivalent to continuum, without any intervals,
[7, p. 158]), consisted of zeros of process X . The linear measure of it can be more
than or equal to 0. This measure is included as a component in a measure of delaying
while reflecting.

It is known [3, p. 111] that continuous homogeneous semi-Markov process is a
Markov process if and only if it does not contain intrinsic intervals of constancy
(it can have an interval of terminal stopping). This does not imply that a process
with delayed deflection cannot be globally Markov. Its delaying is exceptionally at
the expense of the discontinuum. A process without intervals of constancy at zero,
and with the linear measure of the discontinuum of zeros which equals to zero is
said to be a process with instantaneous reflection.

We will construct a non-decreasing sequence of continuous non-decreasing
functions V�.t/ .t > 0/, converging to some limit V.t/ as � ! 0 uniformly on
every bounded interval.
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Let X.0/ > 0, and V�.t/ D t on interval b.0/, and V�.t/ D ˇ on interval a.1/.
On interval b.1/ the process V� increases linearly with a coefficient 1. On interval
a.2/ function V� is constant. Then it increases with coefficient 1 on interval b.2/, and
so on, being constancy on intervals a.k/, increasing with coefficient 1 on intervals
b.k/. Noting that if �1 > �2, for any interval a�2.k/ there exists n such that a�2.k/ 

a�1.n/, we convince ourselves that the sequence of constructed functions does not
decrease, bounded and consequently tends to a limit.

Let us define a process with instantaneous reflecting obtained from the original
process X as a process, obtained after elimination of all its intervals of constancy
at zero, and contraction of a linear measure of its discontinuum of zeros to zero.
This process can be represented as a limit (in Skorokhod metric) of a sequence of
processes X�.t/, determined for all t by formula

X�.t/ D X.V �1� .t//;

where V �1� .y/ is defined as the first hitting time of the process V�.t/ to a level y.
Hence X�.t/ has jumps of value � at the first hitting time to zero and its iterations.
Let us denote the process with instantaneous reflecting as X0.t/, and the map
X 7! X0 as 'V . Such a process is measurable (with respect to the original sigma-
algebra of subsets) and continuous. Let P 0

x D Px ı '�1V be the induced measure of
this process.

Then it is clear that V is an inverse time change transforming the process X0
into the process X , i.e. X D X0 ı V . In this case for any open interval � D .a; b/

.0 < a < b/, or � D Œ0; r/ .r > 0/ it is fair

��.X0 ı V / D V �1.��.X0//:

The function V �1 we call a direct time change, which corresponds to every
“intrinsic” Markov time of the original process (in given case X0.t/) the analogous
time of the transformed process.

Remark that for �1 > �2 the set f��1.n/; n D 0; 1; 2; : : : g is a subset of
the set f��2.n/; n D 0; 1; 2; : : : g. That is why every Markov time ��.n/ is a
Markov regeneration time of the process V , what permits in principle to calculate
finite-dimensional distributions of this process. On the other hand, this process is
synonymously characterized by its inverse, i.e. the process V �1.y/ WD infft > 0 W
V.t/ > yg .y > 0/. This process is more convenient to deal with because Laplace
transform of its value at a point y can be found as a limit of a sequence of easy
calculable Laplace images of values V �1� .y/.

Theorem 1. A direct time change V �1.y/, mapping a process with instantaneous
reflection into a process with delayed reflection satisfy the relation

E0 exp.��V �1.y// D E0 exp.��y � C.�/W.y//; (27.1)
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where W �1.t/ is a non-decreasing process with independent increments for which

E0 exp.��W �1.t// D exp.g.0;1/.�; 0C/ t/: (27.2)

Proof. Without loss of generality we suppose that X.0/ D 0. Let N�.t/ D n if
and only if

Pn�1
kD1 jb.k/j < t 6Pn

kD1 jb.k/j (ja.k/j, jb.k/j are lengths of intervals
a.k/, b.k/). Then

E0 exp.��V �1.y// D lim
�!0E0 exp.��V �1� .y// D lim

�!0E0

0

@��y � �
N�.y/X

kD1
ja.k/j

1

A :

We have

E0 exp.��.V �1� .y/ � y// D E0 exp

0

@��
N�.y/X

kD1
ja.k/j

1

A

D
1X

nD0
E0 exp

 
��

nX

kD1
˛ ı 	�.k�1/I N�.t/ D n

!

D P�.ˇ > y/C
1X

nD1
E0

 
exp

 
��

nX

kD1
˛ ı 	�.k�1/

!
I
n�1X

kD1
jb.k/j < y 6

nX

kD1
jb.k/j

!

D P�.ˇ > y/C
1X

nD1
E0

 
exp

 
��˛ � �

nX

kD2
˛ ı 	�.k�1/

!
I

ˇ ı 	˛ C
n�1X

kD2
ˇ ı 	˛ ı 	�.k�1/ < y 6 ˇ ı 	˛ C

nX

kD2
ˇ ı 	˛ ı 	�.k�1/

!

D P�.ˇ > y/C
1X

nD1

Z y

0
E0

 
exp

 
��˛ � �

nX

kD2
˛ ı 	�.k�1/

!
I

ˇ ı 	˛ 2 dx;
n�1X

kD2
ˇ ı 	˛ ı 	�.k�1/ < y � x 6

nX

kD2
ˇ ı 	˛ ı 	�.k�1/

!

D P�.ˇ > y/C
1X

nD1

Z y

0
E0.e

��˛ I ˇ ı 	˛ 2 dx/E0
 

exp

 
��

nX

kD2
˛ ı 	�.k�2/

!
I

n�1X

kD2
ˇ ı 	˛ ı 	�.k�2/ < y � x 6

nX

kD2
ˇ ı 	˛ ı 	�.k�2/

!

D P�.ˇ > y/C
1X

nD1

Z y

0
P�.ˇ 2 dx/E0.e��˛/E0

 
exp

 
��

n�1X

kD1
˛ ı 	�.k�1/

!
I

n�2X

kD1
ˇ ı 	˛ ı 	�.k�1/ < y � x 6

n�1X

kD1
ˇ ı 	˛ ı 	�.k�1/

!
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D P�.ˇ > y/

C
Z y

0
P�.ˇ 2 dx/E0.e��˛/

1X

nD0
E0

 
exp

 
��

nX

kD1
˛ ı 	�.k�1/

!
I N�.y � x/ D n

!

D P�.ˇ > y/C
Z y

0
P�.ˇ 2 dx/E0.e��˛/E0 exp.��.V �1� .y � x/ � .y � x///:

Let us denoteZ.y/ WD E0 exp.��.V �1� .y/�y//, F.x/ WD Px.ˇ < x/, F .x/ WD
1 � F.x/, A WD E0.e

��˛/. We obtain an integral equation

Z.y/ D F .x/C A

Z y

0

Z.y � x/ dF.x/;

with a solution which can be written as follows:

Z.y/ D
1X

nD0
An.F .n/.y/ � F .nC1/.y//;

where F .n/ is n-times convolution of distribution F . Let us consider a sequence of
independent and identically distributed random values jb.n/j .n D 1; 2; : : : /. Let
P �� is the distribution of a renewal process N�.y/ with this sequence of lengths of
intervals, and E

�
� is the corresponding expectation. Then

E
�
� A

N�.y/ D
1X

nD0
AnP �� .N�.y/ D n/ D

1X

nD0
An.F .n/.y/ � F .nC1/.y//;

Thus

E0 exp.��V �1� .y// D e��y E�� .E0e��˛/N�.y/:

On the other hand, it is clear that there exists a version of the process N�.y/,
measurable with respect to the basic sigma-algebra, and adapted to the natural
filtration of the original process, and having identical distribution with respect to
measure P0. Preserving denotations we can write

E
�
� .E0e

��˛/N�.y/ D E0.E0e
��˛/N�.y/:

Moreover, measures P0 and P 0
0 coincide on sigma-algebra F �, generated by all the

random values ˇ� ı 	˛� ı 	�.k/� .� > 0; k D 1; 2; : : : /. From here

E0.E0e
��˛/N�.y/ D E

0
0.E0e

��˛/N�.y/:
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Taking into account that ˛ depends on � and using our former denotations we can
write

E0e
��˛ D K.�; �/ D 1 � C.�/ � C o.�/:

We will show that the process W�.y/ WD � N�.y/ tends weakly to a limit W.y/
as � ! 0, which is an inverse process with independent increments with known
parameters, and measurable with respect to sigma-algebra F �. Actually, the process
W�.y/ does not decrease and is characterized completely by the process W �1� .t/.
The latter has independent positive jumps on the lattice with a pitch �. Hence it
is a process with independent increments. Evidently a limit of a sequence of such
processes, if it exists, is a process with independent increments too. Its existence
follows from evaluation of Laplace transform of its increment. We have

E
0
0e
��W�1

� .t/ D E
0
0 exp

0

@��
Œt=��X

kD1
jb.k/j

1

A

D .E�e
��ˇ/Œt=��

D .1C g0.0;1/.�; 0/ � C o.�//Œt=�� ! e
g0

.0;1/.�;0/ t .� ! 0/:

Using the sufficient condition of weak convergence of processes in terms of
convergence of their points of the first exit from open sets [3, p. 287], we obtain

E0 exp.��V �1.y// D E
0
0 exp.��y � C.�/W.y//;

what can be considered as description of the direct time change in terms of
the process with instantaneous reflection and the main characteristic of delaying,
function C.�/.

We use this formula for deriving the Laplace transform of a difference between
the first exit times from an one-sided neighborhood of the boundary point for
processes with delayed and instantaneous reflection.

Denote

ˇr WD �.0;r/; �r .0/ D 0;

�r WD ˛ PCˇr ; �r .n/ WD �r.n � 1/ PC �r .n > 1/;

br .n/ D Œ�r .n � 1/ PC˛; �r .n// .n > 1/;

Mr
� WD inffn > 0 W X.�r.n// > rg:
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Hence

P0.M
r
� D n/ D P0.X.�

r.1// D 0; : : : ; X.�r.n � 1// D 0;X.�r.n � 1// D r/

D .p.�; r//n�1.1 � p.�; r//;

where p.�; r/ WD P0.X.�
r.1// D 0/.

Theorem 2. A difference between the first exit times from a semi-closed interval
Œ0; r/ for processes with delayed and instantaneous reflections obeys to the relation

E0 exp.��.�Œ0;r/ � �0Œ0;r// D �G0.0;r/.0C/
C.�/ �G0.0;r/.0C/

; (27.3)

where G.0;r/.x/ D g.0;r/.0; x/.

Proof. We have

�Œ0;r/ D �r.Mr
� / D

1X

nD1
�r .n/I.Mr

� D n/

D
1X

nD1

 
n�1X

kD1
.ja�.k/j C jb�.k/j/C ja�.n/j C jbr� .1/j

!
I.Mr

� D n/I

�oŒ0;r/ D
1X

nD1

 
n�1X

kD1
.jao� .k/j C jb�.k/j/C jao� .n/j C jbr� .1/j

!
I.Mr

� D n/I

where ao� .k/ is the first hitting time at the level � by the process with instantaneous
reflection after a recurrent first hitting time at 0. By definition the sum of such times
up to the first hitting time at level r tends to zero as � ! 0 P0-almost sure. From
here it follows that

�Œ0;r/ � �oŒ0;r/ D lim
n!1

1X

nD1

nX

kD1
ja�.n/j I.Mr

� D n/:

Hence

E0e
��.�Œ0;r/��oŒ0;r// D lim

n!1

1X

nD1
E0 exp

 
��

nX

kD1
ja�.n/j I.Mr

� D n/

!
:
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On the other hand,

F�.�/ WD E0 exp

0

@��
Mr
�X

kD1
ja�.k/j

1

A D
1X

nD1
E0 exp

 
��

nX

kD1
ja�.k/jI Mr

� D n

!

D
1X

nD1
E0 exp

 
��

nX

kD1

� ˛ ı 	�r .k�1/IX.�r.1// D 0; : : : ; X.�r .n � 1// D 0;X.�r.n// D r
�

D
1X

nD1
E0 exp

 
��˛ � �

 
nX

kD2
˛ ı 	ˇr PC�r .k�2/

!
ı 	˛I

	�1˛
�
X.ˇr/ D 0; : : : ; X.ˇr PC�r.n � 2// D 0;X.ˇr PC�r.n � 1// D r

	�

D E0e
��˛

1X

nD1
P�.X.ˇ

r/ D 0/E0 exp

 
��

n�1X

kD1
˛ ı 	�r .k�1/I

X.�r.1// D 0; : : : ; X.�r.n � 2// D 0;X.�r.n � 1// D r
�

D E0e
��˛ P�.X.ˇr/ D r/CE0e

��˛ P�.X.ˇr/ D 0/E0 exp

0

@��
Mr
�X

kD1
ja�.k/

1

A :

Hence

F�.�/ D E0e
��˛ P�.X.ˇr/ D r/

1 �E0e��˛ P�.X.ˇr/ D 0/
:

Taking into account that

E0e
��˛ D K.�; �/ D 1 � C.�/� C o.�/;

P�.X.ˇ
r/ D r/ WD H.0;r/.�/ D h.0;r/.0; �/ D H 0.0;r/.0C/� C o.�/;

P�.X.ˇ
r/ D 0/ WD G.0;r/.�/ D 1 �H.0;r/.�/;

we obtain

F�.�/ ! H 0.0;r/.0C/
C.�/CH 0.0;r/.0C/

as � ! 0
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It is interesting to note that for a linear function C.�/ D k�, when a reflecting
locally Markov process is globally Markov [4], the difference between the
first exit times from a semi-closed interval Œ0; r/ for processes with delayed
and instantaneous reflections has the exponential distribution with parameter
H 0.0;r/.0C/=k. Evidently this difference is the time when the process has zero
value. Taking into account that a continuous Markov process has no intervals
of constancy (excepting an infinite final interval of constancy if any) we obtain
that in the latter case the set of points when the process has zero value is a
Cantor discontinuum with a positive linear measure.
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Chapter 28
Et tu “Brute Force”? No! A Statistically Based
Approach to Catastrophe Modeling

Mark E. Johnson and Charles C. Watson Jr.

28.1 Introduction

Catastrophe modeling is complex and inherently multi-disciplinary drawing upon
atmospheric science (hurricanes, nor’easters, and tornadoes), geophysics (earth-
quakes, volcanoes, and sinkholes) and hydrology (tsunamis, storm surge, flooding).
Each natural peril exerts various pressures on building exposures, bringing wind
and structural engineering into the analyses. The conversion of physical damage to
economic losses requires actuarial science to provide an insured loss perspective.
Throughout the catastrophe modeling process, uncertainty abounds which requires
the attention of the statistician. Finally, for implementation, computer science and
software engineering comes in to play.

Prior to Hurricane Andrew (1992), much of the insurance industry based its hur-
ricane peril premiums on econometric models of historical losses from hurricanes.
Some of these insurance companies who combined such econometric models with
market forces that had driven premiums to historical low levels became insolvent. In
response to the imminent exodus of insurance underwriters from Florida, the Florida
Commission on Hurricane Loss Projection Methodology was established to develop
standards for computer models that generate annual losses due to the hurricane wind
peril. Since 1996, this Commission has been reviewing submitted models submitted
for use in insurance rate filings. The models submitted to the Commission have
the same basic structure. Simply put, some of the key hurricane related random
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variables (annual frequency, intensity, track, radius of maximum winds, etc.) are fit
with probability distributions and then tens or hundreds of thousands of simulated
years of hurricane activity are generated and annual losses accrued. The previously
outlined structure is generally attributed to [7] and followers [3], and this brute-force
approach has become the typical template for hurricane wind catastrophe modeling.

By modeling the hurricane as an entity having life cycle (with the caveat that
some physical features are ignored such as reconstitution of the eye wall, spin off
tornadoes, and so forth), the modeling community is then forced to generate massive
numbers of hypothetical events in order to account for the uncertainty in estimation
due to the simulation itself. Of course, this approach does not reduce the inherent
uncertainty in estimating loss costs, as the individual versions of the hurricane
models cannot accommodate every historical storm perfectly (Hurricane Wilma in
2005 is a case in point with stronger winds observed on the left side of its track) nor
all future events, as well. A basic argument given is that the historical record is too
short (50 to 100 to 160 years depending on the acceptance of historical data sources)
to achieve much better results. Consequently, the models that have been approved
by the Commission for use in rate filing can vary substantially from each other with
respect to average annual losses and probable maximum losses, and in a manner
and magnitude that is vexing to state legislators. Although disavowing the adequacy
of the historical record for direct modeling purposes, the modelers then draw upon
the same record to validate their own results in the sense that the historical results
are sufficiently close to the simulated results. We view this perspective as inverted,
since the data are real while the models are approximations. This perspective also
elevates the simulated results in the eyes of some insurers and re-insurers, effectively
blinding them from other approaches to the problem. Finally, measurement error in
observed wind speeds is a contributor to uncertainty but it should not be the lone
excuse for disparities in model simulated versus actual losses.

With this background in mind, it should not be surprising that the authors have
pursued an alternative line of research with respect to catastrophe modeling. The
authors have developed and published over the past 15 years a number of papers
that offer an alternative approach to estimating insured losses and site-specific
wind distributions [12, 15, 16, 22–26]. This approach makes more direct use of
the historical record that is both true to the record and provides corresponding
uncertainty assessments. Instead of constructing hypothetical storms based on and
resembling the historical record, the approach is to run the full set of nearly
1,700 historical events and record the maximum wind speeds at each location of
interest. This set of wind speeds provides an ample data set for fitting extreme value
distributions at each site. Cross validation is used to confirm that accurate forecasts
can be made with this approach.

The focus of this paper is on attaining realistic estimates of the phenomena
of interest (average annual losses, probable maximum loss, and maximum wind
speeds). The original brute force approach of the pioneer Friedman will be
compared to the statistically based approach which uses the catastrophe models
for augmenting historical data sets which are then subjected to sophisticated
statistical treatment. Our approach will also be shown to accommodate modular
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subcomponents to parts of the perils affording us the possibility of assessing
model misspecification. Published papers, presentations, and reports on operational
projects can be found at http://hurricane.methaz.org/ while real time tracking of
global hazards can be followed at http://tracking.enkiops.org.

28.2 Building a Hurricane Model

In order to build a hurricane computer simulation model, a number of decisions
must be made involving a mathematical model of a hurricane, its features and their
computer representation including probability distributions to capture the stochastic
nature of events [1, 2, 4–6, 8–11, 13, 14, 18, 19]. At the very least, the following
characteristics must be considered:

Frequency of Occurrence The number of events in a given season (June 1 through
November 30 for the Atlantic basin) is of interest. Historically, there have been
approximately ten tropical cyclones per season—a portion of which strengthen to
hurricane force and in turn, a portion of these that make landfall in the USA. Discrete
distributions (Poisson, negative binomial, Polya) are used for this purpose with the
specific distribution chosen to reflect the scope of the study. The frequency of US
landfalling events is related to global climate conditions such the Atlantic Multi-
decadal Oscillation (AMO) and the increasingly known Pacific phenomena el Niño
Southern Oscillation (ENSO). These conditions are most relevant for short term and
seasonal forecasts.

Tropical Cyclone Tracks The path of a hurricane is challenging to model since the
starting point can be as far east as the Atlantic Ocean off the northwest African coast
through the Caribbean Sea and Gulf of Mexico. Once formed the tracks can be rather
erratic with the Atlantic forming storms generally headed west until encountering
steering currents which can divert them north and northeast away from harm’s way,
depending on the timing. Simulated tracks are so challenging that some models
resort to sampling from the historical tracks to avoid the generation of completely
unrealistic movements.

Intensity Strength and duration of winds dictates the level of damage for hurri-
canes. Modeling intensity is challenging since storms naturally evolve from weak
low pressure areas with some circulation to possibly a well-defined very strong
vortex. Storms can strengthen, weaken, and strengthen again with interruptions due
to passage over mountains in Hispaniola or Cuba or traversing the Florida peninsula.
Intensity has been modeled by determining the distribution of maximum wind
velocity or its surrogate the pressure differential (far field pressure minus central
pressure). Another component of intensity is the radius to maximum winds and
the overall forward movement of the storm (yielding an asymmetry in the storm
strength pattern about the center). The scope of the hurricane can be modeled
through a transect profile of the storm from the center of the storm (calm) to the

http://hurricane.methaz.org/
http://tracking.enkiops.org
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eyewall (maximum winds) to the extent of the storm (diminishing winds farther out).
Once a simulated storm is over land, weakening and filling occurs which introduces
additional characteristics to be modeled.

Stochastic Storm Set Assuming an individual tropical cyclone can be modeled,
the next step is to generate a season’s worth of events followed by the generation of
multiple seasons. Within a season, care must be taken to avoid simultaneous events
striking the same structures at the same time to preserve reality and to accommodate
insurance policies having provisions related to damage for a season and call for
repairs after each event.

Statistical Perspective Even a very simple hurricane simulation model requires
the fitting of several probability distributions and consideration of their joint
distributions. With the exception of hurricane models that look at the dependence
between radius of maximum winds and maximum winds, little consideration has
been given for joint distributions—the fits taking place individually. To summarize,
the distributions to be fit and typical number of parameters include:

• Number of storms per season—one or two parameter discrete distribution
• Track distribution—multi-parameters possibly associated with a Markov chain

model or discrete distribution to sample from the historical tracks with possible
probabilistic perturbations

• Maximum wind (or minimum central pressure)—two parameter continuous
distribution with thresholds

• Radius of maximum winds—two parameter continuous distribution with
thresholds

• Forward speed (translation velocity)—two parameter continuous distribution
• Profile factor—two parameter distribution, possibly related to strength of storm

Some of the above characteristics are temporal and spatially varying, as well but
tend to be sampled at landfall and then vary according to the filling of the storm now
separated from its heat source. There is uncertainty in parameter estimation, owing
to the data sources supporting the fits. Frequency may be based on a sample size as
large as 160 whereas there are fairly few category five storms for which radius of
maximum winds are available. With all of these sources of variation in a simulation
model, a duration of 100,000 years or more should be viewed as a necessary evil to
control the additional source of random variation attributable to sampling error.

28.3 Direct Fitting of Wind Speeds

In contrast to the brute force modeling effort described in Sect. 28.2, a more direct
fitting process can be used. Since damage to structures occurs due to wind impacts,
the primary distribution of interest is the maximum wind speed at each site in the
study area owing to tropical cyclones. Ideally, this requirement would translate
into having the historical record of wind speeds at each exposure site. Of course,
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anemometers are not so conveniently placed so the next best thing is to simulate
all tropical cyclones in the record and then determine the wind speeds at each site
using a wind field model to provide the equivalent measurement readings. Thus,
only historical storms would be used so there can be no criticism of simulated
storms that do not make realistic sense. Since only 1,644 storms are simulated
(the number of Atlantic basin events since 1851), multiple wind field models could
be used in this exercise and the median wind speed from the generated maximum
winds could be used. Such a conservative approach diminishes the possibility that a
particular wind field model provides a very poor representation of a particular event.
Carrying this idea out further, in addition to the choice of wind field model, one
could also envision different friction models (rough terrain mitigating wind speeds
while increasing turbulence) and various damage functions. Such an approach was
originally developed by the authors in conjunction with a rate filing in North
Carolina [23] and was subsequently documented and published in the Bulletin of
the American Meteorological Society [24] and the Journal of Insurance Regulation
[26]. Distribution fitting is restricted to the annual maximum winds at each site and
for hurricane related winds, the authors have discovered that the Weibull distribution
provides an excellent model. Other distributions considered include the lognormal,
extreme value, and inverse Gaussian. Using various cross validation approaches
[16], the Weibull performs best in predicting the maximum wind speed across
hurricane prone sites. As an example validation calculation, the most recent 20 years
of experience is predicted using all previous data and then the actual and forecasted
wind speeds are compared. These calculations have been used at 30 m resolution
which corresponds to three billion sites in Florida.

28.4 Discussion

Two approaches have been outlined for generating loss costs associated with
hurricane events. Both the brute force (Sect. 28.2) and the statistical (Sect. 28.3)
approaches rely on fitting probability distributions. A key difference in the two
approaches is the choice of data sets that are the basis of the fits. Once wind speeds
on structures/exposures are determined, then damage and insured losses can be
subsequently estimated. Although both approaches could converge in methodology
at this point, most implemented brute force models opt for a single damage
function/vulnerability component which is generally considered proprietary by
their developers. (Incidentally, close empirical approximations to these proprietary
damage functions can be obtained using publicly available data.) The statistical
approach that uses the median values from a collection of model results readily
accommodates multiple choices of damage functions, to broaden the range of
possible values. Which approach is more sensible from a scientific viewpoint and
more importantly, which approach yields the more accurate estimates of losses—the
ultimate reason this modeling exercise is taking place? We consider several criteria
and the relative merits of each modeling approach.
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Stability The insurance industry, the re-insurance industry, and especially con-
sumers have difficulty with massive fluctuations in loss costs or premiums from
one season to the next. Such fluctuations could occur if the modeling approach is
highly sensitive to one new season of considerable activity and catastrophic losses.
The statistical approach is based on over 1,600 historical events and the fitting
of distributions to wind speeds across the panoply of possibilities. One category
five event offers possibly a new maxima to the set of data values already being
fit, but if the value is in the neighborhood of the 200-year return period value
(using the 160 years of HURDAT data [5, 18]), the impact is natural and modest.
In a separate analysis mentioned elsewhere [24], a complete re-run of results was
made with the exclusion of the 1992 season (the year of Hurricane Andrew striking
Florida) to marginal effect. In contrast, such a mega-storm can have a huge impact
on the brute force models. If this storm has any unusual characteristics compared
to other large storms, then various probability distributions that are fit can change
considerably. For example, Hurricane Charley in 2004 had an exceptionally small
radius of maximum winds which forced the Public Model to adjust this distribution
which in turn reduced estimated losses considerably (smaller storms tend to have
smaller damage swaths). As another instance, following the very active 2004 and
2005 seasons, some modelers developed “near-term” models evidently at the request
of the re-insurance industry. Selected experts argued that these two seasons were a
harbinger of things to come and the long-term frequency of events needed to be
increased considerably. This approach has lost some impetus following five straight
years of no landfalling hurricanes in Florida.

Impact of Model Components With the statistical approach, viable wind-field,
friction, and damage components are included in combination, so no one particular
component drives the results. The brute force methods choose what their developers
consider the best model sub-components giving them a vested interest in their use.
Swapping out a sub-component can have a very large impact on results. As a case
in point, some of the brute force models under review by the Florida Commission
on Hurricane Loss Projection Methodology have gradually evolved from using an
inland weakening model developed by [17] to an alternative due to [21]. Since the
latter has much slower filling rates than the Kaplan–de Maria method, the damage
swath is larger and the losses in turn are greater.

Validation There is a fundamental difficulty in determining if the collection
of stochastic storms consists of realistic events (physically possible) and if the
collection as a whole provides adequate coverage to generate realistic annual loss
costs and probable maximum losses (near term and long term). A common remark
among reviewers of the proprietary models is “let’s wait ten thousand years and see
how it turns out.” Although tongue in cheek, this attitude conveys the difficulty in
assessing competing models against the future reality. The additional phrase, “we’re
doing the best we can,” is an assertion that the subcomponents represent the current
state of the art and that the implementation is meticulous. Evidence that a modeler
can match reasonably well historical insured losses is meaningless if the model has
been at all calibrated just for this purpose. At least for the statistical approach, a
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cross-validation approach has been used extensively [24, 25] to provide objective
evidence of accuracy and reliability of the modeling approach. Although several
variants have been used over the years (all leading to confirmation of the approach),
a common scenario is to use only the data available for the time frame 1851–1990
to develop the statistical model and then use this model to forecast the subsequent
20-year return period winds at each site in the study area with varying levels of
prediction capability (e.g., 50 %, 75 %, 90 %, 95 %) and then tally the proportion of
sites falling into the forecasted categories. This exercise is objective (not using the
same data to validate that was used to develop the model) and lays the groundwork
for further improvements. In contrast, the brute force method to our knowledge
has not been subjected to such scrutiny, since the effort would be massive. Every
distribution in Sect. 28.2 would need to be re-assessed and fit, and then a new 100–
300K years of simulation effort would follow based on the alternate baseline data.

28.5 Final Comments

The authors contend that the statistical approach when validated is superior to
the brute force simulation approach that has become ingrained in the catastrophe
modeling industry. The insurance industry does not appreciate major changes from
1 year to the next that generate large changes in premiums, reserves, or the cost of
re-insurance. The brute force models can be updated each year with another tweak
associated with an additional season. Effects from an active season in which there
were substantial losses can take five or more years to sort out with the easy claims
(readily settled anyway) coming through first and then disputed claims and public
adjusters entering the fray over time. With the statistical approach, results from
the previous season are incorporated as soon as the hurricane characteristics have
been assessed. In an earlier study, fairly simple damage functions were found to
suffice [24] and that the meteorology aspects were the most critical for the overall
variability in the results. Owing to space limitations, the focus in this paper has
been on hurricane perils. However, the same statistical approach has been applied
to earthquakes and other perils—and most notably in developing a comprehensive
approach to an insurance facility in the Caribbean [20].
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Chapter 29
Optimizing Local Estimates of the Monte Carlo
Method for Problems of Laser Sensing
of Scattering Media

Evgeniya Kablukova and Boris Kargin

29.1 Introduction

The current paper is devoted to one way of optimizing Monte Carlo method
algorithms for solving nonstationary problems of laser sensing of natural media.
Such problems are of great interest in connection with wide application of laser
sensors of land, aircraft, and space basing to various practical tasks. For example,
efficiently diagnosing aerosol admixtures in the atmosphere, determining the space-
time transformation of microphysical properties of the atmosphere and many other
problems of optical remote sensing in natural media.

A more detailed list of certain modern physical problem statements for atmo-
sphere and ocean laser sensing and related methods of statistical modeling can be
obtained from a relatively fresh overview [2]. The feasibility of applying Monte
Carlo methods and developing corresponding algorithms for solving problems
of optical radiation transfer theory in scattering and absorbing media have been
discussed in many earlier works, summarized in [3]. The laser sensing problems
under consideration differ from many other problems of atmosphere optics. One
aspect is the presence of complex boundary conditions, connected to the finite size
of the initial beam of radiation and small phase volume of the detector. Another
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is the principally nonstationary character of the radiation transfer process being
modeled. This circumstance defines characteristic requirements to the technique
of statistical modeling. Local estimates (LE), which have high computational cost,
present the only way to compute the properties of radiation registered by a detector
with a small phase volume. To decrease computational cost of the algorithm in
this paper an optimization of local estimates is proposed, based on integrating in
a version of the “splitting” method.

29.2 Statement of the Problem

Consider a volumeG 2 R3 filled with a substance that scatters and absorbs radiation
with coefficients �.r/ and �s.r/, correspondingly, of attenuation and scattering with
scattering indicatrix g.r; �/ such that

Z 1

�1
g.r; �/d� D 1:

Here � D .!0; !/ is the scalar product of the vectors !0; ! 2 ˝ D f! D .a; b; c/ W
a2 C b2 C c2 D 1g—the set of directions. Denote with q.r/ the value �s.r/=�.r/,
which is the probability of survival of a quantum of radiation (a photon) in a
collision with an element of substance and let c be the velocity of propagation of
radiation in the medium.

At the point r0 a source is located, emitting at the moment of time t D 0 an
impulse of radiation of a unit power in a circular directions cone ˝0 with half
opening angle 	0 with respect to the cone’s axis, directed along the unit vector !0
(Fig. 29.1).

Fig. 29.1 The geometrical concept of the problem
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The goal is to determine the time distribution I˝�.r�; t / of radiation coming
to the point r� in directions ! such that �! 2 ˝�, where ˝� is a circular cone
with half opening angle 	� with respect to axis !�. Therefore the functional to
be computed is I˝�.r�; t / D R

R3

R
˝� I.r;�!; t/ı.r � r�/d!dr; in which the

function I.r; !; t/ is the radiation intensity at point r at the moment of time t in the
direction !. It’s known (see, for example, [3]), that radiation intensity is connected
to the collision density '.x/ with the following relation:

I.r; !; t/�.r/ D '.r; !; t/:

Let �.r/ � 0 when r 2 R3nG (which corresponds to the case of absence of
scattering and absorption in the complementary to G subset of the space R3), the
collision density '.x/ in the geometrical optics approximation may be described by
the integral equation [3]

'.x/ D
Z

X

q.r 0/�.r/ exp.��.r 0; r//g.r 0; .!0; !//
2�jr 0 � r j2 ı

�
! � r � r 0

jr � r 0j
�

�ı
�
t �

�
t 0 C jr � r 0j

c

��
'.x0/dx0 C f .x/I (29.1)

x D .r; !; t/ 2 X D R3 �˝ � T; T D .0;1/:

Here f .x/ D �.r/ exp.��.r0; r// �˝0.!/�t

�
t � jr�r0j

c

�
is the primary colli-

sions density of unscattered particles directly from the source, �.r 0; r/ D R jr�r 0j
0

�

.r 0 C s r�r 0

jr�r 0j /ds; �˝0.!/ D
�
1; ! 2 ˝0;

0; otherwise,
�t.t/ D

�
1; t > 0;

0; t 6 0:

29.3 Local Estimates

Let us compute the functional I˝�.r�; t / as a histogram so that the following values
are to be estimated:

I
.i/

˝�.r
�/ D

Z ti

ti�1

I˝�.r�; t /dt; i D 1; : : : ; nt ;

where ti are the histogram nodes; t0 D 0. We use the LE [3] to compute I .i/
˝�.r

�/.

I
.i/

˝�.r
�/ D E

NX

nD1
Qnh

.1/
i .xn; r

�/; (29.2)

h
.1/
i .xn; r

�/ D q.rn/ exp.��.rn; r�//g .rn; .!n; s//
2�jr� � rnj2 �˝�.s/�i .t/



302 E. Kablukova and B. Kargin

where E is the mathematical expectation sign, xn D .rn; !n; tn/ is a Markov chain
with the primary collision density p1.x/ and transition density p.x0; x/, N is the
random number of the termination of the Markov chain, t D tn C jrn � r�j=c,
s D .r� � rn/=jr� � rnj, and

�i.t/ D
�
1; if t 2 .ti�1; ti �;
0; otherwise.

�˝�.!/ D
�
1; if � ! 2 ˝�;
0; otherwise.

Weight multipliers Qn in accordance with the theory of weight Monte Carlo
methods [3, 4] are defined by the expressions: Q1 D f .x/

p1.x/
, Qn D Qn�1 k.xn�1;xn/

p.xn�1;xn/
;

n D 2; : : : ; N; here k.x0; x/ is the kernel of Eq. (29.1).
It’s easily seen that Eq. (29.1) is equivalent to the equation

'.x/ D K2'.x/C Kf .x/C f .x/; (29.3)

where K is the integral operator with kernel k.x0; x/: The local estimate h.2/i to

compute I .i/
˝�.r

�/ based upon the representation (29.3) is called a double local
estimate (DLE). This estimate is defined by the formula

I˝�.r�; t / D
Z

X

k2.x
0; x�/'.x0/dx0 (29.4)

where k2.x
0; x�/ D

Z

X
QG

k.x0; �/k.�; x�/d�:

In the latter integral integration is performed over QG D f�.s/ 2 G W �.s/ D r� C !s;

! 2 ˝�; s > 0g: In the case when the DLE is used, instead of (29.2) we have

I
.i/

˝�.r
�/ D E� D E

 
Q1h

.1/
i .x1; r

�/C
NX

nD1
Qnh

.2/
i .xn; r

�; �n/
!
; (29.5)

h
.2/
i .x; r

�; �/ D
q.r/q.�/�.�/e��.r;�/��.�;r�/g.r; .!; !�//g

�
�;
�
!�;

r���
jr���j

��

.2�/2j� � r j2p.�/

��˝�

�
r� � �

jr� � �j
�
�i

�
t C j� � r j C jr� � �j

c

�
:

Here !� D ��r
j��r j ; p.�/ is an arbitrary distribution density of an intermediate

random node �, which is chosen so that �.r� � �/=jr� � �j 2 ˝�. The freedom
of choice of p.�/ allows optimizing the estimate (29.5) to decrease the algorithm’s
computational cost.

The estimate (29.5) has an infinite variance, so in practice a biased intensity
estimate with a finite variance is computed instead. In this case for a point
of collision .rn; !n; tn/ an additional random node � is chosen randomly in
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QGnB"; B" D fQr 2 R3 W jrn � Qr j < "g, where " is a certain positive number
chosen beforehand. Note that the relative calculation error of the value I˝�.r�/ due
to substraction of the ball B" may be approximately estimated (see [1]) by the value
q.r/.1��0/
1�q.r/�0 .1 � exp.��.r/"//, where �0 D R 1

�1 �g.r; �/d� is the average scattering
angle cosine at point r .

29.4 Modified Estimate

Consider a certain area QG� 2 G, such that QG 2 QG� . For collision points
xn D .rn; !n; tn/ such that rn 2 QG� the computation of the integral (29.4) will be
conducted on a certain predefined number K of integrating nodes. In this case, the
function h.2/i in (29.5) is substituted with

h
.3/
i .x; r

�/ D 1

K

KX

kD1
h
.2/
i .x; r

�; �k/ (29.6)

For xn such that rn 2 G n QG� , the contribution into the DLE is computed on a
single random integrating node � (K D 1). In the current paper for test calculations
the linear dimension of the area QG� was chosen of an order of magnitude with the
particle’s free pass length while traveling through the area G.

To determine the optimal number of integrating nodes in the area QG� 2 G,
consider the problem of computing a time integral for radiation intensity incoming
to the point r� of the source in a given directions cone. Let us use the complete
variance formula and the method of determining optimal parameters of the splitting
method [4].

Let h.1/i .x1; r
�/ D 0. Let us present the modified double local estimate (MDLE)

of radiation intensity in the form

�.K/ D
NX

nD1
Qnh

.2/.xn; r
�jrn 2 G n QG�/C

NX

nD1
Qnh

.3/.xn; r
�jrn 2 QG�/:

Let � D .x1; : : : ; xN / be the sequence of phase coordinates of the photon collision
points with matter particles and let � D .�11; : : : ; �

s
1; : : : ; �

1
N ; : : : ; �

s
N / be the random

integrating nodes �ji 2 QG for a sequence of collision points � (s D 1 if rn 2 G n QG�;
s D K if rn 2 QG�). Let us use the complete variance formula for the random variable
�.K/ [4]:

D�.K/ D D�E�.�.K/j�/C E�D�.�
.K/j�/

D D�E�.
NX

nD1
Qnh

.2/.xn; r
�jx 2 �; rn 2 G n QG�/
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C
NX

nD1
Qnh

.3/.xn; r
�jx 2 �; rn 2 QG"//

CE�D�.

NX

nD1
Qnh

.2/.xn; r
�jx 2 �; rn 2 G n QG�//

CE�D�.

NX

nD1
Qnh

.3/.xn; r
�jx 2 �; rn 2 QG�//:

The latest equality is true, because

D�.�
.K/j�/ D D�.�

.K/j�; rn 2 G n QG�/C D�.�
.K/j�; rn 2 QG�/

for independent �ji . Using the independence and identical distributions of the
components of the vector �, as well as the formula (29.6), we get D�h

.3/

.xn; r
�jxn 2 �; rn 2 QG�/ D 1

K
D�h

.2/.xn; r
�jxn 2 �; rn 2 QG�/. Denote with

D1 D D�E�.�.K/j�/C E�D�.
PN

nD1 Qnh
.2/.xn; r

�jx 2 �; rn 2 G n QG�// and with

D2 D E�D�

NX

nD1
Qnh

.2/.xn; r
�jx 2 �; rn 2 QG�/:

Then D�.K/ D D1 CD2=K.
Let t1 be the average time for modeling collision points xn, n D 1; : : : ; N , let

t2 be the average time for modeling one additional integrating node �n for each xn,
n D 1; : : : ; N and computing the value of the functional h.2/.xn; r�/, l1 and l2 be
the average ratios of the number of collision points xn in the areas G n QG� and QG� to
their total number, l1 C l2 D 1. Then the average time required for computing one
sample value �.K/i of the random variable �.K/ is equal to

t .K/ D t1.l1 C l2/C t2.l1 CKl2/ D t1 C t2l1 CKt2l2 D Qt1 CK Qt2;
Qt1 D t1 C t2l1; Qt2 D t2l2:

The optimal value of K minimizes the computational cost

S.K/ D t .K/D�.K/ D .Qt1 CK Qt2/.D1 CD2=K/:

Calculating the derivative and taking into account that the values D1, D2, Qt1, Qt2
are positive, we get that the optimal numberK is approximately equal to the integer
number closest to the expression [4]

Kopt 
s
D2 Qt1
D1 Qt2 : (29.7)
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The values D1, D2, Qt1, Qt2 may be approximately estimated from results of
preliminary calculations, computing the intensity estimate twice: once for K D 1

and once for a certain given K. In this case, knowing the average time t .1/ required
for computing one sample value �.1/i and average time t .K/ for a value �.K/i of

random values �.1/ and �.K/ we have t2 D t .K/�t .1/
.K�1/l2 and t1 D t .1/ � t2, therefore

Qt1 D t .1/K � t .K/
K � 1 ; Qt2 D t .K/ � t .1/

K � 1 :

D1 may be estimated from the formula D1 D D�.K/ �D2=K.

29.5 Results of Numeric Experiments

Further we illustrate the efficiency of the proposed algorithm by the results of
calculating an estimate for radiation intensity I˝�.r�/ and the time distribution of
radiation intensity I .i/

˝�.r
�; t / for a flat layer G D f. Qx; Qy; Qz/ 2 R3 W h 6 Qz 6 H g

filled with an absorbing and scattering medium. The following parameters are used
in the calculation: h D 0:5 km; H D 0:9 km, attenuation coefficient of the medium
�.r/ � ˙ � 50 km�1; survival probability q D 0:95 and the Henyey–Greenstein
scattering indicatrix g.�/ D .1 � ˛2/=2.1 C ˛2 � 2˛�/3=2; � 2 .�1;C1/ with
various parameters ˛. The radiation detector was supposed to be located at the origin
r� D .0; 0; 0/, its axis coincides with !� D .0; 0; 1/. The radiation source, located
at point r0 D .�0:7 km; 0; 0/, emits an impulse of unit power in a circular cone with
aperture 	0 D 2000 in the direction !0 D .

p
2=2; 0;

p
2=2/.

In Table 29.1 a comparison of computational costs S D �2T is presented
for the methods of DLE and MDLE for computing radiation intensity I˝�.r�/
with the abovementioned parameters of the scattering medium with ˛ D 0:8

and the detector aperture 	� D 1ı. Here T is the average time required for
modeling one random trajectory, � D p

DI˝�.r�/=n is the standard deviation of
the estimates. When the radiation intensity was calculated by the MDLE for points
fxn 2 X jrn 2 QG" D fr 2 G W � r�r�

jr�r�j ; !
�	 > cos 3ıgg the number K of additional

integration nodes �k was varied from 25 to 250, K D 1 for all other points xn.
Radiation intensity was estimated on n D 109 trajectories, the computation time

Table 29.1 Computational cost S , standard deviation � of the modified double local
estimate of radiation intensity I˝� .r�/ for different K

K 1 25 50 100 150 180 200 230 250

S � 107 33 3.4 4.2 3.9 4.4 2.7 1.9 2.0 1.8

t � 10�4s 5.34 5.97 6.9 8.6 10.5 11.4 12.4 13.4 14.16

� � 106 7.84 2.39 2.47 2.12 2.06 1.54 1.23 1.21 1.09
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Fig. 29.2 Estimate of the time distribution of radiation intensity I .i/˝� .r�; t /, calculated with the
double local and modified double local estimates. ˛ D 0:8, 	� D 3000

denoted by t . From the table we can see that the computational cost S is almost
identical for K D 200 � 250 and is considerably less than the computational cost
of the DLE (K D 1). These results are in accordance with preliminary calculations
by the formula (29.7) in which the values D1 and D2 were estimated on n D 108

trajectories from which an optimal value of Kopt  205 was obtained.
In the following calculations to construct an MDLE the area G was divided

into several concentric cones: let �.r/ D
�
r�r�

jr�r�j ; !
�
�

and QG1 D .r 2 G W
�1 6 �.r/ 6 �2/, QG2 D .r 2 G W �2 6 �.r/ 6 �3/ ; QG3 D .r 2 G W �.r/ > �3/ :

In presented calculations, �1 D cos 5ı; �2 D cos 2ı; �3 D cos 0:5ı. For points
fxn 2 X jrn 62 QG1 [ QG2 [ QG3g the functional (29.6) was estimated on one additional
random node � (K D 1). For fxn 2 X jrn 2 QG1 [ QG2 [ QG3g the choice of number
of additional nodes K1;K2;K3 was made in accordance with several radiation
intensity I .i/

˝�.r
�; t / estimates constructed on n D 107 � 108 trajectories.

In Fig. 29.2 the estimates of the time distribution of radiation intensity I .i/
˝�.r

�; t /
for indicatrix parameter ˛ D 0:8 and the detector with aperture 	� D 3000 in the
time interval [4.6�s, 7.2�s] with histogram step 0.1�s are presented. The number
of additional integration nodes �k was equal to K1 D 20; K2 D 30; K3 D 50:

The bold line depicts the standard deviations �i ; i D 1; : : : ; nt of the DLE, the thin
line—standard deviations �i ; i D 1; : : : ; nt of the MDLE.

In Table 29.2 we present the computational costs S of LE for various apertures
of the detector 	� and indicatrix parameter values ˛ D 0:7; 0:8. For small detector
apertures (of an order of magnitude with 	� D 10 or less) the LE constructed
on n D 109 trajectories does not produce a satisfactory calculation precision
for the time distribution of radiation intensity I .i/

˝�.r
�; t /. The standard deviations

and computational costs S are also large in this case. This data confirms that the
computational cost S of MDLE is less than the computational cost of DLE for all
presented parameters 	�; ˛.
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Table 29.2 Computational cost S of considered methods for 	� D
f1ı; 300; 10; 3000g, for ˛ D 0:7—K1 D 40;K2 D 60;K3 D 100; for
˛ D 0:8—K1 D 20;K2 D 30;K3 D 50

Method 1ı 300 10 3000

˛ D 0:7

LE 2:3 � 10�8 7:0 � 10�9 – –

DLE 54 � 10�8 49 � 10�9 7:7 � 10�13 3:4 � 10�14

MDLE 2:2 � 10�8 3:0 � 10�9 0:11 � 10�13 0:13 � 10�14

˛ D 0:8

LE 6:9 � 10�8 1:6 � 10�8 – –

DLE 1:4 � 10�6 4:7 � 10�7 2:8 � 10�13 1:7 � 10�14

MDLE 2:2 � 10�7 2:7 � 10�8 8:2 � 10�14 2:5 � 10�15

Conclusion
Comparing the DLE with the modification proposed in this paper we can
conclude that using the “splitting” method allows to considerably reduce the
computational cost of the algorithm. It shows most prominently in problems
with “smooth” scattering indicatrices (˛ D 0:8�0:6) and big enough detector
apertures 	�. But even for elongated indicatrices and small detector apertures
	� the proposed modifications keep the advantage in computational cost over
the DLE (29.5).
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Chapter 30
Computer Experiment Designs via Particle
Swarm Optimization

Erin Leatherman, Angela Dean, and Thomas Santner

30.1 Computer Experiments and Emulators

Computer experiments are used widely in diverse research areas such as
engineering, biomechanics, and the physical and life sciences. Computer
experiments use computer simulators as experimental tools to provide outputs
y.x/ at specified design input points x, where a computer simulator is the computer
implementation of a mathematical model that describes the relationships between
the input and output variables in the physical system. Computer experiments can be
especially attractive when physical experiments are infeasible, unethical, or “costly
to run.”

For fast running codes, the output response surface can be explored by evaluating
(running) the simulator at a set of inputs x D .x1; : : : ; xk/ that are dense in the
space of possible inputs, X . For slow-running codes, an approximator (also called
an “emulator” or “metamodel”) is often sought for the simulator output y.x/; such
metamodels allow, for example, the detailed (approximate) exploration of the output
surface (see, for example, Santner et al. [18]).

One rapidly computable class of emulators for deterministic computer simulator
output y.x/ assumes that y.x/ can be modeled as a realization of a Gaussian
Stochastic Process Y.x/ (GaSP). In this paper, the input space X for the k inputs is
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rectangular and is rectangular and scaled to Œ0; 1�k . The GaSP models are assumed
to take the form

Y.x/ D
pX

`D0
f`.x/ˇ` CZ.x/ D f 0.x/ˇ C Z.x/ ; (30.1)

where f 0.x/ D �
f1.x/; : : : ; fp.x/

	
is a vector of known regression functions, ˇ D�

ˇ1; : : : ; ˇp
	0

is a p � 1 vector of unknown regression coefficients and Z.x/ is a
zero-mean, stationary Gaussian stochastic process on X with covariance

Cov .Z.xu/; Z.xv// D �2Z �R.xu � xv j 	/ D
kY

jD1
�
4.xuj�xvj /2
j ;

where xuj ; xvj are the j th elements of input points xu;xv 2 X , j D 1; : : : ; k,
	 D .�1; �2; : : : ; �k/

0, and �j 2 Œ0; 1� is the correlation between two outputs whose
xu and xv differ only in the j th dimension by jxuj �xvj j D 1=2, which is half their
domain.

The design for the computer experiment is denoted by an n � k matrix X 2
D.n; k/ whose i th row is defined by the i th design point x0i D .xi1; : : : ; xik/;
D.n; k/ denotes the class of all designs with n runs, k input variables, and input
space X .

Let yn D .y.x1/; : : : ; y.xn//
0 denote (training) data to be used for estimating the

simulator output y.x0/ and let Y n denote the corresponding random vector. When
ˇ is unknown, but the correlation parameters 	 are known, the best linear unbiased
predictor (BLUP) of y.x0/ can be shown to be Oy.x0/ D f 0x0b̌ C r 0x0R

�1.yn �
F b̌/ ; where b̌ D .F TR�1F /�1F TR�1yn (see, for example, [17]). Here b̌ is
the generalized least squares estimator of ˇ, F is an n � p matrix with uth row
f 0.xu/, R is an n � n matrix whose .u; v/th element is R.xu � xv j 	/, and r 0x0 D
.R.x0 � x1 j 	/; : : : ; R.x0 � xn j 	// is a 1 � n vector.

30.2 Design Criteria

Space-filling designs are popular choices for computer experiments when fitting
GaSP models, (see, for example, [9] and [3]). Space-filling criteria ensure that
the entire input space is sampled by preventing design points from being “close”
together.

Two important space-filling criteria are the maximin (Mm) and the Average
Reciprocal Distance (ARD) criteria. The Mm criterion specifies that a design
XMm 2 D.n; k/ that maximizes the minimum interpoint distance

min
xu;xv2X

q.xu;xv/ (30.2)
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is optimal where q.xu;xv/ is the distance between xu and xv . Here and below, we
use Euclidean distance, but other metrics could equally well be used.

The ARD criterion is specified by a given set J 
 f1; : : : ; kg of sub-dimensions
over which the distances are to be computed (e.g., [2,14]). A design XARD is ARD-
optimal with respect to J if it minimizes

avz.X/ D 1
�
n
2

	P
j2J

�
k
j

	
X

j2J

.kj/X

`D1

X

x?u ;x
?
v2X j̀



j 1=z

q.x?u ;x
?
v/

�
(30.3)

where X j̀ is the `th subspace of X having dimension j , x?u and x?v are the
projections of xu, xv onto X j̀ , and q.x?u ;x

?
v/ is the distance between x?u and x?v .

For prediction, [12] and [15] showed that process-based design criteria produce
better designs than do space-filling criteria. Process-based criteria involve the
chosen emulator rather than geometric properties. Such criteria include the minimum
integrated mean squared prediction error (IMSPE) [16], maximum entropy [19],
and maximum expected improvement [4]. For example, for a given 	, �2Z and
predictor Oy.�/, the IMSPE-optimal design X I 2 D.n; k/ minimizes

IMSPE� .X j 	/ D 1

�2Z

Z

XDŒ0;1�d
E
h
.by.w/ � Y.w//2 j 	; �2Z

i
dw (30.4)

where the expectation is over the joint distribution of .Y.w/;Y n/. If the values of
the correlation parameters 	 cannot be specified in advance of the experiment but a
distribution �.	/ of possible values is approximately known, an alternative criterion
is to minimize the IMSPE weighted by �.	/, as in [12]. The examples in [12]
use � .	/ D Qk

jD1 �.�j / and independent Beta distributions for �.�1/; : : : ; �.�k/.
For given �.	/, a design XA that minimizes weighted (averaged) integrated mean
squared prediction error:

W-IMSPE� .X/ D
Z

Œ0;1�k
IMSPE� .X j 	/ � .	/ d	 (30.5)

is said to be W-IMSPE�-optimal.
For each of the four criteria (30.2)–(30.5), Fig. 30.1 shows approximate optimal

designs with k D 2 inputs and n D 20 runs constructed using particle swarm
optimization (PSO) followed by a quasi-Newton optimizer. The PSO used is
described in Sect. 30.3; it took Ndes D 4nk D 160 “particles” and Nits D 8nk D
320 “iterations.” Maximin designs tend to have design points on the boundary of the
input region; as seen in the top left of Fig. 30.1, this is true in this example where 12
of the 20 points are on, or close to, the boundary. The minimum distance between the
points in this design is 0.2729, which is close to the maximum achievable minimum
interpoint distance of 0.2866 (http://www.packomania.com/).

http://www.packomania.com/
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Fig. 30.1 Approximate optimal designs for k D 2 inputs, n D 20 runs, using crite-
ria (30.2)–(30.5) (criterion value in parentheses): Panel (a) Mm design (0.2729); panel (b) min
ARD design (2.2096); panel (c) min IMSPE� design (2.2827�10�6); panel (d) min W-IMSPE�

design (4.1192�10�4)

The minimum ARD design, shown in the top right of Fig. 30.1, used J D f1; 2g
so that the ARD was calculated as an average over the two-dimensional input space
and its two one-dimensional projections. The resulting design has more uniformly
spread points in the one-dimensional subspaces than the maximin design, but at the
cost of less uniformity in the two-dimensional space. A more uniform distribution
of two-dimensional points would arise if J D f2g were to be used rather than
J D f1; 2g.

For the minimum IMSPE� design, shown in the bottom left of Fig. 30.1, the
correlation parameters, �1 and �2 were set to 0.75 (see [12, 16]). For the minimum
W-IMSPE� design, �.	/ took each of �1 and �2 to be Beta(37.96,37.96) (found
by Leatherman et al. [12] to perform well for prediction). Although, visually,
both of these designs seem to have more uniform two-dimensional spread than
the maximin design, their minimum interpoint distances (MIPDs) are, respectively,
0.1954 and 0.2043, about 75% of the MIPD 0.2729 for the Mm design. For more
information on the prediction performances of space-filling, IMSPE�-optimal, and
W-IMSPE�-optimal designs for different parameter values, see [12].
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30.3 Particle Swarm Optimization

Many optimization methods have been suggested in the literature; see, for example,
[7] and [20] for surveys. Some methods are most effective in local searches of the
input space; for example, gradient-based methods such as the Newton and quasi-
Newton algorithms (see, for example, [7]). Other optimization methods emphasize
a global search over the entire input space; for example, genetic algorithms [8],
simulated annealing [11], and particle swarm optimization [10]. Some methods,
such as simulated annealing [11] and mesh adaptive direct search [1], have iteration-
dependent parameters that enable them to search both globally and locally.

PSO algorithms introduced in [10], have had many applications including the
computation of optimal designs for physical experiments using classical criteria
[5, 6] and by Leatherman et al. [12] to find optimal designs for computer experi-
ments. Leatherman et al. [12] used the output of PSO to identify starting points for a
gradient-based, constrained non-linear optimizer (fmincon.m from the MATLAB
Optimization toolbox).

In more detail, to find an n � k optimal design, PSO starts with a number (Ndes)
of n � k initial designs X 1; : : :XNdes . Each X i is reshaped (column-wise) into an
nk � 1 vector z1i D vec .X i /, called the i th particle, i D 1; 2; : : : ; Ndes. To ensure
wide exploration of the nk-dimensional input space, the initial set of Ndes particles
can be selected as an Ndes � nk approximate Mm Latin Hypercube Design.

At iteration t , t D 1; 2; : : : ; Nits, every particle zti is “updated,” using (30.6)
to ztC1i , and then evaluated under the criterion of interest. The update
requires the following notation. At iteration t , let gt denote that particle zti
2 ˚

zt
?

i j i D 1; : : : ; NdesI t? 6 t
�

that produces the global best value of the criterion
of interest. Similarly, for each particle i , let pti denote that zti 2 ˚zt?i j t? 6 t

�
having

particle best value of the criterion. Then

ztC1i D zti C vtC1i ; (30.6)

where vtC1i D 	vti C ˛�1
t
i ı �gt � zti

	 C ˇ�2
t
i ı �pti � zti

	
, ı is elementwise

product of vectors, �1
t
i and �2

t
i are independent random vectors whose elements are

independent Uniform[0,1], ˛ and ˇ are weights put on the step toward the global-
and personal- best positions, respectively, 	 2 Œ0; 1� is the “inertia” parameter, and
vti 2 Œ�0:25; 0:25�.

The examples in Sect. 30.4 took ˛ D ˇ D 2, 	 D 0:5, and initial velocity
v1i D 0nk , as recommended by [10] and [20]. There we describe the results of PSO in
searching for a Mm design with .n; k/ D .60; 6/ for different numbers of “particles”
and different numbers of iterations, with and without final local optimization. The
use of PSO for obtaining IMSPE�-optimal and W-IMSPE�-optimal designs is
described in [12].

We now illustrate the working of PSO in a “toy” example with .n; k/ D .1; 2/

so that each zti is a two-dimensional vector (since nk D 2). Figure 30.2 shows
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Fig. 30.2 Panel (a) Iteration 1, min fnc value = 3.6087; panel (b) Iteration 2, min fnc value =
3.6087; panel (c) Iteration 3, min fnc value = 3.6087; panel (d) Iteration 5, min fnc value = 2.0557;
panel (e) Iteration 10, min fnc value = 1.1776; panel (f) Iteration 24, min fnc value = 1.0118

Ndes D 8 zti positions after Nits D 1; 2; 3; 5; 10; 24 iterations, together with the
(unknown) contours of the design criterion, which is to be minimized. The optimal
value is 1.0116, located at [0.1215, 0.8240].

Panel (a) of Fig. 30.2 (labeled “Iteration 1”) shows the initial particle starting
locations, chosen as a maximin LHD. The particle located in the top left corner
of the scatterplot corresponds to the design that has the minimum criterion value
.D 3:6087/ when t D 1, so this location is g1. At Iteration t D 2, the particles have
taken one step towards g1 plus a random perturbation, using (30.6). The stars denote
the current particle positions z2i , and the open circles denote the starting positions
which form the current particle-best p2i . An evaluation of the criterion values of
the designs corresponding to the new particle positions, z2i , i D 1; : : : ; 8, finds that
the global best design remains unchanged, i.e., g2 D g1. At t D 3, each particle
i .D 1; : : : ; 8/ moves from z2i towards a weighted combination of the global best
particle position, g2, and its personal best position p2i resulting in z3i . Again the
global best position is unchanged so that g3 D g2 D g1. Some of the particle-
best positions (open circles) have changed, such as that originally on the right-hand
border of the picture, while others remain the same, such as that one on the bottom
border. By iteration t D 5 (panel (d)), most of the particles are closing in on the
optimum, and one particle has found a better location than g3 with a smaller criterion
value of 2.0557. This implies that the previous best particle, which had not moved
in previous iterations, will now start to move towards the new best position.

By iteration t D 10, all but two of the z10i are in the top left corner of the figure,
and one of these six has found a better location with criterion value 1:1776. The two
remaining z10i are still drawn towards their previous particle-best positions further
“south.” One of these zti particles has not found a position better than the location
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where it started. Because PSO requires only that one particle find the optimum,
increasing the number of particles simply increases the chance that the optimum
is located quickly. Here, with only eight particles in two-dimensional space, by
iteration 24, the global best zti is g24 D Œ0:1211; 0:8249� corresponding to a criterion
value of 1:0118, very close to the true optimum of 1.0116. The PSO search could
be followed by a gradient-based, constrained non-linear optimizer to hone in on the
exact optimum.

30.4 Quality of Designs Produced

Table 30.1 investigates the effect of varying Ndes and Nits in a PSO search for a Mm
design having k D 6 inputs and n D 60 runs. The running times on a Linux compute
machine, having a Dual Quad Core Xeon 2.66 processor with 32GB RAM are
shown, together with the achieved MIPD (to be maximized). The effect of following
PSO by the local optimizer, fmincon.m starting at at gNits is also shown.

For a given number of particles, Ndes, the left portion of Table 30.1 shows a
steady increase in the maximized MIPD of the computed design as the number
of iterations, Nits, increases. The right portion of the table shows that an increase
in MIPD could usually be achieved by following PSO with fmincon starting at
particle gNits . The extra run time needed for additional iterations and/or use of a
local optimizer is worthwhile.

Interestingly, for all fourNdes values, running fmincon with starting particle g1

produced a better design than was obtained by running 20nk D 7;200 iterations of
PSO alone. This suggests that a considerably larger value of Ndes would be needed
to find the optimum using only PSO. Results of a modified PSO are given by [6]
for searching for maximin LHDs using approximately Ndes D 8000nk and Nits D
100nk.

Finally, Table 30.1 shows the empirical mean squared prediction error
(empMSPE) obtained when using the design to fit the empirical best linear unbiased
predictor obtained from (30.1) to outputs from one particular k D 6 output function.
The values are generally, but not always, lower for designs with larger MIPD.
However, maximin is not the best criterion for prediction [12, 15]. A study is
currently being carried out on PSO in constructing W-IMSPE�-optimal designs for
calibration [13].
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Chapter 31
Application of Nonparametric Goodness-of-Fit
Tests for Composite Hypotheses in Case
of Unknown Distributions of Statistics

Boris Yu. Lemeshko, Alisa A. Gorbunova, Stanislav B. Lemeshko,
and Andrey P. Rogozhnikov

31.1 Introduction

Classical nonparametric tests were constructed for testing simple hypotheses: H0 W
F.x/ D F.x; 	/, where 	 is known scalar or vector parameter of the distribution
function F.x; 	/. When testing simple hypotheses nonparametric criteria are
distribution free, i.e. the distribution G.S jH0/, where S is the test statistic, does
not depend on the F.x; 	/ when the hypothesis H0 is true.

When testing composite hypotheses H0 W F.x/ 2 fF.x; 	/; 	 2 
g, where
the estimate O	 of a scalar or vector parameter of the distribution F.x; 	/ is
calculated from the same sample, nonparametric tests lose the distribution freedom.
Conditional distributions G.S jH0/ of tests statistics for composite hypotheses
depend on a number of factors: the type of the distribution F.x; 	/, corresponding
to the true hypothesis H0; the type of the estimated parameter and the number of
estimated parameters and, in some cases, the value of the parameter; the method of
the parameter estimation.

31.2 Nonparametric Goodness-of-Fit Criteria
for Testing Simple Hypotheses

In Kolmogorov test statistic the distance between the empirical and theoretical
distribution is determined by
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Dn D sup
jxj<1

jFn.x/ � F.x; 	/j ;

where Fn.x/ is the empirical distribution function, n is the sample size. When
n ! 1, distribution of statistic

p
nDn for true hypothesis under test uniformly

converges to the Kolmogorov distribution [15]

K.S/ D
1X

kD�1
.�1/ke�2k2s2 :

While testing hypothesis using the Kolmogorov test it is advisable to use the
statistic with Bolshev correction [4] given by [5]:

SK D 6nDn C 1

6
p
n

; (31.1)

where Dn D max.DCn ;D�n /,

DCn D max
16i6n

�
i

n
� F.xi ; 	/


;D�n D max

16i6n

�
F.xi ; 	/ � i � 1

n


;

n is the sample size, x1; x2; : : : ; xn are the sample values in an increasing order.
When a simple hypothesis H0 under test is true, the statistic (31.1) converges to the
Kolmogorov distribution significantly faster than statistic

p
nDn.

The statistic of Cramer–von Mises–Smirnov test has the following form [3]:

S! D 1

12n
C

nX

iD1

�
F.xi ; 	/ � 2i � 1

2n

 2
; (31.2)

and Anderson–Darling test statistic [2, 3] is

S˝ D �n � 2
nX

iD1

�
2i � 1
2n

lnF.xi ; 	/C
�
1 � 2i � 1

2n

�
ln.1 � F.xi ; 	//


:

(31.3)

When testing simple hypotheses, statistic (31.2) has the following distribution
a1.s/ and the statistic (31.3) has the distribution a2.s/ [5].

The Kuiper test [16] is based on the statistic Vn D DCn C D�n . The limit
distribution of statistic

p
nVn while testing simple hypothesis is the following

distribution function [36]:

G.sjH0/ D 1 �
1X

mD1
2.4m2s2 � 1/e�2m2s2 :
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The following modification of the statistic converges faster to the limit
distribution [38]:

V D Vn

�p
nC 0:155C 0:24p

n

�
;

or the modification that we have chosen:

V mod
n D p

n.DCn CD�n /C 1

3
p
n
: (31.4)

Dependence of the distribution of statistic (31.4) on the sample size is practically
negligible when n > 30.

As a model of limit distribution we can use the beta distribution of the third kind
with the density

f .s/ D 	
	0
2

	3B.	0; 	1/

�
s�	4
	3

�	0�1 �
1 � s�	4

	3

�	1�1

h
1C .	2 � 1/ s�	4

	3

i	0C	1 ;

and the vector of parameters � D .7:8624; 7:6629; 2:6927; 0:495/T , obtained by the
simulation of the distribution of the statistic (31.4).

Watson test [41, 42] is used in the following form

U 2
n D

nX

iD1

 
F.xi ; 	/ � i � 1

2

n

!2
� n

 
1

n

nX

iD1
F.xi ; 	/ � 1

2

!
C 1

12n
: (31.5)

The limit distribution of the statistic (31.5) while testing simple hypotheses is
given by [41, 42]:

G.sjH0/ D 1 � 2
1X

mD1
.�1/m�1e�2m2�2s:

The good model for the limit distribution of the statistic (31.5) is the inverse
Gaussian distribution with the density

f .s/ D 1

	2

0

B@
	0

2�
�
s�	3
	2

�2

1

CA

1=2

exp

0

@�
	0

��
s�	3
	2

�
� 	1

�

2	21

�
s�	3
	2

�

1

A
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and the vector of parameters � D .0:2044; 0:08344; 1:0; 0:0/T , obtained by the
simulation of the empirical distribution of the statistic (31.5). This distribution as
well as the limit one could be used in testing simple hypotheses with Watson test to
calculate the achieved significance level.

Zhang tests were proposed in papers [43–45]. The statistics of these criteria are:

ZKD max
16i6n

 �
i�1
2

�
log

(
i� 1

2

nF.xi ; 	/

)
C
�
n � iC1

2

�
log

"
n�1C 1

2

nf1�F.xi ; 	/g

#!
;

(31.6)

ZA D �
X

iD1
n

"
log fF.xi ; 	/g
n � i C 1

2

C log f1 � F.xi ; 	/g
i � 1

2

#
; (31.7)

ZC D
X

iD1
n

"
log

(
ŒF .xi ; 	/�

�1 � 1�
n � 1

2

	
=
�
i � 3

4

	 � 1

)#2
: (31.8)

The author gives the percentage points for statistics distributions for the case
of testing simple hypotheses. The strong dependence of statistics distributions on
the sample size n prevents one from wide use of the criteria with the statistics
(31.6)–(31.8). For example, Fig. 31.1 shows a dependence of the distribution of
the statistics (31.7) on the sample size while testing simple hypotheses.

Of course, this dependence on the sample size n remains for the case of testing
composite hypotheses.

Fig. 31.1 The distribution Gn.ZAjH0/ of statistic (31.7) depending on the sample size n for
testing simple hypothesis
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31.3 Comparative Analysis of the Tests Power

In papers [25–27] the power of Kolmogorov (K), Cramer–von Mises–Smirnov
(KMS ), Anderson–Darling (AD) tests, and also �2 criteria was analyzed and
compared for testing simple and composite hypotheses for a number of different
pairs of competing distributions. In the case of testing simple hypotheses and using
asymptotically optimal grouping [17] in �2 criterion, this test has the advantage
in power compared with nonparametric tests [25, 26]. When testing composite
hypotheses, the power of nonparametric tests increases significantly, and they
become more powerful.

In order to be able to compare the power of Kuiper (Vn), Watson (U 2
n ), and Zhang

tests (ZK ,ZA,ZC ) with the power of other goodness-of-fit tests, the power of these
criteria was calculated for the same pairs of competing distributions in the paper
[19] alike papers [25–27].

The first pair is the normal and logistics distribution: for the hypothesis H0—the
normal distribution with the density:

f .x/ D 1

	0
p
2�

exp

�
� .x � 	1/2

2	20


;

and for competing hypothesis H1—the logistic distribution with the density:

f .x/ D �

	1
p
3

exp

�
��.x � 	0/

	1
p
3

 ,

1C exp

�
��.x � 	0/

	1
p
3

�2
;

and parameters 	0 D 1, 	1 D 1. For the simple hypothesis H0 parameters of the
normal distribution have the same values. These two distributions are close and
difficult to distinguish with goodness-of-fit tests.

The second pair was the following: H0—Weibull distribution with the density

f .x/ D 	0.x � 	2/	0�1
	
	0
1

exp

(
�
�
x � 	2
	1

�	0)

and parameters 	0 D 2, 	1 D 2, 	2 D 0;H1 corresponds to gamma distribution with
the density

f .x/ D 1

	1 .	0/

�
x � 	2
	1

�	0�1
e�.x�	2/=	1

and parameters 	0 D 2:12154, 	1 D 0:557706, 	2 D 0, when gamma distribution is
the closest to the Weibull counterpart.

Comparing the estimates of the power for the Kuiper, Watson and Zhang
tests [19] with results for Kolmogorov, Cramer–von Mises–Smirnov, and
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Anderson–Darling tests [25–27], the nonparametric tests can be ordered by decrease
in power as follows:

• for testing simple hypotheses with a pair “normal—logistic”:ZC � ZA � ZK �
U 2
n � Vn � AD � K � KMS ;

• for testing simple hypotheses with a pair “Weibull—gamma”: ZC � ZA �
ZK � U 2

n � Vn � AD � KMS � K;
• for testing composite hypotheses with a pair “normal—logistic”: ZA  ZC �
ZK � AD � KMS � U 2

n � Vn � K;
• for testing composite hypotheses with a pair “Weibull—gamma”: ZA � ZC �
AD � ZK � KMS � U 2

n � Vn � K.

31.4 The Distribution of Statistics for Testing Composite
Hypotheses

When testing composite hypotheses conditional distributionG.S jH0/ of the statistic
depends on several factors: the type of the observed distribution for true hypothesis
H0; the type of the estimated parameter and the number of parameters to be
estimated, in some cases the parameter values (e.g., for the families of gamma and
beta distributions), the method of parameter estimation. The differences between
distributions of the one statistic for testing simple and composite hypotheses are
very significant, so we could not neglect this fact. For example, Fig. 31.2 shows
the distribution of Kuiper statistic (31.4) for testing composite hypotheses for
the different distributions using maximum likelihood estimates (MLE) of the two
parameters.

Fig. 31.2 The distribution of Kuiper statistic (31.4) for testing composite hypotheses using MLEs
of the two parameters
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Fig. 31.3 The distribution of Watson statistic (31.5) for testing composite hypotheses using MLEs
of different number of parameters of the Su-Johnson distribution

Fig. 31.4 The distribution of Anderson–Darling statistics (31.3) for testing composite hypotheses
using MLEs of three parameters of the generalized normal distribution, depending on the value of
the shape parameter 	0

Figure 31.3 illustrates the dependence of the distribution of the Watson test
statistic (31.5) on the type and the number of estimated parameters having as an
example the Su-Johnson distribution with a density:

f .x/ D 	1p
2�

q
.x � 	3/2 C 	22

exp

8
<̂

:̂
�1
2

2

4	0 C 	1 ln

8
<

:
x � 	3
	2
C
s�

x � 	3
	2

�2
C 1

9
=

;

3

5
2
9
>=

>;
:

Figure 31.4 shows the dependence of the distribution of Anderson–Darling
test statistics (31.3) for testing composite hypotheses using MLEs of the three
parameters of the generalized normal distribution depending on the value of the
shape parameter 	0.
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The first work that initiates the study of limiting distributions of nonparamet-
ric goodness-of-fit statistics for composite hypotheses was [14]. Later, different
approaches were used to solve this problem: the limit distribution was investigated
by analytical methods [7–12, 30–34], the percentage points were calculated using
statistical modeling [6,35,37,38], the formulas were obtained to give a good approx-
imation for small values of the probabilities [39, 40].

In our studies [18–29] the distribution of nonparametric Kolmogorov, Cramer–
von Mises–Smirnov, and Anderson–Darling tests statistics were studied using
statistical modeling.

Further, based on obtained empirical distribution of statistics, we construct an
approximate analytical model of statistics distributions.

The obtained models of limiting distributions and percentage points for Kuiper
and Watson test statistics, which are required to test composite hypotheses (using
MLEs), could be found in the paper [20] for the most often used in applications
parametric distributions: Exponential, Seminormal, Rayleigh, Maxwell, Laplace,
Normal, Log-normal, Cauchy, Logistic, Extreme-value (maximum), Extreme-value
(minimum), Weibull, Sb-Johnson, Sl-Johnson, Su-Johnson.

Previously obtained similar models (and percentage points) for distributions
of Kolmogorov, Cramer–von Mises–Smirnov, and Anderson–Darling test statistics
(for distributions mentioned above) could be found in papers [21, 22, 24, 28].

The tables of percentage points and models of test statistics distributions were
based on simulated samples of the statistics with the size N D 106. Such N makes
the difference between the actual distribution G.S jH0/ and empirical counterpart
GN .S jH0/ that does not exceed 10�3. The values of the test statistic were calculated
using samples of pseudorandom values simulated for the observed distribution
F.x; 	/ with the size n D 103. In such a case the distribution G.SnjH0/ practically
equal to the limit one G.S jH0/. The given models could be used for statistical
analysis if the sample sizes n > 25.

Unfortunately, the dependence of the nonparametric goodness-of-fit tests statis-
tics distributions for testing composite hypotheses on the values of the shape
parameter (or parameters) (see Fig. 31.4) appears to be for many parametric distri-
butions implemented in the most interesting applications, particularly in problems
of survival and reliability. This is true for families of gamma, beta distributions of
the first, second, and third kind, generalized normal, generalized Weibull, inverse
Gaussian distributions, and many others.

The limit distributions and percentage points for Kolmogorov, Cramer–von
Mises–Smirnov, and Anderson–Darling tests for testing composite hypotheses with
the family of gamma distributions were obtained in paper [22], with the inverse
Gaussian distribution—in papers [29], with generalized normal distribution—in
paper [23], with the generalized Weibull distribution—in paper [1]. It should be
noted that the data in these papers were obtained only for a limited number of,
generally, integer values of the shape parameter (or parameters).
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31.5 An Interactive Method to Study Distributions
of Statistics

The dependence of the test statistics distributions on the values of the shape
parameter or parameters is the most serious difficulty that is faced while applying
nonparametric goodness-of-fit criteria to test composite hypotheses in different
applications.

Since estimates of the parameters are only known during the analysis, so
the statistic distribution required to test the hypothesis could not be obtained in
advance (before calculating estimates for the analyzed sample!). For criteria with
statistics (31.6)–(31.8), the problem is harder as statistics distributions depend on
the samples sizes. Therefore, statistics distributions of applied criteria should be
obtained interactively during statistical analysis, and then should be used to make
conclusions about composite hypothesis under test.

The implementation of such an interactive mode requires developed software
that allows parallelizing the simulation process and taking available computing
resources. While using parallel computing the time to obtain the required test
statistic distribution GN .SnjH0/ (with the required accuracy) and use it to calculate
the achieved significance level P fSn > S�g, where S� is the value of the statistic
calculated using an original sample, is not very noticeable compared to a process of
statistical analysis.

In the program system [13], an interactive method to research statistics dis-
tributions is implemented for the following nonparametric goodness-of-fit tests:
Kolmogorov, Cramer–von Mises–Smirnov, Anderson–Darling, Kuiper, Watson, and
three Zhang tests. Moreover, the different methods of parameter estimation could be
used there.

The following example demonstrates the accuracy of calculating the achieved
significance level depending on sample size N of simulated interactively empirical
statistics distributions [13]. The inverse Gaussian distribution is widely used in
reliability and in survival analysis [29]. In this case, the  -distribution (generalized
gamma distribution) can be considered as the competing law.

Example. You should check the composite hypothesis that the following sample
with the size n D 100 has the inverse Gaussian distribution with the density (31.9):

0:945 1:040 0:239 0:382 0:398 0:946 1:248 1:437 0:286 0:987

2:009 0:319 0:498 0:694 0:340 1:289 0:316 1:839 0:432 0:705

0:371 0:668 0:421 1:267 0:466 0:311 0:466 0:967 1:031 0:477

0:322 1:656 1:745 0:786 0:253 1:260 0:145 3:032 0:329 0:645

0:374 0:236 2:081 1:198 0:692 0:599 0:811 0:274 1:311 0:534

1:048 1:411 1:052 1:051 4:682 0:111 1:201 0:375 0:373 3:694

0:426 0:675 3:150 0:424 1:422 3:058 1:579 0:436 1:167 0:445

0:463 0:759 1:598 2:270 0:884 0:448 0:858 0:310 0:431 0:919

0:796 0:415 0:143 0:805 0:827 0:161 8:028 0:149 2:396 2:514

1:027 0:775 0:240 2:745 0:885 0:672 0:810 0:144 0:125 1:621
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f .x/ D 1

	2

0

B@
	0

2�
�
x�	3
	2

�3

1

CA

1=2

exp

0

B@�
	0

��
x�	3
	2

�
� 	1

�2

2	21

�
x�	3
	2

�

1

CA : (31.9)

The shift parameter 	3 is assumed to be known and equal to 0.
The shape parameters 	0, 	1, and the scale parameter 	2 are estimated using

the sample. The MLEs calculated using the sample above are the following:
O	0 D 0:7481, O	1 D 0:7808, O	2 D 1:3202. Statistics distributions of nonparametric
goodness-of-fit tests depend on the values of the shape parameters 	0 and 	1 [46,
47], do not depend on the value of the scale parameter 	2 and can be calculated
using values 	0 D 0:7481, 	1 D 0:7808.

The calculated values of the statistics S�i for Kuiper, Watson, Zhang,
Kolmogorov, Cramer–von Mises–Smirnov, Anderson–Darling tests and achieved
significance levels for these values P fS > S�i jH0g (p-values), obtained with
different accuracy of simulation (with different sizes N of simulated samples of
statistics) are given in Table 31.1.

The similar results for testing goodness-of-fit of a given sample with
 -distribution with the density:

f .x/ D 	1

	3 .	0/

�
x � 	4
	3

�	0	1�1
e
�
�
x�	4
	3

�	1

are given in Table 31.2. The MLEs of the parameters are 	0 D 2:4933, 	1 D 0:6065,
	2 D 0:1697, 	4 D 0:10308. In this case the distribution of the test statistic depends
on the values of the shape parameters 	0 and 	1.

The implemented interactive mode to study statistics distributions enables to cor-
rectly apply goodness-of-fit Kolmogorov, Cramer–von Mises–Smirnov, Anderson–
Darling, Kuiper, Watson, Zhang (with statistics ZC , ZA, ZK) tests with calculating
the achieved significance level (p-value) even in those cases when the statistic
distribution for true hypothesis H0 is unknown while testing composite hypothesis.
For Zhang tests, this method allows us to test a simple hypothesis for every
sample size.

Table 31.1 The achieved significance levels for different sizes N when
testing goodness-of-fit with the inverse Gaussian distribution

The values of test statistics N D 103 N D 104 N D 105 N D 106

V mod
n D 1:1113 0.479 0.492 0.493 0.492

U 2
n D 0:05200 0.467 0.479 0.483 0.482

ZA D 3:3043 0.661 0.681 0.679 0.678

ZC D 4:7975 0.751 0.776 0.777 0.776

ZK D 1:4164 0.263 0.278 0.272 0.270

K D 0:5919 0.643 0.659 0.662 0.662

KMS D 0:05387 0.540 0.557 0.560 0.561

AD D 0:3514 0.529 0.549 0.548 0.547
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Table 31.2 The achieved significance levels for different sizes N when
testing goodness-of-fit with the  -distribution

The values of test statistics N D 103 N D 104 N D 105 N D 106

V mod
n D 1:14855 0.321 0.321 0.323 0.322

U 2
n D 0:057777 0.271 0.265 0.267 0.269

ZA D 3:30999 0.235 0.245 0.240 0.240

ZC D 4:26688 0.512 0.557 0.559 0.559

ZK D 1:01942 0.336 0.347 0.345 0.344

K D 0:60265 0.425 0.423 0.423 0.424

KMS D 0:05831 0.278 0.272 0.276 0.277

AD D 0:39234 0.234 0.238 0.238 0.237
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on stochastic processes. Ann. Math. Stat. 23, 193–212 (1952)

3. Anderson, T.W., Darling, D.A.: A test of goodness of fit. J. Am. Stat. Assoc. 29, 765–769
(1954)

4. Bolshev, L.N.: Asymptotic Pearson transformations. Teor. Veroyatn. Ee Primen. 8(2), 129–155
(1963, in Russian)

5. Bolshev, L.N., Smirnov, N.V.: Tables for Mathematical Statistics. Nauka, Moscow (1983, in
Russian)

6. Chandra, M., Singpurwalla, N.D., Stephens, M.A.: Statistics for test of fit for the
extreme—value and Weibull distribution. J. Am. Stat. Assoc. 76(375), 729–731 (1981)

7. Darling, D.A.: The Cramer-Smirnov test in the parametric case. Ann. Math. Stat. 26, 1–20
(1955)

8. Darling, D.A.: The Cramer-Smirnov test in the parametric case. Ann. Math. Stat. 28, 823–838
(1957)

9. Durbin, J.: Weak convergence of the sample distribution function when parameters are
estimated. Ann. Stat. 1(2), 279–290 (1973)

10. Durbin, J.: Kolmogorov-Smirnov tests when parameters are estimated with applications to tests
of exponentiality and tests of spacings. Biometrika 62, 5–22 (1975)

11. Durbin, J.: Kolmogorov–Smirnov test when parameters are estimated. In: Gänssler, P.,
Revesz, P. (eds.) Empirical Distributions and Processes. Selected Papers from a Meeting at
Oberwolfach, March 28 – April 3, 1976. Series: Lecture Notes in Mathematics, 566, pp. 33–44.
Springer Berlin Heidelberg (1976)

12. Dzhaparidze, K.O., Nikulin, M.S.: Probability distribution of the Kolmogorov and omega-
square statistics for continuous distributions with shift and scale parameters. J. Soviet Math.
20, 2147–2163 (1982)



330 B.Yu. Lemeshko et al.

13. ISW: Program system of the statistical analysis of one-dimensional random variables. http://
www.ami.nstu.ru/~headrd/ISW.htm. Accessed 25 Dec 2013

14. Kac, M., Kiefer, J., Wolfowitz, J.: On tests of normality and other tests of goodness of fit based
on distance methods. Ann. Math. Stat. 26, 189–211 (1955)

15. Kolmogoroff, A.N.: Sulla determinazione empirica di una legge di distribuzione. Giornale dell
‘ Istituto Italiano degli Attuari 4(1), 83–91 (1933)

16. Kuiper, N.H.: Tests concerning random points on a circle. Proc. Konikl. Nederl. Akad. Van
Wettenschappen. Ser. A. 63, 38–47 (1960)

17. Lemeshko, B.Yu.: Asymptotically optimum grouping of observations in goodness-of-fit tests.
Ind. Lab. 64(1), 59–67(1998). Consultants Bureau, New York

18. Lemeshko, B.Yu.: Errors when using nonparametric fitting criteria. Measur. Tech. 47(2),
134–142 (2004)

19. Lemeshko, B.Yu., Gorbunova, A.A.: Application and power of the nonparametric Kuiper,
Watson, and Zhang Tests of Goodness-of-Fit. Measur. Tech. 56(5), 465–475 (2013)

20. Lemeshko, B.Yu., Gorbunova, A.A.: Application of nonparametric Kuiper and Watson tests of
goodness-of-fit for composite hypotheses. Measur. Tech. 56(9), 965–973 (2013)

21. Lemeshko, B.Yu., Lemeshko, S.B.: Distribution models for nonparametric tests for fit in
verifying complicated hypotheses and maximum-likelihood estimators. Part 1. Measur. Tech.
52(6), 555–565 (2009)

22. Lemeshko, B.Yu., Lemeshko, S.B.: Models for statistical distributions in nonparametric fitting
tests on composite hypotheses based on maximum-likelihood estimators. Part II. Measur. Tech.
52(8), 799–812 (2009)

23. Lemeshko, B.Yu., Lemeshko, S.B.: Models of statistic distributions of nonparametric
goodness-of-fit tests in composite hypotheses testing for double exponential law cases.
Commun. Stat. Theory Methods 40(16), 2879–2892 (2011)

24. Lemeshko, B.Yu., Lemeshko, S.B.: Construction of statistic distribution models for nonpara-
metric goodness-of-fit tests in testing composite hypotheses: the computer approach. Qual.
Technol. Quant. Manag. 8(4), 359–373 (2011)

25. Lemeshko, B.Yu., Lemeshko, S.B., Postovalov, S.N.: The power of goodness of fit tests for
close alternatives. Measur. Tech. 50(2), 132–141 (2007)

26. Lemeshko, B.Yu., Lemeshko, S.B., Postovalov, S.N.: Comparative analysis of the power of
goodness-of-fit tests for near competing hypotheses. I. The verification of simple hypotheses.
J. Appl. Ind. Math. 3(4), 462–475 (2009)

27. Lemeshko, B.Yu., Lemeshko, S.B., Postovalov, S.N.: Comparative analysis of the power of
goodness-of-fit tests for near competing hypotheses. II. Verification of complex hypotheses.
J. Appl. Ind. Math. 4(1), 79–93 (2010)

28. Lemeshko, B.Yu., Lemeshko, S.B., Postovalov, S.N.: Statistic distribution models for some
nonparametric goodness-of-fit tests in testing composite hypotheses. Commun. Stat. Theory
Methods 39(3), 460–471 (2010)

29. Lemeshko, B.Yu., Lemeshko, S.B., Akushkina, K.A., Nikulin, M.S., Saaidia, N.: Inverse
Gaussian model and its applications in reliability and survival analysis. In: Rykov, V.,
Balakrishnan, N., Nikulin, M. (eds.) Mathematical and Statistical Models and Methods in
Reliability. Applications to Medicine, Finance, and Quality Control, pp. 433–453. Birkhauser,
Boston (2011)

30. Lilliefors, H.W.: On the Kolmogorov-Smirnov test for normality with mean and variance
unknown. J. Am. Stat. Assoc. 62, 399–402 (1967)

31. Lilliefors, H.W.: On the Kolmogorov-Smirnov test for the exponential distribution with mean
unknown. J. Am. Stat. Assoc. 64, 387–389 (1969)

32. Martynov, G.V.: The Omega Squared Test. Nauka, Moscow (1978, in Russian)
33. Nikulin, M.S.: Gihman and goodness-of-fit tests for grouped data. Math. Rep. Acad. Sci. R.

Soc. Can. 14(4), 151–156 (1992)
34. Nikulin, M.S.: A variant of the generalized omega-square statistic. J. Sov. Math. 61(4),

1896–1900 (1992)

http://www.ami.nstu.ru/~headrd/ISW.htm
http://www.ami.nstu.ru/~headrd/ISW.htm


31 Application of Nonparametric Goodness-of-Fit Tests for Composite. . . 331

35. Pearson, E.S., Hartley, H.O.: Biometrika Tables for Statistics, vol. 2. Cambridge University
Press, Cambridge (1972)

36. Stephens, M.A.: The goodness-of-fit statistic VN: distribution and significance points.
Biometrika 52(3–4), 309–321 (1965)

37. Stephens, M.A.: Use of Kolmogorov—Smirnov, Cramer—von Mises and related
statistics—without extensive table. J. R. Stat. Soc. 32, 115–122 (1970)

38. Stephens, M.A.: EDF statistics for goodness of fit and some comparisons. J.Am. Stat. Assoc.
69(347), 730–737 (1974)

39. Tyurin, Yu.N.: On the limiting Kolmogorov—Smirnov statistic distribution for composite
hypothesis. NewsAS USSR Ser. Math. 48(6), 1314–1343 (1984, in Russian)

40. Tyurin, Yu.N., Savvushkina, N.E.: Goodness-of-fit test for Weibull—Gnedenko distribution.
News AS USSR. Ser. Tech. Cybern. 3, 109–112 (1984, in Russian)

41. Watson, G.S.: Goodness-of-fit tests on a circle. I. Biometrika 48(1–2), 109–114 (1961)
42. Watson, G.S.: Goodness-of-fit tests on a circle. II. Biometrika 49(1–2), 57–63 (1962)
43. Zhang, J.: Powerful goodness-of-fit tests based on the likelihood ratio. J. R. Stat. Soc. Ser. B

64(2), 281–294 (2002)
44. Zhang, J.: Powerful two-sample tests based on the likelihood ratio. Technometrics 48(1),

95–103 (2006)
45. Zhang, J., Wub, Yu.: Likelihood-ratio tests for normality. Comput. Stat. Data Anal. 49(3),

709–721 (2005)



Chapter 32
Simulating from the Copula that Generates
the Maximal Probability for a Joint Default
Under Given (Inhomogeneous) Marginals

Jan-Frederik Mai and Matthias Scherer

32.1 Motivation

Starting from two default times with given univariate distribution functions, the
copula which maximizes the probability of a joint default can be computed in
closed form. This result can be retrieved from Markov-chain theory, where it
is known under the terminology “maximal coupling”, but typically formulated
without copulas. For inhomogeneous marginals the solution is not represented by
the comonotonicity copula, opposed to a common modeling (mal-)practice in the
financial industry. Moreover, a stochastic model that respects the marginal laws and
attains the upper-bound copula for joint defaults can be inferred from the maximal-
coupling construction. We formulate and illustrate this result in the context of copula
theory and motivate its importance for portfolio-credit risk modeling. Moreover, we
present a sampling strategy for the “maximal-coupling copula”.

In portfolio-credit risk, the modeling of dependent default times is often carried
out in two subsequent steps: (1) the specification of the marginal laws, and (2) the
choice of some copula connecting them, see [14]. Mathematically, this is justified
by Sklar’s theorem (see [15]), stating that arbitrary marginals can be connected with
any copula to obtain a valid joint distribution function. The main reason for the
popularity of such a modeling approach is that a dependence structure can be added
to well-understood marginal models without destroying their structure. However,
the danger of naïvely using this modeling paradigm is that the resulting distribution
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need not be reasonable with regard to the economic criterion in concern, as pointed
out in the academic literature many times, see, e.g., [2, 6–8].

One popular misbelief is that the comonotonicity copula, which maximizes the
dependence if measured in terms of concordance measures, also maximizes the
probability of a joint default (or, at least, the probability of default times being
quite close to each other). However, this is not the case, because for two companies’
default times �1; �2 events such as fj�1��2j < �g for small � > 0, or even f�1 D �2g,
strongly depend on the marginal laws of the default times, as will be investigated
in quite some detail below. Providing an example, which we adopt from [9], let �1
and �2 be exponentially distributed with rate parameters �1 and �2, respectively, and
assume that they are coupled by a Gaussian copula C� with parameter � 2 Œ�1; 1�.
Figure 32.1 visualizes the probability .�1; �/ 7! P.j�1 � �2j < 1=12/ that both
default times happen within one month in dependence of the parameter � and rate
�1, the rate �2 is fixed to 0:15. This probability can be evaluated numerically as a
double integral:

P.j�1 � �2j < 1=12/ D

�1 0:15

Z 1

0

e��1 x
Z xC1=12

maxf0;x�1=12g
c�
�
1 � e��1 x; 1 � e�0:15 y	 e�0:15 ydy dx;

with c� denoting the Gaussian copula density. This probability is not increasing in
the dependence parameter, see Fig. 32.1 (left). This might be problematic if the
target risk to be modeled is not the dependence per se (being measured in terms of
correlation or some more general concordance measure), but rather the probability
of a joint default.
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Fig. 32.1 Left: The probability P.j�1 � �2j < 1=12/ is plotted for different � and �1, assuming
�1 � Exp.�1/ and �2 � Exp.�2 D 0:15/, and these exponential marginals are connected with a
Gaussian copula with correlation parameter �. Notice that (a) for fixed �1, the displayed probability
is not increasing in �, and (b) in the limiting case � D 1 we have �1 D �1=�2 �2 almost surely,
i.e. lim�%1 P.j�1 � �2j < 1=12/ D P.�1 .1� �1=�2/ 6 1=12/. Right: Visualization of misleading
model intuition
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There are in fact various situations when the risk we truly face is the probability
of a joint event, i.e. �1 D �2. One current and prominent example in a financial
context is the computation of credit value adjustments (CVA) in a credit default
swap (CDS). A CDS is an insurance contract between two parties. One party makes
periodic premium payments to the other party. In return, the other party compensates
the insurance buyer for potential losses arising from a credit event, i.e. the event
that a third party (the underlying reference entity) becomes bankrupt. Regulatory
requirements force the insurance buyer to compute a CVA, accounting for the
counterparty credit risk arising from the fact that the insurance contract loses value
upon the default of the insurance seller. The major risk for the insurance buyer with
regard to this CVA is the possibility that the insurance seller defaults jointly with (or
immediately before) the underlying reference entity, because in this case insurance
is needed but cannot be paid by the insurance seller. It is highly plausible that
the marginal survival functions of the reference entity and of the insurance seller are
well understood, e.g. from credit-risk data observable in the marketplace. However,
there is only limited (or even none) information available about the dependence
between the two. A natural model in this situation is to estimate the margins from the
observable data, and to link them with some parametric copula model. The choice of
parameters for the copula is then clearly more art than science, and a great amount
of intuition is required.1 However, the intuition one might have for such a copula
model can be misleading. The right graph in Fig. 32.1 visualizes the problem.

The present article is partly inspired by a series of papers dealing with the
investigation of multivariate distributions under given marginals but with unknown
copula. The references [10–13] study and compute lower and upper bounds for
certain functionals of a multivariate law with given marginals. In comparison with
these references, the present article deals with a very special functional, namely the
probability of a joint default. Moreover, motivated by a financial application, [3–5]
study the Value-at-Risk and related measures of a portfolio of risks with unknown
copula.

32.2 An Upper Bound for the Probability of f�1 D �2g

To illustrate the problem we first assume identical marginal laws, i.e. �1 � F ,
�2 � F for a univariate distribution function F . In this case (and only in this case),
coupling with the comonotonicity copula C.u; v/ D minfu; vg indeed maximizes
the probability of the event f�1 D �2g, implying a certain joint default, i.e.
P.�1 D �2/ D 1. This can easily be seen from a stochastic model based on the
quantile transformation: simply take U � U .0; 1/ and define �1 D �2 WD F �1.U /,
where F �1 is the (generalized) inverse of F . Clearly, one obtains P.�1 D �2/ D 1

1In the terminology of F. Knight one might say that one is exposed to uncertainty concerning the
dependence structure.
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and both default times have the pre-determined marginal law F . Conversely,
P.�1 D �2/ D 1 already implies identical default probabilities, which follows from
the fact that

P.�1 6 x/
.�/D P.�1 D �2; �1 6 x/

.�/D P.�2 6 x/;

where x was arbitrary and P.�1 D �2/ D 1 is used in .�/. This implies
that for inhomogeneous marginals, there does not exist a stochastic model such
that the defaults take place together for sure. Moreover, it raises the following
natural question: what is the dependence structure (i.e. the copula) maximizing
the probability for a joint default when the marginals are fixed? An answer to
this question can be retrieved by a technique called “coupling” in Markov-chain
theory. Standard textbooks on the topic are [1,16]. The idea of couplings in Markov-
chain theory is precisely the idea of copulas in statistical modeling, namely to
define bivariate Markov chains from pre-determined univariate Markov chains. The
coupling technique was initially invented to prove that Markov chains converge to a
stationary law under some regularity conditions by coupling the given Markov chain
with a stationary chain that shares the same transition probabilities.

The maximal-coupling construction provides a probability space supporting two
default times �1; �2 with given densities f1, f2 on .0;1/ such that the upper bound
for the joint default probability is attained. To clarify notation, recall that with
Fi.x/ WD R x

0
fi .s/ ds, i D 1; 2, the probability of a joint default can be expressed

in terms of the copula C and the marginal laws F1; F2 as

P.�1 D �2/ D
“

D.F1;F2/

dC.u; v/; D.F1; F2/ WD ˚
.u; v/ 2 Œ0; 1�2 W F�1

1 .u/ D F�1
2 .v/

�
:

Formulating the result in copula language, it may be stated as follows.

Theorem 1 (A Model Maximizing P.�1 D �2/). Denote by C the set of all
bivariate copulas and assume that �1; �2 have densities f1; f2 on .0;1/.

• One then has:

sup
C2C

( “

D.F1;F2/

dC.u; v/

)
D
Z 1

0

minff1.x/; f2.x/gdx DW p1: (32.1)

• Moreover, the supremum is actually a maximum and there is a probabilistic
construction for the maximizer. If f1 D f2 a.e., then p1 D 1; if the supports
of f1 and f2 are disjoint, then p1 D 0. In all other cases we have p1 2 .0; 1/
and a maximizing copula CF1;F2 , which strongly depends on the marginals, is
given by
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CF1;F2 .u; v/ D
Z minfF�1

1 .u/;F�1
2 .v/g

0
minff1.s/; f2.s/gdsC

C 1

1 � p1

 Z F�1
1 .u/

0
f1.s/ � minff1.s/; f2.s/gds

! Z F�1
2 .v/

0
f2.s/ � minff1.s/; f2.s/gds

!
:

Proof. The proof can be retrieved from the coupling literature, e.g. [16, p. 9]. We
only sketch the basic idea because it is educational and we refer to it in Example 1
below.

• If the supports of f1 and f2 are disjoint, then obviously P.�1 D �2/ D 0,
irrespective of the choice of copula.

• If f1 D f2 a.e., then the distributions of �1 and �2 are identical and the
comonotonicity copula minfu; vg provides the maximum P.�1 D �2/ D 1.

We define p1 WD R1
0

minff1.x/; f2.x/gdx, which—excluding the two degenerate
cases from above—is in .0; 1/. Moreover, define the densities

hmin WD minff1; f2g
p1

; hf1 WD f1 � p1 hmin

1 � p1 ; hf2 WD f2 � p1 hmin

1 � p1 : (32.2)

Consider a probability space .˝;F ;P/ supporting the independent random vari-
ables Hmin � hmin, Hf1 � hf1 , Hf2 � hf2 , and a Bernoulli variable X with success
probability p1. Define

.�1; �2/ WD .Hmin;Hmin/1fXD1g C .Hf1;Hf2/1fXD0g: (32.3)

Whenever X D 1, one has �1 D �2 D Hmin. In the case X D 0, the probability for
�1 D Hf1 D Hf2 D �2 is zero. Hence, we have P.�1 D �2/ D P.X D 1/ D p1
and

P.�i 6 x/ D p1 P.Hmin 6 x/C .1 � p1/P.Hfi 6 x/

D
Z x

0

p1 hmin.s/C .1 � p1/ hfi .s/ds D
Z x

0

fi .s/ds D Fi.x/;

for i D 1; 2. Moreover, it can be shown that p1 is actually an upper bound for the
probability

’

D.F1;F2/

dC.u; v/ across all copulas C 2 C , a step which we omit in full

detail for the sake of brevity. Intuitively speaking, at each point in time x we have
to maintain the marginal laws, specified by f1.x/ and f2.x/. So an upper bound
for the (local) joint default probability at time x is the minimum of the densities
f1 and f2 at time x. Integrating over the positive half line yields the global upper
bound, denoted p1. The claimed copula of the stochastic model (32.3) that attains
the upper bound is then easily inferred from the probabilistic construction outlined
above.
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It is very educational to understand the idea of the proof above, because it readily
implies a simulation algorithm for the maximizing copula CF1;F2 . We explicitly
extract the stochastic construction idea from the proof in the following simulation
algorithm for the copula CF1;F2 .

A simulation via the rejection algorithms in (1), (2), and (3) has the advantage
of being very generic: only little knowledge is needed about the involved marginal
laws. The runtime of each rejection step is random, the number of required runs until
we accept is a Geometric random variable with success probability depending on
the involved densities. Our implementation of Example 1 in Matlab (on a standard
desktop PC) required less than two minutes to produce 100; 000 samples. In case the
marginals are chosen such thatX ,Hmin, andHfi can be simulated without rejection
algorithm, this might be accelerated further. This, however, requires p1 explicitly
and depends on the choice of f1 and f2, so we cannot provide a generic recipe.

Example 1 (Illustration of the Construction). We assume that �1 and �2 have
lognormal densities. More precisely, we assume that

fi .x/ D 1p
2� �i x

exp

 
� .log.x/ � �i/2

2 �2i

!
1fx>0g; i D 1; 2;

with �1 D 1, �2 D 2, �1 D log.10/, and �2 D log.30/. These two densities are
visualized in Fig. 32.2.

Figure 32.2 (left) shows three more density functions, which are constructed
from f1 and f2. The solid line is the density hmin W x 7! minff1.x/; f2.x/g=p1,
which exhibits a kink at approximately 1:4801, where f1 and f2 intersect. This
equals the density of the random variable Hmin in the proof of Theorem 1, which
is supported on all of .0;1/. The other two densities hf1 and hf2 are obtained by
subtraction of hmin from f1 and f2, respectively (and appropriate scaling). Hence,
hf1 is positive only on .0; 1:4801/ and hf2 is positive only on the complementary
interval .1:4801;1/. Finally, Fig. 32.2 (right) visualizes a scatter plot from the
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Fig. 32.2 Left: Two lognormal densities f1 and f2, together with the three further density
functions constructed from them in Eq. (32.2). Right: Scatter plot from the copula CF1;F2 in the
lognormal example. The singular component is easy to spot
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Algorithm 1 Simulation of CF1;F2
The input for the algorithm are two densities f1; f2. Moreover, we need to be able to simulate
these two univariate distributions and to evaluate the distribution functions F1; F2 and the densities
f1; f2.

(1) Simulate a Bernoulli random variable X � Bernoulli.p1/. There is no need to compute p1

explicitly. Rather, the simulation of X can be accomplished by the following code:

SIMULATE Y1 � F1; U � U .0; 1/

IF
�
U 6 minf1; f2.Y1/=f1.Y1/g	

X WD 1

ELSE

X WD 0

END

(2) Simulate Hmin by the following rejection acceptance algorithm:

SIMULATE Y1 � F1; U � U .0; 1/

WHILE
�
U > minf1; f2.Y1/=f1.Y1/g	

SIMULATE Y1 � F1; U � U .0; 1/

END

Hmin WD Y1

(3) Simulate Hfi , i D 1; 2 by the following rejection acceptance algorithm:

SIMULATE Yi � Fi ; U � U .0; 1/

WHILE
�
U > 1�minf1; f3�i .Yi /=fi .Yi /g	

SIMULATE Yi � Fi ; U � U .0; 1/

END

Hfi WD Yi

(4) Return the desired sample .U1; U2/ from the copula CF1;F2 as follows:

IF
�
X D 1

	

U1 WD F1.Hmin/; U2 WD F2.Hmin/

ELSE

U1 WD F1.Hf1 /; U2 WD F2.Hf2 /

END
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resulting maximizing copula CF1;F2 . It is very interesting to observe that this copula
appears quite pathological. It is highly margin-dependent and neither symmetric nor
absolutely continuous. There is a significant singular component with total mass
p1  0:597. In particular, this copula is typically not included in any financial
toolbox, even though it should be because of its important meaning pointed out in
the present article.

Conclusion
Using results from the coupling literature, it was shown how to compute
explicitly the maximal probability for a joint default under given marginals.
Moreover, this result was transferred into copula language, illustrating quite
clearly how margin-dependent the problem is. Finally, a simple-to-implement
simulation algorithm for the maximizing copula and an educational example
were presented.

Acknowledgements The authors would like to thank Alfred Müller and an anonymous referee for
valuable remarks.
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Chapter 33
Optimization via Information Geometry

Luigi Malagò and Giovanni Pistone

33.1 Introduction

The present paper is based on the talk given by the second author on May 21,
2013, to the Seventh International Workshop on Simulation in Rimini. Some pieces
of research that were announced in that talk have been subsequently published
[19, 21, 22]. Here we give a general overview, references to latest published results,
and a number of specific topics that have not been published elsewhere.

Let .˝;F ; �/ be a measure space, whose strictly positive probability densities
form the algebraically open convex set P>. An open statistical model .M ; 	; B/

is a parametrized subset of P>, that is, M 
 P> and 	 WM ! B , where 	 is a
one-to-one mapping onto an open subset of a Banach space B . We assume in the
following that ˝ is endowed with a distance and F is its Borel � -algebra.

If f W˝ ! R is a bounded continuous function, the mapping M 3 p 7! Ep Œf �

is a Stochastic Relaxation (SR) of f . The strict inequality Ep Œf � < sup!2˝ f .!/
holds for all p 2 M , unless f is constant. However, supp2M Ep Œf � D sup!2˝
f .!/ if there exists a probability measure � in the weak closure of M � � whose
support is contained in the set of maximizing points of f , that is to say

�

�
! 2 ˝Wf .!/ D sup

!2˝
f .!/


D 1; or

Z
f d� D sup

!2˝
f .!/:
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Such a � belongs to the border of M � �. For a discussion of the border issue for
finite ˝, see [14]. Other relaxation methods have been considered, e.g., [4, 25].

An SR optimization method is an algorithm producing a sequence pn 2 M ,
n 2 N, which is expected to converge to the probability measure �, so that
limn!1 Epn Œf � D sup!2˝ f .!/. Such algorithms are best studied in the frame-
work of Information Geometry (IG), that is, the differential geometry of statistical
models. See [3] for a general treatment of IG and [4, 6, 13, 16–19] for applications
to SR. All the quoted literature refers to the case where the model Banach space of
the statistical manifold, i.e., the parameter space, is finite dimensional, B D R

d .
An infinite dimensional version of IG has been developed, see [22] for a recent
presentation together with new results, and the references therein for a detailed
bibliography. The nonparametric version is unavoidable in applications to evolution
equations in Physics [21], and it is useful even when the sample space is finite [15].

33.2 Stochastic Relaxation on an Exponential Family

We recall some basic facts on exponential families, see [8].

1. The exponential family q	 D exp
�Pd

jD1 	j Tj �  .	/
�

� p, Ep
�
Tj
� D 0, is a

statistical model M D fq	g with parametrization q	 7! 	 2 R
d .

2.  .	/ D log
�
Ep

�
e	 �T

�	
, 	 2 R

d , is convex and lower semi-continuous.
3.  is analytic on the (nonempty) interior U of its proper domain.
4. r .	/ D E	 ŒT �, T D .T1; : : : ; Td /.
5. Hess .	/ D Var	 .T /.
6. U 3 	 7! r .	/ D � 2 N is one-to-one, analytic, and monotone;

N is the interior of the marginal polytope, i.e., the convex set generated by
fT .!/W! 2 ˝g.

7. The gradient of the SR of f is

r.	 7! E	 Œf �/ D .Cov	 .f; T1/ ; : : : ;Cov	 .f; Td //;

which suggests to take the least squares approximation of f on Span .T1; : : : ; Td /
as direction of steepest ascent, see [18].

8. The representation of the gradient in the scalar product with respect to 	 is called
natural gradient, see [2, 3, 15].

Different methods can be employed to generate a maximizing sequence of
densities pn is a statistical model M . A first example is given by Estimation of
Distribution Algorithms (EDAs) [12], a large family of iterative algorithms where
the parameters of a density are estimated after sampling and selection, in order to
favor samples with larger values for f , see Example 1. Another approach is to
evaluate the gradient of Ep Œf � and follow the direction of the natural gradient over
M , as illustrated in Example 2.
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Example 1 (EDA from [19]). An Estimation of Distribution Algorithm is an SR
optimization algorithm based on sampling, selection, and estimation, see [12].

Input: N;M F population size, selected population size
Input: M D fp.xI �/g F parametric model
t  0

P t D INITRANDOM.) F random initial population
repeat

P t
s D SELECTION.P t ;M/ F select M samples

�tC1 D ESTIMATION.P t
s ;M / F opt. model selection

P tC1 D SAMPLER.�tC1; N / F N samples
t  t C 1

until STOPPINGCRITERIA.)

Example 2 (SNGD from [19]). Stochastic Natural Gradient Descent [18] is an SR
algorithm that requires the estimation of the gradient.

Input: N;� F population size, learning rate
Optional: M F selected population size (default M D N )
t  0

	t  .0; : : : ; 0/ F uniform distribution
P t  INITRANDOM.) F random initial population
repeat

P t
s D SELECTION.P t ;M/ F opt. select M samples
OrEŒf � cCov.f; Ti /diD1 F empirical covariances
OI  ŒcCov.Ti ; Tj /�di;jD1 F fTi .x/g may be learned

	tC1 	t � � OI�1 OrEŒf �
P tC1 GIBBSSAMPLER.	 tC1; N / F N samples
t  t C 1

until STOPPINGCRITERIA.)

Finally, other algorithms are based on Bregman divergence. Example 3 illustrates
the connection with the exponential family.

Example 3 (Binomial B.n; p/). On the finite sample space ˝ D f0; : : : ; ng with
�.x/ D �

n
x

	
, consider the exponential family p.xI 	/ D exp

�
	x � n log

�
1C e	

		
.

With respect to the expectation parameter � D ne	=.1 C e	 / 2�0; nŒ we have
p.xI �/ D .�=n/x.1 � �=n/n�x , which is the standard presentation of the binomial
density.

The standard presentation is defined for � D 0; n, where the exponential formula
is not. In fact, the conjugate  �.�/ of  .	/ D n log

�
1C e	

	
is

 �.�/ D

8
ˆ̂<

ˆ̂:

C1 if � < 0 or � > n,

0 if � D 0; n,

� log
�

�

n��
�

� n log
�

n
n��

�
if 0 < � < n.
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We have

logp.xI �/ D log

�
�

n � �
�
.x � �/C  �.�/; � 2�0; nŒ

D  0�.�/.x � �/C  �.�/ 6  �.x/:

For x ¤ 0; n, the sign of  0�.�/.x � �/ is eventually negative as � ! 0; n, hence

lim
�!0;n logp.xI �/ D lim

�!0;n  
0�.�/.x � �/C  �.�/ D �1:

If x D 0; n, the sign of both  0�.�/.0��/ and  0�.�/.n��/ is eventually positive as
� ! 0 and � ! n, respectively. The limit is bounded by 0 D  �.x/, for x D 0; n.

The argument above is actually general. It has been observed by [5] that the
Bregman divergence D �

.xk�/ D  �.x/� �.�/� 0�.�/.x � �/ > 0 provides an
interesting form of the density as p.xI �/ D e�D �

.xk�/e �.x/ / e�D �
.xk�/.

33.3 Exponential Manifold

The set of positive probability densities P> is a convex subset of L1.�/. Given a

p 2 P>, every q 2 P> can be written as q D ev �p where v D log
�
q

p

�
. Below we

summarize, together with a few new details, results from [21,22] and the references
therein, and the unpublished [24].

Definition 33.1 (Orlicz ˚-Space [11], [20, Chapter II], [23]). Define
'.y/ D cosh y � 1. The Orlicz ˚-space L˚.p/ is the vector space of all random
variables such that Ep Œ˚.˛u/� is finite for some ˛ > 0. Equivalently, it is the set of
all random variables u whose Laplace transform under p � �, t 7! Oup.t/ D Ep Œetu�
is finite in a neighborhood of 0. We denote by M˚.p/ 
 L˚.p/ the vector space
of random variables whose Laplace transform is always finite.

Proposition 33.1 (Properties of the ˚-Space).

1. The set S61 D ˚
u 2 L˚.p/WEp Œ˚.u/� 6 1

�
is the closed unit ball of the

complete norm

kukp D inf

�
� > 0WEp



˚

�
u

�

��
6 1



on the ˚-space. For all a > 1 the continuous injections L1.�/ ,! L˚.p/ ,!
La.p/ hold.
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2. kukp D 1 if either Ep Œ˚.u/� D 1 or Ep Œ˚.u/� < 1 and Ep

h
˚
�

u
�

�i
D 1

for � > 1. If kukp > 1, then kukp 6 Ep Œ˚.u/�. In particular,
limkukp!1 Ep Œ˚ .u/� D 1.

3. M˚.p/ is a closed and separable subspace of L˚.p/.
4. L˚.p/ D L˚.q/ as Banach spaces if, and only if,

R
p1�	q	 d� is finite on a

neighborhood of Œ0; 1�.

Proof. 1. See [11], [20, Chapter II], [23].
2. The function R> 3 ˛ 7! Ou.t/ D Ep Œ˚.˛u/� is increasing, convex, lower semi-

continuous. If for some tC > 1 the value Ou.tC/ is finite, we are in the first case and

Ou.1/ D 1. Otherwise, we have Ou.1/ 6 1. If kukp > a > 1, so that
��� a
kukp u

���
p
> 1,

hence

1 < Ep

"
˚

 
a

kukp
u

!#
6 a

kukp
Ep Œ˚ .u/� ;

and kukp < aEp Œ˚ .u/�, for all a > 1.
3. See [11], [20, Chapter II], [23].
4. See [9, 24].

Example 4 (Boolean State Space). In the case of a finite state space, the moment
generating function is finite everywhere, but its computation can be challenging.
We discuss in particular the Boolean case ˝ D fC1;�1gn with counting reference
measure � and uniform density p.x/ D 2�n, x 2 ˝. In this case there is a
huge literature from statistical physics, e.g., [10, Ch. VII]. A generic real function
on ˝—called pseudo-Boolean [7] in the combinatorial optimization literature—
has the form u.x/ D P

˛2L Ou.˛/x˛ , with L D f0; 1gn, x˛ D Qn
iD1 x

˛i
i ,

Ou.˛/ D 2�n
P

x2˝ u.x/x˛ .
As eax D cosh.a/C sinh.a/x if x2 D 1 i.e., x D ˙1, we have

etu.x/ D exp

0

@
X

˛2Supp Ou
t Ou.˛/x˛

1

A D
Y

˛2Supp Ou
et Ou.˛/x˛

D
Y

˛2Supp Ou
.cosh.t Ou.˛//C sinh.t Ou.˛//x˛/

D
X

B�Supp Ou

Y

˛2Bc
cosh.t Ou.˛//

Y

˛2B
sinh.t Ou.˛//x

P
˛2B ˛:

The moment generating function of u under the uniform density p is

t 7!
X

B2B.Ou/

Y

˛2Bc
cosh.t Ou.˛//

Y

˛2B
sinh.t Ou.˛//;
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where B.Ou/ are those B 
 Supp Ou such that
P

˛2B ˛ D 0 mod 2. We have

Ep Œ˚� .tu/ D
X

B2B0.Ou/

Y

˛2Bc
cosh.t Ou.˛//

Y

˛2B
sinh.t Ou.˛// � 1;

where B0.Ou/ are those B 
 Supp Ou such that
P

˛2B ˛ D 0 mod 2 andP
˛2Supp Ou ˛ D 0.
If S is the f1; : : : ; ng � Supp Ou matrix with elements ˛i , we want to solve the

system Sb D 0 mod 2 to find all elements of B; we add the equation
P
b D 0

mod 2 to find B0. The simplest example is u.x/ D Pn
iD1 cixi ,

Example 5 (The Sphere is Not Smooth in General). We look for the moment
generating function of the density

p.x/ / .aC x/� 32 e�x; x > 0;

where a is a positive constant. From the incomplete gamma integral

”�1
2
x D

Z 1

x

s� 12�1e�s ds; x > 0;

we have for 	; a > 0,

d

dx


�
�1
2
; 	.aC x/

�
D �	� 12 e�	a.aC x/� 32 e�	x:

We have, for 	 2 R,

C.	; a/ D
Z 1

0

.aC x/� 32 e�	x dx D

8
ˆ̂<

ˆ̂:

p
	e	a

�� 1
2
; 	a

	
if 	 > 0:

1

2
p
a

if 	 D 0;

C1 if 	 < 0:

or, C.	; a/ D 1
2
a� 12 �

p
�	

2
e	aR1=2;1.	a/ if 	 6 1, C1 otherwise, where R1=2;1 is

the survival function of the Gamma distribution with shape 1=2 and scale 1.
The density p is obtained with 	 D 1,

p.x/ D C.1; a/�1.aC x/� 32 e�x D .aC x/� 32 e�x

ea
�� 1

2
; a
	 ; x > o;

and, for the random variable u.x/ D x, the function

˛ 7! Ep Œ˚.˛u/� D 1

ea
�� 1

2
; a
	
Z 1

0

.aC x/� 32
e�.1�˛/x C e�.1C˛/x

2
dx � 1
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D C.1 � ˛; a/C C.1C ˛; a/

2C.1; a/
� 1

is convex lower semi-continuous on ˛ 2 R, finite for ˛ 2 Œ�1; 1�, infinite otherwise,
hence not steep. Its value at ˛ D 1 is

Ep Œ˚.u/� D 1

ea
�� 1

2
; a
	
Z 1

0

.aC x/�
3
2
1C e�2x

2
dx � 1

D C.0; a/C C.2; a/

2C.1; a/
� 1

Example 6 (Normal Density). Let p.x/ D .2�/�1=2e�.1=2/x2 . Consider a generic
quadratic polynomial u.x/ D aC bx C 1

2
cx2. We have for tc ¤ 1

t.aCbxC1

2
cx2/�1

2
x2 DD � 1

2.1 � tc/�1
�
x � tb

1 � tc
�2

C1

2

t2b2 � 2ta.1 � tc/
.1 � tc/ ;

hence

Ep

�
etu
� D

8
<̂

:̂

C1 if tc 6 1,
p
1 � tc exp

�
1

2

t2b2 � 2ta.1 � tc/
.1 � tc/

�
if tc < 1:

If, and only if, �1 < c < 1, we have

Ep Œ˚.u/� D 1

2

p
1 � c exp

�
1

2

b2 � a.1 � c/
.1 � c/

�

C1

2

p
1C c exp

�
1

2

b2 � a.1C c/

.1C c/

�
� 1:

33.4 Vector Bundles

Vector bundles are constructed as sets of couples .p; v/ with p 2 P> and v
is some space of random variables such that Ep Œv� D 0. The tangent bundle
is obtained when the vector space is L˚0 .p/. The Hilbert bundle is defined as
HP> D ˚

.p; v/Wp 2 P>; v 2 L20.p/
�
. We refer to [21] and [15] were charts and

affine connections on the Hilbert bundle are derived from the isometric transport

L20.p/ 3 u 7!
r
p

q
u �

�
1C Eq


r
p

q

���1 �
1C

r
p

q

�
Eq


r
p

q
u

�
2 L20.q/:
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In turn, an isometric transport U q
p WL20.p/ ! L20.q/ can be used to compute the

derivative of a vector field in the Hilbert bundle, for example the derivative of the
gradient of a relaxed function.

The resulting second order structure is instrumental in computing the Hessian
of the natural gradient of the SR function. This allows to design a second order
approximation method, as it is suggested in [1] for general Riemannian manifolds,
and applied to SR in [15]. A second order structure is also used to define the
curvature of a statistical manifold and, possibly, to compute its geodesics, see [6]
for applications to optimization.
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Chapter 34
Combined Nonparametric Tests
for the Social Sciences

Marco Marozzi

34.1 Introduction

Non-normal data are common in social and psychological studies, as emphasized by
Nanna and Sawilowsky [12] normality is the exception rather than the rule in applied
research. Micceri [11] considered 440 data sets from psychological/social studies
and concluded that none of them satisfied the normality assumptions, see also
[2, 14, 15]. Moreover, social studies may have small sample sizes. These arguments
are against parametric tests and in favor of nonparametric tests that are generally
valid, robust, and powerful in situations where parametric tests are not [13]. In
particular, in this chapter we consider permutation tests because they are particularly
suitable for combined testing. Moreover, they do not even require random sampling,
only exchangeability of observations between samples under the null hypothesis that
the parent distributions are the same. It is important to emphasize that permutation
testing is valid even when a non-random sample of n units is randomized into two
groups to be compared. This circumstance is very common in social and biomedical
studies, see [4].

Many nonparametric tests have been developed for comparing the distribution
functions of two populations. These tests may be classified into four main classes:
(1) tests for detecting mean/median differences, see, e.g., [5]; (2) tests for detecting
variability differences, see, e.g., [7, 8]; (3) tests for jointly detecting mean/median
and variability differences, see, e.g., [6]; (4) tests for detecting any differences
between the distributions, see, e.g., [16].

The references listed above show that nonparametric combined tests have been
very useful to address comparison problems of several types. Combined testing is
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an effective strategy because generally non-combined tests show good performance
only for particular distributions. Since in many social studies there is no clear
knowledge about the parent distribution, the problem of which test should be
selected in practice arises. Our aim is to see whether nonparametric combined tests
are useful also for detecting any differences (in means/medians, variability, shape)
between distributions. We aim at proposing a test that even though was not the most
powerful one for every distribution, it has good overall performance under every
type of distribution, a combined test that inherits the good behavior shown by a
certain number of single tests in particular situations.

Let Xi D .Xi1; : : : ; Xini / be a random sample from a population with continuous
distribution function Fi.x/, i D 1; 2, n D n1 C n2. Let X D .X1;X2/

0 be the
combined sample and let X� D .X�1 ;X�2 /0 be one of the B D nŠ permutations of
X with X�i D .X�i1; : : : ; X�ini /, i D 1; 2. Note that Fi.x/ is completely unknown,
i D 1; 2. We would like to test the null hypothesis

H0 W F1.x/ D F2.x/ for all x 2 .�1;1/

against the alternative hypothesis

H1 W F1.x/ ¤ F2.x/ for some x 2 .�1;1/:

Traditional tests for the general two-sample problem are the Kolmogorov–Smirnov,
Cramer Von Mises, and Anderson Darling tests. Zhang [16] proposed a unified
approach that generates not only the traditional tests but also new nonparametric
tests based on the likelihood ratio. We consider the Zhang tests that are analog to
the traditional tests. The test statistics are

S1 D �1
n

2X

iD1

niX

jD1
log

�
ni

j � 0:5 � 1
�

log

�
n

Rij � 0:5 � 1
�

(34.1)

which is the analog of the Cramer–Von Mises statistic and where Rij denotes the
rank of Xij , j D 1; : : : ; ni in X in increasing order,

S2 D
nX

lD1

2X

iD1
ni
Fil logFil C .1 � Fil / log.1 � Fil /

.l � 0:5/.n � l C 0:5/
(34.2)

which is the analog of the Anderson–Darling statistic and where Fil D OFi.X.l//,
X.l/ is the l th order statistic of the pooled sample, l D 1; : : : ; n, OFi is the empirical
distribution function of the i th sample with correction at its discontinuous points so
that Fil D .j � 0:5/=ni if l D Rij for some j or Fil D j=ni if Rij < l < RijC1,
with Ri0 D 1 and RiniC1 D nC 1,
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S3 D max
16l6n

"
2X

iD1
ni

�
Fil log

Fil

Fl
C .1 � Fil / log

1 � Fil
1 � Fl

�#
(34.3)

which is the analog of the Kolmogorov–Smirnov statistic and where Fl D OF .X.l//,
OF is the empirical distribution function of the pooled sample with correction at its

discontinuous points X.l/, l D 1; : : : ; n so that Fl D .l � 0:5/=n. Note that large
values of the statistics speak against the null hypothesis.

34.2 Combined Tests for the General Problem

A generic combined test statistic for the general two-sample problem is defined
as T D  .T/ where  is a proper combining function, T D .T1; : : : ; TK/

0,
Tk D jSk�E.Sk/jp

VAR.Sk/
, Sk is a two-sided test statistic for the general two-sample

problem whose large values speak against H0, E.Sk/ and VAR.Sk/ are, respec-
tively, the mean and the variance of Sk , k D 1; : : : ; K, K is a natural number
with 2 6 K < 1. To be a proper combining function,  should satisfy some
reasonable properties, see [13, pp. 123–124]. To keep things (relatively) simple,
we do not follow the two-step procedure presented by Pesarin and Salmaso
[13] based on p-value combination. Combinations of p-values are useful when
a direct combining test is not easily available or difficult to justify. They are
used also in different contexts than that considered here, like the multi-stage one
[10]. Note that under H0, X elements are exchangeable between samples and all
permutations X� are equally likely. Therefore permutation testing is appropriate.
Let oT D T .X1;X2/ D  .oT/ denote the observed value of the combined test
statistic where oT D .oT1; : : : ; oTK/

0,

oTk D Tk.X1;X2/ D joSk �E.Sk/jp
VAR.Sk/

is the observed value of the standardized kth test statistic, oSk D Sk.X1;X2/ is the
observed value of the non-standardized kth test statistic, E.Sk/ D 1

B

PB
bD1 bSk ,

VAR.Sk/ D 1
B

PB
bD1 .bSk �E.Sk//2, bSk D Sk.bX�1 ; bX�2 / is the permutation

value of Sk in the bth permutation bX� D .bX�1 ; bX�2 / of X, b D 1; : : : ; B . The
p-value of the combined test T is the proportion of permutations of X which lead
to values of the combined test statistic which are greater than or equal to oT :
LT D 1

B

PB
bD1 I.bT > oT / where I.:/ denotes the indicator function and

bT D T .bX�1 ; bX�2 / D  .bT/ is the permutation value of T in bX�, where
bT D .bT1; : : : ; bTK/

0 and

bTk D Tk.bX�1 ; bX�2 / D jbSk �E.Sk/jp
VAR.Sk/

:
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The optimal combining function is the one which corresponds to the uniformly
most powerful combined test. Unfortunately, within the nonparametric framework,
generally there exists the most powerful test only for particular parent distributions
and for simple system of hypotheses. Birnbaum [1] showed that no method for
combining independent tests is optimal in general and a fortiori this is also true
when combining dependent tests. Note that Tk tests are very likely to be dependent
because they test the same null hypothesis against the same alternative hypothesis
and the corresponding test statistics are functions of the same data.

We consider two combining functions: the direct one and the one based on
Mahalanobis distance which correspond to take as combined test statistic observed
values, respectively

oTD D D.oT/ D
KX

kD1
oTk

and

oTM D M.oT/ D oT0H�1oT

where H D ŒE.TkTh/; k; h D 1; : : : ; K� is the correlation matrix between Tk , k D
1; : : : ; K, with E.TkTh/ D 1

B

PB
bD1 bTk � bTh.

In place of the direct combination, you might use the quadratic direct com-
bination which corresponds to aTQD D QD.aT/ D PK

kD1 aT 2k with a D o; b,
respectively, for the observed and permutation value of the combined test statistic.
We do not consider TQD because [13] shows that its power function is very
close to that of TM in all conditions. Note that TQD and TM are equivalent
when H is the identity matrix or its elements are all 1. The maximum difference
is in the intermediate situation between linearly independent Tks and perfectly
concordant Tks. If K D 2, this happens when E.TkTh/ D 1

2
. In general, different

combining functions lead to different combined tests but the corresponding tests
are asymptotically equivalent in the alternative [13]. It is impossible to find the
best combination for any given testing problem without restrictions on the class of
proper combining functions. Only locally optimal combinations can sometimes be
obtained. If the practitioner finds the choice of the combining function too arbitrary,
the combination procedure may be iterated, see [13, p. 133].

The null distribution of T can be obtained by computing T in all B per-
mutations of X. If Tks were not affected by the order of elements within the
two-samples (note that this can be assumed without much loss of generality) B
reduces to the number of equally likely combinations of n1 elements taken from
n elements C D nŠ=.n1Šn2Š/. Although C << B , C increases very rapidly as n1
and n2 increase. Therefore in practice it might be computationally hard to compute
the complete null distribution of T but we can rely upon an approximate but
reasonably accurate estimate by considering a random sample of several thousands
permutations of X. See the next section for more details on the approximation error.
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34.3 Comparison Study

In this section, we study size and power of some combined tests: TD12; TD13,
and TD23 obtained by combining two tests via direct combination; TM12; TM13, and
TM23 obtained by combining two tests via Mahalanobis combination; TD123 and
TM123 obtained by combining all tests by direct and Mahalanobis combination,
respectively. Note that [16] did not study the type-one error rate of his tests. This
study is performed here.

It is very difficult to derive theoretical optimality properties for nonparametric
tests with completely unknown distributions of the populations behind the samples.
Therefore to study and compare type-one error rate and power of the tests we rely
upon Monte Carlo simulation. We consider 10,000 Monte Carlo simulations. All
tests are performed at the 0.05 nominal significance level. When a probability p
is approximated by a proportion out of MC Monte Carlo replications, the error
is of order

p
p.1 � p/=MC when true test p-values are computed by considering

all B permutations of X. If this is not practical, the p-values are themselves
estimated and the error is higher than before. We suggest to use 800 permutations
when MC D 10;000 that corresponds to an error of order 1:2

p
p.1 � p/=MC.

Therefore when a rejection probability close to 0.05 is approximated, the error
is 0.00262. The error is maximum for p D 0:5 and it is 0.006. Note that we
consider 1,000 permutations, that are as computational feasible as 800, to estimate
E.Sk/;VAR.Sk/; E.TkTh/ and the p-values of the tests (both non-combined and
combined). Three situations are considered: (1) N.0; 1/ vs N.�; �2/, (2) N.�; �2/
vs G.r; 1/, (3) U.0; 1/ vs B.p; q/, with various combinations of �; �; r; p; q.
.n1; n2/=(10,10), (10,20), (20,20), (20,50), (50,50) are considered. A subset of the
results are reported in Table 34.1 (email the author for receiving the whole set of
results). Note that in situation 1 F1 and F2 may differ in location and/or scale but
not in shape. In situation 2 shapes differ in all cases and we consider location and/or
scale changes as well as no change in location nor in scale. In situation 3 F1 is fixed
whereas F2 is arbitrary.

We noted that the tests maintain their sizes close to the nominal significance
level. Analyzing power results, it is very interesting to note that there are cases
where a combined test is more powerful than its components, for example this
happens in situation 1 for the scale and for the location/scale alternatives. The S1,
S2, and S3 tests are positively dependent and informative on the null hypothesis.
The combination assesses their dependence nonparametrically and can produce a
synergism between the components so that the combined test is more powerful than
the component tests. This synergism is not controllable because it is conditional
on the data set and has been observed also by Marozzi [5]. In other cases like in
situation 3, this does not happen but it is important to emphasize that this is not a
drawback of the combination procedure, conversely it is generally expected that a
combined test has an intermediate power with respect to its components because the
less powerful component(s) contaminates the more powerful one(s) in that particular
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Table 34.1 Some results of the size and power comparison study

N(0,1) vs N(0,1) N(2,1) vs G(2,1)

n1 10 10 20 20 50 10 10 20 20 50

n2 10 20 20 50 50 10 20 20 50 50

S1 0.052 0.047 0.053 0.053 0.049 0.079 0.057 0.115 0.105 0.321

S2 0.053 0.048 0.052 0.054 0.049 0.078 0.062 0.113 0.121 0.330

S3 0.025 0.047 0.043 0.052 0.047 0.052 0.078 0.103 0.149 0.300

TM12 0.054 0.050 0.056 0.055 0.048 0.083 0.086 0.126 0.143 0.304

TD12 0.052 0.047 0.053 0.054 0.049 0.078 0.060 0.114 0.113 0.326

TM13 0.052 0.052 0.050 0.051 0.049 0.080 0.077 0.106 0.112 0.259

TD13 0.052 0.049 0.053 0.054 0.048 0.086 0.075 0.123 0.135 0.332

TM23 0.052 0.053 0.051 0.050 0.050 0.081 0.073 0.109 0.114 0.265

TD23 0.052 0.050 0.054 0.053 0.048 0.087 0.078 0.124 0.144 0.338

TM123 0.052 0.054 0.051 0.051 0.050 0.082 0.081 0.114 0.126 0.258

TD123 0.052 0.049 0.053 0.055 0.048 0.085 0.071 0.122 0.130 0.336

N(0,1) vs N(0.6,1) N(2,2) vs G(2,1)

n1 10 10 20 20 50 10 10 20 20 50

n2 10 20 20 50 50 10 20 20 50 50

S1 0.236 0.289 0.427 0.563 0.793 0.066 0.084 0.076 0.172 0.236

S2 0.235 0.287 0.418 0.559 0.785 0.065 0.082 0.078 0.178 0.260

S3 0.137 0.231 0.315 0.465 0.690 0.038 0.077 0.070 0.177 0.305

TM12 0.228 0.265 0.415 0.533 0.789 0.072 0.080 0.091 0.147 0.264

TD12 0.234 0.288 0.423 0.560 0.789 0.066 0.083 0.078 0.175 0.249

TM13 0.215 0.260 0.386 0.510 0.756 0.063 0.073 0.079 0.133 0.241

TD13 0.227 0.275 0.402 0.545 0.770 0.067 0.083 0.082 0.182 0.283

TM23 0.215 0.260 0.378 0.507 0.747 0.063 0.074 0.081 0.135 0.243

TD23 0.224 0.272 0.397 0.542 0.765 0.067 0.082 0.082 0.185 0.295

TM123 0.214 0.255 0.388 0.505 0.763 0.067 0.075 0.084 0.133 0.254

TD123 0.229 0.281 0.411 0.555 0.779 0.067 0.083 0.081 0.182 0.278

N(0,1) vs N(0,3) N(4,6) vs G(6,1)

n1 10 10 20 20 50 10 10 20 20 50

n2 10 20 20 50 50 10 20 20 50 50

S1 0.081 0.041 0.235 0.197 0.783 0.384 0.530 0.710 0.889 0.990

S2 0.085 0.054 0.253 0.257 0.799 0.387 0.535 0.716 0.892 0.990

S3 0.053 0.092 0.188 0.293 0.638 0.214 0.419 0.545 0.777 0.961

TM12 0.076 0.147 0.227 0.444 0.761 0.355 0.489 0.680 0.865 0.987

TD12 0.082 0.048 0.245 0.228 0.792 0.386 0.534 0.714 0.891 0.990

TM13 0.079 0.089 0.196 0.202 0.708 0.350 0.473 0.661 0.853 0.984

TD13 0.091 0.072 0.239 0.269 0.747 0.361 0.492 0.679 0.859 0.987

TM23 0.079 0.077 0.204 0.201 0.722 0.349 0.478 0.662 0.856 0.985

TD23 0.093 0.081 0.247 0.301 0.756 0.362 0.494 0.681 0.860 0.987

(continued)
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Table 34.1 (continued)

N(0,1) vs N(0,3) N(4,6) vs G(6,1)

TM123 0.076 0.105 0.190 0.308 0.701 0.339 0.462 0.645 0.844 0.983

TD123 0.089 0.065 0.245 0.271 0.773 0.372 0.511 0.696 0.874 0.989

N(0,1) vs N(0.6,2) N(4,4) vs G(6,1)

n1 10 10 20 20 50 10 10 20 20 50

n2 10 20 20 50 50 10 20 20 50 50

S1 0.188 0.182 0.380 0.420 0.825 0.432 0.571 0.775 0.918 0.995

S2 0.187 0.189 0.381 0.441 0.824 0.437 0.578 0.778 0.921 0.996

S3 0.118 0.201 0.312 0.464 0.758 0.246 0.450 0.601 0.804 0.970

TM12 0.172 0.189 0.351 0.421 0.797 0.403 0.528 0.746 0.895 0.993

TD12 0.187 0.186 0.381 0.432 0.826 0.435 0.575 0.776 0.919 0.995

TM13 0.176 0.201 0.339 0.407 0.765 0.398 0.515 0.731 0.886 0.993

TD13 0.187 0.209 0.377 0.473 0.817 0.406 0.534 0.739 0.894 0.992

TM23 0.172 0.197 0.338 0.407 0.762 0.400 0.523 0.732 0.889 0.993

TD23 0.187 0.212 0.377 0.480 0.817 0.408 0.537 0.742 0.895 0.992

TM123 0.171 0.193 0.328 0.397 0.752 0.385 0.501 0.717 0.875 0.992

TD123 0.189 0.204 0.382 0.464 0.824 0.415 0.554 0.756 0.909 0.993

situation. In a different situation, the more powerful component(s) may become the
less powerful one(s) and vice versa but the combined test is expected to have again
an intermediate power. It is important to note that if the combining function leads to
a convex acceptance region, then the power of the combined test cannot be less than
the power of the least powerful component test, see [13]. This speaks in favor of
the practical application of combined testing in particular to social studies when the
hypothesis of normality is very often not satisfied. It is interesting to note that the
direct combination generally produces more powerful tests than the Mahalanobis
combination although the latter might seem to make a better use of the data. The
results on the single tests are consistent with those of [16] that showed that the
S3 test is less powerful than the S1 and S2 tests. The S3 test corresponds to the
Kolmogorov–Smirnov test which is less powerful than the Anderson Darling and
Cramer Von Mises tests, see, e.g., [9]. Among the combined tests, the test of choice
is the TD123 test which always performs well even if it is not the most powerful test
against all alternatives.

34.4 An Example of Social Experiment

In this section we analyze the data of a social experiment. The data reported at p. 68
of [3] were collected from a study comparing two teaching methods that were used
to teach reading recovery in the fifth grade. The first method was a pullout program
where 25 students were taken out of the classroom for half an hour a day, 4 days a
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week. The second method was a small group program where 25 students were taught
in small groups for 45 min a day in the classroom, 4 days a week. After 4 weeks
of the program, the students were assessed through a reading comprehension exam.
We wish to test whether the teaching methods have no differential effect. We address
the problem within the nonparametric framework because we are not comfortable to
assume strict assumptions on the underlying distributions and [3] emphasized that
the normal assumption is violated. Moreover, the groups to be compared are not
genuine random samples since have been obtained through randomization of a non-
random sample of students. Therefore a nonparametric test is not a proper method
to analyze the data and we use the nonparametric tests studied before. We use them
even if the variable (i.e., reading comprehension result) is discrete since ties are
not present. The p-values of the tests have been estimated considering 1,000,000
permutations and are 0.00169 (S1), 0.00183 (S2), 0.00012 (S3), 0.00175 (TD12),
0.00167 (TM12), 0.00039 (TD13), 0.00079 (TM13), 0.00040 (TD23), 0.00058 (TM23),
0.00063 (TD123), 0.00078 (TM123). All the tests find very strong evidence against
the null hypothesis that the two teaching methods give the same results in reading
comprehension.

Conclusion
The comparison study of the previous section, as many other ones, does not
find the uniformly most powerful test for all the situations considered. This
is not surprising, especially when addressing the general two-sample problem
where the difference between F1 and F2 may be of any type: location, scale,
kurtosis, skewness, and arbitrary mixtures of them. Marozzi [9] emphasizes
that different tests are more powerful against different alternatives. The
combination strategy may be effective because it aims at producing tests
that inherit the best shown by component tests in very different situations.
Although a combined test is not the most powerful test against all alternatives
(such test does not exist for the general two-sample problem within the
nonparametric framework i.e. without particular assumptions on F1 and F2),
it is generally possible to find one that performs well in every situation as the
TD123 test. This is a very useful tool for the practitioner that, as very often
happens in social studies, faces a general two-sample with small sample size
and problem without any clear idea on the distributions behind the samples or
that is not comfortable to assume strict assumptions on the distributions.

References

1. Birnbaum, A.: Combining independent tests of significance. J. Am. Stat. Assoc. 49, 559–575
(1954)

2. Blanca, M.J., Arnau, J., Lopez-Montiel, D., Bono, R., Bendayan, R.: Skewness and kurtosis in
real data samples. Methodol. Eur. J. Res. Methods Behav. Soc. Sci. 9(2), 78–84 (2013)



34 Combined Nonparametric Tests for the Social Sciences 361

3. Corder, G.W., Foreman, D.I.: Nonparametric Statistics for Non-statisticians. Wiley, Hoboken
(2009)

4. Ludbrook, J., Dudley, H.: Why permutation tests are superior to t and F tests in biomedical
research. Am. Stat. 52, 127–132 (1998)

5. Marozzi, M.: Multivariate tri-aspect non-parametric testing. J. Nonparametr. Stat. 19, 269–282
(2007)

6. Marozzi, M.: Some notes on the location-scale Cucconi test. J. Nonparametr. Stat. 21, 629–647
(2009)

7. Marozzi, M.: Levene type tests for the ratio of two scales. J. Stat. Comput. Simul. 81, 815–826
(2011)

8. Marozzi, M.: A combined test for differences in scale based on the interquantile range. Stat.
Pap. 53, 61–72 (2012)

9. Marozzi, M.: Nonparametric simultaneous tests for location and scale testing: a comparison of
several methods. Commun. Stat. Simul. C. 42, 1298–1317 (2013)

10. Marozzi, M.: Adaptive choice of scale tests in flexible two-stage designs with applications in
experimental ecology and clinical trials. J. Appl. Stat. 40(4), 747–762 (2013)

11. Micceri, T.: The unicorn, the normal curve, and other improbable creatures. Psychol. Bull. 105,
156–166 (1989)

12. Nanna, M.J., Sawilowsky, S.S.: Analysis of Likert scale data in disability and medical
rehabilitation research. Psychol. Methods 3, 55–67 (1998)

13. Pesarin, F., Salmaso, L.: Permutation Tests for Complex Data. Wiley, Chichester (2010)
14. Schmider, E., Ziegler, M., Danay, E., Beyer, L., Buhner, M.: Is it really robust? Reinvestigating

the robustness of ANOVA against violations of the normal distribution assumption. Methodol.
Eur. J. Res. Methods Behav. Soc. Sci. 6(4), 147–151 (2001)

15. Wilcox, R.R., Keselman, H.J.: Using trimmed means to compare K measures corresponding to
two independent groups. Multivar. Behav. Res. 36(3), 421–444 (2010)

16. Zhang, J.: Powerful two-sample tests based on the likelihood ratio. Technometrics 48, 95–103
(2006)



Chapter 35
The Use of the Scalar Monte Carlo Estimators
for the Optimization of the Corresponding
Vector Weight Algorithms

Ilya Medvedev

35.1 Introductory Information

The main object of study in this paper is the development and justification of the
efficient weight Monte Carlo methods for estimating the linear functionals of the
solution of the system of the integral equations of the second kind. Such equations
describe many important processes in mathematical physics (especially in the theory
of particle transfer).

Consider the following system of second-kind linear integral equations:

'i .x/ D
mX

jD1

Z

X

kij .x; y/'j .y/dy C hi .x/ (35.1)

or in the vector form ˚ D K˚ CH , where H T D .h1; : : : ; hm/;

K 2 ŒL1 ! L1�; jjH jjL1
D vrai sup

i;x

jhi .x/j;

and the integration is performed with respect to Lebesgue measure in the Euclidean
~ space.

It is supposed that the spectral radius is �.K/ is less than 1. In this case we have
the following expansion of the solution to the Neumann series:
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˚ D
1X

nD0
KnH: (35.2)

The convergence of series (35.2) is sufficiently provided by the fulfillment of the
inequality jjKn0 jj < 1 for some n0 > 1.

Consider a Markov chain fxng; .n D 0; : : : ; N / with some transition probability
p.x; y/. The value p.x/ D 1� R

X

p.x; y/dy > 0 is considered as the probability of

breaking (stop) at the point x, N is a random number of the last state and x0 � x.
The standard Monte Carlo collision-based estimator is constructed for the value

˚.x/ on the base following recursion

�x D H.x/C ıxQ.x; y/�y; (35.3)

Q.x; y/ D K.x; y/=p.x; y/; ˚.x/ D E�x;

where K.x; y/ is the matrix of kernels fkij .x; y/g; .i; j D 1; : : : ; m/ and ıx is the
chain nonbreak indicator function under the transition x ! y. Note that the relation
˚.x/ D E�x holds under the “unbiasedness conditions” [5]

p.x; y/ > 0; if
mX

i;jD1
jkij .x; y/j > 0; (35.4)

and under the additional condition �.K1/ < 1, where K1 is the operator obtained
from K upon replacing the kernels by their absolute values.

The following equation for the covariation matrix �.x/ D E.�x�
T
x/ was

presented in [3]

�.x/ D �.x/C
Z

X

K.x; y/�.y/KT.x; y/

p.x; y/
dy; (35.5)

or � D �C Kp� , where � D H˚T C ˚H T �HH T: This equation is considered
in the space L1 of matrix-valued functions with the norm

jj� jj D vrai sup
i;j;x

j�i;j .x/j:

By Kp;1 we denote the operator obtained from Kp by replacing the kernels by their
absolute values. It is supposed that Kp;1 2 ŒL1 ! L1�

The following assertion was proved in [2] with the use of the method of recurrent
“partial” averaging developed by the author [4].
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Theorem 35.1. If �.K1/ < 1 and �.Kp;1/ < 1, then �.x/ D E.�x�
T
x/ is the

solution to Eq. (35.5) and � 2 L1.

It is not difficult to see that introducing an additional discrete coordinate with
the values 1; 2; : : : ; m and the corresponding discrete integration measure with m
“atoms” into the phase space, one can rewrite system (35.1) in the form of a
single integral equation. This gives us the ability to construct scalar algorithms
of the Monte Carlo method, including the simulation of “jumps” in the discrete
coordinate. Replacing the argument x by .i; x/ instead of (35.1) we get

'.i; x/ D
mX

jD1

Z

X

k..i; x/; .j; y//'.j; y/dy C h.i; x/; (35.6)

or ' D K' C h. Here we have k..i; x/; .j; y// D kij .x; y/; h.i; x/ D
hi .x/ and '.i; x/ D 'i .x/: The following Markov chain is constructed according
to this representation:

.i0; x0/; .i1; x1/; : : : ; .iN ; xN /; (35.7)

where .i0; x0/ D .i; x/. The transition density for .i; x/ ! .j; y/ is determined in
chain (35.7) by the set of densities pij .x; y/ D p..i; x/; .j; y// so that

P.i ! j jx/Dpij .x/ D
Z

X

pij .x; y/dy;

mX

jD1
pij .x/Dqi .x/ 6 1; i; j D 1; : : : ; m:

The quantity pi .x/ D 1 � qi .x/ here is the probability of breaking (in other
words, stop) of the trajectory in its transition from the state .i; x/; in the case of
nonbreaking and the transition i ! j the next phase state is distributed according
to the conditional probability density rij .x; y/ D pij .x; y/=pij .x/:

A collision-based estimator is uniquely determined for Eq. (35.6) by the
recursion

�.i;x/ D h.i; x/C ı.i;x/q..i; x/; .j; y//�.j;y/; (35.8)

where

q..i; x/; .j; y// D k..i; x/; .j; y//=p..i; x/; .j; y//

and ı.i;x/ is the nonbreaking indicator, i.e., P.ı.i;x/ D 1/ D qi .x/; P.ı.i;x/ D 0/ D
1 � qi .x/: The unbiasedness conditions here take the following form:

p..i; x/; .j; y// ¤ 0; if k..i; x/; .j; y// ¤ 0 8.i; x/; .j; y/: (35.9)
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35.2 “Majorant” Methods of Study of Variance
Boundedness

As was mentioned in Sect. 35.1, standard methods for checking the variance
finiteness for a weighted estimator require a study of the spectral radius for the
operator jjKpjj corresponding to the integral equation for the second moment of
the weighted estimator [5]. A criterion for checking the finiteness of a weight
estimator variance that is based on the construction of the appropriate majorant
adjoint equation and use of the “partial-value” modelling was proposed in [4]. In this
section we present a generalization of the criterion mentioned above and also its
certain modifications for a weight scalar estimator of the solution of the system
(35.6).

Let t0 D .t 01; t 02/ 2 T D T1 � T2 be a set of two auxiliary values (possibly vector
ones) chosen in order to implement a transition in a Markov chain. In the modified
phase space T � X D f.t0; x/g; one can write down the sub-stochastic kernel of
system (35.6) in the form

kij ..t; x/; .t0; y// D ı.y � y.x; t0//k.1/ij .x; t 01/k.2/ij ..x; t 01/; t 02/;

where y.x; t0/ is the function determining the new value of the standard Euclidean
coordinates over x and the values of the auxiliary variables t0. In addition, assume
that 8x 2 X

mX

jD1

Z

T1

k
.1/
ij .x; t

0
1/dt

0
1 D 1 � ˛i .x/ 6 1: (35.10)

Let the transitional densities have the form

p
.2/
ij ..x; t

0
1/; t

0
2/ � k

.2/
ij ..x; t

0
1/; t

0
2/; p

.1/
ij .x; t

0
1/ D k

.1/
ij .x; t

0
1/u

.1/
j .x; t

0
1/

ŒKu�.i; x/
;

(35.11)

where

u.1/j .x; t
0
1/ D

Z

T2

Z

X

ı.y � y.x; t0//k.2/ij ..x; t 01/; t 02/uj .y/dydt 02 D

Z

T2

k
.2/
ij ..x; t

0
1/; t

0
2/uj .y.x; t

0//dt 02: (35.12)

u D Ku C Oh; supp h � supp Oh; h

Oh 6 C < 1 8x 2 supp Oh; (35.13)
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Theorem 35.2 ([4]). If all the functional elements of system (35.6) are nonnegative,
then the variance of the collision-based estimator �x is finite under the correspond-
ing value simulation of the first auxiliary random variable t 01 (see (35.11)).

Proof. The following equality can be verified by direct substitution:

ŒKpu�.i; x/ D
mX

jD1

Z

T1

�
k
.1/
ij .x; t

0
1/
	2

p
.1/
ij .x; t

0
1/

" Z

T2

Z

X

k
.2/
ij ..x; t

0
1/; t
0
2/ı.y � y.x; t0//uj .y/dydt 02

#
dt 01

D
mX

jD1

Z

T1

�
k
.1/
ij .x; t

0
1/
	2
ŒKu�.i; x/

k
.1/
ij .x; t

0
1/u

.1/
j .x; t 01/

"Z

T2

k
.2/
ij ..x; t

0
1/; t
0
2/uj .y.x; t

0//dt 02

#
dt 01

D ŒKu�.i; x/
mX

jD1

Z

T1

k1.x; t
0
1/1dt

0 D ŒKu�.i; x/.1 � ˛i .x//

D .u.i; x/ � Oh.i; x//.1 � ˛i .x//

This equality can be rewritten in the operator form u D Kpu C ˛.u � Oh/C Oh:
The proof is then constructed on the basis of a step-by-step integration of the

latter operator equation by the analogy with the proof of Theorem 4.3 from [4],
formulated for the case of a single integral equation. ut

For alternating sign k
.1/
ij .x; �/; k.2/ij ..x; �/; �/ and h.i; x/ the Theorem 35.2 is

valid if we assume u D K1u C j Ohj, and replace k
.1/
ij .x; �/; k.2/ij ..x; �/; �/ by

jk.1/ij .x; �/j; jk.2/ij ..x; �/; �/j in the expressions (35.11),(35.12).
Note that the search for the solution u of the majorant Eq. (35.13) is practically

equivalent to the search for the solution of the original problem. In this context, we
propose to consider the approximate and probably more simple majorant Eq. (35.6)

g D QKg C Ojhj; supp h � supp Oh; h

Oh 6 C < 1 8x 2 supp Oh; (35.14)

with nonnegative elements Qk.1/ij .x; �/ instead of k.1/ij .x; �/.
The conditions jk.1/ij .x; �/j 6 Qk.1/ij .x; �/; �. QK/ < 1 allow us to determine the

partial value density

Qp.1/ij .x; t1/ D k
.1/
1 .x; t

0
1/ g

.1/
j .x; t

0
1/

Œ QKg�.i; x/ (35.15)

and to formulate the following result.

Theorem 35.3. The variance of the collision-based estimator �x is finite under
partial value modelling of the first auxiliary random variable t 01 (see (35.15)).

Theorem 35.3 can be proved similarly to the proof of Theorem 35.2.
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Note that the verification of the inequalities �.Kp/ < 1 or jjKpjj < 1 for a
scalar estimator of a vector solution is essentially easier than the verification of the
corresponding inequality for a vector estimator. Nevertheless, due to the additional
simulation of ‘jumps’ in the discrete coordinate, the variance of the scalar estimator
on the average is greater than the variance of the corresponding vector estimator.
For example, it was indicated in [2] that if the transition density does not depend
on i; j , i.e.

p..i; x/.j; y// D m�1p.x; y/;
Z

X

p.x; y/dy 6 1;

then the following relation holds: D�.i;x/ > D�x;i ; because it is sufficiently clear
that in this case we have

�x;i D E
�
�.i;x/jx0; : : : ; xN

	
: (35.16)

Taking the latter remark into account, we can formulate the following result.

Lemma 35.1. If �.Kp/ < 1, then the variance of the vector estimator �x with the
transition density p.x; y/ is finite.

Note that the assertion of Lemma 35.1 directly implies that if �.Kp/ < 1, then
�.Kp;1/ < 1.

35.3 Algorithms with Branching

It is known [1–3] that the variance of the weighed estimator D�x is finite if
�.Kp;1/ < 1. The estimation of the value �.Kp;1/ for real problems requires a
separate and laborious theoretical study. For example, using semiheuristic analytic
calculations, numerical estimates, and integrating the resolvent, it was shown in
[6] that the value �.Kp/ ) in problems of radiation transfer under polarization is
close to the product of the similar spectral radius �.Sp/ for an infinite medium
(which can be calculated analytically) and the spectral radius of the scalar integral
operator related to the “unit” matrix of scattering, which can be easily estimated.
The ability to proceed to consideration of �.Kp/ is due to the majorant property
of the first component of the Stokes vector. In particular, in the case of molecular
scattering for a “physical” simulation, it has been obtained that �.Kp/ < 1 for
p > 0:151, where p is the lower bound of the absorption probability in the medium.
One can essentially decrease the value of p by modification of the transfer process
by substituting � ! �s; �c ! 0 [1,5], where � D �s C �c is the total cross-section
and �s and �c are scattering and absorption sections, respectively. The absorption
is taken into account in this modification with the use of the corresponding weight
factor, the following estimate is valid [6]
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�.Kp/ 6
1 � p
1C p

�.Sp/;

and �.Kp/ < 1 for p > 0:082 in the case of molecular scattering.
Thus, for p < 0:082 the variance of the vector estimator can be infinitely large

and the justification of the vector Monte Carlo algorithm applications remains open.
In this case one may use a scalar weight estimator with “branching” of the trajectory.

Consider Eq. (35.6) with nonnegative elements k..i; x/; .j; y//, h.i; x/ and
define the collision-based estimator with branching [4]. To do that, introduce the
integer-valued random variable � D �..i; x/; .j; y// (number of “branches”) so that

P.� D Œq�/ D 1C Œq� � q; P.� D 1C Œq�/ D q � Œq�; (35.17)

q D q..i; x/; .j; y//. It is not difficult to check in this case that E� D q and the
distribution (35.17) determines the minimal value of D� in the class of random
integer-valued variables with the fixed value E� D q [4].

Hereafter we assume that jqj < C < 1. Let the random variable �.i;x/ be
determined by the recursion

�.i;x/ D h.i; x/C ı.i;x/

�X

nD1
�
.n/

.j;y/; (35.18)

where �.n/.j;y/ are independent implementations of �.j;y/.

Lemma 35.2 ([5]). If �.K1/ < 1, then under the assumptions formulated above
the relation E�.i;x/ D '.i; x/ holds.

Proof. Since all the elements in (35.18) are nonnegative, by Wald’s identity we have

E
�X

nD1
�
.n/

.j;y/;D E�E�.j;y/; :

This equality is also valid in the case E�.j;y/ D C1, because the nonnegativity of
the elements of the problem implies

E
�X

nD1
�
.n/

.j;y/ D EE

� �X

nD1
�
.n/

.j;y/j�
�
:

Therefore, the value E�x0 can be sequentially calculated by a recursion of form
(35.8). ut

In order to estimate the solution to original system (35.6) with alternating-sign
elements k..i; x/; .j; y//; h.i; x/ one should apply the substitution q ! jqj in the
expression (35.17) and use the random variable
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�.i;x/ D h.i; x/C ı.i;x/sgn.q/
�X

nD1
�
.n/

.j;y/;

where �.n/.j;y/ are independent implementations of �.j;y/. The definition obviously

implies j�.i;x/j 6 �
.1/

.i;x/, where �.1/.i;x/ is the estimator of form (35.18) for the system
(35.6) with the elements jk..i; x/.j; y//j; jh.i; x/j. Under the above assumptions,
the value E�.1/.i;x/ is finite. Due to Lebesgue’s theorem on dominated convergence, we
have the equality E�.i;x/ D '.i; x/:

Theorem 35.4. If the conditions of Lemma 35.2 hold, then the value E�2.i;x/ < 1 is
determined by the Neumann series for Eq. (35.6) with the replacement of h.i; x/ by

H.i; x/ D h.i; x/f2'.i; x/ � h.i; x/g C
mX

jD1

Z

X

p..i; x/; .j; y//�'2.j; y/dy;

(35.19)

where � D .2q � 1 � Œq�/Œq�:
Proof. The proof follows from recurrent partial probabilistic averaging of the
equality

�2.i;x/ D h2.i; x/C 2ı.i;x/h.i; x/
�X

nD1

�
.n/

.j;y/ C 2ı.i;x/
�X

nD1

�X

lDnC1

�
.n/

.j;y/�
.l/

.j;y/ C ı.i;x/
�X

nD1

�
�
.n/

.j;y/

�2
:

ut
Let us note that if we assume h.i; x/ � 1 in the system (35.6) then the value

'1.i; x/ D E�.1/.i;x/ coincides with the mean E� of the total number �.i; x/ of
branches in the branching trajectory. Obviously, the value E� is linearly related
to the average time Tb of simulation of a single branch trajectory. Assuming all the
above, we can formulate the following lemma.

Lemma 35.3. If �.K1/ < 1, then the value Tb is bounded.

Now we study the possibility of branching of trajectories for a vector estimator.
Here and below we assume that the random number of “branches” �.x; y/ is
nonnegative, bounded, and has some probability distribution. Define the random
variable x by the following recursion:

x D H.x/C ıx
Q.x; y/

E�.x; y/

�X

nD1
y

.n/; (35.20)

where y
.n/ are independent implementations of x . Repeating sequentially the

calculations for x as in the proof of Lemma 35.2, one can verify the following
assertion.
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Lemma 35.4. If �.K1/ < 1, then under the assumptions presented above the
relation Ex D ˚.x/ holds.

Theorem 35.5. If all the components of system (35.1) are nonnegative, then the
value �.x/ D E.x

T
x/ is determined by the Neumann series for the equation

�.x/ D Q�.x/C
Z

X

K.x; y/�.y/KT.x; y/

E�.x; y/p.x; y/
dy; (35.21)

or � D Q�C K./
p� , where

Q�.x/ D �.x/C
Z

X

K.x; y/E
�
�.x; y/.�.x; y/ � 1/	˚.y/˚T.y/KT.x; y/

�
E�.x; y/

	2
p.x; y/

dy

Proof. The proof follows from recurrent partial probabilistic averaging of the
equality

x
T
x D

�
H.x/C ıx

Q.x; y/

E�.x; y/

�X

nD1
y

.n/
��
H T.x/C ıx

� �X

nD1
y

.n/
�TQT.x; y/

E�.x; y/

�

D H.x/H T.x/C ıx
Q.x; y/

E�.x; y/

�X

nD1
y

.n/H T.x/C ıxH.x/
� �X

nD1
y

.n/
�TQT.x; y/

E�.x; y/

Cıx Q.x; y/
E�.x; y/

�X

nD1
y

.n/
� �X

nD1
y

.n/
�TQT.x; y/

E�.x; y/
: ut

Note that operator K./
p in relation (35.21) differs from the corresponding operator

Kp from (35.5) in the presence of the additional factor 1=E�.�; �/ in the integrand.
This fact gives us an ability to choose the corresponding distribution for the
random number of branches �.x; y/ to decrease the variance Dx or, which is
more important, �.K./

p / in comparison with D�x or �.Kp/, respectively. In this case
it is extremely important to study in advance that the mean of the total number
of branches in bounded. This study can be simplified if we notice that for vector
estimator with branching (35.20) one can construct the corresponding randomized
scalar estimator with branching

Q�.i;x/ D h.i; x/C ı.i;x/
mkij .x; y/

p.x; y/E�.x; y/

�X

nD1
Q�.n/.j;y/:

In this case the corresponding inequality (35.16) and analogues of Lemma 35.1 and
its remark are valid for the estimators x;i ;

Q�.i;x/.
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Chapter 36
Additive Cost Modelling in Clinical Trial

Guillaume Mijoule, Nathan Minois, Vladimir V. Anisimov, and Nicolas Savy

36.1 Introduction

In the framework of a clinical trial, an important and mandatory parameter of the
clinical trial protocol is the Necessary Sample Size, the number n of patients to be
recruited. A natural question is how long it takes to recruit these patients.

The use of Poisson process to describe the recruitment process is an accepted
approach (Senn [6], Carter et al. [4]). However, the huge variability of the rates of
the recruitment processes among centres were not taken into account. There were
many investigations on this way and now we are able to claim that, to date, the
easiest to handle and most relevant model is the Poisson-gamma model developed
in [2] and further extended in [1, 5]. This model assumes that patients arrive at
different centres according to randomly delayed Poisson processes where the rates
are gamma-distributed.

In [3], authors introduce a more elaborated model in which the distinction is
made between the screened (recruited) patients and the randomized patients who
are patients satisfying the inclusion criteria (the other ones quit the trial). In what
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follow, NS.t/ (resp. NR.t/) denotes the number of screened (resp. randomized)
patients at time t . The instant of interest is the first time denoted by � when the
process NR attains n:

� D
�

inf
t>0

W NR.t/ D n


: (36.1)

The paper aims to give the very first step of a model for multicentric clinical trial
cost. The dynamic of the cost denoted t ! C.t/ is directed by the dynamic of the
recruitment process we assume to be Poisson-Gamma. Given constants which are
usually used to estimate the total cost of a trial, we introduce an additive cost model
(defined in Sect. 36.2.2). This model allows us to compute parameters such that the
expectation EŒC.t/� for a given t or slightly more complicated but of paramount
interest, EŒC.�/�. These parameters are really useful tools for the monitoring of a
clinical trial.

The paper is organized as follows. Section 36.2 describes the Poisson-gamma
model with screening failures, and introduces the cost model. Section 36.3 gives the
main results regarding the expected cost of the trial, first focusing on the simpler
non-Bayesian case. Section 36.4 applies those results in a simulation study.

36.2 An Empirical Bayesian Model for the Cost of Clinical
Trials with Patients’ Drop-Out

Consider a multicentric clinical trial where M centres are involved. In this section
we describe the empirical Bayesian setting for modelling of patients’ arrival and
screening failure, and the associated cost model.

36.2.1 The Poisson-Gamma Model with Patients’
Screening Failures

We assume that patients arrive at centres according to a Poisson-gamma process.
The recruitment process in i -th centre is a Poisson process with rate �i where �i
has a gamma distribution with parameters .˛; ˇ/ and pdf ~e�ˇxx˛�11fx>0g (~ is a
normalizing constant). Processes in different centres are assumed independent. In
papers [1, 2, 5] the validity of this model in the framework of clinical trials was
intensively studied.

Now assume that a patient arriving in the i -th centre has a probability pi of
succeeding the screening process [3]. To account for variability of pi among centres,
we use again a Bayesian setting where we assume pi are independent and distributed
as a beta distribution of parameters . 1;  2/, with pdf ~x 1�1x 2�11f0<x<1g (~ is a
normalizing constant).
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36.2.2 The Cost Model

For centre i , we categorize the different costs of a clinical trial as follows:

• a fixed cost for a screened patient,
• a fixed cost for a randomized patient (on top of the screening cost),
• a time-depending cost for a randomized patient,
• a fixed cost for opening a centre,
• a time-depending cost for an active centre.

The model we propose is an additive cost model which expresses the total cost at
time t of the i -th centre, denoted Ci.t/ by:

Ci.t/ D JiN
R
i .t/CKiN

S
i .t/C

X

06T in6t

gi .t; T
i
n /C Fi CGi t;

where Ji ,Ki , Fi andGi are constants (in general roughly known by the investigator
of the centre). The time-depending cost for a randomized patient starts when a
patient is included. It is thus natural that gi is some function of both variables t and
T in , the randomization instant of n-th patient in i -th centre. We make the following
hypotheses on the functions gi :

• gi W RC � RC ! R is measurable,
• gi .t; s/ D 0 if t < s,
• 8t > 0, gi .t; :/ is continuous on Œ0; t �.

NR
i .t/ (resp. NS

i .t/) is the number of randomized (resp. screened) patients at time
t in i -th centre. Notice that

X

06T in6t

gi .t; T
i
n / D

Z t

0

gi .t; s/dN
R
i .s/;

where the integral is to be understood as a Stieltjès one.
Finally, let NR.t/ D PM

iD1 NR
i .t/ the total number of randomized patients at

time t and C D PM
iD1 Ci the total cost process. Patients’ recruitment stops as soon

as the processNR reaches n. The recruitment time, � , is defined by (36.1). Note that
� is a stopping time in the natural filtration of NR.

In the following, we set

F D
MX

iD1
Fi and G D

MX

iD1
Gi :
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Definition 36.1. The mean cost of the trial E ŒC.�/�, denoted C , is

C D E

"
MX

iD1

�
JiN

R
i .�/CKiN

S
i .�/

�#
C E

"
MX

iD1

Z �

0
gi .�; s/dN

R
i .s/

#
C F CG E Œ� � :

36.3 Calculation of the Mean Cost

36.3.1 Non-random Recruitment Rates and Probabilities
of Screening

We first investigate the simpler model where recruitment rates and probabilities of
screening are known. In this case, patients arrive in centres according to standard
homogenous Poisson processes. A simple conditional argument will give the general
result in a Bayesian setting. Thus, we assume .�i /16i6M and .pi /16i6M are known.

We have for any i the expansion

NS
i D NR

i CNL
i ; (36.2)

where NR
i is the aforementioned Poisson process of randomized patients with rate

pi�i andNL is an independent Poisson process with rate .1�pi /�i , representing the
number of screening failures in centre i over time. Finally, denote�1 D PM

iD1 pi�i .
Recall that, sinceNR is a Poisson process with rate�1, then, in the non-Bayesian

setting, � has a Gamma distribution with parameters .n;�1/. We let p.n;�1/ be the
density of this distribution. The following lemma is the non-Bayesian version of our
main theorem.

Lemma 36.1. Assume .�i /16i6M and .pi /16i6M are known. Let˚1DPM
iD1Jipi�i ;

˚2 D PM
iD1 Ki�i and for any t > 0,

G.t/ D
MX

iD1

pi�i

�1

gi .t; t/ and QG.t/ D
MX

iD1

pi�i

�1

1

t

Z t

0

gi .t; s/ ds:

Then

C D n
˚1 C ˚2

�1
C
Z C1

0
G.t/p.n;�1/.dt/C .n � 1/

Z C1

0

QG.t/p.n;�1/.dt/CG
n

�1
C F:

(36.3)

Proof. First, remark that all functions in (36.3) are positive and measurable, so the
integrals are well defined. A standard result implies that NR

i .�/ has a binomial

distribution B
�
n;

pi�i
�1

�
. Thus,
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E

"
MX

iD1
.Ji CKi/N

R
i .�/

#
D

MX

iD1
.Ji CKi/n

pi�i

�1

D n˚1

�1

C n

�1

MX

iD1
Kipi�i :

Since NL
i and � are independent, and since E Œ� � D n

�1
, by conditioning we get

E

"
MX

iD1
KiN

L
i .�/

#
D

MX

iD1
KiE Œ.1 � pi /�i �� D n

�1

MX

iD1
Ki .1 � pi /�i :

Recalling (36.2), we obtain the first term in (36.3). It remains to show that

E

"
MX

iD1

Z �

0

gi .�; s/dN
R
i .s/

#
D
Z C1

0

G.t/p.n;�1/.dt/C.n�1/
Z C1

0

QG.t/ p.n;�1/.dt/:
(36.4)

We have

E


Z �

0

gi .�; s/dN
R
i .s/

�
D
Z C1

0

E


Z t

0

gi .t; s/dN
R
i .s/

ˇ̌
ˇ̌ � D t

�
p.n;�1/.dt/;

Assume first that for all t > 0, the restriction of s 7! gi .t; s/ to
Œ0; t � is differentiable. Let @2gi .t; :/ be this derivative. Also assume that
8t > 0; sup

06s6t
j@2gi .t; s/j < C1. An integration by parts gives

Z t

0

gi .t; s/dN
R.s/ D gi .t; t/N

R
i .t/ �

Z t

0

@2gi .t; s/N
R
i .s/ds:

This leads

E


Z t

0

gi .t; s/dN
R
i .s/

ˇ̌
ˇ̌ � D t

�

D gi .t; t/E
�
NR
i .t/j � D t

� � E


Z t

0

@2gi .t; s/N
R
i .s/ds

ˇ̌
ˇ̌ � D t

�
:

Knowing f� D tg, NR
i .t/ has a binomial distribution B

�
n;

pi�i
�1

�
. Moreover, given

f� D tg, we can bound from above j@2gi .t; s/NR
i .s/j 6 n sup

06s6t
j@2gi .t; s/j, so that

Fubini’s theorem applies and

E


Z t

0
gi .t; s/dN

R
i .s/

ˇ̌
ˇ̌ � D t

�
D n gi .t; t/

pi�i

�1
�
Z t

0
@2gi .t; s/E

h
NR
i .s/ j � D t

i
ds:

It remains to prove that 8s < t ,
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E
�
NR
i .s/ j � D t

� D .n � 1/pi�i
�1

s

t
: (36.5)

Given f� D tg, there is a probability pi�i
�1

that NR
i jumps at t . Knowing this event,

the NR
i .t/� 1 remaining jumps of NR

i in Œ0; t Œ are uniformly distributed. The same
argument for the case where NR

i does not jump at t implies

E

h
NR
i .s/ j � D t

i
D pi�i

�1
E

h
NR
i .t/ � 1 j � D t

i s
t

C
�
1 � pi�i

�1

�
E

h
NR
i .t/ j � D t

i s
t
;

which leads to (36.5). Reintegrating by parts, we obtain (36.4).
Finally, the density of C 1.Œ0; t �/ in C 0.Œ0; t �/ for the uniform norm completes the

proof in the case where gi .t; :/ is only continuous on Œ0; t �, 8t > 0.

36.3.2 Bayesian Setting: Random Recruitment Rates
and Probabilities of Screening Success

Now, we assume the initial rates are distributed according to a prior gamma
distribution and the probabilities of screening have a beta distribution. At some
interim time t1, assume i -th centre has screened ni patients and randomized ki
patients. A Bayesian re-estimation shows that, given ni and ki , the posterior rate
�i has a gamma distribution with parameters .˛ C ni ; ˇ C t1/, and the probability
of screening pi has a beta distribution with parameters . 1 C ki ;  2 C ni � ki / [3].
Our main theorem is a consequence of Lemma 36.1.

Theorem 36.1. Let ˚1 D PM
iD1 Jipi�i ; and ˚2 D PM

iD1 Ki�i . The mean cost
reads

C D nE



˚1 C ˚2

�1

�
C
Z

C1

0

e�t t n�1

.n � 1/Š
MX

iD1

E



pi�i

�1

gi .t=�1; t=�1/

�
dt

C
Z

C1

0

e�t t n�2

.n � 2/ŠE
"Z t=�1

0

MX

iD1

gi .t=�1; s/pi�i ds

#
dt CGnE



1

�1

�
C F:

Proof. Conditioning by .�1; : : : ; �M / and .p1; : : : ; pM /, we can make use of
Lemma 36.1. The change of variable x D t=�1 in the integrals leads to the result.
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36.3.3 Mean Cost Variation When Closing a Centre

In this section, we calculate the mean cost variation when closing a particular centre.
For the sake of notational simplicity, we make some assumptions, namely that each
randomized patient yields a linear cost over time. This would be the case if, for
instance, patients have to remain in observation until the trial ends. This means
gi is defined by gi .t; s/ D Li.t � s/1ft>sg; where Li is some positive constant.
Moreover, we also assume the constants Ki ; Ji and Li do not depend on i and we
write Ki � K; Ji � J and Li � L.

Corollary 36.1. Denote �2 D PM
iD1.1 � pi /�i . The closure of i -th centre implies

a variation of the mean cost of the trial �Ci given by:

�Ci D E



n�iK.pi�2 � .1 � pi /�1/C n.n�1/

2
�ipiLC n�ipiG � nGi�1

�1.�1 � pi�i /
�

� Fi :

Proof. When closing centre i , the new mean cost is given in Theorem 36.1 by
replacing �1 by �1 � pi�i and by summing over all indices except i . The proof
is then a straightforward calculation.

36.4 Simulation Study

We apply the result of Corollary 36.1 in a simulation study. The parameters used in
simulation scenario are ˛ D 1:2 and � D ˛=ˇ D 0:2 for the recruitment process
and  1 D 3;  2 D 1 for the screening probability. In Fig. 36.1, we plot, for different
sets of constantsK and L, and for each centre, the variation in recruitment time and
total cost when closing this centre.

When L=K is large, the mean cost is expected to be correlated to the recruitment
time since most of the cost has linear increasing in time. In this case, closing a centre
should never profitable. This is well shown by crosses in Fig. 36.1.

On the other hand, a small value of L=K means most of the cost is due to
patients’ screening cost; thus, closing centres with high probabilities of drop-out
is expected be profitable. This is what we observe in simulations: for instance, the
triangle and the circle in the bottom of Fig. 36.1 represent the centre with highest
probability of drop-out.

Conclusion
The model described here is an additive model for the cost of a multicentric
clinical trial. The process describing patients’ arrival and drop-outs takes into

(continued)
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Fig. 36.1 Cost and recruitment time variation when closing a centre, for three different parameter
sets. Gi 	 Fi 	 0. Ki 	 10. Crosses: L D 0:1, triangles: L D 0:01, circles: L D 0:001

account the variability in the recruitment rates and in the probabilities of
screening failures between centres. The expected cost of the trial is reachable.
It yields an useful tool to determine whether closing a centre is profitable. We
show its applicability in a simulation study. The main difficulty in practical
applications will be the estimation of the constants describing the different
costs.
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Chapter 37
Mathematical Problems of Statistical Simulation
of the Polarized Radiation Transfer

Gennady A. Mikhailov, Anna S. Korda, and Sergey A. Ukhinov

37.1 Introduction

Light propagation can be treated as a random Markov chain of photon-substance
collisions that lead to either photon scattering or photon absorption. In the Monte
Carlo method, the trajectories of this chain are simulated on a computer and statisti-
cal estimates for the desired functionals are computed. The construction of random
trajectories for a physical model of the process is known as direct simulation.
No weights are used, and the variances of Monte Carlo estimates are always
finite (see [1]). In the case of considered polarized radiation, a general matrix-
weighted algorithms for solving systems of radiative transfer integral equations with
allowance for polarization were constructed and preliminarily studied in [1, 4].

This paper is devoted to additional researches of the variant of the matrix-weight
algorithm based on direct simulation of “scalar” transfer process. Due to the fact
that the appropriate statistical estimates can have the infinite variance, the method
of “`-fold polarization”, in which recalculation of a Stokes vector on a “scalar”
trajectory is carried out no more, than ` times, is offered deprived of this deficiency.
Thus polarization is not exactly taken into account, but errors of required estimates
can be quite small.

Also this paper examines the finiteness of the variance of corresponding standard
vector Monte Carlo estimates, which is required for constructing the correct
confidence intervals. To this end, in [4] is considered the system of integral
equations defining the covariance matrix of a weighted vector estimate. Numerical
estimates based on the iteration of the resolvent showed that the spectral radius
of the corresponding matrix-integral operator is fairly close to the product of the
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spectral radius for an infinite medium, which is calculated analytically, and the
easy-to-estimate spectral radius of the scalar integral operator associated with an
“identity” scattering matrix. In the purpose of enhancement of analytical study of
this practically important factorization, in this paper is given obtained at [3] dual
(to the one which is considered in [2]) representation of the mean square error of
the estimates of considered functionals.

37.2 General Information

Various methods are available for describing the polarization properties of light.
The most widespread and convenient method is that proposed by Stokes in 1852,
who introduced four parameters I; Q; U; V with the dimension of intensity, which
determine the intensity, degree of polarization, polarization plane, and degree of
ellipticity of radiation. In what follows, we consider the corresponding components
of the Stokes vector function of light intensity:

I.r; !/ D �
I1.r; !/; I2.r; !/; I3.r; !/; I4.r; !/

	T
:

The simplest “phenomenological” Markov model of polarized radiative transfer
arises when the medium is assumed to be isotropic. The only difference from
the standard scalar model is that the scattering phase function is replaced with
a scattering matrix, which transforms the Stokes vector associated with a given
“photon” at a scattering point (see, e.g., [1]).

We used the following notations: x D .r; !/ is a point of the phase space, r is
a point of R3 space, ! D .a; b; c/ is a unit direction vector aligned with the run
of the particle .a2 C b2 C c2 D 1/; � D .!; !0/ is the cosine of the scattering
angle, ' is the azimuthal scattering angle, r11.�/ is the scattering phase function,
�.r/ is the extinction coefficient, q.r/ is the probability of scattering, l is the free
path, p�.l I r0; !/ is the sub-stochastic distribution density of the free path l from the
point r0 in the direction !: p� .l I r0; !/ D � .r0 C !l/ exp

���op .l I r0; !/
	
; l 6

l� .r0; !/ I �op.l I r0; !/ D �op.r0; r/ D
lR

0

� .r0 C s!/ds is the optical length of the

interval Œr0; r0 C l! D r� ; and l� .r0; !/ is the distance from the point r0 in the
direction ! up to the boundary of the medium, which may be assumed to be convex.
Here, the trajectory can terminate since the particle escapes from the medium.

Let F.x/;H.x/ be the column vectors of the functions f1.x/; : : : ; f4.x/ and
h1.x/; . . . ; h4.x/, respectively, and

˚.x/ D .'1.x/; '2.x/; '3.x/; '4.x//
T D �.r/I.x/

is the vector density of collisions.
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The system of integral equations describing radiative transfer with allowance for
polarization has the following matrix kernel:

K.x0; x/ D q.r0/e��op.r0;r/�.r/P.!0; !; r0/
jr � r0j2 � ı

�
! � r � r0

jr � r0j
�
:

Thus, we have a vector-integral equation of transfer with allowance for polarization
with respect to the vector function ˚ :

˚.x/ D
Z

X

K.x0; x/˚.x0/dx0 C F.x/; ˚ D K˚ C F: (37.1)

Let’s call the operator K the matrix-integral transfer operator. Monte Carlo
algorithms are based on a representation of the solution of Eq. (37.1) in the form
of a Neumann series. Such a representation holds if the norm of the operator K
(or of its power Kn0) is less than unity [1, 4].

Linear functionals of the solution of the integral equation are usually estimated
by applying Monte Carlo methods. In the case of a system of second-kind integral
equations, the general Monte Carlo algorithm for estimating such functionals can
be described as follows.

Suppose that we want to calculate the functional

IH D .˚;H/ D
mX

iD1

Z

X

'i .x/hi .x/dx D
1X

nD0
.KnF;H/:

Here, H is a vector function with absolutely bounded components; i.e., H 2 L1.
A homogeneous Markov chain fxng in the phase space X is defined by the
probability density �.x/ of the initial state x0, by the transition probability density
r.x0; x/ from x0 to x, and by the probability p.x0/ that the trajectory terminates
in the transition from the state x0. The function p.x0; x/ D r.x0; x/Œ1 � p.x0/�/ is
called the transition density.

An auxiliary random vector Q of weights is defined by the formulas

Q0 D F.x0/

�.x0/
; Qn D ŒK.xn�1; xn/=p.xn�1; xn/�Qn�1; Q.i/

n D
4X

jD1
Q
.j /
n�1

kij .xn�1; xn/
p.xn�1; xn/

:

By analogy with a single integral equation, it is shown (see [1, 2]) that IH D
.˚;H/ D E�, where

� D
NX

nD0
QT
n H.xn/ D

NX

nD0

4X

iD1
Q.i/
n Hi .xn/: (37.2)

Here, N is the random index of the last state of the chain. Relation (37.2)
describes the Monte Carlo algorithm for estimating IH . The substantiation of this
relation essentially relies on the expansion of the solutions of equations in the
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Neumann series (see [1]). Since the first component in (37.2) is nonnegative, it can
be averaged term by term. The remaining components can be averaged because of
the majorant property of the first component (see [1]).

Consider the Monte Carlo algorithm for computing the intensity and polarization
of multiply scattered light. The simplest part in this problem is the transition
probability density r.x0; x/, which is defined by the kernel k11.x0; x/ corresponding
to radiative transfer without allowance for polarization. Obviously, in the simulation
of such process, the vector of “weights” after scattering has to be transformed by a
matrix with the elements kij .x0; x/=k11.x0; x/.

As was mentioned above, a light ray is characterized by the Stokes vector
I D .I;Q;U; V /. The unscattered solar light I0 is assumed to be natural; i.e.,
I0 D .I0; 0; 0; 0/

T.
After scattering, the Stokes vector I is transformed according to the formula

I.r; !/ D P.!0; !; r/ � I.r; !0/;

where P.!0; !; r/ D L.� � i2/R.!0; !; r/L.�i1/=2� ,

L.i/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

1 0 0 0

0 cos 2i sin 2i 0
0 � sin 2i cos 2i 0
0 0 0 1

9
>>>>>>>>>>;
:

Here, i1 is the angle between the plane !0; s and the scattering plane !0; !; i2 is
the angle between the scattering plane !0; ! and the plane !; s; and s is a vector of
the local spherical system of coordinates [1].

For an anisotropic medium, all 16 components of the scattering matrix
R.!0; !; r/ are generally different. For an isotropic medium, the scattering matrix
simplifies to

R.!0; !; r/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

r11 r12 0 0

r21 r22 0 0

0 0 r33 r34
0 0 �r43 r44

9
>>>>>>>>>>;
; rij � rij .�; r/:

If the scattering particles are homogeneous spheres, then r11 D r22; r12 D
r21; r33 D r44; r34 D r43. The matrix R is normalized so that

1R

�1
r11.�/ d� D 1.

New photon’s direction ! after scattering is defined by the scattering angle 	 and
the azimuthal angle '. The cosine � of the angle 	 is simulated according to the r11,
i.e., according to the scattering phase function. The angle ' 2 .0; 2�/ is assumed
to be isotropic and is equal to that between the planes !0; s and !;!0 measured
counterclockwise when viewed against the incident ray !0. Thus, the azimuthal
angle is equal to i1. After the new direction was chosen, i1 and i2 can be found
using spherical trigonometry formulas.
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The procedure for updating the Stokes vector after scattering includes the
formulas

I.r; !/ D r11 � I.r; !0/C r12 � A;
Q.r; !/ D .r21I.r; !0/C Ar22/ cos 2i2 � .r33B � r34V .r; !0// sin 2i2;

U.r; !/ D .r21I.r; !0/C Ar22/ sin 2i2 C .r33B � r34V .r; !0// cos 2i2; (37.3)

V.r; !/ D r43B C r44V .r; !0/;

where A D Q.r; !0/ cos 2i1 � U.r; !0/ sin 2i1; B D Q.r; !0/ sin 2i1 C
U.r; !0/ cos 2i1:

37.3 Method of `-Fold Polarization

The “scalar” integral equation ' D K' C f [1] corresponding to the base scalar
model of radiation transfer can be written in the vector form:

˚0 D K0˚0 C F0;

where ˚0 D .'; 0; 0; 0/T; F0 D .f; 0; 0; 0/T and K0 is matrix-integral operator
corresponding to the diagonal scattering matrix: R D diag.r11; r11; r11; r11/.

After ` iterations of Eq. (37.1) beginning with ˚0, we get such approximation to
the solution ˚ :

˚` D K`˚0 C
`�1X

nD0
KnF D

1X

nD0
K`Kn

0F0 C
`�1X

nD0
KnF: (37.4)

We designate the usage of formula (37.4) for the approximate computation as
“the method of `-fold polarization”.

For constructing the corresponding estimate we should use instead of �

from (37.2) the following random variable:

�` D
1X

nD0
ınqn QQT

nH.xnC`/C
min.`�1;N /X

nD0
QT
nH.xn/:

Here qn are scalar weights, i.e.

q0 D f .x0/

�.x0/
; qn D qn�1

k11.xn�1; xn/
p.xn�1; xn/

;
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and the vector weight QQn corresponding to `-fold polarization is calculated by the
formula

ınC`
K.xnC`�1; xnC`/
p.xnC`�1; xnC`/

� : : : � ınC1K.xn; xnC1/
p.xn; xnC1/

I0;

where I0 D .1; 0; 0; 0/T ; ın is an indicator that a trajectory doesn’t terminate before
the state xn.

The point of special interest for the solution of atmospheric optics problems is
the estimate of an influence of polarization on the intensity of radiation, i.e. the
difference �p.x/ D '1.x/ � '

.0/
1 .x/; where '.0/1 .x/ corresponds to approximate

scalar model.
Quantity �p.x/ is an error in intensity estimate '1.x/ caused by non-account of

polarization. We denote the value�p.x/ produced by `-fold polarization as�.`/
p .x/.

If a source of radiation is non-polarized, i.e. F0 D .f; 0; 0; 0/T, then we have,
due to (37.3), �.1/

p .x/ D 0. Hence, “in first approximation” for estimate of

�p.x/ we should use value �.2/
p .x/, whose statistical estimate is easy to find from

formulas (37.3).
Let’s denote xn; xnC1; xnC2 as x00; x0; x and let ID be an indicator of domain

D 
 X . In case F � F0 andH D .ID; 0; 0; 0/
T, which corresponds to the estimate

of the integral
R

D

'1.x/dx for non-polarized source, we have from (37.3):

qn QQT
n D qn�

0�I00.r11r 011 C r21.�
0/r12.�/ cos 2i 02 cos 2i1

�r22.�0/r12.�/ sin 2i 02 sin 2i1/;

where �0 and � are the indicators that the trajectory doesn’t terminate in transition
to points x0 and x, respectively. Due to finiteness of weight multipliers the vector
norm k QQk of auxiliary weight is uniformly bounded and D�` < 1 if D�0 < 1.
The last inequality holds in case of direct simulation for basic scalar model and
also when absorption or escape from medium are not simulated and instead are
accounted by weight multipliers, which are equal to probabilities of these events.

37.4 Criterion for the Finiteness of the E2

Consider the space L1 of matrix functions �.x/ with norm jj� jj D
R

X

mP
i;jD1

j�i;j .x/jdx and define the linear functional

.�; ��/ D
Z

X

trŒ�.x/��T.x/�dx D
Z

X

mX

i;jD1
�i;j .x/�

�
i;j .x/dx;

�� 2 L1; k��kL1
D vrai sup

i;x

k��i .x/k [3].
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Define also a linear operator Kp by

ŒKp��.x/ D
Z

X

KT.y; x/�.y/K.y; x/

p.y; x/
dy

and, according to [2], linear operator K�p:

ŒK�p���.x/ D
Z

X

K.x; y/��.y/KT.x; y/

p.x; y/
dy:

Since tr.AB/ D tr.BA/, then tr.�K��TKT/ D tr.KT�K��T/; and therefore
.�;K�p��/ D .Kp�; �

�/: Moreover, we have j.�; ��/j 6 jj� jjL1 jj��jjL1
:

Hence jjKpjjL1 D jjK�pjjL1
and �.Kp/ D �.K�p/:

The operator Kp leaves invariant the cone LC1 
 L1 of symmetric nonnegative
definite matrix functions, because the transformation KT�K preserves the nonneg-
ative definiteness of matrices � . From here the following statement turns out [3].

Theorem 37.1. Suppose that �.Kp/ < 1, FF T=�0 2 L1, H 2 L1.
Then

E�2 D .�;HŒ2˚� �H�T/;

where ˚� D K�˚� CH , � D Kp� C FF T=�0; and � 2 LC1 .

Note that in [2] dual presentation of E�2 was constructed:

E�2 D
Z

X

F T.x/��.x/F.x/
�.x/

dx D .
FF T

�
;��/;

where �� D H˚�T C ˚�H T �HH T C K�p��.
In [4] the spectral radius �.Kp/ of the operator Kp was estimated by resolvent

iterations on the basis of the limit relation of the form:

F T Œ�I � K��.mC1/H
F T Œ�I � K��mH

! 1

� � �.K/ ; � > �.K/; I D diag.1; 1; 1; 1/:

In order to improve the convergence of the algorithm in place of H.xn/H T.xn/

was taken  .0/, i.e. the first eigenfunction of the operator Sp , which represents the
realization of Kp for the case of the infinite medium where F T D .1; 0; 0; 0/.

It occurs that even for optically thin layers the approximate equality �.Kp/ 
�.Sp/�.Lp/ is valid, where Lp is a scalar integral operator with the kernel
k211.x

0; x/=p.x0; x/.
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In [4] it is shown more detailed than in [2], that value �0 D �.Sp/ is the solution
of the system of equations:

c11 C c21a1 D �0

c12 C .c22 C c33/a1 C c43a2 D 2�0a1

c34a1 C c44a2 D �0a2

where cij D
1Z

�1

r2ij .�/

p2 .�/
d� and p2.�/ is simulated distribution density of

� D .!; !0/.
It was found that for the aerosol scattering the value �0 is majorated with the

value �m D 1:178, corresponded to the molecular scattering. On the other hand,
for the real atmosphere layers value �.Lp/ is small, therefore �.K�p/ < 1 and
D� < C1.

In [4] the results of calculations of the spectral radii of the operators Kp and
Lp for the molecular and the aerosol scattering are presented. Obtained values of
�.Kp/=�.Lp/ statistically insignificant differ from the analytically found values
�.Sp/ and are estimated with sufficient accuracy using even only the first iteration
of the resolvent.

On the basis of the dual representation obtained in [3] new approximate estimate
of the �.Kp/ is constructed:

�.Kp/  Q�.Kp/ D .Kp�0; I/
.�0; I/

 C�. QLp/�.Sp/; (37.5)

and a value C is not significantly different from 1. Here I D diag.1; 1; 1; 1/, �0 D
Q�� Q .x/, Q�� is considered above eigenmatrix of the operator Sp and Q .x/ is the

main eigenfunction of the scalar operator QLp , which corresponds to the radiation
model with the replacement of anisotropic scattering on an isotropic, i.e. with r11 �
1=2 and Qp11.�/ � 1=2.

This estimate (37.5) isn’t contrary to the numerical results given in [4], because
for corresponding flat layers with the isotropic scattering it was obtained that
�. QLpj� D 1/  0:62; �. QLpj� D 2/  0:78; �. QLpj� D 4/  0:9; and these
values are sufficiently close to the values of �.Lp/ from [4]. The estimate (37.5) can
be recommended for practical use taking into account that for the optically thick
media the substitution of the essentially anisotropic scattering with the isotropic
scattering slightly increases the value �.Lp/.

Also the value �0. QLpj� D 10/  0:974was obtained. Hence, we have for the flat
layer with the optical thickness 10 and the molecular scattering: �.Kp/  0:974 �
1:178 D 1:15; and with the aerosol scattering �.Kp/  0:974 � 1:02077 D 0:994:
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Chapter 38
Using a Generalized �2-Distribution
for Constructing Exact D-Optimal Designs

Trifon I. Missov and Sergey M. Ermakov

38.1 Introduction

The construction of optimal designs according to a specified criterion is an
optimization problem. The majority of relevant algorithms are based on generic
methods in which the objective function is constructed in accordance with the
chosen criterion. Focusing on the D-criterion, we will take advantage of the
structure of the information matrix, whose determinant is to be maximized.

In this article we search for a D-optimal design of predefined size n. Namely,
in a region X we specify a linear regression model with m linearly independent
functions, and we look for an exact optimal design with n points (n > m), i.e.,
we have an experiment with n trials. We propose a procedure that is based on the
properties of the information matrix, whose determinant is to be maximized. First,
we normalize the determinant to a p.d.f. and develop a procedure for simulating
random vectors from the resulting generalized �2-distribution with parameters n
and m (see [11]). The latter can be viewed as a natural extension of the Ermakov–
Zolotoukhin �2-distribution [6] that has a single parameter m D n. We simulate
vectors from the generalized �2-distribution and choose the sample modes as
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a starting generation of points for further optimization, which we perform by
differential evolution (DE) [14]. The latter proved to find efficiently global optima
for a number of complex objective functions [13].

38.2 Background

Consider '1; : : : ; 'm to be m linearly independent in a region X , dimX D s,
functions, continuous in a topology, in which X is compact. With no loss of
generality we can treat '1; : : : ; 'm as an orthonormal system in L2.X;�/, where
� is a � -finite measure onX . Assume that at each point x 2 X a random variable Yx
is defined in such a way that EYx D 	T '.x/, where '.x/ D .'1.x/; : : : ; 'm.x//

T

is an m � 1 vector of L2.X;�/-orthonormal functions and 	 D .	1; : : : ; 	m/
T is an

m� 1 vector of unknown real parameters. We assume in addition that VarYx D �2,
Cov.Yx1 ; Yx2/ D 0 for x; x1; x2 2 X , x1 ¤ x2. Denote by Dn D .x1; : : : ; xn/

a discrete design containing n points. The corresponding n � m design matrix is
denoted by Xn D ˇ̌ˇ̌

'i .xj /
ˇ̌ˇ̌m;n
iD1;jD1. An exact design refers to the measure

�N D
�
xr1 xr2 : : : xrN
r1
n

r2
n
: : : rN

n

�
; (38.1)

where xr1 ¤ xr2 ¤ � � � ¤ xrN 2 Dn, N 6 n, and ri is the absolute frequency of xri
in Dn, i D 1; : : : ; N . The corresponding information matrix of �N is given by

M.�N / D
NX

iD1
'.yi / '

T .yi /
ri

n
: (38.2)

An exact D-optimal design is a discrete measure (38.1) that maximizes detM.�N /.
Its construction is based on numerical approximation procedures, most of which
are based on Fedorov’s sequential algorithm [7]. The associated difficulties concern
convergence, choice of weights, and computational load (especially inverting the
m � m information matrix at each step to assess the variance of the least squares
estimate of the expected response, as well as the optimization procedure for the
latter itself). These issues are addressed in a series of subsequent works (see, e.g.,
[1, 5, 15]), which offer solutions in special cases.

38.3 Simulation of the Generalized �2-Distribution

The generalized �2-distribution has a p.d.f. �2
n;m, proportional to the determinant

of the information matrix of an n-point design in an m-parameter regression model
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�2
n;m.Q/ D .n �m/Š

nŠ
det

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

nX

iD1
'k.xi /'l .xi /

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

m

k;lD1
; (38.3)

whereQ D .x1; : : : ; xn/ and '1; : : : ; 'm, as previously, is an orthonormal system in
L2.X;�/. The orthonormality assumption is made primarily for simulation reasons.
It is not restrictive in any way, as a linearly independent system can be easily
orthogonalized by a Gram–Schmidt process, which does not alter the determinant in
(38.3). The simulation procedure for the generalized �2 distribution is based on the
algorithm presented in [3, 4, 10]: we represent �2

n;m.Q/ as a product of conditional
densities, which we iteratively simulate. The form of the conditional densities is
given by the following:

Theorem 1. Suppose X D Œ0; 1�s , � is the Lebesgue measure, and '1; : : : ; 'm is
an orthonormal system of functions in L2.X;�/. For x1; : : : ; xn 2 X and k D
1; : : : ; n � 1 denote

p.n�k/.x1; : : : ; xn�k/ D .n �m/Š
nŠ

Z

X

det

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

nX

iD1
'k.xi /'l .xi /

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

m

k;lD1
dxn�kC1 : : : dxn;

(38.4)

p.n/.x1; : : : ; xn/ D �2
n;m.x1; : : : ; xn/ for k D n. Then the .n � k/-th conditional

density pn�k.xn�kjx1; : : : ; xn�kC1/ of �2
n;m is given by

pn�k.xn�k j x1; : : : ; xn�kC1/ D

bkP
lDak

V m�l
k

P

16i1<���<il6n�k

16j1<���<jl6m

�
det

ˇ̌ˇ̌
'jp .xiq /

ˇ̌ˇ̌l
p;qD1

�2

bkC1P
lDakC1

V m�l
kC1

P

16i1<���<il6n�k�1

16j1<���<jl6m

�
det

ˇ̌ˇ̌
'jp .xiq /

ˇ̌ˇ̌l
p;qD1

�2
;

(38.5)

where ak D maxf0;m � kg, bk D minfm; n � kg, V m�l
k D kŠ=.k �mC l/Š, and

�
det

ˇ̌ˇ̌
'jp .xiq /

ˇ̌ˇ̌l
p;qD1

�2 D m for l D 0: (38.6)

Proof. We will take advantage of

det

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

nX

iD1
'k.xi /'l .xi /

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

m

k;lD1
D

X

16i1<���<im6n

�
det

ˇ̌ˇ̌
'k.xij /

ˇ̌ˇ̌m
k;jD1

�2
; (38.7)

(see Ermakov [2, p. 228]) and prove the theorem by induction. By integrating
�2
n;m.Q/ with respect to xn, we get
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nŠ

.n �m/Špn�1.x1; : : : ; xn�1/ D
X

16i1<���<im6n�1

�
det

ˇ̌ˇ̌
'p.xiq /

ˇ̌ˇ̌m
p;qD1

�2 C

C m
X

1 6 i1 < � � � < im�1 6 n� 1
1 6 j1 < � � � < jm�1 6 m

�
det

ˇ̌ˇ̌
'jp .xiq /

ˇ̌ˇ̌m�1
p;qD1

�2
; (38.8)

which proves the basis (k D 1). To perform the inductive step, suppose the statement
holds for k D r , 1 6 r < n � 1. We will prove that it holds for k D r C 1, too.
With no loss of generality let m < n �m. Then pn�r .x1; : : : ; xn�r / has a different
functional form for 1 6 r < m, for m 6 r < n � m, and for n � m 6 r < n.
That is why we will perform the inductive step in each of the three cases separately.
If 1 6 r < m, then ar D m � r , br D m, and we have

nŠ

.n �m/Špn�r�1.x1; : : : ; xn�r�1/ D nŠ

.n �m/Š
Z

X

pn�r .x1; : : : ; xn�r /�.dxn�r /

D
mX

lDm�r�1
Cm�l
rC1

X

1 6 i1 < � � � < il 6 n� r � 1
1 6 j1 < � � � < jl 6 m

�
det

ˇ̌ˇ̌
'jp .xiq /

ˇ̌ˇ̌l
p;qD1

�2
:

If m 6 r < n �m, then ar D 0, br D m, and we have

nŠ

.n �m/Špn�r�1.x1; : : : ; xn�r�1/ D nŠ

.n �m/Š
Z

X

pn�r .x1; : : : ; xn�r /�.dxn�r /

D
mX

lD0
Cm�l
rC1

X

1 6 i1 < � � � < il 6 n� r � 1
1 6 j1 < � � � < jl 6 m

�
det

ˇ̌ˇ̌
'jp .xiq /

ˇ̌ˇ̌l
p;qD1

�2
:

Finally, when n�m 6 r < n, pn�r�1.x1; : : : ; xn�r�1/ can be represented as a linear
combination of determinants (of order n � r � 1 and lower). In this case ar D 0,
br D n � r , and we have

nŠ

.n �m/Špn�r�1.x1; : : : ; xn�r�1/ D nŠ

.n �m/Š
Z

X

pn�r .x1; : : : ; xn�r /�.dxn�r /

D
n�r�1X

lD0
Cm�l�1
rC1

X

1 6 i1 < � � � < il 6 n� r � 1
1 6 j1 < � � � < jl 6 m

�
det

ˇ̌ˇ̌
'jp .xiq /

ˇ̌ˇ̌l
p;qD1

�2
;

which completes the proof of the inductive step and the theorem. ut
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38.4 Examples: Exact D-Optimal Designs for Univariate
and Bivariate Polynomial Regression

In this section we construct exact D-optimal designs for polynomial regression in
Œ0; 1�s , s D 1; 2 by implementing the three-step procedure presented in Sect. 38.1:
we simulate random vectors from the �2

n;m, then pick up a subsample that leads
to the N largest values of �2

n;m.Q/ (N < n), and, finally, use DE with a starting
generation from the previous step to allocate the global maximum.

38.4.1 D-Optimal Designs for Univariate Polynomial
Regression

For a polynomial regression in Œ0; 1� the D-optimal design QD is concentrated at
the two endpoints of the interval and in the roots of '0i .x/, i D 3; : : : ; m (see,
e.g., [9]). If n D km, k 2 Z, the exact D-optimal designs contain all these m
points with equal weights k=n. If n D km C p, p 2 Z, 0 < p < m, then m � p

points from QD are represented k times, while each of the remaining p points is
represented kC1 times. It is difficult to find a unifying pattern in the order by which
xi are sequentially added to the exact D-optimal design. For example, for m D 3

and n D 4 in almost all (989 of the 1,000 runs) of the three-step procedure the
final exactD-optimal design was concentrated in .0; 0:5; 0:5; 1/, i.e. when we add a
fourth point, it should be located in 0:5. However, form D 3 and n D 5 the resulting
exactD-optimal design was either .0; 0; 0:5; 0:5; 1/ or .0; 0:5; 0:5; 1; 1/ with almost
the same number of occurrences (483 vs 517). We observed the same structure for
m D 3 and higher n D 3k C 1 (0:5 comes first) or n D 3k C 2 (no distinct pattern
whether 0 or 1 comes first). For m D 4 (the D-optimal design is concentrated in 0,
0:28, 0:72, and 1), and n D 4kC2 the internal points are “added” first (in 99.2 % of
the cases), but in a different order (looking at results for n D 4k C 1), followed by
the endpoints (again in a different order). We observed the same principle for higher
m, too, which might be indicating that the exact D-optimal design for certain n is
not unique, i.e. �2

n;m is not unimodal. This is in line with the theoretical findings of
Gaffke and Krafft [8] for univariate quadratic regression.

38.4.2 D-Optimal Designs for Bivariate Polynomial
Regression

Consider a polynomial regression in Œ0; 1�2. Then for

'1 D 1; '2 D p
3 .2x � 1/; '3 D p

3 .2y � 1/ (38.9)
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Fig. 38.1 D-optimal designs for quadratic regression in Œ0; 1�2: m D 6; n D 7 (top left panel),
n D 10 (top right panel), n D 13 (bottom left panel), n D 16 (bottom right panel). Each design
contains the four vertices, points on the border of the square, and exactly one internal point, which
is located approximately at .0:5; 0:5/

the exact D-optimal design is allocated on the vertices of the square Œ0; 1�2 with
varying weights. The pattern of “consecutive addition” is similar to the univariate
case: if n D kmC p, m� p vertices appear k times and the other p vertices k C 1

times. If we consider a quadratic regression, i.e. add

'4 D p
5 .6x2�6xC1/; '5 D p

5 .6y2�6yC1/; '6 D 12xy�6x�6yC3

to (38.9), then the exact D-optimal design is no longer concentrated only on the
vertices but also on the borders of the square (see Fig. 38.1), approximately halfway
between the vertices. The latter is to be expected as 0.5 (x or y) is the root
of the derivative of '4; '5; '6. The exact D-optimal design in this special case
contains exactly one internal point, which is in line with Podkorytov’s theoretical
finding [12]. In the case of cubic regression (m D 6, see Fig. 38.2) the points on the
borders correspond to the roots (0.28 and 0.72) of the derivatives of the cubic terms
(see Appendix B), and there are three internal points. Note that the exactD-optimal
design is not unique in all of the above cases.

If we continue further, the exact D-optimal design in Œ0; 1�3 for linear regression
(m D 4) is located in 4 of the 8 vertices of the cube (with no unique solution), for
quadratic regression (m D 9) in the 8 vertices and a point, which may lie on one of
the sides or be internal, but in any case its coordinates equal the roots of '0i , etc.
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Fig. 38.2 D-optimal designs for cubic regression in Œ0; 1�2: m D 10; n D 11 (top left panel),
n D 14 (top right panel), n D 16 (bottom left panel), n D 17 (bottom right panel). Each design
contains the four vertices, points on the border of the square, and three internal points

Conclusion
We propose a general procedure for constructing exact D-optimal designs
of predefined size n by taking advantage of the form of the associated
information matrix, whose determinant is to be maximized. We normalize
the latter to a pdf and simulate vectors from the resulting generalized
�2-distribution. We take a subset that delivers the highest N values of
�2
n;m.Q/ and run a DE algorithm to allocate precisely the mode of �2

n;m.
We illustrate this three-step procedure by constructing D-optimal designs
for polynomial regression in Œ0; 1�s (s D 1; 2). Affine transformations of
the study region will not influence the procedure as only two things have to
be adjusted: the set of orthonormal functions and the normalizing constant
of �2

n;m.Q/, which has to take into account the s-measure of the region.
In regions with a more complex structure orthonormality could be dropped
and the simulation algorithm for �2

n;m could be adjusted accordingly [11].
The three-step algorithm we present in this paper can be attractive in the
sense that it is general and applicable to regression problems of any difficulty,
in the presence of good software solutions for DE (available in almost all

(continued)
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widely used statistical packages) and �2
n;m-simulation. Further research must

focus on the performance of our procedure (and, in particular, DE as a global
optimization algorithm) in regions of more complex structure and less trivial
systems of linearly independent functions.

Acknowledgements We express our gratitude to Todor A. Angelov for his assistance in efficient
programming.
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Chapter 39
Sample Size in Approximate Sequential Designs
Under Several Violations of Prerequisites

Karl Moder

39.1 Introduction

In classical statistical analysis data are collected at the beginning and a specific test
is applied. Based on some knowledge about ˛, ˇ resp. power, an expected difference
ı and about the variances in the underlying populations an appropriate sample size
can be determined in advance. In sequential designs data are gathered and tested step
by step. As soon as the test comes to a decision the procedure stops. So the sample
size is a random variable. Only an upper limit for it can be calculated in advance.
This upper limit of the sample size as well as the mean sample size is affected by
the type of the distribution and the variances in the populations. The effects of these
influences are presented here.

Several variants of sequential designs exist. This paper refers mainly to the
triangular design [8], but also group sequential designs developed by [4, 5] and [3]
are examined.

In triangular designs [8] with continuous monitoring the boundary values are on
a straight line in the score scale for each boundary. So two regression lines which
intersect each other define a continuation region. As in all sequential procedures
recruitment of data must be stopped as soon as the continuation region is left. A
maximum sample size can be calculated based on these regression parameters (a,

b) by means of n D ˙ a .1Cp2 b2C1/
b

.
In this paper we restrict ourselves to testing hypotheses about means of normal

distributions. The procedure in a two-sample situation corresponding to the t -test is
as follows:
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Table 39.1 Sequential analysis for the data of Rasch [6] according to
Whitehead [8]

• Formulate H0:
H0 W 	 D 	0 HA W 	 D 	1 < 	0 or 	 D 	2 > 	 D 	0

• Define ˛; ˇ:
• Calculate 	 :

	 D �1��2
�

• Calculate regression parameters:
a D .1C u1�ˇ=u1�˛ log.1=.2˛//=	
b D 	=Œ2.1C u1�ˇ=u1�˛/�

• Calculate the test statistic:
S2n D 1

n1Cn2
nPn1

iD1 x21i CPn2
iD1 x22i � �Pn1

iD1 x1i CPn2
iD1 x2i

	2
=.n1 C n2/

o

zn D n1n2
n1Cn2

Nx1�Nx2
Sn

, vn D n1n2
n1Cn2 � z2n

2.n1Cn2/
• Continue sampling as long as zn lies within the continuation region; otherwise

accept/reject H0:
continuation region

�aC 3bvn < zn < aC bvn 	 > 	0
aC bvn < zn < �aC 3bvn 	 < 	0

The procedure is illustrated by means of a study on body height of female and
male students [6]. H0 W �1 D �2; ˛ D 0:05 HA W �1 < �2; ˇ D 0:05

�1 D 170; �2 D 178; � D 7

	1 D �1��2
�

D �8
7

D �1:143
a D .1C u.0:95/

u.0:95/ / log. 1
0:1
/ 1
	1

D �4:0295
b D �1:143

2.1C u.0:95/
u.0:95/

D �0:2857
Intersection of regression: vmax=14.103, zmax D �8:059
max. number of observ.: n D 29 (t -test: 17)

The results of the depicted procedure are shown in Table 39.1 and in the
accompanying graphics. Entering the eleventh person, zn falls below the lower limit
(ll.) of the continuation region. So we have to reject our null hypothesis and stop
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Fig. 39.1 Empirical type I error rate for the triangular test for different presumed values of 	 but
a true 	 of 0 (˛ D 0:05, �1 D �2 D 1)

the procedure. Although the maximum sample size (29) for the sequential analysis
is higher than that of the t -test (17) only eleven observations are needed to make a
decision.

In a simulation study the effects of missing prerequisites for this kind of test were
evaluated.

39.2 Simulation Results

Several situations with respect to heterogeneity of variances, skewness, and kurtosis
were examined by means of a simulation study. The standard deviation in the first
distribution was fixed to 1, whereas that of the second distribution varied between
1, 2, and 3. Based on the Fleishman system [1] skewed distributions were generated
(�1 D �3;�1; 0; 1; 3). For kurtosis �2 was set to �15; 0; 5; 15.

A Fortran code was developed to evaluate triangular designs. Each simulation
run is based on 1 million analyses. SAS [7] procedures for the methods of [3, 4]
were used. Here only 10,000 analyses were performed per simulation run because
of time reasons.

39.2.1 Type I Error Rate

Sequential designs are based on reasonable assumptions about parameters of
the underlying distributions. In contrast to fixed sample designs it is necessary
to plan the experiment. So some knowledge about relevant differences between
distributions is necessary.

Figure 39.1 shows empirical type I error rates if the presumed standardized
difference (	 ) between distributions varies between �2 to �0:4 and 0.4 to C2 in
steps of 0.2. Values close to zero cause a and n to grow to infinity and are not
considered.
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Fig. 39.2 Empirical type I error rate for the triangular test for different presumed values of 	 but
a true 	 of 0 (˛ D 0:05, �1 D 1; �2 D 2)

For high levels of presumed 	s the predefined ˛ value is exceeded. In this
situation only small sample sizes are needed to reject or accept the null hypothesis.
All regression parameters are based on the quantiles of the normal distribution. As
these approximations work poorly for small sample sizes the ˛-value is not kept.
Especially in cases when the assumed power is low this effect is intensified.

In Fig. 39.2 the situation is similar to that of Fig. 39.1, but variances are
inhomogeneous.

Inhomogeneous variances decrease type I error rate in situations where 	 is small
resp. n is high. But for high 	s (n small) ˛ is exceeded and the influence of small
sample sizes is more pronounced as with homogeneous variances. The situation gets
worse if heterogeneity becomes more extreme.

39.2.2 Power

The following figures refer to the situation that the expected 	 -value corresponds to
the true 	 . In this situation the empirical power should correspond to the predefined
power level.

If variances are homogeneous, then the empirical power corresponds to the
expected power as long as 	 is small (which leads to large sample sizes) and
variances are homogeneous (Fig. 39.3, picture on the left). As soon as variances
are inhomogeneous the empirical power decreases dramatically (Fig. 39.3, picture
on the right). If the standard deviation in the second population is twice as high as
in the first, the power decreases from 90 to �60 %. If the standard deviation of the
second population is three times as high as in the first, the power decreases from 90
to �20 %.

Table 39.2 shows sample sizes associated with the situations depicted in
Fig. 39.3.
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Fig. 39.3 Empirical power in comparison with theoretical power (90, 80, 70 %) for different levels
of 	 and homogeneous variances (left picture) as well as inhomogeneous variances (�1 D 1;

�2 D 2) (right picture)

The sample size of the t -test is greater than the mean sample size of the
triangular test (but smaller than the maximum sample size), no matter if variances
are homogeneous or not. In case of inhomogeneous variances sample size for the
triangular design depends on the standard deviation of the population which is
used for calculation. If the higher one is used, the mean observed (seq.obs2) and
maximum sample size (seq.max2) is smaller than in the situation where the smaller
one is used (seq.obs1, seq.max1).

39.2.3 Skewness, Kurtosis

Based on the Fleishman system [1] distributions with different levels of kurtosis
were generated. All sequential designs mentioned above were examined. No
remarkable influences were found in regard to type I error rate and power.

In the case of skewed distributions the influence on power and type I error rate
is high if the skewness differs in the distributions to be compared. As can be seen
from Fig. 39.4 type I error rate raises up to 30 % in an one sided test situation if the
distributions are skewed to a different level (�11 D �3; �12 D 3). The power is close
to 1 for high 	s. If variances are inhomogeneous too, it may happen, that sometimes
type I error rate (no difference between means exist) exceeds the empirical power
for situations where real differences exist even if the calculated power is 90 %. So
in such situations the triangular test is completely inappropriate.

Similar results—with partly more pronounced deviations from expected alpha
and power levels—can be found for group sequential designs [3, 5, 9] which are not
shown here but were simulated based on equal assumptions about distributions.
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Fig. 39.4 Type I error rate and power for the triangular design if the distributions are skewed
(�11 D �3; �12 D 3) and variances are homogeneous (�1 D �2 D 1)

Conclusions
Tests for triangular designs as well as group sequential designs are based on
normal approximations. If differences between populations are high, then the
calculated sample sizes are small. In the follow this normal approximation is
very bad and type I error rate exceeds the predefined ˛-level, even if all other
prerequisites are met.

Inhomogeneous variances show a high impact on power and type I error
rate. Kurtosis does hardly affect power and type I error rate, whereas different
skewness in populations may lead to a completely useless test.

Mean sample sizes are always smaller than with the ordinary non-
sequential approach although the maximum necessary sample size to get a
decision is higher.

Type one error rate and power in sequential designs depend to a very high
degree on sample size and on prerequisites. So the use of these designs should
be restricted to situations where prerequisites are met and sample size is not
to small.
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Chapter 40
Numerical Stochastic Models of Meteorological
Processes and Fields

Vasily Ogorodnikov, Nina Kargapolova, and Olga Sereseva

Numerical stochastic models of scalar and vector time-series, spatial and
spatial-time random fields based on real data are widely used for solution of
different problems in science and technology. As examples it is possible to refer to
problems in atmospheric optics related to solar radiation scattering in clouds [13], to
oceanologic problems related to rhythmic of oceanologic processes [2] and analysis
of undulating surface (especially when freak waves appear) [14]. In statistical
meteorology such models are used for study of extreme events (such as long-term
frosts or drought), sudden drops of meteorological parameters or their unfavorable
combinations [4, 10], for study of meteorological parameters’ dynamic influence to
natural and technical objects and processes, for prediction of forest fires and so on.
Such models are also used in financial Mathematics and for telecommunication net’
construction.

In this paper several approaches to modeling of random meteorological processes
and fields with respect to spatial and time-specificity are considered. All models are
based on long-term real data, obtained on 47 weather stations in Novosibirsk region,
Perm and Astrakhan.
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40.1 Modeling of Meteorological Indicator Time-Series
with Daily Periodicity on Basis of Markov Chains

Since many of meteorological processes possess daily periodicity, for their
simulation it is necessary to use algorithms which allow taking this daily rhythm
into account. One of the approaches to simulation is based on special type of
inhomogeneous Markov chains, studied in [5]. It is shown that for binary Markov
chain �t ; t D 0; 1; 2; : : : with transition probability matrix that is a periodic time-
function, following proposition holds.

Proposition. One dimensional distribution of �t is oscillating time-function. Limit
distribution is a periodic time-function. Asymptotically process �t is periodically
correlated. Constant value series distribution, its first moment and variance are
also periodic time-functions.

Obtained analytical formulas, describing distribution, correlation structure and
other characteristics of �t , let analyze simulated process only on basis of estimated
by real data characteristics of Markov chain.

Example. Let �t ; t D 0; 1; 2; : : :be air temperature, measured every 12 h (at mid-
night and noon) during a month. Indicator process I .�t / is defined as

I .�t / D
�
1; �t > c;

0; �t < c;

where c .ıC/ is given level. Using I .�t / it is possible to estimate initial distribution
and transition matrix (as time-function of period 2) of Markov chain�t . Table 40.1
gives probabilities that air temperature is higher than c .ıC/ at last measurement
in month, obtained from real data and from model. Third column contains values
of mean-square deviation arising from real data estimation (data for 32 years
was used).

Table 40.1 Probabilities of
c .ıC/-level exceedance
(Astrakhan, December)

cıC P .I .�t / D 1/ �T P .�t D 1/

�15 1.0000 0.0000 0.9975

�10 0.9063 0.0515 0.9667

�5 0.8438 0.0642 0.8976

�3 0.8125 0.0690 0.8291

�1 0.6875 0.0819 0.6291

0 0.5625 0.0877 0.5216

1 0.3438 0.0840 0.3782

3 0.2188 0.0731 0.2102

5 0.0938 0.0515 0.1052
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Fig. 40.1 Distribution of .1; 1/T -series length, c1 D 20ıC; c2 D 2m=s. Curve 1: real data, curve
2: 1st order Markov chain, curve 3: 2nd order Markov chain

Similar approach can be used for analysis of complex of meteorological
processes. Let xt D �

e1t ; e
2
t

	T
be a real data vector process: e1t —value of first

meteorological process at moment t , e2t —value of second process at the same
moment; c1 and c2 are corresponding given levels. Let’s define indicator process

I .xt / D

8
ˆ̂<

ˆ̂:

.1; 1/T ; e1t > ñ1 and e2t > c2;

.1; 0/T ; e1t > ñ1 and e2t < c
2;

.0; 1/T ; e1t < ñ1 and e2t > c2;

.0; 0/T ; e1t < ñ1 and e2t < c
2:

(40.1)

Inhomogeneous vector Markov chain Xt with time-periodic transition probability
matrix can be used as a model of process (40.1) It should be noted that order or chain
can be varied. Period of transition matrix, as a time-function, is equal to number of
measurement throughout a day. Initial distributions P.X0 D .i; j /T / ; i; j 2 f0; 1g
of chain Xt and transition matrix are estimated by real data.

Figure 40.1 shows probabilities that value of studied process is equal to
.1; 1/T during k measurements, if e1t —air temperature, e2t —wind speed modulus.
Probability for e1t —air temperature and e2t —relative humidity is given in Fig. 40.2.
Estimations were made on basis of real data, obtained in July in Perm with 2
measurements per day. 100,000 model samples were used.
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Fig. 40.2 Distribution of .1; 1/T -series length, c1 D 10ıC; c2 D 40 %. Curve 1: real data, curve
2: 1st order Markov chain, curve 3: 2nd order Markov chain

40.2 Numerical Stochastic Model or Spatial
and Spatial-Time Fields of Daily Sums
of Liquid Precipitation

Spatial field f�ikg of daily sums of liquid precipitation on regular grid fxikg, i D
1; : : : ; n; k D 1; : : : ; m can be represented in the form

�ik D !ik�ik; (40.2)

where f!ikg—field of precipitation’s indicators, that takes on a value of 0 or 1
with probabilities P.!ik D 1/ D pik and P.!ik D 0/ D 1 � pik D qik ,
respectively, correlation matrix S D fsij;klg; i; k D 1; : : : ; n; j; l D 1; : : : ; m;
f�ikg—conditional field of daily sums of precipitation, if there are precipitation,
with one-dimensional conditional distribution Fik.x/ and correlation matrix Q D
fqij;klg. For a field f�ikg probabilities P.�ik > 0:1/ D pik and P.�ik D 0/ D
1 � pik are equal to probabilities P.!ik D 1/ and P.!ik D 0/. Field f!ikg can
be constructed as threshold-transformation of every element of Gaussian field f�ikg
[1, 4, 6–12, 15]:

!ik D
�
1; �ik 6 cik
0; �ik > cik

:

Here value of cik can be found from equation

pik D P.�ik 6 cik/ D 1p
2�

cikZ

�1
e� 12 u2du

when pik is given. Correlation matrixes G D fgij;klg of Gaussian field f�ikg and
S D fsij;klg are connected by the relation
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sij;kl D pij qkl C pklqij � 2 �T .cij ; aij;kl /C T .ckl ; akl;ij /
	

2
p
pij qij pklqkl

;

T .cij ; aij;kl / D 1

2�

aij;klZ

0

e�
c2ij .1Cu2/

2
du

1C u2
; aij;kl D

s
1 � gij;kl
1C gij;kl

;

(40.3)

where T .c; a/—Owen’s function.
To construct the field f�ikg method of inverse distribution function [9] can be

used, and �ik can be computed as

�ik D F �1ik .˚.�ik// ;

where �ik—elements of Gaussian field f�ikg with correlation matrix H D fhij;klg
and

hij;kl D f .qij;kl /: (40.4)

It is important to note that with given sij;kl , qij;kl , P.!ik D 1/ and Fik.x/ solutions
of (40.3) and (40.4) may not exist [9]. In some cases solutions exist, but matrixes
G and H are not correlation matrixes. In such cases problem may be solved only
approximately.

For model (40.2) it is necessary to estimate probabilities pik , qik , conditional
one-dimensional distribution Fik.x/ and correlation matrixes S and Q. Analysis
of real precipitation fields in Novosibirsk region shows that many statistical
characteristics are weakly dependent on position of weather station [3]. Some
characteristics are slightly inhomogeneous, but in this paper suppose that field
is homogeneous and consider probabilities pik D p for field f!ikg and one-
dimensional distribution function of field f�ikg independent from space coordinates.
Corresponding estimations were done for the entire area on basis of real data
obtained on all stations. For approximation of empirical distribution function by
F.x/; x 2 Œ0:1;1/ a method, proposed by Marchenko in [8], was used. This
method is based on combination of approximation with cubic splines and Weibull’s
distribution.

Due to suggested homogeneity all correlation matrixes have block Toeplitz
structure, if grid is regular. So they can be approximated by:

r.xs; ysI xh; yh/ D r.xs � xh; ys � yh/ D r.x; y/

D exp.�Œax2 C bxy C cy2�	 /;

where parameters a; b; c and 	 are chosen to minimize mean-square difference
between real and approximated functions [1]. Correlation function’s isolines of
simulated field are ellipses. Their major axes are codirectional with typical wind
direction in considered area.



414 V. Ogorodnikov et al.

Homogeneous Gaussian fields with matrix correlation function (or block
Toeplitz covariation matrix) were simulated according to the method of conditional
distributions [7, 9, 10].

For estimation of ultimate water reserves on given area over given time, for
study of precipitation spatial-time anomalies and other applications spatial-time
models are intended. Spatial-time field can be considered as a sequence of spatial
fields, where temporal and spatial-time correlation dependences are defined by real
data. In trivial case of spatial-homogeneous and time-stationary field correlation
function is a direct product of spatial and temporal correlation functions that
are corresponding to direct product of spatial and temporal correlation matrixes.
Simulation methods for Gaussian fields with such correlation structure are well
known [10], and precipitation field can be constructed as above.

Verification of spatial fields’model, if information about field is given only in
several points (weather stations), is more complicated problem in comparison with
analogous problem for time-series. For example, if we’d like to compare some
characteristics, estimated by model-made and real data, several problems appear.
First of all, estimations based on real data have huge statistical error. This error
is caused by length of time-interval, when physical conditions are unchanged and
process may be considered as time-stationery. At the same time many characteristics
require data-interpolation from station to arbitrary point of considered area. This
interpolation also influences on accuracy of estimation.

Probability of event “total amount of precipitation on several stations is greater
than given level c” was used for verification in this paper. Real data allow to estimate
this probability without problems. But the model gives values only in grid nodes, so
for estimation of probabilities it is necessary to interpolate data from node nearest
to station. The less step of grid is, the less systematic inaccuracy associated with
interpolation is. This inaccuracy can be studied and even excluded (if all stations
are situated in grid nodes). But inaccuracy associated with assumed homogeneity of
field can’t be excluded or reduced. So accumulated error shows either assumption
is acceptable or not. Six weather stations (� D 6/, nearest to nodes of regular grid
30 � 25, were chosen. Figure 40.3 shows probabilities

P.A1.c// D �P�
iD1 P.�i > c/

	ı
�

P.A2.c/ D
�P��1

iD1
P�

jDiC1 P.�i > c; �j > c/
�.

.�.� � 1/=2/
P.A6.c/ D P.�1 > c; : : : ; �� > c/

;

calculated on real and model-made data for different levels c. Since model was
done with assumption of homogeneity, probabilities P.A1.c//, estimated on real
data, were averaged over chosen stations probabilitiesP.A2.c//were averaged over
mandatory station-pairs combination. It should be noted, that real data estimations
have essential statistical error because of rather small amount of data. Model-made
data may be used as additional information for further investigations.

Finally we use considered model for study of extreme rainfall regime. Essential
characteristic, that is widely used for estimation of water reserves in given area, is
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Fig. 40.3 Probabilities P.A1.c//, P.A2.c// and P.A6.c//, estimated on real and model data.
Curve 1: real data, curve 2: model data

Fig. 40.4 Model-made distribution densities of total precipitation amount in considered area.
Curve 1: in 5 days, curve 2: in 10 days, curve 3: in 30 days

distribution of total precipitation amount. Figure 40.4 shows distribution densities
of total precipitation amount in considered area in 5, 10 and 30 days.

In this paper all estimations are done for homogeneous spatial and spatial-
time fields of daily sums of liquid precipitation. For modeling of heterogeneous
fields it is necessary to have information about the field as a function of space
coordinates. It is easy to simulate inhomogeneous field if heterogeneity appears
only in one-point characteristics (e.g. in probabilities of non-zero precipitation in
one given point). For such simulation it is necessary to have corresponding data on
stations and to interpolate it to grid nodes. One of the approaches to simulation of
heterogeneous in correlations spatial-time fields of precipitation in given in [12]
and is based on simulation of joint series on stations with due regard to their
cross correlation and with following stochastic interpolation of field values on
stations to grid nodes. Models of conditional Gaussian fields with given values
in selected points may be used for stochastic interpolation. Approximate methods
for simulation of conditional non-Gaussian fields are based on method of inverse
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distribution function and on algorithms for simulation of conditional Gaussian
field. Appropriate modification of these algorithms may be used for simulation of
precipitation fields [11].

It should be noted that in some cases (for example, when grid is condensed
or when it is necessary to estimate ultimate water reserves in given area over a
long period with spatial-time model) modeling can be exceedingly time-consuming.
In these cases it is useful to make calculations on multiprocessor computers, and
proposed models are good parallelizable.
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Chapter 41
Comparison of Resampling Techniques
for the Non-causality Hypothesis

Angeliki Papana, Catherine Kyrtsou, Dimitris Kugiumtzis,
and Cees G.H. Diks

41.1 Introduction

Resampling techniques are utilized for the construction of the empirical null
distribution of a test statistic, when the asymptotic distribution cannot be estab-
lished. We are concerned with the inter-dependence structure of multivariate time
series. The generated resampled time series have to capture statistical properties
of the original time series but also satisfy the corresponding null hypothesis,
H0, of no inter-dependence between two time series in the presence of the other
variables [7]. Bootstrapping, first introduced in [1], aims at estimating the properties
of a test statistic when sampling from an approximating distribution. For time series,
bootstraps must be carried out in a way that they suitably capture the dependence
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structure of the data generation process consistent with the H0, and be otherwise
random, e.g. [6, 11, 12]. Similarly, randomization methods preserve the dependence
structure consistent with H0 when randomly shuffling the time series [3, 13, 15].

The transfer entropy (TE) is a non-parametric measure that quantifies the
amount of directed transfer of between two random processes [14]. The TE is a
non-symmetrical measure defined in terms of transition probabilities that provides
information about the direction of the dependencies. The TE from a process X to
another process Y is the amount of additional information (reduction of uncertainty)
about the future values of Y provided by knowing past values of X and Y instead
of past values of Y alone. The advantages of TE are that it is model-free, makes
no assumptions about the distribution of the data and is effective in case of non-
linear signals. The partial transfer entropy (PTE) is a multivariate extension of the
TE [9, 16].

Resampling techniques are utilized for the H0 of non-causality, i.e. no causal
effects from one variable (driver) to another one (response), in the presence of the
remaining observed variables (confounding variables). A suitable statistic, sensitive
to the inter-dependence of the time series, is the PTE. The causality test is actually
a significance test for the PTE and in the absence of asymptotic distribution for the
PTE, resampling is required.

The appropriateness of six resampling schemes for the null hypothesis H0

of non-causality is examined. Specifically, we combine two resampling methods:
(1) the time shifted surrogates [13] and (2) the stationary bootstrap [11], with
three independence settings of the time series adapted for the non-causality test:
(a) resampling only the time series of the driving variable, (b) resampling separately
the driving and the response time series, and (c) resampling separately the driving
and the response time series, while destroying the dependence of the future and past
of the response variable. The properties of the test for the six resampling schemes,
i.e. the empirical distribution of PTE, the size and power of the test, are assessed in
a simulation study.

The structure of the paper is as follows. In Sect. 41.2, the PTE is briefly
discussed and in Sect. 41.3 the resampling methods and the independence settings
are presented. In Sect. 41.4, the resampling schemes are evaluated with means of
simulations on different coupled and uncoupled multivariate systems. The conclu-
sions are drawn in Sect. 41.5.

41.2 PTE

The PTE is a multivariate information measure [9, 16], introduced as an extension
of the bivariate measure of transfer entropy (TE) [14]. The TE quantifies the amount
of information explained in a response variable Y at h time steps ahead from
the state of a driving variable X accounting for the concurrent state of Y . Let
fxt ; ytg, t D 1; : : : ; n be the observed time series of two variables, and xt D
.xt ; xt�� ; : : : ; xt�.m�1/� /0 and yt D .yt ; yt�� ; : : : ; yt�.m�1/� /0 the reconstructed



41 Resampling Causality Tests 421

state space vectors, where m is the embedding dimension and � is the time delay.
The TE from X to Y is the conditional mutual information I.ytChI xt jyt /:

TEX!Y D I.ytChI xt jyt / D
X

p.ytCh; xt ; yt / log
p.ytChjxt ; yt /
p.ytChjyt /

D H.xt ; yt / �H.ytCh; xt ; yt /CH.ytCh; yt / �H.yt /; (41.1)

where TE is given either based on probability distributions (p.x/ is the prob-
ability mass function of the discretized variable x) or entropy terms (H.x/ D
� R f .x/ log f .x/dx is the differential entropy of the vector variable x with
probability density function f .x/).

The PTE accounts for the direct coupling of X to Y conditioning on the
confounding variables of a multivariate system, collectively denoted Z. It is
given by

PTEX!Y jZ D I.ytChI xt jyt ; zt / (41.2)

D H.xt ; yt ; zt / �H.ytCh; xt ; yt ; zt /CH.ytCh; yt ; zt / �H.yt ; zt /:

The estimation of the TE and PTE relies upon the estimation of the probability
density functions. Different types of estimators exist, such as histogram-based (e.g.
by discretizing the state space to equidistant intervals at each axis), kernel-based
and using correlation sums. Here, we use the nearest neighbor estimator [5], which
is proved to be effective especially for high-dimensional data [17].

Theoretically, the PTE (and TE) should be zero in the case of no causal effects.
However, a bias can be present due to various reasons, e.g. the estimation method for
the entropies and subsequently densities, the selection of the embedding parameters,
the finite sample size and the noise level as well [8]. In order to determine whether
a PTE value indicates a weak coupling or whether it is not statistically significant, a
resampling method should be used to assess its statistical significance.

41.3 Resampling Techniques

We first present the two resampling methods of time shifted surrogates and station-
ary bootstrap, and then the three independence settings. Time shifted surrogates
preserve the dynamics of a time series fx1; : : : ; xng, while the couplings are
destroyed [13]. They are formed by cyclically time shifting the components of
fx1; : : : ; xng. To formulate them from a time series with length n, an integer d is
randomly chosen (d < n) and the d first values of the time series are moved to
the end: fx�t g D fxdC1; : : : ; xn; x1; : : : ; xd g. For testing X ! Y in a bivariate time
series, the pair fx�t ; ytg is consistent with the H0 of non-causality.

The stationary bootstrap has been proposed for the calculation of standard
errors and the construction of confidence intervals for a statistic based on weakly
dependent stationary observations [11]. The bootstrap series are generated by
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resampling blocks of random size, where the length of each block has a geometric
distribution. For a fixed probability p, block lengths Li are generated with
probability p.Li D k/ D .1 � p/.k�1/ for k D 1; 2; : : :. The starting time points
of the blocks Ii are drawn from the discrete uniform distribution on f1; : : : ; n� kg.
A bootstrap time series fx�t g is formed by first starting with a random block as
defined above BI1;L1 D fxI1 ; xI1C1; : : : ; xI1CL1�1g, and blocks are added until
length n is reached.

Three independence settings are considered for both resampling methods, all
consistent with the H0 of non-causality from X to Y conditioned on Z. The first
setting, denoted A, is to resample only the time series of the driving variable X .
This is the standard approach for surrogate test for the significance of causality
measures [2, 10, 13]. The intrinsic dynamics of the variable X is preserved in the
resampled time series fx�t g but the coupling between X� and Y is destroyed, so that
H0 is fulfilled and PTEX�!Y jZ D 0. The variables X and Y as well as X and Z are
independent, however the pair of variables .Y;Z/ preserves its interdependence.

The second setting, denoted B, suggests to randomize both the driving variableX
and the response Y , i.e. resampled time series fx�t g and fy�t g are generated. Again,
the intrinsic dynamics of bothX and Y are preserved but the coupling between them
is destroyed,H0 is fulfilled and PTEX�!Y �jZ D 0. In this case, independence holds
for all variable pairs .X; Y /, .Y;Z/ and .X;Z/. However, there is still no complete
independence between all arguments in the definition of PTE, as ytCh preserves by
construction of fy�t g its dependence on yt .

Finally, we consider the third setting of complete independence of all variables
involved in the definition of PTE, denoted C, i.e. in addition to the resampling of X
and Y , also ytCh is resampled separately. Thus all terms in PTE, i.e. ytCh, xt , yt and
zt are independent, and H0 is again fulfilled.

Combining the two resampling methods (time shifted surrogates and stationary
bootstraps) and the three independence settings (A, B and C), six resampling
schemes are formulated that are utilized to test the null hypothesis of no causal
effects among the variables of multivariate systems.

41.4 Simulation Study

In the simulation study we apply the significance test for the PTE with the
six resampling schemes to multiple realizations of different simulation systems.
Specifically, we estimate the PTE from 100 realizations per simulation system. For
each realization and each resampling scheme, M D 100 resampled time series are
generated. Let us denote q0 the PTE value from one realization of a system and
q1; q2; : : : ; qM the PTE values from the resampled time series for this particular
realization and for a specific resampling scheme. The rejection of H0 of no causal
effects is decided by the rank ordering of the PTE values computed on the original
time series, q0, and the resampled time series, q1; q2; : : : ; qM . For the one-sided test,
if r0 is the rank of q0 when ranking the list q0; q1; : : : ; qM in ascending order, the
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p-value of the test is 1� .r0 � 0:326/=.M C 1C 0:348/, by applying the correction
in [19].

The simulation systems that have been used in this study are the following:

1. Three coupled Hénon maps, with nonlinear couplings (X1 ! X2, X2 ! X3)
(System 5 in [10]) with equal coupling strengths c for X1 ! X2 and X2 ! X3.
We set c D 0 (uncoupled case), c D 0:3 and c D 0:5 (strong coupling). The
Hénon map is a well-known discrete-time dynamical system that exhibits chaotic
behavior [4].

2. A vector autoregressive process of 4 variables and order 5, VAR(5), with linear
couplings (X1 ! X3, X2 ! X1, X2 ! X3, X4 ! X2) (Eq. (12) in [18]).

3. Five coupled Hénon maps, with nonlinear couplings (X1 ! X2, X2 ! X3,
X3 ! X4, X4 ! X5) defined similarly to system 1. We consider again equal
coupling strengths c, and set c D 0 (uncoupled case), c D 0:2 and c D 0:4

(strong coupling).

We consider time series lengths n D 512 and 2048. To estimate the PTE, we set
the embedding dimension m to appropriate values for each system, i.e. m D 2 for
system 1 and 3, m D 5 for system 2, the delay time � D 1 and the time step ahead
h D 1 (as defined in [14]). The number of nearest neighbors for the estimation of
the probability distributions is 10.

In terms of presentation, we focus on the sensitivity of the PTE (percentage of
rejection of H0 when there is true direct causality), as well as the specificity of
the PTE (percentage of no rejection of H0 when there is no direct causality), at
the significance level ˛ D 0:05. The notation X2 ! X1jZ denotes the Granger
causality from X2 to X1, accounting for the presence of confounding variables Z D
X3; : : :. For brevity, we use the notationX2 ! X1 instead ofX2 ! X1jZ, implying
the conditioning on the confounding variables. The notation of Granger causality
for other pairs of variables is analogous.

System 1. The mean PTE values are negatively biased in the uncoupled case
(c D 0). For c D 0:3 and c D 0:5, they are much larger when direct couplings
exist (X1 ! X2, X2 ! X3) than the rest of the directions, and increase with n.
Regarding the indirect coupling X1 ! X3, PTE increases with n for c D 0:5 (mean
PTEX1!X3 D �0:0002 for n D 512 and 0:0075 for n D 2048).

We evaluate how the null distribution of the PTE from the six resampling
schemes differs with respect to the original PTE values. For c D 0, all the
resampling schemes correctly indicate the absence of couplings; the percentages of
significant PTE values vary from 0 to 12% (see Table 41.1). Considering c D 0:3,
the schemes B and C indicate correctly the couplings, while scheme A indicates
the spurious one X2 ! X1 and the indirect one X1 ! X3. The percentage of
erroneously rejectedH0 for non-existing or indirect couplings tends to increase with
c and the time series length for all resampling schemes, the most robust being 1C
and 2C.

It turns out that when the resampled time series become more independent,
the percentage of spurious couplings decreases. The most independent resampling
schemes 1C and 2C give smallest rejection rate since the null distribution for the test
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Table 41.1 Percentage of significant PTE values for system 1 for n D 512/2048, for
the six resampling schemes

c D 0 X1! X2 X2! X1 X2! X3 X3! X2 X1! X3 X3! X1

1A 2/3 3/9 3/5 3/5 6/4 4/10

1B 4/1 5/12 4/5 3/4 4/6 5/10

1C 1/0 0 2/0 0 1/0 1/0

2A 2/1 3/7 3/5 1/2 6/5 3/12

2B 2/0 1 1/0 1/0 4/1 1/3

2C 0 0 0 0 2/0 0

c D 0:3 X1 ! X2 X2! X1 X2 ! X3 X3! X2 X1! X3 X3! X1

1A 100 11/30 100 14/13 15/36 5/4

1B 100 9/31 100 3/2 8/7 3/4

1C 100 3/0 87/100 0 1/0 0

2A 100 9/26 100 8/11 9/27 4/3

2B 100 3/11 100 1/0 2 2/0

2C 100 2/0 100 0 0 0

c D 0:5 X1 ! X2 X2! X1 X2 ! X3 X3! X2 X1! X3 X3! X1

1A 100 8/32 100 11/14 32/95 8

1B 100 2/25 100 3/0 6/68 8/1

1C 100 0 100 0 2/32 0

2A 100 4/24 100 9/11 23/93 6/4

2B 100 1/9 100 1/0 4/57 2/1

2C 100 0 100 0 1/33 0

The directions of true couplings are highlighted. A single number is displayed when the
same percentage corresponds to both n

is more spread and displaced to the right as the resampling changes from the least
independent scheme (scheme A) to the most independent one (C) (see Fig. 41.1).

System 2. The mean PTE values from 100 realizations of the second system
for the directions of the true couplings are larger than for the other directions and
increase with n, with the exception of X2 ! X3 that is at a lower level and does
not increase with n (see Table 41.2). Concerning the uncoupled directions, the
mean PTE values vary from 0:0013 to 0:0095 for both n and they decrease with
n (the three largest mean PTE values across all non-direct couplings are reported in
Table 41.2).

The true couplings X2 ! X1, X1 ! X3, X4 ! X2 are well established by
the significance test (see Table 41.2), while no spurious causalities are identified
(percentage of significant PTE vary from 0 to 6 % at the uncoupled directions). The
weak coupling X2 ! X3 is detected only by the scheme A, with a power of the test
increasing with n. We note again that the surrogate/bootstrap PTE values increase
as the resampled time series become more independent (see Fig. 41.2).

System 3. No couplings are noted in the uncoupled case (c D 0) for system 3;
the percentage of significant PTE values range from 0 to 11% for all the resampling
schemes and both time series lengths. The PTE is also effective for c D 0:2 (see
Table 41.3). As resampled time series become more independent, a loss in the power
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Fig. 41.1 Boxplots of surrogate/bootstrap PTE values and original PTE value from one realization
of system 1 for c D 0:3 and n D 2048, for the directions (a) X2! X1 and (b) X1! X3

of the test is observed for n D 512. For the strong coupling strength c D 0:4,
indirect and spurious couplings are observed for n D 2048 based on the resampling
scheme A, e.g. we obtained for scheme 1A: 49% for X1 ! X3, 60% for X2 ! X4,
64% for X3 ! X5, 19% for X2 ! X1, 18% for X3 ! X2, 22% for X4 ! X3 and
27% forX5 ! X4. Similar results are observed for scheme 2A. Scheme B indicates
the spurious coupling X2 ! X4, but at a lower percentage than scheme A. Only the
true couplings are indicated using the resampling methods C (see Table 41.3).
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Table 41.3 Percentage of significant PTE values from 100 realizations of system 3
for n D 512/2048, for the true couplings, an indirect coupling (X2 ! X4) and an
uncoupled case (X5! X4)

c D 0:2 X1 ! X2 X2 ! X3 X3 ! X4 X4 ! X5 X2! X4 X5! X4

1A 54/100 58/100 63/100 54/100 8/5 10/7

1B 54/100 57/100 59/100 52/100 6/2 9/5

1C 31/100 22/98 18/99 16/99 1/0 0

2A 53/100 62/100 67/100 59/100 8/7 14/9

2B 48/100 60/100 64/100 57/100 7/0 11/1

2C 29/100 29/100 28/100 26/99 1/0 2/0

c D 0:4 X1 ! X2 X2 ! X3 X3 ! X4 X4 ! X5 X2! X4 X5! X4

1A 100 100 98/100 100 15/60 18/27

1B 100 100 99/100 99/ 100 6/21 3/6

1C 100 83/100 86/ 100 84/100 1 1/0

2A 100 100 100 100 21/65 22

2B 100 100 100 100 9/25 10/8

2C 96/100 96/100 96/100 96/100 1 2/1

41.5 Discussion

The importance of assessing the correct statistical significance for the PTE has been
explored in a simulation study. Concerning the resampled time series, by definition,
the mutual information of X and Y conditioned on Z should be in theory zero, i.e.
I.Y IX jZ/ D 0. The formulation of more independent resampled data (schemes
B and C) compared to the standard technique (scheme A) seems to improve the
bias of the test statistic and helps prevent false indications of couplings in the case
of the nonlinear coupled systems. The size and the power of the test are improved,
especially if strong couplings exist. However, when the couplings are linear, scheme
A seems to be more efficient in identifying weak couplings.

It turns out that when the PTE is estimated for an increasing level of randomness
in the resampled time series, the estimated PTE values also increase, while the
distribution of PTE from the resampled time series gets wider and less spurious
couplings are thus detected. This higher specificity comes at the cost of lower
sensitivity, and vice versa. Thus, none of the six resampling schemes turns out to
be optimal, but it becomes clear that the significance test for the PTE gets more
conservative as resampling is more random.

The aforementioned resampling schemes can be utilized for any test statistic in
order to examine the null hypothesis of no causal effects. Since the efficiency of a
causality measure is determined in terms of the corresponding resampling technique
that is used, the usefulness of each of the examined resampling schemes will be
further investigated for different causality measures.
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Chapter 42
A Review of Multilevel Modeling: Some
Methodological Issues and Advances

Giulia Roli and Paola Monari

42.1 Introduction

Multilevel modeling is a recently new class of statistical methods, firstly introduced
in 1987 by Goldstein and later by Bryk and Raudenbush [2] and Hox [17]. This
approach for data analysis is a generalization of linear and generalized linear
regressions, when the structure of data is nested, i.e. base level units are grouped
into higher level units involving their own variability and dependencies among
the related observations. The nested or multilevel structure of data is a common
phenomenon, especially in behavioral and social sciences, where the study of the
relationship between individuals and society is of crucial importance and, thus, the
dependence of data becomes a focal interest of the research. Moreover, the hierarchy
of data can be a nuisance generated by the sampling design, such as in the multi-
stage sampling, which is frequently employed in the traditional surveys to reduce
the costs of data collection. Whatever the dependence arises from, it is “neither
accidental nor ignorable” [13]. Indeed, the risks of drawing wrong conclusions are
high if the clustering of the data is disregarded [38].

Mainly thanks to the wide range of applicability and the great increase of
statistical softwares [8], in the last decades multilevel modeling has enjoyed an
explosion of published papers and books in both methodological and application
field. Its popularity is well reflected by the raise in the published books up to now:
6 books published in the period from 1972 to 1992, 6 in 1994 to 1998, 14 in 1999
to 2003, 25 in 2004 to 2008 [37].

The first usage of multilevel modeling refers to educational research aiming
at estimating the effect of school enrollment on students’ achievement. To date,
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several applications have been made in virtually all the disciplines, such as medical,
economic, genetic, demographic researches. Multilevel modeling appears in the
statistical literature under different but equivalent terms: multi-level linear models in
sociological research and in health sciences [13], mixed-effects models and random-
effects models in biometric applications [9, 21], random-coefficient regression
models in the econometric literature [34], covariance components models in the
more generic statistical literature [7, 25]. Raudenbush and Bryk [33] adopted the
term hierarchical linear models as a more general way to refer to the structural
feature of data in several applications, as firstly introduced by Lindley and Smith
in 1972.

Currently, there is a need to not only develop the research on multilevel approach
for the analysis of complex data, but also to have instructions to properly address
the usage. This work aims at summarizing methodological aspects related to
multilevel models, illustrating good-practices, advantages, and limits by reviewing
applications in various fields, such as socio-economic, educational, health, and
medical sciences. To date, only few reviews are available to report practices of
multilevel applications, mainly restricted to education field (see, e.g., [5, 35]). We
further focus our attention on the latest advances of multilevel modeling towards,
for example, the inclusion of latent variables, such as multilevel structural equation
and latent class models [36], and the increasing use of the Bayesian inference
approach [10].

The paper develops by firstly introducing the research aims and the modeling
framework of multilevel regression modeling, as well as the basic assumptions
usually invoked (Sect. 42.2). In particular, some practical issues concerning the
model specification are considered in Sect. 42.2.1. Different aspects of parameter
estimation, according to softwares usually employed, are showed in Sect. 42.3.
Latest advances in multilevel modeling are listed in Sect. 42.4.

42.2 Modeling Framework

The starting point for the employment of multilevel modeling is represented
by a hierachical structure of data. In general, we refer to a data hierarchy as
consisting units grouped at different levels [38]. In the simplest cases, a two-level
hierarchy of data is considered with units nested in clusters, each one with its own
variability, with the potential to be easily extended to higher levels. The most typical
cases lie in units clustered into organizations, such as teachers in schools, pupils
in classes, families in neighborhoods, employees in firms, children in families,
animals in litters, patients in doctors or hospitals, respondents in interviewers. Other
examples consist in longitudinal or panel data with multiple measures nested into
single individuals. Such structures are typically strong hierarchies because there
is much more variation among level-2 units (subjects) than among level-1 units
(measurement). Consequently, most of the books on multilevel analysis deal with
this kind of nested data separately by referring to repeated measures models.
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Units at the more disaggregated level are usually named level-1 units, but
other terms are used, such as micro-level, micro- secondary or elementary units.
Aggregation units are called level-2 units, but also macro-level, macro- or primary
units or, simply, clusters.

The first consequence of a hierarchical structure of data is the dependency of
level-1 units within level-2 units. As a result, the use of standard regression analysis
is improper. A common procedure with two-level data is to aggregate the micro-
level data to the macro-level, e.g. averaging by macro-units, with serious risks of
errors, such as “shift of meaning” and “ecological fallacy.” Moreover, aggregation
neglects the original data structure and cannot examine the potential cross-level
interaction effects [38]. Conversely, multilevel analysis approach address to the
problem of handling hierarchical data by representing each level by its own sub-
model and, thus, fulfilling several research purposes:

• improving the estimation of the level-1 effects under investigation (i.e., all the
available information at both levels are efficiently used in order to exploit both
the group features and the relations existing in the overall sample);

• evaluating of the cross-level effects (e.g., how variables measured at one level
affect relations occurring at another);

• decomposing of the variance–covariance components among levels;
• generalizing standard methods (e.g., ordinary regression techniques represent a

special case, in which there is only one level).

To introduce the modeling, we consider a general framework for a multilevel
generalized linear regression of two-level clustered data. In particular, let us
consider an outcome Y whose distribution is from the exponential family with
mean � and denote with yij the outcome value for each level-1 unit i (with
i D 1; : : : ; Nj ) in level-2 unit j (with j D 1; : : : ; J ). Let us further consider a
set of level-1 covariates, i.e. information related to level-1 units, denoted by xijk
(with k D 1; : : : ; K). By referring to the typical multi-stage structure of multilevel
modeling, at level one we have

yij D �ij C "ij

g.�ij / D �ij D ˛j C
KX

kD1
ˇjkxijk (42.1)

where g.�/ is the differentiable monotonic link function relating the outcome with
the linear predictor �ij , ˛j and ˇjk are the random intercepts and coefficients
across level-2 units, respectively. A special case is multilevel linear regression where
g.�/ is the identity function and the normal distribution of level-1 residuals "ij
with null mean is assumed. Several submodels can be considered by setting only
some parameters as random across level-2 units. For instance, in a random-intercept
model only the parameters ˛j are assumed to vary and ˇk are fixed across clusters.
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If no level-1 covariates are included in the model specification, we refer to a one-way
ANOVA with random effects or fully unconditional model.

At level two the random intercepts and coefficients are regressed on Q level-2
covariates, that is some kinds of available information on clusters denoted by zqj
(with q D 1; : : : ;Q)

˛j D  00 C
QX

qD1
 0qzqj C u0j

ˇjk D  k0 C
QX

qD1
 kqzqj C ujk; 8 k (42.2)

where  s are the level-2 parameters (intercepts and coefficients) and u’s the level-2
residuals. A typical assumption for the level-2 residuals is the multivariate normal
distribution with null means and a variance covariance structure, which can be both
simplified, e.g. by assuming null covariances, or complicated, e.g. by considering
different matrixes across clusters. Level-1 and level-2 residuals are assumed to be
independent.

A combined version of model equations is often considered by embedding
regressions 42.2 into model 42.1

g.�ij / D  00 C
QX

qD1
 0qzqj C u0j C

KX

kD1

0

@ k0xijk C
QX

qD1
 kqzqj xijk C ukqxijk

1

A

(42.3)

This version is required by some statistical softwares to compute estimates of the
crucial parameters and allows to show the cross-level interaction of level-1 and
level-2 covariates implicitly accounted by the model.

42.2.1 Some Issues on Model Development and Specification

A first issue concerning the model specification arises from sufficient sample sizes
to yield accurate estimates. Several authors (see, e.g., [1, 26]) showed that the
regression coefficients, their standard errors, and variance components are unbiased
independently of the sample size. Conversely, the number of level-2 units is crucial,
as the standard errors of the level-2 variances are under-estimated when the number
of level-2 units is lower than 100. They suggest a number of 50 level-2 units as
sufficient basing on the results from a simulation study yielding an acceptable
noncoverage rate of about 7.3 %.

In addition to the sample sizes at the separate levels, the size of the intraclass
correlation (ICC), i.e. the proportion of variance in the outcome due to the level-2
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units, also may affect the accuracy of the estimates ([12]). In the linear multilevel
model, the ICC can be estimated by specifying an empty model at both levels which
allows to decompose the variance of the outcome Y into the variance of level-1
units �e (i.e., the variance of "ij ) and that of groups �u (i.e., the variance of level-2
residuals u0j )

yij D  00 C u0j C "ij

Using this model, the ICC is defined as u0j
u0jC"ij . Several simulation research (see,

e.g., [26, 29]) show that ICC had no effect on the non-coverage rates, even if it
decreases as ICC increases. However, an ICC not lower than 0.15 is generally
recommended.

Another topic is related to the centering or not centering solutions regarding
both level-1 and level-2 predictors. An important debate has been carried out
about this issue involving several authors (see, e.g., [20, 32]). Paccagnella in 2006
([31]) reviewed the essential issues and the main conclusions that can be drawn.
In particular, the scaling is introduced to measure contextual effects in a relative
way, as well as addressing to collinearity problems, and it is particularly useful
in social applications. Two methods are usually employed: grand mean and group
mean centering of model variables. Grand mean centering of a covariate Xk ,
.xijk � xk/, is just a reparametrization of the model and does not cause problems.
The criticisms concern group-mean centering .xijk � xjk/ which leads to not
equivalent models. Conversely, non centering technique can be a consequence of
poor quality of the group mean or by considering that mean is not the only available
variable for measuring contextual effects. Several authors showed that the decision
of centering depends on whether the model has been specified and on the purposes
of the analysis. In particular, centering can be the solution if there is the aim of
distinguishing level-2 effects from level-1 characteristics, in case of problems of
collinearity and if faster convergences are needed. Conversely, not centering is
adopted when the research interests are on individual effects, to deal with more
parsimonious models and to yield more intuitive interpretations of the parameter
estimates.

42.3 Parameter Estimation and Softwares

To estimate the parameters involved in a multilevel model several methods can be
employed. In the simplest case of linear multilevel modeling and under a frequen-
tist perspective, Maximum-Likelihood (ML) and Restricted Maximum-Likelihood
(REML) estimation techniques are usually employed by using many different
algorithms: EM algorithm [6]; Newton–Raphson algorithm [24], implemented in
the procedure PROC MIXED of SAS; Fisher scoring algorithm [25] in the software
VARCL; IGLS algorithm [11] in the software MLwiN; mix of EM and Fisher
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scoring algorithms in the software HLM. ML estimation yields unbiased estimates
of the fixed effects but biased estimates of the variance components. REML
estimates are further unbiased for the variance components thanks to the removing
of the fixed parameters from the likelihood function.

In multilevel generalized linear models parameter estimation is more complex, as
involving approximations to maximum likelihood through Gauss–Hermite quadra-
ture, adaptive Gauss–Hermite quadrature, Monte Carlo integration, or LaplaceŠs
method. The most frequently used methods are based on a first- or second-order
Taylor series expansion around an estimate of the fixed and random portions of
the model. This is referred to as Penalized Quasi-Likelihood (PQL) estimation. In
Marginal Quasi-Likelihood (MQL) estimation, the Taylor series is expanded around
the fixed part of the model. These methods are implemented in PROC GLIMMIX
and NLMIXED of SAS, GLAMM of STATA, MLwiN and HLM softwares.

Bootstrapping can be further employed especially to deal with the bias in the
variance estimates and standard errors in both parametric [28] and nonparametric
[3] versions. This method is implemented in MLwiN software.

Bayesian estimation through Monte Carlo Markov Chain (MCMC) methods
and Gibbs sampler can be further employed by using, e.g., WinBUGS or BUGS
softwares, ensuring accurate estimates also in small databases (see also the next
section).

42.4 Some Advances

In the last decades several advances of multilevel techniques towards more complex
situations have been made. First, together with a hierarchical structure of data, the
presence of some variables of interests unmeasured directly but only by a set of
items or fallible instruments is considered. In such cases, statistical literature refers
to multilevel models with latent variables, or multilevel regression and structural
equation models ([19, 30, 33].

Second, hierarchical Bayesian models can be considered as a natural completion
of the hierarchical structure of modeling involved by multilevel approach. Under this
Bayesian perspective, all parameters are viewed as random and, as a consequence,
(hyper-) prior distributions need to be specified. Empirical Bayes [27], Semi Bayes
[14], Fully Bayesian and Bayes Empirical Bayes approaches [23] can be adopted,
yielding less biased estimates, more robust and more conservative tests, also in small
and sparse datasets and with a lower number of level-2 units [15, 16, 33, 39].

Third, spatial and spatio-temporal analysis is a particular multilevel model,
when the clusters are geographical areas and/or occasions [22]. In such cases, the
variance–covariance parameters are more complex than those introduced before. For
instance, in spatial analysis areal proximities can be considered to better explain the
spatial distribution of the outcomes.

Then, when the response variable is more than one we refer to multivariate
multilevel models with several applications in medical and social researches [18].
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Finally, commonly in biological, agricultural, environmental, and medical appli-
cations for continuous repeated measurements, there are situations where the
linearity assumption no more holds. In such cases, nonlinear multilevel models need
to be considered [4].
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Chapter 43
On a Generalization of the Modified
Gravity Model

Diana Santalova

43.1 Introduction

Many models have been suggested for passenger and migration flows estimation,
and special attention has been paid to the gravity models and their modifica-
tions [2–4, 6, 7]. One of the modifications (hereinafter referred to as modified gravity
model) was considered by Andronov and Santalova in [1, 8].

The modified gravity model is a nonlinear regression model for passenger
correspondences estimation between pairs of spatial points depending on distance
between them, population at every such point, and various predictors. The model
for a correspondence between points i and l can be written as

Yi;l D .hihl /
�

.di;l /�
exp.aC .c.i/ C c.l//˛ C g.i;l/ˇ CZi;l /; (43.1)

where a, ˛ D .˛1; ˛2; : : : ; ˛m/
T and ˇ D .ˇ1; ˇ2; : : : ; ˇm/

T are unknown regres-
sion parameters, � and � are unknown shape parameters, c.i/ D .ci;1; ci;2; : : : ; ci;m/

and g.i;l/ D .ci;1cl;1; : : : ; ci;mcl;m/ are knownm-vector-rows, fZi;lg are i.i.d. random
variables with zero mean and unknown variance �2. The matrix of Yi;l is called the
correspondence matrix. Correspondence matrix is required for any transport model
as input information.

Unknown parameters of the model (43.1) and correspondences are estimated
using aggregated data, i.e. total numbers of passenger departures (for simplicity
departures) at every point in a considered time interval. The departures Yi at a point
i are presented as a sum of correspondences over other points l :
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Yi D
nX

lD1
i¤l

Yi;l D
nX

lD1
i¤l

.hihl /
�

.di;l /�
exp.aC .c.i/ C c.l//˛ C g.i;l/ˇ CZi;l /: (43.2)

The model under the assumption that error term Zi;l is normally distributed random
variable has been estimated in [1], and statistical properties of the estimates have
been verified in [8].

Another assumption of the model is that estimated correspondences Y �i;l are
symmetric. It means that estimated passenger departures Y �i at every point i must be
equal to the estimated passenger arrivals at the same point. One must be warned that
we deal with the so-called raw correspondences, i.e. without expanding them into
commuting, duty or leisure trips. Since raw correspondences cannot be symmetric
and departures do not equal to arrivals, the model assumption of symmetry is quite
often violated.

Besides, the present approach for collecting statistical data about raw correspon-
dences (developed and used by EUROSTAT) allows to fix only the data about
passengers embarked and disembarked at a point, including international transit
traffic. Due to this nonconformity, using the model (43.1) for correspondences
estimation can cause loss of the estimation accuracy (which can be observed as
increasing the mean square error, for example).

One of the approaches to diminish the mean square error in such a situation might
be a “brute force method”, which can be implemented in estimation of two vectors
of parameters. The first vector is estimated from the total numbers of departed
(embarked) passengers fY Ei g, and the second one from total numbers of arrived
(disembarked) passengers fY Di g. This approach was tested for railway passenger
correspondences estimation between the EU member states, and the mean square
error was diminished up to 43 % compared with ordinary estimation procedure [9].

Another approach is based on a hypothesis that non-symmetry of the correspon-
dences can violate the assumption about normality of error distribution. So, we
intend to generalize the model with normally distributed errors to a model with
skew-normal error distribution, and to propose a method of its estimation.

The paper is organized as follows. In the next section two generalizations of
the model (43.1) are suggested. In Sect. 43.3 the correctness of the suggested
generalizations is investigated. Experimental results are presented in the end of the
paper. Finally further research directions are discussed.

43.2 Generalized Models

Let us denote an estimate of Yi;l as Y �i;l and make the following assumptions:

• Y �i;l > 0 for i ¤ l ,
• Y �i;i D 0,
• Y �i;l D Y �l;i .
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We suggest two generalizations of the model (43.1). First of them, say M-Model,
contains multiplicative error term, and the second one, A-Model—an additive error
term. For both models the error term Zi;l is distributed by skew-normal law. Its
density function in the univariate case is (see, for example, [5])

2

�
'
�x � �

�

�
˚
�
�
x � �
�

�
; x 2 R; (43.3)

where ' and ˚ denote the standard normal density and distribution functions,
respectively. So, the error termZi;l � SN

�
�; �2; �

	
, where � is the location, � > 0

is the scale and � 2 R is the shape parameter, respectively. When � D 0, we
return to the normal distribution N.�; �2/; otherwise, the distribution is positively
or negatively asymmetric, in agreement with the sign of �. The following parameter
ı is related to the shape parameter via the relationship:

ı D ��p
1C �2�2

; ı 2 .�1; 1/ : (43.4)

In further derivations the first moments of univariate skew-normally distributed
variable are needed, which are as follows (see [5]):

E.Zi;l / D �C
r
2

�
�ı D �C

r
2

�

�2�p
1C �2�2

;

D.Zi;l / D �2
�
1 � 2

�
ı2
�

D �2
�
1 � 2

�

�2�2

1C �2�2

�
: (43.5)

43.2.1 M-Model

The multiplicative model for correspondences is given in the following way:

Yi;l D .hihl /
�

.di;l /�
exp.aC .c.i/ C c.l//˛ C g.i;l/ˇ/Zi;l ; (43.6)

where the error term Zi;l is distributed according to skew-normal distribution
with non-zero mean due to the model’s structure. The total number of departed
passengers Yi at every point i is the sum of the relevant correspondences over other
points:

Yi D
nX

lD1
i¤l

Yi;l D
nX

lD1
i¤l

.hihl /
�

.di;l /�
exp.aC .c.i/ C c.l//˛ C g.i;l/ˇ/Zi;l : (43.7)
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The expectation and variance of a correspondence Yi;l , i ¤ l , straightforwardly are

E.Yi;l / D .hihl /
�

.di;l /�
exp.aC .c.i/ C c.l//˛ C g.i;l/ˇ/E.Zi;l / ; (43.8)

D.Yi;l /D .hihl /
2�

.di;l /2�
exp

�
2.aC.c.i/ C c.l//˛Cg.i;l/ˇ /

	
D.Zi;l / ; (43.9)

where E.Zi;l / and D.Zi;l / are as (43.5).

43.2.2 A-Model

For the model with the additive error term let us rewrite the model (43.1) as

Yi;l D .hihl /
�

.di;l /�
exp.aC .c.i/ C c.l//˛ C g.i;l/ˇ/ exp.Zi;l /; (43.10)

where the error term Zi;l is distributed according to skew-normal distribution with

zero mean, when � D �
q

2
�
ı� , unknown variance �2 and shape parameter � 2 R.

As for (43.6), the total number of departed passengers Yi at every point i is:

Yi D
nX

lD1
i¤l

Yi;l D
nX

lD1
i¤l

.hihl /
�

.di;l /�
exp.aC.c.i/Cc.l//˛Cg.i;l/ˇ/ exp.Zi;l /: (43.11)

Like in Sect. 43.2.1, the expectation and variance for a correspondence Yi;l , i ¤ l ,
are

E.Yi;l / D .hihl /
�

.di;l /�
exp
�
aC .c.i/ C c.l//˛ C g.i;l/ˇ

	
E.exp.Zi;l // ; (43.12)

D.Yi;l / D .hihl /
2�

.di;l /2�
exp
�
2.aC.c.i/Cc.l//˛ C g.i;l/ˇ/

	
D.exp.Zi;l // : (43.13)

To obtain the closed form of expectation and variance of Yi;l one must derive
expectation and variance for exp.Zi;l /. They are stated in the following Lemma.

Lemma 43.1. The approximated expected value of exp.Zi;l / is

E.exp.Zi;l //  1C �2

2

�
1 � 2

�
ı2
�
; (43.14)
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and approximated variance is

D.exp.Zi;l //  �2
�
1 � 2

�
ı2
�

C �2

2
C
r
2

�

�
4

�
� 1

�
ı3: (43.15)

Proof. From the expansion into a Taylor series we get

E.exp.Zi;l // D E
�
1CZi;l C 1

2
Z2
i;l C : : :

�
 1C E.Zi;l /C 1

2
E.Z2

i;l /;

where E.Zi;l / D 0 by assumption (43.10). Then

E.exp.Zi;l //  1C 1

2
E.Z2

i;l /  1C 1

2
D.Zi;l /;

where substituting D.Zi;l / as (43.5) gives us expression (43.14).
For proving expression (43.15) let us use expansion into Taylor series as well:

D.exp.Zi;l // D D
�
1CZi;l C 1

2
Z2
i;l C : : :

�
 D.Zi;l C 1

2
Z2
i;l / D

D.Zi;l /C 1

4
D.Z2

i;l /C Cov.Zi;l ; Z
2
i;l /; (43.16)

where D.Zi;l / is taken from (43.5), and covariance Cov.Zi;l ; Z2
i;l / is derived as

follows:

Cov.Zi;l ; Z
2
i;l /DE

�
.Zi;l � E.Zi;l / /

�
Z2
i;l �E.Z2

i;l /
		DE

�
Z3
i;l

	D
r
2

�

�
4

�
� 1
�
ı3;

(43.17)

since E.Zi;l / D 0, and the third moment is given in [5]. For D.Z2
i;l / take into

account that here Z2
i;l � �21 (see, for example, [5]). So, if Zi;l � SN

�
0; �2; ı

	
and

Vi;l � SN .0; 1; ı/, then Zi;l D �Vi;l and Z2
i;l D �2V 2

i;l , where V 2
i;l � �21. It is

known that D.Z2
i;l / D �2D.V 2

i;l / D 2�2. So, assembling all stated relations above
gives us the expression (43.15). ut
Next Subsection contains derivations for getting estimates which are common for
both models.

43.2.3 Estimation Method

For both models, the expected value and variance of a departure are written as sums
of expectations or variances of relevant correspondences:

E.Yi / D
nX

lD1
E.Yi;l /; D.Yi / D

nX

lD1
D.Yi;l /; (43.18)
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where E.Yi;l / and D.Yi;l / are calculated by formulas (43.8) and (43.9) for M-Model,
and by formulas (43.12–43.15) for A-Model, respectively.

The covariance Wi;l between the departures Yi and Yl , if i ¤ l , for both models
is the following:

Wi;l D Cov.Yi ; Yl / D D.Yi;l /; (43.19)

where D.Yi;l / is calculated by (43.9) for M-Model and by (43.13), (43.15) for
A-Model.

It is assumed that departures fYi g in both models are calculated from many
correspondences, that implies weak dependency and normal distribution. The Log-
Likelihood function for the sample Y D .Y1; Y2; : : : ; Yn/ for both models is

l .a; ˛; ˇ; �; �; �; �; ı/D�1
2
ln .jWj/�1

2
.Y�E.Y //T W�1 .Y�E.Y //;

(43.20)

with the only difference that the parameter � is not estimated in A-Model. The
values of E.Y / D .E.Y1/;E.Y2/; : : : ;E.Yn// and the matrix W are calculated using
(43.18) and (43.19).

43.3 Case Study

In this section the efficiency of the estimation method of the M-Model and
A-Model will be evaluated empirically using principles of simulation modeling.
The corresponding procedure has been developed and tested in [8]. Briefly, the
models and the vector of true parameters 
0 D .a; ˛; ˇ; �; �; �; �; �/ are fixed.
The correspondences Yi;l for every pair of points .i; l/ are generated by (43.6)
for M-Model, and by (43.10) for A-Model. The departures from the points are
calculated by (43.7) for M-Model, and by (43.11) for A-Model. Further a maximum
likelihood estimate of the vector of parameters is obtained from (43.20). These steps
are repeated kmax times, which gives us a set of estimates.

For unbiasedness study the average of the kmax obtained estimates has been used,
N
U D 1

kmax

Pkmax
kD1 O
k . An estimator of the parameter O
 is unbiased if E O
 D 
.

According to the law of large numbers, N
U P�! E O
. Thus, if this limit equals 
,
then the considered estimate is unbiased.

For analysis of consistency the sequence O
k
C D f Q
kg of moving averages

Q
k D 1
k

Pk
jD1 O
j has been considered. A sequence of estimates O
k

C is consistent

if O
k
C

P�! 
. It can be interpreted empirically as O
k
C �����!

k!kmax


, providing that the

number of samples kmax is large.
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In simulations statistical data from 75 cities are used. Variables of interest
fYig are the total inland road passenger departures from cities, in thousands of
passengers. The following qualitative covariates are chosen for the experiments:

c1 – attractiveness of a city as an industrial center,
c2 – significance of a city as a cultural/social center.

The values of these covariates are determined by experts, besides c1 and c2 take
values from the set of gradations S D f0; 1; 2g, where gradation 0 means low level
of significance or attractiveness, 1—middle level and 2—high level.

The total departures for M-Model and A-Model were generated from the above
mentioned statistical data and the following vector of true parameters:


0 D .a; ˛1; ˛2; ˇ1; ˇ2; �; �; �; �; �/ D .2; 1; 1; 1; 1; 1; 2; 2; 1; 2/ : (43.21)

The results of estimation are stated below.
Looking back to our previous experience in ı (43.4) estimation, one must say that

the covariance matrix W (43.19) often was singular, and several values of the Log-
Likelihood function were unbounded. In addition, several estimates of ı exceeded its
feasible range, which corresponds to the boundary values of the index of skewness
�1 2 .�0:99527; 0:99527/ (see [5]). In such cases the corresponding values of the
parameter � were undefined [10].

Now we estimate the shape parameter � directly. The average estimated values
N
 D (1.96, 1.00, 0.98, 1.00, 1.02, 1.00, 2.01, 1.61, 1.07, 2.05) of the vector 
0 are

obtained from 4,000 estimates. One can see that the average estimate of location
parameter � is biased. The average optimal value of the Log-Likelihood function is
500, and the corresponding value of mean square error is 2:55 � 107.

The A-Model seems to be more natural than the M-Model due to the additive
error term, besides the A-Model is free of location parameter �. The vector of
model parameters
0 is as (43.21), where location parameter� is preset to zero. The
average estimated values N
 D (2.34, 1.01, 1.02, 0.98, 0.97, 1.01, 1.97, 1.44, 2.17)
of the vector 
0 are obtained from 2250 estimates. One can see that the average
estimates of the parameters a, � and � are biased. The average optimal value of the
Log-Likelihood function is 586, and the corresponding value of mean square error
is 5:01 � 107.

Concerning biasedness of certain parameters estimates for both models, one
can conclude that a more accurate optimization procedure is needed. Besides, the
number of parameters to be estimated is large. One must also take into account that
the expressions of the expectation and variance for the A-Model are approximated.
Further we intend to analyze the models w.r.t. different values of the parameter �.
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Chapter 44
Bivariate Lorenz Curves Based
on the Sarmanov–Lee Distribution

José María Sarabia and Vanesa Jordá

44.1 Introduction

The interest of academics in assessing country levels of well-being has shifted from
an evaluation based solely on economic aspects to a more comprehensive conception
of such a process, which has an intrinsic multidimensional nature. The different
works in [3, 4, 9, 14, 21, 25] and [26] move in this direction. Different approaches
have been proposed in the literature to measure inequality in well-being, being the
most satisfactory one the consideration of multidimensional inequality measures
since this methodology takes into account inequality within each dimension and
the degree of association among them. However, as in the unidimensional case,
these measures only offer overall conclusions about the evolution of the distribution
of well-being, thus other statistical tools are needed to analyze the evolution of
inequality in different parts of the distribution. In this context, the extension of
the univariate Lorenz curve to higher dimensions is not an obvious task. The three
existing definitions were proposed by Taguchi [22, 23], Arnold [1] and Koshevoy
and Mosler [11], who introduced the concepts of Lorenz zonoid and Gini zonoid
index.

The main contributions of this paper are the following. Using the definition
proposed by Arnold [1], closed expressions for the bivariate Lorenz curve are given.
To do that, we use a type of models based on the class of bivariate distributions
with given marginals described by Sarmanov and Lee [13, 20]. This model presents
several advantages. In particular, the expression of the bivariate Lorenz curve
can be easily interpreted as a convex linear combination of products of classical
and generalized Lorenz curves. We obtain a closed expression of the bivariate
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Gini index [2] in terms of the classical and the generalized Gini indices of the
marginal distributions. We prove that this index can be decomposed in two factors,
corresponding to the equality within and between variables.

The contents of the paper are as follows. In Sect. 44.2 we present preliminary
results including the definition of univariate Lorenz and concentration curves and a
short review about the three different definitions of bivariate Lorenz curves proposed
in the literature. An explicit expression for the Arnold’s bivariate Lorenz curve is
also given. In Sect. 44.3 we introduce the bivariate Sarmanov–Lee Lorez curve,
also obtaining a simple closed expression for this curve and for its corresponding
bivariate Gini index, according to the Arnold’s definition (see [2]). A decomposition
of this index in two factors is given. A bivariate Pareto Lorenz curve based on the
FGM family is presented in 44.4. Other aspects are briefly discussed in Sect. 44.5.

44.2 Preliminary Results

44.2.1 Univariate Lorenz and Concentration Curves

Let L denote the class of univariate distributions functions with positive finite
expectations and LC denote the class of all distributions in with F.0/ D 0

corresponding to non-negative random variables. We use the following definition
proposed in [6].

Definition 44.1. The Lorenz curve L of a random variable X with cumulative
distribution function F 2 L is

L.uIF / D

Z u

0

F �1.y/dy
Z 1

0

F �1.y/dy
D

Z u

0

F �1.y/dy

EŒX�
; 0 6 u 6 1; (44.1)

where F �1.y/ D supfx W F.x/ 6 yg if 0 6 y < 1 and F �1.y/ D supfx W
F.x/ < 1g if y D 1.

Now, we present the concept of concentration curve introduced by Arnold [8].
Let g.x/ be a continuous function of x such that its first derivative exists and
g.x/ > 0. If the mean EF Œg.X/� exits, then one can define

Lg.yIF / D

Z x

0

g.x/dF.x/

EF Œg.X/�
;

where y D g.x/ and f .x/ and F.x/ are, respectively, the probability density
function (PDF) and the cumulative distribution function (CDF) of the random
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variable X . The implicit relation between Lg.g.x/IF / and F.x/ is called the
concentration curve of the function g.X/. The concentration curve also admits an
implicit representation.

44.2.2 Arnold’s Definition of Bivariate Lorenz Curve

The first definition of a bivariate Lorenz curve was proposed by Taguchi [22–24].
Unfortunately, this definition was not symmetric and its extension to higher dimen-
sions did not look simple. Other definition of a multidimensional Lorenz curve was
initially proposed by Koshevoy [10], who identified a suitable definition. Thereafter,
further results were obtained by Koshevoy and Mosler [11, 12, 16]. These authors
introduced the so-called Lorenz zonoid, which is a convex American football-subset
of the three-dimensional unit cube that includes the points .0; 0; 0/ and .1; 1; 1/.
While the extension to higher dimensions is fairly direct, the computation of these
formulas in parametric income distributions is not straightforward.

The following definition was proposed by Arnold (see [1, 2]) and it is a quite
natural extension of (44.1) to higher dimensions. Let X D .X1;X2/

> be a bivariate
random variable with bivariate probability distribution function F12 on R2C having
finite second and positive first moments. We denote by Fi , i D 1; 2 the marginal
CDFs corresponding to Xi , i D 1; 2, respectively.

Definition 44.2. The Lorenz surface of F12 is the graph of the function,

L.u1; u2IF12/ D

Z s1

0

Z s2

0

x1x2dF12.x1; x2/

Z 1

0

Z 1

0

x1x2dF12.x1; x2/

; (44.2)

where

u1 D
Z s1

0

dF1.x1/; u2 D
Z s2

0

dF2.x2/; 0 6 u; v 6 1:

The two-attribute Gini–Arnold index GA.F12/ is defined as

GA.F12/ D 4

Z 1

0

Z 1

0

Œu1u2 � L.u1; u2IF12/�du1du2; (44.3)

where the egalitarian surface is given by L0.u1; u2IF0/ D u1u2. Since the previous
definition has not been explored in detail in the literature, we highlight some of its
properties. If F12 is a product distribution function, then

L.u1; u2IF12/ D L.u1IF1/L.u2IF2/;
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which is just the product of the marginal Lorenz curves. If we denote by Fa the
one-point distribution at a 2 R2C, that is, the egalitarian distribution at a, then
the egalitarian distribution has bivariate Lorenz curve L.u1; u2IFa/ D u1u2. In the
case of a product distribution, the two-attribute Gini–Arnold defined in (44.3) can
be written as

1 �GA.F12/ D Œ1 �G.F1/�Œ1 �G.F2/�:

Our results are based on an explicit expression of the bivariate Lorenz curve
defined in (44.2), which admits the following representation.

Theorem 44.1. The bivariate Lorenz curve can be written in the explicit form,

L.u1; u2IF12/ D 1

EŒX1X2�

Z u1

0

Z u2

0

A.x1; x2/dx1dx2; 0 6 u1; u2 6 1;

where

A.x1; x2/ D F �11 .x1/F
�1
2 .x2/f12.F

�1
1 .x1/; F

�1
2 .x2//

f1.F
�1
1 .x1//f2.F

�1
2 .x2//

: (44.4)

Proof. The proof is direct making the change of variable .u1; u2/ D .F1.x1/; F2.x2//

in (44.2). ut

44.3 The Bivariate Sarmanov–Lee Lorenz Curve

In this section, we introduce the so-called bivariate Sarmanov–Lee Lorenz curve.
As a previous step, we present the bivariate Sarmanov–Lee distribution.

Let X D .X1;X2/
> be a bivariate Sarmanov–Lee (SL) distribution with joint

PDF,

f .x1; x2/ D f1.x1/f2.x2/ f1C w'1.x1/'2.x2/g ; (44.5)

where f1.x1/ and f2.x2/ are the univariate PDF marginals, 'i .t/, i D 1; 2 are
bounded nonconstant functions such that

Z 1

�1
'i .t/fi .t/dt D 0; i D 1; 2;

and w is a real number which satisfies the condition 1 C w'1.x1/'2.x2/ > 0 for
all x1 and x2. We denote �i D EŒXi � D R1

�1 tfi .t/dt , i D 1; 2, �2i D varŒXi � DR1
�1.t � �i/

2fi .t/dt , i D 1; 2 and �i D EŒXi'i .Xi /� D R1
�1 t'i .t/fi .t/dt , i D

1; 2. Properties of this family have been explored in [13]. Moments and regressions
of this family can be easily obtained.
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Note that (44.5) and its associated copula have two components: a first
component corresponding to the marginal distributions and the second component
which defines the structure of dependence, given by the parameter w and the
functions 'i .u/, i D 1; 2. These two components will be translated to the structure
of the associated bivariate Lorenz curve, and the corresponding bivariate Gini index.
In relation with other families with given marginals, the Sarmanov–Lee copula has
several advantages: its joint PDF and CDF are quite simple; the covariance structure
in general is not limited and its different probabilistic features can be obtained in an
explicit form. On the other hand, the SL distribution includes several relevant special
cases, including the classical Farlie–Gumbel–Morgenstern (FGM) distribution and
the variations proposed in [7] and [5].

44.3.1 Main Result

The bivariate SL Lorenz curve is obtained using (44.5) in Eq. (44.2).

Theorem 44.2. Let X D .X1;X2/
> be a bivariate Sarmanov–Lee distribution with

joint PDF (44.5) characterized by non-negative marginals satisfying EŒX1� < 1,
EŒX2� < 1 and EŒX1X2� < 1. Then, the bivariate Lorenz curve is given by

LSL.u1; u2IF12/ D �L.u1IF1/L.u2IF2/C .1 � �/Lg1.u1IF1/Lg2.u2IF2/;
(44.6)

where

� D �1�2

EŒX1X2�
D �1�2

�1�2 C w�1�2
;

and L.ui IFi/, i D 1; 2 are the Lorenz curves of the marginal distributions Xi ,
i D 1; 2 respectively, and Lgi .ui IFi/, i D 1; 2, represent the concentration curves
of the random variables gi .Xi / D Xi'i .Xi /, i D 1; 2, respectively.

Proof. The function (44.4) for the Sarmanov–Lee distribution can be written of the
form

ASL.x1; x2/ D F �11 .x1/F
�1
2 .x2/

˚
1C w'1.F

�1
1 .x1//'2.F

�1
2 .x2//

�
;

and integrating in the domain .0; u/ � .0; v/ we obtain

�1�2L.u1IF1/L.u2IF2/C wEF1Œg1.X1/�EF2Œg2.X2/�Lg1.u1IF1/Lg2.u2IF2/;

and after normalized we obtain (44.6). ut
The interpretation of (44.6) is quite direct: the bivariate Lorenz curve can be

expressed as a convex linear combination of two components: (a) a first component
corresponding to the product of the marginal Lorenz curves (marginal component)
and a second component corresponding to the product of the concentration Lorenz
curves (structure dependence component).
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44.3.2 Bivariate Gini index

The following result provides a convenient expression of the two-attribute bivariate
Gini defined in (44.3), which permits a simple decomposition of the equality in two
factors. The first component represents the equality within variables and the second
factor represents the equality between variables.

Theorem 44.3. Let X D .X1;X2/
> be a bivariate Sarmanov–Lee distribution with

bivariate Lorenz curve L.u; vIF12/. The two-attribute bivariate Gini index defined
in (44.3) is given by

1�G.F12/ D �Œ1�G.F1/� � Œ1�G.F2/�C .1� �/Œ1�Gg1.F1/� � Œ1�Gg2.F2/�;
where G.Fi /, i D 1; 2 are the Gini indices of the marginal Lorenz curves, and
Ggi .Fi /, i D 1; 2 represent the concentration indices of the concentration Lorenz
curves Lgi .ui ; Fi /, i D 1; 2.

Proof. The proof is direct using expression (44.6) and taking into account that
G.F12/ D 1 � 4 R 1

0

R 1
0
L.u; vIF12/dudv. ut

Then, the overall equality (OE) given by 1 � G.F12/ can be decomposed in two
factors,

OE D EW CEB;

where

OE D 1 �G.F12/;
EW D �Œ1 �G.F1/�Œ1 �G.F2/�;
EB D .1 � �/Œ1 �Gg1.F1/�Œ1 �Gg2.F2/�:

EW represents the equality within variables and the second factor, EB, represents
the equality between variables which includes the structure of dependence of the
underlying bivariate income distribution through the functions gi , i D 1; 2. Note
that the decomposition is well defined since 0 6 OE 6 1 and 0 6 EW 6 1 and
hence 0 6 EB 6 1.

44.4 Bivariate Pareto Lorenz Curve Based on the FGM
Family

In this section, we present an example of bivariate Lorenz curve. Let X D .X1;X2/
>

be a bivariate FGM with classical Pareto marginals and joint PDF,

f12.x1; x2I˛; �/ D f1.x1/f2.x2/f1C wŒ1 � 2F1.x1/�Œ1 � 2F2.x2/�g; (44.7)



44 Bivariate Lorenz Curves 453

where

Fi.xi / D 1 �
�
x

�i

��˛i
; xi > �i ; i D 1; 2;

fi .xi / D ˛i

�i

�
x

�i

��˛i�1
; xi > �i ; i D 1; 2;

are the CDF and the PDF of the classical Pareto distributions, respectively [1], with
˛i > 1, �i > 0, i D 1; 2, �1 6 w 6 1 and 'i .xi / D 1� 2Fi .xi /, i D 1; 2 in (44.5).

Using (44.6) with gi .xi / D xi Œ1 � 2Fi .xi /�, i D 1; 2 and after some
computations, the bivariate Lorenz curve associated with (44.7) is

LFGM.u1; u2IF12/ D �wL.u1I˛1/L.u2I˛2/C .1 � �w/Lg1.u1I˛1/Lg2.u2I˛2/;

where the Lorenz and the concentration curves are given, respectively, by

L.ui I˛i / D 1 � .1 � ui /
1�1=˛i ; 0 6 u 6 1; i D 1; 2;

Lgi .ui I˛i / D 1 � .1 � ui /
1�1=˛i Œ1C 2.˛i � 1/ui �; 0 6 u 6 1; i D 1; 2;

and,

�w D .2˛1 � 1/.2˛2 � 1/
.2˛1 � 1/.2˛2 � 1/C w

:

The bivariate Gini index is given by (using (44.3))

G.˛1; ˛2/ D .3˛1 � 1/.3˛2 � 1/.2˛1 C 2˛2 � 3/C Œh.˛1; ˛2/�w

.3˛1 � 1/.3˛2 � 1/Œ.1 � 2˛1/.1 � 2˛2/C w�
;

where

h.˛1; ˛2/ D �3 � 4˛21.˛2 � 1/2 C .5 � 4˛2/˛2 C ˛1.5C ˛2.8˛2 � 7//:

44.5 Extensions and Additional Properties

Other alternative families of bivariate Lorenz curves can be constructed, including
models based on conditional specification [18], models with marginals specified in
terms of univariate Lorenz curves (see [17, 19]) and models based on mixtures of
distributions, which allow us to incorporate heterogeneity factors in the inequality
analysis. Furthermore, the concepts developed in this chapter can be extended to
dimensions higher than two.
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Moreover, some stochastic orderings related with the Lorenz curves can be
defined. We denote by L kC the set of all k-dimensional nonnegative random vectors
X and Y with finite marginal expectations, that is EŒXi � 2 RCC and EŒYi � 2 RCC.
Let X;Y 2 L kC, and we define the following order (see [15]): X �L Y if
L.uIFX/ > L.uIFY/.

Theorem 44.4. Let X;Y 2 L 2C with the same Sarmanov–Lee copula. Then, if
Xi �L Yi , and Xi �Lgi Yi i D 1; 2, then X �L Y.

Proof. The proof is direct based on the expression of the bivariate Sarmanov–Lee
Lorenz curve defined in (44.6). ut
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Chapter 45
Models with Cross-Effect of Survival Functions
in the Analysis of Patients with Multiple
Myeloma

Mariia Semenova, Ekaterina Chimitova, Oleg Rukavitsyn,
and Alexander Bitukov

45.1 Introduction

Accelerated life models are used more and more often in oncology and hematology
studies for estimation of the effect of explanatory variables on lifetime distribution
and for estimation of the survival function under given covariate values, see [6].

The most popular and most widely applied survival regression model is the
proportional hazards model (called also the Cox model) introduced by Sir David
Cox. The popularity of this model is based on the fact that there are simple
semiparametric estimation procedures which can be used when the form of the
survival distribution function is not specified, see [4]. The survival functions for
different values of covariates according to the Cox proportional hazard (PH) model
do not intersect. However, in practice this condition often does not hold. Then, we
need to apply some more complicated models which allow decreasing, increasing,
or nonmonotonic behavior of the ratio of hazard rate functions.

Following [1] and [2], we illustrate possible applications of the Hsieh model
(see [5]) and the simple cross-effect model, which are particularly useful for the
analysis of survival data with one crossing point.
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45.2 Parametric Models

Suppose that each individual in a population has a lifetime Tx under a vector of
covariates x D .x1; x2; : : : ; xm/

T . Let us denote by Sx.t/ D P.Tx > t / D 1 �
Fx.t/ the survival function and by �x.t/ and �x.t/ the hazard rate function and the
cumulative hazard rate function of Tx , respectively.

In survival analysis, lifetimes are usually right censored. The observed data
usually are of the form .t1; ı1/; : : : ; .tn; ın/, where ıi D 1 if ti is an observed
complete lifetime, while ıi D 0 if ti is a censoring time, which simply means that
the lifetime of the i -th individual is greater than ti .

45.2.1 Proportional Hazards Model

The cumulative hazard rate for the Cox proportional hazards model is given by

�x .t Iˇ; 	/ D exp
�
ˇT � x	�0 .t I 	/ ; (45.1)

where ˇ is the vector of unknown regression parameters, �0.t I 	/ is the baseline
cumulative hazard rate function, which belongs to a specified class of hazard rate
functions.

This model implies that the ratio of hazard rates under different values of
covariate x2 and x1 is constant over time:

�x2 .t/

�x1 .t/
D exp

�
ˇT � x2

	

exp .ˇT � x1/ D const: (45.2)

However, this model is rather restrictive and is not applicable when the ratios of
hazard rates are not constant in time. There may be an interaction between covariates
and time, in which case hazards are not proportional.

45.2.2 Hsieh Model

According to the idea of Hsieh, one possible way to obtain a nonmonotonic behavior
of ratios of hazard rates is to take a power function of the baseline cumulative hazard
function. Namely, Hsieh proposed the model given by

�x .t Iˇ; �; 	/ D exp
�
ˇT � x	 f�0 .t I 	/gexp.�T �x/ : (45.3)

The parameters ˇ and � are m-dimensional. It is a generalization of the
proportional hazards model taking the power exp.�T x/ of �0.t I 	/ instead of the
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power 1. It is easy to show that the Hsieh model implies that the hazard ratio between
different fixed covariates is increasing from 0 to 1 or decreasing from 1 to 0.
The model of Hsieh does not contain interesting alternatives to crossing: the hazard
rates under different constant covariates cross for any values of the parameters ˇ
and � ¤ 0 [5]. This model implies that the ratio

�x2 .t/

�x1 .t/
D f�0 .t I 	/gexp.�T �x/�1

is monotone,
�x2 .0/

�x1 .0/
D 0 and

�x2 .1/
�x1 .1/ D 1 or vice versa, so there exists the point

t0 W �x2 .t0/
�x1 .t0/

D 1. If � D 0, then the hazard rates coincide [2].

45.2.3 Simple Cross-Effect Model

A more versatile model including not only crossing but also going away of hazard
rates is the simple cross-effect model [2] given by

�x .t Iˇ; �; 	/ D �
1C exp

�
.ˇ C �/T � x	�0 .t I 	/

	exp.��T �x/ � 1: (45.4)

The ratio

�x2 .t/

�x1 .t/
D exp

�
ˇT � x	 �1C exp

�
.ˇ C �/T � x	�0 .t I 	/

	exp.��T �x/�1

is monotone,
�x2 .0/

�x1 .0/
D exp

�
ˇT � x	, �x2 .1/

�x1 .1/ D 1, if � < 0, and
�x2 .1/
�x1 .1/ D 0, if

� > 0. So, the hazard rates may cross or go away but cannot converge or approach
(in sense of the ratio at the point t ).

To test the goodness-of-fit of the described models to an observed data, it is

possible to use the approach based on the residuals Ri D �x

�
ti I Ǒ; O�; O	

�
; i D

1; : : : ; n, which should fit closely to the standard exponential distribution if the
model is indeed “correct.” Testing the hypothesis H0 whether the samples of
observed residuals belong to a particular distribution can be carried out by means
of Kolmogorov, Cramer-von Mises-Smirnov, and Anderson–Darling tests and using
the maximum likelihood estimates of unknown parameters [3].

45.3 Analysis of Patients with Multiple Myeloma

This investigation of patients with multiple myeloma was carried out in the Hema-
tology Center, in the Main Military Clinical Hospital named after N.N.Burdenko.
The purpose of the investigation is to compare the response time to the treatment
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in two groups of patients. The difference in these groups is in the fact that the first
group received chemotherapy with Bortezomibe, which is marketed as Velcade by
Millennium Pharmaceuticals.

45.3.1 Data Description

The data, presented in Table 45.1, include observations of 60 patients, 4 of which
were censored. Patients in the study were randomly assigned to one of two treatment
groups: chemotherapy without Bortezomibe (x1 D 0) or chemotherapy together
with Bortezomibe (x1 D 1).

In addition to treatment, several factors were also observed: type of response
(the value x2 D 1 corresponds to the general response, x2 D 0 corresponds to the
progression of the disease), sex (x3 D 1 means that the patient is male, x3 D 0

means that the patient is female), and age in years (x4). Table 45.1 also gives the
response times in months (t ) and the censoring indicator ı. So, the number of
patients fallen into different groups is given in Table 45.2.

There are 38 observations in the first group and 22 observations in the second
one. It should be noted that 4 observations are independent randomly censored
observations. Moreover, we will take into account the age of patients as a covariate
in the survival models.

Table 45.1 The data of patients with multiply myeloma

t ı x1 x2 x3 x4 t ı x1 x2 x3 x4 t ı x1 x2 x3 x4

61 1 1 1 1 64 62 1 1 0 1 75 7 1 0 1 0 66

50 1 1 0 1 81 3 1 1 1 1 64 2 1 0 1 0 60

2 1 1 1 0 71 26 1 1 1 1 61 262 0 0 1 1 68

36 1 1 0 1 69 22 1 1 0 1 72 81 1 0 1 0 81

14 1 1 0 0 74 46 1 1 0 1 59 33 1 0 0 0 79

27 1 1 0 1 83 3 1 1 1 1 77 215 1 0 0 1 65

1 1 1 1 0 46 16 1 1 1 1 66 57 1 0 0 0 85

4 1 1 1 1 80 10 1 1 0 0 46 17 1 0 0 1 89

27 1 1 0 0 58 25 1 1 1 0 55 26 1 0 1 0 75

115 0 1 0 1 50 6 1 1 1 1 48 7 1 0 0 1 47

13 1 1 0 1 85 5 1 1 1 0 51 30 1 0 0 1 75

2 1 1 1 1 56 30 1 1 0 1 81 2 1 0 0 1 66

3 1 1 1 1 57 25 1 1 0 1 58 26 1 0 1 1 76

25 1 1 1 1 71 39 1 1 0 1 77 20 0 0 1 1 37

4 1 1 1 1 64 6 1 1 1 1 65 5 0 0 0 0 57

62 1 1 0 0 57 83 1 1 0 0 69 8 1 0 1 0 73

9 1 1 1 0 71 24 1 1 1 1 52 127 1 0 0 0 79

10 1 1 0 0 56 3 1 1 1 1 49 149 1 0 0 1 87

7 1 1 1 1 55 7 1 0 1 1 61 10 1 0 1 1 65

54 1 1 0 1 75 2 1 0 1 1 45 8 1 0 1 1 61
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Table 45.2 The plan of
experiment

x2 x3 x1 D 0 x1 D 1
P

0 0 4 6 10

0 1 6 12 18

1 0 5 5 10

1 1 7 15 22P
22 38 60

Table 45.3 AIC for the
Hsieh and SCE models

Model AIC

Exponential Hsieh 489.45

Exponential SCE 487.41

Weibull Hsieh 491.37

Weibull SCE 485.62

Gamma Hsieh 490.02

Gamma SCE 482.59

Lognormal Hsieh 479.51

Lognormal SCE 478.19

45.3.2 Simulation Results

First of all, we estimated survival functions for patients in two groups of treat-
ment using nonparametric Kaplan–Meier estimates since the sample is censored.
The estimates of survival functions intersect once. By this reason the proportional
hazards model can be inappropriate for these data (proportional hazard assumption
was not hold). We compared the Hsieh models and the simple cross-effect (SCE)
models with different baseline distributions by the Akaike information criterion
(AIC D 2k � 2 logL, where k is the number of estimated parameters and L is the
maximized likelihood function). The obtained values for the considered models are
given in Table 45.3.

The minimal AIC value is equal to 478.19 for the lognormal SCE model, thus
we propose using the SCE model with lognormal baseline distribution for relating
the distribution of response time to the scheme of chemotherapy and other factors.
In this case, the baseline hazard rate function has the following form:

�0 .t I 	/ D � log

�
1

2
� 1

2
p
�


�
1

2	2
log2 .t=	1/ ;

1

2

��
:

In Table 45.4, there are maximum likelihood estimates of the model parameters
	 D .	1; 	2/, ˇ D .ˇ1; ˇ2; ˇ3; ˇ4/

T and � D .�1; �2; �3; �4/
T and the p-values of

the Wald test for testing insignificance of parameters.
As can be seen from Table 45.4, the parameters for the first and second covariates

in the model, namely type of chemotherapy and type of response, are significant
(p-values are less than 0.05). The obtained statistics of Kolmogorov, Cramer-von
Mises-Smirnov, and Anderson–Darling tests are Sk D 0:50, S!2 D 0:034 and



462 M. Semenova et al.

Table 45.4 Estimates of parameters of the lognormal SCE model

Model parameters MLEs of parameters p-value of the Wald test

	1 90.81

	2 1.21

ˇ1, �1 0.60, �0:46 0.03

ˇ2, �2 4.36, 2.17 0.001

ˇ3, �3 �0:25, 0.19 0.18

ˇ4, �4 0.65, �0:007 0.63

Fig. 45.1 The Kaplan–Meier estimates and corresponding survival functions of the SCE model

S˝2 D 0:25, and the corresponding p-values are equal to 0:92, 0:89, and 0:96,
respectively. So, the goodness-of-fit hypothesis of the lognormal SCE model is not
rejected.

In Fig. 45.1, the nonparametric Kaplan–Meier estimates and the corresponding
survival functions of the SCE model are presented.

So, it is possible to conclude that the response in the group of patients, treated
with Bortezomibe, was achieved significantly faster than in the control group, in
which patients were taken chemotherapy without Bortezomibe. Moreover, in the
case of general response (which combines such cases as complete, partial, minimal
response and stabilization) the lifetime till response is significantly less than in the
case of progression of the disease.

Acknowledgements This research has been supported by the Russian Ministry of Education and
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Chapter 46
Monte Carlo Method for Partial Differential
Equations

Alexander Sipin

46.1 Introduction

The unbiased estimators for solutions u.x/ of boundary value problems for PDEs
are usually constructed on trajectories of Markov processes in domain D in Rn or
on the boundary @D . The transition function P.x; dy/ of such processes fxig1iD0 is
usually the kernel of integral equation

u.x/ D
Z

Q

u.y/P.x; dy/C F.x/; x 2 Q (46.1)

in the space M.Q/ of the measurable bounded functions on the compact Q. Here,
Q D D orQ D @D , the function F.x/ is defined by boundary conditions and right
part of differential equation.

Let K be integral operator in the Eq. (46.1). If kKk < 1, we may use von-
Neumann–Ulam scheme [3] to construct the unbiased estimators for u.x/. In case
of kKk D 1 and F.x/ > 0 for any bounded solution u.x/ of Eq. (46.1) we have
representation [1, 4]:

u.x/ D
1X

iD0
KiF.x/CK1u.x/; x 2 Q; (46.2)

where

K1u.x/ D lim
i!1K

iu.x/: (46.3)
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Really, due to (46.1), we have inequality

nX

iD0
KiF.x/ D u.x/ �KnC1u.x/ 6 2kuk:

So, the row (46.2) converges and the limit (46.3) exists.
The function v.x/ D K1u.x/ is the solution of the equation v.x/ D Kv.x/:

It is called invariant function for P.x; dy/.
The function

GF.x/ D
1X

iD0
KiF.x/

is the potential of the function F.x/.
The function u.x/ is called excessive one for P.x; dy/, if the inequality

u.x/ > Ku.x/ is true. Due to K1GF.x/ D 0, the excessive function u.x/ have
a unique decomposition to sum of potential and invariant functions.

Let � be an absorbing state, � D inffnjxn D �g, u.�/ D 0 and �.x;  / is the
distance between x and a set  . The Markov chain fxig1iD0 in the domain D with
transition function P.x; dy/ must have additional properties :

1. Px.� D 1/ > 0;

2. Px.xi ! x1; x1 2 @D j� D 1/ D 1 or
3. Px.�.xi ; @D/ ! 0j� D 1/ D 1;

4. Exmin.�; �"/ < 1 for �" D inf.i W �.xi ; @D/ < "/:
which permit us to obtain unbiased and "-biased estimators for u.x/.

Using invariant and excessive functions for P.x; dy/, we can construct simple
conditions, which yield properties (1–4). Markov chains, usually used in Monte
Carlo algorithms for boundary value problems [3], satisfy these conditions.
These results are applied to the “walk in hemispheres” [2] and the “walk on
cylinders” [5] processes.

46.2 Some Properties of the Markov Chain

Here we investigate some properties of the Markov chain fxig1iD0 , which starts from
the point x0 D x.

Let fAig1iD0 be an increasing family of � -algebras, fxig be Ai—measurable, �i
be the indicator of the set f� > ig. For any bounded excessive solution u.x/ of the
Eq. (46.1) we define standard sequence of unbiased estimators as

�i D
i�1X

jD0
F.xj /�j C �iu.xi /: (46.4)
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It is evident that f�i ;Aig1iD0 is uniformly integrated martingale and

Ex�iu.xi / D Kiu.x/:

Hence, �1 D lim �i exist Px a.s. and Ex�1 D u.x/: The row
P1

jD0 F.xj /�j
converges Px a.s. by B.Levy’s Theorem. We have also K1u.x/ D Ex lim�iu.xi /
by Lebesque’s Theorem.

Theorem 46.1. 1. If for any x 2 Q probabilityPx.� < 1/ D 1, then any bounded
excessive function is potential.

2. If the function u.x/ � 1 is potential, then for any x 2 Q probability
Px.� < 1/ D 1:

3. If nonnegative invariant function v.x/ exists and v.x/ > 0, thenPx.� D 1/ > 0.
4. Let F.x/ be continuous function, F.x/ > 0 and GF.x/ < 1 for all x 2 Q. Let
 D fx 2 QjF.x/ D 0g . If Px.� D 1/ > 0, then

Px.lim �.xi ;  / D 0j� D 1/ D 1:

5. Let Fi.x/ be continuous function, Fi.x/ > 0 and GFi.x/ < 1 for all x 2 Q

and i D 1; 2. Let i D fx 2 QjFi.x/ D 0g for i D 1; 2 and Px.� D 1/ > 0,
then

Px.lim �.xi ; 1 \ 2/ D 0j� D 1/ D 1:

6. Let v.x/ be continuous invariant function, Kv2.x/ is continuous and

 D fx 2 Qjv2.x/ D Kv2.x/g:

If Px.� D 1/ > 0 , then

Px.lim �.xi ;  / D 0j� D 1/ D 1:

7. Let v.x/ > 0 and �v.x/ be continuous excessive function or v.x/ 6 0 and v.x/
is continuous excessive function, Kv2.x/ is continuous and

 D fx 2 Qjv2.x/ D Kv2.x/g:

If Px.� D 1/ > 0 , then

Px.lim �.xi ;  / D 0j� D 1/ D 1:

8. In last two cases 6 and 7 for x 2  function v.y/ D const D v.x/ Px a.s. and
if v.x/ ¤ 0, then P.x;Q/ D 1.
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Proof. 1. The function u1.x/ � 1 is excessive and

K1u1.x/ D Ex lim�i D Px.� D 1/ D 0:

For any bounded excessive function u.x/ we have

jK1u.x/j 6 lim supKi ju.x/j 6 kukK1u1.x/ D 0:

2. If u.x/ � 1 D Gg.x/, then

g.x/ D P.x;�/; Kig.x/ D Px.� D i/

and

Px.� < 1/ D
1X

iD0
Px.� D i/ D

1X

iD0
Kig.x/ D 1:

3. Let �1 be an indicator of the set f� D 1g then

0 < v.x/ D K1v.x/ D Ex lim�iv.xi / 6 Ex�1 sup v.x/ D Px.�1 D 1/ sup v.x/:

Hence, Px.�1 D 1/ > 0.
4. Now Px a.s. limF.xi /�i D 0 and 8i.�i D 1/ in the set f� D 1g, hence Px a.s.

limF.xi / D 0 in this set. Let the sequence f�.xik ;  /g1kD0 converges. The set Q
is compact, so the sequence fxik g1kD0 have a converging subsequence.Without
the loss of generality we may suppose that fxik g1kD0 converges to a point Qx.
We have 0 D limF.xik / D F. Qx/ by the continuity of F.x/. So, Qx 2  and
�. Qx;  / D 0. The set  is closed and lim �.x;  / is continuous function of x,
hence lim �.xik ;  / D �. Qx;  / D 0. The sequence f�.xi ;  /g1kD0 is bounded
and it has a converging subsequence, so lim �.xi ;  / D 0.

5. The function F.x/ D F1.x/ C F2.x/ have a finite potential and  D 1 \ 2,
so item 4 yields item 5.

6. For a function v.x/ we have inequality F.x/ D Kv2.x/ � v2.x/ > 0: Hence,
�v2.x/ is excessive function. Now item 6 is a corollary of item 4.

7. Really,

F.x/ D Kv2.x/ � v2.x/ D
Z

Q

v2.y/P.x; dy/ � v2.x/

> 2v.x/Kv.x/� 2v2.x/P.x;Q/C v2.x/P.x;Q/� v2.x/ > v2.x/.1�P.x;Q// > 0:

Hence, �v2.x/ is excessive function. Now item 7 is a corollary of item 4.
8. This item is evident.

ut
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As a rule, the sequence fxig1iD0 converges a.s. Particulary, the following Theorem
is valid.

Theorem 46.2. 1. Let there exist bounded excessive functions wm.x/,
m D 1, : : : ; n; such as for coordinate function vm.x/, sum wm.x/ C vm.x/

or difference wm.x/�vm.x/ is excessive function than the Markov chain fxig1iD0
converges on the set f� D 1g a.s.

2. Let there exist constants wm; m D 1; : : : ; n; such as for coordinate function
vm.x/, sum wm C vm.x/ or difference wm � vm.x/ is excessive function than the
Markov chain fxig1iD0 converges on the set f� D 1g a.s.

3. Let coordinate function vm.x/ or �vm.x/ m D 1; : : : ; n is excessive function, or
vm.x/ is invariant function, than the Markov chain fxig1iD0 converges on the set
f� D 1g a.s.

Proof. (1). Let hm.x/ D wm.x/ � vm.x/ be an excessive function. Standard
sequence of unbiased estimators (46.4) for hm.x/ and sequence f�ihm.xi /g1iD0 con-
verges a.s. Standard sequence of unbiased estimators (46.4) for wm.x/ and sequence
f�iwm.xi /g1iD0 converges a.s. So, for m D 1; : : : ; n sequence f�ivm.xi /g1iD0
converge a.s. Similary, we can prove the assertions (2) and (3) ut

46.3 Statistical Estimators

The standard sequence of unbiased estimators (46.4) is not realizable, since it
contains the function F.x/ and u.x/ with unknown values. To obtain realized
estimator one applies or an unbiased estimators, or a "—biased estimators of these
functions. We describe the appropriate procedure, following [3].

We assume that the Markov chain fxig1iD0 satisfy following condition

(a) The sequence fxig1iD0 a.s. converges on the set f� D 1g to a point x1 2 @Q.

For ı > 0 we define �1 D inffi j�.xi ; @Q/ < ıg and �ı D min.�1; �/. For a
Markov chain satisfying .a/ the value of �ı is a.s. finite.

The sequence of unbiased estimators f�ig1iD0 for solution u.x/ of the problem
(46.1) is called admissible, if there exists a sequence � -algebras fBig1iD0 such that
Ai � Bi and Bi � BiC1, and �i is given by �i D �i C �iu.xi /, where �i is Bi -
measurable. The sequence of admissible estimators define random variable �ı by
equality �ı D ��ı C �u.x��ı /, where �—indicator of event f� > �1g, x��ı—point of
the boundary and �.x��ı ; x�ı / 6 ı .

Properties of this estimator were obtained in the following theorem.

Theorem 46.3 ([3], theorem 2.3.2). If an admissible sequence of estimators
f�ig1iD0 is a square integrable martingale for the filtration fBig1iD0, defined above,
then a random variable �ı is ".ı/-biased estimator of u.x/ (".ı/—modulus of
continuity of u.x/), and its variance is a bounded function of a parameter ı.
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The following lemma gives a condition of the square integrability for the standard
sequence of estimators.

Lemma 46.1. If the Eq. (46.1) has bounded solutions for F.x/ and jF.x/j, then the
standard sequence of unbiased estimators is a square integrable martingale relative
to the filtration fAig1iD0.
Proof. The potential GF 2.x/ 6 kF kGjF.x/j < 1. Therefore, for the standard
sequence of estimators we have an inequality

Ex�
2
i 6 2Ex

0

@
1X

jD0
�j jF.xj /j

1

A
2

C 2kuk2

D 2Ex

1X

jD0
�jF

2.xj /C 4Ex

0

@
1X

jD0
�j jF.xj /j

1X

mDjC1
�mjF.xm/j

1

AC 2kuk2

D 2GF 2.x/C 4Ex

1X

jD0
�j jF.xj /jEx

0

@�j
1X

mDjC1
�mjF.xm/j j Aj

1

AC 2kuk2

D 2GF 2.x/C 4Ex

1X

jD0
�j jF.xj /j.GjF j.xj / � jF.xj /j/C 2kuk2

6 2GF 2.x/C 4k.GjF j � jF j/kGjF j.x/C 2kuk2:

ut
The function F.x/ is presented usually in the form F.x/ D h.x/Ef .Y /, where

the random variable Y has a distribution that depends on x, the function f .y/ is
the right-hand side of the differential equation, or the value of its solutions at the
boundary. Let fyj g1jD0 be a sequence of random variables such that

F.xi / D h.xi /E.f .yi / j Ai / (46.5)

a.s. and Bi is a minimal �—algebra generated by Ai and the sequence fyj gijD0,
then the sequence of unbiased estimators

�i D
i�1X

jD0
h.xj /f .yj /�j C �iu.xi / (46.6)

is admissible. Such estimators are be traditionally called estimators by collisions.
If the Eq. (46.1) has a bounded solution Qu.x/ for the F.x/ D h.x/, then by
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Lemma 46.1 it follows that the sequence of unbiased estimators

Q�i D
i�1X

jD0
h.xj /�j C �i Qu.xi / (46.7)

is a square integrable martingale for filtration fAig1iD0. This implies the lemma.

Lemma 46.2. Let the Eq. (46.1) has a bounded solution for the F.x/ D h.x/. If
f .x/ is bounded function and F.x/ have the form (46.5) then the Eq. (46.1) also has
a bounded solution . The sequence of unbiased estimators (46.6) is square integrable
martingale for filtration fBig1iD0.

Note that the condition of Lemma 46.2 is valid if the corresponding boundary
value problems have bounded solutions of the required smoothness for the constant
right-hand side f .x/ (the zero boundary condition) and zero right-hand side of
the differential equation (with constant boundary condition). In the last case, the
function h.x/ D P.x; 0/, where 0—a lot of points on the boundary @Q, included
in the support of P.x; dy/. In this case, h.x/ has a sense of probability of trajectory
absorbtion on the boundary @Q. In this case, as a vector of yi , usually, use the
following point of the trajectory, that is defined as yi D xiC1. As a result we have
the estimator by absorption.

To obtain an exact upper bound of the expectation Ex�ı commonly used renewal
theorem. Using the estimators (46.7), we easily obtain that the expectation is finite.

Lemma 46.3. Let the Eq. (46.1) has bounded solutions for the F.x/ D h.x/ and
there is a constant c.ı/, such that the inequality h.x/ > c.ı/ > 0 fulfilled for x 2 Q
and �.x; @Q/ > ı. Then we have inequality Ex�ı 6 Gh.x/=c.ı/.

46.4 Some Applications

Now we investigate Random Walks on Hemispheres processes [2], which applies
for solving various boundary problems for Laplace operator. Here we discuss only
one of them.

Let some plane ˘ divide a domain D 
 R3 into two sub-domains DC and D�.
Let u.x/ be a harmonic function in DC and D�. We suppose that u.x/ is continuous
one in D and u.x/; x 2 @D is known.

We denote the normal to plane by �. It has a direction from D� to DC. Let �
be an orth of the first coordinate axis. Hence, v1.x/ D 0 is the plane equation. Let
� D const > 0 and � ¤ 1 the equation

�
@u

@�C
D @u

@� �
; (46.8)
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connects the normal derivations for u.x/; x 2 ˘ . Described boundary condition
defines unique function which is harmonic one in DC and D�:

Now we define a transition function for Random Walks on Hemispheres. For
x 2 DC (x 2 D�) we define S.x/ as a maximal hemisphere which satisfies the next
conditions

• S.x/ 
 DC .S.x/ 
 D�/;
• The plane part of hemisphere lies on the plain ˘;
• the center of the hemisphere x0 2 D ;
• x lies in the direction � (-�) from x0:

Here R.x/ is the radius of the hemisphere S.x/. If such hemisphere does not exist,
then S.x/ 
 DC .S.x/ 
 D�/ is a maximal sphere with center x.

From Green formula we have

u.x/ D �
Z

S.x/

@G.x; y/

@�y
u.y/dyS:

Here @G.x; y/=@�y is normal derivation of Green function G.x; y/. Hence, the
transition function of Markov chain is

P.x; dy/ D �@G.x; y/
@�y

dyS:

If x 2 ˘ , then S.x/ 
 D is a maximal sphere with center x and R.x/ is its radius.
Let SC D S.x/ \ DC and S� D S.x/ \ D�. Green formula and condition (46.8)
give an integral equations for u.x/

u.x/ D �

1C �

1

2�R2

Z

SC

u.y/ dyS C 1

1C �

1

2�R2

Z

S�

u.y/ dyS: (46.9)

Hence, for x 2 ˘ transition function P.x; dy/ is the mix of two uniform
distributions on SC and S� with probabilities �=.1C�/ and 1=.1C�/, respectively.

Evidently, coordinate functions v2.x/ and v3.x/ are invariant ones for the kernel
P.x; dy/. On the plain v1.x/ D 0 for � < 1 an inequality

Z

S.x/

P.x; dy/v1.y/ D �

1C �

1

2�R2

Z

SC

v1.y/ dyS C 1

1C �

1

2�R2

Z

S�

v1.y/ dyS D

D � � 1
1C �

1

2�R2

Z

SC

v1.y/ dyS < 0

is valid, so coordinate function v1.x/ is excessive one. For � > 1 the function
�v1.x/ is excessive one.
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Due to Theorem 46.2 the Random Walks on Hemispheres converges to some
random point x1: The function v2.x/ is invariant one for P.x; dy/. Due to item
6 of the Theorem 46.1 x1 2  for  D fx 2 D jv22.x/ D Kv22.x/g. Note that
x 2  is equivalent to the fact that v2.Y / D v2.x/ a.s. if Y have a distribution
P.x; dy/ D ı.y � x/dy, what fulfills only for x 2 @D :
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Chapter 47
The Calculation of Effective Electro-Physical
Parameters for a Multiscale Isotropic Medium

Olga Soboleva and Ekaterina Kurochkina

47.1 Governing Equations and Approximation of a Medium

Wave propagation in complex inhomogeneous media is an urgent problem in many
fields of research. In electromagnetics, these problems arise in such applications as
estimation of soil water content, well logging methods, etc. In order to compute
the electromagnetic fields in an arbitrary medium, one must numerically solve
Maxwell’s equations. The large-scale variations of coefficients as compared with
wavelength are taken into account in these models with the help of some boundary
conditions. The numerical solution of the problem with variations of parameters on
all the scales requires high computational costs. The small-scale heterogeneities are
taken into account by the effective parameters. In this case, equations are found on
the scales that can be numerically resolved.

It has been experimentally shown that the irregularity of electric conductivity,
permeability, porosity, density abruptly increases as the scale of measurement
decreases. The spatial positions of the small-scale heterogeneities are very seldom
exactly known. It is customary to assume the parameters with the small-scale
variations to be random fields characterized by the joint probability distribution
functions. In this case, the solution of the effective equations must be close to the
ensemble-averaged solution of the initial problem. For such problems, a well-known
procedure of the subgrid modeling [3] is often used. To apply the subgrid modeling
method, we need a “scale regular” medium. It has been experimentally shown
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that many natural media are “scale regular” in the sense that their parameters, for
example, permeability, porosity, density, electric conductivity can be approximated
by fractals and multiplicative cascades [1,5]. The effective coefficients in the quasi-
steady Maxwell’s equations for a multiscale isotropic medium are described in [6].
In the present paper, the correlated fields of electric conductivity and permittivity
are approximated by a multiplicative continuous cascade. We obtain formulas of
effective coefficients for Maxwell’s equations in the frequency domain when the
following condition �.x/=.!".x// < 1 is satisfied. Usually, this condition is valid
for " and � in moist soil at high frequencies.

The Maxwell’s equations in the time-harmonic form with an impressed current
source F in a 3D-medium are given by

rotH .x/ D .�i!".x/C � .x//E .x/C F; (47.1)

rotE D i!�H;

where E and H are the vectors of electric and magnetic field strengths, respectively;
� is the magnetic permeability; x is the vector of spatial coordinates. The magnetic
permeability is assumed to be equal to the magnetic permeability of vacuum.
At infinity, the radiation conditions must be satisfied. The wavelength is assumed to
be large as compared with the maximum scale of heterogeneities of the medium L.

For the approximation of the coefficients �.x/, ".x/, we use the approach
described in [7]. Let, for example, the field of permittivity be known. This means
that the field is measured on a small scale l0 at each point x, " .x/l0 D " .x/. To pass
to a coarser scale grid, it is not sufficient to smooth the field " .x/l0 on a scale l ,
l > l0. The field thus smoothed is not a physical parameter that can describe the
physical process, governed by Eq. (47.1), on the scales .l; L/. This is due to the
fact that the fluctuations of permittivity on the scale interval .l0; l/ correlate with
the fluctuations of the electric field strength E induced by the permittivity. To find
a permittivity that could describe an ensemble-averaged physical process on the
scales .l; L/, system (47.1) will be used. Following [4], consider a dimensionless
field  , which is equal to the ratio of two fields obtained by smoothing the field
" .x/l0 on two different scales l 0; l . Let " .x/l denote the parameter " .x/l0 smoothed
on the scale l . Then  .x; l; l 0/ D ".x/l 0=".x/l ; l 0 < l . Expanding the field  into
a power series in l � l 0 and retaining first order terms of the series, at l 0 ! l , we
obtain the equation:

@ ln ".x/l
@ ln l

D �.x; l/; (47.2)

where �.x; l 0/ D .@ .x; l 0; l 0y/=@y/ jyD1. The solution of Eq. (47.2) is

".x/l0 D "0 exp

�
�
Z L

l0

�.x; l1/
d l1

l1

�
; (47.3)
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where "0 is a constant. The field � determines the statistical properties of the
permittivity. According to the limit theorem for sums of independent random
variables: if the variance of �.x; l/ is finite, the integral in (47.3) tends to a field with
a normal distribution as the ratio L=l0 increases. If the variance of �.x; l/ is infinite
and there exists a non-degenerate limit of the integral in (47.3), the integral tends
to a field with a stable distribution. In this paper, it is assumed that the field �.x; l/
is isotropic with a normal distribution and a statistically homogeneous correlation
function:

˚��
�
x; y; l; l 0

	 D ˚��.jx � yj ; l; l 0/ı �ln l � ln l 0
	
: (47.4)

It follows from (47.4) that the fluctuations of �.x; l/ on different scales do not
correlate. This assumption is standard in the scaling models [4]. This is due to the
fact that the statistical dependence is small if the scales of fluctuations are different.
To derive subgrid formulas to calculate effective coefficients, this assumption may
be ignored. However, this assumption is important for the numerical simulation of
the field ". For a scale invariant medium, for any positive K, we have

˚��.jx � yj ; l; l 0/ D ˚��.K jx � yj ; Kl;Kl 0/:

In a scale invariant medium, the correlation function does not depend on the scale
at x D y, and the following estimation is obtained for l0 < l� < r < L[7]:

< ".x/l0".x C r/l0 >� C .r=L/�˚
��
0 ; (47.5)

where C D "20 .L=l0/
�2<�> e�˚

��
0 �=2, � is the Euler constant. Here the angle

brackets denote ensemble averaging. If for any l the equality< ".x/l >D "0 is valid,
then it follows from (47.3), (47.4) that ˚��

0 D 2 < � >. As the minimum scale l0
tends to zero, the permittivity field described in (47.3) becomes a multifractal and
we obtain an irregular field on a Cantor-type set to be nonzero.

The conductivity coefficient �.x/ is constructed by analogy with the permittivity
coefficient:

�.x/l0 D �0 exp

�
�
Z L

l0

'.x; l1/
d l1

l1

�
: (47.6)

The function '.x; l/ is assumed to have the normal distribution and to be delta-
correlated in the logarithm of the scale. The correlation between the permittivity and
conductivity fields is determined by the correlation of the fields �.x; l 0/ and '.x; l 0/:

˚'�
�
x; y; l; l 0

	 D ˚'�.jx � yj ; l; l 0/ı �ln l � ln l 0
	
: (47.7)
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47.2 Subgrid Model

The electric conductivity and permittivity functions � .x/l0 , " .x/l0 are divided into
two components with respect to the scale l . The large-scale (ongrid) components
� .x; l/, " .x; l/ are obtained, respectively, by statistical averaging over all '.x; l1/
and �.x; l1/ with l0 < l1 < l , l � l0 D dl , where dl is small. The small-scale
(subgrid) components are equal to � 0 .x/ D � .x/l0 � � .x; l/, "0.x/ D " .x/l0 �
".x; l/:

".x; l/ D "0 exp

"
�
Z L

l
�.x; l1/

d l1

l1

#*
exp

"
�
Z l

l0

�.x; l1/
d l1

l1

#+

"0.x/D".x; l/

2

66664
1*

exp

"
�

lR

l0

�.x; l1/
dl1
l1

#+ exp

2

64�
lZ

l0

�.x; l1/
d l1

l1

3

75�1

3

77775
: (47.8)

The coefficients �.x; l/, � 0.x/ are calculated in the same way. The large-scale
(ongrid) components of the electric and magnetic field strengths E .x; l/, H .x; l/
are obtained by averaging the solutions to system (47.1), in which the large-scale
components of the conductivity �.x; l/ and the permittivity ".x; l/ are fixed and
the small components � 0.x/, "0.x/ are random variables. The subgrid components
of the electric and magnetic field strengths are equal to H0 .x/ D H .x/ � H .x;l/,
E0 .x/ D E .x/ � E .x;l/. Substituting the relations for E .x/ ;H .x/, and �.x/, ".x/
into system (47.1) and averaging over small-scale components, we have

rotH .x; l/ D .�i!" .x; l/C � .x; l//E .x; l/C ˝�
� 0 � i!"0	E0

˛C F;

rotE .x; l/ D �i!H .x; l/ : (47.9)

The subgrid term h.�i!"0 C � 0/E0i in system (47.9) is unknown. The form of this
term in (47.9) determines a subgrid model. The subgrid term is estimated using
perturbation theory. Subtracting system (47.9) from system (47.1) and taking into
account only the first order terms, we obtain the subgrid equations:

rotH0 .x/ D .� .x; l/ � i!" .x; l//E0 .x/C �
� 0 .x/ � i!"0 .x/	E .x; l/ ;

rotE0 .x/ D �i!H0 .x/ : (47.10)

The variable E .x; l/ on the right-hand side of (47.10) is assumed to be known.
Using “frozen-coefficients” method, as a first approximation we can write down the
solution of system (47.10) for the components of the electric field strength:
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E 0̨  ˝

1Z

�1

eikr

r

��i!"0 �x0	C � 0
�
x0
		
E˛

�
x0; l

	
dx0 (47.11)

C˝1

1Z

�1

@

@x˛

@

@xˇ

eikr

r

��i!"0 �x0	C � 0
�
x0
		
Eˇ

�
x0; l

	
dx0;

where ˝ D i!�=.4�/, ˝1 D 1=.4� .�i!" .x; l/C � .x; l///, r D jx � x0j,
k2 D !� .!" .x; l/C i� .x; l//. Here the summation of repeated indices is implied.
We take the square root such that Re k > 0; Imk > 0. Using (47.11), the subgrid
term can be written down as

˝�
� 0 .x/ � i!"0 .x/	E 0̨ .x/˛

 ˝

1Z

�1

eikr

r

˝�
� 0 .x/ � i!"0 .x/	 ��i!"0 �x0	C � 0

�
x0
		˛
E˛

�
x0; l

	
dx0 (47.12)

C˝1

1Z

�1

@

@x 0̨
@

@x 0̌
1

r
eikr

˝�
� 0 .x/ � i!"0 .x/	 �� 0 �x0	 � i!"0 �x0		˛Eˇ

�
x0; l

	
dx0:

The wavelength is assumed to be large as compared with the maximum scale
of heterogeneities of the medium L, l < L. Following [6], for !�L2j.i!".x; l/C
�.x; l//j 	 1, we obtain estimation of the subgrid term in (47.9)

˝�i!"0 .x/E 0̨ .x/˛C ˝
� 0 .x/E 0̨ .x/

˛  1

3
˚
��
0 i!".x; l/E˛ .x; l/

d l

l

�
�
2

3
˚
�'
0 � 1

3
˚
��
0

�
dl

l
�.x; l/E˛ .x; l/ : (47.13)

Substituting (47.13) into (47.9), we have:

rotH .x; l/ D
"
�l0 exp

"
�
Z L

l
'.x; l1/

d l1

l1

#
� i!"l0 exp

"
�
Z L

l
�.x; l1/

d l1

l1

##
E .x; l/

rotE .x; l/ D i!�H .x; l/ ; (47.14)

"l0 D
�
1 � ˚

��
0

3

dl

l

�

1C

�
˚
��
0

2
� h�i

�
dl

l

�
"0; (47.15)

�l0 D


1 �

�
2

3
˚
�'
0 � 1

3
˚
��
0

�
dl

l

� 

1C

�
˚
''
0

2
� h'i

�
dl

l

�
�0:



480 O. Soboleva and E. Kurochkina

As dl ! 0 in (47.15), we obtain the equation

d ln "0l
d ln l

D 1

6
˚
��
0 � h�i ;

d ln �0l
d ln l

D �2
3
˚
�'
0 C 1

3
˚
��
0 C 1

2
˚
''
0 � h'i : (47.16)

For the scale-invariant medium the effective equations have the following simple
form:

rotH .x; l/ D �i!
�
l

L

�˛
"l .x/E .x; l/C

�
l

L

�ˇ
�l .x/E .x; l/C F;

rotE .x; l/ D i!�H .x; l/ ; (47.17)

where ˛ D h�i � ˚��
0 =6, ˇ D h'i C 2

3
˚
�'
0 � 1

3
˚
��
0 � 1

2
˚
''
0 .

47.3 Numerical Simulation

The following numerical problem was solved in order to verify the formulas
obtained above. Equations (47.1) are solved in a cube with edge L0. The following
dimensionless variables are used: Ox D x=L0; O� D �=�0; OH D H=H0, OE D
L0�0=.k1H0/E, k1 D L0

p
�0�!, k D k1

pO� � i~ O", ~ D !"0=�0. In the calcu-
lation, the parameter ~ is equal to 5. This corresponds to �0=.!"0/ D 0:2. Thus, the
problem is solved in a unit cube, with �0 D 1, "0 D 1, k1 D 4

p
2. To satisfy the

radiation conditions at infinity, the perfectly matched layers are used. The current
source F Ox1 D 0, F Ox2 D 0, F Ox3 D 0:5 exp .�q2. Ox3 � 0:2/2/, q D 60 is located
at the point .0; 0; 0:2/. In the domain 0:3 6 Oxi < 1:3, the conductivity and the
permittivity are simulated by multiplicative cascades. The integrals in (47.3), (47.6)
are approximated by finite difference formulas. A 256�256�256 grid is used for the
spatial variables in the domain 0:3 6 Oxi < 1:3. In these formulas, it is convenient
to pass to a logarithm to base 2:

� .Ox/l0  2
�

0P
iD�8

'.Ox;�i /��
; " .Ox/l0  2

�
0P

iD�8

�.Ox;�i /��
; (47.18)

where h�.Ox/l0i D 1, h".Ox/l0i D 1, l D 2� , �� is the � grid-size. In our calculations,
�� is taken to be one. For random fields ', �, the following formulas are used for
each �i :

'.Ox; �i / D
s
˚
''
0

ln 2
�1 C ˚

''
0

2
; �.Ox; �i / D

s
˚
��
0

ln 2
.��1 C �1�2/C ˚

��
0

2
;
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Fig. 47.1 Real parts of Ex1 , Hx2 obtained by: 1—system (47.1) at � D 1, " D 1; 2—effective
system at � D 1; 3—effective system with � D �1; 4—numerical method at � D 1; 5—numerical
method at � D �1

where �1 D p
1 � �2, ˚'�

0 D �

q
˚
��
0 ˚

''
0 , �1 6 � 6 1, �1.Ox; �i /, �2.Ox; �i /

are independent Gaussian random fields with unit variance, zero mean, and the
following correlation function

˝
�1.Ox; �i /�1.Oy; �j /

˛ D ˝
�2.Ox; �i /�2.Oy; �j /

˛ D exp
h
� .x � y/2 =22�i ıij

i
:

The coefficients ˚''
0 D 2 h'i, ˚��

0 D 2 h�i are constants. To numerically simulate
the Gaussian fields �1, �2, we use the algorithm from [9]. The delta-correlation in the
scale logarithm means that the fields ', � are independently generated for each
scale li . The number of terms in (47.18) is chosen so that probabilistic averaging
can be replaced by volume averaging on the largest fluctuation scale. The smallest
fluctuations scale is chosen in such a way as to approximate (47.1) by a difference
scheme with a good accuracy on all the scales. We use a method based on a finite
difference scheme proposed in [8] and a decomposition method from [2]. The fields
in the exponents of (47.18) are generated as the sum of two scales: i D �5;�4. The
minimum scale is l0 D 1=32, the maximum scale is L D 1=16. The characteristics
of the electric and magnetic field strengths are calculated on the scales .l0; L/.
At each x3, these fields are averaged over the planes .x1; x2/. Then these fields
are additionally averaged over the Gibbs ensemble. Equations (47.1) are solved
48 times. The fields thus obtained are compared with the solution to effective
Eq. (47.17). In the calculations we use: ˚''

0 D ˚
��
0 D 0:4, < ' >D< � >D 0:2,

˚
'�
0 D �

q
˚
''
0 ˚

��
0 = ln 2, � D 1 or � D �1. Figure 47.1 shows a comparison

between the mean fields obtained by the numerical method described above, the
effective fields obtained by Eq. (47.17) and by the fields obtained by Eq. (47.1) with
the coefficients � D< �.x/ >D 1; " D< ".x/ >D 1 (curve 1). Although curves 4,
5 in Fig. 47.1 small differ in magnitude from curve 1, curves 4, 5 decay faster than
curve 1 for one wavelength. Such deviations will have an influence over a distance
containing many wavelengths.
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Chapter 48
An Approximate Solution of the Travelling
Salesman Problem Based on the Metropolis
Simulation with Annealing

Tatiana M. Tovstik

48.1 Introduction

The traveling salesman problem (TSP) is an NP-hard problem in combinatorial
optimization [1]. The classic TSP is to look for the closed shortest possible path that
passes throughN given points and visits each point exactly one time. The first book
about this problem was published in 1832 in Germany. Then in 1930 Karl Menger
gave a mathematical formulation of the problem. In 1985 Lawler et al. [2] provided a
comprehensive survey of all major research results until that date. In 1985 Hopfield
and Tank [3] proposed to minimize energy by using neuron nets, in 1987 Durbin
and Uillshoy [4] used the elastic net method to find the sub-optimal solution. In
1991 Reinelt published the Library TSPLIB with the standard TSP [5] of various
complexity. Now this Library is continuously supplemented on the Internet. In 1992
Laporte [6] published an overview of the exact and approximate TSP algorithms,
and possible applications of the TSP. Among the exact algorithms he indicated
the integer linear programming formulations [7], the related branch-and-bound
algorithms, various shortest spanning bound and related algorithms [8, 9]. Finding
the global extremum is possible by the Monte-Carlo Method in combination with
the power method, which was first mentioned in the monograph [9] by Ermakov and
was described in detail in [10].

The dynamic simulation method by Metropolis [11] is used for a variety of
optimization problems. This method with annealing allows to find the global
minimum of a functional. The length of the path is considered to be the functional
in the TSP. The different heuristic algorithms differ from each other by the choice
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of the initial and following approximations. In [12] two different mutation strategies
for generating next solutions are proposed. The two-change (or the swap) operator
and its modifications are used in [13–15].

In this work the symmetric TSP is studied, and the investigations from the paper
[16] are continued. Normalized path length is used as criterion. Construction of the
initial approximation is discussed. The following approximations are obtained by
using the Metropolis method with annealing. This method is also applied to separate
parts of the path. The choice and the change of an annealing coefficient is discussed.
Special features of the proposed algorithm involve removing of self-sections and
visual monitoring of intermediate results. The presented examples show that the
path received with this algorithm is close to the optimal one.

48.2 The Algorithm of the Initial Approximation
Construction

It is well known [11] that when using the Metropolis method to the problems with
the large N it is important to start from the good initial configuration.

By using linear transformations initial points can be reflected into a unit square.
We shall consider three variants of initial configurations.

Variant 1. The polar co-ordinates r; ' with the origin in the square center are
introduced. In the initial approximation all points are numbered according the
growth of the angle '. This numbering is fixed as the initial configuration.

Variant 2. The numbering of points is executed according to the motion of rays as
it is shown in the left side of Fig. 48.1. The rays rotate around the points with the
Cartesian co-ordinates (0, 0), (0.25, 0.25), and (0.25, �0:25).

Fig. 48.1 The initial numbering of 5,000 random uniformly distributed points (left), and the final
path close to optimal one with � D 0:759 (right)



48 An Approximate Solution of the Travelling Salesman Problem Based on. . . 485

Variant 3. The points in a unit square with the Cartesian co-ordinates (x; y) are
numbered according to the growth of co-ordinates x, and if for some points the
coordinates x coincide then the numbering of these points is executed according
to the growth of co-ordinates y.

These heuristic variants are established during the numerical experiments. We
use the variant 1 for a comparatively small number of points .N 6 3000/ (see
Examples 2 and 3). The Variant 2 is more convenient for a larger number of points
with distribution close to the random uniform one (see Example 1). The Variant 3
can be used if some points lie on the x-lines. And it can be applied for the electronic
plates design. In the case of large N it is convenient to use the parallel calculations
optimizing the separate parts of the path (see Example 4).

48.3 The Metropolis Method with Annealing

To obtain the following approximations we simulate the Markovian process by the
Metropolis method with annealing.

Let X be the finite set, and its elements x 2 X be named configurations. Let us
introduce the real energy function H.x/ equal to the path length. The Metropolis
method allows to find the configuration x with H.x/ close to minimum. Here the
path length (or the energy function) is used as a criterion. In some papers [12] the
average path length is used as a criterion. The last criterion is not acceptable for us
because we study a sequence of paths and not a set of random paths.

In the TSP co-ordinates of N points are given, and the configuration (or the
path) x is defined by the order of the passage of points and does not depend on the
passage direction (the problem is symmetric). As the path is closed the choice of
starting point is not important. If for the kth approximation x D x.k/, then

x.k/ D
�
j
.k/
1 ! j

.k/
2 ! � � � ! j

.k/
N ! j

.k/
NC1 D j

.k/
1

�
; (48.1)

where j .k/1 is the starting point number and j .k/i is the number of the i th point in the
passage. For k D 0 the relation (48.1) defines the initial approximation.

The energy function H.x/ for the configuration x D x.k/ is equal

H.x/ D H.x.k// D
NX

iD1
r
.k/
i ; r

.k/
i D r.j

.k/
i ; j

.k/
iC1/; (48.2)

where r.j .k/i ; j
.k/
m / are the distances between the points.

We fulfill the transition from the kth approximation to the .k C 1/th one by the
so called two-change, operator, which consists of the following. First we choose at
random two numbers of the path (48.1). Let them be j .k/i and j .k/m (m � i > 2).
Then we construct the test configuration y in which compared with (48.1) the part
of path between the points j .k/iC1 and j .k/m is passed in the opposite order
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y D
�
j
.k/
1 ! : : :! j

.k/

iC1! j .k/m ! j
.k/
m�1! : : :! j

.k/

iC1! j
.k/

mC1! j
.k/

mC2! : : :! j
.k/

NC1

�
:

(48.3)

We call by the neighbor set ı.x/ the set of paths, which can be obtained from the
given path x by a single two-change. The set ı.x/ consists ofN.N �3/=2 elements,
and x … ı.x/.

The test path y is accepted as the next approximation (namely x.kC1/ D y) with
the probability 1 if H.y/ 6 H.x.k//, and with the probability Py (0 < Py < 1) if
H.y/ > H.x.k//. In the opposite case x.kC1/ D x.k/. Here

Py D P.x.kC1/ D y j �H > 0/ D exp.�ˇ�H/; �H D H.y/ �H.x.k//:
(48.4)

This way it is possible to leave a local minimum, and the process is called an
annealing, with the annealing coefficient ˇ [1]. From relations (48.2)–(48.4) it
follows

�H D r.j
.k/
i�1; j

.k/
m /C r.j

.k/
i ; j

.k/
mC1/ � r.j .k/i�1; j

.k/
i / � r.j .k/m ; j

.k/
mC1/: (48.5)

To propose the way of calculation and changing of ˇ we first consider study
the case of a random uniform distribution of points within a unit square. We put
ˇ D ˇ0=�.�H/, where �.�H/ is a root-mean-square of the random value �H .
To understand the connection between ˇ0 and Py , which here is random, we give
Table 48.1 in which the dependency P0.ˇ0/ is presented. Here P0 is the expectation
of Py

P0 D EPy D E
�

exp

�
�ˇ0 �H

�.�H/

�ˇ̌
ˇ̌�H > 0

�
: (48.6)

The values P0 are calculated by the Monte-Carlo method.
We re-write �H in the form

�H D �1 C �2 � �1 � �2; �H > 0 (48.7)

where �1; �2; �1; �2 are the corresponding distances in (48.5). The following approx-
imate relation is valid [16]

�2.�H j�H > 0/  0:75.�2.�1/C �2.�1//; (48.8)

Table 48.1 The dependence P0.ˇ0/

ˇ0 4 5 6 7 8 9 10 11 12

P0 0.195 0.166 0.144 0.128 0.116 0.106 0.097 0.090 0.084
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which gives the annealing coefficient

ˇ D ˇ1p
�2.�1/C �2.�1/

; ˇ1  ˇ0p
0:75

: (48.9)

These results are obtained for the random uniformly distributed points. We
generalize the relation (48.9) for the case of non-random points and take into
account that the right side of (48.9) depends on the number of the iteration k.

For the path k we find

Or.k/ D 1

N

X

i

r
.k/
i ; . O�.k//2 D 1

N

X

i

.r
.k/
i /2 � . Or.k//2; (48.10)

and we propose to use the following expression for ˇ

ˇ D ˇ�p
. O�.k//2 C . O�.kC1//2 (48.11)

in which the dispersions �2.�1/ and �2.�1/ are changed by . O�.k//2 and . O�.kC1//2,
and the value . O�.kC1//2 is calculated for the test path y. The value ˇ� is to be chosen.
Based on the numerical experiments in the following examples we take 4 6 ˇ� 6 7.

Finally instead of (48.4) we recommend to use the relation

P D exp

 
�ˇ� �H

p
. O�.k//2 C . O�.kC1//2

!
: (48.12)

48.4 The Energy Minimization in the Separate Parts of Path

In case of a large number of points N for minimizing the time of calculation is
convenient to seek the energy minimum successively in the separate parts of path.

Let raster  be the sequence of points

j
.k/
i ! j

.k/
iC1 ! : : : j

.k/
m�1 ! j .k/m ; (48.13)

L. / D m � i C 1 be the raster length, then

H. / D
m�1X

sDi
r .k/s (48.14)

is the raster energy.
We minimize the raster energy by the successive two-changes, but the raster ends

j
.k/
i and j .k/m are fixed and not included in the two-change process. The rasters move

along the entire path, and the successive rasters overlap.
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Fig. 48.2 The self-sections moving off (left); the subgroups gathering (right)

To find rasters which energy can be minimized we use the visual control (or
monitoring) of intermediate results.

The self-sections moving off always leads to the path decrease. In Fig. 48.2 (left)
the old path ABCDA and the new path ACBDA are shown.

For an initial approximation of Variant 3 (see the Example 4 and Fig. 48.2
(right)). We divide points into some separate subgroups (in the Example 4 we
take 4 subgroups I; II; III; VI ). We seek the path close to the optimal one for
each subgroup. Then we merge subgroups using the neighboring points, so that in
the quadrangles 1; 2; 3 there are not points, and change the points numbering (the
similar algorithm is described in [6]). Then we use rasters near the points of contact.
At last we use the two-change operator for the entire set of points.

48.5 The Normalized Path Length

We introduce the normalized path length � by relation

� D H=
p
NA; (48.15)

where A is the area occupied by points. Inequality 0:655 < � < 0:92 is fulfilled
[17] for the random uniform distribution of points, and supposedly

�  0:749: (48.16)

To estimate the quality of approximation we compare the obtained normalized path
length with the value (48.16).

48.6 Examples

To find the path close to optimal one we use the two-change, the minimization in
the separate parts of path. We delete the self-crossing of path that is the partial
case of the two-change, and always leads to the energy decrease. We use rasters
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Fig. 48.3 The “optimal” path by Groetschel with N D 120. HGR D 1666:5 (left); our path
with H� D 1645:5 (right)

with L 6 15 to delete the part of self-crossings. At the every step we calculate
the annealing coefficient taking ˇ� in (48.12) in the limits 4 6 ˇ� 6 7. The visual
control (or monitoring) allows us to find the parts of path which can be made shorter
by using the rasters. The FORTRAN (Developer Studio) is used.

Example 1. We take as initial data the N D 5; 000 random uniformly distributed
points. The initial approximation withH D 151:6, � D 4:793 in the form of Variant
2 in Sect. 48.2 is shown in the left side of Fig. 48.1. The final path with H� D 53:7,
�� D 0:759 is shown on the right side of Fig. 48.1. The value �� is close to the
optimal value (48.16) (by star we mark our results).

Example 2. For this and following examples data are taken from Internet library
TSPLIB. The example GR120 contains N D 120 points. The “optimal” path with
HGr D Hopt D 1666:5 and �GR D 0:749, shown on the left side of Fig. 48.3, was
obtained by Groetschel in 1977. Later Ermakov and Leora [10] obtained the better
result with HEL D 1654:8, �EL D 0:744. Our result with H�.120/ D 1645:6,
�� D 0:740 is presented on the right side of Fig. 48.3.

Example 3. This example with N D 666 is named as GR666 in the library
TSPLIB . The “optimal” path with Hopt D 3952:5 is given there (see left side
of Fig. 48.4). Our result with H� D 3240:5, �� D 0:498 is shown on the right side
of Fig. 48.4. The value �� D 0:498 is far from the value (48.16) because the points
distribution is far from uniform (there are the points of concentration).

Example 4. The initial data XQC2175 from TSPLIB contain N D 2175 points.
The optimal variant is absent in TSPLIB . As initial approximation Variant 3 from
Sect. 48.2 is taken, and it coincides with the initial data. Two ways of calculations
are used. In the first of them the data are divided into four groups: (1–550), (551–
1115), (1116–1614), (1615–2175). For each group the suboptimal path is found, and
then these paths are merged into the entire path with H0 D 7198:8 and �0 D 0:647.
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Fig. 48.4 The “optimal” path of TSPLIB with N D 666, Hopt D 3952:5 (left); our path with
H� D 3240:5 (right)

Fig. 48.5 Our path obtained by the initial approximation of the Variant 3 with N D 2175,
H�1 D 7135:4, �1 D 0:641 (left); our path obtained by the initial approximation of the Variant 1
with H�2 D 7188:9, �2 D 0:646 (right)

The following optimization of the entire path gives H�1 D 7135:4 and �1 D 0:641.
The obtained path is shown on the left side of Fig. 48.5.

In the second way the initial data are taken according to Variant 1. After
optimization we get H�2 D 7188:9 and �2 D 0:646 (see the right side of Fig. 48.5).
As we see the Variant 3 gives the better result than the Variant 1.

Conclusions
An approximate algorithm for a symmetric TSP solution is proposed. The
Metropolis simulation with annealing is used. The algorithm features consist
in using of the good initial approximation, choice of the annealing coefficient,

(continued)
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minimization of the separate parts of path and deleting of the path cross-
sections. The algorithm effectiveness is confirmed in the above examples. In
some cases obtained results are better than ones from the TSPLIB. Although
this algorithm is based on the two-change operation, but in detail it essentially
differs from heuristic algorithms used by the other authors.

Acknowledgements The work is supported by Russian Foundation of Basic Researches (grant
11.01.00769-a).
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Chapter 49
The Supertrack Approach as a Classical Monte
Carlo Scheme

Egor Tsvetkov

49.1 Introduction

In [1], linear functionals on the solutions of Boltzmann equations are called
Boltzmann tallies. Monte Carlo methods based on the Neumann–Ulam scheme can
be used to estimate Boltzmann tallies. However, not all real-world calculations can
be represented in that form. In particular, physical quantities that depend on collec-
tive effects of particles cannot be described with Boltzmann tallies.

The energy deposited by a particle in a sensitive volume (the so-called pulse
height tally) is the classic example of non-Boltzmann tally. The second example is a
device that detects coincidences. Such devices found their application, for example,
in positron emission tomography and gamma-ray astronomy. In neither of these two
cases can the detector function be represented as a sum

q.S/ D q.x0/C q.x1/C � � � C q.xk/;

where S is the trajectory, xi are the coordinates of the particles before the collisions,
i D 1; 2; : : : ; k, q.S/ is the detector response on trajectory S , and q.xi / is the
detector response on the single collision event.

Many approaches that use variance reduction techniques to estimate non-
Boltzmann tallies have been suggested. Lappa [9] proposed non-imitating methods
to estimate any moment of a Boltzmann tally. Uchaikin [13–15] and Lappa [10]
considered a special class of tallies in which the functionals were represented as
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the sum of the effects of collisions and the effects of free runs. Borisov and Panin
[2] proposed an approach to estimate a pulse-height tally with a variance reduction
technique that includes the so-called contributions.

Booth introduced the most general variance reduction technique to estimate
non-Boltzmann tallies [1]. This technique is a set of rules of the main idea
which considers a branching trajectory as an indivisible collection of tracks. Only
physical reactions can create new trajectory branches. Variance reduction techniques
cannot create new branches because a whole collection of tracks is split when the
splitting technique is used. This collection of tracks is called a supertrack. The
supertrack approach can be easily accessed with the famous MCNP code. Numerical
experiments showed that the supertrack approach is about five times faster than the
analog Monte Carlo [6].

Although the supertrack approach has clear physical interpretation, the strict
theoretical substantiation of it has not been proposed yet. The goal of the present
article is to build a strict mathematical basis for the supertrack approach. The novelty
of this paper consists in deriving the supertrack approach from the general Monte
Carlo scheme, more exactly, we deduce the rules how to sample trajectories and
calculate their statistical weights. The rules proved to be identical to those that were
formulated in [1]. This can be treated as substantiation of the supertrack approach.

For each technique we prove the unbiasedness and explain why this technique
is more efficient than the analog Monte Carlo. We operate with the variance but
the exact measure of efficiency of Monte Carlo algorithms is the figure of merit
(FOM, [3]). FOM requires the numerical experiments that are not conducted in the
present work (see [6]).

In this article, we depart from describing the probability space on the set of all
branching trajectories. The state of a particle is, for us, described by three values
x D .x;u; E/, where x is the position of the particle, u is the direction of the velocity
of the particle, and E is the generalized energy of the particle. The generalized
energy of a particle contains information about the type of particle as well as its
physical energy. The set of all x is the phase spaceX . We assumeX to be a rectangle
in R

7, so a � -algebra exists on X . Hereinafter, the exact nature of X is inessential.

49.2 Probability Space

The way how to build the probability space .S;H ; P / on the set of all branching
trajectories S has been described in the literature, e.g. [4, 5, 8, 11]. Below, we
describe the branching trajectory in a special way and perform an algebraic trans-
formations of the probability density function p.S/ that induces the measure P .
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49.2.1 The Set of Branching Trajectories

In physical terms, the branching trajectory is a tree (as in graph theory) with
coordinates in the phase space X that are assigned to each tree node. The set of all
trees is enumerable; therefore, we can use a natural value n to encode the structure
of the tree.

We enumerate the nodes in a tree using an enumeration by generations. The
enumeration is performed in the following order. The root of the tree at which the
primary particle originates is counted as node 0. The node at which the primary
particle encounters its first collision is counted as node 1. After that all nodes of the
next generation are enumerated; the order of enumeration within a generation is not
important. The last node is counted as kn.

We assign to every node of the tree the coordinates of the particle immediately
before the collision represented by that node. The coordinates are denoted by
x1; x2; : : : ; xkn . The phase coordinates of the primary particle are x0.

Therefore, the branching trajectory is represented by the pair S D
.n; .x0; x1; : : : ; xkn//, where n 2 N represents the structure of the branching history,
kn is the number of the last node in the tree given by n, and the xi 2 X are the phase
coordinates of the particle immediately before the collision in the corresponding
node of the tree.

We denote the probability density function that the original particle is born at
x by p0 .x/, the probability density function that a collision at point x leads to m
secondary particles at points x1, x2, . . . , xm by p .x ! x1; x2; : : : ; xm/, and the
probability of absorption at point x by g .x/. We also need the probability Pm .x/
that particle x is split into m secondary particles after a collision. We denote this
probability by

Pm .x/ D
Z
p .x ! x1; x2; : : : ; xm/ dx1dx2 : : : dxm:

In particular, we note that P0 .x/ D g .x/.
Following [5], the probability density function of the branching trajectory S can

be written as

p .S/ D p0 .x0/
Y

.i;j1;j2;:::;jm/

p
�
xi ! xj1 ; xj2 ; : : : ; xjm

	 Y

xi2G
g .xi /: (49.1)

The first product is computed over all of the nodes of the tree that have children,
where i is the index of the parent node, m is the number of children of the parent
node i , and j1; j2; : : : ; jm are the indices of the children nodes. The second product
is computed over the subset G consisting of all the nodes that have no children.

We have to transform the probability density function to allow us to sample
secondary particles successively. For this, conditional probabilities will be needed.
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i

j1
j2

jL= j

jm

mj

Fig. 49.1 Enumeration of the parent node and the children nodes

We introduce the conditional probability density functions as

p .xk jx; x1; : : : ; xk�1/ D
R
p .x ! x1; x2; : : : ; xm/ dxkC1dxkC2 : : : dxmR
p .x ! x1; x2; : : : ; xm/ dxkdxkC1 : : : dxm

; (49.2)

k D 1; 2; : : : ; m � 1;

p .xmjx; x1; : : : ; xm�1/ D p .x ! x1; x2; : : : ; xm/R
p .x ! x1; x2; : : : ; xm/ dxm

: (49.3)

From (49.2)–(49.3), we obtain

p .x ! x1; x2; : : : ; xm/Dp .x1jx/ p .x2jx; x1/ : : : p .xmjx; x1; : : : ; xm�1/ Pm .x/ :
(49.4)

We define pn
�
xj jx0; x1; : : : ; xj�1

	
as follows. For a given n, we can find the

numeric label of a parent node of the j th node, which we denote by i (see Fig. 49.1).
We find all the children of this parent node, which we denote by j1; j2; : : : ; jm with
j1 < j2 < � � � < jm. Because the node numbered j is a child of the node numbered
i , we can state that there exists an l such that jl D j , 1 6 l 6 m. Also we can
count the number of children of the j th node, which we denote by mj .

We define pn.xj jx0; x1; : : : ; xj�1/ by

pn.xj jx0; x1; : : : ; xj�1/ D p.xj jxi ; xj1 ; xj2 ; : : : ; xjl�1 /Pmj .xj /:
We can rewrite the probability density function (49.1) as

p.S/ D p.x0/

knY

iD1
pn.xi jx0; x1; : : : ; xi�1/: (49.5)

Equation (49.5) is an algebraic transformation of (49.1).
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In some cases, we represent pn.xj jx0; x1; : : : ; xj�1/ , the probability to scatter
to xj , by

pn.xj jx0; x1; : : : ; xj�1/ D ˝n.xj jx0; x1; : : : ; xj�1/e�ln.xj jx0;x1;:::;xj�1/˙.xj /:

(49.6)

This means that the probability of scattering to xj is the probability of scattering in
the direction of xj multiplied by the probability of reaching xj and colliding at xj .
In the above formula, ˝n.xj jx0; x1; : : : ; xj�1/ represents the probability density
function of scattering in the direction of xj , ln.xj jx0; x1; : : : ; xj�1/ represents the
optical path to xj , and ˙.xj / represents the macroscopic total cross section at xj .
Also the multiplier r�2 is included in ˝n.xj jx0; x1; : : : ; xj�1/ (one can write it
separately but we don’t do this to shorten the equations). So pn.xj jx0; x1; : : : ; xj�1/
is the probability that the particle scatters to a neighborhood of xj .

49.3 Importance Sampling

Let P 0 be a measure on H that is induced by p0.S/. Let p0.S/ > 0 everywhere
that p.S/ > 0. We can sample trajectories Si with the biased probability P 0 and
calculate the weighted sum as

Q� D q.S/w.S/; (49.7)

where w.S/ represents the weight of an elementary event (i.e., a trajectory).
To make Q� an unbiased estimate of MQ, we choose a weight that is equal to
the Radon–Nykodim derivative w.S/ D @P=@P 0.S/ [5].

In this case, MQ� D MQ. This is the general form of importance sam-
pling. Now we apply importance sampling to our probability space .S;H ; P /.
The Radon–Nykodim derivative is equal to the ratio of the probability density
functions in (49.1) such that

w.S/ D @P

@P 0
.S/ D p.S/

p0.S/
D p0.x0/

p00.x0/
Y

.i;j1;j2;:::;jm/

p.xi ! xj1 ; xj2 ; : : : ; xjm/

p0.xi ! xj1 ; xj2 ; : : : ; xjm/

Y

xi2G

g.xi /

g0.xi /
:

We obtain the next rule that is formulated in [1]. The weight of a supertrack is
computed as the product of the multipliers. The multiplier is a ratio of the unbiased
and biased probabilities of the actual reaction channel.

We recall some known facts about importance sampling that are well stated in [5].
First, the probability density functions must satisfy the condition that p0.S/ can
reach zero if p.S/ D 0 for the same S . Second, to reduce the variance of Q�
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in comparison with the variance of q one can select the p.S/ to be proportional
to q.S/. In our particular case, we should select p0.S/ such that particles are
scattered mainly in the direction of the region of the detector.

49.4 Russian Roulette

If the expected contribution of a currently sampled trajectory is too small, then the
fate of the trajectory can be determined from a game of Russian Roulette. If the
trajectory survives Russian Roulette, the weight is increased; otherwise, the weight
is multiplied by 0. We let �.S/ > 0 denote the survival probability and we define a
random variable L with a uniform distribution on the interval Œ0; 1�. When playing
Russian Roulette, the weight of the trajectory is defined as

w.S/ D 1

�.S/
I.L < �.S//: (49.8)

The estimator is given by (49.7). We take the average of Q� to obtain MQ� D
MS .q .S/ML .w .S/ jS//. Because ML .I .L < � .S// jS/ D � .S/ we obtain
MQ� D MQ. So, if we choose weight in accordance with (49.8), the weighed
estimate (49.7) is unbiased.

The variance of Q� for Russian Roulette is larger than for analog Monte Carlo.
But we have to take into account the computer time needed to reach the required
level of statistical error. This time can be less because we save time by terminating
the trajectories with small weights. The problem of the optimum choice of �.S/
for the supertrack approach is still open. We can state only that the optimum choice
should depend on the programming realization, the computer architecture and so on.

49.5 Splitting

If the trajectory falls in the subset T of S, then we split the trajectory into m
new trajectories. These trajectories coincide before the split and they are sampled
independently after the split. As a result, we obtain trajectories S1, S2, . . . , Sm with
weights w1.S1/, w2.S2/, . . . , wm.Sm/. If we do not split the trajectory, then m D 1

and w1.S1/ D 1.
In the case of splitting, the estimator takes the form

Q� D
mX

iD1
wm.Sm/q.Sm/: (49.9)
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If we take the average of this estimator, then we obtain

MQ� D
Z

SnT
q.S/P.dS/C

mX

iD1

Z

T

q.S/wi .S/P.dS/:

If w1.S/C w2.S/C � � � C wm.S/ D 1, then the estimator Q� is unbiased, which
means that MQ� D MQ.

The variance of (49.9) is smaller than that of analog Monte Carlo because
we increased the number of sampled trajectories while splitting. Also we saved
the computer time because the new trajectories are sampled as one trajectory before
splitting. The general rule of when to split a trajectory can be stated in the following
form: when the particle enters the region where the detectors are concentrated.

49.6 Stratified Sampling

In stratified sampling, the area of the integration window is partitioned into subsets
Tk , k D 0; 1; : : :. The Monte Carlo method is applied to each partition. The integral
over the entire area is calculated as the weighted sum of the integrals over the
partitions.

In the case of branching trajectories, it is convenient to split the sampled
trajectory so that the new trajectories fall into different partitions. The result
of the single sampling is the set of trajectories S1; S2; : : : ; Sm from different
partitions and their weights w1;w2; : : : ;wm. The number of trajectoriesm is random.
The estimator is

Q� D w1q.S1/C w2q.S2/C � � � C wmq.Sm/: (49.10)

Our goal is to specify both the way in which to partition the set of trajectories
and the rule by which to calculate the weight of each partition.

Two factors are important for understanding why stratified sampling is useful.
First, the part of the new trajectories which they have in common is sampled
only once, so this way of trajectory sampling allows us to save on computer time.
Second, we can increase the probability of hitting the region where the detectors are
concentrated, so the variance of Q� can be reduced.

The sum (49.10) contains a random number of terms. We apply conventional
technique and transform this random sum to an infinite sum over all Tk . To do this,
we have to choose exactly one trajectory from each Tk , k D 1; 2; : : :. The event Ak
is that one of the trajectories falls in Tk when stratified sampling is used. If Ak has
occurred, we take this trajectory and denote it by Sk . If not, we take any trajectory
Sk from Tk and assign any weight wk.Sk/ to it. Actually there exists a number such
that all terms of (49.10) after this number are equal to zero.
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We rewrite (49.10) as

Q� D
1X

kD1
q.Sk/wk.Sk/I.Ak/; (49.11)

where I.Ak/ equals 1 if trajectory Sk was obtained during the trajectory sampling
(i.e., if trajectory Sk was already in (49.10)), and equals 0 otherwise.

49.6.1 DXTRAN

DXTRAN is one of the most complex variance reduction techniques. This technique
has been well described in [3] for Boltzmann tallies and in [1] using the supertrack
approach.

Let us describe the DXTRAN game briefly. We assume that the region in which
detectors are concentrated is small. We surround this region with a sphere, which is
called the DXTRAN sphere. Each time that we sample the collision of a particle,
we split the particle into two new particles. The first particle is called the DXTRAN
particle. To sample the DXTRAN particle, we choose a random direction towards
the sphere. The DXTRAN particle is scattered in this direction and transferred to the
sphere without a collision. Once the DXTRAN particle is transferred to the sphere,
the particle continues a normal (natural) run from the sphere. The DXTRAN particle
is then excluded from the DXTRAN game.

The second particle that is created from the split is called the non-DXTRAN
particle. This particle is sampled in the normal way. However, if the particle
intersects the DXTRAN sphere before the next collision, then the weight of this
particle is multiplied by 0.

According to the supertrack approach, in the DXTRAN game we should split
a whole trajectory into two new trajectories. The first trajectory will contain
the DXTRAN particle and the second trajectory will contain the non-DXTRAN
particle. The DXTRAN trajectory is then excluded from the DXTRAN game.

From the DXTRAN game, we obtain a set of trajectories S1; S2; : : : ; Sm and their
weights w1;w2; : : : ;wm. The number of trajectoriesm is random. The estimatorQ�
for DXTRAN is given by (49.10) or (49.11).

In [3], DXTRAN is interpreted as a combination of splitting, Russian roulette,
and importance sampling. However, we do not accept this interpretation as a
proof that (49.10) is an unbiased estimate of MQ. A strict mathematical proof
of DXTRAN for the Neumann–Ulam scheme is provided in [12]. In this paper,
we investigate the case of non-Boltzmann tallies that cannot be calculated using
Neumann–Ulam scheme.
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x′
j

xj

DXTRAN sphere

Fig. 49.2 Enumeration of the vertices in the DXTRAN technique

49.6.1.1 Partitioning the Set of Trajectories

We use the following subsets of S . Subset T0 contains all the trajectories that
are not included in the DXTRAN game and all the trajectories that contain only
the non-DXTRAN particles. Subset Tk is a subset of the trajectories that contain
the DXTRAN particle after the kth application of the DXTRAN game to non-
DXTRAN trajectory, k > 1.

Given a trajectory S , we can determine the subset Tk to which this trajectory
belongs, and we can say at which node D.S/ the DXTRAN game has been played.
We choose the point x0j as the point where a particle enters the DXTRAN sphere
(see Fig. 49.2). We define the function

pDXT
n .xj jx0; x1; : : : ; xj�1/

D ˝DXT
n .xj jx0; x1; : : : ; xj�1/e�ln.xj jx0;x1;:::;xj�1/Cln.x0

j jx0;x1;:::;xj�1/˙.xj /:

The function ˝DXT
n .xj jx0; x1; : : : ; xj�1/ represents the probability density

function of scattering into a solid angle in the direction of the DXTRAN
sphere, ˝DXT

n .xj jx0; x1; : : : ; xj�1/ D 0 if the direction of xj does not point to
the DXTRAN sphere, and the probability of scattering in any direction to the
sphere equals 1. The function e�ln.xj jx0;x1;:::;xj�1/Cln.x0

j jx0;x1;:::;xj�1/ represents the
probability that a particle reaches xj if the particle starts at x0j . The probability of
reaching x0j equals 1 because the DXTRAN particle is transported deterministically
to the sphere.
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We rewrite the probability density function for DXTRAN trajectory in the form

pk.S/ D p.x0/
Y

jD1
j¤D.S/

pn.xj jx0; x1; : : : ; xj�1/ � pDXT
n .xj jx0; x1; : : : ; xj�1/;

The difference between this equation and (49.5) is the multiplier, which corresponds
to the deterministic transfer of a DXTRAN particle to the DXTRAN sphere. There
is a probability measure on Tk induced by pk.S/. Let us denote it by Pk , k D
1; 2; : : :. It is important to notice that if the DXTRAN game is played the DXTRAN
trajectories are sampled in accordance with the measures Pk .

49.6.1.2 Choosing Weights

Now we show how to choose weights wk.S/ to make the DXTRAN game unbiased.
If we take a term by term average of (49.11), then we obtain

MQ� D
Z

S

q.S/w0.S/P.dS/C
1X

kD1

Z

Tk

q.S/wk.S/Pk.dS/: (49.12)

The first term corresponds to the non-DXTRAN trajectory. The probability
measure that we use shows that the non-DXTRAN trajectory has been sampled in
the natural way. The trajectories in the other terms have been sampled in a biased
way according to Pk.S/. Our goal is to choose functions wk.S/ such that we can
transform (49.12) like

MQ� D
Z

T0

q.S/P.dS/C
1X

kD1

Z

Tk

q.S/P.dS/ D
Z

S

q.S/P.dS/: (49.13)

To set the first terms of (49.12) and (49.13) equal to each other, we choose w0.S/
to be equal to 1 if S 2 T0, and 0 otherwise. It means that the weight of a non-
DXTRAN trajectory becomes 0 if the trajectory intersects the sphere. To set the
other terms equal to each other, we choose the weight wk.S/ D @P=@Pk.S/. This
results in a rule to calculate the weight multiplier of a trajectory

wk.S/ D pn.xj jx0; x1; : : : ; xj�1/
pDXT
n .xj jx0; x1; : : : ; xj�1/

ˇ̌
ˇ̌
jDD.S/

D ˝n.xj jx0; x1; : : : ; xj�1/e�ln.x0

j jx0;x1;:::;xj�1/

˝DXT
n .xj jx0; x1; : : : ; xj�1/

ˇ̌
ˇ̌
ˇ
jDD.S/

:

This rule is identical to the rules that were formulated in [1].
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The question of the optimum choice of the DXTRAN sphere is still open.
In accordance with common sense it seems to be close to optimal if one selects
the sphere of minimal radius that contains the whole region of the detectors.

Conclusions
In this paper we showed that a probability theoretic approach is efficient for
understanding the supertrack approach. In particular, the DXTRAN game can
be treated as stratified sampling.

It is easy to understand that forced collisions [3] and forced detection
techniques [7] can be treated as particular cases of stratified sampling too. It
would be interesting to treat the implicit capture technique using a probability
theoretic approach.

The classical way of investigating variance reduction techniques is to prove
the unbiasedness and to estimate the variance. Due to the limited size of
this paper, we did not precisely estimate the variances of the mentioned
techniques.

The recommendations given above are based on the author’s practice
and coincide with the recommendations for the Neumann–Ulam scheme.
The most comprehensive list of recommendations on how to use variance
reduction techniques in the Neumann–Ulam scheme can be found in [3]. We
hope that these recommendations are still valid when the supertrack approach
is used. In any case, we recommend firstly to follow these recommendation
when using supertracks. But the question about the optimum choice of the
parameters of these techniques is still open.
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Chapter 50
The Dependence of the Ergodicity on the Time
Effect in the Repeated Measures ANOVA
with Missing Data Based on the Unbiasedness
Recovery

Anna Ufliand and Nina Alexeyeva

50.1 Introduction

One way to solve the problem of missing data in the repeated measures analysis
is an unbiased model with non-diagonal covariance matrix of errors [3]. The
unbiased model can be obtained from the initial ANOVA model by subtraction
of the displacement in individual means which is produced by repetition of
the cross-averaging procedure [3]. The question arises, what characteristics of the
obtained unbiased system make it more similar to the system with full data. The
main problem was to investigate whether the ergodic property of the new system
improves in comparison with the initial system. The ergodic property here should
be understood in its physical meaning as the lack of the difference between time
and space calculated means. As the result of this work, it was discovered that the
ergodic property improvement depends on the time effect significance. The trend’s
increase(decrease) rate affects the degree of confidence with which we can claim
about this fact.

50.2 The Repeated Measures Analysis of Variance
and Missing Data

Consider the model of repeated measures analysis [1] of variance (ANOVA)

xijt D �C ˛i C ıij C ˇt C �it C "ijt ; (50.1)
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where xijt is the data of the j -individual from the i -group at the time moment t ,�—
general mean, ˛i—group effect, ˇt—time effect, �it—group and time interaction
effect, ıij � N.0; �21 /—error, caused by the individuals variety and "ijt �
N.0; �2/—the general model error (all errors are assumed to be independent). The
amount of groups, individuals in group, and time points are equal to I , �i , and T
respectively. LetMit be the set of individuals from group i , who have an observation
at the time point t ; and denote mit its cardinality,

P
t mit D mi �;

P
i mit D

m�t ;
P

t mt � D m��. Let Nij be the set of time points of the individual number
j from the group i and denote nij its cardinality. In order to obtain the unique
solutions of the systems of linear equations by means of LS Method for parameters
estimation [5], the partial plan was considered:

IX

iD1

˛imi �
m��

D 0;

TX

tD1

ˇtm�t
m��

D 0;

IX

iD1

�itmit

m��
D 0;

TX

tD1

�itmit

m��
D 0: (50.2)

In order to estimate parameters, the model (50.2) was divided into two parts:
xijt D zij Cyijt ; where Ezij D �C˛i ; Eyijt D ˇt C�it :When the data is complete
zij is just the time mean xij:. In case of missing data the time mean becomes

xij: D 1

nij

X

t2Nij
xijt ; (50.3)

and Exij: is no more equal to �C ˛i :

Definition 50.1. The Cross Mean (CM) Aij .k/; k D 1; 2; : : : for the individual j
from the group i is defined by the following recurrent equation:

Aij .1/ D 1

nij

X

t2Nij

1

mit

X

l2Mit

.xilt � xil:/;

Aij .k C 1/ D 1

nij

X

t2Nij

1

mit

X

l2Mit

Ail.k/: (50.4)

Definition 50.2. The individual CM-displacement for individual j from the
group i W

Hij D
1X

kD1
Aij .k/: (50.5)

The following theorem was proved in [3].

Theorem 50.1. The models become unbiased after subtraction of the individual
displacement Hij W
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Ezij D E.xij: �Hij / D �C ˛i (50.6)

Eyijt D E.xijt � xij: CHij / D ˇt C �it : (50.7)

As a consequence, covariance matrices of errors stop being unity (the form of
these matrices can be found in [2, 4]).

50.3 Balance Property of CM-Displacement

For the sake of notation simplicity, in this paper we are going to consider only one
group of individual. We denote the number of individuals in it as N .

Consider the incidence matrix of missing data J with N rows and T columns,
for every k construct the cross mean vector A with components Aj .k/, j D
1; 2; : : : ; N , denote the diagonal matrix �N of dimension N with elements 1

nj
, the

diagonal matrix �T of dimension T with elements 1
mt

and the stochastic matrix

P D �NJ�T J
T : In [3] it was shown that

A.k C 1/ D PA.k/ D P kA.1/ (50.8)

and the following theorem was proved.

Theorem 50.2. Let m� D
TP
tD1

mt . The limit lim
k!1P

k exists and is equal to the

stationary matrix with identical rows:

P1 WD lim
k!1P

k D

0

B@

n1
m�

: : : nN
m�

: : :
n1
m�

: : : nN
m�

1

CA : (50.9)

In case, when i D 1 we have Hj D
1P
kD1

Aj .k/, H D .H1; : : : ;HN /
T . Denote

x0jt WD xjt �Hj : (50.10)

Theorem 50.3. The general mean does not change after subtraction of CM-
displacement, i.e.

x:: D 1

m:

NX

jD1

X

t2Nj
xjt D 1

m:

NX

jD1

X

t2Nj

�
xjt �Hj

	 D x0:: : (50.11)

To prove this fact the following balance property was introduced.



508 A. Ufliand and N. Alexeyeva

Lemma 50.1.

NX

jD1
njAj .1/ D

NX

jD1
njHj D 0: (50.12)

Proof. By changing the order of summation in expression we obtain:

NX

jD1
njAj .1/ D

NX

jD1

X

t2Nj

1

mt

X

l2Mt

.xlt � xl:/ D
TX

tD1

X

j2Mt

1

mt

X

l2Mt

.xlt � xl:/

D
TX

tD1

X

l2Mt

.xlt � xl:/ D x:: �
NX

lD1

X

t2Nl
xl: D x:: �

NX

lD1
nlxl: D 0 :

Therefore P1A.1/ D 0, where 0 is zero vector. The second equality is obtained
from

P1H D P1
1X

kD1
A.k/ D P1

1X

kD1
P k�1A.1/ D

1X

kD1
P1A.1/ D 0:

The proof of Theorem 50.3. x0:: D 1
m:

NP
jD1

P
t2Nj

�
xjt �Hj

	 D x::� 1
m:

NP
jD1

P
t2Nj

Hj D

x:: � 1
m:

NP
jD1

njHj D x::;

since
NP
jD1

njHj D 0 (from Lemma 50.1).

50.4 Ergodic Property

For the ergodic systems the following fact is correct: mathematical expectation with
respect to space is equal to mathematical expectation with respect to time. It is
obvious that in case of full data means calculated with respect to space are equal to
those calculated with respect to time. Also it is obvious, that in case of missing data
this equality does not hold.

The objective was to investigate whether the subtraction of the displacement
helps to improve the ergodic property.

Definition 50.3. Denote individual time-means xj: D 1
nj

P
t2Nj

xjt and space-means

x:t D 1
mt

P
j2Mt

xjt , respectively. The ergodic property is fulfilled if the arithmetic

mean of individual time-means and space-means are equal, i.e.
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x� WD 1

N

NX

jD1
xj: D 1

T

TX

tD1
x:t DW x�; (50.13)

where x�—arithmetic mean of time-means and x�—arithmetic mean of space-
means.

Remark 50.1. If the ergodic property is fulfilled, then x� D x:: D x�; where x:: is
the general mean from (50.11).

Definition 50.4. Let x0jt D xjt �Hj be the data with subtracted CM-displacement.
The ergodic property improves if the following three inequalities are fulfilled:

jx0� � x0::j < jx� � x::j; jx0� � x0::j < jx� � x::j; jx0� � x0�j < jx� � x�j :
(50.14)

In other words, the ergodicity improves after subtraction of CM-displacement if the
distance between time mean x� and general mean x:: decreases and the distance
between space mean x� and general mean x:: decreases. It is clear that the third
inequality is a consequence of the first two. In this paper we consider the first
inequality in detail and provide a brief overview of the second inequality properties
in the last section.

Lemma 50.2. Let NH D 1
N

NP
jD1

Hj . The distance between space and time means:

x0� � x0:: D x� � NH � x�� : (50.15)

Proof. First,

x0� D 1

N

NX

jD1

1

nj

X

t2Nj

�
xjt �Hj

	 D x� � 1

N

NX

jD1
Hj D x� � NH:

Second, Theorem 50.3 insures that x0:: D x�� and the result follows.

Theorem 50.4. Denote the matrix Q D .I � P C P1/�1 with elements

fqjkgNjD1;kD1,
NP
jD1

qjk D Qk: Then H D QA.1/ and NH D NH1 C NH2; where

NH1 D 1

N

NX

jD1

NX

kD1
qjk.ı:.k/ � ık C "::.k/ � "k:/; (50.16)

NH2 D 1

N

NX

jD1
ˇ:.j /C ı: C ":: � 1

m:

NX

jD1
nj ıj � 1

m:

NX

jD1
nj "j: : (50.17)
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This theorem shows that it is possible to present the mean displacement as sum of
two components, only one of which depends on the time effect.

Lemma 50.3. Let x::.j / D 1
nj

P
t2Nj

1
mt

P
l2Mt

xlt and U Dfx::.j /gNjD1; V Dfxj:gNjD1.
Then

1. P1.U � V / D 0:

2.
1P
kD0

P k.U � V / D .I � P C P1/�1.U � V /:

Proof. 1) Similar to Lemma 50.1,
NP
jD1

nj .x��.j / � xj �/ D x�� � x�� D 0.

2) Since P1.U �V / D 0; the row
1P
kD0

P k.U �V / converges as k tends to infinity

and its limit is:

1X

kD0
P k.U � V / D

1X

kD0
.P � P1/k.U � V / D .I � P C P1/�1.U � V /:

The proof of the Theorem 50.4. According to its definition the displacement can be
represented as
H D U � PV C PU � P 2V C P 2U � � � � D
DV C U � V C P.U � V /C � � � C P k.U � V /C � � � D
D .I C P C P 2 C � � � C P k C � � � /.U � V /C .I � P1/V: Then NH D NH1 C NH2;

H2 D H21 �H22; where H1 D .I C P C P 2 C � � � C P k C � � � /.U � V /;
H21 D V , H22 D P1V: By substituting the model xjt D � C ˇt C ıj C "jt in

uj D x::.j / and in vj D xj:
1P
kD0

P k.U � V / D .I � P C P1/�1.U � V / D
Q.U � V /;
NH1 D 1

N

NP
kD1

Qk.ı:.k/ � ık C "::.k/ � "k:/ .

By analogy NH21 D 1
N

NP
jD1

1
nj

P
t2Nj

�C ˇt C ıj C "jt D �C 1
N

NP
jD1

ˇ:.j /C ı: C ":: ,

NH22 D 1
m:

NP
jD1

P
t2Nj

� C ˇt C ıj C "jt D � C 1
m:

NP
jD1

P
t2Nj

ˇt C 1
m:

NP
jD1

nj ıj C

1
m:

NP
jD1

nj "j: :

So NH2 D 1
N

NP
jD1

ˇ:.j /C ı: � 1
m:

NP
jD1

nj ıj C ":: � 1
m:

NP
jD1

nj "j: , since
NP
jD1

P
t2Nj

ˇt D
TP
tD1

P
j2Mt

ˇt D
TP
tD1

mtˇt D 0 because of the choice of differential effects.
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Corollary 50.1. The mathematical expectations of NH1 and NH2 are equal to

E NH1 D 0; E NH2 D Ň D 1

N

NX

jD1

1

nj

X

t2Nj
ˇt : (50.18)

respectively.

Theorem 50.5. The theorem about the ergodicity improvement in terms of the first
inequality from (50.14)
Let � D x� � x::, � D x0� � x0::, and their variances D� D Q�21 , D� D Q�22 :
If

p
2 < k <

j Ňj
.Q�1CQ�2/ ; then P.j�j > j�j/ 6 2

k2
:

In other words we obtained the upper estimate for the probability of the event of
not improving the ergodicity after displacement subtraction.

Lemma 50.4. For � D x� � x:: and � D x0� � x0:: the following is true: � D NH2;

� D � NH1 :

Proof. � D x� � x:: D 1
N

NP
jD1

1
nj

P
t2Nj

xjt � 1
m:

NP
jD1

P
t2Nj

xjt D

D 1
N

NP
jD1

1
nj

P
t2Nj

�C ˇt C ıj C "jt � 1
m:

NP
jD1

P
t2Nj

�C ˇt C ıj C "jt D

D 1
N

NP
jD1

ˇ:.j /C ı: C ":: � 1
m:

NP
jD1

nj ıj � 1
m:

NP
jD1

nj "j: D NH2 in virtue of (50.17) of

Theorem 50.4.
� D x0� � x0:: D x� � NH � x�� D NH2 � NH D � NH1 in virtue of Lemma 50.2.

Lemma 50.5. Denote Gk D P
t2Nk

P
l2Mt

1
mtnl

� 1. The variances of NH1 and NH2 are

D NH2 D
NX

jD1

�
�2

nj
C �21

��
1

N
� nj

m:

�2
; (50.19)

D NH1 D �21
N 2

NX

kD1
Q2
kG

2
k C �2

N 2

NX

kD1

X

t2Nk

0

@ 1

mt

X

l2Mt

Ql

nl
� Qk

nk

1

A
2

: (50.20)

Proof. First, by assumption, fıj gNjD1 and f"jtgNjD1;t2Nj are independent and

distributed identically inside the group with variances �21 and �2, respectively. Let
us divide the stochastic component NH2 into independent components that consist of

ıj and "jt W NH2 D 1
N

NP
jD1

1
nj

P
t2Nj

ˇt C h21 C h22; where

h21 D 1
N

NP
jD1

ıj � 1
m:

NP
jD1

nj ıj D
NP
jD1

�
1
N

� nj
m:

�
ıj
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h22 D 1
N

NP
jD1

1
nj

P
t2Nj

"jt � 1
m:

NP
jD1

P
t2Nj

"jt D
NP
jD1

�
1

Nnj
� 1

m:

� P
t2Nj

"jt

It is obvious that summands of both components are dependent, so the variance of
the difference could not be calculated as the sum of variances of components.

The idea is to rearrange this difference into one sum, where each independent
component has its own coefficient, that is to be found. As the result, all the
summands are independent and the calculation of the final variance becomes easy.
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m:
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:

Second, similarly for NH1 we obtain NH1 D h11 C h12, where

h11 D 1
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The proof of the Theorem 50.5. From Corollary 50.1: E� D Ň;E� D 0; variances
for � and � were calculated in Lemma 50.5. The Chebyshev inequalities for � and �:

P
�j� � Ňj > k Q�1

	
6 1

k2
; (50.21)

P .j�j > k Q�2/ 6 1

k2
: (50.22)

The event of not improving the ergodicity is equivalent to the variable j�j being
greater than j�j and j Ňj being the distance between mathematical expectations � and
�: Let us consider the case, when Ň > 0 (the other case can be considered similarly).
If the distances between both variables and their mathematical expectations are
less than k standard deviations, then maxj�j D k Q�2; minj�j D Ň � k Q�1: Then
Ň > k. Q�1 C Q�2/ results in minj�j > maxj�j:



50 The Dependence of the Ergodicity on the Time Effect 513

Therefore the ergodicity is not improved if at least one of the two following
conditions is fulfilled: j�� Ňj > k Q�1I j�j > k Q�2: The probability of each condition is
less than or equal to 1

k2
from inequalities (50.21), (50.22). Therefore the probability

of not improving of the ergodicity is less than or equal to 2
k2
:

Remark 50.2. We have considered the part of the ergodicity improvement which
refers to the first inequality from (50.14). Now we are going to provide a brief
overview of the second inequality properties. Let vectors ˇ, m, a, and e have length

T , e D .1; 1; : : : ; 1/T , ak D 1
T

P
j2Mk

P
�2Nj

1
nj mk

and
TP
kD1

ak D 1: By analogy the

following can be proved: E.x� � x��/ D 1
T
ˇTe; after displacement subtraction

E.x0� � x0��/ D 1
T
ˇTe � ˇT a:

It can be proved, that in most cases, when the time effect increases (ˇt < ˇs)
and the amount of complete data decreases (mt > ms; t < s), the following
inequalities are fulfilled: 1

m:
ˇTm D 0 < ˇTa < 1

T
ˇTe;which leads to the ergodicity

improvement. Thus we have shown that in most practical cases we can observe the
ergodicity improvement after subtraction of the displacement.

Conclusion
In order to investigate the conditions under which the initial repeated
measures ANOVA system with missing data becomes more similar to the
system with full data after its transformation into unbiased system by
CM-displacement subtraction, we introduced the notion of the ergodicity
improvement. We obtained the requirements which guarantee the ergodicity
improvement with a certain probability.
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Chapter 51
Mixture of Extended Linear Mixed-Effects
Models for Clustering of Longitudinal Data

ChangJiang Xu, Celia M.T. Greenwood, Vicky Tagalakis, Martin G. Cole,
Jane McCusker, and Antonio Ciampi

51.1 Introduction

Data from longitudinal studies include measurements of an outcome variable
repeated over time on each study subject. These measurements are usually het-
eroscedastic and correlated within subjects; also, measurement times may be
unequally spaced within subjects, may vary across subjects, and the number
of measurements may vary from subject to subject. The Linear Mixed Effect
(LME) model and its extension, the Extended Linear Mixed Effect (ELME) model
[19], provide powerful tools for modeling longitudinal data from a homogeneous
population. When data come from heterogeneous populations, the analyst may
attempt to account for heterogeneity by modeling the outcome variable as a finite
mixture of distributions.
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To model a general multivariate outcome from a heterogeneous population, a rich
literature on mixtures of distributions is available [8, 13, 14, 23]; these works are
largely based on the EM algorithm [6]. A common concern is to reduce the number
of parameters by simplifying the variance–covariance matrix while preserving
flexibility. Specifically, Banfield and Raftery [2] proposed a general framework for
the family of multivariate normal mixtures based on the spectral decomposition of
the variance–covariance matrix. Also, McNicholas and Murphy [16] developed a
parsimonious Gaussian mixture model (PGMM) family based on mixture of factor
analyzers [15]. The PGMM family of models is well suited to the analysis of
high-dimensional data because the number of covariance parameters is linear in
the dimensionality of the data under consideration. These two families of models
are implemented in the R [21] software packages mclust [7, 9] and pgmm [17],
respectively.

However, these approaches are not adapted to the complexities of longitudinal
data. Several recent papers deal with the specific nature of longitudinal data,
but usually consider only some aspects of such data. Generalizing earlier work
[3, 18], De la Cruz-Mesia et al. [5] developed a finite mixture model based on
the LME model, which takes into account correlations explained by multi-level
structures; however, they only explicitly consider uncorrelated and homoscedastic
residual error matrices. In contrast, McNicholas and Murphy [17] proposed to model
longitudinal data in the case of equally spaced fixed times as a Gaussian mixture
model: using a modified Cholesky decomposition of the variance–covariance matrix
as in Pourahmadi [20], these authors develop a family of parsimonious models
that allow for both heteroscedasticity and correlation within subjects, but not for
multi-level structures. Finally, Ciampi et al. [4] proposed to model longitudinal
data from a heterogeneous population as a mixture of ELME models: in principle,
such a mixture can accommodate most types of longitudinal data occurring in
applications. In practice, however, the earlier version of the algorithm was marred by
excessive computational cost and instability of results, especially when attempting
to model random effects and correlated residual errors at the same time. Some of
these concerns were addressed in Ji et al. [10], who developed some modifications
to the EM approach of Ciampi et al. [4]; however, a reduction in computational
time required parallel computing, and even with this reduction, computational costs
remained high for the general case. To proceed further along this research direction,
one has the option of developing faster algorithms for particular cases of ELME
models, or to devise novel EM strategies.

In this paper we report some progress in both directions. In Sect. 51.2 we formu-
late the mixture of ELME Models (ELMEM) approach for modeling heterogeneity,
while paying special attention to the case of AR(r) (autoregressive of order r)
residual error structure. In Sect. 51.3, devoted to model estimation, we reformulate
the standard EM algorithm; we propose a new variant of the EM algorithm for
the particular case of equally spaced fixed times (EMAR); and further develop the
most promising general approach proposed in Ji et al. [10], the EM with Monte
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Carlo sampling (EMMC). In Sect. 51.4 we evaluate the statistical properties of our
estimates by limited simulations. Two clinical examples are presented in Sect. 51.5.
The discussion of Sect. 51.6 concludes the paper.

51.2 A Mixture of Extended Linear Mixed-Effects Models

Consider a data set containing M subjects from a heterogeneous population. The
subpopulation of each subject is unknown. However, we assume that for a subject i
in subpopulation k, the observed response is represented by the ELMEM:

yi D Xiˇk CZibik C �ik; (51.1)

where yi D .yi1; : : : ; yi;ni /
0, yij is the response variable of subject i at time tij ,

j D 1; : : : ; ni , and

• Xi is a matrix of covariates of ni�p, and ˇk is a vector representing fixed effects;
• Zi is a design matrix of ni � q, bik � N.0; �k/ representing random effects;
• �ik � N.0;�ik/ is a random vector of modeling errors, where �ik > 0, positive

definite.

The random effect vector, b, and modeling error vector, �, are assumed to be
independent. The covariance matrix of yi can therefore be written as:

˙ik D Zi�kZ
0
i C�ik:

Let Ck denote the set of subjects in the cluster k, and ˛k D PrfCkg be the mixture
proportion for cluster k, satisfying

PK
kD1 ˛k D 1. Let �ik D Xiˇk . Then the

set of observations for subject i of unknown subpopulation follows a multivariate
Gaussian mixture distribution with probability density function:

f .yi j	/ D
KX

kD1
˛k'.yj�ik;˙ik/; (51.2)

where

'.yi j�ik;˙ik/ D 1
p
.2�/ni j˙ikj

exp

�
�1
2
.yi � �ik/0˙�1ik .yi � �ik/


(51.3)

is the density of the multivariate normal distribution, and 	 D f˛; ˇ; �;�g contain
all unknown parameters. The covariance matrix of the modeling errors may be
redefined as �ik D �2kV .'k; ni /, depending on some additional parameters. Then
	 D f˛; ˇ; �; '; �2g. In this article, we use parameter notation without subscripts to
represent the set of all corresponding parameters.
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51.2.1 Autoregressive Errors

As in Pourahmadi [20], and in McNicholas and Murphy (2008) [16], we apply the
Cholesky decomposition to the covariance matrix, �, of the residual error: we can
therefore write

L�L0 D D; (51.4)

where L is a unique lower triangular matrix with diagonal elements equal to 1, and
D is a unique diagonal matrix with strictly positive diagonal entries.L has the form:

L D L.'; n/ D

2

666664

1 0 0 : : : 0

'2;1 1 0 : : : 0

'3;2 '3;1 1 : : : 0
:::

: : :
: : :

: : :
:::

'n;n�1 : : : 'n;2 'n;1 1

3

777775
:

The modified Cholesky decomposition (51.4) may also be expressed in the form
��1 D L0D�1L.

The values of L and D have interpretations as generalized autoregressive
parameters and innovation variances [20], respectively. It can be shown that the
residual error, �t , can be described by a generalized autoregressive model [20] for
t > 1,

�t C 't;1�t�1 C � � � C 't;t�1�1 D �t ;

where �t is called innovation and 't;j are the corresponding elements of L.
Equivalently, in matrix form: L� D �. If the innovations, �t , are identically and
independently distributed, then D D �2I , where I is an identity matrix.

For an autoregressive process of order r , AR(r), a special case of the generalized
autoregressive model, we have D D �2I and

L D L.'; n/ D

2

6666666664

1

'1 1 0
:::
: : :

: : :

'r : : : '1 1
: : :

: : :
: : :

0 'r : : : '1 1

3

7777777775

;

where 0 represents zero entries. The lower triangular matrix may be rewritten as:

L.'; n/ D
rX

uD0
'uJn.u/; (51.5)
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where '0 D 1, and

Jn.u/ D



0 0
In�u 0

�
;

is a matrix of n � n, Iu is an identity matrix of u � u.

51.3 Model Estimation

The likelihood function for model (51.1) is

l.	 jy/ D
MX

iD1
logf .yi j	/ D

MX

iD1
log

 
KX

kD1
˛k'.yi j�ik;˙ik/

!
:

As in typical mixture problems, a direct maximization of the likelihood function
is avoided. Instead, the EM algorithm [6] appears to be the method of choice. Let
ıik D 1fi 2 Ckg be an indicator function for subject i being in cluster k, and let
ıi D .ıi1; : : : ; ıiK/

0. Both the random effect vector, b, and cluster indicator vector,
ı, are unobserved, and can be considered missing data or latent variables. However,
if they were known, then the joint probability of Yi , bi , and ıi could be written as:

f .yi ; bi ; ıi j	/ D
KY

kD1
f˛kf .yi ; bi j	; i 2 Ck/gıik

D
KY

kD1
f˛k'.yi jXiˇk CZibik;�ik/'.bikj0; �k/gıik ;

where '.:/, defined in (51.3), is the probability density function of the multivariate
normal distribution. Taking the logarithm of both side, we obtain the following
expression, known as the complete data log-likelihood:

l.	 jy; b; ı/ D
MX

iD1
log f .yi ; bi ; ıi j	/

D
MX

iD1

KX

kD1
ıikflog˛k C log'.yi jXiˇk CZibik;�ik/

C log'.bikj0; �k/g (51.6)
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D C � 1

2

MX

iD1

KX

kD1
ıikf�2 log˛k C .log j�kj C b0ik��1k bik/

C.log j�ikj C e0ik��1ik eik/g;
where C D 1

2
.qM CPM

iD1 ni / log.2�/ is a constant, and eik D yi �Xiˇk �Zibik .
We present here three variants of the expectation–maximization (EM) algorithm

for estimating all the model parameters. The first one is a standard EM algorithm
that works for any structure of the residual error covariance matrix. The second
variant is a simplification of the first, for the particular case of autoregressive
residual error and equally spaced fixed times: this variant leads to a substantial
reduction in computing time. Lastly, the third variant is an alternative version of
the EM algorithm, based on Monte Carlo sampling and valid for any structure of the
residual error covariance matrix. We also discuss the methods for choosing initial
values of the parameters and the number of clusters.

51.3.1 EM Algorithm

Instead of maximizing l.	 jy/ directly, the EM algorithm aims to maximize the
expectation of the complete data log-likelihood Eb;ıfl.	 jy; b; ı/g. This is achieved
by alternating between the E or expectation step and the M or maximization step,
repeated over multiple iterations.

51.3.1.1 EM: The Standard EM Algorithm

E-Step

Let 	.s/ denote the value of the parameters after iteration s. Then the E-step
at iteration s C 1 involves the computation of a Q-function, Q.	 j	.s// D
Eb;ıfl.	 jy; b; ı/jy; 	.s/g. Omitting the constant C in (51.6), we have:

Q.	 j	.s// D �1
2

MX

iD1

KX

kD1
�ikf�2 log˛k C Œlog j�kj C t r.��1k Bik/�

C Œlog j�ikj C t r.��1ik Aik/�g; (51.7)

where

�ik D Efıikjy; 	.s/g D Prfi 2 Ckjyi ; 	.s/g D ˛
.s/

k '.yi jXiˇ.s/k ; ˙.s/

ik /PK
jD1 ˛

.s/
j '.yi jXiˇ.s/j ; ˙.s/

ij /
;

Aik D Efeike0ikjy; 	.s/g D .yi �Xiˇk �Zi�ik/.yi �Xiˇk �Zi�ik/0

CZiikZ0i , Aik.ˇk/;

Bik D Efbikb0ikjy; 	.s/g D �ik�
0
ik C ik;
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and

˙
.s/

ik D Zi�
.s/

k Z0i C�
.s/

ik ;

�ik D Efbikjy; 	.s/g D �
.s/

k Z0i˙
.s/

ik

�1
.yi �Xiˇ.s/k /;

ik D Varfbikjy; 	.s/g D .�
.s/

k � �.s/

k Z0i˙
.s/

ik

�1
Zi�

.s/

k /:

All these quantities, and therefore the Q-function,Q.	 j	.s//, are straightforward
to calculate using the above equations for given 	.s/.

M-Step

The M-step at iteration s C 1 aims to update the parameters 	 by maximizing
Q.	 j	.s//. Setting the first partial derivatives of the Q-function equal to zero and
using the constraint

PK
kD1 ˛k D 1 and �ik D �2kV .'k; ni /, we have:

Ǫk D 1

M

MX

iD1
�ik

Ǒ
k D

 
MX

iD1
�ikX

0
i V
�1
ik Xi

!�1 MX

iD1
�ikX

0
i V
�1
ik .yi �Zi�ik/

O�k D
PM

iD1 �ikBikPM
iD1 �ik

O�2k D
PM

iD1 �ikt rfV �1ik Aik.ˇk/gPM
iD1 �ikni

where
PM

iD1 �ik ¤ 0 and Vik D V.'k; ni /. The parameters 'k or equivalently the
matrices Vik can be estimated by minimizing the last term in the Q-function (51.7):

�.'k; ˇk; �
2
k / D

MX

iD1
�ikflog.�2nik jVikj/C ��2k t r.V �1ik Aik.ˇk//g: (51.8)

Substituting Ǒ
k and O�2k into (51.8), we have �.'k; Ǒ

k; O�2k / D PM
iD1 �ikfni log O�2k C

log jVikj C nig: Then the 'k are estimated by

O'k D arg minf�.'k/ D �.'k; Ǒ
k; O�2k /g:

The E-step and M-step are repeated until convergence. The individual or subject
i is finally classified into the cluster Oki D arg maxkf�ikg.
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51.3.1.2 EMAR: EM Algorithm for AR(r)

The standard EM algorithm usually converges slowly, due to the nonlinear optimiza-
tion in the M-step. For an autoregressive residual error, however, the convergence
can be accelerated. From (51.4) and (51.5), for autoregressive error and equally
spaced fixed times, using the Cholesky decomposition, see Eq. (51.4), the covari-
ance matrix for subject i in cluster k can be written as V �1ik D L0.'k; ni /L.'k; ni /.
Then �.'k; ˇk; �2k / of Eq. (51.8) is reduced to the following quadratic function of
'k D .'k1; : : : ; 'kr /:

�.'k; ˇk/ D
MX

iD1
�ikt rfV �1ik Aik.ˇk/g D

rX

uD0

rX

vD0
auv'ku'kv;

where 'k0 D 1, and auv D PM
iD1 �ikt rfJ 0ni .u/Jni .v/Aik.ˇk/g. Thus 'k can be

estimated as:

O'k D arg min �.'k; ˇk/;

a problem requiring only the minimization of a quadratic form, which can be
performed by a standard highly efficient algorithm.

51.3.1.3 EMMC: EM Algorithm Using Monte Carlo Sampling

The indicator variables for cluster membership follow a multinomial distribution,
and the probabilities of the distribution are estimated by �i D .�i1; : : : ; �iK/ in the
E-step. Let ı.h/i D .ı

.h/
i1 ; : : : ; ı

.h/
iK /, h D 1; : : : ;H , be H samples of cluster mem-

bership indicators taken from the multinomial distribution, Mul t inomial.1; �i /,
whereH is very a large number. Then we can use ı.h/i to replace �i in the Q-function
(51.7), and have

Qh.	 j	.s// D �1
2

KX

kD1

X

ıik.h/D1
f�2 log˛k C Œlog j�kj C t r.��1k Bik/�C Œlog j�ikj

C t r.��1ik Aik/�g;

which consists of K extended linear mixed-effects (ELME) models. Let O	h D
arg max	 Qh.	 j	.s//. Then O	h D . O	h;1; : : : ; O	h;K/ that can be estimated separately
in each cluster using the efficient algorithm described in Pinheiro and Bates [19]:

O	h;k D arg max
	k

X

ıik.h/D1
f�2 log˛k C Œlog j�kj C t r.��1k Bik/�C Œlog j�ikj

C t r.��1ik Aik/�g
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The model parameters are then estimated by averaging over the H estimates:

O	 D 1

H

HX

hD1
O	h:

SinceH needs to be large, the Monte Carlo based EM algorithm is computationally
demanding.

51.3.2 Initial Values and Number of Clusters

The EM algorithm can be quite sensitive to the choice of starting values. A number
of different strategies for choosing starting values have been proposed [14]. As
Celeux et al. [3] and Ciampi et al. [4], we perform k-means clustering of regression
parameters obtained from linear regressions on each individual or subject to obtain
starting values.

The number of clusters in the finite mixture models may be estimated
using Akaike information criterion (AIC) [1] or Bayesian information criterion
(BIC) [22].

51.4 Simulations

We simulated data containing 200 individuals from four clusters that mimic four
different patterns of time evolution (see Sect. 51.5): worsening, slowly worsening,
slowly improving, and improving. The number of individuals in each cluster was
chosen to be 30, 43, 57, and 70, respectively. The responses for individual i in
cluster k were generated from the following model:

yij D ˇ0k C ˇ1ktij C b0;ij C b1;ij tij C �2k �ij ;

where j D 1; : : : ; ni , ni is the number of measures for individual i , tij is the j th
measured time point for individual i , ˇs;k are any fixed effects, bs;ij � N.0; s;k/

are random effects leading to cluster-specific and individual-specific patterns and
correlation, and �ij are order 1 autoregressive AR(1). The true parameters are shown
in Table 51.1.

We considered two simulation settings: (A) The measurement times are
unequally spaced for each individual. The number, ni , of observations was
allowed to range from 15 to 25. (B) The measurement times are equally spaced
and ni D 25 for each individual. We generated 500 datasets for each simulation
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Fig. 51.1 Standard deviations and root mean squared errors of the estimated parameters over 500
simulations using EM, EMAR, and EMMC algorithms

setting, and estimate the model parameters and mixing coefficients for the simulated
datasets. The number of clusters was chosen using both AIC and BIC model
selection criteria.

For simulation setting (A), we estimate the parameters using algorithms: EM and
EMMC. We cannot use EMAR because the times are unequally spaced. Table 51.1
shows mean and standard deviation of the estimated parameters over the simulations
in which the BIC retrieves the true number of clusters. The standard deviations and
mean squared errors are also shown in Fig. 51.1. It is seen that both EM and EMMC
give similar results. Average run time is 6.72 h for EM and 98.26 h for EMMC with
200 samplings. The frequencies of the number of clusters selected by AIC and BIC
are shown in Fig. 51.2.

For simulation setting (B), we estimated the parameters using algorithms: EMAR
and EMMC. Average runtime over the 500 simulations is 0.76 h for EMAR and
5.49 h for EMMC. Table 51.1 shows mean and standard deviation of the estimated
parameters over the simulations in which the BIC retrieves the true number of
clusters. The standard deviations and mean squared errors are also shown in
Fig. 51.1. The frequencies of the number of clusters selected by AIC and BIC are
shown in Fig. 51.2.

Our simulation examples showed that BIC selects a more accurate number of
clusters than AIC.
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Fig. 51.2 Frequencies of cluster numbers selected by AIC and BIC for EM algorithm

51.5 Clinical Examples

Example 1. The data of this example were obtained from 99 patients with atrial
fibrillation frequenting the anticoagulation clinic of a tertiary care centre between
March 2001 and June 2012. The patients were treated with warfarin, an antico-
agulant, in order to achieve a stable level of anticoagulation. The International
Normalized Ratio (INR) was measured as a proxy for anticoagulation, and the
purpose of INR monitoring was to ensure the achievement of a therapeutic INR
level between 2 and 3. For each patient, the INR was measured several times, from
the date of treatment initiation to a maximum of 240 days (8 months) thereafter,
at regular intervals. We modeled the data as a sample from a mixture of K linear
mixed models with autoregressive errors, where K was to be determined from
the data. We fitted this model using the EMAR algorithm. The minimum BIC
model consisted of two clusters containing 79 (80 %) and 20 (20 %) patients with
parameters given in the upper panel of Table 51.2. Figure 51.3 shows typical patterns
of INR trajectories. The larger cluster can be described as consisting of patients
who are rapidly stabilized, with their INR remaining in a reasonable stable region
of over the observation period. The smaller cluster contains patients who do not
stabilize easily; some of them exhibit dangerous fluctuations in the last part of the
observation period. The estimated parameters reflect the relative stability of the first
cluster and the instability of the second one: error variance is lower in the first than
in the second cluster, while autocorrelation, which suggests dynamic stability, is
stronger in the first than in the second cluster.
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Table 51.2 Estimates of model parameters and cluster number for INR and DI datasets

Dataset Cluster Number ˛ ˇ0 ˇ1  0 ' �2

INR 1 79 0:8004 �0:3166 3:2159 0:0553 0:1470 0:4914

2 20 0:1996 1:7639 1:1251 0:0034 0:0235 1:5516

DI 1 43 0:3375 8:2806 �0:0529 6:2804 0:0910 6:5644

2 33 0:2561 6:7320 �0:0475 10:1064 �0:0924 1:3856

3 31 0:2579 9:9647 0:1114 10:7787 0:2549 4:3263

4 20 0:1485 13:6804 0:0472 4:4929 �0:0718 1:1651
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Cluster 2: 20 individuals

Fig. 51.3 Typical patterns of INR trajectories

Example 2. The data originated from a multi-centre clinical study in nursing homes
including 127 elderly patients with delirium [12]. Delirium, a mental disorder
relatively common in aging patients, was assessed using the Delirium Index, an
instrument developed at St. Mary’s Hospital [11]. We modeled the data as samples
from a mixture of K linear mixed models with autoregressive errors. Again, times
were equally spaced and fixed for all patients, so that the most convenient EM
variant for parameter estimation was the EMAR algorithm. Results are summarized
in the lower panel of Table 51.2 and in Fig. 51.4. The minimum BIC model consisted
of four clusters. The shape of the average curves justifies naming the clusters
as: improving, slowly improving, worsening, and slowly worsening. Note that we
constructed our simulation models on the basis of these real data results. Both the
curves and the parameter estimates reveal major difference between clusters, with
the worsening cluster showing the largest autocorrelation and the slowly worsening
cluster exhibiting the smallest overall variability.
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Fig. 51.4 Typical patterns of DI trajectories

51.6 Discussion

In this work we have presented a streamlined version of a general algorithm for
modeling longitudinal data from a heterogeneous population. Returning to an EM
algorithm proposed by Ciampi et al. [4], we have reformulated the main steps and
developed two variants of EM estimation, one that aims at computational efficiency
in the special case of equally spaced fixed times; the other that aims at greater
generality.

The main progress reported here is the development of EMAR, a fast algorithm
for fitting mixtures of ELMEMs for longitudinal data in the case of AR(r) residual
errors and equally spaced fixed times. The acceleration of the EM algorithm for
this special case owes to the work of McNicholas and Murphy [16], in particular,
their use of the Cholesky decomposition of the residual error covariance matrix;
however, this crucial step is integrated in a broader context which also includes
random effects [5], so that we can simultaneously account for correlations arising
from both multilevel and serial correlation features. The equally spaced fixed
times case has traditionally attracted the attention of most researchers working
with longitudinal data; while it is by no means the only interesting case in the
applications, it will continue to occupy a central role, at least in the near future.
Thus our progress, though modest in scope, does provide a new tool that may prove
useful in contemporary data analysis.

The main merit of the reformulation of the standard EM algorithm rests on the
generality of the mixtures of ELME models (Ciampi et al. [4]; Ji et al. [10]): it
is indeed the broadest available framework for modeling longitudinal data from
heterogeneous populations, as it allows for heterogeneities arising from several
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sources, including multilevel data structures, serial correlations, and heteroscedastic
residual errors. However, the superior flexibility of the approach has yet to be fully
exploited in practice.

Finally, the additional exploration of the EMMC approach shows promise for its
generality, its stability, and the reasonably good statistical properties of the estimates
it produces. Unfortunately, our experience continues to show that computational
time cannot be reduced without resorting to parallel computing and/or superior
computational facilities.

As we stated in the introduction, the theoretical advance presented in this work is
modest. Our contribution here is to improve the feasibility of our general approach
for fitting mixtures of ELMM to data. This has been achieved, on the one hand, by
reducing the computing time for an important particular case by approximately 1/10,
and, on the other, by further demonstrating the soundness of the EM–MC algorithm,
a method that shows great promise for implementing EM algorithms with intractable
M-step. In view of the increasing role played by longitudinal and multilevel data, we
feel that it is important to produce ELMM-based reliable analytic tools that require
realistic computing resources and that allow for population heterogeneity.

Future work will aim to make the flexibility of the mixture of ELMEM family
more accessible in practice. We intend to proceed by developing, on the one hand,
more computationally efficient algorithms for other special cases and particular sub-
models of the general family and, on the other, by devising novel computational
tools to improve efficiency in the context of the EMMC algorithm and beyond.
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Chapter 52
The Study of the Laplace Transform
of Marshall–Olkin Multivariate
Exponential Distribution

Igor V. Zolotukhin

52.1 Introduction

Requirement of the aftereffect absence for all coordinates of a random vector
Z D .Z1;Z2; : : : ; Zk/ implies that the vector is composed of independent
exponentially distributed marginal components. Generalization of conditions for
absence of aftereffect proposed by Marshall and Olkin [2] is as follows:

P
�
Z1 > z1 C z; Z2 > z2 C z; : : : ; Zk > zk C z

.
z1 > z; z2 > z; : : : ; zk > z

�

D P .Z1 > z1; Z2 > z2; : : : ; Zk > zk/ ;

8z > 0; z1 > 0; z2 > 0; : : : ; zk > 0 (52.1)

As shown by Marshall and Olkin, this holds if and only if

NF .z1; z2; : : : ; zk/ D P.Z1 > z1; Z2 > z2; : : : ; Zk > zk/

D exp

"
�
X

"2E
�" max

16i6k
f"i zig

#
; zi > 0; (52.2)

Here and below �" > 0 are distribution parameters, E D f"g is a set of
k-dimensional indices " D ."1; : : : ; "k/, each coordinate "i is equal to 0 or 1.

Following [1, ğ 2.2], we call NF the reliability function. In particular, NF .z/ D
exp.��z/ is the reliability function of the exponential distribution.
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The distribution (52.2) is called the multivariate exponential Marshall–Olkin
distribution (M–O). As in [2], we will denote MVE.�"; " 2 E/ this class of
distributions.

The case k D 2 only (BVE distribution in the notation of the authors) is discussed
in detail in [2]. For this case, the distribution function is found. It is shown that it
contains both an absolutely continuous and a singular parts. The moment generating
function (Laplace transform) has been calculated.

In the multivariate case, the definition of MVE was given. It was noted that the
distribution contains a singular component, and to find the Laplace transform of
MVE is extremely difficult.

We present the following results:

– The reliability function of the projections of Z on any coordinate hyperplane is
found. It is shown that all of these projections also have MVE distribution. The
special operation helps to determine the parameters of such distributions using
the parameters of the vector Z has been proposed.

– The explicit expression for the Laplace transform of the MVE distribution has
been found.

– The formula to calculate the Laplace transform of the distribution of the
projection of Z on an arbitrary coordinate hyperplane also has been found.

52.2 Main Results

We introduce the following notation.
Further the vector " is used for the indication of coordinate hyperplane in the

k-dimensional space.
We recall that " is a k-dimensional vector " D ."1; : : : ; "k/, coordinates of which

"i is equal to 0 or 1. Let x D .x1; : : : ; xk/ be the k-dimensional real vector.
Let ."; x/ be the scalar product of vectors " and x. Let "x be their coordinate-wise

product. In other words, it is a vector whose coordinates are formed by multiplying
the corresponding coordinates of the factors.

Nı D 1 � ı; jjıjj D
kX

iD1
ıi :

Examples. Let ı D .0; 1; 0/ and x D .3; 4; 5/.

We then have .ı; x/ D 4; jjıjj D 1; Nı D .1; 0; 1/ and Nıx D .3; 0; 5/.
Then NF ."z/ is the reliability function of projection of Z on coordinate hyper-

plane ".
Now let’s set the partial order relation in the set E:

8"; ı 2 E ı 6 "; if for all i ıi 6 "i I
ı < " if ı 6 " and ı ¤ ":
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At last, the sign “�” would mean summation � for the corresponding coordinate.

Examples. �1
0 D �100C�110; �1

 D �100C�101C�110C�111; �
:::
 D P
"2E �".

And let us define the vector "˚ ı, whose coordinates are calculated according to
the following rule:

1˚ 0 D 1

0˚ 1 D 1

1˚ 1 D 0

0˚ 0 D �

Let us take in consideration also the vectors ", whose coordinates can take three
values: 0; 1; �. For these vectors we define the N" as follows:

N"j D 0 if "j D 1I N"j D 1 if "j D 0I N"j D � if "j D �:

Example. Let ı D .0; 0; 1/ and " D .1; 0; 1/. Then "˚ ı D .0; �; 1/.
Equation (52.2) can be written as

NF .z/ D NF .1 z/ D exp

 
�
X

ı61

�1˚ı maxfızg
!
:

Theorem 2.

8 " 2 E NF ." z/ D exp

 
�
X

ı6"
�"˚ı maxfızg

!

Remark 1. It follows that "Z 2 MVE.�"˚ı; ı 6 "/, so that the projection
of random vector Z for any coordinate hyperplane also distributed according to
Marshall–Olkin.

Particularly if " D .1; 0; : : : ; 0/ NF ."z/ D NF .z1/ D exp .��1
:::
 z1/, and "Z is
distributed exponentially with parameter �1
:::
.

Let us denote

 .s/ D  .s1; : : : ; sk/ D E e�sZ D
1Z

0

: : :

1Z

0

kY

iD1
e�si zi dF .z1; : : : ; zk/

the Laplace transform of the distribution of MVE.
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Theorem 3. For any Z 2 MVE.�"; " 2 E/ Laplace transform of its distribution is
given by

 .s/ D E e�sZ D 1

.1; s/C �
:::


X

"2E
�N"  ."s/: (52.3)

Remark 2. Let the random variable X has an exponential distribution with param-
eter �
:::
, and vector X D .X; : : : ; X/.

Laplace transform of such vector X is

�.s/ D E e�sX D �
:::

.1; s/C �
:::


:

Assuming that p" D �"

�
:::

, this formula can be rewritten as

 .s/ D �.s/
X

"2E
p"  .N"s/:

Hence an MVE distribution is the discrete mixture of the distribution X and
its convolutions with projections of this MVE distribution on all its coordinate
hyperplane.

Remark 3. In the bivariate case, the known expression for  .s1; s2/ found by
Marshall–Olkin [2] coincides with (52.3) after some transformations.

Indeed, using the notation introduced above  .s1; s2/ can be written as:

 .s1; s2/ D �1
 �
1
.�1
 C s1/.�
1 C s2/

C �11 s1 s2

.�

 C s1 C s2/.�1
 C s1/.�
1 C s2/
;

this can lead directly to the form

 .s1; s2/ D 1

�

Cs1Cs2


�11 C �01

�1

.�1
Cs1/ C �10

�
1
.�
1Cs2/

�

D 1

�

 C s1 C s2

h
�11 C �01 .s1; 0/C �10 .0; s2/

i
;

where  .s1; 0/ D �1

.�1
 C s1/

,  .0; s2/ D �
1
.�
1 C s2/

are the Laplace transforms

of (one-dimensional) exponential distributions for corresponding projections.

Theorem 4.

8 " 2 E  ."s/ D 1P
ı<"

�ı˚" C ."; s/

X

ı<"

�ı˚" .ıs/ (52.4)
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Remark 4. Since ı ˚ 1 D ı, and �0 D 0; we can see that Theorem 3 is a special
case of Theorem 4 if " D 1.

Remark 5. It follows that the Laplace transform of the vector Z projection to
coordinate hyperplane " can be found by Theorem 3, but to do this we need to
replace all the zeros on the “bullets” in the indices of all parameters �.

Thus, when " D .1; 0; : : : ; 0/

 ."s/ D  .s1/ D �1
:::

�1
:::
 C s1

:

52.3 Proofs

Proof of Theorem 2. We have NF ."z/ D exp

�
� P
ı2E

�ı maxfı"zg
�

. Since 8ı 2 E

ı" 6 ", we can summarize the first ı 6 ", and then by all � such that �" D ı. Note
that if ı 6 ", then ı" D ı.

NF ."z/ D exp

0

@�
X

ı6"
maxfızg

� X

� W�"Dı
��

�1

A

It is easy to see that for ı 6 "

X

� W�"Dı
�� D �"˚ı (52.5)

In fact,

if "j D 1; ıj D 1, then � D 1,
if "j D 1; ıj D 0, then � D 0,
if "j D 0; ıj D 0, then � D 0 or � D 1.

Such a rule exactly corresponds operations "˚ ı.

Proof of Theorem 3. In the proof we use the following representation of the random
vector Z 2 MVE.�"; " 2 E/: Let Ei .iD1; : : : ; k/—the set of indices ", in which
at i th position is 1; X"—independent exponentially distributed random variables
with parameters �" > 0. We assume X" D C1, if �" D 0. The coordinates of the
vector Z D .Z1; : : : ; Zk/ let’s define by the equality

Zi D min
"2Ei

fX"g: (52.6)
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Note that Zi 2 E
� P
"2Ei

�"

�
(by the well-known property of the exponential law).

Here, E.�/ is the class of exponential laws. The reliability function for vector Z

calculated by the formula (52.2), so that Z 2 MVE.�"; " 2 E/.

Let’s denoteW the minimum of random variablesZi . Taking into account (52.6),

we obtain W D minZi D min
i

�
min
ı2Ei

fXıg
�

D min
ı2E Xı:

According to the addition formula

E e�.s;Z / D
X

"2E
E.e�.s;Z /I W D X"/: (52.7)

Here, following [1, ğ 4.2], we use the notation E.�I B/ D R

B

�.!/P.d!/.

By conditional expectation property

E
�
e�.s;Z /I W D X"

	

D EX"E
�
e�.s;Z /I W D X"; Xı > X"; ı 2 Enf"g	

D
1Z

0

e��"xdx � E
�
e�.s;Z /I X" D x; Xı > x; ı 2 Enf"g	

D
1Z

0

e��"xdx �E � e�.s; "Z / e�.s; N"Z /I X"Dx; Xı>x; ı2Enf"g 	: (52.8)

Let � D .x; : : : ; x/, then, obviously, for X" D x "Z D "�,

E.e�.s; N"Z /I X" D x; Xı > x; ı 2 Enf"g/
D e�x.s; "/ E

�
e�.s; N"Z /I Xı > x; ı 2 Enf"g	 : (52.9)

Event fXı > x; ı 2 Enf"gg is the intersection of independent events
fXı > x; ı N" > 0g è fXı > x; ı 2 Enf"gnfı N" > 0gg. The vector N"Z is independent
of the second one.

Therefore

E
�
e�.s; N"Z /I Xı > x; ı 2 Enf"g	

D P.Xı>x; ı 2 Enf"gnfı N">0g/ � E
�
e�.s; N"Z /I Xı>x; ı N">0	

D exp

0

@�x �
X

ı2Enf"gnfı N">0g
�ı

1

AE
�
e�.s; N"Z /I N"Z > N"�	 : (52.10)
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Let us show that

E.e�.s; N"Z /I N"Z > N"�/ D e
�x

"
."; s/C P

ıN">0

�ı

#

� E e�.s; N"Z / (52.11)

Indeed, property (52.1) for distribution MVE follows

NF .".z C �// D NF ."z C "�/ D NF ."z/ NF ."�/; (52.12)

NF ."�/ D P."Z>"�/ D P

 
[

ı">0

fXı>xg
!

D exp

�
� x

X

ı">0

�ı

�
; (52.13)

E.e�.s; N"Z /I "Z > "�/ D
1Z

0

: : :

1Z

0

e�.s; ".zC�// dF .".z C �// : (52.14)

As for any integrable function g.z/

1Z

0

: : :

1Z

0

g.z/dF."z/ D .�1/k"k
1Z

0

: : :

1Z

0

g.z/d NF ."z/;

then using (52.12)–(52.14)

E.e�.s; N"Z /I "Z > "�/ D e
�x

"
.s; "/C P

ı">0

�ı

#

E e�.s; "Z /:

Now go substitute (52.11) into (52.10) and (52.10) into (52.9) and (52.9) into (52.8),
and integrate. Substitute the result in (52.7) and obtain the desired result.

Proof of Theorem 4. The proof is along the same lines as Theorem 3. We set

W" D min
i W "iD1

"Z D min
ı">0

fXıg:

We have

E e�.s; "Z / D
X

ı">0

E
�
e�.s; "Z /I W" D Xı

	

D
X

ı">0

1Z

0

�ıe
�x�ıdx � E

�
e�.s; "Z /I Xı D x; X� > x; �"> 0; � ¤ ı

	
:
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If Xı D x; ı"Z D ı"� we get

E e�.s; "Z / D
X

ı">0

1Z

0

�ıe
�x�ıdx � e�x.s; "ı/ �

� E
�
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: (52.15)

But

E
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Substituting (52.16) into (52.15) and integrating, we obtain

E e�.s; "Z / D 1P
ıWı">0

�ı C .s; "/

X

ı">0

�ı Ee
�.s; Nı"Z /: (52.17)

It remains to give (52.17) to (52.4). We’ll do it in stages. First, making the
substitution ˇD �", such that 0 < ˇD �"6 ", and taking into account (52.5), we
write

X

ı">0

�ı D
X

0<ˇ6"

0

@
X

�"Dˇ
�ı

1

A D
X

0<ˇ6"
�ˇ˚": (52.18)
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When replacing in (52.18) ˇ0 D "�ˇ (hereinafter signs subtraction and addition
of the two-digit index means conventional subtraction and addition modulo 2)
0 < ˇ 6 " , 0 6 ˇ0 < "; ˇ ˚ " D ˇ0˚ " and

X

ı">0

�ı D
X

06�<"
��˚": (52.19)

Similarly,

X

ı">0

�ı . Nı"s/ D
X

0<ˇ6"

0

@
X

ı"Dˇ
�ı . Nı"s/

1

A :

But ı" D ˇ , Nı" D " � ˇ, as Nı"C ı" D 1" D ".
Hence

X

ı">0

�ı . Nı"s/ D
X

0<ˇ6"
 .." � ˇ/s/

X

"ıDˇ
�ˇ D

X

0<ˇ6"
�ˇ˚"  .." � ˇ/s/:

By replacing the ˇ0 D " � ˇ we reduce the last equality to the form

X

ı">0

�ı . Nı"s/ D
X

06ˇ0<"

�"˚ˇ0 .ˇ0"/: (52.20)

Substituting (52.19) and (52.20) into (52.17) yields (52.4).
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