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Preface

This book provides a theoretical basis and examples to demonstrate the importance of ab-
solute disease risk in counseling patients, in devising public health strategies, and in clinical
management. We wrote this book for epidemiologists, clinicians, and statisticians, with suf-
ficient technical detail to allow others to estimate, test, and use models of absolute risk, and
with a range of examples to inspire broader application of the models. The development
and proper use of absolute risk models requires a collaborative effort to identify a good
application, to gather the required clinical or epidemiologic data, and to build and test
the model on sound statistical principles. This book is broad enough to inform the various
research participants needed for such a collaboration.

Dr. Mitchell Gail’s interest in absolute risk arose during a consultation with Dr. John
J. Mulvihill, who was counseling women at elevated risk of breast cancer and observed that
many women greatly overestimated their risk. Dr. Mulvihill’s desire to obtain realistic esti-
mates grew into a collaboration involving epidemiologists and statisticians at the National
Cancer Institute, National Institutes of Health, that led to the “Gail” model, published in
1989, to project breast cancer risk based on an analysis that took competing risks into ac-
count. The U.S. National Cancer Institute’s Breast Cancer Risk Assessment Tool (BCRAT)
incorporates updates to that model. Dr. Gail and Dr. Ruth Pfeiffer have continued to pursue
research on methods for estimating and evaluating absolute risk models, taking advantage
of many advances made by the statistical community in survival analysis and in under-
standing how epidemiologic data and analyses fit into a general modeling framework. They
have also promoted applications of risk models. For example, the Gail model was useful in
designing and interpreting a clinical trial of tamoxifen to prevent breast cancer. The model
was used to plan the study and decide who should be eligible. After the trial, the model
gave a means to weigh risks and benefits for deciding who might benefit from tamoxifen
chemoprevention. Likewise, risk models can be used to stratify the population into those
who might most benefit from screening or from high risk interventions. Dr. Pfeiffer led the
development of criteria to evaluate the public health impact of such applications.

There are several excellent books on survival methods for modeling pure risk of disease,
with most applications concerning prognosis following a disease diagnosis. Four books have
recently appeared that account for competing risks and elaborate on theoretical aspects
of absolute risk, sometimes called cumulative incidence. Again, most of the applications
concern prognosis. The present book adds to this literature on absolute risk in several re-
spects. In addition to presenting the theoretical background for absolute risk, including a
treatment of competing risks, this book: (1) discusses various sampling designs for esti-
mating absolute risk and for estimating criteria to evaluate models; (2) provides details on
statistical inference, including construction of confidence intervals, for the various sampling
designs; (3) discusses criteria for evaluating risk models and for comparing risk models,
including both general criteria and problem-specific expected losses in well-defined clinical
and public health applications; and (4) describes a wealth of applications, encompassing
both disease prevention and prognosis, and ranging from counseling individual patients, to
clinical decision making, to assessing the impact of risk-based public health strategies.

Much of the material in this book is based on work with others. While it is not pos-
sible to name all who helped shape our ideas, we particularly want to thank the follow-
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ing collaborators who have contributed to several aspects of this work including Jacques
Bénichou, David P. Byar, Raymond J. Carroll, Nilanjan Chatterjee, Jinbo Chen, Joseph P.
Costantino, Andrew N. Freedman, Laurence S. Freedman, Barry I. Graubard, Sylvan B.
Green, Stephanie Kovalchik, Ju-Hyun Park, David Pee, Elisabetta Petracci, and Catherine
Schairer. We thank the Intramural Research Program of the Division of Cancer Epidemi-
ology and Genetics, National Cancer Institute, National Institutes of Health, for sustained
support for research on absolute risk and for the writing of this book, and David Check for
help with figures, tables, and bibliography. We also thank John Kimmel at Chapman and
Hall for his advice and help.

We dedicate this book to our parents, Irving and Ada Gail, and Franz and Liselotte
Pfeiffer.



Chapter 1

Introduction

A 40-year-old woman visits her doctor and is reassured to learn that her mammogram gave
no indication of breast cancer. However, her mother had breast cancer diagnosed at age 60.
The woman asks: “What is the chance that I will have a diagnosis of breast cancer by age
60?” The answer to this question is an estimate of her absolute risk of breast cancer over
a defined age interval. Several features of this question are important. First, her chance of
being diagnosed with breast cancer is reduced by the possibility that she will die of some
cause unrelated to breast cancer before age 60. Thus, competing causes of mortality need to
be taken into account to answer this question. Second, the chance of being diagnosed with
breast cancer depends on the duration of the risk projection interval, in this case the 20
years from age 40 to age 60. The longer the projection interval, the higher is the absolute
risk. Third, the absolute risk depends on the age of the woman when she came to her doctor
for counseling. This is because the incidence rate of breast cancer increases with age, as do
mortality rates from competing causes of death. Finally, risk factors present at the time of
counseling influence the estimate of absolute risk. In this example, the fact that the woman’s
mother had had breast cancer increases the estimate of her absolute risk.

The previous example concerned the absolute risk of developing a disease, breast cancer.
Absolute risk is also a clinically useful parameter after a disease has been diagnosed. For
example, suppose a 70-year-old male is diagnosed with prostate cancer, and the histopathol-
ogy (“Gleason score”) from the biopsy is favorable. The absolute risk that the man will die
from prostate cancer may be quite small even with conservative management (Albertsen
et al., 2005), in part because many such men will die of other causes before the prostate
cancer progresses. Thus, an estimate of absolute risk may be helpful in deciding whether
more aggressive treatments, such as surgery or radiation, are warranted.

The literature on competing risks sometimes uses other words for the concept of abso-
lute risk. “Crude risk” (Gail, 1975; Tsiatis, 2005), “marginal probability” (Pepe and Mori,
1993), and “cumulative incidence” (Gray, 1988) are three such terms, although “cumula-
tive incidence” is also sometimes used to denote the cumulative “pure” (Gail, 1975) risk or
the integrated cause-specific hazard (Andersen et al., 1993). Absolute risk should not be
confused with “pure” risk, which is the hypothetical probability of the event (e.g., breast
cancer) if other competing causes of mortality could be eliminated. In contrast to absolute
risk, pure risk is not estimable without strong assumptions (Gail, 1975; Tsiatis, 1975; Pren-
tice et al., 1978). Pure risk is also less relevant for many clinical decisions, because in fact
the patient will be subject to mortality from competing risks. Absolute risk is also different
from relative risk, which is the ratio of risk for a person with one set of characteristics to
the risk for a reference person, who is often chosen to have all risk factors set to their lowest
(baseline) levels.

Although relative risks are useful for assessing the strength of risk factors, they are
not nearly as useful as absolute risks for making clinical decisions or establishing policies
for disease prevention. Such decisions or policies often weigh the favorable effects of an
intervention on the health outcomes of interest against the unfavorable effects that the
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2 INTRODUCTION

intervention might have on other health outcomes. The common currency for such decisions
is the (possibly weighted) absolute risk for each of the health outcomes in the presence and
absence of intervention.

The following sections of this introduction give examples of widely used risk models and
some of their special features, discuss applications of absolute risk models in disease pre-
vention and prognostication following disease onset, and outline the contents and structure
of the book.

1.1 Examples of risk models for disease incidence

1.1.1 Breast cancer incidence

1.1.1.1 A brief survey of models

Several models are available for projecting the risk of breast cancer, as previously reviewed
(Amir et al., 2010; Gail and Mai, 2010). Some of these models are based only on age
and detailed family history, such as the model of Claus et al. (1994). Two other such
models,“BRCAPRO” (Berry et al., 1997; Chen and Parmigiani, 2007) and “BOADICEA”
(Antoniou et al., 2008a), also allow one to include information on the status of BRCA1
or BRCA2 mutations that greatly increase cancer risk. Other models, such as the Na-
tional Cancer Institute’s Breast Cancer Risk Assessment Tool (BCRAT)(Gail et al., 1989;
Costantino et al., 1999; Gail et al., 2007; Matsuno et al., 2011), which is sometimes called the
“Gail model”, and “IBIS” (Tyrer et al., 2005), which is sometimes called the “Tyrer–Cuzick
model”, include factors in addition to family history, such as results of biopsies, and age
at first live birth. IBIS also includes information on BRCA1 and BRCA1 mutation carrier
status. The invasive breast cancer absolute risk model BC2013 (Pfeiffer et al., 2013), that
we discuss later in the book, includes potentially modifiable risk factors, such as hormone
replacement therapy, alcohol use, and body mass index, as does the model of age-specific
incidence by Colditz and Rosner (2000).

A more detailed summary of the risk factors in some of these models is provided in Table
1.1. The variation in choice of risk factors is noteworthy. Other differences are also depicted.
BOADICEA and IBIS are calibrated to breast cancer rates in England and Wales, whereas
the Claus model and BCRAT are calibrated to age-specific breast cancer incidence rates
from the National Cancer Institute’s Surveillance, Epidmiology and End Results (SEER)
Program. Rates in England and Wales are 5–25% lower than SEER rates in women over
age 55 years. Not all the models account for the effects of competing causes of mortality in
projecting breast cancer risk. Although the effects of competing risks are small for short-
term projections, such as 5 years, lifetime projections or 20-year projections of absolute risk
can be reduced appreciably by competing mortality. Other differences include the detailed
approaches to model building and the quality and coherence of the types of data that went
into these models.

With the exception of studies on BCRAT, there is a paucity of independent vali-
dation data to determine how well these models are calibrated and how effective they
are at discriminating women who will eventually develop breast cancer from those who
will not. BCRAT is thought to be well calibrated for use in the general U.S. popu-
lation. Some models that include more information on family history and BRCA1 or
BCRA2 mutation status are widely used in high-risk clinics for women with strong
family histories of breast cancer. Thus, one needs to think carefully about the in-
tended application before choosing a model (Amir et al., 2010; Gail and Mai, 2010).
In addition to the primary publications, helpful information is available at the follow-
ing web sites: for BRCAPRO, http://bcb.dfci.harvard.edu/bayesmendel/brcapro.php; for
BOADICEA, http://ccge.medschl.cam.ac.uk/boadicea/web-application/; for IBIS, http://
www.ems-trials.org/riskevaluator/; and for BCRAT, http://www.cancer.gov/bcrisktool/

http://www.cancer.gov/bcrisktool/
http://www.ems-trials.org/riskevaluator/
http://www.ems-trials.org/riskevaluator/
http://ccge.medschl.cam.ac.uk/boadicea/web-application/
http://bcb.dfci.harvard.edu/bayesmendel/brcapro.php


EXAMPLES OF RISK MODELS FOR DISEASE INCIDENCE 3

T
a
b
le

1
.1
:
F
ea
tu
re
s
o
f
se
v
er
a
l
m
o
d
el
s
to

p
ro
je
ct

a
b
so
lu
te

o
r
p
u
re

ri
sk

o
f
b
re
a
st

ca
n
ce
r
in

w
o
m
en

w
it
h
o
u
t
a
p
re
v
io
u
s
b
re
a
st

ca
n
ce
r
d
ia
g
n
o
si
s

M
o
d
e
l

C
la
u
s

B
R
C
A
P
R
O

B
O
A
D
IC

E
A

IB
IS

B
C
R
A
T

R
is
k
F
a
c
to

rs
*

F
a
m
il
y

h
is
to
ry

o
f

b
re
a
st

ca
n
ce
r

in
re
la
ti
v
e

A
g
es

a
t
o
n
se
t
in

1
st
,
2
n
d
d
eg
re
e

A
g
es

a
t
o
n
se
t
in

1
st
,

2
n
d

d
eg
re
e;

ov
a
r-

ia
n
ca
n
ce
r;
b
il
a
te
ra
l;

m
a
le

b
re
a
st

ca
n
ce
r

A
g
es

a
t
o
n
se
t
in

1
st
,

2
n
d
,
3
rd

d
eg
re
e;

ov
a
r-

ia
n

ca
n
ce
r;

b
il
a
te
ra
l;

m
a
le

b
re
a
st

ca
n
ce
r

A
g
es

a
t
o
n
se
t
in

1
st
,

2
n
d

d
eg
re
e;

ov
a
ri
a
n

ca
n
ce
r,
b
il
a
te
ra
l

N
u
m
b
er

o
f
1
st

d
e-

g
re
e

re
la
ti
v
es

w
it
h

b
re
a
st

ca
n
ce
r

P
re
v
io
u
s

b
re
a
st

d
is
ea
se

A
ty
p
ic
a
l
h
y
p
er
p
la
si
a
;

L
C
IS

N
u
m
b
er

o
f
b
io
p
si
es
;

a
ty
p
ic
a
l
h
y
p
er
p
la
si
a

H
o
rm

o
n
a
l
fa
ct
o
rs

A
g
e
a
t
m
en

a
rc
h
e;

a
g
e

a
t
fi
rs
t
li
v
e
b
ir
th
;
a
g
e

a
t

m
en
o
p
a
u
se
;

o
ra
l

co
n
tr
a
ce
p
ti
v
e
u
se

A
g
e

a
t

m
en

a
rc
h
e;

a
g
e
a
t
fi
rs
t
li
v
e
b
ir
th

B
R
C
A
1
,
B
R
C
A
2

In
cl
u
d
ed

In
cl
u
d
ed

In
cl
u
d
ed

O
th
er

B
o
d
y
m
a
ss

in
d
ex

E
x
cl
u
si
o
n
s*

A
b
se
n
ce

o
f

a
f-

fe
ct
ed

1
st

d
eg
re
e

re
la
ti
v
es

L
C
IS
;

D
C
IS
;

B
R
C
A
1

o
r
B
R
C
A
2

m
u
ta
ti
o
n
*
*

A
cc
o
u
n
ts

fo
r
co
m
-

p
et
in
g
m
o
rt
a
li
ty

N
o

Y
es

N
o

D
ef
a
u
lt
is
n
o
,
b
u
t
o
p
-

ti
o
n
a
l

Y
es

C
a
li
b
ra
te
d
to

in
ci
-

d
en
ce

in
S
E
E
R

M
et
a
-a
n
a
ly
si
s

fo
r

B
R
C
A
1

o
r
B
R
C
A
2

ca
rr
ie
rs
;
S
E
E
R

fo
r

n
o
n
-c
a
rr
ie
rs

E
n
g
la
n
d
/
W
a
le
s

E
n
g
la
n
d
/
W
a
le
s

S
E
E
R

*
A
ll
m
o
d
el
s
in
cl
u
d
e
a
g
e;

a
ll
m
o
d
el
s
ex
cl
u
d
e
p
a
ti
en
ts

w
it
h
p
re
v
io
u
s
b
re
a
st

ca
n
ce
r.

*
*
O
th
er

m
et
h
o
d
s
to

p
ro
je
ct

ri
sk

a
re

m
o
re

a
p
p
ro
p
ri
a
te

fo
r
w
o
m
en

w
it
h
p
re
v
io
u
s
ra
d
ia
ti
o
n
th
er
a
p
y
to

th
e
ch
es
t
fo
r
th
e
tr
ea
tm

en
t
o
f
H
o
d
g
k
in

ly
m
p
h
o
m
a
,
fo
r
w
o
m
en

w
it
h
ce
rt
a
in

o
th
er

m
u
ta
ti
o
n
s,

a
n
d
fo
r
w
o
m
en

w
h
o
h
av
e
re
ce
n
tl
y
im

m
ig
ra
te
d
to

th
e
U
n
it
ed

S
ta
te
s
fr
o
m

re
g
io
n
s
o
f
A
si
a

w
h
er
e
b
re
a
st

ca
n
ce
r
ri
sk

is
lo
w
.
F
u
rt
h
er
,
B
C
R
A
T

m
ay

n
o
t
b
e
a
p
p
ro
p
ri
a
te

fo
r
w
o
m
en

li
v
in
g
o
u
ts
id
e
th
e
U
n
it
ed

S
ta
te
s.
B
C
R
A
T

ri
sk

ca
lc
u
la
ti
o
n
s

a
ss
u
m
e
th
a
t
a
w
o
m
a
n
is

sc
re
en

ed
fo
r
b
re
a
st

ca
n
ce
r
a
s
in

th
e
g
en

er
a
l
U
.S
.
p
o
p
u
la
ti
o
n
.
A

w
o
m
a
n
w
h
o
d
o
es

n
o
t
h
av
e
m
a
m
m
o
g
ra
m
s
w
il
l
h
av
e

so
m
ew

h
a
t
lo
w
er

ch
a
n
ce
s
o
f
a
d
ia
g
n
o
si
s
o
f
b
re
a
st

ca
n
ce
r.

A
b
b
re
v
ia
ti
o
n
s:

L
C
IS
=
L
o
b
u
la
r
ca
rc
in
o
m
a
in

si
tu

;
D
C
IS
=
d
u
ct
a
l
ca
rc
im

o
m
a
in

si
tu
;

S
E
E
R
=

S
u
rv
ei
ll
a
n
ce
,
E
p
id
em

io
lo
g
y
a
n
d
E
n
d
R
es
u
lt
s
P
ro
g
ra
m

o
f
th
e
U
.S
.
N
a
ti
o
n
a
l
C
a
n
ce
r
In
st
it
u
te
.



4 INTRODUCTION

gives a description and risk projection for the online user, whereas http://dceg.cancer.gov/bb
gives links to SAS programs and other programs to perform BCRAT calcuations more flex-
ibly.

1.1.1.2 The National Cancer Institute’s (NCI’s) Breast Cancer Risk Assessment Tool,
BCRAT

In this section we describe how BCRAT was developed and updated, some of its features,
and efforts to test its calibration and discriminatory accuracy. BCRAT was originally derived
from data from the Breast Cancer Detection Demonstration Project (BCDDP), which was
designed to encourage women to be screened with mammography to detect breast cancer.
From 1973 to 1975, over 280,000 women volunteered for the initial screening mammography,
and many were followed with annual mammography for 4 subsequent years. Some prevalent
cancers were detected at the time of the initial mammographic screen, but incident invasive
and in situ cancers detected during follow-up formed the basis of a case-control study of
white women. Data from 2,852 women with breast cancer (cases) and 3,146 controls yielded
estimates of the relative risks of breast cancer that were associated with risk factors such
as age at menarche, age at first live birth, numbers of previous biopsies that yielded benign
histology, and number of mother or sisters with a previous diagnosis of breast cancer. Table
1.2 describes the coding and estimated relative risks for these risk factors based on analyses
in Gail et al. (1989). The combined relative risk, compared to a woman at the lowest risk level
of each factor, is given by multiplying factors A,B,C, and D in Table 1.2 that correspond to
the various risk factors (see footnote to Table 1.2). For example, a 40-year-old nulliparous
white woman who began menstruating at age 14 years (A=1), who has had no biopsies
(B=1 and D=1), and whose sister had breast cancer (C=2.76) has an overall relative risk
of 1.00 × 1.00 × 2.76 × 1.00 = 2.76.

To convert relative risks to absolute risks, Gail et al. (1989) combined information on
relative risks with age-specific breast cancer incidence rates estimated from 243,211 white
women followed in BCDDP and with national mortality rates from non-breast cancer com-
peting causes of mortality. A key step was determining the baseline age-specific incidence
rate for a woman with all risk factors at their lowest levels. The baseline incidence rate
was estimated by multiplying the age-specific BCDDP breast cancer rates, which repre-
sent women with various risk factor combinations, times {1-AR(t)}, where AR(t) is the
age-specific attributable risk at age t. The conversion factor {1-AR(t)} estimates the recip-
rocal of the average relative risk among those age t in the population. Gail et al. (1989)
estimated this factor from cases in the case-control study, using a formula of Bruzzi et al.
(1985). Chapters 4 and 5 show how the baseline incidence rates and relative risks for breast
cancer can be combined with national mortality rates to compute absolute risk.

The resulting absolute risk model is referred to as “Gail Model 1” by Costantino et al.
(1999). Statisticians at the National Surgical Adjuvant Breast and Bowel Project (NSABP)
modified Gail Model 1 by substituting age-specific invasive breast cancer incidence rates
from the National Cancer Institute’s Surveillance, Epidemiology and End Results (SEER)
Program for BCDDP incidence rates and by modifying the estimate of AR(t) accordingly,
but not the relative risks, to produce “Gail Model 2,” as described in the Appendix to
Costantino et al. (1999). Unless otherwise noted, we refer hereafter only to Gail Model 2,
which is incorporated in BCRAT. Estimates of absolute breast cancer risk from Gail Model
2 (i.e., BCRAT) can vary considerably, depending on the woman’s age at counseling, her
risk factors, and the age interval for the risk projection. For example, the projected 5-year
risk for the previously described 40-year-old nulliparous woman is 1%, but her risk to age 90
is 17%. A 60-year-old woman who began menstruating at age 11, had her first child at age
25, has had a breast biopsy with atypical hyperplasia, and whose mother had breast cancer
has a 5-year risk of 7%, and a risk to age 90 of 31%. Chapter 5 describes how to estimate

http://dceg.cancer.gov/bb
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Table 1.2: Relative risk calculations for the Breast Cancer Risk Assessment Tool (BCRAT)

Relative risk for
each factor or

Risk factor combination of factors
A. Age at menarche (years)
≥ 14 1.00 (ref)
12-13 1.10
< 12 1.21
B. Number of breast biopsies
Age at counseling < 50 years
0 1.00 (ref)
1 1.70
≥ 2 2.88
Age at counseling ≥ 50 years
0 1.00 (ref)
1 1.27
≥ 2 1.62
C. Age at first live birth (years) Number of

mother/sisters
with breast
cancer

< 20 0 1.00 (ref)
1 2.61
≥ 2 6.80

20-24 0 1.24
1 2.68
≥ 2 5.78

25-29 or nulliparous 0 1.55
1 2.76
≥ 2 4.91

≥ 30 0 1.93
1 2.83
≥ 2 4.17

D. Atypical hyperplasia (AH)
No biopsies 1.00 (ref)
At least one biopsy and no AH on found on any biopsy 0.93
No AH found and AH status unknown for at least one biopsy 1.00
AH found on at least one biopsy 1.82

To compute the overall relative risk, multiply the four component relative risks from cate-
gories A, B, C, and D. For example, a 40-year-old nulliparous woman who began menstru-
ating at 14, who has had no biopsies, and whose sister had breast cancer has an overall
relative risk of 1.00 × 1.00 × 2.76 × 1.00 = 2.76.

absolute risk by combining relative and attributable risks from case-control or cohort data
with registry data on incidence rates and mortality rates, as was done to produce BCRAT.

The fact that women with previous breast biopsies with hyperplasia and a strong family
history of breast cancer are at much higher risk than women without these factors can
influence clinical management and preventive efforts. However, before such actions are taken
on the basis of a risk model, one should have evidence that the model yields valid predictions,
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ideally by evaluating the model in independent data from the data used to develop the
model (Harrell, 2001; Steyerberg, 2009; van Houwelingen and Putter, 2012). One of the
most important criteria to be satisfied is that the model be well calibrated. As described
in detail in Chapter 6, a model is said to be well calibrated if the ratio of events observed
in the independent validation data to the number of events expected based on the model
is near 1.0. This ratio should be near 1.0 not only for the entire validation cohort, but in
various subsets defined by combinations of risk factors and by levels of projected risk.

One cause of poor calibration is “over-fitting” that can arise when the data are fitted to
many covariates, some of which may have been selected on the basis of preliminary univariate
analyses on the same data. Methods to ameliorate this problem have been described (Copas,
1987; van Houwelingen, 2000, 2001; Harrell, 2001; Steyerberg et al., 2004; Steyerberg, 2009;
van Houwelingen and Putter, 2012). Systematic errors can also lead to poor calibration.
For example, BCRAT is not appropriate for women who have had a previous breast cancer,
women who have had a previous diagnosis of certain breast lesions (lobular carcinoma in
situ or ductal carcinoma in situ), women known to have strong genetic predispositions to
breast cancer from mutations in the BRCA1 or BRCA2 genes and certain other genes,
and women who were treated with radiation to the chest for Hodgkin lymphoma, which
increases breast cancer risk (Travis et al., 2005). The model may also lead to miscalibrated
risk estimates when applied to populations that differ from those in which the model was
developed. For example, BCRAT was developed with data from white women initially; it
has subsequently been improved for African-American and Asian-American populations by
modifications based on data from those populations. The model was designed for women
who were screened with mammography regularly, as in the BCDDP population. A study in
the Nurses Health Study population showed that Gail Model 1 overestimated risk during
1976–1988, when women were not being screened regularly (Spiegelman et al., 1994), but a
subsequent study of this population during 1992–1997, when screening was widely applied,
showed good calibration of Gail Model 2 (BCRAT) (Rockhill et al., 2001). Thus, absolute
risks can be influenced by the type of surveillance being applied, and by other factors that
might cause secular changes in disease rates (Schonfeld et al., 2010).

Another important feature of a risk model is its discriminatory accuracy. A model has
good disciminatory accuracy if the distribution of risks in those who develop disease has
little overlap with the risk distribution among those who do not develop disease and whose
risks tend to be lower. Discriminatory accuracy is often measured as the area under the
receiver operating characteristic curve (AUC)(see Chapter 6). The AUC for BCRAT is
only about 0.60, and the model has been criticized for lack of discriminatory accuracy
(Rockhill et al., 2001). Initial efforts to increase the discriminatory accuracy by including
information from single nucleotide polymorphisms (SNPs) only improved the AUC to about
0.62 (Gail, 2009b; Wacholder et al., 2010), and inclusion of information on mammographic
density only increased AUC to about 0.65 (Chen et al., 2006a). By adding mammographic
density and all the SNPs that have been associated with breast cancer to other standard
risk factors, Garcia-Closas et al. (2014) estimated that an AUC of 0.68 was achievable.
Nonetheless additional strong risk factors beyond SNPs and mammographic density are
needed to improve the discriminatory accuracy of models like BCRAT. Polymorphisms and
mammographic density are not currently used in BCRAT.

1.1.2 Other models of cancer incidence

Models to predict the incidence of nine cancers in addition to breast cancer are docu-
mented at http://epi.grants.cancer.gov/cancer risk prediction/# overview. These include
bladder, cervical, colorectal, lung, ovarian, pancreatic, prostate and testicular cancers, and
melanoma. We will be using data from a model for breast cancer by (Pfeiffer et al., 2013)
to illustrate the development of a risk model (Chapter 4) and its validation in independent

http://epi.grants.cancer.gov/cancer_risk_prediction/
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data (Chapter 6). This model of absolute risk which we call BC2013, was developed by com-
bining estimates of relative and attributatble risk from large cohorts with SEER invasive
breast cancer incidence rates and U.S. non-breast cancer mortality rates. As in BCRAT,
age was the time scale used for risk projections.

1.1.3 Framingham Model for incidence of coronary heart disease

The Framingham Model estimates the pure 10-year cumulative risk of coronary heart dis-
ease, defined as angina pectoris, coronary insufficiency, myocardial infarction, or death as-
cribed to coronary heart disease (Wilson et al., 1998). Risk projections from this model are
widely used to make recommendations for interventions to prevent heart disease, including
the use of statins (Expert Panel on Detection and Evaluation and Treatment of High Blood
Cholesterol in Adults, 2001). Gender-specific models were based on follow-up of cohorts of
2489 men and 2856 women aged 30 to 74 years old at recruitment in Framingham, Mas-
sachusetts from 1971 to 1974. The Framingham data were analyzed on the time scale of
time since recruitment, unlike BCRAT which used age as the primary time scale. The Cox
proportional hazards model (Cox, 1972) was used to incorporate the predictors, age, treat-
ment for hypertension, smoking, diabetes, total cholesterol, and high density lipoprotein
cholesterol. The Framingham model treated death from other causes as censoring and thus
estimated the cumulative pure 10-year risk, not the absolute risk. Over a relatively short
interval like 10 years, pure and absolute risk may not differ greatly, but for longer projec-
tions the Framingham model was recently adapted by incorporating competing hazard of
death from other causes (see Chapters 3 and 4) to compute absolute risk (Lloyd-Jones et al.,
2006).

The validity of the Framingham Model has been tested in data from independent cohorts
(D’Agostino et al., 2001). Although the model seemed well calibrated for white and black
men and women, it overestimated risk in other ethnic and racial groups, such as Japanese-
American men, Hispanic men, and Native American men and women. After recalibration,
the models were well calibrated in those groups, except for evidence of residual overestima-
tion of risk in the highest decile of predicted risk. The AUC values for white men ranged
from 0.63 to 0.79 and those for white women from 0.66 to 0.83 in three independent cohorts.
These values are higher than for BCRAT. However, AUC values for BCRAT are often esti-
mated from women in narrow age strata to evaluate BCRAT’s disciminatory accuracy from
factors other than age. Part of the discriminatory accuracy measured for the Framingham
Model derives from the fact that older men and women are at higher risk of coronary heart
disease than younger men and women, and age is treated as a covariate in the model.

1.2 Applications of risk models for disease incidence

Risk models have applications in the clinical management of individuals at risk of incident
disease and in public health and population studies.

Risk models can provide reliable and useful perspective on the level of risk. For example,
BCRAT was motivated initially by the need for accurate risk assessments for women who
thought they had very high risks of breast cancer and were considering drastic measures
to avoid it, such as prophylactic mastectomy. Often such women overestimated their risks
and were pleasantly surprised to find that the projections from BCRAT were much lower
than they had feared. This perspective is useful background information for making more
rational decisions regarding breast cancer prevention. As another example, there has been
ongoing debate regarding whether women in their forties should undergo routine screening
mammography, whereas it is widely recommended for women age 50 and older. If a 45-year
old women has the risk of a 50-year old woman, however, as the result of having adverse
risk factors, she may well want to consider screening mammography (Gail and Rimer, 1998;
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Gail and Schairer, 2010; Wu et al., 2012). The Framingham model likewise provides useful
information on levels of risk that guide clinical management (Expert Panel on Detection
and Evaluation and Treatment of High Blood Cholesterol in Adults, 2001).

Models of absolute risk also play a role in the more formal weighing of the risks and
benefits of an intervention, because the absolute risks of the various health outcomes affected
by the intervention are central to this calculus. For example, preventive use of tamoxifen
reduces the risk of invasive breast cancer by nearly half, but it increases the risks of stroke
and endometrial cancer (Fisher et al., 1998). In order for a woman to have a net benefit from
this intervention, her risk of breast cancer must be high enough that the absolute reduction
in breast cancer risk outweighs the increases in absolute risks of adverse outcomes caused
by tamoxifen. Tables have been developed to guide the decision to take interventions such
as tamoxifen (Gail et al., 1999a; Freedman et al., 2011) or raloxifene (Freedman et al.,
2011) based on level of breast cancer risk. There is no single level of breast cancer risk that
determines whether a woman should take these interventions, because that level depends
on the absolute risks of the other outcomes in the presence and absence of the intervention.
Screening for persons at high risk of disease or with prevalent disease is another type of
intervention with risks and benefits, because false positive and false negative screens each
have adverse consequences. Risk models usually need to have high discriminatory accuracy
to be useful in deciding who should be screened and who not (Chapter 6).

Some public health applications of models of absolute risk do not require high discrim-
inatory accuracy. For example, statisticians at NSABP used Gail Model 2 (BCRAT) to
calculate the required sample sizes for the Breast Cancer Prevention Trial (or“P-1” Trial)
of tamoxifen to prevent invasive breast cancer (Fisher et al., 1998). The required sample
size for this trial depended on the number of incident breast cancers arising during the
trial, which reflects the average absolute risk of the trial participants. BCRAT predicted
the observed number of events well (Costantino et al., 1999). The concept of absolute risk
was also used to define eligibility for the trial because the investigators only wanted to give
tamoxifen to women with high enough breast cancer risk that they might benefit. Thus
women over age 59 were eligible, as were younger women with at least the average 5-year
risk of a 60-year old woman, namely 1.66%.

Absolute risk models can also be used to assess the burden of disease in populations with
known distributions of risk factors, because the risk in the population represents the average
over the joint risk factor distribution of the conditional absolute risk given the risk factors.
A special application of these ideas arises if the risk model includes modifiable risk factors.
For example, Petracci et al. (2011) included alcohol consumption, leisure physical activity,
and body mass index as risk factors in an absolute risk model for breast cancer in Italian
women that also included factors such as those in BCRAT. By varying the levels of these
modifiable risk factors, they estimated the reductions in absolute risk in the entire popula-
tion and in high-risk subgroups of the population. These reductions in absolute risk, though
potentially meaningful, were much smaller than one would imagine based on quantities such
as population attributable risk. Thus, absolute risk models can give added perspective on
the potential effects of interventions to reduce modifiable exposures. We present a similar
analysis for U.S. women based on BC2013 (Pfeiffer et al., 2013) in Chapter 10. One should
be aware, however, that several assumptions must hold in order that these estimates of in-
tervention effect be valid. In particular, one must assume that the hypothesized intervention
will actually achieve the desired modification in risk factor levels, and that the effect on
disease incidence from these changes in risk factors is reliably predicted from observational
data on the associations between the risk factors and disease.
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1.3 Prognosis after disease diagnosis

The concept of absolute risk is also clinically useful for patients who have developed a
disease. In particular, one may be interested in the absolute risk of a cancer recurrence in a
defined time interval following initial cancer treatment, or in the chance of dying from that
cancer in a defined time interval following initial cancer treatment. Both these events are
observed in the presence of the risk of dying from other causes. Thus, we are concerned with
the absolute risks of these events. If the risks are low, no further treatments may be needed.
If the risks are high, further possibly toxic treatments may be justified. Indeed, much of
the literature on risk modeling has focussed on disease prognosis following initial diagnosis
and treatment (Harrell, 2001; Steyerberg, 2009; van Houwelingen and Putter, 2012; Geskus,
2016). Often cumulative pure risk is used instead of absolute risk, but when the time interval
is long and the risks of mortality from competing causes are appreciable, as in elderly men
with prostate cancer, absolute risks, which are smaller than pure risks, add an essential
perspective (Albertsen et al., 2005).

Stratification of patients based on risk of recurrence or risk of death from the initial dis-
ease following disease diagnosis is one aspect of “personalized medicine”, because it allows
doctors and patients to guage the extent to which further treatment may be necessary. An-
other aspect, not to be confused with stratification on absolute risk, is the use of molecular
and other data to identify subsets of patients who might respond particularly well to a given
treatment. The terms “prognostic marker” and “predictive marker” are sometimes used to
distinguish these two very different concepts (Simon et al., 2009). The methods in this
book are useful for prognostic risk stratification. Other methods to search for interactions
between treatment and patient characteristics are needed to discover predictive markers.

1.4 Contents of book

Chapter 2 defines basic concepts and notation for survival analysis of a single endpoint.
Chapter 3 extends these ideas for multiple competing outcomes to formally define the ab-
solute risk of a particular outcome of interest. The concepts of pure and absolute risk are
distinguished and non-parametric estimates are given. Chapter 4 discusses the analysis of
cohort data with covariates and shows how various risk factors (or covariates) can be intro-
duced into models for competing risks so that absolute risk projections are individualized
to take covariates into account. One formulation introduces covariates into cause-specific
hazard functions (Prentice et al., 1978; Gail et al., 1989), while another uses covariates to
modulate the absolute risk directly, for example (Fine and Gray, 1999). Designs based on
sampling covariate data from a cohort, such as the case-cohort design (Prentice, 1986) and
the nested case-control design (Liddell et al., 1977) also lead to individualized estimates of
absolute risk via cause-specific models, provided the times of all events arising in the cohort
are known(Chapter 4). The strategy of estimating absolute risk by combining information
on relative risks and attributable risk from case-control studies with registry data, such as
SEER data on cancer incidence, is described in detail in Chapter 5. Chapter 6 gives criteria
to evaluate risk models, including calibration, discriminatory accuracy, other general crite-
ria, and more specific criteria applicable when the losses from classification errors can be
specified. Chapter 7 describes methods of inference to compare two risk models. Chapter 8
discusses model-building, variable selection and strategies for updating risk models to in-
corporate new covariates. Chapter 9 describes estimation of risk from family-based designs
and the role of SNPs in risk modeling. Chapter 10 touches on four topics related to absolute
risk: use of absolute risk in disease prognosis; analyses that allow for missing information on
the type of health outcome that has occurred; absolute risk predictions with time-varying
covariates; and a review of applications of risk models in individual counseling and public
health.
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Chapter 2

Definitions and basic concepts for survival data

in a cohort without covariates

2.1 Basic survival concepts

In this section we describe survival concepts for a single outcome or event type. Later we
discuss absolute risk in the presence of competing risks. Among the many excellent books
covering these topics, we recommend Kalbfleisch and Prentice (2002) and Chapter 2 of
Andersen et al. (1993). A more specialized introduction to multistate models and competing
risk analysis can be found, for example, in Beyersmann et al. (2012) and Geskus (2016).

Classic survival analysis focuses on the time from a given starting point to a subsequent
event; the time to that event is called the survival or event time, T , and has range [0,∞).
The primary interest lies in the survival function, conventionally denoted by S, and defined
as

S(t) = P (T > t). (2.1)

The survival function S(t) is a non-increasing function of time and for many applications
one assumes S(0) = 1. A related quantity is the lifetime distribution function, defined as

F (t) = P (T ≤ t) = 1− S(t).

If F is absolutely continuous, one can compute the density function of the lifetime distri-
bution,

f(t) = F ′(t) =
d

dt
F (t) = − d

dt
S(t) = −S′(t).

A widely used quantity in biomedical research is the hazard function, also called hazard
rate, of S, defined as the event rate at time t conditional on survival until time t or later,

λ(t) = lim
ǫ→0+

P (t ≤ T < t+ ǫ |T ≥ t)/ǫ. (2.2)

If F is absolutely continuous, this definition implies that

λ(t) =
f(t)

S(t)
= −S

′(t)

S(t)
= −d log{S(t)}

dt
.

Integrating both sides and using that S(0) = 1 yields the cumulative hazard function,

Λ(t) =

∫ t

0

λ(u) du = − logS(t),

and

S(t) = exp {−Λ(t)} = exp

{
−
∫ t

0

λ(u)du

}
.

11
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Example: An example of an absolutely continuous distribution is the Weibull distri-
bution, with survival function S(t) = exp(−γtα), where α > 0 is the shape parameter and
γ > 0 is the scale parameter of the distribution. From the previous formulas, its hazard
is λ(t) = γαtα−1, which is increasing for α > 1 and decreasing for α < 1. For α = 1, the
hazard is constant over time, and λ(t) = γ corresponds to the exponential distribution.

When T is a discrete random variable taking values t1 < t2 < . . . with probabilities

f(ti) = P (T = ti), i = 1, 2, . . . ,

the hazard function at ti is given by

λi = λ(ti) = P (T = ti|T ≥ ti) =
f(ti)

S(ti−)
, (2.3)

where S(t) =
∑

j:tj>t f(tj) is the survival function and S(t−) = limǫ→0+ S(t− ǫ).
The cumulative hazard function of a survival time T whose distribution has both con-

tinuous and discrete components is given by Λ(t) =
∫ t

0 λc(u)du +
∑

i:ti≤t λi, where λc is
the continuous hazard function and λi are the hazards corresponding to the discrete event
times ti. The overall survival function of T is thus given by

S(t) = exp

{
−
∫ t

0

λ(u)du

} ∏

j:tj≤t

(1− λj).

The general definition of the cumulative hazard function of an arbitrary distribution
function F is given by the Lebesgue–Stieltjes integral,

Λ(t) =

∫ t

0

1

S(u−)
dF (u), t ≥ 0, (2.4)

or equivalently,

F (t) = 1− S(t) =

∫ t

0

S(u−)dΛ(u). (2.5)

2.2 Choice of time scale: age, time since diagnosis, time since accrual or
counseling

An important issue in survival analysis is the choice of time scale. It is often useful to choose
the time scale that is most strongly associated with the risk of experiencing the event of
interest. In clinical studies a natural choice may be time-on-study, namely the time since a
particular event that marks the beginning of study observation. For example, one may be
interested in the time from diagnosis and treatment of breast cancer to a subsequent event,
such as breast cancer recurrence or death from breast cancer. The left panel of Figure 2.1
shows the experience of four women on the scale of time-on-study. The follow-up starts at
the same time origin for each woman, namely when each woman is diagnosed with breast
cancer, after which she starts being at risk for breast cancer recurrence or breast cancer
death. During follow-up, women 1 and 3 experience a recurrence (solid circles) and women
2 and 4 are censored (open circles). Censoring occurs if follow-up ends before the patient
has the event of interest (e.g., breast cancer recurrence). When woman 1 fails (i.e., has a
breast cancer recurrence), three of the four woman are at risk for failure. The sets of women
at risk at the failure times (called “risk sets”) thus decrease monotonically.

In cohort studies of disease etiology or incidence, subjects without a given disease are
followed up to detect the time of occurrence of that disease. However, in contrast to many
clinical studies, the time when a subject first comes under observation, typically the time of
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Figure 2.1: Time scales for survival analysis: time on study scale (left panel) and age scale
(right panel).

administration of a questionnaire or an interview, usually does not coincide with the time
when the subject first becomes at risk for the disease of interest. In addition, the effect of age
usually needs to be tightly controlled in epidemiologic cohort studies because the incidence
of most diseases, especially chronic diseases, is strongly influenced by age. Because the time
variable is tightly modeled in survival analyses, age is a natural time-scale. When using age
as the time scale, the hazard function (2.2) can be directly interpreted as the age-specific
incidence function. Survival methods can model this hazard flexibly, giving tighter control
for age than models that include age as a covariate. However, analyzing survival data on the
age scale is more complex than analyzing survival data on the time-on-study scale, because
follow-up begins at different ages for different subjects. Using age as the time scale therefore
implies staggered or delayed entry into the study, and at any given age, some subjects are
not yet under observation whereas others are no longer under follow-up. The right panel
of Figure 2.1 shows the same four follow-up times as the left panel, but now on the age
scale. The start of follow-up is the age at which each woman was diagnosed with breast
cancer, which ranges from 21 to 48 years. This starting age is indicated by the left end
of each horizontal follow-up line. When woman 1 fails, woman 2 has not yet entered the
study, and thus not yet under observation. Therefore only three women are at risk at the
age when the first failure occurs. Thus, the number of subjects at risk does not decrease
monotonically with age and risk sets are not nested, unlike the risk sets on the time-on-
study scale. Another feature that may arise when using the age scale is left truncation, that
occurs when there are study restrictions on the age at inclusion. In the right panel of Figure
2.1, the minimal age of inclusion is 20 years, and individuals who failed at younger ages are
not part of the study. This feature of the data is not apparent on the time-on-study scale
plot. Left truncation is discussed more formally in the Section 2.4.

2.3 Censoring

Survival data are subject to a special missing data problem, namely censoring. In medical
studies one often finds that the event of interest has occurred in some but not all study
subjects when the observation period ends. For example, in a study of breast cancer recur-
rence after breast cancer diagnosis and treatment, some women will have died of non-breast
cancer causes before breast cancer recurrence. In addition, some women will have dropped
out of the study or be lost to follow-up before breast cancer recurrence, and some women
will remain alive and without breast cancer recurrence at the end of follow-up. These par-
tially observed times to breast cancer recurrence are called censored survival times. Several
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types of censoring are possible. Data are right censored when they are not observed exactly,
but only known to be above a certain value. Left censoring occurs when an observation
is not observed but only known to be below a certain value. Left censoring may occur for
example in studies of infectious diseases, where the time of infection of a person is only
known to have occurred before the time of a positive test for the infection. Both left and
right censoring are special cases of interval censoring, where an observation is known to fall
into an interval, but the exact value of the survival time is not observed.

The survival literature also distinguishes between type 1 and type 2 censoring. Type
I censoring occurs if a study or experiment with a given number of subjects stops at
a predetermined time, at which point any subjects remaining are right-censored. Type II
censoring occurs if a study or experiment stops when a predetermined number of subjects
are observed to have failed; the remaining subjects are then right-censored.

A common assumption is that censoring is not-informative, that is, each subject has a
censoring time that is statistically independent of his or her failure time.

2.3.1 Right censoring

We define notation for right censoring, which is the most common type of censoring in
observational and clinical studies. Reasons for right censoring include cessation of follow-up
at the end of the study, sometimes called administrative censoring, and other loss to follow-
up (e.g., individuals move away or do not respond to study inquiries). Right censoring
also occurs when a person dies from a cause unrelated to the outcome of interest. The
assumption that the censoring time is independent of the survival time of interest is plausible
for administrative censoring and for some types of loss to follow-up, but may be questionable
for certain types of loss to follow-up or deaths from other causes.

Let C be a nonnegative random variable that is independent of T . Under right censoring
one only observes the minimum of the censoring time and the survival time, X = min(C, T )
and the indicator for the event, δ(t) = I(T = t, C ≥ t), where I(.), the indicator function,
is 1 if the argument is true and 0 otherwise. Thus T is completely observable only if T ≤ C,
i.e., when δ(t) = 1. The data for an individual at time t are (X, δ(t)). If T and C are
independent, the survival function of X = min(C, T ) is the product

SX(t) = S(t)SC(t),

where SC denotes the survival function for the censoring variable C. Here S(.) and Λ(.)
are the survival function and the cumulative hazard function of T . Using that dF (t) =
S(t−)dΛ(t) from expression (2.5), it follows that

P (X ≤ t, δ = 1) = P (T ≤ t, C > t) =

∫ t

0

SC(u−)dF (u) =

∫ t

0

SX(u−)dΛ(u),

and solving for Λ yields

Λ(t) =

∫ t

0

S−1
X (u−)dP (X ≤ u, δ(u) = 1). (2.6)

Thus, under the assumption of independent censoring, P (X ≤ t, δ = 1) and SX(t) uniquely
determine the cumulative hazard function Λ(t) of T , and Λ is estimable from the observed
censored survival data on 0 ≤ t ≤ t∗, where t∗ is the smaller of the two values max(T ) and
max(C). The assumption of independence of C and T cannot be tested, however, but has
to be justified based on the nature of the censoring process.
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2.4 Truncation

Another form of missing data that is often encountered in survival analysis is truncation. A
truncated sample contains information only on subjects who satisfy a truncation condition,
such as women at least fifty years old at study entry. A truncated sample provides no
information on those not satisfying the truncation condition, not even how many there
were. In contrast, censored observations are part of the study sample, and the censoring
times or intervals are used in the analysis.

Left truncation occurs when the study is restricted to individuals who are a certain
age or older at recruitment. For example a study of breast cancer incidence might include
only women aged fifty or older. Women whose event time occurs before that age are not
observed, and no information is available for them. Right truncation occurs when the study
is restricted to individuals who have experienced the event at or before a given date. For
example, a study population might only include persons who developed clinical acquired
immune deficiency syndrome (AIDS) before 1990.

In the presence of truncation, the non-truncated observations have a survival distribution
that is conditional on not being truncated.

2.5 Life-table estimator

One of the oldest estimators of the survival function is based on life tables (see, e.g., (Chiang,
1968)). A life table is a summary of survival data grouped into intervals. It is often applied in
situations when actual failure and censoring times are not available, and only total numbers
of failures and individuals at risk are given for particular intervals. An example of a life
table for women who died from breast cancer between ages 60 and 75 is given in Table 2.1.
Let di denote the number of failures (or events) in the ith time interval Ii = [ti−1, ti), ci the

Table 2.1: Life-table estimate of breast cancer mortality in 1000 60-year-old women diag-
nosed with breast cancer

Age Interval i ni di ci qi Ŝi =
∏

j≤i(1− qj)

[60, 65) 1 1000 17 44 0.017 0.983
[65, 70) 2 939 20 63 0.022 0.961
[70, 75) 3 856 22 89 0.027 0.935

number of censored observations and ni the number of individuals at risk at the beginning
of the time interval, which is equal to the number of individuals who neither experienced
the event nor were censored up to time ti−1. The censoring can be assumed to occur at
the beginning, the end or on average halfway through each interval. The last assumption is
appropriate if censoring occurs uniformly throughout the intervals and yields the standard
life-table estimate of the conditional probability of failure in Ii, q̂i = 0 if ni = 0 and

q̂i =
di

ni − ci/2

otherwise. The corresponding estimate of the survival function at the end of the ith interval
is

LT (ti) = Ŝ(ti) =
∏

l≤i

(1− q̂l). (2.7)

The variance of this estimate can be obtained by the following heuristic derivation (see
Greenwood (1926)) that relies on the fact that outcomes in various intervals are uncorre-
lated, as follows from the conditional independence of events in subsequent intervals given



16 DEFINITIONS AND BASIC CONCEPTS FOR SURVIVAL DATA

outcomes in previous intervals. Thus cov(q̂i, q̂j) = 0 for i < j, and p̂i = 1 − q̂i has the
binomial variance v̂ar(p̂i) = p̂iq̂i/(ni − ci/2). Applying the delta method (Cramer, 1947, p.
353) to log Ŝ(t) =

∑
i log(1 − q̂i) =

∑
i log(p̂i) yields var(log p̂i) ≈ q̂i/{p̂i(ni − ci/2)} and

thus

var{log Ŝ(t)} ≈
∑

i

q̂i
p̂i(ni − ci/2)

=
∑

i

di
(ni − ci/2)(ni − di − ci/2)

.

Using S(t) = exp{logS(t)}, and applying the delta method leads to the Greenwood-type
formula for variance,

v̂ar{Ŝ(t)} = {Ŝ(t)}2
∑

i

di
(ni − ci/2)(ni − di − ci/2)

. (2.8)

2.5.1 Kaplan–Meier survival estimate

The Kaplan–Meier or product limit estimator is the limit of the life-table estimator when
intervals are so small that at most one distinct failure time occurs within an interval. There
may be more than one failure at that time, however. This estimator is the non-parametric
maximum likelihood estimate of the survival function under right-censoring (Kaplan and
Meier, 1958). By convention, it is a right continuous step function which takes jumps only
at the event times.

Let d(t) denote the number of events at time t. Typically d(t) is either zero or one, but
we also allow tied event times, in which case d(t) can be greater than one. Let n(t) denote
the number of individuals at risk just prior to time t. Then the Kaplan–Meier estimate is
defined as

KM(t) = Ŝ(t) =
∏

u≤t

{
1− d(u)

n(u)

}
. (2.9)

The above product changes only at times t where d(t) > 0, that is at times when events
occur. Due to its form and its limit relationship to the life-table estimate, Kaplan and Meier
(1958) called the estimator (2.9) the product limit estimator. Note that in the absence of
censoring, KM is identical to 1−Fn, where Fn is the usual empirical distribution function
of the observed event times, Fn(t) = (1/n)

∑n
i=1 I(Ti ≤ t).

Because exp(−x) ≈ 1−x for values of x that are close to zero, the Kaplan-Meier estimate
can also be approximated by

KM(t) = Ŝ(t) ≈
∏

u≤t

exp

{
− d(u)

n(u)

}
= exp



−

∑

u≤t

d(u)

n(u)



 .

Several variance estimators are available, including Greenwood’s formula,

v̂ar{Ŝ(t)} = {Ŝ(t)}2
∑

ti≤t

di
ni(ni − di)

.

Rigorous derivations of the variance, that confirm the validity of Greenwood’s formula, can
be found in the counting process literature for survival analysis (e.g., (Andersen et al.,
1993)).

A non-parametric estimate of the cumulative hazard rate function, the Nelson–Aalen
estimator (Nelson, 1969; Aalen, 1976), is given by

Λ̂(t) =
∑

ti≤t

di
ni
.

Its variance estimate is v̂ar{Λ̂(t)} =
∑

ti≤t di/[ni(ni − di)]. Applying the delta method to
the relationship log S(t) = −Λ(t), one again obtains the Greenwood formula.
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2.6 Counting processes and Markov methods

Aalen (1978) introduced multivariate counting processes into the study of lifetime data,
under a variety of censoring mechanisms, including right censoring. We briefly outline this
very useful approach and notation that we later use to derive distributional properties of
various estimates.

We assume that for each of n individuals in a cohort we observe the random vector
(Xi, δi), i = 1, . . . , n, where the observed event time Xi = min(Ci, Ti) is the minimum of
the censoring time Ci and the survival time Ti, and δi(t) = I(Ti = t, Ci ≥ t) is the event
indicator for the ith individual. For individual i the counting process Ni(t) is defined as
Ni(t) = I(Xi ≤ t, δi = 1), t ≥ 0. The process jumps when the individual experiences the
event. Typically Ni(0) = 0. The “at risk process” for the ith individual is Yi(t) = I(Xi ≥ t)
for t ≥ 0. Under the assumption of independent censoring and given the past up to and
including time t, represented by σ-fields {Ft}, Ni(t) has the intensity process λi(t), given
by

λi(t)Yi(t)dt = P (dNi(t) = 1|Ft),

where dNi(t) = Ni(t) − Ni(t−) is the increment of Ni at time t. We let Ni(t−) =
limǫ→0+N(t − ǫ). As Ni is a binary process, we can reformulate the above relationship
as

E(dNi(t)− λi(t)Yi(t)|Ft) = 0.

Thus the process Mi(t) = Ni(t)−
∫ t

0 λi(s)Yi(s)ds ≡ Ni(t)−
∫ t

0 Yi(s)dΛi(s) has expectation

zero. The expression Λi(t) =
∫ t

0 λi(s)ds is called the cumulative intensity of Ni.
For the whole cohort, the aggregated processes

N(t) =

n∑

j=1

Nj(t)

and

Y (t) =

n∑

j=1

Yj(t), t ≥ 0

count the number of events through time t and the number of individuals still at risk of
failure just before time t, respectively. The sample paths of N jump whenever events occur,
and are thus non-decreasing step functions, i.e., for s ≤ t, N(s) ≤ N(t). The step size at
time t, dN(t) = N(t)−N(t−), is the number of events occurring exactly at t. In the absence
of ties, dN(t) = 1 when an event occurs at time t or 0 otherwise. The number of individuals
censored at time t is w(t) = [Y (t)− Y (t−)]− dN(t).

In the counting process notation, the sample counterparts of the survival function SX(t)
and the probability P (T ≤ t, δ = 1) are

ŜX(t−) = Y (t)/n and P̂ (T ≤ t, δ = 1) = N(t)/n.

Substituting these two expression into Equation (2.6) yields an estimate of the cumulative
hazard process, the Nelson–Aalen estimator

Λ̂(t) =

∫ t

0

dN(u)

Y (u)
=
∑

ti≤t

dN(ti)

Y (ti)
, (2.10)

which is an increasing right-continuous step function with increments dN(ti)/Y (ti) at the
observed event times ti. In the absence of ties the estimate further simplifies to Λ̂(t) =∑

ti≤t
1

Y (ti)
.
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Aalen (1978) showed that the process

M(t) =
1√
n

{
N(t)−

∫ t

0

Y (u)dΛ(u)

}

is a square integrable martingale with respect to the past up to and including time t,
represented by σ-fields {Ft}. The martingale can be regarded as a centered error process.
Martingales are fundamental stochastic processes for which a large body of theory has been
developed. Given the past, i.e., {Ft}, Y (t) is fixed, and not random. In brief, a martingale
{M(t), t ≥ 0} is a stochastic process whose increments over an interval (t0, t1] given {Ft0},
have expectation zero, E(M(t1) −M(t0)|Ft0) = 0. Given Ft, M(t) is fixed. Central limit
theorems for martingales allow the derivation of asymptotic properties of estimators and
test statistics based on N(t). For example, the process

√
n{Λ̂(t)−Λ(t)} also is a martingale

with respect to {Ft}. From the martingale central limit theorem (Rebolledo, 1980), this
process converges weakly to a Gaussian process for each t. The unbiasedness and asymptotic
normality of Λ̂(t) allow us to compute asymptotic normal pointwise confidence intervals for
Λ(t) at time t, given by [Λ̂(t) − z1−α/2se{Λ̂(t)}, Λ̂(t) + z1−α/2se{Λ̂(t)}], where zα denotes
the α quantile of the standard normal distribution and se stands for the standard error.
Simultaneous confidence bands for Λ̂(t) are also available, and are discussed in detail in
Chapter IV.1.3 of Andersen et al. (1993). As Ŝ(t) = exp{−Λ̂(t)}, this result can also be used
to construct 95% confidence intervals for the survival function S(t), given by exp[−Λ̂(t) ±
z1−α/2se{Λ̂(t)}].

The Kaplan–Meier estimator in (2.9) and the life-table estimator in (2.7) can be written
in counting-process notation as

KM(t) = Ŝ(t) = lim
ǫ→0+

∏

u:u+ǫ≤t

{
1− dN(u)

Y (u)

}
(2.11)

LT (t) = lim
ǫ→0+

∏

u:u+ǫ≤t

{
1− dN(u)

Y (u)− w(u)/2

}
,

respectively. In Equation (2.9), n(u) was used instead of Y (u) and d(u) was used instead
of dN(u), to be consistent with the earlier literature. As the Kaplan–Meier estimate (2.11)
is asymptotically equivalent to exp{−Λ̂(t)}, it’s properties can be obtained from those of
Λ̂(t).



Chapter 3

Competing risks

3.1 Concepts and definitions

In Chapter 2 we assumed that only one event, such as breast cancer recurrence, could occur,
apart from independent censoring. If deaths from other causes occurred, they were treated
as independent censoring. Now we consider the possibility that any of M events can occur,
apart from censoring. If the occurrence of one of these events precludes any subsequent event,
the M events are called competing risks. Often the focus is on a particular risk, or a subset
of risks. For example, in a long term study of a new treatment for women diagnosed with
breast cancer, the main outcome of interest might be death from breast cancer. However,
some women will die of causes other than breast cancer, and either of these two types
of death precludes the other. One therefore needs to account for the competing effects of
death from other causes to appropriately assess the impact of treatment on breast cancer
mortality (Figure 3.1). The chance of dying from breast cancer may be reduced either
because treatment forestalls breast cancer death or, possibly, because it increases risk of
mortality from other causes.

We now formalize these ideas for M ≥ 2 competing risks (Figure 3.2). These ideas are
discussed in several textbooks for survival methods (Andersen et al., 1993; Kalbfleisch and
Prentice, 2002; Pintilie, 2006; Beyersmann et al., 2012; Geskus, 2016). A person is in state
δ = 0 until one of M competing events (say event m) occurs, at which time the person is
in the absorbing state m (Figure 3.2). In particular, we observe the state process δ(t) that
takes values in {0, 1, . . . ,M} with δ(0) = 0 and describes the state a person is in at time t.
We also observe the time T to the first ofM ≥ 2 event types. Thus T = inf{t > 0 : δ(t) 6= 0}
is the first time when the process δ is no longer in the initial state and δ(T ) corresponds to
the type of event and extends the event indicator in Section 2.6 to multiple event types. For
practical applications it is also necessary to account for right censoring. As in Section 2.3.1,
we let C denote the censoring process, that is assumed to be independent of T . The observed
event time is the minimum of the censoring time and the survival time, X = min(C, T ).
The state indicator δ also captures censoring; if a person is censored at a particular time
s, then no event of types 1 through M has occurred, and thus the person remains in the
initial state, i.e., δ(s) = 0. Although we assume that censoring is independent from T , we
make no assumptions regarding the dependence of the M times to competing events.

The transition rate from state 0 to state m is described by the cause-specific hazard
function,

λm(t) = lim
ǫ→0+

P (t ≤ T < t+ ǫ, δ(T ) = m|T ≥ t)

ǫ
. (3.1)

λm gives the instantaneous failure rate from cause m at time t in the presence of all other
failure types. For example, suppose one is primarily interested in mortality from breast
cancer as in Figure 3.1. Letting m = 1 denote death from breast cancer and m = 2 death
from other causes, we define λ1(t) as the mortality rate from breast cancer death among
women alive at age t, and λ2(t) as the mortality rate from all other causes among women
alive at age t.

19
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Figure 3.1: Competing risks of death from breast cancer or death from other causes following
breast cancer diagnosis and treatment. Corresponding cause-specific hazards are λ1 and λ2,
respectively.

The cause-specific hazard functions for M competing events are depicted in Figure 3.2.
Assuming that only one failure type can occur at a given time t, the overall hazard of T is

λ(t) =
M∑

m=1

λm(t),

and the probability of having no event at or before t is

S(t) = P (T > t) = exp

{
−
∫ t

0

λ(u)du

}
= exp

{
−
∫ t

0

M∑

m=1

λm(u)du

}
. (3.2)

We also define, by analogy with S(t), the function Sm(t) = exp
{
−
∫ t

0
λm(u)du

}
, where

Λm(t) =
∫ t

0
λm(u)du is the integrated or cumulative cause-specific hazard for cause m.

Note however that Sm(t) does not have a survival function interpretation (see Kalbfleisch
and Prentice (2002), p. 252, and Prentice et al. (1978)) without further assumptions that
are discussed in Section 3.2.

Example: When the cause-specific hazard functions λm(t) = γmαmt
αm−1,m =

1, . . . ,M arise from Weibull distributions, the overall hazard λ(t) =
∑

m λm(t) =∑
m γmαmt

αm−1. The overall survival function S(t) =
∏

m exp(−γmtαm).
A key quantity is rm = P (T ≤ t, δ(T ) = m), the cumulative incidence function or

absolute risk, for a failure of type m, namely the probability of experiencing an event from
cause m by time t in the presence of M − 1 competing events. The absolute risk is also
known as the crude risk in the literature. In order to define rm we first define the sub-density
function for the time to a failure of type m,

fm(t) = lim
ǫ→0+

P (t ≤ T < t+ ǫ, δ(T ) = m)

ǫ
= λm(t)S(t),m = 1, . . . ,M. (3.3)
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Figure 3.2: Competing risk model with M competing events and with cause-specific hazard
functions λm(t).

Then the absolute risk of event type m in the interval (0, t] is

rm(t) = P (T ≤ t, δ(T ) = m) =

∫ t

0

fm(u)du =

∫ t

0

λm(u)S(u−)du =

∫ t

0

λm(u)
M∏

i=1

Si(u−)du.

(3.4)
The probability of ever having an event of type m is given by pm = limt→∞ rm(t), and∑M

m=1 pm = 1. As typically pm < 1, rm is not a proper distribution but a sub-distribution.
Note that rm(t) is a functional of {λk}Mk=1 and hence is identifiable from observable data
(Section 3.2).

In practical applications a conditional version of rm is often used, namely the conditional
probability of experiencing an event from cause m within the time interval (t0, t1] in the
presence of M − 1 competing events, given survival up to t0,

rm(t0, t1) = P (t0 < T ≤ t1, δ(T ) = m|T ≥ t0) =

∫ t1
t0
λm(u)S(u−)du

S(t0−)

=

∫ t1
t0
λm(u)

∏M
k=1 Sk(u−)du

∏M
k=1 Sk(t0−)

=

∫ t1

t0

λm(u) exp

{
−
∫ u

t0

M∑

k=1

λk(s)ds

}
du. (3.5)
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Notice also that

M∑

m=1

rm(t0, t1) =

∫ t1

t0

M∑

m=1

λm(u) exp

{
−
∫ u

t0

M∑

k=1

λk(s)ds

}
du = 1−exp

{
−
∫ t1

t0

M∑

k=1

λk(s)ds

}

is one minus the probability of event-free survival in the interval (t0, t1].
In contrast to the absolute risk, which refers to the probability of a particular event in the

presence of all competing risks, the net or pure probability is the hypothetical probability of
that event if it were the only risk acting on a population. For example, the pure probability
of death from breast cancer is the hypothetical probability of dying from breast cancer if
all other causes of death were eliminated and if the cause-specific hazard of breast cancer
mortality were unchanged. Because in most applications competing risks are inevitable, the
absolute risk is more relevant to clinical management.

The pure probability of an event is larger than its absolute risk, which is reduced by
the action of competing risks. The pure probability is usually estimated as one minus the
Kaplan-Meier survival curve estimate for the event of interest, with all competing events
treated as independent censoring. Calculations of pure risk depend on non-identifiable as-
sumptions regarding the joint distribution of latent failure times for the several competing
events (Cox, 1959; Tsiatis, 1975; Gail, 1975). Assuming independence of the failure times
defines one such joint distribution and is consistent with the observable data (see Section
3.2). Thus the estimate of cumulative risk based on the Kaplan-Meier curve that treats com-
peting events as independent censoring is an estimate of the pure probability of the event
of interest, and it overestimates absolute risk, especially over long time intervals (t0, t1].
Special software is needed to estimate absolute risk.

Competing risk models are a special case of multistate models, that may also describe
events that occur after a primary event of interest. For example, in a multistate model one
could have the states “well”, “cancer” and “death”. The transition to the absorbing state
“death” can happen from either the “cancer” or the “well” state. States from which no
further transition is possible are typically termed “absorbing” states. The competing risk
setting can be thought of as a multistate model where all M states are absorbing. Excellent
overviews of multistate models and related software in R are given in Beyersmann et al.
(2012) and Geskus (2016). We discuss multistate models further in Section 10.4.2.

3.2 Pure versus cause-specific hazard functions

We contrast the cause-specific hazard λm for the m-th cause defined in (3.1) with the net
or pure hazard function for cause m,

λpm(t) = lim
ǫ→0+

P (t ≤ T < t+ ǫ|T ≥ t, no other causes acting)

ǫ
. (3.6)

To illustrate the difference it is helpful to introduce the notion of latent failure times. Letting
the variable Tm denote the time of failure for an event of cause m, the observed time until
the first of M event types can be written as T = min(T1, . . . , TM ). Given the joint survival
function of the M causes,

S(t1, . . . , tM ) = P (T1 > t1, . . . , TM > tM ),

one interpretation of “no other causes acting” is that Tm has the marginal survival function
P (Tm > tm) = S(0, . . . , 0, tm, 0, . . . , 0). The pure hazard function for Tm is then obtained
from the marginal survival function as

λpm(t) = − ∂

∂tm
log{S(t1, . . . , tM )}|tm=t,tk=0,k 6=m.
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The cause-specific hazard function, however, is based on the relationship

λm(t) = − ∂

∂tm
log{S(t1, . . . , tM )}|t1=...=tM=t.

Note that S(t, . . . , t) = P (T1 > t, . . . , TM > t) = exp
{
−
∫ t

0

∑M
m=1 λm(u)du

}
is equal to

the overall survival probability S(t) given in (3.2), which is estimable from the observed
data. The cause-specific hazards are estimable because we can observe the instantaneous
risk of event m among those at risk at t. In fact, assuming T is independent of censoring,
the observed data for a subject contribute the factor S(t)

∏M
m=1{λm(t)}I{δm(t)=1} to the

likelihood. This factor is a function only of the cause-specific hazards, showing they are
estimable (Prentice et al., 1978). Because λm is estimable from observed data, any function
that depends only on the cause-specific hazards is also estimable. In contrast, the joint
survival function S(t1, . . . , tM ) is only identifiable from observed data under parametric
models or under the assumption that the failure times Tm are independent (Tsiatis, 1975;
Gail, 1975). Neither of these modeling assumptions can be tested with available data. Under
independence of the Tm, the cause-specific hazard for cause m, λm, is equal to the pure
hazard function, λpm, and hence Sm(t) is a survival function. However, the independence
assumption is especially dubious in medical applications, because a person at high risk of
one such event may also be at elevated risk of other causes. Moreover, medical interventions
designed to reduce risk for or eliminate one event may also effect the hazard functions of
other types of events. Although no independence assumptions are required to estimate cause-
specific hazards λm(t) or any functionals of them (Prentice et al., 1978), the censoring time
C is assumed to be independent of the event time T and the distribution of C is assumed
to be functionally independent of {λm(t)}.

Before we discuss covariate modeling for absolute risk in Chapter 4, we present non-
parametric estimates of absolute risk based on observations from a cohort in Section 3.3.

3.3 Non-parametric estimation of absolute risk

We consider a cohort of n individuals who are followed prospectively. Recall that we observe
the time X = min(T,C), which is the minimum of the time T to the first of M event types
or censoring, C. The state process is δ(t), where δ(t) = m if an event of type m occurs at or
before time t, m = 1, 2, ...,M . If no events have occurred, δ(t) = 0. Extending the notation
in Section 2.6, we define the cause-specific counting process Nim(t) = I(Xi ≤ t, δ(t) = m)
for individual i, and let Nm(t) =

∑n
i=1Nim(t), t ≥ 0,m = 1, . . . ,M denote the number of

events of type m that have occurred in the interval (0, t] and dNm(t) denote the number of
events of type m occurring exactly at time t. The total number of events in (0, t] is given

by N(t) =
∑M

m=1Nm(t). The number of individuals at risk just prior to time t is Y (t).
Truncation can also be accommodated in this setup, but for ease of exposition we only
consider right censoring. We let ti, i = 1, . . . , N(∞) denote the observed event times of any
of the M events types, but not censoring.

A non-parametric estimate of the probability of overall survival up to time t is obtained
from the Kaplan-Meier estimate as

P̂ (T ≤ t) = 1− Ŝ(t) = 1−
∏

ti≤t

{
1− dN(ti)

Y (ti)

}
=
∑

ti≤t

{
dN(ti)

Y (ti)
Ŝ(ti−)

}
. (3.7)

Because P (T ≤ t) =
∑M

m=1 P (T ≤ t, δ(T ) = m) and dN(ti) =
∑M

m=1 dNm(ti), an estimate
of rm(t) can be derived from the above expression as

r̂m(t) =
∑

ti≤t

{
dNm(ti)

Y (ti)
Ŝ(ti−)

}
≡
∑

ti≤t

λ̂m(ti)Ŝ(ti−). (3.8)
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The right-hand side of Equation (3.8) is a non-parametric estimator of (3.4). The overall

survival estimate ˆS(t) depends on all M events and is obtained without any assumption
of independence. As mentioned previously, an estimate of the “pure risk” of event type m
is obtained by treating all other events as independent censoring and applying life-table
or Kaplan-Meier procedures. This estimate of the hypothetical probability of event type m
in the absence of other causes of failure is only valid if the intervention to eliminate other
causes of failure does not alter λm(t) and if the unverifiable independence assumption holds.

Gaynor et al. (1993) derived the variance of r̂m(t) in (3.8), using a first order Taylor
approximation, as

v̂ar {r̂m(t)}
=
∑

j:tj≤t

v̂ar
{
λ̂m(tj)Ŝ(tj−)

}
+ 2

∑

{j:tj<t}

∑

{k:tj<tk≤t}

ĉov
{
λ̂m(tj)Ŝ(tj−), λ̂m(tk)Ŝ(tk−)

}
.

The terms in the previous equation are

v̂ar
{
λ̂m(tj)Ŝ(tj−)

}

=
{
λ̂m(tj)Ŝ(tj−)

}2
{
Y (tj)− dNm(tj)

dNm(tj)Y (tj)
+

j−1∑

k=1

dNm(tk)

Y (tk){Y (tk)− dNm(tk)}

}

and

ĉov
{
λ̂m(tj)Ŝ(tj−), λ̂m(tk)Ŝ(tk−1)

}
= λ̂m(tj)Ŝ(tj−)λ̂m(tk)Ŝ(tk−)

×
{
− 1

Y (tj)
+

j−1∑

l=1

dNm(tl)

Y (tl){Y (tl)− dNm(tl)}

}
.

Andersen et al. (1993) (Section IV.4) presented a Greenwood-type estimate for the variance
of r̂m(t) in Equation (3.8).

Example: We now illustrate the non-parametric estimate of rm and contrast it with the
Kaplan–Meier estimate of “pure risk”. We assume that M = 2, that the primary outcome
m = 1 denotes deaths due to breast cancer, and that the second outcome corresponds to
deaths from causes other than breast cancer (Figure 3.1). We also assume no censoring in
this example, which simplifies the computations. The numbers in Table 3.1 are the same as

Table 3.1: Life-table of breast cancer mortality and other-cause mortality in 1000 women
diagnosed with breast cancer at age 60

Age Interval ni d1i d2i
[60, 65) 1000 17 44
[65, 70) 939 20 63
[70, 75) 856 22 89

The number at risk at the beginning of the interval is ni, and the numbers dying of breast
cancer and of other causes are, respectively, d1i and d2i.

in Table 2.1, but the censoring column in Table 2.1 becomes deaths from causes other than
breast cancer (d2i) in Table 3.1. Applying formula (3.8) to the numbers in Table 3.1, we see
that the absolute risk of dying from breast cancer by age 75 is

r̂1(75) =
17

1000
+

20

939

939

1000
+

22

856

856

1000
=

17 + 20 + 22

1000
= 0.059.
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In contrast, the Kaplan–Meier estimate of the pure probability of dying from breast cancer
by treating other causes of death as censoring is

1−KM(75) = 1− Ŝ(75) = 1−
(
1− 17

1000

)(
1− 20

939

)(
1− 22

856

)
= 0.063.

The estimate r̂1(75) = 0.059 is smaller than the Kaplan–Meier estimate of “pure risk”,
0.063, because a woman who may die of non-breast cancer causes has a reduced chance of
dying of breast cancer, compared to a hypothetical woman who is not at risk from non-
breast cancer mortality. Although the difference between the absolute and pure risk is small
in this example, risk projections over long time periods can be quite different.

Chapters 4 and 5 describe methods for estimating absolute risk rm(t) from cohort data
and other types of data, with the inclusion of covariates.
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Chapter 4

Regression models for absolute risk estimated

from cohort data

In Chapter 3 we discussed how to estimate absolute risk non-parametrically for a single
homogeneous cohort. Interest often centers on estimating absolute risk for persons with
specific characteristics measured by covariates. If there are only a few combinations of
categorical risk factors, one might be able to use the methods of the previous chapter
separately for strata defined by these combinations. Usually, however, the data are too sparse
for the stratification approach and one uses modeling to incorporate covariate information
and to obtain covariate-specific estimates of absolute risk. There are two basic approaches to
incorporate information on covariates Z = (Z1, . . . , Zp). In the first approach, rm depends
on Z through the cause-specific hazard functions λm,m = 1, . . . ,M , any or all of which
may depend on Z. Some components of Z may affect some cause-specific hazards and
not others. In the second approach, often referred to as cumulative incidence regression,
see e.g., Fine and Gray (1999), one directly models rm(t) as a function of Z. We discuss
estimating absolute risk for both approaches. For the cause-specific hazard models, we also
discuss estimation from sub-samples of a cohort, including nested case-control and case-
cohort studies, and from cohorts obtained by complex sampling from a general population.
In Chapter 5, under the cause-specific hazards model, we show how to combine estimates of
relative and attributable risk from observational studies with overall population incidence
rates of the primary and competing events to estimate absolute risk. We present methods
for estimating absolute risks, with examples, in Sections 4.1, 4.2, 4.3, 4.4, and 4.5. Variance
calculations and confidence interval construction are discussed in a concluding Section 4.6.

4.1 Cause-specific hazard regression

Cause-specific hazard regression incorporates covariates as in panel a of Figure 4.1 to calcu-
late the absolute risk rm of experiencing the mth event type within the time interval (t0, t1]
in the presence of M − 1 competing events. Given that one is alive and failure-free at t0,
the absolute risk is

rm(t0, t1;Z = z) = P (t0 < T ≤ t1, δ = m|T > t0, z) =

∫ t1

t0

λm(u, zm)S(u−)du =

∫ t1

t0

λm(u; zm) exp{−
∫ u

t0

M∑

k=1

λk(s; z
k)ds}du, (4.1)

where T is the time to the first event, z is the vector of all covariates that affect any of theM
cause-specific hazards, zm denotes the subset of covariates in z that affect λm,m = 1, . . . ,M
and δ denotes the event type. Z denotes a random covariate vector, whereas z denotes a
particular realization of Z.

27
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Figure 4.1: Incorporating covariates Z into estimates of absolute risk rm via the cause-
specific hazard functions (transition rates) λk, k = 1, . . . ,M or directly, via cumulative
incidence regression.

We assume that covariates in (4.1) remain fixed at their values at the beginning of the
projection interval, t0. However, expression (4.1) is valid if z or some components of it vary
with time, provided that the cause-specific hazard functions are correctly specified, and
provided the covariates are “external” (Kalbfleisch and Prentice, 2002). We defer discussion
of time-dependent covariates to Section 10.4.1. The risk time scale could be age or time
since diagnosis of a particular disease.

To estimate rm, one plugs estimates λ̂k, k = 1, . . . ,M of the cause-specific hazard func-
tions into Equation (4.1), i.e.,

r̂m(t0, t1; z) =

∫ t1

t0

λ̂m(u; zm) exp{−
∫ u

t0

M∑

k=1

λ̂k(s; z
k)ds}du. (4.2)

The most common models for cause-specific hazard functions are relative risk models,
that assume that the vector of covariates Z influences the hazard function through

λm(t; zm) = λ0m(t)rr(β′
mzm),m = 1, . . . ,M, (4.3)

where rr denotes the relative hazard, a non-negative scalar function of β′
mzm, and λ0m(t) =

λm(t; z0) stands for the baseline hazard function for cause m at time t at the referent or
baseline covariate level z0. When rr is the exponential function, one obtains the enormously
popular Cox regression model (Cox, 1972),

λm(t; zm) = λ0m(t) exp(βmzm),m = 1, . . . ,M. (4.4)

If individuals 1 and 2 have the same values for all components of zm except component k,
and values zk + 1 and zk for that component, respectively, their relative hazard from (4.4)
is

λm(t; zm1 )

λm(t; zm2 )
= exp{β′

m(zm1 − zm2 )} = exp(βmk),
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where βmk is the log relative hazard for component k. Thus the effect of a unit increase in
zk with all other components of Z fixed is to multiply the hazard function by exp(βmk),
which is also referred to as the relative risk associated with zk. If covariates are fixed in
Equation (4.4), the relative risk for two individuals with different covariates are constant
over time, but not if the covariates vary.

In the next section we outline inference for absolute risk in Equation (4.2) from cohort
data when the cause-specific hazard functions are modeled by (4.4), as was first discussed by
Benichou and Gail (1990a) for a piecewise constant baseline hazard function and for a non-
parametric baseline hazard function. We present point estimates for rm for non-parametric
and for piecewise constant baseline hazard functions. Variance estimates are in Section 4.6.

4.1.1 Estimation of the hazard ratio parameters

We now show how to estimate the regression parameters for the cause-specific hazard func-
tions under a Cox proportional hazards assumption, following (Cheng et al., 1998). We
allow for right censoring that may depend on covariates in the model. Left truncation can
be accommodated by proper definition of the “at risk” indicator Yi(t). The observations
for individual i in the cohort are Xi = min(Ci, Ti), the covariates Zi, and δi(t), that takes
values in {0, 1, . . . ,M} and denotes the state individual i is in at time t. The “at risk”
indicator Yi(t) = 1, if t ≥ the entry time for possibly left truncated data and if t ≤ Xi;
otherwise Yi(t) = 0. Thus left truncation as well as right censoring are accommodated by
adjusting the risk set. The quantity {Nmi(t) = I[Xi ≤ t, δi = m], t ≥ 0} denotes a process
that jumps when individual i experiences an event of type m. Extending the notation of
Section 2.6, we set Nm(t) =

∑n
i=1Nmi(t) and Y (t) =

∑n
i=i Yi(t), t ≥ 0, which count the

number of events of type m and the number of individuals still at risk at time t, respectively.
Note that in Figure 4.1, Panel a, Yi(t) = 0 following any event or censoring.

Due to the semi-parametric form of (4.4), standard likelihood methods cannot be applied
to estimate the regression coefficients β. Instead, Cox (1972, 1975) estimated β based on a
partial likelihood. The conditional probability that individual i had an event of type m at
time t, given that there was exactly one event of type m at that time and given all those
at risk at time t, is

λm(t,Zm
i )∑n

j=1 λm(t,Zm
j )Yj(t)

=
exp(β′

mZm
i )∑n

j=1 exp(β
′
mZm

j )Yj(t)
, (4.5)

where the factor λ0m has canceled out of the numerator and denominator. In the competing
risk setting, the partial likelihood for β is the product over all failures times tl of the
conditional probabilities for all m event types, and thus independent of the baseline hazard
functions; the partial likelihood is

PL(β) =

M∏

m=1

n∏

i=1

∏

t≥0

(
Yi(t) exp(β

′
mZm

i )∑n
j=1 Yj(t) exp(β

′
mZm

j )

)dNmi(t)

. (4.6)

Hereafter we assume that the components of β that correspond to each of the outcomesm =
1, . . . ,M are distinct, and functionally independent. In particular, there is no assumption of
any common effects of any of the covariates on theM outcomes. Then the partial likelihood
(4.6) factors into separate partial likelihoods,

PL(β) =
M∏

m=1

PL(βm). (4.7)

In this usual case, estimates for the cause-specific regression coefficients β̂m can be obtained
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by maximizing M partial likelihood functions for each event type separately, i.e., by solving
separate vector equations

~U(βm) =

n∑

i=1

dNmi(ti){zmi − ~E(βm, ti)},m = 1, . . . ,M, (4.8)

where

~E(βm, t) =

∑n
i=1 Yi(t) exp(β

′
mZm

i )Zm
i∑n

i=1 Yi(t) exp(β
′
mZm

i )
. (4.9)

Standard statistical software such as PROC PHREG in SAS (SAS Institute Inc., 2011) or

the package survival written in R can be utilized to obtain β̂m, by treating all event types
k 6= m as censoring events. In addition to point estimates, this approach also provides valid
estimates of the variance of β̂m. Alternatively, standard optimization algorithms can be

used to obtain the maximum partial likelihood estimator β̂m such that ~U(β̂m) = 0.
Prentice et al. (1978) pointed out that the full likelihood factored, analogous to Equation

(4.7), and indicated that the cause-specific hazards were therefore estimable and that event
types k 6= m could be regarded as censoring for estimating λm.

4.1.2 Non-parametric estimation of the baseline hazard

When no distributional assumption is made for the cause-specific baseline hazard function
λ0m(t), an estimator (Aalen, 1978) is

λ̂0m(t) =

∑n
i=1 dNmi(t)

∑n
i=1 Yi(t) exp(β̂

′

mZm
i )
, (4.10)

where β̂m maximizes the corresponding factor in (4.7). The non-parametric Nelson–Aalen
estimate of the cumulative cause-specific baseline hazard at time t is

Λ̂0m(t) =

∫ t

0

λ̂0m(s)ds =
∑

um
j
≤t

λ̂0m(umj ), (4.11)

with um1 < um2 < . . . < umNm
denoting the Nm observed event times for the mth event type.

The estimators β̂m and Λ̂0m are consistent, asymptotically normal, and asymptotically effi-
cient among semi-parametric Cox models (Andersen et al., 1993, Sect VIII 4.3). Specifically,

n1/2(β̂m −βm) converges to a normal distribution with mean zero and a covariance matrix

that can be estimated by nE−1
m where Em = −∂2 logPL(β)/∂β2

m is evaluated at β̂m. We
also define the estimated cumulative hazard for event type m,

Λ̂m(t; zm) =
∑

um
j
≤t

λ̂0m(umj ) exp(β̂
′

mzm) = Λ̂0m(t) exp(β̂
′

mzm). (4.12)

4.1.3 Semi-parametric estimation of absolute risk rm

The semi-parametric estimate of absolute risk of event type m within the interval (t0, t1],
given z and given no events until time t0 is

r̂m(t0, t1; z) = exp(β̂
′

mzm)
∑

t0<uj≤t1

λ̂0m(uj) exp

[
−

M∑

k=1

{Λ̂k(uj ; z
k)− Λ̂k(t0; z

k)}
]
, (4.13)

where uj are the observed event times of type m occurring in (t0, t1]. Gerds et al. (2017)
developed the R package riskRegression to perform these calculations when t0 = 0.
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4.1.4 Estimation of a piecewise exponential baseline hazard model

While a non-parametric baseline hazard function allows the most flexibility, we also consider
the piecewise constant baseline hazard model here for two reasons. First, data are sometimes
reduced for Poisson regression into numbers of events of various types and person-years
exposure within cells defined by time categories, such as ages 30 − 34, 35 − 39, . . . years,
and by cross-classifications on covariate levels. Such data are sufficient for estimation of
the piecewise constant baseline hazard model. A second motivation is that a parametric
model can greatly increase efficiency in comparison to semi-parametric methods when it
is a reasonable approximation to the true baseline. The piecewise exponential model is a
flexible choice among parametric models. In simulation studies for cohort data, Benichou
and Gail (1990a) reported up to fourfold efficiency gains for estimating absolute risk for the
piecewise exponential model compared to a non-parametric baseline hazard. Other flexible
parametric hazard functions such as splines could also be fit to the data.

We define a set of ordered possibly unequally spaced time intervals I1, I2, . . . , with
Iq = [τ0q, τ1q) and τ1q = τ0(q+1). Denote the constant cause-specific baseline hazard during
the qth time interval by λ0m(Iq). The baseline hazard function for cause m under the
piecewise exponential model is

λ0m(t) =
∑

q

λ0m(Iq)I(t ∈ Iq).

As in Benichou and Gail (1990a), the estimated absolute risk of event type m in (τ0k, τ1l]
given no events before τ0k is

r̂m(τ0k, τ1l; z) =

l∑

q=k

Ŝ(Iq)P̂m(Iq)
[
1− exp{−

M∑

v=1

λ̂0v(Iq) exp(β̂
′

vz
v)(τ1q − τ0q)}

]
, (4.14)

where P̂m(Iq) = λ̂0m(Iq) exp(β̂
′

mzm)/
∑

v λ̂0v(Iq) exp(β̂
′

vz
v) and

Ŝ(Iq) =
{
1 q = k∏q−1

j=k exp{−
∑

i λ̂0i(Ij) exp(β̂iz
i)(τ1j − τ0j)} q > k

. (4.15)

Let t0i be the time that the ith individual in the cohort is first at-risk and ti the time last
at risk. In the competing risk setting, ti occurs at the earlier of the time of any event or
censoring. Then the at-risk time for this individual during the qth interval is

Ai(τq) = I(t0i < τ1q ∩ ti > τ0q) {min{ti, τ1q} −max{t0i, τ0q}} . (4.16)

Note that the definition of Ai allows for left truncation. Set Dm(Iq) equal to the total
weighted person-time during the qth interval,

Dm(Iq) =
n∑

i=1

Ai(τq) exp(β̂
′

mzmi ).

Then given dm(Iq) =
∑n

i=1 I(δi(ti) = m, τ0q ≤ ti < τ1q) observed events of type m in
[τ0q, τ1q), the estimate for λ0m(Iq) is

λ̂0m(Iq) =
dm(Iq)
Dm(Iq)

.

This estimator is equivalent to (4.10) when the event times fall at the endpoints τiq, i = 0, 1
of the intervals on which λ0m is constant.

Under the piecewise exponential model, the baseline cumulative hazard from τ0k to time
t ≥ τ0k is

Λ̂0m(t) =
∑

q:τ0q<t

λ̂0m(Iq) (min{t, τ1q} − τ0q) .
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4.1.5 Alternative hazard models

The methodology can be applied to a broader set of hazard models by generalizing Equa-
tion (4.4), so that

λm(t; zm) = λ0m(t)rr(βm; zm), (4.17)

where rr(βm; zm) is a known non-negative scalar function of βm and covariates zm. If
the zm include a continuous exposure variable, zm1 (e.g., cumulative pack-years smoked or
absorbed radiation), one might consider an excess relative risk (ERR) model for zm1 (Preston
et al., 1993), such as

rr(βm; zm) = (1 + βm1z
m
1 ) exp(β′

m2z
m
2 ). (4.18)

To obtain the absolute risk estimates and variances for any model of the form of Equa-
tion (4.17), one derives estimating equations for βm from a partial likelihood by replacing
all instances of exp(β′

mzm) in Equation (4.4) and its first and second derivatives with
rr(βm; zm), ∂rr(βm; zm)/∂βm, and ∂2rr(βm; zm)/∂βm∂β

′
m, respectively. Given the esti-

mator β̂m, one would substitute rr(β̂m; zm) and its first derivative for their corresponding
quantities in the formulas of Sections 4.1.1 and 4.1.2 to derive point estimates and in the
formulas in Section 4.6.1 to estimate variances for absolute risk. Note that the estimate of
βm1 in (4.18) is constrained so that (1 + βm1z

m
1 ) > 0 for all feasible zm1 .

As an alternative to the proportional hazards model, Aalen (1989) proposed the additive
hazard model

λ(t,Z) = α0(t) +α(t)
′Z. (4.19)

Shen and Cheng (1999) studied estimates of absolute risk (4.1) based on a special case of
the additive model in (4.19), namely

λm(t,Z) = α0m(t) + β′
mZm. (4.20)

This model was first proposed by Lin and Ying (1994) who showed that estimates of β
in Equation (4.20) can be obtained in a closed form. Shen and Cheng (1999) discussed
estimation and prediction of the absolute risk rm when Equation (4.20) is used for the cause-
specific hazard functions and also constructed simultaneous confidence intervals for rm. If
Equation (4.20) holds for all M competing events, then the impact of the covariates Z on
the total hazard is given by the sum of their effects on the cause-specific hazard functions,∑

m λm(t) =
∑

m αm0(t) +
∑

m β
′
mZ. Schaubel and Wei (2007) established connections

between the model of Lin and Ying (1994) and both Cox and least squares regression and
showed how standard statistical software may be used to fit the additive hazards model.

Scheike and Zhang (2002, 2003) proposed a flexible additive-multiplicative hazard model,
the Cox–Aalen model, that combines the Cox proportional hazards model with the additive
model of Aalen,

λm(t,Z) = {αm(t)′Zm
1 } exp(β′

mZm
2 ), (4.21)

where the first entry of the vector Zm
1 is equal to one. This model reduces to the Cox model

when Zm
1 = 1 and to Aalen’s additive model when all components of Zm

2 are zero. Scheike
and Zhang (2002) studied estimates r̂m(t) based on the Cox–Aalen hazard model and also
provided variance estimates.

Although these alternative approaches to modeling cause-specific hazards are potentially
useful, we rely on the Cox model (4.4) in our examples and in Section 4.6 on variance
estimation.

4.2 Cumulative incidence regression

In the cause-specific hazards model, the absolute risk rm(t) = P (T ≤ t, δ = m|Z) depends
on the cause-specific hazards λk, k = 1, . . . ,M , of the main cause of interest, m, and of the
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M − 1 competing causes through a complex nonlinear relationship given in Equation (4.1).
It is therefore difficult to understand the effects of covariates on rm by simply examining
β̂m. A related issue is that standard methods for model assessment and covariate selection
for the cause-specific hazard model may apply to the individual estimated cause-specific
hazards, but not to modeling absolute risk itself. It is possible that a covariate influences
the absolute risk rm, but may not be strongly associated with any of the cause-specific
hazards, and therefore not be chosen for cause-specific modeling of absolute risk.

Cumulative incidence regression avoids these problems by incorporating covariates di-
rectly into rm(t,Z) via a link function,

g{rm(t)} = ψ0(t) + γ
′Z, (4.22)

where ψ0 is an unspecified invertible and monotone increasing function that captures the
baseline failure probability, see, e.g., (Fine, 1999). In this framework γ measures the distance
from the baseline probability g−1{ψ0(t)} on the scale of g. There is no subindex m for γ,
because γ is the only vector of regression coefficients that is estimated. Cumulative incidence
regression thus directly estimates this transformation model for rm without estimating
models for the other competing causes k = 1, . . . ,M, k 6= m. Recall from Section 3.1 that
not all individuals will experience an event of type m because limt→∞ rm(t) < 1. Thus rm
is referred to as a sub-distribution function, and some authors refer to regression models
for rm as sub-distribution regression models.

Before discussing cumulative incidence models in more detail, we describe a process
(Beyersmann and Schumacher, 2008) that helps formalize this approach to modeling rm.
Beyersmann and Schumacher (2008) defined the sub-distribution process δ∗(t) in terms of
the original competing risk process δ(t) as

δ∗(t) = I(δ(t) = m)δ(t) + I(δ(t) = k, k 6= m)δ(T−),

where T = inf{t : δ(t) > 0}. From this definition, the process δ∗ has only two states, 0 and
m, and remains in the initial state 0 if an individual experiences one of theM−1 competing
events. Thus the two processes δ and δ∗ have to be interpreted differently. If δ∗(t) = 0, then
an individual has not experienced an event of type m, while δ(t) = 0 is interpreted as “no
event by time t”. The corresponding time to the occurrence of an event of type m is then
T ∗ := inf{t > 0|δ∗(t) 6= 0}. Thus T ∗ = T if δ(T ) = m and T ∗ = ∞ if δ(T ) = k > 0, k 6= m,
and thus P (T ∗ ≤ t) = P (T ≤ t, δ = m) for all t ≥ 0 and P (T ∗ = ∞) =

∑
k 6=m P (δ(T ) = k),

which causes technical difficulties when fitting models, as explained in the next section.

4.2.1 Proportional sub-distribution hazards model

The best known cumulative incidence model, commonly referred to as the Fine and Gray
(FG) model (Fine and Gray, 1999), uses g(t) = log{− log(1 − t)} in Equation (4.22). This
model was introduced by Gray (1988). Using this link, Fine and Gray (1999) incorporated
covariates into rm via the sub-distribution hazard function for the event m, defined as the
probability that a subject fails from cause m in an infinitesimal time interval given that the
subject has not experienced the event of type m up to t,

hm(t,Z) = lim
ǫ→0+

1

ǫ
P{t ≤ T < t+ ǫ, δ = m|T ≥ t ∪ (T ≤ t ∩ δ 6= m),Z)}

= lim
ǫ→0+

1

ǫ
P (t ≤ T ∗ < t+ ǫ|T ∗ ≥ t,Z) =

d
dtrm(t,Z)

1− rm(t,Z)
= −d log{1− rm(t,Z)}

dt
. (4.23)

Fine and Gray (1999) assumed a proportional hazards model for the sub-distribution hazard,

hm(t,Z) = hm0(t) exp(γ
′Z), (4.24)
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where hm0(t) is an unspecified non-negative function of t. Recalling that g(t) = log{− log(1−
t)} in (4.22), we see that ψ0(t) ≡ log{

∫ t

0
h0m(s)ds} = log{H0m(t)} and thus

rm(t,Z) = 1− exp

{
−
∫ t

0

hm(s,Z)ds)

}
= 1− exp {−Hm0(t) exp(γ

′Z)} . (4.25)

If a binary covariate Z has a positive regression coefficient γ in (4.24), then the absolute risk
rm(t,Z) is higher for individuals with Z = 1 than for those with Z = 0. In the cause-specific
hazards formulation Z might increase λm, but its effect on rm would depend on if and how
Z affected other cause-specific hazards.

Fine and Gray (1999) proposed to estimate the parameters γ in (4.24) based on a partial
likelihood that has the same form as the Cox partial likelihood. However, the risk set at
the time t of a failure due to cause m is comprised of all the cohort members who have not
failed from that cause, including those individuals who previously failed from other causes,
namely the set of all individuals i with {(Ti ≥ t)∪ (Ti < t∩ δi 6= m)}. This definition of the
risk set makes the analysis of time-dependent covariates challenging, as one has to define
covariate values for those individuals who failed from causes other than cause m, but who
are nevertheless technically still in the risk set (Beyersmann and Schumacher, 2008). For
example, if we wish to assess the impact of hormone replacement therapy use as a time-
dependent variable on absolute risk of incident breast cancer, a woman who died at age 60
from a non-breast cancer cause would still be in the risk set for breast cancer incidence at
age 70, but her usage of hormone replacement therapy is not defined. This problem does not
arise for fixed covariates. In the absence of censoring, an indicator of whether an individual
is in the sub-distribution risk set is Y ∗

0 (t) = I(T ≥ t) + I(T < t, δ(T ) = k, k > 0, k 6= m).
In the presence of right censoring, the corresponding sub-distribution at risk process

is given by Y ∗(t) = I(min(T,C) ≥ t) + I(T < t ≤ C, δ(T ) = k, k > 0, k 6= m). As in
general the second indicator function is unknown, Fine and Gray (1999) replaced Y ∗(t) by

an “estimated” contribution to the risk set, Ŷ ∗(t), by weighting the observable uncensored
indicators Y ∗

0 (t) with“inverse probability of censoring weights” (IPCW) (Robins and Rot-
nitzky, 1992). To obtain these weights, one needs to estimate the censoring distribution
for each individual. Assuming censoring is completely at random, i.e., that censoring does
not depend on any covariates, Fine and Gray (1999) estimated the censoring distribution
by the Kaplan–Meier estimator Ĝ(t) = P̂ (C ≥ t), and used the time-dependent weights
wi(t) = I{Ci ≥ min(Ti, t)}Ĝ(t)/Ĝ(min(Ci, Ti, t−)) to obtain

Ŷ ∗(t) = w(t)Y ∗
0 (t) = w(t){I(T ≥ t) + I(T < t, δ(T ) = k, k > 0, k 6= m)}

= I(min(T,C) ≥ t) +
I(Ci ≥ Ti)Ĝ(t)

Ĝ(Ti−)
I(T < t, δ(T ) = k, k > 0, k 6= m). (4.26)

This estimate is asymptotically unbiased, in the sense that EŶ ∗(t) = Y ∗(t).
Alternatively, the censoring distribution could be modeled parametrically or semi-

parametrically and also be allowed to depend on covariates Z.
An estimate γ̂ is thus obtained by solving the weighted score equations

~U(γ) =

n∑

i=1

dNmi(t)wi(t)

{
zi −

∑n
j=1 wj(t)Y

∗
0j(t) exp(γ

′Zj)Zj∑n
j=1 wj(t)Y ∗

0j(t) exp(γ
′Zj)

}
. (4.27)

Here Nmi is the counting process associated with events of type m, defined in the same
way as for the cause-specific setting as Nmi = I(min(Ti, Ci) ≤ t, δi(t) = m). The estimated
cumulative sub-distribution hazard function is given by

Ĥm(t,Z) =

∫ t

0

exp(γ̂ ′Z)dĤm0(t),
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where Ĥm0(t) is a modified version of the Breslow estimator for a standard cumulative
hazard function, given by

Ĥm0(t) =
∑

min(T∗

i
,Ci)≤t

∑n
i=1 dNmi{min(T ∗

i , Ci)}∑n
i=1 Y

∗
i {min(T ∗

i , Ci)} exp(γ̂ ′Zi)
.

Using γ̂ and Ĥm0(t) in Equation (4.25) yields the estimate

r̂m(t,Z) = P̂ (T ≤ t, δ = m|Z) = 1− exp{−Ĥm(t,Z)}.

Fine and Gray (1999) prove consistency and asymptotic normality of γ̂ based on weighted
score equations, and show that r̂m(t,Z) has an asymptotic normal distribution. They also
provide point-wise confidence intervals and confidence bands.

The computation of r̂m(t,Z) is implemented in the R package cmprsk,
(https://cran.r-project.org/web/packages/cmprsk/index.html/), and also in the STATA
software (StataCorp., 2015). One limitation is that the theory in Fine and Gray (1999)
did not allow for left truncation or time-dependent covariates, nor does this software.

Only recently has the estimation of the sub-distribution hazards model been extended to
accommodate left truncation as well as right censoring. Geskus (2011) showed that estimates
of γ in (4.24) can be obtained by solving a weighted score equation where the time-dependent
weights depend on the censoring and the truncation distribution. Letting L denote the left
truncation variable, this can be done by noting that the sub-distribution risk set enumerator
becomes Y ∗(t) = I{L < t ≤ min(T,C)} + I{max(T, L) < t ≤ C, δ(T ) = k, k > 0, k 6= m},
which can be replaced in the score equation by the “estimated” risk set indicator Ŷ ∗(t) =
I{L ≤ T ≤ min(T,C)} + I(C ≥ T > L)Ĝ(t)Ĥ(t)/{Ĝ(T−)Ĥ(T−)}I(T < t, δ(T ) = k, k >
0, k 6= m), where Ĥ(t) is an estimator of P (L ≤ t). Thus estimates of γ are obtained by
solving the score Equations (4.27) with weights w(t) = Ĝ(t)Ĥ(t)/{Ĝ(T−)Ĥ(T−)}. Geskus
(2011) derived asymptotic results for the proportional sub-distribution hazards model under
left truncation using these time-dependent weights, and a corresponding R function is built
into the R package mstate (https://cran.r-project.org/web/packages/mstate/mstate.pdf,
(de Wreede et al., 2011)).

Contemporaneously, Zhang et al. (2011) also developed an approach to fitting the Fine–
Gray proportional sub-distribution hazard model with left truncated and right censored
observations. These authors start from the general case where the truncation and censoring
distributions depend on covariates (but are independent conditional on these covariates),
but then provide details only for non-parametric estimates of the weights using inverse prob-
ability weighting (IPW). Geskus (2011) argued that even if the censoring and/or truncation
distribution depended on covariates it is not necessary to include these covariates in the
weights. Zhang et al. (2011) used a stabilized weight rather than the IPW to reduce the
variability in the original weight. These weights seem quite different from those of Geskus
(2011) as they depend on an estimate of overall survival, and a careful comparison of the
performance of these two approaches would be useful.

4.2.2 Other cumulative incidence regression models

Equation (4.22) allows for other link functions, such as the logit link function, g(t) =
log{t/(1− t)} studied in (Fine, 2001). Scheike et al. (2008) also modeled the covariate effect
for the absolute risk estimate via binomial regression. They also extended the FG model to
allow for time-dependent effects of some of the covariates,

logit{rm(t)} = Z1γ1(t) + Z′
2γ2.

https://cran.r-project.org/web/packages/mstate/mstate.pdf
https://cran.r-project.org/web/packages/cmprsk/index.html/
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Scheike and Zhang (2011) gave software for fitting such models. Right censoring is accommo-
dated using the probability of censoring as weights. The authors compared the performance
of two estimates of the censoring distribution, the Kaplan–Meier survival function and a
Cox regression model. They found in simulations that incorporating covariates into the es-
timation of the censoring distribution resulted in significant efficiency gains for the logistic
cumulative incidence regression model. However, no such efficiency gain was seen when the
FG sub-distribution hazard model was fit to rm. Klein and Andersen (2005) described simple
methods to estimate models (4.22) by applying generalized linear models to jackknife-like
pseudo-values.

4.2.3 Relationship between the cause-specific and the proportional sub-distribution
hazards models

Differentiating minus the logarithm of one minus Equations (4.1) and (4.25) and noting that
1 − P (T ≤ t, δ = m) = P (T > t) +

∑
k 6=m P (T ≤ t, δ = k) = P (T > t) +

∑
k 6=m rk(t), we

see that the cause-specific and the sub-distribution hazards functions are related through

λm(t) =

[
1 +

∑
k 6=m rk(t)

P (T > t)

]
hm(t). (4.28)

Equation (4.28) highlights differences between the cause-specific and the sub-distribution
hazard functions. First, λm(t) ≥ hm(t). Second, as the first factor on the right hand side of
(4.28) depends on t, proportionality over covariates cannot hold simultaneously for hm and
λm. Third, Equation (4.28) indicates how a covariate might increase λm but decrease hm and
hence rm. Suppose a binary covariate increases λm by a factor of 1.5, but increases all the
other cause-specific hazards functions λk, k 6= m, much more, so that 1+

∑
k 6=m rk/P (T > t)

increases by a factor of 2. The effect of the covariate is to multiply hm by 1.5/2 = 0.75.
Thus the parameters γ describe the overall impact of a covariate on rm. However, the
cause-specific β parameters may offer insight into how the covariates impact rm and also
allow for an etiologic interpretation of the covariate effects, which may be preferred by
some epidemiologists. Gerds et al. (2012) discuss potential problems of interpretation of
various models for cumulative incidence regression including: absolute risk estimates may
exceed 1.0 for some models; the sum of absolute risk projections over causes may exceed
1.0 (which cannot occur for cause-specific models); and the methods that require inverse
probability weighting to account for censoring can yield biased results if the censoring
model is misspecified. Andersen and Keiding (2012) question the interpretability of the
sub-distribution hazard because the corresponding risk sets include persons who have had
absorbing events.

4.3 Examples

4.3.1 Absolute risk of breast cancer incidence

Data

We illustrate the methods described above based on a slightly modified version of a
recently developed absolute risk model for breast cancer (Pfeiffer et al., 2013). In that
paper, we combined data from two large cohorts to estimate the model parameters. For
ease of exposition, we only use one of the cohorts here, namely the National Institutes of
Health-AARP Diet and Health Study (NIH-AARP), that is described in detail in Schatzkin
et al. (2001). It included 567,169 men and women who, in 1995–1996, were 50–71 years
old and resided in one of eight states. Participants returned a self-administered baseline
questionnaire and a second more detailed questionnaire, sent 6 months after the baseline
questionnaire. Cancer cases were identified through linkage with state cancer registries with
90% completeness of case ascertainment (Michaud et al., 2005). All invasive breast cancer
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cases had a histologic diagnosis. Vital status was ascertained through annual linkage to the
Social Security Administration Death Master File and the National Death Index Plus.

We restrict the analysis to 191,604 non-Hispanic, white women who completed the base-
line questionnaire, had follow-up information, and had no personal history of breast cancer
at baseline. Among these women, n = 5, 905 were diagnosed with invasive epithelial breast
cancer during follow up, including 35 breast cancers that developed in women after a di-
agnosis of in situ breast cancer, and 12,383 women died from causes other than breast cancer.

Estimation of the cause-specific hazard function for breast cancer incidence

To build the absolute risk model, we first estimated the cause-specific hazard function for
invasive breast cancer. We fit a Cox proportional hazards model to the data with age as the
time scale, to estimate relative risk (RR) parameters, 95% confidence intervals (CIs) and the
cause-specific baseline hazard function for invasive breast cancer. Women were considered
at risk from the age at study entry (completion of baseline questionnaire) until the age
at the earliest of the following: (1) diagnosis of invasive breast cancer, (2) death, or (3)
administrative censoring on December 31, 2003. Thus the data were left truncated on the age
scale. Death and administrative censoring were combined into a single censoring event for
the purpose of estimating the cause-specific hazard (Prentice et al., 1978). Proportionality
of the hazard functions was assessed by visual inspection of hazard plots and Schoenfeld
residuals. Using PROC PHREG, SAS v9.2 software, and the function coxph in the R Package
survival (Therneau and Grambsch, 2000), yielded virtually identical results. Late entry is
accommodated using the entry option in the model statement of PROC PHREG, and in
the specification of the survival object defined using Surv in R.

Details on variable coding and model building can be found in Pfeiffer et al. (2013). When
building the model we considered the following risk factors: body mass index (BMI), age at
menarche, number of live-born children (parity), age at first birth, duration of oral contra-
ceptive (OC) use, menopausal status and age at natural menopause, status and duration
of menopausal hormone therapy (MHT) use, status and duration of estrogen and progestin
MHT use, duration of unopposed estrogen MHT use, history of benign breast disease and
past breast biopsies, first-degree family history of breast cancer (first degree relatives de-
fined as mother, daughters and sisters with a breast cancer diagnosis), first-degree family
history of ovarian cancer, any previous gynecologic surgery (defined as hysterectomy and/or
partial or bilateral oophorectomy), smoking status, cigarettes per day smoked and alcohol
consumption. Table 4.1 describes some key variables with the number of cases, competing
deaths and non-events in each category.

Information for benign breast disease was missing on more than 20% of the women in
the dataset, and we thus created an indicator for missing values. We excluded 20,273 women
who had missing information on family history, BMI, gynecologic surgery or age at first live
birth, from the analysis, leaving 171,331 women in NIH-AARP to fit the final breast cancer
RR model. Of those women 5,284 were diagnosed with invasive breast cancer and 10,610
died from other causes.

We first assessed the main effects of all risk factors listed above. The final model included
only variables that were significant in multivariable models with p < 0.01. We chose a
stringent p-value as we did not want to include variables with modest RRs that would not
improve prediction. Model building was repeated using stepwise variable selection in Cox
proportional hazards models and led to the same selection of variables. We also assessed
the significance at p < 0.01 of all first-order interaction terms of variables included in the
final model. We fitted variables with trends whenever appropriate (see Table 4.2). For all
risk factors, the reference category was the lowest risk category.
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Table 4.1: Numbers of invasive breast cancer cases and non-cases by selected characteristics
of non-Hispanic, white women in the NIH-AARP cohort

Number of

breast cancer competing cause

cases (%) deaths (%) no events (%)

Characteristic Subcategory n = 5, 905 n = 12, 383 n = 173, 316

BMI, kg/m2 < 25 2,464 (41.7) 5,110 (41.3) 76,452 (44.1)

25 to < 30 1,901 (32.2) 3,454 (27.9) 54,353 (31.4)

30 to < 35 848 (14.4) 1,787 (14.4) 23,859 (13.8)

≥ 35 510 (8.6) 1,291 10.43 12,935 (7.5)

Missing 182 (3.1) 741 (6.0) 5,717 (3.3)

Family history No 4,554 (77.1) 10,204 (82.4) 142,970 (82.5)

of breast or Yes 1,240 (21.0) 1,859 (15.0) 26,905 (15.5)

ovarian cancer Missing 111 (1.9) 320 (2.6) 3,441 (2.0)

Benign breast disease No 1,947 (33.0) 4,392 (35.5) 65,091 (37.6)

Yes 2,607 (44.1) 3,808 (30.8) 61,006 (35.2)

Missing 1,351 (22.9) 4,183 (33.8) 47,219 (27.2)

Parity Nulliparous 1,000 (16.9) 1,843 (14.9) 24,566 (14.2)

1-2 2,134 (36.1) 4,049 (32.7) 62,975 (36.3)

≥ 3 2,640 (44.7) 6,160 (49.8) 82,496 (47.6)

Missing 131 (2.2) 331 (2.7) 3,279 (1.9)

Estrogen and 0 years 1,301 (22.0) 3,369 (27.2) 42,862 (24.7)

progestin MHT use 19 605 (10.2) 443 (3.6) 13,983 (8.1)

≥ 10 322 (5.5) 247 (2.0) 5,034 (2.9)

NA or missing 3,677 (62.3) 8,324 (67.2) 111,437 (64.3)

Alcohol consumption, 0 1,573 (26.6) 4,764 (38.5) 48,059 (27.7)

drinks/day < 1 3,343 (56.6) 5,900 (47.7) 101,841 (58.8)

≥ 1 989 (16.8) 1,719 (13.9) 23,416 (13.5)

Other MHT use No 4,197 (71.1) 9,428 (76.1) 122,700 (70.8)

Yes 1,708 (28.9) 2,955 (23.9) 50,616 (29.2)

Age at birth of < 25 4,268 (72.3) 9,538 (77.0) 130,087 (75.1)

first child, years (25, 29] 1,130 (19.1) 1,971 (15.9) 30,978 (17.9)

≥ 30 410 (6.9) 644 (5.2) 9,854 (5.7)

NA or missing 97 (1.6) 230 (1.9) 2,397 (1.4)

Gynecologic Surgery No 3,406 (57.7) 6,310 (51.0) 92,035 (53.1)

Yes 2,189 (37.1) 5,290 (42.7) 72,510 (41.8)

Missing 310 (5.3) 783 (6.3) 8,771 (5.1)

Age at menopause, < 50 3,020 (51.1) 7,836 (63.3) 97,847 (56.5)

years [50, 55) 2,000 (33.9) 3,410 (27.5) 53,647 (31.0)

≥ 55 545 9.23 766 (6.2) 11,703 (6.8)

Premenopausal/ 340 (5.8) 371 (3.0) 10,119 (5.8)

missing

Smoking Never smoker 2,459 (41.6) 3,395 (27.4) 76,533 (44.2)

Former smoker 856 (14.5) 3,219 (26.0) 23,738 (13.7)

Current smoker 2,409 (40.8) 5,294 (42.8) 67,555 (39.0)

Missing 181 (3.1) 475 (3.84) 5,490 (3.2)

The cases include 35 women who developed invasive breast cancer after a diagnosis of in
situ breast cancer.
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Table 4.2: Multivariable cause-specific relative risk (RR) estimates for invasive breast cancer
and death from causes other than breast cancer among non-Hispanic, white women in the
NIH-AARP cohort

Invasive breast Competing causes
cancer of death

Characteristic Subcategory RR (95% CI) RR (95% CI)

BMI < 25kg/m2 1.0 (referent) 1.0 (referent)
Per category increase 1.11 (1.08-1.15) 1.06 (1.04-1.08)

Estrogen and progestin No MHT use 1.0 (referent) 1.0 (referent)
MHT use Per category increase 1.42 (1.34-1.51) 0.75 (0.71-0.80)
Other/unknown No 1.0 (referent) 1.0 (referent)
MHT use Yes 1.22 (1.13-1.33) 0.80 (0.75-0.84)
Alcohol consumption 0 drinks/day 1.0 (referent) 1.0 (referent)

Per category increase 1.12 (1.08-1.17) 0.80 (0.77-0.82)
Gynecologic Surgery Yes 1.0 (referent)

No 1.14 (1.07-1.23)
Parity 1+ children 1.0 (referent) 1.0 (referent)

Nulliparous 1.32 (1.23-1.42) 1.13 (1.07-1.19)
Family history of breast or No
ovarian cancer Yes 1.39 (1.30-1.49)
Age at first live birth < 25 years 1.0 (referent) 1.0 (referent)

Per category increase 1.15 (1.10-1.20) 0.93 (0.89-0.96)
Age at menopause < 50 years 1.0 (referent) 1.0 (referent)

Per category increase 1.13 (1.07-1.18) 0.86 (0.83-0.88)
NA/missing 1.04 (0.91-1.18) 0.61 (0.53-0.70)

Benign breast No 1.0 (referent) 1.0 (referent)
disease/biopsy Yes 1.41 (1.32-1.50) 0.88 (0.84-0.93)

missing 1.30 (1.11-1.52) 0.84 (0.75-0.94)
Smoking Never smoker 1.0 (referent)

Per category increase 1.29 (1.27-1.32)

All variables are coded so that the lowest risk category for invasive breast cancer is the
reference category.
Categories for variables fitted with a trend: BMI: < 25, 25 to < 30, 30 to < 35, and ≥
35kg/m2; estrogen and progestin MHT use: never, < 10,≥ 10 years; age at first birth:
< 25, 25− 29, and ≥ 30 years; age at menopause: < 50, 50− 54,≥ 55 years, missing; alcohol
consumption: 0, < 1,≥ 1 drinks/day; age menopause: 0: premenopausal or ≤ 49, 1 : 50−54
years, 2: ≥ 55 years; smoking: 0: never smoker, 1: former smoker, 2: current smoker.

The final RR model (Table 4.2) included: BMI (< 25, 25 to< 30, 30 to < 35,≥ 35kg/m2),
estrogen and progestin MHT use (never, < 10,≥ 10 years), other or unknown MHT use (no,
yes), parity (0,≥ 1 children), age at first birth (< 25, 25− 29,≥ 30 years), premenopausal
(no, yes), age at menopause (< 50, 50 to < 55,≥ 55 years), benign breast diseases (no, yes),
previous gynecologic surgery (no, yes), family history of breast or ovarian cancer (no, yes),
and alcohol consumption (0, < 1,≥ 1 drinks/day). The largest RRs per category increase
in the model were obtained for having used estrogen and progestin MHT, RR = 1.42
(95%CI : 1.34 − 1.51) per category increase in duration, and having a history of benign
breast disease/biopsy, RR = 1.41 (95%CI : 1.32− 1.50).
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The only competing outcome in our example is death from causes other than breast
cancer. Among the women in our cohort, we observed 11, 092(6.2%) deaths during follow-up.
We estimated a cause-specific hazard function for death using a Cox- proportional hazards
model. For this model we treated administrative censoring and breast cancer incidence as
censoring events. The relative risk estimates are given in the fourth column of Table 4.2. For
ease of comparison we used the same reference category for each variable as in the breast
cancer relative risk model. Model selection was performed in the same manner as for the
relative risk model for invasive breast cancer. Having a family history of breast or ovarian
cancer and having had a prior gynecological surgery were not associated with the risk of
dying. However, as expected, smoking increased risk of death from causes other than breast
cancer, with RR = 1.29 (95%CI : 1.27− 1.32)

We estimated the baseline hazard function for each cause non-parametrically and then
plugged them into Equation (4.13) to estimate the absolute risk of invasive breast cancer.
Table 4.3 gives examples of 5 and 10 year projections of absolute risk of invasive breast
cancer for three 60 year old women. Profile 1 corresponds to a low risk woman; her 5- and
10-year absolute risks of developing invasive breast cancer are 0.83% and 1.76%, respectively.
Profile 2 is that of an intermediate risk women, and profile 3 shows a woman at somewhat
elevated breast cancer risk. Her 5 and 10 year risks of developing invasive breast cancer
are 6.60% and 13.88%, respectively. Had this woman been a current smoker, her absolute
breast cancer risks would be slightly lower due to her increased risk of dying from causes
other than breast cancer; her 5- and 10-year absolute breast cancer risks would be 6.57%
and 13.77%. This calculation illustrates that changes in covariates that affect competing
causes usually have little impact on the absolute risk of the cause of interest because they
enter the integral expression (4.1) as a second order term.

Estimation of the sub-distribution hazard function for breast cancer incidence

We fit the proportional sub-distribution hazards regression model (Fine and Gray, 1999)
to the breast cancer data in Section 4.3.1 to compare it with the cause-specific approach to
estimation of absolute risk. We used the R function crprep in the package mstate (Geskus,
2011; de Wreede et al., 2011). This function uses an estimate of the survivor function of
the censoring distribution to reweight contributions to the risk sets for failures from com-
peting causes and time-dependent weights to accommodate left truncation. We first used
all the covariates that were predictors for either the cause-specific hazard of breast can-
cer, or the cause-specific hazard of death in our model. However, in the Fine and Gray
model the smoking variable was not statistically significantly associated with cumulative
incidence of breast cancer (p > 0.05); thus we omitted it from the final model. The sub-
distribution relative risk estimates for invasive breast cancer based on model (4.24) in Ta-
ble 4.4 are very similar to the cause-specific relative risks for breast cancer (m = 1) in
Table 4.2. This is because the absolute risk of death is small in this example (6.2%) so
that r2(t)/P (T > t) << 1 in Equation (4.28). It follows that the cause-specific hazard
ratio

exp(β′z) = exp(γ ′z) [1 + r2(t; z)/P (T > t|z)] [1 + r2(t; z0)/P (T > t|z0)]−1 ≈ exp(γ ′z),

provided the same covariates z are used to model λ and h.

4.3.2 Absolute risk of second primary thyroid cancer (SPTC) incidence

Our second example is based on a model that we developed to predict the absolute risk
of second primary thyroid cancer (SPTC) among five-year survivors of a childhood cancer
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Table 4.3: Projections from the cause-specific model of absolute risk of invasive breast cancer
for three 60-year-old women with selected risk profiles

Characteristics Profile 1 Profile 2 Profile 3
BMI, kg/m2 24 36 41
Estrogen and progestin MHT use No MHT use 12 years 11 years
Other/unknown MHT use No No Yes
Parity 2 children 1 child 1 child
Age at first live birth 23 24 22
Age at menopause < 50 years 52 58
Benign breast disease/biopsy No No Yes
Family history of breast or
ovarian cancer No No Yes
Alcohol consumption 0 drinks/day 0 drink/day 2 drinks/day
Gynecologic Surgery yes no no
Smoking Never smoker Never smoker Never smoker
Relative risk estimate for
breast cancer 1.0 3.22 10.71

Relative risk estimate for
competing mortality 1.0 0.44 0.28

5-year absolute risk 0.83% 2.96% 6.60%
Influence based standard error 0.05% 0.25% 0.61%
Bootstrap based standard error 0.07% 0.31% 0.65%
10-year absolute risk 1.76% 6.36% 13.88%
Influence based standard error 0.10% 0.52% 0.76%
Bootstrap based standard error 0.14% 0.65% 1.18%

(Kovalchik et al., 2013a). The incidence of childhood cancers in developed nations has been
increasing at a modest but consistent rate (Steliarova-Foucher et al., 2004). Owing to ther-
apeutic advances, this rise has coincided with a significant decline in mortality, and 85% of
five-year childhood cancer survivors diagnosed after 1970 are expected to survive another
30 years or more (Mertens et al., 2008). Despite its curative benefit, the treatment for child-
hood cancers can have adverse late effects on the health of long-term survivors, including an
elevated risk of second primary malignancies and cardiac- or pulmonary-related mortality
(Armstrong, 2010). Approximately 10% of subsequent primary malignancies among child-
hood cancer survivors are cancers of the thyroid gland (Reulen et al., 2011). This excess
risk is largely attributable to prior radiotherapy and persists throughout the adult life of
irradiated survivors.

In Kovalchik et al. (2013a), we combined data from a large cohort, the Childhood Cancer
Survivor Study (CCSS) (Robison et al., 2009), and two case-control studies, the Late Ef-
fects Study Group (LESG) (Tucker et al., 1991) and the Nordic Childhood Cancer Survivor
Study (Olsen et al., 2009; Svahn-Tapper et al., 2006). This example however, is based only
on data from the CCSS cohort.

Data

CCSS included 11,997 five-year survivors of childhood cancer diagnosed between 1970
and 1986 at 26 medical centers in the US and Canada, with follow-up to January 1, 2010
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Table 4.4: Multivariable sub-distribution relative risk (RRs) estimates for invasive breast
cancer among non-Hispanic, white women in the NIH-AARP cohort

Characteristic Subcategory Invasive breast cancer
RRs (95% CI)

BMI < 25kg/m2 1.0 (referent)
Per category increase 1.10 (1.07-1.13)

Estrogen and progestin MHT use No MHT use 1.0 (referent)
Per category increase 1.43 (1.34-1.51)

Other MHT use No 1.0 (referent)
Yes 1.23 (1.13-1.34)

Age at first live birth < 25 years 1.0 (referent)
Per category increase 1.16 (1.11-1.22)

Parity 1+ children 1.0 (referent)
Nulliparous 1.29 (1.20-1.39)

Age at menopause < 50 years 1.0 (referent)
Per category increase 1.14 (1.09-1.20)

NA/missing 0.99 (0.87-1.14)
Benign breast disease/biopsy No 1.0 (referent)

Yes 1.41 (1.32-1.50)
Family history of breast or No 1.0 (referent)
ovarian cancer Yes 1.39 (1.30-1.49)
Alcohol consumption 0 drinks/day 1.0 (referent)

Per category increase 1.13 (1.09-1.18)
Gynecologic Surgery yes 1.0 (referent)

No 1.14 (1.22-1.06)

Categories for variables fitted with a trend: BMI: < 25, 25 to < 30, 30 to < 35, and ≥
35kg/m2; estrogen and progestin MHT use: never, < 10,≥ 10 years; age at first birth:
< 25, 25− 29, and ≥ 30 years; age at menopause: < 50, 50− 54,≥ 55 years, missing; benign
breast diseases/biopsy: no, yes, missing; alcohol consumption: 0, < 1,≥ 1 drinks/day; age
menopause: 0: premenopausal or ≤ 49, 1 : 50− 54 years, 2: ≥ 55 years.

for the present analysis. Subjects were eligible for inclusion in the analysis if they were (1)
alive and at-risk of developing SPTC five years after a first cancer diagnosed before age 21
and (2) had a reconstructed radiation absorbed dose to the thyroid gland.

Estimation of the cause-specific hazard functions for second primary thyroid
cancer (SPTC) incidence and for competing events

For the present example, we built an absolute risk model that includes variables from
self-report and medical records, but not from reconstructed radiation dose. We used age as
the time scale. The data were left truncated because cohort members first became eligible
for inclusion at the age at which they had survived five years beyond their first primary
cancer diagnosis. We fit Cox proportional cause-specific hazard models to estimate the
relative risks for selected predictors for incidence of SPTC, defined as the first occurrence
of a pathologically-confirmed thyroid malignancy, and for competing events. Competing
events for SPTC were death (n = 1,403), self-reported complete removal of the thyroid
gland (n = 115), and other second primary cancers (n = 965), which were determined from
pathology reports with follow-up to January 1, 2010. During follow-up, n = 124 patients
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were diagnosed with SPTC, and n = 2,483(21%) of the patients experienced a competing
event.

Patients provided self-reports of demographic information, medical conditions, and
health behaviors. Factors obtained from medical records included use of radiation ther-
apy, body regions irradiated, and use of chemo-therapeutic agents during the first 10 years
following the childhood cancer diagnosis. Selected characteristics in groups of individuals
defined by outcome are listed in Table 4.5.

Indicator variables for any radiation, radiation therapy to the neck, and the use of an
alkylating agent were strong risk factors for SPTC (Table 4.6). Birth after 1970, age less
than 15 years at first primary cancer diagnosis and female gender were also statistically
significantly associated with SPTC risk. The strongest predictor in the model was having
received radiation therapy that included the neck (RR = 7.64 with (95%CI: 4.81-12.14).
In the competing events model, the strongest predictors were treatment-related variables,
namely alkylating agents (yes/no) with RR = 1.60 (95%CI: 1.48-1.74), radiation (yes/no)
with RR = 2.06 (95%CI: 1.83-2.32), and radiation to the neck (yes/no), with RR = 1.79
(95%CI: 1.64-1.96). This analysis gives some insight into how a given risk factor influences
absolute risk. For example, female gender acts primarily though its effect on the hazard of
SPTC, rather than through its small effect on the hazard of competing events.

We estimated the baseline hazard function for both the primary event, and the competing
events non-parametrically. For illustrative purposes, we report 20-year SPTC risk for three
selected childhood cancer survivor profiles (Table 4.7). The SPTC absolute risk for a survivor
at the lowest level of all risk factors (Profile 1) was 0.04%, while it was 8.29% for an
individual in the highest risk category (Profile 3, Table 4.7). A person with the same risk
factor profile as Profile 3, except no radiation to the neck, had an absolute 20-year risk of
SPTC of 1.36%, highlighting the importance of this predictor.

Estimation of the sub-distribution hazard function for second primary thyroid
cancer (SPTC) incidence

The relative risk parameter estimates for the sub-distribution hazard function for SPTC
given in Table 4.8 are somewhat different from those for the cause-specific hazard func-
tion in Table 4.6. For example, the estimate for the variable “radiation to the neck” has
a sub-distribution relative risk estimate of 6.38 (95% CI:= 4.02-10.12) while the cause-
specific relative risk estimate for SPTC was 7.64 (95%CI: 4.81-12.14). The lower effect of
this predictor on the sub-distribution hazard stems from the fact that neck radiation is also
associated with increased risk of competing events (cause-specific relative risk for the com-
peting events hazard of 1.79), which lowers its impact on absolute risk of SPTC. Although
the sub-distribution relative hazards (Table 4.8) summarize the overall impact of a covari-
ate on absolute SPTC risk, they do not describe the separate effects of these covariates on
SPTC risk and on the risk of competing events, as do the cause-specific relative risks (Table
4.6).

4.4 Estimating cause-specific hazard functions from sub-samples from cohorts

For large cohorts and rare outcomes, it may be more cost-effective to measure expensive
covariates on all or most cases that occur during follow-up, i.e., subjects who experience the
event of interest, but only on a small subset of the individuals who have not experienced
the event (“controls”). The two most popular sub-sampling strategies are the nested case-
control design and the case-cohort design, both of which permit efficient estimation of
cause-specific hazards. We describe how one can estimate cause-specific hazard functions
from these designs and use them to build absolute risk models in the next two sections.
Although these designs do not require covariate information on all members of the cohort,
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Table 4.6: Multivariable cause-specific relative risk (RR) estimates for second primary thy-
roid cancer (SPTC) and competing causes among 5-year survivors of a childhood cancer in
the CCSS cohort

Characteristic Subcategory SPTC Competing causes
RR (95% CI) RR (95% CI)

Birth year after 1970 no 1.0 (referent) 1.0 (referent)
yes 1.87 (1.24, 2.82) 0.74 (0.67, 0.82)

Age at FPC < 15 years no 1.0 (referent) 1.0 (referent)
yes 3.43 (1.88, 6.28) 0.82 (0.73, 0.91)

Female no 1.0 (referent) 1.0 (referent)
yes 2.79 (1.90, 4.09) 1.06 (0.98 1.14)

Any alkylating agenta no 1.0 (referent) 1.0 (referent)
yes 1.58 (1.08, 2.30) 1.60 (1.48, 1.74)

Any radiationa no 1.0 (referent) 1.0 (referent)
yes 1.37 (0.69, 2.75) 2.06 (1.83, 2.32)

Radiation treatment no 1.0 (referent) 1.0 (referent)
to necka yes 7.64 (4.81, 12.14) 1.79 (1.64, 1.96)

aWithin 10 years of first primary cancer.

Table 4.7: Examples of 20-year projections of absolute risk of second primary thyroid cancer
from the cause-specific model for three 15-year-old childhood cancer survivors with selected
risk profiles

Characteristic Profile 1 Profile 2 Profile 3
Age at start of projection 15 15 15
Birth year after 1970 No Yes Yes
Age < 15 years at first primary
cancer diagnosis

No Yes Yes

Female No Yes Yes
Any alkylating agent for FPC No Yes Yes
Any radiation No Yes Yes
Radiation treatment to neck No No Yes
Absolute risk estimate (in %) 0.04% 1.36% 8.29%

they do require complete information on follow-up and event times. One of the attractive
features of the cause-specific models of absolute risk is that they are estimable from sub-
samples of cohorts.

4.4.1 Case-cohort design

The case-cohort design, introduced for time-to-event data by Prentice (1986) and further
studied by Self and Prentice (1988), requires collecting covariate data for all cases and for
a random sample of the entire cohort (the “subcohort”), which can include cases. The size
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Table 4.8: Sub-distribution relative risk estimates (RRs) for SPTC among 5-year survivors
of a childhood cancer in the CCSS cohort

Characteristic Subcategory RRs (95% CI)
Birth year after 1970 No 1.0 (referent)

Yes 1.30 (0.87, 1.93)
Age at FPC < 15 years No 1.0 (referent)

Yes 2.88 (1.58, 5.28)
Female No 1.0 (referent)

Yes 2.75 (1.87, 4.03)
Any alkylating agenta No 1.0 (referent)

Yes 1.30 (0.89, 1.91)
Any radiationa No 1.0 (referent)

Yes 1.24 (0.62, 2.47)
Radiation treatment to necka No 1.0 (referent)

Yes 6.38 (4.02, 10.12)

a Within 10 years of first primary cancer diagnosis.

of the subcohort, ñ, is usually much smaller than the size of the cohort, n. This design
is closely related to designs for dichotomous outcomes proposed earlier by Kupper et al.
(1975) and Miettinen (1976). The case-cohort design can substantially reduce cost and effort
of exposure assessment in epidemiologic cohort studies with only a small loss of efficiency
compared to a full cohort design. It is most cost-effective when the most expensive part of
the study is not in recruiting subjects, but in measuring exposures and predictors of interest.
The case-cohort design is particularly suited to molecular epidemiologic studies in which
biospecimens can be collected and stored for later analysis. For the cases and members of
the subcohort, these specimen can then be analyzed to determine an individual’s exposure
at study entry when the samples were collected, and, if serial specimens were stored, the
exposure levels over time. The case-cohort design has been applied in cancer, cardiovascular,
and HIV research, and is popular for genetic epidemiologic studies.

An advantage of the case-cohort design over the nested case-control design (Section
4.4.2) is that the sub-cohort may serve as the comparison group for multiple disease out-
comes, because it was chosen without regard to failure status. Sorensen and Andersen
(2000) extended the pseudo-likelihood approach for analyzing case-cohort studies proposed
by Self and Prentice (1988) to apply to a common control group for multiple event types
and provided methods for variance estimation and hypothesis testing. They also developed
cause-specific baseline hazard estimates for absolute risk estimation. We outline their ap-
proach here for cause-specific hazards that satisfy the proportional hazards model (4.3).

Let the sampling indicator Vi be one if person i is selected into the sub-cohort or 0
otherwise. With simple random sampling of sub-cohort members, P (Vi = 1) = ñ/n, i.e.,
the proportion of the cohort sampled into the subcohort. However, more complex sampling
schemes, for example stratification or time dependent sampling, where P (V = 1) varies with
follow-up time, can also be accommodated (see Self and Prentice (1988)). In the pseudo-
likelihood approach (Self and Prentice, 1988; Sorensen and Andersen, 2000), each time an
event occurs a sampled risk set is formed by the case and the controls in the sub-cohort,
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i.e.,

PsL(β) =

M∏

m=1

n∏

i=1

∏

t≥0

(
exp(β′

mZm
i )

(n/ñ)
∑n

j=1{VjYj(t) + (1− Vj)dNmj(t)} exp(β′
mZm

j )

)dNmi(t)

.

(4.29)
This pseudo-likelihood above differs from the partial likelihood (4.6) for a full cohort study in
that the denominator is a weighted sum over the case and subjects at risk in the sub-cohort
rather than a sum over all subjects at risk in the entire cohort. Numerical studies (Sorensen
and Andersen, 2000) indicate that better estimates of β are obtained by including the
case in the denominator of (4.29) as in the original proposal (Prentice, 1986), even though
asymptotically equivalent methods use only the subcohort members in the denominator
(Self and Prentice, 1988). In addition, because cases are added at the time of event, the risk
sets are not nested. Sub-cohort members contribute to the analysis over their entire time
on study, and some of them may in fact experience the event of interest, but the failures
outside the sub-cohort contribute only at their failure times.

The score of the pseudo-likelihood (4.29) has expected value of zero at the true value
of βm, but the inverse information matrix does not estimate the variance of the estimator
due to sampling-induced covariances between the score terms. Self and Prentice (1988) and

Sorensen and Andersen (2000) proved results on the asymptotic distribution of β̂m using a
combination of martingale and finite population convergence results and provided variance
estimators. Sorensen and Andersen (2000) gave variance estimates for multiple event types
both for a pseudo-likelihood that includes the case in the denominator of Equation (4.29)
and for the pseudo-likelihood that only includes subcohort members in the denominator.

As the subcohort is a random sample from the full cohort, the non-parametric baseline
hazard, λ0m(t) can be estimated using a weighted Breslow estimator

λ̂0m(t) =

∑n
i=1 dNmi(t)

(n/ñ)
∑n

i=1 ViYi(t) exp(β̂
′

mZm
i )
,

where ñ/n is the proportion of the cohort sampled into the sub-cohort (Prentice, 1986; Self
and Prentice, 1988).

If the components of β for the different event types are distinct (functionally indepen-
dent), then standard Cox regression software can be used to estimate cause-specific param-
eters for the case-cohort samples by analyzing each event type separately while treating
other events as independent censoring. However, variance computations need to be adapted
to accommodate the design. For asymptotic derivations, a key assumption is that ñ/n→ π
for 0 < π < 1 as n → ∞, i.e., the cohort and the sub-cohort grow at the same rate. Using
the same techniques as Self and Prentice (1988), Sorensen and Andersen (2000) derived the

asymptotic distributions of β̂m and Λ̂0k(t) =
∫
λ̂0k(u)du, k = 1, . . . ,M, for the competing

risk setting, when M event types are analyzed.
As for the full cohort, other hazard models can be used here as well. For example, Kang

et al. (2013) fitted marginal additive hazards regression models for case-cohort studies with
multiple disease outcomes using a weighted estimating equations approach for the estimation
of model parameters.

4.4.2 Nested case-control design

Another approach to sub-sampling from a cohort is the nested case-control design (Liddell
et al., 1977). At each time an event occurs, the full cohort risk set is replaced by a specified
number ñ−1 of controls selected from among those individuals in the cohort who are at risk
and have not experienced the event by that time. If, for example, ñ = 2, each case is matched
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on time to one control, thereby drastically reducing the number of individuals for whom
covariate information needs to be collected. A new set of controls is selected every time an
event occurs, and cohort members can be selected repeatedly. A person who subsequently
develops disease can serve as a control for an earlier event. Borgan et al. (1995) derived
general asymptotic theory for the maximum partial likelihood estimator of the regression
parameters and cumulative baseline hazard estimator under the Cox proportional hazards
model for a single event type.

We briefly describe the estimation of the cause-specific hazard functions forM competing
events when controls at event time t are selected randomly and without replacement from
the Y (t) − 1 individuals at risk in the cohort. However, more general sampling schemes
also can be used, and Borgan et al. (1995) described methods to estimate the regression
parameters and baseline hazard functions for the Cox proportional hazards model when
a cohort is sub-sampled with more general sampling schemes. Those authors used marked
point processes to model the occurrence of failures and the sampling of controls at each
failure time simultaneously. The marked counting process records the time when failures
occur and the individuals who fail. The authors provided a general approach that includes
the nested case-control design as a special case. These results can also be found in Aalen
et al. (2008) (Chapter 4.3). We adapt the notation used in Borgan et al. (1995) and assume
for simplicity that for each failure type m the same number ñ− 1 of controls is selected. We
let Ft denote the information about the events in the cohort as well as the sampling of the
controls up to but not including time t. Denote by Pñ the collection of all possible subsets
of {1, . . . , Y (t)} of size ñ and by R̃(t) the risk set actually sampled at time t. If individual
i fails at time t from event type m, the probability that a particular set r ∈ Pñ of size ñ
that includes the case i is sampled is given by

p(r|t, i) = P (R̃(t) = r|dNmi(t) = 1,Ft) =
ñ

Y (t)
/

(
Y (t)

ñ

)
=

(
Y (t)− 1

ñ− 1

)−1

.

The probability of a set r without regard to case status is

P (r|t) =
(
Y (t)

ñ

)−1

.

Thus the sampling weight defined as wi(t) = p(r|t, i)/p(r|t) is

wi(t) =
Y (t)

ñ
. (4.30)

For r ∈ Pñ and i ∈ r one can define a marked counting process Ni,r,m(t) = I(Xi ≤
t, δi = m, R̃(t) = r), t ≥ 0, that indicates the failure of type m for individual i and with
associated sampled risk set r. If the sampling is independent, that indicates knowledge of
which individuals were selected as controls before t does not alter their intensity of failure
of any type at time t, then the intensity of the new process Ni,r,m is

λ(t)Yi(t)

(
Y (t)− 1

ñ− 1

)−1

I(r ∈ R̃(t), r ∈ Pñ, i ∈ r).

If the cause-specific hazard functions λk, k = 1, . . . ,M each follow a Cox proportional
hazards model, the partial likelihood is

PL(β) =

M∏

m=1

n∏

i=1

∏

t≥0

(
wi(t) exp(β

′
mZm

i )∑
j∈R̃(t) wj(t)Yj(t) exp(β

′
mZm

j )

)dNi,r,m(t)

. (4.31)

The partial likelihood for the full cohort is a special case of the partial likelihood (4.31) with
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all the weights w equal to one, as the whole risk set is used. The weights wi(t) in (4.30) are
the same for all members of the risk set, and (4.31) simplifies to

PL(β) =

M∏

m=1

n∏

i=1

∏

t≥0

(
exp(β′

mZm
i )∑

j∈R̃(t) Yj(t) exp(β
′
mZm

j )

)dNi,r,m(t)

. (4.32)

Thus, maximum likelihood estimates for βm can be obtained by using standard statistical
software for the Cox regression model for full cohort analysis, with modified risk sets.

The Breslow estimate for the nested case-control design is given by

λ̂0m(t) =

∑n
i=1 dNi,r,m(t)

∑
i∈R̃(t) wi(t)Yi(t) exp(β̂

′

mZm
i )
,

where β̂m maximizes (4.31) and wi is given by (4.30). Langholz and Borgan (1997) described
corresponding absolute risk estimates with variances.

Efficiency comparisons between the nested case-control design and the case-cohort design
indicate that in many situations the former is slightly more efficient (Langholz and Thomas,
1990, 1991), but the choice of design is often determined by other factors. For example, if
an exposure assay varies by day or plate, it may be desirable to put specimens from a
case and its matched controls on the same plate; the nested case-control samples are well
suited for this contingency. If a major goal is to study several different disease outcomes,
the case-cohort design is preferred.

4.5 Estimating cause specific hazard functions from cohorts with complex
survey designs

The methods in Sections 4.1, 4.2, and 4.4 assume that individuals in a cohort are simple
random samples from the population. However, the methods can be extended to cohorts
based on complex sample designs, such as mortality-linked data from national health sur-
veys, that could be used to assess how demographic characteristics and health behaviors
impact the risk of death from various causes.

We now summarize work (Kovalchik and Pfeiffer, 2013) that used methods to estimate
hazard functions from survey data (Binder, 1992; Lin, 2000; Gray, 2009) to estimate absolute
risk. These estimates are functions of design-based survey weights. If risk models were
perfectly specified, ignoring the sampling design would also yield unbiased relative risk
estimates, but using a weighted approach reduces dependence on model assumptions and
thus improves model robustness (Patterson et al., 2002). Weighting is necessary, however, to
obtain consistent estimates of absolute risk (Kovalchik and Pfeiffer, 2013). We now introduce
an example of such survey data that we analyze later using survey-related methods to
estimate absolute risk.

4.5.1 Example of survey design

We suppose that the cohort for the development of the absolute risk models comes from
a complex multistage survey that is linked with outcome data. For example, individuals
sampled into the National Health and Nutrition Examination Survey (NHANES) are linked
to national mortality data in the NHANES Epidemiologic Followup studies (Cox et al.,
1992).

NHANES samples are designed to be nationally representative of the civilian, non-
institutionalized U.S. population. Participants for the surveys are selected using multistage
probability sampling designs. In the first stage primary sampling units (PSUs) are selected
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with probability proportional to size (PPS) sampling from strata defined by geography and
proportions of minority populations. For all NHANES surveys, the PSUs are single counties
or, in a few cases, groups of contiguous counties. In the second stage the PSUs are divided
into segments (usually city blocks or their equivalent) and sample segments are selected
with PPS sampling. In stage 3, a random sample of households within each segment is
drawn, and in stage 4 individuals from a list of all persons residing in selected households
are chosen at random within designated age-sex-race/ethnicity screening subdomains. On
average, 1.6 persons are selected per household.

For example, NHANES II, conducted from 1976 to 1980, had 32 strata with two PSUs
sampled from each stratum. Survey sample weights are provided on the public use data
files; the weights can be used to obtain nationally representative estimates.

Mortality follow-up was based on a probabilistic match with death certificate records
from the National Death Index (NDI) for participants in NHANES II who were 30–75 years
of age and completed a medical examination. Detailed information on the NHANES II
survey, and the follow-up study can be found in McDowell et al. (1981). Thus, the ages and
covariates of individuals in the sample are known at baseline, and ages at death and cause
of death of individuals who died in or before 1993 are known. This information can be used
to build models of absolute risk for various competing causes of death.

4.5.2 Data

In what follows, a superscript refers to cause-specific quantities and three sub-indices ac-
commodate the sampling scheme. To summarize, the sampling frame of the survey is divided
into I non-overlapping strata and Ji PSUs are selected from the ith stratum with inclusion
probabilities pi1, . . . , piJi

. There can be several additional stages of complex sampling after
the first stage that we will not describe further. Cluster sampling can also be accommo-
dated in this framework. At the end of the sampling, k = 1, . . . , nij individuals are sampled
from the jth sampled PSU of the ith stratum, and the final inclusion probabilities pijk
of the ijk-th individual are the products of the PSU level inclusion probabilities from the
first stage times the conditional inclusion probabilities from the later stages. The sampling
weights are wijk = 1/pijk, k = 1, . . . , nij , with possible adjustment for nonresponse and
non-coverage bias.

At baseline, the age of individual ijk in the sample, denoted by T0ijk, and a vector of
covariates Zijk are observed. Over the course of the study we also observe the minimum of
the age at death or age at censoring, Tijk, with censoring assumed to be non-informative.
Again, the at-risk indicator at time t is Yijk(t) = I(Tijk ≥ t), and δijk(t) = m if an event of
type m occurs at time t or zero otherwise. Thus, the data for the ijkth individual at time
t are (T0ijk, Tijk,Zijk, wijk , δijk(t), Yijk(t)).

4.5.3 Estimation of hazard ratio parameters and the baseline hazard function

Using a pseudo-likelihood formulation as suggested by Binder (1992), the formulas (4.8)

and (4.9) can be extended to estimating equations for β(m), m = 1, . . . ,M , given by

~U(βm) =

I∑

i=1

Ji∑

j=1

nij∑

k=1

wijkdN
m
ijk(tijk){zmijk − ~E(βm, tijk)},m = 1, . . . ,M, (4.33)

and

~E(βm, t) =

∑I
i=1

∑Ji

j=1

∑nij

k=1 wijkYijk(t) exp(β
′
mZm

ijk)Z
m
ijk∑I

i=1

∑Ji

j=1

∑nij

k=1 wijkYijk(t) exp(β
′
mZm

ijk)
.
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Standard optimization algorithms can be used to obtain the solution β̂m such that ~U(β̂m) =
0.

Nonparametric baseline hazard model

A weighted Nelson–Aalen estimator (Aalen, 1978) for the non-parametric cause-specific
baseline hazard function is

λ̂0m(t) =

∑I
i=1

∑Ji

j=1

∑nij

k=1 wijkdN
m
ijk(t)

∑I
i=1

∑Ji

j=1

∑nij

k=1 wijkYijk(t) exp(β̂
′

mZm
ijk)

.

Piecewise exponential baseline hazard model

Data from a complex survey sample can also be analyzed under a piecewise constant
baseline hazard model (i.e., piecewise exponential model), as in for a standard cohort. Define
a set of ordered t possibly unequally spaced time intervals I1, I2, . . . , with Iq = [τ0q, τ1q)
and τ1q = τ0(q+1).

Letting t0ijk be the time that the kth individual from the jth PSU and ith stratum is
first at-risk, the at-risk time during the qth interval for that person is

Aijk(τq) = I(t0ijk < τ1q ∩ tijk > τ0q) {min(tijk , τ1q)−max(t0ijk, τ0q)} . (4.34)

Let Dm(Iq) equal to the total weighted person-time during the qth interval,

Dm(Iq) =
I∑

i=1

Ji∑

j=1

nij∑

k=1

Aijk(τq) exp(β̂
′

mzmijk)wijk ,

and let dm(Iq) =
∑I

i=1

∑Ji

j=1

∑nij

k=1 wijkI{δi(tijk) = m, τ0q ≤ tijk < τ1q} be the observed
events of type m in (τ0q , τ1q]. Then the estimate of λ0m(Iq) is

λ̂0m(Iq) =
dm(Iq)
Dm(Iq)

.

The baseline cumulative hazard up to time t given survival to τ0q is

Λ̂
(m)
0 (t) =

∑

q:τ0q<t

λ̂
(m)
0 (τq){min(t, τ1q)− τ0q}.

4.5.4 Example: absolute risk of cause-specific deaths from the NHANES I and II

To illustrate our methodology, we built population-based cause-specific models for various
causes of death from NHANES I and II, pooling data from the two surveys to increase
sample size and improve the precision of our estimates. The designs for these surveys are
described in Section 4.5.1.

We classified underlying causes of death as cancer, cardiovascular disease, or “other
causes,” according to International Classification of Diseases, Ninth Revision. In the pooled
NHANES I/II sample of 23,659 individuals, who were followed up to December 31, 1993,
cardiovascular disease accounted for 49% of observed deaths in men and 51% in women,
while cancer was the underlying cause for 25% of observed deaths in men and 24% in women.
Although the overall proportions dying of cardiovascular disease and cancer were similar
in men and women, there were notable gender differences in distributions of subtypes of
cardiovascular deaths and cancer deaths (Table 4.9). Therefore, we built separate cause-
specific absolute risk models for men and women.
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When the absolute risk is estimated in subpopulation A, estimates are derived with the
modified sampling weights wA

ijk = IAijkwijk , where I
A
ijk is an indicator for the kth individ-

ual’s membership in subpopulation A, and the nij are replaced with nA
ij =

∑nij

k=1 I
A
ijk. The

computations are otherwise unchanged (Korn and Graubard, 1999, Chapter 5.4).
The covariates examined were baseline race, income, martial status, body mass index

(BMI; kg/height in meters squared), smoking, diabetes diagnosis, hypertension, alcohol
consumption, and serum cholesterol level. BMI, hypertension, and serum cholesterol levels
were based on physical measurements conducted as part of NHANES; all remaining variables
were self-reported.

For analyses with the piecewise exponential model, the baseline hazard function was
divided into the seven age intervals [30, 55), [55, 60), [60, 65), [65, 70), [70, 75), [75, 80),
[80, 100).

Using the weighted pseudo-likelihood described in Section 4.1.1, we selected risk factors
with backward stepwise regression and the design-based significance test suggested by Rao
and Scott (1987) with a significance level of 0.10. Confidence intervals for the hazard ratios
were constructed by exponentiating the lower and upper endpoints for the corresponding
large-sample confidence interval of the log-hazard ratios. For men and women, smoking was
significantly associated with increased risk for every cause of death (Table 4.10). Alcohol
consumption was protective for CVD in women. Having aBMI > 30kg/m2 was significantly
associated with increased risk of death from CVD in men and women. Having a BMI <
18kg/m2 was strongly associated with increased risk from “other causes” in men and women.
The final gender- and outcome-specific models included the risk factors indicated in Table
4.10.

Table 4.11 gives estimates of the 10-year absolute risks of dying from CVD and from
cancer for a 65 year old man, depending on smoking status and with all other risk factors
at their reference levels. Results are shown both for piecewise exponential and for semi-
parametric Cox models. This table also shows estimated standard errors for the absolute risk
estimates computed by the influence function approach in Section 4.6 and, for comparison,
by jackknife resampling. For computational efficiency we used a subsample of 20 randomly
selected males from each of the 169 stratum-PSUs in the NHANES I/II dataset. Letting
i index the full sample and j the subsample, population estimates were obtained from
the subsample by modifying the weight of the kth individual in the subsample to w∗

k =
wk(

∑
iwi/

∑
j wj). Estimates of absolute risk agreed well between the piecewise exponential

and semi-parametric models. Current smokers had much higher absolute risks than never
or former smokers, not only for cancer but also for cardiovascular disease. There was good
agreement between the influence function-based and jackknife estimates of standard error
(Table 4.11), both for the piecewise exponential and semi-parametric models. For cancer
outcomes, the standard errors are slightly smaller under the piecewise exponential model
than under the semi-parametric model.

A useful application of population-based risk models is to estimate the number of cause-
specific deaths that might be prevented by changes in population exposures to risk factors.
For example, one might want to estimate the numbers of deaths that could be prevented
in the male US population aged 35–75 over a 10-year period under two smoking interven-
tion scenarios (Table 4.12). For the “cessation” scenario, we treated current smokers as
former smokers at the beginning of the projection period (Table 4.12). For the “no expo-
sure” scenario, all former and current smokers were regarded as never smokers, leaving other
covariates unchanged. We do not consider the feasibility of interventions leading to these
scenarios, nor whether the interventions would have the effects estimated from the observa-
tional data. However, if these exposure reductions could be achieved, and if the risks were
thereby reduced by amounts suggested by the observational data, then smoking cessation
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Table 4.11: Estimated 10-year absolute risk r̂ of cause-specific death (%) by smoking status
for a 65-year-old male with all other risk factors at their reference levels

Piecewise exponential Semi-parametric
Estimated standard error Estimated standard error

Smoking status r̂(%) Influence Jackknife r̂(%) Influence Jackknife
Cardiovascular
Never 23.1 5.5 5.6 23.2 5.7 5.4
Former 29.2 7.8 7.6 29.3 7.3 7.2
Current 37.6 9.9 10.0 37.8 9.2 9.3
Unknown 55.8 11.1 11.1 55.7 11.0 11.2

Cancer
Never 6.8 2.5 2.7 6.9 2.6 2.8
Former 8.0 3.3 2.9 8.2 3.4 3.3
Current 12.5 4.5 4.4 12.7 4.6 4.6
Unknown 8.6 6.4 6.6 8.7 6.7 6.8

could prevent over one million deaths over ten years, and societal changes that eliminated
smoking altogether might prevent over three million deaths (Table 4.12).

Table 4.12: Expected number of cause-specific deaths in 10 years for the US male population
sampled by NHANES I/II aged 35–75 under different smoking intervention scenarios

Cause of No Smoking intervention, N (Prevented deaths)
death intervention Cessation No exposure

Deaths Deaths (deaths prevented) Deaths (deaths prevented)
Cancer 3,088,427 2,610,800 (477,627) 1,868,455 (1,219,972)
Cardiovascular 5,173,242 4,757,214 (416,028) 3,814,235 (1,359,007)
Other 2,785,291 2,548,402 (236,889) 2,109,647 (675,643)

Total 11,046,960 9,916,416 (1,130,544) 7,792,337 (3,254,623)

“Cessation” refers to the deaths (and deaths prevented) if current smokers were former
smokers. “No exposure” refers to the deaths (and deaths prevented) if current and former
smokers were never smokers.

4.6 Variance estimation

The following sections on variance estimation include details needed to compute confidence
intervals on absolute risk estimates. Skipping this section will not impact readability of later
sections.

The literature gives variance estimates for various models for rm and estimators of
rm, some of which were mentioned earlier in this chapter. We review them briefly for the
cause-specific proportional hazards model (4.4) and the Fine-Gray model before presenting
an influence function based approach that is applicable to many designs for estimating
the cause-specific proportional hazards model. In particular, it can be applied to each of
the designs mentioned in this chapter, including complex survey sampling, as well as to an
approach in Chapter 5 that combines estimates of relative and attributable risk from cohort
or case-control data with external registry data.

Variance estimators given by Cheng et al. (1998) yield pointwise confidence intervals and
simultaneous confidence bands as t varies for the cause-specific proportional hazards model.
The software described by Rosthoj et al. (2004) estimates the variance of rm under this
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model using general Markov methods (Andersen et al., 1993, Chapter VII 2.9). The Nelson–
Aalen survival estimate in Equation (4.1), namely exp{−

∑m
i=1 Λ̂i(t; zm)}, is replaced by the

asymptotically equivalent Johansen-Aalen continued product, which reduces to a Kaplan-
Meier estimate in the absence of covariates. Beyersmann et al. (2012) described how these
calculations can be performed with the R package mstate. Langholz and Borgan (1997)
described variance calculations for absolute risk with nested case-control sampling. Gerds
et al. (2017) developed the R package riskRegression that gives variance estimates for rm
with t0 = 0 under proportional cause-specific hazards.

Variance estimates for r̂m for the Fine-Gray model are given in Fine and Gray (1999)
with the accompanying R package, cmprsk, but left truncation is not accommodated. Klein
and Andersen (2005) and Binder et al. (2014) jackknifed pseudovalues to estimate the vari-
ance of r̂m but did not discuss left truncation. Geskus (2011) developed theory, including
variance estimates, that allows for left truncation and cites an R package, crhaz in the Bio-
metrics Supplemental Material. A version of this package, crprep, is used within the program
mstate that is available at https://cran.r-project.org/web/packages/mstate/index.html.

4.6.1 Approaches to variance estimation

A general analytic approach to computing the variance of a statistic, T , is linearization,
by which T is approximated by a linear function of random variable(s), whose variances
can often be easily obtained. A well known linearization is the parametric delta method,
for which T (θ̂) ≈ T (θ) + T ′(θ)(θ̂ − θ). This approach requires that θ be finite dimensional.
Benichou and Gail (1995) used this approach for the variance computation of absolute risk
with discrete covariates.

Instead, we obtain variance estimates from influence functions for Taylor linearization.
Taylor linearization is a non-iterative method to obtain the variance of complex estimators
that can be expressed as sums of differentiable functions of parameters and observed data,
and it has been widely applied to survey statistics for design-based inference (Woodruff,
1971; Demnati and Rao, 2010). The Taylor-linearized variance can be estimated from the
empirical influence function ∆{.}, which yields the analytic jackknife residual, or Taylor
deviate, for each observation. Influence functions have been used to estimate the variance of
M-estimators (Hampel, 1974), complex survey statistics (Graubard and Fears, 2005), and
the hazard ratios of the proportional hazards model for cohort data (Reid and Crepeau,
1985). Key properties of the influence operator have been previously discussed by Shah
(2002) and Deville (1999).

Although we illustrate the influence functions for a cohort obtained by simple random
sampling, a great advantage of this approach is that is simple, easy to implement, and
can easily be extended to accommodate complex sampling designs. Mark and Katki (2001)
and Mark and Katki (2006) used influence functions to compute variances for the case-
cohort design and for two-stage cohort samples, respectively. Results are also available for
linearization methods for estimates defined as the solution of estimating equations (Binder,
1983).

Alternatively one could use resampling approaches, such as the jackknife and bootstrap,
to estimate the variance of absolute risk. The jackknife is based on repeated computation
of the statistic for a dataset that omits one of the observations or groups of observations
at a time. Jackknife and linearization methods are similar in that analytical derivatives
in the linearization are replaced by numerical approximation in the jackknife (Davison
and Hinkley, 1997). The bootstrap recomputes the statistic based samples drawn with
replacement from the original dataset, and in a manner that reflects the sampling design.
The bootstrap requires considerable computation, and the resulting variance estimates are
not deterministic functions of the data, unlike the jackknife or influence function estimates.

https://cran.r-project.org/web/packages/mstate/index.html
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In our example we compare the influence function based variance estimates to those obtained
from a bootstrap.

4.6.2 Influence function based variance of the absolute risk estimate from cohort data

We base our variance derivation on a linearization approach, that allows one to obtain
variance estimates of a statistic T through a first order approximation of T , such that

var(T ) ≈ var{
n∑

i=1

∆i(T )}, (4.35)

where ∆i(T ) denotes the influence function operator that captures the influence of obser-
vation i on T . In what follows T = r̂m(t0, t1, z) and we assume simple random sampling of
cohort members. Extensions for complex sampling are in Kovalchik and Pfeiffer (2013).

Recall that the estimate of the absolute risk (4.1) can be written as a sum over the
distinct observed event times u1, . . . , uL for the primary cause m occurring within (t0, t1],
as

r̂m(t0, t1; z) =

L∑

l=1

λ̂0m(ul) exp(β̂
′

mzm) exp

[
−

M∑

k=1

{Λ̂k(ul; z
k)− Λ̂k(t0; z

k)}
]
=

L∑

l=1

λ̂0m(ul) exp(β̂
′

mzm)
M∏

k=1

exp
[
−{Λ̂0k(ul)− Λ̂0k(t0)} exp(β̂

′

kz
k)
]
=

L∑

l=1

M∏

k=1

θk(ul),

where

θm(ul) = λ̂0m(ul) exp(β̂
′

mzm) exp
[
−{Λ̂0m(ul)− Λ̂0m(t0)} exp(β̂

′

mzm)
]

and for all competing events, k 6= m,

θk(ul) = exp
[
−{Λ̂0k(ul)− Λ̂0k(t0)} exp(β̂

′

kz
k)
]
.

The Taylor deviates for the absolute risk estimate are weighted sums of the deviates of θ,
weighted by the partial derivatives of the absolute risk with respect to θ. The form of the
ith deviate is

∆i{r̂m(t0, t1; z)} =
L∑

l=1

M∑

k=1

∂r̂m(t0, t1; z)

∂θk(ul)
∆i{θk(ul)} =

M∑

k=1

∆k
i {r̂m(t0, t1; z)}, (4.36)

where ∆k
i {r̂m(t0, t1; z)} is the total influence due to a specific cause k on the absolute risk for

event m, and ∆i{θk(ul)} will be given later for piecewise constant and non-parametric haz-
ard models. Given the Taylor deviates (influences) ∆i{r̂m(t0, t1; z)} in (4.36), the variance
estimate for the absolute risk is

v̂ar(r̂m(t0, t1; z)) =
n

n− 1

n∑

i=1

[∆i{r̂m(t0, t1; z)} − ∆̄{r̂m(t0, t1; z)}]2 (4.37)

where ∆̄{r̂m(t0, t1; z)} = n−1
∑n

i=1 ∆i{r̂m(t0, t1; z)} is the average of these individual in-
fluences. Note that (4.37) is a variance estimate for a simple random sample but could be
generalized for complex sampling by treating ∆i as a random sample from the complex
design.
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Influences for the piecewise exponential hazard function

We express the absolute risk estimate (4.14) in a more compact form,

r̂m(τ0n0
, τ1n1

; z) =

n1∑

q=n0

Ŝ(Iq)Aq(1−Bq)

where

Aq =
λ̂0m(Iq) exp(β̂

′

mzm)
∑

k λ̂0k(Iq) exp(β̂
′

kz
k)
,

Bq = exp{−
∑

k

λ̂0k(Iq) exp(β̂
′

kz
k)(τ1q − τ0q)},

and Ŝ(Iq) is defined in Equation (4.15). Then the influences for r̂m(τ0n0
, τ1n1

; z) are

∆i{r̂m(τ0n0
, τ1n1

; z)} =
∑n1

q=n0

[
Ŝ(Iq)(1−Bq)∆i{Aq}

+Aq(1−Bq)∆i{Ŝ(Iq)} −AqŜ(Iq)∆i{Bq}
]
.

(4.38)

Taking each component in turn, the deviates for Aq are

∆i{Aq} = T−1
q ∆i{T (1)

q } − T
(1)
q

T 2
q

M∑

k=1

∆i{T (k)
q }

where T
(m)
q = λ̂0m(Iq) exp(β̂

′

mzm) and Tq =
∑M

k=1 T
(k)
q , with deviates

∆i{T (m)
q } = exp(β̂

′

mzm)∆i{λ̂0m(Iq)} + zmT1q∆i{β̂m}.

The deviates for Bq are

∆i{Bq} = −
M∑

m=1

[
exp(β̂

′

mzm)(τ1q − τ0q)Bq

(
zmλ̂0m(Iq)∆i{β̂m}+∆i{λ̂0m(Iq)}

)]
.

For q > n0, we note that Ŝ(Iq) =
∏q−1

l=n0
Bl so that

∆i{Ŝ(Iq)} = Ŝ(Iq)
q−1∑

l=n0

B−1
l ∆i{Bl},

and ∆i{Ŝ(Iq)} is zero when q = n0. The Taylor deviates for Aq, Bq and Ŝ(Iq) are each

functions of λ̂0m and β̂m. For λ̂0m, we have

∆i{λ̂0m(Iq)} = D(m)(Iq)−1
[
dNm

i (ti)I(τ0q ≤ ti < τ1q)− λ̂0m(Iq)∆i{D(m)(Iq)}
]

where
∆i{D(m)(Iq)} = Ai(Iq) exp(β̂

′

mzmi )

+
[∑

i z
m
i Ai(Iq) exp(β̂

′

mzmi )
]
∆i{β̂m},

(4.39)

and where Ai(Iq) is defined in Equation (4.16). Here we let β̂
m

be the estimate from the
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partial likelihood and
∑

t denote summation over all event times. Then the Taylor deviates

for each β̂m (Reid and Crepeau, 1985) are

∆i{β̂m} = E(β̂m)−1
∑

t

[

{zmi − ~E(β̂m, t)}

(

dNm
i (t)− yi(t) exp(β̂

′

mzmi )

∑
l
dNm

l (t)
∑

l
yl(t) exp(β̂

′

mzml )

)]

,

(4.40)

where E(β̂m) is minus the second partial derivative of the log-pseudo-likelihood,

E(β̂m) =
∑

t

[∑

i

zmi zmi
′e

(m)
i (t)− ~E(β̂m, t) ~E(β̂m, t)

′

]
, (4.41)

where ~E(β̂m, t) is defined in Equation (4.9), and

e
(m)
i (t) = yi(t) exp(β̂

′

mzmi )/
∑

i

yi(t) exp(β̂
′

mzmi ).

The first term inside the summation in Equation (4.40), dNm
i (t){zmi − ~E(β̂m, t)}, is non-zero

only if person i has an event. Thus, the deviates for β̂m are equivalent to the per-observation
update in a Newton-Raphson optimization algorithm where the objective function is the
weighted pseudo-likelihood of the Cox regression model. By successively substituting these
expressions we obtain ∆i{r̂m(τ0n0

, τ1n1
, z)} in (4.38) and hence the needed influences for

Equation (4.37).
We could have used maximum likelihood estimates of βm and λ0m based on the full

likelihood (Friedman, 1982) instead of estimating βm from the partial likelihood (Section
4.1.1) and then estimating λ0m as in Section 4.1.4. Here λ0m is a vector of interval-specific
baseline hazards in terms of which the baseline hazard function λ0m(t) is defined as in

Section 4.1.4. Letting λm(t;zm) = λ0m(t) exp(β′
mzm), λ(t;z) =

M∑
m=1

λm(t;zm), and S(t;z) =

exp{−
∫ t

0 λ(u; z)du}, we can write the likelihood as follows. A person with an event of
type m at time t contributes λm(t; z)S(t) to the likelihood for {λ0m} and {βm}. If the
person survives to time t without any event, the contribution is S(t). If I is the estimated
Fisher information from the full likelihood in {βm} and {λ0m}, which are concatenated
into column vectors β and λ0, and if Ui is the vector of contributions to the log-likelihood
score equations from the ith subject, then, from standard results for scores, the influences
for the respective components of the maximum likelihood estimates (β̂T , λ̂T

0 )
T are −I−1Ui.

These influences can be substituted for ∆i{β̂m} and ∆i{λ̂0m(Iq)} in previous expressions
to compute the variance of r̂m(τ0n0

, τ1n1
; z).

Derivatives and Taylor deviates for the semi-parametric hazard model

Denote Ŝ0k(t) = exp{−Λ̂0k(t)} and the Nk, k = 1, . . . ,M ordered observed event times
occurring within (t0, t1] for the kth cause as t0 < uk1 < uk2 < · · · < ukNk

≤ t1. In terms of
these event times, Equation (4.1) becomes

r̂m(t0, t1; z) =
Nm∑
j=1

exp(β̂
′

mzm)λ̂0m(umj )
∏M

k=1

(
Ŝ0k(u

m
j )

Ŝ0k(t0)

)exp(
ˆβ

′

k
z
k)

=
Nm∑
j=1

exp(β̂
′

mzm)λ̂0m(umj )
∏M

k=1

{
R̂0k(u

m
j )
}exp(

ˆβ
′

k
z
k)

=
Nm∑
j=1

r̂m(umj ),

(4.42)
where R̂0k(u

m
j ) = Ŝ0k(u

m
j )/Ŝ0k(t0) = exp{−Λ̂0k(u

m
j ) + Λ̂0k(t0)}. As with the piecewise
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exponential model, we determine the derivative and deviates for each component of (4.42).

For the β̂k, the derivative is

∂r̂m(t0, t1; z)

∂β̂k

= zk


r̂m(t0, t1; z) + exp(β̂

′

kz
k)

Nm∑

j=1

log
{
R̂0k(u

m
j )
}
r̂m(umj )




for k = m, and

∂r̂m(t0, t1;x)

∂β̂k

= zk exp(β̂
′

kz
k)

Nm∑

j=1

log
{
R̂0k(u

m
j )
}
r̂m(umj )

for competing causes k 6= m. The Taylor deviates for each β̂k are the same as given by
Equation (4.40) for the piecewise exponential model. The derivatives for the baseline hazard
components are

∂r̂m(t0, t1;x)

∂λ̂0m(umj )
= λ̂0m(umj )−1r̂m(umj ).

Recalling from (4.10) that the baseline hazard functions λ̂0j(t) are estimated as

λ̂0k(t) =

∑n
l=1 dNkl(t)

∑n
l=1 yl(t) exp(β̂

′

kz
k
l )

=
Nk(t)

Gk(t)
,

the Taylor deviates for the baseline hazard of cause m at observed event time t are

∆i{λ̂0m(t)} =
∂λ̂0m(t)

∂Nm(t)
∆i{Nm(t)}+ ∂λ̂0m(t)

∂Gm(t)
∆i{Gm(t)}.

In terms of these quantities, the Taylor deviates are

∆i{λ̂0m(t)} = Gm(t)−1
[
dNmi(t)− λ̂0m(t)∆i{Gm(t)}

]

with
∆i{Gm(t)} = ymi (t) exp(β̂

′

mzmi )

+
[∑

l z
m
l y

m
l (t) exp(β̂

′

mzml )
]
∆i{β̂m}.

We note that the hazard deviates for the piecewise and semiparametric model in Equa-
tion (4.39) are equivalent when each interval of the piecewise model contains exactly one
observed event time.

The final components are the survival functions. The derivatives for each R̂0j(u
m
k ) are

∂r̂m(t0, t1;x)

∂R̂0k(umj )
= exp(β̂

′

kz
k)R̂0k(u

m
j )−1r̂m(umj ).

From the semiparametric estimate of Equation (4.11), the Taylor deviates for R̂0j(u
m
k ) are

∆i{R̂0k(u
m
j )} = ∆i{exp{−Λ̂0k(u

m
j ) + Λ̂0k(t0)} = −R̂0k(u

m
j )

∑

t0<uk
l
≤um

j

∆i{λ̂0k(ukl )}.

To simplify the computation, we use that

r̂m(t0, t1; z)

∂R̂0k(umj )
∆i{R̂0k(u

m
j )} = − exp(β̂

′

kz
k)r̂m(umj )

∑

t0<uk
l
≤um

j

∆i{λ̂0k(ukl )}.
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Combining these results, we obtain the expression for the Taylor deviates of r̂m(t0, t1;x)
for individuals i = 1, . . . , n in the cohort as

∆i{r̂m(t0, t1;x)} =
∑M

k=1
r̂m(t0,t1;z)

∂
ˆβ

k

∆i{β̂k}+
∑Nm

j=1
r̂m(t0,t1;z)

∂λ̂0m(um
j
)
∆i{λ̂0m(umj )}

−∑Nm

j=1

∑M
k=1

[
exp(β̂

′

kz
k)r̂m(umj )

∑
t0<uk

l
≤um

j
∆i{λ̂0k(ukl )}

]
.
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Chapter 5

Estimating absolute risk by combining

case-control or cohort data with disease

registry data

Equation (4.1) expresses absolute risk in terms of cause-specific hazards. If the cause-specific
hazards depend on covariates through a proportional hazards relationship, Equation (4.4),
it is possible to estimate covariate- and cause-specific hazards by combining relative and at-
tributable risk estimates from case-control or cohort data or subsamples of cohorts, as in the
case-cohort design (Prentice, 1986), with estimates of age-specific incidence from a registry.
This approach is applicable even if the covariates in Equation (4.4) are time-dependent.
The ability to combine information on relative and attributable risk with registry data to
estimate absolute risk is one of the major advantages of the cause-specific formulation of
absolute risk, Equation (4.1).

This approach is particularly appealing in the setting of rare outcomes, where associ-
ation parameters are often estimated from case-control studies that do not provide any
information on disease incidence. It also allows one to obtain more stable and efficient es-
timates of the hazards when cohort data or subsamples from cohorts are available because
the registry rates are usually known with good precision. The use of registry rates, which
are often population-based, calibrates the model to the general population from which the
registry derives. The gain in information from the use of registry data depends, however,
on the size and quality of the available registry data.

5.1 Relationship between attributable risk, composite age-specific incidence,
and baseline hazard

Disease registries usually cover a well defined population and collect information on the
characteristics of persons diagnosed with a particular disease. These characteristics typically
include age at diagnosis, sex, race/ethnicity, and features of the disease, such as cancer
stage. For example, the National Cancer Institute’s Surveillance, Epidemiology and End
Results (SEER) program attempts to ascertain all cancers (with a few exceptions such
as non-melanoma skin cancers) diagnosed in defined geographic areas each year. SEER
now covers about 28% of the US population (http://seer.cancer.gov/registries/data.html).
By combining such information with data on population size, SEER publishes gender-,
race/ethnicity-, calendar year- and age-specific cancer rates. For example, from 2009–2013
SEER data, the breast cancer incidence rate for white women aged 60− 64 is λ∗1(t) = 340
per 105 women-years (http://seer.cancer.gov/faststats), where the subscript 1 indicates the
incidence rate of the outcome of principal interest, t is age, and the asterisk indicates that
this is a “composite” rate, because it reflects the experience of a population of women with
various combinations of risk factors. In Equation (4.4), we require the baseline hazard rate
λ01(t) for a woman with relative risk 1.0, i.e., who has all covariates at their lowest levels,
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z1 = 0. To avoid confusion in any computation, we assume that all covariates z1 are coded
so that relative risks are greater or equal to one, i.e., all non-null factors increase risk, but
cannot lower it. Depending on the example, this may require changes of baseline or referent
categories compared to some commonly used risk factor coding.

For a population aged t, the attributable hazard function (Chen et al., 2006b; Samuelsen
and Eide, 2008) for outcome 1, the fraction of the incidence that is explained by the risk
factors z1 in the model, is

AR(t) =
λ∗1(t)− λ01(t)

λ∗1(t)
. (5.1)

The quantity AR(t) in Equation (5.1) can be approximated by the attributable risk in a set
of subjects in an age interval near t. We use the notation AR(t) to refer to the outcome of
main interest, m = 1, but the same approach could be used for other outcomes. Hence the
baseline hazard satisfies

λ01(t) = {1−AR(t)}λ∗1(t). (5.2)

The needed covariate- and cause-specific hazard is estimated under Equation (4.3) as

λ̂1(t; z
1) = λ̂01(t)rr(β̂

′

1z
1) = {1− ÂR(t)}λ∗1(t)rr(β̂

′

1z
1), (5.3)

where rr denotes the relative risk. The SEER composite rate λ∗1(t) is usually based on
large samples and is thus assumed to be known without error, but the random variation in

{1− ÂR(t)}rr(β̂′

1z
1) needs to be taken into account, as described in Section 5.8. Sometimes

it may be necessary to accommodate the variability in the composite hazard, λ∗1(t), but
we do not consider this in what follows. Equation (5.1) was used by Gail et al. (1989) but
called the “population attributable risk fraction for women of age t”.

5.2 Estimating relative risk and attributable risk from case-control data

Suppose for a rare outcome one has conducted a population-based case-control study and
focuses on cases (D = 1) and controls (D = 0) in a given age interval [τ0t, τ1t), that could be
a single year or an age interval, such as ages 60–64 years. We sometimes use the shorthand
notation ti = t to mean ti ∈ [τ0t, τ1t). Over short time periods, the probability of disease is
usually small. Thus relative odds from case-control data approximate relative risks, and log
relative odds from case-control data estimate β1 in model (5.3) with rr(u) = exp(u). Here

an estimate β̂1 is obtained from unconditional or conditional logistic regression. If cases
are representative of all cases in the population of interest, they can be used to estimate
attributable risk from the Bruzzi formula (Bruzzi et al., 1985)

1− ÂR(t) =
1∑n

i=1 diI(ti = t)

n∑

i=1

diI(ti = t)

rr(β̂
′

1z
1
i )

, (5.4)

where n is the total sample size in the case-control study, d is the observed case indicator,
I denotes the indicator function, and z1i and ti are the covariates and age for person i,
respectively. Thus diI(ti = t) = 1 only if person i is a case diagnosed in age interval t.
Greenland and Drescher (1993) showed that the maximum likelihood estimate of AR(t)
was scarcely more efficient than Equation (5.4) and required stronger assumptions.

Sometimes there are nuisance variables, Z0, such as study center or year of enrollment
into a study, that are not going to be part of the actual risk model but have to be accounted
for in the model fitting to yield unbiased estimates of β1 for the variables of interest, Z1,

that will be in the risk model. To obtain estimates β̂1, one can adjust for Z0 by stratification

or by including it in a joint relative risk model such as rr(β̂
′

1Z
1, γ̂ ′

1Z
0) = exp(β̂

′

1Z
1+ γ̂′

1Z
0).

Assuming that the cases in the study are similar to cases in a target population, Equation
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(5.4) should be used with rr(β̂
′

1Z
1) = exp(β̂

′

1Z
1). Here we are not trying to estimate the

adjusted attributable risk (see Bruzzi et al. (1985)) that describes the fractional reduction
in risk in the study population if Z1 is set to 0 but Z0 is unchanged.

Often controls are matched to cases on age and other factors and are therefore not
representative of the entire population. However, if controls are a simple random sample of
non-cases, they can also be used to estimate the attributable risk under the rare disease
assumption via

1− ÂR(t) =

∑n
i=1(1− di)I(ti = t)

∑n
i=1(1 − di)I(ti = t)rr(β̂

′

1z
1
i )
. (5.5)

Benichou and Gail (1990b) discussed estimation of attributable risk for four ways of choos-
ing controls: simple random sampling; stratified random sampling; frequency matching
controls to cases within strata; and individual matching of controls to cases. They gave
corresponding methods for inference for the attributable risk, but not for the product
{1−ÂR(t)} exp(β̂′

1z
1). Graubard and Fears (2005) used used a linearization approach based

on influence functions to obtain the variance of ÂR(t) for various study designs. Pfeiffer
and Petracci (2011) extended the influence function based variance computation for the
attributable risk and provided variances for the absolute risk r̂1(t) estimated from case-
control data combined with registry information on incidence. We present that approach to
variance estimation in detail in Section 5.8.

Equations like (5.4) and (5.5) can be expressed in terms of averages with respect to the
empirical distribution of covariates in cases or in the population, respectively. The latter
distribution can be estimated from controls in a case-control study if the disease is rare.
For example, if F̂ is the empirical distribution of covariates among cases diagnosed at age

t, 1− ÂR(t) =
∫
{rr(β̂′

1z
1)}−1dF̂ (z1). Thus these expressions generalize to combinations of

discrete and continuous covariates (Benichou and Gail, 1990b).

5.3 Estimating relative risk and attributable risk from cohort data

Equation (5.3) can also be used for cohort data by modifying the estimators. Log relative
hazards β1 can be estimated with the methods in Chapter 4, either based on the full cohort,
on nested case-control samples within the cohort, or on case-cohort samples. Although
absolute risk can be estimated directly from the cohort data (Chapter 4), cohorts may
provide imprecise estimates of λ01(t), even though estimates of relative and absolute risk
have adequate precision. In this setting, using composite age-specific hazards λ∗1(t) from
registry data can improve the precision of estimates of absolute risk r1(t0,t1;Z

1 = z1). If
censoring is independent of covariates and failure time, attributable risks can be estimated
as in Chen et al. (2006b) by summing over all cohort members at risk in age interval t, i.e.,
those for whom the at risk process Y (t) defined in Section 2.6. equals 1,

1− ÂR(t) =

∑n
i=1 Yi(t)∑n

i=1 Yi(t)rr(β̂
′

1z
1
i )
. (5.6)

Again, it is important that all covariates in the above formula are coded so that all coeffi-
cients βi are non-negative. Graubard et al. (2007) described how to estimate attributable
risks and standard errors from simple and complex sampled cohorts, including multistage
stratified cluster samples, which are used in national household surveys. We derive the
variance of 1− ÂR(t) in Section 5.8 following the approach by Graubard et al. (2007).

As for the case-control setting in Section 5.2, when nuisance variables Z0 such as study

center or year of accrual are included in the joint relative risk model rr(β̂
′

1z
1, γ̂′

1z
0
i ), one

obtains an adjusted estimate β̂1. Provided the distribution of Z1 is similar to that in the



66 ESTIMATING ABSOLUTE RISK BY COMBINING CASE-CONTROL

target population, however, Equation (5.6) still applies with the adjusted estimate β̂1. Here
we are assuming that the adjusted log relative risks from the study population approximate
the log relative risks that would have been obtained by applying the model based only on
Z1 to the target population.

Liu et al. (2014) provided rigorous theory for estimating the functions φ(t) = {1−AR(t)}
and r1(t0, = 0, t1 = t;Z1 = z1), regarded as a function of continuous time t, from survival
data in a cohort, such as women followed in the Women’s Health Initiative (WHI). Because
women entered the cohort at various ages, and the analysis was done on the age scale,
they allowed for left-truncation as well as for right-censoring. Under the Cox proportional
hazards model with fixed covariates,

1−AR(t) =

∫
exp{−Λ0(t) exp(β

′

1z
1)}dF (z1)∫

exp(β
′

1z
1) exp{−Λ0(t) exp(β

′

1z
1)}dF (z1) , (5.7)

where F is the distribution of Z1 in the cohort. If the cohort is representative of the
registry population, such as SEER, then F also describes the distribution of risk factors in
the registry population, and letting φ(t) = 1 − AR(t), one can use λ01(t) = φ(t)λ∗1(t) to
compute absolute risks in the registry population. For models that are to be used for the
general population, a registry like SEER is likely to be more representative of the general
population than a particular cohort, justifying this approach. Liu et al. (2014), however,
were interested in estimating absolute risk for the WHI population, not the SEER registry
population. They therefore re-calibrated the SEER rates by multiplying by a constant factor

ρ to obtain λ01,WHI (t) = ρφ(t)λ∗1(t) and estimated β
′

1 from maximum partial likelihood,
Λ0(t) from the Breslow estimator, and ρ from the ratio of observed to expected events in the
WHI cohort. They used martingale theory to prove consistency and asymptotic normality for
ρ̂ and the processes φ̂(t) and r̂1(t0,t1;Z

1 = z1), together with needed variance and covariance

estimates. The marginal normal theory for φ̂(t) and r̂1(t0,t1;Z
1 = z1) supports inference

for risk projection in the general population (ρ =1). Equation (5.7) relies strongly on the
proportional hazards assumption, but only requires that censoring be independent of failure
time conditional on all covariates used for modeling the competing risks. The estimator of
φ(t) in Equation (5.6) is less model-based and can be used to estimate λ01(t) = φ(t)λ∗1(t).

The variability of λ∗1 is often negligible compared to that of φ̂(t). One can also use the
estimators of β

′

1 and Λ0(t) with Equation (5.7) for nested case-control designs and case-
cohort designs (Chapter 4), instead of for the full cohort, and increase the efficiency of
absolute risk estimates by employing λ01(t) = φ(t)λ∗1(t). However, additional theoretical
work, or a bootstrap procedure, would be needed to provide confidence intervals for the
resulting absolute risk estimates.

5.4 Estimating the cause-specific hazard of the competing causes of
mortality, λ2(t; z

2)

To estimate the absolute risk of incidence of disease 1, the only competing risk is death
from other causes, with cause-specific hazard λ2(t; z

2). Data from the National Center for
Health Statistics of the Centers for Disease Control and Prevention are accessible through
SEER and give estimates of the composite hazard, λ∗2(t) for the general US population. Often
cohort studies are too small to provide reliable covariate models for competing mortality, and
the cohort may not provide reliable cause-of-death data. Thus, one often ignores covariates
and sets λ2(t; z

2) = λ∗2(t) in applications of Equation (4.2) with M =2 causes. This is often
a good approximation, because allowing for covariates in modeling the competing risk 2
may have little impact on estimates of the absolute risk of incident disease 1, as Liu et al.
(2014) found in their analyses of colorectal cancer risk in WHI.

In some applications, where the competing mortality has a large hazard and where
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λ2(t; z
2) is strongly influenced by covariates, it is essential to include covariates in λ2(t; z

2).
In the example presented in Section 4.3.2, to estimate the absolute risk of a second primary
thyroid cancer in long term survivors of other types of childhood cancer, Kovalchik et al.
(2013a) modeled the risk of competing mortality. This more detailed modeling was neces-
sary to capture the strong impact of treatments for the first cancer on competing mortality.
Special cohort data from childhood cancer survivors were needed to model the competing
risk of mortality from causes other than thyroid cancer. In this example, covariates describ-
ing the initial treatment were needed to model competing mortality because the hazard of
competing mortality was high and strongly associated with the initial treatment.

5.5 Some strengths and limitations of using registry data

The use of registry data is appealing because it increases the precision of absolute risk es-
timates when combined with cohort data, and it allows one to compute absolute risks even
with case-control data. Moreover, if the registry is representative of the target population for
which the risk model is designed, use of the registry composite rates calibrates the model to
the target population. There are some limitations of this approach, however. First, represen-
tative registry data may not be available for the desired disease outcome. For example there
are no national registries for incident stroke. One needs to rely on selected cohorts or on
less comprehensive registries instead. Second, the approach implicit in Equation (5.3) also
assumes that relative risk parameters and attributable hazard functions estimated from the
case-control or cohort study are appropriate for the catchment population for the registry.

If incidence information from registries is based on small numbers of events, the variation
in λ∗1 needs to be accounted for in any variance computation. This occurs, for example, with
very rare outcomes, or outcomes in small subgroups of a population. One usually assumes
that estimates of β1 and AR are independent of λ∗1. If the numbers of events in registries are
small and these events are included in the studies used to estimate β1 and AR, covariances
need to be taken into account.

5.6 Absolute risk estimate

Recall from Chapter 4 that the absolute risk in the age interval (t0, t1] for a person who has
survived event free to age t0 is defined as

r1(t0, t1;Z = z) = P (t0 < T ≤ t1, δ = 1|T > t0) =

∫ t1

t0

λ1(u, z
1)S(u−)du =

∫ t1

t0

λ1(u; z
1) exp{−

∫ u

t0

M∑

k=1

λk(s; z
k)ds}du. (5.8)

In what follows we assume M = 2, and piecewise exponential models, where λ10(t) = λ1j0
and λ2(t) = λ2j0 are constant over single year age intervals [tj , tj+1), j = 1, . . . , J . For
example, if t0 = 50 and t1 = 55, the projection is over (50.0, 55.0], a span of five years.
After integration, (5.8) simplifies to

r1(t0, t1;Z = z) =

t1−1∑

j=t0

λ1j0rrj(z
1,β1)

λ1j0rrj(z1,β1) + λ2j0rrj(z2,β2)

[
1− exp{−λ1j0rrj(z1,β1)

− λ2j0rrj(z
2,β2)}

]
exp

[
−

j−1∑

l=t0

{λ1l0rrl(z1,β1) + λ2l0rrl(z
2,β2)}

]
, (5.9)
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where λ1j0 and λ2j0 are computed based on Equation (5.2) using the attributable risk, i.e.,

λmj0 = λ∗mj(1 − ÂRj). Note that if j − 1 < t0, the sum within the exponential argument
in (5.9) is 0. If intervals of different length, such as 5 years, are used, formula (5.9) can be
modified by replacing λmj0,m = 1, 2 by e.g., 5λmj0. Estimates of absolute risk are obtained
by inserting estimates of rr1j(z

1) and rr2j(z
2) in Equation (5.9). Here rr(zm) are general

relative risk functions of zm and βm with values in [0,∞). The quantities λ∗mj ,m = 1, 2
are regarded as constants in the variance calculations in the following examples. Variance
calculations are deferred to Section 5.8.

5.7 Example: estimating absolute risk of breast cancer incidence by
combining cohort data with registry data

In Chapter 4 we estimated relative risks of invasive breast cancer from the AARP cohort
(Table 4.2) and estimated absolute risk using internal cohort estimates of the baseline haz-
ard and cumulative hazard. Here we use the AARP data to estimate relative risks and at-
tributable risks (from Equation (5.6)) and combine them with SEER registry data via Equa-
tion (5.3) to estimate absolute breast cancer risk. We computed attributable risk estimates
in the AARP cohort separately in four age categories: < 55, [55, 60), [60, 65), and 65+ years

at baseline. The corresponding attributable risk estimates ÂR(t) were 0.648, 0.656, 0.651,
and 0.642. As there was no appreciable heterogeneity by age, we combined all ages and used
the overall attributable risk estimate ÂR = 0.649. We present examples of 5- and 10-year
projections of absolute risk of invasive breast cancer for three 60 year old women with the
same risk profiles as in Table 4.3. For comparison, we present the absolute risk estimates
that used non-parametric internal cohort estimates of the cause-specific baseline hazard
function for each cause. We modeled the hazard of competing mortality with covariates for
the internal cohort analysis, but not for the analysis based on SEER rates. These hazards
were then plugged into Equation (4.13) to estimate the absolute risk of invasive breast
cancer.

For Profiles 1 and 2, the estimates from the model that used SEER data were somewhat
lower than those based on AARP data alone, for both 5- and 10-year projections, but for
Profile 3, the model that used SEER data had higher projections, both at 5 and 10 years.
(Table 5.1). Standard errors of absolute risk estimates were smaller for the SEER-based
model than for the model with internal cohort estimates of cause-specific hazards, except
in one instance. The same pattern was observed whether one used influence-function based
estimates of standard error or bootstrap estimates of standard error. However, for analysis
based on smaller cohorts than AARP with fewer events, the gain in precision from using
registry rates would be more pronounced.

5.8 Variance computations

This section describes variance calculations suited to whether the cause-specific log relative
hazards and attributable risks come from case-control or cohort designs. Skipping this sec-
tion will not impact the readability of later sections. We describe the linearization approach
(see also Section 4.6), that allows one to obtain variance estimates of a statistic T̂ through
a first order approximation of T̂ , such that for a simple random sample

var(T̂ ) ≈ var{
n∑

1

∆i(T̂ )}, (5.10)

where ∆i(T̂ ) denotes the influence function operator that captures the influence of obser-
vation i on T̂ . Graubard and Fears (2005) summarize the properties of ∆i(.), and further
details can be found in Deville (1999). The variance estimate for T̂ can be generalized for
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Table 5.1: Projections of 5- and 10-year absolute risk of invasive breast cancer for three
60-year-old women with different risk profiles

Characteristics Profile 1 Profile 2 Profile 3

BMI, kg/m2 24 36 41
Estrogen and progestin MHT use No MHT use 12 years 11 years
Other MHT use No No Yes
Parity 2 children 1 child 1 child
Age at first live birth 23 24 22
Age at menopause < 50 years 52 58
Benign breast disease/biopsy No No Yes
Family history of breast or
ovarian cancer No No Yes
Alcohol consumption 0 drinks/day 0 drink/day 0.5 drink/day
Gynecologic surgery Yes No No
Smoking Never smoker Never smoker Never smoker

Relative risk estimate for breast cancer 1.0 3.22 10.71
Relative risk estimate for
competing mortality 1.0 0.44 0.28

Absolute risk estimates (and standard errors) with internal AARP cohort
baseline ratesa

5-year absolute risk 0.83% 2.96% 6.60%
Influence based standard error 0.05% 0.25% 0.61%
Bootstrap based standard error 0.07% 0.31% 0.65%
10-year absolute risk 1.76% 6.36% 13.88%
Influence based standard error 0.10% 0.52% 0.76%
Bootstrap based standard error 0.14% 0.65% 1.18%

Absolute risk estimates (and standard errors) that use SEER rates
to estimate baseline rates

5-year absolute risk 0.69% 2.20% 7.14%
Influence based standard error 0.04% 0.15% 0.56%
Bootstrap based standard error 0.04% 0.15% 0.58%
10-year absolute risk 1.43% 4.53% 14.29%
Influence based standard error 0.09% 0.31% 1.12%
Bootstrap based standard error 0.09% 0.31% 1.12%

a Competing mortality modeled with covariates for this analysis but not for the analysis
with SEER rates.

complex sampling by treating ∆i as a random sample from the complex design. We also
describe resampling approaches to variance estimation (Section 5.8.4).

To to obtain an estimate v̂ar(r̂), we first derive the influence ∆i(r̂) of the i-th individual
in the study used to estimate needed parameters on the absolute risk estimate r̂. We assume
that the competing mortality risk does not depend on covariates and has piecewise constant
hazards. The extension to a covariate-dependent competing hazard is straightforward. Ap-
plying the ∆ operator to (5.9), we get

∆i(r̂) = ∆i{r(t0, t1, z, β̂)} =

t1−1∑

j=t0

∆i



 λ1j0rrj(z, β̂)

λ1j0rrj(z, β̂) + λ2j0

[1−exp{−(λ1j0rrj(z, β̂)+λ2j0)}] exp{−

j−1∑

l=t0

(λ1l0rrl(z, β̂)+λ2l0)}



 =

t1−1∑

j=t0

∆i (θ1jθ2jθ3j) , (5.11)
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where θ1j = λ1j0rrj(z, β̂)/{λ1j0rrj(z, β̂) + λ2j0}, θ2j = 1 − exp{−(λ1j0rrj(z, β̂) + λ2j0)},
and θ3j = exp{−∑j−1

l=t0
(λ1l0rrl(z, β̂)+λ2l0)}. Applying the chain rule, we express the Taylor

deviates for the absolute risk estimate as weighted sums of the deviates of λ1j0rrj(z, β̂),

weighted by the partial derivatives of the absolute risk with respect to λ1j0rrj(z, β̂),

∆i{r(t0, t1, z, β̂)} =

t1−1∑

j=t0

(
θ3j∆i{λ1j0rrj(z, β̂)}

[
∂θ1j

∂{λ1j0rrj(z, β̂)}
θ2j +

∂θ2j

∂{λ1j0rrj(z, β̂)}
θ1j

]

− θ1jθ2jθ3j

j−1∑

l=t0

∆i{λ1l0rrl(z, β̂)}



 , (5.12)

similar to (4.36). In the above equation

∂θ1j

∂{λ1j0rrj(z, β̂)}
=

λ2j0

{λ1j0rrj(z, β̂) + λ2j0}2
and

∂θ2j

∂{λ1j0rrj(z, β̂)}
= exp{−(λ1j0rrj(z, β̂) + λ2j0)}.

Note that when AR and rr(z, β̂) do not depend on time, then because ∆i{λ1j0rrj(z, β̂)} =

λ∗1j∆i{(1− ÂRj)rrj(z, β̂)}, Equation (5.12) simplifies to

∆i{r(t0, t1, z, β̂)} = ∆i{(1− ÂR)rr(z, β̂)}

×
t1−1∑

j=t0

(
θ3jλ

∗
1j

[
∂θ1j

∂{λ1j0rrj(z, β̂)}
θ2j +

∂θ2j

∂{λ1j0rrj(z, β̂)}
θ1j

]
− θ1jθ2jθ3j

j−1∑

l=t0

λ∗1l

)
.

In the following sections we compute

∆i{λ1j0rrj(z, β̂)} = λ∗1j∆i{(1− ÂRj)rrj(z, β̂)} (5.13)

for various study designs when rr depends on the predictors through the linear function
β
′z .

5.8.1 Relative risk parameters and attributable risk estimated from a case-control study

We assume relative risk parameters and attributable risks are estimated from population-
based case-control data and combined with age-specific disease incidence and mortality
rates from registries. As registries have large samples and are typically independent from
the case-control data, the incidence and mortality rates can be treated as fixed, and the
variability of the absolute risk estimates arises solely from the estimation of the relative risk
parameters and attributable risks.

We assume that age is a categorical variable, indexed by j ∈ {1, . . . , J}. Let dij be one if
individual i is a case of age j and zero otherwise and let zij denote a 1×p vector containing
the covariate information for the i-th individual that may also include interaction terms
with age. The total sample size of the case control study is denoted by n = n1 + n0, where
n1 is the number of cases and n0 the number of controls. We obtain relative risk estimates
from the case-control data assuming that the probability of disease is given by a logistic
model,

ln
P (Dij = 1|zij)

1− P (Dij = 1|zij)
= ln

p(zij , µ,β)

1− p(zij , µ,β)
= µ+ β′zij , (5.14)

where β is a vector of regression parameters and all risk factors z are coded such that the
components of β are positive, βk > 0. Thus the relative risk associated with z is exp(β′z).
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Under model (5.14) the attributable risk formula given in (5.4) corresponds to

1− ÂRj =

∑n
i=1 exp(−β̂

′
zij)dij∑n

i=1 dij
. (5.15)

While n1 and n0 are fixed by design, the number of cases in a specific age category is
typically a random quantity, which is reflected in the denominator of the expression above.

If cases and controls are sampled based on complex designs, for example from surveys,
then each dij would be multiplied by a sampling weight w, the inverse of the probability of
being included in the sample. While all our computations generalize to unequal weights, we
omit the weights for ease of notation.

Here, we compute ∆i{λ1j0rrj(z, β̂)} in (5.13) from

λ1j0rrj(z, β̂) = λ∗1j(1 −ARj)rrj(z, β̂) =
λ∗1j
∑n

k=1 dkj exp{−β̂
′
(zkj − z)}∑n

k=1 dkj
=
P1j

P2j
. (5.16)

Thus

∆i{λ1j0rrj(z, β̂)} = [
∂{λ1j0rrj(z, β̂)}

∂P1j
∆i(P1j) +

∂{λ1j0rrj(z, β̂)}
∂P2j

∆i(P2j)]. (5.17)

Differentiation yields

∂{λ1j0rrj(z, β̂)}
∂P1j

=
1∑n

k=1 dkj
and

∂{λ1j0rrj(z, β̂)}
∂P2j

= −
∑n

k=1 λ
∗
1jdkj exp{−β̂

′
(zkj − z)}

(
∑n

k=1 dkj)
2

.

(5.18)
The corresponding influences are

∆i(P1j) = λ∗1jdij exp{−β̂
′
(zij − z)}+ (

∂P1j

∂β̂
)′∆i(β̂) =

= λ∗1jdij exp{−β̂
′
(zij − z)} −

n∑

k=1

λ∗1jdkj [(zkj − z) exp{−β̂′
(zkj − z)}]′∆i(β̂) (5.19)

and ∆i(P2j) = dij . The influence ∆i(β̂) is obtained from the estimating equation for the

logistic regression model by solving 0 = ∆i[
∑n

k=1 zkj{dkj − p(zkj , µ̂, β̂)}], where p stands
for the logistic probability given in (5.14), to yield

∆i(β̂) =
[ n∑

k=1

zkjz
′
kjp(zkj , µ̂, β̂){1− p(xkj , β̂)}

]−1

zij{dij − p(zij , µ̂, β̂)}. (5.20)

To accommodate the case-control design, the variance of r̂ is computed by treating cases
and controls as separate strata and combining their empirical variance estimates,

v̂ar(r̂) =
n0

n0 − 1

n∑

i=1

(1− di){∆i(r) − ∆̄i0(r)}2 +
n1

n1 − 1

n∑

i=1

di{∆i(r) − ∆̄i1(r)}2, (5.21)

where ∆̄i0(r) and ∆̄i1(r) denote the empirical means over the influences ∆i(r) in controls
and cases, respectively.
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5.8.2 Relative risk parameters and attributable risk estimated from a cohort study

When relative risk parameters β are estimated from a population-based cohort study, at-
tributable risks can be estimated as in Chen et al. (2006b) by using Equation (5.5) but
summing over all cohort members at risk in age interval t, rather than over controls, result-
ing in

(1− ÂRt)rrt(z, β̂) =

∑n
j=1 Yj(t)∑n

j=1 Yj(t)rrt(β̂
′
zj)

rrt(β̂
′
z). (5.22)

For ease of exposition we will omit the subscript t in what follows. However, the formulas
can easily be extended to relative risk expression that vary by age or time.

If disease is rare and we assume rr(u) = exp(u), Equation (5.22) is given by

(1 − ÂR) exp(β̂
′
z) =

∑n
j=1 Yj(t)∑n

j=1 Yj(t) exp{β̂
′
(zj − z)}

.

Letting A =
∑n

j=1 Yj(t) exp{β̂
′
(zj − z)} and applying the chain rule yields

∆i{(1− ÂRt) exp(β̂
′
z)} =

Yi(t)

A

−
∑n

j=1 Yj(t)

A2



Yi(t) exp{β̂

′
(zi − z)}+

n∑

j=1

Yj(t) exp{β̂
′
(zj − z)}(zj − z)′∆i(β̂)



. (5.23)

An explicit expression for the Taylor deviates of the relative risk parameters ∆i(β̂) is given
in Equation (4.40).

5.8.3 Variance computation when an external reference survey is used to obtain the risk
factor distribution

Suppose that a special cohort study yields valid estimates of relative risks that are applicable
to the SEER population, but that its distribution of risk factors is not representative of
the population in SEER. Suppose also that a representative survey in a SEER catchment
area yields information on the distribution of risk factors, but no information on disease
outcomes. One can combine the relative risk information from the special cohort with the
risk factor distribution from the survey to estimate attributable risk in the SEER catchment
area. Then, using Equation (5.3) with the composite hazard from SEER, one obtains the
cause-specific hazard needed to compute absolute risk.

Here we let nc denote the sample size of the cohort from which the relative risk param-
eters were estimated, and ne is the sample size for the survey that provides information
on the distribution of risk factors. Then similar to Equation (5.22), the external-sample

estimate of (1− ÂRt)rr(z
1 , β̂) is

(1− ÂRt)rr(z, β̂) =

∑ne

j=1 wjI(tj = t)
∑ne

j=1 wjI(tj = t)rr(β̂
′
zj)

rr(β̂
′
z),

where I(tj = t) is one if the jth respondent in the external survey has age in interval t and
zero otherwise, and wj are the external survey sampling weights, that are known without
error.

Let rr(u) = exp(u), B =
∑ne

j=1 wjI(tj = t) and A =
∑ne

j=1 wjI(tj = t) exp{β̂′
(zj − z)}.
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For individuals i = 1, 2, ..., nc in the study cohort, the influences are

∆i{(1− ÂRt) exp{β̂
′
z}} = − B

A2





ne∑

j=1

wjI(tj = t) exp{β̂′
(zj − z)}(zj − z)′∆i(β̂)



 ,

(5.24)

where ∆i(β̂) is computed from the original cohort as in Equation (4.40). For individuals
j = 1, . . . , ne in the external survey,

∆i{(1− ÂRt) exp(β̂
′
z)} = −I(ti = t)

A
+

B

A2

{
I(ti = t) exp{β̂′

(zi − z)}
}
.

5.8.4 Resampling methods to estimate variance

The bootstrap and jackknife methods can be used to estimate the variance of an estimate
of absolute risk based partly on registry data. For example, suppose a cohort study is used
to estimate log relative risks β and attributable risk AR(t). Suppose we obtain B bootstrap

samples from the cohort and obtain corresponding estimates β̂b, ÂRb(t) for b = 1, 2, ..., B.
For a given set of covariates z and time interval, we can compute the estimated absolute risk
r̂b by using β̂b and ÂRb(t) in Equations (5.3) and (5.8). Confidence intervals on the absolute
risk can be obtained from the quantiles of the bootstrap distribution of r̂b, and var(r̂) can

be estimated from
B∑

b=1

(r̂b − r̄b)
2/(B − 1). For case-control data, the same approach can be

used, except the bootstrap proceeds by sampling the n1 cases with replacement and the n0

controls with replacement separately. The same sets of β̂b and ÂRb(t) can be used repeatedly
for various choices of z and time intervals, which reduces the computational burden.

The jackknife method is similar and has the advantage that the resulting variance
estimate is a deterministic function of the data, whereas different bootstrap samples
yield slightly different variance estimates. The computational burden can be greater
for the jackknife, however. Suppose for a fixed z and time interval that r̂(−j) for i =
1, 2, ..., n is the estimate of absolute risk based on the registry data and on all mem-
bers of the cohort except member i . Then the jackknife estimate of variance is {(n −
1)/n}

n∑
j=1

(r̂(−j) − r̄(−j))
2 , where r̄(−j) =

n∑
j=1

r̂(−j)/n. For case-control samples, the vari-

ance is {(n1 − 1)/n1}
n1∑
j=1

(r̂(−j) − r̄(−j))
2 + {(n0 − 1)/n0}

n1+n0∑
j=n1+1

(r̂(−j) − r̄(−j))
2, where the

first summation is over the n1 cases and the second summation is over the n0 controls.
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Chapter 6

Assessment of risk model performance

6.1 Introduction

Before a risk prediction model can be recommended for clinical or public health applications,
one needs to assess how good the predictions are. In this chapter we consider various criteria
for assessing the performance of a risk model. Although the criteria apply to absolute risk,
many are also useful for other types of risk, such as the pure risk of an event or the risk of
having prevalent screen-detectable disease.

Unless otherwise stated, we assume that we have developed a risk model on “training
data” and assess the performance of the model on independent “test” or “validation” data.
This approach, termed “external validation”, provides a more rigorous assessment of the
model than testing the model on the training data (“internal validation”), even though
cross-validation techniques are available to reduce the “over-optimism” bias that can result
from testing the model on the training data (Efron, 1986). If the test and training data
are independent, one can regard the model as fixed. Random variation in the evaluation
criteria derives from random variation of covariates and outcomes in the test data, not
from variation in the model. This gives rise to simple distribution theory for the evaluation
criteria. The distribution theory becomes much more complicated and even intractable if the
model is evaluated in the training data and complex procedures were used to fit the model
(see Section 6.3.4). This complication also arises when comparing two models (Chapter 7).
We also assume that the validation data are observations from a cohort, i.e., that prospective
follow-up information is available. This setting allows the most comprehensive assessment
of model performance. However, some criteria can also be assessed based on case-control
samples; we explicitly identify those criteria in this chapter.

Assume we have developed an absolute risk model, r1(t0,t1;Z), where Z denotes co-
variates. Sometimes Z contains only covariates pertaining to the cause of interest in the
cause-specific hazard model λ1(t; z

1), but Z might also include covariates for competing
cause-specific hazards, and in cumulative incidence regression, Z would modulate the ab-
solute risk itself, rather than the underlying cause-specific hazards. For ease of notation,
let Ri = r1(t0i, t1i;Zi = zi) be the model-based estimate of risk for the ith member in the
validation data. For the most part we regard the times (t0i, t1i) as fixed for each individual,
but we mention some adaptations for the setting of varying t1 in Section 6.4.4. For analysis
on the age scale, t0i would be the age of an individual at entry into a cohort and t1i the age
on the date when cohort follow-up ends. If the time scale is time on study, t0i = 0 and t1i
is the duration of time until the cohort follow-up ends. Sometimes t1i is defined in terms of
the desired length of the risk projection interval, τi, i.e., t1i = t0i + τi. For example, 5- or
10-year projections of absolute risk correspond to τi = 5 or 10.

The outcome of interest for the ith person is occurrence of an event of type 1 in the
projection interval, Oi = I(t0i < Ti ≤ t1i, δ(Ti) = 1), where Ti is the time at which the first
event occurs, δ(T ) is the state at time T , and the indicator I(arg) = 1 if arg is true and 0
otherwise. If person i experiences a competing event, i.e., δ(Ti) = j 6= 1, such as death from
a competing cause, Oi = 0.

75
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For most of this discussion we define t1i in such a way that the outcome Oi is observed.
In particular, if the end of potential follow-up for an individual occurs at the administrative
censoring time Ci, we define t1i = min(t0i + τi, Ci), where τi is the risk projection interval.
For example, if individual i begins follow-up at age t0i = 50 years on January 1,1996 and
follow-up ends on December 31, 2000, then on the age scale Ci = 55 years, and if the desired
projection interval were τi = 10 years, t1i = min(t0i + τi, Ci) = 55 years. If the time scale is
time on study with t0i = 0, then Ci is the time from entry until administrative censoring.
We refer to methods for right censored data in which Oi is not observed because t0i+τi > Ci

and no event occurs in (t0i, Ci] in Section 6.3.3, but we do not elaborate on these methods.
Model assessment can be based on general criteria, such as calibration (Section 6.3),

predictive accuracy and classification accuracy (Sections 6.4.1 and 6.4.2), and discrimina-
tory accuracy (Section 6.4.3). Another approach is to tailor the criterion to the particular
application. Criteria for screening applications or high risk interventions are presented in
Section 6.5. If losses can be specified in a well-defined decision problem, models can be
assessed with respect to how much they reduce expected loss (or increase expected utility)
(Section 6.6).

A key concept in formalizing all these criteria is the distribution of risk, that we define
in the next section.

6.2 The risk distribution

Let V = (t0, t1,Z) denote the vector of risk predictors, Z, and the risk projection inter-
val delimiters, (t0, t1]. We let v be a realized value of V and use the notation R(v) =
r1(t0, t1;Z = z) in the remainder of this chapter. If Z is discrete, V might also be discrete,
but often the space of V is large and V is continuous.

In a specific population, in our case the validation cohort, the distribution of V, FV(v),
induces the distribution F of risk R through

F (r) = P (R ≤ r) =

∫
I(v : R(v) ≤ r)dFV(v). (6.1)

The support of F (r) may be a subset of [0, 1] because R may be bounded below 1.
There is great advantage in reducing the information in FV to the univariate distribution

F . If we assume that the validation cohort of size n is a simple random sample from some
larger population, we can estimate the distribution of risk F in that population based on
the observed risks r1, . . . , rn by the empirical distribution function

F̂ (r) = Fn(r) =
1

n

n∑

i=1

I(ri ≤ r). (6.2)

Throughout this chapter we will use data from a validation study of the absolute risk
model for invasive breast cancer with potentially modifiable risk factors, which we call
“BC2013”, for white women ages 50 or older as an example (Pfeiffer et al., 2013), that
we mentioned earlier in Chapter 4. In Pfeiffer et al. (2013), we combined relative risk
and attributable risk estimates from two large prospective cohort studies, the Prostate,
Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) and the National Institutes
of Health-American Association of Retired Persons (NIH-AARP) Diet and Health Study,
with incidence and competing mortality rates from the NCI’s Surveillance, Epidemiology,
and End Results Program (SEER) to estimate absolute risk of breast cancer. The general
approach that incorporates registry data to develop an absolute risk model is described in
Chapter 5. A SAS macro and R code that implement this model can be found at the web
site (https://dceg.cancer.gov/tools/risk-assessment/).

https://dceg.cancer.gov/tools/risk-assessment/
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In Pfeiffer et al. (2013), we validated BC2013 in independent data from the Nurses
Health Study (NHS) cohort from July 1990 to June 2004 to cover the same calendar period
as the training cohorts used for model development. The NHS cohort included 121,701
women aged 30 to 55 years in 1976 (Colditz and Hankinson, 2005). We applied the same
exclusion criteria to women from the NHS that we had used for building the breast cancer
model and excluded the following categories of women: age at entry younger than 50 years,
non-whites, prevalent breast cancer, no follow-up time after baseline, missing birth year or
covariates. The remaining validation cohort had 57,906 women. We computed the breast
cancer absolute risk R for each woman from her baseline covariate values Z and from the
projection interval defined by her age at entry (July 1990) into the NHS cohort and her
later age on June 1, 2004. The projection lengths ranged from 13.42 to 14.33 years, with a
median of 13.83 years, and the absolute breast cancer risk estimates ranged from 2.0% to
17.9%, with a mean of 5.1% and median of 4.75%.

The histogram of these risks in Figure 6.1 approximates the density of the distribution
function F in Equation (6.1).

Absolute risk estimates in NHS validation cohort
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Figure 6.1: Histogram of absolute breast cancer risk estimates from the BC2013 model in
the NHS validation cohort.

The histogram of risk estimates R indicates whether risks are large or small and whether
there is large variation in risk. A risk distribution with some members at very high risk and
the rest at very low risks indicates that the model will discriminate diseased from non-
diseased populations well, as discussed in detail in Section 6.4.3.

6.2.1 The predictiveness curve

The “predictiveness curve” (Pepe et al., 2008) is a plot of the risk quantiles t = F̂−1(p)
against the corresponding cumulative proportion of the population with risks ≤ t, namely
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p where 0 ≤ p ≤ 1. To create the predictiveness curve for the NHS validation cohort, we
ordered the estimated absolute breast cancer risks from lowest to highest and plotted their
values against p. As an example, the predictiveness curve allows one to read off the 90th
percentile of risk, namely the level of risk above which 10% of the population have higher
risks. At p = 0.90 the risk value is F̂−1(p) = 0.073. This indicates that 90% of subjects in
the cohort have calculated risks at or below 0.073 and only 10% have risks above 0.073.
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Figure 6.2: Predictiveness curve of absolute breast cancer risk estimates from the BC2013
model in the NHS validation cohort.

6.3 Calibration

Calibration measures how well the numbers of events predicted by a model agree with the
observed events that arise in a cohort. Calibration is the most important general criterion,
because if a model is not well calibrated, other criteria, such as discrimination, can be mis-
leading. To test calibration, one requires cohort data, whereas some other criteria discussed
later can be estimated from case-control data only.

6.3.1 Definition of calibration and tests of calibration

In addition to the covariates V that are used to compute the predicted risk R, there may be
other information available in the validation cohort. In what follows we denote the vector of
all available covariates in the validation cohort by U. U contains all the covariates V, but
also includes variables that are not part of V. We thus assess calibration of a model based
on cohort observations (Ri, Oi,Ui), i = 1, . . . , n. Recall that R depends on U only through
V but we use the notation R(U) nonetheless.
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A risk model R(U) taking a set of values r is well calibrated if, for every such r

P (O = 1|r) = r, (6.3)

i.e., among individuals with risk R(U) = r, the fraction with O = 1 is r. If the model is well

calibrated, then µ ≡ P (O = 1) = E(R) =
∫ 1

0
rdF (r). If risks are continuously distributed,

some type of grouping or regression approach is needed to assess Equation (6.3).
One approach to assess overall calibration was proposed by (Cox, 1958), who used the

regression
logit{P (Oi = 1|ri)} = ν0 + ν1wi, (6.4)

where wi = log{ri/(1 − ri)}. If the model fits perfectly, ν0 = 0 and ν1 = 1. The data
(Oi, Ri), i = 1, . . . , n in the validation cohort can be used to estimate ν0 and ν1 and to
test various hypotheses. Values ν̂0 < 0 indicate that the model overestimates risk, ν̂0 > 0
that the model underestimates risk, ν̂1 > 1 that the model risks are not as spread out as
the true risks but correctly order risks (i.e., cases have higher risks than those who do not
experience the event), 0 < ν̂1 < 1 that the model risks are too spread out (which often
happens in the context of over-fitting) but ordered correctly, and ν̂1 < 0 that the model
orders the true probabilities in the wrong direction, i.e., that individuals experiencing an
event tend to have a lower modeled risk than those who do not.

In the NHS validation cohort, use of r from BC2013 in Equation (6.4) yielded estimates
ν̂0 = −0.298 with standard error 0.166, that was not significantly different from zero (p =
0.07), and ν̂1 = 0.896 with standard error 0.057 (p < .0001). These estimates indicate that
the average risk projections are slightly (but not statistically significantly) too large, and
that the model slightly overestimates high risks and/or underestimates low risks.

We call a risk model strongly calibrated if for every value of the measured covariates, U,
E(O|U) = R(U). Recall that U may contain covariates not used in the risk model. If U is
discrete, it might be possible to test strong calibration by comparing the observed proportion
of subjects with O = 1 among those with a particular value U = u with the corresponding
value of R(u) = r. Usually, however, it is not possible to test strong calibration for every
value of U, because U is not discrete or the data are too sparse. In this case one can
define a partition S of the space of U into G mutually exclusive and exhaustive subsets
S = {S1, S2, . . . , , SG}. Then the model R is calibrated with respect to the partition S if

E(O|U ∈ Sg) = E(R|U ∈ Sg) for each Sg ∈ S. (6.5)

Strong calibration implies that R is calibrated with respect to S because

E{OI(U ∈ Sg)} = E[E{OI(U ∈ Sg)|U}] = E[E{RI(U ∈ Sg)|U}] = E{RI(U ∈ Sg)}.

The expectations on the left- and right-hand sides of Equation (6.5) can be estimated in
the validation cohort from

Ê(O|U ∈ Sg) =

∑n
i=1OiI(Ui ∈ Sg)∑n
i=1 I(Ui ∈ Sg)

and Ê(R|U ∈ Sg) =

∑n
i=1RiI(Ui ∈ Sg)∑n
i=1 I(Ui ∈ Sg)

,

respectively. The number of observed events in subset g, Og =
n∑

i=1

OiI(Ui ∈ Sg) can be

compared to the expected counts Eg =
n∑

i=1

RiI(Ui ∈ Sg).

A crucial issue is how to define the partition S. One approach is to focus on individual
risk factors and stratify on them. For example, Pfeiffer et al. (2013) assessed the agreement
between observed and expected breast cancer incidence counts in women whose first live
births were at ages <25 years or nulliparous, ages 25–29 years, and ages 30 years or older
(Table 6.1).
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Table 6.1: Comparison of observed (O) and expected (E) incident breast cancers and the
corresponding 95% confidence intervals (CIs) based on predictions from the BC2013 model
in Pfeiffer et al. (2013) in women in the NHS validation cohort

Number of
women Observed (O) Expected (E) E/O (95% CI)

All women 57,906 2,934 2,930 1.00 (0.96, 1.04)

Variable
Age at first live
birth
<25 or nulliparous 33,863 1,601 1,586 0.99 (0.94–1.04)
25–29 18,923 1,024 1,021 1.00 (0.94–1.06)
≥ 30 5,120 309 323 1.05 (0.94–1.17)
BMI
< 25kg/m2 30,259 1,447 1,492 1.03 (0.98–1.09)
25 to < 30 kg/m2 18,219 971 935 0.96 (0.90–1.03)
30 to < 35 kg/m2 6,581 368 349 0.95 (0.86–1.05)
35 to < 40 kg/m2 2,847 148 154 1.04 (0.89–1.22)
Duration of EPT
MHT usea

0 years 49,511 2,367 2,402 1.01 (0.97–1.06)
1–9 years 8,380 567 527 0.93 (0.86–1.01)
10+ years 15 0 2 NA
Alcohol consump-
tion
0 drinks/day 23,314 1,139 1,091 0.96 (0.90–1.02)
< 1 drink/day 27,316 1,389 1,418 1.02 (0.97–1.08)
1+ drinks/day 7,276 406 421 1.04 (0.94–1.14)

a EPT MHT = estrogen and progestin menopausal hormone replacement therapy

Among the 33,863 women in the first category, O1 =1,601 incident breast cancer cases
were observed, compared to E1 =1,586 expected (with rounding to the nearest integer).
Because events are rare, we assume the observed count is a Poisson random variable. Thus,
the variance of log(E1/O1) is estimated by 1/O1, and a 95% confidence interval on the log
scale is log(E1/O1)±1.96×(O1)−0.5. By exponentiation, we obtain a confidence interval on
the ratio E1/O1 = 1,586/1,601=0.99, namely (0.94–1.04). Based on the confidence intervals
in Table 6.1, there is no statistically significant evidence of mis-calibration for women in
any of the categories defined by age at first life birth and among all women. A global test
could be based on

Q =

G∑

g=1

(Og − Eg)2/Eg ∼ χ2
G. (6.6)

In this case, Q =(1,601–1,586)2/1,586 + (1,024–1,021)2/1,021+ (309–323)2/323=0.757,
which is not significant when compared to a chi-squared distribution with G =3 degrees
of freedom (p =0.86). For an overall assessment of calibration one can ignore subsets and
simply compute (O−E)2/E ∼ χ2

1, where O = 2,934 is the total number of observed events
in the whole population and E = 2,930 is the total expected events, resulting in a chi-square
of 0.0055 (p = 0.94).

When the event is not rare, we can instead consider logistic regression (similar to Cox
(1958)), where for subset Sg, logit{P (Oi = 1|ri)} = wi+γg, and where wi = log{ri/(1−ri)}.
The corresponding log-likelihood for all the observations in Sg is l =

∑
i:Vi∈Sg

Oi(wi + γg)−
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∑

i:Vi∈Sg

log{1 + exp(wi + γg)}. Here exp(γg) corresponds to Og/Eg, and inference on γg

provides a test of calibration in Sg. The score test of the null hypothesis of no lack of
calibration, H0 : γg = 0, from this likelihood is

U2
g = (Og − Eg)2/

∑

i:Vi∈Sg

ri(1 − ri) ∼ χ2
1. (6.7)

The analogous global test is Q =
G∑

g=1
U2
g ∼ χ2

G. If ri << 1, this Q is the same as Equation

(6.6) and, for a single subset Sg, the test based on U2
g reduces to (Og −Eg)2/Eg. A test for

overall calibration based on this statistic is simply (O−E)2/
n∑

i=1

ri(1− ri) ∼ χ2
1, where O is

the total number of observed events in the population and E is the total expected events.
A common practice is to compute the deciles of the empirical distribution ofRi in the test

data and let Sg = {Vi : ξ0.1(g−1) ≤ Ri < ξ0.1g}, where ξ0.1g are the deciles, g = 1, 2, ..., 10,
and ξ0 = 0. Thus S is a partition of the set of values Vi in the test data. The previous
distribution theory applies without change, conditional on the partition. Model assessment
based on dividing test data into risk deciles requires a sufficiently large validation sample,
however. Hosmer and Lemeshow (1980) and Lemeshow and Hosmer (1982) used a statistic
that is very similar to Equation (6.7), namely

HL =

G∑

g=1

(Og − Eg)2/{Eg(1 − Eg/Ng)}, (6.8)

where Ng is the number of subjects in group g.
One can extend the idea of partitioning by risk deciles by plotting a kernel smoother

of the Oi against risk (e.g., (Gerds et al., 2014)). Point-wise variances can be computed
because the Oi are independent with Bernoulli variance in the independent test data.

Table 6.2 gives the observed and expected events (rounded to the nearest integer) by
deciles of risk in the NHS validation cohort. The BC2013 model underestimated the number
of events in the lower deciles; for example, in the first decile group, the model predicted
169 events while 179 were observed, with E/O = 0.95. The model slightly over predicted
risk in the high-risk deciles. In decile 10, the number of expected events was 495 while 482
were observed, with E/O = 1.03. Overestimation of high risks and underestimation of low
risks is consistent with the estimate ν̂1 = 0.896 < 1 in Equation (6.4), which indicates that
model risks are over-dispersed. The statistics Q,U and HL corresponding to Equations
(6.6), (6.7), and (6.8) were respectively 6.9, 7.3, and 7.3. None of these statistics was sta-
tistically significant based on G=10 degrees-of-freedom (p = 0.73, 0.70, 0.70, respectively).
(The Hosmer-Lemeshow test with G − 2 = 8 degrees-of-freedom and p = 0.50 seems less
appropriate for an independent validation sample.)

6.3.2 Reasons for poor calibration and approaches to recalibration

There are several reasons why a risk model may show poor calibration in an independent
validation cohort. An implicit assumption is that the population used to assess model per-
formance is similar to the population used to develop the model. That assumption is violated
when the validation cohort has different disease incidence rates from the training cohort,
even after the differing distributions of covariates in the two populations are taken into
account. Such differences could be due to secular changes in disease incidence rates or to
differences in screening procedures or in procedures used to diagnose the disease outcome.
For example, if one validates a breast cancer model in a cohort of women who are screened
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Table 6.2: Comparison of observed (O) and expected (E) incident breast cancers in the NHS
validation cohort by deciles of risk R

Decile R interval N E O E/O
1 ≤ 0.032 5788 169 179 0.95
2 (0.032, 0.037] 5790 202 206 0.98
3 (0.037, 0.041] 5802 225 231 0.97
4 (0.041, 0.044] 5785 244 269 0.91
5 (0.044, 0.048] 5788 264 265 1.00
6 (0.048, 0.051] 5791 286 302 0.95
7 (0.051, 0.056] 5790 312 292 1.07
8 (0.056, 0.063] 5791 343 340 1.01
9 (0.063, 0.073] 5790 388 368 1.06
10 > 0.073 5791 495 482 1.03

more frequently with mammography than the average US woman, then a model based on
national breast cancer rates would likely underestimate risks in the validation cohort. Like-
wise, if the risk model was based on national rates from the 1980s but the validation data
came from a later period when breast cancer risks were higher, the model would underesti-
mate risk. A second reason for poor model calibration may be that predictors (covariates) in
the model are specified differently in the training and validation data, due to differences in
questionnaires between the two data sources. For example, the BC2013 breast cancer model
in Pfeiffer et al. (2013) requires information on menopausal hormone replacement therapy
(MHT) categorized into “Estrogen and progestin MHT” and “other MHT”. If that level of
detail on MHT use is not available in the validation cohort, there can be misspecification
of the MHT variable and lack of fit in the validation cohort. An extreme type of misspec-
ification occurs if a covariate is completely missing in the validation data. This problem
often arises when molecular markers, such as single nucleotide polymorphisms (SNPs), are
included as predictors and not measured on members of a validation cohort.

In addition to differences in specification of predictors or population differences, the
modeling process itself can lead to biased prediction models and poor fit in validation data.
If the model-fitting process involves selecting predictor variables from a large number of
possible predictors and including a large number of the selected variables in a regression,
it is likely that the model will be “over-fitted” and will tend to give a wider spread in risk
predictions than will be observed in independent validation data (0 < ν̂1 < 1 in Equation
(6.4)). One can reduce or avoid such over-fitting by employing a heuristic shrinkage factor
that applies equally to all coefficients βi in the linear predictor portion of the risk model,∑
Zjβj , (Van Houwelingen and Le Cessie, 1990), or by estimating the required shrinkage

factor using the bootstrap (Van Houwelingen and Le Cessie, 1990; Harrell, 2001; Steyer-
berg, 2009) or cross-validation (Copas, 1987; Van Houwelingen and Le Cessie, 1990; van
Houwelingen, 2000, 2001) when building models with the training data. Another approach
to avoid such over-fitting based solely on training data is to “penalize” the model for includ-
ing too many risk factors or too large parameter estimates (Hastie et al., 2009; Steyerberg,
2009; Harrell, 2001). See Section 8.2 for additional discussion and references.

Suppose that one needs a model for a target population like the validation cohort, but
that the original model based on the training data was not well calibrated in the validation
cohort. Rather than build an entirely new model for the target population from which the
validation sample came, one can recalibrate the risk estimates from the original model. For
example the original risk estimates ri with logit wi can be transformed to new risk estimates
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with logit ν̂0 + ν̂1wi via Equation (6.4) (Steyerberg et al., 2004; Steyerberg, 2009). Another
approach might be to group the original risks into e.g., deciles as in Table 6.2 and to use the
E/O ratios as non-parametric correction factors. For example, an original risk ri falling in
the tenth decile would be divided by the factor E/O = 1.03. More refined kernel smoother
methods could also be used as in Li et al. (2011). The key is to recalibrate the scalar
absolute risks non-parametrically. This approach avoids the “curse of dimensionality” that
arises when trying to model the underlying multivariate predictors non-parametrically.

6.3.3 Assessing calibration with right censored data

Methods are available to evaluate calibration when the outcome Oi is subject to right cen-
soring. Typically the analysis is on the time scale of time on study and (t0i, t1i) = (0, τ) with,
for example, τ = 5 years. However, some individuals are administratively censored at Ci < τ
before any event has occurred. For such individuals, Oi is not observed (i.e., censored). For
pure risk, Viallon et al. (2009) showed how appropriate E/O ratios are obtained by replac-
ing O by the sample size times the Kaplan-Meier estimate of cumulative pure risk to time τ ,
and they discussed how to adapt this idea for absolute risk. Another approach for absolute

risk (Gerds et al., 2014) replaces Oi by a pseudo-value Opseudo
i = nF̂n(τ)− (n− 1)F̂

(i)
n−1(τ),

where F̂n is the non-parametric estimate of absolute risk (Aalen, 1978; Gaynor et al., 1993)

from the n subjects and F̂
(i)
n−1(τ)is the corresponding estimate with subject i omitted. In the

absence of censoring, Opseudo
i = Oi. Gerds et al. (2014) did not provide variance estimates,

however. Another approach tests the underlying cause-specific hazards by comparing ob-
served cumulative events against modeled cumulative hazard functions (Gong et al., 2014),
but this approach does not test the validity of the absolute risk model directly and could
not be used for the cumulative incidence regression models in Section 4.2.

6.3.4 Assessing calibration on the training data, that is, internal validation

Sometimes an appropriate independent validation cohort may not be available. This is often
the case when a risk prediction model includes factors that are not measured in routine
clinical practice, such as mammographic density or molecular or genetic biomarkers. In that
situation internal validation is a first step toward assessing bias in the model predictions.

The distribution theory is more complex if the model is tested on the same data used to
fit it, however. Tsiatis (1980) partitioned the covariate space into G groups and gave a valid
theory if the risks Ri are estimated by logistic regression in training data and comparisons
of Og with Eg are made within the training data. The corresponding quadratic form is
based on a score statistic but has G − k degrees of freedom, where k is the degrees-of-
freedom associated with the risk model. For a partitioning based on deciles of predicted
risk, Hosmer and Lemeshow (1980) and Lemeshow and Hosmer (1982) computed a statistic
(Equation (6.8)) but argued that it should be compared to a chi-square distribution with
G−2 degrees of freedom. These methods, however, were investigated for logistic models, not
for models of absolute risk. Moreover, variable selection and other features of model fitting,
even for the logistic model, are often more complex than entertained in Tsiatis (1980), who
assumed the variables in the model were known a priori. Thus the accuracy of the available
distribution theory for evaluation of absolute risk models in the training data remains to
be demonstrated. In contrast, the distribution theory above for assessing calibration of
absolute risk models in independent test data is valid, regardless of the complexity of the
fitting process in the training data, because the model is fixed and hence ri are known
constants in the test data.
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6.4 Accuracy measures

6.4.1 Predictive accuracy: the Brier score and the logarithmic score

Calibration is concerned with bias in the predictions from a model R. Even if a prediction
R is unbiased and has small variance, the difference O − R can be quite variable for a
particular individual because O is a binary outcome, i.e., a Bernoulli random variable. A
measure of the predictive accuracy is based on the Brier score (Brier, 1950), (O−R)2. The
mean squared error of prediction (MSE) is the expected value of the Brier score.

The MSE can also be viewed as an expected loss for binary outcomes, and thus is
related to a scoring rule. Scoring rules are functions that assign rewards for good predictions.
An important class is proper scoring rules, i.e., rules Sc(R,O) such that the expectation
of Sc(R,O) is maximal if R = P (O = 1) (see, e.g., Gneiting and Raftery (2007)). The
Brier score is an affine transformation of the quadratic score (a proper scoring rule) that
decreases as the quadratic score increases; hence the expected Brier score is minimized if
R = P (O = 1).

Suppose that individual i has a true (unknown) absolute risk πi = E(Oi). Then the
expected Brier score is

MSE = E(O −R)2 = E(O − π + π −R)2 = EπEO|π(O − π)2 + EπER|π(π −R)2

= EπV ar(O|π) + Eπ(bias
2|π). (6.9)

We call MSE the Brier criterion because it is the expectation of the Brier score. The Brier
criterion is the expected conditional variance of Oi given πi plus the expected conditional
squared bias of Ri given πi. Thus, even if R(V) is perfectly calibrated such that Ri = πi
for every individual i, MSE is not equal to zero, as it still reflects the expected conditional
variance in the outcome O given the true risk π. Perfect calibration is an even stronger
condition than strong calibration, defined in Section 6.3.1, because perfect calibration re-
quires that the risk factors in V fully define the risk for each individual. If R(V) is perfectly

calibrated, MSE =
1∫
0

u(1− u)dF (u).

The MSE is estimated from the validation cohort with n observations as

M̂SE = n−1
n∑

i=1

(Oi − ri)
2.

In the NHS validation cohort, the estimated mean Brier score for the absolute breast

cancer risk model was M̂SE = 0.0480. The expected root mean square error of prediction is

M̂SE
0.5

= 0.22. For rare outcomes with low predicted risks and few events, M̂SE tends to
be very low, regardless of the quality of the prediction. To illustrate that point assume that a
model predicts every woman’s breast cancer risk to be ri = 0. In the NHS validation cohort

the estimated mean Brier score for this model is M̂SE = 0.0507 which is not substantially

larger than M̂SE = 0.0480 for the BC2013 breast cancer absolute risk model.
Another proper score (Gneiting and Raftery, 2007) for Bernoulli outcomes is minus half

the Bernoulli deviance or the logarithmic score,

LS = −O log(R)− (1 −O) log(1−R).

The expectation of this score is E(LS) = Eπ{−πER|π log(R)−(1−π)ER|π log(1−R)}. For a

perfectly calibrated model, this expectation is E(LS) =
1∫
0

{−u log(u)− (1− u) log(1− u)}

dF (u), whose integrand is the entropy of a Bernoulli distribution. Thus E(LS) > 0,
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even for a perfectly calibrated model, because O varies (Efron, 1978; Liao and McGee,
2003). An empirical estimate of the average entropy or average logarithmic score is

n−1
n∑

i=1

{−Oi log(Ri)− (1−Oi) log(1 −Ri)}. For the breast cancer absolute risk model

BC2013, the estimated mean logarithmic score was 0.1983. This estimate is difficult to
interpret on its own but can be used for comparison against another model applied to the
same validation data.

6.4.2 Classification accuracy

For many clinical decisions, such as whether or not to give an intervention or treatment,
models are used to classify an individual as a case or not from

Ô =

{
0 if R ≤ r∗

1 if R > r∗
(6.10)

where r∗ is a risk or decision threshold. Thus, rather than giving a risk estimate R, one is
forced to guess the outcome.

Classification accuracy measures how well this rule identifies those who will and will not
experience the event.

6.4.2.1 Distribution of risk in cases and non-cases

In discussing classification accuracy, it helps to define two more distributions of risk, namely
G, the distribution of risk in those who experience the event during follow-up (cases, O = 1),
given by

G(r) = P (R ≤ r|O = 1) =
1

P (O = 1)

∫
I{v : R(v) ≤ r, O = 1}dFV(v), (6.11)

and K, the distribution of risk in non-cases or controls (O = 0), given by

K(r) = P (R ≤ r|O = 0) =
1

P (O = 0)

∫
I{v : R(v) ≤ r, O = 0}dFV(v). (6.12)

When needed to avoid confusion we will denote risk realizations from F by rF , and
risk realizations from cases and non-cases by rG and rK , respectively. The histograms of
estimated breast cancer risk from the BC2013 model in cases and non-cases in the NHS
validation cohort are given in Figure 6.3.

As in Equation (6.2) for the risk distribution F , we can estimate the distributions of
risk in cases and non-cases from the observed risks and the corresponding event outcomes
in the validation population (ri, Oi), i = 1, . . . , n, by the empirical distribution functions

Ĝ(r) =
1

nŌ

n∑

i=1

I(ri ≤ r, Oi = 1) and K̂(r) =
1

n(1− Ō)

n∑

i=1

I(ri ≤ r, Oi = 0) (6.13)

where Ō =
∑
Oi/n denotes the sample mean of O.

Alternatively, G and K can be estimated from a case-control sample by the empirical
distributions of risks rGi ∼ G, i = 1, . . . ,m, in cases and rKj ∼ K, j = 1, . . . , l, in non-
cases. We denote these distributions by Gm and Kl, respectively. In contrast to expression
(6.13), the number of cases and controls is fixed, and the case-control sampling needs to
be accommodated in variance calculations. If additionally the population event probability
µ = P (O = 1) is known, we can estimate the distribution of risk in the general population
as F̂ (r∗) = µGm(r∗) + (1− µ)Kl(r

∗).
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Non-cases: absolute breast cancer risk estimates
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Breast cancer cases: absolute breast cancer risk estimates
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Figure 6.3: Histograms of absolute breast cancer risk estimates from the BC2013 model in
the NHS validation cohort for breast cancer cases (Ĝ) and non-cases (K̂).

If the model is well calibrated, the average risk in the population is µ =
∫
rdF (r) and we

can derive the distributions G and K from the distribution F in Equation (6.1) as described
in Gail and Pfeiffer (2005). In particular, from Bayes theorem,

G(r) = µ−1

r∫

0

udF (u). (6.14)

Likewise for a well calibrated model we have (Gail and Pfeiffer, 2005)

K(r) = (1 − µ)−1

r∫

0

(1− u)dF (u). (6.15)

These relationships can be exploited when estimating G and K.

6.4.2.2 Accuracy criteria

Several measures of accuracy can be calculated for the decision rule given in Equation (6.10)
that defines Ô = 1 if R > r∗. These include:

1. The positive predictive value (Vecchio, 1966),

PPV = P (O = 1|Ô = 1) = P (O = 1|R > r∗) =
P (O = 1){1−G(r∗)}

1− F (r∗)
. (6.16)

2. The negative predictive value,
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NPV = P (O = 0|Ô = 0) = P (O = 0|R ≤ r∗) =
P (O = 0)K(r∗)

F (r∗)
. (6.17)

3. The probability of correct classification,

PCC = P (Ô = 0)P (O = 0|Ô = 0) + P (Ô = 1)P (O = 1|Ô = 1) (6.18)

= P (R ≤ r∗)P (O = 0|R ≤ r∗) + P (R > r∗)P (O = 1|R > r∗)

= P (R ≤ r∗)×NPV + P (R > r∗)× PPV

= P (O = 0)K(r∗) + P (O = 1){1−G(r∗)},

or its complement,

4. The probability of misclassification,

PMC = 1− PCC = P (R ≤ r∗)P (Y = 1|R ≤ r∗) + P (R > r∗)P (O = 0|R > r∗) (6.19)

= P (R ≤ r∗)× (1−NPV ) + P (R > r∗)× (1− PPV ).

These quantities are all “prospective” in that they involve probabilities of the outcome
O given the classification.
The following quantities are retrospective and can be estimated from cases and controls
only. In that sense, they are not “predictive”.

5. Sensitivity = P (Ô = 1|O = 1) = P (R > r∗|O = 1) = true positive probability (TP ).

6. Specificity = P (Ô = 0|O = 0) = P (R ≤ r∗|O = 0) = 1-false positive probability (FP ).

We now illustrate these criteria with an example. Current American Society of Clinical
Oncology guidelines indicate that premenopausal women and postmenopausal women with
low risk of side effects and a 5-year projected risk ≥ 1.66% based on a well-established
breast cancer model, the NCI’s publicly available Breast Cancer Risk Assessment Tool
(BCRAT; http://www.cancer.gov/bcrisktool) or “Gail model 2” (Costantino et al., 1999),
may benefit from tamoxifen and/or raloxifene for breast cancer prevention (Visvanathan
et al., 2009). This threshold was chosen as it corresponded to the average breast cancer risk
of a 60-year-old woman (Redmond and Costantino, 1996). Using a 5-year breast cancer risk
threshold of r∗ = 0.0166, we classified the 17,085 women aged 50–55 years at baseline in
the NHS cohort based on their 5-year BC2013 risk and computed the criteria (Table 6.3).
Out of 252 women who developed breast cancer within 5 years of entry on study, only 84

Table 6.3: Accuracy measures for the absolute breast cancer risk model BC2013 based on
a 5-year absolute risk threshold r∗ = 0.0166 for 50- to 55-year-old women in the NHS
validation cohort

Accuracy measure Estimate 95% CI
Positive predictive value (PPV) 84/3,461 = 0.024 (0.019, 0.030)
Negative predictive value (NPV) 13,456/13,624 = 0.988 (0.986, 0.990)
Probability of correct classifica-
tion (PCC)

(13,456+ 84)/ 17,085 = 0.793 (0.786, 0.799)

Probability of misclassification
(PMC)

(3,377+168) / 17,085 = 0.208 (0.201, 0.214)

Sensitivity 84/252 = 0.33 (0.28, 0.40)
Specificity 13,456/16,833= 0.80 (0.79, 0.81)

95% confidence intervals were calculated assuming binomial variation and conditional on
the denominators.

http://www.cancer.gov/bcrisktool
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had a risk greater than 0.0166 (sensitivity = 0.333). Of the 16,833 women without breast
cancer, 13,456 had risks below the threshold (specificity = 0.799). Of 3,461 women with
risks above 0.0166, only 84 developed breast cancer (PPV = 0.024), whereas 13,456 of
the 13,624 women with risks below the threshold remained free of breast cancer (NPV =
0.988). The overall misclassification rate was 100× PMC = 20.8%.

These measures of accuracy are based on the binary outcome indicator Oi rather than
on time to breast cancer incidence. We do this because failure times are quite variable,
compared to their mean. For example, the coefficient of variation of an exponentially dis-
tributed failure time is 1.0, regardless of the mean. Henderson and Keiding (2005) discussed
the difficulties of projecting survival times in clinical practice. Korn and Simon (1990) and
Korn and Simon (1991) discussed expected losses for models that predict survival times.

6.4.3 Discriminatory accuracy

Discriminatory accuracy measures how well separated the distributions of risk are for cases
and non-cases.

Some measures of discriminatory accuracy are based on the receiver operating charac-
teristic (ROC) curve (see e.g., Pepe (2003)), which extends the idea of classification at a
single threshold in Section 6.4.2 by varying the threshold. The ROC curve is generated by
plotting 1 −G(r∗) (or TP) on the ordinate against 1 −K(r∗) (FP) on the abscissa, as r∗

varies from 0 to 1. If risks in cases are higher than risks in non-cases, the ROC curve will fall
above the line of equality; thus the ROC curve provides an indication of how different the
distribution G of absolute risk in cases is from the distribution K of risk in non-cases. Figure
6.4 plots the ROC curve for the NHS validation data for women in various age groups.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 

 

age at entry <55

age at entry ∈ [55,60)

age at entry ∈ [60,65)

age at entry ≥ 65

Figure 6.4: ROC curve for absolute breast cancer risk estimates from the BC2013 model in
the NHS validation cohort for various age groups.

Pepe (2003) described key properties of the ROC curve. It is unchanged by any monotone
increasing transformation of the risks R. The slope for the ROC curve at risk threshold
r∗ equals the likelihood ratio, namely the ratio of risk densities, g(r∗)/k(r∗) for cases and
non-cases. By assigning costs to misclassifications of cases and non-cases in a screening
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program, Pepe (2003) wrote the expected costs in terms of ROC and derived similar optimal
thresholds as described in Section 6.6.

A popular summary measure of the ROC is the area under the ROC curve (AUC or
AUCROC), which is equivalent to the probability that a randomly selected case will have
a risk that is greater than that of a randomly selected non-case. AUC can be computed as

AUC =

∫ 1

0

{1−G(u)}dK(u), (6.20)

and can be estimated from the risks rKi of l non-cases and the risks rGj of m cases as

ÂUC = (lm)−1
l∑

i=1

m∑

j=1

{I(rGj > rKi ) + 0.5I(rGj = rKi )}. (6.21)

The non-parametric estimate in Equation (6.21) can also be viewed as ÂUC = U/ml, where
U is the MannWhitneyWilcoxon test statistic (Mann and Whitney, 1947), that tests the
null hypothesis that two samples come from the same population against an alternative
hypothesis that one population (the cases) has larger values. If risk of disease increases with
R, values of AUC range from 0.5 if G(r) = K(r) for all r to 1.0 if the support of G lies
entirely above the support of K (perfect discrimination). If AUC = 1.0, there is a risk r∗

that equals or exceeds all risks in non-cases and is less than all risks in cases.
While the ROC curve and the AUC can be estimated from cohort data, they are effec-

tively retrospective measures that compare the risks in cases and non-cases. Thus the ROC
can also be estimated from case-control study data, as in Equation (6.21).

An important issue concerns how much of the discriminatory accuracy is attributable
to time-related factors, such as variation in age in the population or variation in the risk
projection intervals, and how much of the discriminatory accuracy is attributable to risk
factors Z. For example, the Framingham model for cardiovascular events (Wilson et al.,
1998) includes age and age-squared as covariates in the risk model, whose time scale is
time since counseling. High AUC estimates near 0.8 associated with this model derive in
part from the strong dependence of cardiovascular risk on age. Cancer risk also increases
strongly with age, and age has often been used as the time scale for modeling cancer risk.
One approach to estimate the discriminatory accuracy contributed by Z and not age is to
stratify cases and non-cases into 5-year age intervals (Chen et al., 2006a) and compute an
estimate of AUC within each age stratum. An average over these stratum-specific AUC
estimates indicates the discriminatory accuracy contributed by Z, not by age variation.

In the NHS validation of the breast cancer risk model the age-specific ROC curves
plotted in Figure 6.4 do not differ appreciably, and the corresponding AUC values were
also similar, with values 0.581, 0.595, 0.578, and 0.567 for the age groups < 55, [55, 60),
[60, 65) and ≥ 65 years, respectively. These AUC values indicate modest discriminatory
accuracy from the factors in BC2013, apart from age.

6.4.4 Extensions of accuracy measures to functions of time and allowance for censoring

Especially when the time scale is time on study with projection interval (0, τ ], it may be
useful to define the previous criteria as functions of τ , as reviewed in Gerds et al. (2008).
The earlier literature in this area concerned pure risk, not absolute risk. Graf et al. (1999)
described how expected loss, such as the Brier criterion, could be estimated and plotted as
function of τ with right censored data, provided censoring was independent of survival time.
Schoop et al. (2008) relaxed this assumption to conditional independence given covariates
and allowed the projection interval to advance with time. Heagerty et al. (2000) developed
the concepts of sensitivity, specificity and the ROC curve as a function of time. Heagerty
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and Zheng (2005) extended this work to include covariates and to define a “case” either
as incident at a given time t or as having occurred at or before time t (cumulative case).
Moskowitz and Pepe (2004) showed how to estimate NPV and PPV as a function of time
on study. Uno et al. (2007) provided estimates of PMC, sensitivity, specificity, NPV and
PPV by minimizing PMC for a “working model” of the probability of failure by time t,
provided censoring was conditionally independent of failure time given covariates. Cai et al.
(2010) showed how to recalibrate a parametric working model non-parametrically for pure
cumulative risk to time t in the presence of censoring.

Recent literature extended many of these ideas to absolute risk. Li et al. (2011) showed
how to recalibrate a working model for absolute risk non-parametrically. Saha and Heagerty
(2010) extended the notions of incident and cumulative cases to include type of failure
and thereby defined cause-specific sensitivity (TP), specificity (1-FP) and associated ROC
curves and AUC as functions of follow-up time τ , both for incident and for cumulative case
definitions. Saha and Heagerty (2010) provided non-parametric estimates of these quantities.
Zheng et al. (2012) used semi-parametric models to allow for covariates and censoring to
estimate TP, FP, the ROC curve, PPV and NPV at a fixed time τ .

6.5 Criteria for applications of risk models for screening or high-risk
interventions

Rose (1992) outlined two approaches to preventive intervention in a population. The “gen-
eral population strategy” is to intervene on the entire population. This strategy has the
greatest potential for preventive effect, but it can only be used when the intervention is so
safe that everyone can receive it with negligible risk. For example, if an information cam-
paign to reduce salt intake could lower systolic blood pressure in the general population by
2 mm Hg on average, that would prevent more heart attacks than a campaign to identify
and treat only those with very high blood pressure. A second strategy is to focus on high
risk subjects. Such a “high risk” strategy might be useful if the intervention had serious
side effects. Then one should only intervene on individuals with high enough risk of the
main health outcome that the benefits of risk reduction outweigh the risks from adverse
intervention effects (see Sections 6.6.2 and 10.5). Another motivation might be economic,
if there are not enough preventive resources to intervene on all members of the population.
Then allocating the intervention to those at highest risk will prevent more disease than
random allocation of the intervention, provided the risk assessment is not too expensive
(Gail, 2009a). The following criteria are useful for implementing the “high risk” prevention
strategy.

6.5.1 Proportion of cases followed and proportion needed to follow

Suppose that the risk model R can be applied to an entire population to assign a disease
risk r to each person. The model-based risks are then ranked, and a proportion of those
individuals at highest risk of developing disease is followed up. Depending on the specific
application, follow-up could consist of a diagnostic test, screening, or a preventive interven-
tion. For example, the risk of breast cancer could be computed based on a risk model, and
then a proportion of those with highest risk would receive more intensive screening with
mammography or ultrasound to detect disease early and treat it more effectively.

Pfeiffer and Gail (2011) and Pfeiffer (2013) proposed and studied two criteria to assess
the usefulness of models that predict risk of disease incidence for screening and prevention,
or the usefulness of prognostic models for management following disease diagnosis. The
first criterion, the proportion of cases followed, PCF (p), is the proportion of cases who are



CRITERIA FOR APPLICATIONS OF RISK MODELS FOR SCREENING 91

included in the proportion p of individuals in the population at highest risk, given by

PCF (p) = 1−G ◦ F−1(1− p) = 1−G(φ1−p), (6.22)

where G ◦F (x) = G{F (x)} is the composition of G with F and φ1−q = F−1(1− q) denotes
the (1 − p)th quantile of F . As before, G and F are the distributions of risk in cases
and in the population, respectively. This criterion has been used by others, e.g., Pharoah
et al. (2002), but the statistical properties of its estimate had not been described. The
second criterion is the proportion needed to follow-up, PNF (q), namely the proportion of
the general population at highest risk that one needs to follow in order that a proportion q
of cases will be followed, defined as

PNF (q) = 1− F ◦G−1(1− q) = 1− F (γ1−q), (6.23)

where γ1−q = G−1(1 − q) denotes the (1 − q)th quantile of the distribution of risk in
cases, G. If risk is concentrated in a small proportion of the population at highest risk,
then PCF (p) will be high, even for small p and PNF (q) will be small, even for large q.
These quantities are useful for assessing the potential usefulness of a screening program.
For example, if PCF (0.10) = 0.20, only 20% of those destined to develop disease will be
screened in a program focused on the top 10% of the population at highest risk. Likewise
PNF (0.5) = 0.40 means that 40% of the population at highest risk needs to be screened
to cover 50% of future cases.

To lessen the dependency of PCF (p) and PNF (q) on the given thresholds p and q,
Pfeiffer (2013) defined the integrated PCF and the integrated PNF as

iPCF (p∗) =

∫ 1

p∗

PCF (p)dW (p) and iPNF (q∗) =

∫ 1

q∗
PNF (q)dW (q), (6.24)

where W is a probability measure on the unit interval. For dW (p) = dp,

iPCF (p∗) = 1− p∗ − 1

1− p∗
P{RG ≤ RF |RF ∈ (0, φ1−p∗)}, (6.25)

and

iPNF (q∗) = 1− q∗ − 1

1− q∗
P{RF ≤ RG|RG ∈ (0, γ1−q∗)}, (6.26)

where RF and RG are random risks from F and G. For the special case of p∗ = q∗ = 0,
iPCF (0) = 1 − P (RG ≤ RF ) = P (RF < RG). Thus, iPCF (0) is the probability that a
randomly selected case has a higher risk than a randomly selected member of the general
population. This measure is more appropriate for population interventions than the AUC,
namely the probability that a randomly selected case has a higher projected risk than a
randomly selected non-case, AUC = P (RG > RK), because at the time of intervention one
does not know the eventual case status of members of the population. Equations (6.25) and
(6.26) resemble expressions for the partial area under the ROC curve (McClish, 1989). The
quantities iPCF (p∗) and iPNF (q∗) focus on the high risk portion of the population to be
screened. While the AUC compares ranks of the estimated risks in the cases to those in non-
cases, iPCF (0) compares risk in cases to risks in the whole population, which is a mixture
of cases and non-cases. However, for a rare disease, K ≈ F , and the values of the AUC and
iPCF (0) will be close. Figure 6.5 shows a PCF curve when the population distribution of
risk F is a beta distribution with parameters α = 1.5, β = 28.5, corresponding to event
probability µ ≡ P (Y = 1) = 0.05. The area under this curve is iPCF1(0) = 0.71. The
corresponding AUC value is 0.72.
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Figure 6.5: PCF curve when the distribution F of risk is a Beta distribution with parameters
α = 1.5, β = 28.5, corresponding to mean µ = 0.05 and iPCF (0) = 0.71.

Pfeiffer and Gail (2011) and Pfeiffer (2013) developed estimates of PCF , PNF , iPCF
and iPNF for three types of sampled data and derived their asymptotic distributions. First,
Pfeiffer and Gail (2011) considered a random sample of risk estimates rFi , i = 1, . . . , n from
the cohort and assumed that the risk model was well calibrated. Second, Pfeiffer (2013)
considered case-control data with random samples of risks in cases, rGi ∼ G, i = 1, . . . ,m,
and controls, rKj ∼ K, j = 1, . . . , l, and assumed that the event probability µ ≡ P (Y =
1) in the population was known from external sources. From this information, Pfeiffer
(2013) estimated PCF , PNF , iPCF and iPNF non-parametrically. Third, Pfeiffer (2013)
studied the corresponding estimates when a random sample of risks and the associated
binary outcomes (rFi , Oi), i = 1, . . . , n were available from the population. The second
and third scenarios do not require well calibrated risk models for unbiased estimation of
PCF, PNF, iPCF and iPNF . We expand on these comments in the following paragraphs.

6.5.1.1 Estimation of PCF and PNF

Estimation using observed risks in a population

If the risk model R is well calibrated, that is P (O = 1|r) = r, then µ ≡ P (O =

1) = E(R) =
∫ 1

0 rdF (r), and the distribution G of risk in cases can be derived from the
population distribution F as shown in Equation (6.14). In this setting,

PCF (p) = 1−G(φ1−p) = 1− 1

µ

∫ φ1−p

0

tdF (t) = 1− L(1− p), (6.27)

where L is the Lorenz curve of F (Lorenz, 1905). Likewise, PNF (q) = 1 − F (γ1−q) =
1− L−1(1 − q), where L−1 denotes the inverse of the Lorenz curve (Goldie, 1977).

Thus if the risk model is well calibrated, PCF and PNF can be estimated nonparamet-
rically based on empirical estimates of L and L−1 from a random sample rF1 , . . . , r

F
n of risks.

Let rF(1) ≤ . . . ≤ rF(n) denote the order statistics of the estimated risks, and let [x] be the

largest integer less than or equal to x. Let Si =
∑i

k=1 r(k). An estimate of the Lorenz curve
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and thus PCF is P̂CF = 1 − Ln(1 − q) = 1 − S[n(1−q)]/Sn. Using Goldie’s (Goldie, 1977)
result for the inverse function of the Lorenz curve, L−1

n , for a fixed value of 1− p, the PNF

is estimated as P̂NF = 1− L−1
n (1− p) = i/n, Si/Sn < 1− p ≤ Si+1/Sn, i = 0, . . . , n.

If the model is well calibrated, iPCF and iPNF are functionals of the integrated Lorenz
curve and its integrated inverse. A popular summary measure of the Lorenz curve, the

Gini index (Gini, 1912) defined as Gini = 1 − 2
∫ 1

0
L(p)dp is related to iPCF (0) through

Gini = 2iPCF (0)−1. A non-parametric estimate of iPCF is thus obtained by interpolation

as îPCF (p∗) = 1−p∗−∑[(1−p∗)n]
i=1 ([(1−p∗)n]−i+1)r(i)/nSn. Similarly, we estimate iPNF

as îPNF (q∗) = 1− q∗ −
∑k∗

i=1 ir(i+1)/nSn, where k
∗ satisfies Sk∗/Sn < q∗ ≤ Sk∗+1/Sn.

Estimation using risks in a case-control sample when µ = P (O = 1) is known

From random samples rGi ∼ G, i = 1, . . . ,m, of cases and rKj ∼ K, j = 1, . . . , l, of
non-cases we obtained the empirical distribution functions Gm(r∗) and Kl(r

∗). Assuming
that the event probability µ = P (O = 1) in that population is known, we estimated the
distribution of risk in the general population as F̂ (r∗) = µGm(r∗)+(1−µ)Kl(r

∗). Plugging

Gm, Kl, F̂ , and φ̂1−p = F̂−1(1 − p) and γ̂1−q = G−1
m (1 − q) into (6.22), (6.23), and (6.24)

yields estimates P̂CF , P̂NF (q), îPCF (p∗) and îPNF (1 − q∗).

Estimation using risks and outcomes in a population

Here we observe i.i.d. samples (rFi , Oi), i = 1, . . . , n of risks and the corresponding event
outcomes in a population. For a model that predicts disease incidence, these data would be
risk estimates at baseline and observed outcomes at the end of the follow-up period, and
for a model that predicts prevalence of a disease, the risks and outcomes could be based on
a cross-sectional sample.

Pfeiffer (2013) estimated PCF and PNF by plugging estimates of F , G and the corre-
sponding quantiles φ and γ into the expressions (6.22) and (6.23), respectively. Estimates
of iPCF and iPNF were obtained in a similar way. The distribution of risk in the general
population, F , was estimated from Equation (6.2), and G was estimated from Equation
(6.13).

Variance calculations

Pfeiffer (2013) derived the asymptotic properties and variances for the estimates of
PCF, PNF , iPCF and iPNF for the three types of data described above using a Taylor
linearization approach, that yields variance estimates of a statistic T̂ through a first order
approximation of T̂ , such that var(T̂ ) ≈ var{

∑n
1 ∆i(T̂ )}, as described in more detail in

Section 4.6.1. Again, ∆i(T̂ ) denotes the influence function operator for the influence of
observation i on T̂ (Graubard and Fears, 2005; Shah, 2002; Deville, 1999; Hampel, 1974;
Reid and Crepeau, 1985). For estimates based on (rFi , Oi) observed in a cohort, Pfeiffer
(2013) used bivariate influence functions (Pires and Branco, 2002).

Estimates for the NHS validation data

Table 6.4 shows estimates P̂CFR and P̂NFR from the NHS validation cohort, based
on risks R only, under the assumption that the risk model BC2013 is well calibrated; it

also shows estimates P̂CF (R,O) and P̂NF (R,O) based on (R,O) without the calibration

assumption. Estimates P̂CF (R,O), which are unbiased, were lower than P̂CFR for p =
0.10 and p = 0.20. The width of the 95% confidence intervals was appreciably larger for

P̂CF (R,O) , which shows how much efficiency is gained by assuming that the model is well
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calibrated. If the assumption is violated, however, P̂CFR can be biased. For PNF with

q = 0.90, a fraction q̂(R,Y ) = 0.901 of cases was found in the 100×P̂NF (R,O) = 76.9% of the

population with the highest risk; this is evidence that P̂NF (R,O) is unbiased. In contrast, a

fraction q̂R = 0.945 of cases was found in the 100× P̂NFR = 84.1% of the population with
highest risk when q = 0.90. Thus 94.5% of cases instead of the desired 90% had risks in the
highest 84.1% of the population, reflecting a lack of model calibration and consequent bias

in P̂NFR (Table 6.4).
The AUC value for this example was 0.616, very close to the integrated PCF ,

îPCF (0) = 0.614, as expected for a rare outcome.

Table 6.4: Estimates of PCF and PNF from the NHS validation cohort based on 5-year
BC2013 risk projections for 50- to 55-year-old women

Estimate based on cohort data
Assume well- No assumption

calibrated model, on calibration,
use data R only use data (R,O)

% screened (100× p)

10% P̂CFR = 0.168 P̂CF (R,O) = 0.178
95%CI: (0.167, 0.169) 95%CI: (0.127, 0.229)

20% P̂CFR = 0.299 P̂CF (R,O) = 0.328
95%CI: (0.298, 0.301) 95%CI: (0.261, 0.395)

% cases to be captured
(100× q) in screen

90% P̂NFR = 0.841 P̂NF (R,O) = 0.769
95%CI: (0.840, 0.842) 95%CI: (0.649, 0.890)

80% P̂NFR = 0.588 P̂NF (R,O) = 0.533
95%CI: (0.706, 0.709) 95%CI: (0.533, 0.777)

95% bootstrap confidence intervals (CIs) are shown.

6.6 Model assessment based on expected costs or expected utility specialized
for a particular application

Minus the sample mean square error of prediction (Brier statistic) and the sample mean
logarithmic score (minus half the binomial deviance) converge to expectations of general
criteria called “proper scores” (Gneiting and Raftery, 2007)). A risk model that yields a
higher mean value of a proper score is preferred to one with a smaller mean value. If possible,
however, it is desirable to choose criteria that meet the special requirements of a particular
application, rather than choose a general proper score. If it is possible to assign “costs”,
which are also called “losses”, to various outcomes that are specialized for a particular
problem, then optimal risk thresholds for decision can be determined that minimize the
expected cost or loss. A figure of merit for a given risk model is its expected cost for that
optimal threshold. In comparing two risk models, the preferred model is the one with smaller
expected cost. In the following sections we elaborate on these ideas. Rather than specifying
costs or losses, some investigators equivalently specify “utilities”. An optimal risk threshold
can be determined from utilities, and with this threshold, a preferred risk model is the one
that yields the larger expected utility.
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6.6.1 Two health states and two intervention options

Many important problems in clinical epidemiology and clinical practice can be represented
in terms of two health states and two intervention options. In screening for disease, a person
either has screen-detectable disease or not, and an intervention choice is whether or not to
apply a screening test to that person, perhaps based on an estimate of the probability that
the person is diseased. In predicting whether a man will have a myocardial infarction in the
next ten years, the man either will or will not be so diagnosed, and an intervention might
be whether or not to recommend taking statins to prevent cardiovascular events, perhaps
based on the risk of such events. Such considerations could also apply after disease diagnosis.
For example, a 65-year-old man diagnosed with prostate cancer with a favorable pathology
(Gleason score 2) has a chance of dying of prostate cancer of less than 5%, because he is
likely to die of other causes first (Albertsen et al., 2005). The outcomes are death from
prostate cancer or not, and the intervention choice is whether to treat vigorously with
surgery or radiation or to wait for laboratory or other signs of cancer progression before
treating.

Problems of this type can be characterized by the data in Table 6.5. A risk estimate r
is used to decide on intervention or not, according to some risk threshold, t. The rule is
to intervene if r > t and not to intervene if r ≤ t. The risk r for the screening example is
the risk of prevalent disease, but the risks for the other two examples should be absolute
risks of the adverse outcome. Costs (or losses) for the various combinations of intervention
choice and disease state are shown, but if appropriate utilities are used instead of costs,
the results obtained by minimizing costs are analogously obtained by maximizing utilities.
Letting π denote the true probability of disease or of an adverse health outcome, sens(t) the
sensitivity of the risk model at threshold t, and spec(t) the corresponding specificity, one can
express the joint probability of being diseased and having the intervention as π × sens(t).
Other joint probabilities are shown in Table 6.5.

Table 6.5: Definitions for a decision problem with two health states and two intervention
optionsa

Intervention Disease state Costs Risk criterion
at threshold t

Outcome probability

Yes Diseased CTP r > t π × sens(t)
No Diseased CFN r ≤ t π × {1− sens(t)}
Yes Not diseased CFP r > t (1 − π){1− spec(t)}
No Not diseased CTN r ≤ t (1 − π)spec(t)

aAbbreviations: TP, true positive; FN, false negative; FP, false positive; TN, true nega-
tive; C, cost; r, absolute risk; t, threshold; π, probability of disease; sens, sensitivity; spec,
specificity.

Assuming there is a cost, Ctest, associated with assessing risk, the total expected cost is

C̄(t) = π × sens(t)CTP + π × {1− sens(t)}CFN + (1− π){1− spec(t)}CFP

+(1− π)spec(t)CTN + Ctest

= −π × sens(t)Bcase − (1 − π)spec(t)Bnon−case + πCFN + (1− π)CFP + Ctest,
(6.28)

where Bcase = CFN − CTP ≥ 0 is the net benefit of intervening on a case (or reduction
in cost from intervening on a case) and Bnon−case = CFP − CTN ≥ 0 is the net cost from
intervening on a non-case. The risk threshold t∗ that minimizes C̄(t) is

t∗ = Bnon−case/(Bnon−case +Bcase) = (1 +Bcase/Bnon−case),
−1 (6.29)
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and the corresponding minimum expected cost is

C̄min = −π × sens(t∗)(CFN − CTP ) + (1 − π){1− spec(t∗)}(CFP − CTN ) + πCFN

+(1− π)CTN + Ctest = −π × sens(t∗)Bcase − (1− π)spec(t∗)Bnon−case

+πCFN + (1− π)CFP + Ctest.
(6.30)

A perfect model r has sens(t) = spec(t) = 1 and

C̄perfect
min = π CTP + (1− π)CTN + Ctest. (6.31)

If one intervenes on all subjects (sens(t) = 1, spec(t) = 0), then

C̄all
min = π CTP + (1− π)CFP + Ctest. (6.32)

If one never intervenes (sens(t) = 0, spec(t) = 1), then

C̄none
min = πCFN + (1− π)CTN + Ctest. (6.33)

These three quantities can be used as benchmarks for the performance C̄min of an imperfect
risk model (Weinstein et al., 1980; Gail and Pfeiffer, 2005; Gail, 2009b; Baker et al., 2009).

Equation (6.29) is remarkable because the optimal threshold depends only on the costs
and not on which risk model is used. Equation (6.29) was first derived by Pauker and
Kassirer (1975) by finding the threshold at which the expected loss is the same for the
intervention and no intervention options. This important result shows that specifying a
threshold is equivalent to specifying the cost ratio Bcase/Bnon−case, as emphasized and
used by Pauker and Kassirer (1975). Metz (1978) showed that this threshold corresponded
to the point where the slope of the ROC curve equals (1 − π)Bnon−case/πBcase. Gail and
Pfeiffer (2005) derived the threshold by differentiating Equation (6.28).

C̄min in Equation (6.30) decreases with increasing sensitivity and specificity at t∗. Model
1 is preferred to model 2 if

C̄min,2−C̄min,1=π Bcase{sens1(t∗)−sens2(t∗)}+(1−π)Bnon−case{spec1(t∗)−spec2(t∗)} > 0.
(6.34)

Equivalently, model 1 is preferred to model 2 if

{sens1(t∗)− sens2(t
∗)}+ {spec1(t∗)− spec2(t

∗)}{(1− π)Bnon−case/π Bcase} > 0. (6.35)

If both the sensitivity and specificity of model 1 are greater than that of model 2 at t∗,
then model 1 is preferred. If either sens1(t

∗) > sens2(t
∗) and spec1(t

∗) < spec2(t
∗) or

sens1(t
∗) < sens2(t

∗) and spec1(t
∗) > spec2(t

∗), then whether or not model 1 is preferred
depends on the weight assigned to the difference in specificities, {(1−π)Bnon−case/πBcase}.

In terms of the previous notation, Vickers and Elkin (2006) defined the “net benefit” at
a risk threshold t as

NB(t) = π × sens(t)− (1− π){1 − spec(t)}{t/(1− t)}. (6.36)

One can obtain NB(t) from Equation (6.28) by discarding terms that do not depend on t,
dividing by −Bcase, and recognizing from Equation (6.29) that t/(1−t) = Bnon−case/Bcase.
Baker et al. (2009) showed that discarding those terms is equivalent to subtracting C̄none

min

from C̄min. Vickers and Elkin (2006) recommended a “decision curve”, which is a plot of
NB(t) against t . By varying t between 0 and 1, one is implicitly examining net benefit for a
range of values of implied cost ratiosBnon−case/Bcase, and one risk model might be preferred
to another if its net benefit were larger over a relevant range of values of t. If none receive the
intervention, NB(t) = 0. If all receive the intervention, NB(t) = π− (1−π)t/(1− t), which
is very nearly linear with slope −(1 − π) for small t. The decision curve can be compared
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with these two loci to see whether using the risk model is preferable to intervening on all
or intervening on none, without a risk model.

Van Calster and Vickers (2015) studied the effects of miscalibration on the decision
curve. Miscalibration always lowers NB(t). Miscalibration can lead to worse decisions than
no model if risks are underestimated for true event rates less than π or overestimated for
true event rates over π. Baker et al. (2009), who used utilities instead of costs, reviewed

several alternative measures of performance based on the equivalents of C̄(t), C̄min, C̄
perfect
min ,

C̄all
min, and C̄

none
min . They presented a scaled statistic, the “relative utility” and “relative utility

curve”. We define the corresponding relative cost curve, RCC, as

RCC(t) = {C̄none
min − C̄(t)}/{C̄none

min − C̄perfect
min } for t∗ ≥ π

= {C̄all
min − C̄(t)}/{C̄all

min − C̄perfect
min } for t∗ < π.

(6.37)

At the optimal threshold for a given model, RCC(t∗) is given by Equation (6.37) with C̄min

replacing C̄(t). Peirce (1884) calculated −π ×sens(t)Bcase+(1−π){1−spec(t)}Bnon−case

but did not define an optimal threshold. Van Calster et al. (2013) presented a unified
treatment of net benefit, relative utility, AUC and some other measures, such as the net
reclassification index, which is further discussed in Chapter 7.

6.6.2 More complex outcomes and interventions

Although the previous formulation for two health states and two intervention actions has
many applications and has been well studied, there may be multiple health states to consider,
and the intervention choices may be more elaborate.

6.6.2.1 Example with four intervention choices

Pauker and Kassirer (1980) considered diagnostic tests, such as renal biopsies, which them-
selves carry risk. The resulting 4 possible intervention actions included: administer treat-
ment without the diagnostic test, withhold treatment without the diagnostic test, perform
the diagnostic test and administer treatment if it is positive, and perform the diagnostic
test and withhold treatment if it is negative. For each of these 4 possible actions, the disease
was either present or absent, resulting in 8 possible combinations of intervention actions
and disease states. By assigning utilities to each of these 8 conditions and allowing for the
cost associated with performing the diagnostic test, Pauker and Kassirer (1980) were able to
define two risk thresholds for clinical management. We translate their notation for utilities
into the previous notation for costs. They first presented a risk threshold for withholding
treatment without diagnostic testing versus diagnostic testing. This threshold was

t∗test =
P (Test + |no disease)Bnon−case + Ctest

P (Test + |nodisease)Bnon−case + P (Test+|disease)Bcase
. (6.38)

Thus, the disease risk threshold t∗test for performing the diagnostic test increases with the
cost of the test Ctest, and with the cost of treating a non-case, Bnon−case; the threshold
decreases with the benefit Bcase of treating a case and with the diagnostic test’s specificity
and sensitivity. The second threshold was for the decision to treat without testing versus
diagnostic testing. The threshold for treatment without diagnostic testing was

t∗treat =
P (Test-|nodisease)Bnon−case − Ctest

P (Test-|nodisease)Bnon−case + P (Test-|disease)Bcase
. (6.39)

This threshold decreases with increasing Ctest, increasing Bcase, and decreasing test sensi-
tivity; it increases with increasing Bnon−case and increasing test specificity. Based on these
thresholds, one treats without testing if r > t∗treat. If r ≤ t∗test, one does not test or treat. If
t∗test < r ≤ t∗treat, one tests and treats according as the test is positive or negative.
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6.6.2.2 Multiple outcomes in prevention trials

Sometimes an intervention affects multiple health outcomes. For example, Fisher et al.
(1998) studied whether tamoxifen would prevent breast cancer in 13,388 women followed on
average for 4 years. Although tamoxifen reduced the risk of invasive breast cancer (relative
risk 0.51) compared to placebo, it had other effects (Table 6.6). In particular, it reduced the
risk of hip fractures and in situ breast cancer, but increased the risk of endometrial cancer,
stroke, pulmonary emboli and deep vein thromboses.

Table 6.6: Relative risks (RRs) from tamoxifen treatment for various health outcomes, and
absolute numbers of health outcomes expected in 5 years with and without tamoxifen in a
population of 10,000 white 40-year-old women with uteri and with a projected breast cancer
risk of 2%

None get All get Prevented by
Health events RR (95% CI)a tamoxifen tamoxifen tamoxifen
Invasive breast cancer 0.51 (0.39–0.66) 200 103 97
Hip fracture 0.55 (0.25–1.15) 2 1 1
Endometrial cancer 2.53 (1.35–4.97) 10 26 –16b

Stroke 1.59 (0.93–2.77) 22 35 –13
Pulmonary emboli 3.01 (1.15–9.27) 7 22 –15
Net life-threatening
events

241 187 54

In situ breast cancer 0.50 (0.33–0.77) 106 53 53
Deep vein thrombosis 1.60 (0.91–2.86) 24 39 –15
Net serious events 130 92 38

aFrom B. Fisher, J.P. Costantino, D.L. Wickerham, C.K. Redmond, M. Kavanah, W.M.
Cronin, V. Vogel, A. Robidoux, N. Dimitrov, J. Atkins, M. Daly, S. Wieand, E. Tan-Chiu,
L. Ford, and N. Wolmark. Tamoxifen for prevention of breast cancer: Report of the
national surgical adjuvant breast and bowel project p-1 study. Journal of the National
Cancer Institute, 90(18):1371–1388, 1998.
bA negative number means that tamoxifen increases the number of events.

To provide guidance to women as to whether there was a net expected benefit from
taking tamoxifen, Gail et al. (1999a) classified the health outcomes as life-threatening or
serious (Table 6.6) and estimated the absolute risk of each outcome in the absence and
presence of tamoxifen. Suppose a woman with a uterus had a breast cancer risk assessment,
and her projected 5-year absolute risk was 2%. She might consider what would happen to
10,000 women just like her over 5 years. On the basis of absolute risk estimates one might
expect 241 life-threatening events without tamoxifen and 187 life-threatening events with
tamoxifen, a reduction of 54 events (Table 6.6). Likewise, tamoxifen reduces the expected
number of serious events in this population by 38. It seems that such a woman should
consider the use of tamoxifen.

If one is willing to assign a cost (or loss) ck to each outcome, k = 1, 2, ...K, where k = 1
corresponds to invasive breast cancer and K = 7 to deep vein thrombosis (Table 6.6), one
can determine whether there is a net benefit from taking tamoxifen by testing

Net Benefit =

K∑

k=1

ckP0k −
K∑

k=1

ckP1k =

K∑

k=1

ck(P0k − P1k) > 0. (6.40)

In this equation, P0k is the probability of the outcome in the absence of tamoxifen and P1k
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is the probability in the presence of tamoxifen. The net benefit is the expected cost in the
absence of tamoxifen minus the expected cost in the presence of tamoxifen. In Gail et al.
(1999a), the relative risks RRk in Table 6.6 were used to compute P1k = RRkP0k, and the
costs were defined as ck = 1 for k = 1, 2, ..., 5 (life-threatening events) and as ck = 0.5 for
k = 6, 7 (serious events). Using these costs, one could classify women according as whether or
not the net benefit was positive. Young women with high breast cancer risk had positive net
benefits, whereas older women tended to have a negative net benefit because they had higher
baseline risks, P0k, for stroke, pulmonary emboli, deep vein thromboses, and endometrial
cancer. Cross-classifications on age and breast cancer absolute risk indicated which women
had a net benefit for tamoxifen (Gail et al., 1999a) and for raloxifene (Freedman et al.,
2011).

Several comments follow. First these calculations ignore the possibility that a woman
would develop more than one of these conditions. This approximation is reasonable over
short time intervals, like 5 years. This assumption means that one does not need to assign
costs to multiple simultaneous outcomes. Moreover, one does not need to know the joint
distribution of these various events with and without tamoxifen; marginal estimates like
P0k and P1k are sufficient. Second, we have assumed that we can calculate P1k = RRkP0k,
regardless of the characteristics of the woman. Prevention trials of this type rarely provide
sufficient information to detect heterogeneity of the intervention effect, but these methods
can be extended to allow for it (Janes et al., 2014). Third, not everyone would agree to the
costs used. Sensitivity analyses based on varying costs can be used to see if conclusions are
robust, as in Gail et al. (1999a). Fourth, the estimates of net benefit in Equation (6.40) are
subject to random variation, primarily because the relative risk estimates are variable (Table
6.6). Gail et al. (1999a) showed how to account for such variability by using a parametric
bootstrap to resample the numbers of health outcomes and categorized the evidence that
the net benefit was positive as strong (probability 0.9 to 1.0) or moderate (probability 0.6 to
0.89). Finally, these analyses only estimated the risks of health outcomes other than breast
cancer on the basis of race and age. More precise estimates of P0k based on risk models for
other outcomes have the potential to improve the net benefit (Gail, 2012).

6.6.2.3 Expected cost calculations for outcomes following disease diagnosis

Therapeutic decisions after disease diagnosis also depend on the interventions that are avail-
able and the costs that might be associated with various interventions and outcomes. The
following simple example indicates that the computation of expected loss and the data
requirements can be more complex for therapeutic decisions. Suppose a standard cancer
chemotherapy is to be compared with a new chemotherapy, and that the two health out-
comes of interest are fatal chemotherapy toxicity (k =1) or disease recurrence (k =2). Denote
the bivariate outcome O = (O1, O2) ≡ {I(eventk = 1 occurs), I(event k = 2 occurs)}, and
let P0(O) and P1(O) be the probability mass functions under standard and new chemother-
apies respectively. In this setting, joint events like O = (1, 1) are unfortunately possible.
Now consider some possible cost (or loss) functions, c(O). Here c is a scalar positive func-
tion of O. A simple loss function might be the additive model c(O) = c1O1 + c2O2, where
c1 and c2 are costs associated with events k = 1 and 2. It turns out that for additive cost
functions like this, the decision rule that minimizes expected costs is to treat if the net
benefit in Equation (6.40) is positive, where P0k and P1k are the marginal distributions for
O1 and O2. Such additive cost functions might apply in a setting where the health out-
comes were two different mild conditions, such as itching and redness, but in the present
example an additive cost function does not seem appropriate. Suppose we assign costs c1 =
2 and c2 =1, because fatal toxicity is more devastating than recurrence. The cost can be no
greater than 2, because a recurrence hardly adds costs to fatal toxicity. Thus we might use
c(O) = max(c1O1, c2O2). The decision rule that minimizes expected cost is to give the new
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treatment if
Net Benefit =

∑

O

c(O){P0(O)− P1(O)} > 0. (6.41)

In order to compute this net benefit with non-additive costs, we need the joint distributions
P0(O)and P1(O), not merely the marginal distributions used in Equation (6.40). Thus
randomized trials that yield estimates of P0(O) and P1(O) should report not only marginal
outcomes but joint outcomes (which is rarely done but is feasible with electronic records).

This example is meant only to illustrate that therapeutic decisions can be complex and
require elaborate data to estimate net benefit. In fact, to describe realistic costs in the
therapeutic setting, one may need to take the timing of health outcomes into account,
and there may be several possible outcomes to consider. Formulating realistic outcome
possibilities and joint costs is often the main impediment to implementing formal decision
methods. Another consideration that applies to the therapeutic setting and more broadly
is that minimizing expected cost may not be the best criterion. Some patients may want to
adopt the intervention that minimizes the maximum cost that can be encountered, rather
than minimizing the expected cost.

Provided one accepts minimizing expected cost (or minimizing maximum cost) as the
criterion of choice, one can compare risk models in terms of their associated net benefit in
specific applications.



Chapter 7

Comparing the performance of two models

Many of the criteria in Chapter 6 to assess the performance of a single risk model can be
used to compare two models. Such criteria include measures of accuracy, such as positive
and negative predictive value, misclassification rate, sensitivity, specificity, and additional
criteria based on the ROC curve. Other criteria for a single risk model can also be used, such
as criteria for quantifying the performance with respect to specific interventions (e.g., PCF
or PNF ), and criteria based on expected costs, as presented in Chapter 6. All these criteria
for single risk models can also be employed to compare the performance of two different
models evaluated on the same validation data. In this chapter we illustrate such compar-
isons. However, we also discuss some more recently proposed criteria for model comparison
that have no “single model” analogue. They include risk stratification tables, the net re-
classification improvement (NRI), and continuous net reclassification improvement, cNRI
(Pencina et al., 2008). These latter criteria were developed to quantify the improvement in
a model from adding a novel predictive marker. Examples of serum markers include CA-125
for predicting ovarian cancer incidence, and PSA (prostate-specific antigen) to predict the
presence of prevalent prostate cancer and help decide if a biopsy is warranted. There has
also been interest in determining how much the performance of risk prediction models could
be improved by including information on single nucleotide polymorphisms (SNPs) identi-
fied in genome wide association studies (GWAS). Although individual disease-associated
SNPs may confer only modest risk for most diseases, the combined effect of all identified
disease-associated SNPs, summarized in a “polygenic risk score”, might provide substantial
information. Unless costly molecular information improves prediction compared to models
based on easily obtained risk factors such as clinical or personal characteristics, there may
be little value in using the molecular markers. Although assessing the value of adding a new
marker to an existing model is an important application of methods for model comparison,
these methods can also be used to compare models that use entirely different risk factors.

7.1 Use of external validation data for model comparison

We compare the performance of two models evaluated in the same “test” or “validation”
data. These “external validation data” are independent of the data sources used to develop
the models. We denote the two models that we wish to compare by R1 and R2 and assume
the risk estimates for both were calculated using possibly different baseline covariates but
the same projection interval for each individual in the validation data set. Thus we observe
bivariate risk estimates (r1i , r

2
i ), i = 1, . . . , n, from models R1 and R2. The bivariate distri-

bution of risks can be calculated from the joint distribution of all risk factors used in both
models by extending Equation 6.1. However, we are mainly interested in the marginal risk
distributions F1 and F2 induced by the respective covariate distributions for the risk factors
in R1 and R2 in the general validation population. As in Chapter 6, Gi and Ki, i = 1, 2,
denote the distributions of risk in cases and non-cases for models i = 1, 2, respectively.
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When discussing nested models, we let R2 denote the “new model” and R1 denote the
original model. For non-nested models, the designation of the subscript is arbitrary. For
most of this chapter we assume that the validation data are from a cohort, but we point
out when criteria can also be estimated from case-control data. In Section 7.7 we mention
problems with trying to compare models using the training data.

7.2 Data example

To illustrate the methods in this chapter, we compared an absolute risk model for invasive
breast cancer with potentially modifiable risk factors (BC2013) (Pfeiffer et al., 2013) to
the old absolute breast cancer risk model, the National Cancer Institute’s publicly avail-
able Breast Cancer Risk Assessment Tool (BCRAT at http://www.cancer.gov/bcrisktool),
which includes modifications of the original “Gail model” (Gail et al., 1989), as described
previously (Costantino et al., 1999; Gail et al., 2007; Matsuno et al., 2011). We used a
subset of the 57,906 women in the Nurses’ Health Study (NHS) external validation cohort
described in Chapter 6. All comparisons were based on 5-year absolute risk estimates from
BC2013 and BCRAT for the 17,085 women aged 50–55 years at baseline in the NHS cohort.

The predictors in the new BC2013 model are age and race/ethnicity of a woman, her
family history of breast or ovarian cancer, personal history of benign breast disease/breast
biopsies, estrogen and progestin menopausal hormone therapy (MHT) use, other MHT
use, age at first live birth, menopausal status, age at menopause, alcohol consumption
and body mass index (BMI). BCRAT predicts a woman’s breast cancer risk based on her
age and race/ethnicity, family history of breast cancer, personal history of breast biopsy
and diagnosis of atypical hyperplasia, her age at her first live birth of a child and age at
menarche. BMI, MHT and alcohol use are not included as predictors in BCRAT, and age
at menarche and a diagnosis of atypical hyperplasia are not included in BC2013.

7.3 Comparison of model calibration

First, we applied the criteria presented in Chapter 6 to assess the calibration of each model.
Table 7.1 shows the observed number (O) of cancers, and the expected numbers (E) from

both models with corresponding E/O ratios and 95% confidence intervals (CIs), overall and
in various subgroups defined by selected covariates. Both models under-predicted the overall
observed number of cases (O = 252) somewhat. The expected number of events were 231
from BC2013 and 238 from BCRAT; however, neither overall E/O ratio was statistically
significantly different from one. Both models statistically significantly (p < 0.05) under-
predicted the number of events for women with a diagnosis of benign breast disease, and
BC2013 also significantly under-predicted the number of events for women with BMI ≥ 35
kg/m2 and for women with one first degree relative with breast cancer. However, power to
detect lack of calibration was limited for cells defined by covariate values that had few cases.

Table 7.2 gives the observed and expected events by deciles of risk for both models. The
absolute risks of developing breast cancer were relatively low, reflecting the facts that the
validation population was young (aged 50 to 55 years) and the projection interval was only
five years long. For BC2013, risk estimates ranged from 0.63% to 4.29%, and for BCRAT
from 0.63% to 8.65%. BC2013 overestimated the number of events in the lowest two deciles;
for example, in the first decile group, the model predicted 14 events while 6 were observed,
with E/O = 2.31. For BCRAT, the numbers of women falling into the risk decile groups were
less balanced than for BC2013, because BCRAT only yields 108 total covariate patterns,
resulting in many tied risk estimates. BCRAT overestimated the number of events in the
lowest three deciles with E/O values of 1.20, 1.11, and 1.66, and slightly under predicted

http://www.cancer.gov/bcrisktool


COMPARISON OF MODEL CALIBRATION 103

risk in the high-risk deciles. BC2013 under-predicted risk in the high-risk deciles by more
than BRCAT.

Letting G = 10 correspond to the decile groups, we computed the global test statistic
in Equation (6.6), Q =

∑G
g=1(O

g − Eg)2/Eg, as Q = 16.7 for BC2013 and Q = 13.4 for

BCRAT. Neither value exceeded the cutoff of χ2
10 = 18.31 at the 0.05 level, indicating that

both models were adequately calibrated overall.
We also assessed calibration by fitting a logistic regression model to observed outcomes

(Equation (6.4)) with log{Rk/(1−Rk)}, k = 1, 2 as the independent variable. The regression
intercept and slope estimates were ν̂0 = 1.37 (p = 0.11) and ν̂1 = 1.30 (p = 0.13) for BC2013
and ν̂0 = 0.10 (p = 0.88) and ν̂1 = 1.01 (p = 0.95) for BCRAT. The fact that the intercepts
are positive but not statistically significantly different from zero is consistent with slight
underestimation of risk overall in both models. The estimated slope ν̂1 = 1.30, though
not statistically significantly different from 1.0, is consistent with underdispersion of risk
estimates for BC2013, namely underestimation of high risks and overestimation of low risks,
as in Table 7.2 and Figure 7.1.

Table 7.1: Comparison of observed (O) and expected (E) incident breast cancers and the
corresponding 95% confidence intervals (CIs) based on 5-year predictions from BC2013
(Pfeiffer et al., 2013) and BCRAT (http://www.cancer.gov/bcrisktool) in women ages 50–
55 in the Nurses’ Health Study (NHS) validation cohort

BC2013 BCRAT
O E E/O (95% CI) E E/O (95% CI)

All women 252 231 0.92 (0.72, 1.04) 238 0.94 (0.84, 1.07)

Variable
Age at menarche
< 12 59 53 0.90 (0.70, 1.16 ) 59 1.00 (0.77, 1.29)
12− 13 146 136 0.93 (0.79, 1.09) 140 0.96 (0.81, 1.12)
≥ 14 47 42 0.89 (0.67, 1.19 ) 40 0.85 (0.64, 1.13)
BMI
< 25 kg/m2 144 122 0.85 (0.72, 1.00) 130 0.90 (0.77, 1.06)
25 to < 30 kg/m2 77 69 0.89 (0.71, 1.12 ) 70 0.91 (0.73, 1.13)
30 to < 35 kg/m2 18 27 1.48 (0.93, 2.35) 26 1.43 (0.90, 2.27)
≥ 35 kg/m2 13 3 0.26 (0.15, 0.44) 12 0.95 (0.55, 1.64)
Benign breast disease
No 93 105 1.13 (0.92, 1.38 ) 106 1.14 (0.93, 1.40)
Yes 159 126 0.79 (0.68, 0.93 ) 132 0.83 (0.71, 0.97)
# of first degree rela-
tives with breast cancer
0 208 200 0.96 (0.84, 1.10 ) 193 0.93 (0.81, 1.06)
1 43 30 0.69 (0.51, 0.93 ) 41 0.97 (0.72, 1.30)
2 1 1 1.18 (0.17, 8.39 ) 3 3.49 (0.49, 24.78)

These analyses indicate that both models are reasonably well calibrated in the NHS data.
Many of the criteria for comparing risk models that we discuss below can be misleading
unless the models being compared are well calibrated, namely P (O = 1|Ri = r) ≈ r, i = 1, 2.
We specifically address the implications of lack of calibration when we discuss the various
criteria.

http://www.cancer.gov/bcrisktool
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Table 7.2: Comparison of observed (O) and expected (E) incident breast cancers in the NHS
validation cohort in deciles of risk computed from the BC2013 and BCRAT models

Decile BC2013 BCRAT
Risk interval N E O E/O Risk interval N E O E/O

1 [0.0063, 0.0088] 1707 14 6 2.31 [0.0063, 0, 0.0090] 1995 17 14 1.20
2 (0.0088, 0.0099] 1724 16 13 1.24 (0.0090, 0.0098] 1289 12 11 1.11
3 (0.0099, 0.0108] 1703 18 25 0.71 (0.0098, 0.0106] 2280 23 14 1.66
4 (0.0108, 0.0118] 1705 19 15 1.28 (0.0106, 0.0112] 1305 14 15 0.95
5 (0.0118, 0.0127] 1698 21 28 0.74 (0.0112, 0.0122] 1757 21 29 0.71
6 (0.0127, 0.0138] 1707 23 27 0.84 (0.0122, 0.0133] 1606 20 29 0.71
7 (0.0138, 0.0150] 1711 25 30 0.82 (0.0133, 0.0149] 1759 25 23 1.08
8 (0.0150, 0.0167] 1710 27 25 1.08 (0.0149, 0.0169] 1655 26 36 0.91
9 (0.0167, 0.0192] 1711 30 38 0.80 (0.0169, 0.0210] 1758 33 36 0.91
10 (0.0192, 0.0429] 1709 39 45 0.86 (0.0210, 0.0865] 1681 47 48 0.98

Each decile group contains N women, which can vary because of ties in risk.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

O
b
s
e
rv

e
d
 e

v
e
n
ts

 i
n
 e

a
c
h
 d

e
c
ile

 g
ro

u
p

Expected events for  BC2013 in decile groups
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

O
b
s
e
rv

e
d
 e

v
e
n
ts

 i
n
 e

a
c
h
 d

e
c
ile

 g
ro

u
p

Expected events for  BCRAT in decile groups

Figure 7.1: Calibration plots for BC2013 and BCRAT for incident breast cancer in the NHS
validation cohort.

7.4 Model comparisons based on the difference in separate model-specific
estimates of a criterion

The criteria used to characterize the performance of a single model in Chapter 6 can also be
used to compare two models by computing the difference of estimates of the criterion from
the two models. Each criterion can be estimated from the marginal distributions of risk for
the separate models, but the two estimates are correlated because the same individuals in
the validation sample contribute to each estimate; the estimated variance of the difference
must take this correlation into account.
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7.4.1 Comparisons of predictive accuracy using the Brier and logarithmic scores

Two widely used measures of predictive accuracy are the Brier and logarithmic scores, as
discussed in Section 6.4.1. The mean square error (mean Brier score) was estimated from

M̂SE = n−1
n∑

i=1

(Oi − ri)
2 (7.1)

as 0.0145017 for BC2013. The corresponding estimate for BCRAT was 0.0145001. To test
whether the difference in the two estimates is statistically significant, one can perform a
paired t-test on the n paired differences between the summands in Equation (7.1) based on
BC2013 and based on BCRAT. The corresponding two-sided p-value was p = 0.80.

Similarly, the logarithmic score was estimated from

n−1
n∑

i=1

{−Oi log(Ri)− (1−Oi) log(1−Ri)} (7.2)

as 0.0758 for BC2013. The corresponding estimate for BCRAT was 0.0757, and the two-
sided p-value based on the paired t-test was p = 0.85. Thus, neither model demonstrated
statistically significantly better predictive accuracy based on these proper scores.

7.4.2 Classification accuracy criteria based on single risk threshold

As mentioned in Section 6.4.2, if there is a single clinical decision threshold, then one can
compute various accuracy criteria based on this threshold, separately for the two models.
The models will be compared by computing the differences between these estimated criteria.
These comparisons depend on predictions Ôi from model i = 1, 2 obtained as

Ôi =

{
0 if Ri ≤ r∗

1 if Ri > r∗,
(7.3)

where r∗ is a risk or decision threshold used to predict the actual outcome.
Given the decision rule in Equation (7.3), one can compare two risk prediction models

using the summary measures in Section 6.4.2, including sensitivity, specificity, the positive
predictive value (PPV ), the negative predictive value (NPV ) and the probability of cor-
rect classification (PCC), or its complement, the probability of misclassification (PMC).
These quantities were computed as in Section 6.4.2 separately for models i = 1, 2 from the
distributions of risk in the population (Fi), in cases (Gi), and in non-cases (Ki).

The American Society for Clinical Oncology concluded that premenopausal women and
postmenopausal women with low risk of side effects and a 5-year projected risk > r∗ =
0.0166 may benefit from chemoprevention (Visvanathan et al., 2009). Using this threshold,
we categorized all n women as well as the women who developed breast cancer (“events”
or “cases”) and women who did not (“non-events” or “non-cases”), as shown in Table 7.3
for both BC2013 and BCRAT. Out of 252 women who developed breast cancer within 5
years of study baseline, only 84 had a BC2013 absolute risk estimate greater than 0.0166
(sensitivity = 0.333). Of the 16,833 women without breast cancer, 13,456 had BC2013 risks
at or below that threshold (specificity = 0.799) (Tables 7.3 and 7.4). For BCRAT, only 88
of 252 cases had a risk greater than 0.0166 (sensitivity = 0.349), and of the 16,833 women
without breast cancer, 13,285 had BCRAT risks at or below that threshold (specificity =
0.789).

Such computations can be extended to other accuracy measures (Table 7.4). Of 3,461

women with BC2013 risks above 0.0166, only 84 developed breast cancer (P̂PV 1 =
84/3461 = 0.024), whereas 13,456 of the 13,624 women with BC2013 risks at or below
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Table 7.3: Categorization of women in the NHS validation cohort (Pfeiffer et al., 2013), ages
50 to 55 years at baseline, who experienced the event (“cases”) during 5 years of follow-up
and those who did not, based on 5-year absolute breast cancer risk estimates exceeding
1.66% for the BCRAT and BC2013 models

≤ 1.66% > 1.66% Total
5-year risk from BC2013

n 13,624 3,461 17,085
Events 168 84 252
Non-events 13,456 3,377 16,833
Percentage with events(%) 1.23 2.43 1.47

5-year risk from BCRAT
n 13,449 3,636 17,085
Events 164 88 252
Non-events 13,285 3,548 16,833
Percentage with events(%) 1.22 2.42 1.47

Table 7.4: Accuracy measures for the absolute breast cancer risk estimates from the BC2013
and BCRAT models based on a 5-year absolute risk threshold r∗ = 0.0166 for 50- to 55-
year-old women in the NHS validation cohort

Measure BC2013 BCRAT
Estimate (95% CI) Estimate (95% CI) Difference (95% CI)

PPV 0.024 (0.019, 0.030) 0.024 (0.020, 0.030) -0.0001 (-0.0008, 0.0007)
NPV 0.988(0.986, 0.990) 0.988 (0.986, 0.990) 0.0001 (-0.0009, 0.0012)
PCC 0.793(0.786, 0.799) 0.783 (0.777, 0.789) -0.0098 (-0.0159, -0.0037)
PMC 0.208(0.201, 0.214) 0.217(0.211, 0.224) 0.0098 (0.0037, 0.0159)
Sens 0.333 (0.28, 0.40) 0.349(0.29, 0.41) 0.0159 (-0.041, 0.073)
Spec 0.799 (0.79, 0.81) 0.789 (0.78, 0.80) -0.0102 ( -0.017, -0.004))

Abbreviations: PPV= Positive predictive value; NPV= Negative predictive value; PCC=
Probability of correct classification; PMC= Probability of misclassification; Sens= sensitiv-
ity; Spec=specificity.
95% confidence intervals were calculated assuming binomial variation and conditional on the
denominators for the estimates. Confidence intervals for the differences were the estimates
±1.96 times the bootstrap estimate of standard error of the difference from B = 1000
bootstrap replications.

the threshold remained free of breast cancer (N̂PV 1 = 0.988). The overall misclassification

rate was 100× P̂MC1 = 100(3, 377 + 168)/17, 085 = 20.8%. For BCRAT, of 3,636 women

with risks above 0.0166, only 88 developed breast cancer (P̂PV 2 = 88/3636 = 0.024),
whereas 13,285 of the 13,449 women with BCRAT risks at or below the threshold remained

free of breast cancer (N̂PV 2 = 13285/13624 = 0.988). The overall misclassification rate

was 100× P̂MC2 = 100(3, 548+ 164)/17, 085 = 21.7%.
Thus, both models had the same PPV and NPV . BCRAT had a slightly lower PCC

and consequently a higher PMC. Both models had low sensitivity, but it was slightly higher
for BCRAT, while specificity only differed by a single percentage point.

These comparisons of accuracy measures are only meaningful if both models are well
calibrated. If one of the models systematically over or underestimates risk, then accuracy
measures can convey misleading information. For example, a model that consistently over-



MODEL COMPARISONS BASED ON THE DIFFERENCE IN SEPARATE 107

estimates risk would tend to have higher sensitivity and lower specificity. The corresponding
biases for PPV,NPV, PCC, and PMC are more complex to evaluate because they depend
on the amount by which sensitivity is increased, on the amount by which specificity is
decreased, and on P (O = 1).

Let M be one of the criteria PPV,NPV, PCC, PMC, Sens and Spec. One can test for
a difference between models based on the difference in estimates of M via

TM =
n{M̂1 − M̂2}2

V̂M1−M2

, (7.4)

where n−1V̂M1−M2 is the estimated variance of (M̂1 − M̂2).
Under the null hypothesis of no difference in the criterionM between the two models, TM

has a χ2
1 distribution. As the same data are used to obtain M̂1 and M̂2, the measures are not

independent and their correlation needs to be accommodated in the variance computation. If
one has computed the influence function for each measure, the correlation is accommodated
by computing the empirical variance of the difference of the influences. Alternatively, one
can bootstrap the differences to estimate n−1V̂M1−M2 .

Based on the statistic in Equation (7.4) with the variances estimated by bootstrap
with B=1,000 replications, the two models differed statistically significantly for PCC (p =
0.0027), PMC (p = 0.0027) and specificity (p = 0.0022). Equivalence of sensitivity and
specificity of the two models could also be tested with a McNemar test for correlated
proportions (McNemar, 1947). From the McNemar test, there was no statistically significant
evidence for a difference in sensitivity for the two models (p = 0.586), but the 1% difference
in specificity (Table 7.4) was indeed statistically significant(p = 0.002). These findings are
consistent with the confidence intervals for the differences in Table 7.4.

7.4.3 Comparisons based on the receiver operating characteristic (ROC) curve

The receiver operating characteristic curve describes the pairs (sensitivity, 1-specificity) for
all choices of thresholds (Section 6.4.3). It is common practice to compare the discriminatory
ability of two risk prediction models through a summary measure of the ROC curve, such
as the area under the curve (AUC) or partial area under the curve (pAUC). One computes
the ROC summary measure for each model and the difference (e.g., ∆AUC or ∆pAUC),
with confidence intervals. The pAUC is designed to exclude regions of unacceptably poor
specificity (Pepe, 2003). Because the ROC depends only on the distribution of risks in
cases and non-cases, it can be computed from case-control data as well as from cohort
data. Likewise, functionals of the ROC, such as AUC and ∆AUC can be computed from
case-control or cohort data.

One can derive confidence intervals and standard errors for ∆AUC and ∆pAUC from
the bootstrap distribution of the estimated differences. For cohort data, one resamples the
cohort with replacement. For case-control data, one resamples cases and controls separately
with replacement. To test significance, one can use e.g., a Wald statistic, computed by di-
viding the observed difference by its standard error and comparing it’s value to the standard
normal distribution to report a p-value. Non-parametric methods for comparing two pAUCs
were given by Wieand et al. (1989) and by Zhang et al. (2002).

In the NHS data example, ÂUC (with bootstrap standard errors based on 1000 boot-

strap repetitions in parentheses) was ÂUC1 = 0.617(0.0167) for BC2013 and ÂUC2 =

0.623(0.0173) for BCRAT, resulting in ∆̂AUC = ÂUC1 − ÂUC2 = −0.006(0.0159) with a
bootstrap 95%CI= (−0.0282, 0.0355) and a bootstrap p-value = 0.968 for the null hypoth-
esis H0 : ∆AUC = 0. There is thus no statistically significant evidence that BC2013 has
better or worse discriminatory ability than BRCAT in these validation data.

The nonparametric estimate of the ROC curve depends only on the ranks of the risks in
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the combined sample of cases and non-cases. Thus, monotone transformations of the risks
do not affect the ROC curve or functionals of it. In particular the AUC is not affected by
miscalibration that is induced by a monotone transformation of the true risks. Moreover,
transforming the risk estimates using any monotone transformation, including re-calibration
based on the Cox regression intercepts and slopes, does not impact the AUC comparison.
Note, however, that sens(r∗) and spec(r∗) are not functionals of the ROC curve alone
because they depend on r∗, which is not identifiable from the ROC curve. Likewise pAUC
depends on p.

Unlike functionals of the ROC curve, likeAUC, which can be estimated from case-control
data, the quantities PPV,NPV, PCC and PMC can only be estimated from cohort data,
unless P (O = 1) is known from other sources, and they are sensitive to miscalibration.

7.4.4 Integrated discrimination improvement (IDI) and mean risk difference

The mean risk difference (Pepe et al., 2014) for a given risk model can be estimated as the
mean risk in cases less the mean risk in non-cases (also called the “Yates slope” (Yates,
1982)). Thus, the mean risk difference can be estimated from case-control data as well as
from cohort data. Pencina et al. (2008) proposed the integrated discrimination improvement
(IDI), which is equivalent to the difference in mean risk differences between two models, as a
criterion for comparing models. Recall that sens(r∗) = P (R > r∗|O = 1) and 1−spec(r∗) =
P (R > r∗|O = 0). Pencina et al. (2008) defined the integrated sensitivity and integrated
specificity as

IS =

∫ 1

0

P (R > r∗|O = 1)dr∗ =

∫ 1

0

1−G(r∗)dr∗ = E(R|O = 1)

and

IP =

∫ 1

0

{1− P (R > r∗|O = 0)}dr∗ =

∫ 1

0

1−K(r∗)dr∗ = E(R|O = 0).

Recall that G and K denote the distribution of risk in cases and non-cases, respectively, as
defined in Equations (6.11) and (6.12). Using the above expressions, Pencina et al. (2008)
defined the integrated discrimination improvement (IDI) as

IDI = (IS2 − IS1)− (IP2 − IP1).

The IDI can be estimated from cohort data by computing the mean difference of the
predicted probabilities in the cases and non-cases separately,

ÎDI =

∑n
i=1(r

1
i − r2i )Oi∑n
i=1Oi

−
∑n

i=1(r
1
i − r2i )(1 −Oi)∑n
i=1(1 −Oi)

.

For case-control data these expressions are replaced by means of r1 − r2 in cases and
controls respectively. However, one difficulty in interpreting the IDI is that in low risk
populations it tends to be very small. For example, in the NHS validation cohort breast
cancer data, the mean risk from BC2013 less that from BCRAT in the 252 cases was
−0.0011, and in the 16,833 controls it was −0.0004, resulting in ÎDI = −0.0007.

One can test the null hypothesis H0 : IDI = 0 with the statistic

T =
ÎDI

{(ŝee)2 + (ŝene)2}1/2
,

where ŝee is the estimated standard error of paired differences of risk predictions from
the new and old models across all case subjects and ŝene is the corresponding estimate for
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subjects without events. With case-control sampling, the mean risk difference among cases is
independent of that among controls, and T has an asymptotic standard normal distribution.
The same asymptotic distribution holds for T in cohort data, as follows from an analysis
of the four summations in the equation that defines ÎDI. For our breast cancer model
example, T = −1.89 with an asymptotic two-sided p-value p = 0.0588 and no rejection of
the null hypothesis.

Hilden and Gerds (2014) noted that IDI can yield misleading results, even when es-
timated with independent test data, because a miscalibrated model can appear superior
to the correct model. Their simulated examples showed that IDI analyses are particularly
sensitive to miscalibration, and they suggested not to rely on the IDI for model comparisons.

7.4.5 Comparing two risk models based on PCF , PNF , iPCF , or iPNF

In Section 6.5 we presented criteria for assessing usefulness of a model for implementing a
“high risk” prevention strategy. One criterion was the proportion of cases who are included
in the proportion p of individuals in the population at highest risk, PCF (p). A second
criterion was the proportion needed to follow, PNF (q), namely the proportion of the general
population at highest risk that one needs to follow in order that a proportion q of cases
will be followed. We also considered integrated versions of these criteria, iPCF and iPNF .
We showed how to estimate these four criteria from various observational study designs,
including cohort and case-control data, and, under the additional assumption of a well
calibrated model, from only the model-based risk estimates in a cohort.

Pfeiffer and Gail (2011) and Pfeiffer (2013) also proposed test statistics to compare two
risk models, both of which were applied to the same validation population. To test whether,
for fixed p, PCF 1 = PCF 2, or for a fixed q, PNF 1 = PNF 2, or iPCF 1 = iPCF 2, or
iPNF 1 = iPNF 2, using correlated risk estimates (r1, r2), one can use the test statistics

TPCF (p) =
n{P̂CF 1(p)− P̂CF 2(p)}2

V̂PCF

and TPNF (q) =
n{P̂NF 1(q)− P̂NF 2(q)}2

V̂PNF

, (7.5)

or

TiPCF (p) =
n{ ̂iPCF 1 − ̂iPCF 2}2

V̂iPCF

and TiPNF =
n{ ̂iPNF 1 − ̂iPNF 2}2

V̂iPNF

, (7.6)

where V̂ /n are consistent estimates of the variance of the difference of the estimates.
Asymptotically all test statistics in (7.5) and (7.6) have a central χ2

1 distribution under
H0. Under the alternative, the non-centrality parameters for the test statistics are δPCF =
n(PCF 1 − PCF 2)2/VPCF , δPNF = n(PNF 1 − PNF 2)2/VPNF , δiPCF = n(iPCF 1 −
iPCF 2)2/ViPCF , and δiPNF = n(iPNF 1 − iPNF 2)2/ViPNF , respectively. The variances
for the test statistics can be computed based on the respective influence functions ψR1 and
ψR2 for models 1 and 2 as V = V ar(ψR1 − ψR2), or alternatively, by using a bootstrap
variance estimate.

Estimates of PCF, PNF , and iPCF are shown for BC2013 and BCRAT in Table 7.5.

If one screens the 100×p = 10% of the population at highest risk, one would detect P̂CF=
17.9% of cases with BC2013, and 19.0% of cases with BCRAT. To detect 100 × q = 90%
of cases, one would need to screen 77.2% of the population at highest risk with BC2013
and 80.8% with BCRAT. The integrated PCF curve was iPCF = 0.618 for BCRAT and
iPCF = 0.615 for BC2013, values very slightly less than the corresponding AUC values.

For none of the criteria in Table 7.5 did we observe a statistically significant (p< 0.05)
difference in performance between the two models, based on tests in (7.5) and (7.6).
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Table 7.5: Estimates of iPCF , PCF , and PNF based on (R,O) data from the NHS val-
idation cohort, where R is the 5-year risk projection for 50- to 55-year-old women from
BC2013 and BCRAT, and where O is the observed case status

Estimate for
BC2013 BCRAT

îPCF (R,O) = 0.615(0.017) îPCF (R,O) = 0.618(0.017)

% screened (100× p)

10% P̂CF (R,O) = 0.179(0.025) P̂CF (R,O) = 0.190(0.026)

20% P̂CF (R,O) = 0.325(0.038) P̂CF (R,O) = 0.333(0.035)

% cases to be captured
(100× q) in screen

90% P̂NF (R,O) = 0.772(0.017) P̂NF (R,O) = 0.808(0.038)

80% P̂NF (R,O) = 0.654(0.027) P̂NF (R,O) = 0.627(0.044)

Standard errors (in parentheses) were based on 1000 bootstrap repetitions.

7.4.6 Comparisons based on expected loss or expected benefit

Most of the previous criteria for comparing risk models are general and can be applied
without specifying details of the decision problem or intervention that would be affected by
information from a risk model. For example, measures of accuracy, such as AUC or PPV
can be applied quite generally. Measures such as PCF and PNF are also quite general,
although one frequently has an idea of what constitutes an acceptable PCF or PNF . In this
section, we discuss criteria for comparing risk models that are based on the expected losses
for a specific intervention. Information from the better risk model reduces the expected loss
(or increases the expected utility) more than information from the inferior risk model.

As an example, suppose we want to help women aged 50–59 decide whether to take
tamoxifen to prevent breast cancer. From data in Fisher et al. (1998) and Gail et al. (1999a),
the expected rates per 105 women-years in the absence of tamoxifen are 246.6 for invasive
breast cancer, 101.6 for hip fracture, 81.4 for endometrial cancer, 110.0 for stroke and 50.0
for pulmonary embolism. In the presence of tamoxifen, these rates are 125.8, 55.9, 326.4,
174.9, and 150.5, respectively. The aggregated non-breast cancer rates are 343.0 and 707.7 in
the absence and presence of tamoxifen respectively. These rates of life-threatening events can
be used to compute losses (costs), defined as the expected number of life-threatening events.
These costs are presented in Table 7.6, a cross-classification of costs by use of tamoxifen
(designated by r>t, namely a risk r exceeding the threshold for administration of tamoxifen,
t) and by whether breast cancer would occur (O = 1) or not (O = 0). The administration
of tamoxifen in a person destined to develop breast cancer is assumed to cut the risk by the
factor 0.51 (Fisher et al., 1998).

From this table the net benefit of giving tamoxifen to a case (O =1) is Bcase =
100,343 − 51,707.7 = 48,635.8, and the net cost from giving tamoxifen to a non-
case is Bnon−case =707.7-343=364.7. From Equation (6.29), the optimal threshold is
t∗ =364.7/(364.7+48,635.8)=744.3 per 105(see Gail (2009b)), or t∗ = 5 × 744.3 × 10−5 =
0.03722, expressed as a 5-year risk. For a risk model R, the expected loss at this threshold
is given by Equation (6.30), where π is the probability of breast cancer, CFN = 100, 343,
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Table 7.6: Costs (expected number of life-threatening events per 100,000) cross-classified by
the presence or absence of breast cancer and on whether tamoxifen is given

Decision whether to
give tamoxifen based
on risk threshold, t

Breast cancer status if no tamoxifen

O = 1 O = 0
r > t 51,000+707.7=51,707.7 707.7
r ≤ t 100,000+343=100,343 343

and CFP = 707.7. Using data from the NHS on risk estimates ri and observed breast cancer
outcomes, Oi for the i

th cohort member, i = 1, 2, . . . , n, we can estimate the expected loss
with this risk model for decisions as

ˆ̄Cmin = n−1
n∑

i=1

{I(ri > t∗, Oi = 1)× 51,707.7 + I(ri > t∗, Oi = 0)× 707.7+

I(ri ≤ t∗, Oi = 1)× 100,343 + I(ri ≤ t∗, Oi = 0)× 343}
(7.7)

From this formula we calculated ˆ̄Cmin = 1818.17 for BC2013 and ˆ̄Cmin = 1808.90 for
BCRAT. Thus, in 100,000 women like the 50- to 55-year-old women in NHS, one would
expect 9.27 fewer life-threatening events from using BCRAT to decide which women should
receive tamoxifen, compared to using BC2013. To test whether this difference in expected
loss is statistically significant, one can perform a paired t-test on the n differences computed
by subtracting the summand in Equation (7.7) computed with risk model BCRAT from the
summand computed with risk model BC2013 on the same woman. In this example, the two-
sided p-value was 0.8459, indicating no significant difference between the two models. Note
that the expected losses are expressed in terms of expected life-threatening events in one
year in a population of 100,000 women in their fifties, but the risk thresholds in Equation
(7.7) can be expressed in units of 5-year or 1-year risk without changing the result, so long
as the risk projections are changed accordingly.

This example illustrates how two risk models can be compared in terms of expected risk
when the costs can be specified for a specific decision problem. Often the costs are hard
to specify, in which case the optimal risk threshold for intervention is not precisely known.
This led Vickers and Elkin (2006) to define the “decision curve.” The decision curve plots
the “net benefit” in Equation (6.36) against the corresponding threshold, t, expressed as
percent, namely 100× t. The net benefit can be estimated from a cohort study such as the
NHS by

N̂B(t) = n−1
n∑

i=1

[I(ri > t,Oi = 1)− {t/(1− t)}I(ri > t,Oi = 0)]. (7.8)

Again we express t as a 5-year absolute risk of breast cancer. For each fixed t, the one
can test for a difference in net benefits with a paired t-test on the n differences computed
by subtracting the summand in Equation (7.8) computed with risk model BCRAT from
the summand computed with risk model BC2013 on the same woman. For example, for
t =0.0166, a threshold on the drug label for the use of tamoxifen to prevent breast cancer,
the estimated net benefits were 0.0016452 for BCRAT and 0.0015801 for BC2013. The
difference in net benefits, 0.000065, was not statistically significant, however (p= 0.8801).
Figure 7.2 shows the estimated net benefit plots for BCRAT (dashed line) and BC2013

(solid line). The two curves are virtually identical. N̂B(t) can be regarded as a stochastic
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Figure 7.2: Net benefit plots for BCRAT and BC2013 for 50- to 55-year-old women from
the independent NHS validation cohort.

process in t whose covariance is easily calculated from Equation (7.8). This approach can be
used to put simultaneous confidence intervals on each decision curve and on their difference.

7.5 Joint distributions of risk

The joint risks computed from the two models (R1, R2) have empirical joint distributions
F̂ (r1, r2) in the general validation population, Ĝ(r1, r2) in cases, and K̂(r1, r2) in non-cases.
The criteria in Section 7.4 can be estimated from the margins of these distributions, but
to compute covariances of criteria estimates for the two models, the joint distributions are
needed. It can be instructive to examine correlations between R1 and R2 (or transformations
of them like logit(R) or log{− log(1−R)}). Such correlations say nothing about calibration,
but if R1 and R2 are highly correlated, the models probably have similar AUC values. After
calibration, the two highly correlated models also probably yield similar predictions. On the
other hand, if the correlations are low, it is possible that the predictive performance of either
model can be improved by combining predictors from the two models. Figure 7.3 shows a
scatterplot of 5-year BCRAT risk versus 5-year BC2013 risk for women aged 50–55 years
from the NHS cohort. Although the agreement is good for the bulk of the observations,
some larger risks from BCRAT correspond to women with a strong family history and are
higher than those from BC2013. The Pearson correlations were 0.633 for the risks R in
Figure 7.3, 0.677 for logit(R), and 0.677 for log{− log(1−R)}. These high correlations are
consistent with the close agreement of the AUC values estimated for these two models.

7.6 Risk stratification tables and reclassification indices

The criteria for model comparisons in Section 7.4 could be estimated separately from the
data for each risk model, namely from the margins of F̂ (r1, r2), Ĝ(r1, r2), and K̂(r1, r2). We
now consider some criteria that can only be estimated from the joint risks at the individual
level. These criteria do not have a “single model analogue.”

Cook et al. (2006) and Cook (2007) proposed criteria based on risk stratification tables.
To construct a risk stratification table, one first defines risk categories that are clinically
relevant, such as [0,1%), [1%,1.66%], (1.66%,2.5%), and ≥ 2.5% for 5-year absolute breast
cancer risk (Table 7.7). These categories were partly based on the risk threshold 1.66%
recommended by the American Society for Clinical Oncology (ASCO) (Visvanathan et al.,
2009).
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Figure 7.3: Scatterplot of 5-year absolute risk estimates from BCRAT and BC2013 for 50-
to 55-year-old women in the NHS validation cohort data.

Table 7.7: Risk stratification based on 5-year absolute breast cancer risk estimates from the
BCRAT and BC2013 (Pfeiffer et al., 2013) models for women in the NHS validation cohort
(Pfeiffer et al., 2013), ages 50- to 55-years at baseline

5-year risk from BCRAT 5-year risk from BC2013
0 to 1 to > 1.66 to
< 1% ≤1.66% <2.5% ≥2.5% Total

0 to < 1% n 2,291 1,675 114 2 4,082
Eventsa 13 16 1 0 30
Non-events 2,278 1,659 113 2 4,052
Prop. Events (%) 0.57 0.96 0.88 0.00 0.73

1% to ≤1.66% n 1387 6632 1299 49 9367
Events 10 100 24 0 134
Non-events 1,377 6,532 1,275 49 9,233
Prop. Events (%) 0.72 1.51 1.85 0.00 1.43

> 1.66% to <2.5% n 9 1,522 1,120 78 2,729
Events 0 27 38 0 65
Non-events 9 1,495 1,082 78 2,664
Prop. Events (%) 0.00 1.77 3.39 0.00 2.38

≥2.5% n 1 107 598 201 907
Events 0 2 13 8 23
Non-events 1 105 585 193 884
Prop. Events (%) 0.00 1.87 2.17 3.98 2.54

Total n 3,688 9,936 3,131 330 17,085
Events 23 145 76 8 252
Non-events 3,665 9,791 3,055 322 16,833
Prop. Events (%) 0.62 1.46 2.43 2.42 1.47

aEvents correspond to women who developed breast cancer (cases) and non-events to those
who did not (non-cases). “Prop. Events (%)” is the percentage of cases in each cell.
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Each interior cell in the risk stratification table contains the number of women with joint
risks (R1, R2) from BCRAT and BC2013 that fall into the cross-classified risk categories.
The cross-tabulations are done separately for all n women in the validation population, for
women with events (cases), and for women without events (non-cases). The percentages of
cases in each interior cell are labeled “Prop. Events(%)”. For example, of the 17,085 women
aged 50 to 55 years at baseline in the NHS validation cohort, 2,291 had joint risks each less
than 1%, of whom 13 (0.57%) were cases. The rows and columns labeled “Total” show the
marginal proportions of women with events, in addition to the count totals. The proportions
of all women, of cases, and of non-cases in the cells and margins of this table can be also
be computed from F̂ (r1, r2), Ĝ(r1, r2), and K̂(r1, r2) respectively.

To assess the calibration of the risk prediction models one can compare the proportions
of events in the margins of Table 7.7 with the corresponding row and column category
boundaries. For BCRAT, the proportions of observed events within each risk category are
in the far-right “Total” column. They agree well with the row category boundaries; the
proportion of observed events within the risk category of 0% to less than 1% was 0.73%,
which falls inside the risk category. Similarly, the proportions of events for the risk category
of 1% to 1.66%, 1.67% to 2.5%, and greater or equal to 2.5% were 1.43%, 2.38% and 2.54%,
indicating that BCRAT is well calibrated in this validation dataset. The new BC2013 model
shows some evidence of lack of calibration. The observed proportions of events listed in the
last row of Table 7.7 are 0.62%, 1.46%, 2.43 %, and 2.42%. While the first three values fell
well within the category boundaries, the mean BC2013 risk in the largest risk category is
lower than 2.5%, reflecting that true risk among those at highest risk is underestimated by
the BC2013 model. Equations (6.6) and (6.7) provide formal tests of calibration based on
the observed and expected events in these marginal categories.

Janes et al. (2008) warn that the interior cells of the table may give misleading infor-
mation on calibration. For example, if model 2 contains factors not in model 1 and model
2 has high risks in some cells because of those factors, then model 1 may appear to be
mis-calibrated in those cells, which constitute a subpopulation, even though model 1 is
well calibrated in the entire population and satisfies the definition of good calibration with
respect to its risk factors, P (O = 1|r1) = r1.

BCRAT and BC2013 in Table 7.7 are not nested models. Suppose instead of BC2013, we
considered a model 2 that was identical to BCRAT except that it had an additional marker.
Then BCRAT (model 1) would be nested in model 2. Although the performance of model
2, reflected in the bottom totals of the risk stratification table are of primary interest, one
might want to investigate the performance of model 2 in a subset of the population with
intermediate risk from model 1. For example if the marker was expensive, one might only
want to use it if it were informative in the segment of the population for which model 1
gave non-definitive intermediate risk estimates. Looking at the distributions of women and
events within rows of the risk stratification table could be useful in this context.

Risk stratification tables were originally proposed for use with cohort data (Cook et al.,
2006; Cook, 2007). However, some authors cross-classify case-control data instead. Although
the joint distributions of risks amoung cases and among non-cases are valid in such tables,
corresponding to Ĝ(r1, r2), and K̂(r1, r2), the population totals obtained by adding cases to
controls do not reflect the general population and are usually greatly enriched in cases. In
particular, tests of calibration from risk stratification of case-control data are misleading.

We turn next to criteria for comparing two models that depend on joint risks (R1, R2),
either as shown in risk stratification tables or as continuous versions based on F̂ (r1, r2),
Ĝ(r1, r2), and K̂(r1, r2).
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7.6.1 Net reclassification improvement (NRI)

To improve upon the ∆AUC, Pencina et al. (2008) proposed a novel measure for dichoto-
mous outcomes, the net reclassification improvement (NRI), to quantify the improvement
in risk prediction offered by including new information, such as a new marker into a risk
model. While the NRI has been immensely popular in the medical literature, several au-
thors (e.g., Kerr et al., 2014; Pepe et al., 2015, 2014) have pointed out limitations and
pitfalls of this measure that we also address in this section.

Assume that risks predicted from two models are cross-classified based on some clinically
meaningful risk thresholds as in a risk stratification table. Let events be those with the
outcome of interest (cases, O = 1) and non-events be those without the outcome of interest
(controls, O = 0 ), and define “upward movement” (up) as a change into higher risk category
based on the second (new) model and “downward movement” (down) as a change to a lower
risk category. Pencina et al. (2008) defined the NRI (see also Kerr et al. (2014)) as

NRI =NRIe +NRIne

≡ {P (up|O = 1)− P (down|O = 1)}+ {P (down|O = 0)− P (up|O = 0)} (7.9)

where

P (up|O = i) =
# in group (O = i) moving up

∑N
i=1 I(O = i)

, i = 0, 1,

and where P (down|O = i) is defined similarly. The NRI can be interpreted as the net
change in the proportion of subjects assigned to a more appropriate risk category under the
new model (Kerr et al., 2014). The quantities NRIe and NRIne are, respectively, the net
change in the proportion of cases assigned to a higher risk category and the net change in
the proportion of non-cases assigned to a lower risk category by the new model, R2. From
Equation (7.9) it is easy to see that the maximum value of the NRI is 2. Thus, although the
NRI combines four proportions, it cannot be interpreted as a proportion itself. The NRI is
frequently misinterpreted as “the proportion of patients reclassified to a more appropriate
risk category” (Kerr et al., 2014; Pepe et al., 2014). The proportion of patients reclassified
to a more appropriate risk category is instead given by P (up,O = 1) + P (down,O = 0).

For our data example, we calculate the NRI with BCRAT regarded as the old (model
1) and BC2013 as the new model 2. Based on the risk thresholds in Table 7.7, the NRIe =
(16 + 1 + 0 + 24 + 0)/252− (10 + 0 + 27 + 0 + 0 + 2 + 13)/252 = −0.0437 and NRIne =
(1377+9+1495+1+105+585)/16833− (1659+113+2+1275+49+78)/16833 = 0.0235;
thus NRI = −0.0201.

If there are only two risk categories in the risk stratification table, NRIe = sens(R2)−
sens(R1) = ∆sens, and NRIne = spec(R2) − spec(R1) = ∆spec. These values quantify
how much model R2 improves risk predictions for cases and controls respectively.

Kerr et al. (2014) considered a “population-weighted net reclassification index”,
NRI(ρ) = ρNRIe + (1 − ρ)NRIne, where ρ denotes the prevalence of the outcome in the
population. However, the authors do not recommend using NRI(ρ) or NRI, as information
is lost when NRIe and NRIne are combined into a single number.

Assuming independence between risks in cases and non-cases, we can test the null hy-
pothesis H0: NRI = 0 based on properties of the multinomial distribution with the test
statistic

T =
N̂RI

{
P̂ (up|O=1)+P̂ (down|O=1)∑

i Oi
+ P̂ (down|O=0)+P̂(down|O=0)∑

i(1−Oi)

}1/2
,

which has an asymptotic normal distribution. For our example, T = −0.0201/0.0386 =
−0.521 which corresponds to two-sided p = 0.602; thus, we do not reject the null hypothesis
of no net reclassification improvement.
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The NRI is sensitive to model mis-calibration. To illustrate this point we use an example
presented in Gail (2009b). Suppose that a well-calibrated baseline risk model R1 has risks
distributed uniformly on the interval [0, 0.1] in control subjects and on the interval [0, 0.2]
in cases and that there is only one risk threshold at risk 0.2. Then, the sensitivity is 0
and the specificity is 1.0. Suppose a new poorly calibrated model R2 adds 0.05 to all risk
estimates, thus shifting the apparent risk distributions to be uniform on the interval [0.05,
0.15] in control subjects and on the interval [0.05, 0.25] in cases and yielding a new average
risk in the entire population that is 0.05 above the true average risk. The new “sensitivity”
is then 5(0.25 - 0.20) = 0.25 and the “specificity” remains 1.0. Thus, the NRI=(0.25 - 0) +
(1.0 - 1.0) = 0.25 is large, even though R2 is badly calibrated and is no more discriminating
than R1. Indeed, the AUC is 0.75 for both models and thus ∆AUC = 0.

The NRI has also been criticized because the risk categories may not be appropriate for
clinical decisions and because the NRI weights each type of classification change equally,
without regard to clinical consequences (Vickers et al., 2009). For example a change in risk
estimate among intermediate risk categories or among low risk categories might have less
impact on patient management than a change from intermediate to high risk categories.
Weighting to take costs of mis-classifications into account has been recommended instead.

7.6.2 Extensions of NRI

To allow for varying costs in the two-category setting, Pencina et al. (2011) defined a
weighted NRI, namely wNRI. Let s1 be the savings from identifying a case as high risk
and s2 the savings from identifying a non-cases as low risk. The quantity s1 captures the
adverse events that are avoided by labeling a person destined to have an event as high
risk, and s2 captures the savings (adverse events, money) from allowing a non-case to avoid
unnecessary treatment. The “weighted net reclassification index” (wNRI) is the average
savings per person, computed as wNRI = s1NRIe+s2NRIne = s1∆sens+s2∆spec. Setting
Bcase = s1 and Bnon−case = s2, we note that wNRI is not equivalent to the reduction in
expected losses from using model 2 (see Equation (6.35)) for the fixed threshold used to
define the risk stratification table, because wNRI does not take the prevalence of disease
into account.

A limitation of the definition of the NRI, and reclassification tables in general, is that in
many fields of application there are no clinically well established or relevant risk thresholds.
To address this issue, Pencina et al. (2011) proposed a category-free extension of the NRI,
the continuous NRI, or cNRI, given by

cNRI = P (R2 > R1|O = 1)− P (R2 > R1|O = 0). (7.10)

cNRI is estimated by simply computing the mean of the indicator function I(r2i > r1i ), i =
1, . . . , n for cases and noncases separately. For BCRAT and BC2013, cNRI = 0.454 −
0.468 = −0.014.

The cNRI, like the NRI, does not take the costs of misclassification into account. Also,
it is based on within person differences in risk estimates that may not reflect performance
at the population (marginal) level (Kerr et al., 2014).

Recent work shows that even when evaluated on independent validation data, cNRI, like
IDI, can lead to false positive results. In simulations in which un-informative markers were
added to a base model 1 in training data and the models were then compared in independent
validation data, the cNRI and IDI often yielded statistically significant results in favor of
the new model 2 with markers that contained no information (Pepe et al., 2014; Hilden and
Gerds, 2014).
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7.7 Concluding remarks

We have discussed methods for comparing models based on independent validation data.
Some authors attempt to perform such comparisons on the same training data used to
estimate the models. This typically leads to over-optimistic assessments of each model and
unreliable comparisons. Moreover, standard asymptotic normal distribution theory does not
apply in many cases, because parameter estimates are at the boundary (Vickers et al., 2011;
Demler et al., 2012; Pepe et al., 2013). For example, a standard test like the Delong test
(Delong et al., 1988) for comparing two AUC values is conservative and has low power when
assessed on the training data.

When it is possible to define costs for a specific decision problem, the expected loss
specific to that problem is an attractive measure of model performance and can be used
to compare models. The more general criteria in Section 7.4 can also be used and have
the advantage of familiarity from other applications. For example, risk modelers have a
general sense of whether an AUC value is promising for a given application, based on
other experience with the AUC. Some of these criteria, like the IDI are very sensitive to
mis-calibration, whereas others, like the AUC, are robust to mis-calibration induced by
monotonic transformations.

Although risk stratification tables are a valuable descriptive device and can be used with
nested models to examine the risk distribution in the enhanced model within strata defined
by risk in the base model, serious issues have been raised regarding the interpretability,
sensitivity to miscalibration, and consequent likelihood of yielding false positive findings for
the NRI and cNRI. Pepe and Janes (2013) discuss this and other aspects of comparing
risk models.

It is good practice to assess model calibration carefully before comparing models using
any of the criteria in this chapter.
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Chapter 8

Building and updating relative risk models

8.1 Introductory remarks

Absolute risk estimates based on cause-specific models rely on survival analysis methods
that were first widely applied for estimating pure risks following disease diagnosis. In Chap-
ter 4 we discussed how standard inference for the Cox proportional hazards model (Cox,
1972) could be used to estimate relative risks for cause-specific hazards as well as cumula-
tive and instantaneous contributions to the cause-specific hazards. Thus, a vast literature
on survival regression modeling also applies to modeling cause-specific hazards and absolute
risk estimation based on cause-specific hazard modeling. Excellent discussions of topics such
as how to code covariates, flexible representations of dose-response for quantitative covari-
ates (e.g., splines), handling missing values and model checking by examining residuals and
other tests of goodness-of-fit, are found in classic books on survival and risk modeling, in-
cluding Andersen et al. (1993), Harrell (2001), Kalbfleisch and Prentice (2002), Steyerberg
(2009), Therneau and Grambsch (2000), and van Houwelingen and Putter (2012). We do not
attempt to discuss these topics comprehensively, but we briefly touch on three important
issues for modeling absolute risk: covariate selection, missing covariate data, and updating
previously well-established risk models by adding new covariates.

8.2 Selection of covariates

An important aspect of regression modeling is selecting covariates for the model. The criteria
for and approach to covariate selection can depend on the intended use of the model and the
scientific information available on potential risk factors from previous studies. One possible
goal is to obtain unbiased estimates and valid inference on previously established risk factors.
Another related but distinct goal is prediction, and in our particular applications, predicting
the probability of disease (risk prediction).

If previous studies have identified the risk factors, there may be little need for covariate
selection, although some modeling may be needed to identify a good coding for the vari-
ables and perhaps to identify interactions. For example, in developing the breast cancer risk
models BCRAT and BC2013, the investigators had access to a large literature on breast
cancer epidemiology that had established a set of risk factors such as family history, repro-
ductive history, biopsy history, alcohol consumption and hormone replacement therapy use.
In this context, classical methods applied to a previously defined set of risk factors would
be expected to yield valid parameter estimates and inference. Such estimates could be used
either to assess the strength of the associations with outcome or for the construction of
risk prediction models. Within this well-defined regression framework, one can also draw on
previous studies to improve the precision of parameter estimates (see Section 8.4).

When the investigator examines many possible regression models defined by the selec-
tion of various subsets of variables in the training data and then estimates the parameters of
the selected model from these data, classical methods of inference on those parameters are
misleading. For example, Pötscher (1991) and Leeb (2005) have shown that the asymptotic
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distributions of the post-model-selection parameter estimates are typically non-normal and
depend on the unknown parameters in a complex fashion. Even a small amount of modeling,
such as the choice of the number of polynomial terms needed for regression on a continuous
covariate, can lead to distorted operating characteristics based on classical theory (Efron,
2014). There is a growing literature on valid inference after model selection. For example,
Efron (2014), Wasserman and Roeder (2009), and Meinshausen et al. (2009) proposed re-
sampling approaches or data splitting. Lockhart et al. (2014) derived the exact asymptotic
null distribution of a statistic for testing significance of variables that enter the LASSO
model (Tibshirani, 1996). Berk et al. (2013) proposed an approach for post-selection infer-
ence (“PoSI”) for the linear model that is valid over all possible selected models and does
not assume that a linear model is correct. Our primary concern, however, is not with in-
ference on model parameters but with predicting the disease outcome for a new individual,
based on that person’s covariates.

Selecting a regression model by finding a subset of covariates that appear to perform
well in the training data also has implications for prediction, and, in particular, for predict-
ing the risk of disease for a new individual based on his or her covariates and the selected
risk prediction model. Selecting too many predictors often leads to “over-fitting”, whereby
the model appears to perform well in the training data but not in independent validation
samples. In the context of logistic risk prediction, models that are over-fitted tend to over-
estimate risks among those in the highest decile of predicted risk and underestimate risk
among those in the lowest decile of predicted risk. Methods to shrink the parameter esti-
mates toward zero are sometimes used to ameliorate over-fitting (Harrell, 2001; Steyerberg,
2009; Van Houwelingen and Le Cessie, 1990; van Houwelingen, 2001, 2000; Copas, 1987).

The problem of over-fitting can be extreme when there are a very large number of
covariates from which to choose, such as in genome-wide association studies to detect single
nucleotide polymorphisms (SNPs) associated with disease. A SNP might be selected only if
its chi-square statistic exceeds a Bonferroni-corrected quantile of the chi-square distribution
(“hard thresholding”). The estimated log odds ratios associated with selected SNPs are
biased away from zero, a phenomenon called the “winner’s curse” (Zöllner and Pritchard,
2007). Without bias correction, the winner’s curse can contribute to over-fitting. With a
well-defined selection criterion, such as hard thresholding, and assuming the various SNPs
are statistically independent, one can correct for such bias by relying on a likelihood that is
conditioned on the selection condition (Zöllner and Pritchard, 2007). In general, however,
the various risk factors might be correlated, as in the case of RNA expression arrays, and
the precise selection algorithm may be difficult to describe, making such bias correction
difficult or impossible.

As described in Section 6.4, one important measure of the performance of a risk model R
is its expected mean square error, MSE = E(Oi −Ri)

2 = E{V ar(Oi)|πi}+E(Ri − πi)
2 =

Eπi(1−πi)+E{(bias)2} in future samples. As discussed in Chapters 1 and 7 of (Hastie et al.,
2009), as one increases the complexity of a risk model, for example by adding additional
risk factors, one tends to decrease the bias in the predictor but increase its variance. Thus,
in future data, a complex model R may have little bias but large variance, leading to large
MSE. Similar comments apply to another measure of performance, the expected entropy,
E{−Oi log(Ri)− (1−Oi) log(1 −Ri)} in future samples.

An approach used to avoid over-fitting is to penalize the complexity of the risk model.
If there are a modest number of models to be examined that are nested within a global
model, and if the sample size n is larger than the number of parameters in the global
model, one can apply a complexity penalty as follows. One selects the model with the
smallest Akaike Information Criterion, AIC = −2 log(L̂) + 2p, where p is the number of
parameters (risk factor degrees of freedom) in the model and L̂ is the maximized likelihood.
Here the complexity penalty is 2p. Alternatively one can select a model that minimizes the
Bayes Information Criterion, BIC = −2 log(L̂) + p log(n). Unlike the AIC criterion, the
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BIC criterion leads to correct model selection as n goes to infinity faster than the number
of covariates, if the true model is included in the model space. However BIC leads to more
parsimonious models than AIC, and in samples of practical size the BIC procedure may
lead to models that are too simple and have large bias.

If the number of covariates p exceeds n, there are multiple solutions that maximize the
likelihood, and one needs to impose constraints based on considerations external to the
available data, to obtain a model (Chapter 7 in Hastie et al. (2009)). These constraints
may concern the smoothness of the regression functions or other conditions on sets of
parameters. If the number of risk factors thought to be truly associated with disease is
small, compared to p (“sparsity”), or if it is thought to be unlikely that parameters have
large effects, such conditions can be reflected in a penalty that when added to the log
likelihood yields models with parameter estimates shrunk toward 0. The widely used LASSO
procedure (Albert, 1982; Tibshirani, 1996) finds β that minimizes −2 log{L(β)}+ Jλ(β) =
−2 log{L(β)}+ λ

∑p
i=1 |βi|. The LASSO penalty is based on an L-1 norm. The penalty for

ridge regression Jλ(β) = λ
∑p

i=1 β
2
i is based on the L-2 norm. Penalties for the elastic net

(a combination of the L1 and L2 penalties) and other procedures are described in books
on data mining (Hastie et al., 2009; Giraud, 2015). These methods have been applied not
only to linear regression, but to generalized linear models (Friedman et al., 2010), including
logistic regression (Steyerberg et al., 2000), and more recently to regression for survival
data. For the Cox proportional hazards model, penalized partial likelihood methods have
been proposed based on the LASSO (technical report cited in Tibshirani (1996)) and on
the smoothly clipped absolute deviation method (Fan and Li, 2001, 2002). Zhang and Lu
(2007) proposed an adaptive LASSO method based on a penalized partial likelihood with
adaptively weighted L-1 penalties on regression coefficients. Unlike the LASSO and smoothly
clipped absolute deviation methods, which apply the same penalty to all the coefficients, the
adaptive LASSO penalty has the form λ

∑p
i=1 |βi|τi, with small weights τi chosen for large

coefficients and large weights for small coefficients. The adaptive LASSO has the “oracle
property”. A penalized estimator has the oracle property if it is asymptotically equivalent
to the “oracle” estimate that one would obtain if one knew a priori the truly outcome-
associated variables and used unpenalized regression on them. The LASSO estimator does
not have oracle properties (Fan and Li, 2001). However, even penalized algorithms that
enjoy the (asymptotic) oracle property can result in misleading estimates and inference
on individual covariate effects when applied to finite samples of real data and may not
outperform non-oracle procedures. Penalties based on L-2 norms have also been described
for the Cox model (Verweij and Van Houwelingen, 1994; van Houwelingen et al., 2006).

The quantity λ in penalized regression is sometimes called a “tuning parameter” and
needs to be specified in order to obtain regression estimates. As discussed in Chapter 7 of
Hastie et al. (2009), if one had a huge amount of data, one could divide it into training
data (A) and test data (B) and further divide A into estimation data (A1) and selection
data (A2). For each value of λ, one estimates the regression model from A1, giving rise to a
large number of regression models indexed by λ. Then one selects the regression model (i.e.,
the value of λ) that provides the best predictions in the independent A2 data. Usually one
re-estimates the final model by using the previously selected λ but fitting the corresponding
model to all the training data, A. Finally, one obtains an unbiased estimate of the predictive
performance of the final model (e.g., the MSE of prediction) by applying the final model
to the test data, B. This paradigm avoids the over-optimistic assessment of performance
that is obtained by applying the selected model to the training data.

If there are insufficient training data to permit separate estimation (A1) and selection
(A2) phases, one can instead use cross-validation to choose λ (see, e.g., Tibshirani (1996)).
With five-fold cross validation, one randomly divides all the training data into five equal
portions. For a fixed λ, one begins by estimating the model indexed by λ on the first four
portions and using the remaining portion to estimate the prediction error (e.g.,MSE). One
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repeats this process four more times by successively using different portions to estimate the
model and estimate the prediction error. The average of these five estimates of prediction
error is the criterion used to characterize the performance of the model with that value
of λ. This entire procedure is repeated for many values of λ, and the λ value with the
smallest predicted error is selected. A final model is obtained by re-estimating the model
with the selected λ using all the training data. Finally, to obtain an unbiased estimate of
the prediction error for the final model, one applies the final model to the test data, B.
This paradigm can also be applied to procedures like stepwise regression, where the “tuning
parameter” corresponds to the significance level chosen to retain covariates. For procedures
like all subset selection, λ indexes each of the 2p possible models.

In the previous two paragraphs, we have assumed that there are independent test data
B that were held in reserve and never used in estimating the models or selecting the best
model. The test data were only used to estimate the prediction error of the selected model.
An advantage of this approach is that valid estimates of prediction error are obtained no
matter how complex (and possibly ill-defined) the procedures for selecting covariates and
estimating the model are. If there are insufficient training data to permit this approach,
and if the selection and estimation procedures are well defined, as for example in LASSO,
cross-validation can also be used to estimate prediction error using all the data. We use
the LASSO as an example. One might randomly divide all the training plus test data into
five parts. One further divides the first four portions into five parts and proceeds as in the
previous paragraph to estimate and select what appears to be the best model. Then one
estimates its prediction error with the left-out portion. Repeating this process five times, one
has five selected LASSO models and their estimated prediction errors. The average of these
five prediction errors indicates how well the process of fitting the LASSO (with estimation of
λ by an internal cross-validation step) will perform when applied to all the training and test
data to obtain the final model. Better estimates of prediction error may be obtained by using
leave-one-out-at-a-time cross-validation rather than five-fold cross-validation on the entire
data set (Molinaro et al., 2005). A serious error that is sometimes made is to omit the model
selection step in the cross-validation (or bootstrap as in Hastie et al. (2009)) evaluation
(Dupuy and Simon, 2007). For example, suppose the LASSO procedure is applied to all the
training plus test data and yields a small set of covariates to be included in the model and a
given optimal value of λ. If one holds this value of λ and the selected set of covariates fixed
but only allows the regression parameters to vary in the double cross-validation procedure
above, one will seriously underestimate the prediction error.

In Chapter 6 we stressed the importance of independent validation data to assess the
performance of a previously developed risk model. Such independent validation can provide
an even more rigorous assessment than the test data (B) described above, because indepen-
dent validation data may also reveal whether a model developed in one population applies
to another population. When covariate selection is an important aspect of model develop-
ment, and especially when the training data are used to discover useful covariates among
many possible covariates, some form of test data (B) or re-sampling techniques are needed
to obtain a realistic assessment of the model’s prediction error in the same population that
gave rise to the model, and further testing in independent validation is highly desirable.

8.3 Missing data

In any real data set, some values on some variables are missing for some subjects. Molen-
berghs et al. (2015) provide a general overview of classifications of types of missing data and
approaches to handling them. Here we concentrate on approaches that have been developed
to account for missing covariates in the Cox model, because these approaches apply, with
little modification, to estimation of absolute risk under the cause-specific hazard model.
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Kalbfleisch and Prentice (2002) reviewed early work for the Cox model and provided a
useful framework for thinking about the literature.

8.3.1 Types of missing data

Rubin (1976) introduced the following hierarchy of missing data mechanisms, which we
specialize for survival data. Let Z = (Zm,Zc) be the vector of covariates, of which Zc is
always observed and Zm may or may not be missing on an individual. Let V be a p × 1
vector of indicators that take value 1 if the corresponding component of Zm is observed and
0 otherwise. In addition to Zc, we also always observe X = min(T,C) and δ = I(T ≤ C).
Here T is a survival time and C is a censoring time that is conditionally independent of
T given Z. In the competing risk framework, T is the time to the first of the competing
events, and δ is 0 if censored and otherwise is 1, 2, . . . ,M according as the observed event is
of type k. The data are missing completely at random (MCAR) if V is independent of Z, X,
and δ. Although the MCAR assumption cannot be verified empirically, it can be refuted
empirically if the distribution of (Zc, X, δ) varies across patterns of missingness V. The data
are missing at random (MAR) if V is conditionally independent of Zm given (Zc, X, δ). A
stronger assumption sometimes used in the survival literature is that V is conditionally
independent of Zm given Zc. The MAR assumption cannot be verified statistically, but
is sometimes justified based on substantive considerations or when the missingness is by
design. If the missingness is neither MCAR nor MAR, it is not missing at random (NMAR),
which is also called informative missingness. Whereas various analytical approaches are
applicable for MCAR and MAR data, NMAR data require an unverifiable explicit model
for the conditional distribution (V|Zm,Zc, X, δ). Such models can be used to explore the
sensitivity of analyses to the MCAR or MAR assumptions or to the baseline NMAR model.

8.3.2 Approaches to handling missing data

If missing data are MCAR from a cohort, then those cohort members with complete data
are a random subsample of the cohort and can be analyzed using standard methods for
cohorts. Assume first a strong MAR assumption that V is conditionally independent of
Zm given Zc. Then those members of a risk set with complete data on Zm constitute a
random subsample of the risk set, and their contribution to the partial likelihood can be
used in a “complete case” analysis (Kalbfleisch and Prentice, 2002). Instead, Zhou and Pepe
(1995) estimated the expectation of exp(Z

′

β) for each risk set non-parametrically from the
members of the risk set with always observed covariates Zc, and maximized the estimated
partial likelihood. Lin and Ying (1993) proposed an estimated set of score equations with the
conditional “expectations” from the partial likelihood score equations replaced by estimated
“expectations” from the members of risk sets with complete data. See also Martinussen et al.
(2016).

A weaker MAR assumption is thatV is conditionally independent of Zm given (Zc, X, δ).
Several investigators have considered this less stringent MAR assumption. Paik and Tsai
(1997) extended the approach of (Lin and Ying, 1993). Chen and Little (1999) developed a
non-parametric maximum likelihood procedure, NPML, but required two notable assump-
tions, namely a model for the joint distribution of the observed and missing covariates and
the assumption that C is conditionally independent of T given Zc, rather than the weaker
usual assumption that C is conditionally independent of T given Z.

A second approach based on inverse weighting assumes that Ṽ = I(Vi = 1, i = 1, . . . , p),
an indicator that is one if an individual has any missing covariates and zero otherwise, is
conditionally independent of Zm given (Zc, X, δ). Letting π = P (Ṽ = 1|X, δ,Zc), one can
multiply contributions to the partial likelihood score from individuals with measured Z by
π−1, but this simple inverse weighting can be quite inefficient. Wang and Chen (2001) devel-



124 MODELING

oped a more efficient augmented inverse weighting method that requires a parametric model
for the expectation E(Zm|X, δ,Zc) as well as the model for π. This method is “doubly ro-
bust” in that consistent estimates are obtained if either the model for π or for E(Zm|X, δ,Zc)
is correct, and the method is valid if C is conditionally independent of T given Z. Qi et al.
(2005) showed that efficiency could be gained by estimating π non-parametrically, and sur-
prisingly that this approach was asymptotically as efficient as augmentation, which they
also implemented by kernel estimation of E(Zm|X, δ,Zc). Their methods are valid if C is
conditionally independent of T given Z and also do not make parametric assumptions on
E(Zm|X, δ,Zc), but their kernel augmentation method might be impractical for multivari-
ate Zm. Further extensions of weighting methods allow for non-monotone missingness (Xu
et al., 2009) and weights that perform better when some values of π are very small (Luo
et al., 2009).

A third general approach is to impute missing covariates. Let Zmm be the missing com-
ponents of Zm and Zmo be the observed components of Zm. One can impute values for Zmm

by drawing from the predictive distribution [Zmm|Zmo,Zc, X, δ]. The practical problem is
how to specify the joint distribution [V,Zm,Zc, X, δ] from which to estimate the required
predictive distribution (see Fitzmaurice et al. (2015) and Kenward and Carpenter (2007)).
Under the MAR assumption, [V,Zm,Zc, X, δ] = [Zm,Zc, X, δ][V|Zc, X, δ]. It is important
to include X and δ as well as the observed covariates in the predictive distribution (Sterne
et al., 2009). Once a complete data set has been imputed in a single set of imputations as
above, the analysis of the “complete” data can proceed with standard methods, as in Chap-
ter 4. To account for the added uncertainty from the imputed data, however, one repeats
the entire process multiple times to obtain m ≥ 2 imputed datasets and m sets of estimates.
The variance of the estimate, such as the 10-year absolute risk for a fixed set of covariates,
can be computed from the expected variance of the estimate given the imputed complete
data plus the variance of the expected estimate given the imputed data, as discussed in
Rubin (1987). The latter term accounts for the uncertainty induced by imputation. These
methods, though very attractive computationally, depend on the validity of the predictive
distributions.

8.4 Updating risk models with new risk factors

When novel risk factors become available from new data, it is desirable to combine their
information with information from existing prediction models, to improve predictions and
risk stratification. New molecular markers are often measured in relatively small case-control
or cohort studies that provide little new information on well established risk factors. For
example, when data on new risk factors such as mammographic density, single nucleotide
polymorphisms (SNPs) or circulating hormone measures become available, it would be desir-
able to also utilize available information on the well established effects of many reproductive
risk factors to develop new models that predict breast cancer risk.

In this section, we discuss various methods in the literature for building logistic regression
models based on individual-level data that include a new predictor, while using parameter
estimates from an existing logistic model with “standard” factors. Some authors refer to this
approach as “model updating”. For rare diseases, the odds ratios from logistic modeling of
cohort or case-control data approximate the relative hazards needed in cause-specific hazard
models of absolute risk. Thus we can take advantage of the literature on updating logistic
models to update cause-specific hazard models of absolute risk. In particular we can use the
approach in Chapter 5 that combines relative risks with external composite hazard rates to
estimate the cause-specific hazard function

λ̂1(t; z
1) = λ̂01(t)rr(β̂

′

1z
1) = {1− ÂR(t)}λ∗1(t)rr(β̂

′

1z
1), (8.1)

where rr denotes the relative risk and z1 denotes risk factors for the cause-specific hazard
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for which absolute risk is being calculated, λ1. In what follows we omit any super- and
subscripts and use rr(Z) to denote the relative risk term that depends on covariates Z.

As in Grill et al. (2016), we consider several approaches to updating the relative risk
part of a model. We let X = (X1, . . . , Xp)

′ denote a vector of p established covariates, and Z
a covariate that we term “new marker”. We first let Z be a single marker, but later extend
methods to multivariate markers. We assume that the true relative risk model (or relative
odds model for logistic regression with rare outcome) in the population is given by

rr(X, Z) = rr{β′
X
(X−X0), βZ(Z − Z0)} = exp{β′

X
(X−X0) + βZ(Z − Z0)}, (8.2)

where βX = (β1, . . . , βp)
′ are the log-relative risks for X, βZ is the log relative risk for Z,

and X0 and Z0 are referent covariate levels.
We assume that the original relative risk model we wish to update only included factors

X,
rr(X) = exp{γ′(X−X0)}. (8.3)

The methods presented here can be extended to other relative risk functions.

8.4.1 Estimating an updated relative risk model, rr(X, Z), from case-control data

We assume that a new case-control study is available that has information on X and on
the marker, Z. Our goal is to update the relative risk model with information on Z, while
also utilizing information available from model rr(X) in (8.3). Letting D denote the binary
disease outcome, whereD = 1 denotes diseased andD = 0 denotes non-diseased individuals,
we wish to obtain the estimate

RX,Z = P̂ {D = 1|Z,X, rr(X)} (8.4)

from the new dataset. We then approximate the joint relative risk given X and Z by the
odds ratio from model (8.4) to obtain the updated relative risk model,

r̂r(X, Z) =
P̂ {D = 1|Z,X, rr(X)} /P̂ {D = 0|Z,X, rr(X)}

P̂ {D = 1|Z0,X0, rr(X0)} /P̂ {D = 0|Z0,X0, rr(X0)}
=

RX,Z/(1−RX,Z)

RX0,Z0
/(1−RX0,Z0

)
.

(8.5)
Note, however, that in general if P (D = 1|X, Z) is logistic then P (D = 1|X) cannot be

logistic, because from Bayes theorem,

P (D|Z,X) = P (D|X)
P (Z|D,X)∑

D

P (D|X)P (Z|D,X)
= P (D|X) f(Z|D,X), (8.6)

where f(Z|D,X) = P (Z|D,X)/
∑
D

P (D|X)P (Z|D,X). Only when the outcome is rare and

X and Z are independent can both models, P (D = 1|X) and RX,Z , be logistic as discussed
further in Section 8.4.3.

We now summarize several approaches for combining information from an existing rela-
tive risk model rr(X) with information on the new marker Z to estimate a model rr(X, Z)
based on case-control observations (D,X, Z). One of the approaches assumes independence
between Z and X in the source population, while the others allow for dependence between
Z and X.

8.4.2 Estimating rr(X, Z) from new data only

A simple approach is to completely ignore information from the old model rr(X) and to fit
a logistic regression model

RX,Z = P (D = 1|Z,X) =
exp(µ+ β′

XX+ βZZ)

1 + exp(µ+ β′
XX+ βZZ)

. (8.7)
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Then
rr(X, Z) = exp{β̂′

X(X−X0) + β̂Z(Z − Z0)}.
While this is not model “updating”, we study this approach, called “logistic-new”, in sim-
ulations (Section 8.4.7) to quantify the gain in predictive performance and efficiency when
including information on rr(X).

8.4.3 Incorporating information on rr(X) into rr(X, Z) via likelihood ratio (LR)
updating

Several authors have proposed updating risk models using the likelihood ratio (LR) of
[Z|D,X], for example (Janssens et al., 2005; Ankerst et al., 2008, 2012). We first outline
this approach and then discuss various methods for estimation.

From Equation (8.6),

log (posterior odds)=log

{
P (D = 1|Z,X)

P (D = 0|Z,X)

}
=log

{
P (D = 1|X)

P (D = 0|X)

}
+log

{
f (Z|D = 1,X)

f (Z|D = 0,X)

}

= log (prior odds) + log{LRD (Z|X)}, (8.8)

where

LRD(Z|X) =
f(Z|D = 1,X)

f(Z|D = 0,X)
=
P (Z|D = 1,X)

P (Z|D = 0,X)
(8.9)

is the likelihood ratio for the new marker Z with respect to outcome D conditional on
covariates X. If we assume that

RX = P̂ (D = 1|X) =
exp(γ0)rr(X)

1 + exp(γ0)rr(X)
, (8.10)

then an estimate of the log(posterior odds) is

̂log (posterior odds) = γ0 + log {rr(X)} + log
{
L̂RD (Z|X)

}
. (8.11)

However, this relationship is only approximate, because usually RX only approximates
P (D = 1|X).

Expression (8.11) can be applied to any functional form of the model rr(X). When
rr(X) = exp(γ′

1X), then Equation (8.11) reduces to

̂log (posterior odds) = γ0 + γ
′
1X+ log

{
L̂RD (Z|X)

}
. (8.12)

Under the rare disease assumption, the posterior odds can be used as an approximation
to P (D = 1|X, Z), and a similar approximation holds at the reference covariate levels for
P (D = 1|X0, Z0). By exponentiating the log posterior odds, we obtain the estimated relative
risk

r̂r(X, Z) = P (D = 1|X, Z)/P (D = 1|X0, Z0) = rr(X)LRD (Z|X) exp(c0), (8.13)

where c0 = − log{P (Z0|D = 1,X0)/P (Z0|D = 0,X0)}. If rr(X) = exp(γ ′
1X), this simplifies

to
r̂r(X, Z) = LRD (Z|X) exp(c0 + γ

′
1X). (8.14)

The variance of r̂r(X, Z) can be calculated from the covariance matrices of the component

models V ar(γ , L̂RD) = diag(V ar(γ), V ar(L̂RD)), using the delta method, which could be
implemented e.g., via the deltamethod function in the R package msm (see Ankerst et al.
(2012)) or via a parametric bootstrap.

We now summarize and extend several approaches for estimating the LRD in Equation
(8.11).
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8.4.3.1 Joint estimation of LRD(Z|X)

If P (Z|X) is a distribution within the exponential family, i.e., P (Z|X) = exp(ζZ)h(z)c(ζ),
where h and c are known functions, ζ = X′βX, and the disease is rare, then P (Z|X, D)
also is in the exponential family. This result is immediate for controls (D = 0), because
unmatched controls are representative of the general population for a rare disease,

P (Z|D = 0,X) ≈ P (Z|X) . (8.15)

For cases, Equation (8.4) can be approximated by an exponential function for a rare disease,
and

P (Z| D = 1,X) =
exp(µ+ βzZ + β′

X
X)P (Z| X)∫

exp
(
µ+ βzZ + β′

XX
)
dF (Z|X)

=
exp(βzZ) exp(ζZ)h(z)c(ζ)∫
exp(βzZ) exp(ζZ)h(z)c(ζ)dZ

= exp{(ζ + βZ)Z}h(z)c(ζ + βZ),

(8.16)

which is in the exponential family with ζ̃ = ζ+βZ and an appropriately adjusted normalizing
constant c.

Special cases of interest in the exponential family are the logistic and normal distribu-
tions. When logit {P (Z = 1|X)} = α0 +α

′
1X in the general population, then in the cases,

logit {P (Z = 1|D = 1,X)} = α∗ + α′
1X, with a new intercept α∗ and otherwise the same

coefficients as in the logistic model for the controls, D = 0. The different intercept terms in
the models for cases and controls can be accommodated by fitting a single logistic model,
logit {P (Z = 1|D,X)} = α0 + α2D +α′

1X, that also includes D as a predictor in addition
to X, to the combined case-control data. The LRD model (8.9) for a binary marker Z is
then given by

LRD (Z|X) =
{1 + exp (−α0 −α′

1X)}Z {1 + exp(α0 +α
′
1X)}1−Z

{1 + exp (−α0 − α2 −α′
1X)}Z {1 + exp (α0 + α2 +α′

1X)}1−Z
. (8.17)

Similarly, for a marker Z that follows a normal distribution, Z|X ∼ N(α0 + α
′
1X, σ

2),
under the rare disease assumption Z|(X, D) ∼ N(α0 +α2D+α′

1X, σ
2), where the mean of

Z has different intercept parameters for D = 0 and D = 1. The joint log-LR model for a
normally distributed marker Z is

log {LRD (Z|X)} = α2 (Z − α0 −α′
1X− α2/2) /σ

2. (8.18)

8.4.3.2 Estimating LRD(Z|X) based on fitting separate models for cases (D = 1) and
non-cases (D = 0)

For P (Z|X) in the exponential family, and assuming rare disease, we can separately estimate
the numerator and the denominator of LRD(Z|X) in Equation (8.9) by fitting different
models to cases (D = 1) and to controls (D = 0). If Z is a binary marker, P (Z|D,X) can
be estimated using separate logistic regression models for cases and controls, yielding

LRD (Z|X) =
{1 + exp (−α00 −α′

10X)}Z {1 + exp(α00 +α
′
10X)}1−Z

{1 + exp (−α01 −α′
11X)}Z {1 + exp (α01 +α′

11X)}1−Z
, (8.19)

where α1D =
(
αD
11, . . . , α

D
1p

)′
, D = 0, 1, indicates parameters in the models for controls and

cases, respectively. For a normally distributed marker, Z|(X, D) ∼ N(α′
DX, σ2

D), fitting
separate linear models to cases and controls yields

log {LRD (Z|X)} = log(σ0/σ1)− (Z−α01 −α′
11X)

2
/(2σ2

1) + (Z − α00 −α′
10X)

2
/(2σ2

0).
(8.20)
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In contrast to Equation (8.18), which corresponds to linear discriminant analysis, estimating
the LRD separately in cases and controls also allows the variances to differ between the two
groups, and thus corresponds to quadratic discriminant analysis, see, e.g., Chapter 6 of
Anderson (1984).

8.4.3.3 LR updating assuming independence of Z and X (independence Bayes)

A special case of the LR approach defined above, described, e.g., in Hand and Yu (2001), is
to assume that the new marker Z is independent of X in cases and non-cases, and therefore

LRD (Z|X) =
P (Z|D = 1,X)

P (Z|D = 0,X)
=
P (Z|D = 1)

P (Z|D = 0)
= LRD (Z) . (8.21)

When case-control data are used for updating, and the outcome is rare, then if X is indepen-
dent of Z in the general population, X and Z are also independent in cases and controls, as
shown, e.g., in Gail et al. (2008). Thus, for a rare disease, the assumption of independence
of X and Z in the general population implies independence conditional on D.

When the outcome is rare, Z is in the exponential family and X and Z are independent,
then P (D|X) ≈

∫
Z
exp(µX + β′

X
X+ βZZ)dF (Z|X) = exp(µ+ β′

X
X) and

log{LRD(Z)} = log

{
exp{(ζ + βZ)Z}h(z)c(ζ + βZ)

exp{ζZ}h(z)c(ζ)

}
= β∗ + βZZ. (8.22)

Thus the coefficients forX and Z in r̂r(X, Z) in Equation (8.14) are approximately unbiased.

8.4.3.4 LR updating with multiple markers

The methods presented above for a single marker can be extended to two or more markers,
Z. For example, to compute the LR for two markers Z = (Z1, Z2), we use that

log{LRD(Z1, Z2|X)} = log

{
P (Z2|D = 1, Z1,X)P (Z1|D = 1,X)

P (Z2|D = 0, Z1,X)P (Z1|D = 0,X)

}

= log

{
P (Z2|D = 1, Z1,X)

P (Z2|D = 0, Z1,X)

}
(8.23)

+ log

{
P (Z1|D = 1,X)

P (Z1|D = 0,X)

}
= log{LRD(Z2|Z1,X)} + log{LRD(Z1|X)}.

(8.24)

To estimate log{LRD(Z2|Z1,X)} one simply includes the marker Z1 along with the predic-
tors X.

8.4.4 Joint estimation, logistic model with offset

The linear dependency of log{LRD(Z)} on Z in Equation (8.22) was also noted by Albert
(1982), who proposed to include the prior odds with parameters from the original risk model
as an offset term in a logistic regression model that included Z as the predictor to obtain
RZ,X. In our setting, this corresponds to estimating two new parameters (δ0, δ1) based on
the model

RX,Z = P̂ (D = 1|Z,X, rr(X)) =
exp[log{rr(X)} + δ̂0 + δ̂1Z]

1 + exp[log{rr(X)} + δ̂0 + δ̂1Z]

=
exp(γ ′

1(X−X0) + δ̂0 + δ̂1Z)

1 + exp(γ′
1(X−X0) + δ̂0 + δ̂1Z)

. (8.25)

The updated relative risk model is thus

rr(X, Z) = exp{γ′
1(X−X0) + δ̂1(Z − Z0)}. (8.26)
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8.4.5 Independence Bayes with shrinkage

Spiegelhalter and Knill-Jones (1984) generalized (8.21) to allow for dependence between
X and Z by fitting one additional shrinkage parameter θ that multiplies log {LRD (Z)} in
(8.8). Spiegelhalter and Knill-Jones (1984) first estimated the LRD (Z) based on the new
data and then estimated θ by fitting

log (posterior odds) = γ01+γ
′
1X+θ log {LRD (Z)} = γ01+γ

′
1X+θ log {LRD(Z)} . (8.27)

If θ is estimated to be zero, the new marker does not add any information to the model,
and when θ = 1, Z is independent of X. We refer to model (8.27) as “LR-shrink” in the
numerical studies and compare the two-step estimation approach to a single step approach
that directly maximizes (8.27) as a function of θ and all parameters in LRD.

8.4.6 Updating using constrained maximum likelihood estimation (CML)

Chatterjee et al. (2016) considered building regression models based on individual-level
data from an “internal” study while utilizing information on parameters for a reduced
model estimated from an “external” big-data source, see also Qin (2000). They identified a
set of general constraints that link internal and external models and used them to propose
a semi-parametric maximum likelihood estimate for the new model that is equivalent to a
form of empirical likelihood (Han and Lawless, 2016).

Following Chatterjee et al. (2016), let U(D|X ;γ) = ∂ log gγ(D|X)/∂γ denote the score
function associated with the “external” reduced model rr(X) in (8.10). The population
parameter value γ for this model satisfies the equation

E{U(D|X,γ)} =

∫
U(D|X,γ)P (D|X)P (X)dDdX = 0, (8.28)

where P (D,X) = P (D|X)P (X) is the true underlying joint distribution of (D,X). When
the model (8.10) is misspecified, then RX = P (D = 1|X) 6= P̂ (D = 1|X), but the above
equation still holds true under mild conditions. Under the assumption that fβ(D|Z,X) is
correctly specified, we can write P (D|X) =

∫
fβ0

(D|Z,X)P (Z|X)dZ, with β0 the true value
of β. Thus, the constraint imposed by Equation (8.28) can be rewritten, after changing the
order of integration, as

∫

Z,X

∫

D

U(D|X,γ)fβ0
(D|Z,X)dF (X, Z) = 0.

The above equation converts the external information to a set of constraints, which is used
in the analysis of internal data to improve efficiency of parameter estimates. The dimension
of the constraint space is the number of parameters by which the external model has been
summarized.

If the internal sample is a case-control sample and p1 = 1− p0 is the disease probability
in the source population, the likelihood is

Lβ,F =

{
n0+n1∏

i=1

fβ(Di|Zi,Xi)dF (Xi, Zi)

}
p−n0

0 p−n1

1

where n1 and n0 denote the number of cases and control sampled. The goal is to max-
imize log(Lβ,F ) + λT

∫
Z,X

∫
D U(D|X,γ)fβ(D|Z,X)dF (X, Z), where λ is a vector of La-

grange multipliers, and dF (X, Z) has mass only at the unique observed data points among
(Xi, Zi), i = 1, . . . , n0 + n1; see Chatterjee et al. (2016) for details.
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The method does not require parametric assumptions for F (X, Z) and produces consis-
tent estimates of parameters of the updated model, assuming that one correctly specifies
the risk distribution [D|X, Z] for the internal study, irrespective of whether the external risk
model is correctly specified. The method applies to any type of regression model, including
logistic regression, and does not require a rare disease assumption. The authors showed that
the empirical-likelihood approach allows tractable computation of CML irrespective of the
dimensions of the risk-factors. The point masses for F̂ (X, Z) can be estimated using either
the internal sample or an external reference sample.

Table 8.1 summarizes all these methods and the number of parameters that are estimated
for each.

Table 8.1: Summary of updating methods

Assumes
independence Number of parameters

Method log (posterior odds) of X and Z estimated for
Z binary Z continuous

Logistic-new µ+ βT
X
X+ βzZ No p+2 p+2

LR-joint γT
1 X+ log(LRdep) No p+2 p+3

LR-separate γT
1 X+ log(LRdep) No 2(p+1) 2(p+1)+2

LR-ind γT
1 X+ log(LRind) Yes 2 4

LR-offset γT
1 X + δ0 + δ1Z Yes 2 2

LR-shrink γT
1 X+ θ log(LRind) No 3 5

CML No p+2 p+2

p: number of risk factors in X
The prior odds from original risk model based only on standard covariatesX = (X1, ...Xp)

T

is exp(γT
1 X). The quantities LRind ≡ P (Z|D = 1)/P (Z|D = 0), and LRdep ≡ P (Z|D =

1,X)/P (Z|D = 0,X), which is estimated separately (LR-separate) or jointly (LR-joint).
Note that only the “Logistic-new” method and CML estimate the parameters in Equation
(8.2) corresponding to the correct model.

8.4.7 Simulations

We present selected simulations from Grill et al. (2016) that assess bias and variability in
P̂ (D|X, Z) from logistic models updated using the methods in Table 8.1.

To obtain realistic correlations between predictors, we simulated data based on vari-
ables from the Viral Resistance to Antiviral Therapy of Chronic Hepatitis C (ViraHepC)
study. This study was conducted from 2002-2006 to investigate differences between African
Americans and Caucasians in response to antiviral therapy for hepatitis virus C (HCV)
(Conjeevaram et al., 2006). The outcome was sustained virological response (D = 1 if
present and D = 0 otherwise). We considered the following covariates X: race (white, non-
white), sex (male, female), Ishak fibrosis score that assesses liver fibrosis stages ranging
from normal to cirrhosis (regrouped into four categories) and AST/ALT enzyme ratio (in
quartiles).

The original model RX was obtained by including the covariatesX in a logistic regression
model.

We then updated the risk models by adding two new markers, interferon lambda 4
(IFNL4) genotype in two categories (∆G/∆G or ∆G/TT corresponding to Z1 = 0, and
TT/TT corresponding to Z1 = 1), and continuous levels of pre-treatment HCV-RNA
(log10(IU/ml); Z2) to obtain the updated risk prediction model, RX,Z1,Z2

. The marginal
distributions of X and (Z1, Z2) are shown in Table 8.2 for the 350 patients with complete
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predictor information, together with the log odds ratio estimates from the baseline model
that included only X, and from the model that included X, Z1 and Z2. The variable Z1 was
more common in Caucasians. The variable Z2 was negatively correlated with AST/ALT
ratio (Spearman ρ =-0.23), but only weakly correlated with other baseline covariates (data
not shown).

To generate data, we used the estimates of βX, βZ1
and βZ2

from the last column of
Table 8.2. We first sampled covariate vectors (X, Z1, Z2) with replacement from the 350
study subjects to obtain covariate data for n patients. We then used these covariate vectors
to generate outcomes D from a logistic regression model,

P (D = 1|X, Z1, Z2) =
exp{β0 + β′

XX+ βZ1
Z1 + βZ2

Z2}
1 + exp{β0 + β′

X
X+ βZ1

Z1 + βZ2
Z2}

, (8.29)

with β0 = 0.8, corresponding to an outcome prevalence of P (D = 1) = 0.1.

Table 8.2: Distribution of the predictors of sustained virologic response (D = 1) and esti-
mated predictor effects in the n = 350 ViraHepC participants from whom predictors were
sampled for simulations

Model with covariates X,
Baseline model, IFNL4 genotype (Z1) &
covariates X HCV-RNA (Z2)

Variable Categories Distribution β (std err) β (std err)
Race Caucasian 52.7% Ref Ref

Non-white 48.3% –0.85 (0.241) –0.62 (0.261)
Sex Male 65.4% Ref Ref

Female 34.6% 0.73 (0.262) 0.68 (0.269) )
Ishak fibrosis 0 10.6% –0.29 (0.156) –0.33 (0.161)
score 1–2 52.9%
(ordinal) 3–4 29.7%

5–6 6.9%
AST/ALT
ratio

per quartile –0.39 (0.117) –0.32 (0.121)

(ordinal)
IFNL4 ∆G/(∆G or TT ) 72.0% – Ref

TT/TT 28.0% – 0.93 (0.282)
log10HCV-
RNA level

– 6.5(5.6, 6.8) – –0.41 (0.162)

(median,
IQRa)
AUC∗ 0.701 0.738

aIQR - Interquartile range (25th percentile - 75th percentile); ∗ AUC based on c-statistics from SAS
PROC logistic. Log odds ratios β (with standard errors) are shown for the baseline model and for the
model updated with genetic and viral load information. Parameter estimates from the baseline model were
used as the values γ in Equation (8.12). Quartile cutoffs for AST/ALT ratio: 0.3165 (min.), 0.6307 (25%),
0.7705 (50%), 0.9302 (75%), 2.275 (max.).

After generatingD for each set of covariates from model (8.29), we created three disjoint
sets, A, B and C. Dataset A with nA = 1, 000, 000 samples that only included predictors
X was used to fit model RX in (8.10). Dataset B, comprised of ncases = ncontrols = 250
cases and controls, with information on (D,X, Z) was used to estimate RZ,X based on
all methods presented in Table 8.1. To compute the LRD(Z|X) for two markers, we used
Equation (8.23).

As our prediction is based on a logistic model, we needed to ensure that the intercept
term in RX,Z yielded the correct population prevalence or incidence of the outcome. We thus
modified models (8.7), (8.25) and (8.27) to match the true disease prevalence P (D = 1),
which is assumed known without error from external data, by solving the following equation
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for µ∗:

P (D = 1)−
∫

Z

∫

X

exp(µ∗ + ĝ(X, Z))

1 + exp(µ∗ + ĝ(X, Z))
dF̂ (X, Z) = 0. (8.30)

For model (8.7), ĝ(X, Z) = β̂
′

XX + β̂ZZ, and for model (8.25), ĝ(X, Z) = γ ′
1X + δ̂1Z. To

adjust the intercept for LR-shrink in (8.27), we first included an additional intercept θ0 in
the model to absorb the case-control sampling ratio and γ01,

log (posterior odds) = γ ′
1X+ θ0 + θ1 log {LRD(Z)} , (8.31)

and after obtaining θ̂1, solved (8.30) for ĝ(X, Z) = γ′
1X + θ̂1 log {LRD(Z)} . For a rare

disease, the empirical distribution function in the controls in the case-control study pro-
vides an estimate F̂ (X, Z), if the controls constitute a random sample from the general
population. Here we estimated the empirical distribution of X, F̂ (X), from dataset A,
and the empirical distribution F̂control(Z|X) from the controls in dataset B, to obtain
F̂ (Z,X) = F̂control(Z|X)F̂A(X).

We used data from a third independent dataset, C, a random sample of size nC =
100,000, to evaluate the predictive performance of the models updated using the various
methods. Letting ri = R̂Xi,Zi

be the estimated risk and πi be the corresponding true risk
in the simulation model, we assessed the bias of ri with the ratio of expected to observed
cases, E/O =

∑
ri/
∑
Oi overall and in subgroups in the third independent dataset, C. To

be consistent with notation in Chapter 6, we use Oi instead of Di to denote the observed
outcomes here. For each setting we present means over 1,000 simulations. The variability of
the prediction was assessed by first taking the mean of the predicted probabilities

∑
ri/n in

each simulation and then computing the standard deviation of the means over the simulation
runs with the same setting. We also present results for the area under the receiver operating
characteristic (ROC) curve (AUC), the mean squared bias, Bias2 = n−1

∑
(ri − πi)

2, and

the estimated mean Brier score (Brier, 1950), M̂SE = n−1
∑

(Oi − ri)
2. See Chapter 6.

Table 8.3 shows the performance of a model RX,Z1,Z2
that was updated with the binary

genotype, Z1, and continuous HCV-RNA levels, Z2. Logistic-new, LR-indep, LR-offset, LR-
separate and LR-shrink overestimated risk on the entire population by 8 to 13% (see E/O
ratios). Models updated using LR-indep underestimated risks for the IFNL4 ∆G/∆G or
∆G/TT genotype by 6% and overestimated them for the TT/TT genotype group by 29%,
while models updated using LR-separate overestimated in these genotype groups by 4%
and 10% respectively. The AUC values ranged from 0.740 for CML and LR-joint to 0.729
for LR-separate, which also had a much larger mean squared bias (Bias2) overall and in
subgroups than the other methods (Table 8.3).

The limited variation of the Brier scores and the AUC values across the different methods
indicates that the mean Brier score (or mean square error), which is the sum of the squared
bias and the Bernoulli variation of the outcome, was dominated by Bernoulli variability.
The AUC is generally not sensitive to bias, as it is a function of the ranks of the predicted
probabilities. However, the standard errors for the AUC were noticeably larger for logistic-

new and LR-separate than for the other methods, and the standard error of the M̂SE was
large for LR-ind and LR-separate. There were noticeable differences in the mean squared
bias (Bias2) among the various methods, with the lowest values seen for LR-joint and CML,
as expected from the E/O ratios.

8.4.8 Summary

The two procedures LR-joint and CML exhibited little bias overall or in subgroups defined
by genotypes of IFNL4, as reflected in E/O ratios near 1.0 and small Bias2. Other updating
procedures exhibited more bias and larger MSE, especially LR-indep. Other performance
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measures such as AUC, which is not affected by bias that preserves rankings, and the
expected Brier score, which is dominated by the binomial component of variance, were
similar for the various procedures. On the basis of these data, and other results in Grill
et al. (2016), we recommend CML or LR-joint for updating.

Some of these methods assume that the distributions of covariates in the data that gave
rise to the original model based on X and in the new internal data that include X and the
novel markers Z are the same. Simulations in Grill et al. (2016) revealed bias in estimates
from CML and LR-joint when this assumption was violated. Thus this assumption should
be assessed, to the extent possible with data on X, before assuming that the updated model
is valid. A more conclusive test would be to study the performance of the updated model
in independent validation data (Chapter 6).

This literature pertains to estimates of risk RX,Z = P (D = 1|X, Z) from logistic models.
Further research is needed to apply these methods directly to the absolute risk models in
Chapter 4. However, the good performance of LR-joint and CML for estimating RX,Z

in these studies also implies good estimation of relative risks, as in Equation (8.5). These
relative risks and their associated attributable risks, can be used, as in Chapter 5, to estimate
absolute risk with a cause-specific hazard model by incorporating registry data.



Chapter 9

Risk estimates based on genetic variants and

family studies

9.1 Introduction

In this chapter we discuss models for estimating absolute risk, pure cumulative risk, and
relative risk from family-based studies, such as kin-cohort studies (Struewing et al., 1997;
Wacholder et al., 1998) and studies of families ascertained because they have several diseased
members (“multiplex pedigrees”). Key considerations include whether the model allows for
residual familial correlations apart from those attributable to the genes that are explicitly
included in the model (compare Sections 9.2 and 9.3), and how the family was ascertained,
which determines the likelihood equations Section(9.4). Section 9.5 compares several ge-
netically based models and an empirical model, the Breast Cancer Risk Assessment Tool
(BCRAT) for projecting breast cancer risk (Tables 1.1, 9.1, 9.2 and 9.3). Some of these mod-
els, such as BCRAT project absolute breast cancer risk, whereas others project pure breast
cancer risk that treats competing risks as random censoring (Chapter 2). The emphasis is
on breast cancer models because there is a vast literature on this topic, because various
family-based designs have been used to study breast cancer risk, and because both strongly
associated mutations and weakly associated genetic markers (SNPs) have been identified for
breast cancer. However, the statistical approaches we discuss also apply to other diseases.

Continuous traits, such as height, tend to be normally distributed in the population,
reflecting, in part, the variations at many genetic loci, each acting independently and having
a modest effect on the trait (Fisher, 1918). Risks of cancer and other diseases are also
influenced by such “polygenic” effects. Some mutations, however, confer high risks of cancer.
For example, women with mutations in the BRCA1 or BRCA2 genes have high risk of
breast and ovarian cancer. Mutations that confer high risk are called “highly penetrant.”
These highly penetrant mutations tend to be rare. Mutations in BRCA1 and BRCA2 occur
in less than 1% of the U.S. population. It is therefore hard to study risks conferred by
these mutations in population-based cohort or case-control studies. For example, in order
to estimate the lifetime risk of developing breast cancer from a highly penetrant (lifetime
risk 0.92) dominant mutation with allele frequency 0.0033, as estimated in Claus et al.
(1991), with confidence interval of width 0.10, one would need to recruit, genotype and
follow 17,301 women (Gail et al., 1999c). Likewise, if the lifetime breast cancer risk is
known in the general population, case-control data can be used to estimate the risk in
mutation carriers, but the most efficient version of this design would require genotyping
15,506 control women and 1,524 women with breast cancer (Gail et al., 1999c). Thus there
is a strong incentive to study populations that are enriched in mutation carriers, such as
families with several affected members, in order to reduce the recruitment and genotyping
burden. Care must be taken, however, in generalizing the findings from such studies to the
general population.

135



136 RISK ESTIMATES BASED ON GENETIC VARIANTS AND FAMILY STUDIES

Genetic models are needed to estimate risk from a specific mutation from family-based
studies. To analyze such data correctly, one must also take the mode of ascertainment of
the family into account. Moreover, other polygenic or environmental factors apart from the
gene under study may induce familial aggregation of disease that is not accounted for by the
gene under study (“residual familial risk”). For example, mutations in BRAC1 or BRCA2
account for only about 22% of the familial aggregation of breast cancer (Ghoussaini and
Pharoah, 2009). Unless the genetic model allows for such residual familial risk, biased risk
estimates can be obtained.

We begin our discussion with simple Mendelian models that assume that the only factor
that modifies risk, apart from age, is the genotype at a single locus or gene. Then we discuss
methods and models that allow for residual familial correlation and analytic methods that
take ascertainment and residual correlation into account to estimate risk.

9.2 Mendelian models: the autosomal dominant model for pure breast cancer
risk

The simplest genetic models, Mendelian models, assume that a mutation at a single genetic
locus (gene) is the only factor that affects pure risk, apart from age. To allow for stratifying
factors such as gender or race, separate models might be fitted in each stratum. Under such
Mendelian models, it is possible to calculate the joint genotypes of all members of a family,
and hence the joint probabilities that each family member carries one or two mutant alleles.
Because carrying the mutation is assumed to be the sole determinant of risk, apart from
age, it is possible to estimate the genotype-specific risk from family data.

One of the most widely used Mendelian models for cancer risk is the autosomal dominant
model. Under an autosomal dominant model, a person with one mutant allele has the same
risk as a person with two mutant alleles at the same locus. Even before the BRCA1 and
BRCA2 genes had been identified, Claus et al. (1991) estimated the cumulative risk of
breast cancer in carriers and in non-carriers of a putative autosomal dominant mutation by
using data on the history of breast cancer in the mother and sisters of women with breast
cancer (cases) and of women without breast cancer (controls). The cases and controls in
this study, the Cancer and Steroid Hormone Study (CASH), were sampled from the general
population, rather than from highly affected families. These cases and controls are called
probands. For each person in a family, we observe Yi = (δi, Xi), where δi = 1 if the disease
of interest (breast cancer) is observed and 0 otherwise, and where Xi = min(Ti, Ci) is the
minimum of age at end of follow-up Ci, which might result from death from competing
causes, or age at disease incidence, Ti. The family information on disease outcome is Y =
(Y0, Y1, ..., YK)T = (Y0,Y

T
K)T , where i = 0 denotes the proband and i = 1, 2, ... , K the

relatives of the proband. The vector of genotypes is G = (G0,G
T
K)T , but none of these

were measured in the study of Claus et al. (1991). Each family contributed the following
factor to the likelihood:

P (YK |Y0) =

∑
G

P (G)
K∏
i=0

P (Yi|Gi)

∑
G0

P (G0)(Y0|G0)
. (9.1)

The summations are over the possible genotypes, which were unmeasured, and the likeli-
hood conditions on Y0, which was determined by design. The genotype probabilities were
computed using Mendel’s laws and the assumption of Hardy-Weinberg equilibrium. Un-
der this assumption, a randomly selected member of the populations has probabilities
p2, 2p(1 − p), and (1 − p)2 respectively of carrying 2, 1 or 0 copies of a bi-allelic allele
(a variant form of a gene or genetic locus) with allele probability p. The product in Equa-
tion (9.1) arises from the strong assumption of conditional independence, namely that the
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breast cancer history for each woman depends only on her genotype and is conditionally
independent of the phenotypes of other family members, given her genotype. We will discuss
this later. For survival data, Claus et al. (1991) assumed that given Gi,

P (Yi|Gi) = [γGi
φ{(Xi − µGi

)/σGi
}]δi [1− γGi

Φ{(Xi − µGi
)/σGi

}]1−δi . (9.2)

In expression (9.2), γGi
is the genotype-specific pure lifetime risk of breast cancer, φ and

Φ are the density and distribution function for a standard normal variable, and µGi
and

σGi
are genotype-specific means and standard deviations of the conditional distribution of

age-at-disease onset among women with breast cancer. The factor γGi
,which is between 0

and 1, allows for the lifetime probability of breast cancer to be less than one. Nonetheless,
Claus et al. (1991) treat competing causes of mortality as independent censoring. Thus
expression (9.1) models pure breast cancer risk. Claus et al. (1991) maximized the product
over probands of expression (9.1) to estimate a mutant allele frequency of 0.0033 (carrier
probability 0.0066) and pure lifetime risks of 92.8% for mutation carriers and 10.0% for
non-carriers. Using this model, Claus and her colleagues calculated pure breast cancer risks
for women with relatives affected at various ages (Claus et al., 1994). For example, a 49-
year-old woman whose mother developed breast cancer at age 25 has a 20-year pure risk of
11.6% of developing breast cancer, whereas, if her mother had been 65 at cancer onset, her
20-year pure risk would be 5.3%.

A linkage study localized a mutation for early-onset breast cancer to chromosome 17q21
in 1990 (Hall et al., 1990), and the corresponding BRCA1 gene was identified by cloning in
1994 (US Patent 5747282), enabling one to measure mutations in it. BRCA2 was localized
to chromosome 13q12-13 in 1994 (Wooster et al., 1994) and cloned by 1998 (US Patent
5837492). Subsequent studies measured the prevalence of mutations in these genes and
the genotype-specific risk of breast and other cancers, and confirmed that risk from these
mutations followed an autosomal dominant pattern. In Section 9.3 we discuss some of the
methods used to estimate breast cancer risk that rely on the ability to measure mutations
in these genes.

Only women with an appreciable chance of carrying a mutation, say >10%, were recom-
mended for actual genetic testing for mutations. Assuming autosomal dominance and that
breast and ovarian cancers were statistically independent given genotype, and using data on
the prevalence of mutant alleles and on genotype-specific pure risks for breast and ovarian
cancers, Berry et al. (1997) applied Bayes’ Theorem to compute P (G0|Y), where G0 is the
number of mutated BRCA1 alleles in the woman who is being counseled, and Y includes in-
formation on the times to breast and ovarian cancer for the counselee and her relatives. The
probability that a mutation is present is P (a mutation is present|Y) = P (G0 = 1 or 2|Y).
The algorithms were later modified to yield such calculations separately for BRCA1 and
BRCA2. A nice feature of this model is that one can also use information on the BRCA1
and BRCA2 mutation carrier status of one or more relatives, k*, if available, to produce an
improved estimate, say

P (G0|Y, Gk∗ = gk∗). (9.3)

One can also project future risk for the counselee at age a to a subsequent age a+ τ , given
family disease history to age a,Y(a) and family genotype information if available as

∑

G0

P (G0|Y(a), Gk∗ = gk∗)r(a, a + τ,G0), (9.4)

where r(a, a + τ,G0) is the absolute risk of breast cancer between ages a and a +
τ for a woman who does not have breast cancer at age a and has genotype G0.
An algorithm, BRCAPRO, calculates the expressions (9.3) and (9.4). Although the
initial version of BRCAPRO used pure risks instead of r(a, a + τ,G0) in Equation
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(9.4), the current version gives absolute risks that account for competing mortality
(http://bcb.dfci.harvard.edu/bayesmendel/brcapro.php).

One indication that mutations in BRCA1 and BRCA2 do not explain the association
between family history and breast cancer risk entirely came from a reanalysis of the CASH
study after culling out all the women whose BRCAPRO-estimated chance of carrying a mu-
tation in BRCA1 or BRCA2 was 1% or more (Claus et al., 1998). The odds ratio associated
with a family history of breast cancer in a first-degree relative was 2.3 for the entire CASH
study and 2.1 after removing those with even this slight chance of carrying a mutation.
Thus, much of the familial association remained. This suggested a need for models that
allowed for residual familial aggregation in addition to the autosomal dominant component,
as described in Section 9.3.

9.3 Models that allow for residual familial aggregation to estimate pure
breast cancer risk

9.3.1 Polygenic risk

Suppose that the effects of many single nucleotide polymorphisms (SNPs) act multiplica-
tively on the relative risk (RR) of disease. Let βi and Gi = 0, 1 or 2 be respectively the log
relative risk per minor allele and the number of minor alleles for the ith SNP in a set of M
such SNPs. If the relative risk for the ith SNP is exp(βiGi), then

log(RR) =

M∑

i=1

βiGi. (9.5)

If the SNP genotypes are independent (“linkage equilibrium”), then log(RR) is approxi-

mately normally distributed with mean µ =
M∑
i=1

2ηiβi ≡
M∑
i=1

µi and variance

σ2 =

M∑

i=1

2ηi(1− ηi)β
2
i ≡

M∑

i=1

σ2
i , (9.6)

where ηi is the minor allele frequency for SNP i.
As in Fisher (1918), the correlation in log(RR) between two first-degree relatives is

1/2, and between two second-degree relatives 1/4. Over short time intervals, risks are pro-
portional to relative risks. This type of structure justifies the assumption of log-normally
distributed risks used to assess the potential for disease prevention in polygenic models
(Pharoah et al., 2002).

9.3.2 Models with latent genetic effects: BOADICEA and IBIS

One way to correct for residual familial correlation is to allow for a latent genetic effect in
addition to the measured mutation (Antoniou et al., 2002, 2004; Tyrer et al., 2005). Antoniou
and colleagues incorporated an unmeasured polygenic effect in a model that also included
separate nuisance hazards for highly penetrant mutations (Antoniou and Easton, 2003;
Antoniou et al., 2004, 2008a). Letting g = 2, 1, or 0 index carriers of a BRCA2 mutation,
carriers of a BRCA1 mutation, and non-carriers, and letting C denote a polygenic normally
distributed component with mean 0 and variance σ2, Antoniou and colleagues modeled the
cohort-, genotype-, and age-specific pure breast cancer hazard as

λG=g(t|C) = λ0(t)RRg(t) exp{C}. (9.7)

http://bcb.dfci.harvard.edu/bayesmendel/brcapro.php
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In this expression, λ0(t) is the cohort-specific breast cancer hazard for women without
BRCA1 or BRCA2 mutations, and RR1(t) and RR2(t) are relative risks that can vary
with age t for BRCA1 and BRCA2 mutation carriers respectively. The average hazard
for women without BRCA1 or BRCA2 mutation in the general population, λ∗0(t), is ob-
tained by averaging over C as in Equation (9.10). Antoniou et al. (2008a) estimated rel-
ative risks mainly from genotyping population-based cases, not cases ascertained through
highly affected families. The model was constrained to fit the observed and age-smoothed
composite cohort-specific breast cancer incidence rates in England and Wales. The poly-
genic variance was estimated as σ̂2 = 4.83 − 0.06 × age. Calculations were facilitated by
approximating the normal distribution of C by the hypergeometric distribution. This model
(Antoniou et al., 2008a), BOADICEA, predicts pure breast cancer risk and can incorpo-
rate data on BRCA1 and BRCA2 mutation status, if available. BOADICEA is available at
http://ccge.medschl.cam.ac.uk/boadicea/model/. A test version that includes certain other
mutations in addition to BRCA1 and BRCA2 mutations is also available.

Not only does inclusion of a parameter for residual familial correlation affect estimates
of genotype-specific hazard rates and hence estimates of pure risk and of mutation carrier
probabilities based on family history, but such correlation parameters are also of intrinsic
interest for estimating risk. For example, suppose a 55-year old counselee and her mother
both tested negative for mutations of BRCA1 and BRCA2. The mother developed breast
cancer at age tm = 45 years; the counselee has no sisters and the family history is limited
to first-degree relatives. The conditional density of Cm, the polygenic effect of the mother,
given tm = 45, is

pCm|Tm
(cm|tm) =

exp(cm) exp{−Λ0(tm) exp(cm)}ϕ(cm; 0, σ2)∫
exp(c) exp{−Λ0(tm) exp(c)}ϕ(c; 0, σ2)dc

, (9.8)

where ϕ(cm;µ, σ2) is the normal density with mean µ and variance σ2 and where Λ0(t)
is the integral of the baseline hazard λ0(t) to age t. The conditional distribution of the
daughter’s polygenic effect, Cd, given Cm is normal with mean Cm/2 and variance 0.75σ2,
as follows from the fact (Fisher, 1918) that the correlation between Cd and Cm is 0.5. The
conditional density of Cd given tm is

pCd|Tm
(cd|tm) =

∫
ϕ(cd; cm/2, 0.75σ

2)pCm|Tm
(cm|tm)dcm. (9.9)

The unconditional hazard of breast cancer for the daughter at age td is (Gail, 2008b)

λ∗0(td) =
λ0(td)

∫
exp(c) exp{−Λ0(td) exp(c)}ϕ(c; 0, σ2)dc∫
exp{−Λ0(td) exp(c)}ϕ(c; 0, σ2)dc

, (9.10)

whereas the corresponding conditional hazard given tm is

λ∗0(td|tm) =
λ0(td)

∫
exp(c) exp{−Λ0(td) exp(c)}pCd|Tm

(c|tm)dc∫
exp{−Λ0(td) exp(c)}pCd|Tm

(c|tm)dc
. (9.11)

To compute the desired familial relative risk (Risch, 1990),

FRR = λ∗0(td|tm)/λ∗0(td), (9.12)

requires repeated numerical integration. However, if breast cancer is rare in non-carriers,
exp{−Λ0(td) exp(c)} can be set to unity, and, after additional calculations (Gail, 2008b), it
follows that

FRR
.
= exp(σ2/2). (9.13)

For a 55-year-old counselee, σ̂2 = 4.83− 0.06× 55 = 1.53, and FRR = 2.15. Thus, the fact

http://ccge.medschl.cam.ac.uk/boadicea/model/
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that the mother had breast cancer more than doubles the hazard for the daughter, compared
to the general population of non-carriers, even though both the mother and daughter are
non-carriers. This is a consequence of residual familial risk, and it is in good agreement
with the earlier findings of Claus et al. (1998) on residual familial association after taking
BRCA1 and BRCA2 into account.

The IBIS model (Tyrer et al., 2005) predicts pure breast cancer risk (with an option
to calculate absolute risk) and includes a latent, common, low-penetrant, autosomal domi-
nant gene, in addition to BRCA1 and BRCA2 mutations, to account for residual famil-
ial aggregation. The latent gene is assumed to segregate independently of the BRCA1
and BRCA2 genes. The IBIS model includes reproductive risk factors and features of
the medical history, such as results of biopsies and a previous diagnosis of lobular car-
cinoma in situ, in addition to the genetic factors. A program for IBIS can be obtained from
http://www.ems-trials.org/riskevaluator/.

9.3.3 Copula models

Suppose SG(t) = exp{−
ti∫
0

λG(u)du} = P (T > t) is the marginal pure survival distribution

for time to breast cancer for a woman randomly selected from the general population of
women with genotype G. The corresponding marginal hazard is λG. Suppose that a family
with K + 1 individuals is selected at random from the general population. One way to
characterize the joint distribution of times to breast cancer in the family is by combining
marginal survival probabilities through a copula distribution (Chatterjee et al., 2006, 2007),

P (T0 > t0, T1 > t1, . . . , TK > tK) = Cθ{SG0
(t0), SG1

(t1), . . . , SGK
(tK)}. (9.14)

The copula distribution Cθ with association parameter(s) θ is a joint distribution on K+1
uniform [0,1] random variables. A key question in using such models is how well they fit
the joint distribution on the left side of Equation (9.14). However, making some allowance
for residual familial correlation, even if not exactly correct, is often more realistic than
assuming no residual familial correlation.

9.4 Estimating genotype-specific absolute risk from family-based designs

9.4.1 General considerations

To understand the literature on genotype-specific risk estimation, one must keep several dis-
tinctions in mind. First, we assume that the genotypes of interest can be measured. Thus,
we can treat these genotypes as risk factors in statistical analyses. We are not discussing
segregation analysis, which genetic epidemiologists have used to estimate risk for hypothe-
sized but unmeasured genes, as in Claus et al. (1991). Second, many publications present
pure, not absolute risk, because they treat death from competing causes as an independent
censoring event and apply standard survival estimation procedures, such as the Kaplan-
Meier estimator (Chapter 2). Third, one needs to identify the target population to which
the risk estimates apply. One might want to estimate risk for a randomly selected member
of the general population who has a specific genotype. We may attempt to estimate risk
by studying families that have been identified because several members have the disease
of interest (“multiplex pedigrees”). Unless special care is taken, such data yield risk esti-
mates that are applicable to members of multiplex families, but are too high for the general
population.

Large cohorts of people who are representative of the general population and whose
genotypes are known may be followed to determine health outcomes. If the cohorts are large

http://www.ems-trials.org/riskevaluator/
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enough (Section 9.1), it will be possible to estimate both pure and absolute genotype-specific
risk with standard methods from such cohort studies (Chapters 2, 3, and 4). At present, we
consider family-based designs that are more efficient for studying rare genotypes and have
been used in the literature.

9.4.2 Combining relative-risks from family-based case-control studies with
population-based incidence rates

Sometimes relative risks are estimated by comparing the genotypes of cases and controls
within a family. For example, suppose families with a diseased sibling and at least one non-
diseased sibling are ascertained. Regarding each family as a stratum, and genotyping all the
siblings, one can use conditional logistic regression or the Mantel-Haenszel procedure for
matched data to estimate the relative odds of disease, comparing mutation carrier genotypes
G = 1 or 2 to non-carriers, G = 0. For a rare disease, this relative odds approximates a rela-
tive risk, RRfam(G = g). If the mutation is rare, incidence rates from the general population
λ∗(t) approximately equal rates for non-carriers in the general population, λ∗0(t). Hence one
can estimate the genotype- and cause-specific hazard in the general population, λg(t), by
substituting estimates in λg(t) = RRfam(G = g)λ∗0(t)

.
= RRfam(G = g)λ∗(t). To com-

pute absolute risks, one can use formula (3.4) to incorporate the competing hazard of (e.g.,
non-breast cancer) mortality.

The previous estimate of λg(t) is only valid if the relative risk RRfam(G = g) from
family-based case-control data estimates the same relative risk, RR(G = g), as would be
obtained from a random sample of cases and controls from the general population. If there
are family-associated factors that influence risk independently of the genotype under study,
such as polygenic effects or environmental exposures, then the population-based relative
risks will tend to be smaller than the relative risks estimated from family data. One way
to approximate such unmeasured factors is through a random frailty, b, that is associated
with each family. Suppose b is a non-negative random variable with mean 1.0, and sup-
pose that the baseline hazard in a family with frailty b is bλfam0 (t). Assume that hazards

are proportional within family such that RRfam(G = g) ≡ λfam
g

(t)/λfam0 (t) is a constant
independent of t. Note that b differs from exp(C) in Equation (9.7) because the same b
applies to every family member, whereas the variables C in Equation (9.7), though cor-
related among family members, are not identical. It can be shown (Gail, 2008b) that the
marginal hazard in the general population, obtained by averaging over the distribution
of b, satisfies λg ≤ λfam

g
(t). Moreover, the general population (marginal) relative hazard

RR(G = g) ≡ λg(t)/λ0(t) ≤ RRfam(G = g) for RRfam(G = g) ≥ 1.0. Thus, there is a
danger of overestimating the genotype-specific relative risks in the general population by
using within-family estimates of relative risk. The kin-cohort design, described next, can be
used to estimate relative risks that are closer to the general population relative risks.

9.4.3 Kin-cohort design

The kin-cohort design is a population-based study design that also incorporates information
from family members. Ideally, one obtains a random sample of cases from cases in the general
population and a random sample of controls from non-cases in the general population. These
sampled cases and controls are called “probands”. The probands agree to be genotyped and
to provide disease histories (phenotypes Yk) for their first-degree relatives (Struewing et al.,
1997; Wacholder et al., 1998). The sample can be enriched in case probands, and indeed
many studies have used case probands only. This design was used to estimate the pure risk
of breast cancer in Ashkenazi women carrying mutations BRCA1 or BRCA2 (Struewing
et al., 1997). In the notation of Section 9.2, the contribution to the likelihood from each
proband’s family (Gail et al., 1999c,b), conditional on the ascertainment event, namely the
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disease status Y0 = (δ, T ) of the proband, is

P (YK , G0|Y0) = P (G0|Y0)
∑

GK

P (GK |G0)P (YK |GK , Y0). (9.15)

The summation is over all joint genotypes of relatives, and P (GK |G0) is defined by Mendel’s
laws and Hardy-Weinberg equilibrium. If each individual’s genotype is the only factor that
influences his or her phenotype, then phenotypes are conditionally independent given G,
and Equation (9.15) can be simplified because

P (YK |GK , Y0) =

K∏

i=1

P (Yi|Gi). (9.16)

Under this “conditional independence” assumption, likelihood methods for survival data
(Gail et al., 1999b) applied to (9.15) can be used to estimate the allele frequency and
genotype-specific hazards, λfam

g
(t). Under conditional independence, the family-specific and

marginal hazards in the general population, λg, are equal. Absolute risks can be obtained
by applying Equation (3.4).

Several biases can arise in kin-cohort studies. If the tendency to participate as a proband
and give blood for genotyping is greater in individuals who have several affected first degree
relatives than in individuals whose families have few or no affected relatives, estimates of
λfam

g
(t) will be too high, not only for mutation carriers but also for non-carriers (Wacholder

et al., 1998; Gail et al., 1999b). If the proband mistakenly reports disease in his or her
relatives, hazards can be seriously overestimated, and if the proband neglects to report
disease that has occurred, hazards will be underestimated (Gail et al., 1999c,b, 2001). If
the gene in question increases the risk of death from competing causes, the hazard for
the disease of interest will be underestimated (Chatterjee et al., 2003; Gail and Chatterjee,
2004). This problem can be eliminated in principle by modeling the effects of the gene on the
competing hazards (Chatterjee et al., 2003). This underestimation is even more severe if the
risk of mortality following incidence of the disease of interest is higher in mutation carriers
than non-carriers (Gail and Chatterjee, 2004). Asymptotic formulas can be inaccurate,
even for seemingly large samples (Gail et al., 1999c,b, 2001), and the “reproducibility”
assumption,P (Yi|gi, g0) = P (Yi|gi), may not hold (Gail and Chatterjee, 2004; Whittemore,
1997).

Absolute risk in mutation carriers will be overestimated if one does not account for
residual familial risk (Chatterjee et al., 2006; Gail et al., 1999b, 2001). The key ingredient
in Equation (9.15), P (YK |GK, Y0), does not simplify to Equation (9.16) in the presence
of residual familial risk, because components of YK are correlated with Y0 and with each
other. If all probands are a random sample from the source population, then (YK , Y0) can
be regarded as a random sample from the population. Each of the pairs (Yi, Y0) from a
given family can also be regarded as randomly sampled, though not independent. Thus for
each family, a “composite likelihood”

P (G0)P (Y0|G0)
K∏

i=1

∑

Gi

P (Yi|Gi)P (Gi|G0) (9.17)

can be constructed that yields unbiased estimates of the marginal risk P (Yi|Gi) (Chatterjee
and Wacholder, 2001). This approach reduces, but does not eliminate, the upward bias in
pure risk estimates for mutation carriers when case probands are over represented in the
kin-cohort sample, as is common. Begg (2002) noted that genotype-specific risks would be
overestimated if only case probands are used and if risk varies in the population because of
factors other than the gene under study. However, applying copula models to the marginal
survival probabilities Sgk(t) = P (Tk > t|gk) to account for residual familial risk, where Tk
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is the time to the disease of interest (e.g., breast cancer) for family member k, Chatterjee
et al. (2006) found that even if all probands were cases, unbiased estimates of pure risk
were obtained, provided that the correct copula was chosen; the results were sensitive to
misspecification of the copula, however. Kin-cohort designs that sampled equal numbers of
case and control probands yielded nearly unbiased pure cumulative risk estimates that were
much less sensitive to the choice of the copula. Estimates of relative risk were more robust
to misspecification of the copula than estimates of cumulative risk, especially if only case
probands were sampled. Chatterjee et al. (2006) therefore recommended estimating RR(G =
g) with a copula model to allow for residual familial risk. Then following the approach in
Chapter 5, one estimates attributable risk AR(t) from known allele frequencies and RR(G =
g) and then estimates λg(t) = RR(G = g)λ∗(t){1 − AR(t)}, which reduces approximately
to λg(t)

.
= RR(G = g)λ∗(t) for rare mutations. Note that a dominant mutation like those

in BRCA1 or BRCA2 with carrier prevalence 0.0066 and RR(G = 1) = RR(G = 2) = 20
(Claus et al., 1991) would have AR = 0.0066× 19/(0.0066× 19 + 1) = 0.11, justifying the
approximation.

Unlike estimates of RRfam(G = g) obtained by comparing cases and controls within
a family, the relative risk estimated from the kin-cohort design with allowance for resid-
ual familial risk via a composite likelihood or copula modeling, has little upward bias for
RR(G = g).

9.4.4 Families with several affected members (multiplex pedigrees)

The kin-cohort design is amenable to analysis because the ascertainment criteria are well un-
derstood. Nonetheless, the combination of residual familial risk and case-enriched proband
ascertainment complicates the analysis. These challenges are even greater when multiplex
pedigrees are recruited from high risk clinics. Often the precise features that led to ascer-
tainment of the family are not known.

Estimation of absolute risk from a pedigree could be based on P (Y,G|A) where A is
the ascertainment condition, which might depend in a complex way on Y. The quantity
P (Y,G|A) is termed the “ascertainment corrected joint likelihood” by Kraft and Thomas
(2000), who also consider the “prospective likelihood”, P (Y|G, A), and the “retrospective
likelihood”, P (G|Y, A) = P (G|Y); the last equality follows from the assumption that A
is determined by Y alone. To avoid the difficulty of defining the ascertainment condition,
analysts often use the retrospective likelihood, even though it can be less efficient. Use of
P (G|Y) does not avoid the need to consider residual familial risks, however, because

P (G|Y) = P (Y|G)P (G)/
∑

G

P (Y|G)P (G)

depends on P (Y|G), which, conditional on G, may include correlations among familial phe-
notypes that are induced by residual familial risk. Iversen and Chen (2005) used P (Y,G|A)
but assumed that A depended only on certain functions of Y, such as the number of af-
fected family members. Using external data, they estimated P (A) empirically, permitting
inference from

P (Y,G|A) ∝ P (Y,G)/P (A).

This approach does not avoid the need to consider residual familial risk, however.
These issues are important when estimating the pure risk in carriers of BRCA1 and

BRCA2 mutations and in non-carriers. Data from a marker tightly linked to BRCA1 were
obtained from the Breast Cancer Linkage Consortium (BCLC), consisting of multiplex fam-
ilies with at least four members with breast cancer diagnosed under age 60 or with ovarian
cancer. The retrospective likelihood P (G|Y) was used, where the likelihood describes the
marker pattern, rather than BRCA1 mutations themselves. No attempt was made to model
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residual familial risk. The estimated pure breast cancer risk to age 70 was 0.85 in BRCA1
mutation carriers (Easton et al., 1995). A similar analysis of data for BRCA2 mutations
from BCLC (Ford et al., 1998) yielded an estimate of pure breast cancer risk to age 70 of
0.84 for carriers. In contrast, Antoniou et al. (2003) analyzed data from 22 kin-cohort stud-
ies with case-only probands (female breast cancer cases in 16 studies, male breast cancer
cases in 2 studies, and ovarian cancer cases in 4 studies). These probands were not selected
on the basis of family history, but only on the basis of their personal history of cancer. The
combined data from these studies yielded an estimate of pure breast cancer risk to age 70
of 0.65 for BRCA1 mutation carriers and 0.45 for BRCA2 mutation carriers. Because no
allowance had been made for residual familial risk, the authors noted that these risk esti-
mates might overestimate risks in the general population, despite the fact that they were
considerably lower than estimates from the BCLC. The BOADICEA model, which allows
for a polygenic residual familial risk, ascribed pure cumulative risks to age 70 of 0.46 to
0.59 for BRCA1 mutations and of 0.39 to 0.51 for BRCA2 mutations, depending on birth
cohort. An earlier kin-cohort study (Struewing et al., 1997) of three founder mutations in
BRCA1 and BRCA2 in an Ashkenazi population in the region including Washington, DC
reported a cumulative pure risk to age 70 of 0.56, and a population-based kin-cohort study
of probands with breast cancer in Australia (Hopper et al., 1999) reported a cumulative
pure risk of 0.40.

The differences in cumulative risk estimates to age 70 between the more nearly
population-based kin-cohort studies and the studies of multiplex pedigrees, such as 56%
versus 85%, can affect clinical management. Risk estimates from multiplex families without
adequate adjustment for ascertainment and residual familial risk are too high for women
who are found to carry mutations through chance testing or through testing occasioned
by the incidence of breast cancer in a single relative, for example. The higher mutation-
associated risks from multiplex families are probably useful for advising women in multiplex
families, not because all the risk comes from the mutation, but because other risk factors
impart additional risk in such families. These arguments imply that a woman in a multiplex
family who tests negative for a mutation may still have above average breast cancer risk,
by virtue of her strong family history.

9.5 Comparisons of some models for projecting breast cancer risk

Several models are widely used for predicting breast cancer risk in women, as described in
Chapter 1. Among these are an empirical model, the Breast Cancer Risk Assessment Tool
(BCRAT), and genetically based models (Claus, BRCAPRO, BOADICEA, IBIS) (Amir
et al., 2010). The models vary in the risk factors used (Table 9.1), although all the models
include age, which is a dominant risk factor over long risk projection intervals. The models
labeled Claus, BRCAPRO, BOADICEA and IBIS include detailed family history of breast
disease in first- and second-degree relatives, as well as some other family history information
not shown. Of these models, only IBIS includes data on reproductive factors and history of
breast pathology. BCRAT includes reproductive factors and history of breast pathology, but
the only family history that BCRAT uses is number of affected first-degree female relatives
(mother or sisters). The CLAUS and BRCAPRO models assume conditional independence
given autosomal dominant genotypes, whereas BOADICEA and IBIS allow for residual
familial correlation. BCRAT implicitly includes all sources of familial aggregation in the
estimates of relative risks associated with having affected first-degree relatives.

These models also differ in other important respects (Gail and Mai, 2010) (Table 9.2).
The BCRAT and Claus models are calibrated to age-specific breast cancer incidence rates
from the US Surveillance Epidemiology and End Results (SEER) Program of the National
Cancer Institute (https://seer.cancer.gov/seerstat/), and the BOADICEA and IBIS mod-
els are calibrated to breast cancer incidence rates from England and Wales. BRCAPRO

https://seer.cancer.gov/seerstat/
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Table 9.1: Selected risk factors used in some models for projecting breast cancer risk

Factor BCRAT CLAUS BRCAPRO BOADICEA IBIS
Reproductive factors
Age at menarche (w)* Yes Yes
Age at first birth (m) Yes Yes
Age at menopause (m) Yes
Hormone replacement (s) Yes
Personal history of breast pathology
Previous benign
biopsies (m)

Yes

Atypical Hyperplasia (s) Yes Yes
Lobular Carcinoma
in situ (s)

Ineligible Yes

Family history of breast cancer
First degree relatives (s) Yes Yes Yes Yes Yes
Second degree relatives (w) Yes Yes Yes Yes
Age at onset in relatives (m) Yes Yes Yes Yes
Other factors
Body mass index (w) Yes

*The symbols w, m, and s denote, respectively, weak, moderate, and strong risk factors.

uses SEER data for non-carriers and a meta-analysis of cumulative pure risks for muta-
tion carriers. The IBIS and Claus models include ductal carcinoma in situ (DCIS) as well
as invasive breast cancer, whereas BCRAT, BRCAPRO and BOADICEA project risk for
invasive breast cancer only. The Claus, BOADICEA and IBIS models compute pure, not
absolute risk (although IBIS has an option to compute absolute risk), in contrast to the
BCRAT and BRCAPRO models, which compute absolute risk; pure risks should be higher
than corresponding absolute risks (Chapter 3). The Claus model only makes projections for
women with at least one affected first-degree relative. BRCAT does not make projections
for women with a history of lobular carcinoma in situ (LCIS), who have high risk.

To compare risk projections to ages 45 and 80 years from the various models, we con-
sidered healthy 35-year-old women with menarche at age 11 and age at first live birth at
age 25 (Table 9.3). The women vary with respect to biopsy status and family history. For
women with no history of breast cancer in first degree relatives, BCRAT and IBIS gave the
highest projections when the woman has had a biopsy, especially in the presence of atypical
hyperplasia. A history of LCIS greatly increased risk in the IBIS model. For women with
one affected first-degree relative, BCRAT and IBIS projected higher risks than the Claus,
BRCAPRO and BOADICEA models, whether or not breast cancer pathology was present.
For women with two affected first-degree relatives, BCRAT and IBIS again projected the
highest risks (30.0% and 24.2% to age 80 respectively in women without biopsies), especially
in the presence of atypical hyperplasia (57.5% and 66.9% respectively), but in the absence
of pathology, the risks from the Claus and BOADICEA models were not much lower than
those of BCRAT and IBIS. BRCAPRO projected noticeably lower risks (12.6% to age 80),
possibly because it fails to account for residual familial correlation. A similar pattern was
seen for women with three affected first-degree relatives.

There is considerable variation in projections among the models in Table 9.3. Thus, not
all the models are well calibrated (Chapter 6). A number of studies have examined the cal-
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Table 9.3: Breast cancer risks in percent to ages 45 and 80 for healthy 35-year-old women
who began menstruating at age 11 and had first live births at age 25

Number
of affected
first-degree
relatives*

Age(s) at
breast can-
cer onset in
relative(s)**
and/or other
characteris-
tics of the
patient

BCRAT Claus BRCAPRO BOADICEA IBIS

0 No special fea-
tures

1.0, 10.7† N/A 0.9, 11.1 0.8, 8.7 0.9, 9.6

0 1 biopsy 1.7, 14.2 N/A 0.9, 11.1 0.8, 8.7 0.9, 9.6
0 1 biopsy with

AH
3.2, 24.2 N/A 0.9, 11.1 0.8, 8.7 3.7, 33.6

0 LCIS N/A N/A 0.9, 11.2 0.8, 8.7 7.2, 55.8
1 60 y 1.8, 18.2 0.9, 9.2 0.9, 11.3 1.5, 13.4 1.9, 18.8
1 60 y; LCIS N/A 0.9, 9.2 0.9, 11.3 1.5, 13.4 14.2, 81.2
1 30 y 1.8, 18.2 2.1, 15.5 1.2, 12.1 2.0, 16.2 2.5, 20.2
1 40 y 1.8, 18.2 1.6, 12.5 1.1, 11.7 1.9, 15.4 2.2, 19.6
1 60 y; 1 biopsy 3.1, 23.8 0.9, 9.2 0.9, 11.3 1.5, 13.4 1.9, 18.8
2 40 y, 60 y 3.2, 30.0 3.6, 22.9 1.3, 12.6 3.2, 21.5 2.7, 24.2
2 40 y, 60 y; 1

biopsy
5.4, 38.0 3.6, 22.9 1.3, 12.6 3.2, 21.5 2.7, 24.2

2 40 y, 60 y; 1
biopsy with AH

9.6, 57.5 3.6, 22.9 1.3, 12.6 3.2, 21.5 10.5, 66.9

3 40 y, 50 y, 60 y 3.2, 30.0 4.6, 28.0 2.5, 16.1 4.8, 28.3 3.4, 27.0
3 30 y, 40 y, 50 y;

1 biopsy
3.2, 30.0 6.5, 37.4 5.2, 24.4 6.6, 33.0 8.4, 34.8

3 40 y, 50 y, 60 y;
1 biopsy

5.4, 38.0 4.6, 28.0 2.5, 16.1 4.8, 28.3 3.4, 27.0

3 40 y, 50 y, 60 y;
1 biopsy with
AH

9.6, 57.5 4.6, 28.0 2.5, 16.1 4.8, 28.3 12.7, 71.7

Abbreviations: atypical hyperplasia (AH); lobular carcinoma in situ (LCIS); not applicable (N/A).

*For no affected first-degree relatives and for one affected first-degree relative, the pedigree includes the

mother and the proband. For two affected first-degree relatives, the pedigree includes the mother, sister, and

the proband. For three affected first-degree relatives, the pedigree includes the mother, two sisters, and the

proband. These pedigree structures are held constant as other risk factors, including ages at breast cancer

onset, vary in the table.

**The mother has the oldest age at onset in all scenarios with affected relatives.

†Left number is risk to age 45 in percent; right number is risk to age 80 in percent. Data taken from M. H.

Gail and P. L. Mai. Comparing breast cancer risk assessment models. Journal of the National Cancer

Institute, 102(10):665–668, 2010.

ibration of BCRAT in general populations (Gail and Mai, 2010), such as the Nurses Health
Study (Rockhill et al., 2001). Most (e.g., (Rockhill et al., 2001; Costantino et al., 1999)),
but not all (Schonfeld et al., 2010), have found BCRAT to be well calibrated in such popula-
tions (Gail and Mai, 2010). The web site for BCRAT, http://www.cancer.gov/bcrisktool/,
mentions that BCRAT is not appropriate for women with a previous history of radiation
treatment to the chest for Hodgkin’s lymphoma, for women with a previous history of in-
vasive breast cancer or DCIS or LCIS, for recent immigrants from regions of Asia where

http://www.cancer.gov/bcrisktool/
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breast cancer risk is low, and for women with known mutations in BRCA1 or BRCA2
genes. Although there is evidence that BCRAT is well calibrated for women with a fam-
ily history of breast cancer (Bondy et al., 1994) and in women with above average risk
recruited to a breast cancer prevention trial (Costantino et al., 1999), there is a need for
more studies to evaluate the calibration of the various models in high risk clinic popula-
tions or in women with strong family histories. Results from a study based on 64 breast
cancer cases in a high risk clinic population (Amir et al., 2003) and from a study based on
83 breast cancer cases in women with at least two family members with breast or ovarian
cancer (Quante et al., 2012) suggest that the IBIS model, with its higher risk estimates,
was better calibrated than the BCRAT, Claus, and BRCAPRO models, but larger calibra-
tion studies are needed for such high risk populations. A recent release of IBIS (Version 7
at http://www.ems-trials.org/riskevaluator/) gives somewhat higher risk estimates than in
Table 9.3.

9.6 Discussion

We concentrated on methods for estimating risk associated with highly penetrant mutations
from family-based designs, such as the kin-cohort design or studies of multiplex pedigrees.
If residual familial risk is not allowed for, one tends to overestimate the absolute (and pure)
risk associated with a measured mutation in the general population. Measures of residual
familial risk also allow one to make better risk predictions by using not only the information
on mutation status but also the residual predictive information in the family history, as
illustrated in Section 9.3. Ignoring unmeasured polygenic effects leads to underestimation
of family-specific genetic relative risks (Kraft and Thomas, 2000; Pfeiffer et al., 2001), but
family-specific estimates of genetic relative risk lead to overestimation of relative risk and
absolute risk in the general population for carriers of the measured mutation.

Because highly penetrant mutations account for only a small portion of the total familial
aggregation of risk, one would expect that a model such as BOADICEA or IBIS, that
also account for residual correlation, would provide better risk prediction, based on family
history, than a model based on a highly penetrant mutation alone. To adequately assess
the calibration and discriminatory accuracy (Chapter 6) of the various models, one needs
cohort data from the target population with baseline measurements of mutation status,
family history, and other factors, and with sufficient follow-up to detect several hundred
cancers. Although validation studies with small numbers of events have been conducted to
assess the calibration of genetically-based models in high risk patients (Bondy et al., 1994;
Amir et al., 2003; Quante et al., 2012), there is a need for much larger studies in high risk
populations and in the general population. A potential difficulty is the fact that preventive
interventions, such as oophorectomy or the use of chemopreventive agents can reduce risks
and are usually not included in the risk models.

Although the breast cancer risk models we discussed are widely used, they have modest
discriminatory accuracy (Rockhill et al., 2001), with an area under the receiver operating
characteristic curve near AUC=0.6. It was hoped that genome-wide association studies
(GWAS) that compare SNPs in cases and controls would identify SNPs that would improve
discriminatory accuracy. Early studies based on only 7 confirmed SNPs noted that the
relative risks were small and indicated that these SNPs would not contribute much to the
discriminatory accuracy of models that contain standard risk factors such as family history
or age at first live birth (Gail, 2008a, 2009b; Wacholder et al., 2010). Larger GWAS studies
identified many more SNPs, but they had even weaker relative risks. Such SNPs can partly
account for the polygenic component of risk described at the beginning of Section 9.3. The
relative risks from such SNPs seem to act multiplicatively on the relative risks (Antoniou
et al., 2008b). The genetic variance in Equation (9.6) from all previously identified SNPs
is less than 20% of the polygenic variance required to explain residual familial risk after

http://www.ems-trials.org/riskevaluator/
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taking BRCA1 and BRCA2 into account (Ghoussaini and Pharoah, 2009; Michailidou et al.,
2013; Park et al., 2012). The explanation for this “missing heritability” may lie in other
genetic variants (Ghoussaini and Pharoah, 2009), or in SNPs whose main effects or whose
interactions (Zuk et al., 2012) are so small as to be non-detectable by GWAS of practical size
(Chatterjee et al., 2013). For predicting risk, it is disappointing that these SNPs contribute
only modestly to discriminatory accuracy. Maas et al. (2016) evaluated the potential of 92
such SNPs and numerous epidemiologic risk factors such as family history. A model based
on the epidemiologic risk factors had AUC=0.588. A model based only on the 92 SNPs had
AUC=0.623. A model with the SNPs and epidemiologic risk factors had AUC=0.648.

Other strong risk factors, such as mammographic density (Chen et al., 2006a; Tice
et al., 2008) and detailed histology from biopsies (Hartmann et al., 2005), together with
information from SNPs, may lead to improved discriminatory accuracy. Indeed, combining
mammographic density, epidemiologic factors and SNPs may lead to an AUC approaching
0.7 for breast cancer (Garcia-Closas et al., 2014; Park et al., 2012). This is still inadequate
for applications based on high risk subgroups, however.

This chapter has focused on genetically-based risk models for breast cancer incidence.
Risk models, including models like BRCAPRO, are referenced for many other cancers at
http://epi.grants.cancer.gov/cancer risk prediction/#risk. There is also an exploding liter-
ature on SNP-based risk assessment for the incidence of other diseases and on the possible
usefulness of SNPs for prognostication following diagnosis.

http://epi.grants.cancer.gov/cancer_risk_prediction/
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Chapter 10

Related topics

10.1 Introduction

In this chapter we touch on topics related to absolute risk, including prognosis following
disease diagnosis, handling missing data on cause of death, and time-varying covariates or
health state. We also discuss applications of absolute risk for individual counseling and
for public health prevention strategies. This chapter is not meant to be comprehensive,
but to indicate how the ideas in previous chapters are related to other applications and
analytical approaches and to provide some key references. Another important related topic,
the estimation of residual life in the presence of competing risks, is not discussed here but
is treated at length in Jeong (2014).

10.2 Prognosis following disease onset

Although we have emphasized examples and methods for the absolute risk of disease inci-
dence, the concept of absolute risk is also important to guide clinical decisions after disease
develops. For example, consider a 65-year-old man just diagnosed with prostate cancer.
There is a chance that the man will die of prostate cancer, but he may also die of another
competing cause. His absolute risk of dying of prostate cancer is reduced by competing
causes of mortality. Albertsen et al. (2005) estimated the chance of dying of prostate cancer
as a function of age at diagnosis and pathologic features of the tumor, which are summa-
rized in the Gleason score. The Gleason score indicates the chance that the cancer will
spread. Figure 10.1, adapted from Albertsen et al. (2005), depicts the absolute risk of dying
of prostate cancer (dark shading) and of dying of other causes (light shading) on the scale
of years since diagnosis for men with a favorable Gleason score in the range 0 to 2. The
chance that a man diagnosed with Gleason score 0-2 prostate cancer at age 65 years will
die within 20 years is 80%, but the chance he will die of prostate cancer is only about
5%. Prostate cancer treatment with radiation or surgery carries a substantial risk of side
effects, such as impotence or incontinence. One option for a man with a low risk of dying
of prostate cancer is “active surveillance”, whereby the patient is monitored with prostate-
specific antigen (PSA) testing, but no cancer treatments are given unless subsequent data
indicate cancer progression. In contrast, a 65-year-old man diagnosed with Gleason score 9
has a 60% chance of dying of prostate cancer within 10 years without surgical or radiation
treatment (Albertsen et al., 2005). Such high absolute risk justifies treatment.

Other examples of the use of absolute risk for prognosis include the probability of dying
of breast cancer following diagnosis (Schairer et al., 2004), the absolute risk of a local
breast cancer recurrence (Gray, 1988), and the absolute risk of local lung cancer recurrence
(with distant metastases and other causes of death as a competing risks) (Consonni et al.,
2015). In some settings, competing consequences of treatment are studied. For example,
bone marrow transplantation for refractory or relapsed leukemia can result in leukemia
recurrence or death from treatment complications (Gaynor et al., 1993; Pepe and Mori,
1993).
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Figure 10.1: Absolute risks of prostate cancer death and non-prostate cancer death, adapted
from P. C. Albertsen, J. A. Hanley, and J. Fine. 20-year outcomes following conservative
management of clinically localized prostate cancer. Journal of the American Medical Asso-
ciation, 293(17):2095–2101, 2005.

Absolute risk estimates often rely on survival analysis methods that were first developed
for estimating pure risks following disease diagnosis. Perhaps the first example of covariate
modeling in survival analysis concerned the pure risk of death following diagnosis of acute
myelogenous leukemia as a function of baseline white cell count (Feigl and Zelen, 1965).
Since then, most publications on risk models for prognosis have treated pure risk. The
advent of the Cox model (Cox, 1972) facilitated an explosion of papers on prognosis for
pure risk. The literature on general features of regression modeling for survival analysis
contains valuable lessons that also apply to modeling absolute risk. Such topics include how
to code covariates and flexible representations of dose-response for quantitative covariates
(e.g., splines), handling missing covariates by imputation or other techniques, such as the
expectation-maximization algorithm, model checking by examining residuals and other tests
of goodness-of-fit, and re-calibration to adapt a risk model to a new population. There has
been less work on the impact of measurement error in predictors, but Khudyakov et al.
(2015) found that such measurement error had little impact on the calibration of pure risk
in a probit model but could degrade the AUC and mean square error of prediction (Brier
criterion). Excellent discussions of these topics are found in classic books on survival and risk
modeling, including (Andersen et al., 1993; Harrell, 2001; Kalbfleisch and Prentice, 2002;
Steyerberg, 2009; Therneau and Grambsch, 2000; van Houwelingen and Putter, 2012).

10.3 Missing or misclassified information on event type

In previous chapters we ignored the possibility that the type of competing event that occurs
may not be recorded. We will refer to causes of death as the competing events, although the
competing health outcomes may be other types of events. For example, if the competing
events are first cancers of various types and death from other causes, the type of first cancer
may not be recorded. Sometimes the cause of death is not captured, and sometimes the
cause of death has been misclassified. Although there is some recent work on misclassified
outcomes (Ha and Tsodikov, 2015), most publications have dealt with missing cause of
death. Simply discarding subjects with missing cause of death (“complete case analysis”)
can lead to bias, not only in estimates of covariate effects, but also in estimates of the
absolute risk itself.

Earlier papers treated unknown cause of death in the absence of covariates (e.g., (Dinse,
1986)). Subsequent literature concerned estimation of covariate effects and cumulative
cause-specific baseline hazards, but not absolute risks. Goetghebeur and Ryan (1995) con-
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sidered the cause-specific hazards model with proportional hazards assumed for covariate
effects on each cause-specific hazard. A somewhat restrictive additional assumption was
that the cause-specific baseline hazard functions were also proportional. They developed
methods to estimate covariate effects and cumulative baseline hazards in the presence of
missing data on cause of death, and provided variance estimates for covariate parameter
estimates. Dabrowska (1995) avoided the assumption of proportional baseline hazards by
employing a parametric model for the probability that a given death was from the cause
of interest, given certain covariates and given that a death had occurred at a specific time.
Call this probability ρ(Wi, θ), where Wi includes the time the ith subject died as well as
covariates Zi that may affect the cause-specific hazards, and possibly other covariates that
predict the type of death but are distinct from Zi.Wi does not include the missing cause of
death. Thus, it is assumed that the cause of death information is missing at random, given
Wi. Lu and Tsiatis (2001) showed how to estimate parameters θ from subjects with known
cause of death and impute the missing cause of death as a Bernoulli variate given ρ(Wi, θ̂).
They provide variance estimates for estimates of proportional hazards parameters based on
multiple imputation that allow for variability of θ̂, unlike standard variance calculations for
multiple imputation (Rubin, 1987).

Gao and Tsiatis (2005) estimated covariate parameters and baseline hazards by using
“doubly robust” estimating equations. Let Γi = 0, 1, 2 according as the ith subject was
censored or died of causes 1 or 2, respectively. Gao and Tsiatis (2005) defined the probability
that a person would be censored or have a known cause of death, π(Wi, I(Γi > 0),ψ),
where I(Γi > 0) indicates that the ith subject was not censored, and where ψ represents
parameters to be estimated. Assuming that a missing cause of failure Γi does not depend on
the failure type, conditional on I(Γi > 0) and Wi (i.e., failure type is missing at random),
they used inverse probability weighting of such observations by π(Wi, I(Γi > 0), ψ̂) to
define estimating equations. To increase efficiency, they added a term to the estimating
equations that depended on ρ(Wi, θ̂). These estimating equations have expectation zero
if either ρ(Wi, θ) or π(Wi, I(Γi > 0),ψ) are correctly specified. Gao and Tsiatis (2005)
applied these techniques to a large class of transformation models, including the proportional
hazards model and proportional odds model. Lu and Liang (2008) used similar techniques
for the additive hazard model.

Although the previous papers provided inference on covariate effects and, in some cases
on cumulative baseline hazards, in the presence of missing cause of death, they did not treat
absolute risk itself. Lee et al. (2011) used multiple imputation and extended the methods
in (Cheng et al., 1998) and (Lu and Tsiatis, 2001) not only for inference on proportional
hazards parameters in the cause-specific model but also for absolute risk. Lee et al. (2012)
applied these imputation methods to SEER data to estimate the absolute risk of dying
from colon cancer as a function of time since diagnosis. In these data, the cause-specific
hazards model fit the data better than the Fine-Gray model, but estimates of absolute
risk were similar. An advantage of the imputation approach is that it can be used to fit
both cause-specific and cumulative incidence models. Nicolaie et al. (2015) partitioned the
probability of having the event of interest at time t into the probability of having some
event at time t times the conditional probability of having the event of interest given that
an event occurred (“vertical modelling”), in a manner similar to (Dabrowska, 1995) and (Lu
and Tsiatis, 2001), but used likelihood methods to estimate needed parameters and absolute
risk. Moreno-Betancur et al. (2015) used parametric survival models for competing risks that
permit likelihood-based estimates of absolute risk in the presence of missing cause of death
data. Most of these papers assumed cause-specific hazard models, but Bakoyannis et al.
(2010) used multiple imputation as in (Lu and Tsiatis, 2001) to obtain data with imputed
complete cause of death information, from which to estimate sub-distribution proportional
hazard parameters for the model of Fine and Gray (1999) (see also Lee et al. (2012)).
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10.4 Time varying covariates

10.4.1 Fixed versus time-varying covariates and internal versus external time-varying
covariates

In previous chapters we have assumed that covariates Z that affect absolute risk are known
at the beginning of the risk projection interval, t0. Implicitly we assumed that the covariates
stayed fixed at their initial values. An exception is deterministic functions of age. For ex-
ample, in the breast cancer risk model of Gail et al. (1989), there is an interaction between
I(t ≥ 50) and number of biopsies. For projection intervals t0 < t ≤ t0 + τ that include
age t =50, the relative hazard for a woman with one or more biopsies decreases at t =50,
reducing the absolute risk calculation in Equation (4.1). Suppose the woman is t0 = 45
years old at counseling, and the follow-up duration is τ =10 years. Even before follow-up
begins, we know that the indicator I(t ≥ 50) will change to 1 at age 50. Thus I(t ≥ 50)
is an “external” covariate (Kalbfleisch and Prentice, 2002), for which such absolute risk
calculations are justified. However, we might want to ask: “What will her absolute risk of
breast cancer from age 45 to 55 be if she has a first breast biopsy at age 52?” In order to
have a first breast biopsy at age 52, she must not have died or had a diagnosis of breast
cancer before age 52, and calculation using Equation (4.1) does not lead to a valid absolute
risk calculation. Such a time-dependent covariate is called “internal” by Kalbfleisch and
Prentice (2002), who pointed out that a survival calculation like Equation (4.1) that uses
covariate values at times after t0 is not appropriate for internal time-dependent covariates.

Letting Z(t) denote the entire covariate path from time 0 to time t, Kalbfleisch and
Prentice (2002) formally defined a time-dependent covariate Z(t) as “external” if for times
0 < u ≤ t, P (T ∈ [u, u+du)|Z(u), T ≥ u) = P (T ∈ [u, u+du)|Z(t), T ≥ u). In other words,
the probability of failure at u is not affected by future values of the covariate path beyond
time u. An equivalent definition states that the path of Z(t) after time u is not affected
by whether or not the subject fails at u. Examples of time-varying external covariates, for
which calculations like Equation (4.1) are valid are: interactions of fixed covariates with
time, as illustrated in the previous paragraph; any covariate whose path is predetermined
irrespective of the status of the individual under study, such as age; and stochastic factors
such as air temperature whose probability laws do not depend on parameters of the risk
model.

A time-varying covariate that is not external is “internal.” Using methods for, e.g.,
the time-dependent Cox model, one can estimate a quantity such as the cumulative haz-

ard
u∫
t0

λk{s; zk(s)}ds. For a given path of the covariate, one can thus get an idea of the

time-dependent covariate’s impact on the hazard. But, as Kalbfleisch and Prentice (2002)
argue, this quantity does not translate into a proper disease risk, because knowing zk(s) at
a time s > t0 implies survival to s. An additional problem arises with time-varying inter-
nal covariates when estimating the Fine-Grey sub-distribution hazard in expression (4.24).
Because a person who dies of a competing cause remains in the risk set for estimating
the sub-distribution for the cause of interest after the time of death, an internal covariate
would not be measurable at the later times, leading to inferential problems, as discussed
by several authors (Latouche et al., 2005; Beyersmann and Schumacher, 2008). Andersen
and Keiding (2012) also question the interpretation of the sub-distribution hazard defined
as the instantaneous risk of failure from cause j at time t among those who are alive or
have died of another cause at or before t. Thus, sub-distribution hazard ratios do not have
an interpretation as ordinary hazard ratios, regardless of whether the covariate is internal
or external.
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10.4.2 Joint modeling of covariates and health outcomes, including multistate models

Rather than treating a time-varying-covariate path as a given, as in the usual time-
dependent covariate analysis, one can attempt to develop joint stochastic models for the
covariate evolution and the competing risk outcomes. Recall the notation δ(s) = 0 if a
person is in the initial state 0 (e.g., alive) at time s and δ(s) = k if a person had transi-
tioned to an absorbing state k (e.g., died of cause k) at or before time s. A joint probability
model of the covariate process {Z(s) : s ≥ 0} and the “state process” {δ(s) : s ≥ 0}
would allow one to make statements about absolute risk that incorporate the future evo-
lution of time-varying covariates. There is an extensive literature, reviewed by Jewell and
Kalbfleisch (1996), Shi et al. (1996), Tsiatis and Davidian (2004), Yu et al. (2004), Ri-
zopoulos (2012) and Proust-Lima et al. (2014), on joint modeling of a longitudinal marker
process with a single survival outcome, i.e., δ(s) = 0 or 1. Such joint models lead to pre-
dictions that are consistent over time, as defined by Jewell and Nielsen (1993). However,
estimation of the joint process parameters often requires numerical integration or simula-
tion techniques, as illustrated by the work of Taylor et al. (2013), who use longitudinal
prostate specific antigen (PSA) measurements following radiation treatment for prostate
cancer to predict the probability of prostate cancer recurrence. Recent work by Elashoff
et al. (2008), Huang et al. (2011) and Andrinopoulou et al. (2014) used joint modeling of
a longitudinal marker with competing times to failure. These papers presented results on
parameter estimates for cause-specific hazards, but not on absolute risks, whereas Blanche
et al. (2015) and Proust-Lima et al. (2016) discussed absolute risk as well. Some limita-
tions of the approach of joint modeling with longitudinal markers include: it is difficult to
check model assumptions, which usually involve latent components, with available data; and
computations are complex and time-consuming, sometimes implemented via expectation-
maximization algorithms or Monte Carlo Markov chain algorithms. Blanche et al. (2015)
discussed time-varying estimation of AUC and the Brier statistic for assessing predictions of
absolute risk with longitudinal marker data. Ferrer et al. (2016) fitted a joint model for the
longitudinal marker (prostate specific antigen) and a general multi-state process, including
some non-absorbing states, to describe transitions following diagnosis of prostate cancer.

If the marker covariate Z(s) is discrete, it can be used to define a state in a Markov
or semi-Markov process that also includes absorbing states, such as cause-specific death.
Such multistate models can be used to compute probabilities like the absolute risk of death
from cause k, in the presence of an evolving internal covariate. To illustrate, we consider
competing risks of leukemia relapse (k =1) or death without relapse (k =3) following bone
marrow transplantation to treat leukemia (Cortese et al., 2013). Here the time scale is time
since bone marrow transplantation (t0 = 0), and we might be interested in the absolute
risk r1(0, τ ;Z = z) of leukemia relapse. If Z only includes fixed covariates, such as type
of leukemia, cause-specific models as in Equation (4.1) or cumulative incidence regression
models could be used to estimate r1(0, τ ;Z = z) or r3(0, τ ;Z = z). A potential complication
of bone marrow transplantation is graft versus host disease (GVHD). The first component
of Z might be a discrete time-varying component Z1(s) = 1 if GVHD has developed at or
before time s and Z1(s) = 0 otherwise. Figure 10.2, adapted from Cortese et al. (2013),
depicts a four state Markov model with two absorbing states, relapse (k = 1) or death
without relapse (k = 3), and with two transient states, in leukemia remission without GVHD
(k = 0) and in leukemia remission with GVHD (k = 2). Cortese et al. (2013) assumed that
the transition rates satisfied the proportional hazards form αlk(t) = αlk,0(t) exp(Z

′
2β2),

where αlk,0(t) is a baseline transition rate from state l to state k and baseline covariates Z2

included age at transplantation and an indicator of whether or not the type of leukemia was
acute myelogenous leukemia (AML). Based on methods described in Andersen et al. (1993)
(Section VII.2), Andersen and Perme (2008) and Beyersmann et al. (2012) for Markov
models, Cortese et al. (2013) estimated the effects of covariates on transition rates and
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the transition rates themselves. In Markov models, the distribution of sojourn times from
the current state to another state depends only on the current state, and not on when a
person arrived in the current state. Semi-Markov models also allow dependence on when
the person arrived in the current state. Using Markov models, Cortese et al. (2013) found
that AML at baseline increased α0,1(t) by 1.75-fold and α2,1(t) by 1.79-fold. Assuming a
Markov model, Cortese et al. (2013) considered times s ∈ {0, 1, 3, 6, 12} in months following
transplantation and projected the absolute risks of relapse and of death without relapse in
the intervals (s, s+ 12], separately for those with GVHD at s and those without GVHD at
s. At s = 0, no patient had GVHD, and the one-year absolute risk of death without relapse
ranged from about 0.05 to 0.5, depending on Z2, whereas risk of relapse ranged from about
0.05 to 0.18. At s = 3 months, the absolute risk of death by month 15 ranged from about
0.05 to 0.5 for those with GVHD and from 0.05 to 0.10 for those without GVHD. Thus,
onset of GVHD greatly increased the absolute risk of death without relapse.

These calculations assumed a Markov model. If the α21(t) and α23(t) also depend on the
time of transition to state 2, then the model would be semi-Markov. Cortese et al. (2013)
outlined calculations of absolute risk under a semi-Markov model but presented no meth-
ods for estimation nor numerical results. The analyses of Cortese et al. (2013) that begin
separately at months 0,1,3,6, and 12 resemble landmark analyses (Section 10.4.3). However,
under the Markov model, estimates of the transition rates and relative risk parameters are
based on all the follow-up information, not just on the information on covariates (non-
absorbing states) up to a given landmark. Moreover, the projections beyond a landmark
time in Cortese et al. (2013) use the Markov assumptions, whereas landmark analyses can
use more general models, conditional on the covariate history up to the landmark time.

Figure 10.2: Multistate model for patients in leukemia remission following bone marrow
transplantation, adapted from G. Cortese, T. A. Gerds, and P. K. Andersen. Comparing
predictions among competing risks models with time-dependent covariates. Statistics in
Medicine, 32(18):3089–3101, 2013.

Cortese et al. (2013) also analyzed the GVHD indicator Z1(s) as a time-dependent
covariate in Cox models for leukemia relapse and for death without relapse. GVHD did not
have a statistically significant effect on leukemia relapse but increased the cause-specific
hazard of death by 2.85-fold. One could plot the corresponding cumulative hazards, but
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not interpret them as corresponding to cumulative incidences of relapse and death without
relapse, because Z1(s) is an internal covariate.

We indicate how r1(0, τ ;Z) can be computed from the model in Figure 10.2, but we
suppress the dependence of the transition rates on Z. There are two ways to be in state 1
at time τ . The first is to transit directly from state 0 to state 1, and the second is to transit
to state 1 via state 2. The first probability is

P01(τ) =

τ∫

0

α01(t) exp[−
t∫

0

{α01(u) + α02(u) + α03(u)}du]dt.

To calculate the second probability, we need the probability of being in state 2 at time τ ,
namely

P02(τ) =

τ∫

0

α02(t) exp[−
t∫

0

{α01(u) +α02(u) +α03(u)}du] exp[−
τ∫

t

{α21(u) +α23(u)}du]dt.

Then the probability of ending in state 1 by transitioning from state 2 is

P021(τ) =

τ∫

0

P02(t)
( τ∫

t

α21(u) exp[−
u∫

t

{α21(v) + α23(v)}dv]du
)
dt.

Finally, r1(0, τ ;Z) = P01(τ) + P021(τ). By replacing integrated transition rates in these
formulas by their empirical estimates and quantities like α01(t)dt by the corresponding
increment in the integrated transition rate estimate, one derives estimates of r1(0, τ ;Z). A
general method for estimating such probabilities is given by Equation (7.2.38) in Andersen
et al. (1993), who also provide a general variance calculations.

These methods generalize the classical competing risk models in Chapters 3 and 4 by
allowing for non-absorbing states in addition to the initial state k=0, and the “state process”
{δ(s) : s ≥ 0} now takes on values k=2 in addition to the values 1 and 3 for absorbing states.
Note that r1(0, τ ;Z) = P (δ(τ) = 1) can no longer be calculated using the simpler formulas
in Chapters 3 and 4.

Klein et al. (1993) used similar methods to study the effects of two time-varying tran-
sient conditions following bone marrow transplantation, namely whether or not GVHD had
developed by time s and whether or not platelets had recovered to normal levels (PR) by
time s. Klein et al. (1993) provided several informative plots for three clinical states, death
without leukemia relapse (D), relapse (R), and relapse-free survival (S). The probabilities
of each of these states at t =2 years (104 weeks) after transplantation were plotted (figure
not shown) as a function of transient state status at various earlier times 0 ≤ s ≤ 15 weeks.
For example, a patient with PR but no GVHD at week s = 13 had a chance of relapse-free
survival at two years of about 0.39 compared to only 0.08 for a patient without PR but
with GVHD at s =13. Another valuable plot described how the probabilities of D, R, and
S changed over time t from s ≤ t ≤ 104 weeks. An example is Figure 10.3, adapted from
Klein et al. (1993). This plot depicts the probabilities of R, D and S beyond week s = 13
among patients who had experienced PR but not GVHD by week 13. The vertical distance
between the top of the plot and the top locus is the probability of R, the distance between
the two loci is the probability of D, and the distance from the bottom locus to the bottom
of the plot is the probability of S. Klein et al. (1993) presented four separate plots of this
type depending on whether or not PR or GVHD had occurred by week s = 13.

Simon and Makuch (1984) used a non-homogeneous Markov model to compare the dis-
tribution of times to death in patients with an initial tumor response to treatment to the
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distribution of times to death in patients with without an initial tumor response. Chapters
IV and VII in Andersen et al. (1993) describe methods for multistate non-homogeneous
Markov models, including covariates, and Andersen and Perme (2008) reviewed this area.
de Wreede et al. (2010, 2011) reviewed available software for fitting such models and de-
scribed the R program, mstate (Putter and Fiocco, 2014), for this purpose. See also Putter
et al. (2007) and Cortese and Andersen (2010). Books by Beyersmann et al. (2012), van
Houwelingen and Putter (2012) and Geskus (2016) provide a careful discussion of multi-
state models, including guidance on how to use available software, not only for classical
competing risk problems, but also for models with transient states. Geskus (2016) describes
computational details and provides programs in SAS and Stata as well as R.

Semi-Markov models allow a sojourn distribution for transition l to k to depend on
the time of entry into state l. Weiss and Zelen (1963) gave a general account, but no
methods for estimation. Several authors have described non-parametric estimation in the
absence of covariates (Lagakos et al., 1978; Meira-Machado et al., 2006; de Una-Alvarez
and Meira-Machado, 2015). Wu (1982) described methods for covariates and piecewise
constant baseline transition rates. Software in R is available with covariates with certain
parametric models (Listwon-Krol and Saint-Pierre, 2015) and with piecewise constant haz-
ards (Jackson, 2011). The R program msm, (Jackson, 2011) also allows for estimation of
Markov models from cross-sectional data at several times (“panel data”) as well as from
continuously observed outcomes. de Wreede et al. (2010) remark that mstate can fit semi-
Markov models using a simulation method (Dabrowska, 1995). Datta and Satten (2001)
showed that the Aalen-Johansen estimates of transition probabilities and the Nelson-Aalen
estimates of cumulative transition rates that were derived for Markov models are also con-
sistent for semi-Markov models, and it is possible that these consistency results also hold
with covariates.

10.4.3 Landmark analysis

Multistate models require that the time-varying covariate be discrete. Although it is pos-
sible to categorize continuous markers and put them into the multistate framework, this
approach may result in loss of information. A more flexible and simpler approach for us-
ing accumulating covariate information is “landmark” analysis. Suppose that Z(t) includes
some time-varying internal and external covariates measured at time t, as well as fixed
baseline covariates. Suppose a leukemia patient without relapse returns for a consulta-
tion at time s and we know the patient’s marker history from time t0 = 0 to s, namely
H(s) = {Z(t) : 0 ≤ t ≤ s}. The landmark method treats all the information in H(s) at
the landmark time s as fixed, and uses standard methods for fixed covariates to estimate
absolute risks for times beyond s. One can use any of the methods in Chapter 4 to compute
absolute risks rk(s, t;H(s)).

For example, Cortese et al. (2013) used landmark times s ∈ {0, 1, 3, 6, 12} weeks and
fit cause-specific hazard models and Fine-Gray models with the “fixed” covariates, age at
baseline, AML status, and the GVHD indicator Z1(s) = z1(s). The cause-specific models
revealed little effect of GVHD on relapse, but GVHD increased the risk of death without
relapse, especially for s = 1, 3 and 6 weeks. Presence of AML at baseline was a strong risk
factor for relapse and for death without relapse. One-year absolute risk projections beyond
the landmark time for relapse and for death without relapse from the multistate Markov
model (Figure 10.2) agreed well with the landmark projections at the various landmark
times, both for the cause-specific hazards landmark model and for the Fine-Gray landmark
model. Although the variances of estimates based on the multistate Markovmodel depend on
the Markov assumption, the estimates of transition probabilities and cumulative transition
rates are consistent, even when the Markov assumption fails (Datta and Satten, 2001). This
may contribute to the good agreement among these various methods.
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Figure 10.3: Probabilities of leukemia relapse, death without relapse, and relapse-free sur-
vival in patients with platelet recovery but no graft versus host reaction in the first 13
weeks following bone marrow transplantation, adapted from J. P. Klein, N. Keiding, and
E. A. Copelan. Plotting summary predictions in multistate survival models - probabilities
of relapse and death in remission for bone-marrow transplantation patients. Statistics in
Medicine, 12(24):2315–2332, 1993.

Some advantages of the landmark method include the availability of software for absolute
risk modeling with fixed covariates and the extreme flexibility of modeling that is permitted.
However, a landmark analysis at time s only includes individuals who survived and remained
in follow-up to time s, which is a subset of the original population. This should be kept in
mind when projecting risk for members of another target population.

Landmarking has been used in the clinical literature at least since the 1980s. For example,
Anderson et al. (1983) recommended a landmark analysis to determine whether cancer
patients who survived to time s after treatment and who had a tumor response to treatment
by time s had a better prognosis than those who survived to time s without a tumor
response. Research on landmarking for risk prediction has been active recently, following
the work by Zheng and Heagerty (2005) and van Houwelingen (2007). van Houwelingen
(2007) pointed out the practical advantages of landmarking and proposed methods for
obtaining smooth landmark projections over a sequence of landmark times. Because each
landmark time s induces a different risk model, van Houwelingen (2007) embedded the s-
specific covariate parameters and baseline transition rates in a larger flexible parametric
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class of models, thus smoothing the s-specific quantities across landmark times. Zheng
and Heagerty (2005) allowed the model coefficients to vary not only with s but also with
times t following the landmark time s, thus relaxing proportional hazards assumptions.
Papers extending the method to competing risks and comparing it to multistate modeling
followed (van Houwelingen and Putter, 2008; Cortese and Andersen, 2010; van Houwelingen
and Putter, 2012; Cortese et al., 2013). Recent work (Nicolaie et al., 2013a) implemented
landmark smoothing techniques for competing risks. Another innovation (Nicolaie et al.,
2013b) was to model the indicator of whether or not an individual at risk at landmark
time s failed of cause k at or before time s + τ for fixed τ . Following ideas in Andersen
et al. (2003) and Klein and Andersen (2005), Nicolaie et al. (2013b) introduced a general
class of regression models for this Bernouli outcome and replaced censored observations by
“pseudo-observations,” which are like jack-knife pseudo-values, to fit models with censored
data. Other related flexible approaches for fixed τ are based on time-varying coefficients
and time-varying effects of an intermediate outcome during the interval [0, s] (Parast et al.,
2011, 2012).

A special issue arises in randomized clinical trials where interest centers on the effect of
the fixed covariate Z2, an indicator of which treatment was randomly assigned. If one uses
marker information at subsequent times s beyond the time of randomization, t0 = 0, then
the effect of Z2 can be obscured. Suppose, for example, that the effect of treatment is me-
diated by a surrogate marker, Z1(s). If this marker is a perfect surrogate, then conditioning
on it will eliminate the association of Z2 with the clinical outcome, for example survival
time (Prentice, 1989). Likewise inclusion of Z1(s) in a regression model that also includes
Z2 will attenuate the effect of Z2, if the effect of Z2 is partly mediated through Z1(s). If
one performs a landmark analysis at time s but ignores mediating marker, Z1(s), the effect
of Z2 will not be distorted by such mediation effects, but the analysis of times t beyond
time s is no longer fully protected by the randomization, because the subset of individuals
still disease-free at time s may have acquired treatment imbalances on prognostic factors.
For example, suppose overall survival at t = 10 years is the same on treatments Z2 = 1 or
0, and that following randomization the distribution of risk factors is the same on the two
treatments. Suppose, however, that on treatment 1 only the sickest patients die early, and
before time s = 1 year, whereas on treatment Z2 = 0 deaths occur in all risk levels before s.
Then the population of survivors to the landmark time s = 1 year will have a more favor-
able distribution of risk factors on treatment 1 than on treatment 0. Thus the estimate of
treatment effect from year s to year 10 will be biased compared to the estimate of treatment
effect from randomization to year 10 that would have been observed without landmarking.

10.5 Risk model applications for counseling individuals and for public health
strategies for disease prevention

In earlier chapters we touched on some of the applications of risk models for counseling
individuals and for public health strategies for disease prevention. Here we summarize those
applications and also introduce new material on two applications: assessing the potential
reductions in population absolute risks from interventions to reduce modifiable risk factors;
and more efficient allocation of prevention resources.

10.5.1 Use of risk models in counseling individuals

10.5.1.1 Providing realistic risk estimates and perspective

Having a realistic estimate of risk can assist in clinical management for prevention or early
disease detection. The perspective gained from a realistic assessment of risk can assist in
some decisions, even without a formal risk-benefit analysis. Indeed, one of the motivations
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for developing BCRAT was that some women seen in clinics for counseling women with
a strong family history of breast cancer greatly overestimated their risks. For example, a
woman might assume that if her mother had breast cancer she had a 50% chance of getting
it, whereas a more realistic lifetime risk might be 18%. On the basis of such misperceptions,
she might decide to have a drastic preventive intervention, such as bilateral prophylactic
mastectomy.

Another example concerns whether or not a woman in her forties should have an-
nual mammographic screening. There has been continuing debate on this issue. For ex-
ample, the American Cancer Society recommended annual screening for women begin-
ning at age 45 years, but said that women aged 40-44 should have the opportunity for
screening (Oeffinger et al., 2015). The U.S. Preventive Task Force recommended biennial
screening for women aged 50–74 years, but not in their forties (USPTF, 2009). How-
ever, they said that the choice for women in their forties should be an individual deci-
sion, and more recently stressed that such women should weigh the harms and benefits
(https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/
breast-cancer-screening1?ds=1&s=mammography). There is consensus that women aged
50–74 should be screened regularly. It seems reasonable, therefore, that a woman in her
forties whose breast cancer risk exceeds that of a 50-year-old woman without risk factors
should consider screening, as argued more formally by Gail and Rimer (1998), Gail and
Schairer (2010) and Wu et al. (2012). Indeed, Wu et al. (2012) found that 73.6% (11.6
million) of non-Hispanic white women and 30.9% (0.85 million) non-Hispanic black women
in their forties in the U.S. had risks above the 50-year old baseline risk and concluded that
millions of women in the U.S. in their forties might benefit from mammography screen-
ing as much as a low-risk 50-year-old, for whom screening is recommended. van Ravesteyn
et al. (2012) reported that women in their forties with twice the average risk had the same
harm-benefit ratio as women aged 50–74.

There is increasing use of absolute risk to manage preventive interventions, rather than
basing decisions on a single factor, such as age or cholesterol level. Pashayan et al. (2011)
compared assigning all women aged 47–79 years to screening mammography (these women
have a 10-year risk of invasive breast cancer of 2.5%) to risk-based assignment to screening
of women aged 35–79 years whose estimated 10-year risk was at least 2.5%. The estimated
risk was based on age and a polygenic risk score derived from 18 SNPs. Pashayan et al.
(2011) found with this risk model that one would detect 14% fewer cases but need to give
mammograms to 24% fewer women. In addition to the economic advantage to the health care
system of screening 24% fewer women, this risk-based screening reduces the inconvenience of
mammography and adverse consequences from false positive mammographic screening tests.
A model that also included mammographic density and other epidemiologic risk factors
would do even better. In Section 10.5.2.3 we consider using risk models to assign women to
screening mammography only if their risk is very high, such as in the top 10% of population
risk. This approach does not work well unless risk models are very discriminating (i.e.,
have high AUC ), however, because too many cases will arise in women with lower risk.
As another example, guidelines for the use of statins to prevent cardiovascular disease rely
heavily on 10-year pure risk (Expert Panel on Detection and Evaluation and Treatment of
High Blood Cholesterol in Adults, 2001; Stone et al., 2014). Katki et al. (2013) advocated
management strategies for women at risk of cervical cancer based on estimated risk of a
pre-neoplastic lesion, CIN3, and Kovalchik et al. (2013b) recommended risk-based targeting
of low-dose computed tomographic screening for lung cancer. These recommendations are in
line with the principle that an intervention is advisable if risk exceeds a particular threshold.
This idea is formalized in Equation (6.29) that demonstrates that the choice of threshold
reflects the risks and benefits of the intervention. When breast cancer risks are very high,
as in women carrying mutations in the breast cancer genes BRCA1 or BRCA2 or in the

https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/breast-cancer-screening1?ds=1&s=mammography
https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/breast-cancer-screening1?ds=1&s=mammography
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p53 gene, the risks can exceed high thresholds that reflect substantial adverse effects of
intervention, such as prophylactic mastectomy or salpingo-oophorectomy (Chapter 9).

10.5.1.2 More formal risk-benefit analysis for individual counseling

Preventive interventions, such as the use of tamoxifen or raloxifene, can have favorable
and unfavorable effects on health outcomes, as described in Sections 6.6.2.2 and 7.4.6. In
particular, tamoxifen reduces the risks of breast cancer and hip fractures but increases the
risks of endometrial cancer, stroke and pulmonary emboli, which we consider to be severe
adverse events. If the patient is willing to associate equal costs (weights) with each of these
events, and half those costs with less severe outcomes (in situ breast cancer, for which
tamoxifen reduces risk, and deep vein thrombosis, for which tamoxifen increases risk), then
one can estimate the net benefit (which may be negative) as in Equation (6.40) to assist
in the counseling process. It would also be possible to calculate a net benefit using the
patient’s preferred weights or costs for the various outcomes. When interventions affect
multiple outcomes, there is no single risk threshold for e.g breast cancer risk that applies to
all women. The net benefit is positive for tamoxifen for a young woman with little baseline
risk of endometrial cancer, stroke and pulmonary emboli at a 5-year invasive breast cancer
risk threshold of 1.5%. In contrast, a woman in her fifties, whose baseline risks of endometrial
cancer, stroke and pulmonary emboli are higher, would need a 5-year breast cancer risk of
4.0% or greater to have a net benefit from tamoxifen (see Table 10 in (Gail et al., 1999a)).

Freedman et al. (2011) compared the net benefit profiles of raloxifene versus tamoxifen
for breast cancer prevention in woman aged 50 to 79 with uteri (and therefore at risk of
endometrial cancer). We show results from (Freedman et al., 2011) in Table 10.1. Tamoxifen
only has a net benefit for women in their fifties with 5-year breast cancer risks ≥ 4.0%, and
no net benefit in women aged ≥ 60 years. In contrast, raloxifene, which does not increase
endometrial cancer risk, has a net benefit for a much broader set of breast cancer risks and
ages (Table 10.1). Because raloxifene can be applied beneficially to a larger proportion of
the population, it has greater preventive potential. In women who have had a hysterectomy
and are therefore not at risk of endometrial cancer, the risk profiles are similar for tamoxifen
and raloxifene, and the net benefit is positive for even more women than shown in Table
10.1 (Freedman et al., 2011).

10.5.2 Use of risk models in public health prevention

In addition to their uses in individual counseling, absolute and pure risk models have ap-
plications in public health programs to prevent disease (Gail, 2011), as described next.

10.5.2.1 Designing intervention trials to prevent disease

Models of the absolute risk of disease incidence play a key role in designing trials to test
preventive interventions. A requirement for such trials is adequate statistical power. Under
the proportional hazards assumption (Cox, 1972), the power of such trials depends on
the number of incident cases, whose expectation is the sum of the absolute risks of the
trial participants. Using BCRAT (model 2 in Costantino et al. (1999)), statisticians at the
National Adjuvant Breast and Bowel Project (NSABP) estimated the numbers of women
and duration of follow-up needed to observe the required number of incident breast cancers
for the Breast Cancer Prevention Trial (P-1 Trial) of tamoxifen (Fisher et al., 1998) and,
later, for the NSABP Study of Tamoxifen and Raloxifene (STAR or P-2) trial. The risk
model accurately predicted the numbers of incident breast cancers in both these trials.

In addition to power considerations, risk models can play a role in defining eligibility for
a trial. For example, in designing the P-1 trial, it was known that tamoxifen had adverse
effects. The investigators therefore only wanted to enroll women who had a high enough
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Table 10.1: Net benefit indices for tamoxifen and raloxifene chemoprevention by level of 5-
year projected risk for invasive breast cancer for white non-Hispanic women with a uterus*

Tamoxifen Raloxifene
5-year) 50–59 60–69 70–79 50–59 60–69 70–79
risk (%) years years years years years years
1.5 −133 −310 −325 21 −11 −15
2.0 −105 −283 −298 43 11 7
2.5 −78 −255 −271 65 33 29
3.0 −51 −228 −244 86 55 51
3.5 −25 −202 −217 108 76 71
4.0 3 −175 −190 128 97 93
4.5 29 −148 −164 150 119 115
5.0 56 −121 −137 172 140 136
5.5 83 −95 −111 193 161 157
6.0 109 −69 −84 214 183 179
6.5 135 −42 −58 236 204 199
7.0 162 −15 −32 256 225 221

*Adapted from A. N. Freedman, B. B. Yu, M. H. Gail, J. P. Costantino, B. I. Graubard,
V. G. Vogel, G. L. Anderson, and W. McCaskill-Stevens. Benefit/risk assessment for breast
cancer chemoprevention with raloxifene or tamoxifen for women age 50 years or older.
Journal of Clinical Oncology, 29(17):2327–2333, 2011. Freedman et al. (2011) computed
life-threatening equivalent events by assigning a weight of 1.0 to life-threatening events
(invasive breast cancer, hip fracture, endometrial cancer, stroke, and pulmonary embolism)
and a weight of 0.5 to severe events (in situ breast cancer and deep vein thrombosis).
The net benefit index is the expected number of life-threatening equivalent events in 5
years without chemoprevention in 10,000 such women minus the expected number of life-
threatening equivalent events if chemoprevention is used.

risk of breast cancer to have a potential benefit from participation. They chose a 5-year
risk of incident invasive breast cancer threshold of 1.66%, which was the risk in an average
60-year-old woman, who they thought might benefit. In order for a woman younger than
age 60 to participate, her absolute 5-year risk, calculated from BCRAT had to equal or
exceed 1.66%.

10.5.2.2 Assessing absolute risk reduction in a population from interventions on
modifiable risk factors

Models of absolute risk with modifiable risk factors afford an opportunity to assess the
potential impact on absolute risk in a population of interventions that reduce or eliminate
such risk factors. For example, Petracci et al. (2011) developed a breast cancer risk model
for Italian women that included age, six non-modifiable risk factors (age at menarche, age
at first live birth, education, occupational activity, family history, and biopsy history) and
three modifiable risk factors (alcohol consumption, leisure physical activity, and BMI). They
calculated average absolute risks of invasive breast cancer in the population in the absence of
interventions and in the presence of hypothetical interventions that changed the modifiable
risk factors to their lowest risk levels. Pfeiffer and Petracci (2011) devised variance formulas
for these criteria based on influence functions.

We now illustrate these criteria with the BC2013 model for breast cancer, that also
incorporates information on several modifiable risk factors, including alcohol consumption,
hormone replacement therapy use and BMI, in addition to several non-modifiable ones. To
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assess the impact of changing modifiable risk factors, Z2, we define the risk reduction as

d(Z1,Z2) = {r(Z1,Z2)− r(Z1,Z20)}, (10.1)

where r denotes the absolute risk estimate, Z1 the non-modifiable factors, and Z20 the
modifiable risk factors set to their lowest risk levels (Petracci et al., 2011; Pfeiffer and
Petracci, 2011). The corresponding fractional risk reduction is

fd(Z1,Z2) = {d(Z1,Z2)/r(Z1,Z2)}. (10.2)

To evaluate the effects of risk modification at the population level for a given population,
the risk reduction and fractional risk reduction are averaged over the entire population or
within subgroups. Subgroups can be defined by particular risk factor combinations or by
using the Lorenz curve to identify risk factor combinations that confer high risk and account
for a given percentage of total population risk. The mean risk reduction for a specific subset
S is calculated from the formula:

d̄(S) = E(d(Z1,Z2)|(Z1,Z2) ∈ S) =∫
Z1,Z2

{r(Z1,Z2)− r(Z1,Z20)}I{(Z1,Z2) ∈ S}dF (Z1,Z2)∫
Z1,Z2

I{(Z1,Z2) ∈ S}dF (Z1,Z2)
, (10.3)

where I{(Z1,Z2) ∈ S} = 1 if (Z1,Z2) ∈ S and 0 otherwise. When S corresponds to the
whole population, then (10.3) reduces to

d̄ = E{d(Z1,Z2)} =

∫

Z1,Z2

{r(Z1,Z2)− r(Z1,Z20)}dF (Z1,Z2). (10.4)

Similarly, the mean fractional risk reduction in subset S is

mfrr(S) = E{fd(Z1,Z2)|(Z1,Z2) ∈ S}. (10.5)

A quantity that is more analogous to attributable risk is the fractional mean risk reduction
in subset S,

fmrr(S) = d̄(S)/E{r(Z1,Z2)|(Z1,Z2) ∈ S}. (10.6)

Table 10.2 shows the effects of the hypothetical interventions that set modifiable risk
factors to their lowest risk levels on 20-year average absolute risk of invasive breast cancer
in 50-year-old women in the NHS cohort. Calculations are shown separately for all such
women, for those with a history of breast cancer in at least one mother, sister or daughter,
and for those with risks in the top 10% of risks in the population. Among all such women,
the average absolute 20-year risk is 5.86% without intervention. Intervention reduces this
risk by 1.09% to 4.77%. The mean fractional risk reduction is 17.3%, close to the fractional
mean risk reduction, 18.6%. The absolute risk reduction is 1.51% in women with affected
first-degree relatives and 2.50% for women whose risks are in the top 10% of risks. The
average risk for women above the 90th decile of risk is 9.20% without intervention and
9.20− 2.50 = 6.7% with intervention, corresponding to a a mean fractional risk reduction
of 26.8% and a fractional mean risk reduction of 27.2%.

The fractional mean risk reduction is analogous to attributable risk and ranges from
18.6% for the entire population to 27.2% for those above the 90th decile of risk, a relative
increase of 46%. The average absolute risk reduction is smaller but increases from 1.09%
to 2.50%, a relative increase of 129%. The relatively greater absolute risk reduction in
women with risks above the 90th decile of risk is a consequence of two features. First
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such women are in the high risk group partly because they are enriched with modifiable
risk factors, that can be reduced by intervention. Second, women at high risk because of
non-modifiable risk factors will also experience a larger risk reduction from intervention
than women with few non-modifiable risk factors and at lower risk because there are no
interactions between modifiable and non-modifiable risk factors in the BC2013 model. Thus
the same proportional decrease in risk from intervention will produce a greater absolute
reduction in risk among the women at higher risk by virtue of non-modifiable risk factors.
Analyses of absolute risk reduction give a different perspective on the public health impact
of a hypothetical intervention than does attributable risk or fractional reduction in average
absolute risk. Note that even though the absolute risk reduction is greater in the 10% of
the women at highest risk, more disease could be prevented by intervening on the entire
population because 1.09% is greater than 0.1× 2.50%.

Table 10.2: Potential reductions in the population risk of invasive breast cancer risk over 20
years from eliminating alcohol consumption, hormone replacement therapy use and BMI>25
kg/m2 in N = 2447 50-year-old women in the NHS cohort

Mean ab-
solute risk
without in-
tervention
(%)

Reduction in
mean abso-
lute risk from
intervention
(%)

Mean frac-
tional risk
reduction
(%)

Fractional
mean risk
reduction
(%)

Entire population
(N = 2447)

5.86 1.09 17.3 18.6

Women with at least
one affected mother,
sister or daughter
(N = 295)

7.97 1.51 17.7 19.0

Women with risk in
the top 10% of risks
(N = 246)

9.20 2.50 26.8 27.2

It is important to keep in mind the assumptions implicit in such calculations. First, we
assumed that there were effective interventions that could reduce exposure to modifiable
risks factors. It is difficult to define effective interventions that affect lifestyle factors such as
alcohol consumption. Second, we have assumed that the population would accept and adhere
to the intervention. Third, we have assumed that the effect of the intervention would be
equal to the exposure effects that had previously been estimated from observational data.
Unfortunately, interventions that seem to be well justified by observational data are not
always beneficial when tested in randomized intervention trials (e.g., (Omenn et al., 1996;
Manson et al., 2003)). However, at least these calculations indicate the absolute burden
of disease from certain risk factors in the population, whether or not the hypothetical
interventions achieve the calculated preventive effects.

10.5.2.3 Implementing a “high risk” intervention strategy for disease prevention

Designing intervention trials and assessing the potential effects on population absolute risk
of reducing modifiable risk factors require well calibrated risk models, but not high dis-
criminatory accuracy. Thus models like BCRAT or BC2013 can still be useful in these
applications. Higher discriminatory accuracy is needed for the following applications.

In his book, The Strategy of Preventive Medicine, Rose (1992) distinguished between
the “general population” prevention strategy and the “high risk” prevention strategy. If an
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intervention is safe enough, one can apply it to the entire population (general population
strategy); this approach has the greatest potential for disease prevention. For example, if
one could get everyone to lower his or her blood pressure by 2 mmHg by taking a walk each
day and eating less salt, one could reduce the incidence of myocardial infarction more than
by identifying the members of the population with very high blood pressure and treating
them. The general population strategy prevents more disease than the high risk strategy
because it applies to many more people and because the risk of myocardial infarction is
dispersed throughout the population, and not only in those with very high blood pressure.

Nonetheless, sometimes one is forced to use the high risk strategy of targeting the inter-
vention to a subset of the population at elevated risk. If the intervention has adverse effects,
one should only use it on those members of the population whose benefit from reducing
the targeted disease outweighs the risks of the adverse effects. This requirement leads to
restricting the intervention to a subset of the population with elevated risk of the targeted
disease. Resource limitations can also be a reason to use the high risk strategy.

The population impact of the high risk strategy on the targeted disease depends on
how much of the total targeted disease burden is concentrated in the high risk subgroup
and on the effect of the intervention in reducing the incidence of the targeted disease. If
the intervention has few adverse effects, the high risk subgroup can be larger, increasing
the proportion of disease that is targeted. If risk models are highly discriminating, they
can concentrate those most likely to develop disease in the subgroup, thereby increasing the
proportion of the total disease burden that is targeted in the subgroup, called the proportion
of cases followed, PCF , in Section 6.5.

To illustrate these points, consider the data on life-threatening events in one year in
100,000 white women aged 50–59 years and with uteri (Table 10.3) (Fisher et al., 1998; Gail
et al., 1999a; Gail, 2009b). If none get tamoxifen, 589.6 life-threatening events are expected,
including 246.6 invasive breast cancers. If all get tamoxifen, the numbers of breast cancers
and hip fractures are cut nearly in half, but the expected numbers of women with endome-
trial cancer, stroke and pulmonary emboli are increased so much that the expected total
number of life-threatening events is 833.5. Thus one cannot employ the general population
strategy of giving all women in that age group tamoxifen. The net expected number of
life-threatening events prevented by tamoxifen (Gail, 2009b),
r × 105(1 − .51) + 101.6(1− .55) + 81.4(1− 4.01) + 110.0(1− 1.59) + 50.0(1− 3.01),
depends on the absolute risk of breast cancer, r. For this number to be positive, r needs
to exceed the threshold r∗ = 774.3 × 10−5. Therefore, in order for a white woman in her
fifties to have a net benefit from tamoxifen, her breast cancer risk must be very high. Only
about 1% of the population has a risk greater than r∗. Thus the “high-risk” portion of
the population is very small, and an intervention that focuses only on high risk women is
unlikely to prevent much disease.

As calculated in Gail (2009b), the expected number of life-threatening events is reduced
very slightly by giving tamoxifen only to those women with risks above 774.3 per 105

(Table 10.4), unless the risk model has very high discriminatory power. For example, giving
tamoxifen only to women with BCRAT risk >r∗ = 774.3 × 10−5 reduces the expected
number of life-threatening events by only 1.4 to 588.2. A model that also includes 7 single
nucleotide polymorphisms, BCRAT+7 SNPs, has somewhat higher AUC = 0.632. However,
giving tamoxifen only to women whose risk with BCRAT+7 SNPs exceeds r∗ = 774.3 ×
10−5 only reduces the expected number of life-threatening events by 1.6 events, to 587.8.
Adding additional SNPs and mammographic density to the model may increase AUC to
nearly 0.7 (Garcia-Closas et al., 2014). Even this hard-to-achieve increase in discriminatory
accuracy would not reduce the number of life-threatening events by much. A model with
perfect discriminatory accuracy, however, would identify the 246 women destined to develop
invasive breast cancer (Table 10.3) and target the tamoxifen intervention on them. Because
so few women would receive tamoxifen, there would be few life-threatening toxicities, yet
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Table 10.3: Numbers of life-threatening events in one year in 100,000 white women aged
50–59 years with uteri, if none get tamoxifen and if all get tamoxifen

Number of events Number of events
Relative if none get if all get

Health outcome risk tamoxifena tamoxifen
Invasive breast cancer 0.51 246.6 125.8
Hip fracture 0.55 101.6 55.9
Endometrial cancer 4.01 81.4 326.4
Stroke 1.59 110 174.9
Pulmonary embolism 3.01 50 150.5
Total 589.6 833.5

a Relative risk compares women given tamoxifen to women given placebo.
From M. H. Gail. Value of adding single-nucleotide polymorphism genotypes to a breast
cancer risk model. Journal of the National Cancer Institute, 101(13):959–963, 2009. See also
Fisher et al. (1998) and Gail et al. (1999a).

the number of breast cancers would be nearly cut in half, resulting in an expected reduction
of 119.9 life-threatening events to 469.7 (Table 10.4).

This example illustrates that the high risk prevention strategy may have little public
health impact if the high risk subset contains a small proportion of the women who will
develop breast cancer, either because the subset is small or because available risk models
are not discriminating enough to classify most of the women destined to develop breast
cancer as high risk. Of course, the preventive intervention will also have little public health
impact if the intervention has a small preventive effect in those who receive it (Janes et al.,
2014).

One can think of several approaches to improve the public health impact of the high
risk prevention strategy. The most promising is to find safer interventions that can be
applied beneficially to a broader high risk subset. For example for women with uteri in
their fifties, raloxifene could be used more widely than tamoxifen (Table 10.1). For the
example in Table 10.4, 4% of the population would be with treated with raloxifene and would
not be at increased endometrial cancer risk, resulting in a reduction of 21 expected life-
threatening events, compared to only 1.4 for tamoxifen. For women without uteri, tamoxifen
and raloxifene have similar net benefit profiles (Freedman et al., 2011). A second approach
is to find interventions with stronger preventive effects on the targeted disease. A third
approach is to develop more discriminating risk models to help concentrate those destined
to develop the targeted disease in the subset at high risk, but such progress is difficult.
Another approach is to build risk models not only for the targeted disease, but for the other
endpoints affected by the intervention (Gail, 2012). For example, if one had a model for
stroke risk in the absence of intervention, as well as a model for invasive breast cancer risk,
one could assess net benefit more accurately and prevent more life-threatening events. In
Gail et al. (1999a), one only used age and race to estimate stroke risk, but calculations in
Gail (2012) suggest that appreciable improvements can be achieved by modeling both stroke
and breast cancer risk. Similarly, a recently developed absolute risk model for endometrial
cancer (Pfeiffer et al., 2013) could help identify women who stand to benefit from tamoxifen
treatment.

Screening for disease can also be regarded as an intervention, or, at least as the ini-
tial part of an intervention that also entails further diagnostic procedures and treatments.
Screening for persons at high risk of prevalent disease has risks and benefits, because false
positive and false negative screens each have adverse consequences. Risk models usually
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Table 10.4: Numbers of life-threatening events expected in one year in 100,000 white women
aged 50–59 years with uteri, with tamoxifen given according to risk-based criteria*

Tamoxifen assignment strategy Expected num-
ber of life-
threatening
events

Reduction in
expected life-
threatening
events

No tamoxifen 589.6
BCRAT risk >r∗ = 774.3× 10−5 588.2 1.4
BCRAT+7 SNPs risk >r∗ 587.8 1.6
Perfect risk model risk >r∗ 469.7 119.9

*BCRAT is the National Cancer Institute’s Breast Cancer Risk Assessment Tool
(http://www.cancer.gov/bcrisktool/). The risk model BCRAT+7 SNPs is described in Gail
(2008a, 2009b). The perfect risk model assigns all women who are destined to develop breast
cancer in one year to the high risk group (risk >r∗) and all other women to its complement
(risk ≤ r∗).

need to have high discriminatory accuracy to be useful in deciding who should be screened
and who not (Chapter 6). In screening applications, the risk model would ideally predict the
probability of screen-detectable prevalent disease, not the absolute risk of disease incidence.
However, if prevalence is proportional to the risk of incidence, risk models for incidence can
be used to guide screening recommendations.

A key function for evaluating screening is the proportion of cases in the top p × 100
percent of the population at highest risk, called the proportion of cases followed or PCF (p)
(Pfeiffer and Gail, 2011) in Section 6.5. Park et al. (2012) studied the potential discrim-
inatory accuracy of a breast cancer risk model that included epidemiologic factors and
“foreseeable” SNPs that would be discovered by a genome-wide association study (GWAS)
three times as large as the largest GWAS to date. For example, for breast cancer, the
largest GWAS had the equivalent of 18,163 cases and controls, and foreseeable SNPs would
be based on an hypothetical study of 54,489 cases and controls. They estimated an AUC of
0.67 from such a model. Suppose one assessed the risks of every woman in the population
with this model. Using this risk model one could intervene (by giving a screening mammo-
gram) only on the 10% of the population at highest risk. Park et al. (2012) calculated that
PCF (p = 0.1) = 0.255. Thus, this risk decision rule would give screening mammography
to 25.5% of the cases in the entire population, but 74.5% of the cases would not benefit
from screening mammography because they are not in this high risk subgroup. The positive
predictive value of being in the high risk subgroup is PPV = πPCF (p)/p, where π is the
disease prevalence. This formula highlights the role of PCF (p) in determining a key pa-
rameter for screening and high risk prevention strategies, the PPV . For women aged 50–54
years, the prevalence of screen detectable breast cancer was estimated as 0.0031, resulting
in PPV = 0.0031×0.255/0.1 = .0079. The ratio of women without breast cancer to women
with breast cancer in the high risk subgroup is (1 − PPV )/PPV = 126. Thus, one needs
to give mammographic screens to 127 women to detect one breast cancer in women aged
50–54 years at highest (top 10%) risk. In women aged 40–44, whose prevalence of screen
detectable breast cancer is only 0.0016, (1−PPV )/PPV = 244 instead of 126 for women in
the top 10% of risk. Clearly, risk-based mammographic screening that focused on women in
the top 10% of breast cancer risk would miss many women with cancer, even with the best
risk models likely to be available in the foreseeable future, and many of those who would be
given mammograms under such a plan would not have breast cancer. More discriminating
models are needed for this application.

http://www.cancer.gov/bcrisktool/
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10.5.2.4 Allocating preventive interventions under cost constraints

Preventive resources are sometimes limited, either because the equipment and personnel
are not available or because of cost constraints. In these circumstances, one strategy is to
assign the preventive interventions to those at highest risk. For example, magnetic resonance
imaging of breast tissue has been recommended only for women whose lifetime risk of breast
cancer exceeds 20% (Saslow et al., 2007), partly because the resource is expensive and in
short supply. In what follows we consider a setting in which there is only enough money to
provide screening mammography to half the population. If one assigns the mammograms at
random, one expects to be able to achieve about 50% of the population reduction in breast
cancer mortality as could be achieved by giving all women mammograms (which reduces
breast cancer mortality by 15% or more (Pace and Keating, 2014)). If one were to first
assess breast cancer risk and then allocate mammograms to women in decreasing order of
risk until the money ran out, one could hope to achieve a higher proportion of the maximum
potential benefit than the 50% from random allocation. This assumes, however, that the
cost of risk assessment is small compared to the cost of intervention.

Gail (2009a), using the Lorenz curve of the population risk distribution, showed that
the maximum benefit from risk-based allocation of preventive resources could be obtained
by maximizing

g × PCF (p) + (1 − g)m (10.7)

subject to the cost constraint

gk + gp+ (1− g)m ≤ h. (10.8)

In these expressions, g is the proportion of the population given a risk assessment, k is the
ratio of the cost of risk assessment to the cost of the intervention (in our case mammographic
screening), p is the proportion of those with risk assessment who have the intervention in
descending order from highest to lowest risk, m is the proportion of those not given a risk
assessment who were randomly allocated to receive a mammogram, and h is the ratio of
the money available to the money required to give mammograms to all women (in our case
h =0.5). Choices of g, p,m correspond to various strategies. For example, g =1 implies giv-
ing a risk assessment to all. We assumed k =0.02 and used PCF (p) curves corresponding
to the risk model BCRAT and to the risk model BCRAT+7SNPs, solved the optimization
problems, and calculated the optimal proportions of benefit achieved from Equation (10.7).
The optimal strategy assigns g =1, p =0.48, and m =0 for both risk models (Table 10.5).
Only 100p =48% of the women get mammograms, because some of the money was used
for risk assessment. BCRAT captures 63.2% of the potential benefits of mammography,
and BCRAT+7SNPs captures 66.7%. These are both considerable improvements compared
to random allocation. Even more of the potential benefit could be captured by more dis-
criminating risk models, but if the cost of risk assessment is too high, it cannot be used
for allocation. For models like BCRAT or BC2013, if the cost of risk assessment exceeded
about 20% of the cost of the intervention, random allocation would be preferred.

Such calculations indicate that there is a potential public health benefit for risk-based
allocation of constrained prevention resources. However, these calculations are based on sev-
eral assumptions, and sensitivity analyses are needed to gauge the benefit more realistically.
In particular, it was assumed that those who come for risk assessment are a random sample
of the population, and that those who are offered the intervention will take it.
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Table 10.5: Proportion of lives saved with risk-based allocation of mammograms, compared
to giving mammograms to all women, if there is only enough money to give mammograms
to half the women

Risk model Optimal (g, p,m)a Proportion of
lives saved com-
pared to giving
mammograms
to all women

Percent
improve-
ment versus
random
allocation

Random allocation
with no risk assess-
ment

0.500

BCRAT (1, 0.48, 0) 0.632 26.4%
BCRAT+7SNPs (1, 0.48, 0) 0.667 33.4%

aAbbreviations: g is the proportion of the population given a risk assessment; p is the
proportion of those with risk assessment given a mammogram in descending order of risk;
m is the proportion of those without a risk assessment who are given a mammogram.
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