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Preface

The Pan American Advanced Studies Institute (PASI), Topics in Percolative and
Disordered Systems, took place in January 2012 in Santiago de Chile and Buenos
Aires. It brought together mathematicians, physicists and advanced students from
Latin America, North America and beyond for an intense 2-week period focused on
current research problems in some of the mainstream areas of Probability Theory
and Statistical Physics, such as the stochastic Ising model, random walks in random
media, the KPZ universality class and interacting particle systems. This volume con-
tains a selection of five peer-reviewed articles that are representative of the topics
discussed in the PASI. Two survey articles are presented—one concerns the KPZ uni-
versality class (Quastel and Remenik) and the other treats random walks in random
media (Drewitz and Ramírez). Other articles present new results about the scal-
ing limit of the stochastic Ising model (Lacoin) and about its coarsening behaviour
(Damron, Kogan, Newman and Sidoravicius) and a review of exact computational
methods to compute the current of particles through a given site in the asymmetric
simple exclusion process (Corwin).
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Two Ways to Solve ASEP

Ivan Corwin

Abstract The purpose of this chapter is to describe two approaches to compute exact
formulas (which are amenable to asymptotic analysis) for the probability distribution
of the current of particles past a given site in the asymmetric simple exclusion process
(ASEP) with step initial data. The first approach is via a variant of the coordinate
Bethe Ansatz and was developed in work of Tracy and Widom in 2008–2009, while
the second approach is via a rigorous version of the replica trick and was developed
in work of Borodin, Sasamoto and the author in 2012.

1 Introduction

Exact formulas in probabilistic systems are exceedingly important, and when a new
one is discovered, it is worth paying attention. This is a lesson that I first learned
in relation to the work of Tracy and Widom on the asymmetric simple exclusion
process (ASEP) and through my subsequent work on the Kardar–Parisi–Zhang (KPZ)
equation. New formulas can enable asymptotic analysis and uncover novel (and
universal) limit laws. Comparing new formulas to those already known can help lead
to the realization that certain structures or connections exist between disparate areas
of study (or at least can suggest such a possibility and provide a guidepost).

The purpose of this chapter is to describe the synthesis of exact formulas forASEP.
There are presently two approaches to compute the current distribution for ASEP on
Z with step initial condition. The first (called here the coordinate approach) is due
to Tracy and Widom [26–28] in a series of three papers from 2008–2009, while the
second (called here the duality approach) is due to Borodin, Sasamoto and the author
[5] in 2012.

The duality approach is parallel to an approach (also developed in [5]) to study
current distribution for another particle system, called q-TASEP. Via a limit transi-
tion, the duality approach becomes the replica trick for directed polymers. In fact,
ASEP and q-TASEP should be considered as integrable discrete regularizations of the
directed polymer model in which the replica trick (famous for being non-rigorous)
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2 I. Corwin

becomes mathematically rigorous. Underlying the solvability of q-TASEP and di-
rected polymers is an integrable structure recently discovered by Borodin and the
author [4] called Macdonald processes (which in turn is based on the integrable sys-
tem surrounding Macdonald symmetric polynomials). It is not presently understood
where ASEP could fit into this structure, but the fact that the duality approach applies
in parallel for ASEP and q-TASEP compels one to look for a higher structure which
encompasses both.

2 Current Distribution for ASEP

ASEP is an interacting particle system introduced by Spitzer [24] in 1970 (though
arising earlier in biology in the work of MacDonald, Gibbs and Pipkin [18] in 1968).
Since then, it has become a central object of study in interacting particle systems and
non-equilibrium statistical mechanics. Each site of the lattice Z may be inhabited by
at most one particle. Each particle attempts to jump left at rate q and right at rate
p (p + q = 1), except that jumps which would violate the ‘one particle per site
rule’ are suppressed. We will assume q > p, and for later use call q − p = γ and
p/q = τ (note that γ > 0 and τ < 1).

There are two ways of constructing ASEP as a Markov process. The ‘occupation
process’ keeps track of whether each site in Z is occupied or unoccupied. The state
space is Y ={0, 1}Z and for a state η = {ηx}x∈Z ∈ Y , ηx = 1 if there is a particle at
x and 0 otherwise. This Markov process is denoted η(t).

The ‘coordinate process’keeps track of the location of each particle. Assume there
are only k particles in the system, then the state space Xk = {x1 < · · · < xk} ⊂ Z

k

and for a state �x = {x1 < . . . < xk} ∈ Xk , the value of xj is the location of particle
j . We call Xk a Weyl chamber. Because particles cannot hop over each other, the
ASEP dynamics preserve particle ordering. This Markov process is denoted �x(t).

In this chapter, we will be concerned with the ‘step’ initial condition for ASEP in
which every positive integer site is initially occupied and every other site is initially
unoccupied. In terms of the occupation process, this corresponds to having ηx(0) =
1x>0 (here and throughout 1E is the indicator function for event E). Let Nx(η) =∑

y≤x ηy and note that N0(η(t)) records the number of particles of ASEP which, at
time t are to the left of, or at the origin—that is to say, it is the net current of particles
to pass the bond 0 and 1 in time t .

Theorem 1 For ASEP with step initial condition and q > p,

lim
t→∞P

(
N0(t/γ )− t/4

2−1/3t1/3
≥ −s

)

= FGUE(s),

where FGUE(s) is the GUE Tracy-Widom distribution.

Remark 1 The distribution function FGUE(s) can be defined via a Fredholm
determinant as

FGUE(s) = det (I −KAi)L2(s,∞)
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where Airy kernel KAi acts on L2(s,∞) with integral kernel

KAi(x, y) =
∫ ∞

0
Ai(x + t)Ai(y + t)dt.

For q = 1 andp = 0, result was proved in 1999 by Johansson [13] and for general
q > p, it was proved by Tracy and Widom [26–28] in 2009, and then reproved via a
new formula by Borodin, Sasamoto and the author [5] in 2012. This result confirms
that for all q > p, ASEP is in the KPZ universality class [15] (see also the review
[6]).

In order to prove an asymptotic result (such as above), it is very useful to have
a pre-asymptotic (finite t) formula to analyze. If the formula does not increase in
complexity as t goes to infinity, there is hope to compute its asymptotics. Presently,
there are two approaches to computing manageable formulas for the distribution of
N0(t).

3 The Coordinate Approach

In [26], Tracy and Widom start by considering the ASEP coordinate process �x(t)
with only k particles. In 1997, Schütz [22] computed the transition probabilities
(i.e. Green’s function) for ASEP with k = 2 particles. The first step in [26] is a
generalization to arbitrary k. Let P�y(�x; t) represent the probability that in time t , a
particle configuration �y will transition to a second configuration �x. As long as p 	= 0,
it was proved in [26] that

P�y(�x; t) =
∑

σ∈Sk

∫

· · ·
∫

Aσ

k∏

i=1

ξ
xj−yσ (j )−1
σ (j ) eε(ξj )t dξj , (1)

where the contour of integration is a circle centered at zero with radius so small as
to not contain any poles of Aσ . Here, ε(ξ ) = pξ−1 + qξ − 1 and

Aσ =
∏{

Sαβ : {α,β}is an inversion in σ
}

, Sαβ = −p + qξαξβ − ξα

p + qξαξβ − ξβ
.

This result is proved by showing that that P�y(�x; t) solves the master equation for
k-particle ASEP

d

dt
u(�x; t) = ((Lk)∗u)(�x; t), u(�x; 0) = 1�x=�y.

Here (Lk)∗ is the adjoint of the generator of the k-particle ASEP coordinate process
(this just means that the role of p and q are switched in going between Lk and (Lk)∗).
For k = 1, L1 and (L1)∗ act on function f : Z → R as
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(L1 f )(x) = q [f (x − 1)− f (x)]+ p [f (x + 1)− f (x)] ,
(
(L1)∗f

)
(x) = p [f (x − 1)− f (x)]+ q [f (x + 1)− f (x)] .

For k > 1, the generator Lk and its adjoint depend on the location of �x in the Weyl
chamber, reflecting the fact that certain particle jumps are not allowed near the
boundary of the Weyl chamber.

Quoting a footnote in [26]:

The idea in Bethe Ansatz (see, e.g. [16, 25, 30]), applied to 1-D k-particle quantum me-
chanical problems, is to represent the wave function as a linear combination of free particle
eigenstates and to incorporate the effect of the potential as a set of k − 1 boundary con-
ditions. The remarkable feature of models amendable to Bethe Ansatz is that the boundary
conditions for k ≥ 3 introduce no more new conditions . . . The application of Bethe Ansatz
to the evolution equation (master equation) describing ASEP begins with Gwa and Spohn
[9] with subsequential developments by Schütz [22].

To see this in practice, assume that one wants to solve

d

dt
u(�x; t) = ((Lk)∗u

)
(�x; t), u(�x; 0) = u0(�x)

for �x in the Weyl chamber Xk .

Proposition 1 1 If v : Z
k × R+ → R solves the ‘free evolution equation with

boundary condition’:

(1) For all �x ∈ Z
k

d

dt
v(�x; t) =

k∑

j=1

(
[L1]∗jv

)
(�x; t);

(2) For all �x ∈ Z
k such that xj+1 = xj + 1 for some 1 ≤ j ≤ k − 1,

pv(x1, . . . , xj , xj+1 − 1, . . . , xk; t)+ qv(x1, . . . , xj + 1, xj+1, . . . , xk; t)

−v(�x; t) = 0;

(3) For all �x ∈ Xk , v(�x; 0) = u0(�x);

Then, for all t ≥ 0 and �x ∈ Xk , u(�x; t) = v(�x; t).
In (1) above, [L1]∗j means to apply (L1)∗ in the xj variable. In fact, some growth

conditions must be imposed to ensure that u and v match (see Propositions 4.9 and
4.10 of [5]) but we will not dwell on this presently.

This reformulation of the master equation involves only k−1 boundary conditions
and is amendable to BetheAnsatz—hence one is led to postulate Eq. (1). It remains to
check the Ansatz (i.e. P�y(�x; t) solves the reformulated equation). The Aσ is just right
to enforce the boundary condition. The only challenge (which requires an involved
residue calculation) is to check the initial data, since there are a total of k! integrals.

The transition probabilities for k-particle ASEP is only the first step towards
Theorem 1. The next step is to integrate out the locations of all but one particle,
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so as to compute the transition probability for a given particle xm. The formula for
the location of the mth particle at time t involves a summation (indexed by certain
subsets of {1, . . . , k}) of contour integrals. These formulae are a result of significant
residue calculations and combinatorics.

At this point we are only considering k particles, whereas for the asymptotic
problem, we want to consider step initial conditions. This is achieved by taking
yj = j for 1 ≤ j ≤ k and taking k to infinity. After further manipulations, the mth

particle location distribution formula has a clear limit as k goes to infinity. This is the
first formula for step initial condition and it is given by an infinite series of contour
integrals.

In [27], this infinite series is recognized as equal to a transform of a Fredholm
determinant. By the simple relationship between the location of the mth particle of
ASEP and N0(t) (defined earlier), this shows that

P(N0(t) = m) = −τm

2π i

∫
det (I − ζK1)

(ζ ; τ )m+1
dζ , (2)

where the integral in ζ is over a contour enclosing ζ = q−k for 0 ≤ k ≤ m − 1
and (a; τ )n = (1− a)(1− τa) · · · (1− τn−1a

)
. Here, det (I − ζK1) is the Fredholm

determinant with the kernel of K : L2(CR) → L2(CR) given by

K1(ξ , ξ ′) = q
eε(ξ )t

p + qξξ ′ − ξ
,

and the contour CR a sufficiently large circle centered at zero.
There remains, however, a significant challenge to proving Theorem 1 from the

above formula. As m increases, the kernel K1 has no clear limit, and the denominator
term (ζ ; τ )m+1, behaves widely as ζ varies on its contour of integration. Much of [28]
is devoted to reworking the above formula into one for which asymptotics can be
performed. This is done through significant functional analysis. The final formula,
from which Theorem 1 is proved by asymptotics is (leaving off the contours of
integration),

P(N0(t) ≥ m) =
∫

dμ

μ
(μ; τ )∞ det (I + μJ ), (3)

where the kernel of J is given by

J (η, η′) =
∫

exp
{
�t ,m,x(ζ )−�t ,m,x(η′)

} f (μ, ζ/η′)
η′(ζ − η)

dζ ,

f (μ, z) =
∞∑

k=−∞

τ k

1− τ kμ
zk ,

�t ,m,x(ζ ) = 
t ,m,x(ζ )−
t ,m,x(ξ ),


t ,m,x(ζ ) = −x log (1− ζ )+ tζ

1− ζ
+m log ζ.
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4 The Duality Approach

Duality is a powerful tool in the study of Markov processes. It reveals hidden struc-
tures and symmetries of the process, as well as leads to non-trivial systems of ODEs
(ordinary differential equation), which expectations of certain observables satisfy. In
1997, Schütz [23] observed that ASEP is self-dual (in a sense which will be made
clear below). The fact that duality gives a useful tool for computing the moments
of ASEP was first noted by Imamura and Sasamoto [12] in 2011. In 2012, Borodin,
Sasamoto and the author [5] used this observation about duality, along with anAnsatz
for solving the duality ODEs (which was inspired by the work of Borodin and the
author on Macdonald processes [4]) to derive two different formulae for the proba-
bility distribution of N0(t). The first was new and readily amendable to asymptotic
analysis necessary to prove Theorem 1, while the second was equivalent to Tracy
and Widom’s formula (2).

To define the general concept of duality, consider two Markov processes, η(t)
with state space Y and �x(t) with state space X (for the moment, we think of these
as arbitrary, though after the definition of duality, we will take these as before). Let
E

η and E
�x represent the expectation of these two processes (respectively) started

from η(0) = η and �x(0) = �x. Then, η(t) and �x(t) are dual with respect to a function
H : Y ×X→ R, if for all η ∈ Y , �x ∈ X and t ≥ 0,

E
η
[
H (η(t), �x)

] = E
�x [H (η, �x(t))

]
.

One immediate consequence of duality is that if we define uη(�x; t) to be the
expectations written above, then

d

dt
uη(�x; t) = Luη(�x; t),

where L is the generator of �x(t) and where the initial data is given by uη(�x; 0) =
H (η, �x).

Schütz [23] observed that if η(t) is the ASEP occupation process and �x(t) is the
k-particleASEP coordinate process withp and q switched from the earlier definition,
then these two Markov processes are dual with respect to

H (η, �x) =
k∏

j=1

τ
Nxj−1(η)

ηxj .

The generator of the p, q reversed particle process �x(t) is equal to (Lk)∗, as discussed
earlier. Schütz demonstrated this duality in terms of a spin-chain encoding of ASEP
by using a commutation relation along with the Uq[SU (2)] symmetry of the chain.
A direct proof can also be given in terms of the language of Markov processes [5].
When p = q, τ = 1 and this duality reduces to the classical duality of correlation
functions for the symmetric simple exclusion process (see [17] Chap. 8, Theorem 1).

As before, we focus on step initial condition, so that ηx = 1x≥1. Duality implies
that ustep(�x; t) := E

η
[
H (η(t), �x)

]
solves

d

dt
ustep(�x; t) = Lkustep(�x; t), ustep(�x; 0) = 1x1≥1

k∏

i=1

τ xi−1. (4)
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The above system is solved by

ustep(�x; t) = τ k(k−1)/2

(2π i)k

∫

· · ·
∫ ∏

1≤A<B≤k

zA − zB
zA − τ zB

k∏

j=1

hxj ,t (zj )dzj , (5)

where

hx,t (z) = eε
′(z)t

(
1+ z

1+ z/τ

)x−1 1

τ + z
, ε′(z) = − z(p − q)2

(1+ z)(p + qz)
,

and where the contour of integration for each zj is a circle around −τ , so small as
to not contain− 1. In order to see this, we use the reformulation of the system (4) in
terms of the free evolution equation with boundary condition withASEP given earlier
in Proposition 3.1. Condition (1) is trivially checked since for each z, d

dt
hx,t (z) =

L1hx,t (z). Condition (3) is checked via a simple residue calculation. Condition (2)
reveals the purpose of the zA−zB

zA−τ zB
factor. Applying the boundary condition to the

integrand above brings out a factor of zj − τ zj . This cancels the corresponding
term in the denominator and the resulting integral is simultaneous symmetry and
antisymmetry in zj and zj+1. Hence, the integral must equal zero, which is the
desired boundary condition (2).

The inspiration for this simple solution to the system of ODEs came from anal-
ogous formulas which solve free evolution equations with boundary condition for
various versions of the delta Bose gas (see Sect. 5 for a brief discussion). For the delta
Bose gas and certain integrable discrete regularizations, the formulas arose directly
from the structure of Macdonald processes [4]. ASEP does not fit into that structure,
but the existence of similar formulas suggests the possibility of a yet higher structure.

A change of variables reveals some similarities to the integrand in (1). Letting

ξj = 1+ zj
1+ zj /τ

(6)

we have

zA − zB
zA − τ zB

= q
ξA − ξB

p + qξAξB − ξB
, hxj ,t (zj )dzj = eε(ξj )t ξ

xj−1
j

dξj

τ − ξj
.

The system (4) could also be solved via Tracy and Widom’s formula (see formula
1 earlier) for the Green’s function for (Lk)∗ (as suggested in [12]) but the resulting
formula would involve the sum of k! k-fold contour integrals. Symmetrizing (5) via
combinatorial identities, and making the above change of variables, one does recover
that formula. The reversal of this procedure is a rather unnatural anti-symmetrization,
which explains why (5) was not previously known.

A suitable summation of H (η, �x) over �x gives τ kNx (η). Using this, and formula
(5), [5] proves that for ASEP with step initial condition,

E
[
τ kN0(t)

] = τ k(k−1)/2

(2π i)k

∫

· · ·
∫ ∏

1≤A<B≤k

zA − zB
zA − τ zB

k∏

j=1

eε
′(zj )t dzj

zj
, (7)
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where N0(t) = N0(η(t)) and where the contour of integration for zj includes 0,−τ

but not−1 or τ times the contours for zj+1 through zk . This is to say, that the contours
of integration respect a certain nesting structure.

At this point, the utility of having a single k-fold nested contour integral formula
for the moments of τN0(t) becomes clear. There are two ways to deform the contours
of integration in (7) so that all coincide with each other. The first involves expanding
them all to be a circle containing −τ and 0, but not −1. There are many poles
encountered in the course of this deformation and the residues can be indexed by a
partition. This leads to

E
[
τ kN0(t)

] = kτ !
∑

λ�k
λ=1m1 2m2 ···

1

m1!m2! · · ·
(1− τ )k

(2πι)�(λ)

∫

· · ·
∫

det

[ −1

wiτ λi − wj

]�(λ)

i,j=1

×
�(λ)∏

j=1

et
∑λj−1

i=0 ε′(τ iwj )dwj , (8)

where kτ != (τ ; τ )k(1−τ )−k is the τ -deformed factorial, andλ = (λ1 ≥ λ2 ≥ · · · ≥ 0)
is a partition of k (i.e.

∑
λi = k) with �(λ) nonzero parts, and multiplicity mj of the

value j . The structure of these residues is very similar to the string states indexing
the eigenfunctions of the attractive delta Bose gas (see Sect. 5).

The final step in the duality approach is to use these moment formulas to recover
the distribution of N0(t). This is done via the τ -deformed Laplace transform Hahn
[10] introduced in 1949. The left-hand side of the below equation is the transform
of τN0(t) with spectral variable ζ .

E

[
1

(ζ τN0(t); τ )∞

]

=
∞∑

k=0

ζ k
E
[
τ kN0(t)

]

(τ ; τ )k
. (9)

The right-hand side above comes from the left-hand side by expanding the τ -
deformed exponential inside the expectation (using the τ -deformed Binomial
theorem) and then interchanging the summation over k with the expectation. This in-
terchange of summation and integration is justified here for ζ small enough because
|τ kN0(t)| ≤ 1 deterministically (in contrast to (15) Sect. 5).

Substituting (8) into the series on the right-hand side of (9), one recognizes
a Fredholm determinant. The kernel of the determinant can be rewritten using a
Mellin-Barnes integral representation and the result is (leaving off the contours of
integration):

E

[
1

(ζ τN0(t); τ )∞

]

= det
(
I +Kζ

)
, (10)

where the kernel of Kζ is

Kζ (w, w′) = 1

2π i

∫
π

sin (−πs)
(−s)ζ

g(w)

g(τ sw)

ds

w′ − τ sw
, g(w) = eγ t

τ
τ+w .
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The τ -Laplace transform can easily be inverted to give the distribution of N0(t) and
asymptotics of the above formula are readily performed (see Sect. 9 of [5]) resulting
in Theorem 1.

There is a second choice for how to deform the nested contours in (8) to all
coincide. The terminal contour of this deformation is a small circle around −τ , and
again there are certain poles encountered during the deformation. The combinatorics
of the residues here is simpler than in the first case, and one finds the following
Fredholm determinant formula,

E

[
1

(
ζ τN0(t); τ

)
∞

]

= det (I − ζK2)

(ζ ; τ )∞
(11)

where the kernel of K2 is

K2(w, w′) = eε
′(w)t

τw− w′
.

Performing the change of variables (6) and inverting this τ -Laplace transform, one
recovers Tracy andWidom’s formula (2). As in Tracy andWidom’s work, this formula
is not yet suitable for asymptotics and must be manipulated significantly to get to
the form of (3).

5 Duality Approach as a Rigorous Replica Trick

Besides the Schütz duality, Borodin, Sasamoto and the author discovered that ASEP
is also self-dual with respect to

H (η, �x) =
k∏

j=1

τ
Nxj

(η),

for k = 1. This shows that E
[
τNx (η(t))

]
solves the heat equation with generator

L1. In fact, this is essentially Gärtner’s 1988 observation [8] that τNx (η(t)) solves a
certain discrete multiplicative stochastic heat equation. A multiplicative stochastic
heat equation has a Feynman-Kac representation which shows that the solution can
be interpreted as a partition function for a directed polymer in a disorder given by
the noise of the stochastic heat equation.

In 1997, Bertini and Giacomin [2] showed that under a certain ‘weakly asym-
metric’ scaling, τNx (η(t)) converges to the solution to the continuum multiplicative
stochastic heat equation (SHE) with space–time white noise ξ (x, t):

d

dt
Z(x, t) = 1

2

d2

dx2
Z(x, t)+ Z(x, t) ξ (x, t).

This convergence result did not include when η(0) is step initial condition and was
extended to that case by Amir, Quastel and the author [1]. The corresponding initial
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data for the SHE is Z(x, 0) = δx=0 where δ is the Dirac delta function. The logarithm
of the solution to the SHE (formally) solves the KPZ equation,

d

dt
h(x, t) = 1

2

d2

dx2
h(x, t)+ 1

2

(
d

dx
h(x, t)

)2

+ ξ (x, t). (12)

See [6] for more details on the KPZ equation.
Duality of ASEP translates into the fact that the moments of the SHE solve the

attractive 1-D imaginary-time delta Bose gas (Lieb–Liniger model with delta inter-
action) [14]. Define Z̄(�x; t) = E [Z(x1, t) · · ·Z(xk , t)] for Z with δx=0 initial data.
Then Z̄ solves the system

d

dt
Z̄(�x; t) = H1Z̄(�x; t), Z̄(�x; 0) =

k∏

j=1

δxj=0, (13)

whereHκ is the Lieb–Liniger Hamiltonian with delta interaction with strength κ ∈ R:

Hκ = 1

2

k∑

j=1

d2

dx2
j

+ κ
∑

i<j

δxi=xj .

The Lieb–Liniger model with delta interaction was the second system solved by the
Bethe Ansatz (over 30 years after Bethe [3] solved the spin -1/2 isotropic Heisenberg
model). This was accomplished by Lieb and Liniger in 1963 for the repulsive system
(κ < 0).A year later, McGuire similarly solved the attractive system (κ > 0). In their
context, solving the system meant writing down eigenfunctions for Hκ . The structure
of the eigenfunctions for the repulsive versus attractive cases is different. In the
attractive case, there are extra eigenfunctions which are called ‘string states’due to the
strings of quasi-momenta with which they are indexed (or physically corresponding
to bound states of particle clusters). Completeness of these eigenfunctions was not
shown until later [7, 11, 19, 20, 29].

For the purposes of understanding the moments of the SHE, it is not necessary to
diagonalize Hκ , but rather just to solve the system (13) for κ = 1. Just as with ASEP,
this system can be written as a ‘free evolution equation with boundary condition’.
The free evolution is just according to the k variable Laplacian and the boundary
condition is that for all 1 ≤ j ≤ k − 1,

(
d

dxj
− d

dxj+1
− κ

)

v(�x; t)|xj→xj+1
= 0.

This system can be solved via an analogous formula to (5): For x1 ≤ · · · ≤ xk and
κ ∈ R,

Z̄(�x; t) = 1

(2π i)k

∫

· · ·
∫ ∏

1≤A<B≤k

zA − zB
zA − zB − κ

k∏

j=1

exp

{
z2
j

2
t + xj zj

}

dzj (14)
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where the contour of integration for zj is along αj + iR for any α1 > α2 + κ >

· · ·αk + (k− 1)κ . When κ < 0, all the αj can be chosen as 0 and hence the integral
occurs on iR, whereas for κ > 0, the contours must be spaced horizontally. In the
κ > 0 case, the contours can be deformed to iR. The singularities and associated
residues encountered have a very similar structure to those seen earlier in (8) in
the context to the first ASEP contour deformation. The disparity between residue
combinatorics accounts for the difference in the structure of the eigenfunctions and
the occurrence of string stated for κ > 0. In fact, Heckeman and Opdam’s 1997
proof of the completeness of the Bethe Ansatz relied on a formula equivalent to (14).

Given expressions for all of the moments of the SHE, one wants to recover the dis-
tribution ofZ(x, t). SinceZ(x, t) is non-negative, its Laplace transform characterizes
its distribution. Näively one writes,

E
[
eζZ(t ,x)

] =
∞∑

k=0

ζ k
E[Z(t , x)k]

k! . (15)

However, the right-hand side is known to make no mathematical sense and the
interchange of expectation and summation is totally unjustifiable. The moments of
the SHE grow like eck

3
and thus the right-hand side is extremely divergent. One can

see that cutting off the summation also fails to remedy the situation in any way.
What should be clear now is that ASEP is an integrable discrete regularization of

the SHE (or equivalently the KPZ equation) and the duality approach to solving it is
a rigorous version of the replica trick for the SHE. By taking the weakly asymmetric
limit of the τ -deformed Laplace transform formulas described above, one finds a
Fredholm determinant formula for E

[
eζZ(t ,x)

]
. This can be done from either the new

formula (10) in [5] or Tracy and Widom’s formula (3). It appears that (10) is very
amendable to asymptotic analysis.

Using (3), the derivation of the Laplace transform of Z(t , x) involves extremely
careful asymptotic analysis which was performed in 2010 rigorously by Amir, Quas-
tel and the author [1] and independently and in parallel (though non-rigorously) by
Sasamoto and Spohn [21]. Very soon afterwards, Calabrese, Le Doussal and Rosso,
as well as Dotsenko showed how to formally recover this Fredholm determinant from
summing the divergent series on the right-hand side of (15). The formal manipula-
tions of divergent series that goes into this can be see as shadows of the rigorous
duality approach explained above for ASEP. It can also be seen as a shadow of a par-
allel duality approach for q-TASEP [4, 5], another integrable discrete regularization
of the SHE.

Acknowledgements The author was partially supported by the NSF through grant DMS-1208998,
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Fellowship, and by the Clay Mathematics Institute.
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Coarsening in 2D Slabs

Michael Damron∗, Hana Kogan†, Charles M. Newman‡

and Vladas Sidoravicius§

Abstract We study coarsening; that is, the zero-temperature limit of Glauber dynam-
ics in the standard Ising model on slabs Sk = Z

2 × {0, . . . , k − 1} of all thicknesses
k ≥ 2 (with free and periodic boundary conditions in the third coordinate). We show
that with free boundary conditions, for k ≥ 3, some sites fixate for large times and
some do not, whereas for k = 2, all sites fixate. With periodic boundary conditions,
for k ≥ 4, some sites fixate and others do not, while for k = 2 and 3, all sites fixate.

1 Introduction

Coarsening models have been extensively studied in the Physics literature; see, for
example, [5, Chap. 9] and the references therein. These are stochastic Ising models
at some low temperature T1 whose initial state is chosen from the equilibrium dis-
tribution at a higher temperature T2. The special case of the coarsening model we
consider here is the case where T1 = 0 and T2 = ∞ (that is, uniformly random
initial state). The states are assignments of ±1 to the vertices of some graph and
the most commonly studied graph is Z

d (with nearest neighbour edges) or finite box
approximations to Z

d (with, for example, free or periodic boundary conditions).
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For d = 1, the dynamics is exactly that of the standard voter model and it is an old
result [1] that almost surely every site flips (between + 1 and − 1) infinitely often.
For d = 2, it was shown in [6], that still every site flips infinitely often, but it is an
open problem to determine what happens for d ≥ 3. In [7], it was proposed, based
on numerical results in the related issue of “persistence” (sites which do not flip for a
long time) from [8] that the flipping results for d = 1, 2 might change by dimension
4 or 5. But in fact, the situation is unclear even in dimension 3. In this chapter, in
a first attempt to shed some light on the possible difference between Z

2 and Z
3, we

study coarsening in slabs of varying thickness k so as to interpolate between the
full 2-D and 3-D lattices. To our surprise, there is more interesting structure in this
k-dependence than we originally suspected.

1.1 The Model and Definitions

The slab Sk , k ≥ 2, is the graph with vertex set Z
2 × {0, 1, . . . , k − 1} and edge

set Ek = {{x, y} : ‖x − y‖1 = 1}. As is usual, we take an initial spin configuration
σ (0) = (σx(0))x∈Sk on �k = {−1, 1}Sk distributed using the product measure of
μp, p ∈ [0, 1], where

μp(σx(0) = +1) = p = 1− μp(σx(0) = −1) .

The configuration σ (t) evolves as t increases according to the zero-temperature limit
of Glauber dynamics (the majority rule). To describe this, define the energy (or local
cost function) of a site x at time t as

ex(t) = −
∑

y:{x,y}∈Ek

σx(t)σy(t) .

Note that up to a linear transformation, this is just the number of neighbours y of
x such that σy(t) 	= σx(t). Each site has an exponential clock with different clocks
independent of each other and when a site’s clock rings, it makes an update according
to the rules

σx(t) =

⎧
⎪⎨

⎪⎩

−σx(t−) if ex(t−) > 0

±1 with probability 1/2 if ex(t−) = 0

σx(t−) if ex(t−) < 0

.

Write Pp for the joint distribution of (σ (0),ω), the initial spins and the dynamics
realizations.

The main questions we will address involve fixation. We say that the slab Sk fixates
for some value of p if

Pp(there exists T = T (σ (0),ω) <∞ such that σ0(t) = σ0(T )for all t ≥ T ) = 1 .

We will actually only focus on the case p = 1/2, so write P for P1/2. The setup thus
far corresponds to the model with free boundary conditions; in the case of periodic
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boundary conditions, we consider sites of the form (x, y, k − 1) and (x, y, 0) to be
neighbours in Sk . If k = 2, this enforces two edges between (x, y, 1) and (x, y, 0),
so that in the computation of energy of a site, that neighbour counts twice.

2 Main Results

The first theorem concerns fixation for small k. We will prove the case k = 2 in
the next section; the case k = 3 will be treated in a companion chapter [2]. That
chapter will also contain a simplified proof of the case k = 2, notable for removing
the bootstrap percolation comparison used here.

Theorem 1 For k = 2 with free or periodic boundary conditions, Sk fixates. For
k = 3 with periodic boundary conditions, Sk fixates.

The proof of the following theorem is in Sect. 4. The construction used in the
proof for k = 4 with periodic boundary conditions is considerably more involved
and will not be given in this chapter; it will appear in [2].

Theorem 2 With k ≥ 4 and periodic boundary conditions, Sk does not fixate. With
k ≥ 3 and free boundary conditions, Sk does not fixate.

Remark 3 The above theorems actually hold with initial state distributed according
to the product measure μp for arbitrary p ∈ (0, 1), not just p = 1/2; the proofs are
identical. This is in contrast to the situation on the cubic lattice Z

d for any d ≥ 2,
where fixation is proved to occur for p sufficiently close to 0 or 1 [4].

3 Proof of Theorem 1 for k = 2

For the free boundary condition case, the theorem follows from the argument in
Nanda–Newman–Stein [6]. Specifically, for v, v′ ∈ S2, define mt (v′, v) as the con-
tribution to ev(t) − ev(0) due to flips of the spin σv′ . Write π : S2 → Z

2 for the
projection π (x, y, z) = (x, y) and for v ∈ S2, we use the notation that v̂ is the vertex
in S2 with v̂ 	= v but π (v̂) = π (v). Then

E [ev(t)− ev(0)] =
∑

v′∈S2:‖v−v′‖1≤1

Emt (v
′, v) = Emt (v, v)+

∑

v′∈S2:‖v−v′‖1=1

Emt (v
′, v) .

By symmetry, Emt (v′, v) = Emt (v, v′) for all v′ so this equals

Emt (v, v)+
∑

v′∈S2:‖v−v′‖1=1

Emt (v, v′) .

Note that whenever v flips, the sum of the changes of ev′ (t)−ev′ (0) for all neighbours
v′ is simply equal to the change of ev(t)− ev(0). Therefore,

E [ev(t)− ev(0)] = 2Emt (v, v) .
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Because v has 5 neighbours, ev(t) decreases by at least 2 each time σv flips, so
Emt (v, v) is bounded above by −2ENt (v), where Nt (v) is the number of flips of σv

until time t . Taking t to infinity and noting that |ev(t)− ev(0)| ≤ 10 for all t , we see
that almost surely, σv flips finitely often.

For the periodic case, we will use the following fact several times. If A ⊂ �2

then we say that σ (t) ∈ A infinitely often if the set {t : σ (t) ∈ A} is unbounded. To
avoid technical issues, we will restrict our attention to A’s that are cylinder sets.

Lemma 1 If A and B are (cylinder) events in �2 such that

inf
σ∈A P(σ (t) ∈ B for some t ∈ (0, 1] | σ (0) = σ ) > 0,

then

P(σ (t) ∈ A infinitely often but σ (t) ∈ B finitely often) = 0.

Proof. The proof is just an application of the strong Markov property at a sequence
of stopping times (Tk), which could be given by T0 = 0 and

Tk = inf{t ≥ Tk−1 + 2 : σ (t) ∈ A} .
Let us say that a site v ∈ S2 fixates for the realization (σ (0),ω), if there exists
Tv = Tv(σ (0),ω) <∞ such that σv(t) = σv(Tv) for all t ≥ Tv. We say that v fixates
from time T if for all t ≥ T , σv(t) = σv(T ).

We now define a process τ (t) = (τy(t) : y ∈ Z
2) from σ (t) by declaring τπ (v)(t) =

σv(t) if σv(t) = σv̂(t). Otherwise, we declare τπ (v)(t) to be grey. In the latter case, we
refer to π (v) as a (+ /− ) or (− /+ ) site if the site of v, v̂ with third coordinate 1 is
+ 1 or− 1, respectively. We will use the terms ‘flip’ and ‘fixate’ for the configuration
τ (t) as well. Note that with probability one, a site cannot flip from grey to grey; that
is, it cannot flip from ( + / − ) to ( − / + ) or ( − / + ) to ( + / − ). We may say
that π (v) fixates at +; this means that π (v) fixates and that its terminal value is +.
We define π (v) fixating at − or at grey (either (+ /− ) or (− /+ )) similarly.

Lemma 2 With probability one, no site in Z
2 can fixate at grey.

Proof. Let v ∈ S2 and Av ⊂ �2 be the event that σv = + 1 but σw = − 1 for at
least 3 neighbours of v (counting v̂ twice). Let Bv be the event that σv = − 1 but
σw = − 1 for at least 3 neighbours of v. There is some c > 0 such that

P

(
σv(t) ∈ Bv for some t ∈ (0, 1]

∣
∣
∣ σ (0) = σ

)
≥ c for all σ ∈ Av .

For instance, v’s clock may ring before those of all its neighbours and σv then flips.
Using Lemma 1,

P (σ (t) ∈ Av infinitely often but σ (t) flips only finitely often) = 0 .

Suppose that for some y ∈ Z
2 and t ≥ 0, τy(t) is grey but τy(T ) = τy(t) for T ≥ t .

Write v for the site in S2 with π (v) = y and third coordinate equal to 1. Assume
without loss in generality that τy is (+/−). Note that then v already has at least two



Coarsening in 2D Slabs 19

unsatisfied neighbours (since we count v̂ twice). Therefore, off of the probability zero
event above, all neighbours of v with third coordinate equal to 1 must fixate in σ (t)
at +1. Similarly, all neighbours of v̂ with third coordinate equal to 0 fixate in σ (t)
at − 1. Iterating this argument, with positive probability, the top level of S2 fixates
in σ (t) at+ 1 and the bottom fixates at− 1. By ergodicity under spatial translations,
this event would have probability 1, but this contradicts symmetry under permuting
the top and bottom levels.

Lemma 3 With probability one, for all y ∈ Z
2, if y − (1, 0) and y + (0, 1) fixate in

τ (t), then so does y.

Proof. Suppose that y − (1, 0) and y + (0, 1) fixate in τ (t). If they both fixate at +
then the argument is not difficult—if y does not fixate, it must be grey (say (+ /− ))
infinitely often. But in this case, we can apply Lemma 1 to the event A that σy−(1,0)

and σy+(0,1) are+ 1 with τy equal to (+/− ) and B the event that σy−(1,0) and σy+(0,1)

are+ 1 with τy equal to+. This proves that τy cannot be grey infinitely often without
being + infinitely often. But, because two neighbours of y have τ -value fixed at +,
each σv with π (v) = y has four + neighbours and hence, τy will then remain at +
after some time.

Otherwise, y − (1, 0) and y + (0, 1) fixate at different τ -values, say + 1 and
− 1 respectively. We will use the following fact: with probability one, each spin σv

can have only finitely many energy-lowering flips. In other words, for each v ∈ S2

and t ≥ 0, we can define Fv(t) to be the number of times s ∈ (0, t), such that
σv(s−) 	= σv(s+) and ev(s+) < ev(s−). Since the measure P is invariant under
translations, the argument of Newman–Nanda–Stein [6] can be applied to find

lim
t→∞Fv(t) <∞with probability one .

As a consequence of this and Lemma 4, we see that for each v ∈ S2,

P (σv(t) disagrees with at least 4 neighbours of v in S2 infinitely often) = 0 . (1)

Assume that the τ -value at y does not fixate; then it must be grey (for example
( + / − )) infinitely often. Note that at each of these times, each σv spin at a site v
with π (v) = y disagrees with at least 3 neighbours. From the above remarks, there
must be some random time at which these spins no longer disagree with at least
4 neighbours. This implies that at infinitely many of these times, τy must also be
identical to τy+(1,0) and τy−(0,1), so

τy−(1,0) = +, τy = +/−, τy+(0,1) = −and τy+(1,0) = τy−(0,1) = +/−,

as in the left diagram of Fig. 1.
We now consider the τ -value of y+ (1,−1) at these times T . There must exist one

status from the choices+,−, (+/− ) and (−/+ ), such that this spin has this status
infinitely often (of the times T ). But now, it is elementary (though a bit tedious) to
see that in each case, there is a finite sequence of flips that will lead all eight σv’s for
v ∈ S2 with π (v) in the set {y, y + (1, 0), y − (0, 1), y + (1,−1)} to have the same
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Fig. 1 The local configuration τ near y on the left, in which τy = (+/−), τy−(1,0) = +, τy+(0,1) = −
and τy = (+/− ). The τ -values at y+ (1, 0) and y− (0, 1) are (+/− ). In the case depicted, we also
have τy+(1,−1) = (+ /− ). One example of a finite sequence of flips that can occur is as follows. τy
flips to +, τy+(1,0) flips to +, τy−(0,1) flips to + and then τy+(1,−1) flips to +. This eventually fixates
τ -values as on the right

sign—see Fig. 1 for an example. Using Lemma 1 completes the proof, because once
they are the same sign, they can never flip again.

To complete the proof, we invoke a comparison to bootstrap percolation, giving
a version of van Enter’s argument [3] initially due to Straley. For any σ ∈ �2 we
identify a configuration η = η(ω) ∈ {0, 1}Z2

as follows: We declare ηx = 1 if all v
in the 2× 2× 2 block Bx = 2x + {0, 1}3 have spins of the same sign in σ . Note that
under the coarsening dynamics, all such sites are fixated in S2. For all other sites x

we set ηx = 0. We then run the following discrete time (deterministic) dynamics on
η. We set η(0) = η(ω) with ω distributed by P1/2 and for each n ∈ N and x ∈ Z

2,
we set ηx(n) = 1 if either (a) ηx(n− 1) = 1 or (b) ηy1 (n− 1) = ηy2 (n− 1) = 1 for
at least two neighbours yi of x with ‖y1 − y2‖∞ = 1. Otherwise we set ηx(n) = 0.
This is a modified bootstrap percolation dynamics.

We claim that with probability one, for each x, the value ηx(n) is 1 for all large n.
Using Lemma 3, this will prove that all sites inS2 fixate. To show the claim, we briefly
summarize the classic argument of [3]. Because the ηx(0) variables are independent
from site to site, one can show that for some n, the probability is positive that all sites
in the rectangle [0, n]2 begin with η-value 1 but that there is no rectangular contour
enclosing [0, n]2, all of whose sites begin with η-value 0. On this event, under our
dynamics, such a rectangle will grow to absorb all of space and fix all sites to have
η-value 1. However, by the ergodic theorem, with probability one, some translate of
this event will occur and this completes the proof.

4 Proof of Theorem 2

We begin by proving the case k = 3 with free boundary conditions. The idea is
to force a large rectangle on level 3 (that is, with third coordinate equal to 2) to be
fixed at + 1 with a parallel region on level 1 (third coordinate equal to 0) fixed at
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Fig. 2 Level 1 (in Z
2×{1}) in the event A, for a slab of width 3 with free boundary conditions. The

left unmarked box represents the vertex (0, 0, 1). The vertices with circled spins are ones both of
whose third coordinate neighbours (“above” and “below”) have the same spin. Any configuration
in A has the property that spins at vertices above those in the uncircled region are − 1 and below
those are + 1. The unmarked spins flip infinitely often

− 1. Spins on the middle level between these regions act like spins in the coarsening
model on Z

2.
To stabilize levels 1 and 3, we define for m, n ∈ Z, the set Pm,n = {m,m+ 1} ×

{n, n+ 1} × {0, 1, 2} and the “table” of size n ≥ 2

Tn =
[
{−n, . . . , n}2 × {2}

]
∪ P−n,−n ∪ P−n,n−1 ∪ Pn−1,−n ∪ Pn−1,n−1 .

The inverted table of size n, T ′n, is the reflection of Tn through Z
2 × {1}. Note that

if either of these sets are initially monochromatic, then they will be fixed by the
coarsening dynamics. Define the event A ⊂ �3 that,

1. all sites in P1 = P−2,−2 ∪ P−2,−1 ∪ P2,−2 have spin + 1 and all sites in P2 =
P−2,1 ∪ P2,0 ∪ P2,1 have spin − 1,

2. all sites in {0, 1}×{−2,−1}×{1} have spin+ 1 and all sites in {0, 1}×{1, 2}×{1}
have spin − 1,

3. all sites in T ′10 \
[
P1 ∪ P2

]
have spin + 1 and

4. all sites in T20 \
[
T ′10 ∪ P1 ∪ P2

]
have spin − 1.

The reader may verify that all sites in T10 ∪ T ′20 ∪P1 ∪P2 are fixated in the event A.
However, the vertex (0, 0, 1) then has 3 plus neighbours, so by Lemma 1 it must have
a plus spin infinitely often. This implies that the vertex (1, 0, 1) has 3 plus neighbours
infinitely often and therefore, must have a plus spin infinitely often. By symmetry,
the same is true for these vertices and minus spin, meaning they flip infinitely often.
As usual, by spatial ergodicity, almost surely some translate of this event occurs and
therefore with probability one, not all sites fixate.

The cases k ≥ 3 with free boundary conditions are handled similarly. We simply
add more layers of the construction on top of level 2. To define the event precisely,
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we set A to be the event defined exactly as in the case of k = 3 (above). This event
only involves the first three levels (0 − 2) of the slab. Define A′ = {σ } as the event
that σ ∈ A and that for all (x, y, k) with (x, y) ∈ {− 20, . . . , 20}2 and k ≥ 3, we have
σ(x,y,k) = σ(x,y,2). Because in the slab S3, the event A forced all spins for vertices
in {− 20, . . . , 20}2 × {2} to be fixed, it is not hard to check that on A′, all spins for
vertices in {−20, . . . , 20}2 × {2, . . . , k − 1} are also fixed. The same argument as
before gives that the spins at (0, 0, 1) and (1, 0, 1) do not fixate and consequently the
slab does not fixate.

For the case k ≥ 5 with periodic boundary conditions, we consider again the
event A and add duplicate layers of level 2 as before. The only difference is that we
also need to add a duplicate layer of the zeroth level at the top (which is the same as
level − 1), in the set Z

2 × {k − 1}. Because we need to duplicate both level 0 and 2,
this requires at least 5 layers. The proof is now complete.
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Abstract Random walk in random environment (RWRE) is a fundamental model of
statistical mechanics, describing the movement of a particle in a highly disordered
and inhomogeneous medium as a random walk with random jump probabilities. It has
been introduced in a series of papers as a model of DNA chain replication and crystal
growth (see Chernov [10] and Temkin [51, 52]), and also as a model of turbulent be-
havior in fluids through a Lorentz gas description (Sinai 1982 [42]). It is a simple but
powerful model for a variety of complex large-scale disordered phenomena arising
from fields such as physics, biology, and engineering. While the one-dimensional
model is well-understood in the multidimensional setting, fundamental questions
about the RWRE model have resisted repeated and persistent attempts to answer
them. Two major complications in this context stem from the loss of the Markov
property under the averaged measure as well as the fact that in dimensions larger
than one, the RWRE is not reversible anymore. In these notes we present a general
overview of the model, with an emphasis on the multidimensional setting and a more
detailed description of recent progress around ballisticity questions.

We present a review of random walks in random environment. The main focus
evolves around several fundamental questions! concerning the existence of invariant
probability measures, transience, recurrence, directional transience, and ballisticity.
This choice of topics is somewhat biased toward our recent research interests.

The first chapter deals with the question of the existence of an invariant probability
measure of the so-called “environmental process”; such a measure is particularly
useful if it is absolutely continuous with respect to the law of the environment. The
existence and properties of such a measure characterize in some sense the different
asymptotic behaviors of the walk, from a general law of large numbers to possibly
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a quenched central limit theorem, and to a variational formula for the rate function
in the case of quenched large deviations. After the introduction of basic definitions
and concepts, we review the one-dimensional situation, which turns out to be a
controlled laboratory of several phenomena which one would expect to encounter in
the multidimensional setting. Subsequently, we investigate the latter setting and give
some of the corresponding (limited) results which are available in that context.

It is conjectured that for uniformly elliptic and i.i.d. environments, in dimensions
d ≥ 2, directional transience implies ballisticity. The second chapter of these notes
reviews this question as well as the progress and understanding which have been
achieved toward its resolution. In particular, we introduce the fundamental concept
of renewal times. We then proceed to the ballisticity conditions, under which it has
been possible to obtain a better understanding of the so-called slowdown phenomena
as well as of the ballistic and diffusive behavior in the setting of (uniformly) elliptic
environments.

1 The Environmental Process and Its Invariant Measures

1.1 Definitions

Throughout these notes, for x ∈ R
d , we will use the notations |x|∞, |x|1, and |x|2

for the L∞, L1, and L2 norms. For a subset A ⊂ Z
d we denote by ∂A its external

boundary

{x ∈ Z
d\A : ∃y ∈ A with |x − y|1 = 1}, (1)

and for a subset B ⊂ R
d we denote by

◦
B its interior. We write

Bp(x0, r) = {x ∈ R
d : |x − x0|p ≤ r} (2)

for the closed ball centered in the x0 with radius r in the p-norm. In addition, set
Bp(r) := Bp(0, r). Furthermore, the set U := {e ∈ Z

d : |e|1 = 1} will serve as the
set of possible jumps for the random walk to be defined. We will use C to denote
constants that can change from one side of an inequality to another, and c1, c2, . . . for
constants taking fixed values. Furthermore, if we want to emphasize the dependence
of a constant on quantities, e.g., the dimension, we write C(d). We begin with the
definition of an environment.

Definition 1 (Environment) We define the set

P :=
{

(p(e))e∈U ∈ [0, 1]U :
∑

e∈U
p(e) = 1

}
(3)

of 2d-vectors p serving as admissible transition probabilities. An environment is an
element ω of the environment space � := PZ

d

so that ω := (ω(x))x∈Zd , where
ω(x) ∈ P . We denote the components of ω(x) by ω(x, e).
Let us now define a random walk in a given environment ω.
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Definition 2 (Random walk in an environment ω) Let ω ∈ � be an environment
and let G be the σ -algebra on (Zd )N defined by the cylinder functions. For x ∈ Z

d ,
we define the random walk in the environment ω starting in x as the Markov chain
(Xn)n≥0 on Z

d whose law Px,ω on ((Zd )N, G) is characterized by

Px,ω[X0 = x] = 1, and

Px,ω[Xn+1 = y + e |Xn = y] =
{

ω(y, e), if e ∈ U ,
0, otherwise,

whenever Px,ω[Xn = y] > 0, and 0 otherwise. Furthermore, we denote by

p(n)(x, y,ω) := Px,ω[Xn = y] (4)

the n-step transition probability of the random walk in the environment ω.
We will now account for the randomness in the environment. For that purpose,

let us endow the environment space � with the product topology and let P be some
probability measure defined on (�, B(�)); here, B denotes the corresponding Borel
σ -algebra. We call P the law of the environment and for every measurable function
f defined on �, we denote by E[f ] the corresponding expectation if it exists. It will
frequently be useful to assume that

(IID) the coordinate maps on the product space � are independent and identically
distributed (i.i.d.) under P.

In order to give a relaxation of (IID) we introduce the following notation. For
each y ∈ Z

d , let us denote by ty the translation defined on the environment space �

by
(tyω)(x, e) := ω(x + y, e),

for every x ∈ Z
d and e ∈ U . It will often be useful to assume that

(ERG) the family of transformations (tx)x∈Zd is an ergodic family acting on
(�, B(�), P).

In other words, if A ∈ B(�) is such that A = t−1
x (A) for every x ∈ Z

d , then
P(A) = 0 or 1. This condition is also called total ergodicity. In particular, note that
(IID) implies (ERG).

For a fixed realization of ω, we now call Px,ω the quenched law of the random
walk in random environment (RWRE). Using Dynkin’s theorem, it is not hard to
show that for each x ∈ Z

d and G ∈ G, the mapping

ω �→ Px,ω[G]

is B(�)-measurable. We can therefore define on the space (�× (Zd )
N

, B(�)⊗G) for
each x ∈ Z

d the semi-direct product Px,P of the measures P and Px,ω by the formula

Px,P[F ×G] :=
∫

F

Px,ω(G) P(dω). (5)
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We denote by Px the marginal law of Px,P on (Zd )
N

and call it the averaged or
annealed law of the RWRE. One of the difficulties arising in the study of RWRE is
that under the averaged law is generally not Markovian anymore.

We will need the concepts of ellipticity and uniform ellipticity.

Definition 3 (Ellipticity and uniform ellipticity) Let P be a probability measure
defined on the space of environments (�, B(�)).

• We say that P is elliptic if
(E), for every x ∈ Z

d we have that

P [min
e∈U ω(x, e) > 0] = 1. (6)

• We say that P is uniformly elliptic if

(UE) there exists a constant κ > 0 such that for every x ∈ Z
d we have that

P [min
e∈U ω(x, e) ≥ κ] = 1. (7)

We will usually call the environment (uniformly) elliptic in such case.

Remark 1 This labeling is motivated by operator theory where one has analogous
definitions of elliptic and uniformly elliptic differential operators.

The following auxiliary process will play a significant role in what follows.

Definition 4 (Environment viewed from the particle). Let (Xn) be an RWRE. We
define the environment viewed from the particle (or also the environmental process)
as the discrete time process

ω̄n := tXn
ω,

for n ≥ 0, with state space �.
Apart from taking values in a compact state space, another advantage of the

environment viewed from the particle is that even under the averaged measure it is
Markovian, as is shown in the next result following Sznitman [6]; however, the cost
is that we now deal with an infinite dimensional state space.

Proposition 1 Consider an RWRE in an environment with law P. Then, under P0,
the process (ω̄n) is Markovian with state space �, initial law P, and transition kernel

Rf (ω) :=
∑

e∈U
ω(0, e)f (teω), (8)

defined for f bounded measurable on � and initial law P.

Proof Let us first note that for every x ∈ Z
d , and every bounded measurable function

f on �,

Ex,ω[f (ω̄1)] = Ex,ω[f (tX1ω)] =
∑

e∈U
ω(x, e)f (tx+eω)

=
∑

e∈U
txω(0, e)f (te(txω))

= Rf (txω). (9)
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Let fi , i = 0, . . . , n+ 1 be bounded measurable functions. Note that

E0,ω[fn+1(ω̄n+1(fn(ω̄n) · · · f0(ω̄0)] = E0,ω[fn+1(tXn+1ω) · · · f0(tX0ω)]

= E0,ω[EXn,ω(fn+1(tX1ω))fn(ω̄n) · · · f0(ω̄0)]

= E0,ω[Rfn+1(ω̄n)fn(ω̄n) · · · f0(ω̄0)],

where in the second equality we took advantage of the Markov property of (Xn)
under P0,ω, and in the last step we have used (9). Since Rfn+1(ω̄n) is Fn-measurable,
where Fn is the natural filtration of (ω̄n), it follows from the above that

E0,ω[fn+1(ω̄n+1) | ω̄0, . . . , ω̄n] = Rfn+1(ω̄n), (10)

which proves the Markov property of the chain (ω̄n) under the measureP0,ω. It follows
that the transition kernel for the quenched process is given by (8). Integrating P0,ω

with respect to P we finish the proof.

1.2 Invariant Probability Measures of the Environment as Seen
from the Random Walk

We now want to examine the invariant measures of the Markov chain (ω̄n). Given an
arbitrary probability measure P on �, we define the probability measure PR through
the identity ∫

Rf dP =
∫

f d(PR),

for every bounded continuous function f on �. Whenever P = PR, we will say
that P is an invariant probability measure for the environmental process. We will
also need to consider the possibility of having invariant measures which are not
necessarily probability measures: similarly to the above, we will say that a measure
ν is invariant for the environmental process if for every bounded continuous function
f one has that ∫

f dν =
∫

Rf dν.

It is obvious that any degenerate probability measure which is translation invariant,
is an invariant probability measure: this corresponds to any simple random walk.
The following lemma is a standard result, but shows that there might be some other
ways of constructing more interesting invariant probability measures. Recall that
given a sequence of probability measures a limit measure is defined as the limit of
any convergent subsequence.

Lemma 1 Consider an RWRE and the corresponding environmental process (ω̄n).
Then, if P is any probability measure in �, there exists at least one limit measure of
the Cesàro means

1

n+ 1

n∑

i=0

PRi. (11)
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Furthermore, every limit measure of this Cesàro means is an invariant probability
measure for the Markov chain (ω̄n).

Proof Let P be an arbitrary probability measure defined on the space �. Denote for
each n ≥ 0 as νn the Cesàro means of (11).

Since the space of probability measures defined on � is compact under the topol-
ogy of weak convergence, we can extract a weakly convergent subsequence νnk , so
that the Cesàro means has at least one limit point ν. We claim that ν is an invariant
probability measure. Indeed, it is enough to prove that

∫

Rf dν =
∫

f dν

for every bounded continuous function f . But since the transition kernel R maps
bounded and continuous functions to bounded and continuous functions, we have
that

∫

Rf dν = lim
k→∞

∫

Rf dνnk = lim
k→∞

1

nk + 1

nk∑

i=0

∫

f d(νRi+1)

= lim
k→∞

(
1

nk + 1

nk∑

i=0

∫

f d(νRi)+ 1

nk + 1

∫

f d(νRnk+1)− 1

nk + 1

∫

f dν

)

= lim
k→∞

∫

f dνnk =
∫

f dν.

Knowing only the existence of an invariant probability measure turns out not to be
very helpful. We will see that what we really need is to find one which is absolutely
continuous with respect to the law P of the environment.

Example 1 Let us consider the case d = 1. Assume (E) to be fulfilled and define

ρ(x,ω) := ω(x,−1)

ω(x, 1)
and ρ(ω) := ρ(0,ω). (12)

If E[ρ] < 1 and the environment (ω(x))x∈Z is i.i.d. under the law P, we will prove in
this lecture that

ν(dω) := f (ω)P(dω),

where

f (ω) := C (1+ ρ(0,ω)) (1+ ρ(1,ω)+ ρ(1,ω)ρ(2,ω)

+ρ(1,ω)ρ(2,ω)ρ(3,ω)+ · · · ) <∞,

for some constant C > 0, is an invariant probability measure for the process (ω̄n),
cf. also Theorem 3 below.
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1.3 Transience and Recurrence in the One-Dimensional Model

The focus of this section will be on one-dimensional RWRE under the assumption
(E) and ergodicity properties of the law P of the environment. In this context, we will
derive explicit necessary and sufficient conditions in terms of the environment for the
walk being transient or recurrent. It turns out that in this case the model is reversible in
the following sense: for P-a.a. environments ω it is possible to find a measure defined
on Z for which the random walk (Xn) in environmentω is reversible. This observation
partly explains the fact that many explicit computations can be performed, and even
explicit conditions characterizing particular behaviors of the walk can be found.

The following lemma of Kesten [23] will prove useful.

Lemma 2 Given any stationary sequence of random variables (Yn)n≥0 with law
P such thatP [ limn→∞

∑n
k=0 Yn = ∞] = 1 one hasP

[
lim infn→∞ 1

n

∑n
k=0 Yk > 0

]

= 1.
In what follows, we will say that a function f is Lebesgue integrable in the

extended sense if its Lebesgue integral exists, possibly taking the values∞ or −∞.

Theorem 1 Consider an RWRE in dimension d = 1 in an environment with law P

such that (E) holds. Assume (ERG) and that E[ log ρ] is Lebesgue integrable in the
extended sense. Then the following are satisfied.

1. If E[ log ρ] < 0 then the random walk is P0-a.s. transient to the right, i.e.,

lim
n→∞Xn = ∞, P0 − a.s.

2. If E[ log ρ] > 0 then the random walk is P0-a.s. transient to the left, i.e.,

lim
n→∞Xn = −∞, P0 − a.s.

3. If E[ log ρ] = 0 then the random walk is P0-a.s. recurrent and

lim sup
n→∞

Xn = ∞ and lim inf
n→∞ Xn = −∞ P0 − a.s.

The above theorem was first proved within the context of branching processes in
i.i.d. random environments by Smith and Wilkinson in 1969 [43] (see also [25,
Remark 8] and the references therein). In 1975 it was proved by Solomon [44] for
i.i.d. environments and afterwards extended to ergodic environments by Alili [1].
Here, we present a proof based on the method of Lyapunov functions (see [11]
and [18]). The so-called Sinai’s regime corresponds to the recurrent case under the
additional assumption that 0 < E[( log ρ)2] < ∞. In [41], Sinai proved that under
these conditions the position of the walk at time n is typically of order ( log n)2

under P0. We will see in Sect. 1.4, that the dichotomy expressed by Theorem 1 is
an expression of the different possibilities concerning the existence of an invariant
measure (not necessarily a probability measure) for the environmental process which
is absolutely continuous with respect to P: (2) and (1) occur when there exists such
a measure; (3) occurs when such a measure does not exist.
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Proof We want to find a martingale defined in terms of the environment which
discriminates between transience and recurrence through the use of the martingale
convergence theorem. Let us furthermore try to find such a martingale of the form
f (Xn), where

f (x) =
x−1∑

j=0

�j ,

for x ≥ 0, and for some sequence (�j ) which will be chosen appropriately. In fact,
using this convergence we will deduce the desired asymptotics from the properties
of the limit of that martingale. Now note that with q(x) := ω(x, 1) and p(x) :=
ω(x,−1),

Ex,ω[f (Xn+1)− f (Xn) |Xn = y] =
⎧
⎨

⎩

−p(y)�y−1 + q(y)�y , if y ≥ 2,
p(1)�−1 + q(1)�1, if y = 1,

p(y)�y−2 − q(y)�y−1, if y ≤ 0.

But if f (Xn) is a martingale, the left-hand side of this display must vanish and we
should have that

�1 = −ρ1�−1,

and that

�y = ρy�y−1 for y ≥ 2,

�y−2 = ρ−1
y �y−1 for y ≤ 0,

where we have used the shorthand notation ρy := ρ(y,ω). Choosing �0 = −1,
�1 = −ρ1 and �−1 = 1 we deduce that

f (x) =
{
−∑0≤j≤x−1

∏j

i=1 ρi , if x ≥ 0,
∑

x≤j≤−1

∏0
i=j+1 ρ

−1
i , if x < 0,

serves our purposes, where
∏0

i=1 ρi := 1. Hence, f is harmonic with respect to
the generator of the quenched RWRE and f (Xn), is an Gn-martingale under the
probability measure P0,ω, where Gn is the natural σ -algebra generated by the random
walk. Now, by the ergodic theorem, we have P-a.s. that

x∏

i=1

ρi = exp {x(E[ log ρ]+ o(1))} ,

as x →∞, while when x →−∞, one has

−1∏

i=x+1

ρi = exp {x(E[ log ρ]+ o(1))} .

We now see that in the case E[ log ρ] < 0, there is a constant C > 0 such that P-a.s.

lim
x→∞ f (x) = −C, (13)
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and
lim

x→−∞ f (x) = ∞.

It follows that P-a.s.

E0,ω[f (Xn)−] =
∞∑

x=1

f (x)P0,ω[Xn = x] <∞.

By the martingale convergence theorem P0-a.s.

lim
n→∞ f (Xn) exists. (14)

Now, by ellipticity, it is easy to see that P0-a.s., only the following three possibilities
can occur:

1. lim supn→∞Xn = ∞ and lim infn→∞Xn = −∞.
2. limn→∞Xn = ∞.
3. limn→∞Xn = −∞.

By (14) and (13) we conclude that necessarily case (2) mentioned above occurs. By
a similar analysis we see that if E[ log ρ] > 0, case (3) occurs. Let us now consider
the case

E[ log ρ] = 0.

If ρ was almost surely constant and hence equal to 1, the above setting would be
reduced to simple random walk, for which the corresponding result is canonical
knowledge. Therefore, without loss of generality, we can assume that E[( log ρ)2] >
0, and equally that P[ log ρ > 0] > 0. Then, by Lemma 2 and the ergodicity of P,
we can conclude that P-a.s.,

lim sup
x→∞

x∑

i=1

log ρi > −∞.

It follows that P-a.s. one has that

lim
x→∞ f (x) = −∞,

and similarly that
lim

x→−∞ f (x) = ∞.

If we define for A > 0 the stopping times TA := inf{k ≥ 0 : Xk ≥ A} and
SA := inf{k ≥ 0 : Xk ≤ −A}, we see that f (Xn∧TA ) and f (Xn∧SA ) are martingales
such that E0,ω[f (Xn∧TA )+] < ∞ and E0,ω[f (Xn∧SA )−] < ∞, respectively. Hence,
by the martingale convergence theorem we conclude that the limits

lim
n→∞ f (Xn∧TA ), lim

n→∞ f (Xn∧SA ),

exist. The only possibility is that P-a.s. we have that P0,ω-a.s., Xn eventually hits
both A and −A. Since A was chosen arbitrarily, this proves part 3 of the theorem.
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1.4 Computation of an Absolutely Continuous Invariant Measure
in Dimension d = 1

In 1999, Alili [1] proved a one-dimensional result which establishes the existence
of an invariant measure for the environment process as seen from the random walk
with respect to the initial law of the environment. The proof we present here, is due
to Conze and Guivarc’h [13] (see also [34]). We will say that (B+) is satisfied if

E

⎡

⎣(1+ ρ0)
∞∑

j=0

j−1∏

k=0

ρk+1

⎤

⎦ <∞,

while we will say that (B−) is satisfied if

E

⎡

⎣(1+ ρ−1
0 )

∞∑

j=0

−j∏

k=−1

ρ−1
k

⎤

⎦ <∞.

Note that in the i.i.d. case (B+) reduces to E[ρ0] < 1 while (B−) to E[ρ−1
0 ] < 1.

Theorem 2 (Alili) Consider a RWRE with law P fulfilling (E) and (ERG) in
dimension d = 1. Then the following holds.

1. Assume that E[ log ρ] = 0. If E[( log ρ)2] > 0, then there are no invariant
measures which are absolutely continuous with respect to P. If E[( log ρ)2] =
0, P is the unique invariant measure of the environmental process absolutely
continuous with respect to P (up to multiplicative constants).

2. If E[ log ρ] > 0 but (B+) is not satisfied, or if E[ log ρ] < 0 but (B−) is not
satisfied, the environment viewed from the random walk has a unique invariant
measure ν (up to multiplicative constants) which is absolutely continuous with
respect to P, but which is not a probability measure.

3. If (B+) is satisfied, there exists a unique invariant probability measure ν which is
absolutely continuous with respect to P. Furthermore,

dν

dP
= C(1+ ρ0)

∞∑

j=0

j−1∏

k=0

ρk+1,

for some constant C > 0.
4. If (B−) is satisfied, there exists a unique invariant probability measure ν which

is absolutely continuous with respect to P. Furthermore

dν

dP
= C(1+ ρ−1

0 )
∞∑

j=0

−j∏

k=−1

ρ−1
k ,

for some constant C > 0.
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We will see soon how this result exhibits a relationship between the existence of
an absolutely continuous invariant probability measure and the ballisticity of the
random walk: in dimension d = 1, the existence of an absolute continuous invariant
probability measure is equivalent to ballisticity. We will give more details about this
soon.

Sketch of the proof We will start proving part 2. Note that if ν is an invariant measure,
we have that for every bounded measurable function f

∫

(q(0,ω)f (t1ω)+ p(0,ω)f (t−1ω)) ν(dω) =
∫

f (ω) ν(dω).

Now if ν is absolutely continuous with respect to P with densityφ, the above equation
is equivalent to

q(0, t−1ω)φ(t−1ω)+ p(0, t1ω)φ(t1ω) = φ(ω)

holding for ν-a.a. ω. We then have that

h ◦ t2
1 −

(
1

1− q
h

)

◦ t1 + ρ−1h = 0,

where h := pφ and where we have written p = p(0,ω) and q = q(0,ω). If we now
define

h̃ := h ◦ t1 − ρ−1h,

we conclude that for every x ∈ Z,

h̃ ◦ tx − h̃ = 0.

But since P is ergodic with respect to (tx)x∈Z, we conclude that h̃ is P-a.s. equal to a
constant C. Assume that C = 0. Then h̃ = 0 is equivalent to

h(t1ω) = ρ−1(ω)h(ω).

We claim that the only solution in this case is h = 0. Indeed, using induction on n

we have that

h(tnω) = h(ω)
n−1∏

j=0

ρ−1(tjω).

If E[ log ρ] > 0, by the ergodic theorem this would imply that a.s.

lim
n→∞h(tnω) = 0.

Now integrating with respect to P, using its stationarity and the fact that h(tnω),
n ∈ N, are uniformly integrable, we conclude that

∫

h(ω)P(dω) = lim
n→∞

∫

h(tnω)P(dω) = 0,
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so that
h = 0.

Using a similar argument one arrives at the same conclusion when E[ log ρ] < 0.
So let us assume that C 	= 0. In this case we have that

h = (ρ−1h) ◦ t−1 + C. (15)

Now choose a constant h0 and define recursively

hn+1 := (ρ−1hn) ◦ t−1
1 + C. (16)

If we can prove that hn converges P-a.s. as n → ∞, then the limit should be a
solution to (15). Now from (16) we can deduce

hn(ω) = C

n−1∑

j=0

j−1∏

k=0

ρ−1(t−1
k+1ω)+

(
n∏

k=1

ρ−1(t−1
k ω)

)

h0.

Taking the limit when n → ∞, we conclude the case in which E[ log ρ] > 0, in
combination with the ergodic theorem, that hn converges P-a.s. to

h(ω) = c

∞∑

j=0

j−1∏

k=0

ρ−1(t−1
k+1ω).

Thus,

φ(ω) = (1+ ρ−1(ω))
∞∑

j=0

−j∏

k=−1

ρ−1(tkω).

This proves part 2 of the proposition. To prove part 3, note that Jensen’s inequality
and (B-) imply that E[ log ρ] < ∞. Therefore, the measure with density φ already
defined can be normalized to define a probability measure. Similarly, one can prove
part 4. The proof of part 1 in the case E[( log ρ)2] > 0 is analogous to the proof of
the recurrent case of Theorem 1. The case E[( log ρ)2] = 0 is trivial, since in this
case we would be in the situation of simple random walk.

1.5 Absolutely Continuous Invariant Measures
and Some Implications

The existence of an invariant probability measure which is absolutely continuous
with respect to the initial distribution of the environment will turn out to be crucial in
the study of the model. We recall that the environmental process has been defined in
Definition 4, which considered as a trajectory has state space � := �N. Furthermore,
define the law Pω defined on its Borel σ -algebra B(�) through the identity

Pω[A] := P0,ω[(ω̄n) ∈ A], (17)
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for any Borel subset A of � endowed with the product topology. Furthermore, for
any probability measure ν defined in �, we define

Pν :=
∫

Pων(dω). (18)

We will denote by θ : � → � the canonical shift on � defined by

θ (ω0,ω1, . . . ) := (ω1,ω2, . . . ). (19)

The following result of Theorem 3 was proved by Kozlov in [27]. For its proof, we
will follow Sznitman in [6].

Theorem 3 (Kozlov) Consider a RWRE in an environment with law P fulfilling (E)
and (ERG). Assume that there exists an invariant probability measure ν for the
environment seen from the random walk which is absolutely continuous with respect
to P. Then the following are satisfied:

1. ν is equivalent to P.
2. The environment as seen from the random walk with initial law ν is ergodic.
3. ν is the unique invariant probability measure for the environment as seen from

the particle which is absolutely continuous with respect to P.
4. The Cesàro means

1

n+ 1

n∑

i=0

PRi

converges weakly to ν.

Proof of part 1 Let f be the Radon-Nikodym derivative of ν with respect to P and
consider the event E := {f = 0}. In order to prove the desired result it will be
sufficient to show P[E] = 0.

Since ν is invariant, we have that
∫

f · (R1E) dP = (νR)[E] = ν[E] =
∫

{f=0}
dP = 0.

It follows that P-a.s. on the event Ec = {f > 0} one has that R1E = 0. Therefore,
using the fact that R1E ≤ 1, one has that for every e ∈ U ,

1E(ω) ≥ R1E(ω) =
∑

e′∈U
ω(0, e′)1E(te′ω) ≥ ω(0, e)1E(teω), P− a.a. ω.

From the ellipticity assumption and the fact that 1E(ω) and 1E(teω) for e ∈ U only
take the values 0 or 1 we have that for such e,

1E(ω) ≥ 1E(teω), P− a.s.

Now using the fact that P[E] = P[t−1
e E] we conclude that for each e ∈ U one has

1E = 1t−1
e E , P− a.a. ω.
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Thus, we iteratively obtain that for each x ∈ Z
d ,

1E = 1t−1
x (E), P− a.s.

It follows that the event
Ẽ :=

⋂

x∈Zd

t−1
x (E),

is invariant under the action of the family (ty)y∈Zd and that it differs form the event E
on an event of P-probability 0. Since, P is ergodic with respect to the family (ty)y∈Zd

we conclude that

P[E] = P[Ẽ] ∈ {0, 1}. (20)

But since
∫
Ec f dP = ∫

f dP = 1 we know that P[Ec] > 0, which in combination
with P[�] = 1 and (20) implies P[E] = 0. Hence, P is equivalent to ν.

Proof of part 2 We will prove that if A ∈ B(�) is invariant so that θ−1(A) = A then
Pν[A] (cf. (18) and (19)) is equal to 0 or 1. For ω ∈ � define

φ(ω) := Pω[A].

We claim that
(φ(ω̄n))n≥0

is a Pν-martingale with the canonical filtration on �. In fact, note that since A is
invariant, we have that 1A = 1A ◦ θn and hence,

Eν[1A | ω̄0, . . . , ω̄n] = Eν[1A ◦ θn | ω̄0, . . . , ω̄n] = Pω̄n
[A] = φ(ω̄n),

Pν − a.a. (ω̄n). (21)

It follows from (1.5) and the martingale convergence theorem that

lim
n→∞φ(ω̄n) = 1A((ω̄n)n∈N), Pν − a.a. (ω̄n) (22)

Let us now prove that there is a set B ∈ B(�) such that ν-a.s.

φ = 1B. (23)

In fact, assume that (23) is not satisfied. Then there is an interval [a, b] ⊂ (0, 1) with
a < b such that

ν[φ ∈ [a, b]] > 0. (24)

Also, by the ergodic theorem we have that Pν-a.s.

lim
n→∞

1

n

n−1∑

k=0

1φ−1([a,b])(ω̄k) = Ψ := Eν[1φ−1([a,b])(ω̄0) | I],

where I := {A ∈ � : θ−1(A) = A} is the σ -field of invariant events. Now, by (24),

Eν[Ψ ] = Pν[φ(ω0) ∈ [a, b]] = ν[φ ∈ [a, b]] > 0.

But this contradicts (22). Hence, (23) holds. Let us now prove that ν-a.s.

R1B = 1B. (25)
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Indeed, we have that Pν-a.s. it is true that

1B(ω0) = Eν[1B(ω1) |ω0] = R1B(ω0).

Since Pν[A] = ν[B], it is then enough to prove that

ν[B] ∈ {0, 1}. (26)

Now, P-a.s. we have that

1B(ω) = R1B(ω) =
∑

|e|1=1

ω(0, e)1B(teω).

Using ellipticity, this implies that P[B] ∈ {0, 1}, which again by part 1 of this theorem
implies (26).

Proof of parts 3 and 4 Let g be a bounded measurable function on �. Let ν be any
invariant probability measure for the transition kernel R that is absolutely continuous
with respect to P. By part 2 and the ergodic theorem we have that Pν-a.s.

lim
n→∞

1

n

n−1∑

k=0

g(ωk) =
∫

g dν.

Now, by part (i) of this theorem, the above convergence also occurs PP-a.s. Hence,
we have that

lim
n→∞E0

[
1

n

n−1∑

k=0

g(ωk)

]

=
∫

g dν.

This proves the uniqueness of ν and part (iv). �

An important generalization of Kozlov’s theorem was obtained by Rassoul-Agha
in [32]. There, he shows that under the assumption that the random walk is direc-
tionally transient, the environment satisfies a certain mixing and uniform ellipticity
condition, and if there exists an invariant probability measure which is absolutely
continuous with respect to the initial law P in certain half-spaces, a conclusion
analogous to Kozlov’s theorem holds.

In [30], Lenci generalizes Kozlov’s theorem to environments which are not nec-
essarily elliptic. Lenci admits the possibility that the environment is ergodic with
respect to some subgroup � strictly smaller than Z

d , which is a stronger condition
than total ergodicity, and which enables him to relax the ellipticity condition. Further-
more, in Bolthausen–Sznitman [7], an example of a RWRE which does not satisfy
the ellipticity condition (E) and for which there are no invariant probability measures
for the environmental process which are absolutely continuous with respect to the
initial law of the environment is presented (see also [32]).
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1.6 The Law of Large Numbers, Directional Transience
and Ballisticity

For the purposes of applying Kozlov’s theorem, it would be important to understand
how to reconstruct the random walk from the canonical environmental process. Now,
let us note that if we denote by �per the periodic environments so that

�per := {ω ∈ � : ω = txω for some x ∈ Z
d , x 	= 0},

whenever ω ∈ �\�per and ω′ is a translation of ω, this translation is uniquely
defined. This observation would enable us to express the increments of the random
walk as a function of the environmental process whenever the initial condition is
not periodic. Assuming that the initial law P of the environment is ergodic, and
noting that the set of periodic environments is invariant under translations, we can
see that P[�per ] equals either 0 or 1. Nevertheless, assuming (ERG), may happen
that P[�per ] = 1, a situation where a priori we cannot perform this reconstruction
(and which is impossible if we assume even (IID)). We will therefore prove directly
the ergodicity of the increments of the random walk.

Our first application of Kozlov’s theorem will relate the so-called transient regime
with the ballistic one.

Definition 5 (Transience in a given direction) For l ∈ S
d−1 define the event

Al := { lim
n→∞Xn · l = ∞} (27)

of directional transience in direction l. We will call an RWRE transient in direction
l if P0[Al] = 1.

Definition 6 (Ballisticity in a given direction) Let l ∈ S
d . We say that an RWRE

is ballistic in direction l, if P0-a.s.

lim inf
n→∞

Xn · l
n

> 0. (28)

We will see in Chap. 3, that the limit on the left-hand side of (28) always exists, and
is even known to be deterministic in dimensions d = 2.

Let us now consider for each x ∈ Z
d the local drift at site x is defined as

d(x,ω) :=
∑

e∈U
ω(x, e)e = Ex,ω[X1 −X0].

We then have the following corollary to Kozlov’s theorem.

Corollary 1 Consider an RWRE in an environment with law P fulfilling (E) and
(ERG). Furthermore, assume that there exists an invariant probability measure for
the environment seen from the particle, denoted by ν, which is absolutely continuous
with respect to P. Then a law of large number is satisfied so that P0,P-a.s.

lim
n→∞

Xn

n
=
∫

d(0,ω)ν(dω) =: v.

Furthermore, if the walk is transient in a given direction l, it is necessarily ballistic
in that direction so that v · l 	= 0.
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Proof We will follow Sabot [37]. Define for n ≥ 1,

�Xn := Xn −Xn−1.

This is a process with state space U := UN. In a slight abuse of notation to (19), we
define the canonical shift θ : U → U via

θ (�X1,�X2, . . . ) := (�X2,�X3, . . . ). (29)

Note that the process (�Xn)n≥1 is stationary under the law P0,ν . We will show that in
fact the transformation θ is ergodic with respect to the space (U , B(U),P0,ν), where
B(U) is the Borel σ -field of U . Let A ∈ B(U) be invariant so that θ−1(A) = A and
define

ψ(x,ω) := Px,ω[(�Xn) ∈ A].

We claim that
(ψ(Xn,ω))n≥0

is a martingale with respect to the canonical filtration on U generated by (Xn). Indeed,

P0,ω[(�Xm) ∈ A |X0, . . . ,Xn] = PXn,ω[(�Xm) ∈ A] = ψ(Xn,ω).

Therefore, taking the limit when n→∞, and for any ω, the martingale convergence
theorem yields that

lim
n→∞ψ(0, ω̄n) = lim

n→∞ψ(Xn,ω) = 1A((�Xn)) P0,ω − a.s. (30)

We now have by the ergodic and Kozlov’s theorems that

lim
n→∞

1

n

n∑

k=0

ψ(0, ω̄n) =
∫

ψ(0,ω)ν(dω) P0,ν − a.s.

The limit (30) now implies that

P0,ν [(�Xn) ∈ A] ∈ {0, 1},
which gives us the claimed ergodicity. We thus have that

lim
n→∞

Xn

n
= lim

n→∞
1

n

n∑

k=1

�Xk =
∫

d(0,ω)ν(dω) P0,ν − a.s.

By Kozlov’s theorem, we can conclude that the above convergence occurs P0,P-a.s.
The second claim of the corollary is immediate from Lemma 2 above.

Rassoul-Agha in [32], obtains a version of Corollary 1 where transience is re-
placed by the so-called Kalikow’s condition [22], a stronger mixing assumption than
ergodicity is required, but it is necessary only to assume the existence of an invariant
probability measure which is absolutely continuous with respect to the initial law
only on appropriate half-spaces.

On the other hand, combining Corollary 1 with Theorem 2, we can now easily
derive the following result for one-dimensional case, originally proved by Solomon
[44] for the i.i.d. case and later extended by Alili [1] to the ergodic case.
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Theorem 4 Consider a RWRE in dimension d = 1 in an environment with law P

fulfilling (E) and (ERG). Then, there exists a deterministic v ∈ R
d such that

lim
n→∞

Xn

n
= v, P0 − a.s.

Furthermore,

1. If (B+) is satisfied, then

v = E
[
(1− ρ0)

∞∑

j=0

j−1∏

k=0

ρk+1
]
.

2. If (B−) is satisfied, then

v = E
[
(1− ρ−1

0 )
∞∑

j=0

−j∏

k=−1

ρ−1
−k

]
.

3. If neither (B+) nor (B−) are satisfied, then

v = 0.

Since, case (3) mentioned above shows thatXn/n converges to 0, one immediately
is led to the question of the typical order of Xn in this case. The answer to this
problem (and further interesting insight) has been obtained by Kesten, Kozlov, and
Spitzer [24]: In fact, there is a direct connection between the exponent κ ∈ (0, 1)
characterized by

E[ρκ ] = 1,

and the typical order of Xn in this case, which is nκ. We refer the reader to [24] for
further details.

In addition, from the above discussion we see that in dimension d = 1, if the
family of integer shifts is ergodic with respect to the law P of the environment, the
walk being transient to the right or left does not ensure the existence of an invariant
probability measure for the environmental process which is absolutely continuous
with respect to P. Let us give two examples which show that this situation could also
occur for dimensions d ≥ 2.

Example 2 Let d = 2. Consider a random walk in an environment (ω(x))x∈Z2 of
the form ω(x) := (ω(x, e))e∈U with a law P such that P[ω(x, e) = 1/4] = 1 for
e = e2 and e = −e2 and ω(x, e1) = q(x) while ω(x,−e1) = p(x) = 1

2 − q(x), with
E[ log (p(x)/q(x))] < 0 and E[p(x)/q(x)] = 1. Assume also that for every x ∈ Z

2,
(ω(x + ne1))n∈Z are i.i.d. under P while

P[ω(x + e2) = ω(x)] = 1

In other words, the environment is constant in the direction e2, but it is i.i.d. in the
direction e1, see Fig. 1 also. It is easy to check that the shifts (θx)x∈Zd form an ergodic
family with respect to P. Also, the walk is transient in direction e1, but not ballistic in
that direction and there are no invariant probability measures for the environmental
process which are absolutely continuous with respect to P (cf. Corollary 1).
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Fig. 1 A sketch of an environment which is i.i.d. in direction e1 and constant in direction e2

Fig. 2 A trap produced by an elliptic environment

Example 3 Let ε > 0. Furthermore, take φ to be any random variable taking
values on the interval (0, 1/4) and such that the expected value of φ−1/2 is infinite,
while for every ε > 0, the expected value of φ−(1/2−ε) is finite. Let Z be a Bernoulli
random variable of parameter 1/2. We now define ω1(0, e1) = 2φ, ω1(0,−e1) = φ,
ω1(0,−e2) = φ and ω1(0, e2) = 1 − 4φ and ω2(0, e1) = 2φ, ω2(0,−e1) = φ,
ω2(0, e2) = φ and ω2(0,−e2) = 1 − 4φ. We then let the environment at site 0 be
given by the random variable ω(0, ·) := Zω1(0, ·)+ (1− Z(0))ω2(0, ·), and extend
this to an i.i.d. environment on Z

d . This environment has the property that traps
can appear, where the random walk gets caught in an edge, as shown in Fig. 2.
Furthermore, as we will show, it is not difficult to check that the random walk in
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this random environment is transient in direction e1 but not ballistic. Hence, due to
Corollary 1 there exists no invariant probability measure for the environment seen
from the particle, which in addition is absolutely continuous with respect to P.

These are two examples of walks which are transient in a given direction but not
ballistic, and for which there is no invariant probability measure for the environmental
process absolutely continuous with respect to the initial law P of the environment. It
is natural, hence, to raise the following questions:

Open Question 1 Assume given an RWRE fulfilling (ERG) and (E). Furthermore,
assume the RWRE is transient in a given direction. Is the existence of an invariant
probability measure for the environmental process which is absolutely continuous
with respect to P equivalent to ballisticity in the given direction?

Open Question 2 Let d ≥ 2. Assume given a RWRE for which (UE) and (IID)
are fulfilled, and which is transient in direction l ∈ S

d−1. Is the RWRE necessarily
ballistic in direction l?

As it is discussed above, Example 1 shows that if the hypothesis (UE) is replaced
by (E) in the Open Question 2, then its answer is negative. The following proposition
gives an indication of how much ellipticity should be required.

Proposition 2 Consider a random walk in an i.i.d. environment. Assume that

max
e∈U E

[
1

1− ω(0, e)ω(0,−e)

]

= ∞. (31)

Then the walk is not ballistic in any direction.

Proof Fix e ∈ U and define the first exit time of the random walk from the edge
between 0 and e as

T{0,e} := min {n ≥ 0 : Xn /∈ {0, e}} .
We then have for every k ≥ 0, using the notation ω1 := ω(0, e) and ω2 := ω(0,−e)
that

P0,ω[T{0,e} > 2k] = (ω1ω2)k

and
∞∑

k=0

P0,ω[T{0,e} > 2k] = 1

1− ω1ω2
. (32)

Using (31), this implies that
E0[T{0,e}] = ∞.

We can now show using the strong Markov property under the quenched measure
and the i.i.d. nature of the environment, that for each natural m > 0, the time
Tm := min{n ≥ 0 : Xn · l > m} can be bounded from below by the sum of a sequence
of random variables T̃1, . . . , T̃m which under the averaged measure are i.i.d. and
distributed as T{0,e}. This proves that P0-a.s. Tm/m → ∞ which implies that the
random walk is not ballistic in direction l.

Based now on Proposition 1 we have the following extended version of the Open
Question 1.
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Open Question 3 Let d ≥ 2. Is it the case that every random walk fulfilling (E) and
(IID), and satisfying

max
e∈U E

[
1

1− ω(0, e)ω(0,−e)

]

<∞,

and which is transient in direction l ∈ S
d−1, is ballistic in direction l?

For the case of an environment fulfilling (IID) and having a Dirichlet law, the
above question was answered positively by Sabot [37] in dimensions d ≥ 3 (see also
the work of Campos and Ramírez [8]).

1.7 Transience, Recurrence and a Quenched Invariance Principle

Similarly to the case of simple random walk, one of the most basic questions for an
RWRE is a classification in terms of transience and recurrence. As simple as this
question is to pose, it is still far from being completely understood. In fact, a natural
question is the following one.

Open Question 4 Is it the case that in dimensions d ≥ 3, an RWRE fulfilling (E)
and (IID) is transient?

This question has been answered only in the case of the so-called Dirichlet en-
vironment (see [36]) and essentially also for balanced environments (see [29]). It
is intimately related to the quenched central limit theorem. In this section, we will
discuss how Kozlov’s theorem can be used for balanced random walks to derive such
a theorem, from which eventually transience in direction d ≥ 3 can be deduced.

Consider the subset of the set of environments

�0 := {ω ∈ � : ω(x, e) = ω(x,−e) for all x ∈ Z
d , e ∈ U}.

We will say that the law P of the environment of an RWRE is balanced if

P[�0] = 1,

where in particular we use that �0 is a measurable subset of �. The following result
was proved by Lawler in [29].

Theorem 5 Consider a random walk with an environment which has a law P fulfilling
(UE) as well as (ERG), and which is balanced. Then there exists an invariant measure
for the environmental process which is absolutely continuous with respect to P.

The above result is one of the few instances in which it has been possible to
construct an absolutely continuous invariant measure for the environmental process
in dimensions d ≥ 2 (for non-nestling random walks at low disorder; Bolthausen
and Sznitman also make such a construction in [7]; for random environment with
Dirichlet law Sabot characterizes the cases when this happens in [37]). As a corollary,
Lawler can prove the following.
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Corollary 2 Under the conditions of Theorem 5 for P-a.e. ω, under P0,ω, the
sequence X[n·]/

√
n converges in law on the Skorokhod space D([0,∞); R

d ) to a non-
degenerate Brownian motion with a diagonal and deterministic covariance matrix
A := {ai,j }, ai,j = aiδi,j .

Proof Let us first explain how to prove the convergence of the finite-dimensional
ditributions. Note that for every θ ∈ R

d sufficiently close to 0 and using P[�0] = 1
we have that

e
iXn·θ−∑n−1

k=0 ln
(

2
∑d

j=1 cos (ej ·θ )ω(Xk ,ej )
)

is a martingale in n with respect to the law P0,ω. Therefore, rescaling θ by θ/
√
n we

see that for all n large enough,

E0,ω

[

e
i
Xn√
n
·θ−∑n−1

k=0 ln
(

2
∑d

j=1 cos
(

θj√
n

)
ω(Xk ,ej )

)]

= 1.

Hence, it is enough to prove that there exist constants {ai : 1 ≤ i ≤ d} such that
P0-a.s. one has that

lim
n→∞

n−1∑

k=0

ln

⎛

⎝2
d∑

j=1

cos

(
θj√
n

)

ω(Xk , ej )

⎞

⎠ = −
d∑

j=1

aj

2
θ2
j . (33)

Now, by Taylor’s theorem,

cos (x) = 1− x2

2! + h1(x)x2,

where limx→0 h1(x) = 0. Hence,

cos

(
θj√
n

)

= 1− θ2
j

2n
+ θ2

j

n
h1

(
θj√
n

)

,

and for each k ≥ 0,

2
d∑

j=1

cos

(
θj√
n

)

ω(Xk , ej ) = 1−
d∑

j=1

θ2
j

n
ω(Xk , ej )+ 2

d∑

j=1

θ2
j

n
h1

(
θj√
n

)

ω(Xk , ej ).

(34)

A second application of Taylor’s theorem gives that

ln (1− x) = −x + h2(x)x,

where limx→0 h2(x) = 0. Thus, using (34) we have that,

ln

⎛

⎝2
d∑

j=1

cos

(
θj√
n

)

ω(Xk , ej )

⎞

⎠



Selected Topics in Random Walks in Random Environment 45

= −
d∑

j=1

θ2
j

n
ω̄k(0, ej )+ 2

d∑

j=1

θ2
j

n
h1

(
θj√
n

)

ω̄k(0, ej )

+
⎛

⎝
d∑

j=1

θ2
j

n
ω̄k(0, ej )− 2

d∑

j=1

θ2
j

n
h1

(
θj√
n

)

ω̄k(0, ej )

⎞

⎠h2,

where

h2 = h2

⎛

⎝
d∑

j=1

θ2
j

n
ω̄k(0, ej )− 2

d∑

j=1

θ2
j

n
h1

(
θj√
n

)

ω̄k(0, ej )

⎞

⎠ ,

and where we recall that the environmental process (ω̄n) has been introduced in
Definition 4. It then follows that if we are able to prove that for each 1 ≤ j ≤ d,
P0-a.s. one has that

lim
n→∞

1

n

n∑

k=0

ω̄k(0, ej ) = aj

2
, (35)

then we have proven (33). To prove (35), by Kozlov’s theorem, it is enough to use
Theorem 5 which ensures the existence of a measure ν which is an invariant measure
for the process (ω̄n) and which is absolutely continuous with respect to P. The prove
the convergence to Brownian motion we can use the martingale convergence theorem
([48]).

We will now explain the main ideas in the proof of Theorem 5, the details of which
can be found, for example, in Sznitman [6]. We will construct an invariant measure by
approximating it with invariant measures with respect to the environmental processes
on finite spaces. Configurations of the environment on these finite spaces will then
correspond to periodic configurations on the full space. The point is to do this in such
a way that the density of these invariant measures with respect to periodized versions
of the measure P, has an Lp norm for some p > 1, which is uniformly bounded in
the size of the boxes.

We introduce for x ∈ Z
d the equivalence classes

x̂ := x + (2N + 1)Zd ∈ Z
d/((2N + 1)Zd ).

In addition we define for ω ∈ �0 the corresponding periodized version ωN of ω so
that ωN (y) = ω(x) for y ∈ Z

d and x ∈ B∞(N ) such that ŷ = x̂,. and set

�N := {ωN : ω ∈ �0}.
It is straightforward to see that the random walk in the environment ωN has an
invariant measure of the form

mN := 1

(2N + 1)d
∑

x∈B∞(N )

�N (x)δx̂ ,
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for some function �N on B∞(N ) such that
∑

x∈B∞(N ) �N = (2 N + 1)d .
Now define a probability measure on �N by

νN := 1

(2N + 1)d
∑

x∈B∞(N )

�N (x)δtxωN
.

Now introduce the sequence of measures

PN := 1

(2N + 1)d
∑

x∈B∞(N )

δtxωN
.

By the multidimensional ergodic theorem (see [17, Theorem VIII.6.9]), we have that

lim
N→∞PN = P P− a.s.

Also, one can see that νN is absolutely continuous with respect to PN ,

dνN =: fN dPN ,

with
∫

f
d

d−1
N dPN ≤ 1

(2N + 1)d
∑

x∈B∞(N )

�N (x)
d

d−1 .

Hence, for every bounded measurable function g on � we have that

∣
∣
∣
∣

∫

g dνN

∣
∣
∣
∣ ≤

(∫

|g|d dPN

) 1
d
(∫

f
d

d−1
N dPN

) d−1
d

≤ ‖g‖Ld (PN )‖�N‖
L

d
d−1

.

where we write Ld for the corresponding space with respect to the normalized count-
ing measure on B∞(N ). Now, assume that there is a constant C such that for everyN ,

‖�N‖
L

d
d−1
≤ C. (36)

Using the compactness of � and Prohorov’s theorem, we can extract a subsequence
νNk

of νN which converges weakly to some limit ν as k → ∞. Then we would
obtain that ∣

∣
∣
∣

∫

g dν

∣
∣
∣
∣ ≤ C‖g‖Ld (P),

which would prove that ν is absolutely continuous with respect to P. Note also that
Kozlov’s theorem (Theorem 3) ensures that ν is deterministic. Let us now prove
(36). For that purpose, suppose that for every function h ∈ Ld (PN ),

sup
x∈B∞(N ),ωN

∣
∣
∣
∣
∣
Ex,ωN

[ ∞∑

k=0

(

1− 1

N2

)k

h(Xk)

]∣
∣
∣
∣
∣
≤ CN2‖h‖Ld (PN ). (37)

We claim that (37) implies (36). Indeed,
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‖�N‖
L

d
d−1
= sup

h:‖h‖
Ld≤1

(�N ,h)

= sup
h:‖h‖

Ld≤1

1

N2

∞∑

k=0

(

1− 1

N2

)k 1

(2N + 1)d
∑

x∈B∞(N )

�N (x)h(x)

= sup
h:‖h‖

Ld≤1

∞∑

k=0

1

N2

(

1− 1

N2

)k 1

(2N + 1)d
∑

x∈B∞(N )

�N (x)Ex,ωN
[h(Xk)],

which would yield (36). We now claim that (37) is a consequence of the inequality

‖Qωf ‖∞ ≤ CN2

⎛

⎝ 1

(2 N + 1)d
∑

x∈B∞(N )

|f (x)|d
⎞

⎠

1
d

, (38)

where

Qωf (x) := Ex,ωN

[
SN−1∑

k=0

f (Xk)

]

and
SN := inf{n ≥ 0 : |Xn|∞ ≥ N}.

To prove (37) assuming (38), define τ0 := 0 and

τ1 := τ = inf{n ≥ 0 : |Xn −X0|∞ ≥ N},
as well as recursively for k ≥ 1, τk+1 := τ ◦ θτk + τk . Then, for each ρ ∈ [0, 1) we
have that

Ex,ωN

[ ∞∑

k=0

ρkf (Xk)

]

= Ex,ωN

⎡

⎣
∞∑

m=0

∑

τm≤k<τm+1

ρkf (Xk)

⎤

⎦

≤
∞∑

m=0

sup
x∈Zd

Ex,ωN
[ρτ ]m sup

x∈Zd

∣
∣(Qtxω(txf ))(0)

∣
∣

≤ CN2 1

|B∞(N )|1/d ‖f ‖Ld

1

1− supx Ex,ωN
[ρτ ]

.

Now, for every K > 0 we have Ex,ωN
[ρτ ] ≤ Px,ωN

[τ ≤ K] + ρKPx,ωN
[τ > K].

But since the random walk (Xn)n≥0 is a martingale, by Doob’s martingale inequality
we have that for every λ > 0,

λNP0,txω
[

sup
0≤k≤K

|Xi
k| ≥ λN

] ≤ C ′K1/2,

for some constant C ′ > 0. Choosing K = CN2 for an appropriate constant C, we
have that for an appropriate choice of λ,

Px,ω[τ ≤ K] ≤
d∑

i=1

P0,txω

[

sup
0≤k≤K

|Xk|∞ ≥ λN

]

≤ C ′
1

λ
C1/2N ≤ 1

2
.

To finish the proof, it remains to establish (38). As explained in Sznitman [6], one
can follow the methods developed by Kuo and Trudinger [28] to obtain pointwise
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estimates for linear elliptic difference equations with random coefficients. One uses
the fact that u = Qωf is a solution of the equation

(Lωu)(x) = −f (x), for x ∈ B∞(N ),

u(x) = 0, for x ∈ ∂B∞(N );

where

(Lωg)(x) =
∑

e∈U
ω(x, e)(g(x + e)− g(x)) (39)

and the so-called normal mapping (see [28]) defined for x ∈ B∞(N ) as

χu(x) := {p ∈ R
d : u(z) ≤ u(x)+ p · (z − x), for z ∈ B∞(N ) ∪ ∂B∞(N )}.

To conclude that

ωd

(max u)d

(2N)d
= |B2(max u/(2N))| ≤

∑

x∈B∞(N)

|χu(x)| ≤
∑

x∈B∞(N)

f (x)d

κd
,

where ωd is the volume of a sphere unit radius, which proves (38).
Theorem 5 and Corollary 2 have recently been been extended by Guo and Zeitouni

in [21] to the elliptic case. Further progress has been made by Berger and Deuschel
in [4]. They introduce the following concept which is considerably weaker than
ellipticity.

Definition 7 (Genuinely d-dimensional environment) We say that an environment
ω ∈ � is a genuinely d-dimensional environment if for every e ∈ U there exists a
y ∈ Z

d such that ω(y, e) > 0. We say that the law P of an environment is genuinely
d-dimensional if environments are genuinely d-dimensional under P with probability
one.

Theorem 6 ([4]) Consider a RWRE in an i.i.d., balanced and genuinely d-
dimensional environment. Then the quenched invariance principle holds with a
deterministic non-degenerate diagonal covariance matrix.

In [56], Zeitouni proves as a corollary of Lawler’s quenched central limit theorem
for balanced random walks the following result.

Theorem 7 ([56, Theorem 3.3.22]) Under the conditions of Theorem 5, the random
walk is transient in dimensions d ≥ 3 and recurrent in dimension d = 2.

1.8 One-Dimensional Quenched Large Deviations

The following result was first derived by Greven and den Hollander [20] to the case
of an i.i.d. environment and then extended by Comets, Gantert, and Zeitouni [12] for
ergodic environments.
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Theorem 8 (Greven-den Hollander, Comets–Gantert–Zeitouni) Consider an RWRE
in dimension d = 1. Assume that E[ log ρ] ≤ 0 and that the environment fulfills (E)
and is totally ergodic. Then, there exists a deterministic rate function I : R → [0,∞]
such that

1. For every open set G ⊂ R we have that

lim inf
n→∞

1

n
logP0,ω

[
Xn

n
∈ G

]

≥ − inf
x∈G I (x) P− a.s.

2. For every closed set C ⊂ R we have that

lim sup
n→∞

1

n
logP0,ω

[
Xn

n
∈ C

]

≤ − inf
x∈C I (x) P− a.s.

Furthermore, I is continuous and convex, and it is finite exactly on [− 1, 1].
The strategy used by Comets, Gantert and Zeitouni in [12] to prove Theorem 8 is

based on obtaining a recursion relation for the moment generating function φ(λ) :=
E0,ω[eλT1 ], where for k ≥ 1, Tk := inf{n ≥ 0 : Xn = k}, which leads to a continuous
fraction expansion of it. This leads to a large deviation principle for Tk/k with rate
function given by the expression

I (t) = sup
λ∈R

(λt − E0[φ(λ)]).

As is often the case, the expression for the rate function is much more explicit in
d = 1 than in higher dimensions (cf. also Sect. 1.10 for the latter). In addition to the
above, in [12] the following is also shown.

Theorem 9 Consider an RWRE satisfying the hypotheses of Theorem 8. Assume
that the support of the law of ω(0, 1) intersects both

(
0, 1

2

]
and

[
1
2 , 1

)
. Then the rate

function I of Theorem 8 satisfies the following properties:

1. For x ∈ (0, 1] we have that I (− x) = I (x)− xE[ log ρ].
2. I (x) = 0 if and only if x ∈ [0, v], with v denoting the limiting velocity limn→∞Xn

(see also (74) below).

Part 1 of Theorem 8 shows that the slope of the rate function to the left of the
origin does not vanish. A similar phenomenon is expected to happen for every tran-
sient random walk fulfilling (IID) and (UE) in dimensions d ≥ 2. This behavior
is expected to be connected to the resolution of a conjecture about the equivalence
of two particular ballisticity conditions (see (77) below), which will be discussed in
Chap. 2.

1.9 Multidimensional Quenched Large Deviations

In [54] Varadhan presented a short proof of the quenched large deviation principle
for the RWRE in general ergodic environments. His method is based on the use of
the superadditive ergodic theorem.
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Note that by the Markov property for each environment ω the n-step transition
probability of the random walk (see (4)) satisfies for each natural numbers n and m

and x, y ∈ Z
d the inequality

p(n+m)(0, x + y) ≥ p(n)(0, x)p(m)(x, x + y). (40)

We would like to take logarithms on both sides to obtain a superadditive quantity
and then apply the subadditive ergodic theorem. Nevertheless, there are two types of
degeneracy that complicate this operation:

1. p(0)(x, y,ω) = 0 for x 	= y;
2. p(n)(x, y,ω) = 0 whenever n and |x − y|1 do not have the same parity.

To avoid them Varadhan introduced the following smoothed transition probabili-
ties, defined for each c > 0 and ω, x, y and non-negative real t ,

qc(x, y, t) := sup
m≥0
{p(m)(x, y,ω)e−c|m−t |}.

This regularization method is related to homogenization methods already developed
within the context of the stochastic Hamilton–Jacobi equation (see for example, [26],
[34]).

Theorem 10 (Varadhan) Consider an RWRE fulfilling (UE) and (ERG). Then, there
exists a convex rate function I : R → [0,∞] such that

1. For every open set G ⊂ R
d we have that

lim inf
n→∞

1

n
logP0,ω

[
Xn

n
∈ G

]

≥ − inf
x∈G I (x) P− a.s.

2. For every closed set C ⊂ R
d we have that

lim sup
n→∞

1

n
logP0,ω

[
Xn

n
∈ C

]

≤ − inf
x∈C I (x) P− a.s.

Furthermore, I is continuous in
◦
B1 (1), lower-semicontinuous in B1(1) and I (x) =

∞ for x /∈ B1(1).
We will present here the proof of Theorem 10 given by Campos, Drewitz, Rassoul-

Agaha, Ramírez and Seppäläinen in [9] and which is valid also for time-dependent
random environments satisfying certain ergodicity conditions — we refer the reader
to [9] for further details on the time dependent setting.

The idea is to avoid the degeneracy issues discussed related to point (2) above, by
considering the random walk at even and odd times separately.

Let us begin modifying our random walk model, admitting the possibility that
the walk does not move after one step, so that the set of jumps after one step is now
U ′ := U ∪ {0} and
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ω(0, 0) ≥ κ.

We will call this random walk, the random walk in random environment with holding
times. We will denote by Ph

x,ω its quenched law starting from x and by

p
(n)
h (x, y,ω) := Ph

x,ω[Xn = y]

its n-step transition probabilities. For x ∈ R
d , we will define

[x] := ([x1], . . . , [xd ]) ∈ Z
d .

Let us define for n ≥ 0, Rn as the set of sites that the random walk can visit with
positive probability at time n. Thus, R0 := {0}, R1 := U ′ while for n ≥ 1,

Rn+1 := {y ∈ Z
d : y = x + e for some x ∈ Rn and e ∈ U ′} = Rn+1 + (Rn + U ).

It is easy to check that B1(1) equals the set of limit points of the sequence of sets
Rn/n. Furthermore,

Rn = (nB1(1)) ∩ Z
d (41)

(see also Lemma 3.1 in [9]). We will now prove the following.

Proposition 3 Consider a random walk in random environment with holding times,
and which fulfills (UE) and (ERG) to hold. Then, for each x ∈ Q

d we have that
P-a.s. the limit

I (x) := − lim
n→∞

1

n
logp

(n)
h (0, [nx]) (42)

exists, is convex and deterministic. Furthermore, I (x) <∞ for x ∈ Q
d∩ ◦

B1 (1).

Proof Note that from we can check that if x /∈ B1(1), for every n ≥ 1 one has that
nx /∈ nB1(1) so that nx /∈ Rn, and thus p(n)

h (0, [nx]) = 0. This proves that I (x) = ∞
if x /∈ B1(1).

Let us now consider an x ∈ Q
d∩ ◦

B1 (1). Note that there exists a k ∈ N and a

y ∈ Z
d ∩ k

◦
B1 (1) such that x = k−1y; in addition, y ∈ Rk .

We will now introduce an auxiliary function Ĩ and then show that it in fact equals
the expression given for I in (42). Indeed, by the convexity of B1(1), the subadditive
ergodic theorem [31] and (40), we have that

Ĩ (k−1y) := − lim
m→∞

1

mk
logp

(mk)
h (0,my)

exists P-a.s. Furthermore, this definition is independent of the representation of

x. Indeed, if x = k−1y1 = l−1y2 for some k, l ∈ N, y1 ∈ Z
d ∩ k

◦
B1 (1) and

y2 ∈ Z
d ∩ l

◦
B1 (1), we have that
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Ĩ (k−1y1) = − lim
n→∞

1

nlk
logp

(nlk)
h (0, nly1) = − lim

n→∞
1

nlk
logp

(nlk)
h (0, nky2)

= Ĩ (l−1y2).

We will next prove that Ĩ is deterministic on Q
d ∩Z

d . Let x ∈ Q
d∩ ◦

B1 (1). There

exists a k ∈ N and a y ∈ Z
d ∩ k

◦
B1 (1) such that x = k−1y. Now it is enough to

prove that for each z ∈ U one has that

Ĩ (x,ω) ≤ Ĩ (x, tzω) = − lim
m→∞

1

mk
logp

(mk)
h (z,my + z).

But for each n ∈ N, we have that

− 1

mnk
logp

(mnk)
h (0,mny) ≤ − 1

mnk
logp

(mnk)
h (0, z)− 1

mnk
logp

(mnk)
h (z,mny).

By uniform ellipticity, the first term in the right-hand side of the above inequality
tends to 0 as m→∞. Therefore,

Ĩ (x,ω) = − lim
m→∞

1

mnk
logp

(mnk)
h (0,mny) ≤ − lim inf

m→∞
1

mnk
logp

(mnk)
h (z,mny).

On the other hand,

− 1

mnk
logp

(mnk)
h (z,mny)

≤ − 1

mnk
logp

((m−1)nk)
h (z, (m− 1)ny + z)− 1

mnk
logp

(nk−1)
h ((m− 1)ny + z,mny).

Now, since z ∈ U , one can check that p(nk−1)
h ((m− 1)ny + z,mny) ≥ κnk−1, so that

the last term of the above inequality tends to 0 when m→∞. We can then conclude
that Ĩ (x,ω) ≤ Ĩ (x, tzω).

We will now prove that I is well defined in Q
d∩ ◦

B1 (1) and that it equals Ĩ there.

Let x ∈ Q
d∩ ◦

B1 (1). Furthermore, choose k such that kx ∈ Z
d and given n ∈ N

define
m :=

[n

k

]
.

Necessarily, we can find a sequence z1, . . . , zn−mk ∈ U such that

[nx] = mkx + z1 + · · · + zn−mk.

Hence, by superadditivity and uniform ellipticity we have that

−1

n
logp

(n)
h (0, [nx]) ≤ −1

n
logp

(mk)
h (0,mkx)− 1

n
log κn−mk.
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Therefore

− lim sup
n→∞

1

n
logp

(n)
h (0, [nx]) ≤ Ĩ (x).

Using a similar argument we can establish that

− lim inf
n→∞

1

n
logp

(n)
h (0, [nx]) ≥ Ĩ (x).

We want now to extend Proposition 3 to x ∈ R
d . To do this, we will need to

establish a lemma which in some sense shows that the quantity − logp(n)(0, [nx])
is continuous as a function of x. For each x ∈ Z

d we define s(x) as the minimum
number n of steps required for the random walk to move from 0 to x, so that

s(x) := min{n ≥ 0 : x ∈ Rn}.
We will now define a norm in R

d as follows. For each y ∈ ∂B1(1) we set ‖y‖ := 1.
Then, for each x ∈ R

d of the form x = ay for some a ≥ 0, we define ‖x‖ := a. Since
B1(1) is convex, symmetric (in the sense that x ∈ B1(1) implies that −x ∈ B1(1)),
this implies that this defines a norm. It is easy to check that for every x ∈ Z

d ,

‖x‖ ≤ s(x) ≤ ‖x‖ + 1. (43)

Lemma 3 Let z ∈ B1(1) and x ∈ ◦B1 (1).

1. For each natural n there exists an n2 such that

n ≤ n2 ≤ n+ 4d + 1

1− ‖x‖ + n
‖x − z‖
1− ‖x‖ + 1, (44)

and such that

− logp
(n2)
h (0, [n2x]) ≤ − logp

(n)
h (0, [nz])− log κn2−n.

2. Similarly, whenever ‖x − z‖ < 1 − ‖x‖, there exists an n0 such that for each
natural n ≥ n0 there exists an n1 such that

n− 4d + 1

1− ‖x‖ − n
‖x − z‖
1− ‖x‖ − 1 ≤ n1 ≤ n (45)

and such that

− logp
(n)
h (0, [nz]) ≤ − logp

(n1)
h (0, [n1x])− log κn−n1 .

Proof To prove part 1 of the lemma, it is enough to show that there exists an n2 ≥ n

satisfying (44) and such that

s([n2x]− [nz]) ≤ n2 − n. (46)
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But by (43) and the fact that ‖x − [x]‖ ≤ d we see that

s([n2x]− [nz]) ≤ ‖[n2x]− [nz]‖ + 1 ≤ ‖[n2x]− [nx]‖ + ‖[nx]− [nz]‖ + 1

≤ ‖(n2 − n)x‖ + ‖n(x − z)‖ + 4d + 1 = (n2 − n)‖x‖ + n‖x − z‖ + 4d + 1.

This shows that (46) is satisfied whenever

n2 ≥ n+ 4d + 1

1− ‖x‖ + n
‖x − z‖
1− ‖x‖ .

To prove part 2 of the lemma, note that it is enough to show that there exists an
n1 ≤ n satisfying (45) and

s([nz]− [n1x]) ≤ n− n1.

But,
s([nz]− [n1x]) ≤ n‖z − x‖ + (n− n1)‖x‖ + 4d + 1

which is equivalent to

n1 ≤ n− 4d + 1

1− ‖x‖ − n
‖z − x‖
1− ‖x‖ .

We are now in a position to extend Proposition 3 to the following.

Proposition 4 Consider a random walk in random environment with holding times,
where the law P of the environment is totally ergodic. Then, for each x ∈ R

d we have
that P-a.s. the limit

I (x) := − lim
n→∞

1

n
logp

(n)
h (0, [nx])

exists, is convex and deterministic. Furthermore, I (x) <∞ if and only if x ∈ B1(1).

Proof Let z ∈ R
d∩ ◦

B1 (1). Choose a point x with rational coordinates such that
‖z − x‖ < 1− ‖x‖ and 1

1−‖x‖ ≤ 2 1
1−‖z‖ . By Lemma 3, for each n ≥ n0 we can find

n1 and n2 satisfying (44) and (45) and such that

−n2

n

1

n2
logp

(n2)
h (0, [n2x]) ≤ −1

n
logp

(n)
h (0, [nz])+ b

(n2

n
− 1

)

and

−1

n
logp

(n)
h (0, [nz]) ≤ −n1

n

1

n1
logp

(n1)
h (0, [n1x])+ b

(
1− n1

n

)
,

where b := − log κ . From inequalities (44) and (45) of Lemma 3 and by Proposition 3
we can then conclude that

I (x) ≤ − lim inf
n→∞

1

n
logp

(n)
h (0, [nz])+ C(z)b‖x − z‖

and

− lim inf
n→∞

1

n
logp

(n)
h (0, [nz]) ≤ I (x)+ C(z)b‖x − z‖,

where C(z) := 2 1
1−‖z‖ . Letting x → z we conclude that I is well defined on R

d∩ ◦
B1

(1).
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We are now in a position to extend the function I of Proposition 4 from
◦
B1 (1) to

B1(1) as

I (x) :=
{

I (x), if x ∈ ◦B1 (1),
lim inf ◦

B1(1)�y→x
I (y), if x ∈ ∂B1(1).

We will show that this is in fact the rate function of Theorem 10, but of an RWRE
with holding times. Let us first show that I satisfies the requirements of Theorem 10.
By uniform ellipticity, it is clear that I (x) ≤ | log κ| whenever x ∈ B1(1). Also,

the proof of Proposition 4 shows that I is continuous in
◦
B1 (1). Furthermore, it is

obvious that I is convex and lower-semicontinuous in B1(1).
Now, note that if G is an open subset of R

d and x ∈ G, the sequence [nx] is in
nG ∩ Z

d and

Ph
0,ω

[
Xn

n
∈ G

]

≥ Ph
0,ω[Xn = [nx]].

In combination with Proposition 4 we therefore conclude that

lim inf
n→∞

1

n
logPh

0,ω

[
Xn

n
∈ G

]

≥ − inf
x∈G I (x).

Let us now consider a compact set C ⊂ ◦
B1 (1). We then have that

lim sup
n→∞

1

n
logPh

0,ω

[
Xn

n
∈ C

]

≤ lim sup
n→∞

sup
x∈C

1

n
logp

(n)
h (0, [nx])

= inf
n

sup
x∈C

sup
m≥n

1

m
logp

(n)
h (0, [mx]).

Now, through a contradiction argument and an application of Lemma 3, one can
prove that

sup
x∈C

sup
m≥n

1

m
logp

(n)
h (0, [mx]) ≤ − inf

x∈C I (x).

This shows that

lim sup
n→∞

1

n
logPh

0,ω

[
Xn

n
∈ C

]

≤ − inf
x∈C I (x). (47)

Standard arguments using uniform ellipticity enable us now to extend (47) from
compact sets to closed sets.

One can now derive Theorem 10 for the plain RWRE from the RWRE with holding
times as follows. Define the even lattice as Z

d
even := {x ∈ Z

d : |x|1 is even}. Using
the fact that since Z

d
even is a free Abelian group it is isomorphic to Z

d , we can apply
Proposition 4 for the RWRE with holding times to deduce an analogous result for
the random walk Yn := X2n at even times. On the other hand, using the equality

P0,ω

[
X2n+1

2n+ 1
∈ A

]

=
2d∑

i=1

ω(0, ei)Pei ,ω

[
X2n

2n
∈ A

]

,

and the asymptotic behavior previously proved at even times, in combination with
the assumption of uniform ellipticity, we can deduce the large deviation principle of
Theorem 10.
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1.10 Rosenbluth’s Variational Formula for the Multidimensional
Quenched Rate Function

The drawback of Theorem 10 is that it gives very little information about the rate
function of the quenched large deviations of the random walk. A partial remedy to
this was obtained by Rosenbluth [35] in his Ph.D. thesis in 2006, where he derived
a variational expression for the rate function. To state Rosenbluth’s result, it is more
natural to define the RWRE in an abstract setting, where we first define the dynamics
of the environmental process. In analogy to the set of admissible transition kernels
P defined in 3, we denote by Q the set of measurable functions q : �×U �→ [0, 1]
such that

∑
e∈U f (ω, e) = 1 for all ω ∈ �. Define the function p ∈ Q via p(ω, e) :=

ω(0, e), corresponding to the transition probabilities of the canonical RWRE. Let us
call D the set of measurable functions φ : �→ [0,∞) such that

∫
φdP = 1.

Theorem 11 Assume that (ERG) is fulfilled and that there is an α > 0 such that

max
e∈U

∫

| ln p(ω, e)|d+α
P(dω) <∞.

Then the RWRE satisfies a large deviation principle with rate function

I (x) := sup
λ∈Rd

{λ · x −
(λ)},

where


(λ) := sup
q∈Q

sup
φ∈D

inf
h

∑

e∈U

∫ (

λ · e−ln
q(ω, e)

p(ω, e)
+ h(ω)− h(Teω)

)

q(ω, e)φ(ω)P(dω).

Remark 2 The integrability assumption in the above theorem is fulfilled if (UE)
holds true, for example.

Note that using canonical LDP machinery, one can show that it is enough to prove
that

lim
n→∞ logEPω

[eλ·Xn ] = 
(λ).

We will just give an idea of the proof of the above theorem deriving the lower bound
in the above limit. In analogy to the definition of Pω in (17), given q ∈ Q, we denote
by Qω the law of the corresponding Markov chain (ω̄n)n≥0 starting from ω. We then
have

EPω

[
eλ·Xn

] = EQω

[

eλ·Xn
dPω

dQω

]

= EQω

[

exp

{

λ ·Xn −
n−1∑

k=0

ln
q(tXk

ω,Xk+1 −Xk)

p(tXk
ω,Xk+1 −Xk)

}]

.

By Jensen’s inequality it follows that

lim inf
n→∞

1

n
ln EPω

[
eλ·Xn

] ≥ lim
n→∞EQω

[
1

n
λ ·Xn − 1

n

n−1∑

k=0

∑

e∈U
ln

q(tXk
ω, e)

p(tXk
ω, e)

]

. (48)
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Now note that the expectation of the second term of (48) can be written as

EQω

[
1

n

n−1∑

k=0

ln
q(tXk

ω, e)

p(tXk
ω, e)

]

= 1

n

n−1∑

k=0

∑

e∈U
ln

q(tXk
ω, e)

p(tXk
ω, e)

q(tXk
ω, e).

Let us now assume that the chain (ω̄n)n≥0 under Qω has an invariant measure ν

which is absolutely continuous with respect to P. Let us call φ the Radon–Nikodym
derivative of ν with respect to P. By Kozlov’s theorem (Theorem 3), we know that
the measure ν is such that Qν := ∫

Qων(dω) is ergodic (with respect to the time
shifts). It follows that

lim
n→∞

1

n

n−1∑

k=0

∑

e∈U
ln

q(tXk
ω, e)

p(tXk
ω, e)

q(tXk
ω, e)

=
∫ ∑

e∈U
ln

q(ω, e)

p(ω, e)
q(ω, e)φ(ω)P(dω) Qν − a.a. ω,

and hence that

lim
n→∞EQω

[
1

n

n−1∑

k=0

∑

e∈U
ln

q(tXk
ω, e)

p(tXk
ω, e)

q(tXk
ω, e)

]

=
∫ ∑

e∈U
ln

q(ω, e)

p(ω, e)
q(ω, e)φ(ω)P(dω) P− a.a. ω.

On the other hand, by the law of large numbers, we can see that the behavior of the
first term on the right-hand side of (48) is characterized by

lim
n→∞EQω

[
1

n
λ ·Xn

]

=
∫ ∑

e∈U
λ · eq(ω, e)φ(ω)P(dω) P− a.a. ω.

It follows that if we call Q0 the set of transition probabilities q for which there is an
invariant measure νq which is absolutely continuous with respect to P (and which is
unique, by part 3 of Kozlov’s theorem), with φq = dνq

dP
we have by (48) that


(λ) ≥ sup
q∈Q0

∑

e∈U

∫ (

(λ, e)− ln
q(ω, e)

p(ω, e)

)

q(ω, e)φq(ω)P(dω).

Now note that for φ ∈ D, the following are equivalent

φ = φq

and

inf
h

∫ ∑

e∈U
(h(ω)− h(Teω)) q(ω, e)φ(ω)P(dω) = 0.
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Similarly,
φ 	= φq

and

inf
h

∫ ∑

e∈U
(h(ω)− h(Teω)) q(ω, e)φ(ω)P(dω) = −∞.

Therefore, we conclude that

sup
q∈Q0

∑

e∈U

∫ (

λ · e − ln
q(ω, e)

p(ω, e)

)

q(ω, e)φq(ω)P(dω)

= sup
q∈Q,φ∈D

inf
h

∑

e∈U

∫ (

λ · e − ln
q(ω, e)

p(ω, e)
+ h(ω)− h(Teω)

)

q(ω, e)φq(ω)P(dω),

which finishes the sketch of the proof for the lower bound.
A level 2 large deviation principle version of Rosenbluth’s variational formula

was derived by Yilmaz in [55]. Subsequently, a level 3 version was derived by
Rassoul-Agha and Seppäläinen in [33].

2 Ballistic Behavior and Trapping in Higher Dimensions

In Chap. 1 we have already considered some situations in which one has been able
to obtain information not only on transience and ballisticity, but also on the diffusive
behavior of RWRE as well as its large deviations; in these situations, this supplied
us with a rather precise understanding of the asymptotic behavior. The content of
this chapter is a more general analysis of RWRE in terms of the coarser scales of
(directional) transience and ballistic behavior.

2.1 Directional Transience

As we have seen in Chap. 1, the question of whether under appropriate conditions
an RWRE in dimension d ≥ 3 is transient, remains essentially unsolved. More is
known, however, about “transience in a given direction” which has been introduced in
Definition 5, and we will see how this concept plays a role in the investigation of bal-
listic behavior of RWRE also. In fact, some quite challenging questions concerning
RWRE are related to that notion, too, as we will see in this chapter.

In the following, we will tacitly use for x ∈ Z
d the equivalence of the conditions

“Px[Al] = 1”, (49)

and

“for P-almost all ω one hasPx,ω[Al] = 1”.
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Note that this equivalence is a direct consequence of the definition of the averaged
measure below (5).

The following result has essentially been proven by Kalikow [22] and has been
refined in [49, 60].

Lemma 4 Consider an RWRE satisfying (E) and (IID). Then for every l ∈ S
d−1 we

have that
P0[Al ∪ A−l] ∈ {0, 1}.

Of course, the above zero-one law seems incomplete and one would like to have
a zero-one law for the event Al already. Intriguingly, however, it is still not known if
such a statement holds in full generality.

Open Question 5 Consider a RWRE satisfying the assumptions (E) and (IID). Is it
true that for every l ∈ S

d−1 one has

P0[Al] ∈ {0, 1}? (50)

As we have seen in Theorem 1, statement (50) holds true for d = 1. In dimension
two, it has been proven to hold true by Zerner and Merkl [60]. In fact, it is also shown
in that source, that if one assumes the environment to be stationary and ergodic with
respect to lattice translations only, it can indeed happen that P0[Al] /∈ {0, 1}.

Apart from leading to interesting problems on its own, the events Al also play a
key role in the next section in order to define a renewal structure for RWRE.

2.2 Renewal Structure

In order to prove some of the main asymptotic results for RWRE in the directionally
transient regime, we will define a renewal structure which will help us to decom-
pose the RWRE in terms of finite i.i.d. (apart from its initial part; see Corollary 3)
trajectories. The first use of this renewal structure in the context of RWRE is due to
Kesten, Kozlov, and Spitzer [24] in the one-dimensional case, and it has then been
generalized to the higher-dimensional case by Sznitman and Zerner [49]. It can be
introduced as follows: given a direction l ∈ S

d−1, it is the first time that the random
walk reaches a new maximum level in direction l and such that after this time it never
goes below this maximum in direction l. Thus, an easy way to define the renewal
time τ1 is via

τ1 := min
{
n ≥ 1 : max

0≤m≤n−1
Xm · l < Xn · l ≤ inf

m≥n
Xm · l

}
. (51)

Another way to put it is that τ1 is the first time that the last exit time from a half space
of the form {x · l < r}, some r ∈ R, coincides with the first entrance time into its
complement.
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In order to introduce notation which is used in the computations below, we give
another definition of τ1 in terms of a sequence of stopping times; it is slightly more
involved. Consider

Hl
u := inf{n ≥ 1 : Xn · l > u}

for u ∈ R as well as

D := inf{n ≥ 0 : Xn · l < X0 · l}
which are stopping times with respect to the canonical filtration. Furthermore, set

S0 := 0, R0 := X0 · l.
In a slight abuse of notation and similarly to (29), we will now use θ to denote the
canonical shift on (Zd )N, i.e.,

θ : (x0, x1, x2, . . . ) �→ (x1, x2, x3, . . . ),

and for n ≥ 1, we define θn to be the n-fold composition of θ. Using this notation,
for k ≥ 1 we now introduce the stopping times

Sk :=Hl
Rk−1

, Dk :=
{
D ◦ θSk + Sk , if Sk <∞,
∞, otherwise,

,

Rk := sup{Xm · l : 0 ≤ m ≤ Dk}. (52)

We then define

K := inf{k ≥ 0 : Sk <∞,Dk = ∞}, (53)

and the first renewal time,
τ1 := SK.

Note that τ1 is not a stopping time with respect to the canonical filtration anymore,
since in order to determine whether {SK = m} occurs one has to “see into the future”
of (Xn) after time m. One can then recursively define the sequence of regeneration
times (τk)k∈N via

τk+1 = τ1 ◦ θτk + τk , k ≥ 1,

and set τ0 = 0. See Fig. 3 for an illustration of the above renewal structure.

Remark 3

• Note here that, although not emphasized explicitly in the notation, the definition
of the sequence (τn) depends on the choice of the direction l; if the very choice of
l matters, it will usually be clear from the context.

• If working with directions l having rational coordinates, Definition 3 works fine.
However, for general directions l ∈ S

d−1, one might under some circumstances
run into slightly more technical argumentations — e.g., for guaranteeing that each
time a renewal time occurs, the walker has gained some height bounded away
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Fig. 3 Sketch of the renewal structure

from 0 in direction l (see for example [45, (1.63)]); however, these complications
do not pose any serious problems.
Note, on one hand, that one way to avoid this kind of technicalities is to replace
Hl

Rk−1
in 52 by Hl

Rk−1+a for some a > 0, as is done for example in [49]. On
the other hand, however, formulas such as in Lemma 6 would result to be more
complicated, and therefore we stick to the definition given above.

The following lemma illustrates the role of the eventsAl from (27) in the definition
of the renewal structure described above.

Lemma 5 Assume (E) and (IID) to hold. Let furthermore l ∈ S
d−1 and assume that

P0[Al] > 0. (54)

Then the following are satisfied:

1.
P0[D = ∞] > 0;

2.

P0[Al�{K <∞}] = 0. (55)
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In words, Lemma 5, part 1 states that if the walk has a positive probability of
finally escaping to infinity in direction l, then it must have a positive probability of
doing so “at once”, i.e., without entering the half-space {x ∈ Z

d : x · l < 0}. Part 2
then ensures that on Al , the above renewal structure is a.s. well-defined.

Proof Let us first prove part 1. Let 54 be fulfilled and assume that

P0[D = ∞] = 0, i.e., P0[D <∞] = 1.

From the invariance of P under spatial translations, it follows that for all x ∈ Z
d we

have
Px[D <∞] = 1.

Using 49, we deduce that for P-almost all ω we would get that for all x ∈ Z
d ,

Px,ω[D <∞] = 1.

Therefore, iteratively applying the strong Markov property at the return times of the
walk to the half-space {x ∈ Z

d : x · l ≤ 0}, we obtain that P0-a.s.,

lim inf
n→∞ Xn · l ≤ 0,

which is a contradiction to (54).
We now prove part (ii). Recalling the definition of K from (53), we note that

{K <∞} ⊂ Ac
−l .

In combination with the zero-one law of Lemma 4, we therefore infer that

P0[{K <∞}\Al] = 0. (56)

On the other hand, observe that for k ≥ 1,

P0[Rk <∞] = P0[Sk <∞,Rk <∞] = E[E0,ω[Sk <∞,PXSk
,ω[D <∞]]]

=
∑

x∈Zd

E[P0,ω[Sk <∞,XSk = x]Px,ω[D <∞]]

=
∑

x∈Zd

P0[Sk <∞,XSk = x]P0[D <∞]

= P0[Sk <∞]P0[D <∞] ≤ P0[Sk−1 <∞,Rk−1 <∞]P0[D <∞],

where to obtain the penultimate equality we used assumption (IID) in combination
with the fact that P0,ω[Sk < ∞,XSk = x] and Px,ω[D < ∞] are measurable with
respect to a disjoint set of coordinates in �.

It follows that
P0[Rk <∞] ≤ P0[D <∞]k.

Using part 1 of this lemma, this again implies P0[K < ∞|Al] = 1, which again
yields

P0[Al\{K <∞}] = 0

and hence in combination with (56) finishes the proof. �

The next result is contained in [49, Proposition 1.4]
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Proposition 5 Denote

G1 := σ(τ1, (Xk)0≤k≤τ1 , (ω(y, ·)){y : y·l<Xτ1 ·l}).

Then the joint distribution of

(
(Xn −Xτ1 )n≥τ1 , (ω(y, ·))y·l≥Xτ1 ·l

)

under P0[ · |Al , G1] equals the joint distribution of

(
(Xn)n≥0, (ω(y, ·))y·l≥0

)

under P0[ · |D = ∞].
In particular, one can infer inductively that on Al , the sequence of renewal times

(τn) is well-defined.
As a corollary of a slight generalization of the above result, Sznitman and Zerner

[49] obtain the following.

Corollary 3 Under P0[ · |Al], the variables (Xτk−Xτk−1 , τk)k≥1 are an independent
family. Furthermore, (Xτk−Xτk−1 , τk)k≥2, underP0[ · |Al] are identically distributed
as (Xτ1 −X0, τ1) under P0[ · |Al].

On an intuitive level, the idea behind the proof of Corollary 3 is that the environ-
ments that the walk sees between different renewal times are i.i.d., which can then
be transferred to the behavior of the walk itself.

2.3 A General Law of Large Numbers

Recall that we have already seen a law of large numbers in Corollary 1; however,
the assumptions for that result included the existence of an invariant measure ν for
the environmental process such that ν was absolutely continuous with respect to P.

We have seen that in some special cases (cf. e.g. Theorem 5), one can ensure the
existence of such a measure ν. On the other hand, however, not much is known about
when such ν exists, and it would be desirable to have a law of large numbers that
holds without this assumption.

The following theorem is such a result and constitutes a slight refinement of
the directional laws of large numbers by Zerner [58, Theorem 1] and Zeitouni [56,
Theorem 3.2.2].

Theorem 12 Assume (IID) and (E) to hold. Then in dimensions d ≥ 2, there exists
a direction ν ∈ S

d−1, and v1, v2 ∈ [0, 1] (all deterministic) such that P0-a.s.

lim
n→∞

Xn

n
= v1ν1Aν

− v2ν1A−ν
. (57)



64 A. Drewitz and A. F. Ramírez

Remark 4 Let us remark here that on the level of the law of large numbers (in
contrast to the central limit theorem or large deviation results), the average result
directly implies the P-a.s. quenched result due to (49).

Since the conjectured zero-one law of Open Question 5 is still eluding its complete
resolution, the right-hand side of (57) might be a non-degenerate random variable.
In dimensions larger or equal to five, Berger [2] has shown that at least one of the
velocities v1 and v2 must vanish. In dimension two, the zero-one law of Zerner and
Merkl [60] mentioned after Open Question 5 leads to the following corollary of
Theorem 12.

Corollary 4 Assume (IID) and (UE) to hold. Then in dimension d = 2, there exists
a direction ν ∈ S

d−1, and v1 ∈ [0, 1] (all deterministic) such that P0-a.s.

lim
n→∞

Xn

n
= v1ν.

To prove Theorem 12, we need the following lemma.

Lemma 6 Assume (IID) and (E) to be fulfilled. Then for l = (l1, . . . , ld ) ∈ Z
d such

that gcd(l1, . . . , ld ) = 1, one has

E0[Xτ1 · l |D = ∞] = 1

P0[D = ∞|Al] limi→∞ P0[Hl
i−1 <∞,XHl

i
· l = i]

<∞.

(58)

(Note that in a slight abuse of notation we use l ∈ Z
d instead of l ∈ S

d−1 here.)
In the case l = (1, 0, . . . , 0), the proof of Lemma 6 can be found in [50,

Lemma 3.2.5] and is based on an argument by Zerner. See [14, Lemma 2.5] for
how (in the context of a different renewal structure) the generalization to l as in
Lemma 6 works and how to obtain the finiteness of (58).

Proof of Theorem 12 The proof is split into several pieces.

1. We start with proving the following version of a directional law of large numbers,
which can be found in [50, Theorem 3.2.2]. It states that for l ∈ S

d−1 with

P0[Al ∪ A−l] = 1 (59)

there exist vl , v−l ∈ [0, 1] such that P0-a.s.

lim
n→∞

Xn · l
n

= vl1Al
− v−l1A−l

. (60)

We will prove this result here for l ∈ Z
d , which is slightly easier notation wise.

Without loss of generality, assume that P0[Al] > 0. Then, by the standard law of
large numbers in combination with Corollary 3, P0[ · |Al]-a.s. we have that

lim
k→∞

τk

k
= E0[τ1 |D = ∞],

and

lim
k→∞

Xτk · l
k

= E0[Xτ1 · l |D = ∞].
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From this we conclude that P0[ · |Al]-a.s.

lim
k→∞

Xτk · l
τk

= E0[Xτ1 · l |D = ∞]

E0[τ1 |D = ∞]
=: vl , (61)

which due to Lemma 6 is a finite quantity. Using the fact that the τk and Xτk · l
are increasing in k, one obtains the sandwiching

Xτk · l
τk+1

≤ Xn · l
n

≤ Xτk+1 · l
τk

for τk ≤ n < τk+1. In combination with (61) we infer that

lim
n→∞

Xn · l
n

= vl

P0[ · |Al]-a.s. By exchanging l for−l in the above, in combination with (59) we
therefore obtain (60).

2. Next, we will use [58, Theorem 1] which states that assuming (IID), (E) and
P0[Ae ∪ A−e] = 0, one has for any e ∈ U , that

lim
n→∞

Xn · e
n

= 0, P0 − a.s. (62)

On a very coarse heuristic level, the proof of that result is as follows by
contradiction: Let

P0[Al ∪ A−l] = 0, (63)

and assume that

lim sup
n→∞

Xn · l
n

> 0

with positive probability. Then, if one partitions Z
d into slabs orthogonal to l

which are of positive finite thickness, there exists a constant C such that with
positive probability, the walk visits each of a positive fraction of the slabs for at
most C time steps. One can next deduce that, denoting the first entrance position
of the walk in such a slab by x, there exists a positive number r and a vector
z such that with positive probability, the walk visits the slab for the last time at
its r-th visit to x + z. From this one is then able to deduce that one must have
P0[Al] > 0, a contradiction to (63). We refer the reader to [58] for more details.

An inspection of the proof in [58] yields that by slightly modifying it, one
obtains (62) for e replaced by arbitrary l ∈ S

d−1. In combination with the result of
(60), and due to the zero-one law of Lemma 4, we may therefore omit assumption
(59) and still obtain that (60) holds true.

3. Using (60), we obtain that limn→∞Xn/n exists P0-a.s. and, also P0-a.s, takes
values in a set of cardinality at most 2d . One can then take advantage of sim-
ilar arguments as Goergen on page 1112 of [19] in order to show that P0-a.s.
limn→∞Xn/n takes values in a set of two elements which are collinear, which
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finishes the proof. Indeed, assume there were v1, v2 not collinear such that
P0[ limn→∞Xn/n = vi] > 0 for i = 1, 2. Then for any l such that

l · v1, l · v2 > 0 (64)

one obtains by (60) and the fact that

{
lim
n→∞Xn/n = v1

} ∪ { lim
n→∞Xn/n = v2

} ⊂ Al ,

that

l · v1 = vl = l · v2. (65)

Since the set of vectors l fulfilling (64) is open, we can let l vary along a set of
basis vectors fulfilling (64) and hence conclude that (65) holds for a set of vectors
l which form a basis. This implies v1 = v2, a contradiction to the assumption that
v1 and v2 were collinear. This yields Theorem 12.

Remark 5 It is useful to observe from part 1 of the proof of Lemma 6 that

vl 	= 0 if and only if E0[τ1 |D = ∞] <∞. (66)

This condition is in general hard to check—it will be one of the principal goals of
the remaining part of these notes to investigate conditions that ensure vl 	= 0.

2.4 Ballisticity

We have seen in Theorem 12 that a version of a law of large numbers is valid. This,
however, did not tell us anything practical about the fundamental question of whether
v1 and v2 are equal to or different from 0 (except for the one-dimensional setting of
Theorem 4, Remark 5, and the result of Berger [2] alluded to above). Here, we will
address this question and for this purpose recall the concept of ballisticity in a given
direction (see Definition 6).

Remark 6 If a RWRE is ballistic in a direction l according to Definition 6, then one
can deduce that P0-a.s., the limit

lim
n→∞

Xn · l
n

exists, is positive, and is P0-a.s. constant. (67)

Indeed, if (28) is fulfilled, then P0[Al] = 1 and hence the renewal structure as
introduced in Sect. 2.2 is P0-a.s. well-defined (cf. Lemma 5). Similarly to the proof
of Theorem 12 one obtains that P0-a.s.,

lim
k→∞

Xτk · l
τk

= E0[Xτ1 · l |D = ∞]

E0[τ1 |D = ∞]
(68)
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exists; using (28) we then infer that the expression in (68) must be positive, which
implies (67).

If one wants to investigate the occurrence of ballistic behavior in higher di-
mensions, it is obvious that one cannot expect as simple conditions as in the
one-dimensional case (cf. Theorem 4) As a partial remedy, Sznitman [47] has in-
troduced conditions which in some sense can be considered a higher-dimensional
analog to the conditions given in Theorem 4 for dimension one. These conditions
have turned out to be useful in a plethora of different contexts of RWRE.

Definition 8 (Conditions (T )γ , (T ′) and (T )). Assume l ∈ S
d−1 and γ ∈ (0, 1]. We

say that condition (T )γ |l is satisfied if there exists a neighborhood Vl of l such that
for every l′ ∈ Vl one has that

lim sup
L→∞

1

Lγ
logP0[H−l′

bL < Hl′
L ] < 0. (69)

We say that condition (T )|l is satisfied if condition (T )1|l holds. Finally, we say that
condition (T ′)|l is satisfied if for every γ ∈ (0, 1), condition (T )γ |l is satisfied. Also,
if the precise value of l is irrelevant, then we often write (T )γ instead of (T )γ |l, and
analogously for the remaining conditions.

Intuitively, if the walk escapes in direction l′ and is “well-behaved”, then the
probability in (69) corresponds to that of a rare event and, due to the independence
structure of the environment, should decay reasonably fast.

Example 4 Zerner and Sznitman [57, 45] have introduced a classification of RWREs
in terms of the support of the law of the random variable

d(0,ω) =
∑

e∈U
ω(0, e) · e; (70)

The random variable d(0, ·) is the local drift at the origin. Denote by C ⊂ D (cf. 2)
the convex hull of the support of the law of d(0,ω). An RWRE is called

1. non-nestling if
0 /∈ C;

2. marginally nestling if
0 ∈ ∂C;

3. plain nestling if

0 ∈ ◦C .

In terms of investigating their ballistic behavior, the non-nestling and marginally
nestling RWREs are easier to handle than the nestling ones. This is due to the fact
that their behavior “dominates” that of i.i.d. variables with positive expectation. We
leave it to the reader to prove that non-nestling RWRE satisfy condition (T ).

For future purposes it will be helpful to also consider the corresponding
polynomial analogues.
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Definition 9 (Conditions (P∗)M , (P∗)0). Assume M > 0 and l ∈ S
d−1 to be given.

We say that condition (P∗)M |l (sometimes referred to as (P∗)M or (P∗) also) is
fulfilled, if there exists a neighborhood Vl of l such that for all l′ ∈ Vl and for all
b > 0 we have

lim
L→∞LMP0[H−l′

bL < Hl′
L ] = 0. (71)

In addition, we define (P∗)0 to hold if for all l′ in a neighborhood of l and for all
b > 0 we have

lim
L→∞P0[H−l′

bL < Hl′
L ] = 0. (72)

Remark 7

• In the following we will give some fundamental results that were mostly proven
under the assumption of condition (T ′). However, in anticipation of Theorem 8
below, we will instead formulate them assuming (P)M for M > 15d + 5 only.

• Also, note that due to Theorem 8 it is actually sufficient to assume (P)M (see
Definition 11) instead of (P∗)M , both for M > 15d + 5, in what follows. This
condition is a priori weaker and has the advantage that it can be checked on finite
boxes already. However, since it is more complicated to state and needs notation
introduced only later on, we will not give its exact definition here yet.

There is an alternative formulation for the conditions (T )γ , which instead of
considering slab exit estimates involves transience and the (stretched) exponential
integrability of the renewal radii.

Theorem 13 (47, Cor. 1.5]) Assume (IID) and (UE) to hold, and let furthermore
d ≥ 1 and γ ∈ (0, 1]. Then the following are equivalent.

1. Condition (T )γ |l is satisfied.
2. One has P0[Al] = 1 (note that this ensures that τ1 is well-defined) and there

exists a constant C > 0 such that

E0
[

exp
{
C−1 max

0≤i≤τ1
|Xi|γ1

}]
<∞. (73)

Note that the first part of the condition (2) in Theorem 13 in combination with the
law of large numbers of Theorem 12 already supplies us with the fact that P0-a.s.,
limn Xn/n converges to a deterministic vector. Therefore, due to Theorem 14 below,
the second part of condition (2) in Theorem 13 can be seen as guaranteeing that this
deterministic limit is different from 0. Note, however, that an affirmative answer to
the Open Question 2 would imply that the transience assumption P0[Al] is already
sufficient and the integrability condition of (73) is not needed for having a non-zero
limiting velocity, i.e., ballisticity.

These stretched exponential integrability assumptions on the renewal radii have
been used by Sznitman (see [47]) to deduce the following: In dimensions larger
than or equal to two, (T ′) implies a law of large numbers with non-zero limiting
velocity as well as an invariance principle for the RWRE, so that diffusively rescaled
it converges to Brownian motion under the averaged measure.
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Theorem 14 ([47, Theorem 3.3]) Assume (IID) and (UE) to hold. Furthermore,
assume d ≥ 2 and let (P)M |l is fulfilled for some l ∈ S

d−1 and M > 15d + 5. Then:

1. The RWRE is ballistic, i.e., one has P0-a.s. that

lim
n→∞

Xn

n
= v 	= 0, (74)

where v is deterministic.
2. Under P0 and with

Bn
t := 1√

n
(X�nt� − �nt�v), t ≥ 0,

the sequence of processes ((Bn
t )t≥0)n∈N converges in law on the Skorokhod space

D([0,∞); R
d ) to Brownian motion with non-degenerate covariance matrix as

n→∞.

Remark 8 Recently, there has also been initiated the investigation of ballisticity and
related topics for the situation where (IID) holds, but the condition (UE) has been
replaced by the weaker (E). In this context, in order to obtain results comparable
to the ones above, one then has to make assumptions on the decay of the random
variables ω(0, e) at 0. These assumptions can be used to apply large deviations
estimates in order to obtain that with high P-probability, for sufficiently long paths,
the probability of following them is comparable at least to a situation where one has
uniform ellipticity; see Sect. 2.12 as well as Campos and Ramírez [8] for further
details.

Open Question 6 Theorem 14 states that the conditions (P)M for M > 15d + 5 do
imply a ballistic behavior. Vice versa, one can ask if (74) already implies the validity
of (P)M for M > 15d+ 5. This question is intimately linked to the slope of the large
deviation principle rate function in the origin.

As observed in Remark 5, in order to guarantee a positive limiting velocity, and
therefore to prove Theorem 14 1, it is enough to show the integrability of τ1 with
respect to P [ · |D = ∞]. On the other hand, in order to deduce Theorem 14 (2), an
essential part of the proof is to establish the square integrability of τ1 with respect to
P [ · |D = ∞] (see also Theorem 4.1 in [45]). Both of these integrability conditions
are a direct consequence of the following recent result of Berger.

Theorem 15 ([3, Proposition 2.2]) Let (UE), (IID), and (P)M |l be fulfilled for some
l ∈ S

d−1 and M > 15d + 5. Then, for d ≥ 4 and every α < d one has that

P0[τ1 ≥ u] ≤ exp{−( log u)α}
for all u large enough.

In the plain nestling case, this asymptotics is very close to being optimal as can
be seen by the use of so-called naïve traps (see proof of [45, Theorem 2.7] for a more
restricted version of these traps and [48] also). These correspond to balls within
which the local drift points in the direction of the origin, see Fig. 4 as well. Using
such traps one gets the following.
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0

Fig. 4 A realization of a naive trap: The local drifts within the ball point toward the origin whereas
the local drifts outside the ball are arbitrary

Theorem 16 ([45, Theorem 2.7] [48]) Assume (UE), (IID), and (P)M |l to be fulfilled
for some l ∈ S

d−1 and M > 15d + 5. Then, for d ≥ 2 there exists a constant C such
that one has

P0[τ1 ≥ u] ≥ exp{−C( log u)d}
for all u large enough.

As a corollary to Theorem 15, Berger obtained the following large deviations
upper bound, essentially matching Sznitman’s lower bound for the nestling case in
[45, Sect. 5]. In this result, we write v for the P0-a.s. non-zero limit of Xn/n, cf.
Theorem 12 1.

Theorem 17 ([3]) Let (UE) and (IID) be fulfilled. Assume furthermore that d ≥ 4
and that (P)M |l is fulfilled for some l ∈ S

d−1 and M > 15d+5. Then for α ∈ (0, d),
y ∈ {tv : t ∈ [0, 1)}, and ε ∈ (0, |y − v|2), one has

P0[|Xn/n− y|2 < ε] < exp{−( log n)α}
for all n large enough.
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Remark 9 In the results of [3], one has the standing assumption that d ≥ 4. This
assumption (in combination with (T ′)) is used in order to deduce that, on P-average,
two independent random walks in the same environment do not meet too often. It
is plausible that a refinement of the methods in [3] might still yield corresponding
results in d = 3; however, it seems that for the case d = 2 one essentially needs
some further new ideas.

2.5 How to Check (T ′) on Finite Boxes

The conditions (T )γ in any of the formulations of Theorem 13, as well as the condition
(P∗), are asymptotic in nature and therefore generally not easy to check. In this
context, the effective criterion introduced by Sznitman [47] proves to be a helpful
tool for checking these conditions on finite boxes already. It can be seen as an analog
to the ballisticity conditions of Solomon (cf. Theorem 4) in higher dimensions.1

In order to introduce this criterion, for positive numbers L, L′ and L̃ as well as a
space rotation R around the origin we define the

box specification B(R,L,L′, L̃) as the boxB :={x ∈ Z
d : x ∈ R((−L,L′)

× (−L̃, L̃)d−1)
}
.

Recalling the notation of (1), we introduce

ρB(ω) := P0,ω[H∂B 	= H∂+B]

P0,ω[H∂B = H∂+B]
,

where for a subset A ⊂ Z
d , we use the notation

HA := inf{n ≥ 0 : Xn ∈ A},
as well as

∂+B := {x ∈ ∂B : R(e1) · x ≥ L′, |R(ej ) · x|2 < L̃ ∀j ∈ {2, . . . , d}}.
We will sometimes write ρ instead of ρB if the box we refer to is clear from the
context.

Definition 10 Given l ∈ S
d−1, the effective criterion with respect to l is satisfied if

for some L > c1 and L̃ ∈ [3
√
d ,L3), we have that

inf
B,a

{

c2
(

ln
1

κ

)3(d−1)
L̃d−1L3(d−1)+1

E[ρa
B]

}

< 1. (75)

1 Note that, while the condition (P)M of Definition 11 also is effective in the sense that it can be
checked on finite boxes, the proof that it implies (T ′) takes advantage of the effective criterion (cf.
Definition 11 and Theorem 20)—we therefore do introduce this criterion here.
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Here, when taking the infimum, a runs over [0, 1] while B runs over the

box specifications B(R,L− 2,L+ 2, L̃) with R, a rotation around the origin such
that R(e1) = l. (76)

Furthermore, c1 and c2 are dimension dependent constants.
The effective criterion is of significant importance due to the combination of the

facts that it can be checked on finite boxes (in comparison to (T ′) which is asymptotic
in nature) and that it is equivalent to (T ′), cf. Theorem 19 below.

Theorem 18 ([47]) Let (IID) and (UE) be fulfilled. Then for each l ∈ S
d−1 the

following conditions are equivalent.

1. The effective criterion with respect to l is satisfied.
2. (T ′)|l is satisfied.

In the proof of Theorem 18, the estimate (75) serves as a seed estimate for an involved
multi-scale renormalization scheme. We refer to the original source for the lengthy
proof of this fundamental result, and to p. 239 ff. of [48] for a reasonably detailed
proof sketch.

2.6 Interrelation of Stretched Exponential Ballisticity Conditions

While a priori (T )γ is a weaker condition than smaller γ is, Sznitman [47] showed
that for each γ ∈ (0.5, 1), the conditions (T )γ and (T ′) are equivalent. This equiva-
lence has been extended by Drewitz and Ramírez [15] to some dimension dependant
interval (γd , 1), with γd ∈ (0.366, 0.388), for all d ≥ 2. Furthermore, it has been
conjectured (see p. 227 in [48]) that

the conditions (T )γ |l are equivalent for all γ ∈ (0, 1]. (77)

Theorem 19 ([16, 5]) Assume d ≥ 2, (UE) and (IID) to hold. Then, for l ∈ S
d−1,

the conditions (T )γ |l, γ ∈ (0, 1), are all equivalent.

Open Question 7 It is still not known if (T ′) is actually equivalent to condition
(T ); however, in some sense there is not missing “too much” in some sense (see [47,
Proposition 2.3]).

According to Theorem 19, in order to check (T ′), it is sufficient to check (T )γ for
any γ small enough but positive. As alluded before already, we will see in the next
section that it is sufficient to establish the polynomial conditions (P∗)M or (P)M for
M large enough.

2.7 The Condition (P)M

The main result of this section will be that of [5], namely that for M large enough,
(P)M already implies the conditions (T )γ and hence all its consequences such as
ballistic behavior and an invariance principle.
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Fig. 5 A box B0 and the middle frontal part B̃0; the dashed lines illustrate the slabs from the
definition of (P∗)M |l, shifted by some x ∈ B̃0; it is visually apparent here how condition (P∗)
implies condition (P)

We will be guided by the presentation in [5], however, we will omit a significant
share of the more technical parts of the proof and try to give a less rigorous and more
intuitive description instead.

The main result of this section is the following.

Theorem 20 ([5]) Assume d ≥ 2, (IID) and (UE) to be fulfilled. Let l ∈ S
d−1 and

assume that (P∗)M |l or (P)M |l holds for some M > 15d + 5. Then (T ′)|l holds.

Remark 10 The condition M > 15d + 5 looks quite arbitrary, and is indeed not
the weakest condition possible. However, since with the methods we used it does not
seem possible to significantly weaken this condition, we refrain from trying to do so.

We are going to introduce some of the notations needed for the proof ofTheorem 20
as well as give two propositions that play a fundamental role in the proof.

Let

c3 = exp
{
100+ 4d( ln κ)2

}
, (78)
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let N0 ≥ c3 be an even integer, and set N−1 := 2N0/3. Using the notation

πl : R
d � x �→ (x · l) l ∈ R

d (79)

to denote the orthogonal projection on the space {λl : λ ∈ R}, we introduce the box

B :=
{

y ∈ Z
d : −N0

2
< (y − x) · l < N0, |πl⊥ (y − x)|∞ < 25N3

0

}

, (80)

as well as their frontal parts

B̃ :=
{
y ∈ Z

d : N0 −N−1 ≤ (y − x) · l < N0, |πl⊥ (y − x)|∞ < N3
0

}
. (81)

In addition, we define

∂+B := {y ∈ ∂B : (y − x) · l ≥ N0}. (82)

To simplify notation, throughout we will denote a typical box of scale k by Bk ,
and its middle frontal part by B̃k .

Definition 11 Let l ∈ S
d−1 and M > 0. We say that (P)M |l is fulfilled if

sup
x∈B̃0

Px[H∂B0 	= H∂+B0 ] < N−M
0 (83)

holds for some N0 ≥ c3.

2.8 An Intermediate Condition Between (P)M and (T )γ

We need a little further notation for stating this result in particular. To start with, for
a given generic l = l1 ∈ S

d−1, we choose l2, . . . , ld arbitrarily in such a way that
l1, . . . , ld forms an orthonormal basis of R

d .

For L > 0, define

Dl
L :=

{

x ∈ Z
d : −L ≤ x · l ≤ 10L, |x · lk| ≤ L3 ln ln L

ln L
∀k ∈ {2, . . . , d}

}

as well as its frontal boundary part

∂+Dl
L :=

{

x ∈ ∂Dl
L : πl(x) · l > 10L, |x · lk| ≤ L3 ln ln L

ln L
∀k ∈ {2, . . . , d}

}

.

In the following we will refer to the condition that

for l′ ∈ S
d−1one hasP0

[
H∂Dl

L
< H∂+Dl

L

] ≤ exp
{
−L

(1+o(1)) ln 2
ln ln L

}
, (84)

as L→∞.
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Definition 12 If (84) holds for all l′ in a neighborhood of l ∈ S
d−1, then we say that

condition (T )γL |l is fulfilled.
Since γL tends to 0 as L tends to infinity, one observes that the condition (T )γL is

weaker than (T )γ for any γ > 0.
On the other hand, while the condition (T )γL is a priori stronger than all of the

polynomial conditions (P∗)M , M > 0, it can be shown that it is a consequence of
(P∗)M once M is chosen large enough. This is the content of Proposition 6 below.

2.9 Strategy of the Proof of Theorem 20

Using Theorem 18, we observe that in order to prove Theorem 21, it is sufficient to
establish the effective criterion departing from (P)M |l with M large enough. On a
heuristic level, we will do so via two renormalization schemes:

1. The first one starts with assuming condition (P)M |l for some M large enough and
derives the intermediate condition (T )γL introduced in Definition 12.

Proposition 6 (Sharpened averaged exit estimates) Assume (IID) and (UE) to
be fulfilled. Let M > 15d + 5, l ∈ S

d−1, and assume that condition (P)M |l is
satisfied. Then (T )γL |l holds.
We will not give the technically involved proof of this result and refer to the
original source [5] instead.

2. The second renormalization step supplies us with the following large deviations
result.

Proposition 7 (Weak atypical quenched exit estimates, [5]) Let d ≥ 2 and
assume (IID) and (UE) to be fulfilled and let (T )γL |l hold. Then for ε(L) :=

1
( ln ln L)2 , and any function β : (0,∞) → (0,∞), one has that

P
[
P0,ω[H∂B = H∂+B] ≤ 1

2
exp { − c1L

β(L)}] ≤ 5d e

�Lβ(L)−ε(L)/5d�! , (85)

where B is a box specification as in 76 with L̃ = L3 − 1, and

c4 := −2d ln κ > 1. (86)

This result is much less technical to prove, but nevertheless we refer to [5] for its
proof in order not to lose the principal thread of these notes.

We do, however, mention that in dimensions d ≥ 4, Proposition 7 can be
strengthened significantly as follows:

Theorem 21 (Atypical quenched exit estimates, [16]) Let d ≥ 4, and assume (IID),
(UE), and (T )γ |l to hold for some γ ∈ (0, 1), l ∈ S

d−1. Fix c > 0 and β ∈ (0, 1).
Then there exists a constant C > 0 such that for all α ∈ (0,βd),

lim sup
L→∞

L−α log P

[
P0,ω[H∂B = H∂+B] ≤ e−cLβ

]
< 0,
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where B is a box specification as in (76) with L̃ = CL.

The proof of this result is significantly more involved than that of Proposition 7.
Note that this theorem is very close to being optimal in the sense that its conclusion
will not hold in general for α > βd. In fact, for plain nestling RWRE, this can be
shown by the use of naïve traps introduced above.

For the purpose of proving Theorem 20, however, Proposition 7 is sufficient.

2.10 Proof of Theorem 20 assuming Propositions 6 and 7

In this section we demonstrate how Propositions 6 and 7 can be employed in order
to establish the effective criterion. We will do so by rewriting E[ρa

B] of (75) as a sum
of terms typically of the form

Ej := E

[

ρa
B,

1

2
exp { − c4L

βj+1} < P0,ω[H∂B = H∂+B] ≤ 1

2
exp { − c4L

βj }
]

(87)

with βj+1 > βj .

Generally, the lower bound on P0,ω[H∂B = H∂+B] in (87) yields a control on
the integrand ρa

B from above, while the upper bound enforces an atypical behavior
which will be exploited using Proposition 7. The interplay of the upper bound of the
integrand thus obtained with the estimate from Proposition 7 will then determine the
asymptotics we obtain for Ej (cf. also Lemma 8 below).

Our proof of Theorem 20 goes along establishing the effective criterion. We
do so by a subtle decomposition of the expectation occurring in (75) into several
summands, and in the following we will give some basic lemmas that will prove
useful in estimating each of these summands.

For that purpose, we define the quantities

β1(L) := γL

2
= ln 2

2 ln ln L
, (88)

a := L−γL/3, (89)

and write ρ for ρB with some arbitrary box specification of (76) with L̃ = L3 − 1.
We split E[ρa] according to

E[ρa] = E0 +
n−1∑

j=1

Ej + En, (90)

where

n := n(L) :=
⌈

4(1− γL/2)

γL

⌉

+ 1,
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E0 := E

[

ρa ,P0,ω[H∂B = H∂+B] >
1

2
exp { − c4L

β1}
]

,

Ej := E

[

ρa ,
1

2
exp { − c4L

βj+1} < P0,ω[H∂B = H∂+B] ≤ 1

2
exp { − c4L

βj }
]

for j ∈ {1, . . . , n− 1}, and

En := E

[

ρa ,P0,ω[H∂B = H∂+B] ≤ 1

2
exp { − c4L

βn}
]

,

with parameters

βj (L) := β1(L)+ (j − 1)
γL

4
, (91)

for 2 ≤ j ≤ n(L); for the sake of brevity we may sometimes omit the dependence
on L of the parameters if that does not cause any confusion. Furthermore, in order
to verify equality (90), note that due to the uniform ellipticity assumption (UE) and
the choice of c4 (cf. (86)), one has for P-a.a. ω that

P0,ω[H∂B = H∂+B] > e−c4L,

as well as that

βn > 1.

To bound E0 we employ the following lemma.

Lemma 7 Let (T )γL be fulfilled. Then

E0 ≤ exp {c4L
γL/6 − L(1+o(1))γL/2},

as L→∞.

Proof Jensen’s inequality yields

E0 ≤ 2 exp {c4L
β1−γL/3}P0[H∂B 	= H∂+B]a.

Using (88) in combination with (T )γL we obtain the desired result.
To deal with the middle summand in the right-hand side of (90), we use the

following lemma.

Lemma 8 Let (IID)and (UE) be fulfilled and assume (T )γL |l to hold. Then for all
L large enough we have uniformly in j ∈ {1, . . . , n− 1} that

Ej ≤ 2 · 5d exp {c4L
βj+1−γL/3} e

�Lβj−ε(L)/5d�! .

proof Using Markov’s inequality, for j ∈ {1, . . . , n− 1} we obtain the estimate

Ej ≤ 2 exp {c4L
βj+1−γL/3}P

[

P0,ω[H∂B = H∂+B] ≤ 1

2
exp { − c4L

βj }
]

. (92)
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Thus, due to Proposition 4, the probability on the right-hand side of (92) can be
estimated from above by

5d e

�Lβj−ε(L)/5d�! .
When it comes to the term En in (90) we note that it vanishes because of the choice
of c4.

Proof of Theorem 20 It follows from Lemmas 7 and 8, the choice of parameters in
(88), (89) and (91), and the fact that En vanishes, that for L large enough, (90) can
be bounded from above by

exp
{
c4L

γL/6 − L(1+o(1))γL/2
}

+2 · 5dn(L) max
1≤j≤n(L)−1

(

exp
{
c4Lβj+1−γL/3

} e

�Lβj−ε(L)/5d�!
)

.

Thus, we see that for our choice of parameters, (90) tends to zero faster than any
polynomial in L. Hence, due to (75), the effective criterion holds and Theorem 18
then yields the desired result.

2.11 Relation Between Directional Transience
and Slab Exit Estimates

The aim of this subsection is to show how the condition of directional transience
relates to slab exit estimates such as condition (P∗)M.

Lemma 9 Let l ∈ S
d−1, and suppose that (P∗)M |l is satisfied.

1. There exists a constant C such that

P0

[
T −l
−L ◦ θT l

2L
≤ T l

4L ◦ θT l
2L

]
≤ CLd−1−M (93)

for all L ∈ N.

2. If M > d, then P0-a.s. the random walk X is transient in direction l, i.e.
P0[Al] = 1.

Proof

1. The general idea of this proof is taken from a stretched exponential analog [47,
Theorem 2.11]. Note that

{
T l
L < T −l

L

} ⊂
{

lim sup
n→∞

Xn · l ≥ L

}

.

Due to condition (P∗)M |l, the probability with respect to P0 of the left-hand side
tends to 1 as L→∞, which implies

P0

[

lim sup
n→∞

Xn · l = ∞
]

= 1. (94)
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Now choose l1, . . . , ld ∈ S
d−1∩Vl (withVl denoting the neighborhood associated

to l in the definition of (P∗)M |l, see Definition 9) to be linearly independent. If
furthermore l1, . . . , ld are chosen sufficiently close to l, setting l0 := l there exists
δ > 0 such that for

�L := {x ∈ Z
d : −δL ≤ x · lj ≤ L ∀0 ≤ j ≤ d} (95)

and

∂+�L := {x ∈ ∂�L : max
0≤j≤d x · lj > L and min

0≤j≤d x · lj ≥ −δL
}
,

we have

2δL ≤ min{x · l : x ∈ ∂+�L}. (96)

Now due to 94, we infer that T l
L is finite P0-a.s. and hence θT l

L
is well-defined for

all L > 0. Thus, we get using the strong Markov property at time T l
2δL (applied to

the quenched walk) in combination with the translation invariance of P and (96),
that

P0
[
T −l
−δL ◦ θT l

2δL
≤ T l

4δL ◦ θT l
2δL

]

≤ P0
[
T∂�L

< T l
2δL

]+ P0
[
T −l
−δL ◦ θT l

2δL
≤ T l

4δL ◦ θT l
2δL

, T∂�L
≥ T l

2δL

]

≤
d∑

j=0

P0
[
T
−lj
δL < T

lj
L

]+ CLd−1P0
[
T −l
δL ≤ T l

2δL

]
. (97)

To obtain the last line we used the fact that, since l1, . . . , ld form a basis, |{x ∈
�L : x · l ∈ (2δL, 2δL + 1]}| ≤ CLd−1 holds. Since, furthermore (P∗)M |l is
fulfilled we can estimate (97) from above by CLd−1−M which proves the first
assertion of the lemma.

2. Using this result in combination with the assumption that M > d , Borel–
Cantelli’s lemma yields that P0-a.s., for eventually all L ∈ N,

T l
4L ◦ θT l

2L
< T −l

−L ◦ θT l
2L
.

This implies that P0[ limn→∞Xn · l = ∞] = 1. �

We have the following corollary on the relation between transience and the
conditions (P∗)M.

Corollary 5 The implications

(P∗)M |lfor someM > d �⇒ P0[Al′ ] = 1 ∀l′ in a neighborhood Vl of l �⇒ (P∗)0|l
(98)

hold true.
Proof T he first implication is a direct consequence of Lemma 9. To obtain the
second implication note that if P0[Al′ ] = 1 for all l′ ∈ Vl , then we have

P0[H−l′
bL < Hl′

L ] ≤ P0[Al′ ,H
−l′
bL <∞] → 0, as L→∞,

where we used that P0[ · |Al′ ]-a.s. one has infn∈N Xn · l′ ∈ (−∞, 0].
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Remark 11 The above corollary immediately leads to two questions:

1. Which is the minimal M for which the first implication holds?
2. Can (P∗)0 on the right-hand side of the implications be replaced by (P∗)M for

some M > 0, and if so, what is the maximal M?

These questions are intimately connected to Open Question 2.

2.12 Ellipticity Conditions for Ballistic Behavior

We have seen in Chap. 2 that there can exist elliptic random walks which are transient
in a given direction but which are not ballistic. On the other hand, Proposition 2.17
of this chapter shows that at least some condition on the moments of the jump
probabilities of the random environment should be asked if we expect to extend the
results of this chapter.

Definition 13 Consider an RW in an environment P. We say that P satisfies the
ellipticity condition (E)β if there exist positive parameters {βe : e ∈ U} such that

2
∑

e∈U
βe − sup

e′
(βe′ + β−e′ ) > β

and
E

[
e
∑

e βe log 1
ω(0,e)

]
<∞.

If in addition there exists a β̄ such that βe = β̄ for e such that e · v̂ ≥ 0 (recall
that v̂ was the asymptotic direction) while βe ≤ β̄ for e such that e · v̂ < 0, we say
that condition (E)β is satisfied directionally. Furthermore, whenever there exists an
α > 0 such that

sup
e

E

[
1

ω(0, e)α

]

<∞

we say that the law P of the environment satisfies condition (E′)α .
We have the following extension of Theorem 20 proved in [8].

Theorem 22 (Campos–Ramírez) Consider a random walk in an i.i.d. environment
which satisfies condition (E′)α for some α > 0. Then, if (P∗)M |l is satisfied for some
M ≥ 15d + 5, (T ′)|l is satisfied.

Furthermore, we have then the following consequence of Theorem 22 proved in
[8].

Theorem 23 (Campos-Ramírez) Consider a random walk in an i.i.d. environment
which satisfies condition (E)1 directionally. Then, if (P∗)M |l is satisfied for M ≥
15d + 5, the walk is ballistic.

Acknowledgement The final version has benefitted from careful refereeing. We would also like to
thank Gregorio Moreno for useful comments on the first draft of this text.
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The Scaling Limit for Zero-Temperature Planar
Ising Droplets: With and Without Magnetic
Fields

Hubert Lacoin

Abstract We consider the continuous time, zero-temperature heat-bath dynamics for
the nearest-neighbor Ising model on Z

2 with positive magnetic field. For a system
of size L ∈ N, we start with initial condition σ such that σx = −1 if x ∈ [− L,L]2

and σx = +1 and investigate the scaling limit of the set of – spins when both time
and space are rescaled by L. We compare the obtained result and its proof with the
case of zero-magnetic fields, for which a scaling result was proved by Lacoin et al.
(J Eur Math Soc, in press). In that case, the time-scaling is diffusive and the scaling
limit is given by anisotropic motion by curvature.

1 Introduction

The Ising model is one of the simplest models proposed by statistical mechanics to
investigate ferromagnetic properties of metals. It is based on the following simplifica-
tion of reality: we assume that a ferromagnetic material is composed of microscopic
magnets that live on a lattice and can assume only two orientations, up (or +) and
down (or −) called spins; the way the orientations of the micromagnets are deter-
mined follows two rules: neighboring magnets like to have the same orientation, and
all spins like to align with the external magnetic field if there is one.

The Ising model is a probabilistic model (i.e., a probability law on the set of pos-
sible spin orientation) following these rules and is defined using a Boltzmann–Gibbs
formalism, which is detailed in the next section. It describes the equilibrium state of
a ferromagnet.

The stochastic Ising model, also called Glauber dynamics or heat-bath dynamics
for Ising model, is a Markov chain on the set of spin configurations that describes the
evolution of a magnet out of equilibrium (e.g., after a brutal change of temperature
or of external magnetic fields). This is the object we study in this paper. Our aim
is to understand the time needed and the pattern used for a magnetic material to
reach its equilibrium state after a change of external conditions. In order to bring a
more complete answer to these questions, we consider them in a simplified, but still
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nontrivial setup that is the zero-temperature limit. This brings heuristic intuition for
what should happen in the whole low temperature regime.

1.1 The Glauber Dynamics for the Ising Model

Set

Z
∗ := Z+ 1

2
:= {x + (1/2) | x ∈ Z}.

Consider the square


 = 
L := [− L,L]2 ∩ (Z∗)2.

We define the set of spin configurations on 
L to be {−1, 1}
L . A generic spin
configuration is denoted by σ = (σx)x∈
L

, and σx ∈ {−1, 1} is called the spin at site
x. Define the external boundary of 
 as

∂
 := {y ∈ Z
d \
 | ∃x ∈ 
, x ∼ y}. (1)

The Ising model at inverse temperature β, with external magnetic fields h and bound-
ary condition η ∈ {−1, 1}∂
L , is a measure on the set of spin configurations defined
by

μ
β,h,η
L (σ ) := 1

Z
h.β




exp

⎛

⎜
⎝β

∑

{x,y}⊂(
∪∂
)
x∼y

σxσy + h
∑

x∈

σx

⎞

⎟
⎠, (2)

where

Z
h,β

 :=

∑

σ∈{−1,1}

exp

⎛

⎜
⎝β

∑

{x,y}⊂(
∪∂
)
x∼y

σxσy + h
∑

x∈

σx

⎞

⎟
⎠, (3)

and the convention is taken that σx := ηx when x /∈ 
. Note that the first term in
the exponential makes the spins of neighboring sites more likely to agree, whereas
the second term underlines that configuration with spins aligned with the magnetic
fields are favored.

The heat-bath dynamic for the Ising model (at inverse temperatureβ, with external
magnetic fields h and boundary condition η) is a Markov chain on the set of spin
configurations {−1, 1}
. We denote the trajectory of the Markov chain by σ (t) =
(σx(t))x∈
. One starts from a given configuration σ0 and the rules for the evolution
are the following:

(i) Sites x ∈ 
 are equipped with independent, rate one, Poisson processes: (τ x
n )n≥0

where τ x
0 = 0, i.e., the increments (τn,x − τn−1,x)n≥0,x∈Zd are IID exponential

variables.
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(ii) The spin at site x may change its value only when the clock at x rings, i.e., at
time τ x

n , n ≥ 1, and its value stays constant on the intervals [τ x
n , τ x

n+1), n ≥ 0.
(iii) When a clock rings, the spin at x is updated according to the following law

independently of the past history of the process:
−σx(t0) = + with probability

exp
(
β
∑

y∼x σy(τ−n,x)+ h
)

2 cosh (β
∑

y∼x σy(τ−n,x)+ h)
, (4)

−σx(t0) = − with probability

exp
(
−β

∑
y∼x σy(τ−n,x)+ h

)

2 cosh (β
∑

y∼x σy(τ−n,x)+ h)
, (5)

When x has a neighbor y in ∂
, the value σy appearing in the Eqs. 4 and 5 is fixed
(by convention) to be equal to ηy for all time, where η is the boundary condition.
The update of the spin corresponds to sampling a spin configuration according to the
measure μ

β,h,η

 (·| σy = σy(τ−n,x), ∀y 	= x).

As a consequence of this last remark, μβ,h,η

 is the unique invariant measure for

the dynamics, so that the law of σ (t) converges to the equilibrium measure μ
β,h,η

 .

The main questions in the study of dynamics are how much time is needed to reach
equilibrium and what is the pattern used by the chain to reach it when we consider
the dynamics on a very large domain 
. The answer to this question should of course
depend on the temperature β, the magnetic fields h, the boundary condition η, and
the initial condition σ0.

In what follows, we denote often by+ resp.− the spin configuration or boundary
condition where all spins are + resp. −.

1.2 Conjecture and Known Results in the Case β ∈ (0, ∞), h = 0

Let us review shortly what is known and conjectured for these kind of dynamics
when β ∈ (0,∞) and h= 0. The property of the dynamics depends crucially on
the equilibrium property of the system. Recall that the two-dimensional Ising model
undertakes a phase transition at βc = log (1 + √2)/2 (see the seminal work of
Onsager [23]), which has the following form:

• When β < βc, the correlation between two spins decays exponentially fast with
the distance, and for this reason what happens in the center of 
L becomes
independent of the boundary condition when L tends to infinity. This is called the
high temperature phase.

• When β > βc, on the contrary, long-range correlations are present between spins,
and the boundary condition plays a crucial role. In particular, the measure μ

β,h,+
L

and μ
β,h,−
L corresponding to+ and− boundary conditio n are very different. This

is called the low temperature phase.
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In the high temperature phase, the rapid decay of correlation between distant sites
makes the evolution of the system in two distant zones of the box 
L almost inde-
pendent. Schematically, the box of 
L can be separated in O(L2) zones of finite size
that come to equilibrium independently. This requires a time of order logL. This
prediction has been made rigorous by Lubetzky and Sly, who proved that in that
case, the mixing time (i.e., the time to reach equilibrium) for the dynamic in 
L is
equal to λ∞ logL(1+ o(1)), where λ∞ is the relaxation time for the infinite volume
dynamics (see [19]). For a formal definition of mixing time and relaxation time and
an introduction to the modern theory of Markov chain, we refer to [17].

In the low temperature phase, the behavior of the dynamics depends on the bound-
ary condition, and for the sake of simplicity, we restrict to the case of + boundary
condition. In that case, the equilibrium state is biased towards +, and even spins in
the center have a larger probability to be + than −. In a sense, one can say that, at
equilibrium, the center of the box “knows” what the boundary condition is. Thus, if
one starts, e.g., from full− initial condition (σx(0) = −1 for all x ∈ 
), information
must travel from the boundary to the center of the box in order to reach equilibrium.
For this reason, the mixing time is much longer than in the high temperature phase.

In [18], Lifshitz described a conjectural pattern used by the system with+ bound-
ary condition to reach equilibrium that can be described as follows: starting from −
initial condition, the system should rapidly reach a state of local equilibrium that looks
like the equilibrium measure with − boundary condition (we call this the − phase);
then on the time-scale L2, something looking like the true equilibrium measure with
+ boundary condition, the + phase, should start to appear in the neighborhood of
the cubes boundary. The interface between the + and the − phase should move on
the diffusive time-scale L2, having a drift in time proportional to its local curvature.
As a consequence, the system should reach equilibrium when the bubble formed by
the − phase disappears macroscopically, i.e., in a time O(L2).

For finite β > βc, this conjecture is far from being on rigorous mathematical
ground, but Lifshitz ideas have been used to get bounds on the mixing time. The best
to date being by Lubetzky et al. [22] saying that the system reaches equilibrium in a
time LlogL, still far from the conjecture L2. This gap between the Lifshitz conjecture
and the rigorous mathematical result has been one of the incentives to study the
simpler zero-temperature version of the model.

Dynamics with different boundary condition or nonzero magnetic fields at low
temperature also exhibit interesting behavior like low-temperature-induced metasta-
bility (see, e.g., [27]), which we choose not to expose here. Note also that results
are available at the critical temperature βc [20], where the equilibrium state of the
system is somehow harder to describe.

2 Zero-Temperature Dynamics

Given h ≥ 0, we look at the limiting dynamics when β tends to infinity. We call this
the zero-temperature limit (recall that β is the inverse of the temperature). In what
follows, we will consider only + boundary condition: ηx = +1, ∀x ∈ ∂
.
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With this setup, on a finite box with + boundary condition, the limit of the
Ising measure limβ→∞ μ

β,h,+
L is just the Dirac measure on the full + configuration:

σx = +1, ∀x ∈ 
L. The limiting dynamics is a nondegenerate stochastic process
that can be described as follows: the value the spin at x is updated with rate one as
before; when a spin is updated, it takes the value of the majority of its neighbors if
it is well defined and take value ±1 with probability e±h/(2 cosh (h)) if it has the
same number of + and − neighbors. The process can also be defined when h = ∞;
it corresponds to the case where both β and h tend to infinity with h" β.

The question concerning the pattern used to reach the equilibrium then takes the
following form: starting from a finite domain of Z

2 filled with − spins what is the
time needed to reach the whole+ configuration and what is the pattern used to reach
it.

More precisely: We consider a compact, simply connected subset D ⊂ [−1, 1]2

whose boundary is a closed smooth curve. Given L ∈ N, we consider the Markov
chain described above with initial condition

σx(0) =
{
−1 if x ∈ (Z∗)2 ∩ LD,

+1 otherwise.
(6)

In order to see a set of “−” spins as a subset of R
2, each vertex x ∈ (Z∗)2 may be

identified with the closed square of side-length one centered at x,

Cx := x + [− 1/2, 1/2]2. (7)

One defines

AL(t) :=
⋃

{x:σx (t)=−1}
Cx , (8)

which is the “− droplet” at time t for the dynamics. Note that the boundary of AL(t)
is a union of edges of Z

2 (and this is the reason why we defined the Ising model on
(Z∗)2 rather than on Z

2).
We investigate the scaling limit of AL(t) and the time needed for it to vanish. The

nature of the scaling limit depends really much on the value of the external magnetic
fields h:

• If h > 0, the interface between + and − is always pushed towards the minus
region, at linear speed, and thus macroscopic motion is visible on time-scale L.

• If h= 0, there is no sign that is favored, and the interface will be pushed in the
direction of its curvature to reduce its length. This is visible only on the diffusive
time scale.

The main aims of this paper are: to review in detail the recent proof (with coauthors
[15]) that the scaling limit of AL(t) is given by an anisotropic curve shortening flow,
and to give a description of the scaling limit in the case h > 0 (for the sake of
simplicity we will limit our proof to h = ∞).
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Fig. 1 A graphic description of the support function h. Given θ , consider the point x(θ ) of γ that
maximizes x · v(θ ) (it is unique if the curve is strictly convex). Then h(θ ) = x(θ ) · v(θ ), and k(θ )
is the norm of the curvature vector of γ (green vector) at x(θ ). If the tangent to γ at x exists, it is
normal to v(θ ) and |h(θ )| is the distance between the tangent and the origin

2.1 The Case of Zero Magnetic Fields

Let us focus first on the case of zero-magnetic fields, and make more precise the
Lifshitz conjecture [18] concerning low temperature dynamics in this case.

On heuristic grounds, Lifshitz predicted that the boundary of AL(t) should follow
an anisotropic curve-shortening motion: after rescaling space by L and time by L2

and letting L tend to infinity, the motion of the interface between AL(t) and its
complement (i.e., between+ and− spins) should be deterministic and the local drift
of the interface should be proportional to the curvature. An anisotropic factor should
appear in front of the curvature to reflect anisotropy of the lattice. Spohn [28] made
this conjecture more precise and brought some elements for its proof: Let γ (t ,L)
denote the boundary of the (random) set (1/L)AL(L2t). Then, for L → ∞, the
flow of curve (γ (t ,L))t≥0 should converge to a deterministic flow (γ (t))t≥0 and the
motion of the limiting curve should be such that the normal velocity vector at a point
x ∈ γ (t) is given by the curvature at x multiplied an anisotropic factor a(θx), where
θx is the angle made by the outward directed normal to γ (t) at x together with the
horizontal axis (see Fig. 1). The velocity vector points in the direction of concavity.
The function a( · ) has the explicit expression

a(θ ) := 1

2(| cos (θ )| + | sin (θ )|)2
. (9)

The area enclosed by the curve decreases with a constant speed: − ∫ 2π
0 a(θ )dθ . In

particular, the curve γ (t) shrinks to a point in a finite time

t0 = Area(D)
∫ 2π

0 a(θ )dθ
= Area(D)

2
.
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Note that the function a( · ) is symmetric around 0 and is periodic with period π/2.
This is inherited from the discrete symmetries of the lattice (Z∗)2.

In a recent work [15] with coauthors, this conjecture was brought on rigorous
ground in the case when the initial condition D is convex. Let us first give a rigorous
definition of motion by curvature and a result concerning its existence: given a
convex, smooth, closed curve γ = ∂D in R

2, we parameterize it following a standard
convention of convex geometry (cf. e.g., [8] and Fig. 1). For θ ∈ [0, 2π ], let v(θ ) be
the unit vector forming an anticlockwise angle θ with the horizontal axis and let

h(θ ) = sup{x · v(θ ), x ∈ γ }, (10)

where γ denotes the usual scalar product in R
2. The function θ �→ h(θ ) (called “the

support function”) uniquely determines γ :

D =
⋂

0≤θ≤2π

{x ∈ R
2 : x · v(θ ) ≤ h(θ )}. (11)

With this parameterization, the anisotropic curve shortening evolution reads
{
∂th(θ , t) = −a(θ )k(θ , t),

h(θ , 0) = h(θ ),
(12)

where, for a convex curve γ , k(θ ) ≥ 0 is the curvature at the point x(θ ) ∈ γ where
the outward normal vector makes an angle θ with the horizontal axis and the time
derivative is taken at constant θ (see [[8], Lemma 2.1] for a proof that Eq. 12 is
equivalent to the standard definition of anisotropic motion by curvature).

The existence of a solution to is not straightforward. It was proved under the
assumption that a is C2 in [8]. The function a given by Eq. 9 is only Lipshitz due to
singularity at θ = iπ/2, i = 1, . . . , 4, but a proof of existence and uniqueness of the
motion was given in [15] for that particular case.

Theorem 1 ([15], Theorem 2.1). Let D ⊂ [−1, 1]2 be strictly convex and assume
that its boundary γ = ∂D is a curve whose curvature [0, 2π ] � θ �→ k(θ ) defines a
positive, 2π -periodic, Lipschitz function.

Then there exists a unique flow of convex curves (γ (t))t with curvature defined
everywhere, such that γ (0) = γ and that the corresponding support function h(θ , t)
solves Eq. 12 for t ≥ 0 and satisfies the correct initial condition h(θ , 0) = h(θ ).

The curve γ (t) shrinks to a point xf ∈ R
2 at time tf = Area(D)/2.

For t < tf , γ (t) is a smooth curve in the following sense: its curvature function
k(·, t) is Lipschitz and bounded away from 0 and infinity on any compact subset of
(0, tf ).

Now let D(t) denote the flow of a convex shape whose support function is the
solution of Eq. 12, with D(0) = D. Let B(x, r) denote the closed Euclidean ball of
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radius r > 0 and center x ∈ R
2. For a closed set C ⊂ R

2, define the inner and outer
δ-neighborhood of C to be

C(δ) :=
⋃

x∈C
B(x, δ),

C(−δ) :=
(
⋃

x∈Cc

B(x, δ)

)c

. (13)

We say that an event, or rather, that a sequence of events (An)n≥0 holds with high
probability or w.h.p. if the probability of An tends to one. Then D(t) is the scaling
limit of AL(t) in the following sense.

Theorem 2 ([15], Theorem 2.2). Consider the dynamics starting with initial con-
dition given by Eq. 6, where D is a convex shape satisfying the assumption of
Theorem 1. For any δ > 0, one has w.h.p.

D(−δ)(t) ⊂ 1

L
AL(L2t) ⊂ D(δ)(t) for every 0 ≤ t ≤ tf + δ (14)

AL(L2t) = ∅ for every t > tf + δ. (15)

In particular, one has the following convergence in probability:

lim
L→∞

τ+
L2Area(D)

= 1

2
. (16)

We can mention a previous related result in the literature: in [4], the authors consider
simplified dynamics that do not allow the interface to break in several components.
For these dynamics, they present a result similar to Eq. 16 without any statement
concerning the limiting shape.

In [3], the drift for the interface at the initial time is studied, and the authors prove
that it is proportional to the curvature multiplied by an anisotropy function that is
different from a(θ ) of Eq. 9. This difference is explained by the fact that the initial
condition considered by the authors, Eq. 6, is very far from being a local equilibrium
for the interface dynamics.

Remark 1 The result presented here concerns only the case where D is a convex
shape. For many reasons, starting with nonconvex initial droplets makes the problem
more difficult both on the probabilistic and analytical sides, and this is far from
being just a technical point. The main point is that whereas the curve shortening
flow we consider is monotone for the the inclusion, this becomes false if the initial
condition is nonconvex. Since the first version of this paper has been written, in a
collaborative effort with Simenhaus and Toninelli, we have established the existence
of the anisotropic motion and the scaling limit of planar Ising droplets starting from
an arbitrary shape using Theorem 2 as a building brick and using ideas coming from
the work of Grayson concerning isotropic curve shorting flow [10].

We can now compare this result with what happens in the case of positive magnetic
fields.
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2.2 Zero-Temperature Dynamics with Positive Magnetic Fields
(h = ∞)

Consider the dynamics where sites are still updated with rate 1, but with the following
rule of update: when a site is updated, its spin flips to + if it has two or more +
neighbors and to – if it has three or more – neighbors. Note that in this case, the
update rule is completely deterministic and that the only source of randomness in
the process is the one of the Poisson clocks.

In that case, the right time-scale to describe the evolution of AL is not L2 but L
and the interface is always going towards the – side regardless of the curvature. The
main new result of this paper is identifying the scaling limit in this case.

Heuristically, the intensity of the drift of the interface can be deduced from
mathematical work on totally asymmetric simple exclusion process (TASEP), more
precisely from results giving the scaling limit of the height function (see Sect. 3.2
for detailed explanations). The drift at a point where the interface makes an angle θ

with the horizontal axis is equal to

b(θ ) := | sin (2θ )|(| cos θ | + | sin θ |)
1+ | sin 2θ | . (17)

Let us give a rigorous definition of this shape evolution in the case of convex initial
condition. The shape remains convex at all times and one can describe the evolution
of the interface in terms of the support function (recall Eq. 10) as follows:

{
∂th(θ , t) = −b(θ ),

h(θ , 0) = h(θ ).
(18)

The problem is that the Eq. 18 is not well-posed. However, there is a notion of a
weak solution to Eq. 18 that has a rather simple description, and this is the one that
will be of interest to us: given an initial condition D, define

D(t) :=
⋂

θ∈[0,2π ]

{x ∈ R
2 : x · v(θ ) ≤ h(θ )− b(θ )t}. (19)

It could be shown that the support function of (D(t))t≥0 is the unique viscosity
solution of Eq. 18 (see [6] for an introduction to this concept) but we will not pain
ourselves with such considerations, and rather consider Eq. 19 as a definition.

Our main result is

Theorem 3 Given an arbitrary convex D, we consider the dynamics with positive
magnetic field defined above, with initial condition given by Eq. 6. Then the renor-
malized domain of – spins ( 1

L
AL(Lt))t≥0 converges to (D(t))t≥0 defined in Eq. 19

in probability, in the topology of time-uniform convergence for the Hausdorf metric.
This is to say, for any δ > 0 with probability tending to one, for all t ≥ 0

D(−δ)(t) ⊂ 1

L
AL(Lt) ⊂ D(δ)(t). (20)
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For simplicity, we choose to expose the proof in the case where the initial condition
is the square [−1, 1]2. Starting from a general convex domain is not conceptually
more difficult, but it involves notational complication. We sketch the modification
needed for the general setup in Sect. 6.

Let us describe D(t) when D = [−1, 1]2: define the function g on R× R+ by

g(x, t) :=
{

x2+t2

2t if |x| ≤ t ,

|x| if |x| ≥ t ,
(21)

let D1(t) denote the epigraph of g(·, t) − 2 in the base (0, f1, f2) where f1 := e1−e2
2 ,

f2 := e1+e2
2 , i.e.,

D1(t) := {xf1 + yf2 | x ∈ R, y ≥ g(x, t)− 2}, (22)

and Di , i = 2, . . . , 4, denote its image by rotation of an angle (i − 1)π/2. Then one
has

D(t) :=
4⋂

i=1

Di(t). (23)

It is a convex compact set and it is the solution of Eq. 19 when h(θ ) = √2/(| cos (θ+
π/4)| + | sin (θ + π/4)|) is the support function of [−1, 1]2.

Remark 2 The proof of Theorem 3 also adapts quite easily to the case of positive
magnetic fields h ∈ (0,∞). In that case, the scaling limits remain the same but
time has to be rescaled by a factor cosh (h)/sinh (h). The nonconvex case is more
delicate as the limiting shape does not have a nice description, and it might split into
several connected components. All of this makes the analysis more complicated on
a technical point of view but we believe that an analogous result could be proved
in that case with some efforts if the initial condition is sufficiently nice, e.g., with
smooth boundary.

Remark 3 Biasing the updates toward+with a magnetic field has a variety of effects
on the scaling limit. First, the time scale at which things move on a macroscopic
scale drops from L2 to L. Furthermore, the limiting shape becomes a lot less regular:
Whereas the solution of anisotropic motion by curvature is relatively smooth (the
curvature is a Lipshitz function), the solution of Eq. 19 is quite irregular, and it can
present some angle. Also whereas flat parts disappear instantaneously with motion
by curvature, they can stay for a while for the evolution given by Eq. 19. On a
microscopic level also, the fluctuation of the interfaces should belong to different
universality classes.
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2.3 Interpolating Between h = 0 and h > 0:
the Weak Magnetic Field Limit

Remark 2 says that the scaling limit of set of – spins is somehow independent of
the intensity of the magnetic fields apart from an armless scaling factor. We want
to discuss shortly here a way to obtain a nontrivial intermediate regime (sometimes
referred to as a crossover regime) between the cases h > 0 and h= 0. We give a brief
description of a conjecture concerning that case, based on heuristic consideration.

The intermediate regime should take place when h = hL ∼ αL−1. When h $
L−1, Theorem 3 should hold, whereas Theorem 2 should be valid when h " L−1.
In this intermediate regime, the scaling should be L2 and the limiting equation for
the support function

{
∂th(θ , t) = −a(θ )k(θ , t)− αb(θ )

h(θ , 0) = h(θ ).
(24)

The existence and uniqueness of the solution to the above equation is a challenging
issue.

Note that this type of scaling has already been studied in the context particle
system in the case where the interface between+ and – is the graph of a function (see
Sect. 3.2) and is often referred to as weakly asymmetric exclusion process (WASEP).

It has been proved in [5, 9, 12] that in a certain sense, the height function of the
particle system converges to the solution of

∂tu = 1

2
∂2
xu+ α

2
(1− (∂xu)2), (25)

which is as can be checked by the reader, equivalent to Eq. 24 in this case. These
result could be used as a starting point to get the scaling limit starting from a compact
convex shape filled with –. Again, the major difficulty seems to be on the analytical
side, as on the probabilistic side most of the tools used in the proof of Theorem 2
could also be applied.

2.4 Higher Dimensions

Of course, the Ising model and dynamics are also defined in higher dimensions d ≥ 3,
for which one also has a phase transition, and they have also raised a lot of interest (in
particular the case d= 3 for obvious reasons). Let us briefly talk about what should
be true in that case with a focus on low temperature with + boundary condition (for
high temperature, we can notice that the result of [20] holds in every dimension).

The Lifshitz conjecture for low-temperature dynamics should hold in fact in any
dimension. However, rigorous results are even more difficult to obtain for the model
with zero-magnetic fields: for finite β, the best known bound for the mixing time
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at low temperature with + boundary condition is super-exponential (it is equal to
O(exp(Ld−2( logL)2)) [29]), which is really far from the conjectured O(L2).

Concerning the zero-temperature case, results are much more precise: in [2], it
has been proved that for d= 3, the time necessary for the last – spin to disappear
starting from a full cube with + boundary condition is of order L2( logL)O(1), a
similar upper bound has been derived for arbitrary dimension d in [13] (with no
matching lower bound). However, it seems that with the actual tools, we are very far
from being able to prove a shape theorem similar to Theorem 2 when d= 3, or even
to get rid of the τ . A first step would be to derive on a heuristic level the anisotropy
function (the equivalent of a(θ ) from Eq. 9), and it seems highly nontrivial.

The anisotropy function should have a lot of singularity when d ≥ 3. For instance,
consider the three-dimensional dynamics on (Z∗)3 starting from initial condition

{
σ (x) = −1 if x ∈ (Z∗)3 ∩ (R× B(0,L))

σ (x) = +1 else ,
(26)

where B(0,L) denote the two-dimensional Euclidean ball. If L ≥ 4, then this initial
configuration is stable, and the system stays forever in that state: every – spin has a
strict majority of agreeing neighbors and the same for + spin. However, the mean
curvature is well defined and positive at every point of the interface of the cylinder.

For the case of zero-temperature with positive h, it can be shown with simple argu-
ments that a cube full of – spins of diameter L needs a time of order L to disappear. Get-
ting the exact asymptotic and a shape theorem is a much more challenging problem.

2.5 Organization of the Paper

In Sect. 3, we present some of the main tools of the proof. They are: general mono-
tonicity property of the dynamics, correspondence with particle systems, and scaling
limits for interface dynamics.

In Sect. 4, we sketch in detail the proof of Theorem 2 from [15]
In Sect. 5, we prove our main result, that is Theorem 3, and underline the similar-

ities and difference between this proof and the one of the zero-magnetic fields case.

3 Interface Dynamics, Correspondence with Particle Systems
and Other Technical Tools

3.1 Graphical Construction and Monotonicity

We present here a construction of the dynamics (called sometimes the graphical
construction) that yields nice monotonicity properties. We consider a family of in-
dependent Poisson clock processes (τ x)x∈Z̄2 : to each site x ∈ (Z∗)2, one associates
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an independent random sequence of times (τ x
n )n≥0, that are such that τ x

0 = 0 and
(τ x

n+1−τ x
n )n≥0 are IID exponential variables with mean one. One also defines random

variables (Un,x)n≥0, x ∈ (Z∗)2 that are IID Bernoulli variables, that assume value±1
with probability e±h/(2 cosh (h)).

Then, given an initial configuration ξ ∈ {−1, 1}(Z∗)2
, one constructs the dynamics

σ ξ (t) starting from σ ξ (0) = ξ as follows:

• (σx(t))t≥0 is constant on the intervals of the type [τ x
n , τ x

n+1).
• σx(τ x

n ) is chosen to be equal to±1 if a strict majority of the neighbors of x satisfies
σy(τ x

n ) = ±1, and Un,x otherwise (this definition makes sense as, almost surely,
two neighbors will not update at the same time).

This construction gives a simple way to define simultaneously the dynamics for all
initial conditions and boundary condition, using the same variable U and τ (we
denote by P the associated probability). Moreover, the coupling of dynamics thus
obtained preserves the natural order on {−1,+1}(Z∗)2

, given by

ξ ≥ ξ ′ ⇔ ξx ≥ ξ ′x for every x ∈ (Z∗)2 (27)

(this order is just the opposite of the inclusion order for the set of “–” spins, which
is, therefore, also preserved). Indeed, if ξ ≥ ξ ′ and σ ξ resp. σ ξ ′ denote the dynamics
with initial condition σ resp. σ ′ using the same τ and U, with the above construction,
one has P-a.s.

∀t > 0 σ ξ (t) ≥ σ ξ ′ (t). (28)

It also yields monotonicity with respect to boundary condition and other nice
properties.

3.2 The Height Function of the Simple Exclusion Process

We deal in this subsection and the next ones, with special initial conditions and
boundary conditions, for which the interface between + and – at all times is given
by the graph of a function in the coordinate frame (f1, f2) (recall the definition above
Eq. 22). These cases are easier to treat for two reasons: firstly the rescaled interface
motion can be written a functional PDE, which is easier to deal with than a flow
of curves; secondly, there are bijective correspondences with particle systems that
facilitate the probabilistic treatment of these interface problems (and also gives extra
motivation to study them).

Results concerning interface models are one of the principal building bricks for
the proof of Theorems 2 and 3. We describe the correspondence in this subsection
and state convergence results in the symmetric and the asymmetric cases in Sects. 3.3
resp. 3.4.

We say that a set A ⊂ (Z∗)2 or A ⊂ 
L is increasing if and only if

∀x ∈ A, (y ≥ x ⇒ y ∈ A), (29)
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Fig. 2 One-to-one correspondence between the dynamics in aN×M rectangle with mixed boundary
conditions and corner-flip dynamics on paths. This correspondence is, of course, also valid in the
case of a 2L× 2L square. An example of possible flip update is displayed

where the order in (Z∗)2 is the usual partial order (y1, y2) ≥ (x1, x2) where y1 ≥ x1

and y2 ≥ x2.
We define the interface between+ and – for a configuration σ to be the topological

boundary of

A−(σ ) :=
⋃

{x:σx=−1}
Cx , (30)

which also is equal to the boundary of A+(σ ) with an analogous definition.
If the set of + spins is an increasing set for σ (0), then it remains an increasing

set for σ (t) for all t ≥ 0 (the only site whose spin can flip has two + neighbors and
two − neighbors, and the reader can check that flipping one of them does not break
the property). Also, when the set of + spin is increasing, the interface between +
and − is the graph of a function η : R → R in the frame (0, f1, f2). The restriction
of η to Z is integer-valued and satisfies |η(x + 1) − η(x)| = 1 for all x ∈ Z and
it is linear on every interval of the type [x, x + 1], x ∈ Z. Hence, in a small abuse
of notation we can also consider η as a function on Z, and see the dynamics as a
Markov chain on the state-space

�0 := {η ∈ Z
Z||η(x + 1)− η(x)| = 1,∀x ∈ Z}. (31)

In the case where the dynamic is restricted to 
L, we choose the boundary condition
to be+ on the upper and right sides and− on the two opposite sides and the interface
function η defined on [−2L, 2L] (see Fig. 2).

The dynamic of the interface can be described as follows: sites x ∈ Z (or x ∈
[−2L+1, 2L−1]) are equipped with independent Poisson clocks with rate one; when
a clock rings at x the path η is replaced by ηx with probability eh/(2 cosh (h)) and ηx

with probability eh/(2 cosh (h)), where ηx (and ηx) are respectively the maximum
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and minimum path in � that coincides with η on Z\{x}. The paths ηx and ηx differ
if and only if η has a local extremum at x, i.e., if η(x + 1) = η(x − 1)).

This description is only formal in the full line case since the set of update time is
dense, but is a rigorous definition of the generator of the chain (for a general proof
of existence of a chain with such a generator, see [[19], Chap. 1]).

Finally, this interface dynamic can be mapped onto a one-dimensional particle
system. For any x ∈ Z set

ξ (x) = (η(x)− η(x + 1)+ 1)/2

and say that a particle lies on the site x when ξ (x) = 1. With an alternative view,
the dynamic can be described as follows: each particle jumps to the right with rate
eh/(2 cosh (h)), and to the left with rate e−h/(2 cosh (h)), with jumps being canceled
if the aimed site is already occupied by another particle. In the case of η defined on
a segment, we define the particle in the same manner, with the constraint that the
extremities of the particle system are “closed,” so that the particle cannot run through
them. This system is called the simple exclusion process.

When h= 0, the particles perform symmetric motions and one speaks about sym-
metric simple exclusion process (SSEP). When h ∈ (0,∞], the particles are biased
towards the right and one talks about ASEP (asymmetric). When h = ∞ particles
can only jump to the right and the system is called TASEP (totally asymmetric).

For all these particle systems, the only infinite volume equilibrium measures are
the one under which ξ (x) are IID Bernoulli variables.

3.3 Scaling Limit for the Asymmetric Simple Exclusion Process

This correspondence with one-dimensional particle systems has given to mathemat-
ical physicists some additional motivation to study these interface motions and a
variety of results for the scaling limit of the interface have been obtained. Let us cite
the first one, due to Rost [25] that concerns the case where the initial condition is –
in a quadrant and + in the three others, in the totally asymmetric case (recall the
definition of the function g in Eq. 21).

Theorem 4 ([25], Theorem 1). Consider the stochastic Ising model on (Z∗)2 at
temperature zero with h = ∞ and initial condition σ 0−in R

2+ and+ elsewhere. Let
η(x, t) denote the function whose interface in (0, f1, f2) is the interface between +
and −for σ (t) (η(x, 0) = |x|). Then one has for all ε > 0 and T <∞

lim
L→∞P

⎡

⎣max
x∈R
t∈[0,T ]

| 1
L
η(Lx,Lt)− g(x, t)| > ε

⎤

⎦ = 0. (32)

The above result has been developed in order to be able to treat all kinds of initial
conditions. Let u0 be a 1-Lipshitz function and let σL

0 be a sequence of initial con-
figuration for which the set of – is an increasing set and the initial interface function
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ηL
0 satisfies:

lim
L→∞ sup

x∈R

∣
∣
∣
∣

1

L
ηL

0 (Lx)− u0(x)

∣
∣
∣
∣ = 0. (33)

Then define u(x, t) as being the unique viscosity solution of
{
∂tu = 1

2 (1− (∂xu)2),

u(·, 0) = u0,
(34)

which can be showed (for instance we refer to in [[26], Eq. (2.8)] and the discussion
following it for a more general case) to be equal to (recall Eq. 21),

u(x, t) := inf
y
{u0(y)+ g(x − y, t)}. (35)

We use Eq. 35 as the definition of u. It turns out that u is the description of the scaling
limit of the interface when the initial condition satisfies Eq. 33. Before stating the
theorem, let us explain briefly on heuristic grounds why it is so.

We use the particle system description given at the end of the previous section.
With this setup, the height variation η(x, t)− η(x, 0) is equal to twice the number of
particle jumping from x− 1 to x in the time interval [0, t].

We consider the simplified case where the initial profile is linear with slope s and
the particle system is in an equilibrium configuration. i.e., (ξx)x∈Z are IID Bernoulli
variables of parameter ρ := (1 − s)/2. In that case, the jump rate of particle from
x− 1 to x is constant and equal to

P[η(x − 1, t) = 1; η(x, t) = 0] = ρ(1− ρ) = 1

4
(1− s2).

Assuming that there is some kind of ergodicity in the system, a law of large number
should hold and for any fixed x a.s.

η(t , x)− η(0, x) = 1

2
(1− s2)t(1+ o(1)). (36)

The reason why the argument also works when the original density of particle is
nonuniform is that locally, the system relaxes quickly to equilibrium so that the field
η(x, t)x∈Z looks locally like IID Bernoulli after a small time.

The following theorem was proved in [24] for ASEP in arbitrary dimension. The
reader can also refer to [26] for a generalization to the K-exclusion process.

Theorem 5 Consider the stochastic Ising model at temperature zero with h = ∞
and initial condition σL

0 as above (and ηL the corresponding interface). Then, the
rescaled interface converges in law to u in the following sense: For every ε, for every
positive T and K

lim
L→∞P

⎡

⎣max|x|≤K
t≤T
| 1
L
ηL(Lx,Lt)− u(x, t)| ≥ ε

⎤

⎦ = 0. (37)

These two results remain valid for the ASEP, but time has to be rescaled by a factor
γ (h) = coth (h).
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3.4 Scaling Limit of the Symmetric Simple Exclusion Process

The case where h= 0 corresponds to the case where the particles perform symmetric
jumps. In that case, the speed of the particle is zero, and one has to rescale time by
L2 to get a nontrivial scaling limit.

It is now a classical result that, in any dimension, the weak limit of the density
profile of particle for the SSEP is given by the heat equation (see, e.g., [[11], Chap. 4]).
In [15], we proved an analogous strong limit result for the profile η, in the case of
dynamics restricted to a box: consider the zero-temperature dynamics with zero
magnetic fields on 
L with + boundary condition on the upper and right sides
and − on the two others. Let t �→ η(·, t) defined on [−2L, 2L] denote the function
whose graph in (0, f1, f2) is the interface between + and − for the zero-temperature
dynamics.

Given a 1-Lipschitz function v0 : [−2, 2] �→ R with v0(±2) = 0, assume that
one starts the dynamics in 
L with a sequence of initial condition σL

0 for which the
interface η satisfies

lim
L→∞ sup

x∈[−2L,2L]

∣
∣
∣
∣

1

L
η(x, 0)− v0(Lx)

∣
∣
∣
∣ = 0. (38)

Let v be the solution of
⎧
⎪⎨

⎪⎩

∂tv = 1
2∂

2
x v,

v(0, t) = v0, ∀x ∈ [−2, 2],

v(±2, t) = 0, ∀t ≥ 0.

(39)

Theorem 6 ([15], Theorem 3.2). Consider the dynamics on 
L with the above
mentioned initial condition, then for all T ≥ 0 and ε > 0, w.h.p.

sup
t∈[0,T ],x∈[−2,2]

∣
∣
∣
∣

1

L
η(Lx,L2t)− v(x, t)

∣
∣
∣
∣ ≤ ε (40)

where v is the solution of Eq. 39.
Let us give shortly a heuristic explanation for Theorem 6. The first thing is to show

that the expected value of (ηx)x∈[−L,L] satisfies approximately the heat equation.
First notice that the expected drift of ηx at time zero depends only on the value

of ηx and ηx±1. If ηx is a local maximum, it will jump down by two with rate 1/2,
whereas if it is a local minimum it will jump up by two with the same rate. Else ηx

has drift zero so that

∂tE[ηx(t)]|t=0 =

⎧
⎪⎨

⎪⎩

1 if ηx±1(0) = ηx−1(0),

−1 if ηx±1(0) = ηx+1(0),

0 else.

(41)

The reader can check that the r. h.s. of the above equation is equal to

1

2
(ηx+1(0)+ ηx−1(0)− 2ηx(0)) =:

1

2
�dηx ,
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Fig. 3 An example of spin update that splits the interface into two disconnected components. The
interface dynamics presented in this section does not allow this kind of move

where �d denotes the discrete Laplacian. Hence, using the Markov property, one
obtains that (E[ηx])x∈[−L,L] satisfies

∂tE[ηx(t)] = 1

2
�dE[ηx(t)]. (42)

Theorem 6 is obtained then by showing that:

• The solution of the discrete heat-equation converges to the solution of the
continuous one in the scaling limit (this is classic).

• That ηx(t) concentrates around its mean for large values of L. This is more delicate.
We proved it by proving concentration for all the Fourier coefficient in a base of
eigenfunctions of �d.

Projections and trigonometry allows a heuristic derivation of Eq. 12 from Theorem 6
and Eq. 39. Indeed, it is quite reasonable to think that for the original dynamics
with shrinking – domain, the local drift of the interface is the same than for these
dynamics with modified boundary condition. However, there is a crucial ingredient
missing to try to perform a proof.

Indeed Theorem 6 does not say anything about the drift of the interface around the
“poles” of AL(t), i.e., around the points for which one of the coordinates is extremal.
This problem was treated using another correspondence with particle system, first
in [28] where a complete sketch of proof was given in a special setup (periodic
boundary condition). This study was pushed further in [15] where all the technical
details were handled to get a result that could be used to prove Theorem 2. We present
this correspondence in the next section.

3.5 Dynamics Near the “Poles”: Zero Range Process
and Scaling Limit

Near the “poles,” the dynamics cannot be easily reduced to an interface dynamics:
indeed (see Fig. 3) there are some possibilities for the set of − to break into several
connected components. However, one can introduce auxiliary dynamics that cancel
the transitions that make AL(t) disconnected.
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Fig. 4 Correspondence between interface dynamics and zero-range process. Arrows represent pos-
sible motions for the interface and their representation in terms of particle moves. When an A
particle jumps on a B particle (green arrow), they annihilate

More precisely, we consider 
L with boundary condition – in the upper half
plane and – one the lower half plane, starting with an initial condition such that the
interface between + and − is the graph of a function [−L,L] → R (plus some
vertical lines), and run modified Ising dynamics that discard update if the interface
after the update is not a single connected curve. With these dynamics, the interface
remains the graph of a function for all time (if one neglects the vertical lines). We
call η(x, t) the corresponding function (as there is no confusion possible with η from
the other section): by convention, we choose it to be defined on [−L,L] ∩ Z

∗ as it
is piecewise constant.

In this case also, we can describe the evolution of the gradient as a particle system.
For x ∈ {−L, . . . ,L} we set

ξx(t) := ηx+1 − ηx−1

to be the discrete gradient of η. We say that each site in {−L, . . . ,L} carries |ξx(t)|
particles. These particles are said to be of type A if ξ is positive and of type B if ξ is
negative.

Under the modified Ising dynamics depicted above, the rules for the motion of
the particles are the following:

• If there are k particles on a site, they jump left or right with rate 1/(2k).
• If a particle of type A meets a particle of type B they annihilate.

This kind of particle system where the jump rate depends on the number of particles
on one site is called zero-range process (see Fig. 4 for a scheme of the correspondence
of interface dynamics with the particle system), and has been extensively studied in
the literature (see, e.g., [1] where the invariant measures of this process are studied).

This correspondence with particle system was underlined in [28], and a partial
proof of the scaling limit of the interface motion was given there: the scaling limit
of ξ should be the solution of the equation

∂tw = ∂2
xw

2(1+ |∂xw|2)
. (43)
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Although we were not able to complete this proof fully (in particular we miss a
statement concerning existence and regularity of the solution in Eq. 43), we proved
a partial statement that was sufficient for the purpose of the proof of Theorem 2. Our
statement is that, on the macroscopic scale, η(x, t) stays close to a deterministic dis-
crete evolution that can be thought of as a discretization of Eq. 43 [[15], Theorem 7].
We record informally here the result for quotes in the rest of the paper.

Theorem 7 ([15], Theorem 3.4 and Corollary 3.5). In some weak sense, Eq. 43
describes the evolution of the rescaled interface on the diffusive time-scale.

4 Zero Magnetic Fields: A Detailed Sketch of Proof
for Theorem 2

We expose in this section the ideas behind the proof of Theorem 2. The first important
step is to reduce the proof to an infinitesimal statement. Using continuity properties
of the conjectured scaling limit, we can show that in order to control the evolution
of the – domain for all time, it is sufficient to control the motion with a first order
precision during a small time ε.

Once this is done, it suffices to iterate the statement as many times as needed
(order ε−1) to control the evolution for arbitrary positive time. We do not develop
this point further.

Let us state directly the two infinitesimal statements we want to prove: the first one
concerns continuity of the interface motion (which has to be used to get continuity
of the motion).

Proposition 1 Let D be convex and with a Lipschitz curvature function. For every
α > 0, w.h.p. (recall definition 13)

AL(L2t) ⊂ LD(α) for every t ≥ 0. (44)

Moreover, for every α > 0 there exists ε1(α, kmax) > 0 such that w.h.p.

AL(L2t) ⊃ LD(−α) for every t ∈ [0, ε1]. (45)

the second one is the control at first order of the evolution,

Proposition 2 For all δ > 0, there exists ε0(δ, kmin, kmax) > 0 such that for all
0 < ε < ε0, w.h.p.,

AL(L2ε) ⊂ LD(ε(1− δ)), (46)

and

AL(L2ε) ⊃ LD(ε(1+ δ)), (47)

where D(t) is the solution of Eq. 12.
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Fig. 5 Decomposition of D \D(ε(1− δ)) in eight zones: four small ones around the poles Pi that
we call Ai and four larger ones away from the poles, called Bi

The main work that remains is to prove the two inclusion bounds 46 and 47, as
Proposition 1 is more of a technical detail. We detail now the sketch for the proof of
the upper inclusion 46. The other bound is proved similarly, but for technical reasons,
it is a bit harder to expose its proof.
Sketch of the proof of Eq. 46. The idea of the proof is to use the monotonicity
properties of the dynamics in order to control it. What we have to show is that after a
time ε, all the spins in D \D(ε(1− δ)) (on the rescaled picture) that were initially –
have turned + w.h.p. after a time ε.

To do so, we divide D\D(ε(1−δ)) in eight regions and in each of these region, we
will try to compare our dynamics with some interface dynamics. We consider four
regions around the poles named (Ai)4

i=1 and four others named (Bi)4
i=1 (see Fig. 5),

and one wants to show that each one of them is filled with + after a time ε. In what
follows, we will choose the Ai to be very small zones around the poles whereas the
Bi will cover a proportion of the boundary of D close to 1.

Due to rotational symmetries of the problem, the inclusion 46 reduces to proving
that w.h.p.

∀x ∈ B1, σx(εL2) = +1,

∀x ∈ A1, σx(εL2) = +1. (48)

The idea behind this division is that initially, γ restricted to the region A1 (resp. B1)
is the graph of a function in the coordinate frame (e1, e2) for A1 and in the frame,
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Fig. 6 In order to control the dynamics on a zone of type B, we look at the dynamic restricted
to a “quadrant” of the original shape. In order to cut dependence from what happens outside the
rectangle, we block the update on a set of spins that have to stay − at all time (dark red), and we
can do a monotone coupling of these dynamics with the original one. On the two opposite sides of
the rectangle (dark blue), even if updates are not rejected, note that the spins have to stay + for all
time due to the majority rule

resp. (f1, f2). We want to modify our dynamics a little bit to get in the context of
Theorem 6 or 7.

The idea to prove each line of Eq. 48 is to replace the dynamic σ by another one
that creates more – spins, but that we can handle better.

Let us start with the case of zone B1. We look at the dynamics restricted to the
rectangle like in Fig. 6 (where the case ofB4 is treated), and we decide to cancel all the
updates that concern spins of the lower or right side of the rectangle, and remark that
the spins on the two opposite sides remain+ for all time. The obtained dynamics σ (1)

has more – spins than the original one (it can be seen from the graphical construction
of Sect. 3.1) and falls in the setup described in Sect. 3.4. More precisely, we have
a rectangle with mixed boundary condition instead of a square, but Theorem 6 also
applies in that case).

Ifη(1) denotes the interface function corresponding toσ (1) (in the setup of Sect. 3.4)
and q(·, t) denotes the function whose graph in the coordinate frame (f1, f2) is the
boundary of D(t) restricted to the zone B1 (we chose t small enough so that q remains
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defined on some “large interval” I). The first line of Eq. 48 is proved if one can show
that

1

L
η(1)(Lx,L2ε) ≤ q(x, ε(1+ δ)), ∀x ∈ I , (49)

where I is an interval that is strictly included in the domain of definition I0 of q(·, t).
I is chosen sufficiently large to have a control on the whole region B1.

Thus using Theorem 6, it is sufficient to prove that

u(x, ε) < q(x, ε(1− δ)), ∀x ∈ I , (50)

where u is the solution of Eq. 39 with initial condition u0 = q(·, 0) corresponding to
the initial position of the interface. Continuity properties of the heat equation allow
us to say that if the interval I is fixed and u0 is smooth enough, one has uniformly in
x ∈ I (uniformity concerns the Taylor rest O(ε2))

u(x, ε) = u0(x)+ 1

2
∂2
xu0(x)ε +O(ε2). (51)

This does not hold uniformly in the full interval I0 because of the Dirichlet boundary
condition that makes the drift equal to zero at the extremities of the interval. The
anisotropic motion by curvature is sufficiently regular to obtain something similar
for q(x, ε): uniformly on x ∈ I

q(x, ε)− q(x, 0) = ε
1

2
∂2
x q(x, 0)+O(t2). (52)

At an informal level, this is just a Taylor formula combined with Eq. 12 and some
trigonometry (for the projections).

As curvature remains positive everywhere for all time and q(x, 0) = u(x, 0), it is
straightforward to deduce Eq. 50 from Eqs. 51 and 52 for small enough ε.

The treatment of a zone around the pole (say A1) is more delicate but follows the
same line. The difference is that we have to perform a longer chain of modification of
the dynamics. Each modification makes the dynamics have more − spins, or result
in a dynamics that coincide with the previous one with large probability.

We look at a dynamic restricted to a rectangle around the pole that includes A1,
e.g., take the rectangle twice as large as A1 (see Fig. 7). We want to modify the
dynamics by fixing the boundary condition on the rectangle (or to freeze updates).
The problem here is that to get to the setup of interface dynamics of Sect. 3.5 we need
to freeze some sites with + spins as well as sites with − spins so that the modified
dynamics does not compare well with the original one.

A way to get around this problem is to prove first that sites at a macroscopic
distance (i.e., positive distance on the rescaled picture) from D(0) do not change
sign ever with large probability (this is for instance the upper inclusion bound in
Proposition 1).

Knowing this, we can freeze spins to+ in the upper part of our rectangle provided it
does not touch D(0): the modified dynamics that we obtain coincide with the original
with large probability.
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Fig. 7 In order to control the dynamics on a zone of type B, we look at the dynamic restricted to
a rectangle around the pole. In order to cut dependence from what happens outside the rectangle,
we block the update on a set of spins that have to stay – at all time (dark red). On the rest of the
boundary, we note that the spins have to stay + for all time with large probability so that we can
couple the dynamics that reject updates on those site so that it coincides with the original dynamics
with large probability

Then if we freeze the spins in the lower part of the rectangle to−, we get dynamics
that compare well with the previous one (it has more− spins, see upper part of Fig. 7).

Once the whole boundary has been frozen, we add− spins to our initial condition
so that on the macroscopic scale, our initial condition is a smooth interface: we cancel
the irregularity at the boundary (see Fig. 7 lower part).

The dynamics restricted to the rectangle are not exactly interface dynamics, so we
have to modify it once again. We cancel all the moves that break the interface between
+ and− into several connected components. With our modified initial condition (an
interface that has a unique local maximum), a disconnection of the interface can only
occur by adding a + spins so the modified dynamics has one again more − spins
than the original one.

Let σ (2) denote the last mentioned modified dynamics and η(2)(x, t) denote the
interface function that corresponds to it. Let r denote the function whose graph in
(e1, e2) is the boundary of D(t) in the zone A1.

We are left with proving that

1

L
η(2)(Lx,L2ε) ≤ r(x, ε(1− δ)), ∀x ∈ J , (53)

for a small interval J around the pole.
Using Theorem 7, one gets that for small α > 0, for any positive t w.h.p.

1

L
η(2)(Lx,L2t) ≤ w(x, (1− α)t), (54)

where w is the solution of ∂tw = (1/2)∂2
x w with Dirichlet boundary condition, and

initial condition given by the the interface. The number α can be taken arbitrarily
small by reducing the size of the zone around the pole that is considered.
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With this information, proving Eq. 53 is reduced to show that

w(x, (1+ α)ε) < r(x, ε(1+ δ)) ∀x ∈ J , (55)

where I is an interval corresponding to the zone A1. Equation 55 is proved in the
same manner in which we proved Eq. 50, we choose α = δ/2, and perform Taylor
expansion at first order on both sides:

w(x, (1+ δ/2)ε) = w(x, 0)+ ε(1− δ/2)/2(∂x)2 w(x, 0)+O(ε2),

r(x, ε(1+ δ)) = r(x, 0)+ ε(1− δ)
(∂x)2r(x, 0)

2(1+ |∂xr(x, 0)|)2
+O(ε2), (56)

where O(ε2) is uniform in x ∈ I . Again, the second line is formally Eq. 12 and
some trigonometry. Then, using the fact that w(·, 0) = r(·, 0) on an interval around
the pole and that |∂xr(x, 0)| is uniformly small on J if J is chosen small enough, we
can deduce Eq. 55 for Eq. 56 for ε small enough, with a small interval J.

Proving inclusion 47 relies on the same ingredients: first separate different zones
that one wants to control, and then, for each zone reduce to an interface dynamics
via a chain of modification. After doing this, we use the scaling results, Theorems 6
and 7 to conclude. Then one derives the result for the original dynamics using
monotonicity. The chain of dynamic modification is a bit longer and tedious in this
case that for the upper-bound 46.

5 Positive Magnetic Fields: Proof of Theorem 3 when the Initial
Condition is a Square

The proof of the scaling limit of the – droplet in this case uses several techniques in
common with the zero-magnetic field case, but several features of the model makes
it much simpler in a sense:

• The scaling limit, although being nonsmooth, is a much simpler object than
anisotropic motion by curvature. In particular, there is no instantaneous travel of
information on the rescaled picture: if one modifies one side of the droplet, it will
take a positive time to have an effect on regions that are at a positive distance of
where the modification took place.

• + spins remain + for all times, making the set of – a decreasing set in time.

Recall that the aim of this section is to prove Theorem 3 in the special case where
σ (0) is equal to – in [−L,L]2 ∩ (Z∗)2 and + outside of it. Recall that in that case
D(t) = ∩4

i=1Di(t) where Di(t) is defined in Eq. 22.
The upper inclusion 1

L
AL(t) ⊂ D(δ)(t) is an easy consequence of Theorem 4: the

idea is to couple the dynamics with four corner growth dynamics using the same
clock process for updates. What can be rather surprising is that this simple method
gives a sharp bound.
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Indeed, for the model based on simple exclusion, one can get an upper bound in
the same manner by comparing with four corner growth dynamics, replacing g(x, t)
by the solution of the heat equation with initial condition |x| (and time scaling L by
L2), but this would not be sharp. Indeed, the shape obtained as an upper-bound with
such a technique presents some angles on points with extremal coordinate (poles),
whereas the true scaling limit is smooth (at least C2). The reason is that the drift of
the interface at the pole is positive when the pole is convex, and one needs to apply
Theorem 7 to take the drift into account.

Here on the contrary, nothing happens around the poles due to the singularities
of the function b(θ ) (recall Eq. 17) that is equal to zero for θ = iπ/2, i = 1, . . . , 4.
The main thing to prove to get the lower-bound 1

L
AL(t) ⊃ D(−δ)(t) is to show that

the interaction between the four quadrants of our shape is quite limited.
It is quite difficult to control directly what happens around the pole when the

interface is not completely flat, but one finds a way to bypass this problem. Similarly
to what is done in [14] in the case of dynamics for polymer with an attractive substrate,
one adds, in a quite artificial manner, a flat part of interface around the pole, and
modify a bit the statement that has to be proved (see Lemma 2 below). Adding this
flat part makes the evolution of the four corners almost independent of one another
for some positive time, and thus allows to use Theorem 5 to control the evolution of
each corner and thus of the total shape.

5.1 The Upper-Bound

The upper-inclusion of Theorem 3 follows quite easily from Theorem 4. We prove
it in this section.

Proposition 3 For any δ > 0, for the dynamic with h = ∞ starting from the initial
condition – in [−L,L]2 ∩ (Z∗)2 and + outside of it, one has w.h.p.

1

L
AL(Lt) ⊂ D(δ)(t), ∀t ≥ 0, (57)

where D(t) is defined by Eqs. 22 and 23.

Proof Using the graphical construction of Sect. 3.1, we can couple the dynamics
σ (t) with initial condition σ0: – in [−L,L]2 (we drop intersection with (Z∗)2 in the
notation for conciseness) and+ elsewhere with other dynamics using the same clock
process:

• The dynamics σ1 with initial condition – in [−L,∞)2 and + elsewhere.
• The dynamics σ2 with initial condition – in [−L,∞)×[−∞,L) and+ elsewhere.
• The dynamics σ3 with initial condition – in [−∞,L)2 and + elsewhere.
• The dynamics σ4 with initial condition – in [−∞,L)×[−L,∞) and+ elsewhere.

We define A1
L(t), A2

L(t), A3
L(t), A4

L(t) analogously to AL(t) of Eq. 8 for these
four dynamics. According to monotonicity properties of the dynamics in the initial
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condition, one has AL(t) ⊂ AL
i(t) for all i ∈ [1, 4] so that:

AL(t) ⊂ A1
L(t) ∩A2

L(t) ∩A3
L(t) ∩A4

L(t). (58)

The dynamics σ 1 is the same as the one considered in Theorem 4 with a space shift
of the initial condition, and thus by Theorem 4,

AL
1(t) ⊂ {xf1 + yf2 | y ≥ g(x, t)− 2− δ} =: Aδ

1(t). (59)

Defining Aδ
i (t), i = 2, 3, 4 as rotations of Aδ

1(t) by angle (i − 1)π/2, one gets
analogous inclusion for AL

i(t) by symmetry, and using Eq. 58 we get that w.h.p.

AL(t) ⊂ Aδ
1(t) ∩ Aδ

2(t) ∩ Aδ
3(t) ∩ Aδ

4(t) ⊂ D(δ)(t). (60)

5.2 The Lower-Bound

The aim of this section is to prove the other inclusion of Theorem 3.

Proposition 4 For any δ > 0, for the dynamic with h = ∞ starting from the initial
condition – in [−L,L]2 ∩ (Z∗)2 and + outside of it, one has w.h.p.

1

L
AL(Lt) ⊃ D(−δ)(t), ∀t ≥ 0, (61)

where D(t) is defined by Eqs. 22 and 23.
Let us explain how the proof goes. Consider the sets AL

i(t) defined in the previous
section. The idea in our proof of the lower-bound it to show that the inclusion used
in Eq. 58 is almost an equality. We will decompose the proof in two steps:

• First, we prove that when the rescaled time t is smaller than one, the inclusion 58
is indeed an equality with large probability.

• Second, when the rescaled time t is larger than one, we use a special strategy
involving adding portions of straight line on the interface around the pole in
order to reduce oneself to a case where one can treat the four corner dynamics
independently.

The control of the dynamics for times t ≤ 1 is summarized in the following lemma.

Lemma 1 For any δ > 0 one has with high probability, for all t ≤ 1− δ one has

D(−δ)
t ⊂ 1

L
AL(Lt). (62)

Proof Define KL to be the sets of sites in [−L,L]2 ∩ (Z∗)2 that are neighboring
either the horizontal or vertical axis,

KL := {x ∈ (Z∗)2 ∩ [− L,L]2 | min(|x1|, |x2|) = 1/2}. (63)



112 H. Lacoin

Set

τ := inf{t ≥ 0 | ∃x ∈ KL, σx(Lt) = +}. (64)

The reader can check that for t ≤ τ , the evolutions of the four corners do not interact
with one another and that

AL(t) = A1
L(t) ∩A2

L(t) ∩A3
L(t) ∩A4

L(t). (65)

Moreover, as a consequence, one has

τ := inf
i=1...4

τi := inf{t ≥ 0 | ∃x ∈ KL, ∃i ∈ {1, . . . , 4}, σ i
x(Lt) = +}. (66)

What remains to check is that τ1 is roughly equal to L. If one uses the particle system
description from Sect. 3.2, the dynamic σ1 corresponds to TASEP with step initial
condition: i.e., with the negative half-line full of particles and the positive half-line
empty.

With this description, τ1 is the first time that either the rightmost particle, which
starts from 0, reaches L, or the leftmost empty space (or antiparticle) hits –L. As the
jump rate of the particles (and thus of antiparticles) is equal to one, the central limit
theorem for a sum of independent exponential variables gives us that these time are
equal to L+O(L1/2) where the second term includes the random normal correction.
Thus one can infer that w.h.p.:

τ1 ≥ L− L3/4,

so that the same is true for τ .
From Theorem 4, one gets that with high probability for all t ≤ 1,

A1
L(Lt) ⊃ {xf1 + yf2 | y ≥ g(x, t)− 2+ δ} = A−δ

1 (t). (67)

so that combined with Eq. 65 one gets that w.h.p. for all t ≤ 1− δ,

AL(Lt) ⊃ A−δ
1 (t) ∩ A−δ

2 (t) ∩ A−δ
3 (t) ∩ A−δ

4 (t) ⊃ D(−δ)(t). (68)

We address now the issue of time larger than one. At this time, the different corners
start to interact so that one has to find a trick to regain independence. For t ∈ [1, 4],
set d(t) = 2

√
t − t the positive solution of g(t , x) = −x + 2. The reader can check

that for all t ≥ 1, D(t) is inscribed in the square [−d(t), d(t)]2, i.e.,

max
x∈D(t)

x · e1 = −min
x∈D(t)

x · e1 = d(t), (69)

the same being valid for the second coordinate.
We will intersect D(t) with a smaller square, which gets us a shape with vertical

and horizontal edges around the poles. More precisely, given δ, for t ≤ 4(1− δ) (we
have in that case d(t) ≥ δ if δ is small enough) we define the function

ḡ(x, t) :=
{
g(x, t)− 2 if |x| ≤ d(t)− δ,

|x| − (d(t)− δ)+ g(d(t)− δ, t)− 2 if |x| ≥ d(t)− δ.
(70)
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It is continuous in x, convex in x and has slope equal to ±1 outside of [−d(t) +
δ, d(t) − δ]. Define D̄1(t) to be the epigraph of ḡ(x, t) in (0, f1, f2) and D̄i(t) its
rotation by an angle (i − 1)π/2, and set

D̄(t) =
4⋂

i=1

D̄i(t). (71)

The reader can check that

D̄(t) = D(t) ∩ [− r(t), r(t)]2, (72)

where r(t) ∈ (d(t)− δ/2, d(t)) is the unique solution of the equations

ḡ(x, t) = −x. (73)

To check that r(t) > d(t)− δ/2 it is sufficient to observe that

ḡ(d(t)− δ/2, t) = δ/2+ g(d(t)− δ, t)− 2 < −d(t)+ δ/2, (74)

where the last inequality comes from the fact that

g(x, t) < −d(t)+ 2, ∀x ∈ (0, d(t)).

Hence, D̄(t) has flat parts around the pole. Thus, if one starts dynamics from a shape
approximating D̄(t) the four corners will not interact instantaneously like in the proof
of Lemma 1. We will use this fact to prove the following result.

Lemma 2 For any δ > 0 small enough and ε ≤ δ/4, one has for all k ≥ 0 such
that εk ≤ 3− 4δ w.h.p.,

1

L
AL((1− δ)(1+ εk)L) ⊃ D̄(1+ εk). (75)

As a consequence, for all t ≥ 1− δ one has

1

L
AL(Lt) ⊃ D(t)(−4δ). (76)

Proof The main part of the job is proving Eq. 75, as Eq. 76 is deduced from it by
monotonicity in t of AL(t). We proceed by induction on k. For k= 0, the result is
just a consequence of Lemma 1 for t = 1− δ.

Now we suppose that the result is true for k and and prove it for k+ 1. Using
the graphical construction, one can couple (σ ((1− δ)(1+ εk)+ t))t≥0 with σ k(t) a
dynamic starting with initial condition – in LD̄(1+ εk) and + elsewhere, in such a
way that

AL((1− δ)(1+ εk)+ t) ⊃ AL
k(t), ∀t ≥ 0, (77)
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−d(t) −r(t) r(t) d(t)

Fig. 8 The shape D(t) (darkened on the figure) is obtained by intersection four rotated version of
the epigraph of the function x �→ g(x, t) − 2 (recall Eq. 21). For t ∈ [1, 4] (as above) this shape
is inscribed in [−d(t), d(t)]2 where d(t) = 2

√
t − t . We define D̄(t) to be the intersection of D(t)

with [−r(t), r(t)]2 defined in Eq. 73

whenever Eq. 75 holds for k, where AL
k is defined as in Eq. 8 with σ replaced by

σ k .
As Eq. 75 holds w.h.p. from the induction hypothesis, we can prove Eq. 75 w.h.p.

for k+ 1 if one proves that w.h.p.

Ak
L((1− δ)ε) ⊃ LD̄(1+ ε(k + 1)). (78)

Now, we couple σ k(t) with four interface dynamics σ (i,k)(t) starting with initial
condition with initial condition – in LD̄i(1 + εk) and + elsewhere using the same
clock process.

As we remarked in the proof of Lemma 1, one has

AL
k(t) ⊂

4⋂

i=1

AL
(i,k)(t), (79)

and this inclusion is an equality up to the first time a site near the axes changes spin.
More precisely set

K̄L := {x ∈ (Z∗)2 ∩ [− Lr(1+ εk),Lr(1+ εk)]2 | min(|x1|, |x2|) = 1/2}
= KL ∩ LD̄(1+ εk), (80)
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and

τ̄ := inf{t ≥ 0 | ∃x ∈ K̄L, σ k
x (t) = +}. (81)

One has from the definition of our dynamics that

Ak
L(t) =

4⋂

i=1

AL
(i,k)(t), ∀t ≤ τ̄ . (82)

Our first task is to show that w.h.p. τ̄ ≥ ε in order to be allowed to use Eq. 82. We
check that

τ̄1 := {t ≥ 0 | ∃x ∈ K̄L, σ (1,k)
x (Lt) = −} ≥ ε, (83)

which by symmetry is sufficient. Indeed

τ̄ = min
i∈{1,...,4} = τ̄i

where the τ̄i are defined similarly to τ̄1.
We use again the correspondence with particle system of Sect. 3.2 to do that: the

dynamics σ (1,k) correspond to a particle system with an initial condition where the
rightmost particle is located at L(d(1 + εk) − δ) and the leftmost empty space at
−L(d(1+ εk)− δ).

The time τ̄1 is the first time where either the rightmost particle hits Lr(1+ εk) or
the leftmost antiparticle hits −Lr(1+ εk). Using central limit theorem for the sums
of exponential variables one has w.h.p.,

τ̄1 ≥ L((r − d)(1+ εk)+ δ)− L3/4. (84)

As r(t) ≥ d(t)− δ/2, one has

τ̄1 ≥ δ/4 L ≥ εL w.h.p.

provided that ε ≤ δ/4.
Now, having shown that Eq. 82 holds for t = ε w.h.p., to get Eq. 78, it is sufficient

to prove that w.h.p. (recall the definition of D̄(t) in Eq. 71)

A(1,k)
L ((1− δ)εL) ⊃ D̄1(1+ (k + 1)ε). (85)

As the two sets are epigraphs of functions in (0, f1, f2), it is sufficient to prove an in-
equality between functions. Let η1(x, t) denote the interface function corresponding
to σ (1,k). Theorem 5 give us the scaling limit for the evolution of η1(x, t), which is
given by u(x, t) the solution of Eq. 34 with initial condition

u0(x) := ḡ(x, 1+ εk). (86)

Thus, Eq. 85 is proved if we can show that

u(x, (1− δ)ε) < ḡ(x, 1+ ε(k + 1)), ∀x ∈ R. (87)
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The reader can readily check, using Eq. 35 that

u(x, (1− δ)ε) = g(x, 1+ ε(k + 1)− δε)− 2 < ḡ(x, 1+ ε(k + 1)), (88)

∀x ∈ [−d(1+ εk)+ δ, d(1+ εk)− δ]. (89)

What remains to be shown is that the inequality is also valid outside of the interval
[−d(1+εk)+δ, d(1+εk)−δ]. Set x > d(1+εk)−δ (by symmetry of the functions
it is sufficient to check this case), as u(·, t) is 1-Lipshitz for all t

u(x, (1− δ)ε) ≤ u(d(1+ εk)− δ, (1− δ)ε)+ (x − d(1+ εk)+ δ)

< ḡ(d(1+ εk)− δ, 1+ ε(k + 1))+ (x − d(1+ εk)+ δ)

= ḡ(x, 1+ ε(k + 1)), (90)

where the last inequality comes from the definition of ḡ.
This concludes the proof of Eq. 85, and thus, of Eq. 75.
We can now detail the proof of Eq. 76. For t ≥ 4−4δ, we note that that D(−4δ)(t) =

∅ because d(t) ≤ 4δ/
√

2 so that the inclusion is trivial.
For t ∈ (1 − δ, 4 − 4δ], note that, with high probability, Eq. 75 holds for all k

with εk ≤ 3 − 4δ. Let kt be the smallest integer such that (1 − δ)(1 + εk) ≥ t . As
AL(t) decreases in time, from Eq. 75, for all t ∈ (1− δ, 4− 4δ] one has w.h.p.

1

L
AL(Lt) ⊃ 1

L
AL((1− δ)(1+ εkt )) ⊃ D̄(1+ εkt ). (91)

Then we note that D̄(t) ⊃ D(−δ)(t) and that

1+ εkt ≤ t

1− δ
+ ε, (92)

so that Eq. 91 implies (as b(θ ) ≤ 1 for all β)

1

L
AL(Lt) ⊃ D(−δ)

(
t

1− δ
+ ε

)

⊃ D(−4δ), (93)

if δ is chosen small enough.
Proposition 4 is just the concatenation of Lemma 1 with Lemma 2.

6 Proof of Theorem 3 with General Initial Condition (Sketch)

In this section, we briefly expose what modifications are needed to adapt the proof
above to general condition. The upper-bound part is quite simple. Given a convex
shape D, it is possible to identify four poles, which are the points where one of the
coordinates takes their extremal value (the pole can degenerate into a segment in
case there is a flat part, or two of them might coincide, but this does not create any
problem for our definitions).



The Scaling Limit for Zero-Temperature Planar Ising Droplets 117

a

b c d

Fig. 9 In a, we show how the initial condition of the dynamics σ i , i.e., the functions g
(i)
0 are

extracted from the initial condition. When two poles coincide like in c or d, the corresponding g
(i)
0

is just a corner. Items b–d show how D̄(t) is constructed from D(t): The convex is cut at a distance
δ from where the coordinate take their extremal values

Then when they are not degenerate, the parts of the boundary between two poles
can be described as the graph of a convex 1-Lipshitz function in an appropriate frame
of coordinate: either (f1, f2) or a rotated version of it. These functions are defined on
an interval of finite length (reduced to a point in case of degeneration) but can be
extended on R by adding semiinfinite lines of slope 1 and −1 on the left resp. right
of their graph (see Fig. 9). Let us call (g(i)

0 )4
i=1 the obtained functions.

We call g(i) the solution of Eq. 34 given by Eq. 35 with initial condition g
(i)
0 and

let us call Ai(t) the epigraph of g(i)(t , ·) in the frame of coordinate used to define g
(i)
0 .

Then one has

D(t) := ∩4
i=1Ai(t), (94)

where D(t) is defined by Eq. 19.
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6.1 Upper-Bound

To prove the upper-bound, we adopt the proof of Sect. 5.1. We define σ i as the
dynamics started with initial condition – on LAi(0) ∩ (Z∗)2 and + elsewhere, and
from Theorem 5 we get that g(i)

0 gives the scaling limit of the interface. Hence, we can
deduce out of it that w.h.p. Ai

L(t), the renormalized set of – spins of σ i is contained
in the epigraph of gi(t , ·)−δ that we call Aδ

i (t) (we use Theorem 5 on a large interval
and use the fact that with large probability, there is no particle motion outside of a
large interval until time t because of our choice the initial condition).

The we conclude using monotonicity, with Eqs. 58 and 60.

6.2 Lower-Bound

For the lower-bound, as in the case of the square, we want to modify our initial
condition so that the different corner dynamics that we have defined do not interact
immediately. As the shape we start with is arbitrary, this time, it is not guaranteed
that things go well until t= 1.

Let x1(t), x2(t), y1(t), y2(t) be defined such that [x1(t), x2(t)] × [y1(t), y2(t)] is
the smallest rectangle in which D(t) is inscribed. Given δ let us define

D̄(t) := D(t) ∩ ([x1(t)+ δ, x2(t)− δ]× [y1(t)+ δ, y2(t)− δ]). (95)

Then one wants to show an result analogous to Lemma 2. Set T ∗ := inf{t |D(t) = ∅}.
Lemma 3 For any δ > 0 and ε small enough, one has for all k ≥ 0 such that
εk ≤ T ∗ − 4δ w.h.p.,

1

L
AL((1− δ)εkL) ⊃ D̄(εk). (96)

As a consequence, for all t ≥ 0 one has

1

L
AL(Lt) ⊃ D(t)(−4δ). (97)

The proof of the lemma is really similar to the one of Lemma 2. One proves the
result by induction over k. To perform the induction step, one needs to control the
evolution after a time (1− δ)ε starting from D̄(εk). One uses the flat parts of D̄(εk)
to make the four corner dynamics independent of one another until time (1 − δ)ε,
and using Theorem 5 to have an approximation of the shape of the domain of – after
that time.

Afterwards, one needs to show that the shape obtained with the use of Theorem 5
contains D̄(ε(k + 1)), which is done by proving inequalities between function, as in
the case of the square. The details are left to the interested and motivated reader.
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Airy Processes and Variational Problems

Jeremy Quastel and Daniel Remenik

We thank J. Baik and Z. Liu for pointing out the missing
√

2 on
the right-hand side of this equality in an earlier version of this
manuscript. See [10] for more details.

Abstract We review the Airy processes—their formulation and how they are con-
jectured to govern the large time, large distance spatial fluctuations of 1-D random
growth models. We also describe formulae which express the probabilities that they
lie below a given curve as Fredholm determinants of certain boundary value opera-
tors, and the several applications of these formulae to variational problems involving
Airy processes that arise in physical problems, as well as to their local behaviour.

1 Introduction

1.1 Airy Processes and the Kardar–Parisi–Zhang (KPZ)
Universality Class

The Airy processes are a collection of stochastic processes which are expected to
govern the long time, large scale, spatial fluctuations of random growth models in
the 1-D Kardar-Parisi-Zhang (KPZ) universality class for wide classes of initial data.
Although there is no precise definition of the KPZ class, it can be identified at the
roughest level by the unusual t1/3 scale of fluctuations. It is expected to contain a large
class of random growth processes, as well as randomly stirred 1-D fluids, polymer
chains directed in 1-D and fluctuating transversally in the other due to a random
potential (with applications to domain interfaces in disordered crystals), driven lattice
gas models, reaction-diffusion models in 2-D random media (including biological
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models such as bacterial colonies), randomly forced Hamilton–Jacobi equations, etc.
The model giving its name to the universality class is the KPZ equation, which was
introduced by [59] as a model of randomly growing interfaces, and is given by

∂th = −1

2
(∂xh)

2 + 1

2
∂2
x h+ ξ ,

where ξ (t , x) is Gaussian space–time white noise, E
(
ξ (t , x)ξ (s, y)

) = δs=t δx=y .
A combination of non-rigorous methods (renormalization, mode-coupling, repli-

cas) and mathematical breakthroughs on a few special models has led to very precise
predictions of universal scaling exponents and exact statistical distributions describ-
ing the long time properties. These predictions have been repeatedly confirmed
through Monte-Carlo simulation as well as experiments; in particular, recent spec-
tacular experiments on turbulent liquid crystals by Takeuchi and Sano [80, 81] have
been able to even confirm some of the predicted fluctuation statistics in a physical
system.

The conjectural picture that has developed is that the universality class is divided
into subuniversality classes which depend on the class of initial data (or boundary
conditions), but not on other details of the particular models. There are three classes
of initial data which stand out because of their self-similarity properties: Dirac δ0,
corresponding to curved, or droplet type initial data; 0, corresponding to growth off a
flat substrate; and eB(x) where B(x) is a two-sided Brownian motion, corresponding
to growth in equilibrium. As we will see later, each of these three classes correspond
to concrete initial (or boundary) conditions for the discrete models in the KPZ class.
In addition to these three basic initial data, there are three non-homogeneous sub-
universality classes corresponding roughly to starting with one of the basic three
on one side of the origin, and another on the other side. For one specific discrete
model (last passage percolation or, equivalently, the totally asymmetric exclusion
process), the asymptotic spatial fluctuations have been computed exactly for these
six basic classes of initial data, and are given by the Airy processes: the three basic
Airy processes, Airy2, Airy1 and Airystat, and the crossover Airy processes Airy2→1,
Airy2→BM and Airy1→BM. Although these processes have been proved to arise as the
limiting spatial fluctuations only for one model (and actually several others in the
case of the Airy2 process), as a consequence of the universality conjecture for the
KPZ class it is expected that the same should hold for the other models in the class.

The purpose of this review is two-fold. First, we will explain in detail in the intro-
duction, the conjectural picture that we have just sketched from two different points
of view: last passage percolation (or, more generally, directed random polymers) and
the KPZ equation (or, more precisely, the stochastic heat equation). Along the way
we will survey known results for these models.

Our second purpose is to survey a collection of results for theAiry processes which
express the probability that they lie below a given curve as Fredholm determinants
of certain boundary value operators. These expressions have turned out to be very
useful in obtaining some exact distributions through certain variational formulae,
and in addition have allowed one to study some local properties of these processes.
This will be the subject of Sects. 2–4,
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a b

Fig. 1 a A polymer/LPP path π connecting the origin to (M ,N ). b Time s and space u axes in LPP

1.2 Directed Random Polymers and Last Passage Percolation

Polymers

Consider the following model of a directed polymer in a random environment. A
polymer path is an up-right path π = (π0,π1, . . . ) in (Z+)2 started at the origin, that
is, π0 = (0, 0) and πk − πk−1 ∈ {(1, 0), (0, 1)} (see Fig. 1a). On (Z+)2 we place a
collection of independent random weights {ωi,j }i,j>0. The energy of a polymer path
segment π of length N is

HN (π ) = −
N∑

k=1

ωπk
.

We define the weight of such a polymer path segment as

WN (π ) = e−βHN (π ) = eβ
∑N

k=1 ωπk (1)

for some fixed β > 0 which is known as the inverse temperature of the model. Let
ΠM ,N denote the set of upright paths going from the origin to (M ,N ) ∈ (Z+)2. If
we restrict our attention to such paths, then we talk about a point-to-point polymer,
defined through the following path measure on ΠM ,N :

Q
point
M ,N (π ) = 1

Zpoint(M ,N )
WM+N (π ) (2)

The normalizing constant,

Zpoint(M ,N ) =
∑

π∈ΠM ,N

WM+N (π )
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is known as the point-to-point partition function. Similarly, if we consider all possible
paths of length 2N , then we talk about a point-to-line polymer, defined through the
following path measure on

⋃
k=−N ,...,N ΠN+k,N−k (that is, all paths of length 2N ):

Qline
N (π ) = 1

Zline(N )
W2N (π ), (3)

with the point-to-line partition function

Zline(N ) =
N∑

k=−N

Zpoint(N + k,N − k).

A main quantity of interest in each case is the free energy, defined as the logarithm of
the partition function. In the point-to-line case, another important quantity of interest
is the position of the endpoint of the randomly chosen path, which we will denote
by κN . It is widely believed that these quantities should satisfy the scalings

log (Zpoint(N ,N )) ∼ a2N + b2N
χζ2, (4)

log (Zline(N )) ∼ a1N + b1N
χζ1, (5)

κN ∼ NξT (6)

as N → ∞, where the constants a1, a2 and b1, b2 may depend on the distribution
of the ωi,j and β, but ζ1, ζ2 and T should be universal up to some fairly generic
assumptions on the ωi,j ’s, while the fluctuation exponent

χ = 1/3

and wandering exponent

ξ = 2/3.

Here, and in the rest of this chapter, whenever we write a relation like

ZN ∼ aN + bNκζ

as N →∞, what we mean is that

lim
N→∞P

(
ZN − aN

bNκ
≤ m

)

= P(ζ ≤ m).

One can also have higher, d + 1 dimensional versions of the model, with the paths
directed in 1-D, and wandering in the other d . In all dimensions, the scaling exponents
χ and ξ are conjectured to satisfy the KPZ scaling relation

χ = 2ξ − 1, (7)
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while the universality of the limiting distributions is unclear except in d = 1. For
recent progress on (7), see [6, 7, 34].

Although there are few results available in the general case described above,
the zero-temperature limit β → ∞, known as last passage percolation, is very
well understood, at least for some specific choices of the environment variables
ωi,j . Before introducing this model, we will briefly introduce the Tracy–Widom
distributions from random matrix theory, which will, somewhat surprisingly, play an
important role in the sequel.

Tracy–Widom Distributions

We will restrict our attention to the distributions arising from the Gaussian Unitary
Ensemble (GUE) and the Gaussian Orthogonal Ensemble (GOE), although these are
by no means the only distributions coming from random matrix theory which appear
in the study of models in the KPZ universality class. The reader can consult [5, 63]
for good expositions on random matrix theory.

We start with the unitary case. Let N (a, b) denote a Gaussian random variable with
mean a and variance b. AnN×N GUE matrix is an (complex-valued) Hermitian ma-
trix A such that Ai,j = N (0,N/

√
2)+ iN (0,N/

√
2) for i > j and Ai,i = N (0,N ).

Here, we assume that all the Gaussian variables appearing in the different entries
are independent (subject to the Hermitian condition). The variance normalization
by N was chosen here to make the connection with models in the KPZ class more
transparent. An alternative way to describe the Gaussian Unitary Ensemble is as the
probability measure on the space of N ×N Hermitian matrices A with density (with
respect to the Lebesgue measure on the N2 independent parameters corresponding to
the real entries on the diagonal and the real and imaginary components of the entries
above the diagonal)

1

ZN

e−
1

2 N
trA2

for some normalization constant ZN . If λN
1 , . . . , λN

N are the eigenvalues of such
a matrix, then the Wigner semicircle law states that the empirical eigenvalue
density N−1∑N

i=1 δλNi
has approximately a semicircle distribution on the interval

[−2N , 2N ]. The Tracy–Widom GUE distribution [82] arises from studying the fluc-
tuations of the eigenvalues of a GUE matrix at the edge of the spectrum: if we denote
by λmax

GUE(N ) the largest eigenvalue of an N ×N GUE matrix then [82],

λmax
GUE(N ) ∼ 2N +N1/3ζ2

as N →∞, where ζ2 has the GUE Tracy–Widom distribution, which is defined as
follows:

FGUE(s) := P(ζ2 ≤ s) = det (I − PsKAiPs)L2(R), (8)
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where KAi is the Airy kernel

KAi(x, y) =
∫ ∞

0
dλAi (x + λ)Ai (y + λ), (9)

Ai( · ) is the Airy function, Pa denotes the projection onto the interval (a,∞), and the
determinant means the Fredholm determinant on the Hilbert space L2(R). We will
talk at length about the Airy kernel and related operators in later sections, so for
now we will postpone the discussion. Fredholm determinants can be regarded as the
natural generalization of the usual determinant to operators on infinite dimensional
spaces. We will review their definition and properties in Sect. 2. Since these deter-
minants will appear often during the rest of this introduction, the reader who is not
familiar with them may want to read Sect. 2 before continuing.

Before continuing to the FGOE, we quickly note that one of the key contributions
of Tracy and Widom [82] was to connect (8) to integrable systems. Let q(s) be the
Hastings–McLeod solution of the Painlevé II equation

q ′′(s) = 2q(s)3 + sq(s), (10)

defined by the additional boundary condition

q(s) ∼ Ai(s) as s →∞. (11)

Then,

FGUE(s) = e−
∫∞
s dx (x−s)2q2(x).

The story for the Gaussian Orthogonal Ensemble is similar. An N ×N GOE matrix
is a (real-valued) symmetric matrix A such that Ai,j = N (0,N ) for i > j and
Ai,i = N (0,

√
2N ), where as before we assume that all the Gaussian variables

appearing in the different entries are independent (subject to the symmetry condition).
Analogously to the GUE case, the Gaussian Orthogonal Ensemble can be regarded
as the probability measure on the space of N × N real symmetric matrices A with
density

1

ZN

e−
1

4N trA2

for some normalization constant ZN . As for the GUE, the Wigner semicircle law
states that the empirical eigenvalue density for the GOE has approximately a semi-
circle distribution on the interval [ − 2N , 2N ]. The fluctuations of the spectrum at
its edge now give rise to the Tracy–Widom GOE distribution: we denote by λmax

GOE(N )
the largest eigenvalue of an N ×N GOE matrix, then [83]

λmax
GOE(N ) ∼ 2N +N1/3ζ1

as N →∞, where ζ1 has the GOE Tracy–Widom distribution, defined as

FGOE(s) := P(ζ1 ≤ m) = det (I − P0BsP0)L2(R), (12)
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where Bs is the kernel

Bs(x, y) = Ai(x + y + s). (13)

This Fredholm determinant formula for FGOE is essentially due to [76], and was
proved in [47]. The original formula derived by Tracy and Widom is

FGOE(s) = e−
1
2

∫∞
s dx q(x)

√
FGUE(s) (14)

with q as above.

Last Passage Percolation

We come back now to our discussion about directed random polymers, and in par-
ticular their zero-temperature limit. We will restrict the discussion to geometric last
passage percolation (LPP), where one considers a family {ωi,j }i,j>0 of independent
geometric random variables with parameter q (i.e. P(ωi,j = k) = q(1 − q)k for
k ≥ 0). For convenience, we also set for now ωi,j = 0 if i or j is 0. As β → ∞,
the random path measures in (2) and (3) assign an increasingly larger mass to the
path π of length K > 0 which maximizes the weight WK (π ). In the limit, the path
measures Q

point
M ,N and Qline

N concentrate on the maximizing path, and the quantities
which play the role of the free energy are the point-to-point last passage time,

Lpoint(M ,N ) = max
π∈ΠM ,N

M+N∑

i=0

ωπi

and the point-to-line last passage time by

Lline(N ) = max
k=−N ,...,N

Lpoint(N + k,N − k). (15)

Observe that these last passage times are random, as they depend on the random
environment defined by the ωi,j .

The breakthrough, which in a sense got the whole field started, was the surprising
1999 result by Baik, Deift, and Johansson [11] which proved that the asymptotic
fluctuations of the longest increasing subsequence of a random permutation have
the Tracy–Widom GUE distribution. There is an intimate (and simple) connection
between this model and LPP which we will not discuss, instead we will state the
companion result by Johansson [56] for the point-to-point LPP case:

Lpoint(N ,N ) ∼ c1N + c2N
1/3ζ2, (16)

where c1, c2 are some explicit constants which depend only on q and can be found
in [56] and ζ2 has the Tracy–Widom GUE distribution. A similar result holds for
point-to-line LPP. The longest increasing subsequence version goes back to Baik
and Rains [9], while the analogue for LPP which we state here was first proved in
[26] (see also [25, 76]):

Lline(N ) ∼ c′1N + c′2N
1/3ζ1, (17)
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where ζ1 now has the GOE Tracy–Widom distribution.
The reason why these exact results (and others we will discuss below) can be

obtained for geometric last passage percolation and other related models is that the
LPP has an extremely rich algebraic structure which allows one to write explicit
formulae for the distribution of the last passage times. The algebraic structure arises
from regarding the model as a randomly growing Young tableau, where the cell
(i, j ) is added at time Lpoint(i, j ). This shift of perspective relates the problem to the
representation theory of the symmetric group, and in particular to the Robinson–
Schensted–Knuth (RSK) correspondence, which is the main combinatorial tool used
in [56] to prove the following remarkable formula:

P(Lpoint(M ,N ) ≤ s) = det (I − PsK
Meix
N Ps)L2(R)

for M ≤ N , where the Meixner kernel KMeix
N is given by

KMeix
N (x, y) = κN

κN−1

pN (x)pN−1(y)− pN−1(x)pN (y)

x − y

√
w(x)w(y),

w(x) = (M−N+x

x

)
, and the functions pN (x) are the normalized Meixner polynomials,

i.e. the normalized family of discrete orthogonal polynomials pN (x) with respect
to the weight w(x), with pN (x) of degree N and leading coefficient κN . A non-
trivial asymptotic analysis of this kernel allowed Johansson to deduce that the above
Fredholm determinant converges as N →∞ to the Fredholm determinant appearing
in the definition (8) of the Tracy–Widom GUE distribution. A more detailed discus-
sion of these facts is beyond the scope of this review; what the reader should keep
from this discussion is that the exact results which we are discussing depend crucially
on what is usually referred to as exact solvability or integrability: the availabilty of
(extremely non-trivial) exact formulae for quantities of interest. These formulae arise
from the very rich algebraic structure present in some (but by no means all) models
in the KPZ class. For a recent survey on this subject, see [23].

As part of the general KPZ universality conjecture, one expects that (16) and
(17) hold not only for LPP, but in general for any β > 0. In other words, the
belief is that in (4) and (5), the random variables ζ2 and ζ1 have respectively the
Tracy–Widom GUE and GOE distributions. There has been only partial progress in
proving this conjecture for point-to-point directed polymers (and virtually none in
the point-to-line case), the difficulty lying in the lack of exact solvability. Versions of
this conjecture have been proved for two related models in the point-to-point case:
the continuum random polymer in [4] (building on results of [87–89]) and the semi-
discrete polymer of O’Connell and Yor in [22, 30] (see also [66]). In the setting of
discrete directed random polymers, [40] showed that if the weights are chosen so that
−wi,j is distributed as the logarithm of a Gamma random variable with parameter
θi + θ̂j (for some fixed θi’s and θ̂j ’s) then the model is exactly solvable in the sense
explained above. This was later used in [31] to prove that the asymptotic fluctuations
of the free energy of the point-to-point polymer (at least for low enough temperature)
have the conjectured Tracy–Widom GUE distribution.
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Spatial Fluctuations and the Airy Processes

The Airy processes arise from LPP when we look not only at the fluctuations of the
free energy at a single site, but instead at several sites. To this end, we define the
rescaled point-to-point process u �→ H

point
N (u) by linearly interpolating the values

given by scaling Lpoint(M ,N ) through the relation

Lpoint(N + u,N − u) = c1N + c2N
1/3H

point
N (c3N

−2/3u) (18)

for u = −N , . . . ,N , where the constants ci have explicit expressions which depend
only on q and can be found in [57]. Observe this corresponds to looking at the free
energy at a line of slope− 1 passing through (N ,N ). The limiting behaviour ofH point

N

is described by theAiry2 process A2 (minus a parabola, see Theorem 1). This process
was introduced by [68], and is defined through its finite-dimensional distributions,
which are given by a Fredholm determinant formula: given x0, . . . , xn ∈ R and
u1 < · · · < un in R,

P(A2(u1) ≤ x1, . . . , A2(un) ≤ xn) = det (I − f1/2KAi
extf1/2)L2({u1,...,un}×R), (19)

where we have counting measure on {u1, . . . , un} and Lebesgue measure on R, f is
defined on {u1, . . . , un} × R by

f(uj , x) = 1x∈(xj ,∞), (20)

and the extended Airy kernel [49, 62, 68] is defined by

KAi
ext(u, ξ ; u′, ξ ′) =

{∫∞
0 dλ e−λ(u−u′)Ai(ξ + λ)Ai(ξ ′ + λ), if u ≥ u′

− ∫ 0
−∞ dλ e−λ(u−u′)Ai(ξ + λ)Ai(ξ ′ + λ), if u < u′.

(21)

Although it is not obvious from the definition, theAiry2 process is stationary (this will
become clear in Sect. 3.1), and as should be expected from (16), P(A2(u) ≤ m) =
FGUE(m) for all u. There is a close connection, which we will explain in Sect. 1.5,
between the Airy kernel KAi appearing in the definition (8) of the Tracy–Widom
GUE distribution and the extended kernel KAi

ext.
The precise result linking the point-to-point LPP spatial fluctuations to the Airy2

process is due to [57] (see also [68]):

Theorem 1 (Johansson [57]). There is a continuous version of A2, and

H
point
N (u) −−−→

N→∞ A2(u)− u2

in distribution in the topology of uniform convergence of continuous functions on
compact sets.

In the LPP picture, the ‘time’ variable (which we will denote by s) flows in the
(1, 1) direction of the plane, while ‘space’ (which, as above, we will denote by u)
corresponds to the direction (1,− 1) (see Fig. 1b). In this sense, Theorem 1 describes
the spatial fluctuations of the point-to-point last passage times as time s →∞.
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a b

c

Fig. 2 Schematic representation of the LPP models with asymptotic spatial fluctuations given by:
(a) Airy2; (b) Airy1; (c) Airystat

One can think of extending the LPP model to paths starting at s = 0 with any
space coordinate, i.e. paths which start at any point of the form (k,−k), k ∈ Z. To
recover point-to-point LPP, one simply sets ωi,j = 0 whenever i ≤ 0 or j ≤ 0,
which is easily seen to be equivalent (from the point of view of last passage times)
to forcing our paths to start at the origin. In this sense, point-to-point LPP and the
Airy2 process correspond to the δ0 (also known as delta, narrow wedge or curved)
initial data (see Fig. 2a). Note that in this case, we only assign positive weights to
sites such that s > |u|. To recover the flat, stationary and mixed initial data which
we introduced earlier, we need to assign weights to sites such that s ≤ |u|.
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Remark 1 The results for the flat, stationary and mixed initial data have been proved
in settings which differ slightly from the one introduced here. To avoid additional
notation and complications, we will state the results on the present setting. We refer
the reader to the corresponding references for more details on the differences. In the
case of multi-point results, one can translate between the various settings by using
the slow decorrelation result proved of [39, 45], as done in [13, 38].

We start with the flat initial data. It corresponds to extending the weights ωi,j to
be independent geometric random variables with parameter q whenever i + j > 0
and setting ωi,j = 0 otherwise (see Fig. 2b). This corresponds to letting our paths
start at any site in the line s = 0 but not attaching any additional weights along
that line, which explains the name, ‘flat’. The corresponding point-to-line rescaled
process may be defined as follows: First we extend the definition of last passage
times to accommodate the flat initial data,

L
point
flat (M ,N ) = max

i∈Z

max
π∈Π(i,−i)→(M ,N )

2i+M+N∑

j=0

ωπj

with self-explanatory notation, and then we define the rescaled process u �→ H line
N (u)

by linearly interpolating the values given the relation

L
point
flat (N + u,N − u) = c1N + c2N

1/3H line
N (c3N

−2/3u)

for u = −N , . . . ,N . The flat initial data give rise to the Airy1 process A1, which
was introduced by [76], and is defined through its finite-dimensional distributions,

P(A1(u1) ≤ ξ1, . . . , A1(un) ≤ ξn) = det(I − fKext
1 f)L2({u1,...,un}×R), (22)

with f as in (20) and

Kext
1 (u, ξ ; u′, ξ ′) = − 1√

4π (u′ − u)
exp

(

− (ξ ′ − ξ )2

4(u′ − u)

)

1u′>u (23)

+ Ai(ξ + ξ ′ + (u′ − u)2) exp
(
(u′ − u)(ξ + ξ ′)+ 2

3 (u′ − u)3
)
.

The Airy1 process is stationary, and as should be expected from (17), its marginals
are given by the Tracy–Widom GOE distribution: P(A1(u) ≤ m) = FGOE(2 m) for
all u.

Theorem 2 ([25–27]).

H line
N (u) −−−→

N→∞ 21/3A1(2−2/3u)

in the sense of convergence of finite-dimensional distributions (on a slightly different
setting than the one presented here, see Remark 1).

The powers of 21/3 in the above limit should be regarded as an arbitrary normal-
ization (in fact, one could have defined the Airy1 process as this scaled version of
it). The appearance of these factors has to do with the fact that the natural scaling in
the definition of these quantities differs between random matrix models and models
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such as LPP or directed polymers (as, for instance, in (25) below). See Sect. 2 of
[41] for a related discussion.

The stationary initial data is slightly more cumbersome to introduce. The name
stationary comes from the fact that for the closely related totally asymmetric exclu-
sion process (TASEP), this initial condition corresponds to starting with particles
placed according to a product Bernoulli measure with parameter 1/2, which is sta-
tionary for the process. Translated to LPP, this initial condition corresponds to the
following: Let (Sn)n∈Z be the path of a double-sided simple random walk on Z with
S0 = 0, which we assume to be independent of the weights ωi,j . We rotate this ran-
dom walk path by an angle of−π/4 and then put it along the s = 0 line by defining
the (random) discrete curve γ0 = {( 1

2 (S(i)+ i), 1
2 (S(i)− i)), i ∈ Z}. We then extend

the weights ωi,j to be independent geometric random variables with parameter q

whenever (i, j ) lies above γ0 and ωi,j = 0 otherwise (see Fig. 2c). The correspond-
ing stationary rescaled process H stat

N (u) can be defined analogously to the previous
cases, by maximizing over paths starting at γ0 and going to the anti-diagonal line
passing through (N ,N ). It gives rise to the Airystat process, Astat. Its definition is also
given in terms of finite-dimensional distributions involving Fredholm determinants,
but the formulae are a lot more cumbersome. We will not need the exact formulae,
so we refer the reader to [13] for the details. Despite its name, Astat is not stationary
as a process. In fact, due to the connection with stationary TASEP, Astat is just a
standard double-sided Brownian motion, but with a non-trivial random height shift
at the origin given by the Baik–Rains distribution, see [8]. The convergence result in
this case is the following:

Theorem 3 ([13]).

H stat
N (u) −−−→

N→∞ Astat(u)

in the sense of convergence of finite-dimensional distributions (on a slightly different
setting than the one presented here, see Remark 1).

The mixed initial conditions can be obtained by placing one condition on each
half of the line u = 0. We will explain how this is done in the case of the half-flat,
or wedge→flat initial data, and leave the examples leading to A2→BM and A1→BM

to the interested reader (see [29, 38]). To obtain the Airy2→1 process, we extend
the weights ωi,j to be independent geometric random variables with parameter q

whenever i, j > 0, or i + j > 0 with i < 0, setting ωi,j = 0 for all other sites. The
half-flat rescaled process H half−line

N (u) is obtained as in the previous cases, and gives
rise to the Airy2→1 process, A2→1. It was introduced by [28], and is given by

P(A2→1(u1) ≤ ξ1, . . . , A2→1(um) ≤ ξm) = det(I − fKext
2→1f)L2({u1,...,um}×R),

with f as in (20) and

Kext
2→1(u, ξ ; u′, ξ ′) = − 1√

4π (ξ ′ − ξ )
exp

(

− (ξ̃ ′ − ξ̃ )2

4(u′ − u)

)

1u′>u

+ 1

(2π i)2

∫

γ+
dw

∫

γ−
dz

ew3/3+u′w2−ξ̃ ′w

ez3/3+uz2−ξ̃z

2 w

(z − w)(z + w)
, (24)
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where ξ̃ = ξ − u21u≤0, ξ̃ ′ = ξ ′ − (u′)21u′≤0 and the paths γ+, γ− satisfy −γ+ ⊆ γ−
with γ+ : eiφ+∞ → e−iφ+∞, γ− : e−iφ−∞ → eiφ−∞ for some φ+ ∈ (π/3,π/2),
φ− ∈ (π/2,π − φ+). As could be expected from the above description, the Airy2→1

process crosses over between the Airy2 and the Airy1 processes in the sense that
A2→1(u + v) converges to 21/3A1(2−2/3u) as v → ∞ and A2(u) when v → −∞.
The convergence result is the following:

Theorem 4 ([28]).

H half−line
N (u)− u21u≤0 −−−→

N→∞ A2→1(u)

in the sense of convergence of finite-dimensional distributions (on a slightly different
setting than the one presented here, see Remark 1).

Some of these results have been extended to the case where the points at which one
computes the corresponding finite-dimensional distributions do not all lie in the same
anti-diagonal line, but instead fall in certain space-like curves lying close enough to
such a line, see e.g. [24, 27] for more details and [38] for further extensions.

From the definitions it is clear that the basic three Airy processes A2, A1, and
Astat are invariant under A(u) �→ A(− u), but the mixed cases are not.

Since all initial data are superpositions of Dirac masses, there is a sense in which
the Airy2 process is the most basic. For example, using the fact that point-to-line
last passage times are computed simply as the maximum of point-to-point last pas-
sage times, [57] obtained the following celebrated formula as a corollary of 16 and
Theorem 1:

P

(

sup
x∈R

{A2(x)− x2} ≤ m

)

= FGOE(41/3m). (25)

A direct proof of this formula was later provided in [41]. The argument used in this
second proof starts with a different expression for the finite-dimensional distributions
of A2 in terms of the Fredholm determinant of a certain boundary value operator.
This type of formula, and their extensions to continuum statistics, are the starting
point of most of the results we will survey in Sects. 3.2 and 4. For example, as
described in Sect. 4, they allow to compute the asymptotic distribution of κN , the
position of the endpoint in the maximizing path in point-to-line LPP.

Extrapolating from (25) leads to a conjecture that the one-point marginals of
the other Airy processes should be obtained through certain variational problems
involving the Airy2 process. To state the precise conjectures, we turn to the stochastic
heat equation, whose logarithm is the solution of the KPZ equation. The advantage
of this model over LPP and other discrete models is that it is linear in the initial data,
and hence, the heuristics are more easily stated in that context. The disadvantage is
that most of the argument relies on conjectures based on universality.
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1.3 The Continuum Random Polymer and the Stochastic
Heat Equation

We now consider the continuum version of the finite temperature discrete random
polymers (2) and (3). The (point-to-point) continuum random polymer is a random
probability measure P

β,ξ
T ,x on continuous functions x(t) on [0, T ] with x(0) = 0 and

x(T ) = x with formal weight

e
−β

∫ T
0 dt ξ (t ,x(t))− 1

2
∫ T

0 dt |ẋ(t)|2

given to the path x( · ), where ξ (t , x), t ≥ 0, x ∈ R is space–time white noise, i.e. the
distribution-valued Gaussian variable, such that for smooth functions ϕ of compact
support in R+ × R, 〈ϕ, ξ〉 := ∫

R+×R
dt dx ϕ(t , x)ξ (t , x) are mean zero Gaussian

random variables with covariance structure E[〈ϕ1, ξ〉〈ϕ1, ξ〉] = 〈ϕ1,ϕ2〉. One can
also think of the continuum random polymer as having a density

e−β
∫ T

0 dt ξ (t ,x(t))

with respect to the Brownian bridge. Neither prescription makes mathematical sense,
but the second one does if one smooths out the white noise ξ (t , x) in space. Remov-
ing the smoothing, one find that there is indeed a limiting measure supported on
continuous functions C[0, T ] which we call Pβ,ξ

T ,x . In fact, it is a Markov process,
and one can define it directly as follows: Let z(s, x, t , y) denote the solution of the
stochastic heat equation after time s ≥ 0 starting with a delta function at x,

∂tz = 1
2∂

2
y z − βξz, t > s, y ∈ R, z(s, x, s, y) = δx(y). (26)

It is important that they are all using the same noise ξ . Note that the stochastic heat
equation is well posed [92]. The solutions look locally like exponential Brownian
motion in space. They are Hölder 1

2 − δ for any δ > 0 in x and 1
4 − δ for any δ > 0

in t . In fact, exponential Brownian motion eB(x) is invariant up to multiplicative
constants, i.e. if one starts (26) with eB(x) where B(x) is a two-sided Brownian
motion, then there is a (random) C(t) so that C(t)z(t , x) is an exponential of another
two-sided Brownian motion [15]. Pβ,ξ

T ,x is then defined to be the probability measure
on continuous functions x(t) on [0, T ] with x(0) = 0 and x(T ) = x and finite-
dimensional distributions

P
β,ξ
T ,x (x(t1) ∈ dx1, . . . , x(tn) ∈ dxn)

= z(0, 0, t1, x1)z(t1, x1, t2, x2) · · · z(tn−1, xn−1, tn, xn)z(tn, xn, T , x)

z(0, 0, T , x)
dx1 · · · dxn

for 0 < t1 < t2 < · · · < tn < T . One can check these are a.s. a consistent family
of finite-dimensional distributions. This holds basically because of the Chapman–
Kolmogorov equation

∫ ∞

−∞
du z(s, x, τ , u)z(τ , u, t , y) = z(s, x, t , y)
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for s < τ ≤ t , which is a consequence of the linearity of the stochastic heat equation.
Note that the construction is for each T > 0 fixed. Unlike the usual case of

diffusions, the measures are very inconsistent for varying T . One should imagine
that the polymer paths are peeking into the future to see the best route, so the measure
depends considerably on all the noise in the time interval [0, T ]. We can also define
the joint measure P

β

T ,x = P
β,ξ
T ,x ⊗Q(ξ ) where Q is the distribution of the ξ , i.e. the

probability measure of the white noise.

Theorem 5 ([3]).

(i) The measures P
β,ξ
T ,x and P

β

T ,x are well-defined (the former, Q-almost surely).

(ii) P
β,ξ
T ,x is a Markov process supported on Hölder continuous functions of

exponent 1
2 − δ for any δ > 0, for Q-almost every ξ .

(iii) Let tnk = k
2n . Then with P

β

T ,x probability one, we have that for all 0 ≤ t ≤ 1

�2nt�∑

k=1

(
x(tnk )− x(tnk−1)

)2 −−−→
n→∞ t ,

i.e. the quadratic variation exists, and coincides with the one obtained for P
0
T ,x

(the Brownian bridge measure).
(iv) P

β,ξ
T ,x is singular with respect to P

0
T ,x (the Brownian bridge measure) for Q-

almost every ξ .

So the continuum random polymer looks locally like (but is singular with respect to)
Brownian motion. One can also define the point-to-line continuum random polymer
P
β

T , in the same way as in the discrete case. For large T , one expects Var
P
β
T

(x(T )) ∼
T 4/3 in the point-to-line case or Var

P
β
T ,0

(x(T/2)) ∼ T 4/3 in the point-to-point case.

Here, the variance is over the random background as well as P
β,ξ
T ,x . The conditional

variance given ξ should be much smaller.
If z(t , x) is the solution of (26), then h(t , x) = −β−1 log z(t , x) can be thought

of as either the (renormalized) free energy of the point-to-point continuum random
polymer, or the Hopf–Cole solution of the KPZ equation,

∂th = − β

2 (∂xh)2 + 1
2∂

2
x h+ ξ , (27)

for random interface growth. Since log z(t , x) looks locally like Brownian motion,
(27) is not well posed (see [54] for recent progress on this question). If ξ were
smooth, then the Hopf–Cole transformation takes (26) to (27). For white noise ξ , we
take h(t , x) = −β−1 log z(t , x) with z(t , x) a solution of (26) to be the definition of
the solution of (27). It is known [15] that these are the solutions one obtains if one
smooths the noise, solves the equation, and takes a limit as the smoothing is removed
(and after subtraction of a diverging constant). They are also the solutions obtained
as the limit of discrete models like asymmetric exclusion in the weakly asymmetric
limit [15], or directed polymers in the intermediate disorder limit [2].
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To understand the intermediate disorder limit, we consider how the KPZ Eq. (27)
rescales. Let

hε(t , x) = εah(ε−zt , ε−1x).

Recall the white noise has the distributional scale invariance

ξ (t , x)
dist= ε

z+1
2 ξ (εzt , ε1x).

Hence, setting β = 1 for clarity,

∂thε = − 1
2ε

2−z−a(∂xhε)2 + 1
2ε

2−z∂2
xhε + εa−

1
2 z+ 1

2 ξ.

Because the paths of h are locally Brownian in x, we are forced to take a = 1/2 to
see non-trivial limiting behaviour. This forces us to take

z = 3/2

The non-trivial limiting behaviours of models in the KPZ universality class are all
obtained in this scale.

On the other hand, if we started with KPZ with noise of order ε1/2,

∂th = − 1
2 (∂xh)2 + 1

2∂
2
x h+ ε1/2ξ ,

then a diffusive scaling,

hε(t , x) = h(ε−2t , ε−1x),

would bring us back to the standard KPZ Eq. (27). This is the intermediate disorder
scaling in which KPZ and the continuum random polymer can be obtained from
discrete directed polymers. It tells us that if we set

β = ε1/2β̃

in (1), then the distribution of the rescaled polymer path

xε(t) := εx�ε−2t� 0 ≤ t ≤ T

will converge to the continuum random polymer, with temperature cβ̃ (see [2] for
details).

1.4 General Conjectural Picture for the SHE

Define At from the solution of (26) by

z(0, y; t , x) = 1√
2πt

e−
(x−y)2

2t − t
24+2−1/3t1/3At (2−1/3t−2/3(x−y)). (28)
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At ( · ) is called the crossover Airy process, the key conjecture being

At (x) → A2(x), (29)

This is known in the sense of 1-D distributions (see [4], where (29) is Conjec-
ture 1.5). A non-rigorous derivation based on a factorization approximation for the
Bethe eigenfunctions of the δ-Bose gas can be found in [69]. Note however, the
factorization assumption is almost certainly false.

Now one tries to use the linearity of the stochastic heat equation to solve for
general initial data z(0, x) = z0(x),

z(t , x) =
∫ ∞

−∞
dy 1√

2πt
e−

(x−y)2

2t − t
24+2−1/3t1/3At (2−1/3t−2/3(x−y))z0(y). (30)

It is not hard to see that the equality is correct in the sense of 1-D distributions, but
not more. If one wants, for example, joint distributions of z(t , xi) for more than one
xi , then one needs to enhance the crossover Airy process in (28) to a two parameter
process At (2−1/3t−2/3x, 2−1/3t−2/3y). The conjectural limit of this is a two parameter
process, we call the Airy sheet. However, we do not even have a full conjecture for its
finite-dimensional distributions, though some properties can be described (see [36]).

Calling x̃ = 2−1/3t−2/3x and ỹ = 2−1/3t−2/3y and starting with initial data
z0(x) = exp{2−1/3t1/3f (2−1/3t−2/3x)}, we can rewrite the exponent in (30) as

2−1/3t1/3[At (x̃ − ỹ)− (x̃ − ỹ)2 − f (ỹ)]− 1
24 t

so that for large t , the fluctuation field 21/3t−1/3[ log z(t , x) + 1
24 t + log (

√
2πt)] is

well approximated by

sup
ỹ∈R

{A2(x̃ − ỹ)− (x̃ − ỹ)2 − f̃ (ỹ)}.

The type of initial data would appear to be quite restrictive, but actually this picks
out the appropriate self-similar classes. The easiest example is the flat case f = 0.
We obtain the statement,

A1(x)
(d)= sup

y∈R

{A2(y − x)− (y − x)2} (31)

in the sense of 1-D distributions. Since the left-hand side is just the GOE Tracy–
Widom law, this is the well known theorem of Johansson (25) once again.

If one starts with a two-sided Brownian motion, then the required self-similarity
of this initial data is just the Brownian scaling and one arrives at

Astat(x)
(d)= sup

y∈R

{A2(y − x)− (y − x)2 −√2B(y)}.

The mixed cases require a tiny bit more care. Let’s explain the heuristics first for the
case of the Airy2→1 process. Starting from the step initial data z(0, x) = 1x>0, the
prediction is

− log z(t , x) ≈ 1
2t x

21x<0 + 1
24 t + log (

√
2πt)− 2−1/3t1/3A2→1(2−1/3t−2/3x).

(32)
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On the other hand, by linearity, we have for each fixed x in distribution:

z(t , x) =
∫ ∞

0
dy z(0, y; t , x) =

∫ ∞

0
dy 1√

2πt
e−

(x−y)2

2t − t
24+2−1/3t1/3At (2−1/3t−2/3(x−y)).

(33)
Comparing with (32), we deduce that the processes supy≥0 (A2(x − y)− (x − y)2)

and A2→1(x)− x21x<0 should have the same 1-D distribution or, equivalently, that

A2→1(x)− x21x<0
(d)= sup

y≤x
{A2(y)− y2} (34)

for each fixed x∈R. This distributional identity has actually been proved rigourously,
and its proof is based on the methods we will survey in Sects. 3 and 4 (see
Theorem 15).

The same heuristic argument works for the other two crossover cases. If we let
z(0, x) = eB(x)1x≥0, where B(x) is a standard Brownian motion, then (32) and (33)
are replaced respectively by

− log z(t , x) ≈ 1
2t x

21x<0 + 1
24 t + log (

√
2πt)− 2−1/3t1/3A2→BM(2−1/3t−2/3x)

and

z(t , x) =
∫ ∞

0
dy z(0, y; t , x)

=
∫ ∞

0
dy 1√

2πt
e
− (x−y)2

2t − t
24+B(y)+2−1/3t1/3At (2−1/3t−2/3(x−y)),

and now the same scaling argument allows to conjecture that

A2→BM(x)− x21x<0
(d)= sup

y≤x
(A2(y)+ B̃(x − y)− y2)

for each fixed x ∈ R, where now B̃(y) is a Brownian motion with diffusion coefficient
2. An analogous argument with z(0, x) = 1x≤0+eB(x)1x≥0 translates into conjecturing
that

A1→BM(x)
(d)= sup

y∈R

(A2(y)+ B̃(x − y)1y≤x − y2)

for each fixed x ∈ R. As we explained, these equalities in distribution will only hold
in the sense of 1-D distributions, i.e. for each fixed x.

The strategy used in the proof of (34) is considerably more difficult to implement
for the other two crossover cases (see Sect. 4.4 and the discussion at the end of
Sect. 1.2 in [73]), and in fact these identities remain conjectures for now. In work in
progress [42], obtain an improved version of the slow decorrelation result proved in
[39], which should allow to prove a general version of formulae for last passage times
in last passage percolation in terms of variational problems for the Airy2 process. In
particular, such a result would give a proof of these conjectural formulae.
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1.5 Determinantal Formulae and Extended Kernels

As we already mentioned, the results we will survey in Sects. 3 and 4 are based on
alternative Fredholm determinant formulae for the finite-dimensional distributions
of the Airy processes. We will introduce these formulae in Sect. 3, but before doing
that let us explain why the original extended kernel formulae are natural. We will
first do this in a simpler setting, namely random point processes on finite sets. Then
we will explain how similar arguments can be used to derive the formula (19) for the
finite-dimensional distributions of the Airy2 process.

Extended Kernels and the Eynard–Mehta Theorem

Let X be a finite set. A random point process on X is a probability measure on the
family 2X of subsets of X , which we think of as point configurations. A random
point process is called determinantal if there exists a |X | × |X |matrix K with rows
and columns indexed by the elements of X such that

ρ(A) := P({X ∈ 2X : A ⊆ X}) = det (K|A),

where P is the probability measure underlying the point process and K|A is the
submatrix of K indexed by A,

KA = [K(x, x ′)]x,x′∈A.

The function ρ is called the correlation function of the process, and K is called
its correlation kernel. For more details see [18] and references therein. The term
determinantal was introduced in [19].

We are interested in a particular type of random point processes. Let X 1, . . . , X n

be n disjoint finite sets. We consider a point process supported on kn-point configu-
rations with the property that there are exactly k points in each X i . The probability of
such a configuration is given as follows: given collections of points {xj

i }i=1,... ,k ⊆ X j

for j = 1, . . . , n, we set

P
({{x1

i }i=1,... ,k ∪ · · · ∪ {xn
i }i=1,... ,k

})

= Z−1 det [φi(x
1
j )]ki,j=1 det [W1(x1

i , x2
j )]ki,j=1

· · · det [Wn−1(xn−1
i , xn

j )]ki,j=1 det [ψi(x
n
j )]ki,j=1, (35)

where the φi’s are some functions on X 1, the ψi’s are some functions on X n and
the Wi’s are matrices with rows indexed by X i and columns indexed by X i+1. The
normalization constant Z is chosen so that the total mass of the measure is 1. We are
assuming implicitly that the right-hand side above is non-negative for any admissible
point configuration.

Write � for the k × |X 1| matrix with k rows and columns indexed by elements
of X 1 which is defined by �i,x = �i(x) for 1 ≤ i ≤ k and x ∈ X 1. Similarly, write
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� for the |X n| × k matrix with k columns and rows indexed by X k which is defined
by �x,i = ψi(x) for 1 ≤ i ≤ k and x ∈ X n. Furthermore, define the k × k matrix

M = �W1 · · ·Wn−1�.

We will assume that det (M) 	= 0. Under this assumption, it can be shown (see e.g.
[21]) that the normalization constant Z in (35) equals det (M).

The Eynard–Mehta Theorem states that a random point process defined as in (35)
is determinantal. Moreover, the theorem gives an explicit formula for the correlation
kernel. The precise statement is the following:

Theorem 6 ([43]). The random point processes defined by (35) is determinantal. Its
correlation kernel is the block matrix K with n× n blocks, such that the (i, j )-block
has rows indexed by X i and columns indexed by X j , and is given by

Ki,j = Wi · · ·Wn−1�M−1�W1 · · ·Wj−1 −Wi · · ·Wj−1.

For a simple proof of this result see [21]. Remarkably, the inverse M−1 can be
computed, or at least approximated, in many cases of interest.

The connection with the models we have discussed so far is through certain fam-
ilies of non-intersecting paths. The Airy2 process can be obtained directly as a limit
of the top line of several different families of non-intersecting paths, one of which
is presented in Sect. 1.5.2 (for some others see [58]). For the other Airy processes
presented in Sect. 1.2.4, the connection with non-intersecting paths is less immedi-
ate (see for instance the discussion preceding Lemma 3.4 in [26]), but in any case
enough of the above structure remains, and the proofs still rely crucially on a version
of Theorem 6. On the other hand, we may think of the kn-point configurations where
the measure defined in (35) is supported as defining a family of k (in principle not
necessarily non-intersecting) paths. For example, the first path would be expressed
by (x1

1 , x2
1 , . . . , xn

1 ). It turns out, as we will see below, that probability measures on
families of k non-intersecting paths on X 1 ∪ · · · ∪X n are naturally given by expres-
sions like (35), and hence have a determinantal structure. If the sets X i are endowed
with some total order and we assume that our non-intersecting paths are arranged so
that (x1

1 , x2
1 , . . . , xn

1 ) is the top path, then one can prove (see e.g. [57]) that

P
(
x1

1 ≤ z1, . . . , xn
1 ≤ zn

) = det (I − PKP ), (36)

where zi ∈ X i , K is the correlation kernel given by the Eynard–Mehta Theorem and
P is block-diagonal matrix with n diagonal blocks defined so that, for i = 1, . . . , n,
Pi,i has rows and columns indexed by X i and is given by (Pi,iv)j = 1xi

j>zi vj . This
should be compared with an expression like (19).

If we go back to thinking about these paths as defining a random point process, then
they are given by a measure on kn-point configurations on X 1∪· · ·∪X n. Therefore, if
the process is determinantal, its correlation kernel necessarily has to be a matrix with
rows and columns indexed by X 1 ∪ · · · ∪ X n. The Eynard–Mehta Theorem implies
moreover that the correlation matrix is partitioned naturally into n× n blocks, with
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the (i, j ) block having rows indexed by X i and columns indexed by X j . To see
how this structure relates with the extended kernels introduced in Sect. 1.2.4 for
the Airy processes, we make the following observation. An operator T acting on
L2({t1, . . . , tn}×R) can be regarded as an operator-valued matrix (Ti,j )i,j=1,...,n with
entries Ti,j (acting on L2(R)), which acts on f ∈ L2(R)n as (Tf )i = ∑n

j=1 Ti,j fj

(more precisely, we are using the fact that L2({t1, . . . , tn}×R) and
⊕

t∈{t1,... ,tn} L
2(R)

are isomorphic as Hilbert spaces). Hence an extended kernel formula like (19) can
be thought of as the determinant of an n× n matrix whose entries are operators on
L2(R). Similarly, we may think of (36) as the determinant of an n× n matrix whose
(i, j ) entry maps L2(X i) to L2(X j ). Since the Airy processes live on the real line
instead of finite sets, these latter spaces are replaced by L2(R).

In the next section, we will explain how these ideas can be used to derive the
extended kernel formula for Airy2.

Derivation of the Airy2 Process from Dyson Brownian Motion

The original derivation of theAiry2 process was done in [68] using quantum statistical
mechanical arguments, while Johansson’s proof of Theorem 1 relies crucially on
the connection between LPP and the Robinson–Schensted–Knuth algorithm, which
provides a family of discrete non-intersecting paths, the top line of which converges
to A2. We will briefly explain the derivation of the Fredholm determinant formula
for the Airy2 process using a different model, the Dyson Brownian motion. We
refer the reader to [57, 58, 84, 86] for more details on the derivation of Airy2 from
non-intersecting paths.

Consider the evolving eigenvalues of an N×N GUE matrix with each (alge-
braically independent) entry diffusing according to a stationary Ornstein–Uhlenbeck
process. We write the eigenvalues at time t as λN (t) = (λN

1 (t), . . . , λN
N (t)) so that λi(t)

decreases in i. This eigenvalue diffusion, called the stationary GUE Dyson Brownian
motion, can be written as the solution of a certain N -dimensional SDE, and it can be
shown that it is stationary, with distribution given by the eigenvalue distribution of
an N × N GUE matrix. Moreover, the paths followed by the N eigenvalues almost
surely form an ensemble of non-intersecting curves.

Suppose we look at this eigenvalue diffusion at times t1 < · · · < tn, and we
condition the N paths to be pairwise non-intersecting. To investigate the transitions
between tm and tm+1, suppose we condition this eigenvalue diffusion to start at time
tm at λN

i (tm) = xi for some fixed x1 < · · · < xN , and we also fix destination
points y1 < · · · < yN . Let pt (x, y) be the transition probability density of an (1-D)
Ornstein–Uhlenbeck process from x at time 0 to y at time t . Then, in this setting, the
Karlin–McGregor Theorem [60] implies that the transition probability density for
these N non-intersecting paths to end at the prescribed destination points y1, . . . , yN
is given by a constant times

det[ptm+1−tm (xi , yj )]Ni,j=1. (37)
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The transition functionptm+1−tm corresponds then to the matrixWm in (35). Of course,
since our paths take values in R now, we no longer have a matrix, but the Eynard–
Mehta Theorem still holds in this setting (see e.g. [84]). The functions φi and ψi in
35 are related to the (stationary) marginals for λN

t , and in this case are equal (due to
stationarity) and expressed simply in terms of Hermite polynomials. The result after
further computations and using (36) is the following [84]: given x1, . . . , xn ∈ R,

P
(
λN

1 (t1) ≤ x1, . . . , λN
1 (tn) ≤ xn

) = det(I − fKext
Hrm,N f)L2({t1,...,tn}×R),

where f is defined as in (20) and Kext
Hrm,N is the extended Hermite kernel

Kext
Hrm,N (s, x; t , y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N−1∑

k=0
ek(s−t)ϕk(x)ϕk(y) if s ≥ t ,

−
∞∑

k=N

ek(s−t)ϕk(x)ϕk(y) if s < t ,

and where ϕk(x) = e−x2/2pk(x) with pk the k-th normalized Hermite polynomial
(so that ‖ϕk‖2 = 1). Note that λN

1 is the top line of our family of non-intersecting
paths, so this probability is the same as the probability that all paths stay below the
xi’s. Note also the similarity between this formula and the formula (19) for A2. We
remark that the scaling of the eigenvalues appearing in the last formula differs by a
factor of

√
N with the one introduced in Sect. 1.2.2; the present choice is the one

that is naturally associated with the operator D introduced next.
The kernel Kext

Hrm,N has a nice algebraic structure. Writing

D = − 1
2 (�− x2 + 1),

(i.e. Df (x) = − 1
2 (f ′′(x) − (x2 − 1)f (x))), the harmonic oscillator functions ϕk

satisfy Dϕk = kϕk , and moreover {ϕk}k≥0 forms a complete orthonormal basis of
L2(R). Define the Hermite kernel as

KHrm,N (x, y) =
N−1∑

k=0

ϕk(x)ϕk(y),

which is then just the projection onto span {ϕ0, . . . ,ϕN−1}. Then the following
formula holds:

Kext
Hrm,N (s, x; t , y) =

{
e(s−t)DKHrm,N (x, y) if s ≥ t ,
−e(s−t)D(I −KHrm,N )(x, y) if s < t.

Now introduce the rescaled process

λ̃N
i (t) = √2N1/6(λN

i (N−1/3t)−√2N).

Changing variables x �→ 1√
2N1/6 x +

√
2 N , y �→ 1√

2N1/6 y +
√

2 N in the kernel
accordingly, a calculation gives

P
(
λ̃N

1 (t1) ≤ x1, . . . , λ̃N
1 (tn) ≤ xn

) = det(I − fK̃ext
Hrm,N f)L2({t1,...,tn}×R)
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with

K̃ext
Hrm,N (s, x; t , y) =

{
e(s−t)HN K̃Hrm,N (x, y) if s ≥ t ,
−e(s−t)HN (I − K̃Hrm,N )(x, y) if s < t ,

where K̃Hrm,N (x, y) = 1√
2N1/6 KHrm,N

(
x√

2N1/6 +
√

2 N , y√
2N1/6 +

√
2 N

)
and the

operator HN = −�+ x + x2

2 N2/3 .
The above rescaling corresponds to focusing in on the top curves of the Dyson

Brownian motion. It is known that in the limit N → ∞, K̃Hrm,N converges to the
Airy kernel KAi, while it is clear that HN converges to the Airy Hamiltonian H :

H = −�+ x (38)

(i.e. Hf (x) = −f ′′(x)+xf (x)). Putting aside precise convergence issues, the result
is:

lim
N→∞ K̃ext

Hrm,N (s, x; t , y) =
{
e(s−t)HKAi(x, y) if s ≥ t ,
−e(s−t)H (I −KAi)(x, y) if s < t.

(39)

The obvious question at this point is what is the relationship between this limit and the
extended Airy kernel (21). It turns out that they are the same. This is a consequence
of the following remark, which implies that the nice structure we saw in K̃Hrm,N

survives in the limit:

Remark 2 The shifted Airy functions φλ(x) = Ai(x−λ) are the generalized eigen-
functions of the Airy Hamiltonian, as Hφλ = λφλ (we say generalized because
φλ /∈ L2(R)). The Airy kernel KAi is the projection of H onto its negative gener-
alized eigenspace. This is seen by observing that if we define the operator A to be
the Airy transform, Af (x) := ∫∞

−∞ dz Ai(x − z)f (z), then KAi = AP̄0A
∗, where

P̄0f (x) = 1x<0f (x).
In particular, etH is defined spectrally. Formally, its integral kernel is given by

etH (x, y) = ∫∞
−∞ dλ e−tλAi(x + λ) Ai(y + λ). The integral converges when t < 0

by the decay properties of the Airy function, but it diverges when t > 0 (it can be
interpreted as δx=y when t = 0). Nevertheless, in our formulae, etH will always
appear after KAi when t > 0. This has the effect of restricting the integral to λ > 0,
which converges because the Airy function is bounded.

As a consequence of the above discussion, we obtain the following result, see
[84]:

Theorem 7

λ̃N
1 (t) −−−→

N→∞ A2(t)

in the sense of convergence of finite-dimensional distributions.
The extended kernels which define the other Airy processes do not have exactly

the same structure. One reason behind this is that, apart from A2 and A1, the other
processes are not stationary.
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The other reason is that, as we mentioned, in some cases (for example Airy1), the
processes are obtained after further limiting procedures, which destroy part of the
structure. Nevertheless, as we will see later, enough of this structure remains for our
purposes.

We have wandered a bit far from the main subject of this survey in the hope
that the reader will get a feeling about why extended kernels appear naturally for
our processes. In the rest of this chapter, we will deal with formulae which are
given as Fredholm determinants of certain operators acting on L2(R), as opposed
L2({t1, . . . , tn} × R). In light of the above discussion, it is slightly surprising that
such formulae should exist.

2 Fredholm Determinants

If K is an integral operator acting on H = L2(X, dμ) through its kernel

(Kf )(x) =
∫

X

K(x, y)f (y)dμ(y), (40)

we define the Fredholm determinant by

det (I + λK) = 1+
∞∑

n=1

λn

n!
∫

X

· · ·
∫

X

det
[
K(xi , xj )

]n
i,j=1 dμ(x1) · · · dμ(xn). (41)

If |K(x, y)| ≤ B for all x, y, and μ is a finite measure, the Fredholm series (41)
converges by Hadamard’s inequality,

|det (C1, . . . ,Cn)| ≤ ‖C1‖ · · · ‖Cn‖
where ‖Ci‖ denotes the Euclidean length of the column vector Ci , since the length
of the column vector in

[
K(xi , xj )

]n
i,j=1 is bounded by Bn1/2, and hence the n-th

summand in (41) is bounded by λn

n!B
nnn/2.

If one is not familiar with the definition (41) one might even wonder what it has to
do with determinants. Take a matrix K = [Kij

]d
i,j=1, d <∞, and consider the d×d

determinant det (I + λK). Clearly, it is a polynomial of degree d in λ,
∑d

n=0 anλ
n,

and its coefficients are given by the rule an = 1
n!∂

n
λ det (I + λK) |λ=0. To compute

this, use the rule for differentiating determinants,

∂λ det (C1, . . . ,Cd ) =
d∑

n=1

det (C1, . . . , ∂λCn, . . . ,Cd )
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and the fact that, in our particular case, Cn(λ) = en + λK·,n is linear in λ and
Cn(0) = en, the n-th unit vector. The result is

det (I + λK) = 1+ λ
∑

1≤i≤d
Kii + λ2

∑

1≤i<j≤d
det

[
Kii Kij

Kji Kjj

]

+ λ3
∑

1≤i<j<k≤d
det

⎡

⎣
Kii Kij Kik

Kji Kjj Kjk

Kki Kkj Kkk

⎤

⎦+ · · · + λd det K.

Replacing the ordered sums with unordered sums gives a factor 1/n!, and setting
λ = 1, we can see that this is a special case of (41). Von Koch’s idea [91] was
that this formula for the determinant was the natural one to extend to d = ∞.
Fredholm replaced the integral operator (40) on L2([0, 1], dx) by its discretization
[ 1
n
K( i

n
, j

n
)]ni,j=1 to obtain (41), which he then used to characterize the solvability of

the integral equation (I + K)u = f via the non-vanishing of the determinant of
I +K .

One can of course imagine other, more intuitive definitions of the determinant.
Perhaps

det (I +K) =
∏

n

(1+ λn), (42)

where λn are the eigenvalues of K , counted with multiplicity. Or

det (I + λK) = etr log (1+λA) (43)

with the trace

trK =
∫

dμ(x)K(x, x). (44)

Of course, these definitions require some smallness condition on K , but at least they
make apparent the important fact that the determinant is invariant under conjugation
det (I +M−1KM) = det (I +K), or

det (I +K1K2) = det (I +K2K1), (45)

(usually referred to as the cyclic property of determinants) as well as the formula

∂β det (I +K(β)) = det (I +K(β))tr((I +K(β))−1∂βK(β)) (46)

for K(β) depending smoothly on a parameter β.
A more modern way to write (41) is

det (I + λK) =
∞∑

n=0

λntr
n(K) (47)
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where 
n(K) denotes the action of the tensor product A ⊗ · · · ⊗ A on the anti-
symmetric subspace of H ⊗· · ·⊗H . If Pn denotes the projection onto that subspace
and Cn = Pn


n(K)Pn then,

Cn(f1 ⊗ · · · ⊗ fn) = 1

n!
∑

σ∈Sn
sgn(σ )Afσ (1) ⊗ · · · ⊗ Afσ (n)

= 1

n!
∑

σ∈Sn
sgn(σ )

∫

· · ·
∫

dμ(y1) · · · dμ(yn)K(x1, yσ (1))

· · ·K(xn, yσ (n))f1(y1) · · · fn(yn)

which shows thatCn is an integral operator with kernel det
[
K(xi , xj )

]n
i,j=1 and hence

(47) is just a slick way to write (41). The advantage of (41) is that it can be used
directly to define the Fredholm determinant for operators on a general separable
Hilbert space, but we will not need this point of view here (see [79] for more details).

The natural notion of smallness for Fredholm determinants turns out to be the
trace norm on operators

‖K‖1 := tr|K|,

where |K| = √
K∗K is the unique positive square root of the operator K∗K . An

(necessarily compact) operator with finite trace norm is called trace class. Using the
Parseval relation, one can check that for such operators the trace can be defined as

trK =
∞∑

n=1

〈en,Ken〉,

as it is basis independent. This works for operators on any separable Hilbert space,
and in our setting it can be shown that this definition of trace coincides with (44) for
K of trace class. The Hilbert–Schmidt norm ‖K‖2 =

√
tr(|K|2) is easier to compute,

‖K‖2 =
(∫

dx dy |K(x, y)|2
)1/2

,

and the relation between these norms and the more common operator norm ‖K‖op is

‖K‖op ≤ ‖K‖2 ≤ ‖K‖1,

as well as

‖K1K2‖1 ≤ ‖K1‖2‖K2‖2, ‖AK‖1 ≤ ‖A‖op‖K‖1, and ‖AK‖2 ≤ ‖A‖op ‖K‖2,

all of which can be checked easily. Of course, in the latter two, A need not be
compact. The reason the trace norm is so useful is:
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Lemma 1

1. (Lidskii’s Theorem) If K is trace class, then trK = ∑
n λn, where λn are the

eigenvalues of K . It follows that the three definitions (41), (42) and (43) are
equivalent.

2. A �→ det (I + A) is continuous in trace norm. Explicitly,

|det (I +K1)− det (I +K2)| ≤ ‖K1 −K2‖1 exp (‖K1‖1 + ‖K2‖1 + 1). (48)

Lidskii’s theorem is non-trivial and its proofs use heavy function theory, but
48 can be explained easily. Let f (z) = det (I + 1

2 (K1 + K2) + z(K1 − K2)),
so that the left-hand side of (48) is |f ( 1

2 ) − f ( − 1
2 )| ≤ sup−1/2≤t≤1/2 |f ′(t)|.

Cauchy’s integral formula f ′(z) = 1
2πi

∮
f (z′)
z′−z dz′ shows that sup−1/2≤t≤1/2 |f ′(t)| ≤

1
R

sup|z|≤R+ 1
2
|f (z)|. The eigenvalues of 
n(K) are λi1 · · · λin , i1 < · · · < in, so

tr
n(K) =∑i1<···<in
λi1 · · · λin and hence |tr
n(K)| ≤ 1

n! ‖K‖n1, implies

| det (I + λK)| ≤ eλ‖K‖1 .

Therefore, sup|z|≤R+ 1
2
|f (z)| ≤ exp ( 1

2‖K1+K2‖1+ (R+ 1
2 )‖K1−K2‖1) and taking

R = ‖K1 −K2‖−1
1 gives (48).

Examples 1. (Gaussian distribution) A trivial example is K(x, y) = e−x2/2t√
2πt

. The

operator is rank one, so if Ps is the orthogonal projection from L2(R) → L2(s,∞)
then by (43) we have

det (I − PsKPs)L2(R,dx) = 1− trPsKPs =
∫ s

−∞
dx

e−x2/2t

√
2πt

.

Of course, the Gaussian here could be replaced by an arbitrary density.
2. (GUE) Consider the Airy kernel KAi(x, y) = ∫∞

0 dtAi(x + t)Ai(y + t) and let
Ait (x) = Ai(x + t) and H = −∂2

x + x. Then HAit = −tAit , the Ait , t ∈ R

are generalized eigenfunctions of H , and KAi is the orthogonal projection onto
the negative eigenspace of H (see Remark 2). Using Ai′′(x) = xAi(x), we have
∂t

Ai(x+t)Ai′(y+t)−Ai′(x+t)Ai(y+t)
y−x

= Ai(x + t)Ai(y + t), which yields the Christoffel–
Darboux formula,

KAi(x, y) = Ai′(x + t)Ai(y + t)− Ai(x + t)Ai′(y + t)

y − x
.

To show PsKAiPs is trace class, write KAi = B0P0B0 where

B0(x, y) = Ai(x + y). (49)

Then use ‖K1K2‖1 ≤ ‖K1‖2‖K2‖2 to get

‖PsKAiPs‖1 ≤ ‖PsB0P0‖2
2 ≤

∫ ∞

0

∫ ∞

s

Ai2(x + y)dxdy, (50)
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which is finite by the following well-known estimates for the Airy function (see
(10.4.59–60) in [1]):

|Ai(x)| ≤ Ce−
2
3 x

3/2
for x > 0, |Ai(x)| ≤ C for x ≤ 0. (51)

The GUE Tracy–Widom distribution is given by

FGUE(s) = det (I − PsKAiPs)L2(R,dx).

On the face of it, it is not so obvious why such an expression would define a probability
distribution function. From 50 it is clear that lims→∞ det (I − PsKAiPs) = 1. Since
PsKAiPs is a composition of projections, its eigenvalues satisfy 1 ≥ λ1(s) ≥ λ2(s) ≥
· · · ≥ 0. Recall the min-max characterization of eigenvalues

λk(s) = max
dimU = k

min
f∈U

〈f ,PsKAiPsf 〉
〈f , f 〉 ,

from which it is apparent that λi(s) is non-decreasing as s decreases, and hence
det (I − PsKAiPs) = ∏

i (1 − λi(s)) is non-increasing with decreasing s. In
fact, λ1(s) ↗ 1 as s ↘ −∞ since if f is in the negative eigenspace of H ,
〈Psf ,KAiPsf 〉 → 〈f ,KAif 〉 = 〈f , f 〉. This shows that det (I − PsKAiPs) ↘ 0 as
s ↘ −∞ (for an asymptotic expansion of FGUE(s) as s ↘ −∞ see [12]).

3. (GOE) FGOE(s) = det (I − PsB0Ps)L2(R,dx) where B0(x, y) is as in 49. The key to
show that B0 is trace class in this case is the identity

∫ ∞

−∞
dxAi(a + x)Ai(b − x) = 2−1/3Ai(2−1/3(a + b)) (52)

(see, for example, (3.108) in [90]). One defines G1(x, z) = 21/3Ai(21/3x + z)ez and
G2(z, y) = e−zAi(21/3y − z) and notes that PsB0Ps = (PsG1)(G2Ps). Then (51)
allows to show that each of the last two factors has finite Hilbert–Schmidt norm,
yielding that PsB0Ps is trace class.

4. (Airy1 process) Recall the Fredholm determinant formula (22) for the finite-
dimensional distributions of the Airy1 process. It turns out that the kernel fKext

1 f
inside the determinant is not trace class, basically because the heat kernel is not even
Hilbert–Schmidt on L2([s,∞)) for s ∈ R. Nevertheless, the series (41) defining the
Fredholm determinant is finite in this case, because one can conjugate the kernel
fKext

1 f to something which can be proved to be trace class (see [25]).
The situation in the last example, where the natural expression for a kernel defines
an operator which is not trace class, but which is conjugate to a trace class operator,
arises often. Here by conjugacy, we mean the following: two operators K and K̃

are conjugate if there exists some invertible linear mapping U acting on measurable
functions on X such that K = UK̃U−1. Observe that such a pair of operators has
the same Fredholm series expansion (41), i.e. det (I + K) = det (I + K̃). This
allows to extend the manipulations on Fredholm determinants to operators which are



Airy Processes and Variational Problems 149

conjugate to trace class operators, provided that one is careful in keeping track of
the needed conjugations.

The reason we start with the Fredholm expansion (41) is that this is the way the
determinant usually arises from combinatorial expressions. Sometimes the kernels
are not trace class, but this should not bother us so much as long as some version
of the formal expression can be shown to converge, for instance as in Example 4
above. Often, it is genuinely difficult to show that the resulting expressions define a
probability distribution, and we only know it because they arose this way.

3 Boundary Value Kernels and Continuum Statistics
of Airy Processes

3.1 Boundary Value Kernel Formulae
for Finite-Dimensional Distributions

Recall the formula (19) for the finite-dimensional distributions of the Airy2 process.
It is given in terms of the Fredholm determinant of what we call an extended kernel,
that is, (the kernel of) an operator acting on the “extended space”L2({t1, . . . , tn}×R).
Although such formulae have been very useful in the study of models in the KPZ
class, they suffer from two problems. First, if one wants to take the number n of times
ti to infinity, a big difficulty appears in the fact that these formulae involve Fredholm
determinants on the Hilbert space L2({t1, . . . , tn} × R), and thus the space itself is
changing as n grows. Second, these formulae are useful for computing long range
properties of the processes (for instance an asymptotic expansion of the covariance
of A2(s) and A2(t) as |t − s| → ∞, see [93]), but are not suitable for studying short
range properties such as regularity of the sample paths.

The second type of Fredholm determinant formula, which is the one we will use
for most of the rest of this chapter, was actually introduced as the original definition of
theAiry2 process by [68]. It is given as follows: for t1 < · · · < tn and x1, . . . , xn ∈ R,

P (A2(t1) ≤ x1, . . . , A2(tn) ≤ xn)

= det
(
I −KAi + P̄x1e

(t1−t2)H P̄x2e
(t2−t3)H · · · P̄xne

(tn−t1)HKAi
)
L2(R) , (53)

where KAi is Airy kernel (9), H is the Airy Hamiltonian (38) and P̄a denotes the
projection onto the interval (−∞, a]:

P̄af (x) = 1x≤af (x).

Note that the Fredholm determinant is now computed on the Hilbert space L2(R)
instead of L2({t1, . . . , tn} × R), which makes taking n→∞ at least feasible. Note
also that the time increments ti−ti+1 appear explicitly in the formula, which explains
why this formula will be more suitable for the study of short-range properties.Another
advantage of this formula is that it makes apparent that A2 is a stationary process.
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The equivalence of (19) and (53) was derived formally in [68] and [69]. The
proof in [69] is based in the following idea. As we explained in Sect. 1.5.1, the
extended kernel formula (19) can be thought of as the determinant of an n×n matrix
whose entries are operators acting on L2(R). By rewriting this operator as a sum
of an upper-triangular part and lower-triangular part and using algebraic properties
of the determinant and the algebraic relationships between the different entries of
this matrix, [68] showed that the determinant equals the determinant of an operator-
valued matrix I + G such that only the first column of G is non-zero. Therefore
det (I+G)L2({t1,... ,tn}×R) = det (I+G1,1)L2(R) (to see this, simply pretend the operators
in the determinants are matrices), and an explicit calculation of G1,1 yields (53).

The argument given in [69] which we just sketched is almost a complete proof.
There are nevertheless some subtleties. For example, it is not a priori obvious that
for s, t > 0, e−sH can be applied to the image of P̄ae

−tH . Moreover, in order
to manipulate Fredholm determinants, one needs to check that certain analytical
conditions are satisfied (see Sect. 2). The technical details are discussed in [72],
which in fact shows that a formula analogous to 53 holds for the Airy1 process as
well. It is given as follows: for t1 < · · · < tn and x1, . . . , xn ∈ R,

P(A1(t1) ≤ x1, . . . , A1(tn) ≤ xn) (54)

= det
(
I − B0 + P̄x1e

(t2−t1)�P̄x2e
(t3−t2)� · · · P̄xne

(t1−tn)�B0
)
L2(R) ,

where B0 is given by the kernel B0(x, y) = Ai(x + y) defined in (13) and � is the
Laplacian operator. Observe that in all but the last factor of the form es� in the above
formula holds that s > 0, in which case es� is the usual heat kernel. This kernel is
ill-defined for s < 0, but it turns out that in this case the operator es�B0 makes sense
if defined via the integral kernel

es�B0(x, y) = e2s3/3+s(x+y)Ai(x + y + s2). (55)

What we mean by this is that if s, t > 0 then, with this definition the semigroup
property et�e−s�B0 = e(t−s)�B0 holds.

As we will see in Sect. 3.2, it is fruitful to think of the operator appearing in (53)
as the solution of certain boundary value problem, so we will refer to formulae like
this as boundary value kernel formulae. By using (55) one can rewrite the definition
(23) of the extended kernel for A1 as

Kext
1 (s, x; t , y) =

{
e(t−s)�B0(x, y) ifs ≥ t ,
−e(t−s)�(I − B0)(x, y) ifs < t.

It becomes clear then that both the extended kernel formula and the boundary value
kernel formula for Airy1 are obtained from the corresponding formulae for Airy2

by substituting H with −� and KAi with B0. It turns out, as shown in [32], that
the necessary structure behind these formulae hold for a much wider class of pro-
cesses, including for instance, the stationary GUE Dyson Brownian motion and



Airy Processes and Variational Problems 151

non-stationary processes like the Airy2→1 process, and the Pearcey process [85]. For
example, for Airy2→1 one has [32]

P(A2→1(t1) ≤ x1, . . . , A2→1(tn) ≤ xn)

= det(I −K
t1
2→1 + P̄x̃1e

(t2−t1)�P̄x̃2 · · · e(tn−tn−1)�P̄x̃ne
(t1−tn)�K

t1
2→1)L2(R), (56)

where x̃i = xi − t2
i 1ti≤0 and Kt

2→1(x, y) = Kext
2→1(t , x; t , y) with Kext

2→1 as in (24).
Interestingly, it is shown in [32] that in a setting corresponding to discrete

non-intersecting paths, analogous boundary value kernel formulae can be obtained
directly from applying the Karlin–McGregor formula (37) (or rather its combina-
torial analogue, the Lindström–Gessel–Viennot Theorem [51, 61]), bypassing the
direct application of the Eynard–Mehta Theorem. In the case of the Airy2 process, a
suitable limit of a discrete family of non-intersecting should lead to (53) (cf. (39)).
Such a procedure does not seem to work for the Airy1 process. In fact, in that case
the determinantal process used to derive (23) is signed (in the sense that the measure
defined by the analog of (35) is signed), see [26], and hence it is not clear how to
associate directly to it a family of non-intersecting paths.

As we will see below, the integral kernels of the operators appearing inside the
Fredholm determinants in (53), (54) and (56) can be expressed simply in terms
of hitting probabilities of Browian motion. In other words, hitting probabilities of
curves by A2, A1 and A2→1 can be expressed in terms of Fredholm determinants of
the analogous hitting probabilities for Brownian motion. Given the above discussion
(and the discussion in Sect. 1.5.2), this is not entirely surprising in the case of A2,
as it follows from the non-intersecting nature of systems of Brownian paths that can
be used to approximate A2. For the same reason, it is surprising in a sense that the
same structure is present in A1.

3.2 Continuum Statistics and Boundary Value Problems

Consider the following problem: compute the probability that inside a finite interval
[�, r], the Airy2 process lies below a given function g. The obvious way to proceed is
to take a fine mesh � = t1 < t2 < · · · < tn = r of the interval [�, r], take xi = g(ti),
and attempt to take a limit as n → ∞ in the formula for the finite-dimensional
distributions of A2,

P(A2(t1) ≤ g(t1), . . . , A2(tn) ≤ g(tn))

= det
(
I −KAi + P̄g(t1)e

(t1−t2)H P̄g(t2)e
(t2−t3)H · · · P̄g(tn)e

(tn−t1)HKAi
)
. (57)

Here the Fredholm determinant is computed on the Hilbert space L2(R), which
we will omit from the subscript in the sequel. By Theorem 1, A2 has a
continuous version, and hence limn→∞ P(A2(t1) ≤ g(t1), . . . , A2(tn) ≤ g(tn)) =
P(A2(t) ≤ g(t)fort ∈ [�, r]). To study the right-hand side of (57), we need to com-
pute the limit of the operator appearing inside the determinant. Observe that the last
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exponential equals e(r−�)H , and hence does not depend on n. On the other hand, for
s < t , the operator e(s−t)H can be thought of as mapping a function f to the solution
u(t , ·) at time t of the PDE ∂tu + Hu = 0 with initial condition u(s, ·) = f ( · ).
Therefore the operator,

P̄g(t1)e
(t1−t2)H P̄g(t2)e

(t2−t3)H · · · e(tn−1−tn)H P̄g(tn) (58)

can be thought of as solving the same PDE (backwards in time) on the interval [�, r]
with the additional condition that all the mass above g(ti) is removed at each of
the discrete times ti . Note that the PDE is solved backwards because, if we apply
this operator to a function on its right, we first apply P̄g(tn), then e(tn−1−tn)H , then
P̄g(tn−1), and so on. Since solving the PDE ∂tu + Hu = 0 forward or backwards in
time gives the same answer, if we want to think of (58) as being solved forward in
time, all we need to do is reverse the order in which the g(ti) appear. The result is
the following: Given g ∈ H 1([�, r]) (i.e. both g and its derivative are in L2([�, r])),
define an operator #

g

[�,r] acting on L2(R) as follows: #
g

[�,r]f ( · ) = u(r , ·), where
u(r , ·) is the solution at time r of the boundary value problem

∂tu+Hu = 0 for x < g(t), t ∈ (�, r)

u(�, x) = f (x)1x<g(�)

u(t , x) = 0 for x ≥ g(t).

Further, define ĝ(t) = g(�+ r − t). Then
∥
∥
∥P̄g(t1)e

(t1−t2)H P̄g(t2)e
(t2−t3)H · · · P̄g(tn)e

(tn−t1)HKAi −#
ĝ

[�,r]e
(tn−t1)HKAi

∥
∥
∥

1
−−−→
n→∞ 0.

(59)

Since the convergence holds in trace class norm, (59) can be used to answer the
question with which we started this subsection:

Theorem 8 ([41], Theorem 2).

P(A2(t) ≤ g(t) for t ∈ [�, r]) = det
(
I −KAi +#

g

[�,r]e
(r−�)HKAi

)
. (60)

Observe that we have written g instead of ĝ in (60). We may do this because the
Airy2 is invariant under time reversal, so we can replace g by ĝ on the left-hand side.

The limit (59) is proved in Proposition 3.2 of [41] (in fact only along the dyadic
sequence nk = 2k , but this is enough for deducing Theorem 8). The proof is based
on the following probabilistic representation of the solutions of the above boundary
value problem: if #g

[�,r](x, y) denotes the integral kernel of #g

[�,r], then

#
g

[�,r](x, y) = e�x−ry+(r3−�3)/3 e
−(x−y)2/4(r−�)

√
4π (r − �)

· Pb̂(�)=x−�2,b̂(r)=y−r2

(
b̂(s) ≤ g(s)− s2on[�, r]

)
, (61)
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where the probability is computed with respect to a Brownian bridge b̂(s) from
x − �2 at time � to y − r2 at time r and with diffusion coefficient 2. This formula
is Theorem 3 of [41], its proof is based on an application of the Feynman–Kac and
Cameron–Martin–Girsanov formulae.

The argument that proves Theorem 8 can be adapted to obtain a similar result for
Airy1. Fix � < r . Given g ∈ H 1([�, r]), define an operator 
g

[�,r] acting on L2(R) as
follows: 
g

[�,r]f ( · ) = u(r , ·), where u(r , ·) is the solution at time r of the boundary
value problem

∂tu−�u = 0 for x < g(t), t ∈ (�, r)

u(�, x) = f (x)1x<g(�)

u(t , x) = 0 for x ≥ g(t).

Theorem 9 ([72], Theorem 4)

P(A1(t) ≤ g(t) for t ∈ [�, r]) = det
(
I − B0 +


g

[�,r]e
−(r−�)�B0

)
. (62)

Although the proof of this result is similar to the proof for theAiry2 case, the argument
is a bit more involved because, as written, the operator in the determinant is not trace
class, so one needs to conjugate appropriately. Of course, similar arguments should
allow one to obtain continuum statistics formulae for other processes for which
boundary value kernel formulae are available (see [32] for the case of stationary
GUE Dyson Brownian motion).

The operator 
g

[�,r] also has a simple representation in terms of Brownian motion
(see [72]), which has recently been used in [46] to verify numerically the experimen-
tal values obtained in [81] for the persistence probabilities of Airy1. The negative
persistence exponent is defined by

P(A1(t) ≤ m, 0 ≤ t ≤ L) ∼ e−κ−L

where m is the mean of FGOE. Takeuchi has measured κ− ≈ 3.2 ± 0.2 in com-
puter simulations of the Eden model [81]. Ferrari and Frings [46] have computed
numerically (62) finding

κ ≈ 2.9,

which is fairly close. Note that Takeuchi has also measured the positive persistence
probabilities P(A1(t) ≥ m, 0 ≤ t ≤ L) ∼ e−κ+L. An interesting question is whether
there exists a simple enough mathematical formula to check such a thing.

4 Applications

In this section we will describe some applications of the boundary value kernel
formulae for Airy processes which were introduced in the previous section. The first
two applications refer to asymptotic statistics for directed polymers and LPP, while
the next two involve respectively the Airy1 and Airy2→1 processes.
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4.1 Point-to-Line LPP and GOE

Recall the variational formula (25) relating the Airy2 process with the Tracy–Widom
GOE distribution:

P

(

sup
x∈R

{A2(x)− x2} ≤ m

)

= FGOE(41/3m). (63)

As we explained in Sect. 1.2.3, Johansson’s proof [57] was very indirect, relying on
the convergence of the spatial fluctuations of point-to-point LPP to A2 together with
(15) and (17).

A direct proof of this variational formula was provided in [41], based on the
continuum statistics formula given in Theorem 8. An interesting consequence of this
derivation was that it allowed to identify the factor of 41/3 on the right-hand side of
the identity, which had been lost in Johansson’s argument in the process of translating
between the available results at the time (see Sect. 2 for an account of how to get the
correct factor directly from LPP).

We will explain next the derivation of the formula, skipping some details. We
rewrite the desired probability as

lim
L→∞P

(
A2(t) ≤ m+ t2 ∀ t ∈ [− L,L]

)
.

For fixed L > 0, Theorem 8 implies that this probability is given by

det
(
I −KAi +#Le

2LHKAi
)

, (64)

where

#L = #
g(t)=t2+m

[−L,L] .

The nice thing is that the choice of g(t) = t2 + m is the simplest possible from
the point of view of explicit calculations, because it cancels exactly the parabola
appearing on the right-hand side of (61). The probability appearing in that formula
is then reduced to the probability of a Brownian bridge staying below level m, and
this is easy to compute using the reflection principle (method of images):

Pb̂(−L)=x−L2,b̂(L)=y−L2

(
b̂(s) ≤ m on[− L,L]

)

= 1− Pb̂(−L)=x−L2,b̂(L)=y−L2

(
b̂(s) > m for some s ∈ [− L,L]

)

= 1− e−(x−m−L2)(y−m−L2)/2 L (65)

(we leave the simple computation to the reader, alternatively see [20], p. 67). Putting
this back in #L gives

#L = P̄m+L2e−2LH P̄m+L2 − P̄m+L2RLP̄m+L2 , (66)
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where RL is the reflection term

RL(x, y) = 1√
8πL

e−(x+y−2m−2L2)2/8L−(x+y)L+2L3/3. (67)

The e−2LH in the first term in #L comes from the 1 in (65) and appears by either
reversing the use of the Cameron–Martin–Girsanov and Feynman–Kac formulas in
the derivation of (66) or by an explicit computation of the integral kernel of e−(r−�)H as

e−(r−�)H (x, y) = e�x−ry+(r3−�3)/3 e
−(x−y)2/4(r−�)

√
4π (r − �)

.

Referring to (64), we have by the cyclic property of determinants (45) and the identity
e2LHKAi = (eLHKAi)2 (which follows from Remark 2) that

P
(
A2(t) ≤ t2 +m for t ∈ [− L,L]

) = det
(
I −KAi + eLHKAi#Le

LHKAi
)
. (68)

To obtain the L → ∞ asymptotics, we decompose #L so as to expose the two
limiting terms, as well as a remainder term �L:

#L = e−2LH − RL +�L, (69)

where �L = (RL − P̄m+L2RLP̄m+L2)− (e−2LH − P̄m+L2e−2LH P̄m+L2). It is shown
in [41] that

∥
∥eLHKAi�Le

LHKAi

∥
∥

1 −−−→L→∞ 0. (70)

The proof amounts essentially to asymptotic analysis involving the Airy function. In
view of this fact and the decomposition (69), and since eLHKAie

−2LHeLHKAi = KAi,
we see that the key point is the limiting behaviour in L of

eLHKAiRLe
LHKAi.

To explain how this last product can be computed, we will proceed in a slightly formal
manner through an argument based on the Baker–Campbell–Hausdorff formula, as
done for a related problem in [73] (see Sect. 4.4). Since KAi is a projection and H

leaves KAi invariant, we will pretend that eLH and KAi commute, so we have to
compute the limit of eLHRLe

LH . Define the reflection operator $m by

$mf (x) = f (2 m− x).

Then the operator RL defined in (67) can be rewritten as

RL = e(2L3)/3e−Lξ$m+L2e2L�e−Lξ = e(2L3)/3e−Lξ eL�$m+L2eL�e−Lξ . (71)

Here erξ (ξ stands for a generic variable) denotes the multiplication operator
(erξf )(x) = erxf (x). The second equality follows from the reflection principle
applied to the heat kernel.
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The following identities will be useful, where [·, ·] denotes commutator:

[H ,�] = [ξ ,�] = −2∇, [H ,∇] = [ξ ,∇] = −I , [H , ξ ] = −2∇.

If A and B are two operators such that [A, [A,B]] = c1I and [B, [A,B]] = c2I for
some c1, c2 ∈ R, then the Baker–Campbell–Hausdorff formula reads

eAeB = eA+B+ 1
2 [A,B]+ 1

12 [A,[A,B]]− 1
12 [B,[A,B]].

Using this we have

e−Lξ eL� = eL
3/6eL�+L2∇−Lξ .

Using the Baker–Campbell–Hausdorff formula again, we deduce that

eLHe−Lξ eL� = eL
3/6eLHeL�+L2∇−Lξ = e−L3/3eL

2∇ ,

while an analogous computation yields

eL�e−Lξ eLH = e−L3/3e−L2∇ .

Employing these identities on the right-hand side of (71) yields

eLHRLe
LH = eL

2∇$m+L2e−L2∇ .

Since er∇ is the shift operator (er∇f )(x) = f (x + r), we have er∇$m = $me
−r∇ =

$m−r/2, and we obtain

eLHRLe
LH = $m.

Remarkably, the result does not depend on L. The conclusion from using this, (70)
and (68) in (69) and taking L→∞ is

P
(
A2(t) ≤ t2 +m for all t ∈ R

) = det(I −KAi$mKAi) . (72)

The use of the Baker–Campbell–Formula in the derivation of this identity can be
replaced by an explicit integral calculation (see the proof of Proposition 1.3 of [41]).

To finish our proof of (63) we need to show that the right-hand side of (72) equals
FGOE(41/3m). Recall the definition of the kernel B0(x, y) = Ai(x + y) and observe
that KAi = B0P0B0. Recall also that the shifted Airy functions form a generalized
orthonormal basis of L2(R) (see Remark 2), which implies that B2

0 = I . Therefore
we can use the cyclic property of determinants (45) to deduce that

det(I −KAi$mKAi) = det(I − P0B0$mB0P0) .

Now

B0$mB0(x, y) =
∫ ∞

−∞
dλAi(x + λ)Ai(2 m− λ+ y),
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and using the identity (52) we deduce that

B0$mB0(x, y) = B̃m(x, y) := 2−1/3Ai(2−1/3(x + y + 2 m), (73)

and thus

det(I −KAi$mKAi) = det
(
I − P0B̃mP0

)
.

Performing the change of variables x �→ 21/3x, y �→ 21/3y, in the series defining
the last Fredholm determinant, shows that the determinant on the right-hand side of
(72) equals det (I − P0B41/3mP0), which is FGOE(41/3m) by 1.14.

4.2 Endpoint Distribution of Directed Polymers

In the setting of geometric LPP (see Sect. 1.2.3), consider the random variable

κN = min

{

k ∈ {−N, . . . , N} : sup
j=−N,... ,k

Lpoint
N (j) = sup

j=−N,... ,N
Lpoint

N (j)

}

.

κN corresponds to the location of the endpoint of the maximizing path in point-to-line
LPP.

Interest in the scaling properties and distribution of this random variable goes back
at least to the early 1990s. One can also consider the analogous random variable in
the setting of directed random polymers, but due to the KPZ universality conjecture,
one expects that the asymptotic behaviour and statistics are the same as in LPP. [64]
considered the polymer case and derived non-rigorously the scaling relation

|κN | ∼ N2/3

(c.f. (6)). In view of this, we define the rescaled endpoint

TN = c−1
3 N−2/3κN ,

where c3 is the constant appearing in (18). Recalling the definition of the rescaled
point-to-point last passage time (18) as the linear interpolation of the values given
by

H
point
N (t) = 1

c2N1/3

[
Lpoint(N + c−1

3 N−2/3t ,N − c−1
3 N−2/3t)− c1N

]

for t such that c−1
3 N−2/3t ∈ {−N , . . . ,N} we deduce that

TN = min

{

t ∈ R : sup
s≤t

Hpoint
N (s) = sup

s∈R

Hpoint
N (s)

}

.

Recalling that HN (t) converges to A2(t)− t2 by Theorem 1, it becomes clear that TN

should converge to the point where A2(t)−t2 attains it maximum. In fact, this is what
Johansson proved, although he had to make a (very reasonable) technical assumption
on the Airy2 process which he was not able to prove with the tools available at the
time.
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Theorem 10 ([57]). Assume that the process A2(t) − t2 attains its maximum at a
unique point and let

T = arg max
t∈R

{A2(t)− t2}.

Then

TN −−−→
N→∞ T

in the sense of convergence in distribution.
Although the result is of course very interesting, as it shows that the limiting end-

point distribution exists (under the technical assumption), it gives no information on
the distribution of T . Quoting [58], for all we know T could be Gaussian. Neverthe-
less, from KPZ universality, one expects that this is not the case. For example, [55]
conjectured on the basis of analogy with the arg max of a Brownian motion minus a
parabola (for which one has a complete analytical solution, see [52]), that the tails
of T decay like e−ct3

, which of course rules out Gaussian behaviour.
It turns out that the distribution of T can be computed explicitly through an

argument based on the continuum statistics formula of Theorem 8. This was done in
[65], where in fact the joint density of

T = arg max
t∈R

{A2(t)− t2} and M = max
t∈R

{A2(t)− t2}

was computed. Moreover, the argument implies that the maximum of A2(t) − t2 is
attained at a unique point, thus completing the proof of Theorem 10. The uniqueness
of the maximum was also proved slightly earlier by [37] using completely different
techniques, and a proof for general stationary processes is now available [67].

The computation is as follows. For simplicity we will assume the uniqueness of
the maximizing point of A2(t) − t2, and will explain later how the uniqueness can
actually be obtained from this argument. Let (ML, TL) denote the maximum and the
location of the maximum of A2(t)− t2 restricted to t ∈ [− L,L], and let fL be the
joint density of (ML, TL). By results of [35], the joint density f (m, t) of M, T is
well approximated by fL(m, t),

f (t ,m) = lim
L→∞ fL(t ,m).

By definition,

fL(t ,m) = lim
δ→0

lim
ε→0

1

εδ
P(ML ∈ [m,m+ ε], TL ∈ [t , t + δ]) ,

provided that the limit exists. The main contribution in the above expression comes
from paths entering the space–time box [t , t + δ] × [m,m + ε] and staying below
the level m outside the time interval [t , t + δ]. More precisely, if we denote by Dε,δ

and Dε,δ the sets
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Dε,δ =
{
A2(s)− s2 ≤ m, s ∈ [t , t + δ]c, A2(s)− s2 ≤ m+ ε, s ∈ [t , t + δ],

A2(s)− s2 ∈ [m,m+ ε] for some s ∈ [t , t + δ]
}
,

and

Dε,δ =
{
A2(s)− s2 ≤ m+ ε, s ∈ [− L,L],

A2(s)− s2 ∈ [m,m+ ε] for some s ∈ [t , t + δ]
}
,

then

Dε,δ ⊆ {ML ∈ [m,m+ ε], TL ∈ [t , t + δ]} ⊆ Dε,δ.

Letting f (t ,m) = limδ→0 limε→0
1
εδ

P(Dε,δ) and defining f (t ,m) analogously (with

Dε,δ instead of Dε,δ), we deduce that f (t ,m) ≤ f (t ,m) ≤ f (t ,m). In what follows

we will compute f (t ,m). It will be clear from the argument that for f (t ,m) we get
the same limit. The conclusion is that

fL(t ,m) = lim
δ→0

lim
ε→0

1

εδ
P(Dε,δ).

We rewrite this last equation as

fL(t ,m) = lim
δ→0

lim
ε→0

1

εδ

[
P
(
A2(s) ≤ hε,δ(s), s ∈ [− L,L]

)

− P
(
A2(s) ≤ h0,δ(s), s ∈ [− L,L]

) ]
,

where

hε,δ(s) = s2 +m+ ε1s∈[t ,t+δ].

These two probabilities have explicit Fredholm determinant formulae by Theorem 8.
We get, using the cyclic property of determinants as in (68),

fL(t ,m) = lim
δ→0

lim
ε→0

1

εδ

[
det
(
I −KAi + eLHKAi#

hε,δ
[−L,L]e

LHKAi

)

− det
(
I −KAi + eLHKAi#

h0,δ
[−L,L]e

LHKAi

)]
.

The limit in ε becomes a derivative

fL(t ,m) = lim
δ→0

1

δ
∂β det

(
I −KAi + eLHKAi#

hβ,δ
[−L,L]e

LHKAi

)∣
∣
∣
β=0

,
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which in turn gives a trace by (46),

fL(t ,m) = det
(
I −KAi + eLHKAi#

h0,δ
[−L,L]e

LHKAi

)

· lim
δ→0

1

δ
tr

[

(I −KAi + eLHKAi#
h0,δ
[−L,L]e

LHKAi)
−1eLHKAi

[
∂β#

hβ,δ
[−L,L]

]

β=0
eLHKAi

]

.

(74)

One has to check here that the required limits hold in trace class norm, see [65]. Note
that h0,δ = gm, where gm is the parabolic barrier

gm(s) = s2 +m,

so in particular the determinant and the first factor inside the trace do not depend on
δ. We know moreover from the arguments in Sect. 4.1 that

lim
L→∞

(
I −KAi + eLHKAi#

h0,δ
[−L,L]e

LHKAi

)
= I −KAi$mKAi

in trace norm. In particular, we have

lim
L→∞ det

(
I −KAi + eLHKAi#

h0,δ
[−L,L]e

LHKAi

)
= FGOE(41/3m).

The next step is to compute ∂β#
hβ,δ
[−L,L] |β=0. Recalling that h0,δ(s) = gm(s) = s2+m

and also hε,δ(s) = gm+ε(s) for s ∈ [t , t + δ], we have, by the semigroup property,

#
hε,δ
[−L,L] −#

h0,δ
[−L,L] = #

gm
[−L,t]

[
#

gm+ε

[t ,t+δ] −#
gm
[t ,t+δ]

]
#

gm
[t+δ,L].

Computing the desired derivative involves just the middle bracket, which we note
corresponds to the same boundary value problem as in Sect. 4.1, only at two different
levels m and m+ε. Since we have explicit formulae, the derivative can be computed
explicitly. The computation is slightly tedious, and the only delicate part is to justify
that the necessary limits occur in trace class norm. We refer to [65] for the details.

Going back to (74), we recall that the trace is linear and continuous under the
trace class norm topology, so in view of the preceding discussion we have

lim
L→∞ fL(t ,m) = FGOE(41/3m)tr

[
(I −KAi$mKAi)

−1

lim
L→∞ lim

δ→0

1

δ
eLHKAi

[
∂β#

hβ,δ
[−L,L]

]

β=0
eLHKAi

]

. (75)

Once again we need to compute limits, again taking care that they hold in trace class
norm as necessary. We skip the details and just write down the result, (76):

lim
L→∞ lim

δ→0

1

δ
eLHKAi

[
∂β#

hβ,δ
[−L,L]

]

β=0
eLHKAi = �, (76)
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where

�(x, y) = B0P0ψt ,m(x)B0P0ψ−t ,m(y)

and

ψt ,m(x) = 2et
3+(m+x)t

[
Ai′(m+ t2 + x)+ tAi(m+ t2 + x)

]

(we remark that we have written these formulae in a slightly different way compared
to [65], but the reader should have no problem translating between the formulae).
The limit in δ is relatively straightforward, while the limit in L involves an argument
similar to the one used in Sect. 4.1. Using this formula in (75), the trace becomes

tr
[
(I −KAi$mKAi)

−1�
] = 〈(I −KAi$mKAi)

−1B0P0ψt ,m,B0P0ψ−t ,m
〉
,

where 〈·, ·〉 denotes inner product in L2(R).
It only remains to simplify the expression. We first use (73) and the facts that

KAi = B0P0B0, B2
0 = I and B∗0 = B0 to write

〈
(I −KAi$mKAi)

−1B0P0ψt ,m,B0P0ψ−t ,m
〉

= 〈(I − B0P0BmP0B0)−1B0P0ψt ,m,B0P0ψ−t ,m
〉

= 〈B0(I − P0BmP0)−1P0ψt ,m,B0P0ψ−t ,m
〉

= 〈(I − P0BmP0)−1P0ψt ,m,P0ψ−t ,m
〉
.

Next we introduce the scaling operator Sf (x) = f (21/3x). One can check easily that
S−1 = 21/3S∗ and thatP0 commutes withS andS−1. We also haveSBmS

−1 = B41/3m.
Thus writing m̃ = 2−1/3m we get

〈
(I − P0BmP0)−1P0ψt ,m,P0ψ−t ,m

〉

= 〈(I − S−1P0B2m̃P0S)−1P0ψt ,m,P0ψ−t ,m
〉

= 〈S−1(I − P0B2m̃P0)−1P0Sψt ,m,P0ψ−t ,m
〉

= 21/3
〈
(I − P0B2m̃P0)−1P0Sψt ,m,P0Sψ−t ,m

〉
.

which is equal to 21/3γ (t , 41/3m).
Using this formula in (75) yields the joint density of T and M. Define the resolvent

kernel

ςm(x, y) = (I − P0BmP0)−1(x, y)

and, for t ,m ∈ R, define

�t ,m(x, y) = 21/3ψt ,m(21/3x)ψ−t ,m(21/3y)

and

γ (t ,m) = 21/3
∫ ∞

0
dx

∫ ∞

0
dy ψ−t ,4−1/3m(21/3x)ςm(x, y)ψt ,4−1/3m(21/3y).
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Theorem 11 ([65], Theorem 2) The joint density f (t ,m) of T and M is given by

f (t ,m) = γ (t , 41/3m)FGOE(41/3m)

= det(I − P0B41/3mP0 + P0�t ,mP0)− FGOE(41/3m).
(77)

To see where the second equality in 77 comes from, observe that γ (t , 41/3m) equals
the trace of the operator (I − P0B41/3mP0)−1P0�t ,mP0 and that �t ,m is a rank one
operator. The identity that follows now from the general fact that for two operators
A and B such that B is rank one, one has det (I −A+B) = det (I −A)[1+ tr((I −
A)−1B)].

Integrating over m, one obtains a formula for the probability density fend(t) of
T . Unfortunately, it does not appear that the resulting integral can be calculated
explicitly, so the best formula one has is

fend(t) =
∫ ∞

−∞
dmf (t ,m).

One can readily check nevertheless that fend(t) is symmetric in t . The second formula
for f (t ,m) is suitable for numerical computations, using the numerical scheme and
Matlab toolbox developed by Bornemann in [16, 17] for the computation of Fredholm
determinants. Figure 3 shows a contour plot of the joint density of M and T , while
Fig. 4 shows a plot of the marginal T density.

As we mentioned, interest in this problem dates back at least 2 decades. In
particular, there has been a resurgence of interest in the last couple of years. An
alternative way to obtain the Airy2 process is as a limit in large N of the top path in
a system of N non-intersecting random walks, or Brownian motions, the so called
vicious walkers [48] (this is of course related to the setting presented in Sect. 1.5.2).
[44, 74, 75, 78] obtained various expressions for the joint distributions of M and
T in such a system at finite N . [50] obtained the FGOE distribution from large N

asymptotics non-rigorously, and furthermore made connections between these prob-
lems and Yang–Mills theory. But for several years people were not able to perform
asymptotic analysis on the formulae obtained for T at finite N .

After [65] appeared, [77] succeeded in extracting asymptotics from the vicious
walkers formula, and obtained an alternative formula for f (t ,m). His formula is
given as follows. The Painlevé II Eq. (10) and (11) has a Lax pair formulation

∂

∂ζ
� = A�,

∂

∂s
� = B� (78)

for a 2-D vector � = �(ζ , s), where the 2×2 matrices A = A(ζ , s) and B = B(ζ , s)
are given by

A(ζ , s) =
(

4ζq 4ζ 2 + s + 2q2 + 2q ′
−4ζ 2 − s − 2q2 + 2q ′ −4ζq

)

and B(ζ , s) =
(

q ζ

−ζ −q

)

.
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Fig. 3 Contour plot of the joint density of M and T

Fig. 4 Plot of the density of T compared with a Gaussian density with the same variance 0.2409
(dashed line). The excess kurtosis E(T 4)/E(T 2)2 − 3 is − 0.2374
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The compatibility of this overdetermined system implies that q(s) solves Painlevé

II. Now let � =
(
�1

�2

)

be the unique solution of (78) satisfying

�1(ζ ; s) = cos

(
4

3
ζ 3 + sζ

)

+O(ζ−1), �2(ζ ; s) = − sin

(
4

3
ζ 3 + sζ

)

+O(ζ−1) ,

as ζ →±∞ for s ∈ R. The formula of [77] is

γ (t ,m) = 16
π2 〈h42/3t ,h−42/3t 〉L2(m,∞) (79)

where

ht (x) =
∫ ∞

0
dζ ζ�2(ζ , x)e−tζ 2

.

Although Schehr’s argument is non-rigourous, a later chapter of [14] proved directly
the equivalence of the formula of [77] and 77, thus establishing the validity of (79)
based on Theorem 11.

Before turning to the tail behaviour of T , let us briefly explain how the uniqueness
of the maximizer of A2(t) − t2 can be established directly from the argument we
described above. In the derivation of the formula, we assumed that the maximum of
A2(t)−t2 is obtained at a unique point. However, it is not necessary to do this. In fact,
if one follows the argument without this assumption, one ends up with a formula for
what is in principle a super-probability density, i.e. a non-negative function f (t ,m)
on R× R with

∫
R×R

dmdt f (t ,m) ≥ 1, and in fact one can see from the argument
that

∫

R×R

dmdt f (t ,m) = expected number of maxima of A2(t)− t2.

Recall that from (63), the distribution of M is given by a scaled version of FGOE. A
non-trivial computation (see Sect. 3) gives

∫ ∞

−∞
dt f (t ,m) = 41/3F ′GOE(41/3m).

This shows that f (t ,m) has total integral 1, which can only be true if the maximum
is unique almost surely, since the global maximum is attained at at least one point.

We mentioned earlier in the conjecture that T should have tails which decay like
e−ct3

(see e.g. [55]). This can be proved using the techniques described in this review:

Theorem 12 ([14, 35, 71, 77]). There is a c > 0, such that for every κ > 32
3 and

large enough t ,

e−κt3 ≤ P(|T | > t) ≤ ce−
4
3 t

3+2t2+O(t3/2).

[35] had obtained the e−ct3
decay for some c > 0. The statement we included here

is the one appearing in [71]. In fact, Schehr’s formula and its validation in [14]
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later yielded a lower bound that matches the e− 4
3 t

3
behaviour of the upper bound,

so we know now that 4
3 is the correct exponent. A precise asymptotic expansion of

P(|T | > t) based on that formula has recently been obtained in [33]. The reason
why [71] obtained a slightly worse lower bound is technical, and arises from the fact
that the explicit formula (77) for f (t ,m) is not useful for providing a lower bound,
and instead one needs to use a different argument. On the other hand, the upper
bound can be obtained directly from (77). In fact, the second formula expresses this
joint density as the difference of two Fredholm determinants, so we may use (48) to
estimate the difference, and then all that remains is to show that this estimate can be
integrated in m. See [71] for more details.

4.3 Local Behaviour of Airy1

As we mentioned, the boundary value kernel formulae introduced in Sect. 3.1 are bet-
ter adapted than the standard extended kernel formulae to study short-range properties
of the processes. An interesting application is the following:

Theorem 13 ([72], Theorem 2). The Airy1 process A1 and the Airy2 process A2

have versions with Hölder continuous paths with exponent 1
2 − δ for any δ > 0.

Continuity was known for A2 (see Theorem 1) but not for A1. The Hölder 1
2−

continuity for A2 also follows from the work of [35]. Their proof is based on a
certain Brownian Gibbs property for the Airy2 line ensemble (an infinite collection
of continuous, non-intersecting paths, the top line of which is A2), and as such it
cannot be extended toAiry1, given that no analog of theAiry2 line ensemble is known
in the flat case. This regularity is expected to hold in fact for all the Airy processes
in view of the fact that they are believed to look locally like a Brownian motion (see
Sect. 1.3). Analogous results have recently become available for the solutions of the
KPZ equation at finite times with certain initial conditions [37, 54, 70].

The proof of Theorem 13 is based on an application of a suitable version of the
Kolmogorov criterion. In the Airy1 case, it involves studying a truncated version of
the process, A1

M (t) = A1(t)1|A1(t)|≤M+M1A1(t)>M−M1A1(t)<−M and then proving
the following estimate: for fixed δ > 0, there is a t0 ∈ (0, 1) and an n0 ∈ N such that
for 0 < t < t0, n ≥ n0 and M = (3 log (t−(1+n)))1/3 we have

E
(
[A1

M (t)−A1
M (0)]2n

) ≤ ct1+(1−δ)n

where the constant c > 0 is independent of δ, n0 and t0. The proof of this estimate
can be reduced to obtaining a suitable estimate on the difference

∣
∣det (I − B0 + P̄ae

t�P̄be
−t�B0)− det (I − B0 + P̄aB0)

∣
∣

for b ≥ a ≥ −M . An important technical problem is that the kernels appearing inside
these determinants are not trace class, so one needs to conjugate appropriately. We
refer to [72] for the details. The argument for Airy2 is similar.
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As we mentioned, the Airy processes are expected to look locally like a Brownian
motion. In this direction, it can be shown using the boundary value kernel formulae
that the finite-dimensional distributions of the Airy1 process converge under diffu-
sive scaling to those of a Brownian motion. The same result was proved earlier by
[53] for Airy2 using different techniques. In fact, for Airy2, a stronger statement is
now available ([35]), namely that it is locally absolutely continuous with respect to
Brownian motion.

Theorem 14 ([72], Theorem 3). For any fixed s ∈ R, let Bε( · ) be defined by
Bε(t) = ε− 1/2(A1(s + εt) − A1(s)), t > 0. Then Bε( · ) converges to Brownian
motion in the sense of convergence of finite-dimensional distributions. The same
holds for B̃ε( · ) defined by B̃ε(t) = Bε(− t), t > 0.

The proof of this result follows from an explicit computation of

P
(
A1(εt1) ≤ x +√εy1, . . . , A1(εtn) ≤ x +√εyn |A1(0) = x

)

and its limit as ε → 0, see [72] for the details. The same proof works for the Airy2

process and, in view of (56), it should be simple to adapt it to the Airy2→1 process.

4.4 Marginals of Airy2→1

The last application of the results of Sect. 3.2 that we will discuss is a proof of the
conjecture (34) that the marginals of the Airy2→1 process can be obtained from a
variational problem for A2(t)− t2 on a half-line. The result is the following:

Theorem 15 ([73], Theorem 1). Fix α ∈ R. For every m ∈ R,

P

(

sup
t≤α

(A2(t)− t2) ≤ m−min{0,α}2
)

= P(A2→1(α) ≤ m) .

The right-hand side can be expressed in terms of a Fredholm determinant. Define
the crossover distributions G2→1

α , for α ∈ R, as

G2→1
α (m) = P(A2→1(α) ≤ m) .

We claim that

G2→1
α (m) = det(I − PmKαPm), (80)

where Kα = K1
α +K2

α and the kernels K1
α and K2

λ are given by

K1
α(x, y) =

∫ ∞

0
dλ e2αλAi(x − λ+max{0,α}2)Ai(y+ λ+max{0,α}2)

and

K2
α(x, y) =

∫ ∞

0
dλAi(x + λ+max{0,α}2)Ai(y+ λ+max{0,α}2).
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As noted in Appendix A of [28], the kernel Kext
2→1 defined in (24) can be expressed

in terms of Airy functions:

Kext
2→1(s, t ; x, y) = L0(s, x; t , y)+ e2t3/3−2 s3/3+t ỹ−sx̃[L1 + L2](s, x; t , y),

where

L0(s, x; t , y) = −e(s−t)�(x̃, ỹ) = − 1√
4π (t − s)

e−(x̃−ỹ)2/4(t−s),

L1(s, x; t , y) =
∫ ∞

0
dλ eλ(s+t)Ai(x̂ − λ)Ai(ŷ + λ),

L2(s, x, t , y) =
∫ ∞

0
dλ eλ(t−s)Ai(x̂ + λ)Ai(ŷ + λ)

with x̃ = x− s21s≤0, ỹ = y− t21t≤0, x̂ = x+ s21s≥0 and ŷ = y+ t21t≥0. Using this
for s = t = α, it is straightforward to check that Kext

2→1(t , ·; t , ·) is just a conjugation
of the kernel Kα , and (80) follows.

The fact that G2→1
α crosses over between the GUE and GOE distributions is of

course a particular case of the crossover property of the Airy2→1 process, but can be
easily obtained from (80) as well (see the discussion after Theorem 1 in [73]).

The proof of Theorem 15 is similar to (and, in fact, somewhat simpler than)
the proof of (25). Basically, one applies Theorem 8 and the cyclic property of
determinants to compute the desired probability as

lim
L→∞P(A2(t) ≤ g(t) for t ∈ [− L,α])

= lim
L→∞ det

(
I −KAi + e(α+L)HKAi#

g

[−L,α]KAi
)

with g(t) = t2+m and m = m−min{0,α}2. An argument similar to the one used in
Sect. 4.1 (applying the Baker–Campbell–Hausdorff formula and later checking the
result rigorously, plus some asymptotic analysis to show that an error term goes to
0 in trace class norm as L→∞) yields

P

(

sup
t≤α

(A2(t)− t2) ≤ m−min{0,α}2
)

= det
(
I −KAiPm+α2KAi −KAie

αξ$m+α2e−αξ P̄m+α2KAi
)
. (81)

Since KAi = B0P0B0 and B2
0 = I , we have by the cyclic property of determinants

that the right-hand side of (81) equals

det
(
I − P0B0Pm+α2B0P0 − P0B0e

αξ$m+α2e−αξ P̄m+α2B0P0
)
.

Shifting the variables in the last determinant by −m, we deduce that

P

(

sup
t≥α

(A2(t)− t2) ≤ m

)

= det(I − PmE1Pm − PmE2Pm) ,
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where

E1(x, y) =
∫ m+α2

−∞
dλAi(x −m+ 2m+ 2α2 − λ)e−2(λ−m−α2)αAi(y −m+ λ)

and

E2(x, y) =
∫ ∞

m+α2
dλAi(x −m+ λ)Ai(y −m+ λ).

Shifting λ by m+ α2 in both integrals and changing λ to −λ shows that E1(x, y) =
K1

α(y, x) and E2 = K2
α , whence the equality in Theorem 15 follows since E∗1 = K1

α

and E∗2 = K2
α .
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