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Preface

Prior to 1980, the subject of equating was ignored by most people in the
measurement community except for psychometricians, who had responsibility for
equating. Beginning in the early 1980s, the importance of equating was recognized
by a broader spectrum of people associated with testing. This increased attention to
equating is attributable to at least three developments. First, there continues to be
an increase in the number and variety of testing programs that use multiple forms
of tests, and the testing professionals responsible for such programs have recog-
nized that scores on multiple forms should be equated. Second, test developers and
publishers often have referenced the role of equating in arriving at reported scores
to address a number of issues raised by testing critics. Third, the accountability
movement in education and issues of fairness in testing have become much more
visible. These developments have given equating an increased emphasis among
measurement professionals and test users.

In addition to statistical procedures, successful equating involves many aspects
of testing, including procedures to develop tests, to administer and score tests, and
to interpret scores earned on tests. Of course, psychometricians who conduct
equating need to become knowledgeable about all aspects of equating. The
prominence of equating, along with its interdependence with so many aspects of
the testing process, also suggests that test developers and all other testing
professionals should be familiar with the concepts, statistical procedures, and
practical issues associated with equating.

Before we published the first edition in 1995, the need for a book on equating
became evident to us from our experiences in equating hundreds of test forms in
many testing programs, in training psychometricians to conduct equating, in
conducting seminars and courses on equating, and in publishing on equating and
other areas of psychometrics. Our experience suggested that relatively few
measurement professionals had sufficient knowledge to conduct equating. Also,
many did not fully appreciate the practical consequences of various changes in
testing procedures on equating, such as the consequences of many test-legislation
initiatives, the use of constructed-response items in assessments, and the intro-
duction of computer-based test administration. Consequently, we believed that
measurement professionals needed to be educated in equating methods and
practices; the 1995 book was intended to help fulfill this need. Although several
general published references on equating existed at the time (e.g., Angoff 1971;
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Harris and Crouse 1993; Holland and Rubin 1982; Petersen et al. 1989), none of
them provided the broad, integrated, in-depth, and up-to-date coverage of the first
edition of this book.

After the publication of the first edition in 1995, a large body of new research
was published. Much of this work was in technical areas that include smoothing in
equipercentile equating, estimation of standard errors of equating, and the use of
polytomous item response theory methods in equating. In addition, the use of
constructed-response items and computer-based tests became more prominent.
These applications create complexities for equating beyond what is typically
encountered with paper-and-pencil multiple-choice tests. Thus, updating the
material in the first edition was one of the reasons for publishing a second edition.

The first edition briefly considered score scales and test linking. The second
edition devoted whole chapters to each of these topics. The development of score
scales is an important component of the scaling and equating process. Linking of
tests has been of much recent interest, due to various investigations of how to link
tests from different test publishers or constructed for different purposes (e.g., Feuer
et al. 1999). Because both scaling and linking are closely related to test equating, it
seemed natural to extend coverage along these lines.

Following the publication of the second edition in 2004, a considerable amount
of research was conducted on equating, scaling, and linking. In addition to a
substantial number of journal articles, Dorans, Pommerich, and Holland (2007)
and von Davier (2011) published edited books on equating, scaling, and linking.
In addition, a substantial chapter by Holland and Dorans (2006) provides a con-
ceptual framework for classifying equating and linking methodology that focuses
on the properties of scores that are linked and on the requirements of different
types of linking. A chapter by Kolen (2006) provides a updated discussion of score
scales. The third edition updates all chapters to incorporate this recent literature.
Following is a brief overview of the chapters of the third edition.

In Chap. 1, a general introduction is provided, primarily in terms of a
conceptual overview. In this chapter, we define equating, describe its relationship
to test development, and distinguish equating from scaling and linking. We also
present equating designs, properties of equating, and introduce the concept of
equating error.

In Chap. 2, using the random groups design, we illustrate traditional equating
methods, such as equipercentile and linear methods. We also discuss here many of
the key concepts of equating, such as properties of converted scores and the
influence of the resulting scale scores on the choice of an equating result.

In Chap. 3, we cover smoothing methods in equipercentile equating. We show
that the purpose of smoothing is the reduction of random error in estimating
equating relationships in the population. We describe methods based on log-linear
models, cubic splines, and strong true score models.

In Chap. 4, we treat linear equating with nonequivalent groups of examinees.
We derive statistical methods and stress the need to disconfound examinee-group
and test-form differences. Also, we distinguish observed score equating from true
score equating.
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In Chap. 5, we continue our discussion of equating with nonequivalent groups
with a presentation of equipercentile methods.

In Chap. 6, we describe item response theory (IRT) equating methods under
various designs. This chapter covers issues that include scaling person and item
parameters, IRT true and observed score equating methods, equating using item
pools, and equating using polytomous IRT models.

Chapter 7 focuses on standard errors of equating; both bootstrap and analytic
procedures are described. We illustrate the use of standard errors to choose sample
sizes for equating and to compare the precision in estimating equating relation-
ships for different designs and methods.

In Chap. 8, we describe many practical issues in equating, including the
importance of test development procedures, test standardization conditions, and
quality control procedures. We stress conditions that are conducive to adequate
equating. Also, we discuss comparability issues for mixed-format assessments and
computer-based tests.

Chapter 9 is devoted to score scales for tests. We discuss different scaling
perspectives. We describe linear and nonlinear transformations that are used to
construct score scales, and we consider procedures for enhancing the meaning of
scale scores that include incorporating normative, content, and score precision
information. We discuss procedures for maintaining score scales and scales for
batteries and composites. We conclude with a section on vertical scaling that
includes consideration of scaling designs and psychometric methods and a review
of research on vertical scaling.

In Chap. 10, we describe linking categorization schemes and criteria and
consider equating, vertical scaling, and other related methodologies as a part of
these categorization schemes. An extensive example is used to illustrate how the
lack of group invariance in concordance relationships can be examined and used as
a means for demonstrating some of the limitations of linking methods.

We use a random groups illustrative equating example in Chaps. 2, 3, and 7;
a nonequivalent groups illustrative example in Chaps. 4–6; a second random groups
illustrative example in Chaps. 6 and 9; and a single-group illustrative example in
Chap. 10. We use data from the administration of a test battery in multiple grades
for an illustrative example in Chap. 9, and data from the administration of two
different tests for an illustrative example in Chap. 10. Chapters 1–10 each have a set
of exercises that are intended to reinforce the concepts and procedures in the
chapter. The answers to the exercises are in Appendix A. We describe computer
programs and how to obtain them in Appendix B.

In addition to updating the review of literature for all of the chapters, the third
edition incorporates substantial new material as follows:

• Chapter 3 includes additional procedures to choose models in log-linear
pre-smoothing and includes a new brief section on the kernel method of
equating.

• Chapter 4 includes a new section on chained linear equating and incorporates
chained linear equating in the illustrative example. In addition, it includes a new
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discussion of the relationships among linear methods in the common-item
nonequivalent groups design.

• Chapter 5 includes new descriptions of modified frequency estimation equating
and chained equipercentile equating, and incorporates these methods in the
illustrative example.

• Chapter 8 includes a new extensive section on equating criteria in research
studies. Material on equating mixed-format tests containing multiple-choice and
constructed-response items is significantly updated.

• Chapter 9 includes a new section on unit scores, item scores, and raw scores.
A new section on scores for mixed-format tests, including issues in weighting
scores for different item types, is added. In addition, a new section on score
scales and growth is added.

• Chapter 10 includes a new summary of the Holland and Dorans (2006) linking
framework.

In addition, each chapter contains a reference list, rather than having a single
reference list at the end of the volume as in the first two editions.

We anticipate that many readers of this book will be advanced graduate
students, entry-level professionals, or persons preparing to conduct equating,
scaling, or linking for the first time. Other readers likely will be experienced
professionals in measurement and related fields who will want to use this book as a
reference. To address these varied audiences, we make frequent use of examples
and stress conceptual issues. This book is not a traditional statistics text. Instead, it
is meant for instructional use and as a reference for practical use that is intended to
address both statistical and applied issues. The most frequently used methodolo-
gies are treated, as well as many practical issues. Although we are unable to cover
all of the literature on equating, scaling, and linking, we provide many references
so that the interested reader may pursue topics of particular interest.

The principal goals of this book are for the reader to understand the principles
of equating, scaling, and linking; to be able to conduct equating, scaling, and
linking; and to interpret the results in reasonable ways. After studying this book,
the reader should be able to

• Understand the purposes of equating, scaling, and linking and the context in
which they are conducted.

• Distinguish between equating, scaling, and linking methodologies and
procedures.

• Appreciate the importance to equating of test development and quality control
procedures.

• Understand the distinctions among equating properties, equating designs, and
equating methods.

• Understand fundamental concepts—including designs, methods, errors, and
statistical assumptions.

• Compute equating, scaling, and linking functions and choose among methods.
• Interpret results from equating, scaling, and linking analyses.
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• Design reasonable and useful equating, scaling, and linking studies.
• Conduct equating, scaling, and linking in realistic testing situations.
• Identify appropriate and inappropriate uses and interpretations of equating,

scaling, and linking results.

We cover nearly all of the material in this book in a three semester-hour
graduate seminar at The University of Iowa. In our course, we supplement the
materials here with general references (Angoff 1971; Holland and Dorans 2006;
Holland and Rubin 1982; Petersen et al. 1989) so that the students become familiar
with other perspectives and notational schemes.

We have used much of the material in this book in various training sessions,
including those at the annual meetings of the National Council on Measurement in
Education, the American Educational Research Association, and the American
Psychological Association, and in workshops given in Israel, Japan, South Korea,
Spain, Taiwan, and The University of Iowa.

We acknowledge the generous contributions that others made to the first edition
of this book. We benefitted from interactions with very knowledgeable psycho-
metricians at ACT and elsewhere, and many of the ideas in this book came from
conversations and interactions with these people. Specifically, Bradley Hanson
reviewed the entire manuscript and made valuable contributions, especially to the
statistical presentations. He conducted the bootstrap analyses that are presented in
Chapter 7 and, along with Lingjia Zeng, developed much of the computer software
used in the examples. Deborah Harris reviewed the entire manuscript, and we
thank her especially for her insights on practical issues in equating. Chapters 1 and
8 benefitted considerably from her ideas and counsel. Lingjia Zeng also reviewed
the entire manuscript and provided us with many ideas on statistical methodology,
particularly in the areas of standard errors and IRT equating. Thanks to Dean
Colton for his thorough reading of the entire manuscript, Xiaohong Gao for her
review and for working through the exercises, and Ronald Cope and Tianqi Han
for reading portions of the manuscript. We are grateful to Nancy Petersen for her
in-depth review of a draft of the first edition, her insights, and her encouragement.
Bruce Bloxom provided valuable feedback, as did Barbara Plake and her graduate
class at the University of Nebraska–Lincoln. We thank an anonymous reviewer,
and the reviewer’s graduate student, for providing us with their valuable critique.
We are indebted to all who have taken our equating courses and training sessions.

For the second edition, we are grateful to Ye Tong for the many hours she spent on
electronic typesetting, for all of the errors she found, and for helping with many of
the examples and the exercises. We thank Amy Hendrickson for helping to develop
the polytomous IRT examples in Chapter 6, Seonghoon Kim for reviewing the
additions to Chapter 6 on polytomous IRT and for developing the computer program
POLYST, and Ping Yin for her work on Chapters 4 and 10. We acknowledge the
work of Zhongmin Cui and Yueh-Mei Chien on the computer programs, and the
work of Noo Ree Huh on checking references. We thank the students in our equating
and scaling classes at The University of Iowa who discovered many errors and for
helping us clarify some confusing portions of earlier drafts. We are grateful to Neil
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Dorans, Samuel Livingston, and Paul Holland for reviewing portions of the new
material in the second edition. We express our appreciation to the Iowa Measure-
ment Research Foundation for providing support to the graduate students who
worked with us on the second edition. For the third edition, we thank Wei Wang for
her many hours spent on electronic typesetting. We also thank many graduate stu-
dents at The University of Iowa for helping us correct errors that appeared in the
second edition. Amy Kolen deserves thanks for her superb editorial advice for all
three editions.

Iowa City, IA November, 2013 Michael J. Kolen
Robert L. Brennan
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Notation

Arabic

1 Population taking Form X (Chapter 4)
2 Population taking Form Y (Chapter 4)
A Slope constant in linear equating and raw-to-scale score transfor-

mations (Chapter 4)
A Slope constant in IRT h scale transformation (Chapter 6)
a Item slope parameter in IRT (Chapter 6)
B Location constant in linear equating and raw-to-scale score trans-

formations (Chapter 4)
B Location constant in IRT h scale transformation (Chapter 6)
b Item location parameter in IRT (Chapter 6)
b Item or category location parameter in polytomous IRT (Chapter 6)
b* Nonlinear transformation of b (Chapter 9)
bias Bias (Chapter 3)
C Number of degrees of the polynomial in log-linear smoothing

(Chapter 3)
c Item pseudochance level parameter in IRT (Chapter 6)
c Item location parameter in Bock’s nominal categories model

(Chapter 6)
constant A constant (Chapter 2)
cov Sampling covariance (Chapter 7)
D Scaling constant in IRT, usually set to 1.7 (Chapter 6)
DTM Difference That Matters (Chapter 10)
d Category location parameter in generalized partial credit model

(Chapter 6)
dY(x) Expected value of a cubic spline estimator of eY(x) (Chapter 3)
d*

Y(x) Average of two splines (Chapter 3)
df Degrees of freedom (Chapter 3)
E Expected value (Chapter 1)
E Number correct error score (Chapter 4)
e The equipercentile equating function, such as eY(x) (Chapter 2)
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eY(x) The Form Y equipercentile equivalent of a Form X score (Chapter 1)
eX(y) The Form X equipercentile equivalent of a Form Y score (Chapter 2)
effect size Effect size (Chapter 9)
eq General equating function, such as eqY(x) (Chapter 1)
ew Effective weight (Chapter 9)
ewMAD Equally weighted average of absolute differences (Chapter 10)
ewMD Equally weighted average of differences (Chapter 10)
ewREMSD Equally weighted Root Expected Mean Square Difference (Chapter

10)
exp Exponential (Chapter 6)
F(x) PrðX� xÞ is the cumulative distribution for X (Chapter 1)
F* Cumulative distribution function of eqX(y) (Chapter 2)
F-1 Inverse of function F (Chapter 2)
f A general function (Chapter 7)
f 0 The first derivative of f (Chapter 7)
f(x) PrðX ¼ xÞ is the discrete density for X (Chapter 2)
f(x,v) PrðX ¼ x and V ¼ vÞ is the joint density of X and V (Chapter 5)
f(x|v) PrðX ¼ x given V ¼ vÞ is the conditional density of x given

v (Chapter 5)
func Function solved for in Newton–Raphson iterations (Chapter 6)
func0 First derivative of function solved for in Newton–Raphson iterations

(Chapter 6)
G(y) PrðY � yÞ is the cumulative distribution for Y (Chapter 1)
G* The cumulative distribution function of eY (Chapter 1)
G-1 Inverse of function G (Chapter 2)
g Item subscript in IRT (Chapter 6)
g Index used to sum over categories in generalized partial credit model

(Chapter 6)
g Arcsine transformed proportion-correct score (Chapter 9)
g(y) PrðY ¼ yÞ is the discrete density for Y (Chapter 2)
g(y,v) PrðY ¼ y and V ¼ vÞ is the joint density of Y and V (Chapter 5)
g(y|v) PrðY ¼ y given V ¼ vÞ is the conditional density of y given

v (Chapter 5)
gadj Density adjusted by adding 10-6 to each density and then

standardizing (Chapter 2)
H Number of subgroups (Chapter 10)
Hcrit Criterion function for Haebara’s method (Chapter 6)
Hdiff Difference function for Haebara’s method (Chapter 6)
h Index for summing over categories (Chapter 6)
h Number of scale score points for a confidence interval (Chapter 9)
h Subgroup designator (Chapter 10)
h(v) PrðV ¼ vÞ is the discrete density for V (Chapter 5)
I IRT scale (Chapter 6)
I Number of scale scores on Test X (Chapter 10)
i and i0 Individuals (Chapter 6)
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intercept Intercept of an equating function (Chapter 2)
irt IRT true-score equating function (Chapter 6)
J IRT scale (Chapter 6)
J Number of scale scores on Test Y (Chapter 10)
j and j0 Items (Chapter 6)
K Number of items (Chapter 2)
KR-20 Kuder–Richardson Formula 20 reliability coefficient (Chapter 9)
KR-21 Kuder–Richardson Formula 21 reliability coefficient (Chapter 9)
k Lord’s k in the Beta4 method (Chapter 3)
k Categories for an item in polytomous IRT (Chapter 6)
ku Kurtosis, such as kuðXÞ ¼ E½X � lðXÞ�4r4ðXÞ (Chapter 2)
lY(x) The Form Y linear equivalent of a Form X score (Chapter 2)
lX(y) The Form X linear equivalent of a Form Y score (Chapter 2)
MAD Weighted average of absolute differences (Chapter 10)
MD Weighted average of differences (Chapter 10)
m Number of categories for an item in polytomous IRT (Chapter 6)
mY(x) The mean equating equivalent of a Form X score (Chapter 2)
mX(y) The mean equating equivalent of a Form Y score (Chapter 2)
max Maximum score (Chapter 6)
min Minimum score (Chapter 6)
mse Mean squared error (Chapter 3)
N Number of examinees (Chapter 2)
NCE Normal Curve Equivalent (unrounded) (Chapter 9)
NCEint Normal Curve Equivalent rounded to an integer (Chapter 9)
P(x) The percentile rank function for X (Chapter 2)
P* A given percentile rank (Chapter 2)
P** P/100 (Chapter 7)
P-1 The percentile function for X (Chapter 2)
p Probability of a correct response in IRT (Chapter 6)
p Category response function in polytomous IRT (Chapter 6)
p* Cumulative category response function in polytomous

IRT (Chapter 6)
p0 First derivative of p (Chapter 6)
plYh Parallel linear equating equivalent on Test Y for subgroup

h (Chapter 10)
Q(y) Percentile rank function for Y (Chapter 2)
Q-1 Percentile function for Y (Chapter 2)
R Number of bootstrap replications (Chapter 7)
REMSD Root Expected Mean Square Difference (Chapter 10)
RMSD Root Mean Square Difference (Chapter 10)
RP Response Probability level in item mapping (Chapter 9)
r Index for calculating observed score distribution in IRT (Chapter 6)
r Index for bootstrap replications (Chapter 7)
rmsel Root mean squared error for linking (Chapter 10)
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S Smoothing parameter in postsmoothing (Chapter 3)
SC Scale score random variable (Chapter 9)
SLcrit Criterion function for Stocking-Lord method (Chapter 6)
SLdiff Difference function for Stocking-Lord method (Chapter 6)
SMD Standardized Mean Difference (Chapter 10)
s Synthetic population (Chapter 4)
sc Scale score transformation, such as sc(y) (Chapter 2)
scint Scale score rounded to an integer (Chapter 2)
se Standard error, such as se(x) (Chapter 3)
sem Standard error of measurement (Chapter 7)
sk Skewness, such as skðXÞ ¼ E½X � lðXÞ�3=r3ðXÞ (Chapter 2)
slope Slope of equating function (Chapter 2)
st Stanine (unrounded) (Chapter 9)
st Scaling test (Chapter 9)
stint Stanine rounded to an integer (Chapter 9)
T Number correct true score (Chapter 4)
T Normalized score with mean of 50 and standard deviation of 10

(Chapter 9)
Tint Normalized score with mean of 50 and standard deviation of 10

rounded to an integer (Chapter 9)
t Realization of number correct true score (Chapter 4)
tY(x) Expected value of an alternate estimator of eY(x) (Chapter 3)
U Uniform random variable (Chapter 2)
u Standard deviation units (Chapter 7)
V The random variable indicating raw score on Form V (Chapter 4)
v Spline coefficient (Chapter 3)
v A realization of V (Chapter 4)
v Subgroup weight for a particular score (Chapter 10)
var Sampling variance (Chapter 3)
w Weight for synthetic group (Chapter 4)
w Nominal weight (Chapter 9)
w Subgroup weight (Chapter 10)
X The random variable indicating raw score on Form X (Chapter 1)
X Random variable indicating scale score on Test X (Chapter 10)
X* Equals X? U, used in the continuization process (Chapter 2)
x A realization of X (Chapter 2)
x* Integer closest to x such that x� � :5� x\x� þ :5 (Chapter 2)
x* Form X2 score equated to the Form X1 scale (Chapter 7)
xhigh Upper limit in spline calculations (Chapter 3)
x�L The largest integer score with a cumulative percent less than P*

(Chapter 2)
xlow Lower limit in spline calculations (Chapter 3)
x�U Smallest integer score with a cumulative percent greater than P*

(Chapter 2)
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Y The random variable indicating raw score on Form Y (Chapter 1)
Y Random variable indicating scale score on Test Y (Chapter 10)
y A realization of Y (Chapter 1)
y�i Largest tabled raw score less than or equal to eY(x) in finding scale

scores (Chapter 2)
y�L The largest integer score with a cumulative percent less than Q*

(Chapter 2)
y�U The smallest integer score with a cumulative percent greater than Q*

(Chapter 2)
Z The random variable indicating raw score on Form Z (Chapter 4)
z A realization of Z (Chapter 4)
z Unit normal variable (Chapter 7)
z Normalized score (Chapter 10)
z* Selected set of normalized scores in Thurstone scaling (Chapter 9)
zc Unit normal score associated with a 100c % confidence interval

(Chapter 9)

Greek

aðXjVÞ Linear regression slope (Chapter 4)
aðY jVÞ Linear regression slope (Chapter 4)
bðXjVÞ Linear regression intercept (Chapter 4)
bðY jVÞ Linear regression intercept (Chapter 4)
v2 Chi-square test statistic (Chapter 3)
d Location parameter in congeneric models (Chapter 4)
/ Normal ordinate (Chapter 7)
c Expansion factor in linear equating with the common-item nonequiv-

alent groups design (Chapter 4)
c Confidence coefficient (Chapter 9)
k Effective test length in congeneric models (Chapter 4)
l Mean as in lðXÞ and lðYÞ (Chapter 2)
m Weight for a pair of subgroups and a particular score (Chapter 10)
U Inverse normal transformation (Chapter 9)
H Parameter used in developing the delta method (Chapter 7)
h Ability in IRT (Chapter 6)
hþ New value in Newton–Raphson iterations (Chapter 6)
h� Initial value in Newton–Raphson iterations (Chapter 6)
h� Nonlinear transformation of h (Chapter 9)
q Correlation, such as qðX;VÞ (Chapter 4)
qðX;X0Þ Reliability (Chapter 4)
rðX;VÞ Covariance between X and V (Chapter 4)
rðY ;VÞ Covariance between Y and V (Chapter 4)
r2 Variance such as r2ðXÞ ¼ E½X � lðXÞ�2 (Chapter 4)
rij Covariance between variables i and j (Chapter 9)
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Chapter 1
Introduction and Concepts

This chapter provides a general overview of equating and briefly considers important
concepts. The concept of equating is described, as is why it is needed, and how to
distinguish it from other related processes. Equating properties and designs are con-
sidered in detail, because these concepts provide the organizing themes for address-
ing the statistical methods treated in subsequent chapters. Some issues in evaluating
equating are also considered. The chapter concludes with a preview of subsequent
chapters.

1.1 Equating and Related Concepts

Scores on tests often are used as one piece of information in making important
decisions. Some of these decisions focus at the individual level, such as when a
student decides which college to attend or on a course in which to enroll. For other
decisions the focus is more at an institutional level. For example, an agency or
institution might need to decide what test score is required to certify individuals for
a profession or to admit students into a college, university, or the military. Still other
decisions are made at the public policy level, such as addressing what can be done
to improve education in the United States and how changes in educational practice
can be evaluated. Regardless of the type of decision that is to be made, it should be
based on the most accurate information possible: All other things being equal, the
more accurate the information, the better the decision.

Making decisions in many of these contexts requires that tests be administered on
multiple occasions. For example, college admissions tests typically are administered
on particular days, referred to as test dates, so examinees can have some flexibility in
choosing when to be tested. Tests also are given over many years to track educational
trends over time. If the same test questions were routinely administered on each test

Some of the material in this chapter is based on Kolen (1988).
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date, then examinees might inform others about the test questions. Or, an examinee
who tested twice might be administered the same test questions on the two test dates.
In these situations, a test might become more of a measure of exposure to the specific
questions that are on the test than of the construct that the test is supposed to measure.

1.1.1 Test Forms and Test Specifications

These test security problems can be addressed by administering a different collection
of test questions, referred to as a test form, to examinees who test on different test
dates. A test form is a set of test questions that is built according to content and
statistical test specifications (Schmeiser and Welch 2006). Test specifications provide
guidelines for developing the test. Those responsible for constructing the test, the
test developers, use these specifications to ensure that the test forms are as similar
as possible to one another in content and statistical characteristics.

1.1.2 Equating

The use of different test forms on different test dates leads to another concern: the
forms might differ somewhat in difficulty. Equating is a statistical process that is used
to adjust scores on test forms so that scores on the forms can be used interchangeably.
Equating adjusts for differences in difficulty among forms that are built to be similar
in difficulty and content.

The following situation is intended to develop further the concept of equating.
Suppose that a student takes a college admissions test for the second time and earns
a higher reported score than on the first testing. One explanation of this difference is
that the reported score on the second testing reflects a higher level of achievement
than the reported score on the first testing. However, suppose that the student had been
administered exactly the same test questions on both testings. Rather than indicating
a higher level of achievement, the student’s reported score on the second testing
might be inflated because the student had already been exposed to the test items.
Fortunately, a new test form is used each time a test is administered for most college
admissions tests. Therefore, a student would not likely be administered the same test
questions on any two test dates.

The use of different test forms on different test dates might cause another problem,
as is illustrated by the following situation. Two students apply for the same college
scholarship that is based partly on test scores. The two students take the test on
different test dates, and Student 1 earns a higher reported score than Student 2.
One possible explanation of this difference is that Student 1 is higher achieving
than Student 2. However, if Student 1 took an easier test form than Student 2, then
Student 1 would have an unfair advantage over Student 2. In this case, the difference
in scores might be due to differences in the difficulty of the test forms rather than in
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the achievement levels of the students. To avoid this problem, equating is used with
most college admissions tests. If the test forms are successfully equated, then the
difference in equated scores for Student 1 and Student 2 is not attributable to Student
1’s taking an easier form.

The process of equating is used in situations where such alternate forms of a test
exist and scores earned on different forms are compared to each other. Even though
test developers attempt to construct test forms that are as similar as possible to one
another in content and statistical specifications, the forms typically differ somewhat
in difficulty. Equating is intended to adjust for these difficulty differences, allowing
the forms to be used interchangeably. Equating adjusts for differences in difficulty,
not for differences in content. After successful equating, for example, examinees who
earn an equated score of, say, 26 on one test form could be considered, on average,
to be at the same achievement level as examinees who earn an equated score of 26
on a different test form.

1.1.3 Processes That are Related to Equating

There are processes that are similar to equating, which may be more properly referred
to as scaling to achieve comparability, in the terminology of the Standards for Edu-
cational and Psychological Testing (AERA, APA, NCME 1999), or linking, in the
terminology of Holland and Dorans (2006), Linn (1993) and Mislevy (1992). One
of these processes is vertical scaling (frequently referred to as vertical “equating”),
which often is used with elementary school achievement test batteries. In these batter-
ies, students often are administered questions that test content matched to their current
grade level. This procedure allows developmental scores (e.g., grade equivalents) of
examinees at different grade levels to be compared. Because the content of the tests
administered to students at various educational levels is different, however, scores
on tests intended for different educational levels cannot be used interchangeably.
Other examples of linking include relating scores on one test to those on another,
and scaling the tests within a battery so that they all have the same distributional
characteristics. As with vertical scaling, solutions to these problems do not allow
test scores to be used interchangeably, because the content of the tests is different.

Although similar statistical procedures often are used in linking and equating, their
purposes are different. Whereas tests that are purposefully built to be different are
linked, equating is used to adjust scores on test forms that are built to be as similar
as possible in content and statistical characteristics. When equating is successful,
scores on alternate forms can be used interchangeably. Issues in linking tests that are
not built to the same specifications are considered further in Chaps. 9 and 10.

http://dx.doi.org/10.1007/978-1-4939-0317-7_9
http://dx.doi.org/10.1007/978-1-4939-0317-7_10
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1.1.4 Equating and Score Scales

On a multiple-choice test, the raw score an examinee earns is often the number of
items the examinee answers correctly. Other raw scores might involve penalties for
wrong answers or weighting items differentially. On tests that require ratings by
judges, a raw score might be the sum of the numerical ratings made by the judges.

Raw scores often are transformed to scale scores. The raw-to-scale score trans-
formation can be chosen by test developers to enhance the interpretability of
scores by incorporating useful information into the score scale (Kolen 2006; Petersen
et al. 1989). Information based on a nationally representative group of examinees,
referred to as a national norm group, sometimes is used as a basis for establishing
score scales. For example, the number-correct scores for the four tests of the initial
form of a revised version of the ACT tests were scaled (Brennan 1989) to have a
mean scale score of 18 for a nationally representative sample of college-bound 12th
graders. Thus, an examinee who earned a scale score of 22, for example, would know
that this score was above the mean scale score for the nationally representative sam-
ple of college-bound 12th graders used to develop the score scale. One alternative
to using nationally representative norm groups is to base scale score characteristics
on a user norm group, which is a group of examinees that is administered the test
under operational conditions. For example, a rescaled SAT scale was established for
use beginning in 1995 by setting the mean score equal to 500 for the group of SAT
examinees that graduated from high school in 1990 (Cook 1994; Dorans 2002).

Scaling and Equating Process

Equating can be viewed as an aspect of a more general scaling and equating process.
Score scales typically are established using a single test form. For subsequent test
forms, the scale is maintained through an equating process that places raw scores
from subsequent forms on the established score scale. In this way, a scale score has
the same meaning regardless of the test form administered or the group of examinees
tested. Typically, raw scores on the new form are equated to raw scores on the old
form, and these equated raw scores are then converted to scale scores using the
raw-to-scale score transformation for the old form.

Example of the Scaling and Equating Process

The hypothetical conversions shown in Table 1.1 illustrate the scaling and equating
process. The first two columns show the relationship between Form Y raw scores and
scale scores. For example, a raw score of 28 on Form Y converts to a scale score of 14
(At this point there is no need to be concerned about what particular method was used
to develop the raw-to-scale score transformation). The relationship between Form
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Table 1.1 Hypothetical conversion tables for test forms

Scale Form Y raw Form X1 raw Form X2 raw

• • • •
• • • •
• • • •
13 26 27 28
14 27 28 29
14 28 29 30
15 29 30 31
15 30 31 32
• • • •
• • • •
• • • •

Y raw scores and scale scores shown in the first two columns involves scaling—not
equating, because Form Y is the only form that is being considered so far.

Assume that an equating process indicates that Form X1 is 1 point easier than
Form Y throughout the score scale. A raw score of 29 on Form X1 would thus reflect
the same level of achievement as a raw score of 28 on Form Y. This relationship
between Form Y raw scores and Form X1 raw scores is displayed in the second and
third columns in Table 1.1. What scale score corresponds to a Form X1 raw score
of 29? A scale score of 14 corresponds to this raw score, because a Form X1 raw
score of 29 corresponds to a Form Y raw score of 28, and a Form Y raw score of 28
corresponds to a scale score of 14.

To carry the example one step further, assume that Form X2 is found to be uni-
formly 1 raw score point easier than Form X1. Then, as illustrated in Table 1.1, a
raw score of 30 on Form X2 corresponds to a raw score of 29 on Form X1, which
corresponds to a raw score of 28 on Form Y, which corresponds to a scale score of
14. Later, additional forms could be converted to scale scores by a similar chaining
process. The result of a successful scaling and equating process is that scale scores
on all forms can be used interchangeably.

Possible Alternatives to Equating

Equating has the potential to improve score reporting and interpretation of tests that
have alternate forms when examinees administered different forms are evaluated at
the same time, or when score trends are to be evaluated over time. When at least
one of these characteristics is present, at least two possible, but typically unaccept-
able, alternatives to equating exist. One alternative is to report raw scores regardless
of the form administered. As was the case with Students 1 and 2 considered ear-
lier, this approach could cause problems because examinees who were administered
an easier form are advantaged and those who were administered a more difficult
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form are disadvantaged. As another example, suppose that the mean score on a test
increased from 27 one year to 30 another year, and that different forms of the test were
administered in the 2 years. Without additional information, it is impossible to deter-
mine whether this 3-point score increase is attributable to differences in the difficulty
of the two forms, differences in the achievement level of the groups tested, or some
combination of these two factors.

A second alternative to equating is to convert raw scores to other types of scores
so that certain characteristics of the score distributions are the same across all test
dates. For example, for a test with two test dates per year, say in February and
August, the February raw scores might be converted to scores having a mean of
50 among the February examinees, and the August raw scores might be converted
to have a mean of 50 among the August examinees. Suppose, given this situation,
that an examinee somehow knew that August examinees were higher achieving, on
average, than February examinees. In which month should the examinee take the
test to earn the highest score? Because the August examinees are higher achieving,
a high converted score would be more difficult to get in August than in February.
Examinees who take the test in February, therefore, would be advantaged. Under
these circumstances, examinees who take the test with a lower achieving group
are advantaged, and examinees who take the test with a higher achieving group
are disadvantaged. Furthermore, trends in average examinee performance cannot be
addressed using this alternative because the average converted scores are the same
regardless of the achievement level of the group tested.

Successfully equated scores are not affected by the problems that occur with these
two alternatives. Successful equating adjusts for differences in the difficulty of test
forms; the resulting equated scores have the same meaning regardless of when or to
whom the test was administered.

1.1.5 Equating and the Test Score Decline of the 1960s and 1970s

The importance of equating in evaluating trends over time is illustrated by issues
surrounding the substantial decline in test scores in the 1960s and 1970s. A num-
ber of studies were undertaken to try to understand the causes for this decline (See,
for example, Advisory Panel on the Scholastic Aptitude Test Score Decline 1977;
Congressional Budget Office 1986; Harnischfeger and Wiley 1975). One of the poten-
tial causes that was investigated was whether the decline was attributable to inaccurate
equating. The studies concluded that the equating was adequate. Thus, the equating
procedures allowed the investigators to rule out changes in test difficulty as being the
reason for the score decline. Next the investigators searched for other explanations.
These explanations included changes in how students were being educated, changes
in demographics of test takers, and changes in social and environmental conditions.
It is particularly important to note that the search for these other explanations was
made possible because equating ruled out changes in test difficulty as the reason for
the score decline.
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1.2 Equating and Scaling in Practice: A Brief Overview
of This Book

So far, what equating is and why it is important have been described in general
terms. Clearly, equating involves the implementation of statistical procedures. In
addition, as has been stressed, equating requires that all test forms be developed
according to the same content and statistical specifications. Equating also relies on
adequate test administration procedures, so that the collected data can be used to judge
accurately the extent to which the test forms differ statistically. In our experience,
the most challenging part of equating often is ensuring that the test development, test
administration, and statistical procedures are coordinated. The following is a list of
steps for implementing equating (the order might vary in practice):

1. Decide on the purpose for equating.
2. Construct alternate forms. Alternate test forms are constructed in accordance

with the same content and statistical specifications.
3. Choose a design for data collection. Equating requires that data be collected for

providing information on how the test forms differ statistically.
4. Implement the data collection design. The test is administered and the data are

collected as specified by the design.
5. Choose one or more operational definitions of equating. Equating requires that

a choice be made about what types of relationships between forms are to be esti-
mated. For example, this choice might involve deciding on whether to implement
linear or nonlinear equating methods.

6. Choose one or more statistical estimation methods. Various procedures exist for
estimating a particular equating relationship. For example, in Chap. 4, linear
equating relationships are estimated using the Tucker and Levine methods.

7. Evaluate the results of equating. After equating is conducted, the results need
to be evaluated. Some evaluation procedures are discussed along with methods
described in Chaps. 2–6. The test development process, test administration, sta-
tistical procedures, and properties of the resulting equating are all components
of the evaluation, as is discussed in Chap. 8.

As these steps in the equating process suggest, individuals responsible for con-
ducting equating make choices about designs, operational definitions, statistical
techniques, and evaluation procedures. In addition, various practical issues in test
administration and quality control are often vital to successful equating.

In practice, equating requires considerable judgment on the part of the individ-
uals responsible for conducting equating. General experience and knowledge about
equating, along with experience in equating for tests in a testing program, are vital to
making informed judgments. As a statistical process, equating also requires the use
of statistical techniques. Therefore, conducting equating involves a mix of practical
issues and statistical knowledge. This book treats both practical issues and statistical
concepts and procedures.

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
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This book is intended to describe the concept of test form equating, to distinguish
equating from other similar processes, to describe techniques used in equating, and to
describe various practical issues involved in conducting equating. These purposes are
addressed by describing information, techniques, and resources that are necessary to
understand the principles of equating, to design and conduct an informed equating,
and to evaluate the results of equating in reasonable ways.

This book also is intended to describe the concept of test scaling in detail. Test
scaling is distinguished from test form equating. Techniques and practical issues
involved in scaling are developed that are necessary for understanding how tests are
scaled and to evaluate the results of scaling techniques. Linking methods are also
discussed by presenting conceptual frameworks for linking and discussing some
prominent examples of linking as it is used in practice.

Many of the changes that have taken place in the literature on equating, scaling,
and linking in recent years are reflected in this book. Although the vast literature
that has developed is impossible to review in a single volume, this book provides
many references that should help the reader access the literature. We recommend that
works by Angoff (1971), Dorans et al. (2007), Harris and Crouse (1993), Holland and
Dorans (2006), Holland et al. (2007), Holland and Rubin (1982), Kolen (2006), Kolen
and Hendrickson (2013), Linn (1993), Livingston (2004), Mislevy (1992), Petersen
et al. (1989), Ryan and Brockmann (2009) and von Davier (2011) be consulted as
supplements.

Subsequent sections of this chapter focus on equating properties and equating
designs, which are required concepts for Chaps. 2–6. Equating error and evaluation
of equating methods also are briefly discussed. Specific operational definitions and
statistical estimation methods are the focus of Chaps. 2–6. Equating error is described
in Chaps. 7 and 8. Practical issues in equating, along with new directions, are also
discussed in Chap. 8. Score scales are discussed in Chap. 9 and linking in Chap. 10.

1.3 Properties of Equating

Various desirable properties of equating relationships have been proposed in the
literature (Angoff 1971; Harris and Crouse 1993; Holland and Dorans 2006; Lord
1980; Petersen et al. 1989). Some properties focus on individuals’ scores, others on
distributions of scores. At the individual level, ideally, an examinee taking one form
would earn the same reported score regardless of the form taken. At the distribution
level, for a group of examinees, the same proportion would earn a reported score at
or below, say, 26 on Form X as they would on Form Y. These types of properties
have been used as the principal basis for developing equating procedures.

Some properties focus on variables that cannot be directly observed, such as true
scores in classical test theory (Lord and Novick 1968) and latent abilities in item
response theory (IRT ) (Lord 1980). True scores and latent abilities are scores that an
examinee would have earned had there been no measurement error. For example, in
classical test theory the score that an examinee earns, the examinee’s observed score,

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_7
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_9
http://dx.doi.org/10.1007/978-1-4939-0317-7_10
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is viewed as being composed of the examinee’s true score and measurement error.
It is assumed that if the examinee could be measured repeatedly, then measurement
error would, on average, equal zero. Statistically, the true score is the expected score
over replications. Because the examinee is not measured repeatedly in practice, the
examinee’s true score is not directly observed. Instead, the true score is modeled
using a test theory model.

Other equating properties focus on observed scores. Observed score properties of
equating do not rely on test theory models.

1.3.1 Symmetry Property

The symmetry property (Lord 1980), which requires that equating transformations be
symmetric, is required for a relationship to be considered an equating relationship.
This property requires that the function used to transform a score on Form X to the
Form Y scale be the inverse of the function used to transform a score on Form Y
to the Form X scale. For example, this property implies that if a raw score of 26 on
Form X converts to a raw score of 27 on Form Y, then a raw score of 27 on Form
Y must convert to a raw score of 26 on Form X. This symmetry property rules out
regression as an equating method, because the regression of Y on X is, in general,
different from the regression of X on Y . As a check on this property, an equating
of Form X to Form Y and an equating of Form Y to Form X could be conducted.
If these equating relationships are plotted, then the symmetry property requires that
these plots be indistinguishable. Symmetry is considered again in Chap. 2.

1.3.2 Same Specifications Property

As indicated earlier, test forms must be built to the same content and statistical spec-
ifications if they are to be equated. Otherwise, regardless of the statistical procedures
used, the scores can not be used interchangeably. This same specifications property
is essential if scores on alternate forms are to be considered interchangeable.

1.3.3 Equity Properties

Lord (1980, p. 195) proposed Lord’s equity property of equating, which is based
on test theory models. For Lord’s equity property to hold, it must be a matter of
indifference to each examinee whether Form X or Form Y is administered.

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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Lord defined this property specifically. Lord’s equity property holds if examinees
with a given true score have the same distribution of converted scores on Form X as
they would on Form Y. To make the description of this property more precise, define

τ as the true score;
Form X as the new form—let X represent the random variable score on Form X,

and let x represent a particular score on Form X (i.e., a realization of X );
Form Y as the old form—let Y represent the random variable score on Form Y,

and let y represent a particular score on Form Y (i.e., a realization of Y );
G as the cumulative distribution of scores on Form Y for the population of exam-

inees;
eqY as an equating function that is used to convert scores on Form X to the scale

of Form Y; and
G∗ as the cumulative distribution of eqY for the same population of examinees.

Lord’s equity property holds in the population if

G∗[eqY (x)|τ ] = G(y|τ ), for all τ . (1.1)

This property implies that examinees with a given true score would have identical
observed score means, standard deviations, and distributional shapes of converted
scores on Form X and scores on Form Y. In particular, the identical standard deviations
imply that the conditional standard error of measurement at any true score are equal
on the two forms. If, for example, Form X measured somewhat more precisely at
high scores than Form Y, then Lord’s equity property would not be met.

Lord (1980) showed that, under fairly general conditions, Lord’s equity property
specified in Eq. (1.1) is possible only if Form X and Form Y are essentially identical.
However, identical forms typically cannot be constructed in practice. Furthermore,
if identical forms could be constructed, then there would be no need for equating.
Thus, using Lord’s equity property as the criterion, equating is either impossible or
unnecessary.

Morris (1982) suggested a less restrictive version of Lord’s equity property that
might be more readily achieved, which is referred to as the first- order equity property
or weak equity property (also see Yen 1983). Under the first-order equity property,
examinees with a given true score have the same mean converted score on Form X as
they have on Form Y. Defining E as the expectation operator, an equating achieves
the first-order equity property if

E[eqY (X)|τ ] = E(Y |τ ) for all τ . (1.2)

The first-order equity property implies that examinees are expected to earn the same
equated score on Form X as they would on Form Y. Suppose examinees with a given
true score earn, on average, a score of 26 on Form Y. Under the first-order equity
property, these examinees also would earn, on average, an equated score of 26 on
Form X.
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As is described in Chap. 4, linear methods have been developed that are consistent
with the first-order equity property. Also, the IRT true score methods that are dis-
cussed in Chap. 6 are related to this equity property. The equating methods that are
based on equity properties are closely related to other psychometric procedures, such
as models used to estimate reliability. These methods make explicit the requirement
that the two forms measure the same achievement through the true score. Procedures
for evaluating the equity properties are considered in Chap. 8.

1.3.4 Observed Score Equating Properties

In observed score equating, the characteristics of score distributions are set equal for
a specified population of examinees (Angoff 1971). For the equipercentile equating
property, the converted scores on Form X have the same distribution as scores on
Form Y. More explicitly, this property holds, for the equipercentile equating function,
eY , if

G∗[eY (x)] = G(y), (1.3)

where G∗ and G were defined previously. The equipercentile equating property
implies that the cumulative distribution of equated scores on Form X is equal to the
cumulative distribution of scores on Form Y.

Suppose a passing score was set at a scale score of 26. If the equating of the forms
achieved the equipercentile equating property, then the proportion of examinees in
the population earning a scale score below 26 on Form X would be the same as the
proportion of examinees in the population earning a scale score below 26 on Form Y.
In addition, in the population, the same proportion of examinees would score below
any particular scale score, regardless of the form taken. For example, if a scale score
of 26 was chosen as a passing score, then the same proportion of examinees in the
population would pass using either Form X or Form Y.

The equipercentile equating property is the focus of the equipercentile equating
methods described in Chaps. 2, 3, and 5 and the IRT observed score equating method
described in Chap. 6. Two other observed score equating properties also may be used
sometimes. Under the mean equating property, converted scores on the two forms
have the same mean. This property is the focus of the mean observed score equating
methods described in Chap. 2. Under the linear equating property, converted scores
on the two forms have the same mean and standard deviation. This property is the
focus of the linear observed score methods described in Chaps. 2, 4, and 5. When
the equipercentile equating property holds, the linear and mean equating properties
must also hold. When the linear equating property holds, the mean equating property
also must hold.

Observed score equating methods associated with the observed score properties
of equating predate other methods, which partially explains why they have been used
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more often. Observed score methods do not directly consider true scores or other
unobservable variables, and in this way they are less complicated. As a consequence,
however, nothing in the statistical machinery of observed score equating requires
that test forms be built to the same specifications. This requirement is added so that
results from equating may be reasonably and usefully interpreted.

1.3.5 Group Invariance Property

Under the group invariance property, the equating relationship is the same regard-
less of the group of examinees used to conduct the equating. For example, if the
group invariance property holds, the same equating relationship would be found for
females and males. Lord and Wingersky (1984) indicated that methods based on
observed score properties of equating are not strictly group invariant. This obser-
vation was further discussed by van der Linden (2000). However, research on the
group invariance property conducted by Angoff and Cowell (1986) and Harris and
Kolen (1986) suggested that the conversions are very similar across various examinee
groups, at least in those situations where carefully constructed alternate forms are
equated. Lord and Wingersky (1984) indicated that, under certain theoretical con-
ditions, which were stated explicitly by van der Linden (2000), true score equating
methods are group invariant. However, group invariance does not necessarily hold
for these methods when observed scores are substituted for true scores. Dorans and
Holland (2000) developed procedures and statistics for investigating group invari-
ance. These statistics were summarized by Holland and Dorans (2006), and are also
considered in Chap. 10. Because group invariance cannot be assumed to exist in the
strictest sense, even in equating situations, the population of examinees on which
the equating relationship is developed should be clearly stated and representative of
the group of examinees who are administered the test.

1.4 Equating Designs

A variety of designs can be used for collecting data for equating. The group of
examinees included in an equating study should be reasonably representative of the
group of examinees who will be administered the test under typical test administration
conditions. The choice of a design involves both practical and statistical issues. Three
commonly used designs are illustrated in Fig. 1.1. Assume that a conversion from
Form Y to scale scores has been developed, and that Form X is a new form to be
equated to Form Y.

http://dx.doi.org/10.1007/978-1-4939-0317-7_10
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Fig. 1.1 Illustration of three
data collection designs

Form X Form Y

Random Groups
Random Subgroup 1 Random Subgroup 2
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Form X Form Y
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Taken
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Group 1
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Common
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1.4.1 Random Groups Design

The random groups design is the first design shown in Fig. 1.1. In this design,
examinees are randomly assigned the form to be administered.

A spiraling process is one procedure that can be used to randomly assign forms
using this design. In one method for spiraling, Form X and Form Y are alternated when
the test booklets are packaged. When the booklets are handed out, the first examinee
receives Form X, the second examinee Form Y, the third examinee Form X, and so
on. This spiraling process typically leads to comparable, randomly equivalent groups
taking Form X and Form Y. When using this design, the difference between group-
level performance on the two forms is taken as a direct indication of the difference
in difficulty between the forms.
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For example, suppose that the random groups design is used to equate Form X
to Form Y using large representative examinee groups. Suppose also that the mean
for Form Y is 77 raw score points and the mean for Form X is 72 raw score points.
Because the mean for Form Y is 5 points higher than the mean for Form X, Form Y is
5 raw score points easier, on average, than Form X. This example is a simplification of
equating in practice. More complete methods for equating using the random groups
design are described in detail in Chap. 2.

One practical feature of the random groups design is that each examinee takes
only one form of the test, thus minimizing testing time relative to a design in which
examinees take more than one form. In addition, more than one new form can be
equated at the same time by including the additional new forms in the spiraling
process. The random groups design requires that all the forms be available and
administered at the same time, which might be difficult in some situations. If there is
concern about test form security, administering more than one form could exacerbate
these concerns. Because different examinees take the forms to be equated, large
sample sizes are typically needed.

When spiraling is used for random assignment, certain practical issues should
be considered. First, examinees should not be seated in a way that would defeat
the process. For example, if examinees were systematically seated boy–girl, boy–
girl, then the boys might all be administered Form X and the girls Form Y. Also,
suppose that there were many testing rooms. If the first examinee in each room was
administered Form X, then more Form X booklets would be administered than Form
Y booklets in those rooms with an odd number of examinees.

1.4.2 Single Group Design

In the single group design (not shown in Fig. 1.1) the same examinees are admin-
istered both Form X and Form Y. What if Form X was administered first to all
examinees followed by Form Y? If fatigue was a factor in examinee performance,
then Form Y could appear relatively more difficult than Form X because examinees
would be tired when administered Form Y. On the other hand, if familiarity with
the test increased performance, then Form Y could appear to be easier than Form X.
Because these order effects are typically present, and there is no reason to believe
they cancel each other out, this design is rarely used in practice.

1.4.3 Single Group Design with Counterbalancing

Counterbalancing the order of administration of the forms is one way to deal with
order effects in the single group design. In one method for counterbalancing, test
booklets are constructed that contain Form X and Form Y. One-half of the test
booklets are printed with Form X following Form Y, and the other half are printed

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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Table 1.2 Means for two forms of a hypothetical test administered
using the single group design with counterbalancing

Subgroup 1 Subgroup 2

Form taken first Form X Form Y
72 77

Form taken second Form Y Form X
75 71

with Form Y following Form X. In packaging, test booklets having Form X first are
alternated with test booklets having Form Y first. When the test booklets are handed
out, the first examinee takes Form X first, the second examinee takes Form Y first, the
third examinee takes Form X first, and so on. When the booklets are administered,
the first and second forms are separately timed. This spiraling process helps to ensure
that the examinee group receiving Form Y first is comparable to the examinee group
receiving Form X first.

Figure 1.1 provides an illustration of the single group design with counterbalanc-
ing. The portion of the design labeled “Form Taken First” is identical to the random
groups design shown in Fig. 1.1. Therefore, Form X could be equated to Form Y
using only the data from the form taken first (i.e., Form X data from Subgroup 1
and Form Y data from Subgroup 2). To take full advantage of this design, however,
the data from the “Form Taken Second” also could be used. Assume that examinees
typically take only one form of the test when the test is later administered opera-
tionally to examinees. In this case, the equating relationship of interest would be the
relationship between the forms when the forms are administered first. If the effect of
taking Form X after taking Form Y is the same as the effect of taking Form Y after
taking Form X, then the equating relationship will be the same between the forms
taken first as it is between the forms taken second. Otherwise, a differential order
effect is said to have occurred, and the equating relationships would differ. In this
case, the data for the form that is taken second might need to be disregarded, which
could lead to instability in the equating (see Chap. 7 for a discussion of equating
error) and a waste of examinee time.

As an example, Table 1.2 presents a situation in which the effect of taking Form
X after taking Form Y differs from the effect of taking Form Y after taking Form X.
In this example, alternate forms of a test are to be equated by the single group design
with counterbalancing using very large groups of examinees. The raw score means
for the form that was taken first are shown in the first line of the table. Subgroup 2
had a mean of 77 on Form Y, which is 5 points higher than the mean of 72 earned
by the randomly equivalent Subgroup 1 on Form X. Thus, using only data from the
form that was taken first, Form Y appears to be 5 points easier, on average, than
Form X. The means for the form that was taken second are shown in the second line
of the table. Subgroup 1 had a mean of 75 on Form Y, which is 4 points higher than
the mean of 71 earned by randomly equivalent Subgroup 2 on Form X. Thus, using
data from the form taken second, Form Y is 4 points easier, on average, than Form

http://dx.doi.org/10.1007/978-1-4939-0317-7_7
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X. Because the sample size is very large, this 4- versus 5-point difference suggests
that there is a differential order effect. When a differential order effect like this one
is present, the data from the form taken second might need to be disregarded. These
issues are discussed further in Chap. 2.

In addition to the need to control for differential order effects, other practical
problems can restrict the usefulness of the single group design with counterbalancing.
Because two forms must be administered to the same students, testing time needs to be
doubled, which often is not practically feasible. If fatigue and practice are effectively
controlled by counterbalancing and differential order effects are not present, then
the primary benefit in using the single group design with counterbalancing is that
it typically has smaller sample size requirements than the random groups design,
because, by taking both of the forms, each examinee serves as his or her own control.

In practice, the single group design with counterbalancing might be used instead
of the random groups design when (1) administering two forms to examinees is
operationally possible, (2) differential order effects are not expected to occur, and
(3) it is difficult to obtain participation of a sufficient number of examinees in an
equating study that uses the random groups design. Relative sample size requirements
for these two designs are discussed in Chap. 7.

1.4.4 ASVAB Problems with a Single Group Design

The Armed Services Vocational Aptitude Battery (ASVAB) is a battery of ability
tests that is used in the process of selecting individuals for the military. In 1976, new
forms of the ASVAB were introduced. Scores on these forms were to be reported on
the scale of previous forms through the use of a scaling process (Because the content
of the new forms differed somewhat from the content of the previous forms, the
process used to convert scores to the scale of the previous forms is referred to here
as scaling rather than as equating). Maier (1993) indicated that problems occurred
in the scaling process, with the result that many individuals entered the military who
were actually not eligible to enter under the standards that were intended to be in
effect at the time. As a result, Maier estimated that between January 1, 1976, and
September 30, 1980, over 350,000 individuals entered the military who should have
been judged ineligible. Maier reported that a complicated set of circumstances led
to these problems. Most of the problems were a result of how the scaling study was
designed and carried out. The effects of one of these problems are discussed here.

The examinees included in the study were applying to the military. In the scaling
process, each examinee was administered both the old and new forms (Supposedly,
the order was counterbalanced—see Maier 1993, for a discussion). The scores on the
old form were used for selection. No decisions about the examinees were made using
the scores on the new form. Many examinees were able to distinguish between the
old and the new forms (For example, the content differed and the printing quality of
the old form was better than that for the new form). Also, many examinees knew that
only the scores on the old form were to be used for selection purposes. Because the

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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scores on the old form were to be used in the process of making selection decisions,
the examinees were likely more motivated when taking the old form than they were
when taking the new form. It seems reasonable to assume that scores under conditions
of greater motivation would be higher than they would be under lower motivation
conditions.

The following hypothetical example demonstrates how this motivation difference
might be reflected in the scale scores. Suppose that the following conditions hold:

1. A raw score of 10 on the old form corresponds to a raw score of 10 on the new
form under conditions of high motivation.

2. A raw score of 8 on the old form corresponds to a raw score of 8 on the new form
under conditions of high motivation.

3. A raw score of 10 on each form corresponds to a scale score of 27 under the
conditions of high motivation.

4. A raw score of 8 on each form corresponds to a scale score of 25 under the
conditions of high motivation.

5. When either of the forms is administered under conditions of lower motivation
the raw scores are depressed by 2 points.

Conditions 1 and 2 imply that the old and new forms are equally difficult at a raw
score of 10 under high motivation conditions. The same is true at a raw score of 8.

What would happen in a scaling study if the old form was administered under high
motivation and the new form under low motivation, and the motivation differences
were not taken into account? In this case, a score of 8 on the new form would appear
to correspond to a score of 10 on the old form, because the new form score would
be depressed by 2 points. In the scaling process, an 8 on the new form would be
considered to be equivalent to a 10 on the old form and to a scale score of 27. That is,
an 8 on the new form would correspond to a scale score of 27 instead of the correct
scale score of 25. Thus, when the new form is used later under high motivation
conditions, scale scores on the new form would be too high.

Reasoning similar to that in this hypothetical example led Maier (1993) to con-
clude that motivation differences caused the scale scores on the new form to be too
high when the new form was used to make selection decisions for examinees. The
most direct effect of these problems was that the military selected many individu-
als using scores on the new form whose skill levels were lower than the intended
standards. After the problem was initially detected in 1976, it took until October of
1980 to sort out the causes for the problems and to build new tests and scales that
were judged to be sound. It took much effort to resolve the ASVAB scaling problem,
including conducting a series of research studies, hiring a panel of outside testing
experts, and significantly improving the quality control and oversight procedures for
the ASVAB program.



18 1 Introduction and Concepts

Table 1.3 Means for two forms of a hypothetical 100-item test with
an internal set of 20 common items

Group Form X Form Y Common Items
(100 items) (100 items) (20 items)

1 72 – 13 (65 %)
2 – 77 15 (75 %)

1.4.5 Common-Item Nonequivalent Groups Design

The last design shown in Fig. 1.1 is the common-item nonequivalent groups design.
This design often is used when more than one form per test date cannot be
administered because of test security or other practical concerns. In this design,
Form X and Form Y have a set of items in common, and different groups of exami-
nees are administered the two forms. For example, a group tested one year might be
administered Form X and a group tested another year might be administered Form
Y. This design has two variations. When the score on the set of common items con-
tributes to the examinee’s score on the test, the set of common items is referred to as
internal. The internal common items are chosen to represent the content and statisti-
cal characteristics of the old form. For this reason, internal common items typically
are interspersed among the other items in the test form. When the score on the set of
common items does not contribute to the examinee’s score on the test form, the set
of common items is referred to as external. Typically, external common items are
administered as a separately timed section.

To reflect group differences accurately, the set of common items should be propor-
tionally representative of the total test forms in content and statistical characteristics.
That is, the common-item set should be a “mini version” of the total test form. The
common items also should behave similarly in the old and new forms. To help ensure
similar behavior, each common item should occupy a similar location (item number)
in the two forms. In addition, the common items should be exactly the same (e.g., no
wording changes or rearranging of alternatives) in the old and new forms. Additional
ways to help ensure adequate equating using the common-item nonequivalent groups
design are described in Chap. 8.

In this design, the group of examinees taking Form X is not considered to be
equivalent to the group of examinees taking Form Y. Differences between means
(and other score distribution characteristics) on Form X and Form Y can result
from a combination of examinee group differences and test form differences. The
central task in equating using this design is to separate group differences from form
differences.

The hypothetical example in Table 1.3 illustrates how differences might be
separated. Form X and Form Y each contain 100 multiple-choice items that are
scored number correct, and there is an internal set of 20 items in common between
the two forms. The means on the common items suggest that Group 2 is higher

http://dx.doi.org/10.1007/978-1-4939-0317-7_8
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Table 1.4 Percent correct for two groups on a hypothetical test

Group 1 Group 2

Content
I 70 % 80 %
II 80 % 70 %
For Total Test 75 % = 75 % =
1

2
(Content I) + 1

2
(Content II)

1

2
(70 %) + 1

2
(80 %)

1

2
(80 %) + 1

2
(70 %)

For Common Items 72.5 % = 77.5 % =
3

4
(Content I) + 1

4
(Content II)

3

4
(70 %) + 1

4
(80 %)

3

4
(80 %) + 1

4
(70 %)

achieving than Group 1, because members of Group 2, on average, correctly answered
75 % of the common items, whereas members of Group 1 correctly answered
only 65 % of the common items. That is, on average, Group 2 correctly
answered 10 % more of the common items than did Group 1.

Which of the two forms is easier? To provide one possible answer, consider the
following question: What would have been the mean on Form X for Group 2 had
Group 2 taken Form X? Group 2 correctly answered 10 % more of the common items
than did Group 1. Therefore, Group 2 might be expected to answer 10 % more of the
Form X items correctly than would Group 1. Using this line of reasoning (and using
the fact that Form X contains 100 items), the mean for Group 2 on Form X would be
expected to be 82 = 72 + 10. Because Group 2 earned a mean of 77 on Form Y and
has an expected mean of 82 on Form X, Form X appears to be 5 points easier than
Form Y.

This example is an oversimplification of how equating actually would be accom-
plished, and these results would hold only under very stringent conditions. The
equating methods discussed in Chaps. 4–6 might even lead to the opposite conclu-
sion about which form is more difficult. This example is intended to illustrate that a
major task in conducting equating with the nonequivalent groups design is to separate
group and form differences.

As indicated earlier, for this design to function well the common items need to
represent the content and statistical characteristics of the total test. Table 1.4 provides
data for a hypothetical test that is intended to illustrate the need for the set of common
items to be content representative. In this example, Group 1 and Group 2 are again
nonequivalent groups of examinees. The test consists of items from two content areas,
Content I and Content II. As shown near the top of Table 1.4, on average, Group 1
correctly answered 70 % of the Content I items and 80 % of the Content II items.
Group 2 correctly answered 80 % of the Content I items and 70 % of the Content
II items. If the total test contains one-half Content I items and one-half Content II
items, then, as illustrated near the middle of Table 1.4, both Group 1 and Group 2
will earn an average score of 75 % correct on the whole test. Thus, the two groups
have the same average level of achievement for the total test, consisting of one-half
Content I and one-half Content II items.

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
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Assume that two forms of the test are to be equated. If, as illustrated near the
bottom of Table 1.4, the common-item set contains three-fourths Content I items and
one-fourth Content II items, Group 1 will correctly answer 72.5 % of the common
items, and Group 2 will correctly answer 77.5 % of the common items. Thus, for this
set of common items, Group 2 appears to be higher achieving than Group 1, even
though the two groups are at the same level on the total test. This example illustrates
that common items need to be content representative if they are to portray group
differences accurately and lead to a satisfactory equating (See Klein and Jarjoura,
1985, for an illustration of the need for content representativeness for an actual test).

The common-item nonequivalent groups design is widely used. A major reason
for its popularity is that this design requires that only one test form be administered
per test date, which is how test forms usually are administered in operational set-
tings. In contrast, the random groups design typically requires different test forms
to be administered to random subgroups of examinees, and the single group design
requires that more than one form be administered to each examinee. Another advan-
tage of the common-item nonequivalent groups design is that, with external sets of
common items, it might be possible for all items that contribute to an examinee’s
score (the noncommon items) to be disclosed following the test date. The ability
to disclose items is important for some testing programs, because some states have
mandated disclosure for certain tests, and some test publishers have opted for dis-
closure. However, common items should not be disclosed if they are to be used to
equate subsequent forms (See Chap. 8 for further discussion).

The administrative flexibility offered by the use of nonequivalent groups is gained
at some cost. As is described in Chaps. 4–6, strong statistical assumptions are required
to separate group and form differences. The larger the differences between examinee
groups, the more difficult it becomes for the statistical methods to separate the group
and form differences. The only link between the two groups is the common items,
so the content and statistical representativeness of the common items are especially
crucial when the groups differ. Although a variety of statistical equating methods
have been proposed for the common-item nonequivalent groups design, no method
has been found that provides completely appropriate adjustments when the examinee
groups are very different.

1.4.6 NAEP Reading Anomaly: Problems with Common Items

The National Assessment of Educational Progress (NAEP) is a congressionally man-
dated survey of the educational achievement of students in American schools. NAEP
measures performance trends in many achievement areas, based on representative
samples at three grade/age levels. The preliminary results from the 1986 NAEP
Assessment in Reading indicated that the reading results “showed a surprisingly
large decrease from 1984 at age 17 and, to a lesser degree, at age 9…. Such large
changes in reading proficiency were considered extremely unlikely to have occurred
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in just two years without the awareness of the educational community” (Zwick 1991,
p. 11).

A series of inquiries were conducted to better understand the reasons for the
decline. One potential cause that was investigated was the manner in which common
items were used in linking the 1984 and 1986 assessments. Zwick (1991) indicated
that the following differences existed between the administrations:

1. In 1984, the test booklets administered to examinees contained reading and writ-
ing sections. In 1986, the booklets administered to examinees contained reading,
mathematics, and/or science sections at ages 9 and 13. In 1986, the booklets
contained reading, computer science, history, and/or literature at age 17.

2. The composition of the reading sections differed in 1984 and 1986. Items that
were common to the 2 years appeared in different orders, and the time available
to complete the common items differed in the 2 years.

The investigations concluded that these differences in the context in which the com-
mon items appeared in the two years, rather than changes in reading achievement,
were responsible for much of the difference that was observed (Zwick 1991). This
so-called NAEP reading anomaly illustrates the importance of administering com-
mon items in the same context in the old and new forms. Otherwise, context effects
can lead to very misleading results.

1.5 Error in Estimating Equating Relationships

Estimated equating relationships typically contain estimation error. A major goal in
designing and conducting equating is to minimize such equating error.

Random equating error is present whenever samples from populations of exam-
inees are used to estimate parameters (e.g., means, standard deviations, and per-
centile ranks) that are involved in estimating an equating relationship. Random error
is typically indexed by the standard error of equating, which is the focus of Chap. 7.
Conceptually, the standard error of equating is the standard deviation of score equiv-
alents over replications of the equating procedure. The following situation illustrates
the meaning of the standard error of equating when estimating the Form Y score
equivalent of a Form X score.

1. Draw a random sample of size 1,000 from a population of examinees.
2. Find the Form Y score equivalent of a Form X score of 75 using data from this

sample and a given equating method.
3. Repeat steps 1 and 2 a large number of times, which results in a large number of

estimates of the Form Y score equivalent of a Form X score of 75.
4. The standard deviation of these estimates is an estimate of the standard error of

equating for a Form X score of 75.

As these steps illustrate, the standard error of equating is defined separately for each
score on Form X.

http://dx.doi.org/10.1007/978-1-4939-0317-7_7
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As the sample size becomes larger, the standard error of equating becomes smaller,
and it becomes inconsequential for very large sample sizes (assuming very large
populations, as discussed in Chap. 7). Random error can be controlled by using large
samples of examinees, by choosing an equating design that reduces such error, or
both. Random error is especially troublesome when practical issues dictate the use
of small samples of examinees.

Systematic equating error results from violations of the assumptions and condi-
tions of equating. For example, in the random groups design, systematic error results
if a particular spiraling process is inadequate for achieving group comparability. In
the single group design with counterbalancing, failure to control adequately for dif-
ferential order effects can be a major source of systematic error. In the common-item
nonequivalent groups design, systematic error results if the assumptions of statistical
methods used to separate form and group differences are not met. These assump-
tions can be especially difficult to meet under the following conditions: the groups
differ substantially, the common items are not representative of the total test form in
content and statistical characteristics, or the common items function differently from
one administration to the next. A major problem with this design is that sufficient
data typically are not available to estimate or adjust for systematic error.

Over time, after a large number of test forms are involved in the scaling and
equating process, both random and systematic errors tend to accumulate. Although
the amount of random error can be quantified readily using the standard error of
equating, systematic error is much more difficult to quantify. In conducting and
designing equating studies, both types of error should be minimized to the extent
possible. In some practical circumstances the amount of equating error might be so
large that equating would add more error into the scores than if no equating had
been done. Thus, equating is not always defensible. This issue is described further
in Chap. 8.

1.6 Evaluating the Results of Equating

In addition to designing an equating study, an operational definition of equating
and a method for estimating an equating relationship need to be chosen. Then, after
the equating is conducted, the results should be evaluated. As indicated by Harris
and Crouse (1993), such evaluation requires that criteria for equating be identified.
Estimating random error using standard errors of equating can be used to develop
criteria. Criteria for evaluating equating also can be based on consistency of results
with previous results.

The properties of equating that were described earlier also can be used to develop
evaluative criteria. The symmetry and same specifications properties always must
be achieved. Some aspects of Lord’s equity property can be evaluated. For example,
procedures are discussed in Chap. 8 that indicate the extent to which examinees
can be expected to earn approximately the same score, regardless of the form that
they take. Procedures are also considered that can be used to evaluate the extent to
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which examinees are measured with equal precision across forms. Observed score
equating properties are especially important when equating is evaluated from an
institutional perspective. An institution that is admitting students needs to know that
the particular test form administered would not affect the numbers of students who
would be admitted. The group invariance property is important from the perspective
of treating subgroups of examinees equitably. The equating relationship should be
very similar across subgroups. As a check on the group invariance property, the
equating can be conducted on various important subgroups. Procedures for evaluating
equating are discussed more fully in Chap. 8.

1.7 Testing Situations Considered

In this chapter, equating has been described for testing programs in which alternate
forms of tests are administered on various test dates. Equating is very common in this
circumstance, especially when tight test security is required, such as when equating
professional certification, licensure, and college admissions tests. Another common
circumstance is for two or more forms of a test to be developed and equated at one
time. The equated forms then are used for a period of years until the content becomes
dated. Alternate forms of elementary achievement level batteries, for example, often
are administered under these sorts of conditions. The procedures described in this
book pertain directly to equating alternate forms of tests under either of these cir-
cumstances.

In recent years, test administration on the computer has become common. Com-
puter administration is often done by selecting test items to be administered from a
pool of items, with each examinee being administered a different set of items. In this
case, a clear need exists to use processes to ensure that scores earned by different
examinees are comparable to one another. However, as discussed in Chap. 8, such
procedures often are different from the equating methods to be discussed in Chaps. 2
through 7 of this book.

In this book, equating is presented mainly in the context of dichotomously (right
versus wrong) scored tests. Recently, there has been considerable attention given to
tests that contain constructed-response test items, which require judges or a computer
to score tasks or items. Many of the concepts of equating for multiple-choice tests also
pertain to tests that contain constructed-response items. However, the use of judges
along with difficulties in representing the domain of content complicate equating for
tests that contain constructed-response items. Chap. 8 discusses when and how the
methods treated in this book can be applied to these tests.

The procedures used to calculate raw scores on a test affect how equating pro-
cedures are implemented. In this book, tests typically are assumed to be scored
number-correct, with scores ranging from zero to the number of items on the test.
Many of the procedures described can be adapted to other types of scoring, how-
ever, such as scores that are corrected for guessing. For example, a generalization
of equipercentile equating to scoring which produces scores that are not integers is
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described in Chap. 2. In Chap. 3, smoothing techniques are referenced which can
be used with scores that are not integers. Many of the techniques in Chaps. 4 and 5
can be adapted readily to other scoring schemes. In Chap. 6, noninteger IRT scor-
ing is discussed. Issues associated with constructed-response items are described in
Chap. 8. To simplify exposition, unless noted otherwise, assume that alternate forms
of dichotomously scored tests are being equated. Scores on these tests range from
zero to the number of items on the test.

1.8 Preview

This chapter has discussed equating properties and equating designs. Chapter 2 treats
equating using the random groups design, which, compared to other designs, requires
very few statistical assumptions. For this reason, the random groups design is ideal for
presenting many of the statistical concepts in observed score equating. Specifically,
the mean, linear, and equipercentile equating methods are considered. The topic of
Chap. 3 is smoothing techniques that are used to reduce total error in estimated
equipercentile relationships.

Linear methods appropriate for the common-item nonequivalent groups design
are described in Chap. 4. In addition to considering observed score methods, methods
based on test theory models are introduced in Chap. 4. Equipercentile methods for
the common-item nonequivalent groups design are presented in Chap. 5.

IRT methods, which are also test theory-based methods, are the topic of Chap. 6.
IRT methods are presented that can be used with the equating designs described in
this chapter. In addition, IRT methods appropriate for equating using item pools are
described.

Equating procedures are all statistical techniques that are subject to random
error. Procedures for estimating the standard error of equating are described in
Chap. 7 along with discussions of sample sizes required to attain desired levels
of equating precision. Chapter 8 focuses on various practical issues in equating.
These topics include evaluating the results of equating and choosing among equat-
ing methods and results. In addition, current topics, such as equating tests that contain
constructed-response items and equating issues associated with computerized tests,
are considered.

Chapter 9 considers issues associated with developing score scales for individual
tests and test batteries. In addition, vertical scaling processes that are often used with
elementary level achievement test batteries are considered in detail. Linking of tests
is the topic of Chap. 10. Chapter 11 discusses current and future challenges, and
areas for future developments are highlighted.
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1.9 Exercises

Exercises are presented at the end of each chapter of this book, Some of the exercises
are intended to reinforce important concepts and consider practical issues; others
are intended to facilitate learning how to apply statistical techniques. Answers to the
exercises are provided in Appendix A.

1.1. A scholarship test is administered twice per year, and different forms are admin-
istered on each test date. Currently, the top 1 % of the examinees on each test
date earn scholarships.

a. Would equating the two forms affect who was awarded a scholarship? Why
or why not?

b. Suppose the top 1 % who took the test during the year (rather than at each
test date) were awarded scholarships. Would the use of equating affect who
was awarded a scholarship? Why or why not?

1.2. Refer to the example in Table 1.1. Suppose that a new form, Form X3, was
found to be uniformly 1 point easier than Form X2. What scale score would
correspond to a Form X3 raw score of 29?

1.3. A state passes a law that all items which contribute to an examinee’s score on
a test will be released to that examinee, on request, following the test date.
Assume that the test is to be secure. Which of the following equating designs
could be used in this situation: random groups, single group with counterbal-
ancing, common-item nonequivalent groups with an internal set of common
items, common-item nonequivalent groups with an external set of common
items? Briefly indicate how equating would be accomplished using this (these)
design(s).

1.4. Equating of forms of a 45 min test is to be conducted by collecting data on a
group of examinees who are being tested for the purpose of conducting equating.
Suppose that it is relatively easy to get large groups of examinees to participate
in the study, but it is difficult to get any student to test for more than one 50 min
class period, where 5 min are needed to hand out materials, give instructions,
and collect materials. Would it be better to use the random groups design or the
single group design with counterbalancing in this situation? Why?

1.5. Suppose that only one form of a test can be administered on any given test date.
Of the designs discussed, which equating design(s) can be used?

1.6. Refer to the data shown in Table 1.4.

a. Which group would appear to be higher achieving on a set of common items
composed only of Content I items?

b. Which group would appear to be higher achieving on a set of common items
composed only of Content II items?

c. What is the implication of your answers to a and b?

1.7. Consider the following statements for equated Forms X and Y:
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I. “Examinees A and B are at the same level of achievement, because A scored
at the 50th percentile nationally on Form X and B scored at the 50th percentile
nationally on Form Y”.

II. “Examinees A and B are at the same level of achievement, because the
expected equated score of A on Form X equals the expected score of B on
Form Y”.

Which of these statements is consistent with an observed score property of
equating? Which is consistent with Lord’s equity property of equating?

1.8. If a very large group of examinees is used in an equating study, which source
of equating error would almost surely be small, random or systematic? Which
source of equating error could be large if the very large group of examinees used
in the equating were not representative of the examinees that are to be tested,
random or systematic?
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Chapter 2
Observed Score Equating Using the Random
Groups Design

As was stressed in Chap. 1 the same specifications property is an essential property of
equating, which means that the forms to be equated must be built to the same content
and statistical specifications. We also stressed that the symmetry property is essential
for any equating relationship. The focus of the present chapter is on methods that
are designed to achieve the observed score equating property, along with the same
specifications and symmetry properties. As was described in Chap. 1, these observed
score equating methods are developed with the goal that, after equating, converted
scores on two forms have at least some of the same score distribution characteristics
in a population of examinees.

In this chapter, these methods are developed in the context of the random groups
design. Of the designs discussed thus far, the assumptions required for the random
groups design are the least severe and most readily achieved. Thus, very few sources
of systematic error are present with the random groups design. Because of the minimal
assumptions required with the random groups design, this design is ideal for use in
presenting the basic statistical methods in observed score equating, which is the focus
of the present chapter.

The definitions and properties of mean, linear, and equipercentile equating meth-
ods are described in this chapter. These methods are presented, initially, in terms of
population parameters (e.g., population means and standard deviations) for a specific
population of examinees. We also discuss the process of estimating equating rela-
tionships, which requires that statistics (e.g., sample means and standard deviations)
be substituted in place of the parameters. The methods then are illustrated using a
real data example. Following the presentation of the methods, issues in using scale
scores are described and illustrated. We then briefly discuss equating using the single
group design.

An important practical challenge in using the random groups design is to obtain
large enough sample sizes so that random error (see Chap. 7 for a discussion of
standard errors) is at an acceptable level (rules of thumb for appropriate sample sizes
are given in Chap. 8. For the equipercentile equating method, in Chap. 3 we describe
statistical smoothing methods that often are used to help reduce random error when
conducting equipercentile equating using the random groups design.
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For simplicity, the statistical methods in this chapter are developed using a testing
situation in which tests consist of test items that are scored correct (1) or incorrect
(0), and where the total score is the number of items answered correctly. Near the
end of the chapter, a process for equating tests that are scored using other scoring
schemes is described.

2.1 Mean Equating

In mean equating, Form X is considered to differ in difficulty from Form Y by a
constant amount along the score scale. For example, under mean equating, if Form
X is 2 points easier than Form Y for high-scoring examinees, it is also 2 points easier
than Form Y for low-scoring examinees. Although a constant difference might be
overly restrictive in many testing situations, mean equating is useful for illustrating
some important equating concepts.

As was done in Chap. 1, define Form X as the new form, let X represent the
random variable score on Form X, and let x represent a particular score on Form
X (i.e., a realization of X ); and define Form Y as the old form, let Y represent the
random variable score on Form Y, and let y represent a particular score on Form Y
(i.e., a realization of Y ). Also, define μ(X) as the mean on Form X and μ(Y ) as the
mean on Form Y for a population of examinees. In mean equating, scores on the two
forms that are an equal (signed) distance away from their respective means are set
equal:

x − μ(X) = y − μ(Y ). (2.1)

Then solve for y and obtain

mY (x) = y = x − μ(X) + μ(Y ). (2.2)

In this equation, mY (x) refers to a score x on Form X transformed to the scale of
Form Y using mean equating.

As an illustration of how to apply this formula, consider the situation discussed
in Chap. 1, in which the mean on Form X was 72 and the mean on Form Y was 77.
Based on this example, Eq. (2.2) indicates that 5 points would need to be added to
a Form X score to transform a score on Form X to the Form Y scale. That is,

mY (x) = x − 72 + 77 = x + 5.

For example, using mean equating, a score of 72 on Form X is considered to indicate
the same level of achievement as a score of 77 (77 = 72 + 5) on Form Y. And, a
score of 75 on Form X is considered to indicate the same level of achievement as
a score of 80 on Form Y. Thus, mean equating involves the addition of a constant
(which might be negative) to all raw scores on Form X to find equated scores on
Form Y.

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
http://dx.doi.org/10.1007/978-1-4939-0317-7_1
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2.2 Linear Equating

Rather than considering the differences between two forms to be a constant, linear
equating allows for the differences in difficulty between the two test forms to vary
along the score scale. For example, linear equating allows Form X to be more diffi-
cult than Form Y for low-achieving examinees but less difficult for high-achieving
examinees.

In linear equating, scores that are an equal (signed) distance from their means
in standard deviation units are set equal. Thus, linear equating can be viewed as
allowing for the scale units, as well as the means, of the two forms to differ. Define
σ(X) and σ(Y ) as the standard deviations of Form X and Form Y scores, respectively.
The linear conversion is defined by setting standardized deviation scores (z-scores)
on the two forms to be equal such that

x − μ(X)

σ(X)
= y − μ(Y )

σ(Y )
. (2.3)

If the standard deviations for the two forms were equal, Eq. (2.3) could be simplified
to equal the mean equating Eq. (2.2). Thus, if the standard deviations of the two forms
are equal, then mean and linear equating produce the same result. Solving for y in
Eq. (2.3),

lY (x) = y = σ(Y )

[
x − μ(X)

σ(X)

]
+ μ(Y ), (2.4)

where lY (x) is the linear conversion equation for converting observed scores on Form
X to the scale of Form Y. By rearranging terms, an alternate expression for lY (x) is

lY (x) = y = σ(Y )

σ(X)
x +

[
μ(Y ) − σ(Y )

σ(X)
μ(X)

]
. (2.5)

This expression is a linear equation of the form slope (x) + intercept with

slope = σ(Y )

σ(X)
, and intercept = μ(Y ) − σ(Y )

σ(X)
μ(X). (2.6)

What if the standard deviations in the mean equating example were σ(X) = 10 and
σ(Y ) = 9? The slope is 9/10 = .9, and the intercept is 77 − (9/10)72 = 12.2. The
resulting conversion equation is lY (x) = .9x + 12.2. What is lY (x) if x = 75?

lY (75) = .9(75) + 12.2 = 79.7.

How about if x = 77 or x = 85?

lY (77) = .9(77) + 12.2 = 81.5, and

lY (85) = .9(85) + 12.2 = 88.7.
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These equated values illustrate that the difference in test form difficulty varies with
score level. For example, the difference in difficulty between Form X and Form Y
for a Form X score of 75 is 4.7(79.7 − 75), whereas the difference for a Form X
score of 85 is 3.7(88.7 − 85).

2.3 Properties of Mean and Linear Equating

In general, what are the properties of the equated scores? From Chapter 1, E is the
expectation operator. The mean of a variable is found by taking the expected value
of that variable. Using Eq. (2.2), the mean converted score mY (x), for mean equating
is

E[mY (X)] = E[X − μ(X) + μ(Y )] = μ(X) − μ(X) + μ(Y ) = μ(Y ). (2.7)

That is, for mean equating the mean of the Form X scores equated to the Form Y scale
is equal to the mean of the Form Y scores. In the example described earlier, the mean
of the equated Form X scores is 77 [recall that mY (x) = x + 5 and μ(X) = 72], the
same value as the mean of the Form Y scores. Note that standard deviations were not
shown in Eq. (2.7). What would be the standard deviation of Form X scores converted
using the mean equating Eq. (2.2)? Because the Form X scores are converted to Form
Y by adding a constant, the standard deviation of the converted scores would be the
same as the standard deviation of the scores prior to conversion. That is, under mean
equating, σ[mY (X)] = σ(X).

Using Eq. (2.5), the mean equated score for linear equating can be found as fol-
lows:

E[lY (X)] = E
[

σ(Y )

σ(X)
X + μ(Y ) − σ(Y )

σ(X)
μ(X)

]

= σ(Y )

σ(X)
E(X) + μ(Y ) − σ(Y )

σ(X)
μ(X)

= μ(Y ), (2.8)

because E(X) = μ(X).
The standard deviation of the equated scores is found by first substituting Eq. (2.5)

for lY (X) as follows:

σ[lY (X)] = σ

[
σ(Y )

σ(X)
X + μ(Y ) − σ(Y )

σ(X)
μ(X)

]

To continue, the standard deviation of a score plus a constant is equal to the standard
deviation of the score. That is, σ(X +constant) = σ(X). By recognizing in the linear
equating equation that the terms to the right of the addition sign are a constant, the
following holds:

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
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σ[lY (X)] = σ

[
σ(Y )

σ(X)
X

]
.

Also note that the standard deviation of a score multiplied by a constant equals the
standard deviation of the score multiplied by the constant. That is, σ(constant X) =
constant σ(X). Noting that the ratio of standard deviations in the large parentheses
is also a constant that multiplies X ,

σ[lY (X)] = σ(Y )

σ(X)
σ(X) = σ(Y ). (2.9)

Therefore, the mean and standard deviation of the Form X scores equated to the Form
Y scale are equal to the mean and standard deviation, respectively, of the Form Y
scores. In the example described earlier for linear equating, the mean of the equated
Form X scores is 77 and the standard deviation is 9; these are the same values as the
mean and standard deviation of the Form Y scores.

Consider the equation for mean equating, Eq. (2.2), and the equation for linear
equating (2.5). If either of the equations were solved for x , rather than for y, the
equation for equating Form Y scores to the scale of Form X would result. These
conversions would be symbolized by m X (y) and lX (y), respectively. Equating rela-
tionships are defined as being symmetric because the equation used to convert Form
X scores to the Form Y scale is the inverse of the equation used to convert Form Y
scores to the Form X scale.

The equation for linear equating (2.5) is deceptively like a linear regression equa-
tion. The difference is that, for linear regression, the σ(Y )/σ(X) terms are multiplied
by the correlation between X and Y . However, a linear regression equation does not
qualify as an equating function because the regression of X on Y is different from
the regression of Y on X , unless the correlation coefficient is 1. For this reason,
regression equations cannot, in general, be used as equating functions. The com-
parison between linear regression and linear equating is illustrated in Fig. 2.1. The
regression Y on X is different from the regression of X on Y . Also note that there is
only one linear equating relationship graphed in the figure. This relationship can be
used to transform Form X scores to the Form Y scale, or to transform Form Y scores
to the Form X scale.

2.4 Comparison of Mean and Linear Equating

Figure 2.2 illustrates the equating of Form X and Form Y using the hypothetical test
forms already discussed. The equations for equating scores on Form X to the Form
Y scale are plotted in this figure.

Also plotted in this figure are the results from the “identity equating.” In the
identity equating, a score on Form X is considered to be equivalent to the identical
score on Form Y; for example, a 40 on Form X is considered to be equivalent to a 40
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Fig. 2.1 Comparison of linear
regression and linear equating
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on Form Y. Identity equating would be the same as mean and linear equating if the
two forms were identical in difficulty all along the score scale.

To find a Form Y equivalent of a Form X score using the graph, find the Form X
value of interest on the horizontal axis, go up to the function, and then go over to the
vertical axis to read off the Form Y equivalent.

How to find the Form Y equivalent of a Form X score of 72 is illustrated in the
figure using the arrows. This equivalent is 77, using either mean or linear equating.
The score 72 is the mean score on Form X. As indicated earlier, both mean and linear
equating will produce the same result at the mean.

Now refer to the identity equating line in the figure, and note that the line for
mean equating is parallel to the line for the identity equating. The lines for these
two methods will always be parallel. As can be seen, the line for mean equating is
uniformly 5 points vertically above the line for the identity equating, because Form
Y is, on average, 5 points less difficult than Form X. Refer to the line for linear
equating. This line is not parallel to the identity equating line. The linear equating
line is further above the identity equating line at the low scores than at the high scores.
This observation is consistent with the earlier discussion in which the difference in
difficulty between Form X and Form Y was shown to be greater at the lower scores
than at the higher scores.

Assume that the test in this example is scored number-correct. Number-correct
scores for this 100-item test can range from 0 to 100. Figure 2.2 illustrates that
equated scores from mean and linear equating can sometimes be out of the range of
possible observed scores. The dotted lines at 0 on Form X and at 100 illustrate the
boundaries of possible observed scores. For example, using linear equating, a score
of 100 on Form X equates to a score of approximately 102 on Form Y. Also, using
linear equating, a score of 0 on Form Y equates to a score of approximately −14 on
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Fig. 2.2 Graph of mean
and linear equating for a
hypothetical 100-item test
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Form X. There are a variety of ways to handle this problem. One way is to allow the
top and bottom to “float.” For example, the highest equated score might be allowed
to exceed the highest raw score. An alternative is to truncate the conversion at the
highest and lowest scores. In the example, truncation involves setting all converted
scores greater than 100 equal to 100 and setting all converted scores less than 0 equal
to 0. That is, all Form Y scores that equate to Form X scores below 0 would be set
to 0 and all Form X scores that equate to Form Y scores above 100 would be set to
100. In practice, the decision about how to handle equated scores outside the range
typically interacts with the score scale that is used for reporting scores. Sometimes
this issue is effectively of no consequence, because no one achieves the extreme raw
scores on Form X that equate to unobtainable scores on Form Y.

In summary, in mean equating the conversion is derived by setting the deviation
scores on the two forms equal, whereas in linear equating the standardized deviation
scores (z-scores) on the two forms are set equal. In mean equating, scores on Form X
are adjusted by a constant amount that is equal to the difference between the Form Y
and Form X means. In linear equating, scores on Form X are adjusted using a linear
equation that allows for the forms to be differentially difficult along the score scale.
In mean equating, the mean of the Form X scores equated to the Form Y scale is equal
to the mean of the Form Y scores; whereas in linear equating, the standard deviation
as well as the mean are equal. In general, mean equating is less complicated than
linear equating, but linear equating provides for more flexibility in the conversion
than does mean equating.
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2.5 Equipercentile Equating

In equipercentile equating, a curve is used to describe form-to-form differences
in difficulty, which makes equipercentile equating even more general than linear
equating. Using equipercentile equating, for example, Form X could be more difficult
than Form Y at high and low scores, but less difficult at the middle scores.

The equating function is an equipercentile equating function if the distribution of
scores on Form X converted to the Form Y scale is equal to the distribution of scores
on Form Y in the population. The equipercentile equating function is developed by
identifying scores on Form X that have the same percentile ranks as scores on Form Y.

The definition of equipercentile equating developed by Braun and Holland (1982)
is adapted for use here. Consider the following definitions of terms, some of which
were presented previously:

X is a random variable representing a score on Form X, and x is a particular value
(i.e., a realization) of X .

Y is a random variable representing a score on Form Y, and y is a particular value
(i.e., a realization) of Y .

F is the cumulative distribution function of X in the population.
G is the cumulative distribution function of Y in the same population.
eY is a symmetric equating function used to convert scores on Form X to the Form

Y scale.
G∗ is the cumulative distribution function of eY in the same population. That is,

G∗ is the cumulative distribution function of scores on Form X converted to the Form
Y scale.

The function eY is defined to be the equipercentile equating function in the pop-
ulation if

G∗ = G. (2.10)

That is, the function eY is the equipercentile equating function in the population if
the cumulative distribution function of scores on Form X converted to the Form Y
scale is equal to the cumulative distribution function of scores on Form Y.

Braun and Holland (1982) indicated that the following function is an equiper-
centile equating function when X and Y are continuous random variables:

eY (x) = G−1[F(x)], (2.11)

where G−1 is the inverse of the cumulative distribution function G.
As previously indicated, to be an equating function, eY must be symmetric. Define
eX as a symmetric equating function used to convert scores on Form Y to the

Form X scale, and
F∗ as the cumulative distribution function of eX in the population. That is, F∗ is

the cumulative distribution function of scores on Form Y converted to the Form X
scale.
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By the symmetry property,

e−1
X (x) = eY (x) and e−1

Y (y) = eX (y). (2.12)

Also,
eX (y) = F−1[G(y)], (2.13)

is the equipercentile equating function for converting Form Y scores to the Form X
scale. In this equation, F−1 is the inverse of the cumulative distribution function F .

Following the definitions in Eqs. (2.10–2.13), an equipercentile equivalent for the
population of examinees can be constructed in the following manner: For a given
Form X score, find the percentage of examinees earning scores at or below that Form
X score. Next, find the Form Y score that has the same percentage of examinees at
or below it. These Form X and Form Y scores are considered to be equivalent. For
example, suppose that 20 % of the examinees in the population earned a Form X
score at or below 26 and 20 % of the examinees in the population earned a Form Y
score at or below 27. Then a Form X score of 26 would be considered to represent the
same level of achievement as a Form Y score of 27. Using equipercentile equating,
a Form X score of 26 would be equated to a Form Y score of 27.

The preceding discussion was based on an assumption that test scores are con-
tinuous random variables. Typically, however, test scores are discrete. For example,
number-correct scores take on only integer values. With discrete test scores, the defin-
ition of equipercentile equating is more complicated than the situation just described.
Consider the following situation. Suppose that a test is scored number-correct and
that the following is true of the population distributions:

1. 20 % of the examinees score at or below 26 on Form X.
2. 18 % of the examinees score at or below 27 on Form Y.
3. 23 % of the examinees score at or below 28 on Form Y.

What is the Form Y equipercentile equivalent of a Form X score of 26? No Form Y
score exists that has precisely 20 % of the scores at or below it. Strictly speaking, no
Form Y equivalent of a Form X score of 26 exists. Thus, the goal of equipercentile
equating stated in Eq. (2.10) cannot be met strictly when test scores are discrete.

How can equipercentile equating be conducted when scores are discrete? A tradi-
tion exists in educational and psychological measurement to view discrete test scores
as being continuous by using percentiles and percentile ranks. In this approach, an
integer score of 28, for example, is considered to represent scores in the range 27.5–
28.5. Examinees with scores of 28 are considered to be uniformly distributed in
this range. The percentile rank of a score of 28 is defined as being the percentage
of scores below 28. However, because only 1/2 of the examinees who score 28 are
considered to be below 28 (the remainder being between 28 and 28.5), the percentile
rank of 28 is the percentage of examinees who earned integer scores of 27 and below,
plus 1/2 the percentage of examinees who earned an integer score of 28. Placing the
preceding example in the context of percentile ranks, 18 % of the examinees earned
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Table 2.1 Form X score distribution for a hypothetical four-item test

x f (x) F(x) P(x)

0 .2 .2 10
1 .3 .5 35
2 .2 .7 60
3 .2 .9 80
4 .1 1.0 95

a Form Y score below 27.5 and 5 % (23–18 %) of the examinees earned a score
between 27.5 and 28.5. So the percentile rank of a Form Y score of 28 would be
18 % + 1/2(5 %) = 20.5 %. In the terminology typically used, the percentile rank
of an integer score is the percentile rank at the midpoint of the interval that contains
that score.

Holland and Thayer (1989) presented a statistical justification for using percentiles
and percentile ranks. In their approach, they use what they refer to as a continuization
process and a kernel smoothing process. Given a discrete integer-valued random
variable X and a random variable U that is uniformly distributed over the range
−1/2 to +1/2, they defined a new random variable, X∗ = X + U .

This new random variable is continuous. The cumulative distribution function of
this new random variable corresponds to the percentile rank function. The inverse of
the cumulative distribution of this new function exists and is the percentile function.
Holland and Thayer (1989) also generalized their approach to incorporate continuiza-
tion processes that are based on distributions other than the uniform.

This approach was developed further by von Davier et al. (2004) and is discussed
in more detail in Chap. 3. In the present chapter, the traditional approach to percentiles
and percentile ranks is followed.

The equipercentile methods presented next assume that the observed scores on
the tests to be equated are integer scores that range from zero through the number of
items on the test, as would be true of tests scored number-correct. Generalizations
to other scoring schemes are discussed as well.

2.5.1 Graphical Procedures

Equipercentile equating using graphical methods provides a conceptual framework
for subsequent consideration of analytic methods. A hypothetical four-item test is
used to illustrate the graphical process for equipercentile equating. Data for Form X
are presented in Table 2.1.

In this table, x refers to test score and f (x) to the proportion of examinees earning
the score x . For example, the proportion of examinees earning a score of 0 is .20.
F(x) is the cumulative proportion at or below x . For example, the proportion of
examinees scoring 3 or below is .9. P(x) refers to the percentile rank, and for an

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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Fig. 2.3 Form X percentile
ranks on a hypothetical
four-item test
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integer score it equals the percentage of examinees below x plus 1/2 the percentage
of examinees at x—i.e., for integer score x , P(x) = 100[F(x − 1) + f (x)/2].

To be consistent with traditional definitions of percentile ranks, the percentile rank
function is plotted as points at the upper limit of each score interval. For example, the
percentile rank of a score of 3.5 is 90, which is 100 times the cumulative proportion
at or below 3. Therefore, to plot the percentile ranks, plot the percentile ranks at
each integer score plus .5. The percentile ranks at an integer score plus .5 can be
found from Table 2.1 by taking the cumulative distribution function values, F(x),
at an integer and multiplying them by 100 to make them percentages. Figure 2.3
illustrates how to plot the percentile rank distribution for Form X.

A percentile rank of 0 is also plotted at a Form X score of −.5. The points are
then connected with straight lines. An example is presented for finding the percentile
rank of a Form X integer score of 2 using the arrows in Fig. 2.3. As can be seen, the
percentile rank of a score of 2 is 60, which is the same result found in Table 2.1.

In Fig. 2.3, percentile ranks of scores between −.5 and 0.0 are greater than zero.
These nonzero percentile ranks result from using the traditional definition of per-
centile ranks, in which scores of 0 are assumed to be uniformly distributed from −.5
to .5. Also, scores of 4 are considered to be uniformly distributed between 3.5 to 4.5,
so that scores above 4 have percentile ranks less than 100. Under this conceptual-
ization, the range of possible scores is treated as being between −.5 and the highest
integer score +.5.

Data from Form Y also need to be used in the equating process. The data for
Form Y are presented along with the Form X data in Table 2.2. In this table, y refers
to Form Y scores, g(y) to the proportion of examinees at each score, G(y) to the
proportion at or below each score, and Q(y) to the percentile rank at each score.
Percentile ranks for Form Y are plotted in the same manner as they were for Form X.
To find the equipercentile equivalent of a particular score on Form X, find the Form
Y score with the same percentile rank. Figure 2.4 illustrates this process for finding
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Table 2.2 Form X and Form Y distributions for a hypothetical four-item test

y g(y) G(y) Q(Y ) x f (x) F(x) P(x)
0 .1 .1 5 0 .2 .2 10
1 .2 .3 20 1 .3 .5 35
2 .2 .5 40 2 .2 .7 60
3 .3 .8 65 3 .2 .9 80
4 .2 1.0 90 4 .1 1.0 95

Fig. 2.4 Graphical equiper-
centile equating for a hypo-
thetical four-item test
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the equipercentile equivalent of a Form X score of 2. As indicated by the arrows, a
Form X score of 2 has a percentile rank of 60. Following the arrows, it can be seen
that the Form Y score of about 2.8 (actually 2.83) is equivalent to the Form X score
of 2.

The equivalents can also be plotted. To construct such a graph, plot, as points,
Form Y equivalents of Form X scores at each integer plus .5. Then plot Form X
equivalents of Form Y scores at each integer plus .5. To handle scores below the
lowest integer scores +.5, a point is plotted at the (x, y) pair (−.5,−.5). The plotted
points are then connected by straight lines. This process is illustrated for the example
in Fig. 2.5. As indicated by the arrows in the figure, a Form X score of 2 is equivalent
to a Form Y score of 2.8 (actually 2.83), which is consistent with the result found
earlier. This plot of equivalents displays the Form Y equivalents of Form X scores.

In summary, the graphical process of finding equipercentile equivalents is as
follows: Plot percentile ranks for each form on the same graph. To find a Form Y
equivalent of a Form X score, start by finding the percentile rank of the Form X score.
Then find the Form Y score that has that same percentile rank. Equivalents can be
plotted in a graph that shows the equipercentile relationship between the two forms.

One issue that arises in equipercentile equating is how to handle situations in which
no examinees earn a particular score. When this occurs, the score that corresponds
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Fig. 2.5 Equipercentile
equivalents for a hypothet-
ical four-item test
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to a particular percentile rank might not be unique. Suppose for example that x has
a percentile rank of 20. To find the equipercentile equivalent, the Form Y score that
has a percentile rank of 20 needs to be found. Suppose, however, that there is no
unique score on Form Y that has a percentile rank of 20, as illustrated in Fig. 2.6.

The percentile ranks shown in Fig. 2.6 could occur if no examinees earned scores
of 6 and 7. In this case, the graph indicates that scores in the range 5.5 to 7.5 all have
percentile ranks of 20. The choice of the Form Y score that has a percentile rank of
20 is arbitrary. In this situation, usually the middle score would be chosen. So, in the
example the score with a percentile rank of 20 would be designated as 6.5. Choosing
the middle score is arbitrary, technically, but doing so seems sensible.
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2.5.2 Analytic Procedures

The graphical method discussed in the previous section is not likely to be viable
for equating a large number of real forms in real time. In addition, equating using
graphical procedures can be inaccurate. What is needed are formulas that provide
more formal definitions of percentile ranks and equipercentile equivalents. The fol-
lowing discussion provides such formulas. The result of applying these formulas is
to produce percentile ranks and equipercentile equivalents that are equal to those that
would result using the graphical procedures.

To define percentile ranks, let K X represent the number of items on Form X of a
test. Define X as a random variable representing test scores on Form X that can take
on the integer values 0, 1, . . . , K X . Define f (x) as the discrete density function for
X = x . That is,

f (x) ≥ 0 for integer scores x = 0, 1, . . . , K X ;
f (x) = 0 otherwise; and∑

f (x) = 1.

Define F(x) as the discrete cumulative distribution function. That is, F(x) is the
proportion of examinees in the population earning a score at or below x. Therefore,

0 ≤ F(x) ≤ 1 for x = 0, 1, . . . , K X ;
F(x) = 0 for x < 0; and

F(x) = 1 for x > K X .

Consider a possible noninteger value of x . Define x∗ as that integer that is closest
to x such that x∗ − .5 ≤ x < x∗ + .5. For example, if x = 5.7, x∗ = 6; if x = 6.4,
x∗ = 6; and if x = 5.5, x∗ = 6. The percentile rank function for Form X is

P(x) = 100{F(x∗ − 1) + [x − (x∗ − .5)][F(x∗) − F(x∗ − 1)]},
−.5 ≤ x < K X + .5,

= 0, x < −.5,

= 100, x ≥ Kx + .5. (2.14)

To illustrate how this equation functions, consider the following example based on
the data in Table 2.1. Calculate the percentile rank for a score of x = 1.3, using
Eq. (2.14):

P(1.3) = 100{F(0) + [1.3 − (1 − .5)][F(1) − F(0)]}
= 100{.2 + [.8][.5 − .2]} = 100{.2 + .24} = 44.
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In this case, x∗ = 1.0, because 1 is the integer score that is closest to 1.3. The term
[F(1)− F(0)] = .5− .2 = .3 represents the proportion of examinees earning a score
of 1. These scores are considered to range from .5 to 1.5. The term [1.3−(1−.5)] = .8
indicates that the score of 1.3 is, proportionally, .8 of the distance between .5 and
1.5. So, [.8][.3] = .24 represents the probability of scoring between .5 and 1.3. The
probability of scoring below .5 is represented by F(0) = .2. Therefore, the percentile
rank of a score of 1.3 equals 44.

The inverse of the percentile rank function, which often is referred to as the per-
centile function, is symbolized as P−1. Two alternate percentile functions are given
as follows. These functions produce the same result, unless some of the probabilities
are zero. Given a percentile rank (e.g., the 10th percentile rank), this inverse function
is used to find the score corresponding to that percentile rank. To find this function,
solve Eq. (2.14) for x . Specifically, for a given percentile rank P∗, the percentile is

xU (P∗) = P−1[P∗] = P∗/100 − F(x∗
U − 1)

F(x∗
U ) − F(x∗

U − 1)
+ (x∗

U − .5), 0 ≤ P∗ < 100,

= K X + .5, P∗ = 100. (2.15)

In Eq. (2.15), for 0 ≤ P∗ < 100, x∗
U is the smallest integer score with a cumulative

percent [100F(x)] that is greater than P∗. An alternate expression for the percentile
is

xL(P∗) = P−1[P∗] = P∗/100 − F(x∗
L)

F(x∗
L + 1) − F(x∗

L)
+ (x∗

L + .5), 0 < P∗ ≤ 100,

= −.5, P∗ = 0. (2.16)

In Eq. (2.16), for 0 < P∗ ≤ 100, x∗
L is the largest integer score with a cumulative

percent [100F(x)] that is less than P∗. If the f (x) are nonzero at all score points
0, 1, . . . , K X , then x = xU = xL , and either expression can be used. If some of
the f (x) are zero, then xU ∞= xL for at least some percentile ranks. In this case, the
convention x = (xU + xL)/2 is used. This convention produces the same results
as the one described in association with Fig. 2.6 using the graphical procedures. In
most situations, it seems reasonable to assume that the f (x) are all nonzero over
the integer score range 0, 1, . . . , K X . For this reason, and to simplify issues, when
considering population distributions in the following discussion, only Eq. (2.15) is
used with xU = x . When considering estimates of population distributions, estimated
probabilities of zero are often encountered (i.e., when no examinees in a sample earn
a particular score).

As an example of how to use Eq. (2.15), find the score corresponding to a percentile
rank of 62 using the inverse of the percentile rank function using the data in Table 2.1.
In this case x∗

U = 2 because, in Table 2.1, it is the smallest integer score with F(x)
that is greater than .62. Then
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P−1(62) = 62/100 − F(1)

F(2) − F(1)
+ (2 − .5)

= .62 − .5

.7 − .5
+ (2 − .5) = .12/.20 + 1.5 = .60 + 1.5 = 2.1.

In equipercentile equating, the interest is in finding a score on Form Y that has
the same percentile rank as a score on Form X. Referring to y as a score on Form Y,
let KY refer to the number of items on Form Y, let g(y) refer to the discrete density
of y, let G(y) refer to the discrete cumulative distribution of y, let Q(y) refer to the
percentile rank of y, and let Q−1 refer to the inverse of the percentile rank function
for Form Y. Then the Form Y equipercentile equivalent of score x on Form X is

eY (x) = y = Q−1[P(x)], −.5 ≤ x ≤ K X + .5. (2.17)

This equation indicates that, to find the equipercentile equivalent of score x on the
scale of Form Y, first find the percentile rank of x in the Form X distribution. Then
find the Form Y score that has that same percentile rank in the Form Y distribution.
Equation (2.17) is symmetric. That is, to find the Form X equivalent of a Form Y
score, Eq. (2.17) is solved for y, giving eX (y) = P−1[Q(y)].

Analytically, to find eY (x) given by Eq. (2.17), use the analog of Eq. (2.15) for
the Form Y distribution. That is, use

eY (x) = Q−1[P(x)]
= P(x)/100 − G(y∗

U − 1)

G(y∗
U ) − G(y∗

U − 1)
+ (y∗

U − .5), 0 ≤ P(x) < 100,

= KY + .5, P(x) = 100. (2.18)

[Note that, to use this equation when some Form Y scores have zero probabilities,
it also is necessary to use y∗

L as described in the discussion following Eq. (2.16).]
Refer to Table 2.2. As an example of finding equipercentile equivalents, find the
Form Y equipercentile equivalent of a Form X score of 2. The percentile rank of a
Form X score of 2 is P(2) = 60, as is shown in Table 2.2. To find the equipercentile
equivalent, the Form Y score that has a percentile rank of 60 must be found. Because
3 is the score with the smallest G(y) that is greater than .60, y∗

U = 3. Thus, using
Eq. (2.18),

eY (x) = Q−1[60] = 60/100 − .5

.8 − .5
+ (3 − .5) = .1/.3 + 2.5 = 2.8333.

The raw score equipercentile equivalents that result typically are noninteger. Nonin-
teger scores arise through the continuization process used to define percentiles and
percentile ranks. Issues related to rounding to integers are considered later in the
discussion of scale scores.
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Table 2.3 Form Y equivalents of Form X
scores for a hypothetical four-item test

x f (x) eY (x)

0 .2 .50
1 .3 1.75
2 .2 2.8333
3 .2 3.50
4 .1 4.25

2.5.3 Properties of Equated Scores in Equipercentile Equating

Conducting equipercentile equating using Eq. (2.18) always results in equated scores
in the range −.5 ≤ eY (x) ≤ KY + .5. Thus, equipercentile equating has the desirable
property that the equated scores will always be within the range of possible scores
under the traditional conceptualization of percentiles and percentile ranks. The prob-
lem of having equated scores that are out of the range of possible scores which occur
with mean and linear equating does not occur with equipercentile equating.

Ideally, in equipercentile equating the equated scores on Form X would have the
same distribution as the scores on Form Y. As was previously indicated, if test scores
were continuous, then these distributions would be the same. However, test scores
are discrete. A continuization process involving percentiles and percentile ranks was
used to render the problem mathematically tractable. However, when the results of
equating are applied to discrete scores, the equated Form X score distribution will
differ from the Form Y distribution.

Consider the following illustration. Using the hypothetical four-item test from
Tables 2.2 and 2.3 provides the Form Y equivalents of scores resulting from the use
of Eq. (2.18). The moments that result are shown in Table 2.4, where skewness and
kurtosis are defined for Form X, respectively, as

sk(X) = E[X − μ(X)]3

[σ(X)]3 , and (2.19)

ku(X) = E[X − μ(X)]4

[σ(X)]4 . (2.20)

Central moments for other variables are defined similarly. To arrive at the moments
of the equated scores, eY (x), in Table 2.4, the Form X scores were equated to Form Y
scores. For example, as indicated in Table 2.3, the proportion of examinees earning
an eY (x) of .50 is .20.

Moments of these equated scores then were found. Ideally, the moments for eY (x)
in Table 2.4 would be equal to those for y. As can be seen, however, there are depar-
tures. These departures are a result of the discreteness of the scores. The departures
in Table 2.4 are relatively large because the test is so short. Departures likely would
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2.4 Moments for equating Form X and Form Y of a hypothetical
four-item test

Score μ σ sk ku

y 2.3000 1.2689 −.2820 1.9728
x 1.7000 1.2689 .2820 1.9728
eY (x) 2.3167 1.2098 −.0972 1.8733

be considerably less with longer, more realistic tests. For tests of realistic lengths,
not being able to achieve the equal distribution goal precisely often is more of a
theoretical concern than a practical one.

The approach taken here is to compare moments of the equated scores to the
moments of the Form Y scores as was just done. von Davier et al. (2004) introduced
the percent relative error index to compare these moments. The percent relative error
is computed by finding the difference between a particular moment for the equated
scores and that same moment for the Form Y scores. This difference is then divided
by the same moment for the Form Y scores.

2.6 Estimating Observed Score Equating Relationships

So far, the methods have been described using population parameters. In practice,
sample statistics are all that are available, and these sample statistics are substituted
for the parameters in the preceding equations.

One estimation problem that occurs in equipercentile equating is how to calculate
the function P−1 when the frequency at some score points is zero. The conventions
associated with Eqs. (2.15) and (2.16) for averaging the results is one procedure for
producing a unique result. Another procedure is to add a very small relative frequency
to each score, and then adjust the relative frequencies so they sum to one. If adj is
taken as this small quantity, then the adjusted relative frequencies on Form Y are

ĝadj(y) = ĝ(y) + adj

1 + (KY + 1) · adj
,

where ĝ(y) is the relative frequency that was observed. For example, if KY = 10,
adj = 10−6, and ĝ(2) = .02, then

ĝadj(2) = .02 + 10−6

1 + (10 + 1) · 10−6 = .02000078.

A similar procedure could be used for Form X. The equating then can be done
using the adjusted relative frequencies. Experience has shown that a value around
adj = 10−6 can be used without creating a serious bias in the equating. A third
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solution to the zero frequency problem is to use smoothing methods, which are the
subject of Chap. 3.

Data for an example of an equating of Form X and Form Y of the original ACT
Mathematics test are presented in Table 2.5. This test contains 40 multiple-choice
items scored incorrect (0) or correct (1). Form X was administered to 4,329 examinees
and Form Y to 4,152 examinees in a spiral administration, which resulted in random
groups of examinees being administered Form X and Form Y. The sample sizes
for the two forms differ, in part, because Form X always preceded Form Y in the
distribution of booklets in each testing room. Thus, one more Form X than Form
Y booklet was administered in some testing rooms. In the table, a “∧” is used to
indicate an estimate of a population parameter, and NX and NY refer to sample sizes
for the forms. Consider, for example, a score of 10 on Form Y. From Table 2.5, 194
examinees earned a score of 10, and 857 examinees earned a score of 10 or below; the
proportion of examinees earning a score of 10 is .0467, the proportion of examinees
at or below a score of 10 is .2064, and the estimated percentile rank of a score of 10
is 18.30.

Percentile ranks for Forms X and Y are plotted in Fig. 2.7. The percentile ranks
are plotted for each score point plus .5. Form X appears to be somewhat easier than
Form Y, because the Form X distribution is shifted to the right. The relative frequency
distributions are shown in Fig. 2.8.

Both score distributions are positively skewed, and Form X again appears to be
somewhat easier than Form Y. Estimates of central moments for Form X and Form
Y are given in the upper portion of Table 2.6. Both forms have means, μ̂, less than 20
(which is 50 % of the 40 items), so it appears that the tests are somewhat difficult for
these examinees. Form X is, on average, nearly 1 point easier than Form Y. Based
on the standard deviations, σ̂, the distribution for Form X is less variable than the
distribution for Form Y. As indicated by the skewness values, ŝk the distributions
are positively skewed, where skewness for the population is defined in Eq. (2.19).
Based on the kurtosis estimates, k̂u, the distributions have lower kurtosis than a
normal distribution, which would have a kurtosis value of 3, where kurtosis for the
population is defined in Eq. (2.20).

The conversions for mean, linear, and equipercentile equating are shown in
Table 2.7 and are graphed in Fig. 2.9. The linear and equipercentile results were cal-
culated using the RAGE-RGEQUATE computer program described in Appendix B,
and are also described in Brennan et al. (2009, pp. 57–64). The moments for con-
verted scores are shown in the bottom portion of Table 2.6. As expected, the mean
converted scores for mean equating are the same as the mean for Form Y. For lin-
ear equating, the mean and standard deviation of the converted scores agree with
the mean and standard deviation of Form Y. The first four moments of converted
scores for equipercentile equating are very similar to those for Form Y. In Table 2.7,
it can be seen that mean and linear equating produce results that are outside the
range of possible raw scores. Because of the large number of values in Table 2.7 and
the considerable similarity of equating functions in Fig. 2.9, differences between the
functions are difficult to ascertain.

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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Table 2.5 Data for equating Form X and Form Y of the original ACT
mathematics test

Form Y Form X
NY · NY · NX · NX ·

Raw score ĝ(y) Ĝ(y) ĝ(y) Ĝ(y) Q̂(y) f̂ (x) F̂(x) f̂ (x) F̂(x) P̂(x)
0 0 0 .0000 .0000 .00 0 0 .0000 .0000 .00
1 1 1 .0002 .0002 .01 1 1 .0002 .0002 .01
2 3 4 .0007 .0010 .06 1 2 .0002 .0005 .03
3 13 17 .0031 .0041 .25 3 5 .0007 .0012 .08
4 42 59 .0101 .0142 .92 9 14 .0021 .0032 .22
5 59 118 .0142 .0284 2.13 18 32 .0042 .0074 .53
6 95 213 .0229 .0513 3.99 59 91 .0136 .0210 1.42
7 131 344 .0316 .0829 6.71 67 158 .0155 .0365 2.88
8 158 502 .0381 .1209 10.19 91 249 .0210 .0575 4.70
9 161 663 .0388 .1597 14.03 144 393 .0333 .0908 7.42
10 194 857 .0467 .2064 18.30 149 542 .0344 .1252 10.80
11 164 1021 .0395 .2459 22.62 192 734 .0444 .1696 14.74
12 166 1187 .0400 .2859 26.59 192 926 .0444 .2139 19.17
13 197 384 .0474 .3333 30.96 192 1118 .0444 .2583 23.61
14 177 561 .0426 .3760 35.46 201 1319 .0464 .3047 28.15
15 158 1719 .0381 .4140 39.50 204 1523 .0471 .3518 32.83
16 169 1888 .0407 .4547 43.44 217 1740 .0501 .4019 37.69
17 132 2020 .0318 .4865 47.06 181 1921 .0418 .4438 42.28
18 158 2178 .0381 .5246 50.55 184 2105 .0425 .4863 46.50
19 151 2329 .0364 .5609 54.28 170 2275 .0393 .5255 50.59
20 134 2463 .0323 .5932 57.71 201 2476 .0464 .5720 54.87
21 137 2600 .0330 .6262 60.97 147 2623 .0340 .6059 58.89
22 122 2722 .0294 .6556 64.09 163 2786 .0377 .6436 62.47
23 110 2832 .0265 .6821 66.88 147 2933 .0340 .6775 66.05
24 116 2948 .0279 .7100 69.61 140 3073 .0323 .7099 69.37
25 132 3080 .0318 .7418 72.59 147 3220 .0340 .7438 72.68
26 104 3184 .0250 .7669 75.43 126 3346 .0291 .7729 75.84
27 104 3288 .0250 .7919 77.94 113 3459 .0261 .7990 78.60
28 114 3402 .0275 .8194 80.56 100 3559 .0231 .8221 81.06
29 97 3499 .0234 .8427 83.10 106 3665 .0245 .8466 83.44
30 107 3606 .0258 .8685 85.56 107 3772 .0247 .8713 85.90
31 88 3694 .0212 .8897 87.91 91 3863 .0210 .8924 88.18
32 80 3774 .0193 .9090 89.93 83 3946 .0192 .9115 90.19
33 79 3853 .0190 .9280 91.85 73 4019 .0169 .9284 92.00
34 70 3923 .0169 .9448 93.64 72 4091 .0166 .9450 93.67
35 61 3984 .0147 .9595 95.22 75 4166 .0173 .9623 95.37
36 48 4032 .0116 .9711 96.53 50 4216 .0116 .9739 96.81
37 47 4079 .0113 .9824 97.68 37 4253 .0085 .9824 97.82
38 29 4108 .0070 .9894 98.59 38 4291 .0088 .9912 98.68
39 32 4140 .0077 .9971 99.33 23 4314 .0053 .9965 99.39
40 12 4152 .0029 1.0000 99.86 15 4329 .0035 1.000 99.83
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Fig. 2.7 Percentile ranks for equating Form X and Form Y of the original ACT Mathematics test
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Fig. 2.8 Relative frequency distributions for Form X and Form Y of the original ACT Mathematics
test

The use of considerably larger graph paper would help in such a comparison.
Alternatively, difference-type plots can be used, as in Fig. 2.10. In this graph, the
difference between the results for each method and the results for the identity equating
are plotted. To find the Form Y equivalent of a Form X score, just add the vertical
axis value to the horizontal axis value. For example, for equipercentile equating a
Form X score of 10 has a vertical axis value of approximately −1.8. Thus, the Form
Y equivalent of a Form X score of 10 is approximately 8.2 = 10 − 1.8. This value
is the same as the one indicated in Table 2.7 (8.1607), apart from error inherent in
trying to read values from a graph.
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Table 2.6 Moments for equating Form X and Form Y

Test Form μ̂ σ̂ ŝk k̂u

Form Y 18.9798 8.9393 .3527 2.1464
Form X 19.8524 8.2116 .3753 2.3024

Form X equated to Form Y scale for various methods

Mean 18.9798 8.2116 .3753 2.3024
Linear 18.9798 8.9393 .3753 2.3024
Equipercentile 18.9799 8.9352 .3545 2.1465

In Fig. 2.10, the horizontal line for the identity equating is at a vertical axis value
of 0, which will always be the case with difference plots constructed in the manner of
Fig. 2.10. The results for mean equating are displayed by a line that is parallel to, but
nearly 1 point below, the line for the identity equating. The line for linear equating
crosses the identity equating and mean equating lines. The equipercentile equating
relationship appears to be definitely nonlinear. Referring to the equipercentile rela-
tionship, Form X appears to be nearly 2 points easier around a Form X score of 10,
and the two forms appear to be similar in difficulty at scores in the range of 25 to 40.

The plot in Fig. 2.10 for equipercentile equating is somewhat irregular (bumpy).
These irregularities are a result of random error in estimating the equivalents. Smooth-
ing methods are introduced in Chap. 3, which lead to more regular plots and less
random error.

2.7 Scale Scores

When equating is conducted in practice, raw scores typically are converted to scale
scores. As described in Chap. 9, scale scores are constructed to facilitate score inter-
pretation, often by incorporating normative or content information. For example,
scale scores might be constructed to have a particular mean in a nationally repre-
sentative group of examinees. The effects of equating on scale scores are crucial to
the interpretation of equating results, because scale scores are the scores typically
reported to examinees. A further discussion of methods for developing score scales
is provided in Chap. 9. The use of scale scores in the equating context is described
next.

2.7.1 Linear Conversions

The least complicated raw-to-scale score transformations that typically are used in
practice are linear in form. For example, suppose that a national norming study was

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
http://dx.doi.org/10.1007/978-1-4939-0317-7_9
http://dx.doi.org/10.1007/978-1-4939-0317-7_9
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Table 2.7 Raw-to-raw score conversion tables

Form X Form Y equivalent using equating method
Score Mean Linear Equipercentile

0 −.8726 −2.6319 .0000
1 .1274 −1.5432 .9796
2 1.1274 −.4546 1.6462
3 2.1274 .6340 2.2856
4 3.1274 1.7226 2.8932
5 4.1274 2.8112 3.6205
6 5.1274 3.8998 4.4997
7 6.1274 4.9884 5.5148
8 7.1274 6.0771 6.3124
9 8.1274 7.1657 7.2242
10 9.1274 8.2543 8.1607
11 10.1274 9.3429 9.1827
12 11.1274 10.4315 10.1859
13 12.1274 11.5201 11.2513
14 13.1274 12.6088 12.3896
15 14.1274 13.6974 13.3929
16 15.1274 14.7860 14.5240
17 16.1274 15.8746 15.7169
18 17.1274 16.9632 16.8234
19 18.1274 18.0518 18.0092
20 19.1274 19.1405 19.1647
21 20.1274 20.2291 20.3676
22 21.1274 21.3177 21.4556
23 22.1274 22.4063 22.6871
24 23.1274 23.4949 23.9157
25 24.1274 24.5835 25.0292
26 25.1274 25.6722 26.1612
27 26.1274 26.7608 27.2633
28 27.1274 27.8494 28.1801
29 28.1274 28.9380 29.1424
30 29.1274 30.0266 30.1305
31 30.1274 31.1152 31.1297
32 31.1274 32.2039 32.1357
33 32.1274 33.2925 33.0781
34 33.1274 34.3811 34.0172
35 34.1274 35.4697 35.1016
36 35.1274 36.5583 36.2426
37 36.1274 37.6469 37.1248
38 37.1274 38.7355 38.1321
39 38.1274 39.8242 39.0807
40 39.1274 40.9128 39.9006
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Fig. 2.9 Results for equating Form X and Form Y of the original ACT Mathematics test

-3.0 

-2.5 

-2.0 

-1.5 

-1.0 

-0.5 

0.0 

0.5 

1.0 

0 5 10 15 20 25 30 35 40 

Fo
rm

 Y
 E

qu
iv

al
en

t M
in

us
 F

or
m

 X
 S

co
re

 

Raw Score Form X 

Mean 

Linear 

Equipercentile 

Identity 

Fig. 2.10 Results expressed as differences for equating Form X and Form Y of the original ACT
Mathematics test

conducted using Form Y of the 100-item test that was used earlier in this chapter to
illustrate mean and linear equating. Assume that the mean raw score, μ(Y ), was 70
and the standard deviation, σ(Y ), was 10 for the national norm group. Also assume
that the mean scale score, μ(sc), was intended to be 20 and the standard deviation
of the scale scores, σ(sc), 5. Then the raw-to-scale score transformation (sc) for
converting raw scores on the old form, Form Y, to scale scores is

sc(y) = σ(sc)

σ(Y )
y +

[
μ(sc) − σ(sc)

σ(Y )
μ(Y )

]
. (2.21)
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Substituting we have

sc(y) = 5

10
y +

[
20 − 5

10
70

]

= .5y − 15.

Now assume that scores on Form X are to be converted to scale scores based on the
equating used in the earlier linear equating example. As was found earlier, the linear
conversion equation for equating raw scores on Form X to raw scores on Form Y
was lY (x) = .9x + 12.2. To find the raw-to-scale score transformation for Form X,
substitute lY (x) for y in the raw-to-scale score transformation for Form Y. This gives

sc[lY (x)] = .5[lY (x)] − 15

= .5[.9x + 12.2] − 15

= .45x − 8.9.

For example, a raw score of 74 on Form X converts to a scale score of .45(74)−8.9 =
24.4. In this manner, raw-to-scale score conversions for all Form X raw scores can
be found. When another new form is constructed and equated to Form X, a similar
process can be used to find the scale score equivalents of scores on this new form.

2.7.2 Truncation of Linear Conversions

When linear transformations are used as scaling transformations, the score scale
transformation often needs to be truncated at the upper and/or lower extremes. For
example, the Form Y raw-to-scale score transformation, sc(y) = .5y −15, produces
scale scores below 1 for raw scores below 32. Suppose that scale scores are intended
to be 1 or greater. The transformation for this form then would be as follows:

sc(y) = .5y − 15, y ≥ 32,

= 1, y < 32.

Also, a raw score of 22 on Form X is equivalent to a raw score of 32 = .9(22)+12.2
on Form Y. So, the raw-to-scale score conversion for Form X is

sc[lY (x)] = .45x − 8.9, x ≥ 22,

= 1, x < 22.

Truncation can also occur at the top end. For example, truncation would be needed
at the top end for Form X but not for Form Y if the highest scale score was set to 35
on this 100-item test (the reader should verify this fact).
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Scale scores are typically rounded to integers for reporting purposes. Define scint ,
as the scale score rounded to an integer. Then, for example, scint[lY (x = 74)] = 24,
because a scale score of 24.4 rounds to a scale score of 24.

2.7.3 Nonlinear Conversions

Nonlinear raw-to-scale score transformations are often used in practice. Examples
of nonlinear transformations include the following: normalized scales, grade equiva-
lents, and scales constructed to stabilize measurement error variability (see Chap. 9).
The use of nonlinear transformations complicates the process of converting raw
scores to scale scores. The nonlinear function could be specified as a continuous
function. However, when using discrete test scores (e.g., number-correct scores) the
function is often defined at selected raw score values, and linear interpolation is
used to compute scale score equivalents at other raw score values. The scheme for
nonlinear raw-to-scale score transformations that is presented here is designed to be
consistent with the definitions of equipercentile equating described earlier.

The first step in describing the process is to specify sc(y), the raw-to-scale score
function for Form Y. In the present approach, the conversions of Form Y raw scores
to scale scores are specified at Form Y raw scores of −.5, KY + .5, and all integer
score points through and including 0 to KY . The first two columns of Table 2.8
present an example. As can be seen, each integer raw score on Form Y has a scale
score equivalent. For example, the scale score equivalent of a Form Y raw score of
24 is 22.3220. These equivalents resulted from an earlier equating of Form Y.

When Form X is equated to Form Y , the Form Y equivalents are typically non-
integer. These noninteger equivalents need to be converted to scale scores, so a
procedure is needed to find scale score equivalents of noninteger scores on Form Y .
Linear interpolation is used in the present approach. For example, to find the scale
score equivalent of a Form Y score of 24.5 in Table 2.8, find the scale score that is
halfway between the scale score equivalents of Form Y raw scores of 24 (22.3220)
and 25 (22.9178). The reader should verify that this value is 22.6199.

Note that scale score equivalents are provided in the table for raw scores of −.5
and 40.5. These values provide minimum and maximum scale scores when equiper-
centile equating is used. (As was indicated earlier, the minimum equated raw score
in equipercentile equating is −.5 and the maximum is KY + .5.)

To make the specification of conversion for Form Y to scale scores more explicit,
let yi refer to the i-th point that is tabled. For −.5 ≤ y ≤ KY + .5, define y∗

i as
the tabled raw score that is the largest among the tabled scores that are less than or
equal to y. In this case, the linearly interpolated raw-to-scale score transformation
is defined as

http://dx.doi.org/10.1007/978-1-4939-0317-7_9
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Table 2.8 Raw-to-scale score conversion tables

Form Y scale Form X scale scores
Raw Scores Mean equating Linear equating Equipercentile
Score sc scint sc scint sc scint sc scint

−.5 .5000 1 .5000 1 .5000 1 .5000 1
0 .5000 1 .5000 1 .5000 1 .5000 1
1 .5000 1 .5000 1 .5000 1 .5000 1
2 .5000 1 .5000 1 .5000 1 .5000 1
3 .5000 1 .5000 1 .5000 1 .5000 1
4 .5000 1 .5000 1 .5000 1 .5000 1
5 .6900 1 .5242 1 .5000 1 .5000 1
6 1.6562 2 .8131 1 .5000 1 .5949 1
7 3.1082 3 1.8412 2 .6878 1 1.1874 1
8 4.6971 5 3.3106 3 1.7681 2 2.1098 2
9 6.1207 6 4.8784 5 3.3715 3 3.4645 3
10 7.4732 7 6.2930 6 5.0591 5 4.9258 5
11 8.9007 9 7.6550 8 6.5845 7 6.3678 6
12 10.3392 10 9.0839 9 8.0892 8 7.7386 8
13 11.6388 12 10.5047 11 9.6489 10 9.2622 9
14 12.8254 13 11.7899 12 11.1303 11 10.8456 11
15 14.0157 14 12.9770 13 12.4663 12 12.1050 12
16 15.2127 15 14.1682 14 13.7610 14 13.4491 13
17 16.3528 16 15.3579 15 15.0626 15 14.8738 15
18 17.3824 17 16.4839 16 16.3109 16 16.1515 16
19 18.3403 18 17.5044 18 17.4321 17 17.3912 17
20 19.2844 19 18.4606 18 18.4729 18 18.4958 18
21 20.1839 20 19.3990 19 19.4905 19 19.6151 20
22 20.9947 21 20.2872 20 20.4415 20 20.5533 21
23 21.7000 22 21.0845 21 21.2813 21 21.4793 21
24 22.3220 22 21.7792 22 22.0078 22 22.2695 22
25 22.9178 23 22.3979 22 22.6697 23 22.9353 23
26 23.5183 24 22.9943 23 23.3214 23 23.6171 24
27 24.1314 24 23.5964 24 23.9847 24 24.2949 24
28 24.7525 25 24.2105 24 24.6590 25 24.8496 25
29 25.2915 25 24.8212 25 25.2581 25 25.3538 25
30 25.7287 26 25.3472 25 25.7400 26 25.7841 26
31 26.1534 26 25.7828 26 26.2104 26 26.2176 26
32 26.6480 27 26.2164 26 26.7684 27 26.7281 27
33 27.2385 27 26.7232 27 27.4343 27 27,2908 27
34 27.9081 28 27.3238 27 28.2070 28 27.9216 28
35 28.6925 29 28.0080 28 29.1886 29 28.7998 29
36 29.7486 30 28.8270 29 30.5595 31 30.1009 30
37 31.2010 31 29.9336 30 32.1652 32 31.3869 31
38 32.6914 33 31.3908 31 33.7975 34 32.8900 33
39 34.1952 34 32.8830 33 35.2388 35 34.2974 34
40 35.4615 35 34.3565 34 36.5000 36 35.3356 35
40.5 36.5000 36 34.9897 35 36.5000 36 36.5000 36
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sc(y) = sc(y∗
i ) + y − y∗

i

y∗
i+1 − y∗

i
[sc(y∗

i+1) − sc(y∗
i )], −.5 ≤ y ≤ KY + .5,

= sc(−.5), y < −.5,

= sc(KY + .5), y > Ky + .5, (2.22)

where y∗
i+1 is the smallest tabled raw score that is greater than or equal to y∗

i . Note
that sc(−.5) is the minimum scale score and that sc(KY + .5) is the maximum scale
score.

To illustrate how this equation works, refer again to Table 2.8. How would the
scale score equivalent of a raw score of y = 18.3 be found using Eq. (2.22)? Note
that y∗

i = 18, because this score is the largest tabled score that is less than or equal
to y. Using Eq. (2.22),

sc(y) = sc(18) + 18.3 − 18

19 − 18
[sc(19) − sc(18)]

= 17.3824 + 18.3 − 18

19 − 18
[18.3403 − 17.3824]

= 17.6698.

To illustrate that Eq. (2.22) is a linear interpolation expression, note that the scale
score equivalent of 18 is 17.3824. The scale score 18.3 is, proportionally, .3 of the way
between 18 and 19. This .3 value is multiplied by the difference between the scale
score equivalents at 19 (18.3403) and at 18 (17.3824). Then .3 times this difference
is .3[18.3403 − 17.3824] = .2874. Adding .2874 to 17.3824 gives 17.6698.

Typically, the tabled scores used to apply Eq. (2.22) will be integer raw scores
along with −.5 and KY + .5. Equation (2.22), however, allows for more general
schemes. For example, scale score equivalents could be tabled at each half raw
score, such as −.5, .0, .5, 1.0, etc.

In practice, integer scores, which are found by rounding sc(y), are reported to
examinees. The third column of the table provides these integer scale score equiv-
alents for integer raw scores (scint). A raw score of −.5 was set equal to a scale
score value of .5 and a raw score of 40.5 was set equal to a scale score value of 36.5.
These values were chosen so that the minimum possible rounded scale score would
be 1 and the maximum 36. In rounding, a convention is used where a scale score
that precisely equals an integer score plus .5 rounds up to the next integer score. The
exception to this convention is that the scale score is rounded down for the highest
scale score, so that 36.5 rounds to 36.

To find the scale score equivalents of the Form X raw scores, the raw scores on
Form X are first equated to raw scores on Form Y using Eq. (2.18). Then, substituting
eY (x) for y in Eq. (2.22),

sc[eY (x)] = sc(y∗
i ) + eY (x) − y∗

i

y∗
i+1 − y∗

i
[sc(y∗

i+1) − sc(y∗
i )],−.5 ≤ eY (x) ≤ K X + .5.

(2.23)
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In this equation, y∗
i is defined as the largest tabled raw score that is less than or equal

to eY (x). This definition of y∗
i as well as the definition of y∗

i+1 are consistent with
their definitions in Eq. (2.22). The transformation is defined only for the range of
Form X scores, −.5 ≤ x ≤ K X + .5. There is no need to define this function outside
this range, because eY (x) is defined only in this range in Eq. (2.17). The minimum
and maximum scale scores for Form X are identical to those for Form Y, which occur
at sc[eY (x = −.5)] and at sc[eY (x = K X + .5)], respectively.

As an example, Eq. (2.23) is used with the ACT Mathematics equating example.
Suppose that the scale score equivalent of a Form X raw score of 24 is to be found
using equipercentile equating. In Table 2.7, a Form X raw score of 24 is shown to
be equivalent to a Form Y raw score of 23.9157. To apply Eq. (2.22), note that the
largest Form Y raw score in Table 2.8 that is less than 23.9157 is 23. So, y∗

i = 23,
and y∗

i+1 = 24. From Table 2.8, sc(23) = 21.7000 and sc(24) = 22.3220. Applying
Eq. (2.22),

sc[eY (x = 24)] = sc(23.9157)

= sc(23) + 23.9157 − 23

24 − 23
[sc(24) − sc(23)]

= 21.7000 + 23.9157 − 23

24 − 23
[22.3220 − 21.7000]

= 22.2696.

For a Form X raw score of 24, this value agrees with the value using equipercentile
equating in Table 2.8, apart from rounding. Rounding to an integer, scint[eY (x =
24)] = 22.

Mean and linear raw score equating results can be converted to nonlinear scale
scores by substituting mY (x) or lY (x) for y in Eq. (2.22). The raw score equivalents
from either the mean or linear methods might fall outside the range of possible Form
Y scores. This problem is handled in Eq. (2.22) by truncating the scale scores. For
example, if lY (x) < −.5, then sc(y) = sc(−.5) by Eq. (2.22). The unrounded and
rounded raw-to-scale score conversions for the mean and linear equating results are
presented in Table 2.8.

Inspecting the central moments of scale scores can be useful in judging the accu-
racy of equating. Ideally, after equating, the scale score moments for converted Form
X scores would be identical to those for Form Y. However, the moments typically
are not identical, in part because the scores are discrete. If equating is successful,
then the scale score moments for converted Form X scores should be very similar
(say, agree, to at least one decimal place) to the scale score moments for Form Y.
Should the Form X moments be compared to the rounded or unrounded Form Y
moments? The answer is not entirely clear. However, the approach taken here is to
compare the Form X moments to the Form Y unrounded moments. The rationale for
this approach is that the unrounded transformation for Form Y most closely defines
the score scale for the test, whereas rounding is used primarily to facilitate score
interpretability. Following this logic, the use of Form Y unrounded moments for
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Table 2.9 Scale score moments

Test Form μ̂sc σ̂sc ŝksc k̂usc

Form Y
unrounded 16.5120 8.3812 −.1344 2.0557
rounded 16.4875 8.3750 −.1025 2.0229

Form X equated to Form Y scale for various methods

Mean
unrounded 16.7319 7.6474 −.1868 2.1952
rounded 16.6925 7.5965 −.1678 2.2032

Linear
unrounded 16.5875 8.3688 −.1168 2.1979
rounded 16.5082 8.3065 −.0776 2.1949

Equipercentile
unrounded 16.5125 8.3725 −.1300 2.0515
rounded 16.4324 8.3973 −.1212 2.0294

comparison purposes should lead to greater score scale stability when, over time,
many forms become involved in the equating process.

Moments are shown in Table 2.9 for Form Y and for Form X using mean, linear,
and equipercentile equating. Moments are shown for the unrounded (sc) and rounded
(scint ) score transformations. Note that the process of rounding affects the moments
for Form Y. Also, the Form X scale score mean for mean equating (both rounded
and unrounded) is much larger than the unrounded scale score mean for Form Y.
Presumably, the use of a nonlinear raw-to-scale score transformation for Form Y is
responsible. When the raw-to-scale score conversion for Form Y is nonlinear, the
mean scale score for Form X is typically not equal to the mean scale score for Form
Y for mean and linear equating. Similarly, when the raw-to-scale score conversion
for Form Y is nonlinear, the standard deviation of the Form X scale scores typically
is not equal to the standard deviation of Form Y scale scores for linear equating.

For equipercentile equating, the unrounded moments for Form X are similar to
the unrounded moments for Form Y. The rounding process results in the mean of
Form X being somewhat low. Is there anything that can be done to raise the mean of
the rounded scores? Refer to Table 2.8. In this table, a raw score of 23 converts to an
unrounded scale score of 21.4793 and a rounded scale score of 21. If the unrounded
converted score had been only .0207 points higher, then the rounded converted score
would have been 22. This observation suggests that the rounded conversion might
be adjusted to make the moments more similar. Consider adjusting the conversion
so that a raw score of 23 converts to a scale score of 22 (instead of 21) and a raw
score of 16 converts to a scale score of 14 (instead of 13). The moments for the
adjusted conversion are as follows: μ̂sc = 16.5165, σ̂sc = 8.3998, ŝksc = −.1445,
and k̂usc = 2.0347. Overall, the moments of the adjusted conversion seem closer
to the moments of the original unrounded conversion. For this reason, the adjusted
conversion might be used in practice.
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Should the rounded conversions actually be adjusted in practice? To the extent
that moments for the Form X rounded scale scores are made more similar to the
unrounded scale score moments for Form Y, adjusting the conversions would seem
advantageous. However, adjusting the conversions might lead to greater differences
between the cumulative distributions of scale scores for Form X and Form Y at some
scale score points. That is, adjusted conversions lead to less similar percentile ranks
of scale scores across the two forms. In addition, adjusted conversions affect the
scores of individual examinees.

Because adjusting can lead to less similar scale score distributions, and because it
adds a subjective element into the equating process, we typically take a conservative
approach to adjusting conversions. A rule of thumb that we often follow is to consider
adjusting the conversions only if the moments are closer after adjusting than before
adjusting, and the unrounded conversion is within .1 point of rounding to the next
higher or lower value (e.g., 21.4793 in the example is within .1 point of rounding to
22). Smoothing methods are considered in Chap. 3, which might eliminate the need
to consider subjective adjustments.

In the examples, scale score equivalents of integer raw scores were specified and
linear interpolation was used between the integer scores. If more precision is desired,
scale score equivalents of fractional raw scores could be specified. The procedures
associated with Eqs. (2.22) and (2.23) are expressed in sufficient generality to handle
this additional precision. Procedures using nonlinear interpolation also could be
developed, although linear interpolation is likely sufficient for practical purposes.

When score scales are established, the highest and lowest possible scale scores
are often fixed at particular values. For example, the ACT score scale is said to range
from 1 to 36. The approach taken here to scaling when using nonlinear conversions
is to fix the ends of the score scale at specific points. Over time, if forms become
easier or more difficult, the end points could be adjusted. However, such adjustments
would require careful judgment. An alternative procedure involves leaving enough
room at the top and bottom of the score scale to handle these problems. For example,
suppose that the rounded score scale for an original form is to have a high score of
36 for the first form developed. However, there is a desire to allow scale scores on
subsequent forms to go as high as 40 if the forms become more difficult. For the initial
Form Y, a scale score of 36 could be assigned to a raw score equal to KY and a scale
score of 40.5 could be assigned to a raw score equal to KY + .5. If subsequent forms
are more difficult than Form Y, the procedures described here could lead to scale
scores as high as 40.5. Of course, alternate interpolation rules could lead to different
properties. Rules for nonlinear scaling and equating also might be developed that
would allow the highest and lowest scores to float without limit. The approach taken
here is to provide a set of equations to be used for nonlinear equating and scaling
that can adequately handle, in a consistent manner, many of the situations we have
encountered in practice.

One practical problem sometimes occurs when the highest possible raw score
does not equate to the highest possible scale score. For the ACT, for example, the
highest possible raw score is assigned a scale score value of 36, regardless of the
results of the equating. For the SAT (Donlon 1984, p. 19), the highest possible raw
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score is assigned a scale score value of 800, and other converted scores are sometimes
adjusted, as well.

2.8 Equating Using Single Group Designs

If practice, fatigue, and other order effects do not have an effect on scores, then
the statistical process for mean, linear, and equipercentile equating using the single
group design (without counterbalancing) is essentially the same as with the random
groups design. However, order typically has an affect, and for this reason the single
group design (without counterbalancing) is not recommended.

When the single group design with counterbalancing is used, the following four
equatings can be conducted:

1. Equate Form X and Form Y using the random groups design for examinees who
were administered Form X first and Form Y first.

2. Equate Form X and Form Y using the random groups design for examinees who
were administered Form X second and Form Y second.

3. Equate Form X and Form Y using the single group design for examinees who
were administered Form X first and Form Y second.

4. Equate Form X and Form Y using the single group design for examinees who
were administered Form X second and Form Y first.

Compare equatings 1 and 2. Standard errors of equating described in Chap. 7 can
be used as a baseline for comparing the equatings. If the equatings give different
results, apart from sampling error, then Forms X and Y are differentially affected
by appearing second. In this case, only the first equating should be used. Note that
the first equating is a random groups equating, so it is unaffected by order. The
problem with using the first equating only is that the sample size might be quite
small. However, when differential order effects occur, then equating 1 might be the
only equating that would not be biased.

If equatings 1 and 2 give the same results, apart from sampling error, then Forms
X and Y are similarly affected by appearing second. In this case, all of the data
can be used. One possibility would be to pool all of the Form X data and all of the
Form Y data, and equate the pooled distributions. Angoff (1971) and Petersen et al.
(1989) provided procedures for linear equating. von Davier et al. (2004) described
a systematic scheme that is based on statistical tests using log-linear models for
equipercentile equating under the single group counterbalanced design.

2.9 Equating Using Alternate Scoring Schemes

The presentation of equipercentile equating and scale scores assumed that the tests
to be equated are scored number-correct, with the observed scores ranging from 0
to the number of items. Although this type of scoring scheme is the one that is used
most often with educational tests, alternative scoring procedures are becoming much

http://dx.doi.org/10.1007/978-1-4939-0317-7_7
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more popular, and the procedures described previously can be generalized to other
scoring schemes. For example, whenever raw scores are integer scores that range
from 0 to a positive integer value, the procedures can be used directly by defining K
as the maximum score on a form, rather than as the number of items on a form as
has been done.

Some scoring schemes might produce discrete scores that are not necessarily inte-
gers. For example, when tests are scored using a correction for guessing, a fractional
score point often is subtracted from the total score whenever an item is answered
incorrectly. In this case, raw scores are not integers. However, the discrete score
points that can possibly occur are specifiable and equally spaced. One way to con-
duct equating in this situation is to transform the raw scores. The lowest possible
raw score is transformed to a score of 0, the next lowest raw score is transformed
to a score of 1, and so on through K , which is defined as the transformed value of
the highest possible raw score. The procedures described in this chapter then can be
applied and the scores transformed back to their original units.

Equipercentile equating also can be conducted when the scores are considered
to be continuous, which might be the case when equating forms of a computerized
adaptive test. In many ways, equating in this situation is more straightforward than
with discrete scores, because the definitional problems associated with continuiza-
tion do not need to be considered. Still, difficulties might arise in trying to define
score equivalents in portions of the score scale where few examinees earn scores.
In addition, even if the range of scores is potentially infinite, the range of scores for
which equipercentile equivalents are to be found needs to be considered.

2.10 Preview of What Follows

In this chapter, we described many of the issues associated with observed score
equating using the random groups design, including defining methods, describing
their properties, and estimating the relationships. We also discussed the relationships
between equating and score scales. One of the major relevant issues not addressed
in this chapter is the use of smoothing methods to reduce random error in estimating
equipercentile equivalents. Smoothing is the topic of Chap. 3. Also, as we show in
Chaps. 4 and 5, the implementation of observed score equating methods becomes
much more complicated when the groups administered the two forms are not ran-
domly equivalent. Observed score methods associated with IRT are described in
Chap. 6. Estimating random error in observed score equating is discussed in detail
in Chap. 7, and practical issues are discussed in Chap. 8. Scaling and linking are
discussed in Chaps. 9 and 10.
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Table 2.10 Score distributions for exercise 2.4

x f (x) F(x) P(x) y g(y) G(y) Q(y)

0 .00 0 .00
1 .01 1 .02
2 .02 2 .05
3 .03 3 .10
4 .04 4 .20
5 .10 5 .25
6 .20 6 .20
7 .25 7 .10
8 .20 8 .05
9 .10 9 .02
10 .05 10 .01

Table 2.11 Equated scores for exercise 2.4

x mY (x) lY (x) eY (x)

0
1
2
3
4
5
6
7
8
9
10

2.11 Exercises

2.1. From Table 2.2 find P(2.7), P(.2), P−1(25), P−1(97).
2.2. From Table 2.2, find the linear and mean conversion equation for converting

scores on Form X to the Form Y scale.
2.3. Find the mean and standard deviation of the Form X scores converted to the

Form Y scale for the equipercentile equivalents shown in Table 2.3.
2.4. Fill in Tables 2.10 and 2.11.
2.5. If the standard deviations on Form X and Y are equal, which methods, if any,

among mean, linear, and equipercentile will produce the same results? Why?
2.6. Suppose that a raw score of 20 on Form W was found to be equivalent to a

raw score of 23.15 on Form X. What would be the scale score equivalent of a
Form W raw score of 20 using the Form X equipercentile conversion shown in
Table 2.8?
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2.7. Suppose that the linear raw-to-scale score conversion equation for Form Y was
sc(y) = 1.1y + 10. Also suppose that the linear equating of Form X to Form
Y was lY (x) = .8x + 1.2. What is the linear conversion of Form X scores to
scale scores?

2.8. In general, how would the shape of the distribution of Form X raw scores
equated to the Form Y raw scale compare to the shape of the original Form X
raw score distribution using mean, linear, and equipercentile equating?

References

Angoff, W. H. (1971). Scales, norms, and equivalent scores. In R. L. Thorndike (Ed.), Educational
measurement (2nd ed., pp. 508–600). Washington, DC: American Council on Education.

Braun, H. I., & Holland, P. W. (1982). Observed-score test equating: A mathematical analysis of
some ETS equating procedures. In P. W. Holland & D. B. Rubin (Eds.), Test equating (pp. 9–49).
New York: Academic.

Brennan, R. L., Wang, T., Kim, S., & Seol, J. (2009). Equating recipes. Iowa City, IA: Center for
Advanced Studies in Measurement and Assessment, University of Iowa.

Donlon, T. (Ed.). (1984). The College Board technical handbook for the scholastic aptitude test and
achievement tests. New York: College Entrance Examination Board.

Holland, P. W., & Thayer, D. T. (1989). The kernel method of equating score distributions (Technical
Report 89–84). Princeton, NJ: Educational Testing Service.

Petersen, N. S., Kolen, M. J., & Hoover, H. D. (1989). Scaling, norming, and equating. In
R. L. Linn (Ed.), Educational measurement (3rd ed., pp. 221–262). New York: Macmillan.

von Davier, A. A., Holland, P. W., & Thayer, D. T. (2004). The kernel method of test equating. New
York: Springer.



Chapter 3
Random Groups: Smoothing in Equipercentile
Equating

As described in Chap. 2, sample statistics are used to estimate equating relationships.
For mean and linear equating, the use of sample means and standard deviations in
place of the parameters typically leads to adequate equating precision, even when the
sample size is fairly small. However, when sample percentiles and percentile ranks
are used to estimate equipercentile relationships, equating often is not sufficiently
precise for practical purposes because of sampling error.

One indication that considerable error is present in estimating equipercentile
equivalents is that score distributions and equipercentile relationships appear irreg-
ular when graphed. For example, the equating shown in Fig. 2.10 was based on over
4,000 examinees per form. Even with these large sample sizes, the equipercentile
relationship is somewhat irregular. Presumably, if very large sample sizes or the en-
tire population were available, score distributions and equipercentile relationships
would be reasonably smooth.

Smoothing methods have been developed that produce estimates of the empiri-
cal distributions and the equipercentile relationship which will have the smoothness
property that is characteristic of the population. In turn, it is hoped that the result-
ing estimates will be more precise than the unsmoothed relationships. However, the
danger in using smoothing methods is that the resulting estimates of the population
distributions, even though they are smooth, might be poorer estimates of the pop-
ulation distributions or equating relationship than the unsmoothed estimates. The
quality of analytic smoothing methods with the random groups design is an empiri-
cal issue and has been the focus of research (Cope and Kolen 1990; Cui and Kolen
2009; Fairbank 1987; Hanson et al. 1994; Kolen 1984, 1991; Little and Rubin 1994;
Liu 2011; Liu and Kolen 2011a, b; Moses and Holland 2009a). Also, when there
are very few score points, the equating relationships can appear irregular, even after
smoothing, because of the discreteness issues discussed in Chap. 2. Two general
types of smoothing can be conducted: In presmoothing, the score distributions are
smoothed; in postsmoothing, the equipercentile equivalents are smoothed. Although
smoothing is sometimes conducted by hand, it is most often conducted using
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analytical methods. Various analytic smoothing techniques are described in this
chapter. In addition, various practical issues in choosing among various equating
relationships are considered.

3.1 A Conceptual Statistical Framework for Smoothing

A conceptual statistical framework is developed in this section which is intended to
provide a framework for distinguishing random error in equipercentile equating from
systematic error that is introduced by smoothing. The following discussion considers
different sources of equating errors. To be clear that the focus is on a Form X raw
score, define xi as a particular score on Form X. Define eY (xi ) as the population
equipercentile equivalent at that score, and define êY (xi ) as the sample estimate.
Also assume that E[êY (xi )] = eY (xi ), where E is the expectation over random
samples. Equating error at a particular score is defined as the difference between the
sample equipercentile equivalent and the population equipercentile equivalent. That
is, equating error at score xi for a given equating is

[êY (xi ) − eY (xi )]. (3.1)

Conceive of replicating the equating a large number of times; for each replication
the equating is based on two random samples of examinees from a population of
examinees who take Form X and Form Y, respectively. Equating error variance at
score point xi is

var [êY (xi )] = E[êY (xi ) − eY (xi )]2, (3.2)

where the variance is taken over replications. The standard error of equating is defined
as the square root of the error variance,

se[êY (xi )] =
√
var [êY (xi )] =

√
E[êY (xi ) − eY (xi )]2. (3.3)

The error indexed in Eqs. (3.1)–(3.3) is random error that is due to the sampling of
examinees to estimate the population quantity.

A graphic depiction is given in Fig. 3.1. In this figure, the Form Y equivalents of
Form X scores, indicated by eY (x), are graphed. Also, a particular score, xi , is shown
on the horizontal axis. Above xi , a distribution is plotted that represents estimated
Form Y equivalents of xi over replications of the equating. As can be seen, the
mean equivalent falls on the eY (x) curve. Random variability, due to the sampling
of examinees, is indexed by se[êY (xi )]. Smoothing methods often can be used to
reduce the error variability. Define t̂Y (xi ) as an alternative estimator of eY (xi ) that
results from using a smoothing method. Define

tY (xi ) = E[t̂Y (xi )], (3.4)
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Fig. 3.1 Schematic plot
illustrating random equating
error in unsmoothed equiper-
centile equating
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which is the expected value over replications of the smoothed equating. Defining
total error at score xi as t̂Y (xi ) − eY (xi ), the mean-squared error (mse) in equating
at score xi using the smoothing method is

mse[t̂Y (xi )] = E[t̂Y (xi ) − eY (xi )]2. (3.5)

Random error variability in the smoothed equating relationships is indexed by

var [t̂Y (xi )] = E[t̂Y (xi ) − tY (xi )]2, (3.6)

and

se[t̂Y (xi )] =
√
var [t̂Y (xi )].

Systematic error, or bias, in equating using smoothing is defined as

bias[tY (xi )] = tY (xi ) − eY (xi ). (3.7)

Total error can be partitioned into random error and systematic error components as
follows:

t̂Y (xi ) − eY (xi ) = [t̂Y (xi ) − tY (xi )] + [tY (xi ) − eY (xi )].
{Total Error} {Random Error} {Systematic Error}
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Fig. 3.2 Schematic plot
illustrating systematic and
random equating error in
smoothed equipercentile
equating

In terms of squared quantities,

mse[t̂Y (xi )] = var [t̂Y (xi )] + {bias[tY (xi )]}2

= E[t̂Y (xi ) − tY (xi )]2 + [tY (xi ) − eY (xi )]2. (3.8)

Thus, when using a smoothing method, total error in equating is the sum of random
error and systematic error components. Smoothing methods are designed to produce
smooth functions which contain less random error than that for unsmoothed equiper-
centile equating. However, smoothing methods can introduce systematic error. The
intent in using a smoothing method is for the increase in systematic error to be more
than offset by the decrease in random error. Then the total error using the smoothing
method is less than that for the unsmoothed equivalents. That is, smoothing at score
point xi is useful to the degree that mse[t̂Y (xi )] is less than var [êY (xi )].

Refer to Fig. 3.2 for a graphic description. In this figure, the Form Y equivalents
of Form X scores, indicated by eY (x), are graphed as they were in Fig. 3.1. Also,
tY (x) is graphed and differs from eY (x). This difference at xi is referred to as “Sys-
tematic Error” in the graph. The distribution plotted above xi represents Form Y
equivalents of xi over replications of the smoothed equating. The random variability
due to sampling of examinees is indexed by se[t̂Y (xi )]. Compare the random error
component in Fig. 3.2 to that in Fig. 3.1, which presents random equating error with-
out smoothing. This comparison suggests that the smoothing method results in less
random equating error at score xi than does the unsmoothed equipercentile equating.
Thus, the smoothing method reduces random error but introduces systematic error.

The preceding discussion focused on equating error at a single score point. Overall
indexes of error can be obtained by summing each of the error components over score
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points. In this case, the goal of smoothing can be viewed as reducing mean-squared
(total) error in estimating the population equipercentile equivalents over score points.

3.2 Properties of Smoothing Methods

Mean and linear equating methods can be viewed as smoothing methods that estimate
the equipercentile relationship. In some situations, these methods can lead to less
total error in estimating the equipercentile equivalents than equipercentile equating.
For example, what if the score distributions for Form X and Form Y are identical
in shape (i.e., they differ only in mean and standard deviation)? In this case, the
population linear equating and equipercentile equating relationships are identical.
For samples of typical size, linear equating will produce less total error in estimating
equipercentile equivalents than equipercentile equating when the distributions are of
the same shape, because less random error is associated with linear equating than
with equipercentile equating (see Chap. 7). Even if the distribution shapes are only
similar, linear methods might still produce less total error in estimating equipercentile
equivalents than equipercentile equating for small samples.

A smoothing method should possess certain desirable characteristics for it to
be useful in practice. First, the method should produce accurate estimates of the
population distributions or equipercentile equivalents. That is, the method should
not systematically distort the relationship in a manner that has negative practical
consequences. Second, the method should be flexible enough to handle the variety of
distributions and equipercentile relationships that are found in practice. Third, there
should be a statistical framework for studying fit. Fourth, the method should improve
estimation, as shown by an empirical research base. Fortunately, there are analytic
smoothing methods that share these characteristics.

Log-linear presmoothing methods and cubic spline postmoothing methods have
been researched extensively and have been found to improve estimation of score
distributions or equipercentile equating relationships under the random groups design
(Cui and Kolen 2009; Fairbank 1987; Hanson et al. 1994; Kolen 1984, 1991; Liu
2011; Liu and Kolen 2011a, b; Moses and Holland 2009a). In addition, a strong
true score method has been found to be useful in certain situations. Hanson et al.
(1994) demonstrated, empirically, that the presmoothing and postsmoothing methods
described here improve estimation of equipercentile equivalents to a similar extent.
These methods possess the four characteristics of smoothing methods that were
described earlier: they have been shown to produce accurate results, they are flexible,
they are associated with a statistical framework for studying fit, and they can improve
estimation as shown by an empirical research base. These methods are described next.

Other methods have been studied that estimate the relative frequency at a score
point by averaging the relative frequency at a score point with relative frequencies at
surrounding score points; these rolling average or kernel smoothing methods were
reviewed by Kolen (1991) and include the Cureton and Tukey (1951) method. Kolen
(1991) indicated that these methods often lead to estimated distributions that appear

http://dx.doi.org/10.1007/978-1-4939-0317-7_7
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bumpy or are systematically distorted. Although these methods have been found to
improve estimation, the improvement is less than for some other methods. For these
reasons, rolling average methods are not described further.

Brandenburg and Forsyth (1974) fit score distributions with a continuous four-
parameter distribution. Haberman (2011) and Wang (2008, 2011) have developed
procedures for fitting test score distributions using continuous functions. In addition,
Cui and Kolen (2009) examined alternative spline functions. Although not described
in detail in this chapter, these methods appear promising.

3.3 Presmoothing Methods

In presmoothing methods, the score distribution is smoothed. In smoothing the dis-
tributions, accuracy in estimating the distributions is crucial. One important property
that relates closely to accuracy is moment preservation. In moment preservation, the
smoothed distribution has at least some of the same central moments as the observed
distribution. For example, a method preserves the first two central moments if the
mean and standard deviation of the smoothed distribution are the same as the mean
and standard deviation of the unsmoothed distribution.

One presmoothing method uses a polynomial log-linear model with polynomial
contrasts to smooth score distributions. The second method is a strong true score
model. In strong true score models, a general distributional form is specified for true
scores. A distributional form is also specified for error given true score. For both
methods, after the distributions are smoothed, Form X is equated to Form Y using
the smoothed distributions and equipercentile equating. This equating relationship
along with the raw-to-scale score transformation for Form Y are used to convert
Form X scores to scale scores.

3.3.1 Polynomial Log-Linear Method

Log-linear models that take into account the ordered property of test scores can be
used to estimate test score distributions. The method considered here fits polynomial
functions to the log of the sample density. This model was described by Darroch
and Ratcliff (1972), Haberman (1974a, b, 1978) and Rosenbaum and Thayer (1987).
Holland and Thayer (1987, 2000) presented a thorough description of this model,
including algorithms for estimation, properties of the estimates, and applications
to fit test score distributions. The polynomial log-linear method fits a model of the
following form to the distribution:

log[NX f (x)] = ω0 + ω1x + ω2x2 + · · · + ωC xC . (3.9)
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In this equation, the log of the density is expressed as a lower-order polynomial of
degree C . For example, if C = 2, then log[NX f (x)] = ω0 + ω1x + ω2x2, and the
model is a polynomial of degree 2 (quadratic). The ω parameters in the model can
be estimated by the method of maximum likelihood. Note that the use of logarithms
allows for log-linear models to be additive, as in Eq. (3.9).

The resulting fitted distribution has the moment-preservation property, meaning
that the first C moments of the fitted distribution are identical to those of the sample
distribution. For example, if C = 2, then the mean and standard deviation of the
fitted distribution are identical to the mean and standard deviation of the sample
distribution. Holland and Thayer (1987) described algorithms for maximum likeli-
hood estimation with this method. Some statistical packages for log-linear models
can be used, including the LOGLINEAR procedure of SPSS-X and the SAS macro
described by Moses and von Davier (2006) and referenced by Moses and von Davier
(2011) as well as the RAGE-RGEQUATE computer program described in Appendix
B and EQUATING RECIPES (Brennan et al. 2009).

The choice of C is an important consideration when using this method. The fitted
distribution can be compared, subjectively, to the empirical distribution. Because this
method uses a log-linear model, goodness-of-fit statistical significance testing meth-
ods can be used. The procedures considered here are based on the likelihood ratio
chi-square goodness-of-fit statistic for a log-linear model with a particular smooth-
ing parameter C , χ2

C . These procedures were described and investigated by Moses
and Holland (2009a) in the context of using log-linear methods to smooth score
distributions.

In one procedure, the overall chi-square statistic, χ2
C , is tested for significance

with C − 1 degrees of freedom. A significant value of the statistic suggests the
model does not fit. In model selection, preference is given to the simplest model
that adequately fits the distribution, under the presumption that models that are more
complicated than necessary might lead to excess random equating error.

Because the models are hierarchical, a difference chi-square statistic can be cal-
culated by finding the difference between likelihood ratio chi-squares for adjacent
values of C as χ2

C − χ2
C+1. This difference chi-square statistic is tested for signifi-

cance with one degree of freedom. For example, the difference between the overall
likelihood ratio chi-square statistics for C = 2 and C = 3, χ2

2 − χ2
3, is compared

to a chi-square table with one degree of freedom. A significant difference suggests
that the model with the larger value of C (e.g., C = 3) fits the data better than the
model with the smaller value of C (e.g., C = 2). A particular significance level (say
.05) might be chosen for all tests. Alternatively, to control the Type I error rate over
significance tests for all models (i.e., values of C) being considered, a significance
level of 1−(1−αnom)

1/(#models−1) could be used, where αnom is the desired nominal
significance level and #models is the number of models (distinct values of C) that
are under under consideration.

Moses and Holland (2009a) described how to use these difference chi-square
statistics to select a smoothing parameter using a complex-to-simple model selection
strategy that was described by Haberman (1974b). Beginning with the model with the
second largest value of C , the difference chi-square statistic is tested for significance.
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A significant difference chi-square leads to retaining the model with the largest value
of C and rejecting all models with lower values of C . A non-significant difference
chi-square statistic leads to consideration of the model with the next smallest value
of C . This process continues for each smaller value of C until a significant difference
chi-square statistic is found. The selected value of C is one greater than the largest
value of C with a significant difference chi-square statistic.

The Aikake information function (AI C , Akaike 1981) uses what
Moses and Holland (2009a) referred to as the parsimony strategy to balance model
fit and the number of parameters in the model. The AI C criterion is based on the
overall chi-square statistic and is calculated as AI C = χ2

C + 2(C + 1). This sta-
tistic is calculated for each C being considered, and the C with the smallest value
of AI C among the values of C being considered is taken as the best model under
this criterion. Moses and Holland (2009a) and Liu and Kolen (2011b) found that the
AI C criterion led to less estimation error than other parsimony strategies that they
considered.

Because multiple significance tests and multiple model selection procedures can
be involved, these procedures should be used in combination with the inspection
of graphs and central moments, and previous experience in choosing a degree of
smoothing. When inspecting graphs, the investigator tries to judge whether the fitted
distribution is smooth and does not depart too much from the empirical distribution.
Refer to Bishop et al. (1975) for a general description of model fitting procedures for
log-linear models and to Moses (2008) and Cureton and Tukey (1951) for additional
strategies for use with log-linear models in fitting score distributions.

3.3.2 Strong True Score Method

Unlike the log-linear method, strong true score methods require the use of a para-
metric model for true scores. Lord (1965) developed a procedure, referred to here
as the beta4 method, to estimate the distribution of true scores. This procedure also
results in a smooth distribution of observed scores, which is the primary reason that
Lord (1965) method is of interest here. In the development of the beta4 procedure, a
parametric form is assumed for the population distribution of proportion-correct true
scores, ψ(τ ). Also, a conditional parametric form is assumed for the distribution of
observed score given true score, f (x |τ ). Then the observed score distribution can be
written as follows:

f (x) =
∫ 1

0
f (x |τ )ψ(τ )dτ . (3.10)

In the beta4 method proposed by Lord (1965) the true score distribution, ψ(τ ), was
assumed to be four-parameter beta. The four-parameter beta has two parameters that
allow for a wide variety of shapes for the distribution. For example, the four-parameter
beta can be skewed positively or negatively, and it can even be U-shaped. The four-
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parameter beta also has parameters for the high– and low–proportion-correct true
scores that are within the range of zero to one. The conditional distribution of observed
score given true score, f (x |τ ), was assumed by Lord (1965) to be either binomial
or compound binomial. Lord (1965) provided a two-term approximation to the com-
pound binomial method that is usually used in implementing the method. The score
distribution, f (x), that results from the use of Eq. (3.10) in combination with the
model assumptions just described is referred to as the four-parameter beta compound
binomial distribution or the beta4 distribution. This distribution can take on a wide
variety of forms.

Lord (1965) presented a procedure for estimating this distribution and the asso-
ciated true score distribution by the method of moments. This estimation procedure
uses the number of items, the first four central moments (mean, standard deviation,
skewness, and kurtosis) of the sample distribution, and a parameter Lord referred to
as k. Lord’s k can be estimated directly from the coefficient alpha reliability coeffi-
cient. Hanson (1991) also described the estimation procedure in detail. He described
situations in which the method of moments leads to invalid parameter values, such as
an upper limit for proportion-correct true scores above 1, and provided procedures
for dealing with them.

One important property of this method is that the first four central moments of the
fitted distribution agree with those of the sample distribution, provided there are no
invalid parameter estimates. Otherwise, fewer than four central moments agree. For
example, suppose that the method of moments using the first four central moments
produces invalid parameter values. Then the method described by Hanson (1991) fits
the distribution using the method of moments so that the first three central moments
agree, and the fourth moment of the fitted distribution is as close as possible to the
fourth moment of the observed distribution.

As with the log-linear model, the fit of the model can be evaluated by comparing
plots and central moments of the sample and fitted distributions. Statistical methods
also can be used. A standard chi-square goodness-of-fit statistic can be calculated,
as suggested by Lord (1965). Assuming that all score points are included in the
calculation of the chi-square statistic, the degrees of freedom are the number of score
points (K + 1, to account for a score of 0), minus 1, minus the number of parameters
fit. For the beta4 method, the degrees of freedom are K − 4 = (K + 1) − 1 − 4.

There are some other strong true score methods that are related to the beta4
method. One simplification of the beta4 method is the beta-binomial or negative
hypergeometric distribution described by Keats and Lord (1962). One difference
between this model and the Lord (1965) model is that the two-parameter beta distri-
bution is used for true scores. The two-parameter beta distribution is identical to a
four-parameter beta distribution with the highest and lowest proportion-correct true
scores set at 1 and 0, respectively. The beta-binomial model uses a binomial dis-
tribution for the distribution of observed score given true score. The beta-binomial
distribution fits a narrower range of distributions than the beta4 distribution. For
example, the beta-binomial distribution cannot be negatively skewed if the mean is
less than one-half the items correct. Kolen (1991) concluded that the beta-binomial
is not flexible enough to be used in typical equating applications. Carlin and Rubin
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Fig. 3.3 Presmoothing Form Y distribution

(1991) studied a special case of the beta4 method that fits three moments, and found
that it fit considerably better than the beta-binomial model. Little and Rubin (1994)
studied and extended the beta binomial model and found that it and the log-linear
method improved estimation.

Lord (1969) generalized the beta4 distribution. In this generalization, the paramet-
ric form of the true score distribution was not specified. Lord (1969, 1980) referred
to the resulting procedure as Method 20. Method 20 is more flexible than the beta4
method. For example, Method 20 can produce a variety of multimodal distributions.
However, Lord (1969) indicated that Method 20 requires sample sizes of at least
10,000 examinees per form, which makes it impractical in most equating situations.

3.3.3 Illustrative Example

The ACT Mathematics example that was considered in the previous chapter is used
to illustrate the presmoothing methods. The computer program RAGE-RGEQUATE
described in Appendix B was used to conduct the equating. This example was also
considered in Brennan et al. (2009). The first step in applying these methods is to fit
the raw score distributions. The smoothed distributions (indicated by solid symbols)
for Form Y are shown in Fig. 3.3 along with the unsmoothed distributions. The
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Fig. 3.4 Presmoothing Form X distribution

distributions for Form X are shown in Fig. 3.4. The beta4 and selected log-linear
smoothed distributions are shown. In fitting the beta4 method for Form X, fitting all
four moments resulted in invalid parameter estimates, so only the first three moments
were fit. The beta4 model was fit setting Lord’s k = 0. Visual inspection suggests
that the beta4 method fits the distributions of both forms very well. The log-linear
method with C = 2 appears to fit both distributions poorly. For Form X and Form
Y, C = 6 appears to fit the distributions well. The C = 10 smoothings appear to
slightly overfit the distributions for both forms in the score range of 23–30, in that
the fitted distributions are a bit irregular. These irregularities suggest that C = 10
might be fitting aspects of the distributions that are due to sampling error.

Summary statistics for the fitted distributions are shown in Table 3.1 for Form
Y and Form X. Because of the moment-preservation property of the beta4 method,
the first three or four moments of the fitted distribution for this method agree with
those for the sample distribution. Only three moments could be fit using the beta4
method with Form X, so the kurtosis for the beta4 method differs from the kurto-
sis for the sample data. However, this difference in kurtosis values is small (2.3024
for the sample distribution and 2.2806 for the fitted distribution). For both distribu-
tions, the chi-square statistic, χ2(d f ) for the beta4 method is less than its degrees of
freedom, indicating a reasonable fit.
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Table 3.1 Moments and fit statistics for presmoothing

Form Method μ̂ σ̂ ŝk k̂u χ2(d f ) χ2
C −χ2

C+1 AI C

Y Sample 18.9798 8.9393 .3527 2.1464
Beta4 18.9798 8.9393 .3527 2.1464 31.64(36)
Log-linear
C = 10 18.9798 8.9393 .3527 2.1464 25.92(30) 47.92
C = 9 18.9798 8.9393 .3527 2.1464 26.38(31) .46 46.38
C = 8 18.9798 8.9393 .3527 2.1464 27.00(32) .62 45.00
C = 7 18.9798 8.9393 .3527 2.1464 28.30(33) 1.30 44.30
C = 6 18.9798 8.9393 .3527 2.1464 29.45(34) 1.15 43.45
C = 5 18.9798 8.9393 .3527 2.1464 39.31(35) 9.86 51.31
C = 4 18.9798 8.9393 .3527 2.1464 61.53(36) 22.22 71.53
C = 3 18.9798 8.9393 .3527 2.5167 318.66(37) 257.13 326.66
C = 2 18.9798 8.9393 .0709 2.3851 489.47(38) 170.81 495.57
C = 1 18.9798 11.8057 .1037 1.8134 1579.99(39) 1090.52 1583.99

X Sample 19.8524 8.2116 .3753 2.3024
Beta4a 19.8524 8.2116 .3753 2.2806 33.97(37)
Log-linear
C = 10 19.8524 8.2116 .3753 2.3024 29.68(30) 51.68
C = 9 19.8524 8.2116 .3753 2.3024 29.91(31) .23 49.91
C = 8 19.8524 8.2116 .3753 2.3024 29.94(32) .03 47.94
C = 7 19.8524 8.2116 .3753 2.3024 30.40(33) .46 46.40
C = 6 19.8524 8.2116 .3753 2.3024 30.61(34) .20 44.61
C = 5 19.8524 8.2116 .3753 2.3024 35.78(35) 5.18 47.78
C = 4 19.8524 8.2116 .3753 2.3024 40.80(36) 5.01 50.80
C = 3 19.8524 8.2116 .3753 2.6565 212.82(37) 172.02 220.82
C = 2 19.8524 8.2116 .0082 2.5420 445.19(38) 232.36 451.19
C = 1 19.8524 11.8316 .0150 1.7989 2215.02(39) 1769.83 2219.02

a Only 3 moments could be fit using the beta4 method with Form X

The log-linear method was fit using values of C ranging from 1 to 10 for both
forms. Because of the moment-preservation property of the log-linear method, the
first four moments of the fitted distribution for C ≥ 4 agree with those for the
sample distribution, three moments agree for C = 3, and fewer moments agree for
lower values of C . Likelihood ratio chi-square and AI C statistics are presented in
Table 3.1. The model selection strategy here is to use these statistics as guides.

The column with heading χ2(d f ) in Table 3.1 is the overall goodness-of-fit test.
A significant chi-square statistic suggests that the model does not fit the observed
data. For Form Y, at the 0.05 level of significance C = 5 is the smallest value of C
with a nonsignificant overall chi-square statistic, so it is selected by this criterion.
For Form X, at the 0.05 level of significance C = 4 is the smallest value of C with a
nonsignificant overall chi-square statistic, so it is chosen by this criterion. (Note that
at the 0.05 level, the chi-square critical values range from 43.8 to 54.6, approximately,
for the degrees of freedom of these tests.)
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The difference statistic, χ2
C − χ2

C+1, is a one degree of freedom chi-square that is
the difference between the overall chi-square at C and the overall chi-square at C +1.
A significant difference suggests that the model with parameter C + 1 improves the
fit over the model with parameter C . Using the χ2

C −χ2
C+1 statistic with the complex-

to-simple model selection strategy, a value of C is chosen that is one greater than the
largest value of C that has a significant chi-square statistic. For both distributions,
using a significance level of 0.05 for each of the tests, the value at C = 5 is the highest
value with a significant chi-square statistic (i.e., greater than 3.84), suggesting that
C = 6 should be chosen. If, however, the alpha level is adjusted to control the alpha
level over all tests, then the alpha level used is 1 − (1 − 0.05)1/(10−1) = 0.0057, and
the chi-square critical value with one degree of freedom is 7.65. Using this critical
value, C = 6 is chosen for Form Y, and C = 4 is chosen for Form X.

The AI C criterion is given in the last column of Table 3.1. Using this criterion,
the value of C is chosen with the smallest value of AI C . For both forms, C = 6 is
chosen using this criterion.

Based on all of the chi-square criteria, the C chosen for Form Y is either 5 or 6,
and the range of C chosen for Form X is 4 to 6. Although any combinations of these
values of C might be considered for use in practice, models using C = 6 for Form
X and C = 6 for Form Y are examined further in this example.

After fitting the distributions, equipercentile methods are used to equate Form
X and Form Y. The equipercentile relationships are presented in Table 3.2 and are
graphed in Fig. 3.5 for the beta4 method and the log-linear method with C = 6 in the
same format that was used in Fig. 2.10. Figure 3.5 also shows the identity equating
and unsmoothed relationships. In addition, ±1 standard error bands are shown. These
bands were calculated using standard errors of unsmoothed equipercentile equating
that are described in Chap. 7. The upper part of the bands were formed by adding
one standard error of equipercentile equating to the unsmoothed relationship. The
lower part of the bands were formed by subtracting one standard error. For equat-
ing to be adequate, a sensible standard is that the smoothed relationship should lie
predominantly within the standard error band.

The equipercentile relationship shown for the beta4 method falls within the stan-
dard error band except at Form X raw scores of 1, 2, 7, and 39. These scores are
extreme, with few examinees earning any of the scores. Because there are few ex-
aminees at these scores, and standard errors of equipercentile equating are poorly
estimated at the extremes, these scores can be disregarded and the fit for the beta4
method appears to be adequate. The equipercentile relationship shown for the log-
linear method with C = 6 is within the standard error band at all scores except at
a Form X raw score of 2. The log-linear equivalents are, in general, closer to the
unsmoothed relationship than those for the beta4 method. Because the log-linear
method results in a smooth curve that is closer to the unsmoothed relationship, it
might be viewed as somewhat superior to that for the beta4 method in this case.
Because the relationship for both methods appears smooth without departing too far
from the unsmoothed relationship, equating using either method seems adequate.

Summary statistics for the raw-to-raw equipercentile equating using these two
presmoothing methods are presented in Table 3.3. The moments for the two smoothed

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_7
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Table 3.2 Raw-to-raw score conversions for presmoothing

Form Y equivalent using equating method
Form X Standard Log-linear
score error Unsmoothed Beta4 C = 6

0 1.9384 .0000 −.4581 −.4384
1 .8306 .9796 .1063 .1239
2 .5210 1.6462 .8560 .9293
3 .8210 2.2856 1.7331 1.8264
4 .2950 2.8932 2.6380 2.7410
5 .1478 3.6205 3.5517 3.6573
6 .2541 4.4997 4.4434 4.5710
7 .1582 5.5148 5.3311 5.4725
8 .1969 6.3124 6.2572 6.3577
9 .1761 7.2242 7.2121 7.2731
10 .1731 8.1607 8.1931 8.2143
11 .1952 9.1827 9.2010 9.1819
12 .1800 10.1859 10.2367 10.1790
13 .2311 11.2513 11.3003 11.2092
14 .2431 12.3896 12.3892 12.2750
15 .2138 13.3929 13.4985 13.3764
16 .2764 14.5240 14.6263 14.5111
17 .2617 15.7169 15.7633 15.6784
18 .3383 16.8234 16.9047 16.8638
19 .2826 18.0092 18.0470 18.0566
20 .2947 19.1647 19.1880 19.2469
21 .3299 20.3676 20.3258 20.4262
22 .3183 21.4556 21.4589 21.5911
23 .3865 22.6871 22.5890 22.7368
24 .3555 23.9157 23.7131 23.8595
25 .3013 25.0292 24.8287 24.9594
26 .3683 26.1612 25.9347 26.0374
27 .3532 27.2633 27.0296 27.0954
28 .3069 28.1801 28.1124 28.1357
29 .3422 29.1424 29.1817 29.1606
30 .2896 30.1305 30.2362 30.1729
31 .3268 31.1297 31.2743 31.1749
32 .3309 32.1357 32.2945 32.1691
33 .3048 33.0781 33.2951 33.1576
34 .3080 34.0172 34.2741 34.1424
35 .3044 35.1016 35.2296 35.1250
36 .3240 36.2426 36.1603 36.1064
37 .2714 37.1248 37.0669 37.0873
38 .3430 38.1321 37.9553 38.0676
39 .2018 39.0807 38.8442 39.0462
40 .2787 39.9006 39.7984 40.0202
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Fig. 3.5 Raw-to-raw score equivalents for presmoothing

Table 3.3 Raw score moments for presmoothing

Test form μ̂ σ̂ ŝk k̂u

Form Y 18.9798 8.9393 .3527 2.1464
Form X 19.8524 8.2116 .3753 2.3024
Form X Equated to Form Y Scale
Unsmoothed 18.9799 8.9352 .3545 2.1465
Beta4 18.9805 8.9307 .3556 2.1665
Log-linear C = 6 18.9809 8.9354 .3541 2.1464

methods are very similar to those for Form Y, again suggesting that both of the
smoothings were adequate.

The next step in equating is to convert the raw scores on Form X to scale scores,
as was done in Table 2.8. Scale score moments are shown in Table 3.4, and the

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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Table 3.4 Scale score moments for presmoothing

Test form μ̂sc σ̂sc ŝksc k̂usc

Form Y
unrounded 16.5120 8.3812 −.1344 2.0557
rounded 16.4875 8.3750 −.1025 2.0229

Form X Equated to Form Y Scale
Unsmoothed

unrounded 16.5125 8.3725 −.1300 2.0515
rounded 16.4324 8.3973 −.1212 2.0294

Beta4
unrounded 16.5230 8.3554 −.1411 2.0628
rounded 16.4999 8.3664 −.1509 2.0549

Log-linear C = 6
unrounded 16.5126 8.3699 −.1294 2.0419
rounded 16.5461 8.3772 −.1289 2.0003

raw-to-scale score conversions are shown in Table 3.5. The unsmoothed moments
and equivalents are identical to the values shown previously in Chap. 2. The mo-
ments for the unrounded scale scores all appear to be very similar to those for
the unrounded scale scores for Form Y. Also, the moments for the rounded scale
scores for the beta4 method appear to be similar to those for the unrounded scale
scores for Form Y. However, the mean for the rounded log-linear method (16.5461)
appears to be somewhat larger than the mean for the Form Y unrounded equiv-
alents (16.5120). This observation suggests that it might be desirable to consider
adjusting the rounded raw-to-scale score conversion for the log-linear method, as
was done in Chap. 2. Refer to Table 3.5. For the log-linear method, a raw score
of 23 converts to a scale score of 21.5143, which rounds to a 22. If the raw score
of 23 is converted to a scale score of 21 instead of a scale score of 22, then the
moments are as follows: μ̂sc = 16.5121, σ̂sc = 8.3570, ŝksc = −0.1219, and
k̂usc = 2.0142. After adjustment, the mean is closer to the unrounded mean for
Form Y. However, the standard deviation and skewness are farther away. Because
the mean is more often given primary attention and the other moments are still reason-
ably close to the Form Y unrounded moments, the adjustment appears to improve the
equating. However, the results without adjustment also appear to be acceptable. As
was indicated in Chap. 2, adjustment of conversions should be done conservatively,
because it affects score distributions and individual scores.

3.4 Postsmoothing Methods

In postsmoothing methods, the equipercentile equivalents, êY (x), are smoothed di-
rectly. Postsmoothing methods fit a curve to the equipercentile relationship. In imple-
menting postsmoothing methods, the smoothed relationship should appear smooth

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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Table 3.5 Raw-to-scale score conversions for presmoothing

Form Y scale Form X scale scores
Raw Scores Unsmoothed Beta4 Log-linear C = 6
Score sc scint sc scint sc scint sc scint

−.5 .5000 1 .5000 1 .5000 1 .5000 1
0 .5000 1 .5000 1 .5000 1 .5000 1
1 .5000 1 .5000 1 .5000 1 .5000 1
2 .5000 1 .5000 1 .5000 1 .5000 1
3 .5000 1 .5000 1 .5000 1 .5000 1
4 .5000 1 .5000 1 .5000 1 .5000 1
5 .6900 1 .5000 1 .5000 1 .5000 1
6 1.6562 2 .5949 1 .5842 1 .6084 1
7 3.1082 3 1.1874 1 1.0100 1 1.1465 1
8 4.6971 5 2.1098 2 2.0296 2 2.1756 2
9 6.1207 6 3.4645 3 3.4451 3 3.5421 4
10 7.4732 7 4.9258 5 4.9720 5 5.0022 5
11 8.9007 9 6.3678 6 6.3925 6 6.3667 6
12 10.3392 10 7.7386 8 7.8111 8 7.7287 8
13 11.6388 12 9.2622 9 9.3327 9 9.2016 9
14 12.8254 13 10.8456 11 10.8450 11 10.6965 11
15 14.0157 14 12.1050 12 12.2303 12 12.0855 12
16 15.2127 15 13.4491 13 13.5709 14 13.4337 13
17 16.3528 16 14.8738 15 14.9294 15 14.8277 15
18 17.3824 17 16.1515 16 16.2441 16 16.1975 16
19 18.3403 18 17.3912 17 17.4274 17 17.4367 17
20 19.2844 19 18.4958 18 18.5178 19 18.5734 19
21 20.1839 20 19.6151 20 19.5775 20 19.6678 20
22 20.9947 21 20.5533 21 20.5560 21 20.6631 21
23 21.7000 22 21.4793 21 21.4101 21 21.5143 22
24 22.3220 22 22.2695 22 22.1436 22 22.2346 22
25 22.9178 23 22.9353 23 22.8158 23 22.8936 23
26 23.5183 24 23.6171 24 23.4791 23 23.5412 24
27 24.1314 24 24.2949 24 24.1498 24 24.1906 24
28 24.7525 25 24.8496 25 24.8131 25 24.8256 25
29 25.2915 25 25.3538 25 25.3710 25 25.3617 25
30 25.7287 26 25.7841 26 25.8290 26 25.8021 26
31 26.1534 26 26.2176 26 26.2891 26 26.2399 26
32 26.6480 27 26.7281 27 26.8219 27 26.7479 27
33 27.2385 27 27.2908 27 27.4361 27 27.3441 27
34 27.9081 28 27.9216 28 28.1230 28 28.0198 28
35 28.6925 29 28.7998 29 28.9350 29 28.8245 29
36 29.7486 30 30.1009 30 29.9815 30 29.9032 30
37 31.2010 31 31.3869 31 31.3006 31 31.3312 31
38 32.6914 33 32.8900 33 32.6247 33 32.7931 33
39 34.1952 34 34.2974 34 33.9609 34 34.2539 34
40 35.4615 35 35.3356 35 35.2062 35 35.4871 35
40.5 36.5000 36 36.5000 36 36.5000 36 36.5000 36
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without departing too much from the observed relationship. The method to be de-
scribed was presented by Kolen (1984) and makes use of cubic smoothing splines
described by Reinsch (1967). The spline fitting algorithm was also described by de
Boor (1978, pp. 235–243). Polynomials also could be used, but cubic splines are
used instead because they appear to provide greater flexibility.

For integer scores, xi , the spline function is,

d̂Y (x) = v0i + v1i (x − xi ) + v2i (x − xi )
2 + v3i (x − xi )

3,

xi ≤ x < xi + 1.
(3.11)

The weights (v0i , v1i , v2i , v3i ) change from one score point to the next, so that there
is a different cubic equation defined between each integer score. At each score point,
xi , the cubic spline is continuous (continuous second derivatives). The spline is fit
over the range of scores xlow to xhigh, 0 ≤ xlow ≤ x ≤ xhigh ≤ K X , where xlow is the
lower integer score in the range and xhigh is the upper integer score in the range.

The function, over score points, is minimized subject to having minimum curva-
ture and satisfying the following constraint:

high∑
i=low

[
d̂Y (xi ) − êY (xi )

ŝe[êY (xi )]

]2

xhigh − xlow + 1
≤ S. (3.12)

In this equation, the summation is over those points for which the spline is fit. The
term ŝe[êY (xi )] is the estimated standard error of equipercentile equating, which is
defined specifically in Chap. 7. The standard error of equating is used to standardize
the differences between the unsmoothed and smoothed relationships. The use of the
standard error results in the smoothed and unsmoothed relationships being closer
where the standard error is small, and allows them to be farther apart when the
standard error is large. The parameter S (where S ≥ 0) is set by the investigator
and controls the degree of smoothing. Several values of S typically are tried and the
results compared.

If S = 0, then the fitted spline equals the unsmoothed equivalents at all integer
score points. If S is very large, then the spline function is a straight line. Interme-
diate values of S produce a nonlinear function that deviates from the unsmoothed
equipercentile relationship by varying degrees. If S = 1 then the average squared
standardized difference between the smoothed and unsmoothed equivalents is 1.0.
Values of S between 0 and 1 have been found to produce adequate results in practice.

The spline is fit over a restricted range of score points so that scores with few
examinees and large or poorly estimated standard errors do not unnecessarily influ-
ence the spline function. Kolen (1984) recommended that xlow and xhigh be chosen
to exclude score points with percentile ranks below 0.5 and above 99.5.

A linear interpolation procedure that is consistent with the definition of equiper-
centile equating in Chap. 2 can be used to obtain equivalents outside the range of the

http://dx.doi.org/10.1007/978-1-4939-0317-7_7
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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spline function. The following equations can be used for linear interpolation outside
the range:

d̂Y (x) =
{

[d̂Y (xlow) + 0.5]
xlow + 0.5

}
x

+
{

−0.5 + 0.5[d̂Y (xlow) + 0.5]
xlow + 0.5

}
, −0.5 ≤ x < xlow,

d̂Y (x) =
{

[d̂Y (xhigh) − (KY + 0.5)]
xhigh − (K X + 0.5)

}
x

+
{

d̂Y (xhigh) − xhigh[d̂Y (xhigh) − (KY + 0.5)]
xhigh − (K X + 0.5)

}
,

xhigh < x ≤ (K X + 0.5). (3.13)

At the lower end, linear interpolation is between the point (−0.5,−0.5) and
[xlow, d̂Y (xlow)]. At the upper end, linear interpolation is between the point [xhigh,

d̂Y (xhigh)] and (K X + 0.5, KY + 0.5).
Table 3.6 illustrates a cubic spline function that was fit to the ACT Mathematics

data using S = 0.20. For this example, the spline function is defined over the Form X
raw score range from 5 to 39. The second column shows the spline conversion at Form
X integer scores. Equation (3.11) is used to find smoothed values at noninteger scores
that are needed for equating. For example, to find the estimated Form Y equivalent
of a Form X score of 6.3, note that xi = 6 and (x − xi ) = (6.3 − 6.0) = 0.3. Then,

d̂Y (6.3) = 4.4379 + 0.9460(0.3) + 0.0013(0.3)2 + 0.0005(0.3)3 = 4.7218.

To illustrate that the spline is continuous, note that the tabled value for a score of
xi = 7 is 5.3857. This spline function at 7 also can be obtained using x = 7 and
xi = 6 as follows. In this case, (x − xi ) = (7−6) = 1. Applying the cubic equation,

d̂Y (7) = 4.4379 + 0.9460(1) + 0.0013(1) + 0.0005(1) = 5.3857,

which equals the tabled value for xi = 7. Also, the sum of the coefficients in any row
equals the value of d̂Y (xi ) shown in the next row. This equality property is necessary
if the spline is to be continuous.

In addition, the spline has continuous second derivatives evaluated at all score
points. The second derivative of the spline function evaluated at x in Eq. (3.11) can
be shown to equal 2v2i + 6v3i (x − xi ). The second derivative evaluated at a score
of 7 using the coefficients at xi = 6 is

2(0.0013) + 6(0.0005)(7 − 6) = 0.0056.



84 3 Random Groups: Smoothing in Equipercentile Equating

Table 3.6 Spline coefficients for converting Form X scores to the Form Y scale for S = .20

x d̂Y (x) = v̂0 v̂1 v̂2 v̂3 ŝe[êY (x)]
[

d̂Y (x)−êY (x)

ŝe[êY (x)]

]2

5 3.4927 .9447 .0000 .0004 .1478 .7418
6 4.4379 .9460 .0013 .0005 .2541 .0597
7 5.3857 .9502 .0028 .0009 .1582 .6680
8 6.3397 .9585 .0055 .0008 .1969 .0198
9 7.3046 .9721 .0081 .0006 .1761 .2095
10 8.2854 .9902 .0100 .0003 .1731 .5165
11 9.2859 1.0112 .0110 .0001 .1952 .2779
12 10.3082 1.0336 .0114 −.0001 .1800 .4609
13 11.3531 1.0560 .0110 −.0003 .2311 .1952
14 12.4197 1.0770 .0101 −.0003 .2431 .0149
15 13.5066 1.0963 .0091 −.0005 .2138 .2823
16 14.6114 1.1129 .0076 −.0006 .2764 .1000
17 15.7313 1.1263 .0058 −.0006 .2617 .0030
18 16.8627 1.1359 .0039 −.0006 .3383 .0138
19 18.0019 1.1419 .0020 −.0006 .2826 .0006
20 19.1451 1.1439 .0001 −.0006 .2947 .0046
21 20.2885 1.1423 −.0018 −.0006 .3299 .0581
22 21.4285 1.1370 −.0035 −.0005 .3183 .0075
23 22.5615 1.1285 −.0051 −.0005 .3865 .1054
24 23.6844 1.1169 −.0065 −.0003 .3555 .4244
25 24.7945 1.1028 −.0076 −.0002 .3013 .6057
26 25.8895 1.0872 −.0080 .0000 .3683 .5434
27 26.9687 1.0712 −.0080 .0002 .3532 .6943
28 28.0321 1.0557 −.0075 .0003 .3069 .2322
29 29.0806 1.0416 −.0066 .0003 .3422 .0322
30 30.1159 1.0294 −.0056 .0003 .2896 .0024
31 31.1401 1.0192 −.0046 .0003 .3268 .0010
32 32.1551 1.0111 −.0036 .0003 .3309 .0033
33 33.1630 1.0050 −.0026 .0003 .3048 .0778
34 34.1657 1.0006 −.0018 .0001 .3080 .2331
35 35.1646 .9974 −.0014 .0001 .3044 .0423
36 36.1607 .9949 −.0011 .0001 .3240 .0645
37 37.1547 .9931 −.0007 .0001 .2714 .0120
38 38.1473 .9921 −.0003 .0001 .3430 .0020
39 39.1392 .2018 .0832

The second derivative evaluated at a score of 7 using the coefficients at xi = 7 is

2(0.0028) + 6(0.0009)(7 − 7) = 0.0056.
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The equality of these two expressions illustrates the continuous second derivative
property of the cubic spline. This property can be shown to hold at the other score
points as well.

The rightmost column in Table 3.6 shows the squared standardized difference at
each score point. The mean of the values in this column is 0.20, because S = 0.20.

One problem with the spline expression in Eqs. (3.11) and (3.12) is that it is
a regression function, so it is not symmetric. That is, the spline that is used for
converting Form X to Form Y is different from the spline that is used for converting
Form Y to Form X. To arrive at a function that is more nearly symmetric, define
d̂X (y) as the spline function that converts Form Y scores to Form X scores using the
same procedures and the same value of S. Assuming that the inverse function exists,
define the inverse of this function as d̂−1

X (x). (Note that the inverse is not guaranteed
to exist, although the lack of an inverse has not been known to cause problems in
practice.) This inverse can be used to transform Form X scores to the Form Y scale.
A more nearly symmetric equating function then can be defined as the average of
two splines: the spline developed for converting Form X to the Form Y scale and
the inverse of the spline developed for converting Form Y to the Form X scale. For
a particular S, define this quantity as

d̂∗
Y (x) = d̂Y (x) + d̂−1

X (x)

2
,−0.5 ≤ x ≤ K X + 0.5. (3.14)

The expression in Eq. (3.14) is the final estimate of the equipercentile equating
function (See Wang and Kolen (1996), for a further discussion of symmetry and for
an alternative postsmoothing method to the one described here).

To implement the method, the equating is conducted using a variety of values of S.
Graphs of the resulting equivalents can be examined for smoothness and compared
to the unsmoothed equivalents. Standard errors of equating can be very useful for
evaluating various degrees of smoothing. Ideally, the procedure results in a smooth
function that does not depart too much from the unsmoothed equivalents. In addi-
tion, the central moments for the Form X scores equated to the Form Y scale using
smoothing should be compared to those for the Form Y scores. Central moments for
the scale scores that result from the equating also should be inspected.

3.4.1 Illustrative Example

Because there are no statistical tests associated with the postsmoothing method de-
scribed here, inspection of graphs and moments is even more crucial for choosing a
degree of smoothing than in the presmoothing methods. For the ACT Mathematics ex-
ample, equating was conducted using eight different values for S ranging from 0.01 to
1.0. The RAGE-RGEQUATE computer program described in Appendix B was used
to conduct the analyses. This example was also considered in Brennan et al. (2009).
The equipercentile relationships using these methods are presented in Table 3.7 and
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Table 3.7 Raw-to-raw score conversions for postsmoothing

Form
Form Y equivalent

X No
Score Smooth S = .01 S = .05 S = .10 S = .20 S = .30 S = .50 S = .75 S =1.00

0 .000 −.129 −.129 −.133 −.138 −.141 −.146 −.150 −.154
1 .980 .614 .612 .600 .586 .577 .563 .550 .539
2 1.646 1.356 1.353 1.333 1.311 1.295 1.272 1.250 1.232
3 2.286 2.098 2.094 2.067 2.035 2.013 1.981 1.950 1.925
4 2.893 2.841 2.835 2.800 2.759 2.731 2.690 2.650 2.618
5 3.620 3.583 3.576 3.534 3.484 3.449 3.398 3.350 3.311
6 4.500 4.480 4.440 4.400 4.354 4.322 4.273 4.225 4.185
7 5.515 5.443 5.372 5.349 5.323 5.305 5.277 5.249 5.226
8 6.312 6.324 6.306 6.302 6.296 6.292 6.284 6.276 6.269
9 7.224 7.218 7.252 7.265 7.278 7.286 7.297 7.306 7.313
10 8.161 8.168 8.216 8.243 8.271 8.290 8.317 8.342 8.362
11 9.183 9.166 9.205 9.241 9.281 9.308 9.347 9.385 9.415
12 10.186 10.195 10.221 10.262 10.309 10.342 10.390 10.436 10.474
13 11.251 11.260 11.266 11.307 11.357 11.392 11.445 11.496 11.538
14 12.390 12.345 12.338 12.375 12.424 12.460 12.513 12.565 12.607
15 13.393 13.419 13.434 13.467 13.511 13.544 13.594 13.642 13.683
16 14.524 14.541 14.553 14.579 14.616 14.643 14.686 14.728 14.763
17 15.717 15.695 15.692 15.710 15.736 15.756 15.788 15.820 15.848
18 16.823 16.846 16.846 16.855 16.868 16.879 16.898 16.918 16.936
19 18.009 18.005 18.011 18.010 18.008 18.009 18.013 18.020 18.026
20 19.165 19.171 19.183 19.170 19.153 19.143 19.132 19.123 19.118
21 20.368 20.337 20.356 20.330 20.298 20.278 20.251 20.228 20.211
22 21.456 21.499 21.525 21.485 21.439 21.409 21.368 21.331 21.303
23 22.687 22.695 22.685 22.630 22.572 22.534 22.480 22.432 22.393
24 23.916 23.890 23.826 23.761 23.694 23.650 23.586 23.528 23.481
25 25.029 25.045 24.945 24.873 24.802 24.754 24.685 24.619 24.566
26 26.161 26.160 26.037 25.966 25.894 25.846 25.774 25.704 25.648
27 27.263 27.214 27.101 27.038 26.971 26.924 26.853 26.783 26.725
28 28.180 28.197 28.140 28.091 28.033 27.990 27.922 27.855 27.798
29 29.142 29.161 29.160 29.127 29.080 29.042 28.982 28.920 28.867
30 30.130 30.138 30.166 30.150 30.115 30.084 30.033 29.979 29.932
31 31.130 31.126 31.162 31.162 31.139 31.117 31.076 31.032 30.994
32 32.136 32.107 32.154 32.166 32.156 32.141 32.113 32.081 32.052
33 33.078 33.075 33.144 33.165 33.166 33.160 33.144 33.125 33.108
34 34.017 34.065 34.136 34.161 34.171 34.173 34.171 34.167 34.161
35 35.102 35.112 35.130 35.155 35.174 35.183 35.195 35.205 35.213
36 36.243 36.165 36.126 36.148 36.174 36.191 36.217 36.242 36.263
37 37.125 37.156 37.120 37.140 37.172 37.197 37.237 37.278 37.313
38 38.132 38.125 38.114 38.131 38.169 38.202 38.256 38.313 38.362
39 39.081 39.092 39.103 39.117 39.155 39.188 39.243 39.297 39.341
40 39.901 40.031 40.034 40.039 40.052 40.063 40.081 40.099 40.114
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Fig. 3.6 Raw-to-raw equivalents for postsmoothing, S = 0.01, 0.05, 0.10, 0.20

graphed in Figs. 3.6 and 3.7. (Note in this example, unsmoothed equipercentile equat-
ing was based on RAGE-RGEQUATE with xlow set to 0 and xhigh set to 100, so that
no scores were excluded. This was done so that the unsmoothed equivalents are
the same as those used with unsmoothed and presmoothed equipercentile methods
shown earlier. Postsmoothed equivalents were based on RAGE-RGEQUATE with
xlow set to 0.5 and xhigh set to 99.5. These differences affect unsmoothed equivalents
at very low scores in the example.)

As can be seen in the figures, the equivalents deviate more from the unsmoothed
equivalents as the values of S increase. For S = 0.01, the smoothed and unsmoothed
equivalents are very close, and the smoothed equivalents appear to be bumpy. How-
ever, the smoothed equivalents are within the standard error bands. For S = 0.05,
the equivalents appear to be smooth and are within the standard error bands at all
points. As S increases, the smoothed relationship continues to deviate more from
the unsmoothed relationship. For S ≥ 0.75, the smoothed relationship is outside the
standard error bands at many score points. The relationship for S = 0.05 appears
to be the one for which there is the least amount of smoothing required to achieve
a smooth function of the values tried. The relationship for S = 0.10 also seems
acceptable.

Moments for the smoothed relationships are shown in Table 3.8. As S in-
creases, the moments for the smoothed equipercentile equating depart more from the
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Fig. 3.7 Raw-to-raw equivalents for postsmoothing, S = 0.30, 0.50, 0.75, 1.00

Form Y moments. This result suggests that lower values of S are to be preferred for
this example.

Now consider Form X scale score equivalents. Scale score moments are shown in
Table 3.9 for the scale score equivalents shown in Tables 3.10 and 3.11. An asterisk
indicates the moment that is closest, among the smoothed results, to the Form Y
unrounded equivalents. The rounded mean and standard deviation are closest for the
S = 0.05 conversion, and the other moments also are fairly close.

As indicated in Chap. 2, scale scoresthat are reported to examinees are rounded.
The rounded conversion is shown in Table 3.11. Asterisks in this table indicate
score points where adjacent smoothing values convert to different scale scores. For
example, a Form X raw score of 9 converts to a scale score of 3 for S = 0.01 and
to a scale score of 4 for S = 0.05. As can be seen, this is the only difference in the
rounded conversions between these two degrees of smoothing. Sometimes, there are
gaps in the conversion table that can be removed by adjusting the conversion. Other
times, adjustments can be used to improve the scale score moments. In this example,
adjustment of conversions does not seem warranted.

All things considered, the results from these procedures suggest that S = 0.05
is the most appropriate of the values tried. However, this example should not be
overgeneralized. The smallest smoothing values do not always appear to produce the

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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Table 3.8 Raw score moments for postsmoothing

Test form μ̂ σ̂ ŝk k̂u

Form Y 18.9798 8.9393 .3527 2.1464
Form X 19.8524 8.2116 .3753 2.3024
Form X equated to form Y scale
Unsmoothed 18.9799 8.9352 .3545 2.1465

S = .01 18.9789∗ 8.9393∗ .3533∗ 2.1488∗
S = .05 18.9767 8.9313 .3561 2.1587
S = .10 18.9743 8.9172 .3603 2.1738
S = .20 18.9717 8.8987 .3644 2.1922
S = .30 18.9699 8.8852 .3670 2.2054
S = .50 18.9676 8.8643 .3704 2.2258
S = .75 18.9656 8.8439 .3733 2.2457
S = 1.00 18.9642 8.8271 .3756 2.2624

∗ Indicates moment closest to Form Y moment among smoothed estimates

most adequate equating. Especially for the rounded conversions, higher values of S
often lead to more adequate results. There is no single statistical criterion that can
be used. Instead, various values of S need to be tried and the results compared.

3.5 The Kernel Method of Equating

The kernel method of equating was introduced by Holland and Thayer (1989) and
developed further by von Davier et al. (2004). This method uses presmoothing meth-
ods, such as log-linear methods, to smooth the discrete test score distributions for
Form X and Form Y and kernel smoothing to transform the discrete distributions
for Form X and Form Y into continuous distributions. See Brennan et al. (2009,
pp. 171–186) for a summary of the kernel method of equating, a consideration of the
method for other designs, an example for the random groups equating data used in
this chapter, and open source C computer code.

Based on a review by von Davier (2011a), the kernel method of equating is
implemented using the following steps:

Step 1. Presmoothing. Use presmoothing methods such as log-linear methods to
smooth the discrete score distributions.

Step 2. Estimating the Score Probabilities. For the random groups design, the
smoothed score distributions from Step 1 are used for estimating the score
distributions. This step is more complex for other designs.

Step 3. Continuization. Use a kernel smoothing function to fit a continuous distrib-
ution to the discrete distributions from Step 2.

Step 4. Computing the Equating Function. Use equipercentile equating methods to
equate the two continuous score distributions from Step 3.
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Table 3.9 Scale score moments for postsmoothing

Test Form μ̂sc σ̂sc ŝksc k̂usc

Form Y
unrounded 16.5120 8.3812 −.1344 2.0557
rounded 16.4875 8.3750 −.1025 2.0229

Form X equated to form Y scale for
Unsmoothed

unrounded 16.5125 8.3725 −.1300 2.0515
rounded 16.4324 8.3973 −.1212 2.0294

S = .01
unrounded 16.5120∗ 8.3758∗ −.1303∗ 2.0543∗
rounded 16.4823 8.4164 −.1308∗ 2.0334

S = .05
unrounded 16.5158 8.3638 −.1302 2.0606
rounded 16.5156∗ 8.3648∗ −.1164 2.0262

S = .10
unrounded 16.5236 8.3475 −.1294 2.0737
rounded 16.5366 8.3223 −.1308 2.0597∗

S = .20
unrounded 16.5336 8.3284 −.1289 2.0908
rounded 16.5345 8.2576 −.1103 2.0859

S = .30
unrounded 16.5409 8.3152 −.1287 2.1034
rounded 16.5345 8.2576 −.1103 2.0859

S = .50
unrounded 16.5523 8.2956 −.1288 2.1229
rounded 16.5551 8.2288 −.0907 2.1525

S = .75
unrounded 16.5635 8.2770 −.1292 2.1423
rounded 16.5211 8.2165 −.0804 2.1632

S = 1.00
unrounded 16.5731 8.2619 −.1297 2.1586
rounded 16.5211 8.2165 −.0804 2.1632

∗ Indicates moment closest to unrounded for Form Y among smoothed estimates

Step 5. Evaluating the Equating Results and Computing Accuracy Measures. Use
the procedures described by von Davier et al. (2004) to evaluate equating
results and to calculate standard errors of equating for the equating relation-
ship in Step 4. In addition, standard errors of equating differences can be
calculated when comparing alternative equating functions.

In Step 3, von Davier et al. (2004) used a normal (Gaussian) kernel to fit a continu-
ous distribution to the smoothed discrete distribution. Defining a smoothed frequency
distribution for the discrete test score variable X as f̂ (xi ) and φ as the ordinate of a
standard normal curve, the continuous distribution of the random variable X∗ is of
the form
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Table 3.10 Unrounded raw-to-scale score conversions for postsmoothing

Form Form Y equivalent
X No
score smooth S = .01 S = .05 S = .10 S = .20 S = .30 S = .50 S = .75 S = 1.00

0 .500 .500 .500 .500 .500 .500 .500 .500 .500
1 .500 .500 .500 .500 .500 .500 .500 .500 .500
2 .500 .500 .500 .500 .500 .500 .500 .500 .500
3 .500 .500 .500 .500 .500 .500 .500 .500 .500
4 .500 .500 .500 .500 .500 .500 .500 .500 .500
5 .500 .500 .500 .500 .500 .500 .500 .500 .500
6 .595 .591 .584 .576 .567 .561 .552 .543 .535
7 1.187 1.118 1.049 1.027 1.002 .985 .958 .931 .908
8 2.110 2.126 2.101 2.095 2.087 2.080 2.069 2.057 2.046
9 3.464 3.455 3.508 3.529 3.550 3.562 3.579 3.595 3.606
10 4.926 4.936 5.004 5.043 5.084 5.110 5.148 5.184 5.213
11 6.368 6.346 6.398 6.447 6.501 6.537 6.591 6.641 6.682
12 7.739 7.752 7.789 7.847 7.914 7.961 8.030 8.095 8.149
13 9.262 9.274 9.284 9.342 9.414 9.465 9.541 9.614 9.674
14 10.846 10.787 10.778 10.827 10.891 10.937 11.006 11.073 11.129
15 12.105 12.136 12.154 12.193 12.246 12.284 12.343 12.401 12.449
16 13.449 13.469 13.484 13.515 13.559 13.591 13.642 13.692 13.734
17 14.874 14.848 14.844 14.866 14.897 14.920 14.959 14.997 15.030
18 16.152 16.177 16.178 16.188 16.202 16.215 16.236 16.259 16.279
19 17.391 17.387 17.393 17.392 17.390 17.391 17.395 17.401 17.408
20 18.496 18.501 18.513 18.501 18.485 18.476 18.465 18.457 18.452
21 19.615 19.588 19.605 19.582 19.552 19.534 19.510 19.489 19.474
22 20.553 20.588 20.610 20.577 20.539 20.515 20.482 20.452 20.429
23 21.479 21.485 21.477 21.439 21.398 21.371 21.333 21.299 21.272
24 22.270 22.254 22.214 22.173 22.131 22.104 22.065 22.028 21.999
25 22.935 22.945 22.885 22.842 22.800 22.771 22.730 22.691 22.659
26 23.617 23.616 23.541 23.498 23.455 23.426 23.382 23.341 23.307
27 24.295 24.264 24.194 24.155 24.114 24.085 24.041 23.998 23.963
28 24.850 24.859 24.828 24.802 24.770 24.746 24.704 24.662 24.627
29 24.354 25.362 25.361 25.347 25.326 25.310 25.282 25,248 25.220
30 25.784 25.787 25.799 25.792 25.777 25.764 25.743 25.719 25.699
31 26.218 26.216 26.234 26.233 26.222 26.211 26.191 26.169 26.151
32 26.728 26.711 26.739 26.746 26.740 26.731 26.715 26.696 26.679
33 27.291 27.289 27.335 27.349 27.350 27.345 27.335 27.322 27.311
34 27.922 27.959 28.015 28.034 28.042 28.044 28.043 28.039 28.034
35 28.800 28.811 28.830 28.856 28.876 28.886 28.899 28.909 29.917
36 30.101 29.988 29.931 29.964 30.001 30.026 30.064 30.100 30.131
37 31.387 31.433 31.380 31.410 31.457 31.494 31.554 31.615 31.667
38 32.890 32.879 32.863 32.889 32.946 32.995 33.076 33.161 33.235
39 34.297 34.311 34.326 34.343 34.391 34.434 34.503 34.571 34.627
40 35.336 35.525 35.533 35.542 35.569 35.592 35.630 35.667 35.698



92 3 Random Groups: Smoothing in Equipercentile Equating

Table 3.11 Rounded raw-to-scale score conversions for postsmoothing

Form Form Y equivalent
X No
score smooth S = .01 S = .05 S = .10 S = .20 S = .30 S = .50 S = .75 S = 1

0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1
8 2 2 2 2 2 2 2 2 2
9 3 3∗ 4 4 4 4 4 4 4
10 5 5 5 5 5 5 5 5 5
11 6 6 6 6∗ 7 7 7 7 7
12 8 8 8 8 8 8 8 8 8
13 9 9 9 9 9 9∗ 10 10 10
14 11 11 11 11 11 11 11 11 11
15 12 12 12 12 12 12 12 12 12
16 13 13 13∗ 14 14 14 14 14 14
17 15 15 15 15 15 15 15 15 15
18 16 16 16 16 16 16 16 16 16
19 17 17 17 17 17 17 17 17 17
20 18∗ 19 19 19∗ 18 18 18 18 18
21 20 20 20 20 20 20 20∗ 19 19
22 21 21 21 21 21 21∗ 20 20 20
23 21 21 21 21 21 21 21 21 21
24 22 22 22 22 22 22 22 22 22
25 23 23 23 23 23 23 23 23 23
26 24 24 24∗ 23 23 23 23 23 23
27 24 24 24 24 24 24 24 24 24
28 25 25 25 25 25 25 25 25 25
29 25 25 25 25 25 25 25 25 25
30 26 26 26 26 26 26 26 26 26
31 26 26 26 26 26 26 26 26 26
32 27 27 27 27 27 27 27 27 27
33 27 27 27 27 27 27 27 27 27
34 28 28 28 28 28 28 28 28 28
35 29 29 29 29 29 29 29 29 29
36 30 30 30 30 30 30 30 30 30
37 31 31 31 31 31 31 32 32 32
38 33 33 33 33 33 33 33 33 33
39 34 34 34 34 34 34∗ 35 35 35
40 35∗ 36 36 36 36 36 36 36 36
∗ Indicates a different conversion obtained for adjacent methods
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f̂kernel(x
∗) = 1

constant

K∑
i=0

f̂ (xi )φ[R(xi , x∗)], (3.15)

where R(xi , x∗) is related to the difference between xi and x∗. In addition, R(xi , x∗)
and the constant depend on the mean and standard deviation of the scores and a
bandwidth parameter. The bandwidth parameter is chosen by the investigator, and
larger values lead to more smoothing. See Brennan et al. (2009, p. 173) or von Davier
et al. (2004) for a precise definition of all terms.

At each discrete score point, the kernel method of equating described by von
Davier et al. (2004) uses a normally distributed kernel to spread out the score density
over the range −∞ to +∞. The larger the bandwidth parameter, the more the density
at each discrete score point is spread out. Although the primary purpose of the use
of the Gaussian kernel is to continuize score distributions, the kernel also leads to
smoother score distributions. The resulting distribution of random variable X∗ is a
continuous probability distribution for scores that range from −∞ to +∞. These
continuous scores have same mean and standard deviation as the scores of the discrete
smoothed distribution, but the scores can differ in skewness, kurtosis, and higher
order moments.

The kernel method of equating has been the subject of considerable research,
much of which was summarized by von Davier (2011b). This research includes
examining kernels other than the normal (e.g., logistic, Lee and von Davier 2011),
comparisons of kernel equating to equipercentile equating as defined in Chap. 2 (Liu
and Low 2008; Mao et al. 2006), and Wang’s (2008, 2011) continuized log-linear
method that preserves all of the moments of the discrete distribution as well as the
range of scores.

The kernel method of equating provides an elegant statistical framework for ob-
served score equating. It can be implemented using EQUATING RECIPES (Brennan
et al. 2009). However, the kernel method is quite complicated and it requires con-
siderable statistical knowledge and background. Whereas we prefer equating that
operates on scores that are as similar as possible to the scores we are interested in
equating, the kernel method requires the transformation of a discrete distribution to a
continuous distribution with a range of scores (−∞ to +∞) that differs considerably
from the range of the discrete scores. In addition, to our knowledge, this method has
not been used with operational equating in large-scale testing programs. For these
reasons, in this book we focus on more traditional methods of equipercentile equat-
ing. Based on the kernel framework, these more traditional methods can be viewed
as using log-linear smoothing with a uniform kernel as described in Chap. 2.

3.6 Practical Issues in Equipercentile Equating

As was indicated earlier, the purpose of smoothing in equipercentile equating is
to reduce equating error. However, there is a danger that smoothing will introduce

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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equating error. Provided next are guidelines to help ensure that smoothing improves
the equating process. Guidelines for the sample sizes needed to produce adequate
equating are considered subsequently.

3.6.1 Summary of Smoothing Strategies

The strategies for presmoothing and postsmoothing that are illustrated in this chapter
have much in common, although the strategies differ. The focus in presmoothing is on
finding a method for smoothing score distributions, whereas the focus in postsmooth-
ing is on choosing among degrees of smoothing of the equipercentile relationship.
Another difference is that statistical tests can be used with the presmoothing meth-
ods, whereas no statistical tests exist for the cubic-spline postsmoothing method. The
following are the steps in the smoothing strategies that have been discussed. Step 1 is
used only with presmoothing. Differences between presmoothing and postsmoothing
strategies are highlighted.

Step 1. Fit the score distributions (presmoothing only). The strategy used for fitting
the score distributions involves both graphic inspection and the use of statistical
indices. For the log-linear method

(a) Examine graphs of the fitted versus the sample distribution. For an adequate fit,
the fitted distribution should be smooth without departing more than necessary
from the sample distribution.

(b) Examine the overall χ2 fit statistic. Choose the model associated with the smallest
value of C that is not significant.

(c) Beginning with one less than the largest C being considered, choose the model
with the first value of C that has a nonsignificant χ2.

(d) Choose the model associated with C that has the smallest value of AI C .
(e) Consider any of the values of C selected by these methods. In making a choice of

C , it is important to note that (i) choosing larger values of C tends to lead to more
random error, (ii) choosing smaller values of C tends to lead to more systematic
error, (iii) when sample size is very large, minor differences between models
might be significant, and (iv) a variety of model selection criteria are being
considered. For these reasons, model selection procedures should be applied
with caution and not followed too rigidly. More than one acceptable set of values
for C can be chosen and evaluated in subsequent steps.

Step 2. Construct the raw-to-raw equivalents. After presmoothing (if any), con-
struct the equipercentile equivalents. For postsmoothing, construct the equipercentile
equivalents for the degrees of smoothing that are to be evaluated.

(a) Examine the graphs of the raw-to-raw equivalents. For smoothing to be ade-
quate, the relationship should be smooth without departing too much from the
unsmoothed equivalents, as indicated by the standard error bands.
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(b) Examine the moments of the equated raw scores. The moments of the Form X
equated raw scores should be close to those for Form Y.

Models that are judged to produce adequate results are considered further.
Step 3. Construct the raw-to-scale score equivalents. For presmoothing, construct

the equivalents for the methods chosen in Step 1. For postsmoothing, construct the
equivalents for various degrees of smoothing that are to be considered further.

(a) The moments for the Form X scale scores should not be too different from the
moments for the unrounded Form Y scale scores.

(b) The moments for the Form X rounded scale scores should be similar to the
moments for the unrounded Form Y scales scores.

(c) Consider adjusting the rounded raw-to-scale score equivalents for Form X. If
the moments for the Form X rounded scale scores are not close enough to the
moments for the unrounded Form Y scale scores, then different adjustments of
the conversion should be considered. Also, adjustments in rounded scale scores
might be made to minimize gaps or many-to-one conversions, especially at the
extremes of the score scale, and to accommodate program constraints such as
minimum and maximum scale scores.

The strategy described might result in more than one method or degree of smoothing
being adequate, and various subjective judgments could be made. Such judgments are
necessarily dependent on the testing program in which the equating is being done.
General rules of thumb do not seem possible, because testing programs vary so
much in their sample sizes, distribution shapes, numbers of items, and other relevant
characteristics. However, rules of thumb for a particular testing program often can
be developed after some experience with the program.

3.6.2 Smoothing and Population Distribution Irregularities

The log-linear smoothing procedures described in this chapter are intended to pro-
duce smooth score distributions. However, in certain special cases, the population
distribution is likely not smooth, such as in the situation described by von Davier
et al. (von Davier et al. 2004, p. 160). In this situation, raw scores were calculated
using a correction for guessing in which a fractional score point was subtracted from
the total number-correct score whenever an item was answered incorrectly. Item
scores for omitted items were 0. The resulting scores were rounded to integers, and
negative scores were set equal to 0. As Moses and Holland (2009a) pointed out,
“item omission patterns define sets of total scores that are impossible to obtain”
(p. 22). For this reason, the distributions of rounded formula scores have irregular-
ities that are due to examinee patterns of omits rather than to sampling error, and
these irregularities would be expected to be present in the score distribution for the
population. When the population distribution is irregular, the applicability of the log-
linear model fitting procedures is questionable. Postsmoothing might be affected, as
well. von Davier et al. (2004) studied the fit of more complex log-linear models that
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take into account such irregularities. Smoothing with irregular distributions has been
the focus of recent research (Liu et al. 2009; Moses and Holland 2009b; Moses and
Liu 2011; Puhan et al. 2010).

3.6.3 Equating Error, Sample Size, and Smoothing Method

Holland et al. (1989) and von Davier et al. (2004) developed standard error formulas
for equipercentile equating using log-linear presmoothing. Standard error formu-
las have not been derived for the other smoothing methods, although the bootstrap
methods (Efron and Tibshirani 1993) (to be described in Chap. 7) can be used. There
is no general analytic procedure for estimating systematic error. Technically, the
estimation of both types of error is necessary to thoroughly evaluate the effects of
smoothing.

Studies that have investigated equating error, sample size, and smoothing methods
in random groups equipercentile equating include those by Cui and Kolen (2009),
Hanson et al. (1994), Moses and Holland (2009a), Liu (2011), and Liu and Kolen
(2011a, b). In this section, the study by Hanson et al. (1994) is described in detail to
illustrate how such a study can be conducted and how the findings can be interpreted.
Hanson et al. (1994) conducted an empirical comparison of the presmoothing and
postsmoothing methods. In this study, empirical score distributions were smoothed.
The smoothed distributions were assumed to be the population distributions. Random
samples of a given size then were drawn from the population distributions. Equiper-
centile equivalents were estimated from these random samples using both presmooth-
ing and postsmoothing methods. Because the population distributions were known,
random and systematic error components could be estimated separately. Note that
the use of smoothed distributions as population distributions helps ensure that the
distributions are realistic.

Mean-squared errors for a portion of the Hanson et al. (1994) study are presented
in Table 3.12 for the enhanced ACT Assessment English and Science Reasoning tests.
The values in the table are estimates of the total error of equation (3.8). Larger values
indicate more total equating error. The first row in the upper and lower portions of
the table is for the identity equating. Note the relatively large value for ACT English
compared to that for ACT Science Reasoning. This difference occurs because the
two English forms are quite different from one another, whereas the two Science
Reasoning forms are very similar. The sample sizes in the table are per form. For the
English test with N = 100, the identity equating results in less error than some of
the smoothing methods. For the Science Reasoning test with N = 100, the identity
equating results in the least amount of error of all of the methods. For the English test,
one of the smoothed equipercentile methods (postsmoothing S = 0.50) produces the
lowest mean-squared error for all sample sizes. For the Science Reasoning test, only
at a sample size of 3,000 do all of the smoothing methods have mean-squared error
values equal to or lower than the value for linear equating.

http://dx.doi.org/10.1007/978-1-4939-0317-7_7
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Table 3.12 Mean-squared equating error from Hanson et al. (1994) study

Test Equating method N=100 N=250 N=500 N=1000 N=3000

ACT Identity 5.76 5.76 5.76 5.76 5.76
english Linear 6.15 3.65 2.80 2.33 2.00
(K = 75) Unsmoothed 6.60 2.83 1.50 .75 .25

Beta4 5.28 2.24 1.22 .63 .24
Log-linear C = 3 5.20 2.30 1.29 .71 .35
Log-linear C = 4 5.66 2.47 1.39 .77 .36
Log-linear C = 6 6.09 2.55 1.33 .67 .23
Postsmoothing S = .10 5.98 2.55 1.33 .67 .22
Postsmoothing S = .25 5.57 2.34 1.23 .62 .21
Postsmoothing S = .50 5.17 2.19 1.17 .59 .21

ACT Identity .51 .51 .51 .51 .51
science Linear 1.03 .46 .20 .11 .05
reasoning Unsmoothed 1.62 .70 .32 .17 .06
(K = 40) Beta4 1.28 .55 .24 .12 .04

Log-linear C = 3 1.17 .51 .22 .12 .04
Log-linear C = 4 1.34 .57 .25 .13 .04
Log-linear C = 6 1.52 .63 .28 .14 .05
Postsmoothing S = .10 1.42 .63 .28 .14 .05
Postsmoothing S = .25 1.32 .56 .24 .12 .04
Postsmoothing S = .50 1.26 .51 .22 .11 .04

In comparing the smoothing results to one another, there is no method that appears
to be clearly superior to the others. For the English test, the mean-squared error for
the best smoothing method is approximately 80 % of that of the unsmoothed equiper-
centile method. For the Science Reasoning test, the mean-squared error for the best
smoothing method is approximately 70 % of that of the unsmoothed equipercentile
method. Thus, smoothed equipercentile equating produces a modest reduction in
error compared to unsmoothed equipercentile equating. These results are for equating
error averaged over all score points. More detailed results presented by Hanson et
al. (1994) indicate that the smoothing reduces error, even at extreme scores.

The results from the Hanson et al. (1994) study, other research cited earlier in this
section, as well as practical experience with these methods suggest the use of the
following guidelines:

• Use of the identity equating for carefully constructed forms can be preferable to
using one of the other equating methods, especially with sample sizes at or below
100 examinees per test form. The use of equipercentile equating with fewer than
250 examinees per form might even introduce error.

• Smoothing in equipercentile equating can be expected to produce a modest de-
crease in mean-squared equating error when compared to unsmoothed equiper-
centile equating.
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No clear method exists for choosing whether to use presmoothing versus
postsmoothing. One positive characteristic of the presmoothing methods is that there
are statistical tests that can be readily used. Such tests do not exist for the postsmooth-
ing method. In addition, the postsmoothing method described here requires averaging
two splines, and there is no compelling theoretical reason for doing so other than
to produce a symmetric relationship. However, postsmoothing directly smoothes the
equipercentile relationship, which is more direct than smoothing the distributions,
as is done with the presmoothing methods. The presmoothing and postsmoothing
methods have been used in practice in testing programs with good results. Research
evidence suggests that both types of methods can produce results which have the
potential to improve equating accuracy. Thus, either type of method can function
adequately in operational testing programs.

3.7 Exercises

3.1. Suppose that, in the population, the Form Y equipercentile equivalent of a
Form X score of 26 is 28.3. Also, suppose that the expected (over a large
number of random samples) equivalent using a smoothing method is 29.1.
Based on a sample, the unsmoothed equivalent is estimated to be 31.1 and
the smoothed equipercentile equivalent is estimated to be 31.3. Answer the
following questions about finding the Form Y equipercentile equivalent of a
Form X score of 26. Indicate if the question cannot be answered from the
information given.

a. What is the systematic error in using the smoothing method?
b. What is the error in estimating the equipercentile equivalent using the un-

smoothed equipercentile method in the sample?
c. What is the error in estimating the equipercentile equivalent using the

smoothed equipercentile method in the sample?
d. What is the standard error of equating using the unsmoothed equipercentile

method?
e. Which method (smoothed or unsmoothed) was more accurate in the sample?
f. Which method (smoothed or unsmoothed) would be better over a large

number of replications?

3.2. If C = 3 in the log-linear method, which of the following would be the same for
the observed distribution and smoothed distribution: mean, standard deviation,
skewness, kurtosis?

3.3. Suppose a nominal alpha level of 0.30 had been used. In Table 3.1, what values
of C would have been eliminated using the single degree of freedom difference
χ2 statistics for Form X and for Form Y? (The critical value is 1.07.)

3.4. What would be the cubic spline equivalent of a score on x of 28.6 using the
data shown in Table 3.6?
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3.5. In Table 3.11, which pairs of conversions are identical? Are there any circum-
stances under which it would matter whether one or the other of the identical
conversions was chosen?

3.6. In Figs. 3.6 and 3.7, ±1 standard error bands are presented. If ±2 standard error
bands had been used, which S parameters would have had relationships that
fell within the band? How about the relationship for the identity equating?

3.7. In Table 3.12, under what conditions in the studies presented was it better to use
the identity equating than to use any of the methods studied? What factor do
you think could have made the identity equating appear to be relatively better
with small samples for the Science Reasoning test than for the English test?
Can you think of a situation in which the identity equating would always be
better than one of the other equating methods?
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Chapter 4
Nonequivalent Groups: Linear Methods

Chapter 1 introduced the common-item nonequivalent groups design. For this design,
two groups of examinees from different populations are each administered different
test forms that have a set of items in common. This design often is used when only
one form of a test can be administered on a given test date. As discussed in Chap. 1,
the set of common items should be as similar as possible to the full-length forms in
both content and statistical characteristics.

There are two special cases of the common-item nonequivalent groups design. The
common item set is said to be internal when scores on the common items contribute to
the total scores for both forms. By contrast, the common items are said to be external
when their scores do not contribute to total scores. Notationally, denote the new test
form and the random variable score on that form as X , the old form and the random
variable score on that form as Y , and the common-item set and the random variable
score on the common-item set as V . Assume that X and V are taken by a group of
examinees from Population 1, and Y and V are taken by a group of examinees from
Population 2. If V is an internal set of common items, then X and Y include scores on
V . If V is external, then X and Y do not include scores on V . For example, consider
an examinee who got 10 common items correct and 40 noncommon items correct.
If V is an internal set of common items, then x = 50. If V is an external set, then
x = 40.

In general, the common items are used to adjust for population differences. Doing
so requires strong statistical assumptions because each examinee comes from only
one population and takes only one form. The various methods for performing equating
under the common-item nonequivalent groups design are distinguished in terms of
their statistical assumptions.

Even though the design under consideration here involves two populations, an
equating function is typically viewed as being defined for a single population. There-
fore, Populations 1 and 2 must be combined to obtain a single population for defining
an equating relationship. To address this issue Braun and Holland (1982) introduced
the concept of a synthetic population in which Populations 1 and 2 are weighted by
w1 and w2, respectively, where w1 + w2 = 1 and w1, w2 ∗ 0.

M. J. Kolen and R. L. Brennan, Test Equating, Scaling, and Linking, 103
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The equating methods considered in this chapter are all linear. Three of the
methods are called observed score equating methods because observed scores on
X are transformed to observed scores on the scale of Y . The fourth method is called
a true score method because it relates true scores on X to the scale of true scores on Y .
All of these methods are described by in some detail by Angoff (1971) and Holland
and Dorans (2006), and they are referenced by Petersen et al. (1989). The presenta-
tions here are considerably more detailed and more closely parallel a combination
of Kolen and Brennan (1987), Brennan (1990) and Brennan (2006).1 Other authors
who have provided derivations of one or more of these methods include MacCann
(1990) and Woodruff (1986, 1989).

As discussed in Chap. 2, the linear conversion is defined by setting standardized
deviation scores (z-scores) equal for the two forms. For the common-item nonequiva-
lent groups design, this results in the following linear equation for equating observed
scores on X to the scale of observed scores on Y :

lYS (x) = σs(Y )

σs(X)

[
x − μs(X)

] + μs(Y ), (4.1)

where s indicates the synthetic population. The four synthetic population parameters
in Eq. (4.1) can be expressed in terms of parameters for Populations 1 and 2 as
follows:

μs(X) = w1μ1(X) + w2μ2(X), (4.2)

μs(Y ) = w1μ1(Y ) + w2μ2(Y ), (4.3)

σ2
s (X) = w1σ

2
1(X) + w2σ

2
2(X) + w1w2

[
μ1(X) − μ2(X)

]2
, (4.4)

and

σ2
s (Y ) = w1σ

2
1(Y ) + w2σ

2
2(Y ) + w1w2

[
μ1(Y ) − μ2(Y )

]2
, (4.5)

where the subscripts 1 and 2 refer to Populations 1 and 2, respectively.
For the common-item nonequivalent groups design, X is not administered to

examinees in Population 2, and Y is not administered to examinees in Population 1.
Therefore, μ2(X), σ2

2(X), μ1(Y ), and σ2
1(Y ) in Eqs. (4.2)–(4.5) cannot be estimated

directly. The Tucker and Levine observed score methods considered in Sects. 4.1 and
4.2 make different statistical assumptions in order to express these four parameters
as functions of directly estimable parameters. (A similar statement applies to the
chained method in Sect. 4.4) Throughout this chapter, all results are reported in terms
of parameters, some of which are directly estimable [e.g., μ1(X)], while others are not
[e.g., μ2(X)]. In practice, of course, the results are used by replacing all parameters
with estimates. The parameters estimated from the data and from assumptions are
distinguished in Fig. 4.1.

1 This chapter provides detailed proofs of almost all results, whereas other chapters usually present
results, only, or simply outline derivations.

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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Fig. 4.1 Linear equating
parameters for the common-
item nonequivalent groups
design

4.1 Tucker Method

The Tucker method was described by Gulliksen (1950, pp. 299–301), who attributed
it to Ledyard Tucker. This method makes two types of assumptions in order to
estimate the parameters in Eqs. (4.2)–(4.5) that cannot be estimated directly. The
first type of assumption concerns the regressions of total scores on common-item
scores. The second type of assumption concerns the conditional variances of total
scores given common-item scores. Basically, these are the assumptions of univariate
selection theory (see Gulliksen 1950, pp. 131, 132).

4.1.1 Linear Regression Assumptions

First, the regression of X on V is assumed to be the same linear function for both
Populations 1 and 2. A similar assumption is made for Y on V . Letting α represent
a regression slope and β a regression intercept,

α1(X |V ) = σ1(X, V )/σ2
1(V ) (4.6)
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and
β1(X |V ) = μ1(X) − α1(X |V )μ1(V ) (4.7)

are the slope and intercept, respectively, for the regression of X on V in Population 1.
These two quantities are directly observed. In Population 2, the slope and intercept
are

α2(X |V ) = σ2(X, V )/σ2
2(V ) (4.8)

and
β2(X |V ) = μ2(X) − α2(X |V )μ2(V ). (4.9)

These two quantities are not directly observed. For X and V , then, the regression
assumption is

α2(X |V ) = α1(X |V ) (4.10)

and
β2(X |V ) = β1(X |V ), (4.11)

where the quantities to the left of the equal sign are not directly observable. Similarly,
for Y and V , the regression assumption is

α1(Y |V ) = α2(Y |V )

and
β1(Y |V ) = β2(Y |V ).

4.1.2 Conditional Variance Assumptions

Also, for the Tucker method, the conditional variance of X given V is assumed to be
the same for Populations 1 and 2. A similar statement holds for Y given V . Stated
explicitly, these assumptions are

σ2
2(X)

[
1 − ρ2

2(X, V )
] = σ2

1(X)
[
1 − ρ2

1(X, V )
]

(4.12)

and
σ2

1(Y )
[
1 − ρ2

1(Y, V )
] = σ2

2(Y )
[
1 − ρ2

2(Y, V )
]
,

where ρ is a correlation and the quantities that are not directly observable are to the
left of the equalities.
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4.1.3 Intermediate Results

The above assumptions are sufficient to solve for μ2(X), σ2(X), μ1(Y ), and σ1(Y ) in
terms of observable quantities. Consider, for example, μ2(X). Because the regression
of X on V is assumed to be linear,

μ2(X) = β2(X |V ) + α2(X |V )μ2(V ).

Using Eqs. (4.10) and (4.11),

μ2(X) = β1(X |V ) + α1(X |V )μ2(V ).

Now, using Eq. (4.7),

μ2(X) = [
μ1(X) − α1(X |V )μ1(V )

] + α1(X |V )μ2(V )

= μ1(X) − α1(X |V )
[
μ1(V ) − μ2(V )

]
. (4.13)

Following a similar approach,

μ1(Y ) = μ2(Y ) + α2(Y |V )
[
μ1(V ) − μ2(V )

]
. (4.14)

To obtain σ2
2(X), begin by noting that

ρ1(X, V ) = σ1(X, V )/
[
σ1(X)σ1(V )

]
,

where σ1(X, V ) is a covariance. Rearranging terms in Eq. (4.6),

σ1(X, V ) = α1(X |V )σ2
1(V ).

Therefore,
ρ1(X, V ) = α1(X |V )σ1(V )/σ1(X)

and, with a little bit of algebra,

σ2
1(X)

[
1 − ρ2

1(X, V )
] = σ2

1(X) − α2
1(X |V )σ2

1(V ).

Similarly,
σ2

2(X)
[
1 − ρ2

2(X, V )
] = σ2

2(X) − α2
2(X |V )σ2

2(V ).

Now, using Eq. (4.12),

σ2
2(X) − α2

2(X |V )σ2
2(V ) = σ2

1(X) − α2
1(X |V )σ2

1(V ).

Because α2(X |V ) = α1(X |V ) by assumption,
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σ2
2(X) = σ2

1(X) − α2
1(X |V )

[
σ2

1(V ) − σ2
2(V )

]
. (4.15)

A similar derivation gives,

σ2
1(Y ) = σ2

2(Y ) + α2
2(Y |V )

[
σ2

1(V ) − σ2
2(V )

]
. (4.16)

4.1.4 Final Results

Given the results in Eqs. (4.13)–(4.16), the synthetic population means and variances
in Eqs. (4.2)–(4.5) can be shown to be

μs(X) = μ1(X) − w2γ1
[
μ1(V ) − μ2(V )

]
, (4.17)

μs(Y ) = μ2(Y ) + w1γ2
[
μ1(V ) − μ2(V )

]
, (4.18)

σ2
s (X) = σ2

1(X) − w2γ
2
1

[
σ2

1(V ) − σ2
2(V )

] + w1w2γ
2
1

[
μ1(V ) − μ2(V )

]2
, (4.19)

and

σ2
s (Y ) = σ2

2(Y ) + w1γ
2
2

[
σ2

1(V ) − σ2
2(V )

] + w1w2γ
2
2

[
μ1(V ) − μ2(V )

]2
, (4.20)

where the γ-terms are the regression slopes

γ1 = α1(X |V ) = σ1(X, V )/σ2
1(V ) (4.21)

and
γ2 = α2(Y |V ) = σ2(Y, V )/σ2

2(V ), (4.22)

and the parameters to the right of the equal signs can be estimated directly from the
data. The Tucker linear equating function is obtained by using the results from Eqs.
(4.17)–(4.22) in Eq. (4.1).

It is evident from the form of Eqs. (4.17)–(4.20) that the synthetic population
means and variances for X and Y can be viewed as adjustments to directly observable
quantities. The adjustments are functions of differences in means and variances for
the common items. If μ1(V ) = μ2(V ) and σ2

1(V ) = σ2
2(V ), then the synthetic

population parameters would equal observable means and variances.
The foregoing derivation does not require specifying whether the common-item

set is internal or external. Consequently, the results apply to both possibilities, pro-
vided, of course, that X is correctly specified as the total set of items that directly
contribute to an examinee’s score. That is, scores on X include scores on V if V is
an internal common-item set, and scores on X do not include scores on V if V is an
external common-item set.
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4.1.5 Special Cases

Equations (4.17)–(4.22) apply for any set of nonnegative weights, w1 and w2,
provided w1 + w2 = 1. At least three special cases are sometimes considered.
First, Gulliksen’s (1950, pp. 299–301) initial presentation of the Tucker method
can be obtained by setting w1 = 1 and w2 = 0, in which case the synthetic pop-
ulation is the population that took the new form. Second, Angoff (1971, p. 580)
provides formulas for the Tucker method based on weights that are proportional to
sample sizes—i.e., w1 = N1/(N1 + N2) and w2 = N2/(N1 + N2) where N1 and
N2 are the sample sizes from Populations 1 and 2, respectively. Third, the weights
are sometimes set equal (i.e., w1 = w2 = .5), reflecting an a priori judgment that
both Populations 1 and 2 are equally relevant for the investigator’s conception of the
synthetic population.

4.2 Levine Observed Score Method

The assumptions of the Tucker method involve only observable quantities. No
reference is made to true scores. Yet, it would seem that for equating to be sen-
sible, true scores must be functionally related. Otherwise, it would not be sensible
to talk about scores being interchangeable. This argument per se does not render the
Tucker method inappropriate, but it does suggest that there may be merit in deriv-
ing equating results based on assumptions about true scores. One such method is
discussed in this section.

The Levine observed score method was originally developed by Levine (1955),
although he did not explicitly consider the concept of a synthetic population. Conse-
quently, the present development is more general than Levine’s (1955). This method
is an observed score equating method in the sense that it uses Eq. (4.1) to relate
observed scores on X to the scale of observed scores on Y . However, the assump-
tions for this method pertain to true scores TX , TY , and TV which are assumed to be
related to observed scores according to the classical test theory model (see Feldt and
Brennan 1989; Haertel 2006):

X = TX + EX , (4.23)

Y = TY + EY , (4.24)

and
V = TV + EV , (4.25)

where EX , EY , and EV are errors that have zero expectations and are uncorrelated
with true scores.
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4.2.1 Correlational Assumptions

The Levine method assumes that X , Y , and V are all measuring the same thing in the
sense that TX and TV as well as TY and TV correlate perfectly in both Populations 1
and 2:

ρ1(TX , TV ) = ρ2(TX , TV ) = 1 (4.26)

and
ρ1(TY , TV ) = ρ2(TY , TV ) = 1. (4.27)

Note that Eqs. (4.26) and (4.27) imply that TX and TY are functionally related in both
populations.

4.2.2 Linear Regression Assumptions

Also for the Levine method, the regression of TX on TV is assumed to be the same
linear function for both Populations 1 and 2, and a similar assumption is made for
the regression of TY on TV .

The slope of TX on TV is α1(TX |TV ) = ρ1(TX , TV )σ1(TX )/σ1(TV ), by def-
inition. Since ρ1(TX , TV ) = 1 from the correlational assumption in Eq. (4.26),
α1(TX |TV ) = σ1(TX )/σ1(TV ). Similarly, α2(TX |TV ) = σ2(TX )/σ2(TV ). Conse-
quently, the assumption of equal true score regression slopes for TX on TV in Popu-
lations 1 and 2 is effectively

σ2(TX )

σ2(TV )
= σ1(TX )

σ1(TV )
. (4.28)

By an analogous derivation,

σ1(TY )

σ1(TV )
= σ2(TY )

σ2(TV )
. (4.29)

For each of the classical test theory model Eqs. (4.23)–(4.25), the mean of observed
scores equals the mean of true scores. Consequently, the assumption of equal true
score regression intercepts for TX on TV in Populations 1 and 2 is

μ2(X) − σ2(TX )

σ2(TV )
μ2(V ) = μ1(X) − σ1(TX )

σ1(TV )
μ1(V ). (4.30)

Similarly, for the intercepts of TY on TV ,

μ1(Y ) − σ1(TY )

σ1(TV )
μ1(V ) = μ2(Y ) − σ2(TY )

σ2(TV )
μ2(V ). (4.31)
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4.2.3 Error Variance Assumptions

The Levine method also assumes that the measurement error variance for X is the
same for Populations 1 and 2. A similar assumption is made for Y and V . Because
true scores and errors are uncorrelated under the classical test theory model, error
variance is the difference between observed score variance and true score variance.
Therefore, the error variance assumptions are

σ2
2(X) − σ2

2(TX ) = σ2
1(X) − σ2

1(TX ), (4.32)

σ2
1(Y ) − σ2

1(TY ) = σ2
2(Y ) − σ2

2(TY ),

and
σ2

1(V ) − σ2
1(TV ) = σ2

2(V ) − σ2
2(TV ). (4.33)

4.2.4 Intermediate Results

Recall that expressions for μ2(X), σ2(X), μ1(Y ), and σ1(Y ) are needed in order to
obtain the synthetic population means and variances in Eqs. (4.2)–(4.5).

By rearranging terms in Eq. (4.30) and then using Eq. (4.28),

μ2(X) = μ1(X) − σ1(TX )

σ1(TV )

[
μ1(V ) − μ2(V )

]
. (4.34)

Similarly, using Eqs. (4.31) and (4.29),

μ1(Y ) = μ2(Y ) + σ2(TY )

σ2(TV )

[
μ1(V ) − μ2(V )

]
. (4.35)

From Eq. (4.32) an expression for σ2
2(X) is

σ2
2(X) = σ2

1(X) − σ2
1(TX ) + σ2

2(TX ).

From Eq. (4.28), σ2(TX ) = σ1(TX )σ2(TV )/σ1(TV ). It follows that

σ2
2(X) = σ2

1(X) − σ2
1(TX )

[
1 − σ2

2(TV )/σ2
1(TV )

]

= σ2
1(X) − σ2

1(TX )

σ2
1(TV )

[
σ2

1(TV ) − σ2
2(TV )

]
.
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Using Eq. (4.33),

σ2
2(X) = σ2

1(X) − σ2
1(TX )

σ2
1(TV )

[
σ2

1(V ) − σ2
2(V )

]
. (4.36)

Similarly,

σ2
1(Y ) = σ2

2(Y ) + σ2
2(TY )

σ2
2(TV )

[
σ2

1(V ) − σ2
2(V )

]
. (4.37)

4.2.5 General Results

Given the results in Eqs. (4.34)–(4.37), it can be shown algebraically that the synthetic
population means and variances in Eqs. (4.2)–(4.5) are given by Eqs. (4.17)–(4.20)
with

γ1 = σ1(TX )/σ1(TV ) (4.38)

and
γ2 = σ2(TY )/σ2(TV ). (4.39)

That is, under the Levine assumptions, the γ-terms are ratios of true score standard
deviations. Note that the derivation of these results did not require specifying whether
V was an internal or external set of common items.

The expressions for the γ-terms in Eqs. (4.38) and (4.39) are not immediately
usable because they are ratios of true score standard deviations, which are not directly
observed. Given the assumptions of classical test theory, and letting ρ(X, X ≥) =
σ2(TX )/σ2(X) denote the reliability of X , it follows that σ(TX ) = σ(X)

≤
ρ(X, X ≥).

Similarly, σ(TY ) = σ(Y )
≤

ρ(Y, Y ≥) and σ(TV ) = σ(V )
≤

ρ(V, V ≥). Consequently,
the γ-terms can be expressed as

γ1 = σ1(X)
≤

ρ1(X, X ≥)
σ1(V )

≤
ρ1(V, V ≥)

(4.40)

and

γ2 = σ2(Y )
≤

ρ2(Y, Y ≥)
σ2(V )

≤
ρ2(V, V ≥)

. (4.41)

In principle, any defensible estimates of the reliabilities in Eqs. (4.40) and (4.41)
could be used to estimate γ1 and γ2. In practice, the most frequently used equations
for the Levine method can be shown to result from applying what will be called the
“classical congeneric” test theory model (see Feldt and Brennan 1989, pp. 111, 112).
[Note that Levine’s 1955 derivation effectively stopped with Eqs. (4.40) and (4.41)].
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4.2.6 Classical Congeneric Model Results

In this section, unless otherwise noted, the classical congeneric model is assumed
for X and V , and for a single population. It is straightforward to extend the results
presented here to Y and V , and to Populations 1 and 2.

Recall from Eqs. (4.23) and (4.25) that for the classical model X = TX + EX

and V = TV + EV , where EX and TX , as well as EV and TV , are assumed to be
uncorrelated. The congeneric model goes one step further in specifying that TX and
TV are linearly related, which is consistent with the assumption in Eq. (4.26) that TX

and TV are perfectly correlated.
For our present purposes, a convenient way to represent that TX and TV are linearly

related is to set TX = λX T + δX and TV = λV T + δV , where the λ’s are slopes and
the δ’s are constant intercepts (see Feldt and Brennan 1989, pp. 110, 111; Haertel
2006, p. 76). This implies that TX = (λX/λV )TV + [δX − (λX/λV )δV ], although
this expression is not required in the subsequent derivation. Under the congeneric
model, then, the equations for X and V can be expressed as

X = TX + EX = (λX T + δX ) + EX (4.42)

and
V = TV + EV = (λV T + δV ) + EV . (4.43)

The classical congeneric model adds the assumptions that

σ2(EX ) = λXσ2(E) (4.44)

and
σ2(EV ) = λV σ2(E). (4.45)

In classical test theory, error variances are proportional to test length. Here, error
variances are proportional to λX and λV which are called “effective” test lengths.
Note also that the ratio σ2(EX )/σ2(EV ) is simply λX/λV .

Given Eqs. (4.42)–(4.45), the following can be shown relatively easily:

σ2(X) = λ2
Xσ2(T ) + λXσ2(E), (4.46)

σ2(V ) = λ2
V σ2(T ) + λV σ2(E), (4.47)

and
σ(X, V ) = λXλV σ2(T ) + σ(EX , EV ). (4.48)

Here, we make use of the classical congeneric model to obtain an expression for
σ(TX )/σ(TV ), which is the γ-term in Eq. (4.38). From Eqs. (4.42) and (4.43),
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γ = σ(TX )

σ(TV )
= λXσ(T )

λV σ(T )
= λX

λV
, (4.49)

which means that γ can be interpreted as the ratio of effective test lengths for X and
V , respectively. Two cases need to be considered: (a) an internal anchor in which all
items in V are included in X , and (b) an external anchor in which V and X consist
of entirely different sets of items. These two cases can be distinguished in terms of
the error covariance σ(EX , EV ) in Eq. (4.48).

Internal Anchor

When V is included in X , the full-length test is X . Now, let A be the noncommon
part of X such that X = A+V . Under the congeneric model, the covariance between
the errors for A and V is assumed to be 0 because these two parts of X consist of
entirely different items. Consequently,

σ(EX , EV ) = σ(E A+V , EV ) = σ(EV , EV ) = σ2(EV ) = λV σ2(E). (4.50)

That is, the covariance between EX and EV is simply the variance of EV .
Using Eq. (4.50) in (4.48) gives

σ(X, V ) = λXλV σ2(T ) + λV σ2(E)

= λV
[
λXσ2(T ) + σ2(E)

]
. (4.51)

After rewriting Eq. (4.46) as

σ2(X) = λX
[
λXσ2(T ) + σ2(E)

]
,

it is evident from Eq. (4.51) and the above expression for σ2(X) that γ in Eq. (4.49)
is

γ = λX/λV = σ2(X)/σ(X, V ) = 1/α(V |X). (4.52)

Therefore, for the internal anchor case, the results for Levine’s observed score
method under the classical congeneric model are obtained by using

γ1 = 1/α1(V |X) = σ2
1(X)/σ1(X, V ) (4.53)

and
γ2 = 1/α2(V |Y ) = σ2

2(Y )/σ2(Y, V ). (4.54)

That is, with an internal anchor, the γ-terms in Eqs. (4.17)–(4.20) under the classical
congeneric model are the inverses of the regression slopes of V on X and V on Y .
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External Anchor

When X and V contain no items in common, under the congeneric model,

σ(EX , EV ) = 0. (4.55)

Using Eq. (4.55) in (4.48) gives

σ(X, V ) = λXλV σ2(T ). (4.56)

From Eqs. (4.46) and (4.56),

σ2(X) + σ(X, V ) = λX
[
(λX + λV )σ2(T ) + σ2(E)

]
.

Similarly, using Eqs. (4.47) and (4.56),

σ2(V ) + σ(X, V ) = λV
[
(λX + λV )σ2(T ) + σ2(E)

]
.

It follows that γ in Eq. (4.49) is

γ = λX

λV
= σ2(X) + σ(X, V )

σ2(V ) + σ(X, V )
. (4.57)

Therefore, for the external anchor case, the results for Levine’s observed score
method under the classical congeneric model are obtained by using

γ1 = σ2
1(X) + σ1(X, V )

σ2
1(V ) + σ1(X, V )

(4.58)

and

γ2 = σ2
2(Y ) + σ2(Y, V )

σ2
2(V ) + σ2(Y, V )

(4.59)

in Eqs. (4.17)–(4.20).

Comments

Under the assumption that w1 = N1/(N1 + N2) and w2 = N2/(N1 + N2),
the results for Levine’s observed score method and a classical congeneric model
are identical to those reported by Angoff (1971), although the derivation is dif-
ferent. Angoff (1971) results are sometimes called the Levine-Angoff method, or
described as “Levine’s method using Angoff error variances”. The error variances
are those in Angoff (1953), which are also reported by Petersen et al. (1989, p. 254).
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Table 4.1 Classical congeneric model results

Anchor
Quantity Internal External

γ = λX

λV

1

α(V |X)
= σ2(X)

σ(X, V )

σ2(X) + σ(X, V )

σ2(V ) + σ(X, V )

σ2(TX )
γ2[σ(X, V ) − σ2(V )]

γ − 1
γ σ(X, V )

σ2(TV )
σ(X, V ) − σ2(V )

γ − 1

σ(X, V )

γ

σ2(EX )
γ2σ2(V ) − γ σ(X, V )

γ − 1
σ2(X) − γ σ(X, V )

σ2(EV )
γ σ2(V ) − σ(X, V )

γ − 1
σ2(V ) − σ(X, V )

γ

ρ(X, X ≥) γ2[σ(X, V ) − σ2(V )]
(γ − 1)σ2(X)

γ σ(X, V )

σ2(X)

ρ(V, V ≥) σ(X, V ) − σ2(V )

(γ − 1)σ2(V )

σ(X, V )

γ σ2(V )

Note Here, the population subscript “1” has been suppressed

Brennan (1990) has shown that Angoff’s error variances are derivable from the classi-
cal congeneric model. Table 4.1 reports these error variances along with other results
for the classical congeneric model that can be used to express the quantities illustrated
in Fig. 4.1.

4.3 Levine True Score Method

Levine (1955) also derived results for a true score equating method using the same
assumptions about true scores discussed in the previous section. The principal differ-
ence between the observed score and true score methods is that the observed score
method uses Eq. (4.1) to equate observed scores on X to the scale of observed scores
on Y , whereas the true score method equates true scores. Specifically, the following
equation is used to equate true scores on X to the scale of true scores on Y :

lYS (tX ) = σs(TY )

σs(TX )

[
tX − μs(TX )

] + μs(TY ).

In classical theory, observed score means equal true score means. Therefore,

lYS (tX ) = σs(TY )

σs(TX )

[
tX − μs(X)

] + μs(Y ). (4.60)
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4.3.1 Results

Equations (4.2) and (4.3) are still appropriate for μs(X) and μs(Y ), respectively.
Also, under Levine’s assumptions, Eqs. (4.34) and (4.35) still apply for μ2(X) and
μ1(Y ), respectively. Consequently, Eqs. (4.17) and (4.18) for μs(X) and μs(Y ) are
valid for both the Levine observed score and the Levine true score methods, with
the γ-terms given by Eqs. (4.38) and (4.39). For ease of reference, these results are
repeated below:

μs(X) = μ1(X) − w2γ1
[
μ1(V ) − μ2(V )

]
, (4.17)

and
μs(Y ) = μ2(Y ) + w1γ2

[
μ1(V ) − μ2(V )

]
, (4.18)

where
γ1 = σ1(TX )/σ1(TV ) (4.38)

and
γ2 = σ2(TY )/σ2(TV ). (4.39)

Using Levine’s true score assumptions, the derivation of expressions for the vari-
ance of TX and TY for the synthetic population is tedious (see Appendix), although
the results are simple:

σ2
s (TX ) = γ2

1σ2
s (TV ) (4.61)

and
σ2

s (TY ) = γ2
2σ2

s (TV ), (4.62)

where
σ2

s (TV ) = w1σ
2
1(TV ) + w2σ

2
2(TV ) + w1w2

[
μ1(V ) − μ2(V )

]2
.

From Eqs. (4.61) and (4.62), the slope of the equating relationship lYS (tX ) in
Eq. (4.60) is

σs(TY )/σs(TX ) = γ2/γ1, (4.63)

where the γ-terms are given by Eqs. (4.38) and (4.39).
These results are quite general, but they are not directly usable without expres-

sions for the true score standard deviations σ1(TX ), σ2(TY ), σ1(TV ), and σ2(TV ),
which are incorporated in γ1 and γ2. As with the Levine observed score method,
σ1(X)

≤
ρ1(X, X ≥) can be used for σ1(TX ), and corresponding expressions can be

used for the other true score standard deviations. Then, given estimates of the required
reliabilities, the linear equating relationship lYS (tX ) in Eq. (4.60) can be determined.

One counterintuitive property of the Levine true score method is that the slope
and intercept do not depend on the synthetic population weights w1 and w2. Clearly,
this is true for the slope in Eq. (4.63). From Eqs. (4.60) and (4.63), the intercept is
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μs(Y ) − (γ2/γ1)μs(X),

and, using Eqs. (4.17) and (4.18), it can be expressed as

μ2(Y ) + w1γ2
[
μ1(V ) − μ2(V )

] − (γ2/γ1)
{
μ1(X) − w2γ1

[
μ1(V ) − μ2(V )

]}
= μ2(Y ) − (γ2/γ1)μ1(X) + γ2(w1 + w2)

[
μ1(V ) − μ2(V )

]
= μ2(Y ) − (γ2/γ1)μ1(X) + γ2

[
μ1(V ) − μ2(V )

]
, (4.64)

which does not depend on the weights w1 and w2.
Given the slope and intercept in Eqs. (4.63) and (4.64), respectively, the linear

equating relationship for Levine’s true score method can be expressed as

lY (tX ) = (γ2/γ1)
[
tX − μ1(X)

] + μ2(Y ) + γ2
[
μ1(V ) − μ2(V )

]
, (4.65)

which gives the same Form Y equivalents as Eq. (4.60). Note, however, that s does
not appear as a subscript of l in Eq. (4.65) because this expression for Levine’s true
score method does not involve a synthetic population. In short, Levine’s true score
method does not require the conceptual framework of a synthetic population and is
invariant with respect to the weights w1 and w2.

Classical Congeneric Model

Results for Levine true score equating under the classical congeneric model with an
internal anchor are obtained simply by using Eqs. (4.53) and (4.54) for γ1 and γ2,
respectively. For an external anchor, Eqs. (4.58) and (4.59) are used.

Using Levine’s True Score Method with Observed Scores

Equations (4.60) and (4.65) were derived for true scores, not observed scores. Even
so, in practice, observed scores are used in place of true scores. That is, observed
scores on X are assumed to be related to the scale of observed scores on Y by the
equation

lY (x) = (γ2/γ1)
[
x − μ1(X)

] + μ2(Y ) + γ2
[
μ1(V ) − μ2(V )

]
. (4.66)

Although replacing true scores with observed scores may appear sensible, there
is no seemingly compelling logical basis for doing so. Note, in particular, that the
transformed observed scores on X [i.e., lY (x)] typically do not have the same standard
deviation as either the true scores on Y or the observed scores on Y . However, as
will be discussed next, Levine’s true score method applied to observed scores has an
interesting property.
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4.3.2 First-Order Equity

Although the logic of using observed scores in Levine’s true score equating function
appears somewhat less than compelling, Hanson (1991) has shown that using
observed scores in Levine’s true score equating function for the common-item non-
equivalent groups design results in first-order equity (see Chap. 1) of the equated test
scores under the classical congeneric model. Hanson’s (1991) result gives Levine’s
true score equating method applied to observed scores a well-grounded theoretical
justification. In general, his result means that, for the population of persons with a
particular true score on Y , the expected value of the linearly transformed scores on
X [Eq. (4.66)] equals the expected value of the scores on Y , and this statement holds
for all true scores on Y . In formal terms, first-order equity means that

E
[
lY (X)|ψ(TX ) = τ

] = E
[
Y |TY = τ

]
for all τ , (4.67)

where ψ is a function that relates true scores on X to true scores on Y , and X is
capitalized in lY (X) to emphasize that interest is focused here on the variable X
rather than on a realization x .

Before treating the specific case of the common-item nonequivalent groups design,
it is shown next that first-order equity holds whenever there exists a population such
that Forms X and Y are congeneric and true scores are replaced by observed scores.
As was discussed previously, for the congeneric model,

X = TX + EX = (λX T + δX ) + EX and Y = TY + EY = (λY T + δY ) + EY .

To convert true scores on X to the scale of true scores on Y , it can be shown that

TY = �(TX ) = λY

λX
(TX − δX ) + δY .

Substituting X for TX gives

lY (X) = λY

λX
(X − δX ) + δY . (4.68)

In congeneric theory, the expected value of errors is 0. Thus,

E(X |T = τ ) = E
[
λX T + δX + EX

] = λX T + δX and

E(Y |T = τ ) = E
[
λY T + δY + EY

] = λY T + δY .

First-order equity holds for lY (X) because the expected value of lY (X) given
�(TX ) = τ equals the expected value of Y given TY = τ :

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
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E
[

λY

λX
(X − δX ) + δY |�(TX ) = τ

]

= E
[

λY

λX
(λX T + δX + EX − δX ) + δY |TY = τ

]

= λY T + δY

= E[Y |TY = τ ],

as was previously indicated.
For the common-item nonequivalent groups design, one parameterization of the

classical congeneric model is

X1 = (λX T1 + δX ) + EX1 , σ2
1(EX ) = λXσ2

1(E),

Y2 = (λY T2 + δY ) + EY2 , σ2
2(EY ) = λY σ2

2(E),

V1 = (λV T1 + δV ) + EV1 , σ2
1(EV ) = λV σ2

1(E),

V2 = (λV T2 + δV ) + EV2 , σ2
2(EV ) = λV σ2

2(E),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.69)

where the subscripts 1 and 2 designate the populations. This parameterization is
different from that in Hanson (1991), but it is consistent with the parameterization
introduced previously.

Given the parameterization in equation set (4.69),

μ1(X) = λXμ1(T ) + δX , μ2(Y ) = λY μ2(T ) + δY ,

μ1(V ) = λV μ1(T ) + δV , μ2(V ) = λV μ2(T ) + δV ,

σ2
1(X) = λ2

Xσ2
1(T ) + λXσ2

1(E), σ2
2(Y ) = λ2

Y σ2
2(T ) + λY σ2

2(E),

σ2
1(V ) = λ2

V σ2
1(T ) + λV σ2

1(E), σ2
2(V ) = λ2

V σ2
2(T ) + λV σ2

2(E),

σ1(X, V ) = λXλV σ2
1(T ) σ2(Y, V ) = λY λV σ2

2(T )

+σ1(EX , EV ), +σ2(EY , EV ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.70)

From Eq. (4.50), for the internal case, σ1(EX , EV ) = λV σ2
1(E); similarly,

σ2(EY , EV ) = λV σ2
2(E). From Eq. (4.55), for the external case, σ1(EX , EV ) = 0;

similarly, σ2(EY , EV ) = 0.
To prove that first-order equity holds for Levine’s true score method applied to

observed scores, it is sufficient to show that the slope and intercept in the Levine
equation (4.66) equal the slope and intercept, respectively, in Eq. (4.68).

To prove the equality of slopes, it is necessary to show that

γ2/γ1 = λY /λX .
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For the internal case, from Eq. (4.53),

γ1 = σ2
1(X)/σ1(X, V )

= λ2
Xσ2

1(T ) + λXσ2
1(E)

λXλV σ2
1(T ) + λV σ2

1(E)

= λX/λV .

Similarly,
γ2 = λY /λV (4.71)

and, consequently,
γ2/γ1 = λY /λX . (4.72)

The external case is left as an exercise for the reader.
To prove the equality of intercepts, it is necessary to show that

μ2(Y ) − (γ2/γ1)μ1(X) + γ2
[
μ1(V ) − μ2(V )

] = δY − (λY /λX )δX .

For the internal case, from Eqs. (4.71) and (4.72), the intercept is

μ2(Y ) − (λY /λX )μ1(X) + (λY /λV )
[
μ1(V ) − μ2(V )

]
= [

λY μ2(T ) + δY
] − (λY /λX )

[
λXμ1(T ) + δX

]
+ (λY /λV )

[
λV μ1(T ) + δV − λV μ2(T ) − δV

]
= λY

[
μ2(T ) − μ1(T )

] + [
δY − (λY /λX )δX

] + λY
[
μ1(T ) − μ2(T )

]
= δY − (λY /λX )δX .

The external case is left as an exercise for the reader.

4.4 Chained Linear Equating

A seemingly obvious way to conduct linear equating is to

1. put X on the scale of V —call this lV (x);
2. put V on the scale of Y —call this lY (v); and
3. obtain Y -equivalents as lY (x) = lY [lV (x)].
The logic behind Step 3 is based on the transitive notion that if X is related to V , and
V is related to Y , then X is related to Y . More formally, Step 3 is called a composed
function. Chained linear equating was initially discussed by Angoff (1971, p. 583)
and subsequently by Holland and Dorans (2006, p. 208). The method is quite simple,
although not as widely used as the Tucker and Levine methods.
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In an equating context, chaining in this manner may seem problematic since step
1 involves relating scores of a longer form to scores of a shorter form, and Step 2
involves relating scores on a shorter form to scores on a longer form. Indeed, the very
use of the word “form” is dubious here since we have elsewhere reserved that word
for “versions” of a test that are equally long or at least quite similar in reliability.

For the common-item nonequivalent groups design, another problem would seem
to be that Step 1 can be performed using Population 1, only, whereas Step 2 can be
performed using Population 2, only. To what population, then, does the result in Step
3 apply? The Holland and Dorans (2006, p. 208) framework avoids this problem by
simply assuming “up front” that the equating is invariant for all weightings of the
two populations.

4.4.1 Chained Linear Observed Score Equating

The linear observed score equation for equating X to the scale of V in Population 1
(the population that took Form X) is

lV 1(x) =
[
μ1(V ) − σ1(V )

σ1(X)
μ1(X)

]
+ σ1(V )

σ1(X)
(x) (4.73)

= BV |x + AV |x (x), (4.74)

where B is the intercept and A is the slope. The linear observed score equation for
equating V to the scale of Y in Population 2 (the population that took Form Y) is

lY 2(v) =
[
μ2(Y ) − σ2(Y )

σ2(V )
μ2(V )

]
+ σ2(Y )

σ2(V )
(v) (4.75)

= BY |v + AY |v(v). (4.76)

The essence of the word “chained” in chained linear equating is the replacement of
v in Eq. 4.75 (or 4.76) with lV 1(x) given by Eq. 4.73 (or 4.74), neglecting the fact
that the two equations are for different populations. That is,

lY (x) = BY |v + AY |v[BV |x + AV |x (x)]
= [BY |v + AY |v BV |x ] + AY |v AV |x (x)]
=

{
μ2(Y ) + σ2(Y )

σ2(V )
[μ1(V ) − μ2(V )] − σ2(Y )/σ2(V )

σ1(X)/σ1(V )
[μ1(X)]

⎡

+ σ2(Y )/σ2(V )

σ1(X)/σ1(V )
(x). (4.77)

It has been shown previously that the Tucker and Levine observed score procedures
differ only with respect to the γ terms in Eqs. (4.17)–(4.20), which are the parame-
ters for the basic linear observed score equating Eq. (4.1). Brennan (2006) shows
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that the same statement holds for chained linear observed score equating. Specifi-
cally, Eq. (4.77) is identical to Eq. (4.1), based on using the following γ terms in
Eqs. (4.17)–(4.20):

γ1 = σ1(X)

σ1(V )
, (4.78)

and

γ2 = σ2(Y )

σ2(V )
. (4.79)

These results hold for both an internal and an external anchor, and they do not depend
on the population weights, w1 and w2, whereas the Tucker and Levine observed score
methods do depend on these weights.

Replacing Eqs. (4.78) and (4.79) in Eq. (4.77) gives

lY (x) = {μ2(Y ) + γ2[μ1(V ) − μ2(V )] − (γ2/γ1)[μ1(X)]}
+ (γ2/γ1)(x). (4.80)

4.4.2 Chained Linear True Score Equating

Recall that when observed scores are used in place of true scores in the Levine true
score method, the linear equating Eq. (4.66) is

lY (x) = (γ2/γ1)[x − μ1(X)] + μ2(Y ) + γ2[μ1(V ) − μ2(V )]
= {μ2(Y ) + γ2[μ1(V ) − μ2(V )] − (γ2/γ1)[μ1(X)]}

+ (γ2/γ1)(x), (4.81)

where the two γ terms are ratios of true score standard deviations—namely, γ1 =
σ1(TX )/σ1(TV ) and γ2 = σ2(TY )/σ2(TV ). It is evident from Eq. (4.80) that chained
linear observed score equating has the same form as Eq. (4.81). For chained linear
observed score equating, however, the γ terms are ratios of observed score standard
deviations—namely, γ1 = σ1(X)/σ1(V ) and γ2 = σ2(Y )/σ2(V ).

It follows that chained linear true score equating is mathematically identical to
Levine true score equating. This equivalence necessarily applies, as well, when the
classical congeneric model is used with both the Levine true score method and the
chained linear true score method. Under these circumstances, from Hanson’s (1991)
proof, when chained linear true score equating is used with observed scores replacing
true scores, the resulting equivalents possess the property of first-order equity.
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Table 4.2 Computational formulas and equations for linear equating methods
with the common-item nonequivalent groups design

Tucker and Levine Observed Score Methods
lYS (x) = [σs(Y )/σs(X)][x − μs(X)] + μs(Y ) (4.1)
Levine True Score Method Applied to Observed Scores
lY (x) = (γ2/γ1)[x − μ1(X)] + μ2(Y ) + γ2[μ1(V ) − μ2(V )] (4.66)

μs(X) = μ1(X) − w2γ1[μ1(V ) − μ2(V )] (4.17)
μs(Y ) = μ2(Y ) + w1γ2[μ1(V ) − μ2(V )] (4.18)
σ2

s (X) = σ2
1(X) − w2γ

2
1 [σ2

1(V ) − σ2
2(V )] + w1w2γ

2
1 [μ1(V ) − μ2(V )]2 (4.19)

σ2
s (Y ) = σ2

2(Y ) + w1γ
2
2 [σ2

1(V ) − σ2
2(V )] + w1w2γ

2
2 [μ1(V ) − μ2(V )]2 (4.20)

Tucker Observed Score Method

γ1 = α1(X |V ) = σ1(X, V )/σ2
1(V )

γ2 = α2(Y |V ) = σ2(Y, V )/σ2
2(V )

⎡ internal anchor
and

external anchor
(4.21)

(4.22)

Levine Methods Under a Classical Congeneric Model
γ1 = 1/α1(V |X) = σ2

1(X)/σ1(X, V )

γ2 = 1/α2(V |Y ) = σ2
2(Y )/σ2(Y, V )

⎡
internal anchor (4.53)

(4.54)

γ1 = σ2
1(X) + σ1(X, V )

σ2
1(V ) + σ1(X, V )

γ2 = σ2
2(Y ) + σ2(Y, V )

σ2
2(V ) + σ2(Y, V )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

external anchor (4.58)

(4.59)

Levine Methods Without Assuming a Classical Congeneric Model
For both internal and external anchors (see Eqs. (4.40) and (4.41)),

γ1 = σ1(X)
≤

ρ1(X, X ≥)
σ1(V )

≤
ρ1(V, V ≥)

and γ2 = σ2(Y )
≤

ρ2(Y, Y ≥)
σ2(V )

≤
ρ2(V, V ≥)

.

Chained Method
For both internal and external anchors (see Eqs. (4.78) and (4.79)),

γ1 = σ1(X)

σ1(V )
and γ2 = σ2(Y )

σ2(V )
.

4.5 Illustrative Example and Other Topics

Table 4.2 provides the principal computational equations for the three linear equating
methods that have been developed in this chapter. In this section, all references to
Levine methods (except for parts of Table 4.2) assume the classical congeneric model.
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Table 4.3 Directly observable statistics for an illustrative example of equat-
ing forms X and Y using the common-item nonequivalent groups design

Group Score μ̂ σ̂ Covariance Correlation

1 X 15.8205 6.5278
1 V 5.1063 2.3760 13.4088 .8645
2 Y 18.6728 6.8784
2 V 5.8626 2.4515 14.7603 .8753

Note N1 = 1, 655 and N2 = 1, 638

4.5.1 Illustrative Example

Table 4.3 provides statistics for a real data example that employs two 36-item forms,
Form X and Form Y, in which every third item in both forms is a common item.
Therefore, items 3, 6, 9, . . . , 36 constitute the 12-item common set V . Scores on V
are contained in X , so V is an internal set of items. Form X was administered to 1,655
examinees, and Form Y was administered to 1,638 examinees. Method of moments
estimates of directly observable parameters are presented in Table 4.3. Results were
obtained using EQUATING RECIPES, which is described in Appendix B.

To simplify computations, let w1 = 1 and w2 = 1 − w1 = 0 for the Tucker and
Levine observed score methods. For this synthetic population, using Eqs. (4.17) and
(4.19),

μ̂s(X) = μ̂1(X) = 15.8205

and
σ̂s(X) = σ̂1(X) = 6.5278.

For the Tucker method, using Eq. (4.22),

γ̂2 = σ̂2(Y, V )/σ̂2
2(V ) = 14.7603/2.45152 = 2.4560.

Using this value in Eqs. (4.18) and (4.20) gives

μ̂s(Y ) = 18.6728 + 2.4560(5.1063 − 5.8626) = 16.8153

and
σ̂s(Y ) =

⎣
6.87842 + 2.45602(2.37602 − 2.45152) = 6.7167.

Applying these results in Eq. (4.1) gives

l̂Ys (x) = (6.7167/6.5278)(x − 15.8205) + 16.8153

= .5370 + 1.0289x . (4.82)
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For the Levine observed score method under the classical congeneric model, with
w1 = 1, μ̂s(X) = 15.8205, σ̂s(X) = 6.5278, and using Eq. (4.54),

γ̂2 = σ̂2
2(Y )/σ̂2(Y, V ) = 6.87842/14.7603 = 3.2054. (4.83)

Then, using Eqs. (4.18) and (4.20),

μ̂s(Y ) = 18.6728 + 3.2054(5.1063 − 5.8626) = 16.2486,

and
σ̂s(Y ) =

⎣
6.87842 + 3.20542(2.37602 − 2.45152) = 6.6006.

Applying these results in Eq. (4.1) gives

l̂Ys (x) = (6.6006/6.5278)(x − 15.8205) + 16.2486

= .2517 + 1.0112x . (4.84)

For the Levine true score method applied to observed scores, γ̂2 = 3.2054 in
Eq. (4.83) still applies and, using Eq. (4.53),

γ̂1 = σ̂2
1(X)/σ̂1(X, V ) = 6.52782/13.4088 = 3.1779.

Therefore, Eq. (4.66) gives

l̂Y (x) = (3.2054/3.1779)(x − 15.8205) + 18.6728

+ 3.2054(5.1063 − 5.8626)

= .2912 + 1.0087x . (4.85)

For the chained linear method, using Eqs. (4.78) and (4.79),

γ̂1 = σ̂1(X)/σ̂1(V ) = 6.5278/2.3760 = 2.7474,

and
γ̂2 = σ̂2(Y )/σ̂2(V ) = 6.8784/2.4515 = 2.8058.

Therefore, Eq. (4.80) gives

l̂Y (x) = {18.6728 + 2.8058(5.1063 − 5.8626) − (2.8058/2.7474)15.8205}
+ (2.8058/2.7474)(x)

= .3940 + 1.0213. (4.86)

These results are summarized in Table 4.4. The slight discrepancies in slopes and
intercepts in Eqs. (4.82), (4.84), (4.85) and (4.86) compared to those in Table 4.4
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Table 4.4 Linear equating results for the illustrative example in Table 4.3 using the classical
congeneric model with Levine’s methods

w1 Method γ̂1 γ̂2 μ̂s(X) μ̂s(Y ) σ̂s(X) σ̂s(Y ) ⎤int ̂slope

1 Tucker a 2.4560 15.8205 16.8153 6.5278 6.7168 .5368 1.0289
Lev Obs. Sc. a 3.2054 15.8205 16.2485 6.5278 6.6007 .2513 1.0112

.5 Tucker 2.3751 2.4560 16.7187 17.7440 6.6668 6.8612 .5378 1.0292
Lev Obs. Sc. 3.1779 3.2054 17.0223 17.4607 6.7747 6.8491 .2514 1.0110

.5026c Tucker 2.3751 2.4560 16.7141 17.7392 6.6664 6.8608 .5378 1.0292
Lev Obs. Sc. 3.1779 3.2054 17.0161 17.4544 6.7740 6.8484 .2514 1.0110

— Lev True Sc. 3.1779 3.2054 b b b b .2912 1.0086
— Chained Lin. 2.7474 2.8058 b b b b .3937 1.0213
a Not required when w1 = 1
b Proportional to sample size [i.e., w1 = N1/(N1 + N2) = .5026]
c Not required

Table 4.5 Selected form Y equivalents for illustrative example using w1 = 1
for Tucker and Levine observed score methods

Chained Levine Levine
x Tucker Linear Observed score True score

0 .5368 .3937 .2513 .2912
10 10.8263 10.6064 10.3630 10.3777
20 21.1157 20.8191 20.4747 20.4641
30 31.4052 31.0318 30.5863 30.5506
36 37.5789 37.1595 36.6533 36.6024

⎦μ 16.8153 16.5508 16.2485 16.2485
⎦σ 6.7168 6.6667 6.6007 6.5843

Note ⎦μ and ⎦σ are based on using frequencies for X in Population 1

are due to rounding error; the results in Table 4.4 are more accurate. In practice, it is
generally advisable to perform computations with more decimal digits than presented
here for illustrative purposes, especially for accurate estimates of intercepts.

The similarity of slopes and intercepts for the methods suggests that the Form
Y equivalents will be about the same for all methods. This finding is illustrated in
Table 4.5. The Form Y equivalents for the methods are very similar, although there is
a greater difference between the equivalents for the Tucker method and either Levine
method than between the equivalents for the two Levine methods. The new Form X
is more difficult than the old Form Y for very high achieving examinees, as suggested
in Table 4.5, where, for all methods, the Form Y equivalent of x = 36 is a score
greater than the maximum possible score of 36. Of course, the similarities among
results for the methods does not necessarily extend to other data sets.

As was discussed in Chap. 2, raw score equivalents that are out of the range of pos-
sible scores can be problematic. Sometimes, equivalents greater than the maximum
observable raw score are set to this maximum score. In other cases, this problem
is handled through the transformation to scale scores. In most cases, doing so has

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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little practical importance, but this issue could be consequential when various test
forms are used for scholarship decisions. The occasional need to truncate Form Y
equivalents is a limitation of linear equating procedures. This issue will be discussed
further in Chap. 8.

4.5.2 Synthetic Population Weights

As noted previously, the synthetic population weights (w1 and w2 = 1 − w1) have
no bearing on Levine’s true score method or the chained method. That is why the
results for these two methods appear on separate lines in Table 4.4. For the Tucker
and Levine observed score methods, however, the weights do matter, in the sense
that they are required to derive the results. From a practical perspective, however, the
weights seldom make much difference in the Form Y equivalents. This observation is
illustrated in Table 4.4 by the fact that the intercepts and slopes for Tucker equating are
almost identical under very different weighting schemes (e.g., w1 = 1 and w1 = .5),
and the same is true for Levine observed score equating.

Although the choice of weights makes little practical difference in the vast majority
of real equating contexts, many equations are simplified considerably by choosing
w1 = 1 and w2 = 0. This observation is evident from examining Eqs. (4.17)–(4.20)
in Table 4.2. Furthermore, setting w1 = 1 means that the synthetic group is simply the
new population, which is often the only population that will take the new form under
the nonequivalent groups design. Therefore, using w1 = 1 often results in some
conceptual simplifications. For these reasons, setting w1 = 1 appears to have merit.
However, the choice of synthetic population weights ultimately is a judgment that
should be based on an investigator’s conceptualization of the synthetic population.
It is not the authors’ intent to suggest that w1 = 1 be used routinely or thoughtlessly.
(See Angoff 1987; Kolen and Brennan 1987; Brennan and Kolen 1987, for further
discussion and debate about choosing w1 and w2.)

4.5.3 Mean Equating

If sample sizes are quite small (say, less than 100), the standard errors of linear
equating (as will be discussed in Chap. 7) may be unacceptably large. In such cases,
mean equating might be considered. Form Y equivalents for mean equating under the
Tucker and Levine observed score methods are obtained by setting σs(Y )/σs(X) = 1
in Eq. (4.1), which gives

mYs (x) = [x − μs(X)] + μs(Y ), (4.87)

http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_7
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where μs(X) and μs(Y ) are given by Eqs. (4.17) and (4.18). Effectively, the Form Y
equivalent of a Form X score is obtained by adding the same constant, μs(Y )−μs(X),
to all scores on Form X.

Form Y equivalents under Levine’s true score method and the chained method
are obtained by setting γ2/γ1 = 1 in either Eq. (4.66) or (4.80), which gives

mY (x) = [x − μ1(X)] + {μ2(Y ) + γ2[μ1(V ) − μ2(V )]}. (4.88)

If w1 = 1, Eqs. (4.87) and (4.88) are identical because μs(X) = μ1(X) and μs(Y )

is given by the term in braces in Eq. (4.88). Since γ2 is the same for both of Levine’s
methods, this implies that, when w1 = 1, mean equating results are identical for
Levine’s observed score and true score methods.

4.5.4 Decomposing Observed Differences in Means and Variances

In the common-item nonequivalent groups design, differences in the observable
means μ1(X) − μ2(Y ) and observable variances σ2

1(X) − σ2
2(Y ) are due to the con-

founded effects of group and form differences. Since estimates of these parameters
are directly observed, a natural question is, “How much of the observed difference in
means (or variances) is attributable to group differences, and how much is attribut-
able to form differences?” An answer to this question is of some consequence to both
test developers and psychometricians responsible for equating. There is nothing a
test developer can do about group differences; but in principle, if form differences
are known to be relatively large, test developers can take steps to create more similar
forms in the future. Furthermore, if a psychometrician notices that group differences
or form differences are very large, this should alert him or her to the possibility that
equating results may be suspect.

One way to answer the question posed in the previous paragraph is discussed by
Kolen and Brennan (1987). Their treatment is briefly summarized here.

Decomposing Differences in Means

Begin with the tautology

μ1(X)−μ2(Y ) = μs(X)−μs(Y )+{[μ1(X)−μs(X)]−[μ2(Y )−μs(Y )]}. (4.89)

Note thatμs(X)−μs(Y ) is the mean difference for the two forms for the synthetic pop-
ulation. Since the synthetic population is constant, the difference is entirely attribut-
able to forms and will be called the form difference factor. The remaining terms in
braces will be called the population difference factor. [Since Eq. (4.89) involves a
synthetic population, it applies to the chained method and Levine’s true score method
only if w1 is set to 1, somewhat arbitrarily.]



130 4 Nonequivalent Groups: Linear Methods

After replacing Eqs. (4.2) and (4.3) in Eq. (4.89), it can be shown that

μ1(X) − μ2(Y ) = w1{μ1(X) − μ1(Y )} Form difference for Population 1
+w2{μ2(X) − μ2(Y )} Form difference for Population 2
+w2{μ1(X) − μ2(X)} Population difference on X scale
+w1{μ1(Y ) − μ2(Y )} Population difference on Y scale,

(4.90)

where the descriptions on the right describe the mathematical terms in braces (i.e.,
excluding the w1 and w2 weights). This expression states that μ1(X) − μ2(Y ) is a
function of two weighted form difference factors (one for each population) and two
weighted population difference factors (one for each scale). Since this result is rather
complicated, it is probably of little practical value in most circumstances.

Equation (4.90) simplifies considerably, however, if w1 = 1. Then

μ1(X) − μ2(Y ) = {μ1(X) − μ1(Y )} Form difference for Population 1
+{μ1(Y ) − μ2(Y )} Population difference on Y scale.

(4.91)
When w1 = 1 in Eq. (4.18),

μs(Y ) = μ1(Y ) = μ2(Y ) + γ2[μ1(V ) − μ2(V )].

Therefore, Eq. (4.91) results in

μ1(X) − μ2(Y )= {μ1(X) − μ2(Y )

−γ2[μ1(V ) − μ2(V )]} Form difference for Population 1
+{γ2[μ1(V ) − μ2(V )]} Population difference on Y scale.

(4.92)

Equation (4.92) applies to all methods in this chapter provided w1 = 1. As discussed
previously, the choice of synthetic population weights generally has little effect on
Form Y equivalents. Consequently, Eq. (4.92) should be adequate for practical use
in partitioning μ1(X) − μ2(Y ) into parts attributable to group and form differences.

Refer again to the example in Table 4.3 and the associated results in Table 4.4.
For the Tucker method, Eq. (4.92) gives

15.8205 − 18.6728 = {15.8205 − 18.6728 − 2.4560(5.1063 − 5.8626)}
+ {2.4560(5.1063 − 5.8626)},

which simplifies to
−2.85 = −.99 − 1.86.

This result means that, on average: (a) for the new group, the new Form X is more
difficult than the old Form Y by .99 unit; and (b) Population 1 is lower achieving
than Population 2 by 1.86 units on the Form Y scale.
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The corresponding result for both of the Levine methods under the classical
congeneric model is obtained by using γ2 = 3.2054 in Eq. (4.92), which gives

−2.85 = −.43 − 2.42.

Under the Levine assumptions, population mean differences on the Form Y scale
are greater than under the Tucker assumptions by 2.42 − 1.86 = .56 unit. For the
chained linear observed score method γ2 = 2.8058, and the decomposition is

−2.85 = −.73 − 2.12.

Decomposing Differences in Variances

As has been shown by Kolen and Brennan (1987), decomposing σ2
1(X) − σ2

2(Y ) is
considerably more complicated, in general. However, for all three equating methods
discussed in this chapter, when w1 = 1 the result is quite simple:

σ2
1(X) − σ2

2(Y ) = {σ2
1(X) − σ2

2(Y )

−γ2
2 [σ2

1(V ) − σ2
2(V )]} Form difference for Population 1

+{γ2
2 [σ2

1(V ) − σ2
2(V )]}. Population difference on Y scale.

(4.93)

The form of Eq. (4.93) parallels that of Eq. (4.92) for decomposing the difference in
means.

For the example in Tables 4.3 and 4.4, under Tucker assumptions, using Eq. (4.93),

6.52782 − 6.87842 = {6.52782 − 6.87842 − [2.45602(2.37602 − 2.45152)]}
+ {2.45602(2.37602 − 2.45152)},

which gives approximately

−4.70 = −2.50 − 2.20,

where −2.50 is the form difference factor, and −2.20 is the population difference
factor. This result means that, on average: (a) for the new group, the new Form X
has smaller variance than the old Form Y by 2.50 units; and (b) on the old Form Y
scale, Population 1 has smaller variance than Population 2 by 2.20 units.

For both Levine methods under the classical congeneric model, γ2 = 3.2054, and
the decomposition is

−4.70 = −.96 − 3.74.

Under the Levine assumptions, population differences in variances on the Form Y
scale are greater than under the Tucker assumptions by 3.74 − 2.20 = 1.54 units.
For the chained linear observed score method γ2 = 2.8058, and the decomposition
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is
−4.70 = −1.83 − 2.87.

4.5.5 Relationships Among Linear Observed Score Methods

This section begins by discussing relationships among the γ terms for linear observed
score equating procedures. Then, relationships are derived for quantities such as
means, slopes, and variances for the methods. The net effect is that once the γ terms
are known for the methods, a number of relationships among results for the methods
can be ascertained.

Internal Anchor

For an internal anchor, Brennan (2006) shows that there is a relatively simple rela-
tionship among the γ terms for the Tucker method (γ1T ), the Levine observed score
method under the classical congeneric model (γ1L ), and the chained linear observed
score equating method (γ1C ).2 Specifically,

γ1C = σ1(X)

σ1(V )
= ≤

γ1T γ1L . (4.94)

Similarly, for Y , V , and Population 2,

γ2C = σ2(Y )

σ2(V )
= ≤

γ2T γ2L . (4.95)

As shown by Kolen and Brennan (1987), when σ1(X, V ) > 0 (as must be the
case for equating to be reasonable), γ1T < γ1L . Since the γ terms for chained linear
observed score equating are the geometric means of the γ terms for Tucker and
Levine observed score equating as demonstrated in Eqs. (4.94) and (4.95), it follows
that3

γ1T < γ1C < γ1L , (4.96)

Similarly, when σ1(Y, V ) > 0,

γ2T < γ2C < γ2L . (4.97)

2 Note that, in this section, the subscript T stands for Tucker, not true score.
3 Strictly speaking, if ρ1(X, V ) = 1, then all three γ terms are equal, but ρ1(X, V ) = 1 is unattain-
able in practice.
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As indicated by Eqs. (4.17)–(4.20), the γ terms multiply the differences in the
first two population moments for scores on the common items. Therefore, larger
values for the γ terms cause the associated method to attribute more of the observed
raw score differences in X and Y to population differences and correspondingly less
of the observed raw score differences to form differences. Given the inequalities in
Eqs. (4.96) and (4.97), the equivalents for chained linear observed score equating
are expected on average to be “between” those for the Tucker and Levine observed
score methods, with the Tucker method attributing more of the observed raw score
differences in X and Y to forms than either of the other two methods. That is,
Tucker equivalents are expected on average to be further from their corresponding X
scores than equivalents for chained linear observed score equating, which in turn are
expected on average to be further from their corresponding X scores than equivalents
for Levine observed score equating. Stated more mathematically, |x − lY (x)| for
Tucker equating is expected on average to be greater than |x − lY (x)| for chained
linear observed score equating, which is expected on average to be greater than
|x − lY (x)| for Levine observed score equating. This relationship is illustrated by
results for the example in Table 4.5.

The relationships among γ terms also allow us to predict other relationships among
equivalents. For example, if w1 = 1, from Eqs. (4.1) and (4.18) it is clear that4

lY [μ1(X)] = μ1(Y ) = μ2(Y ) + γ2[μ1(V ) − μ2(V )].

Given the relationship between the γ2 terms in Eq. (4.97), it follows that

lY T [μ1(X)] < lY C [μ1(X)] < lY L [μ1(X)] when μ1(V ) > μ2(V ), (4.98)

and

lY T [μ1(X)] > lY C [μ1(X)] > lY L [μ1(X)] when μ1(V ) < μ2(V ). (4.99)

Also, when w1 = 1, from Eqs. (4.1), (4.19), and (4.20), the slope is

A = σs(Y )

σs(X)
=

√
σ2

2(Y ) + γ2
2 [σ2

1(V ) − σ2
2(V )]

σ2
1(X)

.

Clearly, when σ2
1(V ) > σ2

2(V ), as γ2 gets larger, the slope gets larger; and, when
σ2

1(V ) < σ2
2(V ), as γ2 gets larger, the slope gets smaller. Therefore, given the

inequality in Eq. (4.97),

AY T < AY C < AY L when σ2
1(V ) > σ2

2(V ), (4.100)

4 The inequalities in Eqs. (4.98) and (4.99) also apply when lY L [μ1(X)] is based on Levine true
score equating in Eq. (4.66).
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and
AY T > AY C > AY Lwhen σ2

1(V ) < σ2
2(V ). (4.101)

Since the methods considered here are linear, inequalities analogous to the last two
apply, as well, to the variances and ranges of the equivalents. These results for slopes
imply that the linear equating observed score conversion lines intersect somewhere.
Experience suggests, however, that with real data and well-constructed forms, inter-
sections tend to occur outside the range of observed scores on X , or at relatively
extreme X scores.

For the example in Tables (4.3), (4.4), and (4.5) with w1 = 1, the inequality in
Eq. (4.97) applies; i.e.,

(γ2T = 2.4560) < (γ2C = 2.8058) < (γ2L = 3.2054).

Also, since [μ1(V ) = 5.1063] < [μ2(V ) = 5.8626], the inequality in Eq. (4.99)
applies to the mean of the equivalents; i.e.,

{lY T [μ1(X)] = 16.8153} > {lY C [μ1(X)] = 16.5508} > {lY L [μ1(X)] = 16.2485}.
Finally, since [σ2

1(V ) = 2.37602] < [σ2
2(V ) = 2.45152], the inequality in

Eq. (4.101) applies to the slopes; i.e.,

(AY T = 1.0289) > (AY C = 1.0213) > (AY L = 1.0112).

For this particular example, Table (4.5) clearly indicates that the conversion lines do
not intersect within the 0-36 range of possible scores for X , which means that, within
this range, lY T (x) > lY C (x) > lY L(x).

Most of the above results have been proven for the case of w1 = 1, only. Expe-
rience and simulations suggest, however, that the weights make relatively little dif-
ference in linear equating results (see, for example, Suh et al. 2009; and von Davier
et al. 2004).

External Anchor

For an external anchor, Brennan (2006) shows that

γ1C = ⎣
(γ1L − γ1T ) + γ1Lγ1T , (4.102)

and
γ2C = ⎣

(γ2L − γ2T ) + γ2Lγ2T . (4.103)

Although the relationships among the γ terms for the linear observed score methods
are different for the internal and external cases, the inequalities in Eqs. (4.96) and
(4.97) still apply provided σ1(X, V ) > 0 and σ2(Y, V ) > 0, respectively. Also,
when w1 = 1, the other inequalities in Eqs. (4.98)–(4.101) apply.
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4.5.6 Relationships Involving Levine Methods

The γ terms for the Levine observed score method and true score method are the
same. Otherwise, however, comparing the Levine true score method (LT) with any
of the observed score methods is more challenging than simply comparing observed
score methods. We offer only a few comments, here. Using w1 = 1 for the Levine
observed score method (LO), the two Levine methods intersect when x = μ1(X),
which has an equivalent of μ2(Y )+γ2[μ1(V )−μ2(V )]. For the example in Table 4.5,
the point of intersection occurs at x = 15.8205 with an equivalent of 16.2485.

Also, when w1 = 1 for LO, it can be shown that

slope(LO) < slope(LT) when σ1(V )

√
1 − ρ2

1(V, X) < σ2(V )

√
1 − ρ2

2(V, Y )

and

slope(LO) > slope(LT) when σ1(V )

√
1 − ρ2

1(V, X) > σ2(V )

√
1 − ρ2

2(V, Y ),

where σ1(V )

√
1 − ρ2

1(V, X) and σ2(V )

√
1 − ρ2

2(V, Y ) are the standard errors of

estimate for the regressions of V on X and V on Y , respectively.5 It follows that
the equivalents for LO are sometimes less variable than those for LT, and sometimes
more variable. For the example, it is evident from Table 4.5 that the equivalents for
LO are more variable than those for LT, which is consistent with the fact that

σ1(V )

√
1 − ρ2

1(V, X) = 2.3760
⎣

1 − .86452 = 1.1943

is greater than

σ2(V )

√
1 − ρ2

2(V, Y ) = 2.4515
⎣

1 − .87532 = 1.1855.

As noted previously, the fact that γT < γL implies that population differences
under the Levine assumptions are greater than under the Tucker assumptions. This
observation suggests that an investigator might choose one of the Levine methods
when it is known, or strongly suspected, that populations differ substantially. This
logic is especially compelling if there is also reason to believe that the true score
assumptions of the Levine methods are plausible. Since the magnitude of γC is
between that of γT and γL , the chained linear method might be appropriate when
groups are known to be “somewhat” dissimilar. Note that if the populations are too
dissimilar, any equating is suspect.

5 The squares of these terms are the conditional variances of V given X , and V given Y , in
Populations 1 and 2, respectively.
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If the forms are known or suspected to be dissimilar, the Levine true score assump-
tions are likely violated, which may lead an investigator to choose the Tucker method
or chained linear method. Of course, if forms are too dissimilar, any equating is sus-
pect. It is virtually impossible to provide strict and all-inclusive guidelines about
what characterizes forms that are “too” dissimilar. However, forms that do not share
common content and statistical specifications certainly are “too” dissimilar to justify
a claim that their scores can be equated, as the term is used in this book, no matter
what method is chosen.

When Levine (1955) developed his methods, he referred to the observed score
method as a method for use with “equally reliable” tests, and he referred to the
true score method as a method for “unequally reliable” tests. This terminology,
which is also found in Angoff (1971) and other publications, is not used here for
two reasons. First, as is shown in this chapter, the derivations of Levine’s meth-
ods do not require any assumptions about the equality or inequality of reliabilities.
(It is possible to derive Levine’s methods using such assumptions, but it is not nec-
essary to do so.) Second, this terminology suggests that the two methods should
give the same results if Forms X and Y are equally reliable. This conclusion does
not necessarily follow, however, because it fails to explicitly take into account the
facts that reliabilities are population dependent, Levine’s observed score method
involves a synthetic population, and Levine’s true score method does not. For exam-
ple, suppose that ρ1(X, X ≥) = ρ2(Y, Y ≥), which means that Forms X and Y are
equally reliable for Populations 1 and 2, respectively. It does not necessarily follow
that ρs(X, X ≥) = ρs(Y, Y ≥) for the particular synthetic population used in Levine’s
observed score method.

Kane et al. (2009) discuss alternative derivations for the Levine methods, and
subsequent papers by them provide explanations and empirical evaluations of not
only the Levine methods but also the other linear methods discussed in this chapter
(see Mroch et al. 2009 and Suh et al. 2009). Rather than using assumptions about
true scores, their derivations of the Levine methods employ assumptions about the
invariance of the regression of V on X and V on Y in the two populations. These
derivations are somewhat restrictive in that they apply to the internal anchor case,
only, and, in addition, the authors assume w1 = 1 for LO. A surprising consequence
of the Kane et al. (2009) approach is that it recasts LT as an observed score method,
rather than a true score method.6 Brennan (2010) discusses these papers from the
perspectives of population invariance assumptions and true-score assumptions.7

von Davier’s (2008) shows that the Tucker, Levine observed score, and chained
linear methods produce the same linear equating function when observed scores on
the total test and the anchor are perfectly correlated. Note that due to measurement
error, it seems unlikely that these scores would ever be perfectly correlated. Still,

6 In the Kane et al. (2009) approach, LT is obtained using a chaining procedure, whereas LO is
obtained by estimating the means and variances for X and Y in Population 1, as described in this
chapter (using w1 = 1).
7 Commentaries by others are provided in the same issue of Measurement in which Brennan (2010)
appears.
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von Davier’s (2008) demonstration suggests that the three methods will produce
more similar results as the correlation between the total score and anchor score
increases. Davier (2008) also shows that the three linear methods produce the same
results when the mean and standard deviation of the anchor scores are the same in
the two populations. This condition would occur when the two populations are the
same, and it suggests that as the two populations become more similar, the linear
functions for the three methods will become more similar.

4.5.7 Other Issues Involving Methods

The methods discussed in this chapter make linearity assumptions that are, in some
cases, amenable to direct examination. For example, the regression of X on V in
Population 1 can be examined directly. If it is not linear, then at least one of the
assumptions of the Tucker method and the chained linear method is false, and an
alternative procedure (the Braun-Holland method) discussed in Chap. 5 might be
considered.

Even though the derivations of the methods described in this chapter do not directly
require assumptions about reliability, if Forms X and Y are not approximately equal
in reliability then the equating will be suspect, at best. For example, suppose that
Form X is very short relative to Form Y. Under these circumstances, even after
“equating”, it will not be a matter of indifference to examinees which form they take.
Because Form X has more measurement error than Form Y, well prepared examinees
are likely to be more advantaged by taking Form Y, and poorly prepared examinees
are likely to be more advantaged by taking Form X.

4.5.8 Scale Scores

In most testing programs, equated raw scores (e.g., Form Y equivalents) are not
reported to examinees and users of scores. Rather, scale scores are reported, where
the scale is defined as a transformation of the raw scores for the initial form of the
test, as was discussed in Chap. 1. In principle, the scale scores could be either a linear
or nonlinear transformation of the raw scores. This section extends the discussion of
linear conversions in Chap. 2.

Let sc represent scale scores. If Form Y is the initial test form and the raw-to-scale
score transformation is linear, then

sc(y) = BY |sc + AY |sc(y). (4.104)

The linear equation for equating raw scores on Form X to the raw score scale of
Form Y can be represented as

http://dx.doi.org/10.1007/978-1-4939-0317-7_5
http://dx.doi.org/10.1007/978-1-4939-0317-7_1
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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lY (x) = y = BX |Y + AX |Y (x). (4.105)

Therefore, to obtain scale scores associated with the Form X raw scores, y in
Eq. (4.105) is replaced in Eq. (4.104), giving

sc(x) = BY |sc + AY |sc[BX |Y + AX |Y (x)]
= (BY |sc + AY |sc BX |Y ) + AY |sc AX |Y (x) (4.106)

= BX |sc + AX |sc(x), (4.107)

where the intercept and slope are, respectively,

BX |sc = BY |sc + AY |sc BX |Y and AX |sc = AY |sc AX |Y .

Suppose that AY |sc = 2 and BY |sc = 100. Then, for the illustrative example, assum-
ing Tucker equating with w1 = .5 (see Table 4.4), Eq. (4.106) gives

sc(x) = [100 + 2(.5378)] + 2(1.0291)(x)

= 101.08 + 2.06(x).

For example, if x = 25,

sc(x = 25) = 101.08 + 2.06(25) = 152.58.

Alternatively, the Form Y equivalent of x = 25 could be obtained first and then used
as y in Eq. (4.104).

The same process can be used for obtaining scale scores for scores on a subsequent
form, say Z , that is equated to Form X. The transformation has the same form as
Eqs. (4.106) and (4.107):

sc(z) = (BX |sc + AX |sc BZ |X ) + AX |sc AZ |X (z)

= BZ |sc + AZ |sc(z).

If the transformation of raw scores on the initial form to scale scores is nonlinear,
then Eq. (4.104) is not valid and the process described in this section will not work.
In that case, the scale score intercepts and slopes for each form [e.g., Eq. (4.107)]
are replaced by a conversion table that maps the raw score on each form to a scale
score, as was discussed in Chap. 1 and illustrated in Chap. 2.

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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4.6 Appendix: Proof that σ2
s (TX) = γ2

1σ2
s (TV ) Under the

Classical Congeneric Model

The true score analogue of Eq. (4.4) (see also Exercise 4.1) is

σ2
s (TX ) = w1σ

2
1(TX ) + w2σ

2
2(TX ) + w1w2[μ1(TX ) − μ2(TX )]2.

For the classical congeneric model, μ1(TX ) = μ1(X),μ2(TX ) = μ2(X) and, from
Eq. (4.34),

μ2(X) = μ1(X) − [σ1(TX )/σ1(TV )][μ1(V ) − μ2(V )].
It follows that

σ2
s (TX ) = w1σ

2
1(TX ) + w2σ

2
2(TX ) + w1w2[σ2

1(TX )/σ2
1(TV )][μ1(V ) − μ2(V )]2

= σ2
1(TX )

σ2
1(TV )

{
w1σ

2
1(TV ) + w2

σ2
1(TV )

σ2
1(TX )

σ2
2(TX ) + w1w2[μ1(V ) − μ2(V )]2

}
.

Under the Levine assumptions, the slope of the linear regression of TX on TV in
both Populations 1 and 2 is given by Eq. (4.28):

σ1(TX )/σ1(TV ) = σ2(TX )/σ2(TV ).

Applying this equation to the second term in braces in the previous equation gives

σ2
s (TX ) = σ2

1(TX )

σ2
1(TV )

{
w1σ

2
1(TV ) + w2σ

2
2(TV ) + w1w2[μ1(V ) − μ2(V )]2

⎢
.

The term in braces is σ2
s (TV ) and, by Eq. (4.38), σ2

1(TX )/σ2
1(TV ) = γ2

1 . Thus,

σ2
s (TX ) = γ2

1σ2
s (TV ),

as was to be proved.

4.7 Exercises

4.1. Prove Eq. (4.4). [Hint:

σ2
s (X) = w1 E

1
[X − μs(X)]2 + w2 E

2
[X − μs(X)]2,
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where E
i

means the expected value in Population i(i = 1 or 2)].

4.2. Using the notation of this chapter, Angoff (1971, p. 580) provides the fol-
lowing equations for the synthetic group means and variances under Tucker
assumptions:

μs(X) = μ1(X) + α1(X |V )[μs(V ) − μ1(V )],
μs(Y ) = μ2(Y ) + α2(Y |V )[μs(V ) − μ2(V )],

σ2
s (X) = σ2

1(X) + α2
1(X |V )[σ2

s (V ) − σ2
1(V )],

σ2
s (Y ) = σ2

2(Y ) + α2
2(Y |V )[σ2

s (V ) − σ2
2(V )].

Show that Angoff’s equations give results identical to Eqs. (4.17)–(4.20), using
Eqs. (4.21) for γ1 and (4.22) for γ2. (Strictly speaking, Angoff refers to a
“total” group rather than a synthetic group with the notion of a total group
being all examinees used for equating, which implies that Angoff’s weights
are proportional to sample sizes for the two groups.)

4.3. Verify the results in Table 4.4 when w1 = .5 and w1 = .5026.
4.4. Suppose the data in Table 4.3 were for an external anchor of 12 items, and X

and Y both contain 36 items. If w1 = .5, what are the linear equations for the
Tucker and Levine observed score methods?

4.5. Under the classical congeneric model, what are the reliabilities ρ1(X, X ≥) and
ρ2(Y, Y ≥) for the illustrative example?

4.6. Suppose the Levine assumptions are invoked and X , Y , and V are assumed to
satisfy the classical test theory model assumptions for both populations, such
that σ1(TX ) = (K X/KV )σ1(TV ) and σ2(TY ) = (KY /KV )σ2(TV ).

a. Under these circumstances, what are the γ’s given by Eqs. (4.38) and (4.39)?
b. Provide a brief verbal interpretation of these γ’s as contrasted with the γ’s

under the classical congeneric model.

4.7. If w1 = 1 and the common-item means for the two groups are identical, how
much of the difference μ1(X) − μ2(Y ) is attributable to forms?

4.8. Jessica is a test development specialist for a program in which test forms are
equated. She has been taught in an introductory measurement course that good
items are highly discriminating items. Therefore, in developing a new form of
a test, she satisfies the content requirements using more highly discriminating
items than were used in constructing previous forms. From an equating per-
spective, is this good practice? Why? [Hint: If pi is the difficulty level for item
i and ri is the point-biserial discrimination index for item i , then the standard
deviation of total test scores is

⎛
i ri

≤
pi (1 − pi ).]

4.9. Given equation set (4.70), show that the external anchor γ2 given by Eq. (4.59)
is λY /λV .

4.10. Let V be an internal anchor such that X = A + V and assume that 0 <

ρ1(X, V ) < 1. Show that
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a. σ2
1(V ) < σ1(X, V ) < σ2

1(X) and
b. 1 < γ1T < γ1L , where T stands for Tucker equating and L stands for Levine

observed score equating under the classical congeneric model.
c. Name one condition under which the result in (a) would not hold if V were

an external anchor.
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Chapter 5
Nonequivalent Groups: Equipercentile Methods

Equipercentile equating methods have been developed for the common-item
nonequivalent groups design. These methods consider the distributions of total scores
and scores on the common items, rather than only the means, standard deviations,
and covariances that were considered in Chap. 4. As has been indicated previously,
equipercentile equating is an observed score equating procedure that is developed
from the perspective of the observed score equating property described in Chap. 1.
Thus, equipercentile equating with the common-item nonequivalent groups design
usually requires that a synthetic population, as defined in Chap. 4, be considered.

We begin this chapter by considering an equipercentile method, referred to
as frequency estimation, that is closely aligned to the Tucker linear method of
Chap. 4. Then we consider two additional methods. One of them is a modified version
of frequency estimation; the other is closely aligned to the chained linear method dis-
cussed in Chap. 4. We also describe how smoothing methods, such as those described
in Chap. 3, can be used when conducting equipercentile equating with nonequiva-
lent groups. The methods described in this chapter are illustrated using the same data
that were used in Chap. 4, and the results are compared to the linear results from
Chap. 4.

5.1 Frequency Estimation Method

The frequency estimation method described by Angoff (1971) and Braun and Holland
(1982) provides a means for estimating the cumulative distributions of scores on
Form X and Form Y for a synthetic population from data that are collected using the
common-item nonequivalent groups design. Percentile ranks are then obtained from
the cumulative distributions and the forms are equated by equipercentile methods,
as was done in Chap. 2.
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5.1.1 Conditional Distributions

Conditional score distributions are required in order to use these statistical methods.
Two identities are particularly useful, and they are presented here. The use of these
identities is illustrated later, in connection with the frequency estimation method.

Define f (x, v) as the joint distribution of total score and common-item score, so
that f (x, v) represents the probability of earning a score of x on Form X and a score
of v on the common items. Specifically, f (x, v) is the probability that X = x and
V = v. Define f (x) as the marginal distribution of scores on Form X, so that f (x)
represents the probability of earning a score of x on Form X. That is, f (x) represents
the probability that X = x . Also define h(v) as the marginal distribution of scores
on the common items, so that h(v) represents the probability that V = v, and define
f (x |v) as the conditional distribution of scores on Form X for examinees earning a
particular score on the common items. Thus, f (x |v) represents the probability that
X = x given that V = v. Using standard results from conditional expectations, it
can be shown that

f (x |v) = f (x, v)

h(v)
. (5.1)

From Eq. (5.1), it follows that

f (x, v) = f (x |v)h(v). (5.2)

These identities are used to develop the frequency estimation method.

5.1.2 Assumptions and Procedures

To conduct frequency estimation equipercentile equating, it is necessary to express
the distributions for the synthetic population. These distributions are considered to
be a weighted combination of the distributions for each population. Specifically, for
Form X and Form Y,

fs(x) = w1 f1(x) + w2 f2(x) (5.3)

and
gs(y) = w1g1(y) + w2g2(y),

where the subscript s refers to the synthetic population, the subscript 1 refers to
the population administered Form X, and the subscript 2 refers to the population
administered Form Y. As before, f and g refer to distributions for Form X and Form
Y, respectively, and w1 and w2(w1 + w2 = 1) are used to weight Populations 1 and
2 to form the synthetic population.

From the data that are collected in the nonequivalent groups design, direct esti-
mates of f1(x) and g2(y) may be obtained. Because Form X is not administered
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to examinees from Population 2, a direct estimate of f2(x) is unavailable. Also,
because Form Y is not administered to examinees from Population 1, a direct esti-
mate of g1(y) is unavailable. Statistical assumptions need to be invoked to obtain
expressions for these functions using quantities for which direct estimates are avail-
able from data that are collected.

The assumption made in the frequency estimation method is that, for both Form
X and Form Y, the conditional distribution of total score given each score, V = v,
is the same in both populations. The same assumption is made whether the common
items are internal or external. This assumption is stated as follows:

f1(x |v) = f2(x |v), for all v and g1(y|v) = g2(y|v), for all v. (5.4)

For example, f1(x |v) represents the probability that total score X = x , given that
V = v in Population 1. The other conditional distributions are interpreted similarly.
Equation (5.2) can be used to obtain expressions for these functions using quantities
for which direct estimates are available from data that are collected.

The following discussion describes how the assumptions presented in Eq. (5.4)
can be used to find expressions for f2(x) and g1(y) using quantities for which direct
estimates are available.

From Eq. (5.2), the following equalities hold:

f2(x, v) = f2(x |v)h2(v) and g1(y, v) = g1(y|v)h1(v). (5.5)

For Population 2, f2(x, v) represents the joint distribution of total scores and
common–item scores. Specifically, f2(x, v) represents the probability that X = x
and V = v in Population 2. For Population 2, h2(v) represents the distribu-
tion of scores on the common items. Thus, h2(v) represents the probability that
V = v in Population 2. The expressions g1(y, v) and h1(v) are similarly defined for
Population 1.

Combining the equalities in Eq. (5.5) with the assumptions in Eq. (5.4), f2(x, v)
and g1(y, v) can be expressed using quantities for which direct estimates are available
from data that are collected as follows:

f2(x, v) = f1(x |v)h2(v) and g1(y, v) = g2(y|v)h1(v). (5.6)

For the first equality, f1(x |v) can be estimated directly from the Population 1 exam-
inees who take Form X. The quantity h2(v) can be estimated directly from the
Population 2 examinees who take Form Y. For the second equality, g2(y|v) can be
estimated directly from the Population 2 examinees who take Form Y, and h1(v) can
be estimated directly from the Population 1 examinees who take Form X.

The associated marginal distributions can be found by summing over common-
item scores as follows:
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f2(x) =
∑
v

f2(x, v) =
∑
v

f1(x |v)h2(v) and

g1(y) =
∑
v

g1(y, v) =
∑
v

g2(y|v)h1(v). (5.7)

In this equation, f2(x) represents the probability that X = x in Population 2, and
g1(y) represents the probability that Y = y in Population 1.

All of the terms in Eq. (5.7) use quantities for which direct estimates are available
from data. The expressions in Eq. (5.7) can be substituted into Eq. (5.3) to provide
expressions for the synthetic population as follows:

fs(x) = w1 f1(x) + w2

∑
v

f1(x |v)h2(v) and

gs(y) = w1

∑
v

g2(y|v)h1(v) + w2g2(y). (5.8)

Equation (5.8) uses quantities for which direct estimates are available from data.
For the synthetic population, fs(x) can be cumulated over values of x to produce

the cumulative distribution Fs(x). The cumulative distribution Gs(y) is similarly
derived. Define Ps as the percentile rank function for Form X and Qs as the per-
centile rank function for Form Y, using the definitions for percentile ranks that were
developed in Chap. 2. Similarly, P−1

s and Q−1
s are the percentile functions.

The equipercentile function for the synthetic population is

eY s(x) = Q−1
s [Ps(x)], (5.9)

which is analogous to the equipercentile relationship for random groups equiper-
centile equating in Eq. (2.17).

The frequency estimation assumption of Eq. (5.4) cannot be tested using data
collected using the common-item nonequivalent groups design. To test this assump-
tion, a representative group of examinees from Population 1 would need to take
Form Y, and a representative group of examinees from Population 2 would need to
take Form X. Unfortunately, these data are not available in practice. If Populations
1 and 2 were identical, then the assumption in Eq. (5.4) would be met. Logically,
then, the more similar Populations 1 and 2 are to one another, the more likely it
is that this assumption will hold. Thus, frequency estimation equating should be
conducted only when the two populations are reasonably similar to one another.
How similar “reasonably similar” is depends on the context of the equating and on
empirical evidence of the degree of similarity required. When the populations differ
considerably, methods based on true score models, such as the modified frequency
estimation method described later in this chapter or item response theory methods
described in Chap. 6, should be considered, although adequate equating might not be
possible when populations differ considerably. This problem is considered further in
Chap. 8.

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
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Table 5.1 Form X and common-item distributions for population 1 in
a hypothetical example

v

x 0 1 2 3 f1(x) F1(x)

0 .04 .04 .02 .00 .10 .10
1 .04 .08 .02 .01 .15 .25
2 .06 .12 .05 .02 .25 .50
3 .03 .12 .05 .05 .25 .75
4 .02 .03 .04 .06 .15 .90
5 .01 .01 .02 .06 .10 1.00
h1(v) .20 .40 .20 .20

Note Values shown in the body of table are for f1(x, v)

5.1.3 Numerical Example

A numerical example based on synthetic data is used here to aid in the understanding
of this method. In this example, Form X has 5 items, Form Y has 5 items, and there
are three common items. Assume that the common items are external.

Table 5.1 presents the data for Population 1 for the hypothetical example. The
values in the body of the table represent the joint distribution, f1(x, v). For example,
the upper left-hand value is .04. This value represents the probability that an examinee
from Population 1 would earn a score of 0 on Form X and a score of 0 on the common
items. The values in the body of Table 5.1 sum to 1. The values at the bottom of the
table are for the marginal distribution on the common items for Population 1, h1(v).
For example, the table indicates that the probability of earning a common-item score
of 0 is .20 over all examinees in Population 1. The values listed under the column
labeled f1(x) represent the marginal distribution for total score on Form X. The sum
of the values in each row in the body of the table equals the value for the marginal
shown for f1(x) and the sum of the marginal distribution values for f1(x) equals
1. The rightmost column is the cumulative distribution for Form X scores, F1(x).
The values in this column are obtained by cumulating the probabilities shown in the
f1(x) column. Table 5.2 presents the joint and marginal distributions for Form Y and
common-item scores in Population 2.

Estimates of the distributions presented in Tables 5.1 and 5.2 would be available
from the common-item nonequivalent groups design. Estimates of the distribution for
Form X in Population 2 would be unavailable, because Form X is not administered
in Population 2. Similarly, estimates of the distribution for Form Y in Population 1
would be unavailable. However, equating still can proceed by making the frequency
estimation assumption in Eq. (5.4).

To simplify the example, assume that w1 = 1, which results in the following
simplification of Eq. (5.8):

fs(x) = f1(x) and gs(y) =
∑
v

g2(y|v)h1(v). (5.10)
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Table 5.2 Form Y and common-item distributions for population 2 in
a hypothetical example

v

y 0 1 2 3 g2(y) G2(y)

0 .04 .03 .01 .00 .08 .08
1 .07 .05 .07 .01 .20 .28
2 .03 .05 .12 .02 .22 .50
3 .03 .04 .13 .05 .25 .75
4 .02 .02 .05 .06 .15 .90
5 .01 .01 .02 .06 .10 1.00
h2(v) .20 .20 .40 .20

Note Values shown in the body of table are for g2(y, v)

Table 5.3 Conditional distributions of Form Y given common-item
scores for population 2 in a hypothetical example

v

y 0 1 2 3

0 .20 .15 .025 .00
1 .35 .25 .175 .05
2 .15 .25 .30 .10
3 .15 .20 .325 .25
4 .10 .10 .125 .30
5 .05 .05 .05 .30
h2(v) .20 .20 .40 .20

Note Values in the body of the table are for g2(y|v) = g2(y,v)
h2(v)

The first of the equations labeled (5.10) indicates that the distribution of Form X
scores for the synthetic population is the same as the distribution in Population 1.
Thus the rightmost column in Table 5.1 labeled F1(x) also gives Fs(x) for w1 = 1.

The synthetic group is Population 1, becausew1 = 1 in the example. Thus, the sec-
ond of the equations in Eq. (5.10) provides an expression for the cumulative distribu-
tion of Form Y scores for examinees in Population 1. Because Form Y was not admin-
istered in Population 1, it is necessary to use the conditional distribution of Form
Y scores given common-item scores in Population 2 and assume that this condi-
tional distribution also would hold in Population 1 at all common-item scores [see
Eq. (5.4)].

Table 5.3 presents the Form Y conditional distribution for Population 2. To cal-
culate the values in the table, take the joint probability in Table 5.2 and divide it by
its associated marginal probability on the common items. Specifically,

g2(y|v) = g2(y, v)

h2(v)
, (5.11)
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Table 5.4 Calculation of distribution of Form Y and common-item scores for population 1 using
frequency estimation assumptions in a hypothetical example

v

y 0 1 2 3 g1(y) G1(y)

0 .20(.20) = .04 .15(.40) = .06 .025(.20) = .005 .00(.20) = .00 .105 .105
1 .35(.20) = .07 .25(.40) = .10 .175(.20) = .035 .05(.20) = .01 .215 .320
2 .15(.20) = .03 .25(.40) = .10 .30(.20) = .06 .10(.20) = .02 .210 .530
3 .15(.20) = .03 .20(.40) = .08 .325(.20) = .065 .25(.20) = .05 .225 .755
4 .10(.20) = .02 .10(.40) = .04 .125(.20) = .025 .30(.20) = .06 .145 .900
5 .05(.20) = .01 .05(.40) = .02 .05(.20) = .01 .30(.20) = .06 .100 1.000
h1(v) .20 .40 .20 .20

Note Values in the body of the table are for g1(y, v) = g2(y|v)h1(v)

Table 5.5 Cumulative distributions and finding equipercentile equivalents for w1 = 1

x F1(x) P1(x) y G1(y) Q1(y) x eY s(x)

0 .100 5.0 0 .105 5.25 0 −.02
1 .250 17.5 1 .320 21.25 1 .83
2 .500 37.5 2 .530 42.50 2 1.76
3 .750 62.5 3 .755 64.25 3 2.92
4 .900 82.5 4 .900 82.75 4 3.98
5 1.000 95.0 5 1.000 95.00 5 5.00

which follows from Eq. (5.1). For example, the .20 value in the upper left cell of
Table 5.3 equals .04 from the upper left cell of Table 5.2 divided by .20, which is
the probability of earning a score of V = 0 as shown in Table 5.2. Note that the
conditional probabilities in each column of the body of Table 5.3 sum to 1.

To find the values to substitute into Eq. (5.10), at each v the conditional distribution
in Population 2, g2(y|v), is multiplied by the marginal distribution for common items
for Population 1, h1(v). The result is the joint distribution in Population 1 under the
frequency estimation assumption of Eq. (5.4). The results are shown in Table 5.4.

Table 5.5 presents the cumulative distributions, percentile ranks, and equiper-
centile equivalents. These values can be verified using the computational procedures
described in Chap. 2.

Refer to Table 5.4 to gain a conceptual understanding of what was done. In this
table, the joint distribution of Form Y total scores and common-item scores was
calculated for Population 1. As was indicated earlier, Population 1 did not even take
Form Y. The way that the values in this table could be calculated was by making
the statistical assumptions associated with frequency estimation. To estimate this
joint distribution, the conditional distribution observed in Population 2 was assumed
to hold for Population 1 at all common-item scores. The Population 2 conditional
distribution was multiplied by the Population 1 common-item marginal distributions
to form the joint probabilities shown in Table 5.4. The Population 1 marginal distri-

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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bution on the common items can be viewed as providing weights that are multiplied
by the Population 2 conditional distribution at each score on the common items.

5.1.4 Estimating the Distributions

Estimates of distributions can be used in place of the parameters when using fre-
quency estimation in practice. However, a problem occurs when no examinees earn
a particular common-item score in one of the groups but some examinees earn that
score in the other group. When estimating the Form Y distribution in Population 1,
the assumption is made in Eq. (5.4) that g1(y|v) = g2(y|v), for all v. If no Pop-
ulation 2 examinees earn a particular score on v in a sample, then no estimate of
g1(y|v) exists at that v. However, such an estimate would be needed to conduct the
equating if some examinees in Population 1 earned that v. Jarjoura and Kolen (1985)
recommended using the conditional distribution at a score close to that v (e.g., at
v + 1) as an estimate for what the conditional distribution would be at v. On logical
grounds, they argued that this substitution would cause insignificant bias in practice
in those cases where very few examinees in one population earn a score that has a
frequency of 0 in the other population. A practical solution is to use the conditional
distribution for the v with nonzero frequency that is closest to the v in question as
we move toward the median of the distribution of v.

Smoothing methods also can be used with the frequency estimation method. An
extension of the log-linear presmoothing method was described by Holland and
Thayer (1987, 1989, 2000), von Davier et al. (2004a), and Rosenbaum and Thayer
(1987) in the context of frequency estimation. In this extension, the joint distributions
of scores on the items that are not common and scores on the common items are fit
using a log-linear model. The resulting smoothed joint distributions then are used
to equate forms using the frequency estimation method described in this chapter.
Model fitting using this method requires the fitting of a joint distribution, which
makes the moment preservation property for this method more complicated than
with the random groups design. To fit the joint distribution, the number of moments
for each fitted marginal distribution that are the same as those for the observed
distribution need to be specified. In addition, the cross-product moments for the fitted
joint distribution that are the same as those for the observed distribution need to be
specified. For example, a model might be specified so that the first four moments of
each marginal distribution and the covariance for the fitted and observed distributions
are equal. The fit of this model could be compared to other more and other less
complicated models. Moses and Holland (2010a, b) studied different model selection
methods for smoothing the joint distributions using log-linear pre smoothing.

Lord’s (1965) beta4 method that was described in Chap. 3 also can be used to
fit the joint distributions of total scores and common-item scores. In this applica-
tion, the assumption is made that true score on the common items and true score on
the total tests are functionally related. That is, the total test and common items are
measuring precisely the same construct. Empirical research conducted by Hanson

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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(1991), Livingston and Feryok (1987), Liou and Cheng (1995) indicates that bivari-
ate smoothing techniques can improve equating precision with the common item
nonequivalent groups design.

The cubic spline postsmoothing method described by Kolen and Jarjoura (1987)
is a straightforward extension of the random groups method described in Chap. 3. In
this method, unsmoothed equipercentile equivalents are estimated using frequency
estimation as described in this chapter. The cubic spline method described in Chap. 3
then is implemented. The only difference in methodology is that standard errors of
frequency estimation equating developed by Jarjoura and Kolen (1985) are used in
place of the random groups standard errors. Kolen and Jarjoura (1987) reported that
the cubic spline method used with frequency estimation increased equating precision.

5.1.5 Special Case: Braun-Holland Linear Method

Braun and Holland (1982) presented a linear method that uses the mean and standard
deviation which arise from using the frequency estimation assumptions to conduct
linear equating. This method is closely related to the Tucker linear method presented
in Chap. 4. Under the frequency estimation assumptions in Eq. (5.4), the mean and
standard deviation of scores on Form X for the synthetic population can be expressed
as

μs(X) =
∑

x

x fs(x), (5.12)

σ2
s (X) =

∑
x

[x − μs(X)]2 fs(x), (5.13)

where fs(x) is taken from Eq. (5.8). The synthetic population mean and standard
deviation for Form Y are expressed similarly. The resulting means and standard devi-
ations then can be substituted into the general form of a linear equating relationship
for the common-item nonequivalent groups design that was described in Chap. 4.
The resulting equation is referred to here as the Braun-Holland linear method.

Braun and Holland (1982) showed that an equating which results from using the
Braun-Holland linear method is identical to the Tucker linear method described in
Chap. 4 when the following conditions hold:

(1) The regressions of X on V and Y on V are linear.
(2) The regressions of X on V and Y on V are homoscedastistic. This property

means that the variance of X given v is the same for all v, and the variance of Y
given v is the same for all v.

Thus, the Braun-Holland method can be viewed as a generalization of the Tucker
method when the regressions of total test on common items are nonlinear. Braun
and Holland (1982) suggested that the regression of X on V for Population 1 and
Y on V for Population 2 be examined for nonlinearity. The Braun-Holland method

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
http://dx.doi.org/10.1007/978-1-4939-0317-7_3
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
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Table 5.6 Computation of equating relationship for Braun-Holland method in a hypothetical
example

From Table 5.1 From Table 5.4
x f1(x) y g1(y)

0 .100 0 .105
1 .150 1 .215
2 .250 2 .210
3 .250 3 .225
4 .150 4 .145
5 .100 5 .100
μ1(X) 2.5000 μ1(Y ) 2.3900
σ1(X) 1.4318 σ1(Y ) 1.4792

slope = 1.4792

1.4318
= 1.0331

intercept = 2.3900 − 1.0331(2.5000) = −.1927
lY s(x = 0) = −.1927, lY s(x = 1) = .8404, lY s(x = 2) = 1.8735,
lY s(x = 3) = 2.9066, lY s(x = 4) = 3.9397, lY s(x = 5) = 4.9728

is more complicated computationally than the Tucker method, and it also has been
used much less in practice. Still, the Braun-Holland method should be considered
when nonlinear regressions are suspected.

The results of using the Braun-Holland method with the hypothetical data in
the frequency estimation example with w1 = 1 are presented in Table 5.6. In this
table, the distribution for Form X was taken from Table 5.1. The distribution for
Form Y, which was calculated using the frequency estimation assumption, was taken
from Table 5.4. Means and standard deviations were calculated using Eqs. (5.12)
and (5.13). The slope and intercept were calculated from the means and standard
deviations. The linear equivalents were calculated using this slope and intercept. Note
that the linear equivalents differ somewhat from the equipercentile equivalents shown
in Table 5.5, indicating that the equating relationship is not linear when frequency
estimation assumptions are used.

5.1.6 Illustrative Example

The real data example from Chap. 4 is used to illustrate some aspects of frequency
estimation equating. As was indicated in that chapter, the test used in this example is
a 36-item multiple-choice test. Two forms of the test, Form X and Form Y, were used.
Every third item on the test forms is a common item, and the common items are in
the same position on each form. Thus, items 3, 6, 9, . . . , 36 on each form represent
the 12 common items. Form X was administered to 1,655 examinees and Form Y to
1,638 examinees.

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
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Table 5.7 Moments for equating Form X and Form Y in the common-item nonequivalent groups
design

Group Score μ̂ σ̂ ŝk k̂u Correlation

1 X 15.8205 6.5278 .5799 2.7217 ρ̂1(X, V ) =
1 V 5.1063 2.3760 .4117 2.7683 .8645

2 Y 18.6728 6.8784 .2051 2.3028 ρ̂2(Y, V ) =
2 V 5.8626 2.4515 .1072 2.5104 .8753

Results

Summary statistics for this example are shown in Table 5.7 (ŝk refers to estimated
skewness and k̂u to estimated kurtosis). The examinees who were administered
Form X had a number-correct score mean of 5.1063 and a standard deviation of
2.3760 on the common items. The examinees who were administered Form Y had
a number-correct score mean of 5.8626 and a standard deviation of 2.4515 on the
common items. Thus, based on the common-item statistics, the group taking Form
Y appears to be higher achieving than the group taking Form X. The statistics shown
in this table were also used to calculate the Tucker and Levine equating functions
described in Chap. 4. Some of the statistics shown in Table 5.7 were also presented in
Table 4.3. The analyses were conducted using the CIPE computer program described
in Appendix B.

For frequency estimation equating, the joint distributions of total score and
common-item score also need to be considered. As was indicated earlier in this
chapter, the assumptions in frequency estimation equating require that the distri-
bution of total score given common-item score be the same for both populations.
However, from the data that are collected, no data are available to address this assump-
tion directly. The linearity of the regressions of total test on common items can be
addressed, however. If the regression is nonlinear, then the use of the Tucker method
might be questionable, and the Braun-Holland method might be preferred.

Statistics relevant to the regression of X on V for Group 1 are shown in Table 5.8.
The first column lists the possible scores on the common items. The second column
lists the number of examinees in Group 1 earning each score on the common items.
The third column lists the mean total score given common-item score. For example,
the mean total score on Form X for the 14 examinees earning a common-item score of
zero is 6.2143. Note that, as expected, the means increase as v increases. The fourth
column presents the standard deviation, and the fifth column is based on estimating
the mean on Form X given v using standard linear regression. The slope and intercept
of the regression equation can be estimated directly from the data in Table 5.7 as
follows:

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
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Table 5.8 Analysis of residuals from the linear regression of total score on common-item score
for group 1

v Number of Mean X Standard Deviation Mean X given v, Residual
examinees given v X given v Linear regression mean

0 14 6.2143 2.2097 3.6923 2.5220
1 54 7.5741 2.2657 6.0674 1.5067
2 142 9.1901 2.6429 8.4425 .7476
3 249 10.8032 2.9243 10.8177 −.0145
4 274 12.7628 3.1701 13.1928 −.4300
5 247 15.1377 3.3302 15.5680 −.4303
6 232 16.9957 3.6982 17.9431 −.9474
7 173 20.5260 3.5654 20.3182 .2078
8 118 23.1610 3.5150 22.6934 .4676
9 75 25.6533 2.8542 25.0685 .5848
10 42 28.5000 3.4658 27.4436 1.0564
11 27 31.1852 2.1780 29.8188 1.3664
12 8 33.2500 1.6394 32.1939 1.0561

regression slope = ρ̂1(X, V )
σ̂1(X)

σ̂1(V )
= .8645

6.5278

2.3760
= 2.3751.

regression intercept = μ̂1(X) − (regression slope) μ̂1(V )

= 15.8205 − (2.3751) 5.1063 = 3.6923,

apart from the effects of rounding. The slope and intercept can be used to produce
the values in the fifth column, The residual mean equals the third column minus the
fifth column. The residual mean indicates the extent to which the mean predicted
using linear regression differs from the mean that was observed. The mean residuals
for Form X are plotted in Fig. 5.1.

If the regression was truly linear, then the mean residuals would vary randomly
around 0. However, the residual means are positive for low and high scores on v and
are negative for scores from 3 through 6. This pattern suggests that the regression
is not linear. More sophisticated methods for testing hypotheses about the linearity
of regression could also be used (e.g., see Draper and Smith 1998). The regression
of Y on V for Group 2 is shown in Table 5.9, and the mean residuals are plotted in
Fig. 5.2.

This regression also appears to be somewhat nonlinear. These nonlinear regres-
sions suggest that the Braun-Holland method might be preferable to the Tucker
method.
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Fig. 5.1 Form X mean residual plot

Table 5.9 Analysis of residuals from the linear regression of total score on common-item score
for group 2

v Number of Mean Y Standard Deviation Mean Y given v, Residual
examinees given v Y given v Linear regression mean

0 11 6.2727 2.1780 4.2740 1.9988
1 36 8.0000 2.2361 6.7300 1.2700
2 88 9.6023 3.0359 9.1860 .4162
3 159 12.1195 3.2435 11.6421 .4774
4 213 13.9202 3.3929 14.0991 −.1779
5 240 16.0750 3.4234 16.5541 −.4791
6 232 18.3147 1.5623 19.0101 −.6955
7 246 21.2073 3.4854 21.4662 −.2588
8 161 24.1801 3.3731 23.9222 .2579
9 120 27.3333 2.9533 26.3782 .9551
10 85 29.1294 2.8811 28.8343 .2952
11 34 31.8235 1.8396 31.2903 .5332
12 13 33.6154 1.7338 33.7463 −.1309

Comparison Among Methods

The Tucker and Braun-Holland linear methods and frequency estimation equiper-
centile equating with cubic spline smoothing were all applied to these data. The
Levine observed score method under a congeneric model was also applied. The
resulting moments are shown in Table 5.10, and the equating relationships are shown
in Fig. 5.3.
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Fig. 5.2 Form Y mean residual plot

Table 5.10 Moments of Form X scores converted to Form Y scores using various methods for
examinees from population 1

Method μ̂ σ̂ ŝk k̂u

Tucker linear 16.8153 6.7168 .5799 2.7217
Levine linear 16.2485 6.6007 .5799 2.7217
Braun-Holland linear 16.8329 6.6017 .5799 2.7217
Equipercentile

Unsmoothed 16.8329 6.6017 .4622 2.6229
S = .10 16.8334 6.5983 .4617 2.6234
S = .25 16.8333 6.5947 .4674 2.6249
S = .50 16.8192 6.5904 .4983 2.6255
S = .75 16.8033 6.5858 .5286 2.6503
S = 1.00 16.7928 6.5821 .5501 2.6745

First, refer to Fig. 5.3. The Levine relationship seems to differ from the others.
As was indicated in Chap. 4, the Levine method is based on assumptions about true
scores, whereas the other methods make assumptions about observed scores. The dif-
ferences in assumptions are likely the reason for the discrepancy. Unfortunately, data
are not available that allow a judgment about whether the Levine method assump-
tions (other than possibly linearity of regression) are more or less preferable than the
assumptions for the other methods in this example.

The Tucker, Braun-Holland, and frequency estimation methods all require assump-
tions about characteristics of the observed relationship between total scores and
scores on the common items being the same for the two populations. These methods

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
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Fig. 5.3 Equating relationships for frequency estimation equipercentile equating and linear
methods

differ with respect to which characteristics of the relationship are assumed to be the
same.

First consider the Tucker and Braun-Holland methods. The major difference
between these methods is in the assumption of linearity of regression. Thus, the
relatively small differences between the two methods in the example are due to the
differences in assumptions. The Braun-Holland method might be preferred, because
the regression was judged to be nonlinear.

Next compare the Braun-Holland and frequency estimation method, referred to as
unsmoothed, in Table 5.10 and Fig. 5.3. The relationship appears to be nonlinear. The
Braun-Holland relationship falls outside the standard error band for the frequency
estimation method over parts of the score range. Thus, the frequency estimation
method (labeled unsmoothed) appears to more accurately reflect the equipercentile
relationship between the forms than does the Braun-Holland method in this example.

Table 5.10 presents the results for various degrees of cubic spline smoothing. The
moments for values of S that are greater than .25 seem to differ more than would be
desired from those for the unsmoothed equating. For this reason, the relationship for
S = .25 is plotted in Fig. 5.3. This relationship stays within the standard error bands
and seems to be smooth without deviating too far from the unsmoothed values.
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5.2 Other Methods

In this section two additional equipercentile methods for the common-item non-
equivalent groups design, the modified frequency estimation method and the chained
equipercentile method, are considered. The results for these methods are compared
to results for the frequency estimation method in an illustrative example. Refer to
Chen and Holland (2010), Chen et al. (2011), Karabatsos and Walker (2009, 2011)
for other approaches.

5.2.1 Modified Frequency Estimation

Wang and Brennan (2006, 2009) show that there is reason to believe that frequency
estimation results may be biased in certain circumstances. To mitigate this problem,
they suggest replacing the frequency estimation assumptions f1(x |v) = f2(x |v) and
g2(y|v) = g1(y|v), with corresponding assumptions based on conditioning on true
scores for the common items, tv:

f1(x |tv) = f2(x |tv), (5.14)

and
g2(y|tv) = g1(y|tv). (5.15)

These assumptions are partially defended by the following argument. If X and V
are congeneric, then conditioning on tv is effectively the same as conditioning on tx .
Since, f1(x |tx ) is the conditional distribution of errors for observed scores on Form
X, it follows that f1(x |tv) is also the conditional distribution of errors for observed
scores on Form X. Therefore, if X and V are congeneric, the conditional means will
remain invariant across populations.

These revised assumptions are not directly useful, however, because we do not
immediately have the distributions of observed scores conditional on true scores for
V . Let us focus on X (corresponding results apply to Y ). We can use a certain rela-
tionship between true scores and observed scores (discussed in the next paragraph)
to replace tv in Eq. (5.14) with observed scores for V , so that we have

f1(x |v1) = f2(x |v2),

where v1 is the score on V in population 1 and v2 is the score on V in population 2.
The goal, then, is to find a relationship between v1 and v2 such that Eq. (5.14) is
satisfied.

The observed data provide f1(x |v1) directly. To obtain f2(x |v2), for every v2 we
need to find the corresponding v1. This is accomplished by using Brennan and Lee’s
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(2006) approach to estimating true scores from observed scores.1 Their approach
applied to modified frequency estimation gives:

tv1 = μ1(V ) + √
ρ1(V, V ∗) [v1 − μ1(V )]

and
tv2 = μ2(V ) + √

ρ2(V, V ∗) [v2 − μ2(V )],

where ρ1(V, V ∗), and ρ2(V, V ∗) are the reliabilities for V in the two populations. By
setting tv1 = tv2 , for every v2 we can compute the corresponding v1, namely,

v1 =
≥

ρ2(V, V ∗)≥
ρ1(V, V ∗)

v2 + 1 − ≥
ρ2(V, V ∗)≥

ρ1(V, V ∗)
μ2(V ) − 1 − ≥

ρ1(V, V ∗)≥
ρ1(V, V ∗)

μ1(V ).

It is then possible to estimate fs(x) using the basic ideas in Sect. 5.1, and, of course,
the same approach can be used to estimate gs(y).2

Braun-Holland equating under modified frequency estimation assumptions sim-
ply uses the first two moments of the synthetic densities for X and Y . As with fre-
quency estimation, for modified frequency estimation, bivariate log-linear smoothing
or cubic-spline post smoothing might be used. The illustrative example in Sect. 5.1.6
is extended to modified frequency estimation later in Sect. 5.2.3.

5.2.2 Chained Equipercentile Equating

Angoff (1971) described an alternative equipercentile method that Marco et al. (1983)
referred to as the direct equipercentile method. Dorans (1990) and Livingston et al.
(1990) referred to this method as chained equipercentile equating. In this method,
Form X scores are converted to scores on the common items using examinees from
Population 1. Then scores on the common items are converted to Form Y scores
using examinees from Population 2. These two conversions are chained together to
produce a conversion of Form X scores to Form Y scores.

More specifically, the steps are as follows:

1. Find the equipercentile relationship for converting scores on Form X to scores
for the common items based on examinees from Population 1 using the equiper-
centile method described in Chap. 2. This equipercentile function is referred to
as eV 1(x).

1 The basic idea is to find a linear transformation of observed scores to estimated true scores such
that the estimates have a variance equal to true score variance.
2 Note that if ρ1(V, V ∗) = ρ2(V, V ∗), then v1 = v2 + [μ2(V ) − μ1(V )]/≥ρ1(V, V ∗).

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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2. Find the equipercentile relationship for converting scores on the common items
to scores on Form Y based on examinees from Population 2. Refer to the resulting
function as eY 2(v).

3. To equate a Form X score to a score on Form Y, first convert the Form X score
to a common-item score using eV 1(x). Then convert the resulting common-item
score to Form Y using eY 2(v).

Note that Steps 1 and 2 involve applying the equipercentile method for a single-group
design in Populations 1 and 2, respectively. Neither of these conversions require a
bivariate distribution. All that is required are the marginal distributions for scores on
X and V in Population 1 and the marginal distributions for Y and V in Population 2.

Mathematically, these steps imply that the Form Y equipercentile equivalents of
Form X scores is the composed function:

eY (chain) = eY 2[eV 1(x)]. (5.16)

This composed function is referred to as chained equipercentile equating because it
involves a chain of two equipercentile conversions, one in Population 1 and another
in Population 2. This chaining process is the equipercentile analogue of chained
linear equating discussed in Chap. 4.

Numerical Example

Let us consider chained equipercentile equating for the numerical example in
Tables 5.1 and 5.2. Table 5.11 provides the equipercentile results of putting X on the
scale of V in Population 1. Note that in this table, the column headed H1(v) provides
relative cumulative frequencies for V in Population 1, whereas the column headed
H1(v) provides the corresponding percentile ranks.

Equivalents in the last column of Table 5.11 are obtained using the analogue of
Eq. (2.18)

eV 1(x) = P1(x)/100 − H1(v
≤
U − 1)

H1(v
≤
U ) − H1(v

≤
U − 1)

+ (v≤
U − .5), (5.17)

where v≤
U is the smallest integer score for V with a cumulative percent [100 H1(v)]

that is greater than P1(x). For example, for x = 2, v≤
U = 1, and eV 1(x) = (.375 −

.2)/(.6 − .2) + (1 − .5) = .9375, as indicated in the figure below Table 5.11.
Table 5.12 provides the equipercentile results of putting V on the scale of Y in

Population 2. Note that in this table, the column headed G2(y) provides cumula-
tive relative frequencies for Y in Population 2, whereas the column headed Q2(y)
provides the corresponding percentile ranks.

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
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Table 5.11 Putting X on the scale of V in population 1 for a hypothetical example

Score f1(x) F1(x) P1(x) h1(v) H1(v) H1(v) eV 1(x)

0 .10 .10 5.0 .20 .20 10 −.2500
1 .15 .25 17.5 .40 .60 40 .3750
2 .25 .50 37.5 .20 .80 70 .9375
3 .25 .75 62.5 .20 1.00 90 1.6250
4 .15 .90 82.5 2.6250
5 .10 1.00 95.0 3.2500

.9375 2
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Equivalents in the last column are obtained using the analogue of Eq. (2.18)

eY 2(v) = H2(v)/100 − G2(y≤
U − 1)

G2(y≤
U ) − G2(y≤

U − 1)
+ (y≤

U − .5), (5.18)

where y≤
U is the smallest integer score for Y with a cumulative percent [100 G2(y)]

that is greater than Q2(y).
The results in Table 5.12 cannot be used directly to obtain the chained equiper-

centile equivalents given by the composed function in Eq. (5.16), because we need
equivalents for the non-integer V scores in the last column of Table 5.11. For exam-
ple, as discussed previously, when x = 2 the equipercentile equivalent for V is
v = .9375. The figure below Table 5.12 graphically illustrates how to obtain the
Y -equivalent of v = .9375, which is 1.5341. Hence, for x = 2, the chained equiper-
centile equivalent for Y is y = 1.5341.

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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Table 5.12 Putting V on the scale of Y in population 2 for a hypothetical example

Score h2(v) H2(v) H2(v) g2(y) G2(y) Q2(y) eY 2(v)

0 .20 .20 10 .08 .08 4.0 .6000
1 .20 .40 30 .20 .28 18.0 1.5909
2 .40 .80 60 .22 .50 39.0 2.9000
3 .20 1.00 90 .25 .75 62.5 4.5000
4 .15 .90 82.5
5 .10 1.00 95

−.5 .5 1.5 2.5 3.5 4.5 5.5
0.0
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1.5341 .9375

2 

2

Analytic Procedure

The graphical process in the previous example can be implemented analytically in
three steps.

1. Use Eq. (5.17) to obtain V -equivalents for X in Population 1. In the numerical
example, eV 1(x = 2) = .9375.

2. For each of the values of V in Step 1, get the percentile rank in Population 2
using the analogue of Eq. (2.14):

H2(v) = 100[{H2(v
≤ − 1) + [v − (v≤ − .5)][H2(v

≤) − H2(v
≤ − 1)]}, (5.19)

where v≤ is the integer closest to v in the sense that v≤ − .5 ∞ v < v≤ + .5.
In the numerical example, for v = .9375, v≤ = 1 and

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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H2(.9375) = 100{H2(0) + [.9375 − (1 − .5)][H2(1) − H2(0)]}
= 100{.2 + [.9375 − .5][.4 − .2]} = 28.75.

3. Using each of the percentile ranks in Step 2, get the Y -equivalent for v in Pop-
ulation 2 using Eq. (5.18). In the numerical example, for v = .9375, y≤

U = 2
and

eY (chain) = eY 2(.9375) = (.2875 − .28)(.5 − .28) + (2 − .5) = 1.5341.

Comments

Livingston et al. (1990) suggest that the chained equipercentile method sometimes
can produce accurate and stable results, and they suggest that smoothing methods
might be used to improve the stability of results. Livingston (1993) suggests the use of
log-linear presmoothing to accomplish this goal. For chained equipercentile equating,
bivariate log-linear presmoothing is not required; all that is required is univariate log-
linear presmoothing of the marginal distributions (X and V in Population 1, and Y
and V in Population 2), as described in Chap. 3.

Another alternative that might be considered is cubic spline postsmoothing of the
estimates of eV 1(x) and eY 2(v). The only required modification of the cubic spline
method described in Chap. 3 is to use standard errors for single group equating
rather than standard errors for random groups equating in implementing the cubic
spline method. These smoothed relationships could be used in place of the population
relationships in Eq. (5.16).

Since chained equipercentile equating does not require consideration of the joint
distribution of total scores and common-item scores, computationally it is much less
intensive than frequency estimation. Chained equipercentile equating, however, has
theoretical shortcomings. First, this method involves equating a long test (total test) to
a short test (common items). Tests of considerably unequal lengths cannot be equated
in the sense that scores on the long and short tests can be used interchangeably.
Second, this method does not directly incorporate a synthetic population, so it is
unclear for what population the relationship holds or is intended to hold.

Braun and Holland (1982, p. 42) demonstrate that chained equipercentile and
frequency estimation equating do not, in general, produce the same results, even when
the assumptions for frequency estimation hold. Harris and Kolen (1990) demonstrate
that these methods can produce equating relationships which differ from a practical
perspective. However, the chained equipercentile method does not explicitly require
that the two populations be very similar, so this method might be useful in situations
where the two groups differ. For example, results presented by Marco et al. (1983)
and Livingston et al. (1990) suggest that chained equipercentile equating should be
considered when groups differ considerably.

von Davier et al. (2004b) show that chained and frequency estimation equiper-
centile methods can be expected to produce the same results when (a) the two

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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Fig. 5.4 Relationships for frequency estimation (FE), modified frequency estimation (MFE), and
chained equipercentile equating for illustrative example

populations are equivalent or (b) the scores on the total test and the common items
are perfectly correlated. These findings suggest that, in practice, the methods might
be expected to produce different results when there are large group differences.

Wang et al. (2008) show that when there are substantial group differences, fre-
quency estimation (FE) has larger bias than chained equipercentile equating. Almost
always, however, frequency estimation has a smaller standard error of equating than
chained equipercentile equating. The Wang et al. (2008) study suggests that for mod-
ified frequency estimation (MFE), the bias and standard error of equating tend to be
between the results for FE and chained equipercentile equating. In addition, recent
research studies (Hagge and Kolen 2011, 2012; Holland et al. 2008; Lee et al. 2012;
Liu and Kolen 2011; Powers et al. 2011; Powers and Kolen 2011, 2012; Sinharay
2011; Sinharay and Holland 2010a, b; Sinharay et al. 2011) taken together, suggest
that (a) when group differences are substantial, chained equipercentile methods tend
to produce somewhat more accurate (less biased) equating results than frequency
estimation methods and (b) frequency estimation methods tend to produce equating
results with somewhat smaller random errors than chained equipercentile methods.

5.2.3 Illustrative Example

Figure 5.4 provides a difference-plot graph of the relationships among frequency
estimation (FE), modified frequency estimation (MFE), and chained equipercentile
equating for the illustrative example first introduced in Chap. 4 and subsequently

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
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extended to FE in Sect. 5.1.6.3 For this example, among other things, Fig. 5.4 suggests
that

• for nearly the entire range of raw scores, FE equivalents are clearly the largest;
• from X = 10, . . . , 20, MFE equivalents are slightly larger than chained equiva-

lents; and
• from X = 21, . . . , 27, there are noticeable differences among the three methods,

with the equivalents ordered as follows: FE > Chained > MFE.

It is also evident that for X = 30, 31, 32, the chained equivalents are the largest, but
sample sizes for these raw scores are less than 20 (recall that the total sample size
for Form X is 1,655), which suggests that standard errors are likely quite large.

When sample sizes at the low and/or high end of the scale are very small (as they
are for this example), it is reasonable to consider using an extrapolation method that
is not influenced by the very small sample sizes. One approach is linear interpolation.
For number-correct scores, linear interpolation (for extrapolation purposes) is defined
between

• (−0.5,−0.5) and (x≤
l , eY (x≤

l )) for scores at the low end of the scale, where x≤
l is

the largest integer score with a cumulative percent for X [100F(X)] that is less
than cl ;

and between

• (x≤
h , eY (x≤

h )) and (K X + .5, KY + .5) for scores at the high end of the scale, where
x≤

h is the smallest integer score with a cumulative percent for X [100F(X)] that is
greater than ch .

The authors often use cl = .5 and ch = 99.5, which means that extrapolation occurs
only for raw scores associated with the lowest and highest one-half of a percent
of the frequency distribution. This procedure was used for the results reported in
Fig. 5.4 (Specifically, linear interpolation was used for the scores X = 0, 1, 2, 3 and
X = 34, 35, 36).

5.3 Practical Issues

A series of additional practical issues should be considered when deciding on which
method to use when equating is conducted in practice. First, scale score moments and
conversions should be considered, as was done in Chap. 2. Second, the reasonableness
of assumptions should be evaluated. Third, practical considerations might suggest
that a linear method be used with a particular testing program. For example, suppose
that the major focus of the testing program was on deciding whether examinees
were above or below a cutting score that was near the mean. Then a linear equating

3 The CIPE computer program and EQUATING RECIPES can be used for FE. In addition, EQUAT-
ING RECIPES provides results for MFE and chained equipercentile equating.

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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method (or even a mean equating method) might be considered adequate, because
the results for linear methods are typically similar to those for frequency estimation
equipercentile equating near the mean, and linear methods are less complicated
computationally. Practical issues in choosing among methods are considered further
in Chap. 8.

Sometimes it is possible to equate forms that have items in common when using
the random groups design. Such a design is referred to as the common-item random
groups design. In this design, the use of the common items can lead to greater
precision than would be attained using the random groups design without considering
the common items. Computationally, equipercentile equating could be performed
using any of the three methods discussed in this chapter. The linear methods described
in Chap. 4 also could be applied with this design. The increase in equating precision
that is achieved by using common items is discussed briefly in Chap. 7.

5.4 Exercises

5.1. Using the data in Table 5.1, find the conditional distribution of X given v, and
display the results in a format similar to Table 5.3.

5.2. Using frequency estimation assumptions, find the joint distribution of X and
V in Population 2 and display the results in a format similar to Table 5.4. Also
display the marginal distributions.

5.3. Using the data in Tables 5.1 and 5.4, the results shown in Table 5.4, the results
from Exercise 5.2, and assuming that w1 = w2 = .5, find the Form Y equiper-
centile equivalents of Form X integer scores 0, 1, 2, 3, 4, and 5.

5.4. Find the Braun-Holland and Tucker linear equations for the equating rela-
tionship for the data in the example associated with Tables 5.1 and 5.2 for
w1 = w2 = .5.

5.5. Do the relationships between X and V and Y and V in Tables 5.1 and 5.2 appear
to be linear? How can you tell? How would you explain the difference in results
for the Braun-Holland and Tucker methods in Exercise 5.4?

5.6. Use chained equipercentile equating to find the Form Y equivalents of Form X
integer scores 1 and 3 using the data in Tables 5.1 and 5.2.

References

Angoff, W. H. (1971). Scales, norms, and equivalent scores. In R. L. Thorridike (Ed.), Educational
measurement (2nd ed., pp. 508–600). Washington, DC: American Council on Education.

Braun, H. I., & Holland, P. W. (1982). Observed-score test equating: A mathematical analysis of
some ETS equating procedures. In P. W. Holland & D. B. Rubin (Eds.), Test equating (pp. 9–49).
New York: Academic.

Brennan, R. L., & Lee, W. (2006). Correcting for bias in single-administration decision consis-
tency indexes. Iowa City, IA: Center for Advanced Studies in Measurement and Assessment,

http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_7


References 167

The University of Iowa. Available on http://www.education.uiowa.edu/centers/casma. (CASMA
Research Report No. 18)

Chen, H., & Holland, P. W. (2010). New equating methods and their relationships with Levine
observed score linear equating under the kernel equating framework. Psychometrika, 75, 542–
557.

Chen, H., Livingston, S. A., & Holland, P. W. (2011). Generalized equating functions for NEAT
designs. In A. A. von Davier (Ed.), Statistical models for test equating, scaling, and linking
(pp. 185–200). New York: Springer.

Dorans, N. J. (1990). Equating methods and sampling designs. Applied Measurement in Education,
3, 3–17.

Draper, N. R., & Smith, H. (1998). Applied regression analysis (3rd ed.). New York: Wiley-
Interscience.

Hagge, S. L., & Kolen, M. J. (2011). Equating mixed-format tests with format representative and
non-representative common items. In M. J. Kolen & W. Lee (Eds.), Mixed-format tests: Psycho-
metric properties with a primary focus on equating (volume 1). (CASMA Monograph Number
2.1) (pp. 95–135). Iowa City, IA: CASMA, The University of Iowa.

Hagge, S. L., & Kolen, M. J. (2012). Effects of group differences on equating using operational and
pseudo-tests. In M. J. Kolen & W. Lee (Eds.), Mixed-format tests: Psychometric properties with
a primary focus on equating (volume 2). (CASMA Monograph Number 2.2) (pp. 45–86). Iowa
CIty, IA: CASMA, The University of Iowa.

Hanson, B. A. (1991). A comparison of bivariate smoothing methods in common-item equipercentile
equating. Applied Psychological Measurement, 15, 391–408.

Harris, D. J., & Kolen, M. J. (1990). A comparison of two equipercentile equating methods for
common item equating. Educational and Psychological Measurement, 50, 61–71.

Holland, P. W., Sinharay, S., von Davier, A. A., & Han, N. (2008). An approach to evaluating the
missing data assumptions of the chain and post-stratification equating methods for the NEAT
design. Journal of Educational Measurement, 45, 17–43.

Holland, P. W., & Thayer, D. T. (1987). Notes on the use of log-linear models for fitting discrete
probability distributions. Princeton, NJ: Educational Testing Service. (Technical Report 87–79)

Holland, P. W., & Thayer, D. T. (1989). The kernel method of equating score distributions. Princeton,
NJ: Educational Testing Service. (Technical Report 89–84)

Holland, P. W., & Thayer, D. T. (2000). Univariate and bivariate loglinear models for discrete test
score distributions. Journal of Educational and Behavioral Statistics, 25, 133–183.

Jarjoura, D., & Kolen, M. J. (1985). Standard errors of equipercentile equating for the common
item nonequivalent populations design. Journal of Educational Statistics, 10, 143–160.

Karabatsos, G., & Walker, S. (2009). A Bayesian nonparametric approach to test equating. Psy-
chometrika, 74, 211–232.

Karabatsos, G., & Walker, S. (2011). A Bayesian nonparameteric model for test equating. In A. A.
von Davier (Ed.), Statistical models for test equating, scaling, and linking (pp. 175–184). New
York: Springer.

Kolen, M. J., & Jarjoura, D. (1987). Analytic smoothing for equipercentile equating under the
common item nonequivalent populations design. Psychometrika, 52, 43–59.

Lee, W., He, Y., Hagge, S. L., Wang, W., & Kolen, M. J. (2012). Equating mixed-format tests using
dichotomous common items. In M. J. Kolen & W. Lee (Eds.), Mixed-format tests: Psychometric
properties with a primary focus on equating (volume 2). (CASMA Monograph Number 2.2) (pp.
13–44). Iowa CIty, IA: CASMA, The University of Iowa.

Liou, M., & Cheng, P. E. (1995). Equipercentile equating via data-imputation techniques. Psy-
chometrika, 60, 119–136.

Liu, C., & Kolen, M. J. (2011). A comparison among IRT equating methods and traditional equating
methods for mixed-format tests. In M. J. Kolen & W. Lee (Eds.), Mixed-format tests: Psychometric
properties with a primary focus on equating (volume 1). (CASMA Monograph Number 2.1)
(pp. 75–94). Iowa City, IA: CASMA, The University of Iowa.

http://www.education.uiowa.edu/centers/casma


168 5 Nonequivalent Groups: Equipercentile Methods

Livingston, S. A. (1993). Small-sample equating with log-linear smoothing. Journal of Educational
Measurement, 30, 23–39.

Livingston, S. A., Dorans, N. J., & Wright, N. K. (1990). What combination of sampling and
equating methods works best? Applied Measurement in Education, 3, 73–95.

Livingston, S. A., & Feryok, N. J. (1987). Univariate vs. bivariate smoothing in frequency estimation
equating. Princeton, NJ: Educational Testing Service. (Research Report 87–36)

Lord, F. M. (1965). A strong true score theory with applications. Psychometrika, 30, 239–270.
Marco, G. L., Petersen, N. S., & Stewart, E. E. (1983). A test of the adequacy of curvilinear score

equating models. In D. Weiss (Ed.), New horizons in testing (pp. 147–176). New York: Academic.
Moses, T., & Holland, P. W. (2010a). The effects of selection strategies for bivariate loglinear

smoothing models on NEAT equating functions. Journal of Educational Measurement, 47,
76–91.

Moses, T., & Holland, P. W. (2010b). A comparison of statistical selection strategies for univariate
and bivariate log-linear models. British Journal of Mathematical and Statistical Psychology, 63,
557–574.

Powers, S. J., Hagge, S. L., Wang, W., He, Y., Liu, C., & Kolen, M. J. (2011). Effects of group
differences on mixed-format equating. In M. J. Kolen & W. Lee (Eds.), Mixed-format tests:
Psychometric properties with a primary focus on equating (volume 1). (CASMA Monograph
Number 2.1) (pp. 51–73). Iowa City, IA: CASMA, The University of Iowa.

Powers, S. J., & Kolen, M. J. (2011). Evaluating equating accuracy and assumptions for groups
that differ in performance. In M. J. Kolen & W. Lee (Eds.), Mixed-format tests: Psychometric
properties with a primary focus on equating (volume 1). (CASMA Monograph Number 2.1)
(pp. 137–175). Iowa City, IA: CASMA, The University of Iowa.

Powers, S. J., & Kolen, M. J. (2012). Using matched samples equating methods to improve equating
accuracy. In M. J. Kolen & W. Lee (Eds.), Mixed-format tests: Psychometric properties with a
primary focus on equating (volume 2). (CASMA Monograph Number 2.2) (pp. 87–114). Iowa
CIty, IA: CASMA, The University of Iowa.

Rosenbaum, P. R., & Thayer, D. (1987). Smoothing the joint and marginal distributions of scored
two-way contingency tables in test equating. British Journal of Mathematical and Statistical
Psychology, 40, 43–49.

Sinharay, S. (2011). Chain equipercentile equating and frequency estimation equipercentile equat-
ing: Comparisons based on real and simulated data. In N. J. Dorans & S. Sinharay (Eds.), Looking
Back: Proceedings of a Conference in Honor of Paul W. Holland. Lecture Notes in Statistics 202
(pp. 203–219). New York: Springer.

Sinharay, S., & Holland, P. W. (2010a). The missing data assumptions of the NEAT design and their
implications for test equating. Psychometrika, 75, 309–327.

Sinharay, S., & Holland, P. W. (2010b). A new approach to comparing several equating methods in
the context of the NEAT design. Journal of Educational Measurement, 47, 261–285.

Sinharay, S., Holland, P. W., & von Davier, A. A. (2011). Evaluating the missing data assumptions
of the chain and poststratification equating methods. In A. A. von Davier (Ed.), Statistical models
for test equating, scaling, and linking (pp. 281–296). New York: Springer.

von Davier, A. A., Holland, P. W., & Thayer, D. T. (2004a). The kernel method of test equating.
New York: Springer.

von Davier, A. A., Holland, P. W., & Thayer, D. T. (2004b). The chain and post-stratification methods
for observed-score equating: Their relationship to population invariance. Journal of Educational
Measurement, 41, 15–32.

Wang, T., & Brennan, R. L. (2006). A modified frequency estimation equating method for the
common-item non-equivalent groups design. Iowa City, IA: Center for Advanced Studies in Mea-
surement and Assessment, The University of Iowa. Available on http://www.education.uiowa.
edu/centers/casma (CASMA Research Report No. 19)

http://www.education.uiowa.edu/centers/casma
http://www.education.uiowa.edu/centers/casma


References 169

Wang, T., & Brennan, R. L. (2009). A modified frequency estimation equating method for the
common-item non-equivalent groups design. Applied Psychological Measurement, 33, 118–132.

Wang, T., Lee, W., Brennan, R. L., & Kolen, M. J. (2008). A comparison of the frequency estima-
tion and chained equipercentile methods under the common-item non-equivalent groups design.
Applied Psychological Measurement, 32, 632–651.



Chapter 6
Item Response Theory Methods

Item response theory (IRT) methods are used in many testing applications, and the
use of IRT has been informed by a variety of general treatments (e.g., Baker and Kim
2004; de Ayala 2009; Hambleton and Swaminathan 1985; Hambleton et al. 1991;
Lord 1980; Nering and Ostini 2010; Reckase 2009; van der Linden and Hambleton
1997; Wright and Stone 1979; Yen and Fitzpatrick 2006). Applications of IRT include
test development, item banking, differential item functioning, adaptive testing, test
equating, and test scaling. A major appeal of IRT is that it provides an integrated
psychometric framework for developing and scoring tests. Much of the power of IRT
results from the fact that it explicitly models examinee responses at the item level,
whereas, for example, the focus of classical test models and strong true score models
is on responses at the level of test scores.

Unidimensional IRT models have been developed for tests that are intended to
measure a single dimension, and multidimensional IRT models have been developed
for tests that are intended to measure simultaneously along multiple dimensions. IRT
models have been developed for tests whose items are scored dichotomously (0/1)
as well as for tests whose items are scored polytomously (e.g., a short answer test
in which examinees can earn a score of 0, 1, or 2 on each item). See Thissen and
Steinberg (1986) for a taxonomy of IRT models.

Many testing programs use unidimensional IRT models to assemble tests. In these
testing programs, the use of IRT equating methods often seems natural. Also, IRT
methods can be used for equating in some situations in which traditional methods
typically are not used, such as equating to an item pool. Thus, IRT methods are
an important component of equating methodology. However, IRT models gain their
flexibility by making strong statistical assumptions, which likely do not hold precisely
in real testing situations. For this reason, studying the robustness of the models to
violations of the assumptions, as well as studying the fit of the IRT model, is a crucial
aspect of IRT applications. See Hambleton and Swaminathan (1985) and Hambleton
et al. (1991) for general discussions of testing model fit, and see von Davier and
Wilson (2007) for a detailed discussion of the assumptions made in IRT equating
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with the common item nonequivalent groups design along with an example of how
to test these assumptions.

The initial focus of this chapter is on equating scores on test forms that contain
dichotomously (0/1) items using the unidimensional IRT model referred to as the
three-parameter logistic model (Lord 1980). This model, which is described more
fully later in this chapter, is the most general unidimensional model for dichotomously
scored test items that is in widespread use. The Rasch model (Rasch 1960; Wright
and Stone 1979) also is discussed briefly. In this chapter, after an introduction to IRT,
methods of transforming IRT scales are discussed. Then IRT true score equating and
IRT observed score equating are treated. The methods are illustrated using the same
data that were used in Chaps. 4 and 5. Equating using IRT-based item pools also is
discussed. Equating with polytomous IRT models is considered near the end of this
chapter. Issues in equating computer administered and computer adaptive tests are
considered in Chap. 8.

As is described more fully later in this chapter, equating using IRT typically is
a three-step process. First, item parameters are estimated using computer software.
Second, parameter estimates are scaled to a base IRT scale using a linear transfor-
mation. Third, if number-correct scoring is used, number-correct scores on the new
form are converted to the number-correct scale on an old form and then to scale
scores.

6.1 Some Necessary IRT Concepts

A description of some necessary concepts in IRT for tests consisting of dichotomously
scored items is presented here to provide a basis for understanding unidimensional
IRT equating of dichotomously scored tests. References cited earlier provide a much
more complete presentation of IRT. Instructional modules on IRT by Harris (1989)
and on IRT equating by Cook and Eignor (1991) can be used as supplements to the
material presented here.

6.1.1 Unidimensionality and Local Independence Assumptions

Unidimensional item response theory (IRT) models for dichotomously (0/1) scored
tests assume that examinee ability is described by a single latent variable, referred to
as θ, defined so that −∗ < θ < ∗. The use of a single latent variable implies that
the construct being measured by the test is unidimensional. In practical terms, the
unidimensionality assumption in IRT requires that tests measure only one ability. For
example, a mathematics test that contains some items that are strictly computational
and other items that involve verbal material likely is not unidimensional.

The item characteristic curve for each item relates the probability of correctly
answering the item to examinee ability. The item characteristic curve for item j is

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_5
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
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symbolized by pj(θ), which represents the probability of correctly answering item
j for examinees with ability θ. For example, if 50 % of the examinees with ability
θ = 1.5 can be expected to answer item 1 correctly, then the probability can be
symbolized as p1(θ = 1.5) = .5. Note that pj is written as a function of the variable
θ. IRT models typically assume a specified functional form for the item characteristic
curve, which is what distinguishes IRT models from one another.

An assumption of local independence is made in applying IRT models. Local inde-
pendence means that, after taking into account examinee ability, examinee responses
to the items are statistically independent. Under local independence, the probability
that examinees of ability θ correctly answer both item 1 and item 2 equals the prod-
uct of the probability of correctly answering item 1 and the probability of correctly
answering item 2. For example, if examinees of ability θ = 1.5 have a .5 probability
of answering item 1 correctly and a .6 probability of answering item 2 correctly, for
such examinees the probability of correctly answering both items correctly under
local independence is .30 = .50(.60).

The local independence assumption implies that there are no dependencies among
examinee responses to items other than those that are attributable to latent ability. One
example where local independence likely would not hold is when tests are composed
of sets of items that are based on common stimuli, such as reading passages or
charts. In this case, local independence probably would be violated because examinee
responses to items associated with one stimulus are likely to be more related to one
another than examinee responses to items associated with another stimulus.

Although the IRT unidimensionality and local independence assumptions might
not hold strictly, they might hold closely enough for IRT to be used advantageously in
many practical situations. In using IRT equating, it is important to choose an equating
design that minimizes the effects of violations of model assumptions.

6.1.2 IRT Models

Various IRT models are in use that differ in the functional form of the item charac-
teristic curve. Among unidimensional models, the three-parameter logistic model is
the most general of the forms in widespread use. In this model, the functional form
for an item characteristic curve is characterized by three item parameters. Under the
three-parameter logistic model, the probability that persons of ability equal to the
ability of person i correctly answer item j is defined as

pij = pij(θi; aj, bj, cj) = cj + (1 − cj)
exp[Daj(θi − bj)]

1 + exp[Daj(θi − bj)] . (6.1)

In this equation, θi is the ability parameter for person i. Ability, θ, is defined over
the range −∗ < θ < ∗ and often is scaled to be normally distributed with a
mean of 0 and standard deviation of 1. In this case, nearly all of the persons have θ
values in the range −3 to +3. The expression “exp” in Eq. (6.1) stands for the natural
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exponential function. That is, the quantity in brackets after exp is the exponent of
e = 2.71828 . . . . The constant D typically is set to 1.7 so that the logistic item
response curve and the normal ogive differ by no more than .01 for all values of θ.

The item parameters aj, bj, and cj are associated with item j. The meanings of
these parameters are illustrated in the portion of Table 6.1 labeled “Item Parameters”
and in Fig. 6.1. For now, consider only the item parameters for the three items listed
below the labeled portion “Scale I” on the left-hand side of the table. Also ignore
the I subscript for the present.

The item parameter cj is the lower asymptote or pseudo-chance level parameter
for item j. The parameter cj represents the probability that an examinee with very low
ability (actually, θ = −∗) correctly answers the item. For example, for low ability
examinees, the curve for item 3 in Fig. 6.1 appears to be leveling off (have a lower
asymptote) at a probability of .18, which corresponds to the c-parameter for this item
listed in Table 6.1. If the horizontal axis in Fig. 6.1 were extended beyond θ = −3,
items 1 and 2 would appear to have the lower asymptotes of .10 and .17 shown in
Table 6.1. The c-parameter for an item must be in the range 0 to 1. Typically, the
c-parameter for an item is somewhere in the range of 0 to the probability of correctly
answering an item by random guessing (1 divided by the number of options).

The item parameter bj is referred to as the difficulty or location parameter for
item j. The logistic curve has an inflexion point at θ = b. When c = 0, b is the
level of ability where the probability of a correct answer is .5. Otherwise, b is the
ability level where the probability of a correct response is halfway between c and 1.0.
The inflexion point of each curve is indicated by the circular symbol on each item
characteristic curve in Fig. 6.1. Typically, b is in the range −3 to +3. Higher values
of b are associated with more difficult items. As an illustration, item 3 has the highest
b-parameter in Table 6.1. Of the three items in Fig. 6.1, the item characteristic curve
for item 3 tends to be shifted the farthest to the right.

The item parameter aj is referred to as the discrimination parameter for item j.
The a-parameter is proportional to the slope of the item characteristic curve at the
inflexion point. As can be seen in Table 6.1, item 3 has the highest a-parameter (1.7)
and item 3 also has the steepest item characteristic curve in Fig. 6.1.

The abilities for two persons are shown in the middle of Table 6.1 under
the heading “Person Abilities.” The probabilities of correctly answering each of
the three items for examinees of ability θ = −2.00 and θ = 1.00 are shown at the
bottom of Table 6.1 under the heading “Probability of Correctly Answering Items.”
For example, the probability of person i = 1 with ability θIi = −2.00 correctly
answering the first item can be calculated as follows using Eq. (6.1):

pij = .10 + (1 − .10)
exp{1.7(1.30)[−2.00 − (−1.30)]}

1 + exp{1.7(1.30)[−2.00 − (−1.30)]} = .26.

The reader should verify the computation of the other probabilities by substituting
the abilities and item parameters into Eq. (6.1).

Various simplifications of the three-parameter logistic model have been used.
One variation can be obtained by setting cj equal to a constant other than 0. The
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Table 6.1 Item and person parameters on two scales for a hypothetical test

Scale I Scale J

Item parameters
Item aIj bIj cIj aJj bJj cJj

j = 1 1.30 −1.30 .10 2.60 −1.15 .10
j = 2 .60 − .10 .17 1.20 −.55 .17
j = 3 1.70 .90 .18 3.40 −.05 .18

Person abilities
Person θIi θJi

i = 1 −2.00 −1.50
i = 2 1.00 .00

Scale transformation constants
A = .5 B = −.5

Probability of correctly answering items
pij(θIi; aIj, bIj, cIj) pij(θJi; aJj, bJj, cJj)

Person Person
Item i = 1 i = 2 i = 1 i = 2
j = 1 .26 .99 .26 .99
j = 2 .27 .80 .27 .80
j = 3 .18 .65 .18 .65

Fig. 6.1 Hypothetical
example of scale
transformations
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two-parameter logistic model is obtained from Eq. (6.1) by setting cj equal to 0.
This model does not explicitly accommodate examinee guessing. The Rasch model
is obtained from Eq. (6.1) by setting cj equal to 0, aj equal to 1, and D equal to 1. The
Rasch model, therefore, requires all items to be equally discriminating, and it does
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not explicitly accommodate guessing. Other models exist that use a normal ogive to
model pij.

The three-parameter logistic model is the only one of the three models presented
that explicitly accommodates items which vary in difficulty, which vary in discrim-
ination, and for which there is a nonzero probability of obtaining the correct answer
by guessing. Because of its generality, the three-parameter model is the focus of
this chapter. However, the assumed form of the relationship between ability and the
probability of a correct response (e.g., the three-parameter logistic curve) is chosen
primarily for reasons of mathematical tractability. No reason exists for this relation-
ship to hold, precisely, for actual test items.

6.1.3 IRT Parameter Estimation

IRT item and ability parameters need to be estimated when using IRT methods in
practice. Two general approaches to estimating item and ability parameters are joint
maximum likelihood and marginal maximum likelihood. These estimation procedures
are described in detail by Baker and Kim (2004) and de Ayala (2009) and are only
briefly summarized here.

In joint maximum likelihood, preliminary ability estimates along with exami-
nee item responses are used to estimate item parameters by maximum likelihood
procedures. The estimated item parameters are then used to update the ability esti-
mates by maximum likelihood procedures. The updated ability estimates are used
to update the estimates of the item parameters, and this type of back-and-forth pro-
cedure is repeated until the parameter estimates stabilize. The LOGIST computer
software (Wingersky et al. 1982) uses joint maximum likelihood methods with the
three-parameter logistic model. LOGIST is not used very much because parameter
estimation for the three-parameter logistic model appears to be more stable, and
is on a firmer statistical foundation, with marginal maximum likelihood methods.
Parameter estimation for the Rasch model often is conducted using joint maximum
likelihood procedures using computer software such as WINSTEPS (Linacre 2001).

Marginal maximum likelihood begins by specifying a prior probability distribu-
tion for ability (often standard normal) in the population of examinees. Item parame-
ters are estimated assuming this prior distribution of ability. The prior distribution of
ability often is updated during the estimation process. The outcome from applying
marginal maximum likelihood methods is a set of item parameter estimates for each
of the items and a posterior distribution of examinee ability.

Examinee ability parameter estimates are not provided by the marginal maximum
likelihood method. Ability parameters can be estimated for each examinee from the
examinee’s item responses along with the item parameter estimates and the posterior
ability distribution that result from application of the marginal maximum likeli-
hood method. Computer software such as BILOG-MG (Zimowski et al. 2003), ICL
(Hanson 2002), MULTILOG (Thissen et al. 2003), and PARSCALE (Muraki and
Bock 2003) can be used to implement the marginal maximum likelihood method.
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Unless the user chooses otherwise, ability parameters are scaled to have a mean
of approximately 0 and standard deviation of approximately 1 with these software
packages.

One important characteristic of ability estimation for the three-parameter logistic
model is that the ability estimates depend on the pattern of item responses, rather
than just on the number of items an examinee answers correctly. That is, examinees
who earn the same number-correct score would likely earn different estimated θ’s
if some of the items that they correctly answered were different. The use of such
pattern scoring in IRT increases the precision of the IRT ability estimates over
using the number-correct score if the IRT model holds. However, for many practical
applications, including equating, number-correct scoring often is used. Different IRT
ability parameter estimates are discussed in Chap. 9.

6.2 Transformations of IRT Scales

When conducting equating with nonequivalent groups, the parameters from different
test forms need to be on the same IRT scale. However, the parameter estimates that
result from IRT parameter estimation procedures are often on different IRT scales.
For example, assume that the parameters for the IRT model are estimated for Form
X based on a sample of examinees from Population 1 and separately for Form Y
based on a sample of examinees from Population 2, where the two populations
are not equivalent. As was already indicated, computer software often defines the
θ-scale as having a mean of 0 and a standard deviation of 1 for the set of data being
analyzed. In this case, the abilities for each group would be scaled to have a mean
of 0 and a standard deviation of 1, even though the groups differed in ability. Thus,
a transformation of IRT scales is needed.

As is demonstrated later in this section, if an IRT model fits a set of data, then any
linear transformation of the θ-scale also fits the set of data, provided that the item
parameters also are transformed. When the IRT model holds, the parameter estimates
from different computer runs are on linearly related θ-scales. Thus, a linear equation
can be used to convert IRT parameter estimates to the same scale. After conversion,
the means and standard deviations of the abilities for the two groups on the common
scale would be expected to differ. The resulting transformed parameter estimates,
which sometimes are referred to as being calibrated, then can be used to establish
score equivalents between number-correct scores on Form X and Form Y, and then
to scale scores.

6.2.1 Transformation Equations

Define Scale I and Scale J as three-parameter logistic IRT scales that differ by a
linear transformation. Then the θ-values for the two scales are related as follows:

http://dx.doi.org/10.1007/978-1-4939-0317-7_9
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θJi = AθIi + B, (6.2)

where A and B are constants in the linear equation and θJi and θIi are values of θ for
individual i on Scale J and Scale I . The item parameters on the two scales are related
as follows:

aJj = aIj

A
, (6.3)

bJj = AbIj + B, (6.4)

and
cJj = cIj, (6.5)

where aJj, bJj, and cJj are the item parameters for item j on Scale J and aIj, bIj, and
cIj are the item parameters for item j on Scale I . The lower asymptote parameter is
independent of the scale transformation, as is indicated by Eq. (6.5).

6.2.2 Demonstrating the Appropriateness of Scale Transformations

To demonstrate that there is an A and a B which result in the scale transformation
that correctly transforms parameters from Scale I to Scale J , note that the right-hand
side of Eq. (6.1) for Scale J equals

cJj + (1 − cJj)
exp[DaJj(θJi − bJj)]

1 + exp[DaJj(θJi − bJj)] .

Now replace θJi, aJj, bJj, cJj with the expressions from Eqs. (6.2)–(6.5) as follows:

cIj + (1 − cIj)

exp
{

D
aIj

A
[AθIi + B − (AbIj + B)]

}

1 + exp
{

D
aIj

A
[AθIi + B − (AbIj + B)]

}

= cIj + (1 − cIj)
exp[DaIj(θIi − bIj)]

1 + exp[DaIj(θIi − bIj)] .

This resulting expression is the right-hand portion of Eq. (6.1) for Scale I , which
demonstrates that A and B in Eqs. (6.2)–(6.5) provide the scale transformation.
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6.2.3 Expressing A and B Constants

One way to express the constants A and B is as follows. For any two individuals, i
and i≥, or any two items, j and j≥, A and B in Eqs. (6.2)–(6.5) can be expressed as

A = θJi − θJi≥

θIi − θIi≥
= bJj − bJj≥

bIj − bIj≥
= aIj

aJj
(6.6)

and
B = bJj − AbIj = θJi − AθIi. (6.7)

To illustrate these equalities, refer back to Table 6.1 and Fig. 6.1 for a hypothetical
example of scale transformations. Parameters for three items are presented in the
portion of Table 6.1 labeled “Item Parameters.” Parameters for these items are given
for Scale I and for Scale J . The item characteristic curves for these three items are
presented in Fig. 6.1. Note that horizontal scales are presented in this figure for Scale
I and Scale J , and these are labeled θI and θJ . As is evident from this figure, the item
characteristic curves are the same shape on either scale. To calculate A from Eq. (6.6)
using the difficulty parameters for items 1 and 2 (j = 1 and j≥ = 2), take

A = (−1.15) − (−.55)

(−1.30) − (−.10)
= −.6

−1.2
= .5.

Alternatively, using the slope parameters for item 1,

A = 1.3

2.6
= .5.

Using Eq. (6.7) with the difficulty parameters for item 1,

B = (−1.15) − (.5)(−1.30) = −.5.

These values agree with those in the section labeled “Scale Transformation Con-
stants” in Table 6.1. Equations (6.6) and (6.7) also can be used to calculate A and B
using the θ-values for Persons 1 and 2. These A and B values can be used to transform
parameters from Scale I to Scale J using Eqs. (6.2)–(6.5). For example, to transform
the ability of Person 1 from Scale I to Scale J using Eq. (6.2), take

θJ1 = AθI1 + B = .5(−2.00) + (−.5) = −1.5,

which is the value for Person 1 shown under “Person Abilities” in Table 6.1. To
convert the parameters for item 3 from Scale I to Scale J using Eqs. (6.3)–(6.5), take
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aJ3 = aI3

A
= 1.7

.5
= 3.4,

bJ3 = AbI3 + B = .5(.90) − .5 = −.05,

and
cJ3 = cI3 = .18.

These values agree with the Scale J values in the portion of Table 6.1 labeled “Item
Parameters.”

The pij values based on Eq. (6.1) are presented in the portion of Table 6.1 labeled
“Probability of Correctly Answering Items.” These values can be calculated from
the item and person parameters presented in Table 6.1; they are the same for Scales I
and J , and the pij values will be identical for any linearly related scales. This property
often is referred to as indeterminacy of scale location and spread.

6.2.4 Expressing A and B Constants in Terms of Groups of Items
and/or Persons

So far, the relationships between scales have been expressed by two abilities and two
items. Often, it is more useful to express the relationships in terms of groups of items
or people. From Eqs. (6.6) and (6.7) it follows that (see Exercise 6.3)

A = σ(bJ)

σ(bI)
, (6.8a)

= μ(aI)

μ(aJ)
, (6.8b)

= σ(θJ)

σ(θI)
, (6.8c)

B = μ(bJ) − Aμ(bI), and (6.9a)

= μ(θJ) − Aμ(θI). (6.9b)

The means μ(bJ), μ(bI), μ(aI ), and μ(aJ) in these equations are defined over one
or more items with parameters that are expressed on both Scale I and Scale J .
The standard deviations σ(bJ) and σ(bI) are defined over two or more items with
parameters that are expressed on both Scale I and Scale J . The means μ(θJ) and μ(θI)

are defined over one or more examinees with ability parameters that are expressed
on both Scale I and Scale J . The standard deviations σ(θJ) and σ(θI) are defined
over two or more examinees with parameters that are expressed on both Scale I and
Scale J .
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To illustrate the use of Eqs. (6.8a), (6.8b), and (6.9a), the following quantities can
be calculated for the three items from the example in Table 6.1: μ(bI) = −.1667,
σ(bI) = .8994, μ(aI ) = 1.2, μ(bJ) = −.5833, σ(bJ) = .4497, and μ(aJ) = 2.4.
From Eqs. (6.8) and (6.9),

A = σ(bJ)

σ(bI)
= μ(aI)

μ(aJ)
= .4497

.8994
= 1.2000

2.4000
= .5000,

and
B = μ(bJ) − Aμ(bI) = −.5833 − .5000(−.1667) = −.5000.

Similar calculations can be made using the mean and standard deviations for the two
ability scales in Table 6.1.

In equating with nonequivalent groups, parameter estimates for the common items
would be available for examinees in the two groups. The parameter estimates on the
common items could be used to find the scaling constants by substituting estimates
for these parameters in the preceding equations.

Consider a situation in which the mean and standard deviation of the abilities on
Scale I are known for one group of examinees. Also, the mean and standard deviation
of the abilities are known for a different group of examinees on Scale J . Is there any
way Eqs. (6.8c) and (6.9b) can be used to transform Scale I to Scale J? No! These
equations can be used only if the parameters for the same group of examinees are
expressed on both scales.

Consider a different situation, in which the mean and standard deviation of abilities
on Scale I are 0 and 1, respectively. For the same group of examinees, the mean and
standard deviation of abilities are 50 and 10, respectively, on Scale J . Can Eqs. (6.8c)
and (6.9b) be used to transform parameters from Scale I to Scale J? Yes. The resulting
scaling constants calculated using Eqs. (6.8c) and (6.9b) are as follows:

A = σ(θJ)

σ(θI)
= 10

1
= 10 and B = μ(θJ) − Aμ(θI) = 50 − 10(0) = 50.

These equations might be used to transform IRT parameters to a different scale when
the means and standard deviations of the abilities are known.

6.3 Transforming IRT Scales When Parameters are Estimated

The estimation of item parameters complicates the problem of transforming IRT
scales. The process that needs to be followed depends on the design used for data
collection.
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6.3.1 Designs

In the random groups equating design, the IRT parameters for Form X can be esti-
mated separately from the parameters for Form Y. If the same scaling convention
(e.g., mean of 0 and standard deviation of 1) for ability is used in the separate esti-
mations, then the parameter estimates for the two forms are assumed to be on the
same scale without further transformation. No further transformation is assumed to
be required because the groups are randomly equivalent, and the abilities are scaled
to have the same mean and standard deviation in both groups. If, for some reason,
different scaling conventions were used for the two forms, then estimates of the mean
and standard deviations of the posterior distributions or of the θ-estimates could be
used in place of the mean and standard deviations of the θ-parameters in Eqs. (6.8c)
and (6.9b).

In the single group design with counterbalancing, the parameters for all examinees
on both forms can be estimated together. Because the parameters for the two forms
are estimated together on the same examinees, the parameter estimates are assumed
to be on the same scale. If the parameters for the two forms are estimated separately
using the same scaling conventions, the parameter estimates can be assumed to be
on the same scale following the logic discussed previously for the random groups
design.

In the common-item nonequivalent groups equating design, the Form Y item and
ability parameters typically are estimated at the time Form Y is first administered.
Consequently, only the Form X parameters need to be estimated when Form X is
equated to Form Y. Because the examinees who took Form X are not considered to
be equivalent to the examinees who took Form Y, parameter estimates for the two
estimations are not on the same scale. However, there is a set of items that is common
to the two forms. The estimates of the item parameters for these common items can
be used to estimate the scale transformation.

As an alternative, the parameters for Form X and Form Y can be estimated together.
This type of estimation is often referred to as concurrent calibration (Wingersky and
Lord 1984). For example, a single run of BILOG-MG (Zimowski et al. 2003) can
be conducted using the item level data for Form X and Form Y on the two examinee
groups, indicating which items are common to the two forms, and indicating to
which group (group taking Form X or group taking Form Y) the examinee belongs.
In conducting the parameter estimation it is important to use the multi-group feature
of BILOG-MG (MG stands for multigroup) because DeMars (2002) showed that item
parameter estimates are biased when using marginal maximum likelihood estimation
that does not take into account group differences and examinee groups taking the
alternate forms differ in ability.

Another alternative is to fix the item parameters for the common items to those
estimated on the old form when calibrating the items on the new form. This process
is referred to as fixed parameter calibration. When there are substantial differences
in ability between the old and new examinee groups and this procedure is used,
fixed parameter calibration can lead to biased item parameter estimates. Such bias
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occurs because the IRT ability scale typically is defined as having a mean of 0 and
standard deviation of 1 for the old group of examinees as well as for the new group
of examinees. This issue was identified and shown to lead to bias by Paek and Young
(2005) and Kim (2006); in these studies it was found that bias could be reduced
using strategies involving multiple runs of IRT estimation software. DeMars and
Jurich (2012) described how to avoid such bias in a single run of BILOG-MG. Keller
and Keller (2011) and Li et al. (2004) also investigated fixed parameter procedures.
Because of the associated complexities, fixed parameter calibration is not considered
further in this chapter.

Parameter estimates must be on the same scale to proceed with equating number-
correct scores on alternate forms and converting them to scale scores. Methods for
equating number-correct scores are described later in this chapter.

6.3.2 Mean/Sigma and Mean/Mean Transformation Methods

The most straightforward way to transform the scales in the common-item nonequiv-
alent groups design is to substitute the means and standard deviations of the item
parameter estimates of the common items for the parameters in Eqs. (6.8) and (6.9).
After transformation, the item parameter estimates are often referred to as being
calibrated. One procedure, described by Marco (1977) and referred to here as the
mean/sigma method, uses the means and standard deviations of the b-parameter esti-
mates from the common items in place of the parameters in Eqs. (6.8a) and (6.9a).
In another method, described by Loyd and Hoover (1980) and referred to here as the
mean/mean method, the mean of the a-parameter estimates for the common items
is used in place of the parameters in Eq. (6.8b) to estimate the A-constant. Then,
the mean of the b-parameter estimates of the common items is used in place of the
parameters in Eq. (6.9a) to estimate the B-constant. The values of A and B then can
be substituted into Eqs. (6.2)–(6.5) to obtain the rescaled parameter estimates.

When estimates are used in place of the parameters, or when the IRT model does
not hold precisely, the equalities shown in Eqs. (6.8) and (6.9) do not necessarily hold.
So, the mean/sigma and the mean/mean methods typically produce different results.
One reason that the mean/ sigma method is sometimes preferred to the mean/mean
method is that estimates of b-parameters are more stable than estimates of the a-
parameters. However, Baker and Al-Karni (1991) pointed out that the mean/mean
method might be preferable because means are typically more stable than standard
deviations, and the mean/mean method uses only means. Empirical research compar-
ing these two methods is inconclusive, so the approach suggested here is to consider
both procedures, and compare the raw-to-scale score conversions that result from the
application of both methods when equating is conducted.

Mislevy and Bock (1990) recommended a further variation that uses the means
of the b-parameters and the geometric means of the a-parameters. Stocking and
Lord (1983) also discussed procedures for using robust estimates of the means and
standard deviations of estimates of the b-parameters, although they were not satisfied
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with the performance of these robust methods. Linn et al. (1981) described a related
procedure that weights the item parameter estimates by their standard errors.

6.3.3 Characteristic Curve Transformation Methods

One potential problem with the methods considered so far arises when various com-
binations of a-, b-, and c-parameter estimates produce almost identical item charac-
teristic curves over the range of ability at which most examinees score. For example,
in two estimations an item with very different b-parameter estimates could have very
similar item characteristic curves. In this case, the mean/sigma method could be
overly influenced by the difference between the b-parameter estimates, even though
the item characteristic curves for the items on the two estimations were very similar.
This problem arises because the scale conversion methods described so far do not
consider all of the item parameter estimates simultaneously.

In response to this problem, Haebara (1980) presented a method that considers all
of the item parameters simultaneously, and Stocking and Lord (1983) developed a
method similar to Haebara’s. Stocking and Lord (1983) referred to both their method
and the Haebara method as characteristic curve methods. To develop these methods,
note that the indeterminacy of scale location and spread property which was described
earlier implies that, for ability Scales I and J ,

pij
(
θJi; aJj, bJj, cJj

) = pij

(
AθIi + B; aIj

A
,AbIj + B, cIj

)
(6.10)

for examinee i and item j. Equation (6.10) states that the probability that examinees
of a given ability will answer a particular item correctly is the same regardless of the
scale that is used to report the scores.

If estimates are used in place of the parameters in Eq. (6.10), then there is no
guarantee that the equality will hold over all items and examinees for any A and B.
This lack of equality is exploited by the characteristic curve methods.

Haebara Approach

The function used by Haebara (1980) to express the difference between the item
characteristic curves is the sum of the squared difference between the item charac-
teristic curves for each item for examinees of a particular ability. For a given θi, the
sum, over items, of the squared difference can be displayed as

Hdiff (θi) =
⎫
j:V

⎪
pij(θJi; âJj, b̂Jj, ĉJj) − pij

⎬
θJi; âIj

A
,Ab̂Ij + B, ĉIj

⎭]2

. (6.11)
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The summation is over the common items (j:V). In this equation, the difference
between each item characteristic curve on the two scales is squared and summed.

Hdiff then is cumulated over examinees. The estimation process proceeds by
finding A and B that minimize the following criterion:

Hcrit =
⎫

i

Hdiff (θi). (6.12)

The summation in Eq. (6.12) is over examinees.

Stocking and Lord Approach

In contrast to the Haebara approach, Stocking and Lord (1983) used the square
difference of sums, over items,

SLdiff (θi)=
⎡
⎣⎫

j:V
pij

(
θJi; âJj, b̂Jj, ĉJj

)−⎫
j:V

pij

⎬
θJi; âIj

A
,Ab̂Ij + B, ĉIj

⎭⎤
⎦

2

. (6.13)

In the Stocking and Lord (1983) approach, the summation is taken over items for
each set of parameter estimates before squaring. Note that in IRT, the function

τ (θi) =
⎫

j

pij(θi) (6.14)

is referred to as the test characteristic curve. So, the expression SLdiff(θi) is the
squared difference between the test characteristic curves for a given θi. In contrast,
the expression Hdiff(θi) is the sum of the squared difference between the item charac-
teristic curves for a given θi, SLdiff then is cumulated over examinees. The estimation
proceeds by finding the combination of A and B that minimizes the following crite-
rion:

SLcrit =
⎫

i

SLdiff (θi). (6.15)

The summation in Eq. (6.15) is over examinees. The approach to solving for A and
B in Eqs. (6.12) and (6.15) is a computationally intensive iterative approach.

Specifying the Summation Over Examinees

In addition to differences in the function used to express the difference between the
characteristic curves described in Eqs. (6.11) and (6.13), these methods differ in how
they cumulate the differences between the characteristic curves. Various ways to
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specify the examinees have been used in the summations in Eqs. (6.12) and (6.15).
Some of these ways are as follows:

1. Sum over estimated abilities of examinees who were administered the old form
(Stocking and Lord 1983, used a spaced sample of 200 ability estimates).

2. Sum over estimated abilities of examinees who were administered the new form
and sum over estimated abilities of examinees who were administered the old
form (Haebara 1980).

3. Sum over estimated abilities that are grouped into intervals and then weight the
differences by the proportion of examinees in each interval (Haebara 1980).

4. Sum over a set of equally spaced values of ability (Baker and Al-Karni 1991).
5. If the posterior distribution of ability in the population is estimated and repre-

sented by a discrete distribution, which is typically the case when using marginal
maximum likelihood estimation, use a weighted summation over the posterior
ability distribution for the group taking the new form (Zeng and Kolen 1994).

6. If the posterior distribution of ability in the population is estimated and repre-
sented by a discrete distribution, use a weighted summation over the posterior
ability distribution for the examinees who were administered the old form and
a weighted summation over the posterior ability distribution for the group of
examinees who were administered the new form (Kim and Kolen 2007).

A decision needs to be made about which of these options (or others) are used
when implementing the characteristic curve procedures. The computer software ST
and POLYST that is listed in Appendix B can be used to implement these schemes
for summation over examinees; in addition the C computer code described by
Brennan et al. (2009, pp. 223–256) can be used. Although research regarding the
relative accuracy of linking from these different summation procedures has been
inconclusive, Kim and Kolen (2007) recommended that the 6th procedure in the
preceding list is preferable because it is symmetric (i.e., the linking function going
from Form X to Form Y is the the inverse of the linking function going from Form
Y to Form X). In addition, the last method makes use of the estimated posterior dis-
tributions which appears to be preferable from a theoretical perspective when using
marginal maximum likelihood methods.

Hypothetical Example

A hypothetical example is presented in Table 6.2 that illustrates part of the process
of scaling item parameter estimates. Assume that the three items listed are common
items in a common-item nonequivalent groups equating design, and that the resulting
estimates are on different linearly related ability scales. Estimates of A and B based on
these parameter estimates for the mean/sigma and mean/mean methods are presented
in the top portion of Table 6.2. The Scale I parameter estimates are converted to
Scale J in the middle portion of the table. The results for the two methods differ
somewhat. These differences likely would cause some differences in raw-to-scale
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Table 6.2 Hypothetical example for characteristic curve methods using estimated parameters

Scale I Scale J
Item â b̂ ĉ â b̂ ĉ

1 .4000 −1.1000 .1000 .5000 −1.5000 .1000
2 1.7000 .9000 .2000 1.6000 .5000 .2000
3 1.2000 2.2000 .1000 1.0000 2.0000 .1000

Mean 1.1000 .6667 .1333 1.0333 .3333 .1333
Sd .5354 1.3573 .0471 .4497 1.4337 .0471

Mean/Sigma Mean/Mean
A 1.0563 1.0645
B −.3709 −.3763

Scale I Converted to Scale J Scale I Converted to Scale J
Using Mean/Sigma Results Using Mean/Mean Results

Item â b̂ ĉ â b̂ ĉ

1 .3787 −1.5328 .1000 .3758 −1.5473 .1000
2 1.6094 .5798 .2000 1.5970 .5817 .2000
3 1.1360 1.9530 .1000 1.1273 1.9656 .1000

Mean 1.0414 .3333 .1333 1.0333 .3333 .1333
Sd .5069 1.4337 .0471 .5030 1.4449 .0471

Estimated probability of correct response given
θi = 0

Original
Item Scale J Mean/Sigma Mean/Mean

1 .8034 .7556 .7559
2 .3634 .3359 .3367
3 .1291 .1202 .1203

sum 1.2959 1.2118 1.2130

score conversions, which could be studied if equating relationships subsequently
were estimated.

The probability of a correct response, using Eq. (6.1), is shown in the bottom por-
tion of Table 6.2 for examinees with ability θi = 0. In this example, the mean/sigma
and mean/mean methods are compared using Hdiff and SLdiff as criteria. The cri-
teria can be calculated at θi = 0 using the estimated probabilities at the bottom
of Table 6.2.To calculate Hdiff(θi) using Eq. (6.11), sum, over items, the squared
difference between the estimated probabilities for the original Scale J and for the
transformed scale that results from the application of one of the methods. For exam-
ple, for the mean/sigma method,

Hdiff (θi = 0) = (.8034 − .7556)2 + (.3634 − .3359)2 + (.1291 − .1202)2

= .003120.
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Similarly, for the mean/mean method,

Hdiff (θi = 0) = (.8034 − .7559)2 + (.3634 − .3367)2 + (.1291 − .1203)2

= .003047.

Hdiff(θi = 0) is smaller for the mean/mean method than it is for the mean/sigma
method, indicating that the mean/mean method is somewhat “better” than the
mean/sigma method at θi = 0 based on Hdiff(θi).

To calculate SLdiff(θi = 0) using Eq. (6.13), the estimated probabilities are
summed over items, resulting in the sums listed at the bottom of the table. These
sums represent the value of the test characteristic curve at θi = 0. For the mean/sigma
method,

SLdiff (θi = 0) = (1.2959 − 1.2118)2 = .007073.

For the mean/mean method,

SLdiff (θi = 0) = (1.2959 − 1.2130)2 = .006872.

SLdiff(θi = 0) is smaller for the mean/mean method than it is for the mean/sigma
method, indicating that the mean/mean method is somewhat “better” than the
mean/sigma method at θi = 0. Thus, the mean/mean method is “better” at θi = 0 for
both criteria. In using these methods, differences would actually need to be calculated
at many values of θi.

If the scaling were actually done using the characteristic curve methods, Hcrit and
SLcrit would be calculated by summing Hdiff(θi) and SLdiff(θi) over different values
of θi. Also, the iterative minimization algorithms described by Haebara (1980) and
Stocking and Lord (1983) would be used to find the A and B that minimized Hcrit
and SLcrit. Typically, the mean/mean or mean/sigma method estimates of A and B
would be used as starting values in the minimization process.

Comparison of Criteria

Research comparing results for the Hcrit- and SLcrit-based methods have suggested
that they produce similar results (Kim and Kolen 2007) or that they slightly favor the
Hcrit-based methods (Lee and Ban 2010). Theoretically, the Hcrit methods might
be argued to be superior to the SLcrit methods for the following reason: Hdiff(θi)

can be 0 only if the item characteristic curves are identical at θi, whereas SLdiff(θi)

could be 0 even if the item characteristic curves differed. In this sense, Hdiff(θi)

might be viewed as being more stringent than SLdiff(θi). On the other hand, it might
be argued the SLcrit-based methods are preferable theoretically, because they focus
on the difference between test characteristic curves.



6.3 Transforming IRT Scales When Parameters are Estimated 189

One potential limitation of the characteristic curve methods is that they do not
explicitly account for the error in estimating item parameters (See Divgi 1985; Kim
and Cohen 1992; Ogasawara 2001a; for a method that takes into account such error).
The failure to take into account error in estimating item parameters, explicitly, might
not be that crucial when the sample size is large and the item characteristic curves
are well estimated. However, there are situations in which problems might arise.
For example, if considerably larger sample sizes are used to estimate parameters
for one form than for another, then ignoring the error in parameter estimates might
lead to problems in estimating A and B, and in estimating equating relationships.
Empirical research is needed to address this issue. Baker (1996) studied the sampling
distribution of A and B for the Stocking and Lord (1983) method. von Davier and
von Davier (2011) presented a general statistical modeling approach that provides a
framework for many of the scale linking methods.

6.3.4 Comparisons Among Scale Transformation Methods

For dichotomous IRT models, research comparing the characteristic curve methods to
the mean/sigma and mean/mean methods has generally found that the characteristic
curve methods produce more stable results than the mean/sigma and mean/mean
methods (Baker and Al-Karni 1991; Hanson and Béguin 2002; Kim and Cohen 1992;
Lee and Ban 2010; Li et al. 2012; Ogasawara 2001b,c). In addition, Ogasawara (2000)
found that the mean/mean method was more stable than the mean/sigma method.
When Ogasawara (2002) estimated standard errors for item parameters and item
characteristic curves, he found that the item characteristic curves could be estimated
accurately, even when the item parameters were not estimated very precisely. This
finding supports the finding that the test characteristic curve linking methods are
more accurate than the mean/mean and mean/sigma methods. Kaskowitz and De
Ayala (2001) studied the effects of error in estimating item parameters on the test
characteristic curve methods. They found that the methods were robust in the presence
of modest amounts of error, and that the methods were more accurate with 15 or 25
common items than with 5 common items.

Using simulation procedures in which the data fit an IRT model, Kim and Cohen
(1998) compared scale linking using the Stocking and Lord (1983) test characteris-
tic curve method to concurrent calibration using an earlier version of MULTILOG.
They also examined concurrent calibration using an earlier version of BILOG-MG
(BILOG 3, Mislevy and Bock 1990) that did not allow for multi-group estimation,
even though using concurrent calibration with this program was not strictly appro-
priate. The simulations were all based on data that fit the three-parameter logistic
model. For small numbers of common items, Kim and Cohen (1998) found that
concurrent calibration produced less accurate results than did the test characteristic
curve method. Also, with small numbers of common items, concurrent calibration
with MULTILOG produced less accurate results than BILOG. With large numbers of
common items, they found that all of the procedures examined had similar accuracy.
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Also using simulation procedures in which the data fit the IRT model, Hanson and
Béguin (2002) compared the mean/sigma, mean/mean, Stocking and Lord, Haebara,
concurrent calibration methods using BILOG-MG, and concurrent calibration using
MULTILOG. In this study, the concurrent calibration procedures produced more
accurate results than the test characteristic curve methods. The mean/mean and
mean/sigma methods were less accurate than the other methods. Kim and Kolen
(2007) also found that concurrent calibration methods produced more accurate scale
linking than the characteristic curve methods in a simulation study that used BILOG-
MG.

Béguin et al. (2000) and Béguin and Hanson (2001) compared the Stocking and
Lord method to concurrent calibration using simulated data that purposefully did not
fit the IRT model due to multidimensionality. When groups were nonequivalent and
the abilities highly correlated, scaling using the Stocking and Lord method produced
more accurate equating than scaling using concurrent calibration. This finding is
different from what was found by Hanson and Béguin (2002) and Kim and Kolen
(2007) where the data were simulated to fit the IRT model.

As a set, these studies suggest that concurrent calibration with currently available
computer software, although more accurate than separate estimation when the data
fit the IRT model, might be less robust to violations of the IRT assumptions than
separate estimation using test characteristic curve methods to link the scales. One
additional benefit of separate estimation is that it facilitates examining item parameter
estimates for the common items, as was done in Fig. 6.2. These sorts of plots can
be developed only if separate estimation is used, because only one item parameter
estimate for each common item is produced in concurrent calibration. In practice,
separate estimation using the test characteristic curve methods seems to be safest.
Concurrent calibration could be used as an adjunct to the separate estimation method.

If concurrent calibration is not used and software for implementing the test char-
acteristic curve methods is unavailable, then the following process might produce
acceptable results. Construct a scatterplot of the IRT a-parameter estimates by plot-
ting the parameter estimates for the common items for both groups. Construct sim-
ilar scatterplots for the b- and c-parameter estimates. Examine the scatterplots and
identify any items that appear to be outliers. The identification of outliers is nec-
essarily a subjective process. Estimate the A- and B-constants with the mean/sigma
and mean/mean methods both with and without including the item or items with
parameter estimates that appear to be outliers. If the mean/sigma and mean/mean
procedures give very different results with the outliers included but similar results
with the outliers removed, then consider removing these items. If the results from
this procedure are not clear, then the use of the characteristic curve procedure might
be the best alternative. Note that even when the characteristic curve procedures are
used, it is best to use more than one method, and to examine scatterplots to consider
eliminating items with very different parameter estimates. In practice, it might be best
to implement each of the methods and evaluate the effects of the differences between
the methods on equating relationships and on resulting scale scores. Procedures for
choosing among equating results are considered in Chap. 8.

http://dx.doi.org/10.1007/978-1-4939-0317-7_8
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Fig. 6.2 Plots of item parameter estimates on Form X versus Form Y

6.4 Equating and Scoring

When a test is scored using estimated IRT abilities, there is no further need to develop
a relationship between scores on Form X and Form Y. Still, the estimated abilities
can be converted to scale scores. The ability estimates can be converted so that the
reported scores are positive integers, which are presumably easier for examinees to
interpret than are scores that may be negative and noninteger, as is the case with esti-
mated IRT abilities. This conversion might involve a linear conversion of estimated
abilities, followed by truncating the converted scores so that they are in a specified
range of positive numbers, and then rounding the scores to integers for reporting
purposes.

However, using estimated IRT abilities results in several practical issues, which
might be why they are often not used. One issue is that, to use estimated abilities
with the three-parameter logistic model, the whole 0/1 response string, rather than
the number-correct score, typically is used to estimate θ. Thus, examinees with the
same number-correct score often receive different estimated abilities, which can be
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difficult to explain to examinees. In addition, estimates of θ are difficult to compute
(they typically cannot be computed by hand). Another concern is that the estimated
θ-values with the three-parameter logistic model typically are subject to relatively
greater amounts of measurement error for high and low ability examinees than for
middle ability examinees. Lord (1980, p. 183) indicated that the measurement error
variability for examinees of extreme ability could be 10 or even 100 times that of
middle ability examinees, which can create problems in interpreting summary sta-
tistics such as means and standard deviations. For these practical reasons, tests often
are scored number-correct, even when they are developed and equated using the
three-parameter logist IRT model. When number-correct scores are used, an addi-
tional step is required in the IRT equating process. The two methods that have been
proposed are to equate true scores and to equate observed scores. These procedures
are considered next.

6.5 Equating True Scores

After the item parameters are on the same scale, IRT true score equating can be used
to relate number-correct scores on Form X and Form Y. In this process, the true score
on one form associated with a given θ is considered to be equivalent to the true score
on another form associated with that θ.

6.5.1 Test Characteristic Curves

In IRT, the number-correct true score on Form X that is equivalent to θi is defined as

τX(θi) =
⎫
j:X

pij(θi; aj, bj, cj), (6.16)

where the summation j:X is over items on Form X. The number-correct true score
on Form Y that is equivalent to θi is defined as

τY (θi) =
⎫
j:Y

pij(θi; aj, bj, cj), (6.17)

where the summation j:Y is over items on Form Y. Equations (6.16) and (6.17)
are referred to as test characteristic curves for Form X and Form Y. These test
characteristic curves relate IRT ability to number-correct true score.

When using the three-parameter logistic model of Eq. (6.1), very low true scores
are not attainable with the three-parameter logistic IRT model, because as θ
approaches −∗ the probability of correctly answering item j approaches cj and
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not 0. Therefore, true scores on Forms X and Y are associated with a value of θ only
over the following ranges (recall that KX and KY are the numbers of items on Form
X and Form Y, respectively):

⎫
j:X

cj < τX < KX and
⎫
j:Y

cj < τY < KY . (6.18)

6.5.2 True Score Equating Process

In IRT true score equating, for a given θi, true scores τX(θi) and τY (θi) are considered
to be equivalent. The Form Y true score equivalent of a given true score on Form X
is

irtY (τX) = τY (τ
−1
X ),

⎫
j:X

cj < τX < KX , (6.19)

where τ−1
X is defined as the θi corresponding to true score τX . Equation (6.19) implies

that true score equating is a three-step process:

1. Specify a true score τX on Form X (typically an integer
∑

j:X cj < τX < KX ).

2. Find the θi that corresponds to that true score (τ−1
X ).

3. Find the true score on Form Y, τY , that corresponds to that θi.

Form Y equivalents of Form X integer number-correct scores typically are found
using these procedures.

Whereas Step 1 and Step 3 are straightforward, Step 2 requires the use of an
iterative procedure. For example, suppose that the Form Y equivalent of a Form X
score of 5 is to be found. Implementation of Step 2 requires finding the θi that results
in the right-hand side of Eq. (6.16) equaling 5. Finding this value of θi requires the
solution of a nonlinear equation using an iterative process. This process is described
in the next section.

6.5.3 The Newton-Raphson Method

The Newton-Raphson method is a general method for finding the roots of nonlinear
functions. To use this method, begin with a function that is set to 0. Refer to that
function as func(θ), which is a function of the variable θ. Refer to the first derivative
of the function with respect to θ as func≤(θ). To apply the Newton-Raphson method,
an initial value is chosen for θ, which is referred to as θ−. A new value for θ is
calculated as

θ+ = θ− − func(θ)

func≤(θ)
. (6.20)
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Typically, θ+ will be closer to the root of the equation than θ−. The new value then is
redefined as θ−, and the process is repeated until θ+ and θ− are equal at a specified
level of precision or until the value of func is close to 0 at a specified level of precision.

When using the Newton-Raphson method, the choice of the initial value is an
important consideration, because a poor choice can lead to an erroneous solution.
Press et al. (1989) describe modifications to the Newton-Raphson method that are
more robust than the Newton-Raphson method to the choice of poor initial values.

Using the Newton-Raphson Method in IRT Equating

To apply this method to IRT true score equating, let τX be the true score whose
equivalent is to be found. From Eq. (6.16) it follows that θi is to be found such that
the expression

func(θi) = τX −
⎫
j:X

pij(θi; aj, bj, cj) (6.21)

equals 0. The Newton-Raphson method can be employed to find this θi using the
first derivative of func(θi) with respect to θi, which is

func≤(θi) = −
⎫
j:X

p≤
ij(θi; aj, bj, cj) (6.22)

where p≤
ij(θi; aj, bj, cj) is defined as the first derivative of pij(θi; aj, bj, cj)with respect

to θi, Lord (1980, p. 61) provided this first derivative:

p≤
ij(θi; aj, bj, cj) = 1.7aj(1 − pij)(pij − cj)

(1 − cj)
, (6.23)

where pij = pij(θi; aj, bj, cj). The resulting expressions for func(θi) and func≤(θi) are
substituted into Eq. (6.20).

A Hypothetical Example

A hypothetical example using this procedure is presented in Table 6.3. In this exam-
ple, a five-item Form X is to be equated to a five-item Form Y. Parameters (not
estimates) are given, and assume that the parameters for the two forms are on the
same scale. Table 6.3 shows how to find a Form Y equivalent of a Form X score of 2.
The item parameters for Form X are presented in the top portion of the table. To find
the Form Y equivalent, the θi must be found that corresponds to a Form X score of 2.
That is, the θi must be found such that, when it is substituted into the right-hand side
of Eq. (6.16), it results in a 2 on the left-hand side. The second portion of Table 6.3
illustrates how to find θi using the Newton-Raphson method. First, a starting value
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Table 6.3 Hypothetical example for IRT true score equating

Form X item parameters

Item
Parameter Item 1 Item 2 Item 3 Item 4 Item 5
aj .60 1.20 1.00 1.40 1.00
bj −1.70 −1.00 .80 1.30 1.40
cj .20 .20 .25 .25 .20

Solve for τX = 2 Using starting value θi = −2
Iteration Item 1 Item 2 Item 3 Item 4 Item 5 sum θ+

i
1 pij .5393 .2921 .2564 .2503 .2025 1.5405 −.7941

p≤
ij .1993 .1662 .0107 .0007 .0042 .3811

2 pij .7727 .6828 .2968 .2551 .2187 2.2261 −1.1295
p≤

ij .1660 .3905 .0746 .0121 .0311 .6743
3 pij .7132 .5475 .2772 .2523 .2107 2.0009 −1.1308

p≤
ij .1877 .4010 .0446 .0055 .0180 .6566

4 pij .7130 .5469 .2771 .2523 .2107 2.0000 −1.1308
p≤

ij .1877 .4008 .0445 .0055 .0179 .6564
Therefore, τX = 2 corresponds to θi = −1.1308.
Form Y item parameters

Item
Parameter Item 1 Item 2 Item 3 Item 4 Item 5
aj .70 .80 1.30 .90 1.10
bj −1.50 −1.20 .00 1.40 1.50
cj .20 .25 .20 .25 .20

Form Y true score equivalent of θi = −1.1308
Item 1 Item 2 Item 3 Item 4 Item 5 τY

pij .6865 .6426 .2607 .2653 .2058 2.0609
Therefore, τX = 2 corresponds to τY = 2.0609.

of θ−
i = −2 is chosen (this value is an initial guess). Using θ−

i = −2, the item
characteristic curve value from Eq. (6.1) is calculated for each item. For example,
the probability of an examinee with an ability of −2 correctly answering item 1 is
.5393. The first derivative is also calculated. For example, for the first item, the first
derivative of this item evaluated at an ability of −2 can be calculated using Eq. (6.23)
as

p≤
ij = 1.7(.60)(1 − .5393)(.5393 − .20)

(1 − .20)
= .1993,

which is also presented in the table.
Next, func(θ−

i ) from Eq. (6.21) is calculated using 2 for τX and the tabled value of
1.5405 as the sum of the item characteristic curves at an ability of−2. So, func(θ−

i ) =
2 − 1.5405. Then, the negative of the sum of the first derivatives is func≤(θ−

i ) =
−.3811 from Eq. (6.22). Finally, using Eq. (6.20), the updated ability is
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θ+
i = θ−

i − func(θ−
i )

func≤(θ−
i )

= −2 − 2 − 1.5405

−.3811
= −.7943.

The value of −.7943 differs in the fourth decimal place from the tabled value because
of rounding error; the tabled value is more accurate. The value of −.7941 then is used
as θ−

i in the next iteration. The iterations continue until the values of θ stabilize. Note
that after the fourth iteration, θ+

i equals θ+
i after the third iteration, to four decimal

places. Also, the sum of the pij is 2.0000 when θi = −1.1308. Thus, a true score of
2 on Form X corresponds to a θi of −1.1308.

The Form Y equivalent of a Form X score of 2 is found next. The Form Y item
parameter estimates are needed and are shown in Table 6.3. (Note that the item
parameters for Form X and Form Y must be on the same θ-scale.) To find the Form
Y equivalent of a Form X score of 2, calculate the value of the item characteristic
curve for each Form Y item at θi = −1.1308 and sum these values over items. This
process is illustrated at the bottom of the table. As shown, a score of 2 on Form X
corresponds to a score of 2.0609 on Form Y.

Using the procedures outlined, the reader can verify that a true score of 3 on Form
X corresponds to a θi of .3655 and a Form Y true score of 3.2586. Also, a true score
of 4 on Form X corresponds to a θi of 1.3701 and a Form Y true score of 4.0836.
Note that a Form X true score of 1 is below the sum of the c-parameters for that form,
so the Form Y true score equivalent of a Form X true score of 1 cannot be calculated
by the methods described so far.

Sometimes Form Y true score equivalents of all Form X integer scores that are
between the sum of the c-parameters and all correct need to be found. The recom-
mended procedure for finding these is to begin with the smallest Form X score that
is greater than the sum of the c-parameters. Use a small value of θ as a starting value
(e.g., θ−

i = −3), and then solve for the Form Y true score equivalent. The θ that
results from this process can be used as the starting value for solving for the next
highest true score. This process continues for all integer true scores on Form X that
are below a score of all correct. Sometimes even this procedure can have convergence
problems. In this case, the starting values might need to be modified or the modified
Newton-Raphson method described by Press et al. (1989) could be tried.

6.5.4 Using True Score Equating with Observed Scores

The true score relationship is appropriate for equating true scores on Form X to true
scores on Form Y. However, true scores of examinees are never known, because
they are parameters. In practice, the true score equating relationship often is used
to convert number-correct observed scores on Form X to number-correct observed
scores on Form Y. However, no theoretical reason exists for treating scores in this
way. Rather, doing so has been justified in item response theory by showing that the
resulting true score conversions are similar to observed score conversions (Lord and
Wingersky 1984).
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Recall from Eq. (6.18) that the lowest possible true score for the three-parameter
IRT model is the sum of the cj, not 0. Therefore, when using true score equating with
observed scores, a procedure is needed for converting Form X scores outside the
range of possible true scores on Form X. Lord (1980) and Kolen (1981) presented
ad hoc procedures to handle this problem. The Kolen (1981) ad hoc procedure is as
follows:

1. Set a score of 0 on Form X equal to a score of 0 on Form Y.
2. Set a score of the sum of the cj-parameters on Form X equal to the sum of the

cj-parameters on Form Y.
3. Use linear interpolation to find equivalents between these points.
4. Set a score of KX on Form X equal to a score of KY on Form Y.

To formalize this procedure, define τ≥
X as a score outside the range of possible

true scores, but within the range of possible observed scores. Equivalents then are
defined by the following equation:

irtY (τ
≥
X) =

∑
j:Y cj∑
j:X cj

τ≥
X , 0 ∞ τ≥

X ∞ ∑
j:X cj,

= KY , τ≥
X = KX .

(6.24)

The use of Kolen’s (1981) ad hoc procedure can be illustrated using the hypothetical
example presented in Table 6.3. For the item parameters presented, the sum of the
cj-parameters is 1.1 for Form X and 1.1 for Form Y. To apply the procedure to find
Form Y equivalents of Form X scores at or below 1.1, take

irtY (τ
≥
X) =

∑
j:Y cj∑
j:X cj

τ≥
X = 1.1

1.1
τ≥

X = τ≥
X .

Thus, for example, a score of 1 on Form X is considered to be equivalent to a score
of 1 on Form Y. Note that a score of 1 on Form X would have been considered to
be equivalent to a score other than 1 on Form Y if the sum of the cj-parameters was
different for the two forms.

In practice, for IRT true score equating, estimates of the item parameters are
used to produce an estimated true score relationship. Then the estimated true score
conversion is applied to the observed scores.

6.6 Equating Observed Scores

Another procedure, IRT observed score equating, uses the IRT model to produce
an estimated distribution of observed number-correct scores on each form, which
then are equated using equipercentile methods. For Form X, the compound binomial
distribution (see Lord and Wingersky 1984) is used to generate the distribution of
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observed number-correct scores for examinees of a given ability. These observed
score distributions then are cumulated over a population of examinees to produce
a number-correct observed score distribution for Form X. Similar procedures are
followed to produce a number-correct observed score distribution for Form Y. The
resulting number-correct score distributions then are equated using conventional
equipercentile methods. IRT observed score equating requires explicit specification
of the distribution of ability in the population of examinees.

Consider a group of examinees all of ability θi who have been administered a three-
item test with pij defined by Eq. (6.1). Assuming local independence, the probability
that examinees of ability equal to θi will incorrectly answer all three items and earn
a raw score of 0 is f (x = 0|θi) = (1 − pi1)(1 − pi2)(1 − pi3). To earn a score
of 1, an examinee could answer item 1 correctly and items 2 and 3 incorrectly, or
the examinee could answer item 2 correctly and items 1 and 3 incorrectly, or the
examinee could answer item 3 correctly and items 1 and 2 incorrectly. That is, there
are three ways to earn a score of 1 on a three-item test. The probability of earning a
1 is as follows:

f (x = 1|θi) = pi1(1 − pi2)(1 − pi3) + (1 − pi1)pi2(1 − pi3)

+(1 − pi1)(1 − pi2)pi3.

The probabilities of correctly answering two and three items can be constructed
similarly as follows:

f (x = 2|θi) = pi1pi2(1 − pi3) + pi1(1 − pi2)pi3 + (1 − pi1)pi2pi3,

and
f (x = 3|θi) = pi1pi2pi3.

Based on the hypothetical example in Table 6.1, for examinees with ability equal to
that of Person 1 (θI1 = −2.0),

f (x = 0|θ1) = (1 − .26)(1 − .27)(1 − .18) = .4430,

f (x = 1|θ1) = (.26)(1 − .27)(1 − .18) + (1 − .26)(.27)(1 − .18)

+(1 − .26)(1 − .27)(.18)

= .4167,

f (x = 2|θ1) = (.26)(.27)(1 − .18) + (.26)(1 − .27)(.18)

+(1 − .26)(.27)(.18)

= .1277,

f (x = 3|θ1) = (.26)(.27)(.18) = .0126.

Note that these values sum to 1, which is consistent with their being probabilities.
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A recursion formula (Lord and Wingersky 1984) can be used to generalize this
procedure to more than three items. To implement the recursion formula, define
fr(x|θi) as the distribution of number-correct scores over the first r items for exam-
inees of ability θi. Define f1(x = 0|θi) = (1 − pi1) as the probability of earning a
score of 0 on the first item and f1(x = 1|θi) = pi1 as the probability of earning a
score of 1 on the first item. For r > 1, the recursion formula is as follows:

fr(x|θi) = fr−1(x|θi)(1 − pir), x = 0
= fr−1(x|θi)(1 − pir) + fr−1(x − 1|θi)pir, 0 < x < r,
= fr−1(x − 1|θi)pir, x = r

(6.25)

An example of the use of this recursion formula is presented in Table 6.4. An
abbreviated notation is used in this table to simplify the presentation. Specifically,
θi is dropped and pr means pir . To find the distribution for a particular value of r,
Eq. (6.25) and Table 6.4 indicate that the distribution for r − 1 and the probability
of correctly answering item r are needed. Although expressions are only presented
up to r = 4, the table readily generalizes to higher values of r using the recursion
formula. The probabilities listed for the example under r = 3 (e.g., .4430, .4167,
.1277, and .0126) are identical to results presented earlier.

The procedures presented thus far give the observed score distribution for exami-
nees of a given ability. To find the observed score distribution for examinees of various
abilities, the observed score distribution for examinees at each ability is found and
then these are accumulated. When the ability distribution is continuous, then

f (x) =
∫

θ
f (x|θ)ψ(θ)dθ, (6.26)

where ψ(θ) is the distribution of θ.
To implement this procedure in practice, some method is needed to perform the

integration in Eq. (6.26). Some form of numerical integration is one possibility. When
BILOG-MG is used, the distribution of ability typically is characterized by a discrete
distribution on a finite number of equally spaced points as a method of approximating
the integral. Using this characterization,

f (x) =
⎫

i

f (x|θi)ψ(θi). (6.27)

When the distribution of ability is characterized by a finite number of abilities for N
examinees, then

f (x) = 1

N

⎫
i

f (x|θi). (6.28)

This characterization can be used, for example, with a set of abilities that are estimated
using BILOG-MG.
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Table 6.4 IRT observed score distribution recursion formula example

Example
(Using Table 6.1 test for persons with

r x fr(x) for r ∞ 4 θi = −2)

1 0 f1(0) = (1 − p1) = (1 − .26) = .74
1 f1(1) = p1 = .26

2 0 f2(0) = f1(0)(1 − p2) = .74(1 − .27) = .5402
1 f2(1) = f1(1)(1 − p2) + f1(0)p2= .26(1 − .27) +.74(.27) = .3896
2 f2(2) = f1(1)p2= .26(.27) = .0702

3 0 f3(0) = f2(0)(1 − p3) = .5402(1 − .18) = .4430
1 f3(1) = f2(1)(1 − p3) + f2(0)p3= .3896(1 − .18)+.5402(.18)= .4167
2 f3(2) = f2(2)(1 − p3) + f2(1)p3= .0702(1 − .18)+.3896(.18)= .1277
3 f3(3) = f2(2)p3= .0702(.18)= .0126

4 0 f4(0) = f3(0)(1 − p4)

1 f4(1) = f3(1)(1 − p4) + f3(0)p4

2 f4(2) = f3(2)(1 − p4) + f3(1)p4

3 f4(3) = f3(3)(1 − p4) + f3(2)p4

4 f4(4) = f3(3)p4

To conduct observed score equating, observed score distributions are found for
Form X and for Form Y. For example, assume that the characterization of the ability
distribution associated with Eq. (6.27) is used. The following distributions could be
specified using this equation:

1. f1(x)=∑
i f (x|θi)ψ1(θi) is the Form X distribution for Population 1.

2. f2(x)=∑
i f (x|θi)ψ2(θi) is the Form X distribution for Population 2.

3. g1(y)=∑
i g(y|θi)ψ1(θi) is the Form Y distribution for Population 1.

4. g2(y)=∑
i g(y|θi)ψ2(θi) is the Form Y distribution for Population 2.

These quantities then are weighted using synthetic weights described in Chaps. 4 and
5 to obtain the distributions of X and Y in the synthetic population. Conventional
equipercentile methods then are used to find score equivalents.

When BILOG-MG is used, the number-correct observed score distributions can
be estimated by using the estimated posterior distribution of ability in place of ψ(θi)

in Eq. (6.27) along with estimates of f (x|θi) based on substituting estimates for
parameters in Eq. (6.25) as suggested by Zeng and Kolen (1995). An alternative is to
use the set of estimated abilities in place of the abilities in Eq. (6.28). However, the
use of estimates of θ might create systematic distortions in the estimated distributions
and lead to inaccurate equating (Han et al. 1997; Lord 1982).

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_5
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6.7 IRT True Score Versus IRT Observed Score Equating

Compared to IRT observed score equating, IRT true score equating has the advantages
of (a) easier computation and (b) a conversion that does not depend on the distribution
of ability. However, IRT true score equating has the disadvantage that it equates true
scores, which are not available in practice. No justification exists for applying the
true score relationship to observed scores. Also, with the three-parameter logistic
model, equivalents are undefined at very low scores and at the top number-correct
score.

IRT observed score equating has the advantage that it defines the equating rela-
tionship for observed scores. Also, assuming reasonable model fit, the distribution
of Form X scores converted to the Form Y scale is approximately equal to the dis-
tribution of Form Y scores for the synthetic population of examinees. There is no
theoretical reason to expect this property to hold for IRT true score equating. Also,
using posterior distributions of θ from BILOG-MG, the computational burden of IRT
observed score equating is reasonable.

IRT observed score and IRT true score equating methods were found by Kolen
(1981) and Han et al. (1997) to produce somewhat different results using the ran-
dom groups design with achievement tests. However, Lord and Wingersky (1984)
concluded that the two methods produce very similar results in a study using the
common-item nonequivalent groups design in the SAT.

Larger differences between IRT true and observed score equating might be
expected to occur near a number-correct score of all correct and near number-
correct scores below the sum of the c-parameter estimates, because these are the
regions where IRT true score equating does not produce equivalents. In practice,
both methods should be applied with special attention paid to equating results near
these regions. Procedures for choosing among the results from equating methods are
considered in Chap. 8.

6.8 Illustrative Example

The real data example from Chaps. 4 and 5 is used to illustrate some aspects of IRT
equating, using the common-item nonequivalent groups design. Two forms of a 36-
item multiple-choice test, Form X and Form Y, are used in this example. Every third
item on the test forms is a common item, and the common items are in the same
position on each form. Thus, items 3, 6, 9, . . . , 36 on each form represent the 12
common items. Form X was administered to 1,655 examinees and Form Y to 1,638
examinees. As was indicated in Chaps. 4 and 5, the examinees who were administered
Form X had a number-correct score mean of 5.11 and a standard deviation of 2.38 on
the common items. The examinees who were administered Form Y had a number-
correct score mean of 5.87 and a standard deviation of 2.45 on the common items.

http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_5
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_5
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Thus, on the common items, the group taking Form Y was higher achieving than the
group taking Form X.

6.8.1 Item Parameter Estimation and Scaling

Item parameters were estimated using an earlier version of BILOG-MG (Bilog 3,
Mislevy and Bock 1990) separately for each form. (Default parameter settings were
used, except for the FLOAT option.) The parameter estimates are given in Table 6.5.
The proportion of examinees correctly answering each item (p-value) is also pre-
sented.

The Form X item parameter estimates need to be rescaled. The computer software
ST that is described in Appendix B was used to conduct the scaling. The common
items are tabulated separately in the upper portion of Table 6.6. Because the items
appeared in identical positions in the two forms, item 3 on Form X is the same as
item 3 on Form Y, and so forth.

The parameter estimates for the common items are plotted in Fig. 6.2 to look for
outliers—items with estimates that do not appear to lie on a straight line. In this
figure, one item appears to be an outlier for the a-parameter estimate. This item,
which is item 27, has a-parameter estimates of 1.8826 on Form X and 1.0417 on
Form Y. Because item 27 appears to function differently in the two forms, this item
might need to be eliminated from the common-item set. (The c-parameter estimates
for item 21 might also be judged to be an outlier, so that item 21 could be considered
for elimination as well. This item was not considered for elimination in the present
example because it does not seem to be as clearly an outlier as item 27.) Removal of
items that appear to be outliers is clearly a judgmental process.

The mean and standard deviation of the item parameter estimates for the common
items are shown in Table 6.6. These means and standard deviations were used to
estimate the A- and B-constants for transforming the θ-scale of Form X to the θ-
scale of Form Y using the mean/mean and mean/sigma methods. For example, using
Eqs. (6.8a) and (6.9a) for the mean/sigma method,

A = 1.2458

1.0658
= 1.1689 and B = .4900 − (1.1689).8602 = −.5155.

The B-value differs from the tabled value in the fourth decimal place because of
rounding error; the tabled values are more accurate. The A- and B-constants for the
Stocking and Lord and Haebara methods that are shown also were calculated using
the ST computer software.

Because item 27 appeared to be an outlier, the A- and B-constants were estimated
again, eliminating item 27. The means and standard deviations after eliminating this
item are shown in Table 6.6 as are the new A- and B-constants. Eliminating item 27
results in the estimates of the A- and B-constants for mean/sigma and mean/mean
methods being closer to one another than when item 27 is included. The A- and B-
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Table 6.5 Item parameter estimates for common-item equating

Form X Form Y
Item p-value â b̂ ĉ p-value â b̂ ĉ

1 .8440 .5496 −1.7960 .1751 .8527 .8704 −1.4507 .1576
2 .6669 .7891 −.4796 .1165 .6161 .4628 −.4070 .1094
3 .7025 .4551 −.7101 .2087 .7543 .4416 −1.3349 .1559
4 .5405 1.4443 .4833 .2826 .7145 .5448 −.9017 .1381
5 .6723 .9740 −.1680 .2625 .8295 .6200 −1.4865 .2114
6 .7412 .5839 −.8567 .2038 .7946 .5730 −1.3210 .1913
7 .5895 .8604 .4546 .3224 .6351 1.1752 .0691 .2947
8 .6475 1.1445 −.1301 .2209 .6094 .4450 .2324 .2723
9 .5816 .7544 .0212 .1600 .6852 .5987 −.7098 .1177
10 .5296 .9170 1.0139 .3648 .6644 .8479 −.4253 .1445
11 .4825 .9592 .7218 .2399 .7439 1.0320 −.8184 .0936
12 .5574 .6633 .0506 .1240 .6076 .6041 −.3539 .0818
13 .5411 1.2324 .4167 .2535 .5685 .8297 −.0191 .1283
14 .4051 1.0492 .7882 .1569 .6094 .7252 −3155 .0854
15 .4770 1.0690 .9610 .2986 .5532 .9902 .5320 .3024
16 .5139 .9193 .6099 .2521 .5092 .7749 .5394 .2179
17 .5175 .8935 .5128 .2273 .4786 .5942 .8987 .2299
18 .4825 .9672 .1950 .0535 .5587 .8081 −.1156 .0648
19 .4909 .6562 .3953 .1201 .6265 .9640 −.1948 .1633
20 .4081 1.0556 .9481 .2036 .4908 .7836 .3506 .1299
21 .3404 .3479 2.2768 .1489 .3655 .4140 2.5538 .2410
22 .4299 .8432 1.0601 .2332 .5905 .7618 −.1581 .1137
23 .3839 1.1142 .5826 .0644 .5092 1.1959 .5056 .2397
24 .4063 1.4579 1.0241 .2453 .4774 1.3554 .5811 .2243
25 .3706 .5137 1.3790 .1427 .4976 1.1869 .6229 .2577
26 .3077 .9194 1.0782 .0879 .5055 1.0296 .3898 .1856
27 .2956 1.8811 1.4062 .1992 .3771 1.0417 .9392 .1651
28 .2612 1.5045 1.5093 .1642 .3851 1.2055 1.1350 .2323
29 .2727 .9664 1.5443 .1431 .3894 .9697 .6976 .1070
30 .1820 .7020 2.2401 .0853 .2231 .6336 1.8960 .0794
31 .3059 1.2651 1.8759 .2443 .3166 1.0822 1.3864 .1855
32 .2146 .8567 1.7140 .0865 .3356 1.0195 .9197 .1027
33 .1826 1.4080 1.5556 .0789 .2634 1.1347 1.0790 .0630
34 .1814 .5808 3.4728 .1399 .1760 1.1948 1.8411 .0999
35 .1288 .9257 3.1202 .1090 .1424 1.1961 2.0297 .0832
36 .1530 1.2993 2.1589 .1075 .1950 .9255 2.1337 .1259

Note Common-item numbers and parameter estimates are in boldface type

constants for the Stocking and Lord and Haebara methods are less affected by elim-
inating item 27 than are the constants for the mean/sigma and mean/mean methods.
In the present example, the scalings based on removing item 27 only are considered
for ease of exposition. In practice, however, equating based on scalings with item 27
removed and included could be conducted and the results of the equating compared.



204 6 Item Response Theory Methods

Table 6.6 Common-item parameter estimates and scaling constants

Form X Form Y
Item p-value â b̂ ĉ p-value â b̂ ĉ

3 .7025 .4551 −.7101 .2087 .7543 .4416 −1.3349 .1559
6 .7412 .5839 −.8567 .2038 .7946 .5730 −1.3210 .1913
9 .5816 .7544 .0212 .1600 .6852 .5987 −.7098 .1177

12 .5574 .6633 .0506 .1240 .6076 .6041 −.3539 .0818
15 .4770 1.0690 .9610 .2986 .5532 .9902 .5320 .3024
18 .4825 .9672 .1950 .0535 .5587 .8081 −.1156 .0648
21 .3404 .3479 2.2768 .1489 .3655 .4140 2.5538 .2410
24 .4063 1.4579 1.0241 .2453 .4774 1.3554 .5811 .2243
27 .2956 1.8826 1.4062 .1992 .3771 1.0417 .9392 .1651
30 .1820 .7020 2.2401 .0853 .2231 .6336 1.8960 .0794
33 .1826 1.4080 1.5556 .0789 .2634 1.1347 1.0790 .0630
36 .1530 1.2993 2.1589 .1075 .1950 .9255 2.1337 .1259

μ̂ .4252 .9657 .8602 .1595 .4879 .7934 .4900 .1510
σ̂ .1917 .4464 1.0658 .0707 .1960 .2837 1.2458 .0736

Mean/ Mean/ Stocking
Sigma Mean –Lord Haebara

A = 1.1689 1.2173 1.0946 1.0678
B = −.5156 −.5572 −.4978 −.4713

Eliminating Item #27
μ̂ .4370 .8825 .8106 .1559 .4980 .7708 .4491 .1498
σ̂ .1961 .3665 1.0999 .0728 .2019 .2858 1.2935 .0768

Mean/ Mean/ Stocking
Sigma Mean –Lord Haebara

A = 1.1761 1.1449 1.0861 1.0638
B = −.5042 −.4790 −.4733 −.4540

The rescaled Form X item parameter estimates for the common items are shown
in Table 6.7. So that all of the computations in this example could be done by hand,
the mean/sigma method was used, excluding item 27. Because the Form Y item
parameter estimates are not being transformed, they are identical to those in Table 6.6.
To verify the tabled Form X b-parameter estimate for item 3, take 1.1761(−.7101)
− .5042 = −1.3393, which differs in the fourth decimal place because of rounding.
To find the tabled Form X a-parameter estimate for this item, take .4551/1.1761 =
.3870.

The means and standard deviations of the rescaled parameter estimates for the
common items are shown at the bottom of Table 6.7. Because the mean/sigma method
was used, the mean and standard deviation of the rescaled b-parameter estimates for
Form X are equal to those for Form Y. Note, however, that the mean of the a-parameter
estimates for Form X differs from the mean for Form Y. These two means would
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Table 6.7 Common-item parameter estimates rescaled using mean/sigma method’s A and B with
all common items (Excluding Item 27)

Form X Form Y
Item p-value â b̂ ĉ p-value â b̂ ĉ

3 .7025 .3870 −1.3394 .2087 .7543 .4416 −1.3349 .1559
6 .7412 .4965 −1.5118 .2038 .7946 .5730 −1.3210 .1913
9 .5816 .6414 −.4793 .1600 .6852 .5987 −.7098 .1177

12 .5574 .5640 −.4447 .1240 .6076 .6041 −.3539 .0818
15 .4770 .9089 .6260 .2986 .5532 .9902 .5320 .3024
18 .4825 .8224 −.2749 .0535 .5587 .8081 −.1156 .0648
21 .3404 .2958 2.1735 .1489 .3655 .4140 2.5538 .2410
24 .4063 1.2396 .7002 .2453 .4774 1.3554 .5811 .2243
30 .1820 .5969 2.1304 .0853 .2231 .6336 1.8960 .0794
33 .1826 1.1972 1.3253 .0789 .2634 1.1347 1.0790 .0630
36 .1530 1.1048 2.0349 .1075 .1950 .9255 2.1337 .1259

μ̂ .4370 .7504 .4491 .1559 .4980 .7708 .4491 .1498
σ̂ .1961 .3116 1.2935 .0728 .2018 .2858 1.2935 .0768

Fig. 6.3 Estimated test char-
acteristic curves for common
items
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have been the same if the mean/mean method was used. How would the means
and standard deviations of the parameter estimates compare if a characteristic curve
method was used? All of these statistics would likely differ from Form X to Form Y.
These results illustrate that the different methods of scaling using parameter estimates
can produce different results, which in turn would affect the equating.

Test characteristic curves for the common items after the common-item parameter
estimates were placed on the same θ-scale using the mean/sigma method are shown
in Fig. 6.3. The Form X curve is the test characteristic curve for the 11 common items
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(excluding item 27) estimated on the examinees who took Form X. The Form Y curve
is the test characteristic curve for these same items estimated on the examinees who
took Form Y. In general, the test characteristic curves appear to be similar. However,
if the Stocking and Lord method had been used, then these test characteristic curves
likely would have been even closer, because the Stocking and Lord procedure finds
the A- and B-constants that minimize the difference between these characteristic
curves. However, if the Stocking and Lord method had been used, then the means
and standard deviations of both the a-parameter and the b-parameter estimates for
the common items would have differed from Form X to Form Y.

Even after transformation to a common scale, however, the common items have
different parameter estimates on Form X than they do on Form Y. These differences
must be due to error in estimating the item parameters or failure of the IRT model to
hold, because the items are identical on the two forms. McKinley (1988) described
various methods for dealing with different parameter estimates.

The rescaled Form X item parameter estimates for all of the items are shown in
Table 6.8. The same transformation that is used for the common items on Form X is
also used for the other items.

6.8.2 IRT True Score Equating

The rescaled item parameter estimates then are used to estimate the true score equat-
ing function; this process is illustrated in Table 6.9 and Fig. 6.4. Figure 6.4 presents the
test characteristic curves for Form X and Form Y, and Table 6.9 presents the conver-
sion table. The equating was conducted using the PIE computer software described in
Appendix B. Suppose, for example, interest focuses on finding the Form Y equivalent
of a Form X score of 25. First, find the θ that is associated with a true score of 25. In
Fig. 6.4, begin at a vertical axis value of 25 and go over to the Form X curve. Going
down to the horizontal axis, the score of 25 is associated with a θ of approximately
1.1. With greater precision, from Table 6.9, this θ is 1.1022. This tabled value was
found using the Newton-Raphson procedure that was described earlier. Next, find
the Form Y true score that is associated with a θ of 1.1022. Graphically, this Form Y
score is approximately 26.4. With greater precision, from Table 6.9, this true score
is 26.3874. These procedures are repeated with each of the Form X integer scores,
and the resulting equivalents are plotted in Fig. 6.5.

The arrows in this figure illustrate that a Form X score of 25 corresponds to a
Form Y score of 26.4 (26.3874 with greater precision). Based on this graph, Form
Y is easier than Form X, except at the lower scores, because the curve for true score
equating is higher than the line for identity equating at all but the low scores.

In Table 6.9 θ equivalents are not given for very low Form X scores or for a Form
X score of 36. The sum of the c-parameter estimates on Form X equals 6.5271, so
that true score equivalents for Form X integer scores at or below a score of 6 are
undefined. Kolen’s (1981) ad hoc method was used to find the Form Y equivalents
for these scores.
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Table 6.8 Form X item parameter estimates rescaled with the mean/sigma method’s A and B using
all common items except item 27

Form X Form Y
Item p-value â b̂ ĉ p-value â b̂ ĉ

1 .8440 .4673 −2.6165 .1751 .8527 .8704 −1.4507 .1576
2 .6669 .6709 −1.0683 .1165 .6161 .4628 −.4070 .1094
3 .7025 .3870 −1.3394 .2087 .7543 .4416 −1.3349 .1559
4 .5405 1.2280 .0641 .2826 .7145 .5448 −.9017 .1381
5 .6723 .8282 −.7018 .2625 .8295 .6200 −1.4865 .2114
6 .7412 .4965 −1.5118 .2038 .7946 .5730 −1.3210 .1913
7 .5895 .7316 .0304 .3224 .6351 1.1752 .0691 .2947
8 .6475 .9731 −.6572 .2209 .6094 .4450 .2324 .2723
9 .5816 .6414 −.4793 .1600 .6852 .5987 −.7098 .1177

10 .5296 .7797 .6882 .3648 .6644 .8479 −.4253 .1445
11 .4825 .8156 .3446 .2399 .7439 1.0320 −.8184 .0936
12 .5574 .5640 −.4447 .1240 .6076 .6041 −.3539 .0818
13 .5411 1.0479 −.0141 .2535 .5685 .8297 −.0191 .1283
14 .4051 .8921 .4228 .1569 .6094 .7252 −.3155 .0854
15 .4770 .9089 .6260 .2986 .5532 .9902 .5320 .3024
16 .5139 .7817 .2130 .2521 .5092 .7749 .5394 .2179
17 .5175 .7598 .0989 .2273 .4786 .5942 .8987 .2299
18 .4825 .8224 −.2749 .0535 .5587 .8081 −.1156 .0648
19 .4909 .5580 −.0511 .1201 .6265 .9640 −.1948 .1633
20 .4081 .8976 .6109 .2036 .4908 .7836 .3506 .1299
21 .3404 .2958 2.1735 .1489 .3655 .4140 2.5538 .2410
22 .4299 .7169 .7425 .2332 .5905 .7618 −.1591 .1137
23 .3839 .9473 .1809 .0644 .5092 1.1959 .5056 .2397
24 .4063 1.2396 .7002 .2453 .4774 1.3554 .5811 .2243
25 .3706 .4368 1.1176 .1427 .4976 1.1869 .6229 .2577
26 .3077 .7917 .7639 .0879 .5055 1.0296 .3898 .1856
27 .2956 1.5995 1.1495 .1992 .3771 1.0417 .9392 .1651
28 .2612 1.2792 1.2708 .1642 .3851 1.2055 1.1350 .2323
29 .2727 .8217 1.3120 .1431 .3894 .9697 .6976 .1070
30 .1820 .5969 2.1304 .0853 .2231 .6336 1.8960 .0794
31 .3059 1.0757 1.7020 .2443 .3166 1.0822 1.3864 .1855
32 .2146 .7285 1.5115 .0865 .3356 1.0195 .9197 .1027
33 .1826 1.1972 1.3253 .0789 .2634 1.1347 1.0790 .0630
34 .1814 .4939 3.5801 .1399 .1760 1.1948 1.8411 .0999
35 .1288 .7871 3.1654 .1090 .1424 1.1961 2.0297 .0832
36 .1530 1.1048 2.0349 .1075 .1950 .9255 2.1337 .1259

Note Common-item numbers and parameter estimates are in boldface type

6.8.3 IRT Observed Score Equating

Estimates of the distribution of θ are needed to conduct observed score equating in
this example. The posterior distributions of θ that were estimated are presented in
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Table 6.9 Form Y equivalents of form X scores using IRT estimated
true score equating

Form X Form Y
Score θ-Equivalent Equivalent

0 .0000
1 .8890
2 1.7760
3 2.6641
4 3.5521
5 4.4401
6 5.3282
7 −4.3361 6.1340
8 −2.7701 7.1859
9 −2.0633 8.3950

10 −1.6072 9.6217
11 −1.2682 10.8256
12 −.9951 12.0002
13 −.7633 13.1495
14 −.5593 14.2803
15 −.3747 15.3995
16 −.2043 16.5135
17 −.0440 17.6271
18 .1088 18.7429
19 .2562 19.8612
20 .3998 20.9793
21 .5409 22.0926
22 .6805 23.1950
23 .8197 24.2806
24 .9598 25.3452
25 1.1022 26.3874
26 1.2490 27.4088
27 1.4031 28.4138
28 1.5681 29.4083
29 1.7491 30.3977
30 1.9533 31.3844
31 2.1916 32.3637
32 2.4824 33.3179
33 2.8604 34.2096
34 3.3992 34.9799
35 4.3214 35.5756
36 36.0000

Table 6.10. As was noted earlier, BILOG-MG treats the posterior distribution as a
discrete distribution on a finite number (10 in this example) of points. For Form X,
the posterior distribution of θ needs to be converted to the ability scale of the group
that took Form Y. Because the distribution is discrete, the scale conversion can be
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Fig. 6.4 Estimated test
characteristic curves for Form
X and Form Y
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Fig. 6.5 Estimated Form
Y true score equivalents of
Form X true scores using IRT
true score equating
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accomplished by using Eq. (6.2) linearly to transform the θ-values using the A- and
B-constants that were estimated earlier using the mean/sigma methods. For example,
to transform the first tabled θ-value using the constants from the mean/sigma method,
take 1.1761(−4.0000) − .5042 = −5.2086, which is the tabled value. The discrete
densities (ψ) do not need to be transformed.

To continue the equating process, the number-correct observed score distributions
need to be estimated for the synthetic group. To simplify the presentation, the syn-
thetic group is chosen to be the group taking Form X, so that w1 = 1. In this case,
estimates of f1(x) and g1(y) are needed.

The distribution of Form X number-correct scores for Group 1 can be estimated
directly from the data. However, Eq. (6.27) can be used to obtain a smoothed estimate
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Table 6.10 Distributions of θ estimated using BILOG

Group Taking Form X
Group Taking Converted to Form Y Group Taking

Form X Scale Form Y
θI ψ̂1(θI ) θJ ψ̂1(θJ ) θJ ψ̂2(θJ )

−4.0000 .000101 −5.2086 .000101 −4.0000 .000117
−3.1110 .002760 −4.1630 .002760 −3.1110 .003242
−2.2220 .030210 −3.1175 .030210 −2.2220 .034490
−1.3330 .142000 −2.0720 .142000 −1.3330 .147100
−.4444 .314900 −1.0269 .314900 −.4444 .314800

.4444 .315800 .0184 .315800 .4444 .311000
1.3330 .154200 1.0635 .154200 1.3330 .152600
2.2220 .035960 2.1090 .035960 2.2220 .034060
3.1110 .003925 3.1546 .003925 3.1110 .002510
4.0000 .000186 4.2001 .000186 4.0000 .000112

of the distribution of f1(x) by using (a) the item parameter estimates for Form X
converted to the Form Y scale shown in Table 6.8 and (b) the distribution of θ for
the group taking Form X converted to the Form Y scale shown in Table 6.10. (In
Table 6.10, the distribution of θ is approximated using 10 points to make it easier to
display the distribution in the present example. However, the distribution of θ can be
more accurately represented by 20 or even 40 points.)

The distribution of Form Y number-correct scores in Group 1 is not observed
directly. To estimate this distribution use (a) the item parameter estimates for Form Y
shown in Table 6.8 and (b) the distribution of θ for the group taking Form X converted
to the Form Y scale shown in Table 6.10.

The distributions estimated using the IRT model are shown in Table 6.11 along
with the equipercentile equivalents that are obtained using these distributions. The
equivalents were calculated using the PIE computer software described in Appen-
dix B. (These smoothed distributions are still somewhat irregular, which might be
due to the use of only 10 quadrature points. For example, modes are present at Form
X scores of 11 and 25 and at Form Y scores of 11, 17, and 26.) Moments for these
distributions are shown in Table 6.12, where the moments labeled “Actual” are those
that came from the data without any IRT estimation. These moments were presented
in Chaps. 4 and 5. The moments in the next section of Table 6.12 are for the distribu-
tions estimated using the IRT model. For example, the mean of 15.8177 for Group 1
on Form X is the mean of the distribution for Group 1 on Form X shown in the sec-
ond column of Table 6.11. The Group 1 Form X moments from the two sources are
quite similar. The actual mean, without any IRT estimation, was 15.8205, whereas
the mean for the estimate of the distribution using the IRT model was 15.8177. Sim-
ilarly, the moments for Group 2 Form Y from the two sources are similar. Similar
results can be achieved for both IRT true and IRT observed score equating in this
example using the C computer code described by Brennan et al. (2009, pp. 257–284).

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_5
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Table 6.11 IRT observed score results using w1 = 1

Score f̂1(x) ĝ1(y) êY (x)

0 .0000 .0000 −.3429
1 .0001 .0002 .6178
2 .0005 .0011 1.5800
3 .0018 .0034 2.5457
4 .0050 .0081 3.5182
5 .0110 .0155 4.5021
6 .0201 .0248 5.5042
7 .0315 .0349 6.5309
8 .0437 .0446 7.5848
9 .0548 .0527 8.6604

10 .0626 .0595 9.7464
11 .0660 .0606 10.8345
12 .0651 .0589 11.9282
13 .0615 .0545 13.0431
14 .0579 .0501 14.1945
15 .0560 .0480 15.3672
16 .0555 .0488 16.5109
17 .0541 .0505 17.5953
18 .0498 .0502 18.6416
19 .0424 .0459 19.6766
20 .0338 .0379 20.7364
21 .0271 .0290 21.8756
22 .0240 .0221 23.1020
23 .0245 .0195 24.2897
24 .0261 .0209 25.3624
25 .0262 .0242 26.3651
26 .0233 .0264 27.3440
27 .0182 .0251 28.3226
28 .0132 .0205 29.3203
29 .0102 .0147 30.3521
30 .0092 .0106 31.3787
31 .0087 .0093 32.3473
32 .0072 .0092 33.2818
33 .0049 .0083 34.2001
34 .0027 .0060 35.0759
35 .0012 .0035 35.8527
36 .0003 .0014 36.3904

Because w1 = 1, the moments for Group 1 are the only ones needed. In Group
1, for example, Form X is 16.1753 − 15.8177 = .3576 points more difficult than
Form Y.

The bottom portion of Table 6.12 shows the moments of converted scores for
Group 1 examinees for IRT true score, IRT observed score, and frequency estimation
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Table 6.12 Moments for equating Form X and Form Y

Group Score μ̂ σ̂ ŝk k̂u

Actual
1 X 15.8205 6.5278 .5799 2.7217
2 Y 18.6728 6.8784 .2051 2.3028

Estimated using IRT observed score methods
1 X 15.8177 6.5248 .5841 2.7235
1 Y 16.1753 7.1238 .5374 2.5750
2 X 18.0311 6.3583 .2843 2.4038
2 Y 18.6659 6.8788 .2270 2.3056

Group 1 Form X converted to Form Y scale using IRT true,
IRT observed, and frequency estimation methods

1 τ̂Y (x) 16.1784 7.2038 .4956 2.5194
1 êY (x) IRT 16.1794 7.1122 .5423 2.5761
1 êY (x) Freq. Est. 16.8329 6.6017 .4622 2.6229

(from Chap. 5) equating. For example, the mean of the Form X scores converted to
the Form Y scale using IRT true score equating is 16.1784; using IRT observed
score equating the mean is 16.1794. The mean for frequency estimation equating
is 16.8329, which was given in Table 5.10. The moments of converted scores are
very similar for the two IRT methods, although the moments differ noticeably from
those for frequency estimation. Note that frequency estimation included item 27 as
a common item, whereas item 27 was not included as a common item for the IRT
equating. This difference, and the different statistical assumptions made for frequency
estimation compared to the IRT methods, likely contributed to the differences in
moments that were observed.

The conversions are plotted in Fig. 6.6. In this plot, the relationship for both IRT
methods differs noticeably from the frequency estimation relationship. This differ-
ence is likely a result of the very different statistical assumptions used in frequency
estimation as compared to IRT. Also, the true and observed score methods relation-
ships are similar over most of the score range. The largest differences occur around
the sum of the c-parameter estimates and at the very high scores, which are near the
regions of the score scale where true scores are undefined. This figure illustrates that
if interest is in accurately estimating equivalents at very high scores or near the sum
of the c-parameter estimates, such as when a passing score is at a point in one of
these score scale regions, then distinctions between the IRT true and observed score
methods need to be considered.

http://dx.doi.org/10.1007/978-1-4939-0317-7_5
http://dx.doi.org/10.1007/978-1-4939-0317-7_5
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Fig. 6.6 Estimated equating
relationships for IRT true and
IRT observed score equating

6.8.4 Rasch Equating

The fit of the Rasch model to these data might not be good because these multiple-
choice items are possibly subject to the effects of guessing, and the items on these
forms are not built to be equally discriminating. Still, these data can be used to
examine equating with the Rasch model. As was described earlier in this chapter, the
Rasch model can be viewed as a special case of the three-parameter logistic model,
where D = 1.0, all aj = 1, and all cj = 0.

An earlier version of BILOG-MG (BILOG 3, Mislevy and Bock 1990) was used to
estimate the item parameters and posterior distributions of θ using the Rasch model.
After being placed on a common scale, the Rasch item difficulty parameter estimates
are shown in Table 6.13. The item difficulty estimates for the common items (after
scaling) are shown in Fig. 6.7. There appear to be no outliers.

Rasch true score and observed score (with w1 = 1) equating results are shown in
Table 6.14, and moments are shown in Table 6.15. The equating relationships for the
Rasch and three-parameter model are plotted in Fig. 6.8.

Overall, the Rasch results appear to differ from the three-parameter model results
shown earlier. The Rasch observed score and true score results differ slightly at the
lower scores.

These results demonstrate that Rasch observed score equating and Rasch true score
equating methods are distinct. Even though Rasch true score equating is typically
used in practice, Rasch observed score equating also should be considered, especially
when interest is in ensuring comparability of observed score distributions. Issues
in choosing among results when conducting equating in practice are discussed in
Chap. 8. Because the Rasch model has relatively modest sample size requirements,
this model might be considered when the sample size is small.

http://dx.doi.org/10.1007/978-1-4939-0317-7_8
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Table 6.13 Rasch item difficulty estimates

Item Form X Form Y

1 −2.2593 −2.0388
2 −1.1559 −.5748
3 −1.3429 −1.3275
4 −.5455 −1.0935
5 −1.1838 −1.8460
6 −1.5596 −1.5901
7 −.7757 −.6703
8 −1.0582 −.5412
9 −.7384 −.9317

10 −.4947 −.8215
11 −.2756 −1.2651
12 −.6246 −.5325
13 −.5484 −.3414
14 .0903 −.5417
15 −.2502 −.2675
16 −.4217 −.0569
17 −.4386 .0893
18 −.2757 −.2943
19 −.3150 −.6273
20 .0757 .0306
21 .4129 .6461
22 −.0285 −.4484
23 .1936 −.0570
24 .0844 .0948
25 .2594 −.0015
26 .5861 −.0396
27 .6525 .5864
28 .8508 .5463
29 .7831 .5246
30 1.3792 1.4673
31 .5958 .9051
32 1.1458 .8025
33 1.3750 1.2106
34 1.3835 1.8085
35 1.8361 2.0944
36 1.6137 1.6644

Note Common-item numbers and parameter estimates are in
boldface type

6.9 Using IRT Calibrated Item Pools and Other Designs

A calibrated item pool (Lord 1980; Vale 1986) is a group of items that have item
parameter estimates which have all been placed on the same θ-scale. One potential
benefit of using IRT is that calibrated item pools can be constructed, and the item
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Fig. 6.7 Plots of Rasch
difficulty estimates on Form X
versus Form Y
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parameter estimates can be used directly in equating. Equating designs that use
calibrated item pools often allow for greater flexibility in constructing test forms than
the other designs that have been described previously. In this section, the development
of IRT calibrated item pools, and how they are used in equating, are described.

6.9.1 Common-Item Equating to a Calibrated Pool

Consider the following simplified example of how an IRT calibrated item pool might
evolve. Form Y is constructed and then administered. A transformation is developed
to convert scores on Form Y to scale scores, and the item parameters for Form Y
also are estimated. So far, equating has not been considered, because there is only a
single form.

Form X1 is constructed next. Form X1 contains some new items and some items in
common with Form Y. Form X1 is administered to a new group of examinees, and the
item parameters are estimated for the new form. Form X1 can be equated to Form Y
using the common-item equating procedures described earlier in this chapter. Along
with a conversion table for Form X1 scores, this common-item equating procedure
results in item parameter estimates for Form X1 which are on the ability scale that
was established with Form Y. Actually, there is now a calibrated pool of items, some
of which were in Form Y only, some of which were in Form X1 only, and some of
which were in both forms. Refer to Table 6.8. The item parameter estimates in this
table are all on the same θ-scale. The items in this table could be considered to be an
IRT calibrated item pool.

The use of an IRT calibrated item pool makes possible the use of an equating
design that is similar to the common-item nonequivalent groups design. However,
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Table 6.14 Rasch true and observed score equating results

x t̂Y (x) êY (x)

0 .0000 .6995
1 1.0780 1.2612
2 2.1550 2.3202
3 3.2280 3.3782
4 4.2953 4.4318
5 5.3563 5.4739
6 6.4107 6.5024
7 7.4586 7.5207
8 8.5002 8.5419
9 9.5358 9.5670

10 10.5655 10.5914
11 11.5896 11.6098
12 12.6083 12.6206
13 13.6218 13.6257
14 14.6302 14.6275
15 15.6336 15.6280
16 16.6322 16.6274
17 17.6260 17.6239
18 18.6150 18.6153
19 19.5994 19.6010
20 20.5793 20.5809
21 21.5546 21.5560
22 22.5257 22.5272
23 23.4925 23.4956
24 24.4554 24.4628
25 25.4147 25.4269
26 26.3707 26.3891
27 27.3241 27.3486
28 28.2754 28.3047
29 29.2255 29.2587
30 30.1757 30.2137
31 31.1275 31.1711
32 32.0827 32.1302
33 33.0439 33.0914
34 34.0142 34.0572
35 34.9978 35.0302
36 36.0000 36.0113

in this new design, the common items are drawn from the pool rather than from a
single old form. This new design is referred to here as common-item equating to a
calibrated pool.

To describe this design, suppose that another new form, Form X2, is constructed.
This form consists of a set of common items from the IRT calibrated item pool and
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Table 6.15 Moments for equating Form X and Form Y using Rasch equating

Group Score μ̂ σ̂ ŝk k̂u

Actual
1 X 15.8205 6.5278 .5799 2.7217
2 Y 18.6728 6.8784 .2051 2.3028
Estimated using Rasch observed score methods
1 X 15.8307 6.4805 .3658 2.5974
1 Y 16.3808 6.4388 .3107 2.5542
2 X 18.1342 6.9291 .1328 2.3458
2 Y 18.6553 6.8406 .0810 2.3438
Group 1 Form X converted to Form Y scale using Rasch
True, Rasch observed, and frequency estimation methods
1 τ̂Y (x) 16.3554 6.4685 .5212 2.6521
1 êY (x) Rasch 16.3830 6.4266 .3156 2.5559
1 êY (x) Freq. Est. 16.8329 6.6017 .4622 2.6229

Fig. 6.8 Estimated
equating relationships for
three-parameter and Rasch
true and observed score
equating

some new items. Assume that Form X2 is administered to a group of examinees.
Procedures described earlier can be used to transform the IRT scale that results from
estimating Form X2 item parameters to the scale that was established for the pool.
To implement these procedures, the item parameter estimates from the calibrated
pool for the common items are considered to be on Scale J , and the item parameter
estimates from the calibration of Form X2 are considered to be on Scale I .

After the new form item parameter estimates are transformed to the θ-scale for
the calibrated pool, IRT estimated true score or observed score equating could be
conducted. Estimated true score equating for Form X2 could be implemented as
follows. First, find the θ that corresponds to each Form X2 integer number-correct
score. Finding these θ values requires an iterative procedure as described earlier.
Second, find the Form Y true score equivalent of each of the θ-values. Following this
step results in a true score equating of Form X2 to Form Y. Use the Form Y scale
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Fig. 6.9 Equating designs that use an IRT calibrated item pool

score transformation to convert the Form X2 integer number-correct scores to scale
scores. These procedures are very similar to what is done in common-item equating,
with the major difference being that the common items are taken from a calibrated
item pool rather than from a single previously equated form.

After the equating is completed, the new Form X2 items have item parameter
estimates on the θ-scale that was established for the pool. These new items can
be added to the IRT calibrated item pool. In this way, the pool can be continually
expanded. The common-item sets for new forms are constructed from a continually
increasing IRT calibrated item pool. A diagram representing common-item equating
to a calibrated pool is presented in the top portion of Fig. 6.9.

Many practical issues affect the implementation of IRT calibrated item pools in
practice. For example, items might be removed from a pool because their content
becomes dated or for test security purposes. Also, when items are used more than
once, procedures need to be considered for updating the parameter estimates that
are associated with each item in the pool. (For example, two sets of item parameter
estimates exist for each common item in Table 6.8.) These are among the issues that
are considered when using item pools in a testing program.

Common-item equating to a calibrated pool is more flexible than the common-
item nonequivalent groups design, because it allows the common-item set to be
chosen from many previous test forms rather than from a single test form. The
effects of violations of IRT assumptions need to be considered, however, when using
this design. For example, the position of items can affect their performance. For this
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reason, the position of each common item on the new form should be as close as
possible to its position on the form in which it appeared previously.

Also, real tests are typically not strictly unidimensional. To guard against multi-
dimensionality causing problems with equating, as with traditional equating, the set
of common items should be built to the same content specifications, proportionally,
as the total test. In this way, the violations of assumptions might affect the common
items in the same way that they affect the total scores. Also, a large enough number
of common items should be chosen to represent fully the content of the total test.

IRT might be the only procedure that could be used when equating using common-
item equating with a calibrated item pool. What if the IRT assumptions are severely
violated? Then adequate equating might be impossible with this design. For this rea-
son, if common-item equating to a calibrated item pool is being considered for use,
the common-item nonequivalent groups design should be used for a few adminis-
trations. The results for the IRT method and traditional methods could be compared
and the effects of multidimensionality could be assessed. Switching to common-item
equating with a calibrated item pool should be done only if no problems are found
with that procedure.

6.9.2 Item Preequating

The use of IRT calibrated item pools also makes an item preequating design possible.
The goal of item preequating is to be able to produce raw-to-scale score conversion
tables before a form is administered intact. If a conversion table is produced before the
test form is administered, then scores can be reported to examinees without the need
to wait for equating to be conducted. Item preequating is possible if the items that
contribute to examinees’ scores have been previously administered and calibrated.

Consider the following example of how an item preequating design might evolve.
Form Y is developed. Form Y contains operational items, which are items that
contribute to examinees’ scores. Form Y also contains nonoperational items, which
are items that do not contribute to examinees’ scores. A conversion of Form Y
number-correct scores on the operational items to scale scores is constructed. (The
scale could be defined either before or after administration of Form Y.) Form Y is
administered and item parameters of the operational and nonoperational items are
estimated. At this point, the IRT calibrated item pool consists of the operational and
the nonoperational Form Y items that have parameter estimates on the same IRT
scale. So far, equating has not been considered, because there is only a single form.

The operational component of a new form, Form X1, could be constructed from
this calibrated pool of items. If so, the operational component of Form X1 would con-
sist of some combination of Form Y operational and Form Y nonoperational items.
Because the operational items in Form X1 already have estimated item parameters,
a conversion table could be constructed for the operational component of Form X1
before Form X1 was ever administered intact. That is, the operational portion of
Form X1 could be “preequated.” Form X1 also would contain nonoperational items,
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which would be newly written items that were not yet part of the item pool. After
Form X1 was administered, the item parameters for all Form X1 items (operational
and nonoperational) could be estimated. The operational Form X1 items then could
be used as the set of common items for transforming the item parameter estimates
for the nonoperational items to the θ-scale that was established with Form Y. These
nonoperational Form X1 items then would be added to the calibrated item pool. The
operational portion of subsequent test forms would be constructed from the cali-
brated pool. The nonoperational portion of subsequent test forms would consist of
new items, and would be used to expand the item pool continually.

A diagram representing the item preequating design is presented in the bottom
portion of Fig. 6.9. The item preequating design and common-item designs differ
as to whether or not scores on the new items contribute to examinee scores. These
designs also differ in whether or not conversion tables can be produced before the
new form is administered.

A variety of issues need to be considered when using item preequating in practice.
Suppose it is found that the answer key for an operational item needs to be modified
(e.g., an item needs to be double-keyed) after the test is administered. Then the
preequating would need to be modified.

In addition, to ensure that items will behave the same on each administration,
items should appear in contexts and positions when they appear operationally that are
similar to those used when they appear nonoperationally. Although item preequating
has been found to produce acceptable results (Bejar and Wingersky 1982), problems
can occur when the nonoperational items are presented in a separate section. For
example, Eignor (1985), Eignor and Stocking (1986), and Stocking and Eignor (1986)
conducted a series of studies that suggested problems with item preequating if it
were used with the SAT. Kolen and Harris (1990) found similar problems with item
preequating if it was used with the ACT tests. Context effects and multidimensionality
were suggested as reasons for these problems. On the other hand, Quenette et al.
(2006) obtain reasonably stable IRT item preequating with the ASVAB. In situations
where the context and positions of items cannot be fixed from one testing to the next,
formal studies need to be conducted to make sure that the resulting data will produce
fairly robust parameter estimates and equated scores.

The use of item preequating can cause difficulties in estimating the item para-
meters for the nonoperational items. For example, assume that a test is not strictly
unidimensional. In this case, IRT estimation procedures will estimate some com-
posite of multidimensional abilities. The appropriate composite for a test will be
the composite for forms that are all built to the test specifications. Estimates that
are based only on considering the operational items would estimate this composite.
Consider a situation in which the nonoperational items do not represent well the
test content specifications. What would happen if the nonoperational item parame-
ters were estimated in the same run using IRT computer software as the operational
items? The composite that is estimated might differ from the composite that would
result if only the operational items were used. The use of a different composite might
lead to bias in the estimation of item parameters. Although it might be possible
to handle estimation problems in practice, the scenario just described suggests that
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estimation can be quite complicated when estimating parameters for nonoperational
items. The problems just described can affect parameter estimates whenever nonop-
erational items are used in tests that are equated using IRT methods under any of
the equating designs described in this book, such as whenever items are tried out
(pretested) for inclusion in future forms.

On the surface, item preequating seems straightforward. However, its implemen-
tation can be quite complicated. Context effects and dimensionality issues need to
be carefully considered, or misleading results will be likely.

6.9.3 Other Designs

Many variations on designs for equating using IRT exist. For example, new forms
might consist of items in common with a pool, new operational items, and nonopera-
tional items. Such pools can be used to produce computer administered and computer
adaptive tests (see Chap. 8 for a brief discussion). Glas and Béguin (2011) provide
another example of a complex design. No attempt will be made here to enumerate all
of these variations. However, context effects and dimensionality issues that arise with
each variation need to be carefully considered when using item pools in operational
testing programs.

6.10 Equating with Polytomous IRT

For the IRT models discussed so far, it has been assumed the items are scored dichoto-
mously. When items are scored in more than two categories, dichotomous models are
not appropriate, and polytomous IRT models can be used. In this section, the focus
is on equating with polytomously scored items in which the responses are ordered.
Typically, the responses are ordered so that responses to higher categories are asso-
ciated with better performance on the item, although it is possible for the ordering
to be in the other direction. Kim et al. (2010) reviewed methods for equating using
polytomous IRT models and associated research.

One situation where polytomous IRT models can be used is when writing samples
are collected from students and are scored holistically by raters, say, on a scale from
1 to 5. In addition, sometimes mixed-format tests contain a mixture of polytomously
and dichotomously scored items, such as on a test that contains both multiple-choice
and constructed-response test questions.

Another situation occurs when multiple items are associated with a common
stimulus block, as often occurs in reading comprehension tests. Because there could
be some dependency among items associated with a particular stimulus, violations of
local independence might make the use of dichotomous IRT questionable. To address
this problem, items associated with a common stimulus could be scored as a block,
with scores on the block of items ranging from 0 to the number of items in the block.

http://dx.doi.org/10.1007/978-1-4939-0317-7_8
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For analysis purposes, a block of items could be treated as a single polytomous item.
For example, a 15-dichotomous item reading test containing 3 passages with 5 items
each could be treated as a test with 3 polytomous items (blocks), with scores on each
polytomous item ranging from 0 to 5. These blocks of items are sometimes referred
to as testlets (Thissen et al. 1989). Keller et al. (2003) discussed issues associated
with potential loss of precision when testlets are scored in this way. Lee et al. (2001)
compared equating based on polytomous and dichotomous IRT models in the testlet
situation and found that the polytomous models produced more accurate equating.
Wainer et al. (2007) and DeMars (2012) investigated the use of IRT models designed
for testlets.

Many of the same considerations associated with dichotomous models come into
play when IRT equating is conducted with polytomous models. With polytomous
models, scales can be linked using generalizations of the item characteristic curve
linking methods, and generalizations of IRT true and IRT observed score equating
methods can be used to equate total scores.

In the polytomous models considered here, each item is scored in two or more
ordered categories. As with dichotomous models, examinee ability is described by
a single variable, θ, defined so that −∗ < θ < ∗. The category response curve
for each category of an item relates the probability of earning the category score to
examinee ability. The category response curve for category k of item j is symbolized
as pjk(θ), which represents the probability that an examinee of ability θ receives a
score in category k. For example, if 10 % of the examinees with ability 1.5 can be
expected to earn a score in category 3 on item 1, then p13(θ = 1.5) = .10. Each
category of the item has a category response curve.

As with dichotomous models, local independence for polytomous IRT models
means that after taking into account examinee ability, examinee responses to the
items are statistically independent. So, for example, if examinees with θ = 1.5 have
a .1 probability of earning a score in category 3 for item 1 and a .4 probability
of earning a score in category 4 for item 2, their probability of earning a score in
category 3 for item 1 and a score in category 4 for item 2 equals .04 = .1(.4).

6.10.1 Polytomous IRT Models for Ordered Responses

Various polytomous IRT models have been developed that can be used to model
items that are scored polytomously using ordered categories. These include models
suggested by Samejima’s (1969) and Bock (1972), and more recently described by
Samejima (1997) and Bock (1997). Samejima designated the categories of each
item with consecutive integers beginning with 0. Bock designated categories with
consecutive integers beginning with 1. In this section, Bock’s designation is used,
even in describing Samejima’s model, for consistency sake. However, as described
later in this section, a scoring function is also introduced, that might differ from the
category designator. This scoring function is used to accommodate the scores as used
by Samejima as well as other item scoring schemes.
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Samejima’s Graded Response Model

Although originally developed as a normal ogive model, Samejima’s (1969) graded
response model also has been presented in the logistic form that is considered here.
The graded response model directly models the cumulative category response func-
tion. The cumulative category response function for category k of item j is the prob-
ability of earning a score at or above category k on that item. For this model, the
probability that persons of ability equal to that of person i will earn a score on item
j at or above category k can be expressed as

p≥
ijk(θi; aj, bj2 , · · · , bjmj) = 1, k = 1,

p≥
ijk(θi; aj, bj2 , · · · , bjmj) = exp[Daj(θi − bjk)]

1 + exp[Daj(θi − bjk)] , k = 2, . . . ,mj. (6.29)

For the first category, the cumulative category response function is 1, because the
probability is 1 that any examinee, regardless of their θ , will earn a score at or above
the first category. In this equation, D is a scaling factor (usually 1.7 so that the logistic
is similar to the cumulative normal) and aj is the item slope parameter. The item has
mj categories, and bjk are item difficulty parameters for categories 2 through mj.
The first category does not have a difficulty parameter. For categories 2 through mj,
the expression is essentially the item characteristic function for the two-parameter
logistic model.

The category response function is calculated by taking the difference between the
cumulative category response functions as follows:

pijk(θi; aj, bj2 , · · · , bjmj ) = p≥
ijk(θi; aj, bj2 , · · · , bjmj )

−p≥
ij(k+1)(θi; aj, bj2 , · · · , bjmj ), k = 1, · · · ,mj − 1,

pijk(θi; aj, bj2 , · · · , bjmj ) = p≥
ijk(θi; aj, bj2 , · · · , bjmj ), k = mj. (6.30)

As an example, consider a 5-category item with parameters a = 1.2, b2 = −.5,
b3 = .6, b4 = 1.1, b5 = 1.3. Using Eq. (6.29), the cumulative category response
function for this item at θ = 1.0 can be shown to be .964, 684, .452, and .359 for
categories 2 through 5. Then from Eq. (6.30), the category response function is .036
= (1 – .964) for the first category, 0.28 = (.964 – .684) for the second category, 0.232 =
(.684 – .452) for the third category, and 0.093 = (.452 – .359) for the fourth category.
As is always the case, the category response function for the last category is equal
to the cumulative category response function for the last category. For this item, this
probability is .359.

The cumulative category response functions for this item, which represent the
probability of earning a score at or above a particular category, are graphed in
Fig. 6.10. Note that the cumulative category response functions are parallel, which
is always the case for Samejima’s graded response model. Also note that the curves
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Fig. 6.10 Cumulative
category response functions
for a graded response model
item
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are farther apart when the differences between adjacent b-parameters are large. For
example, the difference between the b-parameters for category 2 and 3 is 1.1 units
[.6–(–.5)], which is the largest difference between adjacent b-parameters.

The category response functions for this item are graphed in Fig. 6.11. The cate-
gory response function for the first category decreases as θ increases. The category
response function for the last category increases as θ increases. The first and last cat-
egories can be expected to have this pattern with polytomous models for items with
ordered categories, as long as higher category designations tend to be associated with
higher θ. The intermediate categories have category response functions that all begin
with probability near 0, increase to their maximum probability, and then decrease
to a probability near zero. Intermediate categories for polytomous models for items
with ordered response items typically have curves of this form. The highest point for
an intermediate curve is greater when the differences between adjacent b-parameters
are large. Thus, for example, the curve for the second category is the highest among
the intermediate curves in Fig. 6.11.

Bock’s Nominal Model

Bock’s (1972) nominal model can be used to model polytomous items that have
ordered or unordered categories. The category response function for this model is

pijk(θi; aj1, aj2, · · · , ajmj , cj1, cj2, · · · , cjmj ) = exp(ajkθi + cjk)
mj⎫

h=1

exp(ajhθi + cjh)

. (6.31)

Each category for an item has a slope parameter, ajk , and an intercept parameter,
cjk . This model is very general. It can be shown that if the slope parameters, ajk ,
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Fig. 6.11 Category response
functions for a graded
response model item
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increase from one category to the next, such that aj1 < aj2 < · · · < ajmj , then this
model can be used to represent items with ordered categories (Bock 1997; Samejima
1972; Wainer et al. 1991). Thissen et al. (1995) described how to fit this model when
responses are ordered using polynomial contrasts on the slope parameters.

As an example, consider an item with four categories with ajk parameters of
1.7, 3.4, 5.1, 6.8, and cjk parameters of 0.0, 2.55, –.85, –2.55. Note that the ajk
parameters increase as category increases, consistent with this item’s having ordered
categories. For this item, for example, the reader can verify that the probability of an
examinee with θ = 1 earning a score in category 1 is 0.010; and in categories 2–4,
the probabilities are 0.725, 0.132, and 0.132, respectively. The category response
function for this item is shown in Fig. 6.12. As can be seen in this figure, the general
shapes of the functions for the first and last categories are similar to those for the
Samejima graded response model item discussed previously. The general shapes of
intermediate curves are also similar for the two models.

Various other models can be viewed as being special cases of the nominal cate-
gories model. Muraki’s (1992, 1997) generalized partial credit model is one of these.
In this model,

pijk(θi; a≥
j , bj, dj1, dj2, · · · , djmj ) =

exp

[
k⎫

h=1

Da≥
j (θi − bj + djh)

]

mj⎫
g=1

exp

[
g⎫

h=1

Da≥
j (θi − bj + djh)

] . (6.32)

In this equation, D is a scaling constant (typically 1.7), item parameters are the dis-
crimination parameter a≥

j and the difficulty parameter, bj. There are also difficulty
parameters for each category, dj1, dj2, · · · , djmj . This model is overparameterized as
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Fig. 6.12 Category response
functions for a generalized
partial credit model item
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stated, and sometimes the parameters are set as follows: bj = 0 and dj1 = 0. An alter-
native parameterization is sometimes used in which a category difficulty parameter
is used that is the difference between bj and djk . In this section, the parameterization
shown in Eq. (6.32) is used.

The form of this equation, with the single summation in the numerator and dou-
ble summation in the denominator, is more complicated than the other IRT models
discussed so far. As an example of how this equation would be implemented for a
three category item the numerator is

exp[Da≥
j (θi − bj + dj1)], for category 1,

exp[Da≥
j (θi − bj + dj1) + Da≥

j (θi − bj + dj2)], for category 2, and
exp[Da≥

j (θi − bj + dj1)+ Da≥
j (θi − bj + dj2)+ Da≥

j (θi − bj + dj3)], for category 3.

The denominator is the sum of these three numerators.
As an example, consider an item with four categories with D = 1.7, a≥

j = 1,
bj = 0, and djk of 0, 1.5, –2, and –1 for the four categories. For this item, the
reader can verify that the probability of an examinee with θ = 1 earning a score in
category 1 is 0.010, and in categories 2–4, respectively, the probabilities are 0.725,
0.132, and 0.132. Note that these four probabilities are the same as the probabilities for
Bock’s nominal model example discussed earlier. In addition, the category response
function for this item is the same as that for Bock’s nominal model item shown
in Fig. 6.12. Because Muraki’s generalized partial credit model is a special case of
Bock’s nominal model, there are Bock’s nominal model parameters that correspond
to the generalized partial credit model parameters. This Muraki’s generalized partial
credit model example was purposefully chosen to have the same model parameters
as Bock’s nominal model example.

The relationship between the parameters for the two models is expressed as fol-
lows:
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ajk = Dka≥
j , and

cjk = −Dka≥
j bj + Da≥

j

k⎫
h=1

djh. (6.33)

If Muraki’s generalized partial credit model parameters for the example are substi-
tuted in this equation, Bock’s nominal model parameters in the earlier example are
obtained.

The relationship between the parameters of these two models and the appear-
ance of the category response functions is much less clear than the relationships for
dichotomous items or for Samejima’s graded response models. For the purposes of
this chapter, it is primarily important to note that these models can be used with test
items that have ordered categories. These models provide descriptions of the cate-
gory response functions for these types of items. In addition, there are other models
discussed by Bock (1997) and Muraki (1997) that can be viewed as special cases of
Muraki’s generalized partial credit model.

6.10.2 Scoring Function, Item Response Function, and Test
Characteristic Curve

Often, total scores are used with test items that are polytomously scored. A scoring
function is used to associate the scores with the categories. Let Wjk refer to the integer
score associated with category k. Often a scoring function of Wjk = k is used. In
this case, a response associated with the first category earns a score of 1, a response
associated with the second category earns a score of 2, and so forth. Another scoring
function that is often used is Wjk = k − 1. For this function, a response associated
with the first category earns a 0, a response associated with the second category earns
a score of 1, and so forth.

Based on a scoring function, the minimum and maximum scores on test Form X
can be calculated as

minX =
⎫
j:X

Wj1,

maxX =
⎫
j:X

Wjmj . (6.34)

Thus, to obtain the minimum, the minimum scores for items are summed over items
on Form X. To obtain the maximum, the maximum scores for items are summed.
Note that if all items are scored using a minimum for each item as zero, then the
minimum score is zero. If the minimum score for each item is 1, then the minimum
score for Form X equals the number of items.



228 6 Item Response Theory Methods

The item response function relates total score on an item to θ. This function is
expressed as

τj(θi) =
mj⎫

k=1

Wjkpijk(θi), (6.35)

where pijk(θi) is the category response function for item j for a polytomous IRT
model.

For polytomous IRT models, the test characteristic curve for Form X is calculated
as

τX(θi) =
⎫
j:X

τj(θi). (6.36)

Similar to dichotomous IRT models, the test characteristic curve relates IRT ability
to true total scores.

6.10.3 Parameter Estimation and Scale Transformation
with Polytomous IRT Models

Item and ability parameters for Samejima’s graded response model and Bock’s nom-
inal model can be estimated using the computer software MULTILOG (Thissen et al.
2003). PARSCALE (Muraki and Bock 2003) can be used to estimate parameters for
Samejima’s graded response model and for the generalized partial credit model. ICL
(Hanson 2002) can be used for the generalized partial credit model. These programs
can also estimate item parameters on mixed format tests that contain multiple item
types.

As with dichotomous IRT models, for the random groups or single group designs,
as long as the item parameters are estimated using the same scaling conventions
(e.g., mean ability of 0 and standard deviation of ability 1), then the estimates from
separate runs on Form X and Form Y are on the same scale. For the single group
design, the item and ability parameters for Samejima’s graded response model and
Bock’s nominal model can be estimated with MULTILOG in a single computer run.

For the common item non-equivalent groups design, ICL, Mulitlog, and
PARSCALE can be used to concurrently estimate parameters for the old and new
form. Alternatively, when test forms are administered to nonequivalent groups, scale
transformation methods can be used with the polytomous IRT models that are analo-
gous to those for dichotomous IRT models. Methods using moments of item parame-
ter estimates are given first followed by characteristic curve methods. Many of these
methods were provided in greater detail by Kim and Kolen (2005). Although not
considered in detail in this section, Kim (2010) generalized the Ogasawara (2001a)
scale transformation method referenced earlier in this chapter that takes into account
error in estimating item parameters.
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6.10.3.1 Mean/Sigma and Mean/Mean Methods

Mean/mean and mean/sigma methods were suggested by Cohen and Kim (1998)
for the graded response model. For the mean/sigma method, the mean and standard
deviation of the b-parameter estimates are found over all items and all categories.
The mean and standard deviation of the b-parameter estimates for the common items
are calculated separately for the old form and new form calibration. For example, if
there are 5 common items with 4 score categories each, then there are 15 b-parameter
estimates in the common item set (5 items times 4−1 = 3 b-parameter estimates per
item in each calibration). The resulting means and standard deviations are substituted
for the parameters in Eqs. (6.8a) and (6.9a) to obtain the slope and intercept of the
transformation equation. Equations (6.2), (6.3), and (6.4) are used to transform the
θ-, a-, and b-parameters. The mean/mean method uses the mean of the b-parameter
estimates as calculated for the mean/sigma method as well as the mean of the a-
parameter estimates over the common items. Equations (6.8b) and (6.9a) are used to
obtain the slope and intercept of the transformation function.

A similar process can be followed for scale linking using the mean/mean
and mean/sigma method with Muraki’s generalized partial credit model shown in
Eq. (6.32). For the mean/sigma method, the mean and standard deviation of the esti-
mates of bj − djh are found over all items and categories for each calibration. These
standard deviations are substituted for the standard deviations in Eq. (6.8a) to cal-
culate the slope and the means substituted in Eq. (6.9a) to find the intercept of the
transformation equation. The mean/mean method uses the means of the a≥ parame-
ter estimates and the means of the estimates of bj − djh. Equations (6.8b) and (6.9a)
are used to obtain the slope and intercept of the transformation function. The a≥
parameter estimates are transformed using Eq. (6.3). The b parameter estimates are
transformed using Eq. (6.4). The d parameter estimates are transformed by multiply-
ing them by the slope computed using Eq. (6.8a). The θ-estimates are transformed
using Eq. (6.2). Masters (1984) described linking procedures for the partial credit
model, a special case of the generalized partial credit model, which involve only
adding a constant for this model.

6.10.3.2 Test Characteristic Curve Methods

Test characteristic curve methods can be used with polytomous IRT models. For
polytomous IRT models, it is necessary to establish the criteria over categories within
item as well as over items. The Haebara difference for the graded response model is

Hdiff (θi) =
⎫
j:V

⎫
k:j

⎡
⎢⎢⎣

pijk(θJi; âJj, b̂Jj2, · · · , b̂Jjk, · · · , b̂Jjmj )−

pijk

⎛
⎝ θJi; âIj

A
,Ab̂Ij2 + B, · · · ,

Ab̂Ijk + B, · · · ,Ab̂Ijmj + B

⎞
⎠

⎤
⎥⎥⎦

2

. (6.37)
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The first summation is over items and the second is over categories within item.
Thus this function is the sum of squared differences between category response
curves over all categories and items. Hcrit is found by substituting Eq. (6.37) in
Eq. (6.12). This criterion is minimized by summing over examinees as discussed
with the dichotomous model.

The Stocking and Lord difference for the graded response model is

SLdiff (θi) =

⎡
⎢⎢⎢⎢⎣

⎫
j:V

⎫
k:j

Wjkpijk(θJi; âJj, b̂Jj2, · · · , b̂Jjk, · · · , b̂Jjmj )−

⎫
j:V

⎫
k:j

Wjkpijk

⎛
⎝ θJi; âIj

A
,Ab̂Ij2 + B, · · · ,

Ab̂Ijk + B, · · · ,Ab̂Ijmj + B

⎞
⎠

⎤
⎥⎥⎥⎥⎦

2

. (6.38)

Recall that the Stocking and Lord approach was based on the squared difference
between the test characteristic curves expressed on the two scales. Referring to
Eqs. (6.35) and (6.36), it can be seen that this equation is the squared difference
between test characteristic curves. Note that the scoring function (Wjk) is used in
SLdiff but not in Hdiff. SLcrit is found by substituting Eq. (6.38) in Eq. (6.15). This
criterion is minimized by summing over examinees as discussed with the dichoto-
mous model.

Baker (1992) developed a Stocking and Lord related method for the graded
response model. Baker’s (1993a) EQUATE 2.0 program can be used with the Stock-
ing and Lord approach, using a fixed set of abilities to cumulate over abilities. Other
ways of cumulating over ability for the Stocking and Lord method are implemented
in POLYST listed in Appendix B. Baker (1993b, pp. 249, 250) described a procedure
for minimizing Hcrit for this model, which is also implemented in POLYST. Also,
see Brennan et al. (2009, pp. 223–256) for C code that can be used with these models.

Hdiff and SLdiff are defined similarly for the generalized partial credit model.
With this model, though, it is necessary to also transform the d-parameter estimates.

For Bock’s nominal model,

Hdiff (θi) =
⎫
j:V

⎫
k:j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

pijk

⎬
θJi; âJj1, · · · , âJjk, · · · , âJjmj ,

ĉJj1, · · · , ĉJjk, · · · , ĉJjmj

⎭
−

pijk

⎛
⎜⎜⎜⎜⎝

θJi; âIj1

A
, · · · , âIjk

A
, · · · , âIjmj

A
,

ĉIj1 − B

A
âIj1, · · · , ĉIjk − B

A
âIjk, · · · ,

ĉIjmj − B

A
âIjmj

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

. (6.39)

Hcrit is found by substituting Eq. (6.39) in Eq. (6.12). This criterion is minimized by
summing over examinees as discussed with the dichotomous model. Baker (1993b)
described this method summing over equally spaced points and it is implemented
in his EQUATE 2.0 computer software (Baker 1993a). Kim and Hanson (2002)
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provided a correction to one of Baker’s (1993b) equations. Generalizations of these
methods are implemented in POLYST and in Brennan et al. (2009, pp. 223–256).

The Stocking and Lord procedure can be implemented for this model in situations
when modeling graded response data. For Bock’s nominal model,

SLdiff (θi) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎫
j:V

⎫
k:j

Wjkpijk

⎬
θJi; âJj1, · · · , âJjk, · · · , âJjmj ,

ĉJj1, · · · , ĉJjk, · · · , ĉJjmj

⎭
−

⎫
j:V

⎫
k:j

Wjkpijk

⎛
⎜⎜⎜⎜⎝

θJi; âIj1

A
, · · · , âIjk

A
, · · · ,AâIjmj ,

ĉIj1 − B

A
âIj1, · · · , ĉIjk − B

A
âIjk, · · · ,

ĉIjmj − B

A
âIjmj

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

. (6.40)

As pointed out by Baker (1993b), this procedure is not appropriate when items are
nominally scored, because in this case scoring weights would not typically be avail-
able. Thus, this procedure can be used only with items scored in ordered categories.
This method is implemented in POLYST and in Brennan et al. (2009, pp. 223–256).

In addition to the models considered here, scale linking methods have been
developed for a testlet IRT model (Li et al. 2005), a continuous response IRT model
(Shojima 2003), an unfolding IRT model (Koenig and Roberts 2007), and a non-
parametric IRT model (Xu et al. 2011). Kim (2006) developed a method for using
information on distractors to improve IRT linking with Bock’s nominal response
model.

Research on Scale Linking in Polytomous IRT

In a simulation study, Cohen and Kim (1998) compared the mean/mean, mean/sigma,
weighted mean/sigma, Stocking and Lord (1983) extension, and an extension of
Divgi’s (1985) method that Kim and Cohen (1995) developed for linking scales
under the graded response model. They concluded that the methods produced similar
results. Baker (1997) studied the empirical sampling distributions of the linking
coefficients under the graded response model. Kim and Cohen (2002) compared
linking using the Stocking and Lord method and concurrent calibration for data
that were simulated to fit the graded response model. They found that concurrent
calibration was slightly more accurate. Clearly, more research on linking methods
and comparisons between linking methods and concurrent calibration for polytomous
IRT models is needed.

Kim and Lee (2004) applied scaling linking methods to mixed-format tests that
contained both dichotomously and polytomously scored items in a simulation study.
They found the MULTILOG and PARSCALE produced results that were similarly
accurate. They also found that characteristic curve methods produced more accurate
results than the mean/mean and mean/sigma methods.



232 6 Item Response Theory Methods

6.10.4 True Score Equating

Using Eq. (6.36) to calculate IRT true scores, the true score equating process
described for dichotomous models in conjunction with Eq. (6.19) is used, except
that typically there is no lower asymptote parameter in the polytomous models.

6.10.5 Observed Score Equating

IRT observed score equating for polytomous IRT models is very similar to that for
dichotomous IRT models. The major difference is that the distribution of observed
score given IRT ability is modeled using a compound multinomial distribution, which
is a generalization of the compound binomial distribution described earlier. A recur-
sion formula that was described by Thissen et al. (1995) can be used to perform the
calculations.

Define f1(x = W11|θi) = pi11(θi) as the probability of earning a score in the first
category of item 1, f1(x = W12|θi) = pi12(θi) as the probability of earning a score
in the second category of item 1, and so forth up to the last category of item 1. Then
for r > 1, the recursion formula for finding the probability of earning score x after
the r-th item added is,

fr(x|θi) =
mj⎫

k=1

fr−1(x − Wjk)pijk(θi) for x between minr and maxr, (6.41)

where minr and maxr are the minimum and maximum scores after adding the r-th
item. Note that when x−Wjk < minr−1 or x−Wjk > maxr−1, then fr−1(x−Wjk) = 0,
by definition.

An example using the recursive formula is given in Table 6.16. This example is for
a three-item test, where each item has a scoring function that consists of consecutive
integers beginning with 1. The first and second items have four categories each. The
third item has three categories. In this table, the i subscript for ability is dropped
to simplify the table. To use the recursion formula, it is important to identify the
maximum and minimum score after each new item is added. For the first item (r = 1)
the minimum score is 1 and the maximum is 4. When the second item is added (r = 2),
the minimum is 2 and the maximum is 8. After the third item is added (r = 3), the
minimum is 3 and the maximum is 11. In Table 6.16, a zero is displayed whenever
x − Wjk is less than the minimum score or greater than the maximum score.

A computational example that goes along with the recursive example in Table 6.16
is given in Table 6.17. Assume that θ = 1. For this example, the first item is Bock’s
nominal model item used as an example earlier. The probabilities for this item as well
as the other two items, conditional on θ = 1, are given at the bottom of the table. The
outcome of applying the recursion formula in this example is a distribution of total
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Table 6.16 Polytomous IRT recursive formula example

r x fr(x)

1 1 f1(1) = p11

2 f1(2) = p12

3 f1(3) = p13

4 f1(4) = p14

2 2 f2(2) = f1(1)p21 +0 +0 +0
3 f2(3) = f1(2)p21 +f1(1)p22 +0 +0
4 f2(4) = f1(3)p21 +f1(2)p22 +f1(1)p23 +0
5 f2(5) = f1(4)p21 +f1(3)p22 +f1(2)p23 +f1(1)p24

6 f2(6) = 0 +f1(4)p22 +f1(3)p23 +f1(2)p24

7 f2(7) = 0 +0 +f1(4)p23 +f1(3)p24

8 f2(8) = 0 +0 +0 +f1(4)p24

3 3 f3(3) = f2(2)p31 +0 +0
4 f3(4) = f2(3)p31 +f2(2)p32 +0
5 f3(5) = f2(4)p31 +f2(3)p32 f2(2)p33

6 f3(6) = f2(5)p31 +f2(4)p32 f2(3)p33

7 f3(7) = f2(6)p31 +f2(5)p32 f2(4)p33

8 f3(8) = f2(7)p31 +f2(6)p32 f2(5)p33

9 f3(9) = f2(8)p31 +f2(7)p32 f2(6)p33

10 f3(10) = 0 +f2(8)p32 f2(7)p33

11 f3(11) = 0 +0 f2(8)p33

scores on this three-item test for examinees with θ = 1. Note that the total scores
range from 3 to 11.

For IRT observed score equating, the recursion formula, along with a quadrature
distribution for θ, is used to find the marginal distribution for Form X using Eq. (6.26)
and implemented using Eqs. (6.26) or (6.27). Similar procedures are used for Form Y.
These distributions are then equated using equipercentile methods in the same way
that the scores were equated in observed score equating with dichotomous IRT; the
main difference is that the total scores range between the minimum and maximum
score rather than between 0 and KX .

6.10.6 Example Using the Graded Response Model

A new real data example is used to illustrate use of the graded response model in
equating. The test in this example is Level 9 of the Maps and Diagrams of the Iowa
Tests of Basic Skills (ITBS). Two forms of this test (Form L and Form K) were
administered using a random groups design. Each form contains 24 items. There are
5 stimuli on each form of the test. The first two stimuli each have 3 items associated
with them and the last three stimuli have 6 items associated with them. The items
associated with each stimulus block were assumed to be a testlet. The testlet score
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Table 6.17 Polytomous IRT recursive formula cmputational example

r x fr(x)

1 1 f1(1) = .010
2 f1(2) = .725
3 f1(3) = .132
4 f1(4) = .132

2 2 f2(2) = .010(.15) +0 +0 +0 = .0015
3 f2(3) = .725(.15) +.010(.25) +0 +0 = .1112
4 f2(4) = .132(.15) +.725(.25) +.010(.40) +0 = .2050
5 f2(5) = .132(.15) +.132(.25) +.725(.40) +.010(.20) = .3448
6 f2(6) = 0 +.132(.25) +.132(.40) +.725(.20) = .2308
7 f2(7) = 0 +0 +.132(.40) +.132(.20) = .0792
8 f2(8) = 0 +0 +0 +.132(.20) = .0264

3 3 f3(3) = .0015(.05) +0 +0 = .0001
4 f3(4) = .1112(.05) +.0015(.60) +0 = .0065
5 f3(5) = .2050(.05) +.1112(.60) .0015(.35) = .0775
6 f3(6) = .3448(.05) +.2050(.60) .1112(.35) = .1792
7 f3(7) = .2308(.05) +.3448(.60) .2050(.35) = .2902
8 f3(8) = .0792(.05) +.2308(.60) .3448(.35) = .2631
9 f3(9) = .0264(.05) +.0792(.60) .2308(.35) = .1296
10 f3(10) = 0 +.0264(.60) .0792(.35) = .0436
11 f3(11) = 0 +0 .0264(.35) = .0092

Note p11 = .01, p12 = .725, p13 = .132, p14 = .132, p21 = .15, p22 = .25,
p23 = .40, p24 = .20, p31 = .05, p32 = .60, p33 = .35

was the total number correct on that testlet. Each examinee had 5 scores, one for each
testlet. The range of scores for the first two testlets was 0 to 3. The range of scores
for the last three testlets was 0 to 6. The total score on the test ranged from 0 to 24.
Examinee testlet scores were input into the computer software MULTILOG. Defaults
were used for the analyses, with the exception that 49 equally spaced quadrature
points ranging from –6 to +6 were used. IRT equating was conducted using the
POLYEQUATE computer software that is given in Appendix B.

The item parameter estimates that were obtained in two runs of MULTILOG are
given in Table 6.18. Because the random groups design was used, the groups taking
the two forms are assumed equivalent, and the item parameters from the two runs
assumed to be on the same scale, without transformation. As can be seen, each item
has an aj-parameter estimate and one less bjk-parameter estimate than the number of
score categories.

The true score equating results are given in Table 6.19. To conduct observed
score equating, it was necessary to have quadrature distributions. MULTILOG does
not print out the quadrature weights. To obtain the weights, the following process
was used, which produces weights that are similar to the prior weights used by
BILOG-MG. Begin with a set of quadrature points that are equally spaced and cen-
tered around zero. Find the density of the standard normal distribution at each point.
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Table 6.18 Graded response model item parameter estimates

Item Parameter Estimates
Form Testlet aj bj2 bj3 bj4 bj5 bj6 bj7

L 1 1.197 −1.906 .103 1.713
2 1.029 −2.094 −.208 2.020
3 1.672 −2.355 −1.481 −.830 −.197 .551 1.670
4 1.033 −2.272 −.706 .576 1.912 3.267 5.126
5 1.048 −1.904 −.604 .567 1.683 2.944 4.346

K 1 1.407 −3.081 −1.179 .363
2 1.891 −1.851 −1.016 −.026
3 2.143 −2.476 −1.736 −1.174 −.594 .020 .961
4 1.471 −2.286 −1.121 −.137 .795 1.717 2.840
5 1.442 −2.043 −1.108 −.279 .519 1.312 2.475

Sum the weights over the points and then divide each weight by this sum, which
standardizes the weights to sum to one. For the example, this process was followed
with 49 quadrature points (rounded to one decimal place) ranging from –6 to +6.
The results from the observed score equating are shown in Table 6.20. In addition,
the frequency distributions that were obtained from the IRT model are displayed
in Table 6.20. Moments of the actual and estimated distributions and the converted
scores are shown in Table 6.21 (these moments were calculated using the actual, not
the smoothed, relative frequency distributions).

In addition to the graded response model, the three-parameter logistic model
(3PL) was also fit to the data. In this case, each form was analyzed as having 24
dichotomously scored items. Also, unsmoothed equipercentile equating was con-
ducted. Only final results are provided for these equatings.

The observed and fitted frequency distributions are shown in Fig. 6.13. As can be
seen, there appears to be a slight distortion in the fitted distribution for the graded
response model, with the mode being a bit too high. This finding is consistent with
the mean for Form K estimated using the graded response model (14.1708) being
slightly too large compared to the actual mean (14.0066). Difference plots for all
of the equatings that were conducted are shown in Fig. 6.14. The three-parameter
logistic model true score method produced different results at the low scores than
the other methods, presumably because of the pseudo-chance level parameter.

6.11 Robustness to Violations of the Unidimensionality
Assumption

A unidimensionality assumption is required to use the IRT methods discussed in
this chapter. Research suggests that IRT equating is fairly robust to violations of the
unidimensionality assumption when equating alternate forms of a test, as long as
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Table 6.19 Graded response model true score equating

Form L Score θ Equivalent Form K Equivalent

0 0.0000
1 –2.8734 1.2173
2 –2.4186 2.4598
3 –2.0852 3.7232
4 –1.7878 5.0624
5 –1.5063 6.4754
6 –1.2335 7.9417
7 –0.9675 9.4249
8 –0.7093 10.8485
9 –0.4582 12.1977

10 –0.2117 13.5085
11 0.0345 14.8072
12 0.2846 16.0576
13 0.5430 17.2252
14 0.8146 18.3479
15 1.1007 19.4247
16 1.3908 20.3425
17 1.6782 21.0697
18 1.9769 21.6899
19 2.3174 22.3015
20 2.7380 22.9719
21 3.2746 23.5915
22 3.9718 23.9136
23 4.8693 23.9903
24 24.0000

the violation of the unidimensionality assumption is not too severe (e.g., Bolt 1999;
Camilli et al. 1995; Cook et al. 1985; De Champlain 1996; Dorans and Kingston
1985; Yen 1984).

Some investigators have suggested using multidimensional IRT models for tests
that violate the unidimensionality assumption. In such cases, methods must be used
to link the multidimensional IRT parameter estimates (Davey et al. 1996; Hirsch
1989; Li and Lissitz 2000; Oshima et al. 2000; Reckase 2009; Yao 2011; Yao and
Boughton 2009). Methods for conducting IRT true and observed score equating
for use with tests that are fit with a multidimensional model have been presented by
Brossman (2010) for a situation in which the multiple-choice items on an examination
are treated as measuring a different unidimensional construct than the constructed-
response items on the same examination. Practical issues associated with equating
mixed-format tests are discussed more fully in Chap. 8 and practical issues associated
with deciding on whether to use a unidimensional or multidimensional model with
mixed-format tests is discussed in more detail in Chap. 9

http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_9
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Table 6.20 Graded response model observed score equating

Form L Form K Form K Equivalent of
Score Relative frequency Relative frequency Form L raw score

0 .0032 .0015 .5120
1 .0067 .0041 1.6295
2 .0118 .0068 2.8232
3 .0191 .0102 4.0965
4 .0290 .0143 5.4718
5 .0408 .0188 6.8479
6 .0533 .0240 8.2768
7 .0649 .0296 9.6702
8 .0745 .0357 10.9918
9 .0810 .0426 12.2716

10 .0846 .0501 13.5346
11 .0863 .0572 14.7981
12 .0865 .0631 16.0148
13 .0838 .0661 17.1592
14 .0765 .0671 18.2546
15 .0643 .0693 19.3020
16 .0489 .0733 20.2601
17 .0343 .0752 21.0926
18 .0229 .0723 21.8007
19 .0144 .0657 22.3942
20 .0082 .0574 23.0970
21 .0037 .0470 23.6443
22 .0012 .0314 24.2817
23 .0002 .0134 24.4676
24 .0000 .0039 24.4981

Table 6.21 Moments for graded response model equating

μ̂ σ̂ ŝk k̂u

Actual
Form L 10.8047 4.3171 0.2256 2.4343
Form K 14.0066 5.0146 –0.2638 2.2285

Estimated using graded response observed score method
Form L 10.7900 4.1695 –0.0442 2.5432
Form K 14.1708 4.9801 –0.3757 2.4903

Form L converted to Form K using various methods
Equipercentile 14.0105 5.0046 –0.2577 2.2244

IRT Obs 14.1363 5.0362 –0.1279 2.1586
IRT True 14.0504 5.1688 –0.1735 2.1276
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Fig. 6.13 Observed and fitted relative frequency distributions for Form K and Form L for graded
response model example

Fig. 6.14 Equating
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response model example
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6.12 Practical Issues and Caveat

We recommend the following when using IRT to conduct equating in practice:

1. When equating with the common item nonequivalent groups design, use both the
Stocking and Lord and Haebara methods for scale transformation. In addition,
concurrent calibration should be used as a check when feasible.

2. When equating number-correct scores, use both IRT true score equating and IRT
observed score equating.

3. Whenever possible, conduct traditional equipercentile or linear methods on the
forms that are being equated as a check.

Often all of the methods applied provide similar equating results and conversion
to scale scores (where appropriate), which is reassuring. However, when the results
for the different methods diverge, then a choice must be made about which results to
believe. The assumptions required and the effects of poor parameter estimates need
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to be considered in these cases. The issue of choosing among results in equating is
discussed in more detail in Chap. 8.

Unidimensional IRT methods assume that the test forms are unidimensional and
that the relationship between ability and the probability of correct response follows
a specified form. These requirements are difficult to justify for many educational
achievement tests, although, as indicated in the previous section, the methodology
has been found to be robust to violations in many practical situations.

The IRT methods considered in detail in this chapter do not include parameters for
item context effects such as item position in a test booklet. Yet, there is considerable
evidence (see Chap. 8) that the difficulty of items is influenced by item context. The
general approach taken in this chapter, and in this book as a whole, is to recommend
that equating studies be designed to minimize the effects of violations of assumptions.
In this regard, the following advice from Cook and Petersen (1987) is especially
relevant:

Regardless of whether IRT true-score or conventional equating procedures are being used,
common items should be selected that are a miniature of the tests to be equated and these
items should remain in the same relative position when administered to the new- and old-
form groups. It would also seem prudent to evaluate the differential difficulty of the common
items administered to the equating samples, particularly when equating samples come from
different administration dates. (p. 242)

6.13 Exercises

6.1 For the test in Table 6.1, find the probability of correctly answering each of the
three items for examinees with ability θIi = .5.

6.2 For the test in Table 6.1, find the distribution of observed scores for examinees
with ability θIi = .5.

6.3 Prove the following:

a. A = (bJj −bJj≥)/(bIj −bIj≥) from Eq. (6.6). [Hint: The proof can be done by
setting up a pair of simultaneous equations for bJj≥ and bJj using Eq. (6.4)
and solving for A.]

b. A = aIj/aJj from Eq. (6.6). [Hint: Use Eq. (6.3).]
c. A = σ(bJ)/σ(bI) in Eq. (6.8a). [Hint: Use Eq. (6.4).]
d. A = μ(aI)/μ(aJ) in Eq. (6.8b). [Hint: Use Eq. (6.3).]

6.4 For the test in Table 6.1, what is the value of the test characteristic curve at
θIi = −2.00, .5, and 1.00? How about at θJi = −1.50 and 0.00?

6.5 For the hypothetical example in Table 6.3, conduct observed score equating
for a population of examinees with equal numbers of examinees at three score
levels: θ = −1, 0, 1. [Hints: Use Eq. (6.25) to find f (x|θ) and g(y|θ) for θ =
−1, 0, and 1. Then apply Eq. (6.27). Finally, do conventional equipercentile
equating. Warning: This problem requires considerable computation.]

http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
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6.6 For the example in Table 6.4, provide the probabilities of earning scores 0, 1,
2, 3, and 4 for r = 4 assuming that the probability of correctly answering the
fourth item for an examinee of ability θi = −2 equals .4.

6.7 For the example in Table 6.2, calculate Hdiff and SLdiff for θ = 1 on Scale J
using the mean/sigma and mean/mean methods.

6.8 Why is IRT equating to a particular old form important if all items are in an
IRT calibrated item pool?

6.9 The following are some of the steps involved in equating (assume that number-
correct scoring is used and that scale scores are reported to examinees): (a)
select the design for data collection and how to implement it; (b) construct,
administer, and score the test; (c) estimate equating relationships; (d) construct
a conversion table of raw-to-scale scores; (e) apply the conversions to exam-
inees; and (f) report scores to examinees. At each of these steps, what would
be the differences in equating a new form using the IRT methods described in
Chap. 6 versus the traditional methods described in Chaps. 2, 3, 4, 5?

6.10 Find p≥
ijk(θi; aj, bj2, · · · , bjmj ) and pijk(θi; aj, bj2, · · · , bjmj ) at θi = −.5 for a

Samejima Logistic graded response model item with the following parameters:
aj = 1.2, bj2 = −1.1, bj3 = −1.0, bj4 = .5, bj5 = .6, and bj6 = 1.0.

6.11 Find pijk(θi; aj1, aj2, · · · , ajmj , cj1, cj2, · · · , cjmj ) at θi = .5 for a Bock’s nom-
inal model item with the following parameters: aj1 = .905, aj2 = .522,
aj3 = −.959, cj1 = .336, cj2 = −.206, bj3 = .126.

6.12 Is the item in the preceding exercise consistent with being an item with ordered
categories? Why or why not?

6.13 Find pijk(θi; a≥
j , bj, dj1, dj2, · · · , djmj ) at θi = 1.0 for a Muraki generalized

partial credit model item with the following parameters: aj = 1, bj = 0,
dj1 = 0, dj2 = 1, dj3 = −1.

6.14 For the example in Table 6.17, find the probability of earning scores of 4
through 14 if on a fourth item, the probability of earning a 1 was .3, the
probability of earning a 2 was .5, and the probability of earning a 3 was .2.
Use the recursive formula.

6.15 For the example in Table 6.17, what is the (conditional) expected score on
item 1? On item 2? What is the (conditional) expected score on a two-item
test consisting of the first two items? What relationship is there between these
three expected scores? Why? In the terminology of the chapter, what are each
of these (conditional) expected scores?

6.16 Show that Eq. (6.33) relates Muraki’s generalized partial credit model para-
meters to Bock’s nominal model parameters.

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_3
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_5
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Chapter 7
Standard Errors of Equating

Two general sources of error in estimating equating relationships are present
whenever equating is conducted using data from an equating study: random error
and systematic error. Random equating error is present when the scores of examinees
who are considered to be samples from a population or populations of examinees
are used to estimate equating relationships. When only random equating error is
involved in estimating equating relationships, the estimated equating relationship
differs from the equating relationship in the population because data were collected
from a sample, rather than from the whole population. If the whole population were
available, then no random equating error would be present. Thus, the amount of
random error in estimating equating relationships becomes negligible as the sample
size increases.

The focus of the present chapter is on estimating random error, rather than
systematic error. The following examples of systematic error are intended to illus-
trate the concept of systematic error, and to distinguish systematic from random
error. One way that systematic error can occur in estimating equating relationships is
when the estimation method introduces bias in estimating the equating relationship.
As was indicated in Chap. 3, smoothing techniques can introduce systematic error—
a useful smoothing method results in a reduction in random error that exceeds the
amount of systematic error which is introduced. Another way that systematic error in
estimating equating relationships can occur is when the statistical assumptions that
are made in an equating method are violated. For example, systematic error would
be introduced if the Tucker method described in Chap. 4 was used in a situation in
which the regression of X on V differed from Population 1 to Population 2. Simi-
larly, systematic error would be introduced if IRT true score equating, as described
in Chap. 6, was used to equate multidimensional tests. A third way that systematic
error could occur is if the design used to collect the data for equating were improp-
erly implemented. For example, suppose that in the random groups design, the test
center personnel assigned Form X to examinees near the front of the room and Form
Y to examinees near the back of the room. This distribution pattern likely would
lead to systematic differences between examinees who were administered the forms,
unless the examinees were seated randomly. As another example, suppose that in
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the common-item nonequivalent groups design the common items appeared near the
beginning of the test in Form X and near the end of the test in Form Y. In this case,
the common items might behave very differently on the two forms, because of the
different placement. A fourth way that systematic error could occur is if the group(s)
of examinees used to conduct equating were to differ substantially from the group
who takes the equated form. It is important to note that the use of large sample sizes
would not reduce the magnitude of these systematic error components. Thus, a major
distinguishing factor between random and systematic error is that as the sample size
increases, random error diminishes, whereas systematic error does not diminish.

Standard errors of equating index random error in estimating equating relationships
only—they are not directly influenced by systematic error. Standard errors of equat-
ing approach 0 as the sample size increases, whereas systematic errors of equating
are not directly influenced by the sample size of examinees. Only random error in
estimating equating relationships is considered in the present chapter; systematic
error is a prominent consideration in Chap. 8. In the present chapter, standard errors
of equating are defined, and both bootstrap and analytic standard errors are consid-
ered. We describe procedures for estimating standard errors of equating for many
of the methods described in Chaps. 2 through 6, including standard errors for raw
and scale scores. We show how the standard errors can be used to estimate sample
size requirements and to compare the precision of different equating methods and
designs.

7.1 Definition of Standard Error of Equating

The standard error of equating is a useful index of the amount of equating error. The
standard error of equating is conceived of as the standard deviation of equated scores
over hypothetical replications of an equating procedure in samples from a population
or populations of examinees. In one hypothetical replication, specified numbers of
examinees would be randomly sampled from the population(s). Then the Form Y
equivalents of Form X scores would be estimated at various score levels using a
particular equating method. The standard error of equating at each score level is the
standard deviation, over replications, of the Form Y equivalents at each score level
on Form X. Standard errors typically differ across score levels.

To define standard errors of equating, each of the following need to be specified:

• the design for data collection (e.g., common-item nonequivalent groups);
• the definition of equivalents (e.g., equipercentile);
• the method used to estimate the equivalents (e.g., unsmoothed equipercentile);
• the population(s) of examinees;
• the sample sizes (e.g., 2,000 for the old form and 3,000 for the new form);
• the score level or score levels of interest (e.g., each integer score from 0 to K X ).

Given a particular specification, define êqY (xi ) as an estimate of the Form Y
equivalent of a Form X score in the sample and define E[êqY (xi )] as the expected
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equivalent, where E is the expectation over random samples from the population(s).
For a given sample estimate, equating error at a particular score level on Form X is
defined as the difference between the sample Form Y equivalent and the expected
equivalent. That is, equating error at score xi for a given equating is

êqY (xi ) − E[êqY (xi )]. (7.1)

Suppose that the equating is replicated a large number of times, such that for each
replication the equating is based on random samples of examinees from the popula-
tion(s) of examinees who take Form X and Form Y, respectively. The equating error
variance at score point xi is

var[êqY (xi )] = E{êqY (xi ) − E[êqY (xi )]}2, (7.2)

where the variance is taken over replications. The standard error of equating is defined
as the square root of the error variance,

se[êqY (xi )] = √
var[êqY (xi )] =

√
E{êqY (xi ) − E[êqY (xi )]}2. (7.3)

The error indexed in equations (7.1)–(7.3) is random error that is due to the sampling
of examinees to estimate the population quantity, eqY (xi ) = E[êqY (xi )].

Standard errors can be considered for specific data collection designs. In a random
groups design, a single population of examinees is considered. A random sample of
size NX is drawn from the population and administered Form X, another random
sample of size NY is drawn from the population and administered Form Y, and
equating is conducted using these data. Conceptually, the hypothetical sampling and
equating process is repeated a large number of times, and the variability at each score
point is tabulated to obtain standard errors for this design. Recall from Chap. 3 that a
conceptual scheme for considering standard errors of equipercentile equating using
the random groups design was presented in Fig. 3.1.

How would this hypothetical sampling/equating process proceed for the common-
item nonequivalent groups design? In this design, on each replication NX examinees
from Population 1 who took Form X and NY examinees from Population 2 who
took Form Y would be sampled. On each replication, the equivalents would be
found using an equating method appropriate for this design, such as the frequency
estimation method. The standard error at a particular Form X score would be the
standard deviation of the Form Y equivalents over replications.

In the present chapter, the population of examinees is assumed to be infinite (or
at least very large) in size. Often it makes sense to conceive of the population as
being infinite in size, such as when the population is conceived of as all potential
past, current, and future examinees. The examinees in a current sample could be
considered as a sample from this population. Although not the approach taken here,
it might be argued that the group of examinees is the whole population. In this
case, there can be no random error in estimating equating relationships because no
sampling of examinees is involved.

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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In practice, data are available from a single sample or pair of samples of examinees.
Two general types of procedures have been developed for estimating the standard
errors from such data collection designs. The first type is computationally intensive
resampling procedures. In these procedures, many samples are drawn from the data
at hand and the equating functions estimated on each sampling. Standard errors are
calculated using the data from these many resamplings. The resampling method that
is considered in this chapter is the bootstrap. The second type is analytic in that the
procedures result in an equation that can be used to estimate the standard errors using
sample statistics. The development of the equations in these analytic methods can
be very time-consuming, and the resulting equations can be very complicated. The
analytic method that is described in this chapter is referred to as the delta method.
Both types of methods are useful, depending on the information desired and the uses
to be made of the standard errors.

7.2 The Bootstrap

The bootstrap method (Efron 1982; Efron and Tibshirani 1993) is a method for
estimating standard errors of a wide variety of statistics that is computationally
intensive. As is described subsequently in more detail, the bootstrap involves taking
multiple random samples with replacement from the sample data at hand. A computer
is used to draw random samples using a pseudo-random number generator when
applying the bootstrap in practice. Refer to Press et al. (1989) for a discussion of
pseudo-random number generation. To introduce the bootstrap method, a simple
example is used in which the standard error of a sample mean is estimated. Then
applications to equating are described.

7.2.1 Standard Errors Using the Bootstrap

The steps in estimating standard errors of a statistic using the bootstrap from a single
sample are as follows:

1. Begin with a sample of size N .
2. Draw a random sample, with replacement, of size N from this sample data. Refer

to this sample as a bootstrap sample.
3. Calculate the statistic of interest for the bootstrap sample.
4. Repeat steps 2 and 3 R times.
5. Calculate the standard deviation of the statistic of interest over the R bootstrap

samples. This standard deviation is the estimated bootstrap standard error of the
statistic.

Of special importance is that the random sample in step 2 is drawn with replacement.
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Consider a simple hypothetical example for illustrative purposes. Suppose that
an investigator is interested in estimating the standard error of a mean using the
bootstrap method. Assume that a sample of size N = 4 is drawn from the population
and the sample values are 1, 3, 5, and 6. To estimate the standard error of the mean
using the bootstrap, bootstrap samples would be drawn with replacement from these
four sample values and the mean calculated for each bootstrap sample. Suppose that
the following four random bootstrap samples were drawn with replacement from the
sample values 1, 3, 5, and 6:

Sample 1: 6 3 6 1 Mean = 4.00
Sample 2: 1 6 1 3 Mean = 2.75
Sample 3: 5 6 1 5 Mean = 4.25
Sample 4: 5 1 6 1 Mean = 3.25

The same sample value may be chosen more than once because bootstrap sampling
is done with replacement. For example, the score of 6 was chosen twice in bootstrap
Sample 1, even though there was only one 6 in the data. The bootstrap estimate of
the standard error of the mean is the standard deviation of the means over the four
bootstrap samples. To calculate the standard deviation, note that the mean of the four
means is (4.00 + 2.75 + 4.25 + 3.25)/4 = 3.5625. Using R − 1 = 3 as the divisor,
the standard deviation of the four means is

√
(4.00 − 3.5625)2 + (2.75 − 3.5625)2 + (4.25 − 3.5625)2 + (3.25 − 3.5625)2

3

= .6884.

Thus, using these four bootstrap samples, the estimated standard error of the mean
is .6884. In practice, many more than four samples would be chosen. Efron and
Tibshirani (1993) recommended using between 25 and 200 bootstrap samples for
estimating standard errors. In practice, however, as many as 1,000 bootstrap replica-
tions are common.

In this situation, standard statistical theory would have been easier to implement
than the bootstrap. Noting that the sample standard deviation (using N − 1 in the
denominator) of the original sample values (1, 3, 5, 6) is 2.2174, the estimated
standard error of the mean using standard procedures is 2.2174/

∗
4 = 1.1087. The

bootstrap estimate would likely be similar to this value if a large number of bootstrap
replications were used for estimating the standard error for the population.

In equating, analytic procedures are not always available for estimating standard
errors, or the analytic procedures that are available might make assumptions that are
thought to be questionable. The bootstrap can be used in such cases. Although com-
putationally intensive, the bootstrap can be readily implemented using a computer,
often with much less effort than it would take to derive analytic standard errors.
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7.2.2 Standard Errors of Equating

Now consider using the bootstrap to equate two forms using the random groups
design. To implement this method, begin with sample data. For equipercentile equat-
ing with the random groups design, the samples would consist of NX examinees
with scores on Form X and NY examinees with scores on Form Y. To estimate the
se[êY (xi )]:
1. Draw a random bootstrap sample with replacement of size NX from the sample

of NX examinees.
2. Draw a random bootstrap sample with replacement of size NY from the sample

of NY examinees.
3. Estimate the equipercentile equivalent at xi using the data from the random boot-

strap samples drawn in steps 1 and 2, and refer to this estimate as êYr (xi ).
4. Repeat steps 1 through 3 R times, obtaining bootstrap estimates êY1(xi ),

êY 2(xi ), . . . , êY R(xi ).
5. The standard error is estimated by

ŝeboot [êY (xi )] =
√∑

r [êYr (xi ) − êY ·(xi )]2

R − 1
, (7.4)

where

êY ·(xi ) =
∑

r êYr (xi )

R
. (7.5)

These procedures can be applied at any xi . Typically, the same R bootstrap samples
are used to estimate standard errors for all integer values of xi between 0 and K X ,
because the interest is in estimating standard errors for the whole range of scores.

The equipercentile equating of the ACT Mathematics test forms that was described
in Chap. 2 is used to illustrate the computation of bootstrap standard errors. In this
example, Form X and Form Y of the 40-item test were equated using equipercentile
methods. The sample sizes were 4,329 for Form X and 4,152 for Form Y. Unsmoothed
equipercentile results were presented in Table 2.7.

To compute bootstrap standard errors in this example, 4,329 Form X scores and
4,152 Form Y scores were sampled with replacement from their respective distribu-
tions. Form Y equipercentile equivalents at each Form X integer score were found.
R = 500 bootstrap replications were used, and the estimated standard errors were
calculated at each score point using Eq. (7.4). The computer program Equating Error
listed in Appendix B was used to conduct these and the subsequent bootstrap analyses
described in this chapter.

The resulting bootstrap standard errors are graphed in Fig. 7.1. For comparison
purposes, the estimated analytic standard errors that were presented in Table 3.2 also
are graphed. [These analytic standard errors were calculated using Eq. (7.12), which
is presented later in the present chapter.] In this figure, the standard errors tend to
be smallest around Form X scores in the range of 8 to 12. These scores tend to be

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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Fig. 7.1 Bootstrap and analytic standard errors of equipercentile equating for raw scores

the most frequently occurring Form X scores, as can be seen in Fig. 2.8. Also, the
analytic and bootstrap standard errors are very similar. Empirical studies have found
that the two methods produce very similar results in both linear and equipercentile
equating of number-correct scores when a large number of bootstrap replications are
used (e.g. Kolen 1985; Jarjoura and Kolen 1985). Finally, the graph of the standard
errors is irregular in appearance, which is presumably due to the relatively small
numbers of examinees earning each score.

The bootstrap can be readily applied in the common-item nonequivalent groups
design. In this design, a sample of NX examinees would be drawn from the examinees
who were administered Form X, and a sample of NY examinees would be drawn from
among the examinees who were administered Form Y. An appropriate method, such
as the Tucker linear method or the frequency estimation equipercentile method, then
would be used to find the equivalents. The sampling process would be repeated a
large number of times, and the standard error again would be the standard deviation
of the estimates over samples.

7.2.3 Parametric Bootstrap

One problem that can be encountered in estimating standard errors in equipercentile
equating is that estimates of standard errors might not be very accurate, especially at
score points with very small frequencies, as was illustrated by the irregular graphs

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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in Fig. 7.1. Efron and Tibshirani (1993) suggested using the parametric bootstrap in
these situations. In the parametric bootstrap, a parametric model is fit to the data. The
standard errors are estimated by treating the fitted parametric model as if it appropri-
ately described the population and simulating standard errors by sampling from the
fitted model. Because populations are assumed to be infinite in size, sampling with
or without replacement is considered to be the same. As an example, the following
steps could be used to apply the parametric bootstrap to estimate the standard errors
of equipercentile equating using the random groups design:

1. Fit the Form X empirical distribution using the log-linear method. Choose C using
the techniques described in Chap. 3.

2. Fit the Form Y empirical distribution using the log-linear method, Choose C using
the techniques described in Chap. 3.

3. Using the fitted distribution from step 1 as the population distribution for Form
X, randomly select NX scores from this population distribution. The distribution
of these scores is the parametric bootstrap sample distribution of scores on Form
X.

4. Using the fitted distribution from step 2 as the population distribution for Form
Y, randomly select NY scores from this population distribution. The distribution
of these scores is the parametric bootstrap sample distribution of scores on Form
Y.

5. Conduct equipercentile equating using the sampled parametric bootstrap distri-
butions from steps 3 and 4, and tabulate the equipercentile equivalent at score
xi .

6. Repeat steps 3 through 5 a large number of times. The estimated standard error
is the standard deviation of the equivalents at xi over samples.

In the parametric bootstrap, samples are taken from fitted distributions. In the boot-
strap, samples are taken from the empirical distribution. The parametric bootstrap
leads to more stable estimates of standard errors than the bootstrap. In a simula-
tion study, Cui and Kolen (2008) compared the bootstrap and parametric bootstrap
procedures for the random groups design and found that the parametric bootstrap
produced more stable estimates of standard errors of equating than the bootstrap in
most of the conditions studied. However, they warned that the parametric bootstrap
could produce biased estimates of the standard errors if the fitted parametric model
is not an accurate estimate of the population distribution.

Results from the use of the parametric bootstrap are shown in Fig. 7.2. The boot-
strap standard errors are the same as those shown in Fig. 7.1. To calculate the para-
metric bootstrap standard errors in Fig. 7.2, a log-linear model with C = 6 was fit to
the Form X and Form Y distributions. Each parametric bootstrap replication involved
drawing a random sample from the fitted distributions and conducting unsmoothed
equipercentile equating. As can be seen in Fig. 7.2, the parametric bootstrap results in
a more regular graph of the standard errors than the bootstrap. In addition, the para-
metric bootstrap results are more regular than the analytic results shown in Fig. 7.1

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
http://dx.doi.org/10.1007/978-1-4939-0317-7_3


7.2 The Bootstrap 255

0.0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30 35 40

St
an

da
rd

 E
rr

or
 o

f 
R

aw
 S

co
re

 E
qu

ip
er

ce
nt

ile
 E

qu
at

in
g

Form X Raw Score

Parametric Bootstrap

Bootstrap

Fig. 7.2 Bootstrap and parametric bootstrap standard errors of equipercentile equating for raw
scores

7.2.4 Standard Errors of Equipercentile Equating
with Smoothing

Smoothed equivalents can be used in place of the unsmoothed equivalents in the
preceding procedures to estimate standard errors of smoothed equipercentile equat-
ing. A comparison of standard errors of smoothed and unsmoothed equipercentile
equating is presented in Fig. 7.3.

The parametric bootstrap was used in these comparisons. (The regular bootstrap
could have been used here also.) The standard errors of unsmoothed equipercentile
equating shown in Fig. 7.3 are identical to those shown in Fig. 7.2 for the parametric
bootstrap. To calculate the standard errors for smoothed equating, the distributions
on each parametric bootstrap replication were smoothed using the log-linear model
with C = 6. The smoothed distributions on each replication then were equated
using equipercentile methods. Over most of the score range the standard errors for
smoothed equipercentile equating were less than those for unsmoothcd, indicating
that smoothing reduces the standard error of equating. Note, however, that the stan-
dard errors only take into account random error; systematic error is not indexed.
Thus, as was stressed in Chap. 3, a smoothing method that results in lower standard
errors still could produce more total error than unsmoothed equipercentile equating.

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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Fig. 7.3 Parametric bootstrap standard errors of equipercentile equating for raw scores

7.2.5 Standard Errors of Scale Scores

So far, the bootstrap has been presented using equated raw scores. The bootstrap can
be readily applied to scale scores, as well, by transforming the raw score equivalents
to scale score equivalents on each replication. The standard error is the standard
deviation of the scale score equivalents over replications. Standard errors of both
unrounded and rounded scale score equivalents can be estimated using the bootstrap
procedure.

Scale score standard errors of equipercentile equating are shown in Fig. 7.4. First
consider the standard errors for unrounded scale scores. The standard errors tend to
be relatively large in the range of raw scores of 36 to 39, which results because the
raw-to-scale score transformation is steeper than at other ranges. (The raw-to-scale
score transformation for equipercentile equating is shown in Table 2.8.)

Next consider the standard errors for rounded scale scores. These standard errors
tend to be greater than those for the unrounded scores, because the rounding process
introduces error. When the decimal portion of the unrounded scale scores is close to
1/2, there tends to be a larger difference between the unrounded and rounded standard
errors. For example, from Table 2.8, the unrounded scale score at a Form X score of
22 is 20.5533, and the standard error for rounded scale scores for a Form X score is
much larger than the standard error for unrounded scale scores. When the decimal
portion of the unrounded scale score is close to 0, the standard errors for the rounded
and unrounded scale scores tend to be similar.

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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Fig. 7.4 Parametric bootstrap standard errors of equipercentile equating for scale scores

7.2.6 Standard Errors of Equating Chains

Often equating involves a chain of equating so that scores can be reported on the
scale of an earlier form or in terms of scale scores. For example, in ACT equating
(ACT 2007) , new forms are equated to the score scale using a chain of equating
which goes to the score scale which was developed for use in 1989. This chain could
include numerous test forms. (Also refer to the discussion of the scaling and equating
process described with Table 1.1.) Error in a chain of equating can be estimated using
the bootstrap.

Consider an example where Form X2 is to be equated to Form Y through Form
X1. The chaining process involves equating Form X2 to Form X1, which can be
symbolized as eqX1(X2), and equating Form X1 to Form Y, which can be symbolized
as eqY (X1). The chain can be symbolized as eqY (chain:X1)(X2) = eqY [eqX1(X2)].
The notation “chain:X1” in the subscript is used to indicate that the equating function
is for a chain that involves Form X1. The equating chain expression implies that to
convert a Form X2 score to Form Y, the Form X2 score first is converted to the Form
X1 scale using eqX1(X2). Then take this converted score and convert it to the Form
Y scale using eqY (X1). In practice, estimates of the equating relationships would be
available. In the example, each of the two equatings that need to be estimated has
error which needs to be incorporated into an estimate of the standard error of the
equating chain.

To develop the example further, assume the following: (a) the equating relation-
ships are to be estimated using the random groups design; (b) Form X1 and Form

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
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Y are spiraled in Administration A, and the resulting data are used to equate these
forms; and (c) Form X2 and Form X1 are spiraled in Administration B, and the result-
ing data are used to equate these forms. Given this situation, the following steps could
be used to estimate bootstrap standard errors of the equating chain:

1. Take a bootstrap sample of the examinees from Administration A who were
administered Form X1. Take a bootstrap sample of examinees from Administra-
tion A who were administered Form Y. Equate Form X1 to Form Y using these
bootstrap samples. Refer to the estimated equating relationship from bootstrap
samples r as êqYr (X1).

2. Take a bootstrap sample of the examinees from Administration B who were
administered Form X2. Take a bootstrap sample of examinees from Administra-
tion B who were administered Form X1. Equate Form X2 to Form X1 using these
bootstrap samples. Refer to the estimated equating relationship from bootstrap
samples r as êq X1r (X2).

3. Find the conversion of Form X2 scores to Form Y scores through the equating
chain using the equating relationships developed in steps 1 and 2. Refer to the
estimated equating chain from bootstrap samples r as êqYr(chain:X1)(X2).

4. Repeat steps 1–3 a large number of times. The standard deviation of the converted
scores from step 3 at a particular Form X2 score is the bootstrap standard error
of the equating chain at that score.

This procedure could be generalized to longer chains, although the process can
become extremely computationally intensive as the length of the chain increases. This
process also could be adapted to the single group and common-item nonequivalent
groups designs, and to other equating methods, such as linear or IRT methods. Refer
to Li et al. (2012) for a study that examined error in equating chains using IRT true
score equating methods and to Li et al. (2011) for the application of time-series
methods to estimate error in equating chains.

7.2.7 Mean Standard Error of Equating

Sometimes it is useful to have an aggregate value for the standard error of equating,
such as when an index of the overall effect of smoothing is desired. One way to get
an aggregate value is to find the square root of the average equating error variance
over examinees from the population that was administered Form X. In this way, the
average standard error of equipercentile equating is defined as

√∑
i

f (xi )se2[êY (xi )].

In this equation, the error variance at each score point is weighted by its density,
f (xi ), and then summed over score points. Weighting by the density is done so that
the error variance for each examinee in the population is weighted equally.
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Table 7.1 Average standard errors of equipercentile equating

Parametric
Score Bootstrap Bootstrap Analytic

Raw Score
Unsmoothed .2713 .2674 .2767
Smoothed .2536 .2519
Unrounded Scale Score
Unsmoothed .2549 .2501
Smoothed .2373 .2385
Rounded Scale Score
Unsmoothed .3636 .3632
Smoothed .3526 .3494

For the equipercentile equating example, the average standard errors estimated
by substituting estimates for the parameters are shown in Table 7.1. Average analytic
standard errors were calculated only for raw scores without smoothing. The averages
for the bootstrap and parametric bootstrap are very similar. For raw scores, the aver-
age standard error is somewhat lower for smoothed equating than for unsmoothed
equating. The same is true for scale scores and rounded scale scores. The average
standard error for rounded scale scores is considerably larger than the average for
unrounded scale scores in this example.

7.2.8 Caveat

The bootstrap is computationally intensive. If, for example, 500 bootstrap replica-
tions are to be conducted, then samples need to be drawn and equating needs to be
conducted 500 times. Stable standard error estimates might require using 1,000 or
more replications. However, with modern computers, this many replications often
can be accomplished reasonably quickly, at least for the mean, linear, and equiper-
centile methods considered in Chaps. 2–5. Bootstrap standard errors of equating can
be used with item response theory methods. However, to do so, random samples
are drawn and item parameters estimated many times. See Tsai et al. (2001) for an
example that used the bootstrap with IRT equating.

7.3 The Delta Method

Equations for estimating standard errors can be useful when computational time
needs to be minimized or when estimating the desired sample sizes for an equating
study. The delta method is a commonly used statistical method for deriving standard

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_5
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error expressions. The delta method is used to derive the approximate standard error
of a statistic that is a function of statistics for which expressions for the standard errors
already exist. As a simple example, the standard error of the sample mean squared
could be estimated using the delta method, because an expression for the standard
error of a sample mean is known. For the mean, linear, and equipercentile equating
methods that were considered in Chaps. 2–5, the estimated equating relationships are
functions of sample moments and cumulative probabilities that have standard errors
which can be estimated directly. Thus, the delta method can be used to estimate
standard errors of scores equated using mean, linear, and equipercentile equating
methods.

The delta method (Kendall and Stuart 1977) is based on a Taylor series expansion.
Define for the population eqY (xi ;�1,�2, . . . , �t ) as an equating function of test
score xi and parameters �1,�2, . . . , �t . In linear equating, �1,�2, . . . , �t are
moments. In equipercentile equating, �1,�2, . . . , �t are cumulative probabilities.
By the delta method, an approximate expression for the sampling variance is

var[êqY (xi )] ≥=
∑

j

eq ≤2
Y jvar(�̂ j ) +

∑ ∑
j ∞=k

eq ≤
Y j eq ≤

Y kcov(�̂ j , �̂k). (7.6)

In this equation, �̂ j is a sample estimate of � j and eq ≤
Y j is the partial derivative of

eqY j with respect to � j and evaluated at xi ,�1,�2, . . . , �t . This equation requires
that expressions for the sampling variances (var) and sampling covariances (cov) of
the �̂ j be available. The standard error is the square root of var in Eq. (7.6).

The following steps are used to apply the delta method:

1. Specify the error variances and covariances for each �̂ j .
2. Find the partial derivative of the equating equation with respect to each � j .
3. Substitute the variances and partial derivatives into Eq. (7.6).

The resulting standard errors are expressed in terms of parameters. Estimates of the
parameters are used in place of the parameters to obtain the estimated standard errors.

7.3.1 Mean Equating Using Single Group and Random Groups
Designs

For illustrative purposes, consider a simple example using mean equating in the
single group design with no counterbalancing (use of counterbalancing would make
this example more complicated). In this design, for the population,

mY (xi ) = xi − μ(X) + μ(Y ),

which is estimated by
m̂Y (xi ) = xi − μ̂(X) + μ̂(Y ).

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_5
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To apply the delta method, note that from standard statistical theory,

var[μ̂(X)] = σ2(X)/N ,

var[μ̂(Y )] = σ2(Y )/N , and
cov[μ̂(X), μ̂(Y )] = σ(X, Y )/N .

Also, the required partial derivatives are as follows:

∂m̂/∂μ̂(X) = −1, ∂m̂/∂μ̂(Y ) = 1.

Define �1 as μ(X) and �2 as μ(Y ). Substituting the sampling variances and covari-
ances and partial derivatives into Eq. (7.6) results in

var[m̂Y (xi )] ≥= (−1)2σ2(X)/N + (1)2σ2(Y )/N + 2(−1)(1)σ(X, Y )/N

= [σ2(X) + σ2(Y ) − 2σ(X, Y )]/N , (7.7)

for the single group design without counterbalancing.
What if a random groups design were used for mean equating with NX = NY =

N? In this case, the covariance between X and Y is 0 because independent samples
of examinees are administered the two forms. Thus, for random groups,

var[m̂Y (xi )] ≥= [σ2(X) + σ2(Y )]/N . (7.8)

As can be seen by comparing Eqs. (7.7) and (7.8), if scores on Form X and Form Y
have a positive covariance for the single group design, then the error variance for the
single group design will be smaller than the error variance for the random groups
design.

7.3.2 Linear Equating Using the Random Groups Design

In implementing the delta method for linear equating with the random groups design,
μ(X), σ(X), μ(Y ), and σ(Y ) need to be estimated. Because Form X and Form Y
are given to independent random samples, estimates of the moments for Form X are
independent of estimates of the moments for Form Y.

Braun and Holland (1982, p. 33) presented the necessary partial derivatives and
standard errors and covariances between the moments to apply the delta method.
They showed that

var[l̂Y (xi )] ≥= σ2(Y )

{
1

NX
+ 1

NY
+

[
sk(X)

NX
+ sk(Y )

NY

] [
xi − μ(X)

σ(X)

]

+
[

ku(X) − 1

4NX
+ ku(Y ) − 1

4NY

] [
xi − μ(X)

σ(X)

]2 }
. (7.9)
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This equation indicates that the standard error of equating depends on the skewness
and kurtosis of the population distribution.

Inspection of this equation leads to some observations about the standard errors
for the random groups design. First, as the sample sizes increase, the error variance
decreases. In this equation, this observation is made by noting that the sample sizes
are always in the denominators of the expressions. Second, error variance tends to
be smallest near the mean. This observation is based on noting that the term

[
xi − μ(X)

σ(X)

]2

becomes larger as xi moves farther from the mean, and this term is multiplied by
a term that is almost always positive (because kurtosis is positive as defined here).
Third, error variance tends to be larger in the direction that a distribution is skewed.
This observation follows because, if both distributions are positively skewed, then
the term [

sk(X)

NX
+ sk(Y )

NY

] [
xi − μ(X)

σ(X)

]

is positive for all xi that are above the mean and negative for all xi that are below the
mean. The reverse is true for negatively skewed distributions.

As can be seen, the error variance expression in Eq. (7.9) is fairly complicated, even
in the simple situation in which linear equating is used with the random groups design.
Also, this expression requires computing skewness and kurtosis terms. Equation (7.9)
can be simplified. If X and Y are assumed to be normally distributed, then skewness
is 0 and kurtosis is 3. In this case, Eq. (7.9) simplifies to

var[l̂Y (xi )] ≥= σ2(Y )

2

[
1

NX
+ 1

NY

] {
2 +

[
xi − μ(X)

σ(X)

]2
}

. (7.10)

This expression is presented in Petersen et al. (1989) and is similar to the one pre-
sented by Angoff (1971).

A further simplification is possible if sample sizes for the two forms are assumed
to be equal. If Ntot = NX + NY = 2NX = 2NY , then Eq. (7.10) further simplifies to

var[l̂Y (xi )] ≥= 2σ2(Y )

Ntot

{
2 +

[
xi − μ(X)

σ(X)

]2
}

. (7.11)

From Eq. (7.11) it can readily be seen that error variance becomes larger as xi departs
farther from the mean.

As Braun and Holland (1982) pointed out, if Eqs. (7.10) or (7.11) for error variance
is used with nonnormal distributions, then the estimates of the standard errors will
be biased to some extent. However, the expressions that assume normality are easier
to calculate and might be useful as approximations in some situations. For example,
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when planning sample size requirements for equating studies, data are unavailable
on the forms that are to be equated. In this case, the approximations might provide
sufficiently accurate estimates of equating error. Procedures for estimating sample
size requirements are described later in this chapter.

7.3.3 Equipercentile Equating Using the Random
Groups Design

Lord (1982a) used the delta method to develop expressions for the standard
error of equipercentile equating under the random groups design. Using the notation
developed in Chap. 2, this error variance can be expressed as

var[êY (xi )] ≥= 1

[G(y∧
U ) − G(y∧

U − 1)]2

{ [P(xi )/100][1 − P(xi )/100](NX + NY )

NX NY

−[G(y∧
U ) − P(xi )/100][P(xi )/100 − G(y∧

U − 1)]
NY [G(y∧

U ) − G(y∧
U − 1)]

}
. (7.12)

To estimate the error variances, sample values can be substituted in place of the
parameters in Eq. (7.12). The error variance depends on the proportion of examinees
at scores on Form Y, as symbolized by G(y∧

U ) − G(y∧
U − 1). If this quantity were 0,

then the error variance would be undefined because of a 0 term in the denominator.
As an alternative to using sample values, the Form X and Form Y distributions could
be smoothed using the log-linear method and the smoothed distribution values used
in place of the parameters in Eq. (7.12). The use of smoothed distribution values
in Eq. (7.12) would be similar to using the parametric bootstrap that was described
earlier.

Lord (1982a) also presented an approximation to Eq. (7.12). Petersen et al. (1989)
used Lord’s approximation and made a normality assumption to provide the following
approximation to the standard error of equipercentile equating under the random
groups design:

var[êY (xi )] ≥= σ2(Y )
[P(xi )/100][1 − P(xi )/100]

φ2

(
1

NX
+ 1

NY

)
, (7.13)

where φ is the ordinate of the standard normal density at the unit-normal score, z,
below which P(xi )/100 of the cases fall. If the sample sizes are equal, such that
Ntot = NX + NY = 2NX = 2NY , then Eq. (7.13) simplifies to

var[êY (xi )] ≥= 4σ2(Y )

Ntot

[P(xi )/100][1 − P(xi )/100]
φ2 . (7.14)

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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7.3.4 Standard Errors for Other Designs

The derivations of standard errors of equating using the delta method can be very
complicated, and the expression of the results can be particularly cumbersome. For
example, Kolen (1985) derived the standard errors of Tucker equating. The presen-
tation of the required partial derivatives took one full page in the article and the
presentation of the sampling errors for the moments took another full page. The
presentation of standard errors of frequency estimation equating by Jarjoura and
Kolen (1985) took even more space to present. For this reason, a comprehensive
presentation of standard errors is not provided in this book.

Table 7.2 contains references to articles that provide standard errors of equating
for many of the methods and designs discussed in this book. These articles should
be consulted for the standard error equations. See Lord (1975) and Zeng (1993)
for descriptions of the use of numerical derivatives with the delta method. Also,
Angoff (1971), Lord (1950) and Petersen et al. (1989) provided standard errors using
normality assumptions. Liou and Cheng (1995) used statistical procedures different
from the delta method to derive analytic standard errors for equipercentile equating.
von Davier et al. (2004) provided standard errors for kernel equating in each of the
designs considered.

Note that standard errors for IRT methods provided in Table 7.2 are only for
dichotomous IRT models. For IRT equating, standard errors were given by Lord
(1982b) and Ogasawara (2001b) for chained true score equating in which scores on
Form X are “equated” to the common items, the common items are “equated” to
Form Y, and the Form X is equated to Form Y by a chaining process. Standard errors
for IRT equating that are not chained were derived by Ogasawara(2001b, 2003a).
Ogasawara (2000, 2001c, 2001d) estimated standard errors of A- and B- constants
for various IRT scaling methods. Baker (1996) examined the sampling distribution
of the A- and B- constants for IRT scaling methods in dichotomous IRT models,
and Baker (1997) conducted a similar study for polytomous models. Baldwin (2011)
estimated sampling errors for A- and B- constants in IRT linking using Bayesian
methods. Analytic standard errors of equating have not been derived for polytomous
IRT models.

Tsai et al. (2001) examined bootstrap standard errors of common item nonequiva-
lent groups equating using both IRT true and observed score equating with Stocking
and Lord scale linking, chained IRT equating, and concurrent estimation. Hagge et al.
(2011), Hagge and Kolen (2011) and Liu and Kolen (2011) used bootstrap procedures
to estimate standard errors of IRT true and observed score equating for mixed-format
tests in the common item nonequivalent groups design. Liu et al. (2007) used Markov
chain Monte Carlo procedures to estimate standard errors for IRT true score equat-
ing. Haberman et al. (2009) applied a jackknife procedure, which is a resampling
procedure that is similar to the bootstrap, to estimate standard errors of IRT equating.

Computer subroutines for calculating standard errors of some IRT equating meth-
ods are available from Ogasawara (2003b). Brennan et al. (2009) provided C code
for delta method standard errors for the random groups design, and provided code
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Table 7.2 Referencesa to analytic standard errors

Design and method Reference

Single group
Linear Zeng and Cope (1995)
Equipercentile Lord (1982a), Liou and Cheng (1995)
Smoothed equipercentile Wang (2009)
Kernel von Davier et al. (2004)
Random groups
Linear Braun and Holland (1982)
Equipercentile Lord (1982a), Liou and Cheng (1995)
Smoothed equipercentile Holland et al. (1989), Wang (2009)
Kernel von Davier et al. (2004)
Common-item
Nonequivalent groups
Linear-Tucker Kolen (1985)
Linear-Levine observed score Hanson et al. (1993)
Linear-Levine true score Hanson et al. (1993)
Frequency estimation Jarjoura and Kolen (1985)

Liou and Cheng (1995)
Chained equipercentile Liou and Cheng (1995)
Smoothed equipercentile Holland et al. (1989),

Liou et al. (1997), Wang (2009)
Kernel von Davier et al. (2004)
IRT A- and B- constants Ogasawara (2000, 2001c, 2001d, 2011)
IRT true score-chained Lord (1982b),Ogasawara (2001a)
IRT true score Ogasawara (2001a)
IRT observed score Ogasawara (2003a)
a Lord (1950) and Angoff (1971) provided standard errors for linear methods based on a normality
assumption. Petersen et al. (1989) also provided standard error expressions

that can be used to estimate standard errors of equating using the bootstrap method
for linear, unsmoothed equipercentile and smoothed equipercentile methods for the
single group, random groups, and common item nonequivalent groups designs.

von Davier et al. (2004), Moses and Zhang (2011), and Rijmen et al. (2011)
described procedures for estimating standard errors of equating differences. They
showed how such standard errors can be used to select among different equating
methods such as between linear and equipercentile methods.

7.3.5 Illustrative Example

For comparative purposes, estimated standard errors of equating for the real data
example presented in Chaps. 4 and 5 are presented in Table 7.3. In this example, Form
X and Form Y were equated using the common-item nonequivalent groups design.

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_5
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Table 7.3 Standard errors of equating for the common-item nonequivalent groups example

Standard error
Tucker Levine Frequency

Observed Estimation
x F̂1(x) Score Equipercentile

0 .0000 .2643 .3615
1 .0000 .2518 .3437
2 .0006 .2395 .3261
3 .0036 .2273 .3087
4 .0091 .2154 .2915 .2880
5 .0169 .2038 .2746 .2665
6 .0387 .1925 .2580 .2592
7 .0695 .1816 .2419 .2603
8 .1160 .1712 .2262 .2499
9 .1680 .1613 .2111 .2351
10 .2236 .1521 .1967 .2172
11 .2918 .1437 .1832 .2199
12 .3692 .1363 .1709 .2188
13 .4236 .1300 .1598 .2123
14 .4918 .1250 .1505 .2041
15 .5402 .1214 .1432 .1995
16 .5952 .1193 .1381 .2072
17 .6477 .1190 .1357 .2160
18 .6918 .1203 .1359 .2336
19 .7221 .1232 .1388 .2308
20 .7662 .1276 .1443 .2349
21 .7988 .1334 .1520 .2506
22 .8314 .1404 .1617 .2487
23 .8562 .1484 .1730 .2614
24 .8773 .1572 .1855 .2321
25 .9027 .1668 .1992 .2022
26 .9215 .1770 .2137 .1639
27 .9402 .1877 .2289 .2299
28 .9541 .1988 .2447 .3578
29 .9674 .2103 .2610 .3377
30 .9776 .2221 .2776 .3207
31 .9825 .2341 .2946 .2777
32 .9909 .2464 .3118 .3864
33 .9952 .2589 .3292 .4707
34 .9988 .2715 .3468
35 .9994 .2942 .3646
36 1.0000 .2971 .3826
Average .1480 .1819 .2302

These standard errors were calculated using the CIPE computer program listed in
Appendix B. The synthetic population weight w1 = 1 is used in this example.
Estimated standard errors for the Tucker method, the Levine observed score method,
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and the frequency estimation equipercentile method are presented. Average standard
errors also were calculated. As can be seen from this example, the estimated standard
errors are smaller near the middle of the distribution than at the extremes. Also, of the
three methods, the Tucker method produced the smallest estimated standard errors.
The Levine observed score method produced smaller estimated standard errors than
the frequency estimation equipercentile method at most score points. Recall that
standard errors account for random error only. Just because the Tucker method has
smaller standard errors than the Levine method in this case does not necessarily mean
that the Tucker method is preferable. More systematic error might be present with the
Tucker method than with the Levine method in this case, although it is impossible to
know for sure. In practice, a choice of method involves assessing the reasonableness
of the statistical assumptions described in Chap. 4 for the equating at hand, as well
as other practical issues that are described in Chap. 8.

7.3.6 Approximations

Approximations to standard error expressions that are less complicated than the
expressions in the Table 7.2 references are useful in some situations. In this section,
two approximations are considered which are useful for comparing designs and
equating methods.

One approximation for the single group design was presented by Angoff (1971).
This approximation ignores counterbalancing and assumes that X and Y have a
bivariate normal distribution. Note also that N refers to the number of examinees
who take both forms:

var[l̂Y (xi )] ≥= σ2(Y )[1 − ρ(X, Y )]
N

{
2 + [1 + ρ(X, Y )]

[
xi − μ(X)

σ(X)

]2
}

. (7.15)

In this equation, ρ(X, Y ) is the correlation between scores on X and Y .
Another approximation was presented by Angoff (1971) for the common-item

random groups design mentioned in Chap. 5, in which randomly equivalent groups
of examinees are administered two forms that contain common items. This equation
assumes that the populations taking X and Y are equivalent, that X and V are bivariate
normally distributed in the population, that Y and V are bivariate normally distributed
in the population, that the correlation between X and V is equal to the correlation
between Y and V , and that the sample sizes for examinees taking the old and new
forms are equal. This equation is

var[l̂Y (xi )] ≥= σ2(Y )[1 − ρ2(X, V )]
Ntot

{
2 + [1 + ρ2(X, V )]

[
xi − μ(X)

σ(X)

]2
}

.

(7.16)

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_5
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In this equation, ρ(X, V ) is the correlation between common items and total score,
and Ntot is the total number of examinees taking the forms (i.e., twice the number of
examinees taking any one form).

The error variance in Eq. (7.16) can be rewritten as follows:

var[l̂Y (xi )] ≥= σ2(Y )

Ntot

{
2[1 − ρ2(X, V )] + [1 − ρ4(X, V )]

[
xi − μ(X)

σ(X)

]2
}

.

(7.17)

From Eq. (7.17), it can readily be seen that, as positive values of ρ(X, V ) increase, the
error variance decreases. That is, the greater the correlation between the total score
and the common-item score, the smaller the error variance. Equations (7.16) and
(7.17) provide an approximation to the Kolen (1985) result for the Tucker method that
might be useful when estimating sample size requirements for linear equating in the
common-item nonequivalent groups design. However, the standard errors presented
by Hanson et al. (1993) should be used whenever possible, and especially when
documenting the amount of error in an equating.

Standard errors of equating based on normality assumptions can be used as approx-
imations to standard errors under more general conditions. These approximations are
likely more accurate when the score distributions are close to being normal. Refer to
Zu and Yuan (2012) for an investigation of the use of normal approximations when
distributions are not normal.

7.3.7 Standard Errors for Scale Scores

Standard errors of equating for scale scores can be approximated based on the delta
method standard errors for raw scores. A variation of the delta method can be used
to estimate the scale score standard errors. To develop this variation, consider a sit-
uation in which a parameter � is being estimated, where the estimate is symbolized
by �̂. Also assume that the error variance in estimating the parameter is known,
which is symbolized by var(�̂). Finally, assume that the estimate is to be trans-
formed using the function f . In this situation, Kendall and Stuart (1977) showed
that, approximately,

var[ f (�̂)] ≥= f ≤2(�)var(�̂),

where f ≤ is the first derivative of f . That is, the error variance of the function of a
random variable can be approximated by the product of the square of the derivative
of the function at the parameter value and the error variance of the random variable.

This formulation can be applied to equating by substituting eqY (xi ) for the para-
meter �, êqY (xi ) for �̂, and the Form Y raw-to-scale score transformation s for
the function f . To apply this equation directly, the first derivative of the Form Y
raw-to-scale score transformation is needed at eqY (xi ).
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If the Form Y raw-to-scale score transformation is linear, then the derivative of
the raw-to-scale score transformation is equal to the slope of the Form Y raw-to-scale
score linear transformation, which is a constant at all eqY (xi ). In this case, the scale
score error variance can be approximated by taking the product of the raw score error
variance and the squared slope of the Form Y raw-to-scale score transformation. If
the Form Y raw-to-scale score transformation is nonlinear but continuous, then the
scale score error variance can be approximated by taking the product of the squared
first derivative of the estimated Form Y raw-to-scale score transformation at eqY (xi )

and the estimated raw score error variance.
The Form Y raw-to-scale score transformation is often nonlinear and not contin-

uous. In this case, the derivative of the Form Y raw-to-scale score conversion near
eqY (xi ) needs to be approximated. To approximate this derivative, the Form Y raw-
to-scale score conversion can be viewed as a set of points connected by straight lines.
The slope of the line near êqY (xi ) can be used as an approximation of the derivative.
For example, in the numerical example presented in Chap. 2 (see Table 2.7), under
equipercentile equating a Form X raw score of 24 was estimated to be equivalent to a
Form Y raw score of 23.9157. The slope of the Form Y raw-to-scale score conversion
at a Form Y raw score of 23.9157 can be found by taking the difference between the
Form Y scale score equivalents at Form Y raw scores of 24 and 23. From Table 2.8,
these equivalents are 22.3220 and 21.7000. The difference between these equivalents
is 0.6220, which can be taken as the slope of the raw-to-scale score conversion at
a Form Y raw score of 23.9157. From Table 3.2, the estimated raw score standard
error of unsmoothed equipercentile equating at a Form X score of 24 is .3555. Thus,
the scale score error variance for unsmoothed equipercentile equating is approxi-
mately .62202(.35552) = .0489, and the scale score standard error is approximately
.6220(.3555) = .2211. This process can be used to approximate scale score standard
errors of equating at other score points as well. Because these standard errors are
designed only for unrounded scale scores, the bootstrap or a similar procedure should
be used to estimate standard errors for rounded scale scores.

7.3.8 Standard Errors of Equating Chains

Delta method standard errors can be used to estimate standard errors of equating
chains. When the equatings are independent, as is typically the case with the ran-
dom groups design, a delta method variant suggested by Braun and Holland (1982,
p. 36) can be used. Suppose that in the equating chain, Form X2 is equated to Form
Y by equating Form X2 to Form X1 and Form X1 to Form Y. The error variance of
converted scores for an equating chain can be approximated as follows:

var[êqY (chain:X1)(x2)] ≥= var[êqY (x∧
1 )] + eq ≤2

X1(x2) · var[êq X1(x2)],

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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where x∧
1 = eqX1(x2) and eq ≤2

X1(x2) is the squared first derivative of the function
for equating Form X2 to Form X1. The standard error is the square root of this
expression. If the equating function is not continuous, then an approximation to the
derivative (e.g., the slope of the conversion at x2) could be used in its place. Braun
and Holland (1982) pointed out that when forms which are constructed to be parallel
are equated, this derivative is generally close to 1. In this case, the derivative can be
set equal to 1 and the error variance of the chain can be approximated by summing
the error variances of the two component equatings.

The procedure just described is strictly appropriate only when the equatings are
independent, such as in a chain of equatings conducted using the random groups
design. When using the common-item nonequivalent groups design, Zeng et al.
(1994) suggested that equatings are dependent. As an example of this dependency in
a chain, examinees who were administered Form X1 would be involved in equating
Form X2 to Form X1, and Form X1 to Form Y. In this case, the dependency should
be incorporated into the estimation. See Lord (1975) and Zeng et al. (1994) for
details on how the effects of the dependency can be incorporated into the process of
estimating standard errors. Also see Guo (2010) who described a situation where,
at different times, independent groups of examinees are used to conduct equating
with the common item nonequivalent groups design. Guo (2010) pointed out that
assuming that the equatings are independent, when they are not, can still lead to a
lower bound estimate of the standard error of equating for equating chains.

7.3.9 Using Delta Method Standard Errors

The standard error expressions are useful for comparing the precision of equating
designs and equating methods, and for estimating sample sizes. Because comparisons
can become exceedingly complicated, in this section only an idealized situation is
examined in which normal distributions are assumed. Also, only the random groups
and single group designs are studied, although the approach described can be gen-
eralized to other designs. Equipercentile equating is examined only for the random
groups design. Lord (1950) and Crouse (1991) provided comparisons in addition to
the ones presented here. For ease of reference, Table 7.4 lists the equations that are
used in this section.

Random Groups Linear Versus Random Groups Equipercentile

One question that might be asked is how precise is equipercentile equating relative
to linear equating when using the random groups design? This question can be
addressed readily if the sample size is equal and a normality assumption is made.
Under these assumptions, the linear error variances are given in Eq. (7.11), the
equipercentile error variances are given in Eq. (7.14), and



7.3 The Delta Method 271

Table 7.4 Selected equating error variance equations assuming normality and equal sample sizes
per test form

Random groups linear

var[l̂Y (xi )] ≥= 2σ2(Y )

Ntot

{
2 +

[
xi − μ(X)

σ(X)

]2
}

(7.11)

Random groups equipercentile

var[êY (xi )] ≥= 4σ2(Y )

Ntot

[P(xi )/100][1 − P(xi )/100]
φ2 (7.14)

Single group linear

var[l̂Y (xi )] ≥= σ2(Y )[1 − ρ(X, Y )]
N

{
2 + [1 + ρ(X, Y )]

[
xi − μ(X)

σ(X)

]2
}

(7.15)

Table 7.5 Comparison of relative magnitudes of random groups linear and equipercentile error
variances

z P∧∧ 1 − P∧∧ φ
2P∧∧(1 − P∧∧)

φ2 2 + z2 2P∧∧(1 − P∧∧)
φ2(2 + z2)

.0 .5000 .5000 .3989 3.14 2.00 1.57

.5 .6915 .3085 .3521 3.44 2.25 1.52
1.0 .8413 .1587 .2420 4.56 3.00 1.52
1.5 .9332 .0668 .1295 7.43 4.25 1.75
2.0 .9772 .0228 .0540 15.28 6.00 2.54
2.5 .9938 .0062 .0175 40.23 8.25 4.88
3.0 .9987 .0013 .0044 134.12 11.00 12.19

z = xi − μ(X)

σ(X)

is a unit-normal score, To compare the error variances note that both equations
have 2σ2(Y )/Ntot as multipliers, so these terms can be ignored when comparing the
relative magnitudes of the error variances by taking the ratio of one error variance
to the other.

A comparison of the relative magnitudes is made in Table 7.5 at selected z-scores.
The z-scores are used so that the table can be used with any test by converting
the number-correct scores to z-scores. In this table, P∧∧ = P/100. The rightmost
column of the table presents the ratio of the error variances at selected z-scores.
For scores near the mean, the values around 1.5 indicate that the error variance for
equipercentile equating is approximately 1.5 times that of linear equating. The ratio
becomes much larger farther away from the mean; for example, for a z-score of 2.5,
the ratio is nearly 5.

The ratios in the table can be used to make statements about the relative sample
sizes required in linear and equipercentile equating to achieve the same equating pre-
cision. For example, to achieve the equating precision near the mean that is achieved
with a sample size of 1,000 with linear equating, a sample size of 1,570 (1, 000×1.57)
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Table 7.6 Ratio of linear method random groups equating error variance to single group equating
error variance

ρ = .0 ρ = .2 ρ = .5 ρ = .7 ρ = .9

z = .0 2.00 2.50 4.00 6.67 20.00
z = .5 2.00 2.45 3.79 6.19 18.18

z = 1.0 2.00 2.34 3.43 5.41 15.38
z = 1.5 2.00 2.26 3.16 4.86 13.55
z = 2.0 2.00 2.21 3.00 4.55 12.50
z = 2.5 2.00 2.17 2.90 4.36 11.89
z = 3.0 2.00 2.15 2.84 4.24 11.52

would be needed with equipercentile equating. As another example, to achieve the
equating precision at a z-score of 2.5 that is achieved with a sample size of 1,000
with linear equating, a sample size of 4,880 (1, 000 × 4.88) would be needed with
equipercentile equating.

Do smaller standard errors for the linear method mean that the linear method is
better than the equipercentile method? Not necessarily. Recall that standard errors
account only for random error in equating. If the relationship is nonlinear, then
equipercentile equating might provide a more accurate estimate of the population
equivalent, even when it has a much larger standard error than the linear method,
because of systematic error that could be introduced by using the linear method.

Random Groups Linear Versus Single Group Linear

Table 7.6 presents the ratio of random groups to single group equating error variance
for the linear method. Normal distributions are assumed. The values in this table
were calculated by taking the ratio of Eq. (7.11) to Eq. (7.15) for selected values of
z and ρ(X, Y ), where ρ is used to symbolize ρ(X, Y ) in the single group design.
In taking the ratio, the total number of examinees for the single group design (N )

cancels out the total number of examinees for the random groups design (Ntot).
These ratios indicate the relative precision of linear equating in the two designs.

These ratios also indicate the relative number of examinees needed to achieve a given
level of precision. For example, in the unlikely event that the correlation between
X and Y is 0, the tabled ratio of 2.00 indicates that twice as many examinees are
needed in random groups design to get the same precision that is achieved with the
single group design. Thus, for example, if ρ(X, Y ) = 0, then 2,000 examinees would
be required in the random groups design to achieve the same level of precision that
could be attained with 1,000 examinees using the single group design.

In the single group design, however, each examinee takes Form X and Form Y. In
the random groups design, different examinees take Form X and Form Y. Thus, in the
preceding example, the 1,000 examinees in the single group design would take 2,000
test forms (1,000 Form X and 1,000 Form Y). That is, if ρ(X, Y ) = 0, then the same
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number of forms would need to be administered under the two designs to achieve
a given level of precision. This example illustrates that, if interest is in estimating the
relative number of test forms that need to be taken, rather than the relative number
of examinees that need to be tested, the values in Table 7.6 should be divided by 2.

The quantity ρ(X, Y ) in the single group design is an alternate forms reliability
coefficient. Of the tabled values, ρ(X, Y ) = .7 or .9 are the most realistic, because
alternate forms to be equated can be expected to be positively correlated when admin-
istered to the same examinees. For ρ = .70, depending on the level of z, between 4.24
and 6.67 times as many examinees would be needed for the random groups design to
achieve the same level of precision as for the single group design. For example, for
ρ = .70, a total of 6,670 examinees would be needed with the random groups design
to achieve the same level of precision as would be achieved with 1,000 examinees in
the single group design. For ρ = .90 and z = 0, a total of 20,000 examinees would
be needed with the random groups design to achieve the same level of precision
as would be achieved with 1,000 examinees in the single group design. Therefore,
for highly reliable tests, the sample size requirements for the single group design
can be considerably less than those for the random groups design. Of course, it is
possible that either of these sample sizes would lead to considerably more precision
than would be necessary in an equating. (Estimating sample size requirements is
considered in the next section.)

Counterbalancing issues and context effects, such as practice and fatigue, can
introduce systematic error with the single group design. These issues are effectively
ignored in Table 7.6. Using counterbalancing can lead to greater sample size require-
ments. Also, recall from Chap. 2 that when differential order effects are present in
the single group with counterbalancing design, the data from the test taken second
might need to be disregarded. In this case, the data that can actually be used to equate
Form X and Form Y are from the form taken first, and the random groups standard
errors would need to be used.

Estimating Sample Size for Random Groups Linear Equating

In addition to comparing equating error associated with different designs and meth-
ods, standard errors of equating also can be useful in specifying the sample size
required to achieve a given level of equating precision for a particular equating
design and method. In order to use standard errors in the process of estimating
sample size requirements, the desired level of precision needs to be stated. Ideally,
equating error should be small and not make a significant contribution to error in
reported test scores. In practical situations, the significance of this contribution needs
to be operationalized.

Consider the following example. Suppose that linear equating with the random
groups design is to be used. Also suppose that, for a particular equating, a standard
error of equating that is less than .1 standard deviation unit is judged not to make
a significant contribution to error in reported scores. In this situation, what sample
size would be required?

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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Equation (7.11) presents the error variance for this situation. Let u refer to the
maximum proportion of standard deviation units that is judged to be appropriate for
the standard error of equating. The value of Ntot is found that gives a specified value
for uσ(Y ) for the standard error of equating. In the example just presented, u = .1
standard deviation unit. Based on this specification, from Eq. (7.11),

u2σ2(Y ) ≥= 2σ2(Y )

Ntot

{
2 +

[
xi − μ(X)

σ(X)

]2
}

.

Solving for Ntot ,

Ntot ≥= 2

u2

{
2 +

[
xi − μ(X)

σ(X)

]2
}

, (7.18)

which represents the total sample size required for the standard error of equating to
be equal to u standard deviation units on the old form. For example, if u = .1, then
the sample size needed for a Form X unit-normal (z) score of 0 is

Ntot ≥= 2

.12 (2 + 0) = 400.

Thus, a total of 400 examinees (200 per form) would be required at a unit normal
score of 0. How about at a z-score of 2? Using Eq. (7.18), Ntot = 1, 200 (600 per
form).

What can be concluded? Over the range of Form X z-scores between −2 and
+2, the standard error of equating will be less than .1 Form Y standard deviation
unit if the total sample size is at least 1,200. This specification requires a normality
assumption, so it should be viewed as an approximation. In addition, the range of
scores is stated in z-score units, which could be transformed to reported score units
when describing how the necessary sample size was estimated.

Estimating Sample Size for Random Groups Equipercentile Equating

A similar question could be asked about equipercentile equating with the random
groups design. Using the same logic that was used with linear equating, an expression
for Ntot can be derived from Eq. (7.14) as

Ntot ≥= 4[P(xi )/100][1 − P(xi )/100]
u2φ2 . (7.19)

Recall that this equation assumes that the scores on Form X are normally distributed.
Consequently, z = 0 when P(xi ) = 50, and z = 2 when P(xi ) = 97.72 (see
Table 7.5).
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For example, if u is set at .1 for a Form X z-score of 0, this equation results in
Ntot = 628.45. For a Form X z-score of 2, this equation results in Ntot = 3, 056.26.
So, over the range of Form X z-scores between −2 and +2, the standard error of
equating will be less than .1 Form Y standard deviation unit if the total sample size
is at least 3,057 (by rounding up) using equipercentile equating. No smoothing is
assumed in deriving this result.

Refer to Table 7.5. The ratio of sample sizes for equipercentile and linear equating
equals (within rounding error) the ratios given in Table 7.5. For example, for z = 2,
the ratio of sample sizes is 3, 056.26/1, 200 = 2.55, which is the value shown in
Table 7.5, apart from rounding error.

Estimating Sample Size for Single Group Linear Equating

Sample size requirements also can be estimated for linear equating using the single
group design. Using Eq. (7.15) and a process similar to that used to derive Eq. (7.18),

N ≥= [1 − ρ(X, Y )]
u2

{
2 + [1 + ρ(X, Y )]

[
xi − μ(X)

σ(X)

]2
}

. (7.20)

To use Eq. (7.20) it is necessary to specify ρ(X, Y ).
To continue the example considered earlier, what sample size is required with

linear equating for the single group design so that the standard error of equating is
less than .1 Form Y standard deviation unit over the range of z-scores from −2 to
+2? Assume that ρ(X, Y ) = .7. In this case, application of Eq. (7.20) indicates that a
sample size of N = 60 is required at z = 0 and a sample size of N = 264 is required
at z = 2. At z = 0, the ratio of sample sizes for the linear random groups design to
the linear single group design is 6.67 (400/60), which is the ratio shown for z = 0
and ρ = .7 in Table 7.6. Similarly, the ratio for z = 2.0 is 4.55 (1,200/264), which
also is shown in Table 7.6.

Specifying Precision in sem Units

Sometimes, equating error is specified in terms of the standard error of measurement
(sem) rather than the standard deviation, especially when the focus of test use is on
individual examinees’ scores. For example, an investigator might ask what sample
size would be needed for the random groups design if the standard error of equating
is to be less than .1 of the standard error of measurement? Using ρ(X, Y ) as alternate
forms reliability, the standard error of measurement is

sem = σ(Y )
√

1 − ρ(X, Y ).
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To use Eqs. (7.18)–(7.20) to estimate sample size, it is necessary to relate error
specified in terms of sem units to standard deviation units. Let usem represent sem
units. Then, multiplying both sides of the preceding equation by usem results in

usemsem = usemσ(Y )
√

1 − ρ(X, Y ).

Because u was defined earlier as a multiplier for σ(Y ),

u = usem

√
1 − ρ(X, Y ).

In the example, assume that ρ(X, Y ) = .7, as was done earlier. If the standard error
of equating is to be less than .1 of the standard error of measurement, then

u = usem

√
1 − ρ(X, Y ) ≥= .1

∗
1 − .7 = .055.

In the example, finding the sample size for which the standard error of equating is .1
standard error of measurement unit is the same as finding the sample size for which
the standard error of equating is .055 standard deviation unit. What would be the
required sample size for the random groups design at z = 2? Applying Eq. (7.18),

Ntot ≥= 2

.0552 (2 + 22) ≥= 3966.94.

For the single group design, applying Eq. (7.20) gives

N ≥= 1 − .7

.0552 [2 + (1 + .7)22] ≥= 872.73.

The ratio of these two sample sizes is approximately the value of 4.55 shown in
Table 7.6 for z = 2.0 and ρ = .7.

7.4 Using Standard Errors in Practice

Standard errors of equating are used as indices of random error in equating. As was
discussed earlier in this chapter, the delta method standard errors of equating can
be used to compare the amount of equating error variability in different designs
and methods, and to estimate sample size requirements. In this process, the degree of
precision needs to be stated, which is necessarily situation-specific. In some situations
it is necessary to have considerable precision. For example, with the ACT (ACT
2007), important decisions are made over most of the score range; this test is used to
track educational trends, and small changes in the national mean from one year to the
next make front-page news; and large samples can be made available for equating,
so that high equating precision can be obtained. For tests where the decisions are
viewed to be less critical, more equating error (as well as measurement error) might
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be judged to be acceptable. Or, it might be impossible to obtain large samples for
equating, and more equating error might need to be present. For many certification
and licensure tests, interest is primarily in deciding whether examinees exceed a
passing score. Often with these tests, a passing score is set on one test form, and the
primary purpose of equating is to ensure that an equivalent passing score is used on
other test forms. In this case, scores near the passing score are of primary interest,
and the focus would be on equating error near the passing score when comparing
designs and estimating sample size requirements. For example, in finding the sample
size, the standard error of equating at the passing score that would be desirable to
achieve might be no more than .1 standard deviation unit.

In using equating error variability to compare different designs and methods,
and to estimate sample size requirements, the delta method standard errors with
the most restrictive assumptions (e.g., normality) were used in this chapter to pro-
vide reasonable approximations. The simplicity of these approximations facilitates
these comparisons and sample size estimation. Also, more specific information about
distributions, such as precise estimates of skewness and kurtosis, often is not avail-
able, providing further justification for using the approximations. However, these
approximations should be used cautiously because they can be inaccurate, especially
when the distributions are not normal or when the other simplifications used in these
derivations are unrealistic.

Equating is a statistical procedure, and, as such, the amount of random error that
is present in estimating equating relationships should be documented. Like measure-
ment error, which is often indexed by the standard error of measurement, random
equating error is potentially a significant source of error in scores that are reported to
examinees. Therefore, it is important to have reasonable estimates of random equat-
ing error, and to be able to tell whether random equating error adds substantially to the
amount of error in test scores. Bootstrap standard errors are useful for documentation
purposes, and, as was indicated earlier in this chapter, bootstrap standard errors can
be calculated for rounded scale scores. If available, delta method standard errors pro-
vide an analytic expression for the standard errors, although delta method standard
errors have not been developed for rounded scale scores. When using delta method
standard errors for documentation purposes, standard errors derived under the least
restrictive assumptions (e.g., without a normality assumption) should, in general, be
used unless the sample size is very small. With small samples, the standard errors
derived under the least restrictive assumptions might be inaccurately estimated. For
example, estimates of skewness and kurtosis are needed to apply the standard errors
of linear equating derived under the least restrictive assumptions. Large samples
are needed to estimate skewness and kurtosis precisely. In one simulation, Kolen
(1985) found that the delta method standard errors with the normality assumption
were preferable for estimating the standard errors of Tucker equating with a sample
size of 100 examinees per form. In simulations with larger sample sizes conducted
by Kolen (1985), the delta method standard errors without the normality assumption
were more accurate. Parshall et al. (1995) examined standard errors in the process of
choosing among methods of equating. For example, in Chap. 3, standard errors were
used to help choose between different degrees of in equipercentile equating.

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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7.5 Exercises

7.1. Assume that the four bootstrap samples of size NX = 4 shown near the begin-
ning of the chapter (see the section titled “Standard Errors Using the Boot-
strap”) and listed below were for Form X of a test. Also assume that, for Form
Y, NY = 3 with values 1, 4, and 5 and that the following four bootstrap samples
were drawn (use N to calculate sample variances):

Form X Form Y
Sample 1: 6 3 6 1 Sample 1: 1 4 4
Sample 2: 1 6 1 3 Sample 2: 4 5 5
Sample 3: 5 6 1 5 Sample 3: 1 5 5
Sample 4: 5 1 6 1 Sample 4: 1 1 4

Also assume that Form X and Form Y were administered using the random
groups design.

a. What is the bootstrap estimated standard error of linear equating at Form X
raw scores of 3 and 5?

b. Assume that the following raw-to-scale score conversion equation for Form Y
has already been developed: s(y) = .4y+10. What is the bootstrap estimated
standard error of linear equating of unrounded scale scores for Form X raw
scores of 3 and 5?

c. For the situation described in (b), what is the bootstrap estimated standard
error of linear equating of scale scores, rounded to integers, for Form X raw
scores of 3 and 5?

d. What is the delta method (assume normality) estimated standard error of
linear equating of raw scores for Form X raw scores of 3 and 5?

7.2. Verify that the standard error of equipercentile equating at a Form X raw score
of 25 is approximately .30 for the data shown in Table 2.5. Use Eq. (7.12). How
does this value compare to the value calculated using Eq. (7.13)? What possible
factors would cause these values to differ?

7.3. A standard setting study was conducted on Form Y of a test, and the passing
score was set at a score on Form Y that was approximately 1 standard deviation
below the mean in a group of examinees who took the test earlier. Assume that
the group of examinees to be used in an equating study is similar to the group
of examinees that was administered Form Y earlier.

a. What sample size would be needed in random groups linear equating to
achieve a standard error of equating less than .2 standard deviation unit near
the passing score? Use Eq. (7.18).

b. What sample size would be needed to achieve comparable precision near the
passing score using random groups equipercentile equating? Use Eq. (7.19).

c. Suppose that the population equating relationship was truly linear. Which
method would be preferable? Why?

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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7.4. Suppose that Form X scores and Form Y scores each had a population mean
equal to 0 and standard deviation equal to 1. Also assume that, for the population,
the Form Y equipercentile equivalent of a score of 1 on Form X was 1.2 and that
the linear equivalent was 1.3. For estimating the equipercentile equivalent of a
Form X score of 1, would it be better to use linear or equipercentile equating
in this situation if the sample size was 100 examinees per form? How about
if the sample size was 1,000 examinees per form? What are the implications
of your answers? Assume a random groups design. [Use Eqs. (7.11) and (7.14)
as a means to simplify this situation. Hint: It is necessary to incorporate the
notion of equating bias and provide an expression for mean squared equating
error as discussed in Chap. 3 to answer this question. In this exercise, assume
that equipercentile has no bias and that linear has bias of .1 = 1.3 − 1.2.]

7.5. For Form X and Form Y of a 50-item test, assume that μ(X) = 25, μ(Y ) = 27,
σ(X) = 5, and σ(Y ) = 4.

a. Assume that a random groups design was used with NX = NY = 500.
Find the standard error of linear equating for x = 23 and 35. (Use normal
distribution assumptions.)

b. Assume that a single group design was used with N = 500 and that
ρ(X, Y ) = .75. Find the standard error of linear equating for x = 23 and
35. (Use normal distribution assumptions.)

c. Assume that a random groups design was used with NX = NY = 500. Find
the standard error of equipercentile equating for x = 23 and 35. (Use normal
distribution assumptions.)

d. Assuming that the reliability of the test is .75, what sample size would be
needed for the standard error of random groups linear equating to be less
than .3 standard errors of measurement on the Form Y scale for x = 23 and
35? (Use normal distribution assumptions.)

7.6. How would you estimate the standard error of the identity equating? What are
the implications of your answer for using this method in practice?
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Chapter 8
Practical Issues in Equating

Many of the practical issues that are involved in conducting equating are described
in this chapter. We describe major issues and provide many references. The early
portions of this chapter focus on equating dichotomously scored paper-and-pencil
tests. In later portions, the focus broadens to include practical issues in other contexts,
including computer-based testing and tests that contain constructed-response items.
Various articles have been written that consider practical issues in equating and that
inform practice (e.g., Brennan and Kolen 1987a; Cook 2007; Cook and Petersen
1987; Dorans 1990; Dorans et al. 2011; Harris 1993; Harris and Crouse 1993; Kolen
and Lee 2011, 2012; Marco et al. 1979; Petersen 2007; Petersen et al. 1982, 1983;
Skaggs 1990; Skaggs and Lissitz 1986; von Davier 2007).

The practical issues described in this chapter follow from the discussion of equat-
ing in Chap. 1. Chapter 1 indicated that equating should be considered when alternate
forms of tests exist, scores on the alternate forms are to be compared, and the alter-
nate forms are built to the same detailed specifications so that they are similar to one
another in content and statistical characteristics. It was stressed that, under appro-
priate conditions, equating can be used to improve the accuracy of test scores used
in making important individual level, institutional level, or public policy level deci-
sions. When decisions might be made along the entire range of scores, equating at all
score points is important. If only pass-fail decisions are to be made, then the accuracy
of equating might be of concern mainly near the passing score.

Also, as was indicated in Chap. 1, a major consideration in designing and con-
ducting equating is to minimize equating error. Although the purpose of equating is
to decrease error, under some circumstances implementing an equating method can
increase equating error, in which case it might be best not to equate. As was described
in Chap. 7, random error is error due to sampling of examinees from a population of
examinees. The use of large sample sizes, smoothing in equipercentile equating, and
a judicious choice of an equating design can help control random error.

Systematic error results from violations of the conditions of equating or the sta-
tistical assumptions required; it is more difficult to control than random error. Some
examples of situations where systematic error might be a problem include (1) the use
of a regression method (refer to Chap. 2 for a discussion of the lack of symmetry of
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regression methods) to conduct equating, (2) the use of linear equating to estimate
an equipercentile relationship when the linear relationship does not hold, (3) the use
of the Levine observed score method when true scores on the common items are not
perfectly correlated with true scores on the total test, and (4) item context effects, in
which, for example, a common item appears as the first item in Form X and as the
last item in Form Y, with consequent changes in the performance of that common
item. Systematic error is difficult to quantify. In practice, whether or not equating
reduces systematic error can be difficult to determine, and often no clear-cut criterion
for evaluating the extent of the error exists. Systematic error can best be controlled
through careful test development, adequate implementation of an equating design,
and use of appropriate statistical techniques.

When conducting equating, judgments must be made that go beyond the statisti-
cal and design issues described in Chaps. 2 through 7. Equating requires judgments
about issues in test development, designing the data collection, implementing the
design, analyzing the resulting data, and evaluating the results. As is discussed later
in this chapter, sometimes practical constraints do not allow sound equating to be
conducted, in which case it might be better not to equate. When equating is judged
to be useful, many decisions need to be made. Prior to collecting data or applying
statistical equating methods, choices need to be made, such as which data collection
design to use, which form(s) to use as old form(s), and how many common items
to use. Other choices about how to analyze the data need to be made as well, such
as which operational definition(s) of equating to use and which statistical estimation
method(s) to apply. Other decisions are made after the data are collected, such as
which examinees to include in the equating process, which common items to retain,
and which equating result to use. Clear-cut criteria and rules for making these deci-
sions do not exist: The specific context of equating in the particular testing program
dictates how these issues are handled. Equating involves compromises among vari-
ous competing practical constraints. In this sense, an ideal equating likely has never
occurred in practice.

Even when an equating study is well designed and statistical assumptions are
met, an otherwise acceptable equating can be destroyed because of inadequate quality
control procedures. Serious problems can result, for example, if an item is incorrectly
keyed, if a common item differs from one form to another, or if a mistake is made
in communicating the correct conversion table. In our experience, quality control
procedures deserve considerable emphasis, because problems with quality control
have serious consequences. If quality control procedures fail, then the data gathered
in an equating study can lead to erroneous conclusions about the comparability
of test forms. In major testing programs, quality control procedures often require
considerably more effort than that expended in actually conducting the statistical
equating.

The practical issues in equating described in this chapter are organized by topics in
roughly the order that they might need to be considered: test development, equating
designs, statistical procedures, evaluating results, and quality control and standard-
ization procedures. Then, issues in speical circumstances, including comparability
for computer-based tests and constructed-response tests, are discussed.
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8.1 Equating and the Test Development Process

According to Mislevy (1992),

Test construction and equating are inseparable. When they are applied in concert, equated
scores from parallel test forms provide virtually exchangeable evidence about students’
behavior on the same general domain of tasks, under the same specified standardized
conditions. When equating works, it is because of the way the tests are constructed …
(p. 37)

Thus, systematic test development procedures are vital to producing adequate equat-
ing. (See Schmeiser and Welch 2006, for a general discussion of test development
procedures.)

8.1.1 Test Specifications

Equated scores on alternate forms can be used interchangeably only if the alternate
forms are built to carefully designed content and statistical specifications. Develop-
ing tests in this way can result in forms that are very similar in what they measure,
with the only major difference being the particular items that appear on the alternate
forms. No matter how careful the test construction process is, however, the forms
that result will differ somewhat in difficulty. Equating is intended to adjust for these
statistical differences.

When test construction procedures are functioning well in large-scale testing
programs, considerable effort is made to ensure that alternate forms are similar. The
content and statistical test specifications are detailed and forms are constructed to
meet these specifications. Equating can be successful only if the test specifications
are well defined and stable.

The content specifications are developed by considering the purposes of testing,
and they provide an operational definition of the content that the test is intended to
measure. The content specifications typically include the content areas to be measured
and the item types to be used, with the numbers of items per content area and
item types specified precisely. The content specifications are crucial for developing
alternate forms that can be equated. A test form must be sufficiently long to be able
to achieve the purposes of the test, and it must provide a large enough sample of
the domain for the alternate forms to be similar. For example, a 10-item test that
covers a content domain consisting of 20 areas could not be expected to sample
the domain adequately. If each form is an inadequate sample, then the forms can
differ considerably in what they measure, and scores on alternate forms might not
be interchangeable, even after equating is attempted. One useful rule of thumb is
that test length should be at least 30–40 items when equating educational tests with
tables of specifications that reflect multiple areas of content, although the length of
a test required depends on the purposes of testing, the heterogeneity of the content
measured, and the nature of the test specifications.
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Although not as crucial as content specifications, statistical specifications are also
important. Statistical specifications often are based on classical statistics such as the
target mean, standard deviation, and distribution of item difficulties and discrimina-
tions for a particular group of examinees. Correlations of items with other tests in a
test battery also might be checked to maintain the same degree of association among
tests in the new forms of the battery. Statistical specifications based on IRT often are
used, such as target test characteristic curves and target information curves.

For previously used items, the statistics are based on previous administrations.
Statistics for new items often are estimated using pretesting procedures. Another
benefit of pretesting is that previously undetected item flaws might be discovered
before an item is used operationally. Often item statistics are adjusted to estimate
the item characteristics for a particular group of examinees under operational testing
conditions. When a large pool of items with item statistics exist, procedures described
by van der Linden (2005) can be used to assemble test forms that meet specified
characteristics.

In situations where new items cannot be pretested, tests might need to be con-
structed without the benefit of item statistics, which can make it difficult to control
the statistical characteristics of the test. In these situations methodology described
by Mislevy et al. (1993) and Hsu et al. (2002) might be useful for estimating item
statistics from characteristics of items including item content, item format, and expert
judgment about the items.

8.1.2 Changes in Test Specifications

Test specifications often evolve over time. In a strict sense, any change in spec-
ifications leads to forms that might not be interchangeable. With minor changes,
however, testing programs often continue to attempt to equate, often with only
minimalproblems.

Sometimes test specifications are modified in a way that is more than minor, but
such that test developers expect to be able to equate scores from before and after
modification. The 2005 revision of the SAT is an example of this sort of change as
described by Liu and Walker (2007). With this revision, changes in content, item
format, and test length were made, although the changes were constrained with the
goal of being able to equate scores. Liu and Walker (2007) described the process
used to assess whether the scores could be equated. The process included examining
the similarity of test content, the construct assessed, and the precision of scores.
In addition, the strength of the relationship between scores on the test before and
after modification and the invariance of the linking of such scores for subgroups
of examinees were assessed. In another study, Liu et al. (2005) investigated the
population invariance of linking in this situation. The process provided by Liu and
Walker (2007) along with the discussion by Brennan (2007) should be considered
whenever attempting to equate scores following a change in test specifications.



8.1 Equating and the Test Development Process 287

At other times the changes in the specifications are clearly major. For example, in
an achievement test, curriculum consultants might suggest that changes in instruc-
tional programs have altered the emphases in a subject matter area, thus requiring a
change in the test. In professional certification examinations, the content specifica-
tions often change because of changes in the field of study. For example, a particular
content area might become obsolete and be replaced by a new area. It is even possible
for the answer key for an item to change, say, because of a change in law or a change
in standard procedures.

When the test specifications are modified significantly, scores obtained before the
test was modified cannot be considered interchangeable with scores obtained after
the test was modified, even if an “equating” process is attempted. Indeed, in these
situations it is better to refer to this process as linking. Instead of linking scores across
test versions, the changes in content are often judged to be severe enough that the
tests are rescaled. For example, when the SAT was revised for use in 1995, various
technical issues associated with implications of changes in the test and the score scale
were studied intensively (Lawrence et al. 1994; Dorans 1994a, b, 2002). When the
ACT was rescaled (Brennan 1989) concordance tables were developed that related
scores on the new test to scores on the old test. In both of these cases, the ranges
of scale scores stayed the same for political reasons, although choosing a distinct
new score scale might have avoided confusion between the old and new scores. In
practice, changes in specifications come in varying degrees, and the chosen approach
should be tailored to the situation.

8.1.3 Characteristics of Common-Item Sets

When using the common-item nonequivalent groups design, common-item sets
should be built to the same content specifications, proportionally, as the total test
if they are to reflect group differences adequately. In constructing common-item sec-
tions, the sections should be long enough to represent test content adequately. Harris
(1991a) and Klein and Jarjoura (1985) found that lack of content balance in the
common-item set had a substantial adverse effect on equating. Marco et al. (1979);
Petersen et al. (1982); and Dorans et al. (2008) found that sets of common items that
were from a content area different from the test had an adverse effect on equating.
However, see Zu and Liu (2010) for a study in which equating was improved by
using a set of common items with item type representation that was different from
that for the total test forms. Cook and Petersen (1987) reported that inadequate con-
tent representation of the common-item set creates especially serious problems when
the examinee groups that take the alternate forms differ considerably in achievement
level.

In general, common-item sets should be built to the same statistical specifications,
proportionally, as the total test. However, a series of studies has shown that items
with a less variability in item difficulties can sometimes lead to test equating that is
as stable, and sometimes more stable, than equating with a statistically representative
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set of common item items (Liu et al. 2011; Liu et al. 2011; Sinharay and Holland
2006, 2007).

The number of common items to use should be considered on both content and
statistical grounds. Statistically, larger numbers of common items lead to less ran-
dom equating error (Budescu 1985; Wingersky et al. 1987). Fitzpatrick (2008) and
Petersen et al. (1983) indicated that too few common items could lead to equating
problems. Very small numbers of items were suggested as adequate in some of the
studies reviewed by Harris (1993), although in most of the studies that supported
the use of very few common items the recommendations were based on simulating
data from a unidimensional IRT model. Because educational tests tend to be het-
erogeneous, larger numbers of common items are likely required for equating to be
adequate in practice. Experience suggests the rule of thumb that a common item set
should be at least 20 % of the length of a total test containing 40 or more items, unless
the test is very long, in which case 30 common items might suffice. (Angoff 1971,
suggested a very similar rule of thumb.) In considering the numbers of common
items to use in a particular testing program, the heterogeneity of the test content also
should be considered.

Serious problems can result if the context in which the common items appear
differs from the old to the new form, as was the case with the NAEP example
described in Chap. 1. One way to help avoid having the common items function
differently in the two groups is to administer common items in approximately the
same position in the old and new forms (Cook and Petersen 1987). Also, the response
alternatives should appear in the same order in the old and new forms (Cizek 1994).
If a common item is associated with stimulus materials that were used with a set
of items in the old form, then the entire set of items associated with those stimulus
materials should be included on the new form to avoid context effects. If necessary to
achieve content balance, some of these items could be treated as noncommon items
for the purposes of equating. Other context effects and quality control issues (e.g.,
items changed from one administration to another) also should be controlled.

As was suggested in Chap. 6, common-item statistics can be compared across
examinee groups used in the equating to help decide whether the items are functioning
differently in the two groups. IRT statistics and classical statistics can be used. For
example, items might be identified with classical item difficulties that differ by more
than .1, in absolute value, for the old and new groups. These items could be inspected,
and explanations for the differences could be evaluated. An item might be dropped
from the common-item section if it were found to have problems: for example, an
item was printed differently in the two forms, an item became easier due to many
repeating examinees having been administered the item previously, an item whose
key had changed because of changes in the field of study, or an item for which a
preceding item provided information that helped in answering the item. DeMars
(2004), Harris (1993), Han et al. (2012), Michaelides (2008, 2010), and Miller and
Fitzpatrick (2009) suggested that differential item functioning statistics might be
used to screen common items.

Even after all the more obvious context effects are controlled, common items might
still perform differently across administrations. For example, Cook and Petersen
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(1987) reviewed research on a biology achievement test in which differential prepa-
ration of the groups taking the old and new forms led to differential functioning of
some common items that caused serious problems with equating. In short, common
items should be screened for differences in functioning across the groups taking the
old and new forms.

Dropping items from the common-item set due to differential functioning might
result in the set of common items not reflecting the test specifications. In this case,
additional items might be dropped from the common-item set (but still retained as
part of the total test) to achieve proportional content balance. For this reason, the
common-item set should be of sufficient length to be able to tolerate removal of
some items and still remain content and statistically representative. As an alternative
to dropping items to achieve proportional content balance, Harris (1991a) suggested
considering the use of statistical procedures to weight item scores statistically on the
common items to help achieve such balance.

8.2 Data Collection: Design and Implementation

To conduct equating, a choice must be made about which equating design to use
(see Chaps. 1 and 6). Choices also need to be made about which previously admin-
istered form(s) are to be the old form(s) and what sample size to use. Adequate
equating depends on having well-constructed tests, as was described earlier, and
well-developed statistical and quality control procedures, as is described later in this
chapter.

8.2.1 Choosing Among Equating Designs

The random groups, single group, single group with counterbalancing, and common-
item nonequivalent groups designs were discussed in Chap. 1 and in subsequent
chapters. In addition, designs that involve equating to an IRT calibrated item pool
were described in Chap. 6.

The choice of an equating design involves a number of practical considerations
that include test administration complications, test development complications, and
statistical assumptions required to achieve the desired degree of equating precision.
The relationship of these considerations to each of these designs is summarized in
Table 8.1. As can be seen from this summary, the choice of a design requires making
a series of trade-offs.

The random groups design typically results in the fewest test development compli-
cations, because there is no need to develop common-item sets that are representative
of the content of the total test. (However, alternate forms still should be built to the
same content and statistical specifications, and the forms must be developed in time
to be equated in a special study.) Also, because group differences are handled by
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Table 8.1 Comparison of equating designs

Design Test administration Test development Statistical
complications complications assumptions

required

Random groups Moderate—more
than one form
needs to be
spiraled

None Minimal—that random
assignment to forms is
effective

Single group
with counter-
balancing

Major—each
examinee must
take two forms
and order must be
counter-balanced

None Moderate—that order
effects cancel out and
random assignment is
effective

Common-item
nonequivalent
groups

None—forms can be
administered in
typical manner

Representative
common-item
sets need to be
constructed

Stringent—that common
items measure the same
construct in both
groups, the examinee
groups are similar, and
required statistical
assumptions hold

Common item to
an IRT-
calibrated
item pool

None—-forms can be
administered in
typical manner

Representative
common-item
sets need to be
constructed

Stringent—that common
items measure the same
construct in both groups,
the examinee groups are
similar, and the IRT
model assumptions hold

randomly assigning forms to examinees, and because there is no problem with order
effects, this design results in the fewest problems with statistical assumptions.

Many equating situations exist, however, for which the random groups design
cannot be used. If not enough examinees are available for using the random groups
design, then the single group design might be preferable, provided that a study can
be undertaken in which two forms can be administered to each examinee and order
can be counterbalanced effectively.

One situation that is often encountered in which the random groups and single
group designs cannot be used is when only a single test form can be administered on
a test date. Many of the reasons for using a single form revolve around test security.
For example, administering a single form exposes fewer items than administering
more than one form. Also, administering a form that is composed mainly of new
items minimizes the chances that examinees previously would have been exposed to
the test items and minimizes the chances of a security breach in which items become
known to examinees.

When only a single form can be administered on a test date and equating is
to be conducted, the choice of equating design is restricted to a design that uses
common items. When using these designs, representative common-item sets must
be developed. Constructing representative common-item sets and incorporating them
into the forms requires considerable effort during the test development process.
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Test disclosure legislation also can complicate the choice of design (Marco 1981).
Such legislation often requires that all items which contribute directly to an exam-
inee’s score be released to the examinee soon after the test. When the items are
released in this way, they cannot be used in future test forms because they are con-
sidered to be nonsecure. The typical legislation provides test developers with a way
to conduct equating by not requiring that an unscored portion of a test be provided
to examinees. Equating could be conducted, therefore, using the common-item non-
equivalent groups design with external sets of common items, as is done with the
SAT (Donlon 1984). As was pointed out in Chap. 1, external common-item sets do
not contribute directly to an examinee’s raw score. Thus, these sections do not need
to be released to examinees, even though the scored portion would be released to
examinees.

Preequating methods also can be considered in test disclosure situations. In item
preequating (see Chap. 6), an IRT-calibrated item pool is developed. A new form is
constructed from the items in this pool. Because all of the items have already been
calibrated using an IRT model, the item parameter estimates for the new form are
available and can be used to develop the conversion table before administering the
new form intact. In using item preequating, new items are introduced by including
some new items on the operational form, but not including these new items in the
computation of examinees’ scores. Research reviewed in Chap. 6 suggests that vari-
ous context effects need to be controlled with item preequating. To minimize context
effects, items should appear in a position and context when they are operational
that is similar to the position and context in which they appeared when they were
preequated.

Section preequating is another type of preequating methodology. In section pree-
quating the operational portion of the test consists of sections of items that have been
previously administered, with necessary item or section parameters estimated using
data from the previous administrations. Using these results, the conversion table for
the operational portion is estimated before it is ever administered as an intact form.
Other sections administered to examinees are unscored, and are used to build up
the pool of sections with estimated item or section parameters for use in subsequent
forms. Linear methods, as well as IRT methods, can be used in section preequating.
Linear methods can accommodate sections that measure different abilities. Petersen
et al. (1982) provided a summary of section preequating procedures. Holland and
Wightman (1982) empirically studied section preequating. Brennan (1992) illus-
trated that context effects involving the positioning of sections of items need to be
controlled in section preequating designs. Harris (1993) presented a discussion, with
many references, of practical issues in preequating.

Some situations require that tests be equated before being administered intact in
a standard operational setting, such as when scores need to be reported to examinees
immediately after they are administered a test. In this case, a conversion table needs to
be available before the test administration. Preequating can be used in these situations.

Another way conversion tables could be made available prior to administering
the test operationally is to use nonoperational administrations to conduct equating,
so conversion tables are available later for operational administrations. The equating
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results then are used when the form is used operationally. For example, a random
groups design was used initially to equate new forms to an old form of the paper-
and-pencil Armed Services Vocational Aptitude Battery (ASVAB) (Thomasson et al.
1994) based on examinees who are already in the military. In a second random groups
equating study, these new forms, along with a form that was equated previously,
were administered operationally to examinees who wanted to be accepted into the
military. Scores on the new forms for examinees in the second equating study were
based on the initial equating. The conversion tables from the second equating were
used subsequently, because the examinees in the second equating, as compared to
examinees in the first equating, were likely to be more motivated and more similar
to the examinees who are to be tested subsequently.

Another variation is used for equating the ACT (ACT 2007). On most national
test dates, the items on the ACT tests are released to examinees, in part, to meet test
legislation requirements. However, on certain test dates the items are not released. On
one of these test dates, one or more previously administered unreleased forms along
with the new forms to be equated are administered using a random groups design.
These forms are equated following this administration, and scores are reported to
examinees who were administered the new forms. The conversion tables developed
in the equating administration also are used when the new forms are administered
later on.

Although not a comprehensive set of possibilities, the SAT, ASVAB, and ACT
equating designs illustrate the use of the random groups design and the common-item
nonequivalent groups design in situations that might suggest the need for an item or
section preequating design.

8.2.2 Developing Equating Linkage Plans

When conducting equating, a choice is made about which old form or forms are
to be used for equating a new form or forms. The choice of the old form or forms
has a significant effect on how random and systematic equating error affects score
comparisons across forms.

Random Groups Design

Consider the following example of a simple equating linkage plan. For the ACT
(ACT 2007), new forms are equated each year using a random groups design in
which the new forms are spiraled along with one form that was equated in a previous
year. This process allows the new form raw scores to be converted to scale scores
by first equating raw scores on the new forms to raw scores on the old form. The
raw-to-scale score conversion that was developed previously for the old form then is
used to estimate raw-to-scale score conversions for the new forms.
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Table 8.2 A random groups equating linkage plan that uses a different old form at each adminis-
tration

Process Administration Forms

Construct score scale 1 A

Equate using spiraling 2 A B C

Equate using spiraling 3 C D E

Equate using spiraling 4 E F G

Equate using spiraling 5 G H I

Table 8.3 A random groups equating linkage plan that uses the same old form at each
administration

Process Administration Forms

Construct score scale 1 A

Equate using spiraling 2 A B C

Equate using spiraling 3 A D E

Equate using spiraling 4 A F G

Equate using spiraling 5 A H I

A hypothetical example that displays a linkage plan which is similar to the ACT
plan is shown in Table 8.2, where the old form is listed in a box. In Administration
1, the raw-to-scale score transformation for Form A establishes the score scale. In
Administration 2, new Forms B and C are administered with Form A in a spiral
administration. The data collected from this administration are used to develop the
conversion that transforms Form B and Form C raw scores to scale scores through
Form A. In Administration 3, Form C serves as the old form and Forms D and E as
the new forms. The general plan is to spiral new forms along with an old form that
was equated previously.

Paper-and-pencil forms of the ASVAB (Thomasson et al. 1994) also are equated
using the random groups design. However, in the ASVAB program, the form that
was used to conduct the original scaling is the old form that is spiraled with the new
forms. A hypothetical example that displays a linkage plan similar to the ASVAB
plan is shown in Table 8.3. Note that the major difference between the plans shown
in Tables 8.2 and 8.3 is the old form that is used in the spiraling process. In Table 8.2,
the old form is a form that was equated in the previous year. In Table 8.3, the old
form is a form that was used initially in the scaling process. Both plans can be used
to produce raw-to-scale score conversions. Is one plan preferable to the other? The
answer depends on various practical issues having to do with the context of the
equating.

One of these issues has to do with error in equating. As was suggested earlier, each
time an equating is conducted, equating error is introduced. Error might accumulate
over equatings. In Table 8.2, how many equatings separate Form I from Form A?
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Equating 1: Form I is equated to Form G.
Equating 2: Form G is equated to Form E.
Equating 3: Form E is equated to Form C.
Equating 4: Form C is equated to Form A.

Thus, four equatings separate Form I and Form A. Equating error from four different
equatings would influence the comparison of scores between examinees who took
Form A and those who took Form I.

How many equatings separate Form I from Form A in the example in Table 8.3?
Just one. That is, error sources from only one equating influence the comparison
of scores between examinees who took Form A and those who took Form I in the
Table 8.3 plan. At least from this perspective, the plan in Table 8.3 is preferable.

However, there are at least two potential problems with the plan in Table 8.3.
First, this plan requires Form A to be administered repeatedly. If the items became
known to some examinees because of security breaches (e.g., test booklets stolen or
students memorizing items and supplying them to coaching schools) or because many
repeating examinees had seen the items in an earlier administration, then the equating
could be severely compromised. Second, the content of Form A might become dated.
For example, reading passages might become less relevant, causing examinee groups
to respond differently to the passages over time. Also, an accumulation of minor
changes in the way test specifications are applied over time might make Form A
somewhat different from later forms. For these reasons, a plan like the one displayed
in Table 8.3 must be used cautiously. Whether to use a plan like the one in Table 8.2
or one like that in Table 8.3 depends on weighing the problems associated with each
of the plans and deciding which problems are more serious for the testing program
at hand.

Compromise plans also could be constructed. For example, in the plan in Table 8.3,
Form A could be used as the old form in Administrations 2 and 3. Then Form E
could be used as the old form in Administrations 4 and 5. Compared to the plan in
Table 8.3, this compromise plan would reduce the usage of Form A. Compared to the
plan in Table 8.2, this compromise plan would lead to fewer equating error sources
in comparing scores on Form A to scores on Form I.

In practice, constructing equating plans can be much more complicated than what
has been considered in these hypothetical examples. A particular form might need
to be ruled out as an old form because of security concerns or because many of
the examinees to be included in the equating were administered the old form on a
previous occasion. Also, an old form might be found to have bad items (e.g., items
that are ambiguous, multiply keyed, or negatively discriminating), which could rule
out its use in equating. These sorts of practical concerns often make it impossible to
develop equating plans that are actually used very far into the future.
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Table 8.4 A random groups equating linkage plan that uses double linking

Process Administration Forms

Construct score scale 1 A

Equate using spiraling 2 A B C

Equate using spiraling 3 C D E

Equate using spiraling 4 B E F G

Equate using spiraling 5 D G H I

Double Linking with Random Groups

One procedure that is often used to help solve the problems associated with develop-
ing linkage plans is to use two old forms to equate new forms. This process is referred
to as double linking. As an example of double linking, the scheme in Table 8.2 could
be modified by also administering Form B in Administration 4 and Form D in Admin-
istration 5. The resulting plan is shown in Table 8.4. In applying double linking, the
new forms are equated separately to each of the old forms. The resulting equating
relationships could then be averaged. For example, in Administration 5, one equating
relationship could be developed to equate Form H to scale scores using Form D as
the old form. A second equating relationship could be developed for equating Form
H to scale scores using Form G as the old form. These two relationships likely would
differ because of equating error. The two conversions could be averaged to produce a
single conversion. Braun and Holland (1982) and Holland and Strawderman (2011)
suggested alternatives to simple averaging. Averaging and these alternatives likely
produce very similar results, and averaging is simpler.

The process of double linking has much to recommend it. It provides a built-in
stability check on the equating process. Two conversions that differ more than would
be expected by chance might suggest problems with statistical assumptions, quality
control (e.g., scores incorrectly computed), administration (e.g., spiraling was not
properly performed), or security (e.g., a security breach led to many examinees’
having access to one of the old forms). If such problems are suspected, then one of
the links could be eliminated without destroying the ability to equate in the testing
program. (Note, however, that if a security breach led to many examinees having
had access to one of the old forms, then the scores of the examinees who took that
old form might not be valid.) In addition, the use of double linking can provide for
greater equating stability than the use of a single link, especially when the two old
forms are chosen from different administrations, as was done in Administrations 4
and 5 in Table 8.4.

The average of two links also can be shown to contain less random equating error
than the use of a single link. Consider the following situation. In one equating, Form
C is equated directly to Form A; and in a second equating, Form C is equated first to
Form B and then to Form A. For simplicity, assume that the error variance in equating
is the same for any single equating. The equating of Form C to Form A contains the
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same amount of equating error variance as the equating of Form B to Form A. Refer
to the error variance at a particular score point on Form C as var. Also assume that
all equatings are independent.

In this case, the equating error in equating Form C to Form A equals var. Equating
error variance in equating Form C to Form A through Form B equals 2var. The
average of the equivalents of the two equatings equals the sum of the equivalents
divided by 2. In this case, equating error variance for the average can be shown to
equal

1

22 var + 1

22 (2)var = 3

4
var.

In this example, equating error variance for the average of the two links, 3/4var, is
less than the equating error variance for either link taken by itself. This relationship
illustrates that the use of double linking can reduce random equating error. See
Hanson et al. (1997) for an empirical demonstration that random equating error is
reduced when two links are averaged.

In practice, the double links might not be equally weighted. If one link is con-
sidered to have more error than another link, the first link might be weighted less
than 1/2. If substantial problems are present with one of the links, that link can be
weighted 0.

Double linking does introduce complications into equating. More than one old
form must be included in the study, which assumes the availability of another form
and requires exposing more forms in the study, which might lead to security concerns.
Using additional forms also requires that the overall sample size be larger, which in
some cases might not be possible. For example, if the sample size needs to be 2,000
examinees per form and 4,000 examinees are available to do equating, then only
one old form could be used when equating one new form. Even though there are
complications in using two old forms, we recommend using double linking when
feasible.

Common-Item Nonequivalent Groups Design

Additional complications are present when developing equating plans with the
common-item nonequivalent groups design. Group differences across administra-
tions sometimes are substantial. As was suggested earlier, the similarity between
examinee groups that are administered the old and new forms significantly affects
the quality of equating: The more similar the groups, in general, the more adequate
the equating.

The following situation illustrates some of these complications. A test is admin-
istered in the spring and in the fall every year, with a different form administered on
each occasion. The group of examinees that tests in the spring tends to be different
in its overall level of achievement than the group that tests in the fall. This difference
in group level achievement suggests greater equating stability when a new form is
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Fig. 8.1 Four hypothetical single link plans

equated to a form from the same time of year than to a form from a different time of
year. A single section of common items is used to equate a new form.

Single Link Plan 1 in Fig. 8.1 presents one possible single link pattern for this
situation over a 5-year period. In this example, assume that the score scale was
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established on Form A. The arrows indicate which old form has items shared with
the new form. For example, Form J is equated to the score scale using items that
are in common with Form H. In this plan, spring forms are always equated to spring
forms and fall forms are always equated to fall forms, with the exception of Form B.
Note that in setting up equating patterns, all forms must link back to a single old form
through an equating chain, so scores on all forms can be converted to scale scores.
For this reason, Form B must be equated to Form A in the Fig. 8.1 example.

This equating plan can be used to equate all forms to the score scale, because all
forms eventually link back to Form A. This pattern makes as extensive use as possible
of linking to forms that were previously administered in the same time of year, thus
maximizing the similarity of groups used in the equatings. From the perspective of
using similar groups, this plan is nearly ideal.

However, this plan has significant problems. Suppose that examinees tested in the
fall of Year 5 were to be compared to examinees tested in the spring of Year 5. How
many links would affect this comparison? Another way to ask this question is, how
many arrows does it take to go from Form J to Form I in the linkage plan? By going
from J to H, H to F, F to D, D to B, B to A, A to C, C to E, E to G, and G to I, there are
nine of these arrows. Thus, nine links affect the comparison of scores on Form I and
Form J. If this pattern were extended, the number of links for comparisons between
forms administered in a given year increases by two each year. This linkage plan
illustrates the development of what is sometimes referred to as an equating strain.
Equating strains can lead to a situation in which examinees earn higher scale scores
on one form than on another form. In developing equating linkage plans, equating
strains should be avoided.

The random groups and common-item nonequivalent groups examples considered
so far illustrate the following four rules that can be used to construct equating linkage
plans for the common-item nonequivalent groups design with internal common items:

Rule 1. Avoid equating strains by minimizing the number of links that affect the
comparison of scores on forms given at succesive times. (Single Link Plan 1
in Fig. 8.1 violates this rule.)

Rule 2. Use links to the same time of the year as often as possible. (Single Link
Plan 1 in Fig. 8.1 is an example of a plan that follows this rule.)

Rule 3. Minimize the number of links connecting each form back to the initial form.
(The plan in Table 8.3, for the random groups design, is an example of a
plan that follows this rule.)

Rule 4. Avoid linking back to the same form too often. (The plan in Table 8.2, for
the random groups design, is an example of a plan that follows this rule.)

Obviously, all of these rules cannot be followed simultaneously when constructing
a plan that uses single links. Choosing a plan involves a series of compromises that
must be made in the context of the testing program under consideration. For example,
Rule 3 might be considered important when following trends in scores over time, but
not otherwise.

Some additional examples can be used to explore these four rules more fully.
Refer to Single Link Plan 2 in Fig. 8.1. Rule 1 is followed as closely as possible,
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because forms are equated directly to the adjacent form. Rule 2 is violated as much
as possible, because forms are always equated to a form from the other month. Rule 3
also is violated, in that the number of links back to Form A is as large as possible.
Rule 4 is followed.

The Single Link Plan 3 in Fig. 8.1 follows Rules 1 and 3. Rules 2 and 4 are not
followed.

In the Single Link Plan 4 in Fig. 8.1, Rule 1 is followed reasonably closely, in
that there are no more than two links (arrows) separating adjacent forms. Rule 2 is
followed for nearly 1/2 of the forms. Rule 3 is followed more closely for this plan
than for Single Link Plan 2 in Fig. 8.1, but less closely than for Single Link Plan 3
in Fig. 8.1. Rule 4 is followed reasonably closely, although nearly 1/2 of the forms
are equated back to twice. Although Single Link Plan 4 in Fig. 8.1 is less than ideal,
this plan might be a reasonable compromise.

The linkage plans in Fig. 8.1 are presented for illustrative purposes only. Often,
practical constraints make plans like these unworkable. For example, if many exam-
inees repeat the test, a form that was administered within the last year or two might
not be a good choice to use as a link form. The examinees who repeat the test could
be unfairly advantaged by being administered the same items a second time. In other
situations, scores might need to be comparable over a long period, in which case it
probably would be desirable for at least one of the link forms to be a form that was
originally administered in the more distant past. Sometimes problems exist with a
potential old form which suggest that the form not be used as a link form. For exam-
ple, the sample size for a potential link might have been very small when that form
was equated, a potential link form might have had security problems, or a potential
link form might have been found to have not been well constructed. Many testing
programs have more than two test dates per year, which also complicates the design
of equating plans. For an example, refer to the SAT linkage plan that is presented
in Donlon (1984, pp. 16,17). Of necessity, linkage plans should be tailored to the
particular testing program. However, the principles discussed here can be useful in
designing and evaluating these plans.

Double and Multiple Linking with the Common-Item Nonequivalent
Groups Design

Double linking is useful in the common-item nonequivalent groups design because,
as with the random groups design, it provides a built-in check on the equating process
leading to greater equating stability, and it can be used to avoid equating strains. In
addition, with two links, a second link still is available to be used for equating even
if the strong statistical assumptions required under the common-item nonequivalent
design are violated for one of the links. Also, if a significant number of common
items on one link are found to have problems, or if security problems are discovered
with one of the old forms, then a second link still exists that can be used to conduct
the equating.
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Double linking requires greater effort in test development and in equating than
does equating using a single link. When using the common-item nonequivalent
groups design, double linking requires that two sets of common items which are
content representative be used in the development of new forms, which sometimes
can be difficult. Using two links also creates a greater exposure of old forms in the
random groups design and of common items with the common-item nonequivalent
groups design. Double linking is most desirable in situations where form-to-form
comparability is important over a long time, and might be less important in situa-
tions where periodic changes in test content require that the test be rescaled every
few years. It is strongly recommended that double linking be used when feasible.

To capitalize on the benefits associated with double linking, the use of more than
two links has been suggested (McKinley and Schaeffer 1989). However, such use of
multiple links can be difficult, practically, because it requires building three sets of
common items that are content representative, and it can create even more exposure
of forms and items than double linking does.

A few research studies have examined issues associated with the use of double
and multiple links in the common-item nonequivalent groups design. Haberman and
Dorans (2011) discussed sources of random and systematic error for multiple equat-
ings. Haberman (2010) described an analytic approach for assessing the amount of
random error in chains of equating. Guo (2010) empirically investigated the accumu-
lation of random error over multiple equatings. Guo et al. (2011) found less overall
equating error using multiple links than single links. Puhan (2009) and Taylor and
Lee (2010) compared the amount of equating error for different linkage patterns. Liu
et al. (2009) readministered and requated an old form as a way to assess the amount
of equating error that occurred over time. Haberman et al. (2008) studied the stability
of score conversions over multiple forms. Livingston and Antal (2010) and Moses
et al. (2011) discussed alternative procedures for equating using the common-item
nonequivalent groups design when there are multiple links.

One beneficial way to use double linking in IRT equating to an item pool is for
one link to be to a single old form and the other link to be to the overall pool. In this
way, one of the links is an equating using the common-item nonequivalent groups
design. This double linking process allows for use of the traditional methods as a
check on the IRT methods.

8.2.3 Examinee Groups Used in Equating

Equating relationships typically are somewhat group dependent, so the group or
groups of examinees used in equating affect the estimated equating relationship.
For this reason, more adequate equating is expected when the examinees used
in the equating study are as similar as possible to the entire group that is tested
(Harris 1993).

The effect of the group used for equating depends on the data collection design.
When carefully constructed alternate forms are equated using the random groups
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design, the equating relationships seem not to be too dependent on the group of
examinees used to conduct the equating for the SAT (Angoff and Cowell 1986) or
the ACT (Harris and Kolen 1986), although Yi et al. (2008) found some evidence
of population dependence when the groups were formed based on a variable that is
directly related to the construct being measured. For the common item nonequivalent
groups design, little group dependence has been found when forms are carefully
constructed, the common items adequately represent the total test, and the groups
taking the old and new forms are not very different from one another (Puhan et al.
2006; Sinharay et al. 2011; Yang and Gao 2008). Similar results have been found
using other designs (Liu and Holland 2008; Wells et al. 2009).

In the common-item nonequivalent groups design, however, large differences
between the old and the new groups can cause significant problems in estimating
equating relationships, both for traditional and IRT equating methods (for reviews of
relevant research see Cook and Petersen 1987; Harris 1993; Skaggs 1990; Skaggs and
Lissitz 1986). Large group differences can lead to failure of the statistical assumptions
for any equating method to hold. The research in the Dorans (1990) special issue of
Applied Measurement in Education (Eignor et al. 1990a; Kolen 1990; Lawrence and
Dorans 1990; Livingston et al. 1990; Schmitt et al. 1990; Skaggs 1990) and Eignor
et al. (1990b) assessed the use of matching procedures to make otherwise disparate
groups more similar, but found that the procedures studied were not satisfactory.
However, the results found by Wright and Dorans (1993) suggest that matching
might be worthwhile to consider in certain situations. Bränberg and Wiberg (2011),
Liou et al. (1999); Liou et al. (2001); Lyrén and Hambleton (2011); and Powers and
Kolen (2012) considered using variables other than common items as a means for
adjusting for group differences.

The various statistical methods handle group differences differently. The Tucker,
Braun-Holland and frequency estimation equipercentile methods require assump-
tions about the same regression holding across the different populations. These
assumptions cannot be expected to hold when groups differ substantially. The IRT
and Levine methods require that the common items and total scores measure the same
construct in the two groups, in the sense that true scores are functionally related. This
requirement places considerable emphasis on test development procedures, so that
the same construct is measured in precisely the same way across alternate forms
and common-item sets. If this requirement is met precisely, then the Levine and IRT
methods might function more adequately than the other methods when there are
large group differences. However, when the group differences become too large, no
method likely will function well (see Cook and Petersen 1987).

In our experience with the common-item nonequivalent groups design, mean dif-
ferences between the two groups of approximately .1 or less standard deviation unit
on the common items seem to cause few problems for any of the equating meth-
ods. Mean group differences of around .3 or more standard deviation unit can result
in substantial differences among methods, and differences larger than .5 standard
deviation unit can be especially troublesome. In addition, ratios of group standard
deviations on the common items of less than .8 or greater than 1.2 tend to be asso-
ciated with substantial differences among methods. Differences in group standard
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deviations have the potential to lead to differences among methods that are at least as
great as those caused by differences in means. These rules of thumb are necessarily
situation specific.

Problems also might occur when equating is conducted in a special study in which
the groups are very different from the examinees who are to be tested later. In addition
to differences in group characteristics, differences in examinee motivation between
special studies and operational testing can affect equating. The ASVAB example
presented in Chap. 1, in which the examinees were more motivated on the old form
than the new form, is an extreme example of how motivation differences can cause
significant problems.

Repeating Examinees

A consideration when conducting equating is whether or not to eliminate examinees
who have taken the test previously. One argument for removing examinees who are
repeating the test is that they might have seen the old form or common items, which
could bias the equating. However, repeating examinees might not be identifiable
in the time allowed for conducting equating. Also, excluding repeating examinees
reduces sample size, which might lead to inadequate equating precision. Excluding
repeaters might also cause the group being included in the equating not to be repre-
sentative of the group tested, especially if many examinees repeat the test. Research
on the effects of repeating examinees on equating produced mixed results (Andrulis
et al. 1978; Cope 1986; Kim and Kolen 2010; Kim and Walker 2012a; Puhan 2011a;
Yang et al. 2011). Kim and Walker (2012a) were able to identify repeating examinees
who had previously taken the common items when using a common-item nonequiv-
alent groups design and found that the equating relationship was different for such
repeating examinees than for other examinees. Decisions about whether or not to
include repeating examinees in equating in a particular testing program depend on
assessing how likely it is that examinees would have seen previously administered
items or forms and whether or not it is possible to identify repeating examinees.

Editing Rules

Another consideration is whether to delete examinees whose scores are very low or
who omitted many items. For example, examinees who omit all the items on a test or
earn a number-correct score of 0 often are excluded from equating, These are likely to
be examinees who did not attempt the test and might have been erroneously included
in the data. Editing rules should be tailored to the particular testing program.

Less conservative rules might negatively affect equating. Suppose that in a random
groups design a sizable number of examinees typically earn scores below “chance”
(number of multiple-choice items divided by the number of alternatives per item) on
a test, and that more examinees scored below chance on the more difficult of the two
forms. Eliminating these below “chance” examinees from the equating process could

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
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destroy the random equivalence between the samples taking Form X and Form Y,
and it would result in the loss of all data in the lower tail of the distributions. We
recommend using conservative editing rules whenever possible.

Another consideration is whether to eliminate test centers or testing sessions that
had administration problems. For example, in the random groups design, each of
the forms to be equated would be expected to be administered to approximately the
same number of examinees in each test session. Numbers that are grossly unequal
suggest administrative problems. In this case, elimination of the data for a test center
or session can be considered. Elimination of data from test centers or test sessions
with significant irregularities, such as a power failure that disrupted testing, also can
be considered.

8.2.4 Sample Size Requirements

Sample size has a direct effect on random equating error. Livingston (1993), Kolen
and Whitney (1982), and Parshall et al. (1995) conducted empirical research on
the use of standard equating methods with small samples. Harris (1993) reviewed
research on sample size in equating and suggested that larger samples lead to better
equating.

A variety of equating methods have been developed to deal directly with equating
with small samples. These include the circle-arc method (Livingston and Kim 2009),
which is a highly constrained curvilinear method; the use of collateral information
from other equating relationships in estimating the equating relationship for a small
sample equating (Kim et al. 2011); and the use of a synthetic equating function, which
averages the estimated equating function with the identify function (Kim et al. 2008,
2011). These methods were reviewed by Livingston and Kim (2011). These methods,
along with mean and smoothed equipercentile equating, were compared empirically
using small samples for the random groups design (Livingston and Kim 2010) and
for the common-item nonequivalent groups design (Kim and Livingston 2010). In
general, the results of this research suggest that equating relationships might be able
to be estimated more accurately in some equating situations with some of these
methods than with the identity equating. However, Puhan (2011b) showed that such
methods are unlikely to work well when the small samples are not representative of
the test-taking population, and Dorans et al. (2011, p. 40) concluded that “equating
cannot be done effectively in small samples”. See Puhan et al. (2009) for a description
of a modified equating design that is intended for use with very small samples. In
the remainder of this section, schemes for estimating sample size requirements are
considered that are mainly based on considerations in estimating random error in
equating.
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Rules of Thumb Using Standard Deviation Units as a Criterion

In Chap. 7, procedures were provided for estimating the sample size required to
achieve a given level of equating precision. For the random groups design under nor-
mality assumptions, the standard error of equating between z-scores of −2 and +2
was shown to be less than .1 raw score standard deviation unit when the sample size
was 400 per form for linear equating and slightly over 1,500 per form for equiper-
centile equating. In any given situation, however, the shapes of the distributions, the
degree of equating precision required, and the effects of smoothing if equipercentile
equating is used (see the sample size discussion in Chap. 3) can be taken into account
when developing sample size requirements. In addition, if a passing score is to be
used in the testing program, then the precision at that passing score might be of
primary concern (see Brennan and Kolen 1987a, pp. 285, 286).

Our experience suggests that these figures are also useful rules of thumb for
sample size requirements for linear and equipercentile equating in the common-
item nonequivalent groups design. Sample size considerations under this design,
however, are complicated in that the degree of relationship between the total score
and common-item score (see Budescu 1985), along with the distribution shapes, have
a strong influence on the standard errors.

Standard error of equating expressions that can be readily used to estimate sam-
ple sizes have yet to be developed for IRT equating procedures. The procedure used
to estimate item parameters will likely affect the sample sizes required. A rule of
thumb that is loosely based on the literature surveyed by Harris (1993) would be to
require the same number of examinees for the three-parameter model as for equiper-
centile equating (approximately 1,500 per form) and to require the same number of
examinees for the Rasch (one-parameter) model as for the linear methods (400 per
form).

Rules of Thumb Based on Comparisons with the Identity Equating

The rules of thumb just developed for the traditional methods were based on using
a conservative criterion (standard errors of equating being less than .1 raw score
standard deviation unit). The sample size issue can be addressed by asking a different
question: What is the smallest sample size that would be expected to reduce equating
error as compared to identity equating?

If identity equating is used, the Form Y equivalent of a Form X score is set to
equal to the Form X score. That is, the Form Y equivalent of a Form X score of
xi is xi . If equipercentile equating is the most appropriate method, then the bias
incorporated by using identity equating is xi − eY (xi ). As was indicated in Chap. 3,
the sum of random equating error variance and squared bias equals mean squared
error in equating. Based on this relationship, the identity equating is preferable to
equipercentile equating if the squared bias associated with the identity equating is
less than the random equating error variance associated with using equipercentile
equating.

http://dx.doi.org/10.1007/978-1-4939-0317-7_7
http://dx.doi.org/10.1007/978-1-4939-0317-7_3
http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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The following example illustrates the application of this principle. In developing
the rules of thumb mentioned earlier, a sample size of approximately 1,500 per
form was found to be required for the standard error of equating at any score to be
less than .1 raw score standard deviation unit over the z-score range of −2 to +2.
Assume that the largest absolute difference in equivalents between identity equating
and equipercentile equating, |xi − eY (xi )|, is .1 standard deviation unit over the
z-score range of −2 to +2. Thus, over this range, the maximum absolute equating
bias associated with identity equating is assumed to be .1 standard deviation unit.
Because squared bias and squared standard errors contribute equally to mean squared
error, the same maximum level of mean squared error will accrue over the z-score
range of −2 to +2 through the use of identity equating or equipercentile equating
with a sample size of approximately 1,500. Thus, in this situation, a sample size over
1,500 would be required for equipercentile equating to result in less mean squared
error than identity equating.

What if the largest difference in equivalents between using identity equating
and equipercentile equating was assumed to be .2 standard deviation unit over the
z-score range −2 to +2? Using Eq. (7.19) with u = .2, the sample size per form
is approximately 382. Assuming a maximum difference in equivalents of .2 stan-
dard deviation unit, a sample size of over 382 would be required for equipercentile
equating to produce less mean squared error than identity equating.

As was just demonstrated, this scheme is very sensitive to the extent that the forms
are assumed to differ. Assuming that the forms are similar enough to be equated, the
larger the anticipated difference between forms, the smaller the sample size needed
for equating to be useful. However, larger representative samples lead to less random
error. This scheme depends on the distributions of the scores (normal distributions
were assumed here). However, if reasonable approximations to the distribution shapes
can be found, and if reasonable assumptions about the degree of difference between
forms can be made, then this scheme can be used to decide whether identity equating
is preferable to another equating method.

8.3 Choosing from Among the Statistical Procedures

Various statistical methods for equating have been presented. For any of these
methods to be used appropriately, the test specifications, the data collected, and
the standardization and quality control procedures should be adequate. Otherwise,
not equating (or using identity equating) might be the preferred option. Although
it might be possible to implement all of the methods that have been discussed in
a particular testing program, practical circumstances often rule out implementing
some methods and suggest ruling out others.

Deciding which statistical methods to implement for a particular equating depends
on considering the characteristics of equating situations for which each of the methods
is most appropriate. Such a decision should be made by consulting the research
literature on equating methods and conducting research for the testing program for

http://dx.doi.org/10.1007/978-1-4939-0317-7_7
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which the equating is to be done. In this section, the characteristics of equating
situations are considered.

Table 8.5 presents a list of characteristics of equating situations for which each
of the methods is most appropriate. Mean and linear equating are most useful to
consider when the sample size is small, the test forms are not too dissimilar, and
a great degree of accuracy is needed only at scores that are not too far from the
mean. The conversions for these methods are easy to express (a linear equation, with
rounding and truncation rules), the analyses are relatively easy to conduct (summary
statistics such as means, variances, and covariances are all that are needed), and the
methods are relatively easy to explain to individuals who do not routinely conduct
equating. Many applied situations exist in which these methods are adequate.

For example, many certification testing programs are concerned only that equating
be accurate near a single passing score. In some programs, the equating might be
used only to ensure that the passing score indicates the same level of achievement
from administration to administration. If the passing score is not too far from the
mean, then linear equating could be the most complex equating method that should
be considered.

As another example, small samples of examinees often are administered tests on
test dates in which equating is conducted. In these small sample situations, mean
or linear equating might be the most complicated method that would be needed,
especially if the interest is in accuracy near the mean.

Assuming that the equating relationship is not linear, nonlinear methods (equiper-
centile and IRT) are most often required when the sample sizes are large and accuracy
is required all along the score scale. For example, the ACT (2007) uses equipercentile
equating with large sample sizes because decisions are made at points all along the
score scale. The SAT (Donlon 1984) uses equipercentile and three-parameter IRT
methods, along with linear methods, for similar reasons.

For any equating design, the use of IRT methods requires making strong assump-
tions. Research should be conducted in the context of the testing program to make
sure that the methods are robust to the violations of these assumptions which are
likely to occur in practice. Because Rasch equating is an IRT method, it requires
strong statistical assumptions. However, Rasch equating has considerably smaller
sample size requirements than do the three-parameter model methods.

For any equating method, the assumptions required for the common-item non-
equivalent groups design (or common-item equating to an IRT calibrated item pool)
are very strong. These assumptions can be especially problematic when examinee
groups differ substantially, when alternate forms differ substantially, or when the
specifications of the common-item sets differ from the specifications for the total
test. In these situations, perhaps none of the equating methods would work well.
Because of the strong assumptions that are required, methods based on different
assumptions can be implemented and the results compared to each other and to
results from previous test dates.

Situations can arise in which none of the methods produces an adequate equating.
Suppose that (a) high equating accuracy is required at all points along the score scale,
(b) the forms are expected to differ more than a little in difficulty, and (c) the sample
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size is small. In this situation, the objective of high equating accuracy might not be
achieved by any of the equating methods. Other similar situations sometimes arise
in practice.

8.4 Equating Criteria and Designs in Research Studies

Considerable research has been conducted that can be consulted when deciding which
procedures to use in practice. Findings from this research are described in various
sections of this and earlier chapters. A variety of criteria and designs for investigating
equating methodology have been used. The types of criteria used focus on assessing
the properties of equating discussed in Chap. 1 and on assessing the amount of error
in estimating equating relationships.

This section begins with a discussion of research designs and associated equating
criteria that are used for estimating the amount of error in equating relationships.
The section continues with a discussion of equating in a circle, methodology for
assessing population invariance of equating relationships, and by a discussion of
methodology for assessing the equity property of equating. Many of the criteria
described here were summarized by Harris and Crouse (1993) in their survey of
criteria for comparing equating methods and results. Kolen (in preparation) discusses
the criteria and designs in more detail than in the current section.

8.4.1 Criteria and Designs Based on Error in Estimating
Equating Relationships

As described in Chap. 7, standard errors of equating can be used to estimate the
amount of random equating error in estimating equating relationships. Standard
errors can be estimated for various equating designs and statistical methods using data
from operational test forms administered to operationally tested examinee groups.
Standard errors index only random equating error. To fully evaluate different equat-
ing methods it is also important to be able to estimate systematic equating error
and total equating error. However, systematic equating error and total equating error
are difficult, if not impossible, to estimate directly using data from operational test
forms administered to operationally tested examinee groups. For this reason, various
designs and criteria have been developed that can be used to estimate and compare
systematic error and total error in equating. This section focuses on these designs and
criteria which are often used in research studies on equating methods. The designs
and criteria are based on the following steps:

1. Establish a criterion equating.
2. Use resampling procedures to provide estimated equating relationships over R

replications.

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
http://dx.doi.org/10.1007/978-1-4939-0317-7_7
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3. Estimate random equating error as indexed by the standard error of equating,
systematic equating error as indexed by squared equating bias, overall error as
indexed by mean-squared equating error. Both total and conditional error indices
can be estimated.

Assume that Form X and Form Y are being equated. The criterion equating rela-
tionship is defined for the equating method using a particular definition of equating.
Refer to this equating relationship as C eqY (xi ). Based on samples of examinees
taking the two forms, an equating method is used to estimate the population equat-
ing relationship repeatedly. Refer to the equating relationship on the r-th sample as
êqY (xi )r . Over the total number of samples, R, define the mean of the estimated
equivalent as

̂̄eqY (xi ) = 1

R

∑
r

êqY (xi )r , (8.1)

the squared bias, which is an indicator of systematic error, as

bias2 [
êqY (xi )

] = [ ̂̄eqY (xi ) −C eqY (xi )
]2
, (8.2)

the variance of the estimated equivalent, which is an indicator of random error, as

var
[
êqY (xi )

] = 1

R

∑
r

[
êqY (xi )r − ̂̄eqY (xi )

]2
, (8.3)

and the mean-squared error of the estimated equivalents, which is an indicator of
total error, as

mse
[
êqY (xi )

] = 1

R

∑
r

[
êqY (xi )r −C eqY (xi )

]2
. (8.4)

It can be shown that

mse
[
êqY (xi )

] = bias2 [
êqY (xi )

] + var
[
êqY (xi )

]
. (8.5)

Indices over all score points can be defined as

bias2 =
∑

i

wi bias2 [
êqY (xi )

]
, (8.6)

var2 =
∑

i

wivar
[
êqY (xi )

]
, and (8.7)

mse2 =
∑

i

wi mse
[
êqY (xi )

]
, (8.8)
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where
∑
i
wi = 1. For example, equal weights or relative frequencies could be used.

Some studies have been conducted that use a single replication (R = 1). In this
case random and systematic error cannot be separated, and only mean-squared error
in Eq. (8.5) and overall mean-squared error in Eq. (8.8) can be found. Various research
designs and criterion equatings have been used within this framework. These designs
depend on how the criterion equating is established and on the data collection design
being used.

Random Groups Equating with Pseudo-Test Forms and a Single Group
Criterion

Pseudo-test forms (von Davier et al. 2006) can be constructed by dividing an opera-
tional test form. For example, a test form might be divided into two half-length test
forms by choosing items for each form to be proportionally representative of the two
forms in content and statistical characteristics.

If large numbers of examinees are administered the operational test form, then
scores for these examinees can be used to equate the two pseudo-test forms using
a single group equating. This single group equating can be used as the criterion
equating.

Random samples can be drawn from the examinees taking each of the pseudo-
test forms to study different methods for random groups equating. Based on these
samples, various equating methods can be applied and compared in terms of random
error, systematic error, and overall error using the statistics described earlier in this
section. This design was used, for example, by Liu and Kolen (2011a, b) to study
smoothing in equipercentile equating based on a test form that was administered to
over 16,000 examinees

An advantage of this design is that as long as a large sample of examinees who
took a single test form is available, a single group equating based on large numbers
of examinees can be used as the criterion equating. A limitation of this design is that
the forms that are equated differ from operational forms (e.g., they are shorter).

Random Groups Equating with Intact Test Forms and a Large-Sample
Random Groups Criterion

In the unusual situation when large randomly equivalent groups of examinees are
administered Form X and Form Y, the equating relationship for these groups can be
used as the criterion equating. Random samples of a particular size can be drawn
from these groups.

This design was used, for example, by Hanson et al. (1994) with two forms of
a 20-item test that were each administered to random samples of approximately
85,000 examinees. Equating results for identity, linear, unsmoothed equipercentile,
and smoothed equipercentile equating methods were compared at various sample
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sizes. This sort of procedure was also used by Livingston et al. (1990) with over
100,000 examinees per form, although the focus of this study was on comparing
common-item nonequivalent groups equating methods.

An advantage of this design includes the use of a criterion based on large opera-
tional random samples and intact test forms. A limitation is that very large sample
sizes for forms administered to random groups of examinees are rarely available.

Random Groups Equating with a Model-Based Criterion

Operational test data can be fit with a model and the fitted model used to define the
population distributions in a simulation study. The population distributions are used
to establish the criterion equating.

For example, Hanson et al. (1994) began with distributions on forms of the ACT
English and Science Reasoning tests based on around 3,000 examinees per form.
They fit the observed distributions with a log-linear model with C = 9 to define
the population distributions and the criterion equating. They sampled from these
distributions and compared results from various equating methods (some findings
are shown in Table 3.12). Moses (2008) and Moses and Holland (2009a, b) used a
similar approach to investigate strategies for selection of smoothing parameters in
log linear equating. In another example, Cui and Kolen (2009) fit an IRT model to
the operational data, and used the fitted IRT model to establish the population score
distributions. Many other studies have been conducted using model-based criteria.

Advantages of the model-based criterion are that it has modest data requirements,
and the use of operational distributions in developing the criterion helps to make sure
that the form differences and data are realistic. A limitation of this design is that the
criterion equating depends on the extent to which the model fits.

Random Groups Equating: Comparison of Criteria

The three types of criterion equating for the random groups design each have advan-
tages and disadvantages as already indicated. In many situations, studies can be
conducted using both the pseudo-test form-based single group criterion and one or
more model-based criteria. The extent to which the findings using different criteria
are consistent leads to greater confidence in the practical implications of the findings.
For example, using a psuedo-test form-based single group criterion, Liu and Kolen
(2011c) noted some findings that were consistent with those of Hanson et al. (1994)
and Cui and Kolen (2009) that used a model-based criterion. The consistency of
results across these studies provides support for the generalizability of the findings.

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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Common-Item Nonequivalent Groups Equating with Pseudo-Test Forms,
Pseudo Groups, and a Single Group Criterion

For the common-item nonequivalent groups design, pseudo-test forms can be con-
structed by dividing a single operational test form into pseudo test-Form X, pseudo-
test Form Y, and a set of pseudo common items (either external or internal). Based
on the entire examinee sample, the single group equating relationship between these
two pseudo-test forms can be used as the criterion equating.

In addition, a selection variable that is related to examinee proficiency can be
used to form nonequivalent pseudo groups. Consider the following example: Parental
income is used as a selection variable. To form the pseudo group taking Form X,
examinees with higher parental income are sampled with a greater probability than
examinees with lower parental income. For the pseudo group taking Form Y, exami-
nees are sampled randomly. Using this selection procedure, the pseudo group taking
Form X is expected to be of higher proficiency than the pseudo group that took
Form Y.

Using data from these pseudo groups, scores on pseudo-test Forms X and Y can
be equated using common-item nonequivalent groups methods. Multiple examinee
pseudo group samples can be drawn. The amount of error in equating for these
methods can be compared using the error statistics described earlier.

For example, Liu and Kolen (2011c) used gender as a selection variable and
pseudo-test forms to compare the amount of equating error in estimating equiper-
centile and IRT equating relationships. Powers and Kolen (2011) used parental edu-
cation as a selection variable and Hagge and Kolen (2012) used parental education
and income to make similar comparisons. Powers and Kolen (2012) used parental
education as a selection variable and investigated matched samples equating methods.
Hagge and Kolen (2011) used ethnicity and parental income as selection variables and
pseudo-test forms to compare the amount of equating error for format-representative
and format-nonrepresentative sets of common items for mixed-format tests.

Petersen et al. (1982) used pseudo-test forms and pseudo groups as part of an
extensive comparison of equating methods in which they compared the equating
of different pseudo-test forms using a variety of linear equating methods and the
unsmoothed chained equipercentile method. In this study, pseudo-test forms were
constructed from a test that contained 85 SAT-Verbal operational items, 40 SAT verbal
items from an external set of common items, and 50 items from the Test of Standard
Written English. Pseudo groups were formed using level of educational aspiration
and amount of high school foreign language coursework. Although a single group
criterion equating was used as a check, an IRT model-based criterion equating was
used. Variations in test length, test content, test difficulty, common item difficulty, and
common item content were manipulated in this study. Marco et al. (1979) conducted
a companion study that focused on curvilinear methods.

The combination of pseudo-test forms and pseudo groups provides for a very
flexible design for comparing equating methods and procedures. An advantage of this
design is that it can be used whenever sample size for an operational administration
is sufficient to form pseudo groups using a selection variable. Another advantage is
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that a single group criterion equating is used. A limitation of this design is that the
forms that are equated differ from operational forms (e.g., they are shorter). Another
limitation is that the choice of selection variable used to form the pseudo groups
can influence the results, and any comparisons depend on the extent to which this
selection variable leads to realistic group differences.

Common-Item Nonequivalent Groups Equating with Intact Test Forms,
Pseudo Groups, and a Pseudo-Groups Criterion

Pseudo groups can be used to develop a criterion for equating intact test forms
when data are collected using the common-item nonequivalent groups design. In this
situation a selection variable can be used to form matched pseudo groups that have
similar common item score distributions. An equating relationship based on these
matched pseudo groups can be used as a criterion equating.

The selection variable can also be used to create pseudo groups that differ in pro-
ficiency by various amounts. Various common-item nonequivalent groups equating
procedures can be applied. Multiple samples can be drawn, and the amount of error
in equating for these methods can be compared using the error statistics described
earlier.

For example, Powers et al. (2011) used a reduced fee indicator as a selection
variable. Using this selection variable, they created a pseudo group for Form X that
had the same mean score on the common items as the group that was administered
Form Y; the resulting equating relationships were used as criterion equatings. Equat-
ings for pseudo groups with varying magnitudes of mean differences were compared
to the criterion equatings to assess the effect of group differences on equating error
for different common-item nonequivalent groups equating methods. See Hagge and
Kolen (2012) for another example that used this design and criterion.

An advantage of this design is that it uses intact test forms. In addition, it can
be used whenever sample size for a common-item nonequivalent design equating
is sufficient to form groups using the selection variable. One limitation is that the
criterion depends on the adequacy of forming the matched pseudo groups based on
the selection variable used. Another limitation is that comparisons depend on the
extent to which the selection variable leads to realistic group differences.

Common-Item Nonequivalent Groups Equating with Pseudo-Test Forms,
Intact Groups, and a Single Group Criterion

Consider the unusual situation in which a single test form is administered to two
intact operationally tested groups of examinees that differ in ability. For example,
Group 1 and Group 2 might have been tested on different test dates using the same
test form.

Pseudo-test forms can be formed by dividing the single test form into Form X,
Form Y, and a set of common items (either external or internal). The criterion equating
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is defined as the single group equating for scores on pseudo-test forms for the com-
bined group of examinees. Pseudo-test Form X also can be equated to pseudo-test
Form Y with the common-item nonequivalent groups methods, using data for Group
1 on pseudo-test Form X and data for Group 2 on pseudo-test Form Y. These non-
equivalent groups equatings can be compared to the criterion equating and the error
statistics calculated. This type of criterion equating and design has been used to com-
pare different equating methods, different length sets of common items, and different
compositions of common-item sets (Holland et al. 2008; Puhan 2010; Sinharay 2011;
Sinharay and Holland 2007, 2010a, b; von Davier et al. 2006).

Advantages of this design are that a single group equating is used as a criterion
and group differences are based on operationally intact groups of examinees. One
limitation of this design is that the forms that are equated differ from operational
forms (e.g., they are shorter). Another limitation is that it may be difficult to find a
situation in which a test form is separately administered to two intact operationally
tested groups of examinees.

Common-Item Nonequivalent Groups Equating with Intact Test Forms,
Pseudo Groups, and a Large Sample Random Groups Criterion

Consider the unusual situation where Form X and Form Y have items in common and
have been administered to large randomly equivalent groups (e.g., as in the Livingston
et al. 1990 study referenced earlier). The random groups equating relationship can
be used as the criterion equating relationship.

A selection variable that is related to examinee proficiency can be used to form
nonequivalent pseudo groups. Scores on Form X and Form Y can be equated using
data from these pseudo groups using different equating methods. Multiple examinee
samples can be drawn. The amount of error in equating for these methods can be
compared using the error statistics described earlier. This design has been used to
compare the adequacy of different common-item nonequivalent groups equating
methods (Livingston et al. 1990; Wright and Dorans 1993; Dorans et al. 2008) and
by Dorans et al. (2008) to compare content representative to content unrepresentative
sets of common items.

The choice of selection variable used to form pseudo groups has been shown to be
an issue with this design. Livingston et al. (1990) used scores on another test as the
selection variable. Wright and Dorans (1993) used scores on another test as well as
on the common items on the test being equated as the selection variable. Dorans et al.
(2008) used total score on the test being equated as well as on another test as selection
variables. The results of the comparison of different common-item nonequivalent
groups equating methods depended heavily on which selection variable was used to
form the pseudo groups (see Dorans 2012, for a synthesis). One likely reason that
these studies found such different results is that when the selection variable is either
score on the common items or score on the total test, measurement error for scores
on the test to be equated or scores on the common items is correlated with examinee
selection when forming the pseudo groups. Such correlated error likely would not
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be present in realistic nonequivalent groups equating situations. For this reason, a
selection variable other than scores on the test to be equated or scores on the common
items should be used when forming pseudo groups. That is, selection variables such
as scores on another test or examinee background variables (e.g., socioeconomic
status variables) should be used to form pseudo groups.

One advantage of this design and criterion is that the criterion is based on large
operational samples and intact test forms. A limitation is that very large sample sizes
administered to random groups of examinees typically are not available. Another
limitation is that the choice of selection variable used to form the pseudo groups
can influence the results, and any comparisons depend on the extent to which this
selection variable leads to realistic group differences.

Common-Item Nonequivalent Groups Equating
with a Model-Based Criterion

As with the random groups design, when only modest sample sizes are available,
it is possible to fit the data with a model and use the fitted model as parameters in
a simulation study. The population distributions are used to establish the criterion
equating.

For example, Eignor et al. (1990a) fit an IRT model to two test forms that had
common items. The resulting parameter estimates and proficiency distributions were
used as parameters for a data simulation. Lee et al. (2012), using mixed-format test
data, fit multiple-choice items with a unidimensional IRT model and separately fit the
constructed-response items with another unidimensional IRT model. The correlation
between the multiple-choice and constructed-response proficiencies was estimated.
Based on this model, data were simulated by varying the magnitude of group dif-
ferences and the correlation between the multiple-choice and constructed-response
proficiencies to study the effects of correlation between proficiencies and group dif-
ferences on equating error. Wang et al. (2008) used data simulated from an IRT
model to compare error for several common-item nonequivalent groups equatings.
Sinharay and Holland (2007) used data simulated from an IRT model to compare
equating error for common item sets that had difficulty distributions similar to and
less variable than the difficulty parameter distributions for the total tests. Moses and
Holland (2010) fit a bivariate loglinear model to common-item nonequivalent groups
test data and used these as population distributions to construct a criterion equating.
They simulated data from the fitted model to compare equating error associated with
different strategies for selecting the degree of smoothing. Many other examples of
the use of model-based criteria exist.

Advantages of the use of the model-based criterion are that it has modest data
requirements and the use of operational distributions in developing the criterion
helps to make sure that the form differences and data are realistic. A limitation of
this design is that the criterion equating depends on the extent to which the model
fits. Model-based criteria are useful only to the extent that the simulated data are
realistic.
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Common-Item Nonequivalent Groups Equating: Comparison
of Designs and Criteria

All of the designs and criteria considered for the common-item nonequivalent groups
design can be used to compare equating methods. The designs and criteria differ in
whether intact or pseudo groups are used, whether intact- or pseudo-test forms are
used, and by the type of criterion used. The use of the pseudo-test forms, pseudo
groups, and a single group criterion is the most flexible of the designs that uses real
test data. However, such flexibility is gained at the expense of using pseudo-test forms
that differ from operational test forms and pseudo groups that differ from operational
groups. In addition, the results likely depend on how the pseudo-test forms and pseudo
groups are created. The other designs that use real data are less flexible. The use of
the model-based criterion is also quite flexible, but it is realistic only to the extent
that the model closely parallels reality. In addition, the model-based criterion likely
favors equating methods that have assumptions similar to those made by the model.
Ideally, studies should be conducted using different designs and criteria. The extent
to which such findings are consistent leads to greater confidence in the practical
implications of the findings.

8.4.2 Equating in a Circle

Another type of design and criterion that has been used in research studies is equating
in a circle. To use this design in a situation with three forms, Form X is equated to
Form Y, Form Y is equated to Form Z, and Form Z is equated back to Form X.
Following through this chain, Form X is equated to itself. In this paradigm, equating
is adequate to the extent that a Form X raw score of 1 converts to a score of 1, a
raw score of 2 to a score of 2, etc. This paradigm can be used if Forms X, Y, and
Z are equated using a random groups design. This design also can be used with the
common-item nonequivalent groups design if there are items in common between
Forms X and Y, between Forms Y and Z, and between Forms Z and X. Angoff (1987)
considered this criterion to be useful because “it provides advance knowledge of what
the errorless result should be …” (p. 298). This criterion has been used in various
equating and linking studies (e.g., Cope 1987; Gafni and Melamed 1990; Klein and
Jarjoura 1985; Lord and Wingersky 1984; Marco et al. 1979; Petersen et al. 1983;
Phillips 1985).

Although equating in a circle might appear to be sensible, Brennan and Kolen
(1987a, b) pointed out concerns with this paradigm. First, they indicated that iden-
tity equating will always be preferable to equating when using this paradigm. They
demonstrated that equating methods which estimate fewer parameters (e.g., linear
equating) tend to perform better than methods that estimate more parameters (e.g.,
equipercentile equating). They also demonstrated that, under the common-item non-
equivalent groups design, the results of the comparison depend on the form used to
start the circle. That is, different results are found when Form X is equated to itself



8.4 Equating Criteria and Designs in Research Studies 319

through Forms Y and Z than when Form Z is equated to itself through Forms X
and Y. Wang et al. (2000) reinforced many of the concerns discussed by Brennan and
Kolen (1987a, b) through a set of simulation and real data studies. These problems
suggest cautious use of the equating in a circle paradigm. However, this procedure
could be useful in identifying methods that produce poor equating results, in that if
a method does not work well when equating a form to itself, it might not work well
when equating alternate forms.

Equating a test to itself is a design and criterion similar to the equating in a
circle design and criterion. Consider a single test form and associated set of common
items. Form pseudo groups using a selection variable. The test form is equated to
itself treating one of the pseudo groups as if it had taken Form X and the other as if
it had taken Form Y. Because Form X and Form Y are actually the same form, the
identity equating is used as the criterion equating. This type of design and criterion
was used in the portion of the Petersen et al. (1982) study in which a test form was
equated to itself. Equating methods were compared using various common items
sets that differed in difficulty and content. This design and criterion, however, has
the same limitations discussed by Brennan and Kolen (1987a, b) for equating in a
circle.

8.4.3 Criteria and Designs Based on Assessing Group
Invariance of Equating Relationships

One of the properties of equating described in Chap. 1 is that equating relationships
are expected to be group invariant. Group invariance can be checked by comparing
the equating relationships for different groups of examinees as was done by Angoff
and Cowell (1986) and Harris and Kolen (1986). Whenever there are substantial
differences in equating relationships for different groups of examinees, the linking
that was done cannot be considered to be an adequate equating.

Dorans and Holland (2000) introduced statistics that can be used to index
the difference between equating relationships for different groups of examinees.
von Davier et al. (2004) developed analogues of the Dorans and Holland (2000)
statistics for the common item nonequivalent groups design. Dorans (2004) dis-
cussed a general approach to assessing invariance. Liu and Dorans (2012) considered
additional approaches to address whether equating are equivalent from a practical
perspective. Many of these indices have been used extensively to evaluate the group
invariance of equating and linking relationships. Indices for assessing group invari-
ance of equating and linking are described in detail in Chap. 10.

Huggins and Penfield (2012) reviewed indices for assessing population invariance.
Brennan (2008) and Petersen( (2008) provided discussions of population invariance.
Kolen (2004) discussed the history of conceptualizing and studying population invari-
ance.

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
http://dx.doi.org/10.1007/978-1-4939-0317-7_10
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8.4.4 Criteria and Designs Based on the Equity
Property of Equating

Kolen et al. (1992) described procedures that can be used to find the conditional means
and standard errors of measurement using strong true score models. Kolen et al.
(1996) described similar procedures that can be used with dichotomous IRT models,
and Wang et al. (2000) presented procedures that can be used with polytomous
IRT models. These procedures can be used to assess first- and second-order equity
properties for equated scores earned on alternate forms for raw, scale, and rounded
scale scores.

To apply these methods, it is necessary to assume that a particular test theory model
(either strong true score model or IRT model) holds and that the model has been fit to
the equated forms. The model is then used to calculate expected scores, conditional
on true score (or IRT ability). The conditional expected scores, after equating, are
compared across alternate forms. First-order equity is said to hold to the extent that
these conditional expected scale scores are similar for the alternate forms. The model
also is used to calculate standard errors of measurement, conditional on true score
(or IRT ability). Second-order equity is said to hold to the extent that the conditional
standard errors of measurement, after equating, are similar for the alternate forms.

Some of the necessary theory needed for the version of this approach was already
presented in Chap. 6. For dichotomous IRT models, the recursion formula given in
Eq. (6.25) can be used to find the conditional distribution of observed scores given IRT
ability, which is symbolized f (x |θi ). The mean of this distribution can be calculated
as

K τ =
K∑

j=0

jf (X = j |θi ). (8.9)

Note that this value is the true number-correct score on Form X and could have
been calculated from the test characteristic curve. The conditional error variance of
number-correct scores is

var(X |θi ) =
K∑

j=0

( j − K τ )2 f (X = j |θi ). (8.10)

The square root of this variance represents the standard error of measurement of
number-correct scores.

Also, assume that the transformation sc is used to transform raw scores to scale
scores. The mean of the conditional distribution of scale scores given θi is

ξ(θi ) =
K∑

j=0

sc( j) f (X = j |θi ), (8.11)

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
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which is the true scale score for examinees with ability θi . By considering various
values of θi , this equation relates true scale score to IRT ability.

Conditional measurement error variance of scale scores given θi is

var [sc( j)|θi ] =
K∑

j=0

[sc( j) − ξ(θi )]2 f (X = j |θi ). (8.12)

The square root of this variance represents the conditional standard error of mea-
surement of scale scores.

Equation (8.11) can be used to assess first-order equity for scale scores on alternate
forms. If first-order equity holds, then the conditional scale score means would be the
same on Form X and Form Y. The extent to which these conditional scale score means
differ indicates the extent to which first-order equity fails to hold. Equation (8.12)
can be used to assess second-order equity on alternate forms. If second-order equity
holds, then the conditional scale score standard errors of measurement would be the
same on Form X and Form Y. The extent to which these conditional scale score
standard deviations differ indicates the extent to which second-order equity fails to
hold.

Average error variance can be calculated as

var(Es) =
∫

θ
var [sc( j)|θ]g(θ)dθ, (8.13)

where g(θ) is the distribution of θ in the population. If this distribution is expressed
using quadrature points and weights, then the integration can be accomplished by
summation, as was done in Chap. 6.

Letting σ2[sc(X)] represent the variance of observed scale scores, an index of
test reliability can be defined as

ρ(X, X ∗)scale = 1 − var(Es)

σ2[sc(X)] . (8.14)

Reliability is defined as 1 minus the ratio of scale score error variance to scale score
observed variance.

As an example of how to apply Eqs. (8.9) through (8.14), consider the hypothetical
example of the use of the recursion formula presented in Table 6.4. Given θi = −2,
the distribution of number-correct scores on a three-item multiple-choice test was
calculated in the example. The number-correct scores of 0 to 3 are given in the first
column of Table 8.6. The probabilities of earning each of these scores from Table 6.4
are given in the second column of Table 8.6. In the third column, the conditional mean
is found to be .71 using Eq. (8.9). In the fourth column, the conditional variance is
calculated as .5370 using Eq. (8.10).

A hypothetical raw-to-scale score conversion is given in the fifth column. In this
conversion, a number-correct score of 0 is converted to a scale score of 1, a number-

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
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Table 8.6 Example calculating scale score conditional means and error variances using data from
example in Table 6.4

(x − kτ )2 sc(x) [sc(x) − ξ(θi )]2

x f (x |θi ) x × f (x |θi ) × f (x |θi ) sc(x) × f (x |θi ) × f (x |θi )

0 .4430 0(.4430) (0 − .71)2 1 1(.4430) (1 − 2.2921)2

×(.4430) ×(.4430)
1 .4167 1(.4167) (1 − .71)2 3 3(.4167) (3 − 2.2921)2

×(.4167) ×(.4167)
2 .1277 2(.1277) (2 − .71)2 4 4(.1277) (4 − 2.2921)2

×(.1277) ×(.1277)
3 .0126 3(.0126) (3 − .71)2 7 7(.0126) (7 − 2.2921)2

×(.0126) ×(.0126)
Sum K τ = var(X |θi ) = ξ(θi ) = var[sc(X)|θi ] =

.71 .5370 2.2921 1.6002

Fig. 8.2 Raw-to-scale score
conversions for Form K and
Form L
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correct score of 1 is converted to a scale score of 3, and so on. In the sixth column,
Eq. (8.11) is used to calculate the mean of this conditional scale score distribution. As
can be seen, each scale score is multiplied by the probability of earning that score and
then summed over scale scores. In the last column, Eq. (8.12) is used to calculate the
conditional error variance. The conditional mean is subtracted from each scale score,
the difference is squared and multiplied by the probability of earning that scale score,
and the quantities are summed over scale scores. Note that the conditional standard
error of measurement of scale scores is 1.2650, which is the square root of the
variance given at the bottom of the last column.

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
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As an example of an application of this methodology to real data, consider the
ITBS Maps and Diagrams example from Chap. 6. The raw score distributions for this
example were shown in Fig. 6.13. As can be seen, Form L is more difficult than Form
K. This observation suggests that Form L discriminates among examinees better at
higher scores and Form K discriminates better at lower scores.

Raw-to-scale score conversions that are used operationally with Forms K and L are
shown in Fig. 8.2. Equipercentile equating was used to equate these forms. Consistent
with Form K’s being the easier form, to earn a given scale score, examinees need to
earn a higher raw score on Form K than on Form L. The mean scale score is 176.6
for Form K and 176.9 for Form L. The scale score standard deviations are 21.8 for
Form K and 21.7 for Form L.

The computer program POLYCSEM, listed in Appendix B, was used to examine
first- and second-order equity for these two forms using the methodology described
by Kolen et al. (1996). Three-parameter logistic IRT model parameters were fit to the
forms. Conditional on a set of θ-values, true scale scores were calculated for Form
K using Eq. (8.11). Conditional on the same set of θ-values, true scale scores were
calculated for Form L also using Eq. (8.11) . In Fig. 8.3, the Form K true scale scores
are given along the horizontal axis and Form K true scale scores minus Form L true
scale scores are given along the vertical axis. If first-order equity held perfectly, the
relationship would be a line at a vertical axis value of zero. As can be seen, Form
K has slightly higher true scale scores (positive vertical axis values) in the middle
scores and Form L has higher true scale scores (negative vertical axis values) at the
very high and low scores. Note that most of the differences are small relative to the
scale score standard deviation of 21.8 for Form K and 21.7 for Form L.

Conditional scale score standard errors of measurement were calculated for each
of the forms using Eq. (8.12) to evaluate second-order equity. These conditional
standard errors of measurement are plotted in Fig. 8.4. The conditional standard
errors of measurement tend to be larger for Form K at the high scores, which is
consistent with Form K being an easier form, and not discriminating as well as Form
L at the high scores. The conditional standard errors of measurement tend to be larger
for Form L at the low scores, which is consistent with Form L’s being a more difficult
form, and not discriminating as well as Form K at the low scores. The conditional
standard errors of measurement are similar for the two forms at the middle scores.
In general, these results suggest that first- and second-order equity were not well
achieved with these forms.

Given that equipercentile procedures were used, it must be the case that the scale
score distributions for the two forms are similar to one another. However, as illus-
trated in Fig. 8.3, for example, examinees with true scale scores around 195 are
expected to earn scale scores on Form K that are nearly 2 points higher than those
expected on Form L. Examinees with true scale scores around 150 or around 240
are expected to earn scores that are around 5 points higher on Form L than on Form
K. Based on the results in Fig. 8.4, examinees are measured more precisely with
Form L at higher scores and more precisely with Form K at the lower scores. These
observations suggest that, depending on an examinee’s scale score and the purposes
of the testing, certain examinees would prefer taking one test form over the other.

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
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Fig. 8.3 First-order equity plot for Forms K and L

Fig. 8.4 Second-order equity
plot for Forms K and L
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The large difference in raw-score means between the two forms likely contributed
to the finding that first- and second-order equity were not well achieved for these
forms. Tong and Kolen (2005) examined the first- and second-order equity proper-
ties for a number of equatings. They found that the first- and second-order equity
properties held reasonably well, except when the score distributions for the forms to
be equated differed markedly, as is the case with the example given in this section.
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Lee et al. (2010) and He and Kolen (2011) provided further evidence. Thus, first-
and second-order equity can be expected to hold reasonably well when the score
distributions for forms to be equated are similar to one another.

In an illustrative example, Kolen et al. (1992) examined second-order equity for
ACT Assessment equatings. In one of the examples considered for the English test,
they found that at high scale scores, the conditional standard errors of measurement
were elevated for three of the five forms examined. On reviewing the test forms,
they found that these three test forms were noticeably less difficult than the other two
forms. The difficulty differences resulted in gaps in the conversion tables. As a result,
they concluded that “these three English forms are less capable of distinguishing
among high-achieving students than the other forms” (p. 303).

Wyse and Reckase (2011) provided statistics, in addition to those provided by
Tong and Kolen (2005), for evaluating first-order equity. van der Linden (2006a)
introduced a procedure for evaluating equity that takes into account the conditional
distribution of observed scores given proficiency. He and his colleagues further devel-
oped this approach which they referred to as local observed score equating (van der
Linden 2010, 2011; van der Linden and Wiberg 2010; Wiberg and van der Linden
2011). Brennan (2010) considered equity from the perspective of classical test theory
assumptions and concluded that it is more likely that first- and second-order equity
will hold when tests become more reliable.

The examples considered in this section suggest that examination of first- and
second-order equity provide evidence of the quality of equatings. Such an examina-
tion can provide evidence of problems in equating when the forms that are equated
are significantly different from one another. For this reason, we recommend that an
evaluation of the equity property of equating be used to evaluate the adequacy.

8.4.5 Discussion of Equating Criteria and Designs

Based on their review of these criteria and others, Harris and Crouse (1993) concluded
that “…no definitive criterion for evaluating equating exists …” (p. 230). They went
on to say that

Given the controversy regarding which criterion is best, whether certain criteria are useful,
and whether a criterion is needed at all, much work needs to be done in the area of equating
criteria. As long as equating is performed, equating criteria will be needed to evaluate the
results …The fact that equating results appear to be so situation specific demands that studies
be replicated and that some method of comparing results across studies be developed (p. 232).

This discussion of criteria suggests that research can provide information about which
method to use. However, it is unlikely that such research will lead to an unambiguous
choice of an equating method, in part because different criteria might lead to the
choice of different methods.

Each of the designs and criteria discussed in this section has strengths and weak-
nesses. To address important research questions in equating it is necessary to use
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various designs and criteria to assess the extent to which the findings agree across
designs and criteria. When the findings differ, it is important to understand the rea-
sons.

8.5 Choosing from Among Equating Results in Operational
Equating

When various equating methods are applied in a particular situation, a process should
be developed to choose from among the results. The use of double linking increases
the choices that should be considered. Various statistical indices, procedures, and
criteria can be used for comparing results from different equatings.

8.5.1 Equating Versus Not Equating

Assuming that the test specifications, design, data collection, and quality control
procedures are adequate, it is still possible that using the identity function will lead
to less equating error than using one of the other equating methods. Hanson (1992)
developed an approach that can be used to help decide whether to equate or use
the identity function when using the random groups design. This approach includes
using a significance test with the null hypothesis that the distribution of raw scores
on alternate forms is the same in the relevant population of examinees. If the null
hypothesis is rejected, it is concluded that the distributions differ in the population
and that equating should be considered. If the null hypothesis is retained, identity
equating is used. Only random error is considered in Hanson’s (1992) approach.
However, systematic error can be even more problematic than random error. (See
Dorans and Lawrence 1990, for a similar procedure that considers only the mean
and standard deviation.)

In small sample situations it is recommended that Hanson’s (1992) procedure be
used to help decide whether identity equating is preferable to another equating. If the
significance test suggests that the distributions are the same, then identity equating
could be used. Otherwise, the procedure described previously in this chapter can be
used to estimate whether equating would result in more or less error than identity
equating. Only if equating is expected to add in less error than identity equating,
should an equating other than identity equating be considered.
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8.5.2 Use of Robustness Checks

Many procedures have been suggested for estimating the equating relationship for a
population using data from a sample. In any equating situation, a relevant question
is: How robust is the estimation to the choice of method or procedure? To address
this question of robustness, various methods and procedures can be applied, and if
all of the results are similar, then the results are said to be robust with respect to the
choice of method. If the results differ, then the results are not robust with respect
to the choice of method. In this case, the choice of method is crucial, although a
clear-cut basis for making the choice typically is not available.

In addition, equating can be conducted for various subgroups of examinees (e.g.,
males vs. females). To the extent that the equating is robust, the equating should be
similar in the various subgroups. For a particular method, substantial differences in
equating results for different subgroups are suggestive of problems with that method.

8.5.3 Choosing from Among Results in the Random
Groups Design

A general scheme for choosing from among different equipercentile smoothing
results was presented in Chap. 3. Identity equating, mean equating, and linear
equating can be considered as more drastic smoothing, and can be compared
with unsmoothed equipercentile equating and with each other. In the discussion
of postsmoothing in Chap. 3, it was suggested that a method be chosen which results
in a smooth relationship without departing more than necessary (based on standard
error bands) from the unsmoothed relationship. A process for choosing from among
the different degrees of smoothing was described. Statistical tests were incorporated
in the choice of presmoothing method. The methods that were presented depend on
judgment at various stages in the process.

Statistical procedures other than those described so far in this book have been
suggested for choosing from among results. Budescu (1987) and Jaeger (1981) con-
sidered statistical indices that could help in choosing between linear and equiper-
centile equating. Zeng (1995) developed a computerized expert system that chooses
between postsmoothing results in a manner intended to mimic the procedures used
by psychometricians.

Thomasson et al. (1994) presented a detailed set of heuristics for choosing among
different smoothed equatings in the ASVAB program. In these procedures, statistical
summary indices between the smoothed and unsmoothed relationships for different
degrees of smoothing are calculated. Heuristics lead to a single relationship being
chosen, based on the similarity of smoothed equating with unsmoothed equating.
Graphic inspection and other judgmental procedures are used to make sure that the
relationship chosen results in an apparently reasonable conversion which is consistent
with previous experience.

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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Heuristics should be developed within the context of the testing program. Also,
heuristics should not be applied blindly or followed rigidly. New wrinkles constantly
are occurring. Therefore, the procedures should be flexible.

When double linking is used, a method must be chosen for combining the results
from the two links. The results might be combined by first conducting the equating
separately for the two links. After each equating is conducted, the results could be
combined using a weighted average, and properties of this weighted average studied.
If problems are detected, different combinations of results from the two links can be
tried. Again, procedures should be tailored to the specific testing program.

8.5.4 Choosing from Among Results in the Common-Item
Nonequivalent Groups Design

The choice among results in the common-item nonequivalent groups design is com-
plicated further because so many sets of assumptions can be used to disconfound
group and form differences. For example, in linear equating, results based on Tucker
and Levine observed score method assumptions could be compared. If nonlinear
methods are to be considered, IRT observed score (Chap. 6) and frequency estima-
tion (Chap. 5) results (with various smoothing degrees and smoothing methods) can
enter into the decision process. In theory, the choice of synthetic population weights
is also of some concern, as was indicated in Chap. 4.

Some of the assumptions required for methods can be assessed. For example, the
linearity of the regression of X on V that is required for the Tucker method could
be checked (Braun and Holland 1982, p. 25). If the regression were found to be
nonlinear, the Braun-Holland (see Chap. 5) method might be used. The disattenu-
ated correlation between X and V could be estimated. A disattenuated correlation
substantially less than 1 would suggest problems with assumptions for the Levine
method. IRT assumptions could be tested (see Hambleton et al. 1991).

A major problem with this design is that it is impossible to test some of the
crucial assumptions. For example, no direct way exists to assess the Tucker method
assumption that the regression of X on V in Population 2 is the same as the regression
of X on V in Population 1. Similarly, no direct way exists to assess the Levine
method assumption that the correlation between true scores for X and V equals 1 in
Population 2.

The assumptions required for the methods might lead to a preference of one
method over another. For example, Tucker and frequency estimation equipercentile
equating might be preferred when groups are similar. When groups are very different,
the Levine observed score or IRT methods might be preferred, if the assumptions for
these methods hold well enough. Sample size might also affect which method would
perform better in a situation. Only general guidelines can be given here: The choice
among results should be made in the context of the testing program.

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_5
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_5
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Table 8.7 Scale score means and standard deviations for a hypothetical example

Number Standard
Year tested Mean deviation

1 1005 33.8 5.4
2 1051 33.1 5.6
3 1161 33.0 5.7
4 1192 32.8 5.8
5 (Tucker) 1210 32.5 5.9
5 (Levine Obs. score) 1210 33.4 5.7

8.5.5 Use of Consistency Checks

When conducting equating, the consistency of current results with past results is
often the most informative data for choosing a method. For example, consider the
scale score means and standard deviations in Table 8.7 for Years 1 through 4. Over the
period from Year 1 to Year 4, the tested group became larger, overall lower achieving,
and more variable. Assume that we are in Year 5. Equating has been conducted, and
the scale score means and standard deviations that resulted from applying Tucker
and Levine observed score equating are shown in Table 8.7. Which method gives
results that appear more sensible assuming that the past results were accurate? In
this case, the sample size is increasing, which is consistent with the past 4 years.
Scale scores using the Tucker method have a lower mean than the previous year and
a higher standard deviation that is consistent with trends over the past 4 years. The
mean and standard deviation for the Levine observed score method are not consistent
with this trend. Thus, the Tucker results are more consistent with past trends than
are the Levine observed score results. The greater consistency of the Tucker method
might lead to the choice of the Tucker method results in this situation, although the
method that actually produced the most accurate results would never be known for
sure.

The example in Table 8.7 is based on comparing means and standard deviations.
Examining the consistency of entire score distributions can be useful, too, especially
when accuracy is important all along the score scale. Also, examining the consistency
of pass rates or consistency at particular important score points also can be helpful.
Suppose that approximately 40 % of the examinees have passed a test on previous
test dates. In a current equating, 41 % would pass using the Levine observed score
method and 32 % would pass using the Tucker method. In this case, the Levine
observed score results might be preferred for consistency reasons, especially if the
major uses of the test involve a passing score.

Large unexpected differences in consistency checks might suggest either quality
control problems or problems with the assumptions of a particular method. When
these differences are found, the implementation of the equating should be checked
including the functioning of the common items (if appropriate), the execution of
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the equating design, and other quality control issues. Problems might have existed
with past equatings, suggesting that they should be checked as well. These poten-
tial sources of problems should be examined before accepting the results from an
equating.

8.5.6 Equating and Score Scales

As was indicated in Chap. 1, equating is part of a scaling and equating process.
Score scales are discussed in detail in Chap. 9 where we indicate that the score
scale often is chosen to facilitate score interpretation. The choice of score scale is
especially important for tests in which decisions are made along a range of scores.
The particular score scale is much less important if a test is used only in making
pass-fail decisions, where decision consistency is crucial.

The choice of score scale affects equating. For example, in Chap. 2, rounding
scale scores to integers was shown to have a significant effect on the similarity,
across forms, of the scale score means, standard deviations, and other moments.
Also, in Chap. 9 we discuss problems that can result when raw scores on a form are
used as the score scale—in particular, raw scores become easily confused with scale
scores.

Typically, rounded scale scores are reported to examinees. These rounded scores
might have some properties that appear to be undesirable. For example, in ACT
(ACT 2007) equating, a conversion table might result in many number-correct scores
converting to a single scale score. Also, gaps can occur in conversion tables, in which
no raw score converts to a particular scale score. These occurrences can be viewed
as problematic by examinees. If the scale score increment is 1 point, an examinee
might justifiably question why earning 1 number-correct score less than someone
else would result in a 2- or 3-point difference in scale scores. Under the assumption
that gaps, and too many raw scores converting to a single scale score, would not
occur except for sampling error, results for a method or degree of smoothing might
be chosen that minimize these problems.

In testing programs, such as the ACT (ACT 2007) and the SAT (Donlon 1984,
pp. 19,20), for practical reasons a number-correct score of all correct is forced to
convert to the highest possible scale score, even if the equating suggests that some
other score would be more appropriate. This process is used with the SAT and the
ACT to ensure that the highest possible scale score can be earned on any form.
However, doing so makes it easier to earn a top score on some forms than on others.
For this reason, other testing programs allow the top score to differ depending on the
difficulty of the form for high-scoring examinees. The effects of adjustments to the
score scale and choosing methods to avoid gaps in the conversion should be evaluated
on a case-by-case basis. The effects on moments and on score distributions should
be carefully monitored.

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
http://dx.doi.org/10.1007/978-1-4939-0317-7_9
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_9
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8.6 Importance of Standardization Conditions and Quality
Control Procedures

For equating to be adequate, testing conditions should be standardized and quality
control procedures should be followed. Otherwise, identity equating, rescaling, or
scaling to achieve comparability might be the best options. Quality control procedures
are vital to adequate equating, and they often take more effort than other aspects of
the equating process.

8.6.1 Test Development

The following is a list of changes in how the test forms are developed that can cause
problems for equating:

1. Test specifications change. (See Chap. 1 and previous portions of this chapter.)
2. In a common-item nonequivalent groups design or an item preequating design,

the context of the common-items changes. For example, it could be problematic if
common items appear in considerably different positions on the two forms, such
as a common item appearing near the beginning of the old form and near the end
of the new form (Cook and Petersen 1987; Eignor 1985; Kolen and Harris 1990).
Another example involves items associated with a common stimulus (such as
a reading passage) that have interdependencies. If one item associated with the
passage is removed from the test, other items associated with that passage might
be affected. To be safe, when items associated with a common stimulus are used
as common items, the set of items associated with the common stimulus on the
new form should be exactly the same set of items as the items that were associated
with the common stimulus on the old form. For example, the context in which
common items were administered resulted in a significant scaling problem for
NAEP (Zwick 1991), as was described in Chap. 1.

3. In a common-item nonequivalent groups design or an item preequating design,
the text of the common items changes. The text should be exactly the same in
the old and new forms. Otherwise, the items might function differently. Minor
editorial changes and rearranging of answer choices (Cizek 1994) in items should
be avoided.

8.6.2 Test Administration and Standardization Conditions

The conditions under which a test is administered should be standardized in order
for tests administered at different locations and at different times to be comparable
to one another. Some issues related to standardization that could have significant
effects on scaling and equating include the following:

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
http://dx.doi.org/10.1007/978-1-4939-0317-7_1
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1. Changes in the number of items on the test. (Harris 1987, 1988; Linn and Ham-
bleton 1991; Way et al. 1989).

2. Changes in timing of the test. Changes in timing can have a significant effect
on the scores of examinees. For example, Hanson (1989) reported a study in
which scores on a test were compared with scores on a lengthened version of
the same test, with the testing time extended accordingly. The lengthening was
accomplished by appending unscored items to the original (unlengthened) test.
In this study, scores on the lengthened test (excluding the appended items) were
substantially higher than scores on the unlengthened test. (Also see Brennan
1992, for a discussion of this study.)

3. Changes in the order of administration of tests in a battery. Changes in the
order of the administration of tests in a battery can have a significant effect
on test scores. For example, Oh and Walker (2007) found significantly better
performance on the essay portion of the SAT writing test when the essay portion
was administered first than when it was administered last in the test battery.

4. Changes in motivation conditions. Studies in which a new version of a test
is administered under different motivation conditions than the old version of
the test. This problem occurred in the ASVAB scaling example described
in Chapter 1 (see Maier 1993). Also see Kiplinger and Linn (1996) and O’Neil
et al. (1996) for discussions of how motivation affects NAEP scores.

5. Security breaches. Examinees are found to have had prior exposure to test forms
or items that appear in the forms involved in the equating, which suggests that
a security breach occurred. Jurich et al. (2012) studied the effect of a security
breach on equated scores.

6. Changes in the answer sheet design. These changes can affect test performance
(Bloxom et al. 1993; Burke et al. 1989; Harris 1986).

7. Scrambling of test items for security purposes. Sometimes, test items within
forms are scrambled to discourage examinee copying. However, scrambling can
affect score distributions (e.g., Harris 1991b, c; Leary and Dorans 1982, 1985;
Kingston and Dorans 1984). Dorans and Lawrence (1990) and Hanson (1992)
developed procedures for testing whether score distributions on scrambled forms
differ, and Liu and Dorans (2012) studied scrambling from the perspective of
population invariance.

8. Changes in the font used in printing the test or in the pagination used. These
changes can affect scores.

9. Section preequating in which preequating and operational sections appear in
different positions in different forms (e.g., Brennan 1992).

10. Use of calculators. If calculators are allowed in some administrations and not in
others, then scores from administrations that allow calculators are not directly
comparable to scores from administrations that do not allow calculators. In these
cases, separate calculator and noncalculator norms and scales might be needed.
Loyd (1991) and Morgan and Stevens (1991), for example, investigated the
effects of calculators. Other similar changes in standardization conditions that
might affect scores include allowing students to use dictionaries or word proces-
sors.

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
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11. Administration under nonstandard conditions, such as large type, Braille, or
extra time (Tenopyr et al. 1993; Abedi et al. 2000; Camara et al. 1998; Camara
and Schneider 2000; Pitoniak and Royer 2001; Willingham et al. 1988; Ziomek
and Andrews 1996, 1998).

Variations in standardization conditions can affect scores. The research cited sug-
gests that such variations might lead to scores that are not comparable. The effects
of variations in standardization procedures, and how to deal with them, should be
considered in the context of the testing program.

8.6.3 Quality Control

Quality control checks are vital to adequate equating. They can be quite elaborate
and extraordinarily time-consuming. Some of the quality control checks that can be
made are as follows:

1. Check that the test administration conditions are followed properly. Some exam-
ples of problematic circumstances include test administrators giving examinees
extra time to take the test, examinees found to be copying from one another, test
administrators not spiraling the tests properly in a random groups design, and
noise in test centers.

2. The answer keys are correctly specified. The correct key should be applied when
scoring examinee records. Correctly applying answer keys requires special care
when more than one form is administered and when different versions of a form
exist, such as when items are scrambled for security purposes.

3. The items appear as intended. The text of the items, and especially the common
items, should be checked.

4. The equating procedures that are specified are followed correctly. Typically,
equating involves many interrelated steps, often necessitating the involvement
of many people and the use of multiple computer programs. Without careful
checking, an important step can be forgotten.

5. The score distributions and score statistics are consistent with those observed in
the past. These consistency checks sometimes can suggest problems in scoring
or data processing.

6. The correct conversion table or equation is used with the operational scoring. In
general, the result of equating is an equation or conversion table that is supplied
to whomever is to do the operational scoring. Usually, a few steps occur between
the choice of the conversion and the creation of the table to be supplied. In our
experience, it is vitally important to check the table or equation that is supplied
against the one that was developed when the conversion was chosen.

See Allalouf (2007) for a broad consideration of quality control procedures in scoring,
equating, and reporting of test scores.
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8.6.4 Reequating

Consider a situation in which a form of a test has been administered and equated,
and subsequently it is discovered that an item possesses some type of ambiguity
that makes the keyed alternative technically incorrect, or that the keyed alternative
is only one of two or more technically correct answers.1 After reconsidering such
an item, suppose that content matter specialists decide that the originally keyed
alternative (say, a) is indeed correct, but the other alternatives (say, b, c, and d) also
can be defended as correct, based on an obscure fact or facts. Clearly, decisions
must be made about whether to give all examinees credit for the item and whether
to reequate the form with that item scored correct for all examinees. (For the sake of
this discussion, assume that even examinees who omitted the item would be given
credit for it.)

Suppose that a firm decision on these matters is postponed until the form is
reequated with all examinees being given credit for the item. There are then four
conceivable ways to arrive at examinee “equated” scores:

1. original key applied with original equating relationship;
2. original key applied with revised equating relationship;
3. revised key applied with original equating relationship; and
4. revised key applied with revised equating relationship.

Applying the first option produces the scores that were originally reported to exam-
inees, and essentially means acting as if the item is not flawed. The examinee who
discovered the flaw may well consider this option to be unfair, and, in all likelihood,
the public will share the examinee’s concern. However, an examinee who is insight-
ful enough to recognize such a flaw is also often insightful enough to choose the
alternative that was intended as the correct answer. If so, the first option does not
really treat that particular examinee unfairly, although it would be unfair for some
other unidentified examinee who chose one of the other alternatives for a correct
reason.

The second option, using the original key with the revised equating relationship,
is difficult to defend under any reasonable scenario.

The third option, using the revised key with the original equating relationship, may
appear to be an option that is generous to examinees. In effect, all examinees who
selected alternatives b, c, or d (or omitted the item) will receive a higher “equated”
score, whatever the reason for selecting that alternative. However, those examinees
who are given credit unjustifiably (e.g., those who had misinformation or no infor-
mation about the item) will fare better than their equally achieving counterparts,
especially in a quota-based decision process. Thus, while this option is generous
for some examinees, that very generosity may create a potential disservice to other
examinees. In evaluating the fairness or reasonableness of any of these options, it
is necessary to consider the consequences for not only examinees who are directly
affected, but also examinees who are indirectly affected by the decision.

1 This section is largely from Brennan and Kolen (1987a, pp. 286,287).
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The fourth option, using the revised key with the revised equating relationship,
essentially avoids the problems mentioned above with the third option, and the fourth
option has considerable face validity. Indeed, this appearance of face validity is almost
always judged to be an overwhelming argument in favor of the fourth option.

However, under some circumstances it can be argued that the first option may well
be preferable psychometrically to the fourth if the goal is to be as fair as possible
to all examinees, not just those who voice a legitimate complaint. For example,
when all examinees are given credit for an item, the effective test length is reduced
by one item, which, on average, benefits lower achieving examinees and works
to the disadvantage of higher achieving examinees. To put it another way, when
all alternatives are keyed correct because an item possesses an obscure ambiguity,
it is likely that many examinees will be given credit for the item who would not
otherwise have answered the item correctly. This fact will cause these examinees
to appear higher achieving than they actually are, and other examinees will appear
lower achieving by comparison. Indeed, examinees who selected alternative a (the
response originally keyed as correct) will receive a lower equated score under the
fourth option than under the first option. Reequating cannot really eradicate these
problems. Indeed, reequating can never completely remove a test development flaw;
the best it can do is mitigate the impact of such a flaw.

The above points are not intended to be interpreted as arguments in favor of never
rescoring or reequating when a flawed item is discovered. Even if the psychometric
arguments were compelling, arguments from other perspectives could be even more
compelling. Nor are these points to be interpreted as arguments about the differ-
ential utility of benefiting lower achieving examinees versus disadvantaging higher
achieving examinees. When such judgments need to be made, they should be based
on a much broader set of considerations than merely psychometrics. The point here
is that the issues involved in rescoring and reequating are quite complex, and certain
unintended negative consequences are easily overlooked. (These problems become
even more complex when the flawed item is in a common-item equating section.)

If reequating is judged necessary and scores have already been reported to
examinees, then questions arise about what the effects of the reequating will be
on examinees’ scores. Specifically, how many scores will increase, how many will
decrease, and how many will stay the same? Other practical questions arise, such as
should scores be reissued for examinees whose scores would decrease after reequat-
ing? In addition, what is the effect on the test specifications and on the technical
properties of the test when an item is removed? Can the test with the item removed
be considered to be equated? These questions often can be very difficult to answer.
Brennan and Kolen (1987a) and Dorans (1986) have addressed some of these ques-
tions. Reequating also sometimes needs to be considered when a security breach
occurs, in which examinees obtain answers or questions prior to a test administration.
Brennan and Kolen (1987a) and Gilmer (1989) illustrated some of the consequences
of security breaches on equating relationships and on examinee scores.
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8.7 Conditions Conducive to Satisfactory Equating

Conditions that are conducive to a satisfactory equating can be distilled from the
various practical issues in equating which have been considered in this chapter.
A list of some of these conditions, which is a modified version of the list provided
by Brennan and Kolen (1987a), is given in Table 8.8. This table lists many of the
characteristics of testing programs that are conducive to a satisfactory equating.
Satisfactory equating does not require that all of these conditions hold. However, it
might be best not to equate when some of these do not hold. For example, equating
could not be conducted if the tests were built to different content specifications.

8.8 Comparability Issues in Special Circumstances

Various special issues affect equating and how the results are used. In addition,
situations arise that are similar to equating situations, but in which it is questionable
whether or not equating can be accomplished. Some of these situations are discussed
in this section.

As has been stressed, scores on alternate forms of a test can be used interchange-
ably only if the forms are built carefully to well-defined test specifications and ade-
quate test equating procedures are used. The test development process is crucial to
being able to use scores on test forms interchangeably. After equating, examinees
are expected to earn the same scale score and be measured with the same preci-
sion, regardless of the form taken. In addition, accurate equating relationships are
symmetric and approximately the same across subgroups of examinees.

Various other linking processes are used with educational tests that are not built
to common specifications. These processes, which do not lead to score interchange-
ability, are considered in Chap. 10.

8.8.1 Comparability Issues with Computer-Based Tests

Recently considerable effort has been devoted to researching, developing, and imple-
menting computer-based tests as is reflected by the many recent extensive treatments
of computer-based testing (Drasgow et al. 2006; Drasgow and Olson-Buchanan 1999;
Mills et al. 2002; Parshall et al. 2002; Sands et al. 1997; van der Linden and Glas
2010; Wainer 2000). Many characteristics of the computer administration environ-
ment can affect examinee performance (e.g., see Bridgeman et al. 2003). In this
section comparability issues for computer-based fixed tests and computer adaptive
tests are discussed.

http://dx.doi.org/10.1007/978-1-4939-0317-7_10
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Computer-Based Fixed and Randomized Tests

The computer-based test that most closely resembles traditional paper-and-pencil
testing is the computer-based fixed test. The major difference between a computer-
based fixed test and a traditional test is the administration of the test questions on com-
puter rather than using paper-and-pencil. The basic equating designs and methods
that have been described previously can be used to equate alternate test forms of these
types of test. In computer-based randomized tests, items are randomly (sometimes
stratified by content) chosen from a large set of items. Equating can be conducted by
IRT methods if items are precalibrated. Sometimes no equating is conducted with
such tests. In this case, it is assumed that the tests are comparable because the items
were randomly chosen.

Computer Adaptive Tests

Computer adaptive tests create additional equating and comparability issues. With
adaptive testing, tests can be adapted at the item level or at the level of blocks of
items by a process referred to as multistage adaptive testing (Drasgow et al. 2006).
An item pool for a computer adaptive test is a set of items that is available to be
administered to an examinee. Item pools typically are built to detailed content and
statistical specifications, much in the same way that test forms have detailed content
and statistical specifications in paper-and-pencil tests. In a computer adaptive test
administration, an examinee is administered items that are chosen from the item
pool. The choice of items to administer to an examinee is adaptive, in that the choice
is made based on the examinee’s responses to previously administered questions.
A particular examinee typically is administered only a subset of the items in the
item pool. IRT typically is used as a psychometric foundation for computer adaptive
testing.

The choice of items to administer to an examinee often is constrained by content
and test security considerations. As a simple example of content balancing, consider
a test that contains items from two content areas. To ensure that both content areas are
represented equally on a test, the items administered to an examinee might be forced
to alternate between the two content areas. To facilitate test security, item adminis-
tration might also be constrained by exposure control, which is used to ensure that
individual items are administered too often. Various procedures have been developed
for content balancing and exposure control.

For test security reasons and so that examinees can be tested more than once,
item pools for computer adaptive tests can be periodically replaced with alternate
item pools (Drasgow 2002; Drasgow et al. 2006; Eignor 2007; Mills 1999; Mills and
Steffen 2000; Mills and Stocking 1996; Stocking 1994; Way 1998; Way et al. 2002).
Wang and Kolen (2001) addressed the question of whether scores from alternate
item pools can be used interchangeably through simulation studies. They found that
when pools differed systematically, such as in the number of items in the pool,
scores on the resulting adaptive test were not interchangeable. For example, when
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the pool size was cut in half, scores from the smaller pool had more measurement
error than scores on the larger pool leading to the second-order equity property not
being achieved. In addition, they found that the same distributions property was not
achieved when the pool size was cut in half. Wang and Kolen (2001) also found scores
from item pools administered with different degrees of exposure controls were not
interchangeable. Their study suggested that for scores to be interchangeable from one
alternate item pool to another, the item pools should be built to the same content and
statistical specifications. In addition, administration conditions, including content
balancing, exposure control, and how the examinee responses are converted to scale
scores, should be the same from one item pool to another for the scores are to be
interchangeable.

Even when the alternate item pools are built to be as similar as possible, a sub-
sequent equating process might be used to improve score comparability across item
pools. For example, in adaptive testing with the ASVAB (Segall 1997), two distinct
item pools were developed. The pools were randomly assigned to examinees and
scale scores found. Even though the IRT item parameter estimates for the two pools
were on the same scale, the resulting IRT ability estimates were found to have dif-
ferent distributions, presumably because of differences in the items in the pools. In
the ASVAB program, the differences in distributions were eliminated by using an
equipercentile equating of the ability estimates on the forms. This finding illustrates
that a need might exist for equating alternate adaptive test forms, even when the pools
are on the same IRT scale.

With computer adaptive tests, over time new test items often need to be cali-
brated so that new pools can be created. Wainer and Mislevy (2000) considered a
process of on-line calibration of new, uncalibrated items in an adaptive test, in which
uncalibrated items are introduced into the pool by embedding them in operational
adaptive tests. These uncalibrated items do not contribute to an examinee’s score.
Responses are tabulated over a sufficient number of examinees, and these responses
are used to estimate item parameters. These new items then are added to the pool. An
issue with adaptive testing is that, typically, examinees are administered items that
are close to their ability level. In conducting on-line calibration, examinees might
be administered items that are far from their ability level. The quality of the item
parameter estimates from on-line calibration (or from other sources) can affect the
scale scores from operational item pools that contain these items (van der Linden
and Glas 2000). Error in estimating item parameters can affect the comparability of
scores across alternate pools.

Item context effects can be a particularly difficult problem to handle in adaptive
tests (Davey and Lee 2011). Whereas with paper-and-pencil tests, item position
within a test can be fixed, with adaptive tests items position can vary from one
examinee to the next. These item position effects can lead to an uncontrolled source
of error in test scores from computer-adaptive tests. Structuring an adaptive test by
adapting by blocks of items (i.e., using multistage adaptive testing), rather than by
individual items, has been suggested as one means for helping to control position
effects. In addition, the amount of review of previous responses can affect scores
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on adaptive tests (e.g., Lunz and Bergstrom 1994; Stone and Lunz 1994; Stocking
1997; Vispoel 1998).

In summary, comparability of scores from alternate item pools for computer adap-
tive tests depends on having detailed item pool specifications, administration rules
that are the same from one item pool to another, and developing pools so that failure to
control context effects and item parameter estimation error has similar effects across
all pools. It is important to review ongoing computer adaptive testing programs for
threats to comparability using an outline such as the one suggested by Kolen (1999).

Comparability of Computer-Based and Paper-and-Pencil Tests

Test developers are often interested in administering operational multiple-choice
tests on computers that previously had been administered in paper-and-pencil format
(e.g., Eignor 2007; Eignor and Schaeffer 1995; Lunz and Bergstrom 1995; Segall
1997). Eignor (2007), Drasgow et al. (2006), and Wainer (1993a, 2000) discussed
many of the practical issues that are involved in making this transition. Often, when
such a transition is made, the tests are used operationally in both modes for some
period of time. Some of the issues that should be considered are discussed below.

Test content. When scores from computer adaptive tests are used operationally
along with scores from paper-and-pencil tests, differences in test content could
threaten the comparability of scores from the two modes of administration. Con-
tent balancing procedures with the computer adaptive tests have been used to help
ensure that the content of the paper-and-pencil and computer adaptive tests are simi-
lar (Eignor et al. 1994; Eignor and Schaeffer 1995; Kingsbury and Zara 1989, 1991;
Luecht et al. 1996; Lunz and Bergstrom 1995; Schaeffer et al. 1995; Segall 1997;
Stocking and Swanson 1993; Wainer 2000).

Test administration. Taking a test on computer can be a different experience for
examinees than taking a paper-and-pencil test. Some of these differences are (a) ease
of reading passages; (b) ease of reviewing or changing answers to previous questions;
(c) speed in taking the test, and the effects of time limits on test speededness; (d)
clarity of figures and diagrams; and (e) responding on a keyboard vs. responding on an
answer sheet. Computer adaptive tests might lead to different test-taking strategies
on the part of examinees than on paper-and-pencil tests. See Leeson (2006) for
a review of the examinee and computer user-interface features that can affect the
comparability of scores across the two modes of administration.

Using factor analysis or structural equation methodology, a variety of studies and
reviews concluded that the constructs measured by paper-and-pencil and computer-
based measures are similar (Donovan et al. 2000; Finger and Ones 1999; Hetter et al.
1997; Kim and Huynh 2008, 2010; Mead and Drasgow 1993; Neuman and Baydoun
1998; Pomplun 2007; Spray et al. 1989; Vispoel et al. 2001). Kobrin and Young
(2003) came to a similar conclusion using protocol analysis.

Some studies found that computer administration favors certain subgroups over
others. Along these lines, Segall (1997) reported that relative to the paper-and-pencil
test, the computer based ASVAB increased differences between men and women
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on at least one of the tests. Gallagher et al. (2000); Parshall and Kromrey (1993);
Pomplun (2007); and Pomplun et al. (2006) also found mode effects that had a
differential effect on examinee subgroups. Stone and Davey (2011) reviewed issues
associated with the use of adaptive tests for students with disabilities.

Recent reviews found no overall mode effects for computer-based and paper-
and-pencil tests over studies in reading and mathematics (Kingston 2009; Wang
et al. 2007, 2008), although Wang et al. (2007, 2008) found some interactions of
mode with study design characteristics. Studies that did not find overall mode effects
include Nichols and Kirkpatrick (2005); Poggio et al. (2005); and Puhan et al. (2005).
Other studies have found overall mode of administration effects for computer-based
and paper-and-pencil tests (e.g., Kim and Huynh 2008; Lee et al. 1986; Mazzeo et al.
1991; Pommerich 2004, 2007; Pomplun 2007; Pomplun et al. 2006; Schaeffer et al.
1993; Sukigara 1996; van de Vijver and Harsveldt 1994; Vispoel et al. 1994, 1997).
Overall, it appears that the specific findings from these studies and reviews might
depend on the aspects of mode of administration effects that were investigated and
the content area of the instruments.

Some studies have focused on assessing whether there are mode effects at the item
level. Passage-based items that require considerable scrolling on the computer were
found to be more difficult on computer (Keng et al. 2008; Kim and Huynh 2008;
Pommerich 2004, 2007). Mathematics items that involve notation (Gu et al. 2006)
or graphical and geometric interpretations (Keng et al. 2008) have been found to be
more difficult on computer.

Randall et al. (2012) presented a general approach, with an example, for assessing
comparability of scores on paper-and-pencil and computer-based tests. This approach
includes use of the following: (a) factor analysis methods for the whole examinee
group and subgroups at the total test score level, (b) differential item functioning
across modes and examinee subgroups at the item level, and (c) multiple replications.

Mode of administration effects appear to be very complex, and likely depend on
the particular testing program. For this reason, the comparability of scores should be
investigated whenever scores from the two modes are to be used together (Mazzeo
and Harvey 1988), which is consistent with the standards presented in APA (1986).
In addition, every effort should be made to develop the computer interface in a
way that the computer interface produces comparable scores to the paper-and-pencil
administration. Given the mixed results of the studies cited, the advice by Green et al.
(1984) should be followed: “When a CAT [computer-administered test] is intended
to be equivalent to a corresponding conventional test, the two tests are equally valid
only if they have been demonstrated to yield equivalent measures” (p. 357).

Test Scoring. In adaptive testing, items typically are chosen because they are highly
discriminating around provisional estimates of the examinees ability. In addition, the
raw score (ability estimate) often is based on a weighted sum of the item responses.
In paper-and-pencil tests, item responses typically are equally weighted in forming
the raw scores. This difference in test scoring might threaten the comparability of
scores between test administration modes, especially if the weighting schemes are
affected by test multidimensionality.
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In computer adaptive testing, rules are used to estimate scores of examinees that
do not complete the test. Schaeffer et al. (1998) conducted a study of the GRE in
which examinees were randomly assigned to take the computer based GRE or the
paper-and-pencil GRE. They found that, on average, students scored higher on the
computer based GRE. They concluded that the procedure used for calculating scores
for students who did not complete the computer based GRE was responsible for this
difference.

Psychometric properties. The comparability of scores from the two modes of
administration also is affected to the extent that their psychometric properties differ.
Various procedures have been developed that can be used to help evaluate the extent
to which computer based tests have similar psychometric properties (such as equity
and same distribution properties) as their paper-and-pencil counterparts (e.g., Davey
and Thomas 1996; Stocking 1994; Thomasson 1997; van der Linden 2006b; Wang
and Kolen 2001).

In some testing programs, the adaptive test is constructed so the conditional
standard errors of measurement are the same for the adaptive and nonadaptive version
as was done with the GRE (Mills et al. 1994). However, a further equipercentile trans-
formation was needed with the GRE Analytical test. Wang and Kolen (2001) demon-
strated violations of first-order, second-order equity, cut-score equity, and same
distributions properties when comparing computer adaptive and paper-and-pencil
tests. The composition of the item pool and the type of scoring (number-correct ver-
sus pattern scoring) influenced the lack of comparability between the two modes of
testing. van der Linden (2001) described a process in which number-correct scoring
is used and the computer adaptive tests are constructed and designed so that the
scores are comparable, psychometrically, to a paper-and-pencil test.

Studies used to establish score comparability. Establishing comparability of
scores on computer adaptive and paper-and-pencil tests is accomplished through
data collection. Statistical assumptions are made in the process of establishing
comparability, and the effect of the violations on score comparability often can be
checked. Eignor (2007) provided a discussion of study design.

The study for establishing comparability between ASVAB computer adaptive tests
and paper-and-pencil tests reported by Segall (1997) used a random groups design
in which large samples of examinees (over 3,000 per mode) were randomly assigned
to take computer adaptive or paper-and-pencil versions. Equipercentile procedures
were used to convert scores on the computer adaptive version to the paper-and-pencil
scale. Potential problems with this design might occur if the tests measured different
constructs or if one mode of administration favored certain subgroups over others.

The single group design in which the same examinees take both the computer
adaptive and paper-and-pencil versions with order counterbalanced across exami-
nees was used by Eignor (1993) and Eignor and Schaeffer (1995), In these studies,
the single group design was used with the SAT. A differential order effect was found.
That is, the effect of first taking the computer adaptive test on the paper-and-pencil
test was different than the effect of first taking paper-and-pencil test on the com-
puter adaptive test. The same type of effects were also found in a comparability
study for a licensure examination (Sykes and Ito 1997). Differential order effects,



8.8 Comparability Issues in Special Circumstances 343

such as these, violate the assumption of the single group design that no differential
order effects exist (see Chap. 1). For these reasons, Eignor (1993) and Eignor and
Schaeffer (1995) strongly recommended that the single group design not be used
when studying the comparability of paper-and-pencil and computer adaptive tests.
However, it seems that at least some examinees need to take the test in both modes
in order to fully examine whether or not the computer adaptive and paper-and-pencil
test are measuring the same construct, so that correlations can be calculated.

A variation of common item equating to an IRT calibrated item pool (see Chap. 6)
has also been used. In this type of study, IRT item parameters are typically estimated
based on paper-and-pencil administrations. These paper-and-pencil item parameters
are then used as item parameter estimates for the item pool in the computer adaptive
test. A major assumption is that the items behave the same way in a computer adap-
tive test as in a paper-and-pencil test. This assumption seems exceptionally strong,
given the research on the effects of mode of administration on items cited earlier.
This design also relies heavily on the fit of the IRT model to the data in establish-
ing score comparability. This design was used to establish comparability for the
GRE. However, because of concerns with the statistical assumptions required, Scha-
effer et al. (1993, 1995) reported extensive studies of the effects of this assumption
using a random groups design. In these studies, the random groups results were used
to adjust the GRE Analytical score conversions that were obtained by making the
assumption that the items behaved the same in the two modes. These studies also sug-
gested that the GRE Quantitative scores based on the assumption that common items
behaved the same way in the two modes were somewhat inaccurate, but not enough
to warrant an adjustment. Similar studies on the National Council of State Boards
of Nursing Licensure Examinations reported by Eignor et al. (1994) and Eignor and
Schaeffer (1995) indicated that no adjustments were needed. A study reported by
Lunz and Bergstrom (1995) also indicated that no adjustments were needed to keep
pass rates the same for a professional certification test; adjustments would have been
required, however, if scores were reported all along the scale.

A computer adaptive version of the SAT was linked to the paper-and-pencil SAT
in a study described by Lawrence and Feigenbaum (1997). A group of examinees
who had taken the paper-and-pencil operational SAT at a single administration were
identified. Of those examinees who agreed to be part of the study, in a subsequent
administration that took place one month later, half were assigned to take a paper-and-
pencil SAT and half were assigned to take a computer adaptive SAT. The operational
SAT was used as an external set of common items to link the CAT and paper-and-
pencil versions that were administered in the subsequent administration. Lawrence
and Feigenbaum (1997) indicated that this study had serious limitations including a
lack of representativeness of the examinee groups included in the study, motivation
differences, differential motivation between the CAT and paper-and-pencil exami-
nees in the subsequent administration, and possible differential order effects, and
violations of statistical assumptions used in the linking.

Overall, the research reviewed here suggests that sufficient differences between
computer adaptive and paper-and-pencil tests exist that mode effects can exist and
that various subgroups might favor one mode over another. To evaluate these threats

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
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fully, the equity properties and the equal distribution property should be checked
by randomly assigning examinees to take computer adaptive and paper-and-pencil
versions. In addition, when the purpose of a test is classification of examinees, clas-
sification consistency should be examined. Such data can also be used to check on
the comparability of relationships with other variables and to compare subgroups.
Refer to Eignor (2007), Eignor et al. (1994), Eignor and Schaeffer (1995), Lunz
and Bergstrom (1995), and Segall (1997) for examples of how these properties have
been checked in operational testing programs. A second data collection effort often
is needed, in which the tests are administered in both modes to the same examinees,
to check whether the same construct is being measured by the two modes. Analyses
such as computation of disattenuated correlations or structural equation modeling
can be undertaken. In addition, statistical properties of composites (e.g., Segall 1997)
can be compared across modes, and scores on tests from the two modes can be related
to other measures (e.g., Gorham and Bontempo 1996; Segall 1997). Similar relation-
ships would be expected to be found if the tests in the two modes are functioning
similarly.

8.8.2 Comparability for Constructed-Response
and Mixed-Format Tests

Tests that contain only constructed-response items have at least three characteris-
tics that distinguish them from multiple-choice tests. First, judges are used to score
the examinee responses for these tests, which leads to an additional source of error.
Second, often very few tasks are administered to each examinee. Third, many of the
typical equating designs cannot be used. As described in this section, these char-
acteristics greatly complicate equating of constructed-response tests, and in many
cases make equating impossible.

To mitigate some of the issues associated with the use of constructed-response
tests, mixed-format tests that contain both multiple-choice and constructed-response
items often are used. With mixed-format tests, the multiple-choice items can be
machine scored, a larger number of tasks can be administered than with constructed-
response tests, and it is easier to implement many of the standard equating designs
with mixed-format tests. In this section, issues associated with equating constructed-
response tests and mixed-format tests are discussed.

Constructed-Response Tests

Use of judges to score tests. Whereas the scoring of multiple-choice questions is
relatively straightforward, the scoring of constructed-response tests is subject to
error by judges. Training is probably the best way to control differences in scoring
among judges. Still, there is evidence that judges might not be stable across settings
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and time (e.g., Attali 2011; Leckie and Baird 2011). In addition, various statistical
procedures for adjusting for judge leniency have been developed (e.g., Braun 1988;
Congdon and McQueen 2000; Englehard 1992, 1994; Engelhard 1996; Fitzpatrick
et al. 1998; Houston et al. 1991; Linacre 1988; Longford 1994; Lunz et al. 1994;
Raymond et al. 2011; Raymond and Viswesvaran 1993). When constructed-response
tests are administered on different occasions, it is necessary to consider whether the
judges tend to be more lenient on one occasion than on another. One strategy that is
sometimes followed is to have judges rescore examinee responses to assess the extent
to which judge leniency differs from one occasion to the next. If the leniency of the
judges on the second occasion differs from the leniency of the judges on the first
occasion, the scores on the second occasion might be adjusted for these differences.
See Kim et al. (2010a) and Tan et al. (2010) for a discussion of this issue.

Small numbers of tasks. Often very few tasks are administered to examinees with
constructed-response tests, because of lengthy per-task administration times. The
use of a small number of tasks can result in an inadequate sample of the domain of
interest (e.g., Baxter et al. 1992; Dunbar et al. 1991; Haertel and Linn 1996; Linn
1995; Wainer 1993b). If the domain is sampled inadequately, then it is likely to have
been sampled differently on alternate forms. The result of the inadequate sampling
is that scores on one form cannot be used interchangeably with scores on another
form, even if equating is attempted. With inadequate domain specification, certain
examinee subgroups would favor certain forms and other examinee subgroups would
favor other test forms (Ferrara 1993).

For some constructed-response tests, the use of small numbers of tasks leads to
tests with very few raw score points being available (Ferrara 1993; Harris et al.
1994). In studies using a test with small numbers of score points, Harris and Welch
(1993) and Harris et al. (1994) found few differences between the identity function,
equipercentile methods, and Rasch methods.

Equating designs. The commonly used equating designs might not be able to be
used with constructed-response tests. A random groups design might be difficult to
implement when forms cannot be spiraled within test centers due to administration
constraints. If two forms cannot be administered to examinees, then even the single
group design cannot be used. When these designs are used, it is important to consider
whether adjustments for judge leniency in scoring the common items need to be made
if the forms are administered on occasions other than when the equating is conducted.

A common-item nonequivalent groups design might not be able to be imple-
mented, either, if a content balanced common-item set cannot be developed because
the tests contain too few items or if the constructed-response items cannot be reused.
In addition, when alternate forms of constructed-response tests are equated with
the common-item nonequivalent groups design, it is important to consider whether
adjustments for judge leniency need to be made for the scoring of the common items
in the old form and the new form.

Kim et al. (2010a) compared different designs for linear equating of scores on
constructed-response tests using pseudo-test forms and intact groups. They found
that there was a substantial amount of equating error when equating was conducted
without rescoring the common items. When the common items were rescored, the
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equating was reasonably accurate. They also found that the equating was accurate
using a random groups design along with rescoring of the test to adjust for judge
leniency.

Equating methods. For situations where differences in judge leniency can be ade-
quately controlled, alternate forms adequately represent the content domain, and
the equating designs can be properly implemented, equating methods can be imple-
mented. Otherwise, it might be best not to attempt to equate constructed-response
tests.

Traditional equating methods have been used to equate constructed-response tests.
For example, if feasible, the random groups design could be applied by randomly
assigning forms to examinees. If a content representative set of common items can
be developed, then the common-item nonequivalent groups design also can be used.
Linear or equipercentile methods can be applied in these situations (see Harris et al.
1994; Huynh and Ferrara 1994; and Kim et al. 2010a for some examples).

IRT methods might also be applied using polytomous models such as those
described in Chap. 6. These models, however, might require use of more test questions
per examinee for stable estimation than is feasible. For example, Fitzpatrick and Yen
(2001) showed that equating is inaccurate when too few constructed-response items
are included on the test. When using IRT methods, strategies should be developed
for managing local item dependence (Ferrara et al. 1997; Yen 1993) and assessing
model fit. Harris et al. (1994) and Huynh and Ferrara (1994) compared traditional
and IRT equating methods for constructed-response tests. See Muraki et al. (2000)
for a review of equating methods for constructed-response tests that emphasizes IRT
methodology.

Using an external measure to adjust scores on constructed-response tests. For test
security reasons, sometimes forms of constructed-response tests cannot be adminis-
tered in special equating administrations and forms cannot be reused. One approach
that might be considered is to use a measure that is not constructed to be parallel to
the test such as an external set of common items. DeMauro (1992) used an external
measure containing multiple-choice items to adjust scores on a constructed-response
test and found the procedure to be inadequate. Along these same lines, Hanson (1993)
attempted to use multiple-choice items as an external common-item set and apply
equating procedures. He found that the results were sensitive to the assumptions
made about the relationship between the multiple-choice and constructed-response
test, and he concluded that the identity equating would be preferable to any of the
other equatings in the situation studied. Kim et al. (2010a) found the use of an exter-
nal set of multiple-choice common items produced reasonably accurate equating in
the example considered. More research is needed to address the question of when
external measures can be used to adjust scores. The strength of the relationship
between the available measure and the constructed-response test and the extent to
which the groups are not equivalent should be investigated regarding how they affect
the adjustment procedures that are developed.

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
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Mixed-Format Tests

Mixed-format tests are currently used in many testing programs. Such tests can
contain multiple-choice and constructed-response items. Random groups and single
group equating designs can be used with these tests, although it might be necessary
to adjust for judge leniency by rescoring the constructed-response portion of the test
when the test forms are administered on different occasions.

With the common-item nonequivalent groups design for equating alternate forms
of the test, Tate (1999, 2000, 2003) and Kamata and Tate (2005) described designs
and methods that can be used with mixed-format tests to adjust for judge leniency
in scoring the constructed-response common items. Such adjustments are made by
rescoring responses for the group of examinees taking the old form at the time that the
new form is administered. Based on the rescoring, information from the comparison
of judge leniency on the two occasions is used to adjust scores. They examined IRT
methods and conducted simulation studies on these methods.

Kim et al. (2010b) used a pseudo-test form and intact groups design to investigate
linear equating and rescoring of constructed-response common items using linear
methods in the common-time nonequivalent groups design. They compared four
different designs for equating mixed-format tests using linear equating methods.
They found that the use of multiple-choice items along with constructed-response
items that were not rescored as common items resulted in a considerable amount
of equating error. Using only multiple-choice items as common items had slightly
less equating error. They found that using multiple-choice items along with rescored
constructed-response items as common items led to an acceptable amount of equating
error and had almost as little equating error as equating using a random groups design.

Rescoring constructed-response common items can be difficult to achieve in prac-
tice. If the scoring is sufficiently stable over time, then such rescoring might not be
necessary. In addition, it is sometimes not feasible to use the same constructed-
response items on alternate forms. In these situations, it might be reasonable to
use only multiple-choice items as common items when conducting equating with a
common-item nonequivalent groups design. However, doing so necessitates the use
of a set of common items that does not reflect the content (and certainly not the
item types) of the total test. The use of a set of common items that does not ade-
quately represent the content of the total test might provide an inaccurate estimate
of group differences if the group differences are not appropriately reflected by the
multiple-choice items.

A few studies have been conducted to help understand the conditions under which
it might be reasonable to use only multiple-choice common items to equate mixed-
format tests. More adequate equating has been associated with higher correlations
between scores on the multiple-choice and constructed-response items (Dorans 2004;
Dorans et al. 2003; Hagge and Kolen 2012; Kim and Walker 2009, 2012b; Kirkpatrick
2005; Lee et al. 2012; Tan et al. 2009; Walker and Kim 2009, 2010; von Davier and
Wilson 2008), higher ratios of multiple-choice to constructed response score points
(Tan et al. 2009), smaller group differences (Cao 2008; Kirkpatrick 2005; Lee et al.
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2012), and when the relative group differences in scores on the multiple-choice and
constructed-response items are similar (Hagge and Kolen 2011).

Mixed IRT models have been used to scale tests that contain both constructed-
response (e.g., use the generalized partial credit model) and multiple-choice items
(e.g., use the three-parameter logistic model) (Muraki et al. 2000). Although these
models can be fit by assuming that the same dimension underlies both item types,
this assumption might not hold in practice (e.g., Thissen et al. 1994; Wainer et al.
1993). Kim and Kolen (2006) found a considerable amount of equating error when
unidimensional IRT methods were used in equating mixed-format tests when the
correlation between the multiple-choice and constructed-response constructs was
low. Lee and Brossman (2012) found improved results using a simple structure
multidimensional IRT method in which the multiple-choice and constructed-response
items were allowed to measure different constructs.

Summary and Future Directions

Currently, there is much activity in the development of constructed-response and
mixed-format tests. Many unresolved issues exist in equating and scaling such tests
(e.g., Baker et al. 1993; Ferrara 1993; Fitzpatrick et al. 1998; Gordon et al. 1993;
Harris et al. 1994; Loyd et al. 1996; Muraki et al. 2000; Yen and Ferrara 1997),
in combining scores from constructed-response and multiple-choice tests (Ercikan et
al. 1998; Kennedy and Walstad 1997; Rosa et al. 2001; Sykes and Yen 2000; Thissen
et al. 2001; Wainer and Thissen 1993; Wilson and Wang 1995), using automated
essay scoring (Bridgeman et al. 2012; Ramineni et al. 2012; Shermis and Burstein
2003; Williamson et al. 2012), and in the effects of mode of administration for
constructed-response items (e.g., Horkay et al. 2006) In addition, there is still some
question about the conditions under which such tests can be equated. When equating
cannot be conducted, other linking methods could be investigated.

8.8.3 Score Comparability with Optional Test Sections

On some tests, examinees can choose which sets of items they are going to take.
For these tests, some of the items are taken by all of the examinees and the rest
are in optional sections. Examinees choose which optional section to take, and the
examinee groups that take the alternate forms typically differ in performance on the
common portion. What if some optional sections are more difficult, in some sense,
than other optional sections? A major issue in this situation is whether scores for
examinees taking different optional sections can be equated.

If the optional sections measure different content, then the scores for examinees
who take one optional section cannot be said to be equivalent to scores for examinees
who take a different optional section, even after some score adjustment is attempted.
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The comparability problems are even more severe if examinee choice of optional
sections is related to their overall level of skill or to their area of expertise.

Bradlow and Thomas (1998) outlined statistical assumptions necessary for
optional sections to be consistent with IRT assumptions. They pointed out that con-
sistency requires that the item characteristic curves for choice items be the same for
examinees who choose an item as it would have been for examinees who did not
choose the item. Wang et al. (1995) had examinees respond to pairs of multiple-
choice items and asked the examinees which of the items in each pair they would
choose to have scored. They found that examinee choice on multiple-choice items
was related to item difficulty. They also found item characteristic curves for items
that students chose differed from those that students did not choose. These results
suggest that choice is related to item characteristics.

In general, it seems impossible in most practical situations for scores on optional
sections to be treated interchangeably. Wainer and Thissen (1994) provided a dis-
cussion of these and related issues, and concluded that choice is inconsistent with
the notion of standardized testing, “unless those aspects that characterize the choice
are irrelevant to what is being tested” (p. 191).

Even if it is impossible to make scores on tests involving choice interchange-
able through equating, it might be possible to improve the comparability of scores
using score adjustment procedures. Livingston (1988) suggested adjusting scores by
linking them to the common portion of the test. Wainer et al. (1994) attempted to
use a unidimensional IRT to adjust scores and encountered some serious problems.
Gabrielson et al. (1995) found a relationship between task choice and student char-
acteristics that might result in problems with adjustment procedures. However, they
also concluded that these differences were not very large. In another study, Fitzpatrick
and Yen (1995) concluded that IRT adjustment procedures worked well. Bridgeman
et al. (1997) suggested that when choice is used it is important to adjust scores for
differential difficulty of the choice items, and they provide practical guidelines that
can be followed to minimize the effects of violations of assumptions for the adjust-
ment. Allen et al. (1994a, b) showed how the results from adjustment procedures
can vary depending on the assumptions made about the relationship between the
common and the optional sections.

8.9 Conclusion

Equating is now an established part of the development of many tests. When con-
ditions allow, scores from equated test forms can be used interchangeably. Equated
scores for examinees can be compared even when the examinees are administered
different test forms. Equating facilitates the charting of trends. Without equating, we
might be unable to tell whether or not there have been trends in student achievement
over time. Without equating, examinees could be advantaged by happening to be
administered an easier form. Other examinees could be disadvantaged by happening
to be administered a more difficult form. Effective equating results in tests being
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more useful for making many decisions and for making the process of testing more
equitable.

As has been discussed in this chapter, equating requires that many practical issues
be considered by the individual conducting the equating. How these issues are han-
dled can have profound effects on the quality of the equating. The test construction
process that is followed and how the equating study is designed are crucial to adequate
equating. If problems exist with test construction or with the data, then no amount of
statistical manipulation can lead to adequate equating results. In this sense, the design
of tests and the design of data collection are of central concern. In addition, thorough
quality control procedures need to be implemented for the equating to be successful.
Even though the ideal equating likely has never been conducted in practice, adequate
equating requires that practical issues be effectively handled. Otherwise, it might be
best not to even attempt to conduct equating. The diversity of practical issues, and
deciding how to address them, is what makes the practice of equating so challenging.

As we have seen in Chaps. 2–7, the statistical and psychometric techniques
involved in equating are diverse and require considerable statistical sophistication to
understand. These techniques have evolved considerably in recent years, and likely
will continue to do so. From a psychometric perspective, equating is a rich area
because it draws from a wide variety of psychometric theories, such as congeneric
test theory, strong true score theory, and IRT. Equating provides for an application
of these theories to an important practical problem.

The field of testing currently is undergoing significant change. Many major testing
programs are incorporating alternatives to the paper-and-pencil multiple-choice tests
that have dominated much of standardized testing for the past 50 years or so. One set
of alternatives includes tests that require examinees to produce written and verbal
responses to tasks. These responses often are scored by judges, although procedures
for electronic scoring are being used more often. In addition, many testing programs
are implementing testing in which examinees can take a test at almost any time,
rather than having to take the test on one of a few test dates. Often, this type of
testing involves computer administration. Such on-demand testing creates new issues
in test security, development, quality control, equating, and score comparability. All
of these changes in testing are causing psychometricians to reevaluate the concepts
of equating and score comparability.

8.10 Exercises

8.1. Assume that scores on Forms X and Y are normally distributed and that the
forms were administered using a random groups design. Also assume that the
forms differed by .1 standard deviation unit at a z-score of .5.

a. What sample size would be required for linear equating to be preferable to
the identity equating at this z-score?

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_7
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b. What sample size would have been required for linear equating to be prefer-
able to the identity equating at this z-score if the forms had differed by .2
standard deviation unit at a z-score of .5?

c. Describe a practical situation where it would make sense to ask these
questions.

8.2. The single link plans in Fig. 8.1 each have a definable pattern that could be used
to extend the pattern indefinitely. For example, consider Single Link Plan 1.
For Form C and following, forms are linked to the form that was administered
in the same time of the preceding year.

a. Provide a verbal description for Single Link Plan 4 in Fig. 8.1. (Hints: Dif-
ferent statements are needed for even-numbered and odd-numbered years.
Begin the description with Form D.)

b. Using this description, indicate to which form each of Forms K, L, M, and
N would link.

8.3. Suppose that a psychometrician recommended Single Link Plan 4 in Fig. 8.1 for
equating in a testing program and subsequently found out that it was not possible
to link to a form from the previous administration. In particular, suppose that in
Single Link Plan 4, Form E could not link to Form D, and Form I could not link
to Form H. The psychometrician developed two modified plans. In Modified
Plan 1, Form E linked to Form B and Form I linked to Form F. In Modified Plan
2, Form E linked to Form C and Form I linked to Form G.

a. Provide verbal descriptions for Modified Plan 1 and Modified Plan 2.
b. Indicate to which forms Forms K, L, M, and N would link to in the two

modified plans. (Try drawing a figure illustrating the plan.)
c. Evaluate Modified Plans 1 and 2 with regard to the four rules for developing

equating plans.

8.4. Consider the example using consistency checks in Table 8.7. Based on con-
sistency checks the results for which method should be chosen if the number
tested had been 1,050 instead of 1,210? Why?

8.5. A test has been previously administered in a paper-and-pencil mode. The test
now is to be administered by computer. The computer version is built to exactly
the same content specifications as the paper-and-pencil test. All items that were
administered in the paper-and-pencil mode have item parameters that have been
estimated using an IRT model. The computerized version is constructed using
some items that had been previously administered in the paper-and-pencil mode
and some items that are new. Suppose the paper-and-pencil and computerized
versions are being equated.

a. How could a random groups design be implemented in this situation?
b. How could a common-item equating to an IRT calibrated item pool design

be implemented?
c. What are the limitations of each design?
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d. How might context effects influence the common-item equating to an IRT
calibrated item pool design in this situation?

e. Which design is preferable?

8.6. List as many causes as you can think of for common items to function differ-
ently on two testing occasions. Be sure to consider causes having to do with
changes in the items themselves, changes in the examinees, and changes in the
administration conditions.

8.7. Assume you are creating an equating design for a testing program. Some of the
characteristics of the program are as follows:

I. Form A was the first form of the test and was scaled previously. Form B
is to be equated to Form A. For practical reasons, the equating must be
conducted during an operational administration. Each examinee can take
only one form.

II. The test to be equated is a reading test. Each test form consists of three
reading passages, with each passage being from a different content area
(science, humanities, and social studies). There are 15 items associated with
each passage. Testing time is 45 minutes.

III. It will be easy to get large numbers of examinees to participate in the study.
IV. Various different decisions are made using this test, so it is important that

equating be accurate all along the score scale.

Which equating design should be used—single group with counterbalancing,
random groups, or common-item nonequivalent groups? Why? Which equating
method should be used—equipercentile, or linear? Why?

8.8. Show that the conditional number-correct score mean in Table 8.7 could also
be calculated using the test characteristic curve by Eq. (6.16) as the sum of
the probabilities of correctly answering each of the 3 items. (Hint: obtain the
probabilities from Table 6.4.) Why does this work?

8.9. Note that the conditional variance of number-correct scores is the variance of
a compound binomial distribution, which can also be calculated as

∑K
j=1 pi j

(1 − pi j ), where pi j is the probability of an examinee with ability θi correctly
answering item j . Show that the conditional variance using this formula for
the example in Table 8.7 gives conditional variance of number-correct scores.
(Hint: obtain the probabilities from Table 6.4.) Why does this work?

References

ACT. (2007). The ACT technical manual. Iowa City, IA: Author.
Abedi, J., Lord, C., Hofstetter, C., & Baker, E. (2000). Impact of accommodation strategies on

english language learners’ test performance. Educational Measurement: Issues and Practice, 19,
16–26.

Allalouf, A. (2007). Quality control procedures in the scoring, equating, and reporting of test scores.
Educational Measurement: Issues and Practice, 26(1), 36–46.

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6


References 353

Allen, N. S., Holland, P. W., & Thayer, D. (1994a). A missing data approach to estimating distri-
butions of scores for optional test sections (Research Report 94–17). Princeton, NJ: Educational
Testing Service.

Allen, N. S., Holland, P. W., & Thayer, D. (1994b). Estimating scores for an optional section using
information from a common section (Research Report 94–18). Princeton, NJ: Educational Testing
Service.

American Psychological Association (APA). (1986). Guidelines for computer-based tests and inter-
pretations. Washington, DC: American Psychological Association.

Andrulis, R. S., Starr, L. M., & Furst, L. W. (1978). The effects of repeaters on test equating.
Educational and Psychological Measurement, 38, 341–349.

Angoff, W. H. (1971). Scales, norms, and equivalent scores. In R. L. Thorridike (Ed.), Educational
measurement (2nd ed., pp. 508–600). Washington, DC: American Council on Education.

Angoff, W. H. (1987). Technical and practical issues in equating: A discussion of four papers.
Applied Psychological Measurement, 11, 291–300.

Angoff, W. H., & Cowell, W. R. (1986). An examination of the assumption that the equating of
parallel forms is population-independent. Journal of Educational Measurement, 23, 327–345.

Attali, Y. (2011). Sequential effects in essay ratings. Educational and Psychological Measurement,
71, 68–79.

Baker, E. L., O’Neil, H. F., & Linn, R. L. (1993). Policy and validity prospects for performance-based
assessment. American Psychologist, 48, 1210–1218.

Baxter, G. P., Shavelson, R. J., Goldman, S. R., & Pine, J. (1992). Evaluation of procedure-based
scoring for hands-on science assessment. Journal of Educational Measurement, 29, 1–17.

Bloxom, B., McCully, R., Branch, R., Waters, B. K., Barnes, J., & Gribben, M. (1993). Operational
calibration of the circular-response optical-mark-reader answer sheets for the Armed Services
Vocational Aptitude Battery (ASVAB). Monterey, CA: Defense Manpower Data Center.

Bradlow, E. T., & Thomas, N. (1998). Item response theory models applied to data allowing exam-
inee choice. Journal of Educational and Behavioral Statistics, 23, 23–43.

Bränberg, K., & Wiberg, M. (2011). Observed score linear equating with covariates. Journal of
Educational Measurement, 48, 419–440.

Braun, H. I. (1988). Understanding scoring reliability: Experiments in calibrating essay readers.
Journal of Educational Statistics, 13, 1–18.

Braun, H. I., & Holland, P. W. (1982). Observed-score test equating: A mathematical analysis of
some ETS equating procedures. In P. W. Holland & D. B. Rubin (Eds.), Test equating (pp. 9–49).
New York: Academic.

Brennan, R. L. (Ed.). (1989). Methodology used in scaling the ACT Assessment and P-ACT+. Iowa
City, IA: American College Testing.

Brennan, R. L. (1992). The context of context effects. Applied Measurement in Education, 5, 225–
264.

Brennan, R. L. (2007). Tests in transition: Discussion and synthesis. In N. J. Dorans, M. Pommerich,
& P. W. Holland (Eds.), Linking and aligning scores and scales (pp. 161–175). New York:
Springer.

Brennan, R. L. (2008). A discussion of population invariance. Applied Psychological Measurement,
32, 102–114.

Brennan, R. L. (2010). First-order and second-order equity in equating (CASMA Research Report
Number 30). Iowa City, IA: University of Iowa.

Brennan, R. L., & Kolen, M. J. (1987a). Some practical issues in equating. Applied Psychological
Measurement, 11, 279–290.

Brennan, R. L., & Kolen, M. J. (1987b). A reply to Angoff. Applied Psychological Measurement,
11, 301–306.

Bridgeman, B., Lennon, M. L., & Jackenthal, A. (2003). Effects of screen size, screen resolution,
and display rate on computer-based test performance. Applied Measurement in Education, 16,
191–205.



354 8 Practical Issues in Equating

Bridgeman, B., Morgan, R., & Wang, M. M. (1997). Choice among essay topics: Impact on perfor-
mance and validity. Journal of Educational Measurement, 34, 273–286.

Bridgeman, B., Trapani, C., & Attali, Y. (2012). Comparison of human and machine scoring of
essays: Differences by gender, ethnicity, and country. Applied Measurement in Education, 25,
27–40.

Budescu, D. (1985). Efficiency of linear equating as a function of the length of the anchor test.
Journal of Educational Measurement, 22, 13–20.

Budescu, D. (1987). Selecting an equating method: Linear or equipercentile? Journal of Educational
Statistics, 12, 33–43.

Burke, E. F., Hartke, D., & Shadow, L. (1989). Print format effects on ASVAB test score performance:
Literature review (AFHRL Technical Paper 88–58). Brooks Air Force Base, TX: Air Force Human
Resources Laboratory.

Camara, W. J., Copeland, T., & Rothschild, B. (1998). Effects of extended time on the SAT I:
Reasoning test score growth for students with disabilities (College Board Report No. 98–7). New
York: College Entrance Examination Board.

Camara, W. J., & Schneider, D. (2000). Testing with extended time on the SAT I: Effects for students
with learning disabilities (Research Notes RN-08). New York, NY: The College Board.

Cao, Y. (2008). Mixed-format test equating: Effects of test dimensionality and common-item sets.
Unpublished Doctoral Dissertation, University of Maryland, College Park.

Cizek, G. J. (1994). The effect of altering the position of options in a multiple-choice examination.
Educational and Psychological Measurement, 54, 8–20.

Congdon, P. J., & McQueen, J. (2000). The stability of rater severity in large-scale assessment
programs. Journal of Educational Measurement, 37, 163–178.

Cook, L. L. (2007). Practical problems in equating test scores: A practioner’s perspective. In N.
J. Dorans, M. Pommerich, & P. W. Holland (Eds.), Linking and aligning scores and scales (pp.
73–88). New York: Springer.

Cook, L. L., & Petersen, N. S. (1987). Problems related to the use of conventional and item response
theory equating methods in less than optimal circumstances. Applied Psychological Measurement,
11, 225–244.

Cope, R. T. (1986). Use versus nonuse of repeater examinees in common item linear equating
with nonequivalent populations (ACT Technical Bulletin 51). Iowa City, IA: American College
Testing.

Cope, R. T. (1987). How well do the Angoff Design V linear equating methods compare with the
Tucker and Levine methods? Applied Psychological Measurement, 11, 143–149.

Cui, Z., & Kolen, M. J. (2009). Evaluation of two new smoothing methods in equating: The cubic
b-spline presmoothing method and the direct presmoothing method. Journal of Educational
Measurement, 46, 135–158.

Davey, T., & Lee, Y. (2011). Potential impact of context effects on the scoring and equating of
the multistage GRE revised general test (Research Report 11–26). Princeton, NJ: Educational
Testing Service.

Davey, T., & Thomas, L. (1996, April). Constructing adaptive tests to parallel conventional pro-
grams. Paper presented at the annual meeting of the American Educational Research Association,
New York, NY.

DeMars, C. E. (2004). Detection of item parameter drift over multiple test administrations. Applied
Measurement in Education, 17, 265–300.

DeMauro, G. E. (1992). An investigation of the appropriateness of the TOEFL test as a matching
variable to equate TWE topics (Report 37). Princeton, NJ: Educational Testing Service.

Donlon, T. (Ed.). (1984). The college board technical handbook for the scholastic aptitude test and
achievement tests. New York: College Entrance Examination Board.

Donovan, M. A., Drasgow, F., & Probst, T. M. (2000). Does computerizing paper-and-pencil job
attitude scales make a difference? New IRT analyses offer insight. Journal of Applied Psychology,
85, 305–313.



References 355

Dorans, N. J. (1986). The impact of item deletion on equating conversions and reported score
distributions. Journal of Educational Measurement, 23, 245–264.

Dorans, N. J. (1990). Equating methods and sampling designs. Applied Measurement in Education,
3, 3–17.

Dorans, N. J. (1994a). Choosing and evaluating a scale transformation: Centering and realign-
ing SAT score distributions. Paper presented at the annual meeting of the National Council on
Measurement in Education, New Orleans.

Dorans, N. J. (1994b). Effects of scale choice on score distributions: Two views of subgroup perfor-
mance on the SAT. Paper presented at the annual meeting of the National Council on Measurement
in Education, New Orleans.

Dorans, N. J. (2002). Recentering and realigning the SAT score distributions: How and why. Journal
of Educational Measurement, 39, 59–84.

Dorans, N. J. (2004). Using subpopulation invariance to assess test score equity. Journal of Educa-
tional Measurement, 4, 43–68.

Dorans, N. J. (2012, April). Simulations are deductive demonstrations not empirical experiments.
Paper presented at the annual meeting of the National Council on Measurement in Education,
Vancouver, Canada.

Dorans, N. J., & Holland, P. W. (2000). Population invariance and the equatability of tests: Basic
theory and the linear case. Journal of Educational Measurement, 37, 281–306.

Dorans, N. J., Holland, P. W., Thayer, D. T., & Tateneni, K. (2003). Invariance of score linking
across gender groups for three advanced placement program exams. In N.J. Dorans (Ed.), Pop-
ulation invariance of score linking: Theory and applications to advanced placement program
examinations (pp. 79–118), Research Report 03–27. Princeton, NJ: Educational Testing Service.

Dorans, N. J., & Lawrence, I. M. (1990). Checking the statistical equivalence of nearly identical
test editions. Applied Measurement in Education, 3, 245–254.

Dorans, N. J., Liu, J., & Hammond, S. (2008). Anchor test type and population invariance: An
exploration across subpopulations and test administrations. Applied Psychological Measurement,
32, 81–97.

Dorans, N. J., Moses, T. P., & Eignor, D. R. (2011). Equating test scores: Toward best practices.
In A. A. von Davier (Ed.), Statistical models for test equating, scaling, and linking (pp. 21–42).
New York: Springer.

Drasgow, F. (2002). The work ahead: A psychometric infrastructure for computerized adaptive tests.
In C. N. Mills, M. T. Potenza, J. J. Fremer, & W. C. Ward (Eds.), Computer-based testing: Building
the foundation for future assessments (pp. 1–10). Mahwah, NJ: Lawrence Erlbaum Associates.

Drasgow, F., Luecht, R. M., & Bennett, R. E. (2006). Technology and testing. In R. L. Brennan
(Ed.), Educational measurement (4th ed., pp. 471–515). Westport, CT: American Council on
Education and Praeger.

Drasgow, F., & Olson-Buchanan, J. (Eds.). (1999). Innovations in computerized assessment. Mah-
wah, NJ: Erlbaum.

Dunbar, S. B., Koretz, D. M., & Hoover, H. D. (1991). Quality control in the development and use
of performance assessments. Applied Measurement in Education, 4, 289–303.

Eignor, D. R. (1985). An investigation of the feasibility and practical outcomes of preequating
the SAT verbal and mathematical sections (Research Report 85–10). Princeton, NJ: Educational
Testing Service.

Eignor, D. (1993). Deriving comparable scores for computer adaptive and conventional tests: An
example using the SAT (Research Report 93–55). Princeton, NJ: Educational Testing Service.

Eignor, D. R. (2007). Linking scores derived under different modes of administration. In N. J.
Dorans, M. Pommerich, & P. W. Holland (Eds.), Linking and aligning scores and scales (pp.
135–159). New York: Springer.

Eignor, D. R., & Schaeffer, G. A. (1995, March). Comparability studies for the GRE General CAT
and the NCLEX using CAT. Paper presented at the annual meeting of the National Council on
Measurement in Education, San Francisco, CA.



356 8 Practical Issues in Equating

Eignor, D. R., Stocking, M. L., & Cook, L. L. (1990a). Simulation results of effects on linear
and curvilinear observed- and true-score equating procedures of matching on a fallible criterion.
Applied Measurement in Education, 3, 37–52.

Eignor, D. R., Stocking, M. L., & Cook, L. L. (1990b). The effects on observed- and true-score
equating procedures of matching on a fallible criterion: A simulation with test variation (Research
Report RR-90-25). Princeton, NJ: Educational Testing Service.

Eignor, D. R., Way, W. D., & Amoss, K. E. (1994). Establishing the comparability of the NCLEX
using CAT with traditional NCLEX examinations. Paper presented at the annual meeting of the
National Council on Measurement in Education, New Orleans.

Englehard, G. (1992). The measurement of writing ability with a many-faceted Rasch model.
Applied Measurement in Education, 5, 171–191.

Englehard, G. (1994). Examining rater errors in the assessment of written composition with a
many-faceted Rasch model. Journal of Educational Measurement, 31, 93–112.

Engelhard, G. (1996). Evaluating rater accuracy in performance assessments. Journal of Educational
Measurement, 33, 56–70.

Ercikan, K., Schwarz, R. D., Julian, M. W., Burket, G. R., Weber, M. M., & Link, V. (1998).
Calibration and scoring of tests with multiple-choice and constructed-response item types. Journal
of Educational Measurement, 35, 137–154.

Ferrara, S. (1993). Generalizability theory and scaling: Their roles in writing assessment and
implications for performance assessments in other content areas. Paper presented at the annual
meeting of the National Council on Measurement in Education, Atlanta.

Ferrara, S., Huynh, H., & Baghi, H. (1997). Contextual characteristics of locally dependent open-
ended item clusters in a large-scale performance assessment. Applied Measurement in Education,
10, 123–144.

Finger, M. S., & Ones, D. S. (1999). Psychometric equivalence of the computer and booklet forms
of the MMPI: A meta-analysis. Psychological Assessment, 11, 58–66.

Fitzpatrick, A. R. (2008). NCME 2008 presidential address: The impact of anchor test configuration
on student proficiency rates. Educational Measurement: Issues and Practice, 27(4), 34–40.

Fitzpatrick, A. R., Ercikan, K., Yen, W. M., & Ferrara, S. (1998). The consistency between raters
scoring in different test years. Applied Measurement in Education, 11, 195–208.

Fitzpatrick, A. R., & Yen, W. M. (1995). The psychometric characteristics of choice items. Journal
of Educational Measurement, 32, 243–259.

Fitzpatrick, A. R., & Yen, W. M. (2001). The effects of test length and sample size on the relia-
bility and equating of tests composed of constructed-response items. Applied Measurement in
Education, 14, 31–57.

Gabrielson, S., Gordon, B., & Engelhard, G, Jr. (1995). The effects of task choice on the quality of
writing obtained in a statewide assessment. Applied Measurement in Education, 8, 273–290.

Gafni, N., & Melamed, E. (1990). Using the circular equating paradigm for comparison of linear
equating models. Applied Psychological Measurement, 14, 247–256.

Gallagher, A., Bridgeman, B., & Cahalan, C. (2000). The effect of computer-based tests on
racial/ethnic, gender, and language groups (Research Report RR-00-8). Princeton, NJ: Edu-
cational Testing Service.

Gilmer, J. S. (1989). The effects of test disclosure on equated scores and pass rates. Applied Psy-
chological Measurement, 13, 245–255.

Gordon, B., Englehard, G., Gabrielson, S., & Bernkopf, S. (1993). Issues in equating performance
assessments: Lessons from writing assessment. Paper presented at the annual meeting of the
American Educational Research Association, Atlanta.

Gorham, J. L., & Bontempo, B. D. (1996, April). Repeater patterns on NCLEX using CAT versus
NCLEX using paper-and-pencil testing. Paper presented at the annual meeting of the American
Educational Research Association, New York, NY.

Green, B. F., Bock, R. D., Humphreys, L. G., Linn, R. L., & Reckase, M. D. (1984). Technical
guidelines for assessing computerized adaptive tests. Journal of Educational Measurement, 21,
347–360.



References 357

Gu, L., Drake, S., & Wolfe, E. W. (2006). Differential item functioning of GRE Mathematics items
across computerized and paper-and-pencil testing media.The Journal of Technology, Learning,
and Assessment, 5(4), 1–30.

Guo, H. (2010). Accumulative equating error after a chain of linear equatings. Psychometrika, 75,
438–453.

Guo, H., Liu, J., Dorans, N. J., & Feigenbaum, M. (2011). Multiple linking in equating and random
scale drift (Research Report 11–46). Princeton, NJ: Educational Testing Service.

Haberman, S. J. (2010). Limits on the accuracy of linking (Research Report 10–22). Princeton, NJ:
Educational Testing Service.

Haberman, S. J., & Dorans, N. J. (2011). Sources of score scale inconsistency (Research Report
11–10). Princeton, NJ: Educational Testing Service.

Haberman, S. J., Guo, H., Liu, J., & Dorans, N. J. (2008). Consistency of SAT I: Reasoning test
score conversions (Research Report 08–67). Princeton, NJ: Educational Testing Service.

Haertel, E. H., & Linn, R. L. (1996). Comparability. In G. W. Phillips (Ed.), Technical issues in
large-scale performance assessment. Washington, DC: National Center for Education Statistics.

Hagge, S. L., & Kolen, M. J. (2011). Equating mixed-format tests with format representative and
non-representative common items. In M. J. Kolen & W. Lee (Eds.), Mixed-format tests: Psycho-
metric properties with a primary focus on equating (volume 1). (CASMA Monograph Number
2.1) (pp. 95–135). Iowa City, IA: CASMA, The University of Iowa.

Hagge, S. L., & Kolen, M. J. (2012). Effects of group differences on equating using operational and
pseudo-tests. In M. J. Kolen & W. Lee (Eds.), Mixed-format tests: Psychometric properties with
a primary focus on equating (volume 2). (CASMA Monograph Number 2.2) (pp. 45–86). Iowa
CIty, IA: CASMA, The University of Iowa.

Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory.
Newbury Park, CA: Sage.

Han, K. T., Wells, C. S., & Sireci, S. G. (2012). The impact of multidirectional item parameter drift
on IRT scaling coefficients and proficiency estimates. Applied Measurement in Education, 25,
97–117.

Hanson, B. A. (1989). Scaling the P-ACT+. In R. L. Brennan (Ed.), Methodology used in scaling
the ACT Assessment and P-ACT+ (pp. 57–73). Iowa City, IA: American College Testing.

Hanson, B. A. (1992). Testing for differences in test score distributions using log-linear models.
Paper presented at the annual meeting of the American Educational Research Association, San
Francisco.

Hanson, B. A. (1993). A missing data approach to adjusting writing sample scores. Paper presented
at the annual meeting of the National Council on Measurement in Education, Atlanta.

Hanson, B. A., Harris, D. J., & Kolen, M. J. (1997, March). A comparison of single- and multiple-
linking in equipercentile equating with random groups. Paper presented at the annual meeting of
the American Educational Research Association, Chicago, IL.

Hanson, B. A., Zeng, L., & Colton, D. (1994). A comparison of presmoothing and postsmooth-
ing methods in equipercentile equating (ACT Research Report 94–4). Iowa City, IA: American
College Testing.

Harris, D. J. (1986). A comparison of two answer sheet formats. Educational and Psychological
Measurement, 46, 475–478.

Harris, D. J. (1987). Estimating examinee achievement using a customized test. Paper presented at
the annual meeting of the American Educational Research Association, Washington, DC.

Harris, D. J. (1988). An examination of the effect of test length on customized testing using item
response theory. Paper presented at the annual meeting of the American Educational Research
Association, New Orleans.

Harris, D. J. (1991a). Equating with nonrepresentative common item sets and nonequivalent groups.
Paper presented at the annual meeting of the American Educational Research Association,
Chicago.



358 8 Practical Issues in Equating

Harris, D. J. (1991b). Practical implications of the context effects resulting from the use of scram-
bled test forms. Paper presented at the annual meeting of the American Educational Research
Association, Chicago.

Harris, D. J. (1991c). Effects of passage and item scrambling on equating relationships. Applied
Psychological Measurement, 15, 247–256.

Harris, D. J. (1993). Practical issues in equating. Paper presented at the annual meeting of the
American Educational Research Association, Atlanta.

Harris, D. J., & Crouse, J. D. (1993). A study of criteria used in equating. Applied Measurement in
Education, 6, 195–240.

Harris, D. J., & Kolen, M. J. (1986). Effect of examinee group on equating relationships. Applied
Psychological Measurement, 10, 35–43.

Harris, D. J., & Welch, C. J. (1993). Equating writing samples. Paper presented at the annual meeting
of the National Council on Measurement in Education, Atlanta.

Harris, D. J., Welch, C. J., & Wang, T. (1994). Issues in equating performance assessments. Paper
presented at the annual meeting of the National Council on Measurement in Education, New
Orleans.

He, Y., & Kolen, M. J. (2011). Equity and same distributions properties for test equating. In
M. J. Kolen & W. Lee (Eds.), Mixed-format tests: Psychometric properties with a primary focus on
equating (volume 1). (CASMA Monograph Number 2.1) (pp. 177–212). Iowa City, IA: CASMA,
The University of Iowa.

Hetter, R. D., Segall, D. O., & Bloxom, B. M. (1997). Evaluating item calibration medium in
computerized adaptive testing. In W. A. Sands, B. K. Waters, & J. R. McBride (Eds.), Comput-
erized adaptive testing: From inquiry to operation (pp. 161–167). Washington, DC: American
Psychological Association.

Holland, P. W., Sinharay, S., von Davier, A. A., & Han, N. (2008). An approach to evaluating the
missing data assumptions of the chain and post-stratification equating methods for the NEAT
design. Journal of Educational Measurement, 45, 17–43.

Holland, P. W., & Strawderman, W. E. (2011). How to average equating functions, if you must. In
A. A. von Davier (Ed.), Statistical models for test equating, scaling, and linking (pp. 89–107).
New York: Springer.

Holland, P. W., & Wightman, L. E. (1982). Section pre-equating: A preliminary investigation. In
P. W. Holland & D. B. Rubin (Eds.), Test Equating (pp. 271–297). New York: Academic Press
Inc.

Horkay, N., Bennett, R. E., Allen, N., Kaplan, B., & Yan, F. (2006). Does it matter if I take my
writing test on computer? An empirical study of mode effects in NAEP. The Journal of Technology,
Learning, and Assessment, 5(2), 1–49.

Houston, W. M., Raymond, M. R., & Svec, J. C. (1991). Adjustments for rater effects in performance
assessment. Applied Psychological Measurement, 15, 409–421.

Hsu, T., Wu, K., Yu, J. W., & Lee, M. (2002). Exploring the feasibility of collateral information test
equating. International Journal of Testing, 2, 1–14.

Huggins, A. C., & Penfield, R. D. (2012). An NCME instructional module on population invariance
in linking and equating. Educational Measurement: Issues and Practice, 31(1), 27–40.

Huynh, H., & Ferrara, S. (1994). A comparison of equal percentile and partial credit equatings
for performance-based assessments composed of free-response items. Journal of Educational
Measurement, 31, 125–141.

Jaeger, R. M. (1981). Some exploratory indices for selection of a test equating method. Journal of
Educational Measurement, 18, 23–38.

Jurich, D. P., DeMars, C. E., & Goodman, J. T. (2012). Investigating the impact of compromised
anchor items on IRT equating under the nonequivalent anchor test design. Applied Psychological
Measurement, 36, 291–308.

Kamata, A., & Tate, R. (2005). The performance of a method for the long-term equating of mixed-
format assessment. Journal of Educational Measurement, 42, 193–213.



References 359

Keng, L., McClarty, K. L., & Davis, L. L. (2008). Item-level comparative analysis of online and
paper administrations of the Texas assessment of knowledge and skills. Applied Measurement in
Education, 21, 207–226.

Kennedy, P., & Walstad, W. B. (1997). Combining multiple-choice and constructed-response test
scores: An economist’s view. Applied Measurement in Education, 10, 359–375.

Kim, D., & Huynh, H. (2008). Computer-based and paper-and-pencil administration mode effects
on a statewide end-of-course English test. Educational and Psychological Measurement, 68,
554–570.

Kim, D., & Huynh, H. (2010). Equivalence of paper-and-pencil and online administration modes
of the statewide English test for students with and without disabilities. Educational Assessment,
15, 107–121.

Kim, H., & Kolen, M. J. (2010). The effect of repeaters on equating. Applied Measurement in
Education, 23, 242–265.

Kim, S., & Kolen, M. J. (2006). Robustness to format effects of IRT lnking methods for mixed-
format tests. Applied Measurement in Education, 19, 357–381.

Kim, S., & Livingston, S. A. (2010). Comparisons among small sample equating methods in a
common-item design. Journal of Educational Measurement, 47, 286–298.

Kim, S., Livingston, S. A., & Lewis, C. (2011). Collateral information for equating in small samples:
A preliminary investigation. Applied Measurement in Education, 24, 302–323.

Kim, S., von Davier, A. A., & Haberman, S. (2008). Small-sample equating using a synthetic linking
function. Journal of Educational Measurement, 4, 325–342.

Kim, S., von Davier, A. A., & Haberman, S. J. (2011). Practical application of a synthetic linking
function on small-sample equating. Applied Measurement in Education, 24, 95–114.

Kim, S., & Walker, M. E. (2009). Evaluating subpopulation invariance of linking functions to
determine the anchor composition for a mixed-format test (Research Report 09–36). Princeton,
NJ: Educational Testing Service.

Kim, S., & Walker, M. E. (2012a). Investigating repeater effects on chained equipercentile equating
with common anchor items. Applied Measurement in Education, 25, 41–57.

Kim, S., & Walker, M. E. (2012b). Does linking mixed-format tests using a multiple-choice anchor
produce comparable results for male and female subgroups? (Research Report 11–44). Princeton,
NJ: Educational Testing Service.

Kim, S., Walker, M. E., & McHale, F. (2010a). Comparisons among designs for equating mixed-
format tests in large-scale assessments. Journal of Educational Measurement, 47, 36–53.

Kim, S., Walker, M. E., & McHale, F. (2010b). Investigating the effectiveness of equating designs
for constructed-response tests in large-scale assessments. Journal of Educational Measurement,
47, 186–201.

Kingsbury, G. G., & Zara, A. R. (1989). Procedures for selecting items for computerized adaptive
tests. Applied Measurement in Education, 2, 359–375.

Kingsbury, G. G., & Zara, A. R. (1991). A comparison of procedures for content-sensitive item
selection in computerized adaptive tests. Applied Measurement in Education, 4, 241–261.

Kingston, N. (2009). Comparability of computer-and paper-administered multiple-choice tests for
K-12 populations: A synthesis. Applied Measurement in Education, 22, 22–37.

Kingston, N. M., & Dorans, N. J. (1984). Item location effects and their implications for IRT
equating and adaptive testing. Applied Psychological Measurement, 8, 147–154.

Kiplinger, V. L., & Linn, R. L. (1996). Raising the stakes of test administration: The impact on student
performance on the National Assessment of Educational Progress. Educational Assessment, 3,
111–133.

Kirkpatrick, R. (2005). The effects of item format in common item equating. Unpublished Doctoral
Dissertation, The University of Iowa, Iowa City, IA.

Klein, L. W., & Jarjoura, D. (1985). The importance of content representation for common-item
equating with nonrandom groups. Journal of Educational Measurement, 22, 197–206.



360 8 Practical Issues in Equating

Kobrin, J. L., & Young, J. W. (2003). The cognitive equivalence of reading comprehension test items
via computerized and paper-and-pencil administration. Applied Measurement in Education, 16,
115–140.

Kolen, M. J. (1990). Does matching in equating work? A discussion. Applied Measurement in
Education, 3, 97–104.

Kolen, M. J. (1999). Threats to score comparability with applications to performance assessments
and computerized adaptive tests. Educational Assessment, 6, 73–96.

Kolen, M. J. (2004). Population invariance in equating and linking: Concept and history. Journal
of Educational Measurement, 41, 3–14.

Kolen, M. J. (in preparation). Equating designs and criteria in research (CASMA Research Report).
Iowa City, IA: University of Iowa.

Kolen, M. J., & Harris, D. J. (1990). Comparison of item preequating and random groups equating
using IRT and equipercentile methods. Journal of Educational Measurement, 27, 27–39.

Kolen, M. J., Hanson, B. A., & Brennan, R. L. (1992). Conditional standard errors of measurement
for scale scores. Journal of Educational Measurement, 29, 285–307.

Kolen, M. J., & Lee, W. (Eds.). (2011). Mixed-format tests: Psychometric properties with a primary
focus on equating (volume 1) (CASMA Monograph Number 2.1). Iowa City, IA: CASMA, The
University of Iowa.

Kolen, M. J., & Lee, W. (Eds.). (2012). Mixed-format tests: Psychometric properties with a primary
focus on equating (volume 2) (CASMA Monograph Number 2.2). Iowa City, IA: CASMA, The
University of Iowa.

Kolen, M. J., & Whitney, D. R. (1982). Comparison of four procedures for equating the tests of
general educational development. Journal of Educational Measurement, 19, 279–293.

Kolen, M. J., Zeng, L., & Hanson, B. A. (1996). Conditional standard errors of measurement for
scale scores using IRT. Journal of Educational Measurement, 33, 129–140.

Lawrence, I. M., & Dorans, N. J. (1990). Effect on equating results of matching samples on an
anchor test. Applied Measurement in Education, 3, 19–36.

Lawrence, I. M., Dorans, N. J., Feigenbaum, M. D., Feryok, N. J., Schmitt, A. P., & Wright, N. K.
(1994). Technical issues related to the introduction of the new SAT and PSAT/NMSQT (Research
Memorandum 94–10). Princeton, NJ: Educational Testing Service.

Lawrence, I. M., & Feigenbaum, M. (1997). Linking scores for computer-adaptive and paper-and-
pencil administrations of the SAT. Princeton, NJ: Educational Testing Service.

Leary, L. F., & Dorans, N. J. (1982). The effects of item rearrangement on test performance: A
review of the literature (Research Report 82–30). Princeton, NJ: Educational Testing Service.

Leary, L. F., & Dorans, N. J. (1985). Implications for altering the context in which test items appear:
A historical perspective on an immediate concern. Review of Educational Research, 55, 387–413.

Leckie, G., & Baird, J. (2011). Rater effects on essay scoring: A multilevel analysis of severity drift,
central tendency, and rater experience. Journal of Educational Measurement, 48, 399–418.

Lee, E., Lee, W., & Brennan, R. L. (2010). Assessing equating results based on first-order and
second-order equity (CASMA Research Report Number 31). Iowa City, IA: Center for Advanced
Studies in Measurement and Assessment.

Lee, J. A., Moreno, K. E., & Sympson, J. B. (1986). The effects of mode of test administration on
test performance. Educational and Psychological Measurement, 46, 467–474.

Lee, W., & Brossman, B. G. (2012). Observed score equating for mixed-format tests using a simple-
structure multidimensional IRT framework. In M. J. Kolen & W. Lee (Eds.), Mixed-format tests:
Psychometric properties with a primary focus on equating (volume 2). (CASMA Monograph
Number 2.2) (pp. 115–142). Iowa CIty, IA: CASMA, The University of Iowa.

Lee, W., He, Y., Hagge, S. L., Wang, W., & Kolen, M. J. (2012). Equating mixed-format tests using
dichotomous common items. In M. J. Kolen & W. Lee (Eds.), Mixed-format tests: Psychometric
properties with a primary focus on equating (volume 2). (CASMA Monograph Number 2.2) (pp.
13–44). Iowa CIty, IA: CASMA, The University of Iowa.

Leeson, H. V. (2006). The mode effect: A literature review of human and technological issues in
computerized testing. International Journal of Testing, 6, 1–24.



References 361

Linacre, J. M. (1988). Many-faceted Rasch measurement. Chicago: MESA Press.
Linn, R. L. (1995). High-stakes uses of performance-based assessments: Rationale, examples, and

problems of comparability. In T. Oakland (Ed.), International perspectives on academic assess-
ment. Evaluation in education and human services (pp. 49–73). Boston, MA: Kluwer.

Linn, R. L., & Hambleton, R. K. (1991). Customized tests and customized norms. Applied Mea-
surement in Education, 4, 185–207.

Liou, M., Cheng, P. E., & Li, M.-Y. (2001). Estimating comparable scores using surrogate variables.
Applied Psychological Measurement, 25, 197–207.

Liou, M., Cheng, P. E., & Wu, C.-J. (1999). Using repeaters for estimating comparable scores.
British Journal of Mathematical and Statistical Psychology, 52, 273–284.

Liu, C., & Kolen, M. J. (2011a). Evaluating smoothing in equipercentile equating using fixed
smoothing parameters. In M. J. Kolen & W. Lee (Eds.), Mixed-format tests: Psychometric prop-
erties with a primary focus on equating (volume 1). (CASMA Monograph Number 2.1) (pp.
213–236). Iowa City, IA: CASMA, The University of Iowa.

Liu, C., & Kolen, M. J. (2011b). Automated selection of smoothing parameters in equipercentile
equating. In M. J. Kolen & W. Lee (Eds.), Mixed-format tests: Psychometric properties with a
primary focus on equating (volume 1). (CASMA Monograph Number 2.1) (pp. 237–261). Iowa
City, IA: CASMA, The University of Iowa.

Liu, C., & Kolen, M. J. (2011c). A comparison among IRT equating methods and traditional equating
methods for mixed-format tests. In M.J. Kolen & W. Lee (Eds.), Mixed-format tests: Psychometric
properties with a primary focus on equating (volume 1). (CASMA Monograph Number 2.1) (pp.
75–94). Iowa City, IA: CASMA, The University of Iowa.

Liu, J., Curley, E., & Low, A. (2009). A scale drift study (Research Report 09–43). Princeton, NJ:
Educational Testing Service.

Liu, J., & Dorans, N. J. (2012). Assessing the practical equivalence of conversions when measure-
ment conditions change. Journal of Educational Measurement, 49, 101–115.

Liu, J., Feigenbaum, M., & Dorans, N. J. (2005). Invariance of linkings of the revised 2005 SAT
Reasoning Test to the SAT I: Reasoning test across gender groups (Research Report 2005–6).
New York: The College Board.

Liu, J., Sinharay, S., Holland, P. W., Feigenbaum, M., & Curley, E. (2011). Observed score equating
using a mini-version anchor and an anchor with less spread of difficulty: A comparison study.
Educational and Psychological Measurement, 71, 346–361.

Liu, J., Sinharay, S., Holland, P. W., Curley, E., & Feigenbaum, M. (2011). Test score equating using
a mini-version anchor and a midi anchor: A case study using SAT data. Journal of Educational
Measurement, 48, 361–379.

Liu, J., & Walker, M. E. (2007). Score linking issues related to test content changes. In N. J. Dorans,
M. Pommerich, & P. W. Holland (Eds.), Linking and aligning scores and scales (pp. 109–134).
New York: Springer.

Liu, M., & Holland, P. W. (2008). Exploring population sensitivity of linking functions across three
law school admission test administrations. Applied Psychological Measurement, 32, 27–44.

Livingston, S. A. (1988). Adjusting scores on examinations offering a choice of essay questions
(Research Report 88–64). Princeton, NJ: Educational Testing Service.

Livingston, S. A. (1993). Small-sample equating with log-linear smoothing. Journal of Educational
Measurement, 30, 23–39.

Livingston, S. A., & Antal, J. (2010). A case of inconsistent equatings: How the man with four
watches decides what time it is. Applied Measurement in Education, 23, 49–62.

Livingston, S. A., Dorans, N. J., & Wright, N. K. (1990). What combination of sampling and
equating methods works best? Applied Measurement in Education, 3, 73–95.

Livingston, S. A., & Kim, S. (2009). The circle-arc method for equating in small samples. Journal
of Educational Measurement, 46, 330–343.

Livingston, S. A., & Kim, S. (2010). Random-groups equating with samples of 50 to 400 test takers.
Journal of Educational Measurement, 47, 175–185.



362 8 Practical Issues in Equating

Livingston, S. A., & Kim, S. (2011). New approaches to equating with small samples. In A. A. von
Davier (Ed.), Statistical models for test equating, scaling, and linking (pp. 109–122). New York:
Springer.

Longford, N. T. (1994). Reliability of essay rating and score adjustment. Journal of Educational
and Behavioral Statistics, 19, 171–200.

Lord, F. M., & Wingersky, M. S. (1984). Comparison of IRT true-score and equipercentile observed-
score “equatings”. Applied Psychological Measurement, 8, 452–461.

Loyd, B. H. (1991). Mathematics test performance: The effects of item type and calculator use.
Applied Measurement in Education, 4, 11–22.

Loyd, B., Engelhard, G, Jr, & Crocker, L. (1996). Achieving form-to-form comparability: Funda-
mental issues and proposed strategies for equating performance assessments of teachers. Educa-
tional Assessment, 3, 99–110.

Luecht, R. M., Nungester, R. J., & Hadadi, A. (1996, April). Heuristic-based CAT: Balancing item
information, content, and exposure. Paper presented at the annual meeting of the National Council
on Measurement in Education, New York, NY.

Lunz, M. E., & Bergstrom, B. A. (1994). An empirical study of computerized adaptive test admin-
istration conditions. Journal of Educational Measurement, 31(3), 251–263.

Lunz, M. E., & Bergstrom, B. A. (1995, April). Equating computerized adaptive certification
examinations: The Board of Registry series of studies. Paper presented at the annual meeting of
the National Council on Measurement in Education, San Francisco, CA.

Lunz, M. E., Stahl, J. A., & Wright, B. D. (1994). Interjudge reliability and decision reproducibility.
Educational and Psychological Measurement, 54, 913–925.

Lyrén, P.-E., & Hambleton, R. K. (2011). Consequences of violated equating assumptions under
the equivalent groups design. International Journal of Testing, 11, 308–323.

Maier, M. H. (1993). Military aptitude testing: The past fifty years (DMDC Technical Report 93–
007). Monterey, CA: Defense Manpower Data Center.

Marco, G. L. (1981). Equating tests in the era of test disclosure. In B. F. Green (Ed.), New directions
for testing and measurement: Issues in testing–coaching, disclosure, and ethnic bias (pp. 105–
122). San Francisco: Jossey-Bass.

Marco, G., Petersen, N., & Stewart, E. (1979). A test of the adequacy of curvilinear score equating
models. Paper presented at the Computerized Adaptive Testing Conference, Minneapolis, MN.

Mazzeo, J., & Harvey, A. L. (1988). The equivalence of scores from automated and conventional
educational and psychological tests. A review of the literature (College Board Report 88–8). New
York: College Entrance Examination Board.

Mazzeo, J., Druesne, B., Raffeld, P. C., Checketts, K. T., & Muhlstein, A. (1991). Comparability
of computer and paper-and-pencil scores for two CLEP general examinations (College Board
Report 91–5). New York: College Entrance Examination Board.

McKinley, R. L., & Schaeffer, G. A. (1989). Reducing test form overlap of the GRE subject test in
mathematics using IRT triple-part equating (Research Report 89–8). Princeton, NJ: Educational
Testing Service.

Mead, A. D., & Drasgow, F. (1993). Equivalence of computerized and paper-and-pencil cognitive
ability tests: A meta-analysis. Psychological Bulletin, 114, 449–458.

Michaelides, M. P. (2008). An illustration of a Mantel-Haenszel procedure to flag misbehaving
common items in test equating. Practical Assessment, Research and Evaluation, 13(7), 1–16.

Michaelides, M. P. (2010). Sensitivity of equated aggregate scores to the treatment of misbehaving
common items. Applied Psychological Measurement, 34, 365–369.

Miller, G., & Fitzpatrick, S. (2009). Expected equating error resulting from incorrect handling of
item parameter drift among the common items. Educational and Psychological Measurement,
69, 357–368.

Mills, C. N. (1999). Development and introduction of a computer adaptive graduate record exam-
inations general test. In F. Drasgow & J. Olson-Buchanan (Eds.), Innovations in computerized
assessment (pp. 117–135). Mahwah, NJ: Lawrence Erlbaum Associates.



References 363

Mills, C., Durso, R., Golub-Smith, M., Schaeffer, G., & Steffen, M. (1994). The introduction and
comparability of the computer adaptive GRE general test. Paper presented at the annual meeting
of the National Council on Measurement in Education, New Orleans.

Mills, C. N., Potenza, M. T., Fremer, J. J., & Ward, W. C. (Eds.). (2002). Computer-based testing:
Building the foundation for future assessments. Mahwah, NJ: Erlbaum.

Mills, C. N., & Steffen, M. (2000). The GRE computer adaptive test: Operational issues. In
W. J. van der Linden & C. A. W. Glas (Eds.), Computerized adaptive testing: Theory and practice
(pp. 75–99). Dordrecht and Boston: Kluwer Academic.

Mills, C. N., & Stocking, M. (1996). Practical issues in large-scale computerized adaptive testing.
Applied Measurement in Education, 9, 287–304.

Mislevy, R. J. (1992). Linking educational assessments: Concepts, issues, methods, and prospects.
Princeton, NJ: ETS Policy Information Center.

Mislevy, R. J., Sheehan, K. M., & Wingersky, M. S. (1993). How to equate tests with little or no
data. Journal of Educational Measurement, 30, 55–78.

Morgan, R., & Stevens, J. (1991). Experimental study of the effects of calculator use in the advanced
placement calculus examinations (Research Report 91–5). Princeton, NJ: Educational Testing
Service.

Moses, T. (2008). An evaluation of statistical strategies for making equating function selections
(Research Report 08–60). Princeton, NJ: Educational Testing Service.

Moses, T., Deng, W., & Zhang, Y. (2011). Two approaches for using multiple anchors in NEAT
equating: A description and demonstration. Applied Psychological Measurement, 35, 362–379.

Moses, T., & Holland, P. W. (2009a). Selection strategies for univariate loglinear smoothing models
and their effect on equating function accuracy. Journal of Educational Measurement, 46, 159–176.

Moses, T., & Holland, P. W. (2009b). Alternative loglinear smoothing models and their effect on
equating function accuracy (Research Report 09–48). Princeton, NJ: Educational Testing Service.

Moses, T., & Holland, P. W. (2010). The effects of selection strategies for bivariate loglinear smooth-
ing models on NEAT equating functions. Journal of Educational Measurement, 47, 76–91.

Muraki, E., Hombo, C. M., & Lee, Y.-W. (2000). Equating and linking of performance assessments.
Applied Psychological Measurement, 24, 325–337.

Neuman, G., & Baydoun, R. (1998). Computerization of paper-and-pencil tests: When are they
equivalent? Applied Psychological Measurement, 22, 71–83.

Nichols, P., & Kirkpatrick, R. (2005, April). Comparability of the computer-administered tests with
existing paper-and-pencil tests in reading and mathematics tests. Paper presented at the annual
meeting of the American Educational Research Association, Montreal, Canada.

Oh, H., & Walker, M. E. (2007). The effects of essay placement and prompt type on performance
on the new SAT (Research Report 2006–7). New York, NY: The College Board.

O’Neil, H. F, Jr, Sugrue, B., & Baker, E. L. (1996). Effects of motivational interventions on the
National Assessment of Educational Progress mathematics performance. Educational Assess-
ment, 3, 135–157.

Parshall, C. G., & Kromrey, J. D. (1993). Computer testing versus paper-and-pencil testing: An
analysis of examinee characteristics associated with mode effect. Paper presented at the annual
meeting of the American Educational Research Association, Atlanta.

Parshall, C. G., Houghton, P. D., & Kromrey, J. D. (1995). Equating error and statistical bias in
small sample linear equating. Journal of Educational Measurement, 32, 37–54.

Parshall, C. G., Spray, J. A., Kalohn, J. C., & Davey, T. (2002). Practical considerations in computer-
based testing. New York: Springer.

Petersen, N. S. (2007). Equating: Best practices and challenges to best practices. In N. J. Dorans,
M. Pommerich, & P. W. Holland (Eds.), Linking and aligning scores and scales (pp. 59–72). New
York, NY: Springer.

Petersen, N. S. (2008). A discussion of population invariance of equating. Applied Psychological
Measurement, 32, 98–101.

Petersen, N. S., Cook, L. L., & Stocking, M. L. (1983). IRT versus conventional equating methods:
A comparative study of scale stability. Journal of Educational Statistics, 8, 137–156.



364 8 Practical Issues in Equating

Petersen, N. S., Marco, G. L., & Stewart, E. E. (1982). A test of the adequacy of linear score equating
models. In P. W. Holland & D. B. Rubin (Eds.), Test equating (pp. 71–135). New York: Academic
Press Inc.

Phillips, S. E. (1985). Quantifying equating errors with item response theory methods. Applied
Psychological Measurement, 9, 59–71.

Pitoniak, M. J., & Royer, J. M. (2001). Testing accomodations for examinees with disabilities: A
review of psychometric, legal, and social policy issues. Review of Educational Research, 71,
53–104.

Poggio, J., Glasnapp, D. R., Yang, X., & Poggio, A. J. (2005). A comparative evaluation of score
results from computerized and paper and pencil mathematics testing in a large scale state assess-
ment program. The Journal of Technology, Learning, and Assessment, 3(6), 1–30.

Pommerich, M. (2004). Developing computerized versions of paper-and-pencil tests: Mode effects
for passage-based tests. The Journal of Technology, Learning, and Assessment, 2(6), 1–44.

Pommerich, M. (2007). The effect of using item parameters calibrated from paper administrations
in computer adaptive test administrations. The Journal of Technology, Learning, and Assessment,
5(7), 1–28.

Pomplun, M. (2007). A bifactor analysis for a mode-of-administration effect. Applied Measurement
in Education, 20, 137–152.

Pomplun, M., Ritchie, T., & Custer, M. (2006). Factors in paper-and-pencil and computer reading
score differences at the primary grades. Educational Assessment, 11, 127–143.

Powers, S. J., Hagge, S. L., Wang, W., He, Y., Liu, C., & Kolen, M. J. (2011). Effects of group
differences on mixed-format equating. In M.J. Kolen & W. Lee (Eds.), Mixed-format tests: Psy-
chometric properties with a primary focus on equating (volume 1). (CASMA Monograph Number
2.1) (pp. 51–73). Iowa City, IA: CASMA, The University of Iowa.

Powers, S. J., & Kolen, M. J. (2011). Evaluating equating accuracy and assumptions for groups
that differ in performance. In M. J. Kolen & W. Lee (Eds.), Mixed-format tests: Psychometric
properties with a primary focus on equating (volume 1). (CASMA Monograph Number 2.1) (pp.
137–175). Iowa City, IA: CASMA, The University of Iowa.

Powers, S. J., & Kolen, M. J. (2012). Using matched samples equating methods to improve equating
accuracy. In M. J. Kolen & W. Lee (Eds.), Mixed-format tests: Psychometric properties with a
primary focus on equating (volume 2). (CASMA Monograph Number 2.2) (pp. 87–114). Iowa
CIty, IA: CASMA, The University of Iowa.

Puhan, G. (2009). Detecting and correcting scale drift in test equating: An illustration from a large
scale testing program. Applied Measurement in Education, 22, 79–103.

Puhan, G. (2010). A comparison of chained linear and postratification linear equating under different
testing conditions. Journal of Educational Measurement, 47, 54–75.

Puhan, G. (2011a). Impact of inclusion or exclusion of repeaters on test equating. International
Journal of Testing, 11, 215–230.

Puhan, G. (2011b). Futility of log-linear smoothing when equating with unrepresentative small
samples. Journal of Educational Measurement, 48, 274–292.

Puhan, G., Boughton, K. A., & Kim, S. (2005). Evaluating the comparability of paper-and-pencil
and computerized versions of a large-scale certification test (Research Report 05–21). Princeton,
N. J.: Educational Testing Service.

Puhan, G., Larkin, K., & Rupp, S. L. (2006). Subpopulation invariance of equating functions
(Research Report 06–25). Princeton, N. J.: Educational Testing Service.

Puhan, G., Moses, T., Grant, M., & McHale, F. (2009). Small-sample equating using a single-group
nearly equivalent test (SiGNET) design. Journal of Educational Measurement, 46, 344–362.

Ramineni, C., Trapani, C. S., Williamson, D. M., Davey, T., & Bridgeman, B. (2012). Evaluation
of e-rater for the GRE issue and argument prompts (Research Report 12–02). Princeton, NJ:
Educational Testing Service.

Randall, J., Sireci, S., Li, X., & Kaira, L. (2012). Evaluating the comparability of paper- and
computer-based science tests across sex and SES subgroups. Educational Measurement: Issues
and Practice, 31(4), 2–12.



References 365

Raymond, M. R., Harik, P., & Clauser, B. E. (2011). The impact of statistically adjusting for rater
effects on conditional standard errors of performance ratings. Applied Psychological Measure-
ment, 35, 235–246.

Raymond, M. R., & Viswesvaran, C. (1993). Least squares models to correct for rater effects in
performance assessment. Journal of Educational Measurement, 30, 253–268.

Rosa, K., Swygert, K. A., Nelson, L., & Thissen, D. (2001). Item response theory applied to
combinations of multiple-choice and constructed-response items scale scores for patterns of
summed scores. In D. Thissen & H. Wainer (Eds.), Test scoring. Mahwah, NJ: Erlbaum.

Sands, W. A., Waters, B. K., & McBride, J. R. (Eds.). (1997). Computerized adaptive testing: From
inquiry to operation. Washington, DC: American Psychological Association.

Schaeffer, G. A., Bridgeman, B., Golub-Smith, M. L., Lewis, C., Potenza, M. T., & Steffen, M.
(1998). Comparability of paper-and-pencil and computer adaptive test scores on the GRE General
test (ETS Research Report 98–38). Princeton, NJ: Educational Testing Service.

Schaeffer, G. A., Reese, C. M., Steffen, M., McKinley, R. L., & Mills, C. N. (1993). Field Test
of a Computer-Based GRE General Test (Research Report 93–07). Princeton, NJ: Educational
Testing Service.

Schaeffer, G. A., Steffen, M., Golub-Smith, M. L., Mills, C., & Durso, R. (1995). The introduction
and comparability of the computer adaptive GRE general test (ETS Research Report 95–20).
Princeton, NJ: Educational Testing Service.

Schmeiser, C., & Welch, C.J. (2006). Test development. In R. L. Brennan (Ed.), Educational mea-
surement (4th ed., pp. 307–353). Westport, CT: American Council on Education and Praeger.

Schmitt, A. P., Cook, L. L., Dorans, N. J., & Eignor, D. R. (1990). Sensitivity of equating results to
different sampling strategies. Applied Measurement in Education, 3, 53–71.

Segall, D. O. (1997). Equating the CAT-ASVAB. In W. A. Sands and B. K. Waters & J. R. McBride
(Eds.), Computerized adaptive testing: From inquiry to operation (pp. 181–198). Washington,
DC: American Psychological Association.

Shermis, M. D., & Burstein, J. (Eds.). (2003). Automated essay scoring: A cross-disciplinary per-
spective. Mahwah, NJ: Erlbaum.

Sinharay, S. (2011). Chain equipercentile equating and frequency estimation equipercentile equat-
ing: Comparisons based on real and simulated data. In N. J. Dorans & S. Sinharay (Eds.), Looking
back: Proceedings of a conference in honor of Paul W. Holland. Lecture Notes in Statistics 202
(pp. 203–219). New York: Springer.

Sinharay, S., Dorans, N. J., & Liang, L. (2011). First language of test takers and fairness assessment
procedures. Educational Measurement: Issues and Practice, 30(2), 25–35.

Sinharay, S., & Holland, P. W. (2006). The correlation between the scores of a test and an anchor
test (Research Report 06–04). Princeton, N.J.: Educational Testing Service.

Sinharay, S., & Holland, P. W. (2007). Is it necessary to make anchor tests mini-versions of the
tests being equated or can some restrictions be relaxed? Journal of Educational Measurement,
44, 249–275.

Sinharay, S., & Holland, P. W. (2010a). The missing data assumptions of the NEAT design and their
implications for test equating. Psychometrika, 75, 309–327.

Sinharay, S., & Holland, P. W. (2010b). A new approach to comparing several equating methods in
the context of the NEAT design. Journal of Educational Measurement, 47, 261–285.

Skaggs, G. (1990). Assessing the utility of item response theory models for test equating. Paper
presented at the annual meeting of the National Council on Measurement in Education, Boston.

Skaggs, G., & Lissitz, R. W. (1986). IRT test equating: Relevant issues and a review of recent
research. Review of Educational Research, 56, 495–529.

Spray, J. A., Ackerman, T. A., Reckase, M. D., & Carlson, J. E. (1989). Effect of medium of
item presentation on examinee performance and item characteristics. Journal of Educational
Measurement, 26, 261–271.

Stocking, M. L. (1994). Three practical issues for modern adaptive testing item pools (Research
Report 94–5). Princeton, NJ: Educational Testing Service.



366 8 Practical Issues in Equating

Stocking, M. L. (1997). Revising item responses in computerized adaptive tests: A comparison of
three models. Applied Psychological Measurement, 21, 129–142.

Stocking, M. L., & Swanson, L. (1993). A method for severely constrained item selection in adaptive
testing. Applied Psychological Measurement, 17, 277–292.

Stone, E., & Davey, T. (2011). Computer-adaptive testing for students with disabilities: A review
of the literature (Research Report 11–31). Princeton, NJ: Educational Testing Service.

Stone, G. E., & Lunz, M. E. (1994). The effect of review on the psychometric characteristics of
computerized adaptive tests. Applied Measurement in Education, 7, 211–222.

Sukigara, M. (1996). Equivalence between computer and booklet administrations of the new
Japanese version of the MMPI. Educational and Psychological Measurement, 56, 570–584.

Sykes, R. C., & Ito, K. (1997). The effects of computer administration on scores and item parameter
estimates of an IRT-based licensure examination. Applied Psychological Measurement, 21, 51–
63.

Sykes, R. C., & Yen, W. M. (2000). The scaling of mixed-item-format tests with the one-parameter
and two-parameter partial credit models. Journal of Educational Measurement, 37, 221–244.

Tan, X., Kim, S., Paek, I., & Xiang, B. (2009, April). An alternative to the trend scoring method
for adjusting scoring shifts in mixed-format tests. Paper presented at the annual meeting of the
National Council on Measurement in Education, San Diego, CA.

Tan, X., Ricker, K. L., & Puhan, G. (2010). Single-versus double-scoring of trend responses in
trend score equating with constructed-response tests (Research Report 10–12). Princeton, NJ:
Educational Testing Service.

Tate, R. L. (1999). A cautionary note on IRT-based linking of tests with polytomous items. Journal
of Educational Measurement, 36, 336–346.

Tate, R. L. (2000). Performance of a proposed method for linking of mixed format tests with
constructed response and multiple choice items. Journal of Educational Measurement, 37, 329–
346.

Tate, R. L. (2003). Equating for long-term scale maintenance of mixed format tests containing
multiple choice and constructed response items. Educational and Psychological Measurement,
63, 893–914.

Taylor, C. S., & Lee, Y. (2010). Stability of Rasch scales over time. Applied Measurement in
Education, 23, 87–113.

Tenopyr, M. L., Angoff, W. H., Butcher, J. N., Geisinger, K. F., & Reilly, R. R. (1993). Psychometric
and assessment issues raised by the Americans with Disabilities Act (ADA). The Score, 15, 1–15.

Thissen, D., Nelson, L., & Swygert, K. A. (2001). Item response theory applied to combinations of
multiple-choice and and constructed-response items approximation methods for scale scores. In
D. Thissen & H. Wainer (Eds.), Test scoring. Mahwah, NJ: Erlbaum.

Thissen, D., Wainer, H., & Wang, X.-B. (1994). Are tests comprising both multiple-choice and
free-response items necessarily less unidimensional than multiple-choice tests? An analysis of
two tests. Journal of Educational Measurement, 31, 113–123.

Thomasson, G. L. (1997, March). The goal of equity within and between computerized adaptive
tests and paper and pencil forms. Paper presented at the annual meeting of the National Council
on Measurement in Education, Chicago, IL.

Thomasson, G. L., Bloxom, B., & Wise, L. (1994). Initial operational test and evaluation of forms
20, 21, and 22 of the Armed Services Vocational Aptitude Battery (ASVAB) (DMDC Technical
Report 94–001). Monterey, CA: Defense Manpower Data Center.

Tong, Y., & Kolen, M. J. (2005). Assessing equating results on different equating criteria. Applied
Psychological Measurement, 29, 418–432.

van de Vijver, F. J. R., & Harsveldt, M. (1994). The incomplete equivalence of the paper-and-pencil
and computerized versions of the General Aptitude Test Battery. Journal of Applied Psychology,
79, 852–859.

van der Linden, W. J. (2001). Computerized adaptive testing with equated number-correct scoring.
Applied Psychological Measurement, 25, 343–355.

van der Linden, W. J. (2005). Linear models for optimal test design. New York: Springer.



References 367

van der Linden, W. J. (2006a). Equating error in observed-score equating. Applied Psychological
Measurement, 30, 355–378.

van der Linden, W. J. (2006b). Equating scores from adaptive to linear tests. Applied Psychological
Measurement, 30, 493–508.

van der Linden, W. J. (2010). On bias in linear observed-score equating. Measurement, 8, 21–26.
van der Linden, W. J. (2011). Local observed-score equating. In A. A. von Davier (Ed.), Statistical

models for test equating, scaling, and linking (pp. 201–223). New York: Springer.
van der Linden, W. J., & Glas, C. A. W. (2000). Capitalization on item calibration error in adaptive

testing. Applied Measurement in Education, 13(1), 35–53.
van der Linden, W. J., & Glas, C. A. W. (2010). Elements of adaptive testing. New York: Springer.
van der Linden, W. J., & Wiberg, M. (2010). Local observed-score equating with anchor-test designs.

Applied Psychological Measurement, 34, 620–640.
Vispoel, W. P. (1998). Reviewing and changing answers on computer-adaptive and self-adaptive

vocabulary tests. Journal of Educational Measurement, 35, 328–345.
Vispoel, W. P., Boo, J., & Bleiler, T. (2001). Computerized and paper-and-pencil versions of the

Rosenberg self-esteem scale: A comparison of psychometric features and respondent preferences.
Educational and Psychological Measurement, 61, 461–474.

Vispoel, W. P., Rocklin, T. R., & Wang, T. (1994). Individual differences and test administration
procedures: A comparison of fixed-item, computerized-adaptive, self-adapted testing. Applied
Measurement in Education, 7, 53–79.

Vispoel, W. P., Wang, T., & Bleiler, T. (1997). Computerized adaptive and fixed-item testing of
music listening skill: A comparison of efficiency, precision, and concurrent validity. Journal of
Educational Measurement, 34, 43–63.

von Davier, A. A. (2007). Potential solutions to practical equating issues. In N. J. Dorans, M.
Pommerich, & P. W. Holland (Eds.), Linking and aligning scores and scales (pp. 89–106). New
York: Springer.

von Davier, A. A., Holland, P. W., Livingston, S. A., Casabianca, J., Grant, M. C., & Martin, K.
(2006). An evaluation of the kernel equating method: A special study with pseudotests constructed
from real test data (Research Report 06–02). Princeton, NJ: Educational Testing Service.

von Davier, A. A., Holland, P. W., & Thayer, D. T. (2004). The chain and post-stratification methods
for observed-score equating: Their relationship to population invariance. Journal of Educational
Measurement, 41, 15–32.

von Davier, A. A., & Wilson, C. (2008). Investigating the population sensitivity assumption of item
response theory true-score equating across two subgroups of examinees and two test formats.
Applied Psychological Measurement, 32, 11–26.

Wainer, H. (1993a). Some practical considerations when converting a linearly administered test to
an adaptive format. Educational Measurement: Issues and Practice, 12, 15–20.

Wainer, H. (1993b). Measurement problems. Journal of Educational Measurement, 30, 1–21.
Wainer, H. (Ed.). (2000). Computerized adaptive testing: A primer (2nd ed.). Mahwah, NJ: Erlbaum.
Wainer, H., & Mislevy, R. J. (2000). Item response theory, item calibration, and proficiency esti-

mation. In H. Wainer (Ed.), Computerized adaptive testing: A primer (2nd ed., pp. 61–100).
Mahwah, NJ: Erlbaum.

Wainer, H., & Thissen, D. (1993). Combining multiple-choice and constructed-response test scores:
Toward a Marxist theory of test construction. Applied Measurement in Education, 6, 103–118.

Wainer, H., & Thissen, D. (1994). On examinee choice in educational testing. Review of Educational
Research, 64, 159–195.

Wainer, H., Thissen, D., & Wang, X.-B. (1993). How unidimensional are tests comprising both
multiple-choice and free-response items? An analysis of two tests (Research Report 93–28).
Princeton, NJ: Educational Testing Service.

Wainer, H., Wang, X., & Thissen, D. (1994). How well can we compare scores on test forms that
are constructed by examinees choice? Journal of Educational Measurement, 31, 183–199.



368 8 Practical Issues in Equating

Walker, M. E., & Kim, S. (2009, April). Linking mixed-format tests using multiple choice anchors.
Paper presented at the annual meeting of the National Council on Measurement in Education,
San Diego, CA.

Walker, M. E., & Kim, S. (2010). Examining two strategies to link mixed-format tests using multiple-
choice anchors (Research Report 10–18). Princeton, NJ: Educational Testing Service.

Wang, S., Hong, J., Young, M., Brooks, T., & Olson, J. (2007). A meta-analysis of testing mode
effects in grade K-12 mathematics tests. Educational and Psychological Measurement, 67, 219–
238.

Wang, S., Jiao, H., Young, M., Brooks, T., & Olson, J. (2008). Comparability of computer-based
and paper-and-pencil testing in K-12 reading assessments. Educational and Psychological Mea-
surement, 68, 5–24.

Wang, T., Hanson, B. A., & Harris, D. J. (2000). The effectiveness of circular equating as a criterion
for evaluating equating. Applied Psychological Measurement, 24, 195–210.

Wang, T., & Kolen, M. J. (2001). Evaluating comparability in computerized adaptive testing: Issues,
criteria, and an example. Journal of Educational Measurement, 38, 19–49.

Wang, T., Kolen, M. J., & Harris, D. J. (2000). Psychometric properties of scale scores and per-
formance levels for performance assessments using polytomous IRT. Journal of Educational
Measurement, 37, 141–162.

Wang, T., Lee, W., Brennan, R. L., & Kolen, M. J. (2008). A comparison of the frequency estima-
tion and chained equipercentile methods under the common-item nonequivalent groups design.
Applied Psychological Measurement, 32, 632–651.

Wang, X.-B., Wainer, H., & Thissen, D. (1995). On the viability of some untestable assumptions in
equating exams that allow examinee choice. Applied Measurement in Education, 8, 211–225.

Way, W. D. (1998). Protecting the integrity of computerized testing item pools. Educational Mea-
surement: Issues and Practices, 17(4), 17–27.

Way, W. D., Forsyth, R. A., & Ansley, T. N. (1989). IRT ability estimates from customized achieve-
ment tests without representative content sampling. Applied Measurement in Education, 2, 15–35.

Way, W. D., Steffen, M., & Anderson, G. S. (2002). Developing, maintaining and renewing the
item inventory to support CBT. In C. N. Mills, M. T. Potenza, J. J. Fremer, & W. C. Ward (Eds.),
Computer-based testing: Building the foundation for future assessments (pp. 143–164). Mahwah,
NJ: Erlbaum.

Wells, C., Baldwin, S., Hambleton, R., Sireci, S., Karatonis, A., & Jirka, S. (2009). Evaluating score
equity assessment for state NAEP. Applied Measurement In Education, 22, 394–408.

Wiberg, M., & van der Linden, W. J. (2011). Local linear observed-score equating. Journal of
Educational Measurement, 48, 229–254.

Williamson, D. M., Xi, X., & Breyer, F. J. (2012). A framework for evaluation and use of automated
scoring. Educational Measurement: Issues and Practice, 31(1), 2–13.

Willingham, W. W., Ragosta, M., Bennett, R. E., Braun, H., Rock, D. A., & Powers, D. E. (1988).
Testing handicapped people. Boston, MA: Allyn and Bacon.

Wilson, M., & Wang, W.-C. (1995). Complex composites: Issues that arise in combining different
modes of assessment. Applied Psychological Measurement, 19, 51–71.

Wingersky, M. S., Cook, L. L., & Eignor, D. R. (1987). Specifying the characteristics of linking
items used for item response theory item calibration (Research Report 87–24). Princeton, NJ:
Educational Testing Service.

Wright, N. K., & Dorans, N. J. (1993). Using the selection variable for matching or equating
(RR-93-4). Princeton, NJ: Educational Testing Service.

Wyse, A. E., & Reckase, M. D. (2011). A graphical approach to evaluating equating using test
characteristic curves. Applied Psychological Measurement, 35, 217–234.

Yang, W., Bontya, A. M., & Moses, T. (2011). Repeater effects on score equating for a graduate
admissions exam (Research Report 11–17). Princeton, NJ: Educational Testing Service.

Yang, W., & Gao, R. (2008). Invariance of score linkings across gender groups for forms of a testlet-
based college-level examination program. Applied Psychological Measurement, 32, 45–61.



References 369

Yen, W. M. (1993). Scaling performance assessments: Strategies for managing local item depen-
dence. Journal of Educational Measurement, 30, 187–213.

Yen, W. M., & Ferrara, S. (1997). The Maryland School Performance Assessment Program: Per-
formance assessment with psychometric quality suitable for high stakes usage. Educational and
Psychological Measurement, 57, 60–84.

Yi, Q., Harris, D. J., & Gao, X. (2008). Invariance of equating functions across different subgroups
of examinees taking a science achievement test. Applied Psychological Measurement, 32, 62–80.

Zeng, L. (1995). The optimal degree of smoothing in equipercentile equating with postsmoothing.
Applied Psychological Measurement, 19, 177–190.

Ziomek, R., & Andrews, K. (1996). Predicting the college grade point averages of special-tested
students from their ACT assessment scores and high school grades. (Research Report 96–7). Iowa
City, IA: ACT.

Ziomek, R., & Andrews, K. (1998). ACT assessment score gains of special-tested students who
tested at least twice. Iowa City, IA: ACT.

Zu, J., & Liu, J. (2010). Observed score equating using discrete and passage-based anchor items.
Journal of Educational Measurement, 47, 395–412.

Zwick, R. (1991). Effects of item order and context on estimation of NAEP Reading Proficiency.
Educational Measurement: Issues and Practice, 10, 10–16.



Chapter 9
Score Scales

As discussed briefly in Chap. 1, scaling is the process of associating numbers or
other ordered indicators with the performance of examinees. These numbers and
ordered indicators are intended to reflect increasing levels of achievement or ability.
The process of scaling results in a score scale. The scores that are used to reflect
examinee performance are referred to as scale scores. The term primary score scale
is used here to describe the scale that is used to underly all psychometric operations.
In testing programs that equate alternate forms, scores typically are reported on the
primary score scale and equating is used to ensure that scores have the same meaning
regardless of the test form taken. As suggested in Chap. 1, the primary score scale is
typically developed for an initial form. Subsequently developed forms are equated
to an earlier form and then linked to the primary score scale.

Many testing programs also use what Petersen et al. (1989) referred to as auxiliary
score scales to enhance the meaning of the primary scale scores. Auxiliary score
scales provide information to test users about examinee performance that goes beyond
information incorporated in the primary score scale. Percentile ranks for various
groups of examinees are widely used auxiliary score scales. Other types of auxiliary
score scales include performance levels (e.g., basic, proficient, and advanced), normal
curve equivalents, and percentage correct scores. Score scales that are used with a
test can influence the usefulness of the resulting scores.

By using an equating process, score scales enable the comparison of individuals
who take different forms of a test. Score scales can be developed so that the per-
formance of an examinee can be readily compared to examinees nationwide. For
example, by setting the nationwide mean scale score equal to 60, the scale score
reported to an examinee indicates whether that examinee is above or below the
nationwide mean. Alternatively, the score reported to an examinee might directly
indicate that the examinee is above the level of proficient that was set by a panel of
subject matter experts. The use of score scales along with an equating process also
allows the tracking of trend in group performance over time.

In some situations, a test is part of a test battery—a set of tests developed
together. In these cases, score scales can be developed that allow statements about an
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individual’s strengths and weaknesses across these tests. Suppose, the national mean
is set to 60 for all of the tests in a battery. Relative to the national norm group, an
examinee who scores substantially above 60 in mathematics and substantially below
60 in English could be said to be stronger in mathematics than in English as mea-
sured by the tests in the battery. Also, scales for a battery can facilitate computation
of composite scores across tests.

In some testing programs, such as elementary achievement test batteries, interest
is in tracking growth of individuals, say, from one grade to another. In these situations,
a developmental score scale can be constructed to allow for comparisons of scores
earned on test levels differing in difficulty.

When developing score scales, procedures are used to associate examinee perfor-
mance on the test with the scale scores reported to examinees. Typically, raw scores,
such as the number-correct scores on a test consisting of dichotomously scored
items, are calculated. Then these raw scores are transformed to scale scores. For
some scales, linear transformations are used. For other scales, the transformations
are nonlinear. In either case, test developers make decisions about the particular
numbers to use and the form of the transformation of raw scores to scale scores.

In this chapter, the development of score scales on a single test and for test batteries
is discussed. The section begins by considering different perspectives on constructing
score scales. Linear and non-linear transformation are considered, including normal-
izing scores. Procedures for incorporating information from norming and standard
setting studies into a score scale are discussed. Also, procedures for using score
precision information to help decide on the number of scale score points and the
form of the raw-to-scale score transformation are described. Issues associated with
maintaining score scales over time and scales for batteries and composites are dis-
cussed. The chapter concludes with a lengthy consideration of developmental vertical
scaling. Numerical examples are used to illustrate most of the methodology that is
introduced.

9.1 Scaling Perspectives

A variety of score scales and methods for constructing them have been used. The
choice of score scale can significantly influence the meaning attached to scores and
the types of interpretations made.

Attempts have been made to use a psychometric model to drive the development
and scaling of measurement instruments. Thurstone (1925) developed one of the first
psychometric scaling models. The use of his psychometric model led to a process for
choosing items as well as a process for assigning scale scores to individuals. In later
work, Thurstone (1928) made claims about the equality of units of measurement.
Guttman (1944) model for scaling attitude items and individuals led to the choice of
items and the assignment of scale scores to individuals. His method included criteria
to determine whether a scale could be constructed, and it focused on appropriately
rank ordering examinees and placing individuals and items on the same scale.
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The Rasch (1960) model has been used to scale achievement test data. In dis-
cussing scaling from the perspective of the Rasch model, Wright (1977) stated,

When a person tries to answer a test item the situation is potentially complicated. Many
forces might influence the outcome—too many to be named in a workable theory of the
person’s response. To arrive at a workable position, we must invent a simple conception of
what we are willing to suppose happens, do our best to write items and test persons so that
their interaction is governed by this conception, and then impose its statistical consequences
upon the data to see if the invention can be made useful (p. 97).

As suggested by this statement and by the brief discussion of the Thurstone and
Guttman models, the focus of instrument development and scaling in this approach
is on fitting a model, with the benefit that the model can be used to make various
predictions about the behavior of individuals. With this approach, the use of the scale
to facilitate interpretation of scale scores occurs only after a scale is developed that
adequately fits the model.

Stevens’ (1946, 1951) well-known theory of scaling provides a framework for
understanding scales. Stevens (1946, 1951) classified scales as being nominal, ordi-
nal, interval, or ratio. Suppes and Zinnes (1963) further developed the scaling the-
ory described by Stevens, and a summary of their theory is provided by Coombs
et al. (1970, pp. 7–19). This theory requires that relationships among individuals on
the attribute be clearly and unambiguously defined. The scaling process is used to
associate numbers to appropriately reflect levels of the attribute.

The attributes being measured by educational and psychological tests, however,
are not well enough defined to be scaled using this theory. In discussing intelligence
tests, Coombs et al. (1970, p. 17) stated that, because “no measurement theory [of
this type] for intelligence is available. . . no meaning [from the perspective of this
measurement theory] can be given” to the scores from intelligence tests. From this
point of view, until the educational and psychological constructs that are measured
by tests are better defined, the scales that are used with these constructs cannot be
classified according to this scaling theory.

Fitting psychometric models like those of Thurstone (1925), Guttman (1944), and
Rasch (1960) to test data is not sufficient to make claims about the scale properties
(e.g., ordinal or interval) based on this scaling theory. There is no reason to believe,
for example, that scores that arise from fitting a Rasch model to achievement test data
are on an interval scale based on the scaling theory of Stevens (1946) and Suppes
and Zinnes (1963).

If the scaling models do not lead to scores that have particular scale properties in
terms of this scaling theory, then how can a decision be made about what scale to use?
In discussing this issue, Angoff (1971) stated that score scales have been “defined
to have approximately equal units in some special sense. For example, they have
been defined in terms of a particular group of individuals, either with or without a
transformation of distribution shape” (p. 150). He cited the following 1950 personal
communication with Frederic Lord:

The claim for equality of score units can no longer be justified on an external operational
basis. Such score scales can be said to have equal units of ability only if we are willing
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arbitrarily to define the ability in terms of the scale itself. However, such a definition of
ability, while not indefensible, cannot hope to be generally accepted since the units of ability
would vary with the group tested as well as with the choice of the measuring instrument
(p. 510).

Angoff (1971) provided another 1950 personal communication from Lord:

Problems arise in mental measurements either because (a) experts cannot agree on a clear
operational definition of the ability to be measured or (b) the ability is defined in terms of
operations for which the symbolic processes of addition or multiplication can be given no
useful operational meaning. Any set of measurements can be expressed in terms of a scale
with equal units, in some sense, if only we can agree on a definition in operational terms of
what is meant by equality (p. 511).

Thus, given the current state of knowledge about educational and psychological
attributes, scales can be developed and treated as if the scores are “equal interval” in
“some sense.” However, from the perspective of scaling theory, there is little that can
be done to help decide whether one scale is more “equal interval” than another scale.
Following from these points, Blanton and Jaccard (2006a, b) indicated that scales
used with psychological measures are arbitrary. Michell (2008) and Humphry (2011)
argued that it is important that research emphasize the development of scaling theory,
whereas Kane (2008) argued that such an emphasis is unlikely to lead to solutions
to current practical problems.

Individuals writing from an IRT perspective have made similar points. As stated
by Yen (1986),

It is important for educators and test developers to acknowledge that until the achievement
traits are much more adequately defined, it is not possible to develop measurement scales
that are linearly related to such traits. In fact, it appears impossible to provide such trait
definition. Test users are therefore left to use other criteria to choose the best scale for a
particular application; choosing the right scale is not an option. It is important that any choice
of scale be made consciously and that the reasons for the choice be carefully considered
(p. 314).

Yen (1986) also stated that, “IRT does not offer a simple answer to the question of
what is the best method for scaling educational achievement tests” (p. 322).

When IRT methods are used as a psychometric foundation for test analysis, scales
other than the IRT θ-scale are often found to be more useful for score reporting. In
considering scores to report in a testing program that uses IRT, Bock et al. (1997)
stated,

Educational measurement, insofar as it refers to measuring the extent to which a student
or group of students, has mastered some area of content or skill, does not fit comfortably
within the trait concept. Measurement in this context is better conceived of as testing student
performance on a sample of tasks from the area for the purposes of predicting the extent of
satisfactory performance in the area as a whole. The concept is that of domain mastery, and
the domain score, expressed as a percentage, is the index of the proportion of the domain
mastered (p. 197).

They also discussed how it might be advantageous to convert the IRT θ-scale to an
index of the proportion of the domain mastered (also see Pommerich et al. 1999;
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Pommerich 2006). Similarly, Lord (1975) stated, “the θ scale seems inadequate for
many tests” (p. 216).

Lord (1980, p. 84) demonstrated that even if a three-parameter logistic model fits
a particular set of test data, a nonlinear transformation of the θ scale also fits the
data. In certain situations, the nonlinear transformation can be argued to be a more
realistic metric for expressing proficiency than the θ scale. A somewhat simplified
version of Lord’s demonstration follows.

Let θ be the proficiency scale for the three-parameter logistic model. From
Eq. (6.1), the probability that person i will correctly answer item j is

pi j = pi j (θi ; a j , b j , c j ) = c j + (1 − c j )
exp[Da j (θi − b j )]

1 + exp[Da j (θi − b j )] ,

where the terms in the equation were defined in Chap. 6. Define a transformed variable
θ∗ = g(θ) = exp(θ) and define a transformed item difficulty b∗ = exp(b). From the
laws of exponents and a substitution, note that

exp[Da j (θi − b j )] = {exp[θi − b j ]}Da j =
{

exp[θi ]
exp[b j ]

}Da j

=
{

θ∗
i

b∗
j

}Da j

.

Substituting this expression into Eq. (6.1),

pi j (θ
∗
i ; a j , b j , c j ) = c j + (1 − c j )

{
θ∗

i

b∗
j

}Da j

1 +
{

θ∗
i

b∗
j

}Da j
.

As Lord (1980) pointed out, there is no compelling psychometric reason to prefer
the θ parameterization to the θ∗ parameterization. Zwick (1992, p. 209) and Mislevy
(1987, p. 248) made similar observations.

Thus, even if a psychometric model holds in a particular test area, developing
tests from the perspective of the psychometric model cannot provide an answer to
the following question: What scale should be used for reporting scores? Even if the
model holds, nonlinear transformations of the scale that is produced by the model
may be preferable to the original scale. See Embretson (2006) and Embretson and
Reise (2000) for an alternate viewpoint on IRT scales.

Petersen et al. (1989) suggested that the “the usefulness of a primary score scale
depends in its fulfilling two important goals: facilitating meaningful inferences and
minimizing misinterpretations and unwarranted inferences” (p. 222). Following this
reasoning, a score scale should be used that best facilitates the primary uses to which
the scale is to be put. In constructing a test, its major purposes are considered, it is
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constructed to achieve these purposes as well as possible, and a scale is developed
to help support these purposes.

In constructing a test, it is important that the scaling process support the test
purposes rather than drive its development. According to Lindquist (1953),

A good educational achievement test must itself define the objective measured. This means
that the method of scaling an educational achievement test should not be permitted to deter-
mine the content of the test or to alter the definition of objectives implied in the test. From
the point of view of the tester, the definition of the objective is sacrosanct; he has no business
monkeying with that definition. The objective is handed down to him by those agents of
society who are responsible for decisions concerning educational objectives, and what the
test constructor must do is to attempt to incorporate that definition as clearly and as exactly
as possible into the examination that he builds (p. 35).

Thus, scaling methods that involve removing items from an achievement test that do
not fit a particular statistical model would go against the perspective of Lindquist
(1953).

When developing score scales, normative or content-related information is often
built into the scale. For example, the mean scale score might be set at a score of 60
for a nationally representative group of examinees. In discussing the incorporation
of normative information, Flanagan (1951) noted that “if much information is built
into the score itself, continual use makes its interpretation more and more direct
and immediate” (p. 743). Gardner (1962) also made a strong case for incorporating
normative information into score scales as a means of aiding interpretation of the
scores, and Ebel (1962) advocated incorporating content meaning.

Angoff (1962) pointed out, however, that the normative meaning incorporated at
the time a score scale is constructed becomes obsolete over time. After the passage of
time, the norm group that was used to set the scale becomes of little interest. Suppose
the mean test score increases over time on a test originally normed to have a mean of
60. Test users might be tempted to interpret a score of 61 as being “above average,”
even if the current mean was, say, 63.5. Thus, building normative information into
the scale might result in confusion among test users. According to Angoff (1962),
“what is suggested here is a non-normative scale—a scale that has no normative
meaning at all” (p. 30). Based on this reasoning, Angoff (1962) stated that, “these
principles can be stated here: One, that the meaning that is invested in a scale at the
time of its definition is not lasting; indeed, there is some question whether it is useful.
Two, that a scale has a reasonable chance of being meaningful to a user if it does not
change” (p. 32). In discussing these issues, Lindquist (1953) presented many of the
points made by Angoff (1962), but indicated that “this point of view is not my own,
it is not one by which I would abide in practice” (p. 38).

The perspective followed in the present chapter is consistent with that taken by
Petersen et al. (1989), who stated that “the main purpose of scaling is to aid users
in interpreting test results” (p. 222). They stressed “the importance of incorporating
meaning into score scales as a primary means of enhancing score interpretability”
(p. 222). Following this perspective, meaning is incorporated into the primary score
scale to the greatest extent possible, with auxiliary score scales incorporating addi-
tional meaning not incorporated into the primary score scale. In addition to being
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used to incorporate meaning, the primary score scale is used as a reference scale
for the purposes of equating alternate forms and for displaying the auxiliary score
scales.

9.2 Unit Scores, Item Scores, and Raw Scores

Traditionally the raw score on a test has been defined as the number, proportion, or
percentage of test items that an examinee answers correctly (Petersen et al. 1989,
p. 222). Implicit in this definition is that items are scored right/wrong and the
raw score is based on the number of items correctly answered. Tests contain-
ing constructed-response tasks (Lane and Stone 2006) and computer-based tests
(Drasgow et al. 2006) are now in widespread use in education. Constructed-
response tasks typically are scored by judges. Automated scoring of essays and other
constructed-response tasks is becoming more prevalent. The use of computers has led
to the use of innovative item formats, including complex item types. Many of these
items use scoring that is more complex than right/wrong. In addition, the use of IRT
models has led to widespread use of scores that are more complex than a simple sum
of scores on items. For these reasons, an expanded set of terms, beyond those used by
Petersen et al. (1989), is needed to handle this variety of test items and scoring pro-
cedures. This section, which is based on the discussions of scores by Kolen (2006,
pp. 157–163), Kolen and Tong (2010), and Kolen et al. (2011), considers many of
the raw scores that are currently in use.

9.2.1 Test Score Terminology

Consider the situation where a constructed-response assessment is administered that
consists of four tasks to which examinees provide written response as was described
by Kolen (2006, p. 157). Two judges rate each written response on a holistic rating
scale that ranges from 1 to 5. If the two judges who rate a response differ by more than
1 point, then a third “expert” judge rates the written response. An examinee’s score
associated with one of the tasks is the sum of the ratings by the first two judges if the
two judges differ by one point or less. Otherwise, the examinee’s score is twice the
rating of the third judge. The score for an examinee over the four tasks is a function
of the scores associated with each of the tasks.

In this chapter, the term unit score refers to the score on the smallest unit for
which a score is provided. This smallest unit is referred to as a scoreable unit. In
the constructed-response assessment situation just described, for each task there is a
unit score for the first judge, a unit score for the second judge, and, possibly, a unit
score for the third judge.

The term item score refers to the score on a test item. In the constructed-response
assessment situation, an item score is a score associated with each task. In this
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example, each item score ranges from 2 to 10. The item score is the sum of the
ratings of the first two judges if their ratings differ by no more than one point, in
which case odd items scores (3, 5, 7, 9) are possible. Otherwise, the item score is
twice the rating of the third judge, in which case only even item scores are possible.
For a multiple-choice item, the item score typically is either 1 for a correct response
or 0 for an incorrect response.

The term raw score refers to a function of the item scores. In a traditional multiple-
choice testing situation, the raw score is the sum of the item scores, which represents
the number of items answered correctly. In the constructed-response assessment
example, the raw score is a function of the item scores; if it is the sum of item scores,
then the raw score ranges from 8 to 40.

9.2.2 Unit and Item Scores

For traditionally scored multiple-choice tests, the unit scores and item scores often
are identical. In other situations, like the constructed-response assessment situation
just described, unit and item scores are clearly distinct.

When IRT is used to score tests, the distinction between the unit score and item
score might depend on decisions made by the test developer. Consider a test of reading
comprehension that consists of 10 passages with 5 dichotomously scored multiple-
choice items per passage. This test has 50 scoreable units. Traditionally, each of these
scoreable units is treated as an item, so there are 50 item scores. However, a local
independence assumption is made in IRT scoring. To handle local independence
concerns, the test might be treated as a 10 item (sometimes referred to as testlet)
test, with each item score being the number correct over the 5 items associated with
a particular passage. In this case, there are 50 unit scores and 10 item scores, with
each item score ranging from 0 to 5. Thus, what is considered an item score depends,
not only on the number of scoreable units on a test, but on how the test developer
decides to define an item on the test.

The relationship between unit and item scores can be complicated for computer-
based tests. For example, suppose that both correctness and response time are
considered as part of a score for a complex computer-based test. A predetermined
procedure might be used to combine correctness and response time into a score on
the test. Using the terminology of this section, the unit scores are each piece of infor-
mation that was collected and used to score the test. The item score is the overall
score for the item.

The characteristic that most clearly distinguishes unit scores from item scores is
as follows: Whereas there may be operational dependencies among unit scores, item
scores are considered operationally independent. That is, it is expected that score
on one item does not depend on answers given to previous items. Various types of
item scores have been used in practice. Some of the most popular item scores are
described next.
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Dichotomous Item Scores

Dichotomous item scores, where items are either correct or incorrect, are used with
many multiple-choice and other objective test item formats. Let j refer to an item,
and let Vi j be a random variable indicating the score on item j for person i . For an
item scored dichotomously, the item score is Vi j = 1 if item j is answered correctly
by person i and Vi j = 0 if item j is answered incorrectly by person i .

“Corrected for Guessing” Item Scores

“Corrected for guessing” item scores are sometimes used with multiple-choice test
items. For these item scores, a distinction is made among correct responses, incorrect
responses, and omitted responses (where no answer is given to the item). Let A j be
the number of alternatives for multiple-choice item j . One such scoring scheme is
Vi j = 1 if item j is answered correctly by person i , Vi j = −1/(A j − 1) if item j is
answered incorrectly by person i , and Vi j = 0 if the item is omitted by person i . In
this scoring scheme, examinees who guess at random or omit an item are expected
to earn a score of 0 on the item. Other item scores can be used to penalize guessing
to a greater (or lesser) extent.

Ordered Response Item Scores

Ordered response item scores are used for items that are scored in a set of ordered
categories. Categories associated with better performance on the item receive higher
scores.

As in Chap. 6, let j be an item index, k be a category index, ranging from 1 to
the number of score categories for item j , and m j be the number of score categories
for item j . Let Vi j = vi jk represent the score associated with person i responding to
item j with a response in category k.

Consider the constructed-response example introduced. Using this notation, if
person i earned the lowest possible score of 2 on item j , then k = 1 and Vi j =
vi j1 = 2; if person i earned a score of 3 on item j , then k = 2 and Vi j = vi j2 = 3;
etc. Note that the item score random variable, Vi j , for person i ranges from 2 to 10
for each item j , Also note that the category index k differs from the item score vi jk

in this example.
Although item scores often are consecutive integers, the use of integers is not nec-

essary. Note that, for example, for multiple-choice items, a “corrected for guessing”
item score, as mentioned above, is one type of ordered response item score for which
a non-integer item score is used. In this case, k = 1 and Vi j = vi j1 = −1/(A j − 1)

when the item is answered incorrectly by person i . Also, k = 2 and Vi j = vi j2 = 0 if
the item is omitted by person i , and k = 3 and Vi j = vi j3 = 1 if item j is answered
correctly by person i .

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
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As another example of ordered response item scores, for multiple-choice items,
consider a three-choice multiple-choice item. A test developer might decide to order
the alternatives from worst to best and assign a score of 0 for the worst alternative,
1 for the best incorrect alternative, and 2 for the correct answer.

Other Types of Item Scores

Nominal response item scoring is used for items that are scored in a set of unordered or
partially ordered categories. Continuous response item scoring approximates a very
large number of ordered responses. Nominal and continuous response scoring pro-
cedures are used infrequently with educational tests. For the purposes of this chapter,
it is assumed that items are scored as either dichotomous or ordered responses.

9.2.3 Raw Scores (Y)

Raw scores are defined as a function of item scores on a test. For a test containing K
items, the raw score random variable is denoted by Y and the raw score for examinee
i , Yi , is a function of item scores. Some types of raw scores commonly used in practice
are described in this section. The different types of raw scores are distinguished from
one another using a pre-subscript, such as in the use of sY for a summed score as
described next.

Summed Scores (sY )

The summed score is the sum of the item scores over the items on a test. The summed
score for person i is

sYi =
K∑

j=1

Vi j . (9.1)

For a test consisting of dichotomously scored items, the summed score is the number
of items answered correctly. For the constructed-response assessment example pre-
sented at the beginning of this section, the summed score is the sum of the four item
scores. Because each item score ranges from 2 to 10 in this example, the summed
score ranges from 8 to 40. The summed score is often attractive because it is rela-
tively easy to explain to examinees and to test users. In addition, it equally weights
the item scores to form the raw score.
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Weighted Summed Scores (wY )

For weighted summed scores, the raw score is a weighted sum of the item scores.
This score is calculated as

wYi =
K∑

j=1

w j Vi j , (9.2)

where w j is a weight that is applied to item j . Various procedures can be used to
choose the weights. For example, the weights can be chosen to maximize reliability
of the raw score. Alternatively, proportional weights can be chosen subjectively so
that each item reflects the desired relative contribution of the item to the raw score.

Kelley Regressed Scores (K eY )

Regressed score estimates of true score (for either summed score or weighted summed
score) are sometimes used as the raw scoreon a test. A Kelley regressed score (Haertel
2006) is of the form

K eYi = E(τi |Yi ) = ρ(Y, Y ≥)Yi + [1 − ρ(Y, Y ≥)]μ(Y ), (9.3)

where E is the expected score for examinee i over repeated testings, τi is the true
score for examinee i , μ(Y ) is the mean observed score (either summed score or
weighted summed score) in a particular population of examinees, and ρ(Y, Y ≥) is
test reliability in a particular population of examinees. The use of Kelley regressed
scores requires an assumption that the regression of true scores on observed scores
is linear as well as assumptions required for the particular reliability coefficient that
is used, as described in Haertel (2006). When ρ(Y, Y ≥) > 0, K eYi is closer to μ(Y )

than is Yi , and for this reason K eYi is often referred to as a shrinkage estimator.

Complex Scores (cY )

There are situations where the raw score is found using a function that is considerably
more complex than a weighted summation. Such a raw score can be symbolized as

cYi = f (V1, V2, . . . , Vn) , (9.4)

where f is the function used to convert the item scores to a raw score.
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IRT Maximum Likelihood Scores (M L E θ̂)

IRT maximum likelihood scores are one type of complex score that is used with
IRT models. Assume that a polytomous IRT model, such as one of those described
in Chap. 6, is being used. (Recall, from Chap. 6, that dichotomous IRT models can
be viewed as special cases of polytomous models with two response categories.)
In these models, IRT proficiency for examinee i is represented by the variable θi ,
the response variable for item j is Vi j , and a particular response to the item by
an examinee in category k is vi jk . The application of IRT models requires strong
statistical assumptions as described in Chap. 6. For a unidimensional IRT model,
the probability that Vi j = vi jk is symbolized as pi jk(Vi j = vi jk |θi ). For maximum
likelihood scores, under the assumption of local independence the value of θi is found
that maximizes the likelihood equation

Li =
K∏

j=1

pi jk(Vi j = vi jk |θi ). (9.5)

This maximum likelihood estimate (MLE) is symbolized as M L E θ̂i . Because this
score is a complex function of the item scores, it can be thought of as a raw score
and also can be symbolized by cYi . In some cases, such as with the Rasch model,

M L E θ̂i can be found from a summed score. In most other cases, the scoring function
is more complex. M L E θ̂i does not exist for some response patterns, such as summed
scores of zero correct on a multiple-choice test containing all dichotomously scored
items.

IRT Summed Scores Using the Test Characteristic Function (sT C F θ̂)

The test characteristic function was defined for polytomous models in Eq. (6.36).
A summed score estimator of IRT proficiency, sT C F θ̂i can be found by substituting the
examinee’s summed score or weighted summed score for the true score in Eq. (6.36)
and solving for θi , much as is done in solving for θi in IRT true score equating in
Chap. 6 (see Lord 1980, p. 60).

IRT Bayesian Scores (E AP θ̂)

IRT proficiency can also be estimated using Bayesian methods. The Bayesian
expected a posteriori (EAP) score is calculated as

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
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E AP θ̂i = E(θi |Vi1 = vi1k, Vi2 = vi2k, ..., Vi K = vi K k)

=

∫
θ

θ

K∏
j=1

pi jk(Vi j = vi jk |θ)g(θ)dθ

∫
θ

K∏
j=1

pi jk(Vi j = vi jk |θ)g(θ)dθ

,
(9.6)

where g(θ) is the distribution of θ in the population and E is expected value. In
practice, numerical methods are used and the integrals are replaced by summations.
Note that E AP θ̂i in Eq. (9.6) contains the likelihood expression from Eq. (9.5) in
both the numerator and denominator. Also note that E AP θ̂i in Eq. (9.6) contains the
distribution of θ, whereas M L E θ̂i in Eq. (9.5) does not depend on the distribution
of θ.

IRT Bayesian Summed Scores (sE AP θ̂)

Thissen and Orlando (2001) presented a modification of Bayesian EAP estimates
that can be used with summed scores.

s E AP θ̂i = E (θi |sYi ) =

∫
θ

θ f (sYi = syi |θ) g (θ) dθ

∫
θ

f (sYi = syi |θ) g (θ) dθ

, (9.7)

where f (sYi = syi |θ) is found using recursive Eq. (6.41).

Some Statistical Properties of Raw Scores

A variety of relationships exist between the statistical properties of summed scores
and Kelley regressed scores. Parallel relationships exist between the IRT MLE and
IRT EAP scores. Note that the Kelley regressed scores and IRT EAP and sEAP scores
are intended to reduce measurement error variance by introducing bias.

In classical test theory (Haertel 2006), raw score is an unbiased estimator of true
score. That is,

E(Yi |τi ) = τi , (9.8)

where E is the expectation over repeated tests for individual i . Because it is a shrink-
age estimator, the Kelley regressed score (K eYi ) in Eq. (9.3) is a biased estimator of
τi with the following inequalities:

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
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If τi < μ(Y ), then E(K eYi |τi ) ≤ τi . (9.9)

If τi > μ(Y ), then E(K eYi |τi ) ∞ τi . (9.10)

Also, because it is a shrinkage estimator,

var(K eYi |τi ) ∞ var(Yi |τi ), (9.11)

where var is taken over repeated tests for individual i . That is, the conditional
error variance for Kelley regressed scores typically is less than the conditional error
variance for score Y .

In classical test theory (Haertel 2006), the variance of observed scores, Y , in a
population typically is greater than the variance of true scores, τ . Due to it being a
shrinkage estimator, the variance of K eY typically is less than the variance of true
scores, τ . Thus, over the entire examinee population,

var(K eY ) ∞ var(τ ) ∞ var(Y ). (9.12)

That is, the variance of Kelley regressed scores typically is less than the variance of
true scores, which typically is less than the variance of observed scores.

MLE scores in IRT behave much like observed scores. Because EAP scores are
shrinkage estimators, they behave much like the Kelley regressed scores. In IRT,

M L E θ̂ is a consistent estimator of θ (Lord 1980, p. 59) as test length becomes large.
Thus,

E(M L E θ̂i |θi ) ∧ θi , (9.13)

where E is the expectation over repeated tests for individual i . Thus, one important
property of M L E θ̂i is that it is an asymptotically unbiased estimator of θi .

Because it is a shrinkage estimator (Lord 1980, pp. 186–187; Lord 1986), E AP θ̂i

in Eq. (9.6) is a biased estimator of θi with the following inequalities:

If θi < μ(θ), then E(E AP θ̂i |θi ) ≤ θi . (9.14)

If θi > μ(θ), then E(E AP θ̂i |θi ) ∞ θi , (9.15)

where μ(θ) is the mean θ for the population. Also, because E AP θ̂i is a shrinkage
estimator,

var(E AP θ̂i |θi ) ∞ var(M L E θ̂i |θi ), (9.16)
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where var is taken over repeated tests for individual i . That is, the conditional
variance for E AP θ̂i is less than or equal to the conditional error variance for M L E θ̂i .

Over the entire examinee population,

var(E AP θ̂) ∞ var(θ) ∞ var(M L E θ̂). (9.17)

That is, the variance of EAP scores typically is less than the variance of true pro-
ficiencies, which typically is less than the variance of MLE scores. Note the clear
parallels between the classical test theory terms in Eqs. (9.8) through (9.12) and the
terms in Eqs. (9.13) through (9.17).

Among the IRT estimators, because it is based on the summed score rather than
the entire pattern of responses, sT C F θ̂i typically contains more estimation error than

M L E θ̂i . Also, because it is based on the summed score rather than the entire pattern
of responses, s E AP θ̂i typically shrinks more towards the mean than does E AP θ̂i

(Thissen and Orlando 2001). For these reasons, the following inequality appears to
hold:

var(s E AP θ̂i |θi ) ∞ var(E AP θ̂i |θi ) ∞ var(M L E θ̂i |θi ) ∞ var(sT C F θ̂i |θi ), (9.18)

although a formal proof is still required. Over the entire examinee population,

var(s E AP θ̂) ∞ var(E AP θ̂) ∞ var(θ) ∞ var(M L E θ̂) ∞ var(sT C F θ̂). (9.19)

That is, in addition to the inequalities in Eq. (9.17), the sEAP scores typically have
smaller variances than the EAP scores and the sTCF scores typically have greater
variances than the MLE scores.

Kolen and Tong (2010) provided real data illustrations of the practical conse-
quences of using the different IRT scores considered here. In their illustrations, the
score variances followed the pattern in Eq. (9.19). In addition, the percentage of
examinees earning scores at different performance levels were substantially affected
by choice of IRT score. In particular, more students scored in the highest and lowest
performance levels with the TCF and MLE scores than with the sEAP and EAP
scores. They found only small differences between TCF and MLE scores. Also, they
found only small differences between sEAP and EAP score distributions. They con-
cluded that the choice of Bayes (EAP and sEAP) scores versus non-Bayes scores
(TCF and MLE) had a much more serious practical effect than the choice of summed
scoring versus more complex scoring.

As indicated earlier, TCF and MLE scores do not depend on the population of
examinees. In contrast, Kelley regressed scores depend on the mean and reliability in
the population, as can be seen in Eq. (9.3). Similarly, the Bayes EAP and sEAP scores
depend on the score distribution in the population. For Kelley regressed scores, two
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examinees from different populations with the same Yi typically would have different
values of K Yi .

For example, suppose that the mean score for females on a test is 50, the mean
score for males is 54, and test reliability in both groups is .7. From Eq. (9.3), a male
with a score of 60 would have a Kelley regressed score of 58.2 if the mean score
for males were used, and a female with a score of 60 would have a Kelley regressed
score of 57 if the mean score for females. Alternatively, both the male and female
student would earn the same Kelley regressed score if the mean score for the overall
population were used. Thus, with Kelly regressed scores and Bayes EAP and sEAP
scores, the score an examinee receives depends, often substantially, on the population
to which that examinee is being compared.

For Kelley regressed scores and Bayes sEAP and EAP scores, the score for an
examinee depends not only on his or her item responses, “but also on the entire group
of examinees in which he or she is included” (Lord 1986, p. 161). The use of non-
Bayes scores (observed scores, MLE scores, and TCF scores) avoids the dependence
on the examinee population, and would be the choice of test developers and users
“who object to having scores depend on the examinee group with which the examinee
happens to test” (Kolen and Tong 2010, p. 13).

Raw Scores and Test Specifications

For educational achievement tests, test specifications typically are developed to
reflect the intended importance of content areas. More test questions are chosen
from content areas that are considered to be more important for the construct being
measured. By using summed scores, the raw score reflects the intended importance
in terms of the proportion of score points associated with each of the content areas.

The use of weighted summed scores might not reflect intended importance when
the weights are chosen using criteria other than judged importance, such as choosing
weights to maximize reliability. In such situations the weights are based mainly on
statistical criteria. In the three-parameter logistic IRT model, for example, when
using maximum likelihood procedures, items that are more highly discriminating
near examinee proficiency tend to have greater weight than items that are low in
discrimination in this region (see, for example, Lord 1980, pp. 74–75). Thus, it is
possible that the weighting used in the weighted summed scores will lead to raw
scores that do not reflect the importance of various content areas as intended by test
developers. Thus, care should be taken when using weighted summed scores.

Subscores

Subscores are often reported to help examinees understand their strengths and weak-
nesses on components of a test. Sinharay et al. (2011) reviewed research on methods
for deciding whether potentially useful information can be provided by subscores.
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Haberman (2008a) developed a criterion for assessing whether a subscore provides
useful information using classical test theory. Brennan (2011) developed a similar
criterion. With these methods, if the true score on the subscore can be better estimated
with the subscore than with the total score, then the subscore is considered to add
value. A variety of studies considered examples, based on testing programs that
use subscores, to assess whether the subscores used had added value (Haberman
2008b; Haberman et al. 2009; Lyren 2009; Puhan et al. 2008; Sinharay 2010; Sinharay
et al. 2007, 2010). Many of the operational subscores that were examined were found
not to add value according this criterion. Sinharay et al. (2011) concluded that “a
subscore is more likely to have added value if it has high reliability and it is distinct
from other scores” (p. 33). See Puhan and Liang (2011) for a study investigating
conditions under which it might be preferable to use the total equated score on a test
in place of the common item scores for equating subscores on alternate test forms.

Another approach to developing subscores is to include information on other
subscores when estimating a subscore. These are called augmented subscores and
have received much attention (de la Torre and Patz 2005; de la Torre et al. 2011;
Edwards and Vevea 2006; Haberman and Sinharay 2010; Kahraman and Thompson
2011; Puhan et al. 2010; Skorupski and Carvajal 2010; Stone et al. 2010; Tate 2004;
Yao and Boughton 2007). These augmented subscores are typically more reliable
than subscores developed without augmentation. Sinharay et al. (2011) concluded
that augmented subscores are unlikely to add value when tests are unidimensional as
in studies by Skorupski and Carvajal (2010) and Stone et al. (2010). However, when
the subscores are assessing distinct constructs, such as in a study by Lyren (2009),
the use of augmented subscores can be justified. Note, however, that the computation
of augmented subscores can be difficult for test users to understand, which might
limit their usefulness.

When subscores are developed as an afterthought, which is often the case in
practice, they will likely not be distinct or reliable. In these cases, the subscores will
not add value. However, if subscores are developed so that the constructs assessed
are distinct and the subscores contain a sufficient number of items, then it is possible
that they will add value to a testing program as suggested by Sinharay et al. (2011).
See Sinharay and Haberman (2011) for a consideration of methods for equating
augmented subscores across alternate test forms.

9.3 Scores on Mixed-Format Tests

An increasing number of tests are composed of items with different types of formats.
For example, some items on a test might be multiple-choice items and other items
might be constructed-response items. The items from one format often have different
numbers of score points than the items from another format. Developers of mixed-
format tests need to address the question of how to combine scores from different
formats when calculating a total raw score for the test.
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Consider a mixed-format test used in an example by Kolen and Lee (2011). This
examination contains 99 multiple-choice test items (scored 0/1) and 10 constructed-
response sections, each of which is scored 0–10. A decision must be made about how
to combine the item scores on the multiple-choice and constructed-response sections
to arrive at a total raw score over both item types. In this section, issues in deciding
how to combine scores are presented.

9.3.1 Weights Based on Numbers of Score Points

One way to assign weights is for test developers to decide on the desired proportional
contribution of each type of item to the total number of raw score points. This
proportion could be chosen based on the viewed importance of each item type to the
total test. Numbers of test items, testing time, and the extent to which items from each
format cover the domain of content of the test are often considered when assigning
weights.

For the mixed-format example, if a summed score were used there would be a
total of 139 points, with 99 coming from the multiple-choice items and 40 from the
constructed-response items. The weight for the multiple-choice items based on the
total number of raw scores for the summed score is approximately .712, which is
found by dividing the number of multiple-choice points (99) by the total number of
points (139).

Suppose the test developer wanted the multiple-choice points to be .60 of the
total. The test developer could weight the multiple-choice questions by 1 and the
constructed-response questions by 1.65 when calculating a weighted summed score
from Eq. (9.2). In this case, the number of multiple-choice points (99) divided by
the number of multiple choice points (99) plus the number of constructed-response
points (1.65 · 40 = 66) equals .60.

Note that with this weighted summed score, the raw scores are not integers,
which could lead to complications in applying psychometric procedures such as
standard equating methods. One possibility would be to round the weighted summed
scores to integers. Another possibility would be to use integer weights that lead
to approximately the desired weighting, as suggested by Kolen and Lee (2011).
For this example, the multiple-choice item scores could be weighted by 3 and the
constructed-response item scores by 5. Then 297 (3 · 99) points are associated with
the multiple-choice items and 200 (5 ·40) points are associated with the constructed-
response items. Thus, approximately 60 % (297/497 = .598) are associated with the
multiple-choice items.

Weights based on numbers of score points are used with many mixed-format tests,
are straightforward, and are relatively easy to explain to test users. In addition, weights
based on the numbers of score points can be developed prior to administering the test
to examinees, so the weighting results are independent of the examinee group taking
the test. However, this weighting scheme ignores statistical relationships among the
item types and test reliability.
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9.3.2 Observed Score Effective Weights

Effective weights are indices of the statistical contribution of each component to a
composite. A proportional effective weight is interpreted as the proportion of com-
posite variance that is attributable to a component of the composite.

Assume that for a mixed-format test, when forming a total raw score, scores on
all items of a particular type are weighted by a constant value, which is referred to
as a nominal weight. Refer to the nominal weight for all items of item type t as wt .
The raw score can be calculated as a weighted summed score using Eq. (9.2). For a
representative population of examinees, define the variance of the weighted summed
score as σ2(wY ), the variance of the summed score for item type t , Yt , as σ2(Yt ),
and the covariance between summed score for item type t and another item type,
t ≥, as σ(Yt , Yt ≥). The proportional observed score effective weight for item type t is
defined as

ewt =
w2

t σ
2(Yt ) + wt

∑
t ≥ �=t

wt ≥σ(Yt , Yt ≥)

∑
t

[
w2

t σ
2(Yt ) + wt

∑
t ≥ �=t

wt ≥σ(Yt , Yt ≥)

] . (9.20)

The summation in the numerator is over all of the item types used to form the
composite, except for t . The denominator sums the numerator values for all of the item
types, and it is used to standardize the numerator so that the proportional observed
score effective weights sum to 1.

One useful special case occurs when there are two item types, scores on each type
are scaled to have a standard deviation of 1, and the weights sum to 1. In this special
case, where ρ(Y1, Y2) is the correlation between Y1 and Y2, the effective weight for
item type 1 is

ew1 = w2
1 + w1w2ρ(Y1, Y2)

w2
1 + w2

2 + 2w1w2ρ(Y1, Y2)
, (9.21)

and the effective weight for item type 2 is ew2 = 1 − ew1. If the nominal weights
are both .5, the effective weights are also .5. Otherwise, the effective weights depend
on both the nominal weights and the correlation. If the correlation is 1, then the
nominal and effective weights are the same. If the correlation is zero or greater and
the nominal weight is below .5, then the corresponding effective weight is smaller
than the nominal weight. For example, if the nominal weight for item type 1 is .1 and
the correlation is .5, then the effective weight for item type 1 is .06 calculated using
Eq. (9.21). Conversely, if the nominal weight is above .5, then the effective weight
is larger than the nominal weight. Continuing the example, the nominal weight for
item type 2 is .9 and the effective weight is .94.
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When using effective weights in practice, test developers state the desired effective
weights for each of the item types. Nonlinear estimation procedures can be used to
find the nominal weights that lead to the desired effective weights (see Wilks 1938).

9.3.3 True Score Effective Weights

Brennan (2001, pp. 306–307) described effective weights for true scores. Use of a
psychometric model such as classical test theory or generalizability theory is required
when calculating these weights.

For mixed-format tests, define ρ(Yt , Y ≥
t ) as reliability of scores on item type t .

True score effective weights are calculated by substituting true score variance,
σ2(Yt )ρ(Yt , Y ≥

t ), for each σ2(Yt ) in Eq. (9.20). These proportional true score
effective weights can be used in a manner similar to the proportional observed
score effective weights. In general, the two types of effective weights differ, with
the proportional true score effective weights affected by the reliabilities as well as
the nominal weights and the correlations.

9.3.4 Weights Chosen to Maximize Reliability

Weights can be chosen to maximize the reliability of the total raw score. Based on
Feldt and Brennan (1989, p. 116), the reliability of weighted composite scores is

ρ(wY ,wY ≥) = 1 −
∑

t
w2

t σ
2(Yt )[1 − ρ(Yt , Yt

≥)]
∑

t

[
w2

t σ
2(Yt ) + wt

∑
t ≥ �=t

wt ≥σ(Yt , Yt ≥)

] . (9.22)

Procedures for finding weights that maximize composite reliability were given by
Gulliksen (1950, p. 346), and matrix-based estimation procedures were summarized
by Wainer and Thissen (2001).

A special case of Eq. (9.22) given by Wainer and Thissen (2001) is useful when
there are two item types, 1 and 2, that have been scaled to have a standard deviation
of 1 with w1 + w2 = 1. In this case,

ρ(wY ,wY ≥) = 1 − w2
1

[
1 − ρ(Y1, Y1

≥)
] + w2

2

[
1 − ρ(Y2, Y2

≥)
]

w2
1 + w2

2 + 2w1w2ρ(Y1, Y2)
. (9.23)

Wainer and Thissen (2001) discussed how to find the weights to maximize reliability
in this case.
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9.3.5 Weighting Example

Wainer and Thissen (2001) provided an example that is intended to be similar to data
for the SAT II Writing Test. In this example, reliability of scores on the multiple-
choice portion of the test is .85, reliability of scores on the constructed-response
portion of the test is .60, and the correlation between scores on the multiple-choice
and constructed-response portion is .43. The scores on each portion are standardized
to have a mean of 0 and a standard deviation of 1. The testing time is 40 minutes for
the multiple-choice portion and 20 minutes for the constructed-response portion. To
be consistent with testing times, the nominal weight for the multiple-choice section
is intended to be 2/3.

For this example, reliability of the total raw score for different nominal weights is
given in Fig. 9.1. Consistent with Wainer and Thissen (2001), for a nominal weight
of 2/3 for the multiple-choice section (w1 = 2/3 and w2 = 1/3) and reliability
of the composite is .851, as calculated using Eq. (9.23). Consistent with Fig. 9.1,
Wainer and Thissen (2001) also showed that reliability is maximized at .863 when
the nominal weight for the multiple-choice section is .82. As can be seen, for low
nominal weights, the reliability of the total score can be much less than the reliability
of the score for the multiple-choice items (.85).

Effective weights also can be calculated for this example using Eq. (9.21). The
proportional observed score effective weights for the multiple-choice portion and
proportional true score effective weights for the multiple-choice portion also are
graphed in Fig. 9.1. From this graph, the proportional observed score effective weight
equals the nominal weight at a nominal weight of .5. Proportional observed score
effective weights are greater than nominal weights for nominal weights above .5
and are less than the nominal weights for nominal weights below .5. Over most
of the range of nominal weights, the proportional true score effective weight for
the multiple-choice portion is greater than the proportional observed score effective
weight for the constructed-response portion, because the multiple-choice portion is
more reliable than the constructed-response portion.

The bisection method (Press et al. 1989) was used to solve for the nominal weight
in Eq. (9.21) given proportional observed score effective weights. In this example,
a nominal weight of .621 is associated with a proportional observed score effective
weight of 2/3 for the multiple-choice portion. Thus, if the proportional observed score
effective weight is intended to be 2/3 for the multiple-choice portion, the nominal
weight should be chosen to be .621. Using the bisection method to solve for the
nominal weight given proportional true score effective weight, a nominal weight
of .595 is associated with a proportional true score effective weight of 2/3 for the
multiple-choice portion.

Kolen and Lee (2011) provided an example of choosing weights for a mixed-
format test to maximize reliability when using integer weights and an IRT model.
Similar to Wainer and Thissen (2001), they found that there is a range of weights
that led to reliability that was similar to the maximum reliability.
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Fig. 9.1 Relationships between nominal weights, effective weights, and composite reliability

9.3.6 Some Other Weighting Criteria and Issues

Wang and Stanley (1970) summarized research on using weights that maximize the
multiple correlation with external criteria. For example, a composite might be found
for a college entrance test battery that maximizes the multiple correlation between
college grades and scores on the tests in the battery. Feldt (1997) and Kane and Case
(2004) demonstrated that under certain conditions, more reliable composites can be
less valid in terms of correlation with a criterion. Brennan (2001, pp. 312–314) dis-
cussed issues in optimizing reliability and validity. Rudner (2001) demonstrated that
under certain conditions, maximizing validity leads to lower reliability. Noting that
constructed-response items are often much more expensive to administer and score
than multiple-choice items, Wainer and Thissen (1993) discussed how to incorporate
cost into the process of deciding on test length and choosing weights.

9.3.7 Weights in IRT

When applying IRT methodology to mixed-format tests, a crucial first decision is
whether or not a single dimension can be used to describe performance over the
mixed-format item types. Rodriguez (2003) reviewed the construct equivalence of
multiple-choice and constructed-response items. Based on the definition of construct
equivalence used by Traub (1993) that construct equivalence implies true score cor-
relations of 1, Rodriguez concluded that these item types are measuring different
constructs. However, he also found that in certain circumstances the constructs are
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very similar. Wainer and Thissen (1993) argued that in many cases, the constructs
measured with multiple-choice and constructed-response items are similar enough
that they can be analyzed together using unidimensional IRT models.

When different item types are considered by the test developer to measure different
dimensions, it is possible to fit a unidimensional IRT model separately for each
item type. IRT proficiency, θ, can be calculated separately for each item type and a
composite formed.

Suppose that the test developer decides that the different item types are similar
enough to be analyzed together using unidimensional IRT models. Multiple-choice
items then might be fit with a three-parameter logistic model and constructed-
response items with a generalized partial credit model. Using suitable software,
the item parameters for the different item types could be analyzed together. After
item parameters are estimated, proficiency can be estimated using the maximum
likelihood or Bayesian methods of Eqs. (9.5) and (9.6). This sort of approach was
suggested by Thissen et al. (1994) and implemented by Ercikan et al. (1998), Rosa
et al. (2001), and Sykes and Yen (2000).

Rosa et al. (2001) developed an alternative unidimensional IRT method for test
scoring. In this method, summed scores are calculated for each item type. IRT profi-
ciency is estimated from these summed scores using Bayesian methods. Rosa et al.
(2001) suggested that this procedure is preferable to typical pattern scoring, both to
implement and to explain to consumers (p. 255). Because this method is a Bayesian
method, it produces estimates of proficiency that typically are less variable than max-
imum likelihood estimates. Sykes and Hou (2003) used various weighting schemes
and then evaluated the psychometric properties using unidimensional IRT methods.

9.4 Score Transformations

Raw scores often have serious limitations as primary scale scores for a test. One
problem with raw scores is that they often depend on the items in a particular form
of a test. As discussed in Chap. 1, if raw summed scores are used for reporting scores
on alternate forms, then examinees who are administered an easier form of the test
will tend to earn higher scores than examinees who are administered a more difficult
form. The use of these raw scores as primary scale scores can lead to confusion on
tests when scores on alternate forms are equated. Table 1.1 illustrates hypothetical
conversion tables for three test forms. Suppose raw summed scores on Form Y were
used as the primary score scale, rather than the scale scores that are shown. In this
case, after equating, a raw summed score of 27 on Form Y1 would be converted to a
Form Y raw summed score of 26. An examinee who was administered Form Y1 and
scored 27 might wonder why 1 point was being subtracted from the raw score of 27.
This sort of confusion is bound to occur when raw scores are used as primary scale
scores when there are alternate forms of a test. Scale scores other than raw scores
need to be chosen to prevent this sort of misinterpretation.

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
http://dx.doi.org/10.1007/978-1-4939-0317-7_1
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Sometimes the test construction process is viewed as sampling items from a
well-defined domain of items (Ebel 1962; Nitko 1984), especially for tests that are
curriculum based. In this case, a proportion-correct raw score might be viewed as a
reasonable estimate of an examinee’s proportion correct in that domain. Such scores
are often useful as auxiliary score scales when the domain of items can be clearly
represented to test users. However, these scores can cause confusion as primary score
scales when alternate forms of a test exist and proportion-correct scores might be
confused with percentile ranks.

Because of the limitations of raw scores as primary scale scores, typically raw
scores are transformed to scale scores that are different from raw scores on any
particular form. Sometimes the conversions used are linear in form. More often, the
transformations are nonlinear. In the process of developing a score scale, typically,
the transformation is chosen to make it easier for test users to interpret test scores.
Test use can be facilitated by incorporating normative, score precision, and content
information into the score scale.

9.5 Incorporating Normative Information

Normative information can be used to enhance the interpretability of scale scores
(Flanagan 1951; Gardner 1962; Lindquist 1953). The process of incorporating nor-
mative information begins with administering the test to a group of examinees,
referred to as the norm group. Summary statistics from the administration are used
to help set the score points for an initial form of the test. The raw scores can be
transformed using linear or nonlinear transformations.

9.5.1 Linear Transformations

As discussed in Chap. 2, a linear raw-to-scale score transformation can be used if
the mean and standard deviation of the scale scores are specified and the mean and
standard deviation of the raw scores are calculated for the norm group. In this case,
the transformation was given as

sc(y) = σ(sc)

σ(Y )
y +

[
μ(sc) − σ(sc)

σ(Y )
μ(Y )

]
,

where μ(Y ) and σ(Y ) are the mean and standard deviations of raw scores in the norm
group and μ(sc) and σ(sc) are the desired mean and standard deviation of the scale
scores. In the example given in Chap. 2, μ(Y ) = 70 and σ(Y ) = 10 for a national
norm group. The desired scale score mean is μ(sc) = 20 and the desired scale score
standard deviation is σ(sc) = 5, so

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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sc(y) = 5

10
y +

[
20 − 5

10
70

]
= .5y − 15.

For example, an examinee with a raw score of 50 would receive a scale score of 10
using this equation. If an equating process was followed with subsequent test forms,
any examinee with a scale score above 20 would be above the mean of the national
norm group.

Instead of specifying the mean and standard deviation of scale scores, specification
of scale score equivalents of two raw score points also can define a line. Defining
y1 and y2 as two raw score points and sc(y1) and sc(y2) as the desired scale score
equivalents of these two points,

sc(y) =
[

sc(y2) − sc(y1)

y2 − y1

]
y +

{
sc(y1) −

[
sc(y2) − sc(y1)

y2 − y1

]
y1

}
, (9.24)

defines a linear raw-to-scale score equivalent. For example, suppose that for the norm
group just considered, the mean scale score is intended to be 20, and a raw score of
0 is intended to equal a scale score of 1. In this case,

sc(y) =
[

20 − 1

70 − 0

]
y +

{
1 −

[
20 − 1

70 − 0

]
0

}
= .2714y + 1.

For example, an examinee with a raw score of 50 would receive a scale score of
14.57.

At times, it might be desirable to specify one scale score equivalent and the
standard deviation of the scale scores. In this case, let y1 be a raw score and sc(y1) be
its scale score equivalent. Taking σ(sc) as the desired scale score standard deviation,

sc(y) = σ(sc)

σ(Y )
y +

[
sc(y1) − σ(sc)

σ(Y )
y1

]
. (9.25)

For example, suppose that for the norm group just considered, a raw score of 50 is
intended to convert to a scale score of 20, and the scale score standard deviation is
intended to be 5 points. In this case,

sc(y) = 5

10
y +

[
20 − 5

10
50

]
= .5y − 5.

9.5.2 Nonlinear Transformations

To aid score interpretation, the scores that result from the linear transformation pro-
cedures just described often are rounded to integers, as was discussed in Chap. 2.
The rounded scale scores are symbolized as scint (y). In the example described

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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earlier where sc(y = 50) = 14.57, scint (y = 50) = 15. Sometimes, scale scores are
rounded to values other than integers, such as to the 10’s place. For example, SAT
scores are reported with a 0 in the units place. Another fairly simple linear trans-
formation is to truncate the raw-to-scale score transformation at a specified point.
Truncation was discussed in Chap. 2. In the earlier example where sc(y) = .5y−15,
it might be desirable to truncate the transformation so that scale scores below 1 are
set to 1. So, for example, the scale score equivalent of a Form Y score of 10 would
be set to 1.

Sometimes, more complex nonlinear transformations are used. One often-used
nonlinear transformation involves transforming scores so that they have a particular
distributional shape, at least approximately. The normal distribution is one com-
monly used distributional shape. Traditionally, normalized scores were constructed
graphically using procedures such as those described by Angoff (1971, pp. 515–
519). However, the process for normalizing scores can be accomplished using more
modern techniques, as follows, based on data from a sample of examinees:

1. Find the relative frequency distribution of scores, ĝ(y).
2. As an optional step, smooth the relative frequency distribution using a smoothing

method such as the polynomial log-linear method described in Chap. 3.
3. Find the percentile ranks of the smoothed distribution, and refer to these as Q̂(y).
4. Find the particular score in a unit normal distribution for which the proportion

Q̂(y)/100 of the scores lie below the particular score. Refer to this score as z.
That is, find z such that

�(z) = Q̂(y)/100 = 1√
2π

∫ z

−∞
e−w2/2dw. (9.26)

5. Transform z to have a particular mean and standard deviation for the sample using
a linear transformation, sc(y) = σ(sc)z+μ(sc), where μ(sc) is the desired mean
and σ(sc) is the desired standard deviation.

6. Round the resulting scale scores to integers, producing scint (y) .

Following these steps leads to scale scores that are approximately normal with a spec-
ified mean and standard deviation. McCall (1939) suggested using what he referred
to as T -scores, which are approximately normally distributed integer scores with
mean of 50 and standard deviation 10. Intelligence test scores (IQ scores) typically
are normalized scores with a mean of 100 and a standard deviation of 15 or 16 for a
national norm group (Angoff 1971, pp. 525–526). Stanines (Flanagan 1951, p. 747)
are normalized integer scores that range from 1 to 9 with an approximate mean of
5 and a standard deviation of 2 for the reference group. Normal curve equivalents
(NC E scores) are normalized scores reported as integers with an approximate mean
of 50 and standard deviation of 21.06 for a nationally representative norm group
(Petersen et al. 1989, p. 227). NC E scores are often used in evaluations of federally
funded educational programs.

As pointed out by Petersen et al. (1989), “usually there is no good theoretical
reason for normalizing scores. Observed scores are not usually normally distributed

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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…, and there is often reason to expect test score distributions to be nonsymmetric”
(pp. 226–227). According to Petersen et al. (1989), “the advantage of normalized
scores is that they can be interpreted by using facts about the normal distribution. For
example, a scale score that is one standard deviation above the mean has a percentile
rank of approximately 84 in the reference group” (p. 227).

Percentile ranks for various examinee groups are nonlinear transformations that
are often used as auxiliary score scales. For example, percentile ranks might be
reported for an entire national norm group. Separate percentile ranks might be
reported for a national group of males, a national group of females, national groups
of examinees from various racial/ethnic classifications, and groups from various geo-
graphical regions. In addition, percentile ranks might be reported for different groups
of examinees who take a test. Each of these sets of percentile ranks can be viewed
as auxiliary score scales that can be used to enhance the meaning of the information
reported. Moses and Golub-Smith (2011) presented a promising method that can be
used to develop scale scores that allow for the moments of the scale score distribution
to be specified more generally than those associated with a normal distribution.

9.5.3 Example: Normalized Scale Scores

An example of how to normalize scores to create a primary score scale is presented
in Table 9.1. The data for this example are the Form K ITBS Maps and Diagrams
data used in Chap. 6. The first column of Table 9.1 gives the raw scores, ranging from
0 to 24; the second column, the frequencies observed in the sample; and the third
column, the relative frequencies. As suggested in the steps for normalizing, the data
were smoothed. Smoothing was conducted using the log-linear method of Chap. 3
using a C-parameter of 4. The fourth column gives the relative frequencies of the
smoothed distribution; the fifth column, the relative cumulative frequencies of the
smoothed distribution; and the sixth column, the percentile ranks of the smoothed
distribution.

To normalize the distribution, scores were transformed using Eq. (9.26). The
z-scores are shown in the seventh column. For example, a raw score of 14 has a
percentile rank in the smoothed distribution of 46.82, as can be seen in Table 9.1.
Using Eq. (9.26), or a normal curve table, the z-score with a percentile rank of 46.82
is −.0797, which is the value shown in seventh column in the table. All of the values
in the column labeled z can be found similarly. The effect of this transformation is
to make the transformed distribution approximately normal.

Refer to Fig. 9.2, which is the smoothed raw score distribution. This distribution
is negatively skewed. The distribution of z-scores is shown in Fig. 9.3. Note that
the relative frequency values are all the same in Figs. 9.2 and 9.3. The effect of the
transformation is to compress the distance between the score points in the middle
of the distribution and expand the distances at the upper and lower scores. This
expansion is greater at the upper scores than at the lower scores, resulting in a

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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Table 9.1 Calculating normalized scores

ĝ(y) Ĝ(y) Q̂(y)

Y N ĝ(y) ĝ(y) Smooth Smooth Smooth z

0 1 .0004 .0004 .0004 .02 −3.5617
1 5 .0019 .0014 .0018 .11 −3.0691
2 15 .0058 .0040 .0058 .38 −2.6723
3 21 .0081 .0087 .0145 1.01 −2.3219
4 24 .0093 .0156 .0301 2.23 −2.0088
5 65 .0252 .0236 .0537 4.19 −1.7291
6 82 .0318 .0316 .0853 6.95 −1.4794
7 106 .0411 .0384 .1237 10.45 −1.2561
8 113 .0438 .0438 .1675 14.56 −1.0553
9 138 .0535 .0478 .2153 19.14 −.8727
10 123 .0477 .0509 .2662 24.07 −.7039
11 138 .0535 .0537 .3199 29.30 −.5446
12 137 .0531 .0566 .3764 34.82 −.3903
13 152 .0589 .0599 .4364 40.64 −.2368
14 161 .0624 .0637 .5001 46.82 −.0797
15 181 .0702 .0678 .5679 53.40 .0853
16 201 .0779 .0714 .6393 60.36 .2626
17 187 .0725 .0736 .7129 67.61 .4568
18 172 .0667 .0728 .7857 74.93 .6722
19 171 .0663 .0675 .8531 81.94 .9131
20 143 .0554 .0571 .9102 88.17 1.1835
21 129 .0500 .0427 .9529 93.16 1.4878
22 64 .0248 .0272 .9801 96.65 1.8321
23 40 .0155 .0141 .9943 98.72 2.2321
24 11 .0043 .0057 1.0000 99.71 2.7625

transformed distribution in Fig. 9.3 that is more nearly symmetric than the original
raw score distribution in Fig. 9.2.

Summary statistics for the raw and transformed scores are shown in the first two
rows of Table 9.2. The skewness index for the raw scores is negative and the kurtosis
index is well below the kurtosis for a normal distribution, which is 3. Note that for
the z-scores, the skewness is near 0 and the kurtosis near 3, which is to be expected
for scores that are approximately normally distributed. Note also that the mean of
the z-scores is near 0 and the standard deviation near 1, also as expected for z-scores.
The discreteness of the score distribution causes the z-scores to have moments that
are slightly different from those expected for scores that are normally distributed
with mean of 0 and standard deviation of 1.

T -scores are presented in the column labeled T in Table 9.3. These scores are
calculated by multiplying the z-scores in Table 9.1 by 10 and adding 50. The scores
labeled Tint are calculated by rounding the T -scores to integers. The stanines (st)
shown are calculated by multiplying the z-scores by 2 and adding 5. In the next
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Fig. 9.3 Normalized score distribution

column, the stanines are rounded to integers (stint ). In addition, the stanines are
truncated to be in the range 1–9. NC E scores shown are calculated by multiplying
the z-scores by 21.06 and adding 50. In the last column, the NC E scores are rounded
to integers and truncated to be in the range 1–99.
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Table 9.2 Moments of normalized scores

μ̂ σ̂ ŝk k̂u

Y 14.0066 5.0146 −.2638 2.2285
z −.0012 .9922 −.0396 2.9218
T 49.9881 9.9215 −.0396 2.9218
Tint 50.0512 9.9895 −.0745 2.8656
st 4.9976 1.9843 −.0396 2.9218
stint 5.0434 1.9237 −.0430 2.4712
NC E 49.9750 20.8948 −.0396 2.9218
NC Eint 50.1430 20.4823 −.0010 2.6704

Table 9.3 Calculating T -scores and stanines

X T Tint st stint NC E NC Eint

0 14.38 14 −2.12 1 −25.01 1
1 19.31 19 −1.14 1 −14.64 1
2 23.28 23 −.34 1 −6.28 1
3 26.78 27 .36 1 1.10 1
4 29.91 30 .98 1 7.69 8
5 32.71 33 1.54 2 13.58 14
6 35.21 35 2.04 2 18.84 19
7 37.44 37 2.49 2 23.55 24
8 39.45 39 2.89 3 27.77 28
9 41.27 41 3.25 3 31.62 32
10 42.96 43 3.59 4 35.18 35
11 44.55 45 3.91 4 38.53 39
12 46.10 46 4.22 4 41.78 42
13 47.63 48 4.53 5 45.01 45
14 49.20 49 4.84 5 48.32 48
15 50.85 51 5.17 5 51.80 52
16 52.63 53 5.53 6 55.53 56
17 54.57 55 5.91 6 59.62 60
18 56.72 57 6.34 6 64.16 64
19 59.13 59 6.83 7 69.23 69
20 61.84 62 7.37 7 74.92 75
21 64.88 65 7.98 8 81.33 81
22 68.32 68 8.66 9 88.58 89
23 72.32 72 9.46 9 97.01 97
24 77.62 78 10.52 9 108.18 99

The summary statistics for the T and the Tint scores shown in Table 9.2 indicate
that the first four moments are close to those that would be expected for a normal
distribution with mean of 50 and standard deviation of 10. The first three moments for
the stanines are close to what would be expected for a normal distribution with a mean
of 5 and standard deviation of 2. However, the stint scores have a kurtosis index well
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below the value of 3 expected for a normal distribution; this finding likely occurred
because of the score truncation at the very high and very low scores. The first three
moments for the NC E scores are reasonably close to what would be expected for a
normal distribution with mean of 50 and standard deviation of 21.06. However, the
NC Eint scores have a kurtosis index that is lower than that for a normal distribution,
although not as low as the kurtosis for the stint scores. This difference again appears
to be due to the truncation of the score scale.

9.5.4 Importance of Norm Group in Setting the Score Scale

When the score scale is set by incorporating normative information, the choice of
the group used to set the norms influences the usefulness of the score scale. For some
testing programs, such as the ITBS (Hoover et al. 2003), norms used in the scaling
are based on nationally representative samples of examinees at each grade level. For
example, the average scale score for fourth-grade students on the ITBS was set at
200. Because of the scaling, a test user would know that if a fourth-grade student
earned a score above 200, that student would be above the average for a nationally
representative sample of fourth-grade students. As another example, the ACT used a
nationally representative group of twelfth-grade college-bound high-school seniors
to establish the score scale (Brennan 1989). For the SAT, the score scale was based
on a reference group of all students who graduated high school in 1990 and who
took the SAT in either their junior or senior year (Dorans 2002). In each of these
cases, the test developers carefully chose the norm group in order to facilitate score
interpretation.

Sometimes the norm group used to set a score scale is chosen, for convenience,
to be a group of individuals who happen to take a test at a particular time. Little
useful information is provided when a student scores above the mean in a group of
convenience. Thus, in this case the score scale does little to help test users interpret
test scores.

9.6 Incorporating Score Precision Information

The number of distinct score points that is used in a score scale can affect score
interpretability. As pointed out by Flanagan (1951), score scale units should “be of
an order of magnitude most appropriate to express their accuracy of measurement”
(p. 746). If too few distinct scale score points are used, precision will be lost. For
example, Flanagan (1951) stated that although being simple and easy to interpret,
stanines “in general are too coarse to preserve all of the information contained in
raw scores” (p. 747). If very many score points are used, then test users might
attach significance to score differences that are small relative to the standard error
of measurement. When a new testing program is started, sometimes few data exist
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that can be used to decide on the number of distinct score points to use. In these
situations, Flanagan’s (1951) general notions might suggest choosing a scale that
has fewer score points than the number of test items, but that has more than a few
score points. Even when few data exist, a rough estimate for reliability often can be
obtained from a convenience sample or from a similar test. The rough estimate of
reliability can be used along with rules of thumb described in the next section for
choosing the number of score points to use. In many testing programs, an operational
scaling is conducted using data from a representative sample of test takers. When
such representative data exist, procedures that are described following the rules of
thumb provide a more comprehensive framework for choosing the numbers of score
points to use.

9.6.1 Rules of Thumb for Number of Distinct Score Points

Rules of thumb have been developed to help choose the number of distinct integer
score points. These rules are designed to lead to a number of score points that is not
so small that score precision is lost, but not so large that test users will be tempted
to interpret small differences in scale scores as being significant.

One rule of thumb was used in developing the Iowa Tests of Educational Develop-
ment (ITED 1958). The scales for the ITED were constructed in 1942, using integer
scores with the property that an approximate 50 % confidence interval for true scores
could be found by adding 1 scale score point to and subtracting 1 scale score point
from an examinee’s scale score. Similarly, Truman L. Kelley (W. H. Angoff, personal
communication, February 17, 1987) suggested constructing scale scores so that an
approximate 68 % confidence interval could be constructed by adding 3 scale score
points to and subtracting 3 scale score points from each examinees scale score. These
confidence interval statements can be translated into the number of discrete score
points.

To implement these rules of thumb, a range of integer scores is found that is con-
sistent with the confidence interval properties as stated. The outcome is the number
of scale score points that is consistent with the integer scores covering a range of 6
standard deviation (σ) units, under the assumption that a 6 standard deviation unit
range covers nearly all of the observed scores. For example, if the rule of thumb
produces scale scores with a desired standard deviation of 5, then the rule suggests
that 30 (6 × 5) integer score points should be used.

To proceed, assume that only linear transformations of raw to scale scores are
being considered, measurement errors are normally distributed, the standard error
of measurement (sem) is constant along the score scale, and the range of scores of
interest covers 6σ units (from −3σ to +3σ). In general, the rules suggest that interest
is in developing a score scale such that

sc ± h. (9.27)
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is a 100γ% confidence interval, where the developer of the scale chooses h and γ .
Let zγ be the unit-normal score used to form a 100γ% confidence interval. Note that
a confidence interval is

sc ± zγsem. (9.28)

Setting the right-hand portions of Eqs. (9.27) and (9.28) equal to one another, h =
zγsem, which implies that

sem = h

zγ
. (9.29)

That is, the desired sem can be calculated from the values of h and γ that are specified
by the investigator. Because sem = σ(Y )

√
1 − ρ(Y, Y ≥), where ρ(Y, Y ≥) is reliability,

it follows that
σ(Y ) = sem√

1 − ρ(Y, Y ≥)
.

Combining this equation with Eq. (9.29),

σ(Y ) = h

zγ
√

1 − ρ(Y, Y ≥)
. (9.30)

The number of score points is then 6σ units.
To implement the rule used with the ITED, for example, h = 1 and γ = .50.

The reader can verify using a normal curve table that when γ = .50, zγ = .6745 .
Assume that ρ(Y, Y ≥) = .91. Applying Eq. (9.30),

σ(Y ) = 1

.6745
√

1 − .91
= 4.94.

Rounding this value of 4.94 to 5 and multiplying by 6, the rule of thumb suggests
that 30 scale score points should be used.

Applying Eq. (9.30) for a test with ρ(Y, Y ≥) = .91, using Kelley’s rule of thumb,
h = 3 and zγ = 1 , so

σ(Y ) = 3

1
√

1 − .91
= 10,

suggesting 60 score points should be used to cover the range of 6σ units.
Applying these rules of thumb, the results, rounded to integers, are given in

Table 9.4 for selected reliabilities. The test lengths calculated for a reliability of
.91 (30 and 60 items) are consistent with those calculated in the preceding examples.
For other reliabilities, the number of score points can be seen to decrease as reliability
decreases. Also, Kelley’s rule of thumb leads to approximately twice as many score
points as the rule of thumb used with the ITED for tests of a particular reliability.

To use these rules of thumb in developing a score scale, the desired confidence
interval properties are stated and the associated number of distinct score points is
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Table 9.4 Numbers of scale score points using rules of thumb

ρ(Y, Y ≥) h = 1, γ = .5 h = 3, γ = .68

.95 40 80

.91 30 60

.84 22 45

.75 18 36

.50 13 25

found. A raw-to-scale score transformation is then found that leads to scale scores
with an integer score range consistent with the number of distinct score points asso-
ciated with the rule. Using the rule of thumb for the ITED, assuming ρ(Y, Y ≥)=.91,
the ITED score scale was constructed using 30 distinct integer scores ranging from 1
to 30. Consistent with Kelley’s rule, the SAT score scale (Donlon 1984) ranges from
200 to 800, with the last digit always being zero. Thus, there are 61 distinct score
points which is very close to the 60 distinct score points suggested by Kelley’s rule
of thumb. Note that these rules of thumb lead only to a desired number of distinct
score points. The rule of thumb leaves open the form of the raw-to-scale score trans-
formation (e.g., linear or nonlinear) and the specific set of distinct scores that are to
be used.

9.6.2 Linearly Transformed Score Scales with a Given Standard
Error of Measurement

Raw scores can be transformed to scale scores using a linear transformation, where the
average standard error of measurement is specified along with one score equivalent.
In this case, Eq. (9.25) can be modified by replacing the standard deviations with
standard errors of measurement as follows,

sc(y) = semsc

semy
y +

[
sc(y1) − semsc

semy
y1

]
, (9.31)

where semsc is the desired average scale score standard error of measurement, semy

is the average raw score standard error of measurement, and the other terms have
been previously defined.

The average raw score standard error of measurement can be calculated from a
reliability coefficient from the relationship sem =σ(Y )

√
1 − ρ(Y, Y ≥). A variety of

reliability coefficients (Feldt and Brennan 1989) could be used. In this chapter, two
classical coefficients, K R-20 and K R-21 are considered explicitly as is an IRT-based
coefficient described by Kolen et al. (1996).



9.6 Incorporating Score Precision Information 405

9.6.3 Score Scales with Approximately Equal Conditional
Standard Errors of Measurement

For the confidence interval properties associated with Eq. (9.28) to hold conditional
on score level, the conditional standard error of measurement should be approxi-
mately constant along the score scale. However, the conditional standard error of
measurement for raw scores on tests is, in general, not expected to be constant (Feldt
and Brennan 1989). For number-correct scores, the standard errors of measurement
tend to be larger in the middle and smaller for low and high scores. However, nonlin-
ear transformations of raw scores can lead to a pattern of conditional standard errors
of measurement that is quite different from that of raw scores (see, for example,
Kolen et al. 1992).

In situations where the conditional standard error of measurement varies along the
score scale, Standard 2.14 of the Test Standards (AERA 1999) states that “conditional
standard errors of measurement should be reported at several score levels if constancy
cannot be assumed” (p. 35). To follow this standard, test developers should, in general,
report standard errors at various score levels when the standard errors of measurement
vary.

In an attempt to simplify score interpretation, Kolen (1988) suggested using a
nonlinear transformation that stabilizes the magnitude of the conditional standard
error of measurement. The result of applying the transformation is to make the
conditional standard errors of measurement approximately equal along the score
scale. With equal conditional standard errors of measurement, test developers would
need only report a single standard error of measurement, and test users would be
able to use a single standard error of measurement when interpreting test scores. In
addition to the situation described by Kolen (1988), the arcsine transformation has
been used with an admissions test (Chang 2006) and with a mixed-format test (Ban
and Lee 2007).

Freeman and Tukey (1950) used the arcsine transformation to stabilize the vari-
ance of binomially distributed variables. The variance of the transformed variable is
nearly equal for a given sample size, over a wide range of binomial parameters. The
transformation suggested by Freeman and Tukey (1950) is

g = g(y|K ) = .5

{
sin−1

[(
y

K + 1

) 1
2
]

+ sin−1

[(
y + 1

K + 1

) 1
2
]}

. (9.32)

In this equation, K is the number of binomial trials, y is the number of successes
in the K trials, and sin−1 is the arcsine function with its arguments expressed in
radians.

This arcsine transformation was used by Jarjoura (1985) and Wilcox (1981) to sta-
bilize conditional error variance using strong true score models discussed in Chap. 3.
Recall that in these models (and in IRT) the distribution of number-correct score
given true score is binomial or compound binomial. Equation (9.32) can be used to
stabilize error variance by replacing y with the number-correct score and K with the

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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number of items on the test. Under strong true score models, scores transformed in
this way can be expected to have approximately equal conditional standard errors of
measurement along the score scale.

To use Eq. (9.32) to develop a score scale that equalizes the conditional standard
error of measurement along the score scale, it is necessary to have an estimate of
the average conditional standard error of measurement for the arcsine transformed
scores. If a strong true score model or an IRT model is fit to the data, Eq. (8.13) (which
was introduced in Chap. 8 to evaluate second-order equity) can be used to calculate
the average standard error and Eq. (8.6) to calculate the associated reliability of these
arcsine transformed scores by treating them as preliminary scale scores.

For the strong true score models described in Chap. 3, Jarjoura (1985) provided
the following expressions for the standard error of measurement of the scores trans-
formed using Eq. (9.32), which is much more direct computationally than Eq. (8.13):

semb|g = 1√
4K + 2

, (9.33)

under the binomial error model, and

semc|g =
√

K − 2k

4K 2 + 2K
, (9.34)

under the beta4 model, where k is Lord’s k term discussed in Chap. 3. For k > 0,
it can be shown that semc|g < semb|g . Lord (1965) suggested using a value of k
that leads to the average standard error of measurement for number-correct scores
being equal to the average standard error of measurement associated with the K R-20
reliability coefficient. Kolen et al. (1992, Eqs. 14 and 15) showed that if sem2

y|K R−20
is set equal to the average error variance using K R-20 as the reliability coefficient,
this value of k can be calculated as

k = K {(K − 1)[σ2(Y ) − sem2
y|K R−20] − Kσ2(Y ) + μ(Y )[K − μ(Y )]}

2{μ(Y )[K − μ(Y )] − [σ2(Y ) − sem2
y|K R−20]}

, (9.35)

where μ(Y ) and σ2(Y ) are the mean and variance of observed scores. They also indi-
cated that sem2

y|K R−20 could be replaced by an error variance consistent with other

reliability coefficients. Taking sem2
y as the error variance and noting that σ2(Y ) −

sem2
y = true score variance and that true score variance = ρ(Y, Y ≥)σ2(Y ),

Eq. (9.35) can be rewritten as

k = K {(K − 1)ρ(Y, Y ≥)σ2(Y ) − Kσ2(Y ) + μ(Y )[K − μ(Y )]}
2{μ(Y )[K − μ(Y )] − ρ(Y, Y ≥)σ2(Y )} . (9.36)

http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_3
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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Lord (1965) showed that if k is set equal to 0, then the resulting standard error of
measurement is consistent with K R-21. So, if K R-21 were substituted for ρ(Y, Y ≥)
in Eq. (9.36), the resulting value of k would equal zero.

To stabilize the conditional standard errors of measurement using the arcsine
transformation, the number-correct scores are transformed using Eq. (9.32). If a par-
ticular standard error of measurement of scale scores is desired, based on Eq. (9.25)
scale scores can be found by linearly transforming the arcsine transformed scores as

sc[g(y)] = semsc

semg
g(y) +

{
sc[g(y1)] − semsc

semg
g(y1)

}
, (9.37)

where g is the arcsine transformed score from Eq. (9.32), semg is the standard error
of measurement of the transformed scores calculated from Eqs. (8.13), (9.33), or
(9.34), sc[g(y1)] is the scale score equivalent associated with a prespecified number-
correct score on Form Y (y1), and semsc is the desired scale score standard error of
measurement.

Alternatively, scale scores with stabilized conditional standard errors of measure-
ment can be calculated to have a particular mean and standard deviation. To do so,
the number-correct scores are transformed using Eq. (9.32), and the mean and stan-
dard deviation of the transformed scores are calculated. Equation (9.25) is used to
linearly transform the scores from Eq. (9.32), using the calculated mean and standard
deviation of the scores from Eq. (9.32) in place of the mean and standard deviation
of raw scores in Eq. (9.25).

9.6.4 Example: Incorporating Score Precision

The data for this example are again the Form K ITBS Maps and Diagrams data.
Relevant summary statistics for these data are presented in Table 9.5. In this table, the
IRT reliability coefficient calculated from Eq. (8.14) is .8338 with an associated raw
score standard error of measurement of 2.0443. The K R-20 reliability coefficient
is .8307 with an associated raw score standard error of measurement of 2.0632.
Consistent with the empirical results presented by Kolen et al. (1996), the IRT-based
reliability coefficient is slightly larger than K R-20. As expected from classical test
theory, K R-21 is somewhat lower and the associated standard error of measurement
somewhat higher than that for K R-20.

The rules of thumb for number of score points can be applied with these data.
Using Kelley’s rule of thumb, h = 3 and zγ = 1, with the IRT-based reliability
coefficient, the desired number of score points can be calculated using Eq. (9.30) as,

6σ(Y ) = 6
3

1
√

1 − .8338
= 44.

http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
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Table 9.5 Summary statistics

Statistic Value

N 2580
K 24
μ(Y ) 14.0066
σ(Y ) 5.0146
σ2(Y ) 25.1461
ρ(Y, Y ≥)I RT .8338
K R-20 .8307
K R-21 .8015
semy|I RT 2.0443
semy|K R−20 2.0632
semy|K R−21 2.2344
Lord’s k (Eq. 9.36) 1.7051
sem I RT |g .0907
semc|g (Eq. 9.34) .0936
semb|g (Eq. 9.33) .1010

The reader should verify that using this rule of thumb, the desired number of score
points is 44 with K R-20 and 40 with K R-21.

Suppose, for example, that interest is in creating a score scale for this test where
a score of 12 corresponds to a scale score of 50 and, consistent with Kelley’s rule
of thumb, the standard error of measurement is 3. Using a linear transformation and
the IRT-based reliability, Eq. (9.31) produces a raw-to-scale score transformation of

sc(y) = 3

2.0443
y +

[
50 − 3

2.0443
12

]
= 1.46y + 32.39.

The linear transformations using standard errors of measurement associated with
K R-20 and K R-21 as the reliability coefficient can be calculated similarly. After
rounding to integers, the conversion tables resulting from applying these equations
are shown in the second, third, and fourth columns of Table 9.6. Note that because the
IRT-based reliability coefficient is greater than K R-20, the conversion table based
on the IRT reliability coefficient covers more scale score points than that for K R-20.
For similar reasons, the conversion table based on the K R-21 coefficient covers even
fewer scale score points.

Now suppose that interest is in creating a score scale for this test such that a
score of 12 corresponds to a scale score of 50, and consistent with Kelley’s rule of
thumb, the standard error of measurement is 3. Suppose also that it is desired that
the conditional standard error of measurement be approximately constant along the
score scale. To create this score scale, first the raw scores are transformed using the
arcsine transformation in Eq. (9.32). The arcsine transformed scores (g) are shown
in the fifth column of Table 9.6. The arcsine transformed scores are then linearly
transformed using Eq. (9.37). Using the standard error of measurement associated
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Table 9.6 Scale score conversions for sem = 3

Linear Nonlinear
Y IRT K R-20 K R-21 g IRT K R-20 K R-21

0 32 33 34 .10 27 28 30
1 34 34 35 .24 32 33 34
2 35 35 37 .32 34 35 36
3 37 37 38 .38 37 37 38
4 38 38 39 .44 38 39 40
5 40 40 41 .49 40 40 41
6 41 41 42 .53 42 42 43
7 43 43 43 .58 43 43 44
8 44 44 45 .62 45 45 45
9 46 46 46 .66 46 46 46
10 47 47 47 .70 47 47 48
11 49 49 49 .75 49 49 49
12 50 50 50 .79 50 50 50
13 51 51 51 .83 51 51 51
14 53 53 53 .87 53 53 52
15 54 54 54 .91 54 54 54
16 56 56 55 .95 55 55 55
17 57 57 57 .99 57 57 56
18 59 59 58 1.04 58 58 57
19 60 60 59 1.08 60 60 59
20 62 62 61 1.13 62 61 60
21 63 63 62 1.19 63 63 62
22 65 65 63 1.25 66 65 64
23 66 66 65 1.33 68 67 66
24 68 67 66 1.47 73 72 70

with the IRT-based reliability coefficient (sem I RT |g) this transformation is

sc[g(y)] = 3

.0907
g(y) +

[
50 − 3

.0907
.79

]
= 33.08g(y) + 23.87.

The transformations using the standard errors of measurement associated with K R-
20 (semc|g) and K R-21 (semb|g) as reliability coefficients can be similarly calcu-
lated. After rounding to integers, the conversion tables resulting from applying these
equations are shown in the last three columns of Table 9.6. Because the IRT-based
reliability coefficient is greater than K R-20, the conversion table based on the IRT
reliability covers more scale score points than that using K R-20. For similar reasons,
the conversion table based on the K R-21 coefficient covers even fewer scale score
points.

The nonlinear transformations in Table 9.6 cover more score points than the linear
transformations. This additional coverage occurs because the arcsine transformation
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effectively stretches the ends of the score scale so that the conditional standard errors
of measurement can be made nearly equal. Note that for the IRT-based reliability
coefficient, the range of scale score points is 47, which is close to the 44 points
suggested by Kelley’s rule of thumb calculated earlier in this section. For K R-20
and the nonlinear transformation, the range of scale scores is 45 points, which is even
closer to that suggested by Kelley’s rule of thumb.

Also, note that there are large gaps in the conversion tables for the nonlinear
methods. For example, for the nonlinear conversion table based on K R-20, there are
no raw scores that convert to scale scores of 68, 69, 70, or 71. This large gap might
be unacceptable in operational testing programs, because test users might complain
that it is unfair that earning a raw score of 24 instead of 23 leads to a 5-point increase
in scale score. For this reason, the scales that arise often are truncated. In the example
just given, it might be decided that a raw score of 23 would convert to a scale score
of 69. Truncating the score scale in this way, however, could cause the conditional
standard errors of measurement to be unequal along the score scale.

9.6.5 Evaluating Psychometric Properties of Scale Scores

Psychometric properties of scale scores, such as reliability and conditional standard
errors of measurement, are influenced by the scale score transformation. Kolen et al.
(1992) demonstrated that test reliability is influenced by the scale transformation, and
that test reliability can be lowered substantially when very few distinct scale score
points are used. They also demonstrated that the form of the raw-to-scale score distri-
bution influences the pattern of the conditional standard errors of measurement. For
example, for a particular situation in which conditional standard errors of measure-
ment for number-correct scores were highest for scores near the middle, conditional
standard errors of measurement for scale scores were highest for the high and low
scale scores.

When comparing the pattern of scale score conditional standard errors of mea-
surement for different scales, the analyses presented by Kolen et al. (1992) suggested
that the pattern of conditional standard errors of measurement depends on where the
score scale is compressed and stretched, relative to the number-correct score scale.
For linear transformations, the pattern of conditional standard errors of measurement
for scale scores is the same as that for raw scores. For nonlinear transformations,
however, the stretching and compressing of the score scale influences the pattern.

For example, refer to the linear IRT and nonlinear IRT score scales in Table 9.6.
Recall that the IRT linear scale was constructed by linearly transforming the number-
correct scores, and then rounding to integers. The pattern of conditional standard
errors for the IRT linear scale is expected to be the same as that for the number-
correct scores (apart from rounding). Relative to the IRT linear scale, the ends of
the scale for the IRT nonlinear scale are stretched. This stretching can be seen by
noting that the raw-to-scale score equivalents for both scales are similar for scores
near the middle; however, at the upper and lower ends, the IRT nonlinear scale scores
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are more extreme. For example, at the upper end, a raw score of 24 converts to a
scale score of 68 for the IRT linear scale and to a 73 for the IRT nonlinear scale.
Because the ends of the IRT nonlinear scale are stretched, conditional standard errors
of measurement are expected to be larger at the extreme scores for the IRT nonlinear
than for the IRT linear scale.

Methodologies for evaluating reliability of scale scores and conditional standard
errors of measurement for scale scores were described by Kolen et al. (1992) using
strong true score theory as a psychometric model and by Kolen et al. (1996) using
IRT as a psychometric model. Wang et al. (2000) generalized the IRT method to
polytomously scored items, and Kolen et al. (2012) generalized the IRT method to
multidimensional composite scores. Other related methods have also been discussed
and evaluated for tests consisting of dichtomously scored items (Brennan and Lee,
1999; Lee et al. 2000, 2006) and for polytomously scored items (Lee 2007). Feldt
and Qualls (1998) developed a general methodology that allows for calculation of
conditional standard errors of measurement of scale scores from raw-score condi-
tional standard errors of measurement and a conversion table. Their method does not
take into account error introduced by rounding.

The Kolen et al. (1996) methodology for estimating reliability of scale scores and
conditional standard errors of measurement for scale scores was described in Chap. 8
in association with Eqs. (8.9) through (8.13), and it is implemented in the computer
program POLYCSEM. The computer program requires input of item parameter esti-
mates for the items on the test, a number-correct to scale score conversion table, and
a distribution of θ, provided in quadrature form.

As an example, this methodology was applied to some of the scales constructed
in the present chapter. In Table 9.5, the IRT-based reliability for Form K of the ITBS
Maps and Diagrams test was .8338. The IRT-based reliability for scale scores that
are linear transformations of raw scores would necessarily be .8338, also. Using
the Kolen et al. (1996) methodology as implemented in POLYCSEM, the IRT-based
reliability of the IRT linear scores obtained using the conversion in the second column
of Table 9.6 was .8323. The slight decrease in reliability is due to rounding scale
scores to integers in Table 9.6. The IRT-based reliability for the IRT linear scores
obtained using the sixth column of Table 9.6 was .8285. The use of a nonlinear
transformation in this case led to a slight decrease in the reliability coefficient.

Conditional standard errors of measurement are shown in Fig. 9.4 for the linear
and nonlinear IRT-based scales from Table 9.6. For the linear scale, the conditional
standard errors of measurement are highest for the middle scores and lower at extreme
scores. The pattern for the nonlinear scale suggests nearly equal conditional standard
errors of measurement along the entire score scale. This finding is as expected,
because the nonlinear transformation that was used was intended to equalize the
conditional standard errors of measurement along the score scale. The stretching of
the ends of the scale mentioned earlier caused the pattern of conditional standard
errors of measurement for the nonlinear scale to be different from the pattern for the
linear scale.

As another example, this methodology was applied to the T -scores shown in
Table 9.3. The IRT-based reliability for these scores was .8251, again only slightly

http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
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Fig. 9.4 Conditional standard errors of measurement for linear and nonlinear scale scores

below that for the number-correct scores. The conditional standard errors of mea-
surement for scale scores using this transformation are shown in Fig. 9.5. For this
transformation, the pattern is that the conditional standard errors of measurement
are smaller for the middle scores and larger at the extreme scores. This pattern is
completely opposite of that for the raw scores. The reason is that normalized scores
stretch the ends of the score scale, relative to the middle, more than does, say, the
arcsine transformation.

As this demonstration illustrates, the pattern of the conditional standard errors of
measurement depends heavily on the form of the raw-to-scale score transformation.
Even when the pattern of conditional standard errors of measurement for raw scores is
concave down, the pattern for scale scores can be nearly flat (arcsine transformation)
or concave up (normalization). Kolen et al. (1992) also showed that the transformation
to θ that is typically used in IRT also produces concave up patterns for the examples
investigated. When, relative to raw scores, the transformation compresses the scale
in the middle and stretches it at the end, the pattern of the conditional standard errors
of measurement will be concave up, even though the pattern for the raw scores was
concave down.

The linear transformation procedures described in the previous section can lead
to a score scale that has a prespecified average standard error of measurement. The
nonlinear procedures described in that section can lead to a score scale with a pre-
specified average standard error of measurement and conditional standard errors of
measurement that are approximately equal along the score scale. The scales that are
created using these procedures typically are rounded to integers, and the scale may be
truncated. In addition, the arcsine transformation leads only to approximately equal
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Fig. 9.5 Conditional standard
errors of measurement for
T -scores
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conditional standard errors of measurement along the score scale. The methodol-
ogy described here is useful for evaluating psychometric properties of scale scores
following the rounding and truncation processes.

9.6.6 The IRT θ-Scale as a Score Scale

The IRT θ-scale, or a linear transformation of that scale, could be used as the score
scale for a test. However, for paper-and-pencil tests, Petersen et al. (1989) pointed
out that the standard errors of measurement for extreme scores are considerably
larger than for scores near the middle. This discrepancy in standard errors can be
much greater than the discrepancy for T -scores shown in Fig. 9.5. As Petersen et al.
(1989) indicated, “measurement error variance for examinees of extreme ability could
easily be 10 or even 100 times that for more typical examinees” (p. 228). Lord (1980,
p. 183) gave a relevant illustrative example. He suggested that the greater amount
of measurement variability associated with using estimates of θ creates problems in
interpreting summary statistics such as means and correlations. In addition, the large
discrepancies in standard errors of measurement can create problems when test users
interpret scores for individuals. For these reasons, scales other than the θ-scale often
are preferable for paper-and-pencil tests and sometimes even for adaptive tests.
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9.7 Incorporating Content Information

According to Ebel (1962), “to be meaningful any test scores must be related to test
content as well as to the scores of other examinees” (p. 18). However, when score
scales are constructed, the direct relationship of the scores to the test content might
be lost. Ebel (1962) suggested that efforts be made to provide content information
along with the scale scores to aid in score interpretation. He suggested constructing
content standard scores, which relate the content of the test to scale scores. Various
efforts have been made to provide content meaning with scale scores. Three types of
procedures are considered here and are referred to as item mapping, scale anchoring,
and standard setting. Each of these methods is intended to help test users understand
what examinees who earn particular scale scores know and are able to do.

9.7.1 Item Mapping

In item mapping, a primary score scale is constructed using one of the methods
already discussed. To enhance the meaning of the scale scores, items are found that
represent various scale score points, and these representative items are reported to
test users. This type of procedure was suggested by Bock et al. (1982) for use in
NAEP. Item mapping, as used in NAEP, is discussed by Beaton and Allen (1992).
Zwick et al. (2001) reviewed and studied item mapping procedures.

One choice made in item mapping is the response probability (RP) level, which is
the probability of a correct response that is associated with mastery for all items on
a test, expressed as a percentage. The mastery level for a specific item is defined as
the scale score for which the probability times 100 of correctly answering the item
equals the RP level. Given the overall RP level, the mastery level for each item in a
set of items can be found. Each item is mapped to a particular point on the score scale
that represents the item’s mastery level. The mastery level for items can be found by
regressing probability of correct response on scale score, using procedures such as
logistic or cubic spline regression, or by using an IRT model.

Additional criteria are often used when choosing which items to report in item
maps. Item discrimination is one such criterion, where items are chosen only if they
discriminate well between examinees who score above and below the score. Item
content is a second often used criterion, where subject matter experts review the con-
tent of each item to make sure that the item appears to be an adequate representation
of test content. The outcome of the item mapping procedure is the specification of
test questions that represent various scale score points.

For some tests a set of items is chosen and used to represent various score points.
For other tests, a sentence or phrase describing each item is presented instead of the
entire item.

As reported by Zwick et al. (2001), the RP level can have a substantial effect on
the item mapping results. According to Zwick et al. (2001) values of RP ranging
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from .50 to .80 have been used for this NAEP application. See Huynh (1998, 2006)
for a discussion of psychometric justifications for choosing RP. The procedures for
item mapping described here apply to dichotomously scored items. Generalizations
for polytomously scored items have been discussed by Donoghue (1996) and Huynh
(1998).

Item maps are reported for the main NAEP assessments. Fig. 9.6 provides selected
portions of an item map that was reported for the 1996 NAEP 4th grade Science
Assessment by O’Sullivan et al. (1997) for multiple-choice items. Methodology for
constructing the item map was discussed by Allen, Carlson, and Zelenak (1999).
The NAEP score scale ranges from 0 to 300. An RP value of 74 % was used for
multiple-choice items for this NAEP item mapping. Complications in NAEP item
mapping include the use of polytomous items and the use of a scale score that is a
composite of subject area scale scores. In NAEP item mapping, a phrase describing
what an examinee can do who correctly answers an item is presented, rather than
the item itself. For example, for the item in Fig. 9.6 that is associated with a scale
score of 185, a total of 74 % of the examinees who earn a scale score of 185 can
be expected to answer the item correctly that measures whether an examinee can
“identify patterns of ripples.” The short-hand description that might be used for test
users is that an examinee who earns a score of 185 can “identify patterns of ripples.”
Or, as another example, an examinee who earns a score of 117 can “recognize a
graph that corresponds to data.”

9.7.2 Scale Anchoring

The goal of scale anchoring is to provide general statements of what students who
score at each of a selected set of scale scorev points know and are able to do. The
scale anchoring process used with NAEP was described by Allen et al. (1999). In
scale anchoring, a set of scale score points is chosen. Typically, these points are
either equally spaced along the score scale or are selected to be a set of percentiles,
such as the 10th, 25th, 50th, 75th, and 90th percentiles. Item maps are created for
a set of items. Items that map at or near these points are chosen to represent the
points. Criteria are also used that require the items to discriminate well around the
point (Beaton and Allen 1992). Subject matter experts review the items that map
near each point and attempt to develop general statements that represent the skills of
examinees scoring at these points. In scale anchoring, it is assumed that examinees
know and are able to do all of the skills in the statements at or below a given score
level. Sinharay et al. (2011) provide statistical criteria for deciding on when scale
anchoring is reasonable.

A scale anchoring process was used to create the ACT College Readiness Stan-
dards for the EXPLORE, PLAN, and ACT tests (ACT 2007). Item mapping proce-
dures were used to associate items with various score ranges. Based on the items that
mapped at each score range, content specialists developed statements of skills and
knowledge demonstrated by students scoring in each range.
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Fig. 9.6 Selected portions
of an item map for the 1996
NAEP fourth-grade Science
Assessment
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A scale anchoring approach also was suggested by Ebel (1962), although he used
scores on a subset of items rather than statements to display performance at each of
the levels. Ebel (1962) selected the most discriminating item from each of 10 content
categories on a Preliminary Scholastic Aptitude Test (PSAT) mathematics test form
to create what he referred to as a scale book. This scale book was used to represent
the test content to test users with a small number of test items. For examinees with
PSAT scores at a selected set of score intervals, the most frequently occurring raw
score on the 10-item set was found. For example, examinees with a PSAT score of
550 would be expected to have a “most probable raw score” of 6 on the 10 item test.
Ebel suggested providing to test users this information relating PSAT scale scores to
raw scores on the 10 items along with the 10 items. In this way, the standard set of
10 items could be used by test users as a statement of what examinees could do who
earned each score.
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9.7.3 Standard Setting

Standard setting begins with a statement of what competent examinees know and
are able to do. Standard setting methods are an attempt to find the score point that
divides those examinees who know and are able to do what is stated from the other
examinees. Standard setting methods have been used to set passing scores for pro-
fessional certification examinations. In these situations, judgmental techniques are
used to find the score point that differentiates those who are minimally competent
to practice in the profession from those who are less than minimally competent.
In achievement testing situations, various achievement levels often are stated, such
as basic, proficient, and advanced. Statements are created indicating what students
who score at each of these levels know and are able to do. Judgmental techniques are
used to find the score points that differentiate among these different levels. Standard
setting methods have been widely researched and discussed. In this chapter, standard
setting is briefly discussed. Refer to Livingston and Zieky (1982) for an extensive
discussion of many of the standard setting methods that are used and to the book
edited by Cizek (2001), and the chapter by Hambleton and Pitoniak (2006). Kane
(1994) provided a conceptual framework for validating performance standards.

Typically, in standard setting techniques, judges are provided with statements
about what subjects know and are able to do, and who might be described in a
particular way (e.g., “proficient”). The judges are also provided with a set of test
questions. A systematic procedure is used to collect information from judges. They
are asked to consider examinees who score just at the score point which divides one
level from the next level. In one often used standard setting method, the so-called
Angoff method, the judges are asked to indicate the proportion of examinees scoring
at this point who would be expected to correctly answer each item. Procedures
are used to aggregate the judgments over items and judges. The outcome of these
procedures typically is a number-correct score on the set of items that represents the
cut-point. Various methods can be used to collect data, to provide feedback to the
judges, to provide normative information to judges, and to aggregate data.

Descriptions of what examinees know and are able to do can be developed as part of
the standard setting process; at other times, NAEP provided expanded descriptions.
For example, with NAEP, the standard setting process is initiated using “policy
definitions,” such as those shown in Table 9.7 (Bourque 1999a). During the standard
setting process, more specific content-based descriptions sometimes were developed
by the judges to help guide the process; at other times the judges were provided
expanded descriptions. Following the standard setting process, sometimes item maps
and other procedures were used by subject matter experts to develop more refined
statements about what students know and are able to do who score at various levels.
Summary content statements for the 1996 NAEP Science Assessment in 4th grade
are shown in Table 9.8. More detailed statements are provided by (Bourque 1999b).
See Reckase (1998) for a description of the process used to set achievement levels for
the 1996 NAEP Science Assessment; see Reckase (2000) for a history of standard
setting in NAEP.
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Table 9.7 NAEP policy definitionsa

Level Policy definition

Basic This level, below proficient, denotes partial mastery of the knowledge, and
skills that are fundamental for proficient work at each grade–4, 8, and 12

Proficient This central level represents solid academic performance for each grade tested–
4, 8, and 12. Students reaching this level have demonstrated competency over
challenging subject matter and are well prepared for the next level of schooling

Advanced This higher level signifies superior performance beyond proficient grade-level
mastery at grades 4, 8, and 12

a From Bourque (1999a, p. 739)

Table 9.8 1996 NAEP science summary achievement level descriptions at Grade 4a

Level Description

Basic Students performing at the Basic level demonstrate some of the knowledge and
reasoning required for understanding of the earth, physical, and life sciences at
a level appropriate to Grade 4. For example, they can carry out simple inves-
tigations and read uncomplicated graphs and diagrams. Students at this level
also show a beginning understanding of classification, simple relationships,
and energy

Proficient Students performing at the Proficient level demonstrate the knowledge and rea-
soning required for understanding of the earth, physical, and life sciences at a
level appropriate to Grade 4. For example, they understand concepts relating
to the Earths features, physical properties, and structure and function. In addi-
tion, students can formulate solutions to familiar problems as well as show a
beginning awareness of issues associated with technology

Advanced Students performing at the Advanced level demonstrate a solid understanding
of the earth, physical, and life sciences as well as the ability to apply their
understanding to practical situations at a level appropriate to Grade 4. For
example, they can perform and critique simple investigations, make connections
from one or more of the sciences to predict or conclude, and apply fundamental
concepts to practical applications

a From Bourque (1999b, p. 763)

9.7.4 Numerical Example

A numerical example of how to construct item maps is provided in Table 9.9 for
data based on Form K of the ITBS Maps and Diagrams test that was used in earlier
examples. This example uses the three-parameter logistic IRT model. The mapping
could have been accomplished using non-IRT procedures or a different IRT model.
For this item mapping, the item parameters were estimated as in Chap. 6. Based on
these item parameter estimates, the item mastery level on the θ-scale for a particular
R P-level on item j can be found from the three-parameter logistic model equation,
assuming the probability (R P/100) is known, by solving for θ using the following
equation:

θ j (R P) = b j − 1

Da j
ln

(
1 − c j

R P/100 − c j
− 1

)
. (9.38)

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
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Table 9.9 Example of item mapping (items sorted by mastery level)

θ-Mastery level True number- True scale
Item for R P = 75 % Correct score Score

1 −1.21 7.89 151.93
5 −.50 11.39 165.83
7 −.42 11.81 167.43
9 −.35 12.21 168.93
8 −.34 12.26 169.08
13 −.29 12.54 170.13
4 −.19 13.10 172.14
11 .00 14.12 175.71
6 .18 15.12 179.22
3 .30 15.75 181.48
23 .50 16.77 185.34
10 .51 16.78 185.42
19 .52 16.87 185.76
20 .59 17.20 187.14
2 .66 17.53 188.61
15 .73 17.83 189.99
22 1.09 19.33 198.50
12 1.25 19.92 202.75
24 1.42 20.48 207.59
14 1.45 20.59 208.58
17 1.64 21.19 214.70
18 1.92 21.90 223.16
16 2.13 22.36 229.19
21 2.95 23.37 244.12

The mastery levels on the θ-scale calculated using this equation are shown in the
second column of Table 9.9. Note that the items are sorted by their mastery level.
In the third column, the mastery level on the true number-correct score scale was
calculated by finding the value of the test characteristic curve (see Eq. (6.16)) at the
mastery level. The true scale score was calculated using the methodology described
in Chap. 8.

Assuming that scores are to be reported as scale scores, the mastery levels on this
scale are of principal interest. An item map, like that shown in Fig. 9.6, could be
constructed for these items on the score scale. Such a map might show item 5 at a
scale score level of 166, item 7 at 167, item 9 at 169, etc.

Note that if a different R P value had been used, the items would have mapped
to different score points. Note also that with the three-parameter logistic model, the
order of the items in the item mapping depends on the R P value as well. For example,
the item ordering would be different in this example if an R P value of .65 had been
used.

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
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These data might also be used for scale anchoring. Suppose it was desired to
anchor the scale at score levels 170, 190, and 210. In this case, subject matter experts
might be given the items near 170 (e.g., that map within 5 points of 170), maybe
items 5, 7, 9, 8, and 4, and asked to develop a statement of what examinees who
correctly answer these items know and can do. For a score of 190, a similar process
could be followed using items 19, 20, 2, and 15. For a score of 210, items 24, 14,
and 17 would be used.

As another example, suppose that a standard setting process had been used for this
test to distinguish mastery from non-mastery. In this case, a score would have been
identified as the minimum cut-score. Suppose the standard setting study indicated
that a true score of 15 or higher constituted mastery. In this case, the IRT ability cor-
responding to a true score of 15 would be found using the iterative process described
as part of the IRT true score equating procedures in Eq. (6.19). The true scale score
corresponding to the theta value could be found using the methodology described in
Chap. 8. In the example, a true number-correct score of 15.12 corresponds to a true
scale of 179.22. A scale score of around 179 would be used as the minimum score
to pass the test.

9.7.5 Practical Usefulness

Although much effort has been expended in developing procedures for interpreting
scale scores in terms of what students know and are able to do, investigators have
questioned the usefulness of the resulting statements. Forsyth (1991), in consider-
ing whether the content information provided on NAEP meets the goal of accu-
rately describing what examinees can and cannot do, argued that “NAEP, despite its
claims, has not achieved this goal to any reasonable extent” (p. 9). He further argued
that unless the content domains are very well defined, providing useful content-
based information in terms of item mapping or scale anchoring may be unattain-
able. His argument was based on a detailed analysis of NAEP scale anchoring and
item mapping results. Pellegrino et al. (1999) argued that the current process for
setting NAEP achievement levels is flawed, in part because they believe that the
process is overly subjective and the judges are given a difficult and confusing task.
Hambleton et al. (2000) disputed the arguments made by Pellegrino et al. (1999). In
any case, Ebel’s (1962) goal of attaching content meaning to scale scores is an impor-
tant one. As Forsyth (1991) stated regarding being able to describe what examinees
can and cannot do, “teachers have pleaded for such measures for decades” (p. 9).

9.8 Maintaining Score Scales

Equating methods are used to maintain score scales as new forms are developed.
Over time, however, the normative, score precision, or content information that was
originally incorporated into a score scale can become less relevant. The norm group
that was central to score interpretation initially might be of less interest. Also, the

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
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content of a test might slowly evolve, with the cumulative effect being that forms
used in one year might have somewhat different content than forms used a few years
later.

As Petersen et al. (1989) suggested, professional certification tests are especially
affected by the evolution of test content. With these types of test, a passing score
is often set using standard setting methods with an initial test form. Over time, the
profession might change in its emphases, knowledge bases, and legal context. Due to
these changes, some items and content become less relevant. It is even possible for
the keyed answer to an item to change due to changes in relevant laws. Although an
equating process can be used to maintain the score scale over time, the cumulative
effects of changes might make the scores from one form have different meaning from
scores on earlier forms. These changes also can lead the testing agency to question
the relevance of the standards that were set initially. When it is judged that these
changes have caused the standards to lose their meaning, a study can be conducted
to set new standards.

Changes in norm groups also can contribute to score misinterpretation. For exam-
ple, when the SAT scale was established in 1941, the mean Verbal and Mathematical
scores were set at 500 for the group of examinees who took the test that year. This scale
was maintained through the mid-1990s. In the early 1990s, the mean Mathematical
score was lower than 500, due in part to changes in the composition of the group
of examinees who take the SAT (Dorans 2002). A test user, thinking that the mean
in, say, 1992 was 500, might erroneously conclude that an examinee scoring 490
was below average, when, in reality, this student was above average among the 1992
examinees. In addition, the content of the SAT had changed subtly over time. As
indicated by Cook (1994), due to changes in test content, “it is difficult to think of
scores on the current SAT as comparable to scores on the version of the SAT that
was administered in 1941, even with the effective equating plan that has been used
over the years to maintain score comparability” (p. 3). Concern about possible score
misinterpretation led the Educational Testing Service to rescale the SAT, which was
referred to as “recentering.” The new scale was set at a mean of 500 for students
who graduated high school in 1990 and who took the SAT in either their junior
or senior year in high school (Dorans 2002), and was first used in the April 1995
administration. For similar reasons, the ACT was rescaled in 1989 (Brennan 1989).

Some testing programs periodically adjust the scaling of their tests. For example,
new editions of the the ITBS are released approximately every seven years. For each
new edition, the developmental scale scores are based on scores for examinees in a
national norming study. By periodically adjusting the scale scores, the ITBS scale
scores are always referenced to a recent norm group.

Rescaling a test (or setting new standards) makes it difficult to compare scores from
before and after the rescaling. Often a study is conducted to link the two scales to help
test users make the transition. Because the development of a new score scale causes
complexities in score interpretation, the decision about whether to rescale can be
difficult. The decision involves weighing possible score misinterpretations associated
with the old scale against the possible complexities associated with adopting a new
scale. The effect of the changes on test users often is a prime consideration in making
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this choice. As the examples considered suggest, the decision on when to rescale
depends on the context in which the testing program operates.

9.9 Scales for Test Batteries and Composites

Test batteries consist of tests in various areas, and separate scores are provided for
each area. Sometimes composite scores are calculated, which are combinations of
scores from some or all tests in the battery. When the processes of test construction,
scaling, and norming are handled similarly for each of the tests in the battery, the
comparison of examinee scores across tests in the battery and the computation of
meaningful composite scores are facilitated.

9.9.1 Test Batteries

When norms are used to scale a test, typically the same norm group is used for
all of the tests in the battery. Often the scale is constructed so that the scale score
distributions on the tests in the battery are identical for the norm group. In this case,
relative strengths and weaknesses of examinees can be found directly by comparing
scores on the different tests. For example, when the SAT was rescaled, the Verbal and
Mathematics scores were normalized and the scale on each test set to have a mean of
500 and standard deviations of 110 as discussed previously (Dorans 2002). Because
the score distributions are nearly the same on the two tests, an examinee’s score
on the Verbal test can be compared directly to his or her score on the Mathematics
test. For example, consider an examinee scoring 500 on the Verbal test and 610 on
the Mathematics test. Because the scores were normalized with a mean of 500 and a
standard deviation of 110, this student’s score is near the 50th percentile on the Verbal
test and near the 84th percentile on the Mathematics test. Relative to the norm group
of those who graduated high school in 1990 and who took the SAT in either their
junior or senior year in high school, this examinee ranks higher on the Mathematics
test than on the Verbal test.

Some primary score scales for batteries are constructed by emphasizing charac-
teristics other than identical score distributions across the tests. For example, in the
ACT rescaling (Brennan 1989), the score scale was set to have a mean of 18 for
each test, with constant standard errors of measurement across the score scale. This
process led to the standard deviations being unequal across tests. In addition, the
distributions were not normalized. Because of the way this test was scaled, scores on
different tests cannot be directly compared to each other. Consider an examinee who
scores 22 on the ACT English test and 25 on the Mathematics test. This examinee is
above the mean on both tests. However, relative to the norm group, there is no way
to be sure on which test the examinee ranks higher.
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For tests like the ACT, percentile ranks on each of the tests in a relevant norm
group often are presented. These percentile ranks function as auxiliary score scales.
When the norms across tests in a battery are based on the same norm group, then
the percentile ranks can be used to assess relative strengths and weaknesses. For
example, based on a 1995 norming study, the percentile rank of a score of 22 on
ACT English was 75 among college-bound high school students (ACT 2007); the
percentile rank of a score of 25 on ACT Mathematics was 90. From these percentile
ranks, the examinee who scored 22 on English and 25 on Mathematics ranked higher
in this norm group in Mathematics than in English.

9.9.2 Composite Scores

Composite scores reflecting performance on two or more tests are often reported.
Composite scores typically are a linear combination of either raw or scale scores on
the different tests. For example, on the ACT, the Composite score is the average of
the English, Mathematics, Reading, and Science scale scores. The Composite score
for the ACT is intended to reflect general educational development over the four
areas measured by the ACT.

The contribution of individual tests to a composite score can be indexed by the
effective weights previously introduced in Eq. (9.20) by defining t and t ≥ as tests that
are part of the composite. A special case of Eq. (9.20) involves using equal weights
for the tests. Without loss of generality, the equal weights can be assumed to equal 1.
In this case, Eq. (9.20) simplifies to

ewt =
σ2(Yt ) + ∑

t �=t ≥
σ(Yt , Yt ≥)

∑
t

[
σ2(Yt ) + ∑

t �=t ≥
σ(Yt , Yt ≥)

] . (9.39)

The numerator of Eq. (9.39) sums a column of the variance-covariance matrix among
the scale scores on the tests. The denominator sums all of the elements in the variance-
covariance matrix. Note that large effective weights tend to be associated with a test
having a large variance, since the variance is in the numerator. Large effective weights
also tend to be associated with large covariances with the other tests.

An example of Eq. (9.39) is given in Table 9.10. This table is based on data from
the 1988 ACT norming study reported by Kolen and Hanson (1989, p. 53). The
ACT Composite is calculated as the sum of the four scores divided by 4. Because
the weights are equal, Eq. (9.39) can be used. The body of the table contains the
variance-covariance matrix for scale scores. The row labeled column sum calculates
the value in the numerator of Eq. (9.39). The denominator equals 331.2, which is the
sum of the 4 column sums. The last row of the table gives the proportional effective
weights, which are calculated by dividing the column sum by 331.2.
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Table 9.10 ACT assessment effective weights calculation

Variance-covariance matrix
English Math Reading Science

Reasoning

English 27.7 17.0 25.6 15.8
Mathematics 17.0 20.8 18.2 13.1
Reading 25.6 18.2 41.8 21.0
Science reasoning 15.8 13.1 21.0 19.5
Column sum 86.1 69.1 106.6 69.4
Proportional effective weight .26 .21 .32 .21

The proportional effective weight for Reading is .32, which is larger than the other
effective weights. The main reason that Reading has a larger effective weight is that
it has a variance of 41.8, which is greater than the variances of the other tests: 27.7,
20.8, and 19.5. This finding suggests that the Reading test contributes more to the
Composite variance than do any of the other tests. The larger weight for Reading is
primarily a result of the scaling process used for the ACT test battery that led to a
higher standard deviation for Reading.

When tests are scaled to have the same variances and tests have equal nominal
weights, the nominal and effective weights differ only due to the covariances. In
these cases, as long as the correlations (and hence covariances) among the tests are
similar to one another, the nominal and effective weights will be similar.

When the individual tests are scaled to have the same mean, variance, and score
distribution, the distributional form of scores for the composite likely will be different
from that of the tests. In such cases, the composites might be rescaled to have the
same distribution as the test scores.

9.9.3 Maintaining Scales for Batteries and Composites

Over time, the scale scores for tests in a test battery become less comparable. One of
the reasons that the SAT was rescaled was because the mean Verbal and Mathematics
scores differed considerably for the groups who took the test (Dorans 2002).
The rescaling was conducted to ensure that the score distributions for both tests were
the same for a recent group of test users. As the user groups change, however, the
score distributions for Verbal and Mathematics will likely diverge. At some point,
the score distributions will differ enough that scores on the two tests will not be
comparable. At that point, either test users will need to be cautioned against com-
paring scores, or another rescaling will be needed. However, even if the Verbal and
Mathematics scores cannot be compared, percentile ranks in a relevant norm group
could be used to compare Verbal and Mathematics scores.
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When new forms are introduced, the test scores are equated to maintain the score
scale. Typically, the composite scores are not separately equated. However, equating
the test scores does not ensure that the composite scores are equated. If the corre-
lations between scores on a new form differ from those on the old form, then the
composites likely will not have identical score distributions on the old and new forms,
regardless of the equating method used.

Thomasson et al. (1994) encountered this issue when equating new forms of the
ASVAB. Table 9.11 presents some of their results for equating ASVAB Form 21a to
Form 15h. Three tests are considered, Mechanical Comprehension (MC), General
Science (GS), and Auto-Shop (AS). The forms for these tests were equated using
equipercentile methods, and the resulting scale score means and standard deviations
are shown in the first six rows of the table. The means and standard deviations differed
by no more than .1 from Form 15h to Form 21a, suggesting the equating of the tests
worked well. The next three rows of the table provide correlations between the tests.
The correlations between the tests in all cases were higher for Form 15h than for
Form 21a. The Air Force M composite, which is one of many composites used by
the military, is calculated by adding MC, GS, and 2 times AS and then rounding the
result to an integer. As can be seen, the standard deviation for Form 15h is more than
1 point larger than the standard deviation for Form 21a. Thomasson et al. (1994)
suggested that a difference of this magnitude could have practical implications for
use of the Air Force M composite. This example illustrates that even when tests
are equated, composite scores might not be comparable. The difference in standard
deviations for the composite on the two forms can be traced directly to the differences
in correlations between the pairs of tests. When composites are created for tests
in a battery, it is important to check whether the composites are also comparable.
Although equating procedures could be applied to composite scores, this process
typically is not followed.

9.10 Vertical Scaling and Developmental Score Scales

In vertical scaling, tests that differ in difficulty, but that are intended to measure similar
constructs are placed on the same scale. Vertical scaling is used with elementary
school achievement tests, which is the primary use considered in this section.

When assessing educational achievement or aptitude for grade-school students, it
is often important to be able to estimate the extent to which students grow from one
year to the next and over the course of their schooling. Growth might be assessed by
administering alternate forms of the same test each year, and charting growth in test
scores from year-to-year and over multi-year periods. Students learn so much during
their grade school years, however, that using a single set of test questions over a
wide range of educational levels can be problematic. Such a test would contain
many items that are too advanced for students at the early educational levels and
too elementary for students at the later educational levels. Administering items that
are too advanced for students in the early grades could cause the students to be
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Table 9.11 Summary statistics for ASVAB forms 15h and 21a

Statistic Form 15h Form 21a

MC-Mean 51.90 52.00
GS-Mean 50.80 50.90
AS-Mean 50.90 50.90
MC-SD 9.30 9.30
GS-SD 8.60 8.60
AS-SD 8.90 9.00
r (MC,AS) .65 .58
r (MC,GS) .67 .60
r (AS,GS) .58 .36
Air Force M-SD 26.00 24.90

overwhelmed. Administering many items that are too elementary for students in
the upper grades could cause the students to be careless or inattentive. In addition,
administering many items that are too advanced or too elementary is not an efficient
use of testing time.

To address these problems, educational achievement and aptitude tests often are
constructed using multiple levels. Each test level is constructed to be appropriate for
examinees at a particular point in their education, often defined by grade or age. To
measure student growth, performance on each of the test levels can be related to a
single score scale. The process used for associating performance on each test level
to a single score scale is vertical scaling and the resulting scale is a developmental
score scale or vertical scale.

Equating cannot be used to conduct vertical scaling. Recall that the goal of equat-
ing is to be able to use scores on alternate forms interchangeably. Because of differ-
ences in content and difficulty for test levels, it is unlikely that scores on different
test levels could be used interchangeably. For example, in an achievement test, the
questions on a test level appropriate for eighth graders are designed to be more diffi-
cult than the questions on a test level appropriate for third graders. So, eighth graders
would be measured more precisely on the test level appropriate for eighth graders
than on the test level appropriate for third graders. In addition, the content of a test
level appropriate for eighth graders would be more appropriate for eighth graders
than for third graders. Thus, equating is not appropriate, because scores earned on
different test levels would not be able to be used interchangeably.

Due to interest in assessing growth, there has been a considerable amount of
research on vertical scaling. See Carlson (2011), Harris (2007), Kolen (2006), Patz
(2007), Patz and Yao (2007a, b), Tong and Kolen (2010), Yen (2007), and Young
(2006) for recent general discussions of issues associated with vertical scaling.

In this section, vertical scaling methods and designs are discussed. The type of
domain being measured and the definition of growth are considered. Methodology
is presented for three data collection designs. Three types of statistical procedures
are considered. The methodology used in vertical scaling is much more complicated
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than that used in equating. In addition, there are a large number of decisions that
must be made in the process of conducting the scaling. Because of the large number
of possibilities in implementing vertical scaling methods, this section will only be
able to provide a general framework and discuss the types of decisions that are made.

This section then provides a survey of research on vertical scaling. Unfortunately,
the research is sparse and provides minimal guidance for making many of the required
decisions. The chapter concludes with a discussion on measuring growth. A frame-
work for vertical scaling is presented. This framework is intended to help future
researchers fill in many of the gaps in the research so that decisions about designs
and statistical methods can be made based on a stronger research foundation.

9.10.1 Structure of Batteries

Vertical scaling procedures are often used with elementary achievement test batteries,
such as the ITBS (Hoover et al. 2003) and with grade level testing programs in states
in the U.S. They are also used with elementary aptitude batteries such as the Cognitive
Abilities Test (CogAT) (Lohman and Hagen 2002). These batteries contain tests in
a number of areas, and they are used with students in a range of grades.

For achievement batteries, students at each grade level are administered test ques-
tions designed to assess achievement over content that is relevant for that grade level.
Moving from assessments that are used at earlier grades to those used at later grades,
the test questions become more difficult, and the content becomes more advanced.
In some cases, the content covered at later levels is quite different from the content
covered at earlier levels.

Often, there is overlap of test questions from one test level to the next. The
primary reason for the overlap is that the content is taught across grades. Also, doing
so reduces the test development burden, because the same items are used on adjacent
test levels.

Figure 9.7 illustrates this overlap, showing the structure of a test such as the ITBS.
The test illustrated in Fig. 9.7 covers grades 3 through 8. This test contains 7 blocks
of items, labeled a–g. Blocks a and b are administered as part of the grade 3 test
level, blocks b and c as part of the grade 4 test level, blocks c and d as part of the
grade 5 test level, and so on. Beginning with the grade 4 test level, each test level has
a block of items in common with the previous level. For example, block b contains
the more advanced content on the grade 3 test level and the less advanced content on
the grade 4 level.

At least two alternate forms of these tests typically are constructed and used so
that individuals do not receive the same items in consecutive years. For example, if
Forms A and B were constructed, Form A might be administered in year 1 and Form
B in year 2. A third grader in year 1 would receive Form A. When that third grader
becomes a fourth grader in year 2, he or she would receive Form B. Assuming Forms
A and B contain none of the same items, this examinee would receive different items
in the third and the fourth grades. Thus, alternate forms avoid the problem of the
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examinee being administered some of the same items in two years, which would
have happened if Form A had been administered in years 1 and 2.

Note that the design in Fig. 9.7 is a fairly simple test design. More complex designs
for collecting data for vertical scaling are considered later in this chapter.

9.10.2 Type of Domain Being Measured

The extent to which the subject matter covered by a test is tied to the school curriculum
can influence the choice of methodology for vertical scaling. Most areas included
on aptitude tests, and some areas tested on educational achievement tests, are not
closely tied to the educational curriculum. For example, vocabulary, which is often
assessed on aptitude and achievement batteries, tends not to be taught systematically
by grade level—at least not throughout the U.S.

Other achievement test areas are closely tied to the curriculum in schools. For
such tests, students tend to score better on the new subject matter near the end of
the year in which the subject matter is emphasized than they do at the end of the
previous year. For this reason, the amount of growth shown on the new subject matter
is greater than the amount of growth shown in subject matter introduced in previous
years.

For example, in the mathematics computation area, “division with whole num-
bers” is typically covered in grades 3 and 4. “Addition with decimals” is typically
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covered in grades 5 and 6. Thus, based on what students are studying in school,
students in grades 3 and 4 are expected to show considerable growth on test items
covering “division with whole numbers.” Less growth is expected on these test
items in grades 5 and 6. Students in grades 3 and 4 are expected to do poorly on
items covering “addition with decimals” and show little growth from previous years.
More growth is expected on items covering “addition with decimals” in grades 5 and
6.

Refer to Fig. 9.8 for an illustration of how, in an area such as mathematics com-
putation, growth might be shown in the different subject matter areas. In this figure,
item blocks from Fig. 9.7 are shown along with grade 3 through grade 6. A “+”
indicates those blocks administered at each grade. A “0” indicates which blocks are
not administered. As shown in Fig. 9.8, “division with whole numbers” items are
administered to third- and fourth-grade students as part of block b. “Addition with
decimals” items are administered to fifth- and sixth-grade students as part of block
d. This figure illustrates that for subject matter areas like mathematics computation,
students are administered items that closely relate to what they have been studying
in school.

For example, a student who is tested at the beginning of fifth grade with the
appropriate test level will show growth based on the material studied during fifth
grade, including “addition with decimals.” What if this fifth-grade student was tested
using the fourth-grade level? In this case, the student would not have the opportunity
to show growth based on what was learned about “addition with decimals,” since
these items were not included on the fourth-grade level. Thus, this fifth-grade student
might be expected to demonstrate less growth on the fourth-grade level than on the
fifth-grade level. Conceptually, this example suggests that students will tend to show
different amounts of growth depending on which level they are administered when
a test area is closely tied to the curriculum. Thus, the amount of growth shown by
students in a particular grade is expected to vary across sub-content areas within
the test area. By contrast, when an achievement test area is not closely tied to the
curriculum, the amount of growth shown by students in a particular grade is expected
to be similar across sub-content areas.

9.10.3 Definition of Growth

One crucial component in constructing a vertical scale is to develop a conceptual
definition of growth, especially for test areas that are closely related to the school
curriculum. Under what is referred to here as the domain definition, growth is defined
over the entire range of test content covered by the battery, or the domain of content.
Defined in this way, the domain includes content that is typically taught during a given
grade as well as content that is typically taught in other grades. Thus, grade-to-grade
growth is defined over all of the content in the domain.

One way to operationalize the domain definition involves administering all levels
of the test battery to examinees in each grade. So, for example, in Fig. 9.8 all item
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Fig. 9.8 Illustration of the structure of a grade level mathematics test

blocks (blocks a through g) are administered to students in each grade. Raw scores
over all levels are calculated and transformed to a score scale to be used for score
reporting. Following this process allows students from all grades to be ordered on
the same scale. Grade-to-grade growth is defined as the change in scores from one
grade to the next over the entire domain of content.

As suggested earlier, however, operationalizing growth in this way is difficult
to implement in practice, because the test is too long and many questions are too
difficult for some examinees and too easy for others. As discussed in the next section,
more practical procedures can be used to operationalize growth under the domain
definition.

Under what is referred to here as the grade-to-grade definition, growth is defined
over the content that is on a test level appropriate for typical students at a particular
grade. Growth from the beginning of grade 3 to the end of grade 3 might be assessed
using only the content on the third-grade level of a test, which is item blocks a and
b in Fig. 9.8.

One way to operationalize the grade-to-grade definition is to administer the level
of the test designed for each grade at the beginning of that grade and at the beginning
of the next grade. Using the common items to link the levels together, these data
are used to transform scores on each level to a score scale used for score reporting.
Grade-to-grade growth is defined as the change from one grade to the next over the
content taught in a particular grade.

The grade-to-grade definition of growth defines growth over content that is part
of the curriculum in a particular grade. Under the domain definition of growth,
average growth is defined over the content that is covered across all of the grades.
For subject matter areas that are closely related to the school curriculum, growth
observed between adjacent grades will tend to be different under the grade-to-grade
definition from under the domain definition. If the content area of the test is closely
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tied to the curriculum, then the two definitions are expected to lead to different scaling
results. Otherwise, the scaling results are expected to be similar.

The actual situation is even more complex than the preceding discussion suggests.
When conducting scaling, the observed average grade-to-grade growth depends on
the nature of the area to be assessed, the definition of growth that is used, how the
data are collected, on the characteristics of the score scale that is used, and on the
statistical methods that are used to conduct the scaling.

9.10.4 Designs for Data Collection for Vertical Scaling

A variety of designs can be used for vertical scaling. In this section, three designs that
have been used with achievement test batteries are considered. Many variations of
these designs are possible (see Carlson 2011, for some variations), and only a simple
version of each design is considered. The implementation of statistical vertical scaling
methods are illustrated with these designs. Later in this chapter, designs that make
use of a variable section are considered.

Taking advantage of the overlapping structure of elementary achievement and
aptitude test batteries, a common item design can be used to conduct the scaling.
Following this design, each test level is administered to examinees at the appropriate
grade. Examinee performance on the items that are common to adjacent test levels
are used to indicate the amount of growth that occurs from one grade to the next.
The data from this design can be used to place scores from all of the test levels on a
common scale.

This design is illustrated in Fig. 9.9. Note that the grades are now given as rows
in the figure, and item blocks as columns. To implement this design, one test level
is considered as the base level. The item blocks that are common between adjacent
levels are used to link scores from the adjacent levels. A chaining process is used
to place scores from all of the levels on the base level. For example, if the grade 3
level is chosen as the base level, the grade 4 level is linked to the grade 3 level using
item block b. The grade 5 level is linked to the grade 4 level using item block c. The
grade 5 level is linked to the grade 3 through the grade 4 level using a linking chain.
A similar process is used to link the grade 6, 7, and 8 levels to the base level.

In the equivalent groups design, examinees in each grade are randomly assigned to
take either the test level designed for their grade or the test level designed for adjacent
grades. In one variant of this design, to avoid administering test questions that are
too difficult, examinees in each grade (except the lowest) are randomly assigned to
take the test level designed for their grade or the test level designed for one grade
below their grade. Random assignment is often achieved using spiraling.

This variant is illustrated in Fig. 9.10. Randomly equivalent groups of examinees
are administered the level appropriate for their grade and the level below their grade.
So, fourth graders are randomly assigned to take either the third- or the fourth-
grade test level, fifth graders are randomly assigned to take either the fourth- or the
fifth-grade test level, and so forth. By chaining across grades, the data from this



432 9 Score Scales

Examinee  
    From  
    Grade

3

4

5

6

7

8

a b c d e f g

a b

b c

c d

d e

e f

f g

Item Block

Fig. 9.9 Illustration of a common-item design

Examinee  
    From  
    Grade

4

a b c d e f g

a b

b c

c d

d e

e f

f g

Item Block

b c

c d

d e

e f

5

(random group)

(random group)

(random group)

(random group)

6
(random group)

(random group)

7
(random group)

(random group)

8
(random group)

(random group)

Fig. 9.10 Illustration of an equivalent groups design



9.10 Vertical Scaling and Developmental Score Scales 433

administration also are used to place scores from all of the test levels on a common
scale. Note that this design does not necessarily make use of the items that are
common from one level to the next.

In the scaling test design, a special test is constructed that spans the content across
all of the grade levels. This scaling test is constructed to be of a length that can be
administered in a single sitting. For example, if a scaling test is constructed for a
battery that is designed for grades 3 through 8, the scaling test is constructed to
represent the content covered in grades 3 through 8. Students in all of the grades are
administered the same scaling test. Because many items are too difficult for students
in the early grades, special instructions are given to the students telling them that
there will be difficult items on the test and that they should do their best. Data from
the scaling test are used to construct the score scale. Each examinee taking the scaling
test also takes the test level designed for their grade. These data are used to link scores
on each test level to the scale.

In the scaling test design illustrated in Fig. 9.11, note that examinees in all grades
are administered the scaling test (st). Each examinee is also administered the test
level appropriate for her or his grade. The score scale is defined using scores on the
scaling test. Scores on each test level are linked to the scaling test.

Among the designs just considered, the common-item design is the easiest to
implement when the test battery contains items that are common to adjacent levels.
In this case, the common-item design is implemented using standard administration
conditions with the standard test battery. The equivalent groups design also uses
the standard test battery, but requires a special administration in which test levels
designed for adjacent grades are spiraled. Of the three designs discussed here, the
scaling test design is the most difficult to implement. The scaling test design requires
construction of a scaling test, and requires a special administration in which the
scaling test and the appropriate test level are administered to students in each grade.

One major problem with the common-item design is that it is subject to context
effects. In a standard administration, the common items between adjacent levels
typically are placed at the end of the test for the lower level and at the beginning of
the test for the higher level. Likely items will behave differently when administered
at the beginning of a testing session as opposed to at the end of a testing session.
These sorts of context effects can create systematic error in the linking using the
common-item design. The equivalent groups design need not be affected by this
problem, because the linking of adjacent test levels can be based on random groups,
rather than on common items. Similarly, the scaling test design need not be affected
by the context effects associated with the common items, because the linking of each
test level to the scaling test can be based on the same examinees taking the test level
and the scaling test.

Although it is the most difficult to implement of the three designs, the scaling test
design has the advantage of explicitly considering the domain definition of growth.
As discussed earlier in this chapter, under this definition, growth is defined over the
content covered across all grades. The scaling test has the advantage that it explicitly
orders students from all grades on a single domain. The other two designs do not
allow for an explicit ordering because examinees in all grades do not take the same
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test questions. Especially for content areas that are closely tied to the curriculum, the
scaling test design can be expected to produce scaling results that are different from
those produced by the other two designs.

9.10.5 Test Scoring

Scores on vertically scaled tests typically are calculated in two steps. In the first
step, a raw score is calculated. In the second step, the raw scores are transformed
to scale scores. Traditionally, the raw score has been the total number-correct score
for dichotomously scored tests or the total number of points for tests that have
polytomously scored items, like those containing constructed response items. For
tests that are IRT-based, the raw score can be a θ̂ or it can be a summed score or
weighted summed score.

The transformation of raw scores to scale scores can be linear or nonlinear. In
traditional methods, a nonlinear transformation is typically used that is designed to
lead to an educationally appropriate score scale. For example, when grade equivalents
are constructed, the median raw score at the beginning of grade 3 might be assigned
a scale score of 3.0, the median raw score at the beginning of grade 4 a scale score
of 4.0, and so forth. Raw-to-scale score conversions for scores between these score
points might be assigned by interpolation. A conversion resulting from this process is
almost certainly nonlinear. Other traditional score scales might be constructed, with
it nearly always being the case that the raw-to-scale score conversions are nonlinear.
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In IRT, when θ̂ is used as a raw score, the raw-to-scale score transformations can be
linear or nonlinear. The use of linear transformations in this case assumes that the IRT
θ-scale is educationally appropriate, as discussed earlier in this chapter. Although
it may be reasonable in some cases, there is no substantive reason to believe that
the θ-scale, or a linear transformation of it, is educationally appropriate in general.
When using IRT with the same type of total score used with traditional methods, the
raw-to-scale score transformations are typically nonlinear.

When constructing the score scale, data are collected using one of the designs,
and an approach for data analysis is chosen. In any approach, the first step is to relate
performance on the test or tests used in the scaling study to a single interim score
scale. The second step involves transforming the interim score scale to a scale with
specified properties. The third step is to relate examinee performance on each of the
test levels to the score scale. Three statistical methods for establishing the score scale
are discussed in the following sections.

9.10.6 Hieronymus Statistical Methods

Hieronymus scaling (Petersen et al. 1989) can be conducted using data from any of
the data collection designs considered. In all cases, the scaling makes use of the total
number-correct score for dichotomously scored tests or the total number of points
for tests that have polytomously scored items.

Scaling Test Design

In Hieronymus scaling with a scaling test, raw scores on the scaling test are used
as the interim score scale. The data used for conducting the scaling are the score
distributions on the scaling testfor students in each of the grades. Typically, the data
are collected from a nationally representative sample so that the score distributions
have inherent meaning.

To conduct the scaling, the median number-correct score on the scaling test for
each grade level is assigned a prespecified score scale value. The remainder of the
number-correct scaling test score-to-scale-score transformation is developed to meet
other desired properties of scale scores.

Consider a situation in which Hieronymus scaling is used to construct grade
equivalents associated with test levels appropriate for students in grades 3–8 as has
been done with the ITBS (Hoover et al. 2003). Grade equivalents are normatively
based scores. The school year is divided into ten months (assuming that students are
on vacation for two months in the summer). The scale is defined using grade medians.
At the beginning of third grade, the median scale score is set to 3.0, the median scale
score at the beginning of fourth grade is set to 4.0, and so on. The median scale score
for third grade students at the middle of the year is set at 3.5, the median scale score
in the middle of grade 4 is set to 4.5, and so on.
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Assume that a scaling test is administered in the middle of the school year. In this
case, the median scaling test score for third graders is transformed to a scale score of
3.5, the median scaling test score for fourth graders is transformed to a scale score
of 4.5, and so forth. These medians are used as points to define the score scale. In
addition, because the authors of the test believe that for their tests, the variability
of within-grade achievement should increase as grade increases, a transformation of
scaling test raw scores to scale scores is sought that leads to increasing within-grade
variability. Various procedures can be developed that lead to such a transformation.
After the score scale is set on the scaling test, scores on each level are linked to the
scores on the scaling test.

This procedure can be used to develop score scales other than grade equivalents.
For example, the test developer might believe that year-to-year growth declines from
one grade to the next. In this case, the grade medians might be set at values that
indicate decreasing average growth over grades. For example, with forms of the
ITBS (Hoover et al. 2003), a developmental score scale was constructed with grade
medians as follows: grade 3–185, grade 4–200, grade 5–214, grade 6–227, grade 7–
239, and grade 8–250. As these values indicate, the grade-to-grade change decreases
from 15 (200–185) points between grade 3 and grade 4 to 11 (250–239) points
between grade 7 and grade 8.

Hieronymus scaling uses estimated true score distributions in the process of form-
ing the score scale. By using estimated true score distributions, the amount of growth,
especially at percentiles other than the median, is defined by estimated true score
distributions rather than by observed score distributions. According to Petersen et al.
(1989), Kelley regressed scores in Eq. (9.3) are used in place of the observed scores
when Hieronymus scaling is applied with the ITBS. The distributions of the Kelley
regressed scores are used in the scaling process.

Some questions about this procedure which might be researched include the fol-
lowing: What are the effects of using distributions of Kelley regressed scores as com-
pared to distributions of observed score distributions in the vertical scaling process?
What would be the effects of estimating true score distributions using strong true
score models such as those developed by Lord (1965, 1969)? What are the effects
of using different types of procedures in developing the transformation of scaling
testnumber-correct scores to scale scores?

Common-Item and Equivalent Groups Designs

In Hieronymous scaling with the common-item design, raw scores on one test level
(usually one for a middle grade) are typically set as an interim scale. Through
common-item linking procedures, the common items are used to transform raw scores
on all of the levels on this interim score scale. In this process, plots of item difficulties
for the common items can be used to help eliminate any items from the common
item set that are behaving differently in adjacent grades. When the equivalent groups
design is used, the randomly equivalent groups are used to transform raw scores on
all of the levels to the level designated as the interim scale. Using this interim score
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scale in place of scores on the scaling test, the same procedures described for use
with the scaling test design are then used to develop the scale using the common-item
and equivalent groups designs.

9.10.7 Thurstone Statistical Methods

Thurstone (1925) described a method for scaling tests that assumes scores on an
underlying scale are normally distributed within each grade group of interest. He
made use of item difficulties (classical p-values) to conduct scaling. Thurstone (1938)
modified this method to use total (number-correct) scores rather than item difficulties.
Gulliksen (1950, p. 284) referred to this later method, which also assumes that scores
are normally distributed within each grade group of interest, as Thurstone’s absolute
scaling method. This method has been used to scale achievement test batteries and
is referred to here as Thurstone scaling.

Thurstone scaling can be conducted using data collected from any of the data
collection designs introduced previously. This method makes use of the total number-
correct score for dichotomously scored tests or the total number of points for tests
that have polytomously scored items. Here the method is first described for two grade
groups, followed by a brief discussion of the method applied to more than two grade
groups.

Thurstone Scaling for Two Grade Groups–General Process

Thurstone scaling for two groups typically begins with frequency distributions of
raw scores on a common set of test questions for each of two groups. To fix the score
scale, the mean and standard deviation of the scale scores are specified for one of the
groups. In this section, the method is developed in three steps. First, relationships
between scale scores are presented for the two groups. Second, a process is developed
for transforming raw scores to scale scores that are normalized within each group.
Third, a process is described for converting the raw scores to the scale scores.

Step 1. Finding relationships between scale scores for two grade groups. First,
consider some relationships between common scale scores that are useful for devel-
oping Thurstone scaling. Refer to the two grade groups as group 1 and group 2.
Assume that the mean and standard deviation of the scale scores are fixed by the
investigator for group 1. The random variable SC is used to represent these scores on
the scale and sc represents a realization (particular value) of SC . Define the following
terms:

μ1(SC) is the mean scale score in group 1,
σ1(SC) is the standard deviation of scale scores in group 1,
μ2(SC) is the mean scale score in group 2, and
σ2(SC) is the standard deviation of scale scores in group 2.
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Define standardized scores within each group as follows:

z1 = sc − μ1(SC)

σ1(SC)

and

z2 = sc − μ2(SC)

σ2(SC)
.

Solving each of these equations for sc,

sc = z1σ1(SC) + μ1(SC), (9.40)

and
sc = z2σ2(SC) + μ2(SC). (9.41)

Setting these equations equal to one another,

z1σ1(SC) + μ1(SC) = z2σ2(SC) + μ2(SC).

Solving for z1,

z1 = σ2(SC)

σ1(SC)
z2 + μ2(SC) − μ1(SC)

σ1(SC)
. (9.42)

This equation is equivalent to equation 10 in Gulliksen (1950, p. 285) and provides
the relationship between standardized scale scores for group 2 and standardized scale
scores for group 1. This equation provides the foundation for Thurstone scaling.

Step 2. Transforming the raw scores. The next step is to tabulate the raw score fre-
quency distribution for each group, and then normalize the scores within each group
using Eq. (9.26). Refer to the raw score variable on the test as Y , and a realization
(particular value) as y. Refer to a normalized score for group 1 as z∗

1(y). Similarly,
for group 2 refer to a normalized score as z∗

2(y).
Gulliksen (1950, p. 284) recommended choosing 10 or 20 raw score points when

implementing this procedure. A scatterplot is constructed for the 10 or 20 z∗
1(y) and

z∗
2(y) pairs. Gulliksen (1950, p. 285) indicated that if the scatterplot is close to a

straight line then it is said that z∗
1(y) and z∗

2(y) can be normalized on the same scale.
Otherwise, the Thurstone scaling procedure is abandoned. Also define the following
terms:

μ[z∗
1(y)] is the mean of the 10 or 20 z∗

1(y) values for group 1,
σ[z∗

1(y)] is the S.D. of the 10 or 20 z∗
1(y) values for group 1,

μ[z∗
2(y)] is the mean of the 10 or 20 z∗

2(y) values for group 2, and
σ[z∗

2(y)] is the S.D. of the 10 or 20 z∗
2(y) values for group 2.

The choice of score points to use in this procedure is arbitrary, but it can affect the
scaling results. For example, Williams et al. (1998) compared using all score points
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to using all score points between the 10th and 90th percentiles for both distributions.
They found quite different scaling results using these two sets of points.

Step 3. Relating the transformed raw scores to the score scale. Equation (9.42) dis-
plays the relationship between a particular z1 and z2. Because z∗

1(y) and z∗
2(y) values

are both normalized scores, they should satisfy the relationship in Eq. (9.42). Now,
substitute z∗

1(y) and z∗
2(y) into Eq. (9.42). Taking the mean and standard deviation

over the 10 or 20 score points gives

μ[z∗
1(y)] = σ2(SC)

σ1(SC)
μ[z∗

2(y)] + μ2(SC) − μ1(SC)

σ1(SC)
,

and

σ[z∗
1(y)] = σ2(SC)

σ1(SC)
σ[z∗

2(y)].

To find the standard deviation for group 2, rearrange terms to obtain

σ2(SC) = σ[z∗
1(y)]

σ[z∗
2(y)]σ1(SC). (9.43)

Note from the preceding equation that

σ2(SC)

σ1(SC)
= σ[z∗

1(y)]
σ[z∗

2(y)] .

Using this result and rearranging terms, the mean for group 2 is

μ2(SC) = σ1(SC)

[
μ[z∗

1(y)] − σ[z∗
1(y)]

σ[z∗
2(y)]μ[z∗

2(y)]
]

+ μ1(SC). (9.44)

These expressions were presented by Williams et al. (1998, p. 97). Equation (9.40)
can be used to transform any normalized score to the score scale as follows:

sc = z∗
1(y)σ1(SC) + μ1(SC). (9.45)

To convert the z∗
2(y) values to the same scale, use Eqs. (9.43) and (9.44) in Eq. (9.41)

to obtain

sc = z∗
2(y)

σ[z∗
1(y)]

σ[z∗
2(y)]σ1(SC) + σ1(SC)

[
μ[z∗

1(y)] − σ[z∗
1(y)]

σ[z∗
2(y)]μ[z∗

2(y)]
]

+ μ1(SC).

(9.46)
To convert raw scores to scale scores (even those other than the 10 to 20 scores

used in the scaling process), raw scores are normalized using Eq. (9.26). For group 1,
Eq. (9.45) is used to convert the normalized scores to scale scores. To convert group 2
raw scores to scale scores, raw scores are normalized using Eq. (9.26). Then Eq. (9.46)
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is used to convert the normalized scores to scale scores. Because the same instrument
is administered to students in both groups, any differences in the conversions of scores
for group 1 and group 2 are due to sampling error or model misfit.

Note that for the special case where μ1(SC) = 0 and σ1(SC) = 1,

σ2(SC) = σ[z∗
1(y)]

σ[z∗
2(y)] ,

and

μ2(SC) =
[
μ[z∗

1(y)] − σ[z∗
1(y)]

σ[z∗
2(x)]μ[z∗

2(y)]
]

.

Thurstone Scaling for Two Groups with any of the Three Designs

The procedures just described can be used to develop a score scale for two groups.
If the common-item design is used, the raw scores on the test level appropriate for a
group are linked to raw scores on the common items and then to scale scores. In this
process plots of item difficulties can be used to help eliminate any items from the
common item set that are behaving differently in adjacent grades. If the scaling test
design is used, the raw scores on the test level appropriate for a group are linked to
the raw scores on the scaling test and then to scale scores. In the equivalent groups
design, the scaling process provides the conversion of raw scores to scale scores on
the level used in the scaling.

Thurstone Scaling for Three or More Groups

For any of the three designs, the mean and standard deviation of scale scores for
one group are specified. Adjacent group raw scores on a test level are transformed
to scale scores using the procedures described for two groups. A chaining process is
used to convert raw scores on the other levels to the score scale.

9.10.8 IRT Statistical Methods

IRT scaling can be conducted using data from any of the three data collection designs.
The scaling typically makes use of the entire set of item-level responses from the
examinees to the test items.

Common-Item Design

The data used for IRT scaling under the common-item design are the item responses
for students on the test level taken for students in the grades included in the scaling
study. Items are in common from one level to the next, which allows for test levels
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to be linked to a common scale. Under the common-item design, the IRT parameters
are estimated either using separate computer runs for each test level or by using a
single simultaneous run for all levels.

When separate estimation is used, the IRT parameters are estimated separately at
each grade. The θ-scale for one grade is chosen as the base scale (research conducted
by Hendrickson et al. (2006), suggests that the choice of base scale has little effect
on the properties of the final scale). Then the common items are used to place item
parameter estimates, examinee ability estimates, and estimated ability distributions
on the base scale using linking methods (e.g., mean/mean, mean/sigma, or an item
characteristic curve method). Plots of the item parameters can be used to help elim-
inate any items from the common item set that are behaving differently in adjacent
grades. A chaining process is required to link estimates for levels that are not adjacent
to the base level.

The following steps could be used in separate estimation runs for the example
shown in Fig. 9.9:

1. At each of grades 3 through 8, separately estimate IRT item parameters and ability
distributions.

2. Assume that the θ-scale for grade 3 is chosen as the base scale. Using the items
that are common between the test level administered to third graders and the test
level administered to fourth graders, a linear scale transformation is found (say, by
using a test characteristic curve method). Items that appear to behave differently
on the two levels can be eliminated from the common item set. The resulting
transformation is used to place the item parameter estimates and estimated ability
distributions for the test level administered to fourth graders on the θ-scale that
was established for grade 3.

3. Using the items that are common between the test level administered to fourth
graders and the test level administered to fifth graders, a linear scale transforma-
tion is found using a process similar to that followed in step 2 to place the item
parameter estimates and estimated ability distributions on the θ-scale for fourth
graders. Using a chaining process, the transformation developed in step 2 is then
used to place the item parameter estimates and estimated ability distributions for
the level administered to fifth graders on the θ-scale that was established for grade
3.

4. A similar process is used for the levels given to sixth, seventh, and eighth graders.

After chaining, all item parameters and estimated ability distributions are on the
base scale. In addition, the mean and standard deviation of the estimated ability
(quadrature) distributions transformed to the grade 3 scale can be used to compare
the difference in mean ability and variability at the different grade levels.

If concurrent estimation is used with the common-item design, the item responses
for all grade levels are formatted for a concurrent run. Referring to Fig. 9.9, for
example, each examinee’s response string would include places for responses to all
items in item blocks a through g. A grade 3 examinee would have item response data
for items in blocks a and b, with the “not reached” code appearing for item blocks
c through g. A grade 4 examinee would have item response data for items in blocks
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c and d, with the “not reached” code appearing for item blocks a, b, and e through
g. The resulting item parameter estimates, ability estimates, and estimated ability
distributions are on the same θ-scale under the IRT assumptions.

When concurrent estimation is applied, it is important to use an estimation pro-
gram that allows for multiple groups, such as BILOG-MG or ICL. In these runs, the
grade groups should be identified so that the program will estimate ability distribu-
tions for each grade. From runs using BILOG-MG or ICL, a quadrature distribution
of θ is obtained along with an estimate of the mean and standard deviation of ability
for each grade level.

Equivalent Groups Design

The data used for IRT scaling under the equivalent groups design are the item
responses for students on the test levels taken in the grades included in the scal-
ing study. Test levels are in common from one grade group to the next, which allows
for test levels to be linked to a common scale. Under the equivalent groups design,
the IRT parameters can be estimated either using separate computer runs for each
test level at each grade or by using a single simultaneous run for all levels and grades.

When separate estimation is used, the IRT parameters are estimated separately
for each random group at each grade. The θ-scale for one grade is chosen as the base
scale, and then the level that is common between adjacent grades is used to place
item parameter estimates, examinee ability estimates, and estimated ability distrib-
utions for the next grade on the base scale using linking methods (e.g., mean/mean,
mean/sigma, or an item characteristic curve method). Plots of the item parameters
can be used to help eliminate any items from the adjacent levels that are behaving
differently in adjacent grades. A chaining process is required to link estimates for
levels that are not adjacent to the base level.

The following steps can be used in separate estimation runs for the example shown
in Fig. 9.10:

1. At each of grades 4 through 8, separately estimate IRT item parameters and ability
distributions for each of the levels given at that grade.

2. Assume that the θ-scale for grade 4 is chosen as the base scale. For the level
composed of item blocks b and c, find item parameter estimates separately for
fourth and fifth grade students. From these item parameter estimates, find a linear
scale transformation (say, by using a test characteristic curve method) to place the
item parameters and ability distributions for the grade 5 examinees on the θ-scale
that was established for grade 4. Items that appear to behave differently on the
two levels can be eliminated from the common item set.

3. For the level composed of item blocks c and d , find a linear scale transformation
similar to that followed in step 2 to place the item parameter estimates for grade
6 on the initial grade 5 θ-scale. Using a chaining process, the transformation
developed in step 2 is then used to place the grade 6 item parameter estimates and
ability distributions on the θ-scale that was established for grade 4.
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4. A similar process is used for the other levels.

The result is that, after chaining, all item parameters and ability distributions are on
the base scale. In addition, the mean and standard deviation of the transformed ability
distributions can be used to compare the difference in mean ability and variability at
the different grade levels.

If concurrent estimation is used with the equivalent groups design, the item
responses for all grade levels must be formatted for a concurrent run. The result-
ing item parameter estimates, ability estimates, and estimated ability distributions
will be on the same θ-scale. With concurrent estimation, parameters for all items
are estimated in a single computer run of BILOG-MG or ICL. In this run, the grade
groups are identified so that ability distributions are estimated for each of the grade
groups.

Scaling Test Design

When using the scaling test design, each examinee is administered the scaling test
and the test level appropriate to the examinee’s grade level. If separate estimation
runs are used, item parameter and ability distributions are estimated for the scaling
test for students in all grades. Then the item parameters and ability distributions are
estimated for the test levels separately for each grade. The item parameters for the test
levels are then linked to the θ-scale established using the scaling test. The following
steps can be used to conduct this estimation for the example shown in Fig. 9.11:

1. Use data only on the scaling test and an indicator for grade level. These data are
represented in Fig. 9.11 by the first column of boxes containing st . Estimate item
parameters for the scaling test items and ability distributions for each of grades
3 through 8 using a computer program such as BILOG-MG or ICL. Set the scale
to have a mean of 0 and a standard deviation of 1 for grade 3. The base θ-scale is
established by this computer run.

2. Separately, for each grade, estimate the item parameters and ability distributions
for the item blocks administered to that grade. Set the scale for each run to have
the mean and standard deviation for that grade as estimated in step 1 (alternatively,
the whole within grade quadrature distribution could be taken from step 1). Thus,
six computer runs are conducted, one for students in each of grades 3 through 8.

By following steps 1 and 2, the IRT item parameter estimates for the 6 test levels
and the scaling test are expressed on the base θ-scale that was established in step 1.

With concurrent estimation, parameters for scaling test items and regular items
are estimated in a single computer run of BILOG-MG or ICL. In this run, the grade
groups are identified so that ability distributions are estimated for each of the grade
groups. If set up properly, the resulting item parameter estimates, ability estimates,
and estimated ability distributions are all on the same scale.
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Separate Versus Concurrent Estimation

Concurrent estimation requires only one computer run, as compared to runs for each
grade with separate estimation. When using separate runs it is necessary to link
the levels as described earlier. Thus, separate estimation can be more time consum-
ing than concurrent estimation. In addition, when the IRT model holds, concurrent
estimation is expected to produce more stable results because it makes use of all
of the available information for parameter estimation. Thus, in theory, concurrent
estimation might be preferable.

Additional considerations suggest that separate runs might be preferable in prac-
tice. With separate estimation, item parameter estimates can be compared from one
grade to the next to identify items that are behaving differently in adjacent grades.
Since concurrent estimation produces only one item parameter estimate for each
item, it is more difficult to discover whether items are behaving differently across
grades. In addition, with concurrent estimation, violation of the unidimensionality
assumption might be quite severe. This assumption requires that a single ability be
measured across all grades, which seems unlikely with achievement tests. Violation
of the unidimensionality assumption might cause problems with concurrent estima-
tion. With separate estimation, violation of the unidimensionality assumption might
have less of an impact on the IRT parameter estimates in that parameters for only
one grade level are estimated on each run. Because concurrent estimation requires
an estimation run with large numbers of items that any individual examinee does
not take, concurrent estimation runs sometimes have convergence problems and can
require quite a bit of computer time. For all of these reasons, it appears that separate
estimation is the safer of the two alternatives.

Test Scoring

The IRT procedures discussed so far result in item parameter estimates and ability
distributions being on the same scale. A decision must be made about how to estimate
examinee proficiency using methods such as the MLE, TCF, EAP, and sEAP methods
described earlier in this chapter.

As discussed earlier in this chapter, EAP estimators are regressed towards the
mean proficiency. Consider a situation in which a third-grade student and a fourth-
grade student were both administered the same test level and answered the same test
questions correctly. Assume that the third-grade student’s EAP is calculated using
the third-grade proficiency distribution and fourth-grade students EAP is calculated
using the fourth-grade proficiency distribution. Because the mean proficiency for
third-grade students is lower than that for fourth-grade students, the third-grade
student would receive a lower EAP estimate than the fourth-grade student. This
situation suggests that the use of EAP estimators might create significant practical
concerns in a vertical scaling situation. Unlike EAP estimators, the MLE for the third
and fourth grader would be the same. Tong and Kolen (2007) found that different
estimators result in vertical scales with different psychometric properties. Kolen and
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Tong (2010) provided illustrations about how choice of estimator can have significant
practical effects in a vertical scaling context.

Scale Transformations

The θ-scale is often linearly transformed to meaningful units. For example, it might
be desired to set the third-grade mean to 300 and the eighth-grade mean to 800.
The θ-scale also can be nonlinearly transformed to provide for growth patterns that
reflect the kind of patterns that are expected. Consider a situation in which a test
developer believes that the variability of scale scores should increase over grades.
If the variability of the θ-estimates is not found to increase over grades, a nonlinear
transformation of the ability scale might be used that leads to increased variability.
As Lord (1980, p. 84) has shown, there typically is no obvious theoretical reason to
prefer θ to a nonlinear transformation of θ. Thus, nonlinear transformations of θ can
be considered for practical reasons.

9.10.9 Thurstone Illustrative Example

Thurstone scaling is illustrated in this section based on data from the ITBS Math-
ematics and Data Interpretation test. The test was administered to grade 3 through
grade 8 students using the scaling test design. Students from all grades were admin-
istered a 32-item scaling test that covered the content from all of the grades. Students
were also administered the test level appropriate for their grade. The test contains
all multiple-choice items and the raw score is the total number of items correctly
answered.

Raw score frequency distributions on the scaling test are shown in Table 9.12.
Sample sizes and means and standard deviations are shown, by grade, at the bottom
of the table. As expected, the mean scores on the scaling test increase as grade
increases. The standard deviation of the scaling test scores also increase as grade
increases. The scaling test is very difficult for third graders. On average, they answer
around 40 % of the items correctly. The scaling test is much less difficult for eighth
graders, who on average correctly answer around 68 % of the items.

Percentile ranks/100 for each grade are presented in Table9.13. To conduct
Thurstone scaling, these values are converted to standard normal deviates (z-scores)
using Eq. (9.26). A set of these deviates (recall that Gulliksen suggested using 10–20)
is used in the scaling. For the purposes of this example, z-scores associated with a
scaling test raw score were between −2 and +2 were used for all grades. This set of
z-scores is given in Table 9.14, and corresponds to scaling test raw scores between 10
and 22. The means and standard deviation of these z-scores, as shown in the bottom
of Table 9.14, were used to find the means and standard deviations of the scale scores.
To check on the Thurstone scaling assumptions the z-scores for each pair of grades
could be graphed. The relationships are expected to be approximately linear if the
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Table 9.12 Scaling test frequency distributions

Scaling test Frequency distributions
Score Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

0 0 0 0 0 0 0
1 0 0 0 0 2 0
2 2 2 1 0 0 0
3 4 3 4 1 0 2
4 5 6 4 1 4 2
5 11 13 7 1 3 3
6 24 20 11 5 1 0
7 40 27 8 10 1 2
8 47 38 13 8 2 1
9 64 43 31 20 6 3
10 51 58 43 17 15 6
11 62 80 47 42 21 2
12 58 78 60 38 22 9
13 63 101 60 50 34 7
14 58 108 88 57 38 22
15 60 120 90 77 38 19
16 48 107 99 74 38 17
17 48 102 108 85 45 31
18 38 116 100 81 64 31
19 28 100 113 100 67 25
20 18 96 111 110 67 36
21 13 74 132 101 76 26
22 12 60 120 107 70 41
23 9 61 100 114 68 37
24 5 49 83 113 74 34
25 2 35 77 91 91 38
26 0 27 68 83 67 43
27 0 16 41 51 75 29
28 0 5 25 37 52 25
29 0 4 10 22 38 20
30 0 1 6 10 21 28
31 0 2 2 5 7 13
32 0 0 1 1 6 1
N 770 1552 1663 1512 1113 553
Mean 12.9351 16.2932 18.6133 19.8505 21.1662 21.7450
S.D. 4.4522 5.1633 5.2596 5.1650 5.4407 5.5927

Thurstone assumptions hold. Although not presented here, the graphs are close to
being linear.

Means and standard deviations of scale scores are shown in Table 9.15 for two
scalings. In the first scaling, the mean for third grade is set equal to 0 and the standard
deviation equal to 1. Equations (9.44) and (9.45) can be used to find the mean and
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Table 9.13 Scaling test percentile ranks/100

Scaling test Percentile ranks/100

Score Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

0 .0000 .0000 .0000 .0000 .0000 .0000
1 .0000 .0000 .0000 .0000 .0009 .0000
2 .0013 .0006 .0003 .0000 .0018 .0000
3 .0052 .0023 .0018 .0003 .0018 .0018
4 .0110 .0052 .0042 .0010 .0036 .0054
5 .0214 .0113 .0075 .0017 .0067 .0099
6 .0442 .0219 .0129 .0036 .0085 .0127
7 .0857 .0370 .0186 .0086 .0094 .0145
8 .1422 .0580 .0250 .0146 .0108 .0172
9 .2143 .0841 .0382 .0238 .0144 .0208
10 .2890 .1166 .0604 .0360 .0238 .0289
11 .3623 .1611 .0875 .0556 .0400 .0362
12 .4403 .2120 .1197 .0820 .0593 .0461
13 .5188 .2697 .1557 .1111 .0845 .0606
14 .5974 .3370 .2002 .1465 .1168 .0868
15 .6740 .4104 .2538 .1908 .1509 .1239
16 .7442 .4836 .3106 .2407 .1851 .1564
17 .8065 .5509 .3728 .2933 .2224 .1998
18 .8623 .6211 .4354 .3482 .2713 .2559
19 .9052 .6907 .4994 .4081 .3302 .3065
20 .9351 .7539 .5667 .4775 .3904 .3617
21 .9552 .8086 .6398 .5473 .4546 .4177
22 .9714 .8518 .7156 .6161 .5202 .4783
23 .9851 .8908 .7817 .6892 .5822 .5488
24 .9942 .9262 .8367 .7642 .6460 .6130
25 .9987 .9533 .8848 .8317 .7201 .6781
26 1.0000 .9733 .9284 .8892 .7911 .7514
27 1.0000 .9871 .9612 .9335 .8549 .8165
28 1.0000 .9939 .9811 .9626 .9119 .8653
29 1.0000 .9968 .9916 .9821 .9524 .9060
30 1.0000 .9984 .9964 .9927 .9789 .9494
31 1.0000 .9994 .9988 .9977 .9915 .9864
32 1.0000 1.0000 .9997 .9997 .9973 .9991

standard deviation for grades other than grade 3. For example, the grade 4 mean and
standard deviation on this scale are

μ2(SC) =
[
μ[z∗

1(y)] − σ[z∗
1(y)]

σ[z∗
2(y)]μ[z∗

2(y)]
]

=
[
.6711 + .7722

.6955
.0574

]
= .7348,
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Table 9.14 Inverse normal transformed scores for scaling test scores from 10 to 22

Scaling test z-scores

Score Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

10 −.5564 −1.1920 −1.5511 −1.7985 −1.9808 −1.8967
11 −.3522 −.9900 −1.3564 −1.5932 −1.7509 −1.7970
12 −.1503 −.7996 −1.1767 −1.3917 −1.5607 −1.6838
13 .0472 −.6139 −1.0121 −1.2206 −1.3757 −1.5499
14 .2466 −.4207 −.8408 −1.0516 −1.1911 −1.3607
15 .4511 −.2264 −.6627 −.8749 −1.0324 −1.1559
16 .6562 −.0412 −.4942 −.7039 −.8962 −1.0093
17 .8650 .1279 −.3244 −.5437 −.7642 −.8423
18 1.0909 .3085 −.1627 −.3901 −.6088 −.6561
19 1.3117 .4979 −.0015 −.2325 −.4394 −.5058
20 1.5146 .6867 .1681 −.0564 −.2783 −.3540
21 1.6975 .8729 .3579 .1188 −.1140 −.2077
22 1.9022 1.0442 .5697 .2952 .0507 −.0544
Mean .6711 −.0574 −.4990 −.7264 −.9186 −1.0057
S.D. .7722 .6955 .6457 .6393 .6124 .6006

Table 9.15 Mean and standard deviation of scale scores for Thurstone scaling

Statistic Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

Scaled such that Grade 3 Mean is 0 and S.D. is 1
Mean .0000 .7348 1.2678 1.5485 1.8293 1.9640
S.D. 1.0000 1.1103 1.1958 1.2078 1.2608 1.2856
Scaled such that Grade 4 Mean is 200 and Grade 8 Mean is 250
Mean 170.1117 200.0000 221.6806 233.0984 244.5200 250.0000
S.D. 40.6766 45.1643 48.6413 49.1311 51.2859 52.2946

and

σ2(SC) = σ[z∗
1(y)]

σ[z∗
2(y)] = .7722

.6955
= 1.1103.

These are the grade 4 mean and standard deviation in Table 9.15. The other means
and standard deviations for this scaling can be found similarly.

For the second scaling, the grade 4 mean is intended to be 200 and the grade 8
mean is intended to be 250. Equation (9.24) can be used to linearly transform scores
for one set of units to those for another set of units when two score equivalencies
are specified. This equation can be used to convert scores from the scale in which
grade 3 has a mean of 0 and a standard deviation of 1 to another scale. Let y1 be
the grade 4 mean on the original scale (.7348 from Table 9.15) and sc(y1) = 200 be
the specified scale score mean for grade 4 on the new scale. Let y2 be the grade 8
scale score mean on the original scale (1.9640 from Table 9.15) and sc(y2) = 250
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be the specified scale score mean for grade 8 on the new scale. Applying Eq. (9.24),
the slope of the transformation is

sc(y2) − sc(y1)

y2 − y1
= 250 − 200

1.9640 − .7348
= 40.6769,

and the intercept is

sc(y1) −
[

sc(y2) − sc(y1)

y2 − y1

]
y1 = 200 −

[
250 − 200

1.9640 − .7348

]
.7348 = 170.1106.

To find the standard deviation for the new scale, multiply the standard deviation
for the first scale by the slope. To find the mean for the new scale, multiply the mean
for the first scale by the slope and then add the intercept. Note that the mean and
standard deviation for grade 3 equal the intercept and slope, apart from rounding
error.

So far, only the scaling test has been considered. The next step in the Thurstone
scaling process is to develop conversions of raw scores on each level to the score scale
developed using the scaling test. The examinees administered the scaling test also
were administered the level appropriate for their grade. The frequency distributions
for these levels are given in Table 9.16. The numbers of items per level vary from
24 items for the grade 3 level to 36 for the grade 8 level. In this table, frequencies
are blank for raw scores greater than the number of items on the level. The means
and standard deviations of the level scores are given at the bottom of the table. Note
that the levels contained different sets of test questions, so there is no expectation
that the raw score means would increase over grades. Percentile ranks/100 for these
distributions are shown in Table 9.17 and the z-scores, calculated using Eq. (9.26),
are shown in Table 9.18.

Because the z-scores have a mean of 0 and a standard deviation of 1 within grade,
the easiest way to convert these z-scores to scale scores is to multiply them by the
scale score standard deviation shown in Table 9.15 and add the scale score mean
shown in that table. For example, to convert a grade 3 z-score for the second score
scale in Table 9.15:

sc = 40.6766(z) + 170.1117.

Applying this equation to the first z-score of −3.0118 in Table 9.18 results in a
scale score of 47.6019, which rounds to an integer value of 48. Integer scale score
values calculated in this way are shown in Table 9.19. This table gives the conversions
of level raw scores to scale scores using Thurstone scaling, where the mean grade 4
score is intended to be 200 and the mean grade 8 score is intended to be 250. Note that
due to rounding to integers, the means shown at the bottom of the table are slightly
different from these values and from the means and standard deviations shown in
Table 9.15. Triple asterisks (***) are given in the table for raw scores associated
with zero frequencies in Table 9.16. To use this scaling operationally, these asterisks
would need to be replaced by scale score values.
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Table 9.16 Raw score frequency distributions for test levels

Level Raw Frequency distributions

Score Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 2 0 2 1 1 0
3 4 3 3 1 0 0
4 7 4 4 4 0 2
5 9 9 3 6 8 0
6 15 23 12 11 12 8
7 21 31 22 25 18 10
8 26 40 27 34 17 12
9 30 30 35 38 30 28
10 22 46 39 29 46 22
11 26 52 54 41 35 33
12 29 78 39 53 41 25
13 38 65 65 54 56 21
14 39 70 60 68 65 33
15 33 85 76 75 42 25
16 48 92 73 77 42 26
17 65 87 68 86 44 38
18 57 109 85 89 54 31
19 73 129 93 78 51 24
20 81 103 73 93 58 25
21 68 116 87 79 36 21
22 45 110 91 79 47 21
23 26 104 131 85 54 20
24 6 83 113 85 48 18
25 48 108 64 50 20
26 28 113 67 43 21
27 7 71 63 38 11
28 64 49 34 11
29 36 30 48 11
30 16 30 26 11
31 11 27 8
32 7 26 11
33 11 3
34 5 3
35 0 0
36 0
N 770 1552 1663 1512 1113 553
Mean 15.9208 17.3093 19.5935 19.0754 19.4753 17.9729
S.D. 4.9878 5.1799 5.9894 6.1461 7.0596 6.7965
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Table 9.17 Raw score percentile ranks/100 for test levels

Level raw Percentile ranks/100
Score Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

0 .0000 .0000 .0000 .0000 .0000 .0000
1 .0000 .0000 .0000 .0000 .0000 .0000
2 .0013 .0000 .0006 .0003 .0004 .0000
3 .0052 .0010 .0021 .0010 .0009 .0000
4 .0123 .0032 .0042 .0026 .0009 .0018
5 .0227 .0074 .0063 .0060 .0045 .0036
6 .0383 .0177 .0108 .0116 .0135 .0108
7 .0617 .0351 .0210 .0235 .0270 .0271
8 .0922 .0580 .0358 .0430 .0427 .0470
9 .1286 .0805 .0544 .0668 .0638 .0832
10 .1623 .1050 .0767 .0890 .0979 .1284
11 .1935 .1366 .1046 .1121 .1343 .1781
12 .2292 .1785 .1326 .1432 .1685 .2306
13 .2727 .2245 .1639 .1786 .2120 .2722
14 .3227 .2680 .2014 .2189 .2664 .3210
15 .3695 .3180 .2423 .2662 .3145 .3734
16 .4221 .3750 .2871 .3165 .3522 .4195
17 .4955 .4327 .3295 .3704 .3908 .4774
18 .5747 .4958 .3755 .4282 .4349 .5398
19 .6591 .5725 .4290 .4835 .4820 .5895
20 .7591 .6472 .4790 .5400 .5310 .6338
21 .8558 .7178 .5271 .5969 .5732 .6754
22 .9292 .7906 .5806 .6491 .6105 .7134
23 .9753 .8595 .6473 .7034 .6559 .7505
24 .9961 .9198 .7207 .7596 .7017 .7848
25 .9620 .7871 .8089 .7457 .8192
26 .9865 .8536 .8522 .7875 .8562
27 .9977 .9089 .8952 .8239 .8852
28 .9495 .9322 .8562 .9051
29 .9796 .9583 .8931 .9250
30 .9952 .9782 .9263 .9448
31 .9917 .9501 .9620
32 .9977 .9739 .9792
33 .9906 .9919
34 .9978 .9973
35 1.0000 1.0000
36 1.0000
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Table 9.18 z-Scores for test levels

Level raw z-scores
Score Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

0
1
2 −3.0118 −3.2384 −3.4051 −3.3207
3 −2.5626 −3.1004 −2.8621 −3.0926 −3.1220
4 −2.2465 −2.7243 −2.6348 −2.7888 −3.1220 −2.9098
5 −2.0004 −2.4368 −2.4941 −2.5150 −2.6127 −2.6859
6 −1.7706 −2.1033 −2.2965 −2.2710 −2.2122 −2.2956
7 −1.5408 −1.8104 −2.0326 −1.9867 −1.9276 −1.9248
8 −1.3273 −1.5719 −1.8019 −1.7170 −1.7204 −1.6745
9 −1.1332 −1.4014 −1.6034 −1.5001 −1.5237 −1.3840
10 −.9849 −1.2534 −1.4278 −1.3472 −1.2934 −1.1340
11 −.8650 −1.0957 −1.2556 −1.2154 −1.1062 −.9226
12 −.7414 −.9212 −1.1142 −1.0661 −.9603 −.7370
13 −.6046 −.7569 −.9787 −.9208 −.7994 −.6063
14 −.4601 −.6187 −.8365 −.7759 −.6237 −.4650
15 −.3332 −.4734 −.6988 −.6243 −.4832 −.3228
16 −.1966 −.3186 −.5618 −.4776 −.3794 −.2031
17 −.0114 −.1696 −.4412 −.3309 −.2771 −.0567
18 .1883 −.0105 −.3173 −.1809 −.1640 .0999
19 .4100 .1827 −.1788 −.0415 −.0451 .2263
20 .7034 .3779 −.0528 .1005 .0778 .3420
21 1.0618 .5763 .0679 .2453 .1846 .4549
22 1.4700 .8085 .2034 .3830 .2807 .5633
23 1.9655 1.0782 .3781 .5341 .4013 .6759
24 2.6610 1.4036 .5849 .7050 .5293 .7885
25 1.7742 .7965 .8737 .6611 .9122
26 2.2106 1.0519 1.0458 .7978 1.0636
27 2.8401 1.3340 1.2545 .9303 1.2012
28 1.6399 1.4924 1.0636 1.3110
29 2.0446 1.7317 1.2431 1.4392
30 2.5891 2.0174 1.4490 1.5968
31 2.3969 1.6462 1.7747
32 2.8317 1.9422 2.0376
33 2.3481 2.4027
34 2.8413 2.7807
35
36
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Table 9.19 Raw-to-Thurstone scale score equivalents for test levels

Level raw Thurstone scale score equivalents
Score Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

0 *** *** *** *** *** ***
1 *** *** *** *** *** ***
2 48 *** 64 66 74 ***
3 66 60 82 81 84 ***
4 79 77 94 96 84 98
5 89 90 100 110 111 110
6 98 105 110 122 131 130
7 107 118 123 135 146 149
8 116 129 134 149 156 162
9 124 137 144 159 166 178
10 130 143 152 167 178 191
11 135 151 161 173 188 202
12 140 158 167 181 195 211
13 146 166 174 188 204 218
14 151 172 181 195 213 226
15 157 179 188 202 220 233
16 162 186 194 210 225 239
17 170 192 200 217 230 247
18 178 200 206 224 236 255
19 187 208 213 231 242 262
20 199 217 219 238 249 268
21 213 226 225 245 254 274
22 230 237 232 252 259 279
23 250 249 240 259 265 285
24 278 263 250 268 272 291
25 280 260 276 278 298
26 300 273 284 285 306
27 328 287 295 292 313
28 301 306 299 319
29 321 318 308 325
30 348 332 319 334
31 351 329 343
32 372 344 357
33 365 376
34 390 395
35 *** ***
36 ***
n 770 1552 1663 1512 1113 553
Mean 170.0766 199.9374 221.5979 233.0683 244.5074 250.0249
S.D. 40.2137 44.8077 48.2552 48.8389 50.9196 51.9685
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A number of choices were made in this scaling, including,

1. Using the scaling test design. Instead of using the scaling test design, the scaling
test could have been ignored with common items serving to link the levels.

2. Using unsmoothed frequency distributions. Smoothing methods, such as the log-
linear method, could have been used to smooth the score distributions before
applying the Thurstone method.

3. Using scaling test scores only in the range of 10–22. A different range of scaling
test scores might have been used.

Making different choices might have had a significant impact on the scaling results.

9.10.10 IRT Illustrative Example

IRT scaling is illustrated in this section using the same scaling situation used for the
Thurstone example, except that 33 items were used for the scaling test instead of the
32 items used in the Thurstone example.

The first step in the scaling was to estimate the three-parameter logistic model item
parameters for the scaling test items and the ability distributions for grades 3 through
8 using the program ICL (Hanson 2002). Grade level and item response strings for the
33 scaling test items for each examinee in each of grades 3 through 8 were input into
ICL. The resulting item parameters for the scaling test items are shown in Table 9.20
for the 33 scaling test items. The estimated mean and standard deviation of the ability
distributions are shown in Table 9.21. When running ICL, the grade 3 mean ability
was set at 0 and the standard deviation was set at 1, corresponding to the mean
and standard deviation in Table 9.21. The mean and standard deviations of estimated
ability for the other grades are also shown. As expected, the means increase over
grades. The standard deviation for grade 3 is the lowest standard deviation among
the grade distributions.

Next, the item parameters for each grade level test were separately estimated. Item
response strings for the 24 grade 3 level items for each grade 3 examinee were input
into ICL, and the mean and standard deviation of the ability estimates were set equal
to their grade 3 values in Table 9.21 (mean = 0 and standard deviation = 1). Then
item response strings for the 27 grade 4 level items for each grade 4 examinee were
input into ICL, and the mean and standard deviation of the ability estimates were
set equal to their grade 4 values in Table 9.21 (mean = .4766 and standard deviation
= 1.3417). Similar runs were conducted for grades 5 through 8. The resulting item
parameter estimates are shown in Tables 9.22 and 9.23. The quadrature points and
weights for each grade output by ICL are shown in Table 9.24. Note that the same
set of weights are used for all grades; only the quadrature points change.

The item parameter estimates and the quadrature distributions were used to esti-
mate IRT ability associated with each raw score. Bayesian sEAP procedures for
estimating θ from number-correct scores were used. The resulting conversions are
shown in Table 9.25. The means and standard deviations of the converted scores are
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Table 9.20 Item parameter estimates for scaling test

Item parameter estimates
Item â b̂ ĉ

1 .3554 −2.3053 .2145
2 .5481 −.9207 .0776
3 .5463 −.6806 .0463
4 .5971 −1.9165 .0606
5 .4590 −1.2700 .0920
6 .5207 −.5475 .1359
7 .6288 .2589 .0926
8 .5864 .3934 .0679
9 .6927 .2786 .1025
10 .8306 2.3457 .2342
11 1.0389 2.3496 .1944
12 .8358 1.0954 .1197
13 .6095 .2042 .1396
14 1.2019 3.0194 .2062
15 .5440 2.3563 .1766
16 2.6108 3.7035 .1318
17 .2873 −4.9715 .1833
18 .3270 −2.5100 .1352
19 .5868 −.5935 .1448
20 .3864 −.5797 .0973
21 1.0631 3.0041 .2268
22 2.9796 1.1820 .1426
23 2.9696 1.2580 .1177
24 2.0354 1.4863 .1032
25 .5321 −.3181 .3314
26 .4434 2.4119 .2021
27 1.4114 2.2739 .2858
28 .7525 2.6242 .4159
29 .6045 1.2141 .1907
30 1.4366 3.3964 .2682
31 .5942 2.1994 .1816
32 1.3261 3.0413 .1779
33 1.4910 3.2330 .2218

given at the bottom of the table. These means and standard deviations were calculated
using the raw score distributions from Table 9.12. Note that, as expected, the means
are very similar to the means of the ability distribution in Table 9.21. As discussed
earlier in this chapter, a property of Bayesian sEAP estimates is that they have stan-
dard deviations that are smaller than the standard deviations of the true abilities. For
this reason, the standard deviations of the estimates in Table 9.25 are smaller than
those given in Table 9.21.
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Table 9.21 Scaling test mean and standard deviation of quadrature distributions

Statistic Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

Mean .0000 .4766 1.0467 1.2697 1.5198 1.6294
S.D. 1.0000 1.3417 1.2376 1.1520 1.2843 1.3066

Table 9.22 Item parameter estimates for Grade 3 through Grade 5 test levels

Grade 3 Grade 4 Grade 5
Item â b̂ ĉ â b̂ ĉ â b̂ ĉ

1 .6623 −1.7588 .2355 .4871 −1.7983 .2073 .7659 −.2164 .1705
2 1.8133 −.3320 .1670 .7730 −1.4807 .1709 .8027 1.7578 .3102
3 1.0046 .2879 .0903 .7361 −1.4050 .1622 .7814 −.3171 .1268
4 .8258 −.2851 .2556 .6841 −1.7446 .1682 .7791 −.3009 .1713
5 .9489 1.1444 .1398 .4099 −1.1867 .1910 1.0739 1.1705 .1960
6 1.9097 −.6433 .1749 .4510 −.6519 .1581 .9363 .6193 .2575
7 1.3385 −.2531 .1874 .7029 −.6933 .1510 .5198 −.4862 .1238
8 1.1625 −.4903 .1894 .8748 1.5770 .2270 .5710 −.5949 .1007
9 .9651 −.6715 .2068 .7201 −.6747 .1576 .5607 3.2868 .1811
10 1.1184 −.8151 .0946 .7682 −.4032 .1830 .5296 .1240 .0979
11 1.2484 −.5136 .2050 .8985 1.0518 .1653 .5125 −1.0863 .1711
12 1.0093 −.7829 .2215 .9771 .4295 .2023 .7030 −.0178 .1364
13 .6348 −.5750 .2206 .5531 −.7916 .0941 .7591 .5650 .1326
14 .9372 .0726 .2021 .6460 −.4103 .1161 .7853 1.0533 .1614
15 1.1165 −1.6683 .1819 .8562 3.2785 .1972 .8929 2.8447 .2495
16 1.3468 −1.4973 .1729 .4662 −.1358 .1443 1.0710 1.6654 .1785
17 .9986 −.0882 .1761 .2612 2.1916 .2858 1.3515 1.8801 .1878
18 .8436 −.5085 .1680 .9300 .3665 .3045 .6466 −1.1738 .2103
19 1.2548 −1.5216 .1572 .6691 1.1842 .1915 .4982 .0412 .1478
20 1.2820 −1.3700 .1436 .5153 2.7494 .2109 .5401 −.4161 .1315
21 .4834 .8896 .1818 .7163 −1.2541 .1786 .7074 −.1792 .2218
22 .7634 .2707 .2052 .4588 .4950 .2575 .6815 1.1420 .2285
23 1.1353 1.4595 .1806 .6979 −.4215 .1378 .9036 1.5563 .2301
24 .5793 2.6153 .1478 .8350 −.2601 .2124 .6498 2.0358 .1342
25 .6076 .9793 .1508 .7952 .0305 .2956
26 1.0979 1.3918 .1599 .7752 −.1035 .1993
27 .7550 2.2035 .1637 .8220 .4883 .1001
28 .5659 −.2814 .1890
29 .7807 2.0459 .2028
30 .7084 1.6909 .1638

The scores shown in Table 9.25 were linearly transformed, in the same manner
as in the Thurstone illustrative example, so that the mean for grade 4 is 200 and the
mean for grade 8 is 250. The resulting scores were rounded to integers. These scale
scores are shown in Table 9.26. The means and standard deviations of these rounded
scale scores are shown at the bottom of Table 9.26.
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Table 9.23 Item parameter estimates for Grade 6 through Grade 8 test levels

Grade 6 Grade 7 Grade 8
Item â b̂ ĉ â b̂ ĉ â b̂ ĉ

1 .3788 −2.0874 .2144 .5717 1.2677 .1880 .7013 −.0432 .1911
2 .5425 −.1895 .1248 .6189 .9438 .1893 .4079 2.1740 .2083
3 .6845 .2969 .2015 .8873 3.2198 .1128 .8219 2.7704 .2041
4 .6895 .7116 .1691 1.0922 .8155 .2243 .5317 .8816 .1662
5 .4618 3.0221 .1634 1.0729 1.5494 .3414 .7659 2.6665 .2087
6 .6647 1.2778 .1222 .8625 2.2878 .2121 .8440 1.9682 .2720
7 .9905 1.3662 .1211 .7801 .2487 .2100 .6961 2.0992 .2470
8 .8713 1.5638 .2649 .5304 2.8720 .1822 .7807 2.8874 .1948
9 .9681 1.1414 .2231 .7613 1.1600 .1175 .6490 2.8416 .1005
10 .8994 3.2495 .1120 .9735 2.2300 .2187 .6600 1.2002 .2116
11 1.2870 .9828 .1918 .7433 1.8170 .1939 .9251 1.2574 .1206
12 .8942 1.5167 .2380 .7179 .0274 .1282 1.0706 2.6433 .2353
13 .6193 2.5384 .2230 .4314 1.9941 .1827 .5743 3.4645 .2703
14 .8677 .6133 .2264 .9047 2.9762 .1984 1.0868 3.0774 .2903
15 .7502 2.8486 .1722 .7852 1.1199 .1569 .7693 1.0790 .1587
16 1.1630 1.5724 .2278 1.0843 2.4689 .1683 .7774 2.6013 .1993
17 1.6625 2.3451 .2247 .6478 2.3614 .2372 .7589 4.1008 .1024
18 .8360 2.0923 .2282 .7433 2.1425 .1852 .5901 3.0271 .1269
19 .6961 −.6171 .1660 .6935 2.6765 .1741 .7301 2.2874 .2945
20 .6044 −.6404 .1404 .5534 1.2748 .2649 .8756 2.8914 .1375
21 .7781 .1471 .1062 .6412 −.2945 .1793 .7575 1.9348 .1955
22 .6191 −.4619 .1627 .6609 1.8432 .2018 .6274 2.1510 .2359
23 .6340 1.8393 .1887 .6125 1.0578 .1608 1.0417 2.1051 .2666
24 .6624 1.5655 .1873 .4592 −1.3724 .2102 .5031 2.7108 .1528
25 .6153 1.1251 .2056 .4567 1.7269 .1165 .5089 −.6375 .2271
26 .8782 .2191 .1010 .5852 2.7969 .1975 .8184 3.4129 .2790
27 .5920 2.0039 .2003 .4666 1.7784 .1060 .6696 1.3210 .1409
28 .8611 1.3833 .2484 1.1759 2.2023 .1627 .5120 2.5265 .2820
29 .6332 −.5467 .2049 .8536 2.3066 .2853 .6236 1.2576 .2269
30 .4841 2.3303 .1638 .8332 2.0141 .1522 .8480 1.7921 .1765
31 .7919 2.7614 .1762 .5192 3.1862 .1676 .9586 2.7230 .2691
32 .6500 1.9298 .1210 .7271 .3043 .2082 1.1176 4.2740 .2281
33 .5015 3.5056 .1798 .6391 .9603 .2257
34 .6307 1.7738 .1999 .8493 5.8240 .1877
35 .4867 3.3887 .2488 .6978 2.9096 .2384
36 1.3649 4.1636 .2177

Note that there are a few peculiarities in these conversion tables. For example, the
minimum scale score for grade 4 is a 47, whereas the minimum for grade 3 is 71.
To use this table operationally, it might be necessary to adjust some of the converted
scores to remove such peculiarities.
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Table 9.24 Quadrature points and weights

Quadrature points
Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 Weights

−4.0014 −4.8929 −3.9068 −3.3396 −3.6178 −3.6009 .0000
−3.7962 −4.6175 −3.6527 −3.1032 −3.3543 −3.3327 .0001
−3.5910 −4.3421 −3.3987 −2.8668 −3.0909 −3.0645 .0001
−3.3858 −4.0668 −3.1446 −2.6305 −2.8274 −2.7963 .0003
−3.1806 −3.7914 −2.8906 −2.3941 −2.5639 −2.5281 .0005
−2.9754 −3.5160 −2.6366 −2.1577 −2.3004 −2.2599 .0010
−2.7702 −3.2406 −2.3825 −1.9213 −2.0370 −1.9917 .0018
−2.5650 −2.9652 −2.1285 −1.6849 −1.7735 −1.7235 .0031
−2.3598 −2.6899 −1.8744 −1.4485 −1.5100 −1.4553 .0051
−2.1546 −2.4145 −1.6204 −1.2121 −1.2465 −1.1871 .0080
−1.9494 −2.1391 −1.3664 −.9757 −.9830 −.9189 .0123
−1.7442 −1.8637 −1.1123 −.7393 −.7196 −.6507 .0179
−1.5390 −1.5883 −.8583 −.5029 −.4561 −.3825 .0251
−1.3338 −1.3130 −.6043 −.2665 −.1926 −.1143 .0336
−1.1286 −1.0376 −.3502 −.0302 .0709 .1539 .0433
−.9234 −.7622 −.0962 .2062 .3344 .4221 .0534
−.7182 −.4868 .1579 .4426 .5978 .6903 .0632
−.5130 −.2114 .4119 .6790 .8613 .9585 .0718
−.3078 .0639 .6659 .9154 1.1248 1.2267 .0781
−.1026 .3393 .9200 1.1518 1.3883 1.4949 .0814
.1026 .6147 1.1740 1.3882 1.6517 1.7631 .0814
.3078 .8901 1.4281 1.6246 1.9152 2.0313 .0781
.5130 1.1654 1.6821 1.8610 2.1787 2.2995 .0718
.7182 1.4408 1.9361 2.0974 2.4422 2.5677 .0632
.9234 1.7162 2.1902 2.3338 2.7057 2.8359 .0534
1.1286 1.9916 2.4442 2.5702 2.9691 3.1041 .0433
1.3338 2.2670 2.6983 2.8065 3.2326 3.3723 .0336
1.5390 2.5423 2.9523 3.0429 3.4961 3.6405 .0251
1.7442 2.8177 3.2063 3.2793 3.7596 3.9087 .0179
1.9494 3.0931 3.4604 3.5157 4.0230 4.1769 .0123
2.1546 3.3685 3.7144 3.7521 4.2865 4.4451 .0080
2.3598 3.6439 3.9684 3.9885 4.5500 4.7133 .0051
2.5650 3.9192 4.2225 4.2249 4.8135 4.9815 .0031
2.7702 4.1946 4.4765 4.4613 5.0770 5.2497 .0018
2.9754 4.4700 4.7306 4.6977 5.3404 5.5179 .0010
3.1806 4.7454 4.9846 4.9341 5.6039 5.7861 .0005
3.3858 5.0208 5.2386 5.1705 5.8674 6.0543 .0003
3.5910 5.2961 5.4927 5.4068 6.1309 6.3225 .0001
3.7962 5.5715 5.7467 5.6432 6.3943 6.5907 .0001
4.0014 5.8469 6.0008 5.8796 6.6578 6.8589 .0000
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Table 9.25 IRT ability estimated using Bayesian EAP for raw scores for test levels

Level raw θ̂

Score Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

0 −2.5068 −3.0571 −2.3031 −1.7998 −1.5994 −1.2237
1 −2.4051 −2.9248 −2.1878 −1.6799 −1.4870 −1.1216
2 −2.2911 −2.7785 −2.0615 −1.5529 −1.3680 −1.0126
3 −2.1635 −2.6174 −1.9236 −1.4179 −1.2413 −.8958
4 −2.0217 −2.4409 −1.7740 −1.2742 −1.1057 −.7704
5 −1.8668 −2.2496 −1.6131 −1.1218 −.9605 −.6355
6 −1.7020 −2.0452 −1.4420 −.9612 −.8053 −.4905
7 −1.5322 −1.8307 −1.2626 −.7934 −.6399 −.3347
8 −1.3624 −1.6099 −1.0773 −.6201 −.4654 −.1682
9 −1.1963 −1.3868 −.8890 −.4432 −.2832 .0086
10 −1.0352 −1.1646 −.7004 −.2647 −.0957 .1945
11 −.8785 −.9453 −.5136 −.0865 .0944 .3873
12 −.7242 −.7296 −.3300 .0899 .2840 .5843
13 −.5702 −.5171 −.1503 .2635 .4706 .7821
14 −.4143 −.3067 .0256 .4336 .6523 .9775
15 −.2541 −.0970 .1982 .6004 .8281 1.1681
16 −.0869 .1137 .3683 .7638 .9978 1.3521
17 .0902 .3271 .5368 .9244 1.1616 1.5291
18 .2805 .5453 .7049 1.0826 1.3204 1.6992
19 .4879 .7707 .8737 1.2393 1.4751 1.8634
20 .7171 1.0066 1.0445 1.3952 1.6266 2.0227
21 .9753 1.2569 1.2190 1.5516 1.7762 2.1784
22 1.2750 1.5260 1.3992 1.7098 1.9247 2.3318
23 1.6257 1.8190 1.5875 1.8715 2.0732 2.4840
24 1.9904 2.1415 1.7872 2.0390 2.2231 2.6363
25 2.5027 2.0026 2.2147 2.3755 2.7900
26 2.9216 2.2391 2.4012 2.5320 2.9463
27 3.4199 2.5051 2.6012 2.6943 3.1067
28 2.8136 2.8185 2.8649 3.2729
29 3.1855 3.0589 3.0467 3.4472
30 3.6397 3.3320 3.2434 3.6326
31 3.6516 3.4603 3.8336
32 4.0289 3.7042 4.0564
33 3.9844 4.3089
34 4.3130 4.6007
35 4.7015 4.9409
36 5.3332
n 770 1552 1663 1512 1113 553
Mean .0042 .4751 1.0439 1.2665 1.5162 1.6271
S.D. .9173 1.2136 1.1341 1.0514 1.1767 1.1745
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Table 9.26 Raw-to-IRT scale score equivalents for test levels

Level raw IRT scale score equivalents
Score Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

0 71 47 79 101 110 126
1 75 52 84 106 115 131
2 80 59 90 112 120 135
3 85 66 96 118 126 141
4 92 73 102 124 131 146
5 98 82 109 131 138 152
6 106 91 117 138 144 158
7 113 100 125 145 152 165
8 120 110 133 152 159 172
9 127 119 141 160 167 180
10 134 129 149 168 175 188
11 141 138 157 176 183 196
12 148 148 165 183 192 205
13 155 157 173 191 200 213
14 161 166 180 198 208 222
15 168 175 188 205 215 230
16 176 184 195 213 223 238
17 183 194 203 220 230 246
18 192 203 210 226 237 253
19 201 213 217 233 243 260
20 211 223 225 240 250 267
21 222 234 232 247 256 274
22 235 246 240 254 263 281
23 250 258 248 261 269 287
24 266 272 257 268 276 294
25 288 266 276 282 300
26 306 277 284 289 307
27 328 288 292 296 314
28 301 302 304 321
29 318 312 312 329
30 337 324 320 337
31 338 330 346
32 354 340 355
33 352 366
34 367 379
35 383 394
36 411
n 770 1552 1663 1512 1113 553
Mean 179.6831 200.0155 224.6356 234.4431 245.1662 249.9729
S.D. 39.9813 52.6162 49.1859 45.7063 51.0595 50.8969
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A number of choices were made in this scaling that might have affected the results,
including,

1. Using the scaling test design. Instead of using the scaling test design, the scaling
testcould have been ignored with common items serving to link the test levels. In
this case, simultaneous estimation of all levels could have been used; alternatively,
estimation could have been conducted for each level separately and then the levels
linked using a characteristic curve method.

2. Using a three-parameter logistic model. Other models such as the Rasch model
might have been used. Also, since some of the items are associated with common
stimuli, it would have been possible to treat the items associated with a common
stimulus as a polytomous item and then use a polytomous IRT model.

3. Conducting the estimation in two steps. Instead of conducting the estimation in
two steps, the item parameters for the scaling test and the grade levels could have
been estimated simultaneously.

4. Using number-correct scores to estimate ability. The entire pattern of item
responses could have been used, instead of using number-correct scores to esti-
mate ability.

5. Using Bayesian sEAP scores to estimate ability. Instead of using Bayesian sEAP
scores, other ability estimation methods might have been used.

9.10.11 Statistics for Comparing Scaling Results

The normative properties of developmental score scales have been the subject of
much debate and study in the literature. Three score scale properties have been the
focus of much of the debate. The first property is the amount of average grade-to-
grade growth displayed by students in the normative sample. Grade-to-grade growth
has typically been displayed as the difference between means for adjacent grades.
Alternatively, medians or selected percentile points have been used.

The second property is grade-to-grade variability, which typically has been dis-
played by comparing within grade standard deviations for adjacent grades. Alterna-
tively, other measures of variability could be used.

The third property is separation of grade distributions, or what Holland (2002)
refers to as gaps between distributions (also see Ho 2009). Hoover (1984b) and
Petersen et al. (1989) referred to the related property grade-to-grade overlap. This
property can be displayed by graphing the entire cumulative distribution function
for adjacent age groups. Horizontal or vertical differences between the distributions
(Holland 2002) could be used as the basis for an index of separation of grade dis-
tributions. One index of separation of grade distribution suggested by Yen (1986) is
the effect size as measured by the following equation:

effect size = μ̂(Y )upper − μ̂(Y )lower√
(σ̂2(Y )upper + σ̂2(Y )lower )/2

, (9.47)
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Table 9.27 Grade-to-Grade mean differences and effect sizes for Thurstone and IRT scalings

Grade 4 Grade 5 Grade 6 Grade 7 Grade 8
Statistic −Grade 3 −Grade 4 −Grade 5 −Grade 6 −Grade 7

Thurstone scaling
Mean difference 29.8608 21.6605 11.4704 11.4391 5.5175
Effect size .7426 .4834 .2377 .2342 .1084
IRT scaling
Mean difference 20.3324 24.6201 9.8075 10.7231 4.8067
Effect size .5085 .4679 .1994 .2346 .0941

where μ̂(Y )upper is the mean for the upper grade group, μ̂(Y )lower is the mean
for the lower grade group, σ̂2(Y )upper is the variance for the upper grade group,
and σ̂2(Y )lower is the variance for the lower grade group. Note that the effect size
standardizes the grade-to-grade difference in the means by the square root of the
average of the within grade variances. This index displays the mean grade-to-grade
differences in standardized units. Also, when there are differences in variability
across grades, it is possible that grade-to-grade trends in effect sizes might differ
from grade-to-grade changes.

The Thurstone and IRT scalings that were conducted earlier in this chapter are
used to illustrate these properties. The mean differences shown in Table 9.27 are the
differences between means for adjacent grades in the Thurstone and IRT scalings.
For example, to calculate the mean difference of 29.8608 shown in the upper left of
Table 9.27, the mean for grade 3 for the Thurstone scaling (170.0776 from Table 9.19)
is subtracted from the mean for grade 4 (199.9374 from Table 9.19). Other mean dif-
ferences are calculated similarly. The mean differences for IRT scaling are similarly
calculated from the data in Table 9.26. The effect sizes shown in this table were cal-
culated using Eq. (9.47) with the means and standard deviations given in Tables 9.19
and 9.26.

Examining the mean differences for the Thurstone scaling in Table 9.27, the dif-
ferences decline as grade level increases. This finding suggests that for the Thurstone
scaling, the amount of grade-to-grade growth declines with grade. Refer to the stan-
dard deviations in Table 9.19. The standard deviations increase over grade, suggesting
that the variability of scale scores increases over grade for this Thurstone scaling.
Refer to the effect sizes for Thurstone scaling in Table 9.27. These effect sizes decline
as grade level increases. The values suggest that the amount of grade-to-grade growth
is nearly 3/4 of a standard deviation unit (.7426) from grade 3 to grade 4 and declines
to around 1/10 of a standard deviation unit (.1084) from grade 7 to grade 8.

The mean differences for the IRT scaling also suggest that grade-to-grade growth
declines with grade level, although there is a reversal when comparing the grade 5
to grade 6 growth with grade 6 to grade 7 growth. Refer to the standard deviations in
Table 9.26. The standard deviations seem not to be as strongly related to grade level
for the IRT scaling; indeed, the standard deviations appear to be somewhat erratic.
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Like the mean differences in Table 9.27, the effect sizes for the IRT scaling tend to
decline as grade increases.

These statistics can be used to compare properties of the Thurstone and IRT
scales. For the most part, the Thurstone scaling indicates greater grade-to-grade
growth (based on mean differences) and greater separation of score distributions
(based on effect sizes) than the IRT scaling. The differences between the two scal-
ings are most pronounced from grade 3 to grade 4. In addition, the Thurstone scale
shows increasing variability over grades, whereas for the IRT scaling the relationship
between variability and grade level is irregular. Note that this example is illustrative;
no general conclusions about the statistical properties of Thurstone and IRT scaling
can be made.

9.10.12 Some Limitations of Vertically Scaled Tests

As indicated earlier, the different levels of vertically scaled tests purposefully dif-
fer in content and difficulty. These differences in content and difficulty limit the
interpretations that can be made about scale scores from the tests.

Kolen (2001) gave an example of limitations for a vertical scaling of the PLAN
Mathematics test to the score scale for the ACT Mathematics test. PLAN is designed
to be administered to tenth grade students, whereas the ACT is designed to be admin-
istered to eleventh and twelfth grade students. PLAN is shorter, easier, and covers
somewhat different content than the ACT. In particular, the ACT includes test ques-
tions on intermediate algebra and trigonometry, whereas these areas are not included
on PLAN. The ACT score scale ranges from 1 to 36.

Based on an analysis of the expected scale scores for examinees on the PLAN and
the ACT, Kolen (2001) reported that the expected scale scores on PLAN and ACT
were similar for examinees with true scale scores below 27. For scale scores above
27, the expected PLAN scores were too low. This finding was due to PLAN’s being
unable to measure well at the higher scale score region because it did not contain
many difficult test questions. Thus, the psychometric comparability of scale scores
on PLAN and ACT is limited to the range of scores at or below 27.

Kolen (2001) also pointed out that the content differences for the tests lead to limi-
tations on the meaning of test scores. Because intermediate algebra and trigonometry
are not included in PLAN, Kolen (2001) stated that “if a school were to initiate a
program where intermediate algebra or trigonometry were taught in ninth or tenth
grade, any resulting gains in achievement in these areas likely would not be reflected
in PLAN scores,” (p. 6) whereas they would be reflected in ACT scores.

This example illustrates that whenever tests are vertically scaled there are serious
limitations to interpretability of scores, due both to psychometric properties and to
content differences among the tests that are scaled. It is important to acknowledge
these limitations. The range of scale scores that can be treated as comparable for
different tests should be indicated. In addition, content differences on these tests
should be noted so that they can be taken into account when interpreting scale scores.
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Fig. 9.12 Root mean squared error for IRT vertical scaling example

The IRT illustrative example discussed previously in this chapter can be used to
illustrate psychometric limitations of vertical scaling. The Bayesian EAP estimators
used in this example are intended to minimize root mean squared error in estimating
proficiency. Root mean squared error is made up of two components. One component
is bias in the estimator, which is the difference between the true scale score and the
expected estimated scale score given true scale score. The other component is the
conditional standard error of measurement. Using the methodology described by
Kolen et al. (1996), implemented in the computer program POLYCSEM listed in
Appendix B, expected scale scores and conditional standard errors of measurement
were estimated for the IRT vertical scaling example. Root mean squared error was
estimated from these components and is plotted in Fig. 9.12. Root mean squared
errors greater than 50 scale score points are not shown. A separate curve is given at
each grade level. The low point of each curve is somewhere in the range of root mean
squared error values of 15 to 20. The root mean square error curves are relatively flat
near their low points and then quickly become larger.

Using a root mean square error value of 25 as an arbitrary cut-off, values larger
than this cut off are considered here to be large. Table 9.28 presents the minimum
and maximum scale score that would be considered to be associated with root mean
squared errors that are not large given this rule. As indicated, the minimum and
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Table 9.28 Range of scale scores where root mean squared error is less than 25 for the IRT scaling

Statistic Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

Minimum Scale Score 90 120 133 151 163 181
Maximum Scale Score 259 284 326 338 368 393

maximum values increase over grade. Also, there is significant overlap of these
ranges across grades. As can be seen from Table 9.28, much of the range of possible
observed scale scores is encompassed for the levels. If this range were to be used in
practice, individuals with observed scores outside these ranges might be cautioned
that their scores contain more than an acceptable amount of measurement error.

9.10.13 Vertical Scaling Designs with Variable Sections

When using IRT methods in vertical scaling, a variety of data collection designs is
possible that goes beyond the three designs already discussed. One design that has
been used in some testing programs, and that was discussed by Kolen (2011), is to
administer the test to be vertically scaled along with a variable section or sections
that contain the items that are used to conduct the vertical scaling.

An illustration of one such design is provided in Fig. 9.13. For this design, the
appropriate grade level test is given in square boxes. The examinees’ scores are based
on the items on these grade level tests. As illustrated with circles, each examinee also
is administered a variable section from their own grade, and, where possible, a grade
below, and a grade above. Scores on the items in the variable sections do not contribute
to examinees’ scores, but are used to conduct vertical scaling. Each variable section
might contain a small number of items, and many variable sections can be randomly
assigned to examinees within each grade so that, over all examinees, the variable
sections represent content for the intended grades. IRT common item methods can
be used to conduct the vertical scaling.

Many variations of this design are possible. For example, a variable section with
items from 5 grades levels might be administered to examinees in fifth grade. In
this case, fifth grade students would be administered grade 3, 4, 5, and 6 items in
the variable section. As another example, within any grade the variable section for
an examinee might have items from only one grade, but examinees at that grade
would receive variable sections of items from different grades. In this case, one fifth
grade student might be administered a variable section containing only grade 4 items,
another fifth grade student a variable section containing only grade 5 items, and still
another fifth grade student a variable section containing only grade 6 items. In any
of these variations it is important to control item context effects.
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Fig. 9.13 Illustration of a variable section vertical scaling design

9.10.14 Maintaining Vertical Scales

After a vertical scale is constructed, alternate forms of the test might be developed
in future years. One way to maintain the vertical scale as new forms are introduced
is to equate scores across alternate forms at each grade level using the common-item
nonequivalent groups design. Another possibility would be to construct a vertical
scale for the alternate form and then link scores on the alternate form to the previous
form through items that are common across forms. Hoskens et al. (2003); Tong and
Kolen (2008, 2009) compared these strategies and found that the results of the linking
depended on the strategy used. Maintenance of vertical scales is an area for further
research.

9.10.15 Research on Vertical Scaling

One line of research on vertical scaling has involved examining whether the results
from vertical scaling methods and designs are different. Much of the early research
was reviewed by Skaggs and Lissitz (1986a). Research often has found that vertical
scaling is dependent on examinee groups (Forsyth et al. 1981; Gustafsson 1979;
Harris and Hoover 1987; Holmes 1982; Loyd and Hoover 1980; Slinde and Linn
1977, 1978, 1979a, b; Skaggs and Lissitz 1988; Tong and Kolen 2007). Vertical
scaling results have been found to differ for different statistical methods (Briggs and
Weeks 2009a, b; Custer et al. 2006; Guskey 1981; Harris 1991; Hendrickson et al.
2004, 2005; Ito et al. 2008; Jodoin et al. 2003; Kolen 1981; Lei and Zhao 2012; Li
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and Lissitz 2012; Paek and Young 2005; Phillips 1983, 1986; Pomplun et al. 2004;
Skaggs and Lissitz 1986b), and they have been found to be sensitive to linking design
(Harris 1991; Hendrickson et al. 2004, 2005; Tong and Kolen 2007).

In addition to studying whether general differences in the scaling results exist,
methods and designs have been compared in terms of specific properties, including
the pattern of grade-to-grade growth, grade-to-grade variability, and separation of
grade distributions. Hoover (1984a) reviewed norms for some of the then current
elementary achievement test batteries that were scaled using Thurstone and IRT
scaling methods. He found what he considered to be anomalies, including grade-
to-grade growth irregularities. He observed, for example, that one set of test norms
showed “that in this country average ninth graders develop over twice as much reading
comprehension as average fifth graders,” and he concluded that this observation
“seems somewhat far-fetched” (p. 10). He also found evidence that on the then current
forms of the Comprehensive Tests of Basic Skills, which were scaled with an IRT
approach, the grade-to-grade differences in score variability decreased over grades.
Hoover (1984a) argued that these differences should increase over grades, because on
the types of tests included in elementary achievement test batteries, lower achieving
students would be expected to increase at a slower rate than higher achieving students.
Following similar lines of reasoning, Phillips and Clarizio (1988a) demonstrated
implications of these types of scales to placement of children in special education.
These assertions led to a discussion in the literature (Burket 1984; Clemans 1993,
1996; Hoover 1984b, 1988; Phillips and Clarizio 1988b; Yen 1988; Yen et al. 1996)
about the plausibility and practical consequences of vertical scaling results.

Grade-to-Grade Growth

By definition, grade equivalent scales show equal average growth from grade-to-
grade for the group of examinees used to conduct the scaling. As expected, this
pattern was observed by Andrews (1995) for the grade equivalents he constructed
using Hieronymus scaling. ITBS developmental score scales are constructed to
display decelerating growth. Thurstone and IRT scalings also have, for the most
part, produced a pattern of decelerating growth from grade to grade (e.g, Andrews
1995; Bock 1983; Briggs and Weeks 2009a, b; Hendrickson et al. 2004, 2005; Seltzer
et al. 1994; Tong and Kolen 2007; Williams et al. 1998; Yen 1985, 1986). That is, the
grade-to-grade differences in averages decrease as grade increases. However, Becker
and Forsyth (1992), who only examined high-school tests, did not find evidence of
decelerating growth.

Grade-to-Grade Variability

Thurstone (1925, 1927, 1928) and Thurstone and Ackerman (1929) found, using
the Thurstone method of vertical scaling, that score variability increasedwith age.
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Andrews (1995), Williams et al. (1998), Tong and Kolen (2007), and Yen (1986)
found evidence of increasing grade-to-grade variability in Thurstone scaling. Andrews
(1995) also found increasing grade-to-grade variability with Hieronymus scaling.
Williams et al. (1998) found that the extent of the increases depended on how
the Thurstone method was implemented. Yen and Burket (1997) found evidence
of increasing grade-to-grade variability in one implementation of the Thurstone
method, but found no evidence of increasing grade-to-grade variability in another
implementation. Williams et al. (1998) implemented an earlier version of the
Thurstone method, which is quite different from the method that has been used in
most recent Thurstone vertical scalings. With this earlier method they found evidence
of decreasing grade-to-grade variability.

In examining norms tables for then current vertically scaled achievement batteries,
both Hoover (1984a) and Yen (1986) found that scale score variability decreased over
grades for IRT scales. Andrews (1995) documented the same finding in research
for the ITBS. In simulation studies, it was found that decreases in grade-to-grade
variability in IRT scaling could result from multidimensionality (Yen 1985) and
measurement error differences at different grades (Camilli 1988). Camilli et al. (1993)
speculated that problems in estimating IRT proficiency for very high and very low
scoring individuals might also be the cause for decreasing grade-to-grade variability.
In simulation studies, Omar (1996, 1997, 1998) found decreasing variability for
various IRT estimation methods.

Other research on IRT methods did not find decreases in grade-to-grade vari-
ability in IRT scaling. Becker and Forsyth (1992) found increases in grade-to-grade
variability on a high-school test battery. However, their study did not involve linking
different test levels, but instead the same test level was administered in each high-
school grade. Bock (1983) found fairly homogenous variances across age for an
IRT scaling of the Stanford-Binet test. Seltzer et al. (1994) found no evidence
of decreases in grade-to-grade variablity for a Rasch scaling of the ITBS. Little
or no evidence of decreases in grade-to-grade variability has been found for IRT
vertical scalings of NAEP (Camilli et al. 1993), of more recent versions of the
Comprehensive Tests of Basic Skills and California Achievement Tests (Yen and
Burket 1997), or of the North Carolina End-of-Grade tests (Williams et al. 1998).
Hendrickson et al. (2004, 2005) and Tong and Kolen (2007) found evidence of scale
shrinkage for IRT vertical scales for some combinations of tests and statistical pro-
cedures, but not for other combinations.

Williams et al. (1998) noted that many of the IRT scalings of real data sets that
showed substantial decreases in grade-to-grade variability used joint maximum like-
lihood (JML) methods, such as is used in LOGIST. However, JML was used for IRT
scalings of the Comprehensive Tests of Basic Skills and California Achievement
Tests that did not show decreasing grade-to-grade variability, although the estima-
tion procedures were recently revised according to Williams et al. (1998). Williams
et al. (1998) speculated that the decreasing grade-to-grade variability might have
resulted from using earlier JML implementations. Camilli (1999) also concluded
that decreasing variability does not necessarily occur with the newer procedures for
IRT parameter estimation.
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Separation of Grade Distributions

For the ITBS, Andrews (1995) found less separation between distributions (more
grade-to-grade overlap) for tests scaled using the scaling test design than for tests
scaled using the common-item design for IRT, Thurstone, and Hieronymus scaling
methods. Mittman (1958) found the opposite result for ITBS scalings using the
Hieronymus method. The reasons for these contradictory results are not clear.

Yen (1986, p. 304) illustrated how the use of effect sizes can lead to different con-
clusions about grade-to-grade growth compared to what is found using means. In the
data presented, the year-to-year growth patterns for a test scaled using the Thurstone
method and an IRT method appeared to be very different from one another. She
showed that the differences in year-to-year growth patterns resulted from differences
in patterns of grade-to-grade variability. When the differences were standardized
using effect sizes, the IRT and Thurstone methods appeared very similar in terms
of separation of grade distributions. The data provided by Yen (1986) illustrate the
importance of examining both grade-to-grade growth and the separation of grade
distributions.

Sensitivity of Results to Scale Transformation

As demonstrated by Zwick (1992, pp. 211–214), nonlinear monotonic increasing
transformations of the score scale can change the pattern of grade-to-grade growth
from increasing to decreasing, and visa versa; and transformations can change a
pattern of increasing variability to decreasing variability, and visa versa. Schulz and
Nicewander (1997) illustrated that when scores that show decreasing grade-to-grade
growth and equal within grade variability are transformed to grade equivalents, the
resulting scores have constant grade-to-grade growth and increasing within grade
variability.

Some measures of the separation of grade distributions that are based on compar-
ing percentile ranks for the two distributions are not affected by nonlinear monotonic
increasing transformations of scale (see Braun 1988). Other measures, such as the
effect size discussed earlier, are affected by nonlinear scale transformations.

Multidimensionality and IRT Vertical ScalingMethods

One of the most challenging aspects of applying IRT to vertical scaling is the assump-
tion that the same unidimensional ability is assessed across grades. It is unlikely that
this assumption strictly holds in practice, although this assumption might hold well
enough that the unidimensional models can be used to construct reasonable verti-
cal scales. Wang and Jiao (2009) found that the same test psychometric structure
held across grades in a reading test. Reckase and Martineau (2004) applied multi-
dimensional IRT methods (Reckase 2009) to a science assessment. More research
on psychometric structure across grades and on the use of multidimensional IRT in
vertical scaling is needed.
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Factors That Might Affect Vertical Scaling Results

As Yen and Burket (1997) and Harris (2007) pointed out, and as illustrated by the
preceding discussion, many characteristics of tests can affect scale characteristics.
Factors that might affect scaling results for any of the methods considered include
the following: the design for data collection; the complexity (dimensionality) of the
subject matter area; the curriculum dependence of the subject matter area; test char-
acteristics, including average item difficulty and discriminations, and relationships of
the item characteristics to group proficiency; item types, such as multiple-choice and
constructed response; grade levels; and nonlinear scale transformations following
implementation of a scaling method.

For the Thurstone method, the results can depend on whether the method that
involves item statistics or the method that involves score distributions is used. For
the method that uses score distributions, the results can depend on the range of scores
used in the process of normalizing score distributions.

The results for IRT scaling methods can depend on the IRT model used; the com-
puter program used to conduct the parameter estimation; whether joint or marginal
maximum likelihood methods are used to estimate item parameters; whether concur-
rent or separate estimation is used across grade groups; where needed, the procedure
used to link results from different computer runs (e.g., test characteristic method
vs. mean/sigma method); and the type of scoring that is used to estimate examinee
proficiency (e.g., number-correct or estimated θ).

Hieronymus scaling results can depend on the scaling convention used, such as
grade equivalents versus a scale defined to have decreasing grade-to-grade growth;
the type of smoothing, interpolation and extrapolation procedures used; whether
observed score or true score distributions are used in the scaling process; and, if true
score distributions are used, the method for estimating the true score distributions.

Conclusions from Research

Research suggests that vertical scaling is a very complex process that is affected by
many factors. These factors likely interact with one another to produce characteristics
of a particular scale. The research record provides little guidance as to what methods
and procedures work best for vertical scaling. Further research is needed to provide
a clearer picture of what the effects on score scale properties are of all of the factors
mentioned.

Unfortunately for practitioners, research does not provide a definitive answer
concerning the characteristics of growth on educational tests. No general conclusions
are possible from the research regarding whether, for example, the amount of grade-
to-grade growth decreases over grades or whether the score variability increases over
grades. As Yen (1986) pointed out, “choosing the right scale is not an option. It is
important that any choice of scale be made consciously and that the reasons for
the choice be carefully considered. In making such choices, appealing to common
sense is no guarantee of unanimity of opinion or of reaching a sensible conclusion”
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(p. 314). As stated earlier in this chapter, the overriding justification for choosing a
scale is that it facilitates score interpretation.

9.10.16 Score Scales and Growth Models

Vertical scales are a prominent means for measuring growth on grade-level achieve-
ment tests. However, other growth-related approaches also have been developed. In
this section, the use of vertical scales to measure growth is described followed by
consideration of other approaches. Most of these approaches were considered in the
Brookhart (2009) special issue of Educational Measurement: Issues and Practices.

Vertical Scales and Growth

After a vertical scale is developed, the difference in scale scores for a student from
one grade to next can be used as an indicator of growth or change. In addition, student
growth trajectories estimated from scores on a vertical scale at multiple time points
can be used to describe student growth over grades as well as project future student
performance. Growth trajectories can be described fairly simply or can be modeled
with complex statistical models (e.g., Raudenbush 2004)

Vertical scales can facilitate score interpretations for test users. For example, item
maps introduced earlier in this chapter can be developed in which test items from
various grade level tests are ordered on the vertical scale based on item difficulty. By
judiciously choosing items that represent different points on the vertical scale, test
developers can facilitate test users’ understanding of what students know and are able
to do at various score points on the vertical scale. In addition, the scale anchoring
methods introduced earlier in this chapter can be implemented, where subject matter
specialists systematically examine item maps and develop general statements of what
students know and are able to do at various score points or scale score ranges. The
ACT College Readiness Standards (ACT 2007) provide an example of the results
of a scale anchoring study in which the Explore, PLAN, and ACT assessments are
anchored to a common vertical scale.

In the U.S., state achievement testing programs typically define multiple profi-
ciency levels, with cut points developed using standard setting methods. For example,
a state might define the scale cut score as the minimum score a student from a par-
ticular grade would need to be considered “Proficient” and a higher cut score as
the minimum score a student from the same grade would need to be considered
“Advanced.” If a vertical scale is used with the state testing program, proficiency
levels can be ordered on the vertical scale. With a vertical scale, questions can be
addressed such as the following: How much higher on the construct is “Proficient” in
grade 6 than is “Proficient” in grade 5. Does “Advanced” in grade 5 indicate greater
achievement than “Proficient” in grade 6?
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Yen (2007) reviewed the policy context for assessing growth in grade level
achievement testing in the U.S. She argued that norm-referenced achievement test
batteries that have been in existence for many years, like the ITBS, have vertical
scales that “satisfy general criteria for a usable scale” (p. 282). She described how
the No Child Let Behind Act of 2001 (NCLB) had driven much of the grade level
testing since 2001. With NCLB, students are assessed in reading and mathematics
at each grade from grades 3 through 8 and high school. Score reporting in NCLB
focuses on proficiency levels such “Proficient” described earlier in this section. Yen
(2007) pointed out that many of the uses of test scores in the NCLB context do
not require vertical scales. She argued that “vertical scales might not demonstrate
grade-to-grade growth as clearly for state assessments developed under NCLB if the
content of those tests, and related curricula, have not been developed to be hierarchi-
cal” (p. 283). Due to the complexities with the development of vertical scales, Yen
(2007) makes a strong argument that vertical scales for many state level tests might
not provide clear indicators of student growth.

More recent development of grade-level achievement tests in the U.S. is being
driven by the Common Core State Standards (CCSS — CCSSO and NGA 2010). The
CCSS provide content standards in English/Language Arts (ELA) and mathematics
across elementary and high schools grades. Assessments are being developed over
these content standards. The content standards are intended to be well-defined within
each grade and well-articulated across grades. Thus, the use of vertical scales with
assessments built to the CCSS have a chance of being successful, at least from a
content perspective (Kolen 2011).

The use of vertical scales can lead to a rich set of score interpretations that can
facilitate the use of test scores on grade level achievement tests. However, these uses
depend on the development of adequate vertical scales, which can be challenging.
Ideally, the content of a test to be vertically scaled will be well-defined within grade
and well-articulated across grades. The vertical scaling data collection designs and
statistical methods will be well-designed and appropriately implemented, as well.
Even under the best of circumstances, however, the resulting vertical scale can depend
on many of the factors that were reviewed in the previous section. For these reasons,
and because vertical scales are not necessary for many uses of grade level achievement
tests, approaches for assessing student growth that do not require vertical scales have
been considered in the literature.

Vertically Moderated Standards

With vertically moderated standards (Lissitz and Huynh 2003) for grade level tests,
proficiency standards are set within each grade level. Judgmental standard setting
methods are used to develop vertically moderated standards. Lissitz and Huynh
(2003) “recommend that cut scores for each test be set for all grades such that ... each
achievement level has the same (generic) meaning across all grades” (p. 7). Vertically
moderated standards were considered in depth in the Cizek (2005) special issue of
Applied Psychological Measurement. Ho et al. (2009) discussed how a vertical scale
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is informative when considering vertically moderated standards. The focus of the
use of vertically moderated standards typically has been is for accountability at the
school or district level, rather than assessing growth of individuals.

Value-Added Models and Student Growth Percentiles

Difference from expectation models include value-added models (see the Wainer
2004, special issue of the Journal of Educational and Behavioral Statistics) and stu-
dent growth percentiles (Betebenner 2009). With these models, previous test scores,
possibly along with background variables, are used to predict the performance of
examinees at a particular point in time using complex regression models to produce an
expectation of examinee performance. Indices are computed that reflect how differ-
ent the examinee performance is from this expectation. Value-added models depend
on the score scales used for the measures (Ballou 2009), whereas student growth
percentiles were developed to not depend on the score scales being used. Modeling
can be done at the student or aggregate (e.g., teacher or school level), although, as
with vertically moderated standards, the focus of use has been on accountability at
aggregate level. Vertical scales are not necessary for implementing these approaches
(Briggs and Weeks 2009b) although certain approaches have been found to depend
on vertical scales (Martineau 2006; McCaffrey et al. 2004).

9.11 Exercises

9.1 Suppose that a test of fourth grade mathematics achievement is to be constructed
and scaled. The test contains multiple-choice and constructed response ques-
tions. How would test development and scaling proceed using a psychometric
model-based approach such as that of Wright (1977) or Thurstone (1925) as
compared to the approach suggested by Lindquist (1953). Be sure to consider
each of the following components: (a) creating test specifications, (b) test con-
struction, (c) test scoring, (d) combining scores on different item types, and (e)
developing score scales.

9.2 Assume that a 3 parameter logistic model fits a set of data. Assume that exami-
nees 1 through 3 have θ values of −1, 1, and 2 respectively. What would be these
three examinee’s θ∗ values, where θ∗ = exp(θ)? Is the difference in proficiency
between examinees 1 and 2 greater than the difference in proficiency between
examinees 2 and 3? Why or why not?

9.3 For a test with a reliability of .70, what would be the appropriate number of
score points for a scale where a 90 % confidence interval is to be constructed by
adding and subtracting 2 scale score points.

9.4 For the example shown in Tables 9.2 through 9.6, what is the rounded scale score
equivalent of a raw score of 9 for a scale with a mean of 100 and a standard
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Table 9.29 Means and standard deviations for a hypothetical two-level test

Item block
a b c Level Q Level R Total

Grade 3 μ 12 10 5 22 15 27
σ 2 2 2

√
12

√
12

√
24

Grade 4 μ 14 12 10 26 22 36
σ 2 2 2

√
12

√
12

√
24

deviation of 15 if the scale is a linear transformation of observed scores? How
about if the scale is a normalized transformation of observed scores?

9.5 For the example shown in Tables 9.2 through 9.6, what is the rounded scale
score equivalent of a raw score of 9 for a scale with a mean of 100 and an
sem of 3 points, if the scale is based on a nonlinear transformation designed to
approximately equalize the conditional standard errors of measurement and the
IRT model is used to estimate reliability?

9.6 Find the mastery level for Form X item 15 in Table 6.8 assuming that the R P-
level is 80 %.

9.7 For the data in Table 9.10, what would be the proportional effective weights
of each test in a composite consisting of English, Mathematics, and Reading
scores only? What would be the proportional effective weights for a composite
calculated by multiplying scores on the Math test by 3 and on the other tests by
1?

9.8 Consider a situation in which there are 3 blocks of items that differ in difficulty,
each of which contains 20 items. Level Q, which is made up of blocks a and b,
is typically administered to third graders. Level R, which is made up of blocks b
and c, is typically administered to fourth graders. Means and standard deviations
for grade 3 and grade 4 for the item blocks, Level Q, Level R, and total score
over all 3 item blocks are shown in Table 9.29. (Note that the standard deviations
for Level R, Level Q, and Total were calculated assuming that the correlations
between any pair of blocks is .5.)

a. Suppose that as would be done in a common-item vertical scaling design,
Level Q (item blocks a and b) was administered to grade 3 students and
Level R (item blocks b and c) was administered to grade 4 students. Using
only the data that would result from this design, use chained linear methods to
link scores on Level R to scores on Level Q. This procedure involves linking
level R scores to block b scores for fourth graders and linking block b scores
to level Q scores for third graders.

b. Find the linear equation for linking Level R scores to Level Q scores using
only the third grade data.

c. Find the linear equation for linking Level R scores to Level Q scores using
only the fourth grade data.

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
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d. As might be done in a scaling test design, link Level R scores to Total scores
for fourth graders. Link Total scores to Level Q scores for third graders. Use
chained linear methods to combine these two linkings to arrive at a linear
equation linking Level R scores to Level Q scores.

e. Why do the results of these linkings differ? How might this sort of difference
occur in an actual vertical scaling?

f. Which linking is most consistent with the grade-to-grade definition of
growth? Why?

g. Which linking is most consistent with the domain definition of growth? Why?
h. For linkings in parts a–d, what is the effect size of the difference between

grade 3 mean on Q and the grade 4 mean on R when the means and standard
deviations are expressed on the common scale (raw scores on Q) that results
from applying the results from each of the linkings? What do these differences
suggest about the apparent amount of growth that is found when conducting
vertical scaling using the grade-to-grade definition of growth as compared to
the domain definition of growth in this situation?

9.9 Refer to the data in Table 9.14.

a. What would be the grade level means and standard deviations had the scaling
been done so that the mean for grade 8 was zero and the standard deviation
for grade 8 was 1?

b. What would be the grade level means and standard deviations for a scale
where the mean for grade 4 is 400 and the mean for grade 8 is 800?
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Chapter 10
Linking

Equating adjusts for differences in difficulty, not differences in content. That statement
on page 3 is one of the most important sentences in the introductory chapter of
this book. To a large extent this chapter considers situations in which statistical
adjustments are made to scores for tests that differ in content and/or difficulty, and
usually both. In some cases, these differences are relatively small; in most cases,
tests clearly measure very different content/constructs. We refer generically to a
relationship between scores on such tests as a linking.

In all cases, the goal is to put scores from two or more tests on the same scale—in
some sense. If the tests conform to the same content and statistical specifications,
then they are really test forms, and we are entitled to call the resulting linking an
equating. Otherwise, we refrain from using the word “equating” to describe linking
relationships.

Often the subject of linking is introduced with physical examples. For example,
there is a well-known relationship between temperature measured on the Fahren-
heit (F) and Celsius (C) scales—namely, F = (9/5)C + 32 or, equivalently,
C = (5/9)(F − 32). These equations permit a kind of linking of these two ways
of measuring temperature. The first permits us to put Celsius temperatures on the
Fahrenheit scale, and the second allows us to put Fahrenheit temperatures on the
Celsius scale. However, this frequently-employed example is in some ways more
misleading than informative for our purposes here.

First, the relationship between the two scales is functional and, in that sense,
deterministic. That is, the relationship between the two scales is predefined. If any
actual temperature measurements fail to conform exactly to the stated relationship,
then there must be errors in the measurements, because the “construct” that we call
temperature is exactly the same for both scales. Second, even if actual temperature
measurements are used to “confirm” the relationship between the Fahrenheit and
Celsius scales, the errors that exist are likely to be quite small for most practical
purposes.

By contrast, for a linking of scores on tests administered to human beings, the
tests almost always measure at least some different constructs, even if they have
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similar names. Therefore, it is virtually certain that score differences are attributable
to construct differences as well as errors of measurement, either or both of which
could be quite large. This does not mean that a linking of the scores on two tests
cannot be determined. It can, or more correctly, a number of linkage relationships
can be determined. That is a large part of the subject of this chapter. With equal force,
however, the adequacy of the linking may be highly suspect depending on the nature
of the decisions made based on the linking. This message will be repeated in many
different ways in this chapter.

When tests measure different constructs, no linking, no matter how competently
conducted, will be adequate for all purposes and all populations. Several conceptual
frameworks and many statistical perspectives and indices for characterizing a linkage
relationship are discussed in this chapter, but none of them can possibly provide a
definitive answer about linking adequacy. There is no escaping the need for informed
judgment by persons responsible for making decisions about the relationship between
two tests.

This chapter is divided into four major sections: linking categorization schemes
and criteria; a detailed consideration of group invariance, which is a frequently
employed criterion for assessing linking adequacy; additional examples; and a dis-
cussion of other issues. Various real-data examples are discussed. See Feuer et al.
(1999), Dorans et al. (2007), and Dorans and Walker (2007) for additional examples
and discussion. See Holland (2007) and Kolen (2004a) for historical perspectives on
linking. Linking is a vast topic, and approaches to it are evolving at a rapid rate. This
chapter is intended to provide an introduction to linking, not a definitive treatment.

10.1 Linking Categorization Schemes and Criteria

In Chap. 1, we began our introduction to equating by considering three classes of
issues:

1. Choosing a data collection design;
2. Choosing a definition of equating, which in large part amounts to selecting one

or more criteria used to judge the adequacy of equating; and
3. choosing a statistical procedure to obtain an equating result.

The same issues apply to linking, although the designs, criteria, and methodological
emphases may differ. In particular, the same data collection designs used in equating
might be used in linking, as well as others. Also, the statistical procedures used in
equating might be used in linking, as well as others. Finally, many of the same criteria
used in equating can be considered in linking situations, but the criteria are not likely
to be met very well in most realistic circumstances, as will become particularly
evident when we discuss group invariance in the next section.

Perhaps the most enduring and frequently cited example of linking is the “con-
cordance” relationships between ACT Assessment composite scores, with a range of
1–36, and SAT I Verbal-plus-Mathematics (V+M) scores, with a range of 400–1600.
Both of these testing programs are widely used for college admissions, there are

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
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Table 10.1 SAT I V+M and ACT composite equivalents

SAT I V+M equivalents ACT composite equivalents
ACT Comp SAT I V+M SAT I V+M ACT Comp

36 1600 1600 36
35 1580 1560–1600 35
34 1520 1510–1550 34
33 1470 1460–1500 33
32 1420 1410–1450 32
31 1380 1360–1400 31
30 1340 1320–1350 30
29 1300 1280–1310 29
28 1260 1240–1270 28
27 1220 1210–1230 27
26 1180 1170–1200 26
25 1140 1130–1160 25
24 1110 1090–1120 24
23 1070 1060–1080 23
22 1030 1020–1050 22
21 990 980–1010 21
20 950 940–970 20
19 910 900–930 19
18 870 860–890 18
17 830 810–850 17
16 780 760–800 16
15 740 710–750 15
14 680 660–700 14
13 620 590–650 13
12 560 520–580 12
11 500 500–510 11

similarities in the content tested, and the correlation between the ACT composite
and SAT is relatively high (usually in the low .90’s). Still, the forms for the two test-
ing programs are developed according to different tables of specifications, and it is
widely acknowledged that the two testing programs do not provide interchangeable
scores (see Lindquist 1964, for an old but still highly relevant statement about the
problems of relating scores on non-parallel tests).

Using unsmoothed equipercentile procedures with over 100,000 examinees who
took both the ACT and the SAT (i.e., the single group design1), Dorans et al. (1997)
provided the concordance relationships in Table 10.1, which are depicted graphically
in Fig. 10.1.2 How good is this ACT-SAT linking? That is a difficult question to
answer, but there are some relevant statements we can make.

1 The data were counterbalanced to some unknown extent. The two testings differed by no more
than 217 days. Additional, relevant information is provided in the Appendix to Dorans et al. (1997).
2 See, also, Dorans (2000, 2004a).
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Fig. 10.1 SAT I V+M versus ACT composite and ACT composite versus SAT I V+M equivalents

First, since equipercentile procedures were used, we can say with confidence that
the equipercentile property was met for the group of examinees used to do the linking.
However, this group of examinees is quite atypical in that they chose to take both
tests. There is no a priori reason to believe that the concordance relationships in
Table 10.1 would apply to examinees who chose to take only one of the tests, which
is the very group of examinees for whom concordance relationships are desired.

Second, perhaps the most universally accepted criterion for an equating relation-
ship is that it be symmetric.3 In a sense, it is impossible for any linking of the ACT
composite and SAT I V+M to be symmetric because the ACT composite and SAT
I V+M have different numbers of possible score points. That is why there are two
concordance tables in Table 10.1. The left-hand table (a one-to-one mapping) would
be used for obtaining SAT I V+M equivalents given ACT composite scores; the
right-hand table (a many-to-one mapping) would be used for obtaining ACT com-
posite scores given SAT I V+M equivalents.4

Third, there is no guarantee that the concordances in Table 10.1 apply equally
well for all institutions that might want to use them. Indeed, as Dorans et al. (1997)
note,

It is important to investigate how similar institution-specific concordances are across different
institutions and states. Studies of the invariance of concordance tables across institutions
should be guided by characteristics by which institutions differ. Preliminary results indicate
some variability. (p. 30)

3 Strictly speaking, of course, it almost never happens that a reported score (usually an integer) on
one form equates exactly to a reported score on another form. Symmetry may apply to continuized
scores, but it seldom applys exactly to reported scores.
4 Note, in addition, that a SAT I V+M score of 1600 actually has two ACT composite equivalents,
35 and 36, which constitutes a one-to-many mapping.
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In other words, the concordance may not possess the property of group invariance,
a topic that is discussed extensively in Sect. 10.2.

10.1.1 Types of Linking

In his 1997 State of the Union address, President Clinton proposed the creation of the
Voluntary National Tests (VNTs) in reading and mathematics, which would provide
scores for individual examinees on tests that were linked to the National Assessment
of Educational Progress (NAEP) “to the maximum extent possible.” The new tests
were to be labeled “voluntary” to accommodate a prohibition on reporting individual-
level scores for testing programs sponsored by the federal government (e.g., by law,
NAEP cannot provide individual examinee scores). The VNTs were a source of
considerable debate for numerous reasons, not the least of which was a concern that
any linkage of the VNTs and NAEP might not be adequate for practical use. To
address this concern, Congress and President Clinton asked the National Research
Council (NRC) to study the matter. The resulting NRC report is entitled, Uncommon
measures: Equivalence and linkage among educational tests (Feuer et al. 1999).
Funding for the VNTs was eliminated a few years after they were proposed. Still, the
Uncommon measures report provides very informative discussions of linking issues.

To distinguish among different types of linking, the Uncommon measures report
focuses on three stages in test development that characterize what the authors call
the “domain” of a test; namely, in their words,

• framework definition: a delineation of the scope and extent (e.g., specific content
areas, skills, etc.) of the domain to be represented in the assessment;

• test specification or blueprint: specific mix of content areas and items formats,
numbers of tasks/items, scoring rules, etc.; and

• item selection: items are selected to represent the test specifications as faithfully
as possible.

Usually the framework definition is itself a subdomain of a larger domain, as indicated
in Fig. 10.2. For example, if fourth-grade reading is viewed as a domain, then there
are many possible framework definitions.

Given this conceptualization of a test domain, Feuer et al. (1999) discuss three
types of linking that adjust scores on different forms of a test that are based on

1. the same framework and same test specifications,
2. the same framework and different test specifications, or
3. different frameworks and different test specifications.

The first type of linking is essentially equating, as that term has been used in this
book. The second type of linking is exemplified by reading tests in NAEP and the
proposed VNTs, which differ in several ways, including the length of the reading
passages. The word linking is most often associated with the third type of linking
in the Feuer et al. (1999) taxonomy. Probably the most frequently cited example
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Fig. 10.2 Feuer et al.
(1999) decision stages in
test development

is the relationship between SAT-M and ACT Math scores. For these two tests, the
frameworks and test specifications are clearly different, but it is usually claimed that
both tests measure developed abilities and skills in the domain of mathematics.

As another example, relationships between NAEP and the Third International
Mathematics and Science Study (TIMSS) (1998) are described by Feuer et al. (1999)
as follows:

…a given score on the NAEP grade 8 mathematics assessment is intended to measure a
level of mastery of the material specified in the NAEP mathematics framework, whereas a
given score on TIMSS is intended to estimate a level of mastery of the material specified
by the TIMSS framework, which is overlapping, but different from the NAEP framework.
Therefore, the only thing one could say with confidence is that the NAEP scores reflect
mastery of the NAEP framework, and the TIMSS scores reflect mastery of the TIMSS
framework. It is understandable that a student might score better on one assessment than
on the other, that is, find NAEP easier than TIMSS. In practice, however, these distinctions
may blur. Many users of results from a given test will interpret both scores as representing
degrees of mastery of the same general domain, such as “8th-grade mathematics” and will
seem perplexed at the discrepancy. It is necessary to clarify the domain to which scores
should generalize in order to evaluate the quality of any linkages among tests.

10.1.2 Mislevy/Linn Taxonomy

Several years prior to the Uncommon measures monograph, Mislevy (1992) and
Linn (1993) proposed a type of taxonomy for linking that is sometimes referred to as
forms of linking. Their categorization system focuses in part on the methodologies
used to establish linkage. More importantly, however, their four categories are largely
ordered in terms of the “strength” of the resulting linkage.
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1. Equating is the strongest kind of linking. When a linking relationship is truly an
“equating,” the relationship is invariant across different populations.

2. Calibration relationships are weaker than equating relationships. The statistical
methods used in calibration may resemble those used in equating, but the resulting
relationships are not likely to be invariant across different populations. There are
several connotations of the word “calibration.”

3. Projection is a unidirectional form of linking in which scores on one test are
predicted or “projected” from another.

4. There are two types of moderation—statistical moderation and judgmental or
“social” moderation. Moderation is usually considered the weakest form of link-
ing, although arguments can be made that projection is a weaker form of linking
than statistical moderation.

If the single group design is employed to collect data for a linking, then a correlation
coefficient can be used to quantify the strength of the relationship between the two
tests. However, the single group design is not necessarily required to obtain a linking.
Each of the Mislevy/Linn types of linking methods is discussed more fully next.

Equating

Equating has been discussed extensively in previous chapters of this book. We reserve
the term “equating” for a relationship between scores of different forms that are con-
structed according to the same content and statistical specifications. In the terminol-
ogy of the Uncommon measures report, equating is the first type of linking, which
involves the same framework and the same test specifications. Equating is successful
to the extent that the form that is taken is a matter of indifference to each examinee.

Calibration

Many examples of calibration are closely related to the Uncommon measures second
type of linking, which involves the same framework and different test specifications.
However, calibration is also used to refer to the Uncommon measures third type
of linking, which involves different frameworks and different test specifications—
provided the frameworks are viewed as sharing some common features or uses.

First, calibration may refer to a relationship between test forms that share com-
mon content specifications but different statistical specifications. Perhaps the most
frequently cited example is test forms that differ in length. All other things being
equal, the longer form will be more reliable than the shorter form. It follows that
high achieving students should prefer the longer form, and low achieving students
should prefer the shorter form. Clearly, then, which form is taken is not a matter of
indifference for examinees.

A second connotation of calibration involves test forms with somewhat dif-
ferent content specifications and perhaps different statistical specifications. The
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quintessential example involves test forms that are designed for different grade lev-
els, with scores on the forms put on a common scale, as discussed in Chap. 9. This
type of calibration is sometimes called vertical scaling.

A third interpretation of of the term “calibration” involves the application of a
methodology (almost always an item response theory model) that puts all items in
a domain on a common scale. Then, if the model assumptions are met, in theory
any subset of items provides examinee proficiency scores that are comparable in
some sense. Of course, a long subset (i.e., form) provides more precise estimates
than a short subset. Furthermore, in educational contexts, item domains are rarely
unidimensional and, therefore, the manner in which the samples of items are obtained
may or may not lead to forms that are optimally similar in content. It is possible that
a large calibrated item pool could be used to construct forms that share the same
content and statistical specifications to such a degree that scores can be truly equated;
often, however, the relationship between scores on such forms is better described as
calibrated.

Projection

The principal distinguishing features of projection, as opposed to equating or cali-
bration, are (i) projection is unidirectional, (ii) the single group design is required,
and (iii) there is no a prior requirement that the same constructs (or even the same
domains in the terminology of the Uncommon measures report) are being measured.
A projection relationship is almost always obtained via a regression (linear or non-
linear), which is a non-symmetric relationship. That is, the “best” projection of X on
Y is not the same as the “best” projection of Y on X.

Sometimes projection involves variables that are deemed to measure at least some
common constructs. For example, some of the older literature on ACT-SAT relation-
ships provides both concordances and regressions (e.g., Houston and Sawyer 1991).
However, the predicted variable need not share much in common with the predic-
tor(s).

Moderation

Statistical moderation is often called “distribution matching.” Sometimes the distrib-
utions are matched based on data from the single group design (i.e., same examinees
taking the two tests), but random groups designs and nonequivalent groups designs
are possibilities, too.

For example, concordance relationships typically involve the same examinees’
taking different tests, and concordance is usually placed in the statistical modera-
tion category. (Recall the discussion of linking the ACT composite and the SAT in
Sect. 10.1.) In older literature, concordance is sometimes called “scaling to achieve
comparability.” It is a type of linking in which the frameworks are different but the
constructs are typically similar.

http://dx.doi.org/10.1007/978-1-4939-0317-7_9
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Another common example of statistical moderation with the single group design
occurs when tests in a battery are taken by the same group of examinees and scaled
to have a common mean and standard deviation. In this case, scores on the different
tests with the same numerical value are comparable in a norm-referenced sense.
However, such comparability in no way supports an inference that equal scores
designate equivalent levels of knowledge or ability on different tests. Indeed, for this
type of statistical moderation, the constructs are usually quite dissimilar.

Other examples of statistical moderation involve tests with different specifications
that are administered to different, nonequivalent groups of examinees. The result-
ing distributions are matched in some manner, resulting in “score levels that are
deemed comparable (Mislevy 1992, p. 64).” For example, the original SAT Verbal
test was scaled in 1941 to have a mean of 500 and a standard deviation of 100. Then,
about a year later, the Mathematics test was scaled with different examinees to have
approximately the same mean and standard deviation as the 1941 Verbal test.

A more complicated version of statistical moderation involves use of one or more
“moderator tests” that are used to link disparate assessments taken by students in
different programs or for different reasons—for example, biology tests for students
who take biology and American history tests for students who take American history.
Discussing this particular example in the context of the College Board Admissions
Testing Program, Donlon and Livingston (1984) state

…If the scores are to be used for selection purposes, …the score scales should be as
comparable as possible. For example, the level of achievement in American history indicated
by a score of 560 should be as similar as possible to the level of achievement in biology
indicated by a score of 560 on the biology test. But what does it mean to say that one
student’s achievement in American history is comparable to another student’s achievement
in biology. The Admissions Testing Program’s answer to this question, which forms the basis
for scaling the achievement tests, is as follows. Suppose student A’s relative standing in a
group of American history students is the same as student B’s relative standing in a group of
biology students. Now suppose the group of American history students is equal to the group
of biology students in general academic ability. Then it is meaningful to say that student
A’s achievement in American history is comparable to student B’s achievement in biology.
(p. 21)

However, the groups of students who choose to take the two tests cannot be
assumed to be equal in “general academic ability.” As described by Mislevy (1992),
this problem is addressed using moderator tests (see, also, Donlon and Livingston
1984).

First, relationships among the SAT-V, SAT-M, and an Achievement Test are estimated from
an actual baseline sample of students. Then, projection procedures are used to predict the
distribution of a hypothetical “reference population” of students who are all “prepared” to
take the special area test (i.e., have studied biology, if we are working with the biology test)
and have a mean of 500, a standard deviation of 100, and a correlation of .60 on the regular
SAT sections. That is, the same relationship among the SAT tests and the Achievement Test
observed in the real sample is assumed for the hypothetical sample, which could have a mean
higher or lower than 500 and a standard deviation higher or lower than 100. The projected
special-test raw-score distribution of the hypothetical group is transformed to have a mean
of 500 and standard deviation of 100. (p. 66)
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This type of statistical moderation might be called “horizontal scaling.”5 Obviously,
results can differ dramatically with different samples of students and/or different
moderator tests.

Judgmental or “social” moderation involves direct judgments concerning the com-
parability of performance levels on different assessments. Often, these judgments are
obtained in one or more standard-setting studies. For example, there are generic defi-
nitions of “basic,” “proficient,” and “advanced” achievement levels for NAEP. These
generic definitions are augmented for the various NAEP subject matter areas. Then,
panels consisting of teachers, other educators, and the general public participate in an
extensive, standardized rating procedure for determining cut-scores associated with
these achievement levels (see Reckase 2000). This permits comparative statements
such as, “The proportion of proficient students in subject A is X, and the proportion in
subject B is Y.” Such statements are still value-laden, however, because they depend
on judgments about what it means to be proficient in various subject matter areas.
Such judgments are informed by empirical data that are incorporated in the standard
setting procedure, but such data do not remove the need for value judgments.

10.1.3 Holland and Dorans Framework

Holland and Dorans (2006) developed a framework for linking that can be viewed
partly as an expansion and refinement of the Mislevy/Linn framework. Holland
(2007) provides a summary of this framework. Refer to these references for details
regarding this framework, as only a brief overview is provided here.

Holland and Dorans (2006) divide linking methods into three basic categories. In
their framework, equating is defined much as it is in the present volume. The goal of
equating is to produce interchangeable scores across test forms. Holland and Dorans
(2006) consider two other forms of linking that they refer to as scale aligning and
predicting.

The goal of scale aligning as defined by Holland and Dorans (2006) is that fol-
lowing linking, scores on the tests are intended to be comparable, in some sense.
Holland and Dorans (2006) distinguish scale aligning for tests that are intended to
measure similar constructs from scale aligning for tests that are intended to measure
dissimilar constructs.

Scale Aligning—Tests Measuring Similar Constructs

Holland and Dorans (2006) define three types of scale aligning procedures for test
that measure similar constructs as follows: concordance, vertical scaling, and cali-
bration. Concordance requires that the tests to be linked measure similar constructs,
have similar reliability, similar difficulty, and are intended for similar populations.

5 Suggested by S. A. Livingston.
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The concordance of ACT and SAT scores discussed earlier in this chapter is one
example. For other examples and discussions of concordance see Eignor (2008),
Pommerich (2007), Pommerich et al. (2004), and Sawyer (2007).

Holland and Dorans (2006) define vertical scaling as linking of tests that measure
similar constructs, have similar reliability, but are dissimilar in difficulty and in
intended population. Their definition of vertical scaling is similar to that provided in
Chap. 9.

They define calibration as linking of tests that measure similar constructs but have
dissimilar reliability. Linking scores on a short version of a test to scores on a long
version is an example of calibration. The Holland and Dorans (2006) definition of
calibration appears to be more specific than the Mislevy/Linn definition. For example,
Mislevy/Linn refer to vertical scaling as a form of calibration.

Scale Aligning—Tests Measuring Dissimilar Constructs

As discussed in Chap. 9, tests in a test battery that measure different constructs are
often scaled to have the same mean, standard deviation and score distribution in a
specified population to facilitate comparisons of scores across tests. Holland and
Dorans (2006) refer to this process as battery scaling and consider it as one example
of scale aligning for tests that measure different constructs. Other examples include
procedures associated with statistical moderation in the Mislevy/Linn framework.

Predicting

Predicting in the Holland and Dorans (2006) framework involves using regression
methods to predict scores on one test from scores on another test. For example, scores
on a test given early in high school might be used to predict student performance on a
college admissions test. Another type of predicting, is projecting score distributions
on one test from those on another. See Thissen (2007) for a review of studies in
which NAEP score distributions were projected from scores on various tests, Braun
and Qian (2007) for the use of projection methods to map state standards onto the
NAEP scale, and Koretz (2007) for a related discussion.

Data Collection Designs and Statistical Methods

Using their framework to organize their presentation, Holland and Dorans (2006)
provide an in depth description of data collection designs and statistical method-
ology used in linking. In addition, Holland (2007) describes the history of linking
methodology.

http://dx.doi.org/10.1007/978-1-4939-0317-7_9
http://dx.doi.org/10.1007/978-1-4939-0317-7_9
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10.1.4 Degrees of Similarity

Another way to think about linking is in terms of degrees of similarity in what we will
call test “features” or “commonalities.” As noted previously, it is certainly possible
to link scores on any test to scores on any other test. Clearly, however, the utility and
reasonableness of any linking depends upon the degree to which tests share common
features. Here, we suggest consideration of at least the following four features in
examining similarity:

• Inferences: To what extent are scores for the two tests used to draw similar types of
inferences? This is essentially a question of whether the two tests share common
measurement goals that are operationalized in scales intended to yield similar types
of inferences.

• Constructs: To what extent do the two tests measure the same constructs? This
is essentially a question of whether true scores for the two tests are functionally
related. In many linking contexts, the tests may share some common constructs,
but they also assess unique constructs.

• Populations: To what extent are the two tests designed to be used with the same
populations? Two tests might measure essentially the same construct (at least in a
general sense) but not be appropriate for the same populations.

• Measurement characteristics/conditions: To what extent do the two tests share
common measurement characteristics or conditions including, for example, test
length, test format, administration conditions, etc. In generalizability theory (see
Cronbach et al. 1972; Brennan 2001), such measurement conditions are usually
called facets, and two tests may differ with respect to numerous facets. Note that
test specifications are only one part (albeit a very important part) of measurement
characteristics or conditions. Typically, for example, test specifications do not
make reference to stability of test scores over occasions, but this may well be a
measurement condition of interest. Also, for a performance assessment, raters are
clearly a measurement condition of interest.

Figure 10.3 depicts these degrees of similarity in terms of four Venn diagrams. The
extent to which each of the Venn diagrams overlap is a visual indicator of the degree
of similarity in the particular test feature or commonality.

Just about any sensible discussion of a linking relationship should address these
degrees of similarity (and perhaps others) in some manner. Otherwise, it is unlikely
that users of linking results will be adequately informed about the extent to which
the linking provides sensible results for the intended purposes.

The distinctions in the Uncommon measures types of linking and the Mislevy/Linn
taxonomy can be couched in terms of these four degrees of similarity, at least to
some extent. For example, the Uncommon measures “same framework” concept
is essentially a question of construct similarity, and the “same test specifications”
concept is a question of similarity in measurement characteristics. Also, consider
the examples in Table 10.2 of some of the categories (and related terms) in the
Mislevy/Linn taxonomy in terms of degrees of similarity. Clearly, the degrees of
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Fig. 10.3 Degrees of similarity

Table 10.2 Mislevy/Linn taxonomy categories and degrees of similarity

Category Inferences Constructs Populations Meas. Char.

Equating Same Same Same Same
Vertical Scaling Same Same/similar Dissimilar Same/similar
Concordance Same Similar Same/similar (Dis)similar
Projection (Dis)similar (Dis)similar Similar Dissimilar
Stat. Moderation (Dis)similar (Dis)similar (Dis)similar Dissimilar

similarity for the various categories in Table 10.2 are sometimes ambiguous; i.e.,
the context matters, and there is not a perfect mapping of the taxonomy categories
and degrees of similarity. Stated differently, the Mislevy/Linn taxonomy provides
helpful but not definitive descriptions of unique categories of linking.

Clearly, there is not an unambiguous mapping of the Mislevy/Linn taxonomy
categories and the degrees of similarity. Indeed, some of these categories (e.g., pro-
jection) are “wide” enough that no single specification of degrees of similarity applies
to all applications. Still, it is possible to establish at least partial relationships between
these two perspectives on linking.

Perhaps the most novel feature of the four degrees of similarity is its explicit
incorporation of inferences. One might ask, “What would it mean for two tests
to differ primarily with respect to their intended inferences?” In a general sense,
this would mean that the two tests were developed and are used for different pur-
poses.6 Typically, inferences are partly operationalized through the choice of scoring
and/or scaling procedures. So, for example, there is no distinction between a norm-
referenced and criterion-referenced test per se; rather, the distinction is with respect
to the reported scores and their interpretations—i.e., the inferences drawn based on
test scores. It is certainly possible to link two different types of score scales for

6 It is likely that tests with different inferential intent will also differ with respect to some measure-
ment characteristics or conditions, although this need not be so.
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different tests (or even the same test). For example, sometimes achievement levels
(e.g., “basic,” “proficient,” and “advanced”) are defined relative to a norm-referenced
scale such as percentile ranks.

Inferences are also tied to the “stakes” associated with a test. Even if two tests are
quite similar, if one of them is used for low-stakes decisions and the other is used for
high-stakes decisions, it is quite likely that any linkage will be different from what
it would have been if both were used for low-stakes decisions or both were used for
high-stakes decisions. Also, of course, stakes are likely to influence at least some
measurement characteristics.

Kolen (2007) reorganized the degrees of similarity conceptualization of link-
ing. He combined the categories of inferences and measurement characteristics and
referred to the resulting category as conditions of measurement. He referred to test
content as another category and pointed out that the construct measured depends on
test content, examinee population, and conditions of measurement. He systematically
examined different data collection designs and statistical methods as they relate to
test content, examinee population, and conditions of measurement.

10.1.5 Summary and Other Approaches

In this section, four perspectives on linking have been discussed: (1) the Uncom-
mon measures types of linking; (2) the Mislevy/Linn taxonomy; (3) the Holland and
Dorans framework, and (4) degrees of similarity in test features or commonalities.
There is no one “right” perspective, probably no “best” perspective, and uncritical
acceptance of any set of linking categories is probably unwarranted. Among other
things, the demarcation between categories can be very fuzzy, and differences are
often matters of degree. Also, some categories, such as statistical moderation, are
particularly broad. Our intent here is not to promote one perspective over another,
but rather to encourage investigators who report linking relationships to provide
critical discussions of them, without simply resorting to unqualified single-word
category descriptions.

The perspectives on linking described in this section focus primarily on the con-
ceptual or semantic aspects of linking; i.e., they constrain or frame how linking results
can/should be interpreted. A variety of other conceptual discussions of linking have
been published. See Kolen (2004b) for a historical perspective on linking. Dorans
(2012), among other concerns, stresses that the construct measured depends on the
context in which a test is administered and various characteristics of examinees. See
Newton (2010a) for a focus on score comparability along with discussions by von
Davier (2010), Walker (2010), and Newton (2010b).

Of course, there are other important topics that must be addressed in conducting a
linking study that are not always explicitly addressed by the perspectives on linking
discussed in this section. Among these topics are the data collection design, the
statistical methods employed and the related assumptions, and the extent to which the
examinees used in a linking study faithfully represent the population(s) of interest.
For the most part, these matters relate to the syntactical (psychometric/statistical)
aspects of linking.
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10.2 Group Invariance

As mentioned in Sect. 10.1, equating criteria (as well as other criteria) might be used
to characterize linking relationships. Obviously, we do not expect these criteria to
be satisfied nearly as well for a linking as they might be for an equating. Still, such
criteria can be used as benchmarks. In the context of linking, the most frequently
discussed criterion is group or population invariance. Indeed, in his review of popula-
tion invariance, Kolen (2004b) notes that over 50 years ago Flanagan (1951) claimed
that, compared to equating, for linking “the determination of scores of comparable
difficulty is … much more definitely relative to the particular group used” (p. 759).
Group invariance is a particularly attractive criterion because it can be studied empir-
ically using relatively straightforward procedures, and the results are interpretable
and useful in a reasonably direct manner.

In previous chapters, X and Y have designated new and old forms, respectively, of
a test. In this chapter, the old/new designators are not used because they are seldom
meaningful in a linking context (other than equating). Unless otherwise stated, in
this chapter X and Y designate different tests that do not have the same content and
statistical specifications. Furthermore, in most cases the scores under consideration
are scale scores rather than raw scores. So, in this chapter X1, . . . ,XI designate
I (scale) scores associated with test X , and Y1, . . . ,YJ designate J (scale) scores
associated with test Y . In most realistic cases I ∗= J .

Here, our focus is on the extent to which particular methods for linking X and Y
give results that are invariant for h = 1, . . . ,H different groups or subpopulations
that partition the full population.7 For example, if the focus is on gender groups,
H = 2 and h = 1, 2. In the notational scheme used here, if the group indicator h
is not present, the entire population is under consideration, which is often referred
to here as the “combined group.” Also, we stay with the convention of transforming
scores on X to the scale of Y .8 Group invariance is satisfied if it is a matter of
indifference for all H groups of examinees whether their group-specific linking or
the combined-group linking is used to obtain score equivalents.

10.2.1 Statistical Methods Using Observed Scores
There are four observed-score linking methods that will be considered here:

1. mean method,
2. linear method,
3. parallel-linear method, and
4. equipercentile method with and without postsmoothing.9

7 This use of h should not be confused with the previous use of h as the discrete density for common
items.
8 Parts of this section are a revised version of Yin et al. (2004).
9 Although we focus here on postsmoothing with equipercentile linking, presmoothing methods
can be used as well.
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Except for the parallel-linear method, each method has been considered previously
in equating contexts. The difference here is that, for each method, there is a linkage
for the combined group as well as each of the subpopulations.

Mean Method

For the mean method, deviation scores from the mean are set equal:

x − μ(X) = y − μ(Y). (10.1)

It follows that the transformation equation for the entire population is

mY (x) = x − μ(X) + μ(Y), (10.2)

and the transformation equation for a subgroup h is

mYh(x) = x − μh(X) + μh(Y). (10.3)

The mean method can be useful in equating well-constructed nearly parallel forms.
In linking contexts, however, unless sample sizes are very small, the mean method
is not likely to be the best choice, although it has the virtue of simplicity.

Linear Method

For the linear method, standardized deviation scores (z-scores) on the two tests are
set equal:

x − μ(X)

σ(X)
= y − μ(Y)

σ(Y)
. (10.4)

The transformation for the combined group can be expressed as

lY (x) = μ(Y) + σ(Y)

σ(X)
[x − μ(X)] , (10.5)

and the transformation for subgroup h is

lYh(x) = μh(Y) + σh(Y)

σh(X)
[x − μh(X)] . (10.6)

It is evident from the equations for the mean and linear methods that the mean method
is a special case of the linear method in which σ(Y)/σ(X) = 1 for the combined
group and σh(Y)/σh(X) = 1 for each of the H subgroups.
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Parallel-Linear Method

Largely for the purpose of analytic simplicity, Dorans and Holland (2000) invented
the so-called “parallel-linear” method for linking with multiple groups. The only
statistical difference between the linear and parallel-linear methods is that, for the
latter, the deviation scores for the subgroups are divided by the standard deviations
for the combined group:

x − μh(X)

σ(X)
= y − μh(Y)

σ(Y)
. (10.7)

It follows that the transformation equation for subgroup h is

plYh(x) = μh(Y) + σ(Y)

σ(X)
[x − μh(X)] . (10.8)

When the ratios of the standard deviations from the two tests obtained from subgroup
h and from the combined group are equal—i.e.,

σh(Y)

σh(X)
= σ(Y)

σ(X)
,

the transformation equations derived from the linear and parallel-linear methods
are exactly the same for subgroup h. Usually, of course, the ratios of the standard
deviations are not the same, but making this assumption leads to simplification of
some results.

The slope in Eq. (10.8) for the parallel-linear method for subgroup h is exactly
the same as the slope in Eq. (10.5) for the linear method for the combined group. It
follows that the difference between the two equations is a function of the intercepts,
only

lY (x) − plYh(x) =
{

σ(Y)

σ(X)
[x − μ(X)] + μ(Y)

}
−

{
σ(Y)

σ(X)
[x − μh(X)] + μh(Y)

}

= [μ(Y) − μh(Y)] − σ(Y)

σ(X)
[μ(X) − μh(X)]. (10.9)

In short, the parallel-linear method simplifies differences in subgroup transformation
functions into intercept differences, ignoring possible slope differences.

Equipercentile Method

The equipercentile method has been discussed extensively in Chap. 2. Here, we
merely summarize basic results, extend them to subgroups, and discuss them in

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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the context of different tests rather than different forms of the same test. In doing so,
some equations from Chap. 2 are duplicated here.

Under the equipercentile method, differences in difficulty between tests are
described by a non-linear transformation that is defined in the following manner:

eY (x) = G−1[F(x)], (10.10)

where F is the cumulative distribution function of X, G is the cumulative distribution
function of Y , and G−1 is the inverse of the cumulative distribution function of Y .
The net effect is that the transformed scores on X have the same distribution function
as the scores on Y (neglecting the issue of discreteness).

The analytic approach to determining equipercentile equivalents with discrete data
typically employs the percentile rank functions P and Q for X and Y , respectively.
Using percentile rank functions, the equipercentile equivalent of score x on the Y
scale for the population (i.e., the combined group) is defined as

eY (x) = Q−1[P(x)], 0 ≥ P(x) < 100,

= YJ + 0.5, P(x) = 100, (10.11)

where Q−1 is the inverse of the percentile rank function for Y , and YJ represents the
highest score for Y .10 Similarly, the transformation equation for subgroup h is

eYh(x) = Q−1
h [Ph(x)], 0 ≥ Ph(x) < 100,

= YJ + 0.5, Ph(x) = 100, (10.12)

where Ph is the percentile rank function for X obtained from group h, and Q−1
h is the

inverse of the percentile rank function for Y based on subgroup h.
The equipercentile method has several advantages over the mean, linear and,

parallel-linear methods, including the following:

• equipercentile equivalents are within the range of possible score points, which
avoids the out-of-range problem that can occur with the mean, linear, and parallel-
linear methods;

• for the equipercentile method, relationships between tests are not assumed to be
linear;

• the cumulative distribution function of transformed scores is approximated by the
cumulative distribution function of Y ; and

• the moments for transformed scores (e.g., mean, variance, skewness, and kurtosis)
are approximately the same as those for Y .

However, difficulties are sometimes encountered using the equipercentile method
in linking situations, especially when sample sizes are small. For example,

10 The primary difference between this equation and the corresponding equation in Chap. 2 is that
the equation in Chap. 2 uses the number of items in a form as the highest score.

http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
http://dx.doi.org/10.1007/978-1-4939-0317-7_2
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Pommerich et al. (2004) found that concordance tables obtained using the equiper-
centile method for different institutions were not always stable, especially for smaller
institutions. In such circumstances, more stable results may be obtained by pres-
moothing the score distributions before obtaining the equipercentile equivalents, or
postsmoothing the equipercentile equivalents themselves. Even when sample sizes
are quite large, smoothing is often used to obtain equivalents that have a more regular
(i.e., less jagged) shape. Both types of smoothing have been discussed extensively in
earlier chapters. In the linking example discussed later in Sect. 10.2.4, postsmoothing
is used.

10.2.2 Statistics for Overall Group Invariance

Dorans and Holland (2000) introduced two statistics to summarize differences
between the transformation functions obtained from subgroups and the entire pop-
ulation (i.e., combined group): the standardized Root Mean Square Difference,
RMSD(x), which is associated with a particular score on X; and the standardized
Root Expected Mean Square Difference, REMSD, which summarizes overall differ-
ences for the entire population (i.e., combined group). Consistent with the notation
used in Chap. 1, let eq denote an equivalent based on any method (e.g., mean, lin-
ear, parallel-linear, or equipercentile). Then, eqY (x) represents transformed scores
on Form X to the scale of Form Y for the entire population, and eqYh(x) represents
transformed scores on Form X to the scale of Form Y for subgroup h. Let Nh be
the sample size for subgroup h, let N be the total number of examinees, and let
wh = Nh/N be the weight for subgroup h. Then,

RMSD(x) =

√√√√ H∑
h=1

wh[eqYh(x) − eqY (x)]2

σ(Y)
, (10.13)

and

REMSD =

√√√√ H∑
h=1

whE{[eqYh(x) − eqY (x)]2}

σ(Y)
, (10.14)

where E is the notation for expected value introduced in Chap. 1.
A computational formula for REMSD involves weighting the expected values of

the squared differences in Eq. (10.14) by the relative frequencies of the data for X at
each score point. Let min(x) and max(x) be the observed minimum and maximum
values, respectively, of scores on Form X , let Nxh be the number of examinees for
subgroup h with a particular score (x) on Form X, and let vxh = Nxh/Nh be a weighting
factor for subgroup h and score x. Then, a computational formula for REMSD is

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
http://dx.doi.org/10.1007/978-1-4939-0317-7_1
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REMSD =

√√√√ H∑
h=1

wh

max(x)∑
min(x)

vxh [eqYh(x) − eqY (x)]2

σ(Y)
, (10.15)

which clearly indicates that REMSD is a doubly weighted statistic. The vxh weights
are proportional to subgroup frequencies for score points on X; the wh weights are
proportional to subgroup sizes.

As discussed by Dorans and Holland (2000), for the parallel-linear method with
H = 2, Eq. (10.15) simplifies to

REMSD = ≤
w1w2

( ∣∣∣∣ μ1(Y) − μ2(Y)

σ(Y)
− μ1(X) − μ2(X)

σ(X)

∣∣∣∣
)
. (10.16)

For this special case, REMSD is simply a function of the absolute value of the
difference in “approximate effect sizes” for the two tests.11 So, if the effect sizes
differ substantially for the two tests, then REMSD will be large.

Also, for this special case, all other things being equal, REMSD will increase
as the subgroup sample sizes become more similar. Indeed, the form of the general
Eq. (10.14) for REMSD indicates that if one subgroup includes most of the examinees,
REMSD can be quite small even when the linking for the large subgroup is quite
different from the linkings for the smaller subgroups.

In Eq. (10.15), the squared differences between the transformed scores obtained
for subgroup h and the entire population are weighted by the relative frequency at
each score point on form X . Clearly, when the weights are defined in this manner,
the value of REMSD will depend on the specific sample of examinees used in the
linking study. In most practical circumstances, however, the sample used to conduct
a linking study is different from the population about whom decisions will be made
based on the linking results. This suggests that an investigator might want to define
the w and v weights in a manner that better reflects the likely values of these weights
in the context that the linking results will be used. Alternatively, the v weights might
reflect the relative importance associated with certain score points. For example, the
highest weight might be around a certain cut score, or several cut scores. Of course,
the sum of the weights must still be 1.

As a special case, consider an equally weighted REMSD (ewREMSD), which uses
the same weight—the inverse of the total number of score points—for all the score
points on form X,

11 The denominator of an effect size is typically defined as the “common” standard deviation for
the two groups, rather than the standard deviation for both groups combined. Alternatively, the v
weights could be based on the combined group; i.e., for each h, the weight for X = x could be set
to Nx/N . These weights seem to be the ones preferred by Dorans and Holland (2000).
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ewREMSD =

√√√√ H∑
h=1

wh

max(x)∑
min(x)

1

max(x) − min(x) + 1
[eqYh(x) − eqY (x)]2

σ(Y)
. (10.17)

This statistic may be sensible when decisions are made throughout the range of score
points. Even in other circumstances, ewREMSD may be a useful statistic to compare
with REMSD.

In Eqs. (10.15)–(10.17), parameters [σ,μ, eqY (x), and eqYh(x)] are used. In prac-
tice, of course, estimates based on observed scores [σ̂, μ̂, êqY (x), and êqYh(x)] are
used instead.

10.2.3 Statistics for Pairwise Group Invariance

The REMSD and ewREMSD statistics discussed in the previous section consider all
H groups simultaneously. As such, their advantage and their limitation is that they
measure overall group invariance. In doing so, they can mask differences between
pairs of groups that may be of interest in particular circumstances. For example,
sometimes a question of interest concerning group invariance is the extent to which
the linking for two particular subgroups (e.g., blacks and whites) is similar. At other
times, interest may focus on the extent to which the combined group linking is
similar to that for a particular subgroup. To accommodate this need, we consider the
following statistics that measure invariance two groups at a time12:

• MD: weighted average of the differences between equivalents;
• ewMD: equally weighted average of the differences between equivalents;
• MAD: weighted average of the absolute value of the differences between equiva-

lents; and
• ewMAD: equally weighted average of the absolute value of the differences between

equivalents.

Formally, for two groups h and h∞ (h or h∞ might be the combined group),

MD =
∑

x

νxhh∞ [eqYh(x) − eqYh∞(x)]. (10.18)

If the weights are intended to reflect the frequencies in the data used to establish the
linking,

νxhh∞ = Nxh + Nxh∞

Nh + Nh∞

12 Two-at-a-time versions of REMSD and ewREMSD could be defined, also, as discussed by Yang
et al. (2003).
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if h and h∞ are subgroups. If one of the groups is the combined group, then νxhh∞ =
Nx/N , where Nx is the sample size for X = x for the combined group. In terms of the
notation introduced in Eq. (10.17), the equally weighted average of the differences
is

ewMD =
max(x)∑
min(x)

1

max(x) − min(x) + 1
[eqYh(x) − eqYh∞(x)], (10.19)

which might also be called an “unweighted” or “simple” average. Replacing the
signed differences in Eqs. (10.18) and (10.19) with their absolute values gives for-
mulas for MAD and ewMAD, respectively:

MAD =
∑

x

νxhh∞ |eqYh(x) − eqYh∞(x)|, (10.20)

and

ewMAD =
max(x)∑
min(x)

1

max(x) − min(x) + 1
|eqYh(x) − eqYh∞(x)|. (10.21)

10.2.4 Example: ACT and ITED Science Tests

To illustrate the linking methods and statistics that have been discussed in
Sects. 10.2.1–10.2.3, we use data that were collected for the ACT Assessment (ACT)
Science Reasoning test (ACT 2007) and the Iowa Tests of Educational Development
(ITED) Analysis of Science Materials test (Feldt et al. 1994). This example is hypo-
thetical and not very realistic, because the two testing programs are not usually used
for the same purpose, although they share a common history, and in several states
they are taken by many of the same students.13 In the context of this example, several
“benchmarks” are considered for judging the extent to which linkage differences are
large, in some sense.

ACT Science Reasoning

The ACT is designed to measure skills that are important for success in postsecondary
education. A principal purpose of the ACT is to assist in college admissions. Content
specifications for the ACT are based on curriculum and textbooks used in grades
7–12, educators’ opinions about the importance of particular knowledge and skills,
and college faculty members’ opinions about important academic skills needed for

13 For other examples using the same testing programs, see Yin et al. (2004). For ACT-SAT exam-
ples, see Dorans (2000), Dorans and Holland (2000), and Dorans (2004a). For examples using the
Advanced Placement exams, see Dorans et al. (2003), Dorans (2004b), and Yang (2004).



10.2 Group Invariance 509

success in college. Raw score are defined as the number of items correct, and raw
scores are transformed to scale scores in the range 1–36.

The Science Reasoning test (40 multiple-choice items administered in 35 minutes)
is one of four tests in the ACT battery. The test measures interpretation, analysis,
evaluation, reasoning, and problem-solving skills required in the natural sciences. It
is assumed that students have completed a course in earth science and/or physical
science and a course in biology.

The Science Reasoning test presents seven sets of scientific information, each fol-
lowed by a number of items. The scientific information is conveyed in one of three
different formats: data representation (graphs, tables, and other schematic forms),
research summaries (descriptions of several related experiments), or conflicting view-
points (expressions of several related hypotheses or views that are inconsistent with
one another).

ITED Analysis of Science Materials

The ITED is widely used for measuring the performance of high-school students in
grades 9–12, especially for long-term goals of secondary education. The ITED can
be used regardless of the particular courses students are taking or curriculum they are
following. The ITED is not routinely used for college admissions purposes, although
there is evidence that scores on the ITED are a good predictor of success in college
(Feldt et al. 1994).

Raw score is defined as the number of items correct, and raw scores are trans-
formed to different types of scale scores. Here we focus on the developmental
standard score (DSS) scale. DSSs are used to describe the location of a student’s
performance on an achievement continuum. The typical performance for an 11th
grade student in the spring of the school year is assigned to be 275 in DSS units
(Feldt et al. 1994). DSSs range from approximately 150 to 400 for most 11th graders.

The Analysis of Science Materials test (48 multiple-choice items administered in
40 minutes) is one of seven tests in the ITED battery. The test provides information
about a student’s ability to interpret and evaluate information in the sciences, to
recognize basic principles of scientific inquiry and measurement, and to analyze
experimental procedures. Many of the items are based on reading passages/materials
that provide descriptions of actual experiments and their results. Recall of specific
information plays a limited role. Rather, the items require students to think critically
about diverse kinds of scientific information (Feldt et al. 1994).

Data

The data used in this study were collected using a single group design; i.e., the
same group of examinees took both the ACT and the ITED. Specifically, 8,628 Iowa
examinees (11th graders) who took the ITED in fall 1993 and who took the ACT as
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12th graders in spring 1995 were included in the study. The grouping variable used
here is gender. There were 3,766 males and 4,862 females in the sample.14

Note that there is a year-and-a-half interval between the two testings. This time
interval may be too long to be optimal, but it is a practical necessity for the reasons
noted next. First, at the time the data were collected, the ITED was administered only
in the fall. Second, in the state of Iowa, many high school seniors do not take the
ITED, and it is reasonable to assume that many of those who do are less motivated
than they were when they tested as juniors. Therefore, for the spring 1995 ACT-
tested 12th graders, it was judged that the best available match was ITED-tested 11th
graders who tested in the fall of 1993 (instead of fall of 1994).

Examinees first took the ITED, and then the ACT. There was no counterbalancing
of the two tests. One potential problem associated with the single group design is that
learning could have taken place during the period between the two testings, and the
ITED-ACT order effect may be confounded with examinees’ learning and growth
over time. However, it was not practical to collect counterbalanced data because of
the nature of the two testing programs.

The limitations in the data noted above suggest a cautious interpretation of results.
However, as noted earlier, these data are used here to illustrate methodologies, not
to create a linking for practical use.

Distributions and Descriptive Statistics

Tables 10.3–10.5 provide descriptive statistics, frequency distributions, and per-
centile ranks for Y = ACT scores, and X = ITED scores. From Table 10.3 it is
evident that the ACT scores are positively skewed, whereas the ITED scores are neg-
atively skewed (see also Fig. 10.4). It is difficult to compare the means and standard
deviations because scores for the two tests are on very different scales.

The observed-score ACT-ITED correlations for the combined group, males, and
females were .672, .659, and .689, respectively. If we assume that reliabilities for the
two tests are in the range of .8 to .9, then the corresponding disattenuated correlations
are about .75–.84, .73–.82, and .77–.86. The moderate value of these disattenuated
correlations suggests that, although the two tests share some common features, there
is evidence that they are measuring something different. This evidence is somewhat
stronger for males than females.

ACT scores that are reported to examinees are integers from 1 to 36, inclusive.
For these data, however, no examinee got an ACT score below 9, and there were
many more examinees who got a score of 36 (namely, 35 examinees) than who got
a score of 35 (namely, 9 examinees).

The lowest ITED score for the sample is 163, and the highest is 382. Within this
range there are 382 − 163 + 1 = 220 possible integer scores. However, only 46
integer scores were actually obtained by examinees in the sample. This is not too
surprising, given the length of the ITED test; i.e., since the ITED science test contains

14 Robert Forsyth and James Maxey were instrumental in making these data available.
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Table 10.3 Descriptive statistics for ACT and ITED science scores for males (M),
females (F), and combined group (C)

Test Gp N w Min Max μ̂ σ̂ ŝk k̂u

ACT C 8628 1.000 9 36 22.197 4.218 0.350 3.214
M 3766 .436 10 36 22.834 4.401 0.313 3.109
F 4862 .564 9 36 21.703 4.002 0.325 3.238

ITED C 8628 1.000 163 382 314.191 36.186 −0.649 3.302
M 3766 .436 163 382 315.500 39.130 −0.757 3.290
F 4862 .564 173 382 313.177 33.694 −0.539 3.223

Table 10.4 Distributions for ACT science scores for males (N = 3,766),
females (N = 4, 862), and combined group (N = 8628)

Comb. Group Males Females

y freq Q̂(y) freq Q̂(y) freq Q̂(y)

9 3 0.017 0 0.000 3 0.031
10 6 0.070 3 0.040 3 0.093
11 20 0.220 7 0.173 13 0.257
12 18 0.440 5 0.332 13 0.524
13 46 0.811 18 0.637 28 0.946
14 90 1.599 40 1.407 50 1.748
15 158 3.037 63 2.775 95 3.239
16 338 5.911 113 5.112 225 6.530
17 454 10.501 159 8.723 295 11.878
18 412 15.519 155 12.892 257 17.555
19 738 22.184 293 18.840 445 24.774
20 811 31.160 300 26.713 511 34.605
21 914 41.157 366 35.555 548 45.496
22 748 50.788 302 44.424 446 55.718
23 838 59.979 382 53.505 456 64.994
24 802 69.483 374 63.542 428 74.085
25 399 76.443 198 71.136 201 80.553
26 522 81.780 251 77.098 271 85.407
27 336 86.752 183 82.860 153 89.768
28 263 90.224 135 87.082 128 92.657
29 287 93.411 153 90.905 134 95.352
30 169 96.054 98 94.238 71 97.460
31 76 97.473 51 96.216 25 98.447
32 53 98.221 28 97.265 25 98.961
33 17 98.627 12 97.796 5 99.270
34 66 99.108 42 98.513 24 99.568
35 9 99.542 8 99.177 1 99.825
36 35 99.797 27 99.642 8 99.918
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Table 10.5 Distributions for ITED science scores for males (N = 3,766),
females (N = 4,862), and combined group (N = 8,628)

Comb. Group Males Females

x freq P̂(x) freq P̂(x) freq P̂(x)

163 1 0.006 1 0.013 0 0.000
169 2 0.023 2 0.053 0 0.000
173 2 0.046 1 0.093 1 0.010
177 1 0.064 0 0.106 1 0.031
181 6 0.104 3 0.146 3 0.072
186 8 0.185 4 0.239 4 0.144
192 15 0.319 9 0.412 6 0.247
199 23 0.539 16 0.743 7 0.381
207 38 0.892 27 1.314 11 0.566
216 48 1.391 29 2.058 19 0.874
225 56 1.994 34 2.894 22 1.296
234 70 2.724 43 3.917 27 1.800
242 109 3.761 50 5.151 59 2.684
249 88 4.903 41 6.360 47 3.774
255 89 5.928 42 7.461 47 4.741
260 111 7.087 44 8.603 67 5.913
264 116 8.403 51 9.865 65 7.271
268 145 9.915 56 11.285 89 8.854
272 148 11.613 68 12.931 80 10.592
275 171 13.462 67 14.724 104 12.485
278 189 15.548 67 16.503 122 14.809
282 193 17.762 79 18.441 114 17.236
285 179 19.918 65 20.353 114 19.580
288 241 22.352 95 22.477 146 22.254
290 248 25.185 100 25.066 148 25.278
293 279 28.239 111 27.868 168 28.527
297 267 31.404 109 30.789 158 31.880
301 309 34.742 114 33.749 195 35.510
305 319 38.381 116 36.803 203 39.603
309 342 42.211 121 39.950 221 43.963
314 388 46.442 157 43.640 231 48.612
319 369 50.829 155 47.783 214 53.188
323 372 55.123 155 51.899 217 57.620
328 399 59.591 159 56.067 240 62.320
333 437 64.436 158 60.276 279 67.657
337 411 69.350 186 64.843 225 72.840
342 416 74.142 186 69.782 230 77.520
347 408 78.917 190 74.774 218 82.127
351 363 83.385 175 79.620 188 86.302
355 357 87.558 174 84.254 183 90.117
360 299 91.360 150 88.555 149 93.531
364 236 94.460 131 92.286 105 96.144
368 187 96.911 122 95.645 65 97.892
372 121 98.696 66 98.141 55 99.126
377 42 99.641 29 99.403 13 99.825
382 10 99.942 8 99.894 2 99.979



10.2 Group Invariance 513

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 5 10 15 20 25 30 35 40

R
el

at
iv

e 
F

re
qu

en
cy

 (
co

m
bi

ne
d 

gp
)

Y = ACT

0.00

0.01

0.02

0.03

0.04

0.05

0.06

150 200 250 300 350 400

R
el

at
iv

e 
F

re
qu

en
cy

 (
co

m
bi

ne
d 

gp
)

X = ITED

Fig. 10.4 Combined-group relative frequencies for the ACT and the ITED

only 48 items, there could not be more than 49 obtained scores. The fact that there
are many fewer obtained scores than possible scores is primarily attributable to the
manner in which scaling is done for developmental standard scores when there are
many different levels of a test (see Chap. 9).

Approximately 44 % of the sample are males and 56 % are females. The descriptive
statistics in Table 10.3 suggest that there are some differences between males and
females, but the different scales for the ACT and the ITED make it difficult to judge
whether these differences are greater for the ACT or the ITED. A Standardized
Mean Difference (SMD) provides a scale-independent way to quantify group mean
differences (see, for example, Dorans 2000):

SMD = μ1 − μ2

σ
, (10.22)

where σ is the combined-group standard deviation. Letting males be group 1 and
females be group 2:

SMD SMD
for Y = ACT for X = ITED

0.27 0.06

In terms of the ACT scale, males score higher than females by about 27 % of a
combined-group standard deviation unit; in terms of the ITED scale, males score
higher than females by about 6 % of a combined-group standard deviation unit. In
this sense, males and females score much more differently on the ACT than on the
ITED. These SMD values suggest that transformations of ITED scores to the ACT
scale are not likely to be invariant with respect to gender. This matter is considered
explicitly next.

http://dx.doi.org/10.1007/978-1-4939-0317-7_9
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Table 10.6 Mean, linear, and parallel-linear transformations

Group Meana Linear Parallel-linear
Intercept Slope Intercept Slope

Combined −291.99397 −14.42959 .11657 −14.42959 .11657
Males (1) −292.66569 −12.65127 .11247 −13.94504 .11657
Females (2) −291.47368 −15.49409 .11877 −14.80491 .11657

a Adjustments to observed scores on X

Unrounded Equivalents

Using the equations in Sect. 10.2.1, Table 10.6 reports the mean adjustments, slopes,
and intercepts for determining the mean, linear, and parallel-linear transformations.15

(Note that, by definition, the linear and parallel-linear methods for the combined
group are the same.) These results can be used to estimate the Y = ACT equivalents.
For example, for males with ITED scores of 310, using Eq. (10.3), the equivalent
using the mean method is

m̂Y1(x = 310) = 310 − 292.66569 = 17.33;

using Eq. (10.6), the equivalent using the linear method is

l̂Y1(x = 310) = −12.65127 + .11247(310) = 22.22;

and using Eq. (10.8), the equivalent using the parallel-linear method is

p̂lY1(x = 310) = −13.94504 + .11657(310) = 22.19.

Table 10.7 provides estimated mean, linear, and parallel-linear Y = ACT equiv-
alents for a selected sample of low, medium, and high X = ITED scores. Perhaps
the most striking feature of these results is that, for low and high ITED scores, the
mean method gives ACT equivalents that are very much out of range. By contrast,
the linear and parallel-linear results are often very similar.

Table 10.8 provides estimated unsmoothed equipercentile Y = ACT equivalents,
as well as postsmoothed equipercentile equivalents with S = .30 and S = 1.00, for
a selected sample of low, medium, and high X = ITED scores. It is evident that the
equivalents for S = .30 and S = 1.00 are very similar and somewhat different from
the unsmoothed results.16

15 These results are reported with five decimal places of accuracy so the reader can verify the
correctness of equivalents reported in subsequent tables. If only three decimal places of accuracy
are used, as in Table 10.3, some computed equivalents will differ from those reported in subsequent
tables.
16 S = 1.00 would be a rather large value of S in an equating context with forms that have the same
range of score points. For this linking context, however, the tests have very different ranges of score
points. It follows that the unsmoothed equipercentile linkings exhibit many-to-one conversions of



10.2 Group Invariance 515

Table 10.7 Unrounded and untruncated Y = ACT mean, linear, and parallel-
linear equivalents for males (1), females (2), and combined group

Mean Linear Parallel-Linear

x m̂Y (x) m̂Y1(x) m̂Y2(x) l̂Y (x) l̂Y1(x) l̂Y2(x) p̂lY (x) p̂lY1(x) p̂lY2(x)

163 −128.99 −129.67 −128.47 4.57 5.68 3.87 4.57 5.06 4.20
164 −127.99 −128.67 −127.47 4.69 5.79 3.98 4.69 5.17 4.31
165 −126.99 −127.67 −126.47 4.81 5.91 4.10 4.81 5.29 4.43
166 −125.99 −126.67 −125.47 4.92 6.02 4.22 4.92 5.41 4.55
167 −124.99 −125.67 −124.47 5.04 6.13 4.34 5.04 5.52 4.66
168 −123.99 −124.67 −123.47 5.15 6.24 4.46 5.15 5.64 4.78
169 −122.99 −123.67 −122.47 5.27 6.36 4.58 5.27 5.76 4.90
170 −121.99 −122.67 −121.47 5.39 6.47 4.70 5.39 5.87 5.01
171 −120.99 −121.67 −120.47 5.50 6.58 4.82 5.50 5.99 5.13
172 −119.99 −120.67 −119.47 5.62 6.69 4.94 5.62 6.11 5.25
173 −118.99 −119.67 −118.47 5.74 6.81 5.05 5.74 6.22 5.36
.
.
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.
.
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.

.

300 8.01 7.33 8.53 20.54 21.09 20.14 20.54 21.03 20.17
301 9.01 8.33 9.53 20.66 21.20 20.26 20.66 21.14 20.28
302 10.01 9.33 10.53 20.78 21.32 20.38 20.78 21.26 20.40
303 11.01 10.33 11.53 20.89 21.43 20.49 20.89 21.38 20.52
304 12.01 11.33 12.53 21.01 21.54 20.61 21.01 21.49 20.63
305 13.01 12.33 13.53 21.13 21.65 20.73 21.13 21.61 20.75
306 14.01 13.33 14.53 21.24 21.77 20.85 21.24 21.73 20.87
307 15.01 14.33 15.53 21.36 21.88 20.97 21.36 21.84 20.98
308 16.01 15.33 16.53 21.48 21.99 21.09 21.48 21.96 21.10
309 17.01 16.33 17.53 21.59 22.10 21.21 21.59 22.08 21.22
310 18.01 17.33 18.53 21.71 22.22 21.33 21.71 22.19 21.33
311 19.01 18.33 19.53 21.82 22.33 21.44 21.82 22.31 21.45
312 20.01 19.33 20.53 21.94 22.44 21.56 21.94 22.43 21.57
313 21.01 20.33 21.53 22.06 22.55 21.68 22.06 22.54 21.68
314 22.01 21.33 22.53 22.17 22.67 21.80 22.17 22.66 21.80
315 23.01 22.33 23.53 22.29 22.78 21.92 22.29 22.78 21.92
316 24.01 23.33 24.53 22.41 22.89 22.04 22.41 22.89 22.03
317 25.01 24.33 25.53 22.52 23.00 22.16 22.52 23.01 22.15
318 26.01 25.33 26.53 22.64 23.12 22.28 22.64 23.13 22.27
319 27.01 26.33 27.53 22.76 23.23 22.40 22.76 23.24 22.38
320 28.01 27.33 28.53 22.87 23.34 22.51 22.87 23.36 22.50
.
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372 80.01 79.33 80.53 28.94 29.19 28.69 28.94 29.42 28.56
373 81.01 80.33 81.53 29.05 29.30 28.81 29.05 29.54 28.68
374 82.01 81.33 82.53 29.17 29.41 28.93 29.17 29.65 28.79
375 83.01 82.33 83.53 29.29 29.53 29.05 29.29 29.77 28.91
376 84.01 83.33 84.53 29.40 29.64 29.17 29.40 29.89 29.03
377 85.01 84.33 85.53 29.52 29.75 29.28 29.52 30.00 29.14
378 86.01 85.33 86.53 29.64 29.86 29.40 29.64 30.12 29.26
379 87.01 86.33 87.53 29.75 29.98 29.52 29.75 30.24 29.38
380 88.01 87.33 88.53 29.87 30.09 29.64 29.87 30.35 29.49
381 89.01 88.33 89.53 29.99 30.20 29.76 29.99 30.47 29.61
382 90.01 89.33 90.53 30.10 30.31 29.88 30.10 30.59 29.73
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Table 10.8 Unrounded and untruncated Y = ACT equipercentile equivalents for males (1), females
(2), and combined group

No Smoothing S = .30 S = 1.00
x êY (x) êY1(x) êY2(x) êY (x) êY1(x) êY2(x) êY (x) êY1(x) êY2(x)

163 8.67 9.67 8.50 8.55 8.57 8.54 8.55 8.57 8.54
164 8.83 9.83 8.50 8.66 8.70 8.63 8.66 8.70 8.63
165 8.83 9.83 8.50 8.77 8.83 8.71 8.77 8.83 8.71
166 8.83 9.83 8.50 8.88 8.96 8.79 8.88 8.96 8.79
167 8.83 9.83 8.50 8.98 9.10 8.88 8.99 9.09 8.88
168 8.83 9.83 8.50 9.09 9.23 8.96 9.09 9.22 8.96
169 9.17 10.17 8.50 9.20 9.36 9.04 9.20 9.35 9.04
170 9.50 10.50 8.50 9.31 9.49 9.13 9.31 9.48 9.13
171 9.50 10.50 8.50 9.42 9.62 9.21 9.42 9.61 9.21
172 9.50 10.50 8.50 9.52 9.76 9.30 9.53 9.74 9.29
173 9.67 10.57 8.67 9.63 9.89 9.38 9.63 9.88 9.38
.
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300 20.19 20.66 19.90 20.24 20.66 19.93 20.26 20.68 19.96
301 20.38 20.81 20.09 20.37 20.75 20.06 20.37 20.76 20.06
302 20.56 20.97 20.28 20.49 20.85 20.19 20.47 20.84 20.16
303 20.56 20.97 20.28 20.54 20.92 20.27 20.54 20.92 20.27
304 20.56 20.97 20.28 20.60 20.98 20.36 20.62 21.00 20.38
305 20.74 21.13 20.48 20.71 21.09 20.49 20.71 21.09 20.49
306 20.91 21.29 20.66 20.83 21.19 20.63 20.81 21.18 20.60
307 20.91 21.29 20.66 20.88 21.26 20.71 20.88 21.26 20.71
308 20.91 21.29 20.66 20.94 21.33 20.78 20.96 21.35 20.81
309 21.10 21.45 20.86 21.06 21.44 20.91 21.07 21.45 20.91
310 21.29 21.64 21.07 21.19 21.56 21.04 21.17 21.54 21.00
311 21.29 21.64 21.07 21.25 21.64 21.11 21.24 21.64 21.08
312 21.29 21.64 21.07 21.29 21.70 21.14 21.30 21.73 21.16
313 21.29 21.64 21.07 21.35 21.79 21.20 21.38 21.84 21.24
314 21.50 21.90 21.28 21.50 21.94 21.33 21.50 21.94 21.32
315 21.76 22.16 21.49 21.65 22.09 21.45 21.62 22.05 21.40
316 21.76 22.16 21.49 21.73 22.19 21.51 21.71 22.16 21.48
317 21.76 22.16 21.49 21.77 22.26 21.54 21.79 22.27 21.56
318 21.76 22.16 21.49 21.85 22.35 21.60 21.87 22.38 21.64
319 22.00 22.42 21.72 22.00 22.49 21.73 22.00 22.49 21.73
320 22.25 22.64 21.96 22.16 22.63 21.85 22.13 22.59 21.83
.
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372 33.35 33.67 32.32 33.14 33.74 32.35 33.12 33.47 32.15
373 34.38 34.45 34.25 34.14 34.19 32.75 34.02 33.92 32.56
374 34.38 34.45 34.25 34.42 34.45 33.14 34.33 34.29 32.98
375 34.38 34.45 34.25 34.55 34.62 33.54 34.56 34.63 33.39
376 34.38 34.45 34.25 34.65 34.85 33.93 34.76 34.97 33.81
377 35.61 35.67 35.00 34.94 35.19 34.33 35.02 35.32 34.22
378 36.21 36.20 36.25 35.22 35.43 34.72 35.29 35.53 34.64
379 36.21 36.20 36.25 35.51 35.67 35.12 35.56 35.75 35.05
380 36.21 36.20 36.25 35.79 35.90 35.51 35.83 35.96 35.46
381 36.21 36.20 36.25 36.07 36.14 35.91 36.10 36.18 35.88
382 36.36 36.35 36.37 36.36 36.38 36.30 36.37 36.39 36.29
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Graphical perspectives on differences in equivalents for the various methods are
provided in Figs. 10.5 and 10.6. In each of these figures, the left-hand subfigures
provide the actual linkages or conversions (i.e., the ACT
indexACT equivalents given ITED scores) for males (M), females (F), and the com-
bined group (C). The right-hand subfigures provide difference plots for M−C,F−C,
and M − F. Focusing on the M − F difference plots, it is evident that

• the linear method gives equivalents that are quite different from those for the
parallel-linear method, especially at the lower end of the score scale;

• there is reasonably compelling evidence that the “true” ACT
indexACT equivalents are a nonlinear transformation of the ITED scores;

• smoothing seems to have its greatest effect in the lower part of the ITED score
scale;

• for high ITED scores, the equipercentile equivalents seem erratic, even with
smoothing; and

• the male equivalents are consistently higher than the female equivalents for all
methods, with the minor exception of unsmoothed equipercentile linking for very
high ITED scores.

Figure 10.7 provides the male and female equivalents for linear linking and
equipercentile linking with S = 1.00. It is evident that the linkings are nearly linear
in the 250–350 ITED score range where most examinees scored (see Table 10.5),
but distinctly nonlinear outside this range.

Pairwise Statistics

For the unrounded equivalents in Tables 10.7, 10.8, 10.9 provides values of MD,
ewMD, MAD, and ewMAD (see Eqs. (10.18)–(10.21)) for M − C (males minus the
combined group), F − C (females minus the combined group), and M − F (males
minus females). These three different pairs of groups (and the corresponding graphs
in Figs. 10.5 and 10.6) provide information for different types of decisions.

If interest focuses on M − F differences in equivalents, it is evident that, for all
methods, the equivalents for males are higher, on average, than those for females
by approximately one ACT scale point, regardless of weighting issues. As noted
previously, Figs. 10.5 and 10.6 indicate that, in terms of the linear and equipercentile
linkings, the differences tend to be greater at lower ITED scores.

On the other hand, interest may focus on the extent to which males and females
are advantaged or disadvantaged if the equivalents for the combined group are used
for all examinees. If this is the focus, then the MD and ewMD statistics in the top
two-thirds of Table 10.9, as well as the M − C and F − C graphs in Figs. 10.5 and
10.6, provide relevant information. These results suggest that

ITED scores to ACT scores, which give the linkings a step-function appearance (see Table 10.8). In
this case, using S = 1.00 smooths the steps a little while preserving the moments reasonably well.
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Fig. 10.5 Linear and parallel-linear linkings

• males would be assigned larger equivalents under the male transformation than
under the combined-group transformation—i.e., the combined-group transforma-
tion disadvantages males;

• females would be assigned lower equivalents under the female transformation than
under the combined-group transformation—i.e., the combined-group transforma-
tion advantages females;

• the disadvantage for males of using the combined group transformation is, on
average, slightly larger than the advantage for females of using the combined
group transformation.

Rounded Equivalents

The equivalents that have been discussed thus far are unrounded and untruncated.
For overall judgments about group invariance, such equivalents seem preferable in
that they do not incorporate the added “noise” that results from truncating and/or
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Fig. 10.6 Equipercentile linkings without smoothing and with S = 1.0

rounding scores. However, in many practical circumstances, the scores that are actu-
ally used to make decisions about examinees are rounded (almost always to integers)
and truncated so that they are within some prespecified range. For the ACT Assess-
ment the reported scores are integers in the range of 1 to 36. So, from a practical
perspective, it seems sensible to examine the effects of rounding and truncation on
the statistics discussed previously, even though it might be argued that, in theory,
an overall evaluative judgment about group invariance is probably best made using
unrounded and untruncated equivalents.

Tables 10.10 and 10.11 provide estimated rounded and truncated ACT equiva-
lents for the mean, linear, parallel-linear, and equipercentile methods for a selected
sample of low, medium, and high ITED scores. It is evident that the mean method
gives equivalents that are quite different from the others, primarily because there is
substantial truncation for low and high ITED scores. Also, the equipercentile meth-
ods give equivalents that are different from the linear methods at the extremes of the
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Fig. 10.7 Male and female equivalents for linear linking and equipercentile linking with S = 1.0

Table 10.9 Average differences in Y = ACT equivalents

Groups Method MD ewMD MAD ewMAD

M − C Mean −.672 −.672 .672 .672
Linear .488 .661 .488 .661

Parallel-linear .485 .485 .485 .485
Equi (unsmoothed) .355 .521 .355 .521

Equi (S = .30) .364 .455 .364 .456
Equi (S = 1.00) .363 .451 .364 .454

F − C Mean .520 .520 .520 .520
Linear −.374 −.465 .374 .465

Parallel-linear −.375 −.375 .375 .375
Equi (unsmoothed) −.276 −.454 .276 .455

Equi (S = .30) −.292 −.447 .292 .448
Equi (S = 1.00) −.295 −.457 .295 .458

M − F Mean −1.192 −1.192 1.192 1.192
Linear .863 1.126 .863 1.126

Parallel-linear .860 .860 .860 .860
Equi (unsmoothed) .635 .974 .635 .976

Equi (S = .30) .660 .903 .660 .903
Equi (S = 1.00) .661 .909 .661 .909

ITED scale and, for the equipercentile methods, there is some truncation at the very
high end of the ITED scale.

Table 10.12 reports the M − F difference statistics for rounded and truncated
scores. As might be expected, except for the mean method, these difference statistics
are similar to those for unrounded and untruncated scores in Table 10.9. A similar
statement holds for the M − C and F − C statistics.
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Table 10.10 Rounded and truncated Y = ACT mean, linear, and parallel-linear equivalents for
males (1), females (2), and combined group

Mean Linear Parallel-linear
x m̂Y (x) m̂Y1(x) m̂Y2(x) l̂Y (x) l̂Y1(x) l̂Y2(x) p̂lY (x) p̂lY1(x) p̂lY2(x)

163 1 1 1 5 6 4 5 5 4
164 1 1 1 5 6 4 5 5 4
165 1 1 1 5 6 4 5 5 4
166 1 1 1 5 6 4 5 5 5
167 1 1 1 5 6 4 5 6 5
168 1 1 1 5 6 4 5 6 5
169 1 1 1 5 6 5 5 6 5
170 1 1 1 5 6 5 5 6 5
171 1 1 1 6 7 5 6 6 5
172 1 1 1 6 7 5 6 6 5
173 1 1 1 6 7 5 6 6 5
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300 8 7 9 21 21 20 21 21 20
301 9 8 10 21 21 20 21 21 20
302 10 9 11 21 21 20 21 21 20
303 11 10 12 21 21 20 21 21 21
304 12 11 13 21 22 21 21 21 21
305 13 12 14 21 22 21 21 22 21
306 14 13 15 21 22 21 21 22 21
307 15 14 16 21 22 21 21 22 21
308 16 15 17 21 22 21 21 22 21
309 17 16 18 22 22 21 22 22 21
310 18 17 19 22 22 21 22 22 21
311 19 18 20 22 22 21 22 22 21
312 20 19 21 22 22 22 22 22 22
313 21 20 22 22 23 22 22 23 22
314 22 21 23 22 23 22 22 23 22
315 23 22 24 22 23 22 22 23 22
316 24 23 25 22 23 22 22 23 22
317 25 24 26 23 23 22 23 23 22
318 26 25 27 23 23 22 23 23 22
319 27 26 28 23 23 22 23 23 22
320 28 27 29 23 23 23 23 23 22
.
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372 36 36 36 29 29 29 29 29 29
373 36 36 36 29 29 29 29 30 29
374 36 36 36 29 29 29 29 30 29
375 36 36 36 29 30 29 29 30 29
376 36 36 36 29 30 29 29 30 29
377 36 36 36 30 30 29 30 30 29
378 36 36 36 30 30 29 30 30 29
379 36 36 36 30 30 30 30 30 29
380 36 36 36 30 30 30 30 30 29
381 36 36 36 30 30 30 30 30 30
382 36 36 36 30 30 30 30 31 30
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Table 10.11 Rounded and truncated Y = ACT equipercentile equivalents for males (1), females
(2), and combined group

No smoothing S = .30 S = 1.00

x êY (x) êY1(x) êY2(x) êY (x) êY1(x) êY2(x) êY (x) êY1(x) êY2(x)

163 9 10 9 9 9 9 9 9 9
164 9 10 9 9 9 9 9 9 9
165 9 10 9 9 9 9 9 9 9
166 9 10 9 9 9 9 9 9 9
167 9 10 9 9 9 9 9 9 9
168 9 10 9 9 9 9 9 9 9
169 9 10 9 9 9 9 9 9 9
170 10 11 9 9 9 9 9 9 9
171 10 11 9 9 10 9 9 10 9
172 10 11 9 10 10 9 10 10 9
173 10 11 9 10 10 9 10 10 9
.
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300 20 21 20 20 21 20 20 21 20
301 20 21 20 20 21 20 20 21 20
302 21 21 20 20 21 20 20 21 20
303 21 21 20 21 21 20 21 21 20
304 21 21 20 21 21 20 21 21 20
305 21 21 20 21 21 20 21 21 20
306 21 21 21 21 21 21 21 21 21
307 21 21 21 21 21 21 21 21 21
308 21 21 21 21 21 21 21 21 21
309 21 21 21 21 21 21 21 21 21
310 21 22 21 21 22 21 21 22 21
311 21 22 21 21 22 21 21 22 21
312 21 22 21 21 22 21 21 22 21
313 21 22 21 21 22 21 21 22 21
314 21 22 21 21 22 21 21 22 21
315 22 22 21 22 22 21 22 22 21
316 22 22 21 22 22 22 22 22 21
317 22 22 21 22 22 22 22 22 22
318 22 22 21 22 22 22 22 22 22
319 22 22 22 22 22 22 22 22 22
320 22 23 22 22 23 22 22 23 22
.
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372 33 34 32 33 34 32 33 33 32
373 34 34 34 34 34 33 34 34 33
374 34 34 34 34 34 33 34 34 33
375 34 34 34 35 35 34 35 35 33
376 34 34 34 35 35 34 35 35 34
377 36 36 35 35 35 34 35 35 34
378 36 36 36 35 35 35 35 36 35
379 36 36 36 36 36 35 36 36 35
380 36 36 36 36 36 36 36 36 35
381 36 36 36 36 36 36 36 36 36
382 36 36 36 36 36 36 36 36 36
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Table 10.12 Average male-minus-female differences in rounded and
truncated Y = ACT equivalents

Method MD ewMD MAD ewMAD

Mean −.627 −.318 .627 .318
Linear .877 1.127 .877 1.127
Parallel-linear .881 .859 .881 .859
Equi (unsmoothed) .707 .955 .707 .955
Equi (S = .30) .717 .891 .717 .891
Equi (S = 1.00) .703 .905 .703 .905

Table 10.13 REMSD and ewREMSD statistics based on Y = ACT equivalents

Equipercentile
Statistics Mean Linear Parallel-linear No smooth S = .30 S = 1.00

Unrounded and
Untruncated
REMSD .14015 .10500 .10109 .08719 .08894 .08921
ewREMSD .14015 .14085 .10109 .13447 .12496 .12633

Unrounded and
Truncated
REMSD .07757 .10500 .10109 .08719 .08894 .08921
ewREMSD .05589 .14085 .10109 .13447 .12494 .12631

Rounded and
Truncated
REMSD .13244 .15564 .15618 .14085 .13904 .13748
ewREMSD .09455 .17605 .15427 .16445 .15843 .16068

Overall Statistics

Table 10.13 provides REMSD and ewREMSD statistics for

1. unrounded and untruncated equivalents (see Tables 10.7 and 10.8),
2. unrounded and truncated equivalents, and
3. rounded and truncated equivalents (see Tables 10.10 and 10.11).

Comparing the statistics in the top and middle part of Table 10.13 isolates the
effect of truncation, which has a dramatic effect for the mean method but very
little effect for any of the other methods.17 For the mean method, truncation
alone reduces ewREMSD from .14015 to .05589, which is actually smaller than
ewREMSD = .09455 for rounded and truncated scores. Apparently, truncation low-
ers ewREMSD, whereas rounding increases it. Comparing the statistics in the top and

17 Truncation limits the extent to which the linking results at the extremes of the score scale can
differ between groups. Here, the effect is greatest for the mean method because it produces low and
high scores that are considerably out of range.
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bottom part of Table 10.13, it is evident that, except for the mean method, rounding
and truncating equivalents leads to larger values of ewREMSD and even larger values
of REMSD.

The statistics in Table 10.13 also suggest that, whether or not statistics are rounded
and/or truncated

• the values of REMSD for the linear and parallel-linear methods are very similar;
• the values of ewREMSD for the linear method are larger than for the parallel-linear

method;
• relative to the linear method, the equipercentile methods generally lead to smaller

values of both REMSD and ewREMSD;
• smoothing equipercentile equivalents has relatively little effect on REMSD—in

fact, smoothing sometimes leads to slight increases in REMSD; and
• smoothed equipercentile equivalents have smaller values of ewREMSD than for

the unsmoothed equivalents.

REMSD and ewREMSD “Differences That Matter” DTM

To evaluate the relative magnitude of statistics like RMSD(x), REMSD,
and ewREMSD for unrounded scores, only, Dorans et al. (2003) and Dorans (2004b)
suggest considering a score “Difference That Matters” (DTM), which is half of a
reported score unit.18 Roughly speaking, the DTM logic is that a subgroup linking
that is within half a reported score unit of the combined group linking (at a given
raw score point) is ignorable. This convention needs to be understood, however, as a
convenient benchmark, not a dogmatic rule. For example, when reported scores are
integers, equivalents of 15.4 and 15.6 round to different integers even though they
differ by only .2 (less than a DTM). Also equivalents of 14.6 and 15.4 round to the
same integer even though the differ by .8 (more than a DTM).

Recall that RMSD(x), REMSD, and ewREMSD are standardized by dividing by
the standard deviation of scores on form Y . The DTM
indexDifferences that matter (DTM) can be standardized in the same manner so that
the standardized DTM can be used as a benchmark for evaluating RMSD(x), REMSD,
and ewREMSD. For our illustrative ACT-ITED science example, a score unit on the
ACT scale is an integer, and the standard deviation of the Y = ACT scores is 4.218
for the combined group (see Table 10.3). This means that the standardized DTM is
.5/4.218

.= .12. Figure 10.8 provides a visual comparison of the values of RMSD(x)
and this standardized DTM. It is evident that, using this benchmark, “differences that
matter” occur primarily in the lower half of the score scale for X = ITED.

Revisiting the unrounded and untruncated values of REMSD and
ewREMSD in Table 10.13, we observe that

18 Strictly speaking Dorans et al. (2003) and Dorans (2004b) do not consider ewREMSD, but their
logic applies to any weights, including the equal weights used for ewREMSD.
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Fig. 10.8 RMSD(x) values
for X = ITED relative to a
standardized “Difference That
Matters” (DTM) of .12
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• the REMSD statistics are smaller than the standardized DTM of .12, except for
the mean method, and

• the ewREMSD statistics are larger than the standardized DTM of .12, except for
the parallel-linear method.

That is, for this illustrative example, it is clear that the weights used have an impact
on whether the DTM benchmark is exceeded based on overall statistics. Even more
importantly, from Fig. 10.8 it is evident that an overall statistic may hide “differences
that matter” in various regions of the score scale. In short, results such as those in
Fig. 10.8 are more informative than a simple comparison of a DTM
indexDifferences that matter (DTM) value with REMSD or ewREMSD.

The phrase “difference that matters” should not be taken too literally; it is a
benchmark, not an evaluative judgment. Even when rounded differences exceed a
reported score point, the extent to which such differences “matter” depends on the
nature of the decisions that are made and where (along the score scale) these decisions
are made.

Correlations with Other Tests as Benchmarks

A seemingly sensible benchmark for evaluating the reasonableness of a linking of two
tests is to compare it to some other linking that enjoys the status of being “sensible”
or suffers from the criticism of being “questionable” or even “ridiculous.” To make
such comparisons, we can focus on one or more statistics that are, in some sense,
meaningful for both linkages. With a single group design, which was used for our
example, an obvious statistic to consider is a correlation coefficient.

The top row of Table 10.14 provides the previously reported correlations between
the ITED and ACT science tests for males, females, and the combined group. The
subsequent rows provide correlations between the ACT Science Reasoning test and
the other ACT tests in English, Mathematics, and Reading. For each of the three
groups (males, females, and combined), without exception, the correlations between
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Table 10.14 Relationships between ACT science test and other tests

Observed correlations rmsel’s for linear linkinga

Test Combined Male Female Combined Male Female

ITED Science .672 .660 .689 3.416 3.631 3.157
ACT English .709 .727 .732 3.219 3.253 2.931
ACT Math .697 .676 .705 3.286 3.544 3.075
ACT Reading .736 .750 .741 3.063 3.110 2.882
a Linking to scale of ACT Science test

ACT Science Reasoning and the other ACT tests are all larger than the correlation
between the ACT and ITED science tests.

It seems very unlikely that examinees, counselors, or researchers would be
inclined to use ACT Science Reasoning scores interchangeably with ACT English,
Mathematics, or Reading scores. If so, the correlations in Table 10.14 suggest that
such persons should be even less inclined to use ACT Science Reasoning scores and
ITED Analysis of Science Materials scores interchangeably, even if only rank-order
issues are of interest. These correlations, therefore, provide another perspective on
“differences that matter.”

Root Mean Square Error for Linking

Correlations tell us something about how similar scores are for a pair of variables.
We might also want to quantify the extent to which score equivalents based on a
particular linking method reproduce the Y scores actually observed. For any linking
method, we can define the root mean square error for linking (rmsel) as

rmsel[eqY (x)] =
√

E[y − eqY (x)]2, (10.23)

where the expectation is taken over persons.19 For the linear method, it can be shown
that

rmsel[lY (x)] = σ(Y)
√

2 [1 − ρ(Y ,X)]. (10.24)

These rmsel statistics are expressed here in terms of the combined group; corre-
sponding equations can be defined for any subgroup.

Root mean square errors for linking are not comparable to the standard errors dis-
cussed in previous chapters, which quantified error with respect to sampling persons
from a population (see Moses 2008; and Rijmen et al. 2009, for indices of sampling

19 The rmsel statistic in Eq. (10.23) can be computed only for the single group design in which
both X and Y scores are available for each examinee, as they are for the example considered here.
By contrast the statistics discussed in Sects. 10.2.2 and 10.2.3 (i.e., REMSD, MD, MAD, and their
equally weighted counterparts) can be computed for both the randomly equivalent groups design
and the single group design.
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error for population invariance statistics). Rather, the rmsel is similar in concept to
the standard error of estimate (see). In fact, for linear methods, the only difference
between see and rmsel is that the former uses deviations from a linear regression
line, whereas the latter uses deviations from a linear linking line (i.e., Eqs. (10.5) and
(10.6)).

For our illustrative example, the right-hand part of Table 10.14 provides root mean
square errors for linking for the linear method. The form of Eq. (10.24) clearly sug-
gests that lower correlations lead to higher values for rmsel, which is exactly what
we observe in Table 10.14. For males, females, and the combined group, the rmsel
indexACT values for ACT-ITED science are all larger than for ACT Science Rea-
soning vis-à-vis ACT English, Mathematics, or Reading scores.20

One might ask whether the ACT-ITED rmsel values for science are large or
small, in some sense. One benchmark for comparison is a simple function of the
standard error of measurement (sem) for the ACT Science Reasoning test, which is
approximately 2 scale score points. Specifically, a sensible benchmark is sem

≤
2

(see Exercise 10.8), which is approximately 2
≤

2 = 2.828 for Science Reasoning.
The ACT-ITED rmsel’s are generally about 25 % larger than this benchmark. In this
sense, there is 25 % more error in linking ITED Analysis of Science Materials scores
to ACT Science Reasoning scores than there is in using scores from one form of
ACT Science Reasoning as a proxy for scores on another form of the same test.

The results reported in Table 10.14 suggest that tests with similar names (i.e.,
science), even when they are used with similar populations, do not necessarily have
enough features in common that a linking of their scores is easily defended. Or, to
state it differently, the linking may have an unacceptable amount of error for the
decisions to be made.

Our discussion has focused on rmsel for the linear method, primarily because
computations are simple. We could compute rmsel values for the equipercentile
methods using Eq. (10.23) directly, but, of course, computations would be more
tedious.

10.3 Additional Examples

The Uncommon measures report (Feuer et al. 1999—see especially pp. 28–42)
provides many summaries of prior linkage research. The current environment in
educational testing is such that linking is likely to be a topic of considerable research
in the future. Here we briefly discuss two examples that illustrate areas in which
research on linking is quite difficult but may be of importance in the future.

20 The rmsel values in Table 10.14 were computed using more decimal digits of accuracy than is
reported for the correlations in Table 10.14 and the standard deviations in Table 10.3.
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10.3.1 Extended Time

In most large-scale testing programs, the vast majority of examinees take test forms
under carefully controlled standardized conditions. However, there are often some
examinees who have disabilities that are judged serious enough to justify the use
of atypical testing conditions, usually called accommodations. The most frequently
used accommodation is extended time. Time-and-a-half or double-time is not uncom-
mon, and essentially unlimited time is even under discussion for some disabilities.
The available evidence for many testing programs suggests that there is no compelling
reason to assert that scores obtained under standard and extended time are compara-
ble.21 It is sometimes suggested, therefore, that scores obtained under standard and
extended time should be equated.

The logic for this suggestion—and use of the word “equating” in this context—is
typically stated as follows. Suppose, as is usually the case, that the form administered
under standard time and the form administered under extended time are identical.
Then, it is assumed that equating is appropriate because the form administered under
the two timings clearly tests the same skills and content and has the same statistical
characteristics. But this supposition is not necessarily true. For example, the diffi-
culty level of items can depend on the amount of time available to examinees for
responding to items. It is even possible that skills tested may differ for the same form
under different timings. For example, for a form that consists of reading passages,
examinees with extended time may use different strategies for responding to items
than the strategies used by examinees under standard time constraints.

These differences may be especially apparent if a test is speeded under standard
time conditions, but even in the absence of speededness, different timings can lead to
differences in the skills tested and/or differences in statistical characteristics. Indeed,
if this were not so, there should be no difference in performance under the two timings
and, therefore, no need to adjust scores for extended time. Usually, however, there
is at least collateral evidence to suggest that scores are not comparable under differ-
ent timing conditions. The most frequently cited example is differences in predicted
GPA regression equations for examinees tested under standard and extended time in
admission testing programs. When this occurs, one approach to establishing compa-
rability is to declare that a standard-time and extended-time score are comparable if
they lead to the same predicted GPA.

Alternatively, a linking might be accomplished by administering the form under
standard-time and extended-time conditions to randomly equivalent groups of exami-
nees, and then determining a statistical relationship (perhaps equipercentile) between
scores under the two timing conditions. Such a linking deserves to be called an “equat-
ing” only if the content, skills, and statistical characteristics are unchanged by the
timing conditions. Otherwise, the relationship is probably no stronger than calibra-
tion. Even under these circumstances, however, the linking may be questionable

21 For the ACT Assessment, this issue is discussed by (Ziomek and Andrews 1996, 1998), for the
Law School Admissions Test, see Wightman (1993), and for the SAT, see Cahalan et al. (2001),
Ragosta et al. (1991), and Willingham et al. (1988).
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because the data collection design does not mirror an important feature of the use
of extended time in an operational setting—namely, extended time is typically pro-
vided only for examinees who have some disability. That is, in operational settings,
population characteristics (non-disabled vs. disabled) are usually confounded with
timing (standard vs. extended), and it is entirely possible that a standard/extended
time linking for non-disabled students is different from a standard/extended time
linking for disabled students.

10.3.2 Test Adaptations and Translated Tests

Translations of test forms represent one of the greatest linking challenges (see Sireci
1997). For example, evidence exists that many translated items function differently
in different languages (Allalouf 2003; Allalouf et al. 1999, 2009; Angoff and Cook
1988; Angoff and Modu 1973; Cascallar and Dorans 2005; Ercikan et al. 2004;
Rapp and Allalouf 2003; Robin et al. 2003; Sireci and Berberoglu 2000). In current
terminology, the phrase “test adaptation” is generally preferred to “test translation”
because the former more correctly reflects the multitude of changes that are typically
required.

Consider the situation faced by the National Institute for Testing and Evaluation
(NITE) in Israel, which creates, administers, and scores the major college admis-
sions tests used in that country (see Beller 1994; Beller et al. 2005). Among these
tests are verbal and quantitative tests that are developed initially in Hebrew and then
translated into Arabic, Russian, and other languages. These translated tests are nec-
essary because many examinees are not fluent in the dominant language, Hebrew,
but NITE’s intent is that all examinees should be treated “fairly” in the admission’s
process.

Creating a linking of these translated test forms is particularly complicated for
numerous reasons. For example, the populations of examinees who test in the various
languages are known to differ substantially in their levels of achievement. Also, it is
generally impossible to simply translate all the items in the Hebrew form into some
other language and have the resulting two forms truly test the same content and skills.
(This is one reason why the term “test adaptation” is preferred to “test translation.”)
Especially for verbal items, language and associated cultural differences make some
items in one language simply not translatable into the other language—at least not
in the sense that the two translations of the items measure the same thing at the same
level of difficulty.22 It is primarily for this reason that a statistical relationship between
scores on translated forms probably does not merit being called an “equating.”

22 It is often thought that an adequate way to ascertain the “correctness” of a translation is to
translate the translated text back to the original language. This may be a reasonable step, but it is
not likely to be a flawless approach, because not all text in one language can be translated into text
that has the same meaning in another language. Hambleton (personal communication) notes that
one back-translation resulted in the English phrase “out of sight, out of mind” being back-translated
to “invisible, insane”!
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For purposes of linking, the single group design is not possible since the vast
majority of examinees are not proficient in two languages. The random groups design
is not possible since the random assignment of forms to examinees would result in
many, if not most, examinees’ taking a form in a language in which they are not
proficient. Since different populations of persons take different translated forms,
the common-item nonequivalent groups design would seem to be an alternative.
However, as discussed in Chap. 4, when populations differ substantially in ability the
results may not be entirely satisfactory.

More importantly, it is usually difficult, if not impossible, to select a subset of
common items that faithfully reflect the full-length test in content and statistical
specifications. The problem is twofold. First, even when it appears that an item and
its translated version test the same content at the same level of difficulty, the mere fact
that the items do not share the same language raises doubt about their comparability.
Second, the subset of items that are judged to be not translatable almost certainly test
different content/constructs from the presumably translatable items. In fact, there are
likely three distinctly different sets of items: those that are translatable, those that
are unique to one language, and those that are unique to the other language. In short,
it is often quite unlikely that an acceptable set of common items can be identified.

Dorans and Middleton (2012) considered, in some detail, the linking of tests
adapted to different languages. Using the Kolen (2007) adaptation of the degrees of
similarity framework, Dorans and Middleton (2012) pointed out the following: (a)
language is a condition of measurement that differs across the forms to be linked;
(b) translated common items differ in content due to language differences, and so
cannot necessarily be expected to perform as common items across languages; and (c)
the individuals taking the test in different languages are from different populations.
They referred to linking of such adapted forms as one example extreme linking where
content, conditions of measurement, and populations differ. They considered linking
of scores on these forms to be based necessarily on dubious assumptions.

What, then, should be done? One alternative is no linking; simply let the quality
of the translation bear the linking burden. Second, the common-item nonequivalent
groups design could be used, with the linking done using the best available set of
common items. (Exclude items that are non-translatable or judged to be nonequiv-
alant when they are translated.) Third, some form of social moderation could be
used. For example, bilingual experts could make judgments about which scores are
comparable on the two forms. Fourth, if there is an external criterion or collateral
information that is common to examinees in both languages, it might be used as
the basis for a projection. Note that GPA may be a particularly poor criterion if
examinees with different language backgrounds tend to attend different schools.
None of these alternatives is likely to be entirely acceptable, and different alterna-
tives may be more or less appropriate in different contexts.

It seems likely that any statistical relationship between scores on translated/adapted
forms may be particularly fallible due to a number of intractable problems that are
not amenableto psychometric solutions. To the extent that this is true, investigators

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
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should appropriately qualify any reported results so that policy makers do not draw
unwarranted conclusions.

10.4 Discussion

One easily overlooked aspect of most linkages is that they are likely to change over
time,23 whereas equating relationships are likely to be invariant over reasonable time
frames. Clearly, linkages between two tests will be affected if the specifications for
either of the tests change. ACT-SAT concordances offer an excellent example. Prior
to 1989 there were ACT-SAT concordance tables that were widely used although
not well known. Then, in 1989, ACT introduced what was called the “enhanced”
ACT Assessment, which had substantial differences in content with the “old” ACT,
although the score scale range of 1–36 remained unchanged24 (see Brennan 1989).
Consequently, new concordance tables had to be created (see Houston and Sawyer
1991). Then, in the early 1990s, the SAT score scale was “recentered,” which neces-
sitated another round of new concordance tables (see Dorans et al. 1997).

Note also that, since concordance relationships generally are not group invariant,
the concordances are likely to change whenever the groups tested change, even if
the specifications and score scales for the two tests are unchanged. Over periods of
5–10 years, it seems likely that the populations of students who take the ACT and/or
SAT change enough to cast at least some doubt on the stability of concordance
relationships.

A great deal of this chapter has focused on methods for assessing the adequacy
of linking through examining group invariance. But, from the perspective of an
individual examinee, such a criterion has an almost inevitable ambiguity because any
examinee is a member of many groups. Consider, for example, the case of a black
female. Even if a study of male-female group invariance concluded that a linkage
was gender invariant, that does does not necessarily mean that a study of black-white
group invariance would conclude that a linkage was race invariant. So, if “fairness”
for an individual is the goal, neither study alone, nor the pair of studies, provides an
entirely satisfactory answer for our black female. Of course, one can conceive of a
study of all four groups simultaneously (black males, black females, white males,
and white females), which might provide a better answer about group invariance.
However, the particular black female in our example could be characterized in terms
of numerous other background characteristics, as well. Obviously, there are practical
limits to what studies of group invariance can tell us about linking adequacy for
individual examinees.

23 An example of historical interest is the Anchor Test Study of the early 1970s (Loret et al. 1973)
that put various reading tests on a common scale. Although it was a “model of linkage development
(Feuer et al. 1999, p. 25),” it was obsolete by the time it was released because of changes in the
various tests.
24 This is not quite true. Some of the subtests on the old ACT did not have 36 as the highest reported
score.
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Group invariance has been discussed in this chapter mainly from the perspective
of the single group and randomly equivalent groups design. For these designs, the
computer program LEGS (see Appendix B) can be used to perform almost all of the
analyses that have been discussed. Of course, the basic issue of group invariance is
not restricted to these designs, but there has been very little research involving other
designs.

A well-described linkage is almost always a highly qualified statement about
a relationship between scores on tests. The nature of these qualifications should
be specified explicitly and, whenever possible, studied with sensitivity analyses.
For example, it is almost always overly simplistic to say that a linkage is or is not
group invariant. Rather, it is much more likely that the linkage varies “somewhat”
by group. Studies need to be conducted that operationalize what “somewhat” means
in the context of the decisions made based on the linkage. It is usually unreasonable
and unnecessary to require that a linkage be “group invariant” in the literal sense
of that term, but, with equal force, it is usually difficult to defend linkages that are
substantially different for various groups.

As noted in the introduction to this chapter, when tests measure different con-
structs, no linking, no matter how competently conducted, will be adequate for all
purposes. This means that investigators and policy-makers cannot escape the need to
make judgments about linking adequacy. Psychometrics can inform such judgments,
but psychometrics alone cannot make them.

10.5 Exercises

10.1 In the introduction to this chapter it was noted that the same data collection
designs used in equating might be used in linking. Although this may be true in
principle, why is it unlikely that the CINEG design would be very satisfactory
for establishing a linking relationship?

10.2 An administrator wants to use scores on Test A as a measure of math ability.
However, not all students in the population took Test A. Some took Test B,
but most took both tests. The administrator decides to use the data for the
students who took both tests to obtain an equation for predicting scores on Test
A from scores on Test B. The administrator plans to use the resulting prediction
equation for students whose scores on Test A are missing. What are potential
problems with this procedure? What might be a better procedure?25

10.3 Using Eq. (10.16) verify the value of REMSD that is reported in Table 10.13
for the parallel-linear method with unrounded and untruncated scores.

10.4 Using Eq. (10.6) with the statistics reported in Tables 10.3 and 10.6, verify
that MD = .863 for the M − F average difference for the linear method with
unrounded and untruncated scores, as reported in Table 10.9. Similarly, verify
that ewMD = 1.126.

25 Item suggested by S. A. Livingston.
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10.5 For rounded and truncated equivalents in Table 10.13, ewREMSD for the mean
method is much lower than for any of the other methods. Provide a plausible
explanation for this.

10.6 Given the answer to Exercise 10.5, why is it that REMSD for the mean method
with rounded and truncated equivalents is relatively large (i.e., comparable to
that of the other methods).

10.7 Derive the root mean square error of linear linking, rmsel[lY (x)], in Eq. (10.24).
10.8 It is suggested on page 579 that

≤
2 sem be used as a benchmark for examining

the size of the ACT-ITED science rmsel’s, where the sem is for ACT Science
Reasoning. Justify this statement.

10.9 Provide a formula for the rmsel for the mean method for the combined group.
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Appendix A: Answers to Exercises

Chapter 1

1.1.a. Because the top 1 % of the examinees on a particular test date will be the same
regardless of whether an equating process is used, equating likely would not
affect who was awarded a scholarship.

1.1.b. In order to identify the top 1 % of the examinees during the whole year, it
is necessary to consider examinees who were administered two forms as one
group. If the forms on the two test dates were unequally difficult, then the use
of equating could result in scholarships’ being awarded to different examinees
as compared to just using the raw score on the form each examinee happened
to be administered.

1.2. Because Form X3 is easier than Form X2, a raw score of 29 on Form X3
indicates the same level of achievement as a raw score of 28 on Form X2.
From the table, a Form X2 raw score of 28 corresponds to a scale score of 13.
Thus, a raw score of 29 on Form X3 also corresponds to a scale score of 13.

1.3. Because the test is to be secure, items that are going to be used as scored items
in subsequent administrations cannot be released to examinees. Of the designs
listed, the common-item nonequivalent groups design with external common
items can be most easily implemented. On a particular administration, each
examinee would receive a test form containing the scored items, a set of
unscored items that had been administered along with a previous form, and
possibly another set of unscored items to be used as a common-item section in
subsequent equatings. Thus, all items that contribute to an examinee’s score
would be new items that would never be reused. The single group design with
counterbalancing s(assuming no differential order effects) and random groups
design also could be implemented using examinees from other states. For
example, using the random groups design, forms could be spiraled in another
state which did not require that the test be released. The equated forms could
be used subsequently in the state that required disclosure. The common-item
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Table A.1 Score distributions for Exercise 2.4

x f (x) F(x) P(x) y g(y) G(y) Q(y)

0 .00 .00 .0 0 .00 .00 .0
1 .01 .01 .5 1 .02 .02 1.0
2 .02 .03 2.0 2 .05 .07 4.5
3 .03 .06 4.5 3 .10 .17 12.0
4 .04 .10 8.0 4 .20 .37 27.0
5 .10 .20 15.0 5 .25 .62 49.5
6 .20 .40 30.0 6 .20 .82 72.0
7 .25 .65 52.5 7 .10 .92 87.0
8 .20 .85 75.0 8 .05 .97 94.5
9 .10 .95 90.0 9 .02 .99 98.0
10 .05 1.00 97.5 10 .01 1.00 99.5

nonequivalent groups design with internal common items may also be used in
this way.

1.4. Random groups design. This design requires that only one form be adminis-
tered to each examinee.

1.5. Only the common-item nonequivalent groups design can be used. Both the
random groups and single group designs require the administration of more
than one form on a given test date.

1.6. a. Group 2. b. Group 1. c. The content of the common items should be repre-
sentative of the total test; otherwise, inaccurate equating might result.

1.7. Statement I is consistent with an observed score definition. Statement II is
consistent with an equity definition.

1.8. Random. Systematic.

Chapter 2

2.1. P(2.7) = 100{.7 + [2.7 − (3 − .5)][.9 − .7]} = 74;
P(.2) = 100{0 + [.2 − (0 − .5)][.2 − 0]} = 14;
P−1(25) = (.25 − .2)/(.5 − .2) + (1 − .5) = .67;
P−1(97) = (.97 − .90)/(1 − .90) + (4 − .5) = 4.2.

2.2. μ(X) = 1.70; σ(X) = 1.2689; μ(Y) = 2.30; σ(Y) = 1.2689; m(x) = x + .60;
l(x) = x + .60.

2.3. μ[eY (x)] = .2(.50) + .3(1.75) + .2(2.8333) + .2(3.50) + .1(4.25) = 2.3167;
σ[eY (x)]
= √[.2(.502)+.3(1.752)+.2(2.83332)+.2(3.502)+.1(4.252)]−2.31672

= 1.2098.
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Table A.2 Equated scores for Exercise 2.4

x mY (x) lY (x) eY (x)

0 −1.7000 −1.3846 .0000
1 −.7000 −.4314 .7500
2 .3000 .5219 1.5000
3 1.3000 1.4752 2.0000
4 2.3000 2.4285 2.6000
5 3.3000 3.3818 3.3000
6 4.3000 4.3350 4.1500
7 5.3000 5.2883 5.1200
8 6.3000 6.2416 6.1500
9 7.3000 7.1949 7.3000
10 8.3000 8.1482 8.7500

2.4. Note: μ(X) = 6.7500; σ(X) = 1.8131; μ(Y) = 5.0500; σ(Y) = 1.7284. See
Tables A.1 and A.2.

2.5. The mean and linear methods will produce the same results. This can be seen
by applying the formulas. Note that the equipercentile method will not produce
the same results as the mean and linear methods under these conditions unless
the higher order moments (skewness, kurtosis, etc.) are identical for the two
forms.

2.6. 21.4793 + [(23.15 − 23)/(24 − 23)][22.2695 − 21.4793] = 21.5978.
2.7. 1.1(.8x + 1.2) + 10 = .88x + 1.32 + 10 = .88x + 11.32.
2.8. In general, the shapes will be the same under mean and linear equating. Under

equipercentile equating, the shape will be the same only if the shape of the
Form X and Form Y distributions are the same. Actually, the shape of the Form
X scores converted to the Form Y scale will be approximately the same as the
shape of the Form Y distribution.

Chapter 3

3.1. Note: eY (xi) = 28.3; tY (xi) = 29.1; êY (xi) = 31.1; t̂Y (xi) = 31.3.
a. 29.1 − 28.3 = .8. b. 31.1 − 28.3 = 2.8. c. 31.3 − 28.3 = 3.0. d. We
cannot tell from the information given—we would need to have an indication
of the variability of sample values over many replications, rather than the one
replication that is given. e. Unsmoothed at xi = 26. f. We cannot tell from the
information given—we would need to have an indication of the variability of
sample values over many replications, rather than the one replication that is
given.

3.2. Mean, standard deviation, and skewness.
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3.3. For Form Y, C = 7 is the highest value of C with a nominally significant χ2.
So, of the models evaluated, those with C ∗ 7 would be eliminated. The model
with the smallest value of C that is not eliminated using a nominal significance
level of .30 is C = 8. For Form X, C ∗ 5 are eliminated. C = 6 is the smallest
value of C that is not eliminated.

3.4. Using Eq. (3.11), d̂Y (28.6) = 28.0321+1.0557(.6)−.0075(.6)2+.0003(.6)3 =
28.6629.

3.5. Conversions for S = .20 and S = .30. Conversions for S = .75 and S = 1.00.
It would matter which was chosen if Form X was used later as the old form
for equating a new form, because in this process the unrounded conversion for
Form X would be used.

3.6. It appears that the relationships for all S-parameters examined would fall within
the ±2 standard error bands. The identity equating relationship would fall out-
side the bands from 4 to 20 (refer to the standard errors in Table 3.2 to help
answer this question).

3.7. For N = 100 on the Science Reasoning test, the identity equating was better
than any of the other equating methods. Even with N = 250 on the Science
Reasoning test, the identity equating performed as well as or better than any
of the equipercentile methods. One factor that could have led to the identity
equating appearing to be relatively better with small samples for the Science
Reasoning test than for the English test would be if the two Science Reasoning
forms were more similar to one another than were the two English forms. In
the extreme case, suppose that two Science Reasoning forms were actually
identical. In this case, the identity equating always would be better than any of
the other equating methods.

Chapter 4

4.1. Denote μ1 ≥ μ1(X), σ1 ≥ σ1(X), etc. We want to show that σ2
s = w1σ

2
1 +

w2σ
2
2 + w1w2(μ1 − μ2)

2. By definition, σ2
s = w1E1(X − μs)

2 + w2E2(X −
μs)

2. Noting that μs = w1μ1 + w2μ2 and w1 + w2 = 1,

w1E1(X − μs)
2 = w1E1(X − w1μ1 − w2μ2)

2

= w1E1
[
(X − μ1) + w2(μ1 − μ2)

]2

= w1E1(X − μ1)
2 + w1w2

2(μ1 − μ2)
2

= w1σ
2
1 + w1w2

2(μ1 − μ2)
2.

By similar reasoning,

w2E2(X − μs)
2 = w2σ

2
2 + w2

1w2(μ1 − μ2)
2.

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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Thus,

σ2
s = w1E1(X − μs)

2 + w2E2(X − μs)
2

= w1σ
2
1 + w1w2

2(μ1 − μ2)
2 + w2σ

2
2 + w2

1w2(μ1 − μ2)
2

= w1σ
2
1 + w2σ

2
2 + (w1 + w2)w1w2(μ1 − μ2)

2

= w1σ
2
1 + w2σ

2
2 + w1w2(μ1 − μ2)

2.

4.2. To prove that Angoff’s μs(X) gives results identical to Eq. (4.17), note that
μs(V) = w1μ1(V) + w2μ2(V), and recall that w1 + w2 = 1. Therefore,
Angoff’s μs(X) is

μs(X) = μ1(X) + α1(X | V)
[
w1μ1(V) + w2μ2(V) − μ1(V)

]
= μ1(X) + α1(X | V)

[ − w2μ1(V) + w2μ2(V)
]

= μ1(X) − w2α1(X | V)
[
μ1(V) − μ2(V)

]
,

which is Eq. (4.17) since γ1 = α1(X | V).
To prove that Angoff’s σ2

1(X) gives results identical to Eq. (4.19), note that

σ2
s (V) = w1σ

2
1(V) + w2σ

2
2(V) + w1w2

[
μ1(V) − μ2(V)

]2
.

(This result is analogous to the result proved in Exercise 4.1.) Therefore,
Angoff’s σ2

s (X) is

σ2
s (X) = σ2

1(X) + α2
1(X | V)

{
w1σ

2
1(V) + w2σ

2
2(V)

+ w1w2
[
μ1(V) − μ2(V)

]2 − σ2
1(V)

]}
= σ2

1(X) + α2
1(X | V)

[ − w2σ
2
1(V) + w2σ

2
2(V)

]
+ w1w2α

2
1(X | V)

[
μ1(V) − μ2(V)

]2

= σ2
1(X) − w2α

2
1(X | V)

[
σ2

1(V) − σ2
2(V)

]
+ w1w2α

2
1(X | V)

[
μ1(V) − μ2(V)

]2
,

which is Eq. (4.19) since γ1 = α1(X | V). Similar proofs can be provided for
μs(Y) and σ2

s (Y).
4.4. The Tucker results are the same as those provided in the third row of Table

4.4. For the Levine method, using Eqs. (4.58) and (4.59), respectively,

γ1 = 6.52782 + 13.4088

2.37602 + 13.4088
= 2.9401

γ2 = 6.87842 + 14.7603

2.45152 + 14.7603
= 2.9886.

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
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Note that

μ1(V) − μ2(V) = 5.1063 − 5.8626 = −.7563 and

σ2
1(V) − σ2

2(V) = 2.37602 − 2.45152 = −.3645.

Therefore, Eqs. (4.17)–(4.20) give

μs(X) = 15.8205 − .5(2.9401)(−.7563) = 16.9323

μs(Y) = 18.6728 + .5(2.9886)(−.7563) = 17.5427

σ2
s (X) = 6.52782 − .5(2.94012)(−.3645) + .25(2.94012)(−.75632)

= 45.4237

σ2
s (Y) = 6.97942 + .5(2.98862)(−.3645) + .25(2.98862)(−.75632)

= 46.9618.

Using Eq. (4.1),

lYs(x) = √
46.9618/45.4237(x − 16.9323) + 17.5427 = .33 + 1.02x.

4.5. Using the formula in Table 4.1,

ρ1(X,X ≤) = γ2
1

[
σ1(X,V) − σ2

1(V)]
(γ1 − 1)σ2

1(X)
,

where γ1 = σ2
1(X)/σ1(X,V). For the illustrative example,

γ1 = 6.52782/13.4088 = 3.1779 and

ρ1(X,X ≤) = 3.17792(13.4088 − 2.37602)

(3.1779 − 1)6.52782 = .845

Similarly,

ρ2(Y ,Y ≤) = γ2
2

[
σ2(Y ,V) − σ2

2(V)
]

(γ2 − 1)σ2
2(Y)

,

where γ2 = σ2
2(Y)/σ2(Y ,V). For the illustrative example,

γ2 = 6.87842/14.7603 = 3.2054

ρ2(Y ,Y ≤) = 3.20542(14.7603 − 2.45152)

(3.2054 − 1)6.87842 = .862.

4.6.a. From Eq. (4.38), the most general equation for γ1, is γ1 = σ1(TX)/σ1(TV ).
It follows that

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
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γ1 = (KX/KV )σ1(TV )

σ1(TV )
= KX

KV
.

Similarly, γ2 = KY/KV .
4.6.b. Under the classical model, the γs are ratios of actual test lengths; whereas

under the classical congeneric model, the γs are ratios of effective test
lengths.

4.7. All of it [see Eq. (4.92)].
4.8. No, it is not good practice from the perspective of equating alternate forms.

All other things being equal, using more highly discriminating items will
cause the variance for the new form to be larger than the variance for previous
forms. Consequently, form differences likely will be a large percent of the
observed differences in variances, and equating becomes more suspect as
forms become more different in their statistical characteristics. These and
related issues are discussed in more depth in Chap. 8.

4.9. From Eq. (4.59),

γ2 = σ2
2(Y) + σ2(Y ,V)

σ2
2(V) + σ2(Y ,V)

.

Recall that, since γ2 is for an external anchor, σ2(EY ,EV ) = 0. Replacing
the quantities in Eq. (4.59) with the corresponding expressions in equation
set (4.70) gives

γ2 =
[
λ2

Y σ2
2(T) + λY σ2

2(E)
] + λY λV σ2

2(T)[
λ2

V σ2
2(T) + λV σ2

2(E)
] + λYλV σ2

2(T)

= λY
[
(λY + λV )σ

2
2(T) + σ2

2(E)
]

λV
[
(λV + λY )σ

2
2(T) + σ2

2(E)
]

= λY/λV .

4.10.a. Since X = A + V ,

σ1(X,V) = σ1(A + V ,V) = σ2
1(V) + σ1(A,V).

The assumption that ρ1(X,V) > 0 implies that σ1(X,V) > 0. Since
σ2

1(V) ∞ 0 by definition, and we would expect σ1(A,V) > 0, therefore,
σ2

1(V) < σ1(X,V). Also,

σ2
1(X) = σ1(A + V ,A + V) = σ2

1(A) + σ2
1(V) + 2σ1(A,V)

= [
σ2

1(V) + σ1(A,V)
] + [

σ2
1(A) + σ1(A,V)

]
= σ1(X,V) + [

σ2
1(A) + σ1(A,V)].

http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
http://dx.doi.org/10.1007/978-1-4939-0317-7_4
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Table A.3 Conditional distributions of form X given
common-item scores for population 1 in Exercise 5.1

v

x 0 1 2 3

0 .20 .10 .10 .00
1 .20 .20 .10 .05
2 .30 .30 .25 .10
3 .15 .30 .25 .25
4 .10 .075 .20 .30
5 .05 .025 .10 .30
h1(v) .20 .40 .20 .20

Since σ2
1(A) ∞ 0 by definition and it has been shown that σ1(A,V) >

0, it necessarily follows that σ1(X,V) < σ2
1(X). Consequently, σ2

1(V) <

σ1(X,V) < σ2
1(X).

4.10.b. γ1T = σ1(X,V)/σ2
1(V), which must be greater than 1 because σ1(X,V) >

σ2
1(V). Now, γ1L = σ2

1(X)/σ1(X,V). To show that γ1T < γ1L, it must be
shown that

σ1(X,V)/σ2
1(V) < σ2

1(X)/σ1(X,V) or

σ2
1(X,V) < σ2

1(X)σ
2
1(V) or

[
σ1(X,V)

σ1(X)σ1(V)

]2

< 1,

which must be true because the term in brackets is ρ1(X,V), which is less
than 1 by assumption.

4.10.c. Suppose that V and X measure the same construct and both satisfy the
classical test theory model. If V is longer than X, then σ2(V) > σ2(X).
This, of course, cannot occur with an internal set of common items because
V can be no longer than X.

Chapter 5

5.1. See Table A.3.
5.2. See Table A.4.
5.3. See Table A.5.
5.4. For the Tucker method, the means and standard deviations for the synthetic

group for Form X are 2.5606 and 1.4331, and for Form Y they are 2.4288 and
1.4261. The linear equation for the Tucker method is l(x) = .9951x−.1192. For
the Braun-Holland method, the means and standard deviations for the synthetic
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Table A.4 Calculation of distribution of form X and common-item scores for population 1 using
frequency estimation assumptions in Exercise 5.2

v

x 0 1 2 3 f2(x) F2(x)

0 .20(.20) = .04 .10(.20) = .02 .10(.40) = .04 .00(.20) = .00 .10 .10
1 .20(.20) = .04 .20(.20) = .04 .10(.40) = .04 .05(.20) = .01 .13 .23
2 .30(.20) = .06 .30(.20) = .06 .25(.40) = .10 .10(.20) = .02 .24 .47
3 .15(.20) = .03 .30(.20) = .06 .25(.40) = .10 .25(.20) = .05 .24 .71
4 .10(.20) = .02 .075(.20) = .015 .20(.40) = .08 .30(.20) = .06 .175 .885
5 .05(.20) = .01 .025(.20) = .005 .10(.40) = .04 .30(.20) = .06 .115 1.00
h2(v) .20 .20 .40 .20

Table A.5 Cumulative distributions and finding equipercentile equivalents for w1 = .5 in Exercise
5.3

x Fs(x) Ps(x) y Gs(y) Qs(y) x eYs(x)

0 .1000 5.00 0 .0925 4.62 0 .04
1 .2400 17.00 1 .3000 19.62 1 .87
2 .4850 36.25 2 .5150 40.75 2 1.79
3 .7300 60.75 3 .7525 63.38 3 2.89
4 .8925 81.12 4 .9000 82.62 4 3.90
5 1.0000 94.62 5 1.0000 95.00 5 4.96

group for Form X are 2.5525 and 1.4482, and for Form Y they are 2.4400 and
1.4531. The linear equation for the Braun-Holland method is l(x) = 1.0034x −
.1211.

5.5. For X, V in Population 1, linear regression slope = .6058, and linear regression
intercept = 1.6519. The means of X given V for v = 0, 1, 2, 3 are 1.9, 2.125,
2.65, 3.7. The residual means for v = 0, 1, 2, 3 are .2481, −.1327, −.2135,
and .2308. Because the residuals tend to be negative in the middle and positive
at the ends, the regression of X on V for Population 1 appears to be nonlinear.
Similarly, for Population 2, the mean residuals for the regression of Y on V
are .2385, −.1231, −.2346, .3539, also suggesting nonlinear regression. This
nonlinearity of regression would likely cause the Tucker and Braun-Holland
methods to differ.

5.6. For x = 1; P1(x = 1) = 17.50; 17.5th percentile for V in Population 1 = .375;
Percentile Rank of v = .375 in Population 2 = 17.5; Q−1

2 (17.5) = .975. Thus,
x = 1 is equivalent to y = .975 using the chained equipercentile method. For
x = 3; P1(x = 3) = 62.50; 62.5th percentile for V in Population 1 = 1.625;
Percentile Rank of v = 1.625 in Population 2 = 45; Q−1

2 (45) = 2.273. Thus,
x = 3 is equivalent to y = 2.273 using the chained equipercentile method.
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Table A.6 IRT observed score equating answer to Exercise 6.5

Probability of correct answers and true scores
Item

θi j = 1 j = 2 j = 3 j = 4 j = 5 τ

Form X
−1.0000 .7370 .6000 .2836 .2531 .2133 2.0871
.0000 .8799 .9079 .4032 .2825 .2678 2.7414
1.0000 .9521 .9867 .6881 .4965 .4690 3.5925
Form Y
−1.0000 .7156 .6757 .2791 .2686 .2074 2.1464
.0000 .8851 .8773 .6000 .3288 .2456 2.9368
1.0000 .9611 .9642 .9209 .5137 .4255 3.7855
Form X distribution
x f (x | θ = −1) f (x | θ = 0) f (x | θ = 1) f (x) F(x) P(x)
0 .0443 .0035 .0001 .0159 .0159 .7966
1 .2351 .0646 .0052 .1016 .1175 6.6734
2 .3925 .3383 .0989 .2766 .3941 25.5831
3 .2524 .3990 .3443 .3319 .7260 56.0064
4 .0690 .1704 .4009 .2134 .9394 83.2720
5 .0068 .0244 .1506 .0606 1.0000 96.9718
Form Y distribution
y g(y | θ = −1) g(y | θ = 0) g(y | θ = 1) g(y) G(y) Q(y)
0 .0385 .0029 .0000 .0138 .0138 .6905
1 .2165 .0490 .0020 .0892 .1030 5.8393
2 .3953 .2594 .0425 .2324 .3354 21.9178
3 .2670 .4235 .3100 .3335 .6688 50.2114
4 .0752 .2276 .4589 .2539 .9228 79.5807
5 .0075 .0376 .1866 .0772 1.0000 96.1384
Form Y equivalents of form X scores
x eY (x)
0 .0772
1 1.0936
2 2.1577
3 3.1738
4 4.1454
5 5.1079

Chapter 6

6.1. For the first item, using Eq. (6.1),

pij = .10 + (1 − .10)
exp[1.7(1.30)(.5 − −1.30)]

1 + exp[1.7(1.30)(.5 − −1.30)] = .9835.

For the two other items, pij = .7082, and .3763.

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
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Table A.7 Answer to Exercise 6.6

r x fr(x) for r ∗ 4 Probability

4 0 f4(0) = f3(0)(1 − p4) = .4430(1 − .4) = .2658
1 f4(1) = f3(1)(1 − p4) + f3(0)p4 = .4167(1 − .4) + .4430(.4) = .4272
2 f4(2) = f3(2)(1 − p4) + f3(1)p4 = .1277(1 − .4) + .4167(.4) = .2433
3 f4(3) = f3(3)(1 − p4) + f3(2)p4 = .0126(1 − .4) + .1277(.4) = .0586
4 f4(4) = f3(3)p4 = .0126(.4) = .0050

Table A.8 Estimated probability of correct response given θ = 1 for Exercise 6.7

Item Scale J Mean/sigma Mean/mean

1 .9040 .8526 .8522
2 .8366 .8076 .8055
3 .2390 .2233 .2222
sum 1.9796 1.8835 1.8799
Hdiff .0037 .0039
SLdiff .0092 .0099

6.2. For θI = .5, f (x = 0) = .0030; f (x = 1) = .1881; f (x = 2) = .5468;
f (x = 3) = .2621.

6.3.a. From Eq. (6.4), bJj = AbIj + B and bJj∧ = AbIj∧ + B. Subtract the second
equation from the first to get bJj − bJj∧ = A(bJj − bJj∧), which implies that
A = (bJj − bJj∧)/(bIj − bIj∧).

6.3.b. From Eq. (6.3), aJj = aIj/A. Solving for A, A = aIj/aJj.
6.3.c. From Eq. (6.4), bJj = AbIj + B. Taking the variance over items (j), σ2(bJ) =

A2σ2(bI). Solving for A and recognizing that variances must be positive,
A = σ(bJ)/σ(bI).

6.3.d. From Exercise 6.3b., A = aIj/aJj. Taking the expectation, over items (j),
A = μ(aI)/μ(aJ).

6.4. For θIi = −2.00, the value of the test characteristic curve is .26+ .27+ .18 =
.71; at the other abilities, it is 2.07, 2.44, .71, and 2.44.

6.5. See Table A.6.
6.6. See Table A.7, which was constructed from Table 6.4.
6.7. See Table A.8.
6.8. Equating to a particular old form allows the use of traditional methods as a

check. The traditional methods are based on different assumptions from the
IRT methods, which allows for a comparison of how robust the equating is to
the assumptions used. In addition, when equating to a particular old form, the
common items provide direct evidence about how the new group compares to
the old group for two groups of examinees that actually can be observed. In
IRT equating to a calibrated pool, the only group of examinees who takes all
of the common items is the new group. Thus, when equating to a pool, there
is no old group with which to compare the new group on the common items,

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
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unless we rely on the assumptions of the IRT model, which is a much weaker
comparison than can be made when we have two groups who actually took
the common items.

6.9. Step (a) is similar, except that, with IRT, a design might be selected that
involves linking to an IRT calibrated item pool. Step (b) is the same, in that the
same construction, administration, and scoring procedures could be used for
either type of equating method. In Step (c), IRT equating involves estimating
item parameters and scaling the item parameter estimates. These steps are not
needed in the traditional methods. In both types of methods, the raw scores are
converted to scale scores by using statistical methods. However, traditional
methods differ from the IRT methods. Also, the IRT methods might involve
equating using an item pool. Steps (d), (e), and (f) are the same for the two
types of methods.

6.10. p∧
ij1 = 1, p∧

ij2 = .7728, p∧
ij3 = .7350, p∧

ij4 = .1151, p∧
ij5 = .0959, p∧

ij6 = .0448,
pij1 = .2272, pij2 = .0378, pij3 = .6199, pij4 = .0192, pij5 = .0511,
pij6 = .0448.

6.11. pij1 = .5557, pij2 = .2669, pij3 = .1774.
6.12. No. The a parameters are not increasing over categories.
6.13. pij1 = .0164, pij2 = .4918, pij3 = .4918.
6.14. Probabilities of earning scores of 4 through 14 are, in order, .000022, .00198,

.0265, .0938, .1922, .2599, .2258, .1305, .0505, .0133, .0018.
6.15. For item 1, expected score equals 1(.01) + 2(.725) + 3(.132) + 4(.132) =

2.384. For item 2, the expected score equals 1(.15)+2(.25)+3(.40)+4(.20) =
2.65. In the terminology of this chapter, these are the values examinee item
response function on items 1 and 2 for examinees with the given ability. The
expected score over the first two items equals 2(.0015)+3(.1112)+4(.2050)+
5(.3448) + 6(.2308) + 7(.0792) + 8(.0264) = 5.031. In the terminology of
this chapter, this is the value of the test characteristic curve for a two-item
test for examinees with the given ability. Note that the sum of the expected
scores over the two items is 2.384 + 2.65 = 5.034, which agrees with the
expected score over the two items, except for rounding error. This occurs
because, conditional on ability, the test characteristic curve equals the sum of
the item response functions.

6.16. Equations (6.31) and (6.32) will equal one another if

aijθi + cjk =
k∑

h=1

Da∧
j (θi − bj + djh)

=
k∑

h=1

Da∧
j θi −

k∑
h=1

Da∧
j bj +

k∑
h=1

Da∧
j djh

= Da∧
j kθi +

(
−Dka∧

j bj + Da∧
j

k∑
h=1

djh

)

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_6
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Table A.9 Bootstrap standard errors for Exercise 7.1a–c

Sample
Statistic 1 2 3 4 ŝeboot

μ̂(X) 4.0000 2.7500 4.2500 3.2500
μ̂(Y) 3.0000 4.6667 3.6667 2.0000
σ̂(X) 2.1213 2.0463 1.9203 2.2776
σ̂(Y) 1.4142 .4714 1.8856 1.4142
l̂Y (x = 3) 2.3333 4.7243 2.4392 1.8448 1.2856
l̂Y (x = 5) 3.6667 5.1850 4.4031 3.0866 .9098
sc[l̂Y (x = 3)] 10.9333 11.8897 10.9757 10.7379 .5142
sc[l̂Y (x = 5)] 11.4667 12.0740 11.7613 11.2346 .3639
scint[l̂Y (x = 3)] 11 12 11 11 .5000
scint[l̂Y (x = 5)] 11 12 12 11 .5774

= ajkθi + cjk

as defined in Eq. (6.33).

Chapter 7

7.1. Answers to 7.1.a, 7.1.b, and 7.1.c are given in Table A.9. Using Eq. (7.10) for
Exercise 7.1.d, the standard error at x = 3 is 1.3467. The standard error at x = 5
is 1.4291.

7.2. Using Eq. (7.12),

ˆvar
[
êY (xi)

] ∼= 1

[.7418 − .7100]2

{
(72.68/100)(1 − 72.68/100)(4329 + 4152)

4329(4152)

− (.7418 − 72.68/100)(72.68/100 − .7100)

4152(.7418 − .7100)

}
= .09084.

Estimated standard error equals
√
.09084 = .3014. Using Eq. (7.13),

ˆvar
[
êY (xi)

] ∼= 8.93932 (72.68/100)(1 − 72.68/100)

.332

(
1

4329
+ 1

4152

)
= .0687.

Estimated standard error equals
√
.0687 = .2621. The differences between the

standard errors could be caused by the distributions’ not being normal. Also,
Eq. (7.12) assumes discrete distributions, whereas Eq. (7.13) assumes contin-

http://dx.doi.org/10.1007/978-1-4939-0317-7_6
http://dx.doi.org/10.1007/978-1-4939-0317-7_7
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http://dx.doi.org/10.1007/978-1-4939-0317-7_7
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550 Appendix A: Answers to Exercises

uous distributions. Differences also could result from error in estimating the
standard errors.

7.3. a. 150 total (75 per form). b. 228 total (114 per form). c. If the relationship was
truly linear, it would be best to use linear, because linear has less random error.

7.4. Using Eq. (7.11), with a sample size of 100 per form, the error variance for linear
equating equals .03, and the error variance for equipercentile equals .0456. The
squared bias for linear is (1.3 − 1.2)2 = .01. Thus, the mean squared error
for linear is .03 + .01 = .04. Assuming no bias for equipercentile, the mean
squared error for equipercentile = .0456. Therefore, linear leads to less error
than equipercentile. With a sample size of 1,000 per form, the mean squared
error for linear is .013 and the mean squared for equipercentile is .0046. With
a sample size of 1,000, equipercentile leads to less error than linear. Thus, it
appears that linear equating requires smaller sample sizes than equipercentile
equating.

7.5. a. .2629 and .4382. b. .1351 and .2683. c. .3264 and .6993. d. 96 per form and
267 per form.

7.6. The identity equating does not require any estimation. Thus, the standard error
for the identity equating is 0. If the population equating is similar to the iden-
tity equating, then the identity equating might be best. Otherwise, the identity
equating can contain substantial systematic error (which is not reflected in the
standard error). Thus, the identity equating is most attractive when the sample
size is small or when there is reason to believe that the alternate forms are very
similar.

Chapter 8

8.1.a. From Eq. (7.18), a sample size of more than Ntot = (2/.12)(2 + .52) = 450
total (225 per form) would be needed.

8.1.b. From Eq. (7.18), a sample size of more than Ntot = (2/.22)(2+ .52) = 112.5
total (approx. 57 per form) would be needed.

8.1.c. In a situation where a single passing score is used, the passing score is at a
z-score of .5, and the equating relationship is linear in the population.

8.2.a. For Forms D and following: In even-numbered years, the spring form links to
the previous spring form and the fall form links to the previous spring form.
In odd-numbered years, the spring form links to the previous fall, and the fall
form links to the previous fall.

8.2.b. Form K links to Form I. Form L links to Form I. Form M links to Form L.
Form N links to Form L.

8.3.a. For Forms D and following in Modified Plan 1 (changes from Link Plan
4 shown in italics): In even-numbered years, the spring form links to the
previous spring form and the fall form links to the previous spring form. In

http://dx.doi.org/10.1007/978-1-4939-0317-7_7
http://dx.doi.org/10.1007/978-1-4939-0317-7_7
http://dx.doi.org/10.1007/978-1-4939-0317-7_7


Appendix A: Answers to Exercises 551

odd-numbered years, the spring form links to the fall form from two years
earlier and the fall form links to the previous fall.
For Forms D and following in Modified Plan 2: In even-numbered years, the
spring form links to the previous spring form and the fall form links to the
previous spring form. In odd-numbered years, the spring form links to the
previous spring and the fall form links to the previous fall.

8.3.b. In Modified Plan 1, K links to I, L links to I, M links to J, and N links to L.
In Modified Plan 2, K links to I, L links to I, M links to K, and N links to L.

8.3.c. For Modified Plan 1, Rule 1 is violated (this plan results in equating strains),
and Rules 2 through 4 are met as well with this plan as with Single Link Plan
4. For Modified Plan 2, Rule 1 is achieved much better than for Modified Plan
1, Rule 2 is met better than for Single Link Plan 4 or for Modified Plan 1, and
Rules 3 and 4 are met as well as for Modified Plan 1 or Single Link Plan 4.
Modified Plan 2 seems to be the best of the two modified plans.

8.4. In Table 8.6, for the first 4 years the decrease in mean and increase in standard
deviation were accompanied by an increase in the sample size. However, now
in year 5 there is a decrease in the sample size. The Levine method results
are most similar to the results when the sample size was near 1,050 in year
2. For this reason, the Levine method might be considered to be preferable.
However, the choice between methods is much more difficult in this situation,
because a sample size decrease never happened previously. In practice, many
additional issues would need to be considered.

8.5.a. Randomly assign examinees to the two modes. Convert parameter estimates
for the computerized version to the base IRT scale using the random groups
design. Probably two different classrooms would be needed, one for paper
and pencil and one for computer.

8.5.b. Use the items that are in common between the two modes as common items
in the common-item equating to an item pool design.

8.5.c. Random groups requires large sample sizes and a way to randomly assign
examinees to different modes of testing. Common-item equating to an item
pool requires that the common items behave the same on computerized and
paper and pencil versions. This requirement likely would not be met. This
design also requires that the groups taking the computerized and paper and
pencil versions be reasonably similar in achievement level.

8.5.d. It is unlikely that all items will behave the same when administered by com-
puter as when administered using paper and pencil. Therefore, the results from
using this design would be suspect. At a minimum, a study should be con-
ducted to discover the extent to which context effects affect the performance
of the items.

8.5.e. The random groups design is preferable. Even with this design, it would be
necessary to study whether the construct being measured by the test changes
from a paper and pencil to a computerized mode. For example, there is evi-
dence that reading tests with long reading passages can be affected greatly
when they are adapted for computer administration. Note that with the ran-

http://dx.doi.org/10.1007/978-1-4939-0317-7_8
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dom groups design, the effects of computerization could be studied for those
items that had been previously administered in the paper and pencil mode.

8.6. Some causes due to changes in items include changes in item position, changes
in surrounding items, changes in font, changes in wording, and rearranging
alternatives. Some causes due to changes in examinees include changes in
a field of study and changes in the composition of the examinee groups.
For example, changes in country names, changes in laws, and new scientific
discoveries might lead to changes in the functioning of an item. As another
example, a vocabulary word like "exorcist" might become much more familiar
after the release of a movie of the same name. Some causes due to changes
in administration conditions include changes in time given to take the test,
security breaches, changes in mode of administration, changes in test content,
changes in test length, changes in motivation conditions, changes in calculator
usage, and changes in directions given to examinees.

8.7. To consider equating, the forms must be built to the same content and sta-
tistical specifications. Assuming that they are, the single group design is
eliminated because it would require that two forms be administered to each
examinee, which would be difficult during an operational administration.
The common-item nonequivalent groups design is eliminated because having
many items associated with each reading passage would make it impossible to
construct a content representative set of common items. The random groups
design could be used. This design requires larger sample sizes than the single
group design, which would not be a problem in this example. Also, the ran-
dom groups design is not affected by context, fatigue, and practice effects,
and the only statistical assumption that it requires is that the process used to
randomly assign forms was effective. Therefore, the random groups design
is best in this situation. Equipercentile equating would be preferred because
it generally provides more accuracy along the score scale (assuming that the
relationship is not truly linear). Equipercentile equating also requires large
sample sizes, which is not a problem in the situation described.

8.8 .26 + .27 + .18 = .71
8.9 .26(1 − .26) + .27(1 − .27) = .18(1 − .18) = .5370

Chapter 9

9.1. The Wright/Thurstone procedure starts with a set of items that are believed to
measure a particular construct. The questions are administered to examinees
and analyzed for model fit. Items that do not fit the model are eliminated. Test
scores are used that estimate the underlying variable on the “interval” scale
as defined by the model. A generalized model might need to be considered
to accommodate items of different types. The scores on different item types
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are combined based on the dictates of the model. A score scale is used for
reporting scores that is a linear transformation of the scores that result from
the scaling process.
Under Lindquist’s approach, test specifications are defined based on relative
importance of content based on judgment of educators. Statistical screening
of items is restricted to eliminating items that are flawed in relation to the
item content (e.g., item is ambiguous). The test is scored so as to reflect
the educator’s views of the importance of different content areas. Scores on
different item types are combined to reflect the relative importance of the item
types based on judgment of educators. A score scale is chosen that is judged
to facilitate test use.

9.2. For θ = −1, θ∧ = .37; for θ = 1, θ∧ = 2.72; for θ = 2, θ∧ = 7.39. On the
θ-scale, the difference in proficiency between examinees 1 and 2 (2 points)
is greater than the difference in proficiency between examinees 2 and 3 (1
point). On the θ∧-scale, the difference between examinees 1 and 2 (2.35) is
less than the difference between examinees 1 and 2 (4.67). Thus, the relative
magnitude of the differences depends on the scale. In general, there is no
reason to believe that one of these scales is preferable to the other.

9.3. In this example, h = 2 and zγ = 1.645. From Eq. (9.30), σ = 2

1.645
√

1 − .7= 2.2. Then 6(2.2)= 13.2. Approximately 13 scale score points.
9.4. From Table 9.2, the raw score mean is 14.0066 and the standard deviation

5.0146. Using Eq. (2.22) with the linear transformation

sc(y) = 15

5.0146
y +

[
100 − 15

5.0146
14.0066

]
= 2.99y + 58.10.

Then, sc(9) = 2.99(9) + 58.10 = 85.01, which rounds to 85.
For the normalized transformation using the smoothed distributions, z =
−.8727. To transform to the score scale take 15(−.8727)+100=86.91, which
rounds to 87.

9.5. From Table 9.2, the raw score mean is 14.0066. Using Eq. (9.32), g(14.0066)
= .8661. Using Eq. (9.37),

sc[g(y)] = g(y)
3

.0907
+

{
100 − 3

.0907
.8661

}
= g(y)[33.08] + 71.35.

Applying this equation to a raw score of 9 gives sc[g(9)] = g(9)(33.08) +
71.35 = .66(33.08) + 71.35 = 93.18. Rounding to integers gives 93.

9.6. From Eq. (9.38)

http://dx.doi.org/10.1007/978-1-4939-0317-7_9
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http://dx.doi.org/10.1007/978-1-4939-0317-7_9
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θj(RP) = bj − 1

Daj
ln

(
1 − cj

RP/100 − cj
− 1

)

= .6260 − 1

1.7(.9089)
ln

(
1 − .2986

.8 − .2986
− 1

)

= 1.22.

9.7. For the first composite, the proportional effective weights are .332, .264, and
.404. For the second composite, the proportional effective weights are .201,
.564, and .235.

9.8.a. For grade 4, b =
√

4

12
R−

√
4

12
22+12. For grade 3, Q =

√
12

4
b−

√
12

4
10+

22. Chaining, Q =
√

12

4

(√
4

12
R −

√
4

12
22 + 12

)
−

√
12

4
10 + 22 = R +

2
√

3 = R + 3.46.

9.8.b. Q =
√

12

12
R −

√
12

12
15 + 22 = R + 7.

9.8.c. Q =
√

12

12
R −

√
12

12
22 + 26 = R + 4.

9.8.d. For grade 4, tot =
√

24

12
R −

√
24

12
22 + 36. For grade 3, Q =

√
12

24
tot −√

12

24
27 + 22. Chaining, Q =

√
12

24

(√
24

12
R −

√
24

12
22 + 36

)
−

√
12

24
27 +

22 = R + 6.36.
9.8.e. A major reason that the results differ is that grade 3 examinees do relatively

poorly on item block c compared to grade 4 examinees. If the block c mean
had been 8 for grade 3 examinees, then the methods would have produced
much more similar results.

9.8.f. The linking in part (a) is most consistent with the grade-to-grade definition
of growth, because this linking defines growth based only on those items that
would be common between the two grades on the operational test.

9.8.g. The linking in part (d) is most consistent with the domain definition of growth,
because this linking defines growth based on all of the items in blocks a, b,
and c.

9.8.h. The grade 3 mean on level Q is 22 and the standard deviation is 12. The
grade 4 mean, transformed to the raw score scale of level Q, is for linking
in part (a) is 22 + 3.46 = 25.46. The means are 29, 26, and 28.36 for parts
(b), (c), and (d), respectively. The effect size for the linking in part (a) is
(25.46 − 22)/

√
12 = .99. The effect sizes are 2.02, 1.15, and 1.83 for parts

(b), (c), and (d), respectively. For this example, the effect sizes are nearly
twice as large for the linking in part (d) than the linking in part (a). This result
suggests the grade-to-grade growth definition might lead to smaller grade-
to-grade differences than does the domain definition of growth when two
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Table A.10 Mean and standard deviation of scale scores for thurstone scaling for Exercise 9.9

Statistic Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

Scaled such that Grade 3 Mean is 0 and S.D. is 1
Mean −1.5277 −0.9561 −0.5416 −0.3233 −0.1048 0.0000
S. D. 0.7778 0.8636 0.9302 0.9395 0.9807 1.0000

Scaled such that Grade 4 Mean is 400 and Grade 8 Mean is 800
Mean 160.8973 400.0000 573.4399 664.7582 756.1567 800.0000
S. D. 325.3851 361.2686 389.1317 393.0273 410.2912 418.3522

levels are linked in the manner described and the subject matter is curriculum
dependent.

9.9. See Table A.10.

Chapter 10

10.1. As noted repeatedly in earlier chapters, for the CINEG design to work well
in equating, the common items must faithfully represent the full-length forms
in both content and statistical specifications. In almost all linking contexts,
the tables of specifications for the two tests are different and the two tests
measure at least some different constructs. Hence, it is impossible for a single
set of common items to represent faithfully the content of both tests. It might
be argued that two sets of common items could be used, with the two sets
representing the two different tests. This might be a more satisfactory solution
than using one set, but there is no compelling reason to believe that double
linking with two such sets of items will somehow “balance out” the differences
between the tests.

10.2. Even though most students took both tests, they are still a self-selected group
that may not be comparable to the group that took Test B, only. If so, it is
problematic to use the prediction equation with this group. Also, the prediction
equation will involve some degree of regression of Test B scores to the mean of
Test A, which may somewhat disadvantage students who score high on Test B,
and advantage students who score low. Most likely, a better alternative would
be a concordance of Test A and Test B scores using the students who took
both tests, or perhaps a subset of these students. A subset might be better if it
is possible to identify a subset that is more similar to the group that took test
B, only, than the group that took both tests.

10.3. Replacing the values in Table 10.3 in Eq. (10.16) gives

http://dx.doi.org/10.1007/978-1-4939-0317-7_10
http://dx.doi.org/10.1007/978-1-4939-0317-7_10
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REMSD= √
w1w2

(∣∣∣∣μ1(Y) − μ2(Y)

σ(Y)
− μ1(X) − μ2(X)

σ(X)

∣∣∣∣
)

= √
.436(.564)

(∣∣∣∣22.834 − 21.703

4.218
− 315.500 − 313.177

36.186

∣∣∣∣
)

= .101.

10.4. With M = 1 and F = 2,

l̂Y1(x) − l̂Y2(x) = [−12.65127 + .11247(x)] − [−15.49409 + .11877(x)]

To get MD = .863, x is replaced with the estimated mean for the combined
group, μ̂(X) = 314.19089. To get ewMD = 1.126, x is replaced by the
midpoint of the ITED score range in the data, namely, (163+382)/2 = 272.5.

10.5. Examining Table 10.10, it is evident that, for the mean method, truncation
automatically causes a large number of low and high ITED scores to have ACT
equivalents that are identical (1 or 36, respectively) for males and females. The
“contribution” of such scores to ewREMSD is zero. By contrast, truncation has
only a slight effect at the upper end of the score range for some of the other
methods.

10.6. In considering the magnitudes of REMSD under truncation for the various
methods, it is helpful to consider what is happening at the extremes of the
score scale as well as in the “middle” of the scale. First, for low scores,
the truncation-induced zero contributions for the mean method do not affect
REMSD very much because the frequencies of low scores are relatively small
(see Table 10.5), but for high scores the frequencies are substantial. Therefore,
for high scores, truncation tends to lower REMSD for the mean method beyond
what it would be without truncation. For the other methods, truncation has very
little influence on REMSD. Second, from Tables 10.10 and 10.11, it is evident
that, for the mean method, the absolute values of the differences in equivalents
(M−C and F−C) in the “middle” of the ITED score range (where frequencies
are relatively high) are almost always one ACT scale-score point, whereas for
the other methods, the differences are often zero. The first explanation tends
to make REMSD smaller for the mean method (relative to the other method),
whereas the second explanation tends to make it larger. Apparently, for these
data, the second explanation is the dominant one.

10.7. Given the general definition of the rmsel in Eq. (10.23), for the linear method,

rmsel[lY (x)] =
√

E[y − lY (x)]2.

Given the definition of lY (x) in Eq. (10.5),

http://dx.doi.org/10.1007/978-1-4939-0317-7_10
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y − lY (x) = y −
{
μ(Y) + σ(Y)

σ(X)
[x − μ(X)]

}

= [y − μ(Y)] − σ(Y)

σ(X)
[x − μ(X)] .

It follows that

rmsel[lY (x)] =
√

σ2(Y) + σ2(Y) − 2
σ(Y)

σ(X)
σ(Y ,X)

=
√

σ2(Y) + σ2(Y) − 2
σ(Y ,X)σ2(Y)

σ(Y)σ(X)

=
√

2 σ2(Y) − 2 σ2(Y) ρ(Y ,X)

= σ(Y)
√

2 [1 − ρ(Y ,X)].

10.8. First, since we are putting ITED scores on the ACT scale, our focus is on
the

√
2 sem for the ACT science test, as opposed to the ITED science test.

Second, the
√

2 sem is appropriate because it represents an approximate best
case scenario. Suppose, for example, that the ITED science test were con-
structed according to the same specifications as the ACT science test. Then,
the two tests would be classically parallel, their correlation would be the reli-
ability for each of them, and the error in linking one to the other would be
σ(Y)

√
2 [1 − ρ(Y ,Y ≤)] = √

2 sem. (This formula is called the standard error
of substitution by Gulliksen, 1950, p. 40. It can be derived by obtaining the
variance of the difference between observed scores for two classically parallel
forms.)

10.9. Using Eq. (10.2) as eqY (x) in Eq. (10.23),

rmsel[mY (x)] =
√

E[y − mY (x)]2

=
√

E{[y − x] − [μ(Y) − μ(X)]}2

= σ(Y − X).
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Computer programs are available, free of charge, that can be used to conduct many
of the analyses in the book. Data sets from this book are included with some of the
computer programs.

1. RAGE-RGEQUATE by L. Zeng, M.J. Kolen, B.A. Hanson, Z. Cui, and Y. Chien.
This program conducts linear and equipercentile equating as described in Chap. 2.
The program implements the cubic spline and log-linear smoothing methods
described in Chap. 3.

2. CIPE by M.J. Kolen and Y. Chien. This program conducts observed score equat-
ing under the common-item nonequivalent groups design as described in Chaps. 4
and 5. Tucker linear (external or internal common items), Levine linear observed
score (internal common items only), and frequency estimation equipercentile
equating with cubic spline smoothing are implemented.

3. ST by L. Zeng, B.A. Hanson, and Y. Chien. This program conducts IRT scale
transformations using the mean/mean, mean/sigma, Stocking and Lord, and Hae-
bara methods described in Chap. 6.

4. POLYST by S. Kim and M.J. Kolen. This program conducts IRT scale trans-
formations using the mean/mean, mean/sigma, Stocking and Lord, and Haebara
methods described in Chap. 6 for both dichotomous and polytomous IRT models.

5. PIE by B.A. Hanson, L. Zeng, Y. Chien. This program conducts IRT true and
observed score equating using the methods described in Chap. 6.

6. POLYEQUATE by M.J. Kolen. This program conducts IRT true and observed
score equating for dichotomous and polytomous IRT models using the methods
described in Chap. 6.

7. Equating Error by B.A. Hanson and Y. Chien. This program estimates bootstrap
standard errors of equipercentile equating for the random groups design. Stan-
dard errors for both the cubic spline postsmoothing and log-linear presmoothing
methods can be calculated. Uses methods described in Chap. 7.

8. POLYCSEM by M.J. Kolen. This programs estimates conditional standard errors
of measurement and can be used for assessing first- and second-order equity
properties as described in Chaps. 8 and 9.
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9. LEGS by R.L. Brennan. This program conducts linear and equipercentile linking
as described in Chap. 10.

In addition, EQUATING RECIPES (Brennan et al. 2009) provides a set of open-
source functions written in ANSI C to perform all types of equating discussed in this
book.

These programs and code can be found at the following web address:
http://www.education.uiowa.edu/centers/casma/computer-programs. Although the-
se programs and code have been tested and we believe them to be free of errors, we do
not warrant, guarantee, or make any representations regarding the use or the results
of this software in terms of their appropriateness, correctness, accuracy, reliability,
or otherwise. The entire responsibility for the use of this software rests with the user.
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