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Preface

Statistics provides one of the few principled means to extract information from
random data and has perhaps more interdisciplinary connections than any other
field of science. However, for a beginning student of statistics, the abundance
of mathematical concepts, statistical philosophies, and numerical techniques can
seem overwhelming. The purpose of this book is to provide a comprehensive and
accessible introduction to modern statistics, illuminating its many facets, from both
classical (frequentist) and Bayesian points of view. The book offers an integrated
treatment of mathematical statistics and modern statistical computation.

The book is aimed at beginning students of statistics and practitioners who would
like to fully understand the theory and key numerical techniques of statistics. It
is based on a progression of undergraduate statistics courses at The University
of Queensland and the Australian National University. Parts of the book have
also been successfully tested at the University of New South Wales. Emphasis
is laid on the mathematical and computational aspects of statistics. No prior
knowledge of statistics is required, but we assume that the reader has a basic
knowledge of mathematics, which forms an essential basis for the development
of the statistical theory. Starting from scratch, the book gradually builds up to an
advanced undergraduate level, providing a solid basis for possible postgraduate
research. Throughout the text we illustrate the theory by providing working code
in MATLAB, rather than relying on black-box statistical packages. We make frequent
use of the symbol ☞ in the margin to facilitate cross-referencing between related
pages. The book is accompanied by the web site www.statmodcomp.org from which
the MATLAB code and data files can be downloaded. In addition, we provide an R
equivalent for each MATLAB program.

The book is structured into three parts. In Part I we introduce the fundamentals
of probability theory. We discuss models for random experiments, conditional
probability and independence, random variables, and probability distributions.
Moreover, we explain how to carry out random experiments on a computer.

In Part II we introduce the general framework for statistical modeling and
inference, from both classical and Bayesian perspectives. We discuss a variety of
common models for data, such as independent random samples, linear regression,
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and ANOVA models. Once a model for the data is determined one can carry out a
mathematical analysis of the model on the basis of the available data. We discuss a
wide range of concepts and techniques for statistical inference, including likelihood-
based estimation and hypothesis testing, sufficiency, confidence intervals, and kernel
density estimation. We encompass both classical and Bayesian approaches and also
highlight popular Monte Carlo sampling techniques.

In Part III we address the statistical analysis and computation of a variety of
advanced models, such as generalized linear models, autoregressive and moving
average models, Gaussian models, and state space models. Particular attention
is paid to fast numerical techniques for classical and Bayesian inference on
these models. Throughout the book our leading principle is that the mathematical
formulation of a statistical model goes hand in hand with the specification of its
simulation counterpart.

The book contains a large number of illustrative examples and problem sets (with
solutions). To keep the book fully self-contained, we include the more technical
proofs and mathematical theory in Appendix B. Appendix A features a concise
introduction to MATLAB.

Brisbane, Australia Dirk Kroese
Canberra, Australia Joshua Chan
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Mathematical Notation

Throughout this book we use notation in which different fonts and letter cases
signify different types of mathematical objects. For example, vectors a;b; x; : : : are
written in lowercase boldface font and matrices A, B , X in uppercase normal font.
Sans serif fonts indicate probability distributions, such as N, Exp, and Bin. Probability
and expectation symbols are written in blackboard bold font: P and E. MATLAB code
and functions will always be written in typewriter font.

Traditionally, classical and Bayesian statistics use a different notation system
for random variables and their probability density functions. In classical statistics
and probability theory random variables usually are denoted by uppercase letters
X; Y;Z; : : : and their outcomes by lowercase letters x; y; z; : : :. Bayesian statisti-
cians typically use lowercase letters for both. More importantly, in the Bayesian
notation system, it is common to use the same letter f (orp) for different probability
densities, as in f .x; y/ D f .x/f .y/. Classical statisticians and probabilists would
prefer a different symbol for each function, as in f .x; y/ D fX.x/fY .y/. We will
predominantly use the classical notation, especially in the first part of the book.
However, when dealing with Bayesian models and inference, such as in Chaps. 8
and 11, it will be convenient to switch to the Bayesian notation system. Here is a list
of frequently used symbols:

� Is approximately
/ Is proportional to
1 Infinity
˝ Kronecker product
defD Is defined as

� Is distributed as
iid�, �iid Are independent and identically distributed as
approx:� Is approximately distributed as
7! Maps to
A[ B Union of sets A and B
A\ B Intersection of sets A and B
Ac Complement of set A
A � B A is a subset of B
; Empty set
kxk Euclidean norm of vector x
rf Gradient of f
r2f Hessian of f
A>, x> Transpose of matrix A or vector x
diag.a/ Diagonal matrix with diagonal entries defined by a
tr.A/ Trace of matrix A
det.A/ Determinant of matrix A

xix
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jAj Absolute value of the determinant of matrix A. Also, number of
elements in set A or absolute value of real number A

argmax argmaxf .x/ is a value x� for which f .x�/ � f .x/ for all x
d Differential symbol
E Expectation
e Euler’s constant limn!1.1C 1=n/n D 2:71828 : : :

IA; IfAg Indicator function: equal to 1 if the condition/event A holds and 0
otherwise.

ln (Natural) logarithm
N Set of natural numbers f0; 1; : : :g
' Pdf of the standard normal distribution
˚ Cdf of the standard normal distribution
P Probability measure
O Big-O order symbol: f .x/ D O.g.x// if jf .x/j � ˛g.x/ for some

constant ˛ as x ! a

o Little-o order symbol: f .x/ D o.g.x// if f .x/=g.x/ ! 0 as x ! a

R The real line = one-dimensional Euclidean space
RC Positive real line: Œ0;1/

R
n n-Dimensional Euclidean space

b� Estimate/estimator
x; y Vectors
X;Y Random vectors
Z Set of integers f: : : ;�1; 0; 1; : : :g
Probability Distributions

Ber Bernoulli distribution
Beta Beta distribution
Bin Binomial distribution
Cauchy Cauchy distribution
�2 Chi-squared distribution
Dirichlet Dirichlet distribution
DU Discrete uniform distribution
Exp Exponential distribution
F F distribution
Gamma Gamma distribution
Geom Geometric distribution
InvGamma Inverse-gamma distribution
Mnom Multinomial distribution
N Normal or Gaussian distribution
Poi Poisson distribution
t Student’s t distribution
TN Truncated normal distribution
U Uniform distribution
Weib Weibull distribution



Part I
Fundamentals of Probability

In Part I of the book we consider the probability side of statistics. In particular,
we will consider how random experiments can be modeled mathematically and
how such modeling enables us to compute various properties of interest for those
experiments.



Chapter 1
Probability Models

1.1 Random Experiments

The basic notion in probability is that of a random experiment: an experiment
whose outcome cannot be determined in advance, but which is nevertheless subject
to analysis. Examples of random experiments are:

1. Tossing a die and observing its face value.
2. Measuring the amount of monthly rainfall in a certain location.
3. Counting the number of calls arriving at a telephone exchange during a fixed

time period.
4. Selecting at random fifty people and observing the number of left-handers.
5. Choosing at random ten people and measuring their heights.

The goal of probability is to understand the behavior of random experiments by
analyzing the corresponding mathematical models. Given a mathematical model for
a random experiment one can calculate quantities of interest such as probabilities
and expectations. Moreover, such mathematical models can typically be imple-
mented on a computer, so that it becomes possible to simulate the experiment.
Conversely, any computer implementation of a random experiment implicitly
defines a mathematical model. Mathematical models for random experiments are
also the basis of statistics, where the objective is to infer which of several competing
models best fits the observed data. This often involves the estimation of model
parameters from the data.

Example 1.1 (Coin Tossing). One of the most fundamental random experiments
is the one where a coin is tossed a number of times. Indeed, much of probability
theory can be based on this simple experiment. To better understand how this coin
toss experiment behaves, we can carry it out on a computer, using programs such as
MATLAB. The following simple MATLAB program simulates a sequence of 100 tosses
with a fair coin (i.e., Heads and Tails are equally likely) and plots the results in a bar
chart.

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__1, © The Author(s) 2014
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x = (rand(1,100) < 0.5) % generate the coin tosses
bar(x) % plot the results in a bar chart

The function rand draws uniform random numbers from the interval Œ0; 1�—
in this case a 1 � 100 vector of such numbers. By testing whether the uni-
form numbers are less than 0:5, we obtain a vector x of 1s and 0s, indicating
Heads and Tails, say. Typical outcomes for three such experiments are given in
Fig. 1.1.

1 50 100

Fig. 1.1 Three experiments where a fair coin is tossed 100 times. The dark bars indicate when
“Heads” (D 1) appears

We can also plot the average number of Heads against the number of tosses. In
the same MATLAB program, this is accomplished by adding two lines of code:

y = cumsum(x)./[1:100] % calculate the cumulative sum and
% divide this elementwise by the vector [1:100]

plot(y) % plot the result in a line graph

The result of three such experiments is depicted in Fig. 1.2. Notice that the
average number of Heads seems to converge to 0.5, but there is a lot of random
fluctuation.

Similar results can be obtained for the case where the coin is biased,
with a probability of Heads of p, say. Here are some typical probability
questions.

• What is the probability of x Heads in 100 tosses?
• What is the expected number of Heads?
• How long does one have to wait until the first Head is tossed?
• How fast does the average number of Heads converge to p?
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Fig. 1.2 The average number of Heads in n tosses, where n D 1; : : : ; 100

A statistical analysis would start from observed data of the experiment—for
example, all the outcomes of 100 tosses are known. Suppose the probability of
Heads p is not known. Typical statistics questions are:

• Is the coin fair?
• How can p be best estimated from the data?
• How accurate/reliable would such an estimate be?

The mathematical models that are used to describe random experiments consist
of three building blocks: a sample space, a set of events, and a probability. We will
now describe each of these objects.

1.2 Sample Space

Although we cannot predict the outcome of a random experiment with certainty, we
usually can specify a set of possible outcomes. This gives the first ingredient in our
model for a random experiment.

Definition 1.1. (Sample Space). The sample space ˝ of a random experi-
ment is the set of all possible outcomes of the experiment.

Examples of random experiments with their sample spaces are:

1. Cast two dice consecutively and observe their face values:

˝ D f.1; 1/; .1; 2/; : : : ; .1; 6/; .2; 1/; : : : ; .6; 6/g :
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2. Measure the lifetime of a machine in days:

˝ D RC D f positive real numbers g :

3. Count the number of arriving calls at an exchange during a specified time
interval:

˝ D f0; 1; : : :g :

4. Measure the heights of 10 people:

˝ D f.x1; : : : ; x10/ W xi � 0; i D 1; : : : ; 10g D R
10C :

Here .x1; : : : ; x10/ represents the outcome that the height of the first selected
person is x1, the height of the second person is x2, and so on.

Notice that for modeling purposes it is often easier to take the sample space
larger than is strictly necessary. For example, the actual lifetime of a machine would
in reality not span the entire positive real axis, and the heights of the ten selected
people would not exceed 9 ft.

1.3 Events

Often we are not interested in a single outcome but in whether or not one in a group
of outcomes occurs.

Definition 1.2. (Event). An event is a subset of the sample space˝ to which
a probability can be assigned.

Events will be denoted by capital lettersA;B;C; : : : . We say that eventA occurs
if the outcome of the experiment is one of the elements in A.

Examples of events are:

1. The event that the sum of two dice is 10 or more:

A D f.4; 6/; .5; 5/; .5; 6/; .6; 4/; .6; 5/; .6; 6/g :

2. The event that a machine is functioning for less than 1000 days:

A D Œ0; 1000/ :
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3. The event that out of a group of 50 people 5 are left-handed:

A D f5g :

Example 1.2 (Coin Tossing). Suppose that a coin is tossed 3 times and that we
record either Heads or Tails at every toss. The sample space can then be written as

˝ D fHHH, HHT, HTH, HTT, THH, THT, TTH, TTTg ;

where, for instance, HTH means that the first toss is Heads, the second Tails, and the
third Heads. An alternative (but equivalent) sample space is the set f0; 1g3 of binary
vectors of length 3; for example, HTH corresponds to (1,0,1) and THH to (0,1,1).

The event A that the third toss is Heads is

A D fHHH, HTH, THH, TTHg :

Since events are sets, we can apply the usual set operations to them, as illustrated in
the Venn diagrams in Fig. 1.3.

1. The set A \ B (A intersection B) is the event that A and B both occur.
2. The set A [ B (A union B) is the event that A or B or both occur.
3. The event Ac (A complement) is the event that A does not occur.
4. If B � A (B is a subset of A), then event B is said to imply event A.

A ∩ B A ∪ B B ⊂ AAc

A BAB BA A

Fig. 1.3 Venn diagrams of set operations. Each square represents the sample space ˝

Two events A and B which have no outcomes in common, that is, A \ B D ;
(empty set), are called disjoint events.

Example 1.3 (Casting Two Dice). Suppose we cast two dice consecutively.
The sample space is ˝ D f.1; 1/; .1; 2/; : : : ; .1; 6/; .2; 1/; : : : ; .6; 6/g. Let A D
f.6; 1/; : : : ; .6; 6/g be the event that the first die is 6, and let B D f.1; 6/; : : : ; .6; 6/g
be the event that the second die is 6. ThenA\B D f.6; 1/; : : : ; .6; 6/g\f.1; 6/; : : : ;
.6; 6/g D f.6; 6/g is the event that both dice are 6.
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Example 1.4 (System Reliability). In Fig. 1.4 three systems are depicted, each con-
sisting of three unreliable components. The series system works if all components
work; the parallel system works if at least one of the components works; and the
2-out-of-3 system works if at least 2 out of 3 components work.

Series

Parallel 2-out-of-3

Fig. 1.4 Three unreliable systems

Let Ai be the event that the i th component is functioning, i D 1; 2; 3; and
let Da;Db;Dc be the events that, respectively, the series, parallel, and 2-out-of-3
system are functioning. Then,Da D A1 \A2 \A3 andDb D A1 [A2 [A3. Also,

Dc D .A1 \ A2 \A3/ [ .Ac1 \ A2 \ A3/[ .A1 \Ac2 \ A3/[ .A1 \ A2 \Ac3/
D .A1 \ A2/ [ .A1 \A3/[ .A2 \ A3/ :

Two useful results in the theory of sets are the following, due to De Morgan:

Theorem 1.1. (De Morgan’s Laws). If fAig is a collection of sets, then

 

[

i

Ai

!c

D
\

i

Aci (1.1)

and

 

\

i

Ai

!c

D
[

i

Aci : (1.2)

Proof. If we interpret Ai as the event that component i works in Example 1.4, then
the left-hand side of (1.1) is the event that the parallel system is not working. The
right-hand side of (1.1) is the event that all components are not working. Clearly
these two events are identical. The proof for (1.2) follows from a similar reasoning;
see also Problem 1.2. ut☞ 19
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1.4 Probability

The third ingredient in the model for a random experiment is the specification of
the probability of the events. It tells us how likely it is that a particular event will
occur.

Definition 1.3. (Probability). A probability P is a function which assigns
a number between 0 and 1 to each event and which satisfies the following
rules:

1. 0 � P.A/ � 1.
2. P.˝/ D 1.
3. For any sequence A1;A2; : : : of disjoint events we have

Sum Rule: P
�
[

i

Ai
� D

X

i

P.Ai / : (1.3)

The crucial property (1.3) is called the sum rule of probability. It simply states
that if an event can happen in several distinct ways (expressed as a union of events,
none of which are overlapping), then the probability that at least one of these events
happens (i.e., the probability of the union) is simply the sum of the probabilities of
the individual events. Figure 1.5 illustrates that the probability P has the properties
of a measure. However, instead of measuring lengths, areas, or volumes, P.A/
measures the likelihood or probability of an event A as a number between 0 and 1.

Fig. 1.5 A probability rule P has exactly the same properties as an area measure. For example,
the total area of the union of the nonoverlapping triangles is equal to the sum of the areas of the
individual triangles
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The following theorem lists some important properties of a probability measure.
These properties are direct consequences of the three rules defining a probability
measure.

Theorem 1.2. (Properties of a Probability). Let A and B be events and P a
probability. Then,

1. P.;/ D 0 ,
2. if A � B , then P.A/ � P.B/ ,
3. P.Ac/ D 1� P.A/ ,
4. P.A[ B/ D P.A/C P.B/ � P.A\ B/ .

Proof.

1. Since ˝ D ˝ [ ; and ˝ \ ; D ;, it follows from the sum rule that P.˝/ D
P.˝/ C P.;/. Therefore, by Rule 2 of Definition 1.3, we have 1 D 1 C P.;/,
from which it follows that P.;/ D 0.

2. If A � B , then B D A[ .B \Ac/, where A and B \Ac are disjoint. Hence, by
the sum rule, P.B/ D P.A/C P.B \ Ac/, which (by Rule 1) is greater than or
equal to P.A/.

3. ˝ D A [ Ac , where A and Ac are disjoint. Hence, by the sum rule and Rule 2:
1 D P.˝/ D P.A/C P.Ac/, and thus P.Ac/ D 1 � P.A/.

4. Write A[B as the disjoint union of A and B \Ac . Then, P.A[B/ D P.A/C
P.B\Ac/. Also,B D .A\B/[.B\Ac/, so that P.B/ D P.A\B/CP.B\Ac/.
Combining these two equations gives P.A[B/ D P.A/CP.B/�P.A\B/. ut
We have now completed our general model for a random experiment. Of course

for any specific model we must carefully specify the sample space˝ and probability
P that best describe the random experiment.

Example 1.5 (Casting a Die). Consider the experiment where a fair die is cast.
How should we specify ˝ and P? Obviously, ˝ D f1; 2; : : : ; 6g; and common
sense dictates that we should define P by

P.A/ D jAj
6
; A � ˝ ;

where jAj denotes the number of elements in set A. For example, the probability of
getting an even number is P.f2; 4; 6g/ D 3=6 D 1=2.

In many applications the sample space is countable: ˝ D fa1; a2; : : : ; ang or
˝ D fa1; a2; : : :g. Such a sample space is said to be discrete. The easiest way to
specify a probability P on a discrete sample space is to first assign a probability pi
to each elementary event fai g and then to define

P.A/ D
X

i Wai2A
pi for all A � ˝ :
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A

Ω
Fig. 1.6 A discrete sample
space

This idea is graphically represented in Fig. 1.6. Each element ai in the sample
space is assigned a probability weight pi represented by a black dot. To find the
probability of an event A we have to sum up the weights of all the elements in the
set A.

Again, it is up to the modeler to properly specify these probabilities. Fortunately,
in many applications, all elementary events are equally likely, and thus the probabil-
ity of each elementary event is equal to 1 divided by the total number of elements
in ˝ . In such case the probability of an event A � ˝ is simply

P.A/ D jAj
j˝j D Number of elements in A

Number of elements in ˝
;

provided that the total number of elements in ˝ is finite. The calculation of such
probabilities thus reduces to counting; see Problem 1.6. ☞ 19

When the sample space is not countable, for example, ˝ D RC, it is said to be
continuous.

Example 1.6 (Drawing a Random Point in the Unit Interval). We draw at
random a point in the interval Œ0; 1� such that each point is equally likely to be
drawn. How do we specify the model for this experiment?

The sample space is obviously ˝ D Œ0; 1�, which is a continuous sample space.
We cannot define P via the elementary events fxg, x 2 Œ0; 1� because each of these
events has probability 0. However, we can define P as follows. For each 0 � a �
b � 1, let

P.Œa; b�/ D b � a :
This completely defines P. In particular, the probability that a point will fall into any
(sufficiently nice) set A is equal to the length of that set.

Describing a random experiment by specifying explicitly the sample space and
the probability measure is not always straightforward or necessary. Sometimes it is
useful to model only certain observations on the experiment. This is where random
variables come into play, and we will discuss these in Chap. 2. ☞ 23
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1.5 Conditional Probability and Independence

How do probabilities change when we know that some event B � ˝ has occurred?
Thus, we know that the outcome lies in B . Then A will occur if and only if A \ B

occurs, and the relative chance of A occurring is therefore P.A \ B/=P.B/, which
is called the conditional probability of A given B . The situation is illustrated in
Fig. 1.7.

A ∩ B

A B

Ω

Fig. 1.7 What is the
probability that A occurs
given that the outcome is
known to lie in B?

Definition 1.4. (Conditional Probability). The conditional probability of
A given B (with P.B/ ¤ 0) is defined as:

P.A jB/ D P.A\ B/

P.B/
: (1.4)

Example 1.7 (Casting Two Dice). We cast two fair dice consecutively. Given that
the sum of the dice is 10, what is the probability that one 6 is cast? Let B be the
event that the sum is 10:

B D f.4; 6/; .5; 5/; .6; 4/g :
Let A be the event that one 6 is cast:

A D f.1; 6/; : : : ; .5; 6/; .6; 1/; : : : ; .6; 5/g :

Then,A\B D f.4; 6/; .6; 4/g. And, since for this experiment all elementary events
are equally likely, we have

P.A jB/ D 2=36

3=36
D 2

3
:
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Example 1.8 (Monty Hall Problem). Consider a quiz in which the final contestant
is to choose a prize which is hidden behind one of three curtains (A, B, or C).
Suppose without loss of generality that the contestant chooses curtain A. Now the
quiz master (Monty) always opens one of the other curtains: if the prize is behind B,
Monty opens C; if the prize is behind C, Monty opens B; and if the prize is behind
A, Monty opens B or C with equal probability, e.g., by tossing a coin (of course the
contestant does not see Monty tossing the coin!) (Fig. 1.8).

A B C

Fig. 1.8 Given that Monty opens curtain (B), should the contestant stay with his/her original
choice (A) or switch to the other unopened curtain (C)?

Suppose, again without loss of generality, that Monty opens curtain B. The con-
testant is now offered the opportunity to switch to curtain C. Should the contestant
stay with his/her original choice (A) or switch to the other unopened curtain (C)?

Notice that the sample space here consists of four possible outcomes: Ac, the
prize is behind A and Monty opens C; Ab, the prize is behind A and Monty opens
B; Bc, the prize is behind B and Monty opens C; and Cb, the prize is behind C
and Monty opens B. Let A, B , C be the events that the prize is behind A, B, and C,
respectively. Note that A D fAc;Abg, B D fBcg, and C D fCbg; see Fig. 1.9.

Ab

Cb Bc

1/6 1/6

1/3 1/3

Ac

Fig. 1.9 The sample space
for the Monty Hall problem
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Now, obviously P.A/ D P.B/ D P.C /, and since Ac and Ab are equally likely,
we have P.fAbg/ D P.fAcg/ D 1=6. Monty opening curtain B means that we
have information that event fAb;Cbg has occurred. The probability that the prize is
behind A given this event is therefore

P.A j B is opened/ D P.fAc;Abg \ fAb;Cbg/
P.fAb;Cbg/ D P.fAbg/

P.fAb;Cbg/ D
1
6

1
6

C 1
3

D 1

3
:

This is what is to be expected: the fact that Monty opens a curtain does not give any
extra information that the prize is behind A. Obviously, P.B j B is opened/ D 0. It
follows then that P.C j B is opened/ must be 2/3, since the conditional probabilities
must sum up to 1. Indeed,

P.C j B is opened/ D P.fCbg \ fAb;Cbg/
P.fAb;Cbg/ D P.fCbg/

P.fAb;Cbg/ D
1
3

1
6

C 1
3

D 2

3
:

Hence, given the information that B is opened, it is twice as likely that the prize is
behind C than behind A. Thus, the contestant should switch!

1.5.1 Product Rule

By the definition of conditional probability (1.4) we have

P.A\ B/ D P.A/P.B jA/ :

It is not difficult to generalize this to n intersections A1 \ A2 \ � � � \An, which we
abbreviate as A1A2 � � �An. This gives the product rule of probability. We leave the
proof as an exercise; see Problem 1.11.☞ 20

Theorem 1.3. (Product Rule). Let A1; : : : ; An be a sequence of events with
P.A1 � � �An�1/ > 0. Then,

P.A1 � � �An/ D
P.A1/P.A2 jA1/P.A3 jA1A2/ � � �P.An jA1 � � �An�1/ :

(1.5)

Example 1.9 (Urn Problem). We draw consecutively three balls from an urn with
5 white and 5 black balls, without putting them back. What is the probability that
all drawn balls will be black?
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Let Ai be the event that the i th ball is black. We wish to find the probability of
A1A2A3, which by the product rule (1.5) is

P.A1/P.A2 jA1/P.A3 jA1A2/ D 5

10

4

9

3

8
� 0:083 :

Example 1.10 (Birthday Problem). What is the probability that in a group of n
people all have different birthdays? We can use the product rule. LetAi be the event
that the first i people have different birthdays, i D 1; 2; : : :. Note that � � � � A3 �
A2 � A1. Therefore,An D A1 \ A2 \ � � � \An, and thus by the product rule

P.An/ D P.A1/P.A2 jA1/P.A3 jA2/ � � �P.An jAn�1/ :

Now P.Ak jAk�1/ D .365� k C 1/=365, because given that the first k � 1 people
have different birthdays, there are no duplicate birthdays among the first k people if
and only if the birthday of the kth person is chosen from the 365�.k�1/ remaining
birthdays. Thus, we obtain

P.An/ D 365

365
� 364

365
� 363

365
� � � � � 365� nC 1

365
; n � 1 : (1.6)

A graph of P.An/ against n is given in Fig. 1.10. Note that the probability P.An/

rapidly decreases to zero. For n D 23 the probability of having no duplicate
birthdays is already less than 1/2.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

n

P
(A

n
)

Fig. 1.10 The probability of having no duplicate birthday in a group of n people against n
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1.5.2 Law of Total Probability and Bayes’ Rule

Suppose thatB1;B2; : : : ; Bn is a partition of˝ . That is,B1;B2; : : : ; Bn are disjoint
and their union is ˝; see Fig. 1.11.

Fig. 1.11 A partitionB1; : : : ; B6 of the sample space˝. Event A is partitioned into events A\B1;
. . . , A\ B6

A partitioning of the state space can sometimes make it easier to calculate
probabilities via the following theorem.

Theorem 1.4. (Law of Total Probability). Let A be an event and let
B1;B2; : : : ; Bn be a partition of ˝ . Then,

P.A/ D
n
X

iD1
P.A jBi/P.Bi/ : (1.7)

Proof. The sum rule gives P.A/ D Pn
iD1 P.A \ Bi/, and by the product rule we

have P.A \ Bi/ D P.A jBi/P.Bi /. ut
Combining the law of total probability with the definition of conditional proba-

bility gives Bayes’ Rule:

Theorem 1.5. (Bayes Rule). Let A be an event with P.A/ > 0 and let
B1;B2; : : : ; Bn be a partition of ˝ . Then,

P.Bj jA/ D P.A jBj /P.Bj /
Pn

iD1 P.A jBi/P.Bi/ : (1.8)
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Proof. By definition, P.Bj jA/ D P.A \ Bj /=P.A/ D P.A jBj /P.Bj /=P.A/.
Now apply the law of total probability to P.A/. ut
Example 1.11 (Quality Control Problem). A company has three factories (1, 2,
and 3) that produce the same chip, each producing 15 %, 35 %, and 50 % of the total
production. The probability of a faulty chip at factory 1, 2, and 3 is 0.01, 0.05, and
0.02, respectively. Suppose we select randomly a chip from the total production and
this chip turns out to be faulty. What is the conditional probability that this chip has
been produced in factory 1?

Let Bi denote the event that the chip has been produced in factory i . The fBi g
form a partition of˝ . LetA denote the event that the chip is faulty. We are given the
information that P.B1/ D 0:15;P.B2/ D 0:35;P.B3/ D 0:5 as well as P.A jB1/ D
0:01, P.A jB2/ D 0:05, P.A jB3/ D 0:02.

We wish to find P.B1 jA/, which by Bayes’ rule is given by

P.B1 jA/ D 0:15 � 0:01
0:15 � 0:01C 0:35 � 0:05C 0:5 � 0:02 D 0:052 :

1.5.3 Independence

Independence is a very important concept in probability and statistics. Loosely
speaking it models the lack of information between events. We say events A and
B are independent if the knowledge that B has occurred does not change the
probability that A occurs. More precisely, A and B are said to be independent if
P.A jB/ D P.A/. Since P.A jB/ D P.A \ B/=P.B/, an alternative definition of
independence is:A andB are independent ifP.A\B/ D P.A/P.B/. This definition
covers the case where B D ;.

We can extend the definition to arbitrarily many events [compare with the product
rule (1.5)]:

Definition 1.5. (Independence). The eventsA1;A2; : : : ; are said to be inde-
pendent if for any k and any choice of distinct indices i1; : : : ; ik ,

P.Ai1 \Ai2 \ � � � \Aik / D P.Ai1/P.Ai2/ � � �P.Aik / : (1.9)

Remark 1.1. In most cases independence of events is a model assumption. That is,
P is chosen such that certain events are independent.
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Example 1.12 (Coin Tossing and the Binomial Law). We toss a coin n times.
The sample space can be written as the set of binary n-tuples:

˝ D f.0; : : : ; 0
„ ƒ‚ …

n times

/; : : : ; .1; : : : ; 1/g :

Here, 0 represents Tails and 1 represents Heads. For example, the outcome
.0; 1; 0; 1; : : :/ means that the first time Tails is thrown, the second time Heads, the
third time Tails, the fourth time Heads, etc.

How should we define P? Let Ai denote the event of Heads at the i th throw,
i D 1; : : : ; n. Then, P should be such that the following holds:

• The events A1; : : : ; An should be independent under P.
• P.Ai / should be the same for all i . Call this known or unknown probability p

(0 � p � 1).

These two rules completely specify P. For example, the probability that the first
k throws are Heads and the last n � k are Tails is

P.f.1; 1; : : : ; 1
„ ƒ‚ …

k times

; 0; 0; : : : ; 0
„ ƒ‚ …

n�k times

/g/ D P.A1 \ � � � \ Ak \ AckC1 \ � � � \ Acn/

D P.A1/ � � �P.Ak/P.AckC1/ � � �P.Acn/ D pk.1 � p/n�k:

Note that if Ai and Aj are independent, then so are Ai and Acj ; see Problem 1.12.
Let Bk be the event that k Heads are thrown in total. The probability of this

event is the sum of the probabilities of elementary events f.x1; : : : ; xn/g for which
x1 C � � �Cxn D k. Each of these events has probability pk.1�p/n�k, and there are
�

n
k

�

of these. We thus obtain the binomial law:

P.Bk/ D
 

n

k

!

pk.1 � p/n�k; k D 0; 1; : : : ; n : (1.10)

Example 1.13 (Geometric Law). There is another important law associated with
the coin toss experiment. Let Ck be the event that Heads appears for the first time
at the kth toss, k D 1; 2; : : :. Then, using the same events fAig as in the previous
example, we can write

Ck D Ac1 \Ac2 \ � � � \ Ack�1 \ Ak :

Using the independence of Ac1; : : : ; A
c
k�1; Ak , we obtain the geometric law:

P.Ck/ D P.Ac1/ � � �P.Ack�1/P.Ak/

D .1 � p/ � � � .1 � p/
„ ƒ‚ …

k�1 times

p D .1 � p/k�1 p :
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1.6 Problems

1.1. For each of the five random experiments at the beginning of Sect. 1.1 define a
convenient sample space.

1.2. Interpret De Morgan’s rule (1.2) in terms of an unreliable series system.

1.3. Let P.A/ D 0:9 and P.B/ D 0:8. Show that P.A\ B/ � 0:7.

1.4. Throw two fair dice one after the other.

(a) What is the probability that the second die is 3, given that the sum of the
dice is 6?

(b) What is the probability that the first die is 3 and the second is not 3?

1.5. An “expert” wine taster has to try to match 6 glasses of wine to 6 wine labels.
Each label can only be chosen once.

(a) Formulate a sample space ˝ for this experiment.
(b) Assuming the wine taster is a complete fraud, define an appropriate probability

P on the sample space.
(c) What is the probability that the wine taster guesses 4 labels correctly, assuming

he/she guesses them randomly?

1.6. Many counting problems can be cast into the framework of drawing k balls
from an urn with n balls, numbered 1; : : : ; n; see Fig. 1.12.

Fig. 1.12 Draw k balls from
an urn with n D 10 numbered
balls

The drawing can be done in several ways. Firstly, the k balls could be drawn
one-by-one or all at the same time. In the first case the order in which the balls are
drawn can be noted. In the second case we can still assume that the balls are drawn
one-by-one, but we do not note the order. Secondly, once a ball is drawn, it can
either be put back into the urn or be left out. This is called drawing with and without
replacement, respectively. There are thus four possible random experiments. Prove
that for each of these experiments the total number of possible outcomes is the
following:

1. Ordered, with replacement: nk .

2. Ordered, without replacement: nPk D n.n � 1/ � � � .n � k C 1/.
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3. Unordered, without replacement: nCk D �

n
k

� D nPk
kŠ

D nŠ
.n�k/Š kŠ .

4. Unordered, with replacement:
�

nCk�1
k

�

.

Provide a sample space for each of these experiments. Hint: it is important to use a
notation that clearly shows whether the arrangements of numbers are ordered or not.
Denote ordered arrangements by vectors, e.g., .1; 1; 2/, and unordered arrangements
by sets, e.g., f1; 2; 3g or multisets, e.g., f1; 1; 2g.

1.7. Formulate the birthday problem in terms of an urn experiment, as in Prob-
lem 1.6, and derive the probability (1.6) by counting.

1.8. Three cards are drawn from a full deck of cards, noting the order. The cards
may be numbered from 1 to 52.

(a) Give the sample space. Is each elementary event equally likely?
(b) What is the probability that we draw three Aces?
(c) What is the probability that we draw one Ace, one King, and one Queen (not

necessarily in that order)?
(d) What is the probability that we draw no pictures (no A, K, Q, or J)?

1.9. In a group of 20 people there are three brothers. The group is separated at
random into two groups of 10. What is the probability that the brothers are in the
same group?

1.10. Two fair dice are thrown.

(a) Find the probability that both dice show the same face.
(b) Find the same probability, using the extra information, that the sum of the dice

is not greater than 4.

1.11. Prove the product rule (1.5). Hint: first show it for the case of three events:

P.A \ B \ C/ D P.A/P.B jA/P.C jA\ B/ :

1.12. If A and B are independent events, then A and Bc are also independent.
Prove this.

1.13. Select at random 3 people from a large population. What is the probability
that they all have the same birthday?

1.14. In a large population 40 % votes for A and 60 % for B. Suppose we select at
random 10 people. What is the probability that in this group exactly 4 people will
vote for A?

1.15. A certain AIDS test has a 0.98 probability of giving a positive result when the
blood is infected and a 0.07 probability of giving a positive result when the blood is
not infected (a so-called false-positive). Suppose 1 % of the population carries the
HIV virus.
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1. Using the law of total probability, what is the probability that the test is positive
for a randomly selected person?

2. What is the probability that a person is indeed infected, given that the test yields
a positive result?

1.16. A box has three identical-looking coins. However, the probability of success
(Heads) is different for each coin: coin 1 is fair, coin 2 has a success probability of
0.4, and coin 3 has a success probability of 0.6. We pick one coin at random and
throw it 100 times. Suppose 43 Heads come up. Using this information, assess the
probability that coin 1, 2, or 3 was chosen.

1.17. In a binary communication channel, 0s and 1s are transmitted with equal
probability. The probability that a 0 is correctly received (as a 0) is 0.95. The
probability that a 1 is correctly received (as a 1) is 0.99. Suppose we receive a
0, what is the probability that, in fact, a 1 was sent?

1.18. A fair coin is tossed 20 times.

1. What is the probability of exactly 10 Heads?
2. What is the probability of 15 or more Heads?

1.19. Two fair dice are cast (at the same time) until their sum is 12.

1. What is the probability that we have to wait exactly 10 tosses?
2. What is the probability that we do not have to wait more than 100 tosses?

1.20. Independently throw 10 balls into one of three boxes, numbered 1, 2, and 3,
with probabilities 1/4, 1/2, and 1/4, respectively.

1. What is the probability that box 1 has 2 balls, box 2 has 5 balls, and box 3 has
3 balls?

2. What is the probability that box 1 remains empty?

1.21. Implement a MATLAB program that performs 100 tosses with a fair die. Hint:
use the rand and ceil functions, where ceil(x) returns the smallest integer
larger than or equal to x.

1.22. For each of the four urn experiments in Problem 1.6 implement a MATLAB

program that simulates the experiment. Hint: in addition to the functions rand and
ceil, you may wish to use the sort function.

1.23. Verify your answers for Problem 1.20 with a computer simulation, where the
experiment is repeated many times.



Chapter 2
Random Variables and Probability Distributions

Specifying a model for a random experiment via a complete description of the
sample space ˝ and probability measure P may not always be necessary or
convenient. In practice we are only interested in certain numerical measurements
pertaining to the experiment. Such random measurements can be included into the
model via the notion of a random variable.

2.1 Random Variables

Definition 2.1. (Random Variable). A random variable is a function from
the sample space ˝ to R.

Example 2.1 (Sum of Two Dice). We throw two fair dice and note the sum of their
face values. If we throw the dice consecutively and observe both throws, the sample
space is ˝ D f.1; 1/; : : : ; .6; 6/g. The function X defined by X.i; j / D i C j is
a random variable which maps the outcome .i; j / to the sum i C j , as depicted in
Fig. 2.1.

Note that five outcomes in the sample space are mapped to 8. A natural notation
for the corresponding set of outcomes is fX D 8g. Since all outcomes in ˝ are
equally likely, we have

P.fX D 8g/ D 5

36
:

This notation is very suggestive and convenient. From a nonmathematical viewpoint
we can interpret X as a “random” variable, that is, a variable that can take several
values with certain probabilities. In particular, it is not difficult to check that

P.fX D xg/ D 6 � j7 � xj
36

; x D 2; : : : ; 12 :

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__2, © The Author(s) 2014
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Fig. 2.1 Random variable X represents the sum of two dice

Although random variables are, mathematically speaking, functions, it is often
convenient to view them as observations of a random experiment that has not yet
taken place. In other words, a random variable is considered as a measurement
that becomes available tomorrow, while all the thinking about the measurement can
be carried out today. For example, we can specify today exactly the probabilities
pertaining to the random variables.

We often denote random variables with capital letters from the last part of
the alphabet, e.g., X , X1;X2; : : : ; Y;Z. Random variables allow us to use natural
and intuitive notations for certain events, such as fX D 10g, fX > 1000g, and
fmax.X; Y / � Zg.

Example 2.2 (Coin Tossing). In Example 1.12 we constructed a probability model☞ 18

for the random experiment where a biased coin is tossed n times. Suppose we are
not interested in a specific outcome but only in the total number of Heads, X , say.
In particular, we would like to know the probability that X takes certain values
between 0 and n. Example 1.12 suggests that

P.X D k/ D
 

n

k

!

pk.1 � p/n�k; k D 0; 1; : : : ; n ; (2.1)

providing all the information about X that we could possibly wish to know. To
justify (2.1) mathematically, we can reason as in Example 2.1. First, defineX as the
function that assigns to each outcome ! D .x1; : : : ; xn/ the number x1 C � � � C xn.
Thus,X is a random variable in mathematical terms, that is, a function. Second, the
event Bk that there are exactly k Heads in n throws can be written as

Bk D f! 2 ˝ W X.!/ D kg :
If we write this as fX D kg, and further abbreviate P.fX D kg/ to P.X D k/, then
we obtain (2.1) directly from (1.10).
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We give some more examples of random variables without specifying the sample
space:

1. The number of defective transistors out of 100 inspected ones.
2. The number of bugs in a computer program.
3. The amount of rain in a certain location in June.
4. The amount of time needed for an operation.

The set of all possible values that a random variable X can take is called
the range of X . We further distinguish between discrete and continuous random
variables:

• Discrete random variables can only take countably many values.
• Continuous random variables can take a continuous range of values, for

example, any value on the positive real line RC.

2.2 Probability Distribution

Let X be a random variable. We would like to designate the probabilities of events
such as fX D xg and fa � X � bg. If we can specify all probabilities involving
X , we say that we have determined the probability distribution of X . One way
to specify the probability distribution is to give the probabilities of all events of the
form fX � xg, x 2 R. This leads to the following definition.

Definition 2.2. (Cumulative Distribution Function). The cumulative
distribution function (cdf) of a random variable X is the function F W R !
Œ0; 1� defined by

F.x/ D P.X � x/; x 2 R :

1

0

F(x)

x

Fig. 2.2 A cumulative distribution function (cdf )
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Note that we have used P.X � x/ as a shorthand notation for P.fX � xg/.
From now on we will use this type of abbreviation throughout the book. In Fig. 2.2
the graph of a general cdf is depicted.

Theorem 2.1. (Properties of Cdf). Let F be the cdf of a random variableX .
Then,

1. F is bounded between 0 and 1: 0 � F.x/ � 1,

2. F is increasing: if x � y, then F.x/ � F.y/,

3. F is right-continuous: limh#0 F.x C h/ D F.x/.

Proof.

1. Let A D fX � xg. By Rule 1 in Definition 1.3, 0 � P.A/ � 1.☞ 9

2. Suppose x � y. Define A D fX � xg and B D fX � yg. Then, A � B and, by
Theorem 1.2, P.A/ � P.B/.☞ 10

3. Take any sequence x1; x2; : : : decreasing to x. We have to show that
limn!1 P.X � xn/ D P.X � x/ or, equivalently, limn!1 P.An/ D P.A/,
where An D fX > xng and A D fX > xg. Let Bn D fxn�1 � X > xng,
n D 1; 2; : : : ; with x0 defined as 1. Then, An D [n

iD1Bi and A D [1
iD1Bi .

Since the fBi g are disjoint, we have by the sum rule:

P.A/ D
1
X

iD1
P.Bi /

defD lim
n!1

n
X

iD1
P.Bi/ D lim

n!1P.An/ ;

as had to be shown. ut
Conversely, any function F with the above properties can be used to specify the

distribution of a random variable X .
If X has cdf F , then the probability that X takes a value in the interval .a; b�

(excluding a, including b) is given by

P.a < X � b/ D F.b/� F.a/ :

To see this, note that P.X � b/ D P.fX � ag [ fa < X � bg/, where the
events fX � ag and fa < X � bg are disjoint. Thus, by the sum rule, F.b/ D
F.a/C P.a < X � b/, which leads to the result above. Note however that

P.a � X � b/ D F.b/� F.a/C P.X D a/

D F.b/� F.a/C F.a/� F.a�/
D F.b/� F.a�/ ;

where F.a�/ denotes the limit from below: limx"a F.x/.
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2.2.1 Discrete Distributions

Definition 2.3. (Discrete Distribution). A random variableX is said to have
a discrete distribution if P.X D xi / > 0, i D 1; 2; : : : for some finite
or countable set of values x1; x2; : : :, such that

P

i P.X D xi / D 1. The
discrete probability density function (pdf) of X is the function f defined
by f .x/ D P.X D x/.

We sometimes write fX instead of f to stress that the discrete probability density
function refers to the discrete random variable X . The easiest way to specify the
distribution of a discrete random variable is to specify its pdf. Indeed, by the sum
rule, if we know f .x/ for all x, then we can calculate all possible probabilities ☞ 9

involvingX . Namely,

P.X 2 B/ D
X

x2B
f .x/ (2.2)

for any subset B in the range of X , as illustrated in Fig. 2.3.

f(x)

x

B

Fig. 2.3 Discrete probability density function

Example 2.3 (Sum of Two Dice, Continued). Toss two fair dice and let X be
the sum of their face values. The discrete pdf is given in Table 2.1, which follows
directly from Example 2.1.

Table 2.1 Discrete pdf of the sum of two fair dice

x 2 3 4 5 6 7 8 9 10 11 12

f .x/ 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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2.2.2 Continuous Distributions

Definition 2.4. (Continuous Distribution). A random variable X with cdf
F is said to have a continuous distribution if there exists a positive function
f with total integral 1 such that for all a < b,

P.a < X � b/ D F.b/� F.a/ D
Z b

a

f .u/ du : (2.3)

Function f is called the probability density function (pdf) of X .

Remark 2.1. Note that we use the same notation f for both the discrete and the
continuous pdf, to stress the similarities between the discrete and continuous case.
We will even drop the qualifier “discrete” or “continuous” when it is clear from the
context with which case we are dealing. Henceforth we will use the notationX � f

and X � F to indicate that X is distributed according to pdf f or cdf F .

In analogy to the discrete case (2.2), once we know the pdf, we can calculate any
probability of interest by means of integration:

P.X 2 B/ D
Z

B

f .x/ dx ; (2.4)

as illustrated in Fig. 2.4.

x

B

f(x)

Fig. 2.4 Probability density function (pdf )

Suppose that f and F are the pdf and cdf of a continuous random variableX , as
in Definition 2.4. Then F is simply a primitive (also called antiderivative) of f :

F.x/ D P.X � x/ D
Z x

�1
f .u/ du :
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Conversely, f is the derivative of the cdf F :

f .x/ D d

dx
F.x/ D F 0.x/ :

It is important to understand that in the continuous case f .x/ is not equal to the
probability P.X D x/, because the latter is 0 for all x. Instead, we interpret f .x/ as
the density of the probability distribution at x, in the sense that for any small h,

P.x � X � x C h/ D
Z xCh

x

f .u/ du � h f .x/ : (2.5)

Note that P.x � X � x C h/ is equal to P.x < X � x C h/ in this case.

Example 2.4 (Random Point in an Interval). Draw a random numberX from the
interval of real numbers Œ0; 2�, where each number is equally likely to be drawn.
What are the pdf f and cdf F of X? Using the same reasoning as in Example 1.6, ☞ 11

we see that

P.X � x/ D F.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if x < 0;

x=2 if 0 � x � 2;

1 if x > 2:

By differentiating F we find

f .x/ D
(

1=2 if 0 � x � 2;

0 otherwise.

Note that this density is constant on the interval Œ0; 2� (and zero elsewhere),
reflecting the fact that each point in Œ0; 2� is equally likely to be drawn.

2.3 Expectation

Although all probability information about a random variable is contained in its cdf
or pdf, it is often useful to consider various numerical characteristics of a random
variable. One such number is the expectation of a random variable, which is a
“weighted average” of the values thatX can take. Here is a more precise definition.

Definition 2.5. (Expectation of a Discrete Random Variable). Let X be a
discrete random variable with pdf f . The expectation (or expected value) of
X , denoted as EX , is defined as

EX D
X

x

x P.X D x/ D
X

x

x f .x/ : (2.6)
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The expectation of X is sometimes written as �X . It is assumed that the sum
in (2.6) is well defined—possibly 1 or �1. One way to interpret the expectation
is as a long-run average payout. Suppose in a game of dice the payout X (dollars)
is the largest of the face values of two dice. To play the game a fee of d dollars must
be paid. What would be a fair amount for d? The answer is

d D EX D 1 � P.X D 1/C 2 � P.X D 2/C � � � C 6 � P.X D 6/

D 1 � 1

36
C 2 � 3

36
C 3 � 5

36
C 4 � 7

36
C 5 � 9

36
C 6 � 11

36
D 161

36
� 4:47 :

Namely, if the game is played many times, the long-run fraction of tosses in which
the maximum face value is 1, 2,. . . , 6, is 1

36
; 3
36
; : : : ; 11

36
, respectively. Hence, the

long-run average payout of the game is the weighted sum of 1; 2; : : : ; 6, where the
weights are the long-run fractions (probabilities). The game is “fair” if the long-run
average profit EX � d is zero.

The expectation can also be interpreted as a center of mass. Imagine that point
masses with weights p1; p2; : : : ; pn are placed at positions x1; x2; : : : ; xn on the real
line; see Fig. 2.5.

Fig. 2.5 The expectation as a center of mass

The center of mass—the place where the weights are balanced—is

center of mass D x1 p1 C � � � C xn pn ;

which is exactly the expectation of the discrete variable X that takes values
x1; : : : ; xn with probabilities p1; : : : ; pn. An obvious consequence of this interpre-
tation is that for a symmetric pdf the expectation is equal to the symmetry point
(provided that the expectation exists). In particular, suppose that f .c C y/ D
f .c � y/ for all y. Then,

EX D c f .c/C
X

x>c

xf .x/C
X

x<c

xf .x/

D c f .c/C
X

y>0

.c C y/f .c C y/C
X

y>0

.c � y/f .c � y/

D c f .c/C
X

y>0

c f .c C y/C c
X

y>0

f .c � y/ D c
X

x

f .x/ D c :
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For continuous random variables we can define the expectation in a similar way,
replacing the sum with an integral.

Definition 2.6. (Expectation of a Continuous Random Variable). Let X
be a continuous random variable with pdf f . The expectation (or expected
value) of X , denoted as EX , is defined as

EX D
Z 1

�1
x f .x/ dx : (2.7)

If X is a random variable, then a function of X , such as X2 or sin.X/, is also a
random variable. The following theorem simply states that the expected value of a
function of X is the weighted average of the values that this function can take.

Theorem 2.2. (Expectation of a Function of a Random Variable). If X is
discrete with pdf f , then for any real-valued function g

Eg.X/ D
X

x

g.x/ f .x/ :

Similarly, if X is continuous with pdf f , then

Eg.X/ D
Z 1

�1
g.x/ f .x/ dx :

Proof. The proof is given for the discrete case only, as the continuous case can be
proven in a similar way. Let Y D g.X/, whereX is a discrete random variable with
pdf fX and g is a function. Let fY be the (discrete) pdf of the random variable Y . It
can be expressed in terms of fX in the following way:

fY .y/ D P.Y D y/ D P.g.X/ D y/ D
X

xWg.x/Dy
P.X D x/ D

X

xWg.x/Dy
fX.x/ :

Thus, the expectation of Y is

EY D
X

y

y fY .y/ D
X

y

y
X

xWg.x/Dy
fX.x/ D

X

y

X

xWg.x/Dy
yfX .x/

D
X

x

g.x/ fX.x/ : ut
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Example 2.5 (Die Experiment and Expectation). Find EX2 if X is the outcome
of the toss of a fair die. We have

EX2 D 12 � 1

6
C 22 � 1

6
C 32 � 1

6
C � � � C 62 � 1

6
D 91

6
:

An important consequence of Theorem 2.2 is that the expectation is “linear”.

Theorem 2.3. (Properties of the Expectation). For any real numbers a and
b, and functions g and h,

1. EŒa X C b� D aEX C b ,
2. EŒg.X/C h.X/� D Eg.X/C Eh.X/ .

Proof. SupposeX has pdf f . The first statement follows (in the discrete case) from

E.aX C b/ D
X

x

.ax C b/f .x/ D a
X

x

x f .x/C b
X

x

f .x/ D aEX C b :

Similarly, the second statement follows from

E.g.X/C h.X// D
X

x

.g.x/C h.x//f .x/ D
X

x

g.x/f .x/C
X

x

h.x/f .x/

D Eg.X/C Eh.X/ :

The continuous case is proven analogously, simply by replacing sums with integrals.
ut

Another useful numerical characteristic of the distribution of X is the variance
of X . This number, sometimes written as �2X , measures the spread or dispersion of
the distribution of X .

Definition 2.7. (Variance and Standard Deviation). The variance of a
random variable X , denoted as Var.X/, is defined as

Var.X/ D E.X � EX/2 : (2.8)

The square root of the variance is called the standard deviation. The number
EXr is called the r th moment of X .
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Theorem 2.4. (Properties of the Variance). For any random variable X the
following properties hold for the variance:

1. Var.X/ D EX2 � .EX/2 .
2. Var.a C bX/ D b2 Var.X/ .

Proof. Write EX D �, so that Var.X/ D E.X ��/2 D E.X2�2�XC�2/. By the
linearity of the expectation, the last expectation is equal to the sum EX2�2�EXC
�2 D EX2 � �2, which proves the first statement. To prove the second statement,
note that the expectation of a C bX is equal to aC b�. Consequently,

Var.a C bX/ D E.a C bX � .aC b�//2 D E.b2.X � �/2/ D b2Var.X/ :

ut
Note that Property 1 in Theorem 2.4 implies that EX2 � .EX/2, because

Var.X/ � 0. This is a special case of a much more general result, regarding the
expectation of convex functions. A real-valued function h.x/ is said to be convex if
for each x0, there exist constants a and b such that (1) h.x/ � ax C b for all x and
(2) h.x0/ D ax0Cb. Examples are the functions x 7! x2, x 7! ex, and x 7! � lnx.

Theorem 2.5. (Jensen’s Inequality). Let h.x/ be a convex function and X a
random variable. Then,

Eh.X/ � h.EX/ : (2.9)

Proof. Let x0 D EX . Because h is convex, there exist constants a and b such that
h.X/ � aX C b and h.x0/ D ax0 C b. Hence, Eh.X/ � E.aX C b/ D ax0 C b D
h.x0/ D h.EX/. ut

2.4 Transforms

Many probability calculations—such as the evaluation of expectations and
variances—are facilitated by the use of transforms. We discuss here a number
of such transforms.



34 2 Random Variables and Probability Distributions

Definition 2.8. (Probability Generating Function). LetX be a nonnegative
and integer-valued random variable with discrete pdf f . The probability
generating function (PGF) of X is the functionG defined by

G.z/ D E zX D
1
X

xD0
zx f .x/ ; jzj < R ;

where R � 1 is the radius of convergence.

Example 2.6 (Poisson Distribution). Let X have a discrete pdf f given by

f .x/ D e�� �x

xŠ
; x D 0; 1; 2; : : : :

X is said to have a Poisson distribution. The PGF of X is given by

G.z/ D
1
X

xD0
zx e�� �x

xŠ

D e��
1
X

xD0

.z�/x

xŠ

D e��ez� D e��.1�z/ :

As this is finite for every z, the radius of convergence is here R D 1.

Theorem 2.6. (Derivatives of a PGF). The kth derivative of a PGF EzX can
be obtained by differentiation under the expectation sign:

dk

dzk
EzX D E

dk

dzk
zX

D E
�

X.X � 1/ � � � .X � k C 1/zX�k� for jzj < R ;

where R � 1 is the radius of convergence of the PGF.

Proof. The proof is deferred to Appendix B.2. ut☞ 369

Let G.z/ be the PGF of a random variable X . Thus, G.z/ D z0 P.X D 0/ C
z1 P.X D 1/C z2 P.X D 2/C � � � . Substituting z D 0 givesG.0/ D P.X D 0/. By
Theorem 2.6 the derivative of G is

G0.z/ D P.X D 1/C 2zP.X D 2/C 3z2 P.X D 3/C � � � :
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In particular, G0.0/ D P.X D 1/. By differentiating G0.z/, we see that the second
derivative of G at 0 is G00.0/ D 2P.X D 2/. Repeating this procedure gives the
following corollary to Theorem 2.6.

Corollary 2.1. (Probabilities from PGFs). Let X be a nonnegative integer-
valued random variable with PGF G.z/. Then,

P.X D k/ D 1

kŠ

dk

dzk
G.0/ :

The PGF thus uniquely determines the discrete pdf. Another consequence of
Theorem 2.6 is that expectations, variances, and moments can be easily found from
the PGF.

Corollary 2.2. (Moments from PGFs). Let X be a nonnegative integer-
valued random variable with PGF G.z/ and kth derivative G.k/.z/. Then,

lim
z!1
jzj<1

dk

dzk
G.z/ D E ŒX.X � 1/ � � � .X � k C 1/� : (2.10)

In particular, if the expectation and variance ofX are finite, then EX D G0.1/
and Var.X/ D G00.1/CG0.1/� .G0.1//2.

Proof. The proof is deferred to Appendix B.2. ut ☞ 369

Definition 2.9. (Moment Generating Function). The moment generating
function (MGF) of a random variable X is the function M W R ! Œ0;1�

given by

M.s/ D E esX :

In particular, for a discrete random variable with pdf f ,

M.s/ D
X

x

esx f .x/ ;

and for a continuous random variable with pdf f ,

M.s/ D
Z 1

�1
esx f .x/ dx :
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Note that M.s/ can be infinite for certain values of s. We sometimes write MX to
stress the role of X .

Similar to the PGF, the MGF has the uniqueness property: two MGFs are the
same if and only if their corresponding cdfs are the same. In addition, the integer
moments of X can be computed from the derivatives of M , as summarized in the
next theorem. The proof is similar to that of Theorem 2.6 and Corollary 2.2 and is
given in Appendix B.3.☞ 370

Theorem 2.7. (Moments from MGFs). If the MGF is finite in an open
interval containing 0, then all moments EXn, n D 0; 1; : : : are finite and
satisfy

EXn D M.n/.0/ ;

where M.n/.0/ is the nth derivative of M evaluated at 0.

Note that under the conditions of Theorem 2.7, the variance ofX can be obtained
from the MGF as

Var.X/ D M 00.0/� .M 0.0//2 :

2.5 Common Discrete Distributions

In this section we give a number of common discrete distributions and list some of
their properties. Note that the discrete pdf of each of these distributions, denoted
f , depends on one or more parameters; so in fact we are dealing with families of
distributions.

2.5.1 Bernoulli Distribution

Definition 2.10. (Bernoulli Distribution). A random variable X is said to
have a Bernoulli distribution with success probability p ifX can only assume
the values 0 and 1, with probabilities

f .0/ D P.X D 0/ D 1 � p and f .1/ D P.X D 1/ D p :

We write X � Ber.p/.
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The Bernoulli distribution is the most fundamental of all probability distributions.
It models a single coin toss experiment. Three important properties of the Bernoulli
are summarized in the following theorem.

Theorem 2.8. (Properties of the Bernoulli Distribution). Let X � Ber.p/.
Then,

1. EX D p ,
2. Var.X/ D p.1 � p/ ,
3. the PGF is G.z/ D 1 � p C zp .

Proof. The expectation and the variance of X can be obtained by direct computa-
tion:

EX D 0 � P.X D 0/C 1 � P.X D 1/ D 0 � .1 � p/C 1 � p D p

and

Var.X/ D EX2 � .EX/2 D EX � .EX/2 D p � p2 D p.1 � p/ ;

where we have used the fact that in this case X2 D X . Finally, the PGF is given by
G.z/ D z0.1 � p/C z1p D 1 � p C zp. ut

2.5.2 Binomial Distribution

Definition 2.11. (Binomial Distribution). A random variable X is said to
have a binomial distribution with parameters n and p if X has pdf

f .x/ D P.X D x/ D
 

n

x

!

px.1 � p/n�x; x D 0; 1; : : : ; n : (2.11)

We write X � Bin.n; p/.

From Example 2.2 we see that X can be interpreted as the total number of ☞ 18

Heads in n successive coin flip experiments, with probability of Heads equal to
p. An example of the graph of the pdf is given in Fig. 2.6. Theorem 2.9 lists some
important properties of the binomial distribution.
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Fig. 2.6 The pdf of the
Bin.10; 0:7/ distribution

Theorem 2.9. (Properties of the Binomial Distribution). Let X �
Bin.n; p/. Then,

1. EX D np ,
2. Var.X/ D np.1 � p/ ,
3. the PGF is G.z/ D .1 � p C zp/n .

Proof. Using Newton’s binomial formula:

.a C b/n D
n
X

kD0

 

n

k

!

ak bn�k ;

we see that

G.z/ D
n
X

kD0
zk
 

n

k

!

pk .1 � p/n�k D
n
X

kD0

 

n

k

!

.zp/k.1 � p/n�k D .1 � p C zp/n :

From Corollary 2.2 we obtain the expectation and variance via G0.1/ D np and☞ 35

G00.1/CG0.1/� .G0.1//2 D .n � 1/np2 C np � n2p2 D np.1 � p/. ut

2.5.3 Geometric Distribution

Definition 2.12. (Geometric Distribution). A random variable X is said to
have a geometric distribution with parameter p if X has pdf

f .x/ D P.X D x/ D .1 � p/x�1p; x D 1; 2; 3; : : : : (2.12)

We write X � Geom.p/.
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From Example 1.13 we see that X can be interpreted as the number of tosses ☞ 18

needed until the first Heads occurs in a sequence of coin tosses, with the probability
of Heads equal to p. An example of the graph of the pdf is given in Fig. 2.7.
Theorem 2.10 summarizes some properties of the geometric distribution.
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Fig. 2.7 The pdf of the Geom.0:3/ distribution

Theorem 2.10. (Properties of the Geometric Distribution). Let X �
Geom.p/. Then,

1. EX D 1=p ,
2. Var.X/ D .1 � p/=p2 ,
3. the PGF is

G.z/ D zp

1 � z .1 � p/ ; jzj < 1

1 � p
: (2.13)

Proof. The PGF of X follows from

G.z/ D
1
X

xD1
zxp.1 � p/x�1 D zp

1
X

kD0
.z.1 � p//k D zp

1 � z .1 � p/ ;

using the well-known result for geometric sums: 1C aC a2 C � � � D .1� a/�1, for
jaj < 1. By Corollary 2.2 the expectation is therefore ☞ 35
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EX D G0.1/ D 1

p
:

By differentiating the PGF twice we find the variance:

Var.X/ D G00.1/CG0.1/� .G00.1//2 D 2.1� p/

p2
C 1

p
� 1

p2
D 1 � p

p2
: ut

One property of the geometric distribution that deserves extra attention is the
memoryless property. Consider again the coin toss experiment. Suppose we have
tossed the coin k times without a success (Heads). What is the probability that
we need more than x additional tosses before getting a success? The answer is,
obviously, the same as the probability that we require more than x tosses if we start
from scratch, that is, P.X > x/ D .1 � p/x , irrespective of k. The fact that we
have already had k failures does not make the event of getting a success in the next
trial(s) any more likely. In other words, the coin does not have a memory of what
happened—hence the name memoryless property.

Theorem 2.11. (Memoryless Property). Let X � Geom.p/. Then for any
x; k D 1; 2; : : :,

P.X > k C x jX > k/ D P.X > x/ :

Proof. By the definition of conditional probability,☞ 12

P.X > k C x jX > k/ D P.fX > k C xg \ fX > kg/
P.X > k/

:

The event fX > k C xg is a subset of fX > kg; hence their intersection is fX >

k C xg. Moreover, the probabilities of the events fX > k C xg and fX > kg are
.1 � p/kCx and .1 � p/k , respectively. Therefore,

P.X > k C x jX > k/ D .1 � p/kCx

.1 � p/k D .1� p/x D P.X > x/ ;

as required. ut

2.5.4 Poisson Distribution

Definition 2.13. (Poisson Distribution). A random variableX is said to have
a Poisson distribution with parameter � > 0 if X has pdf

(continued)
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(continued)

f .x/ D P.X D x/ D �x

xŠ
e��; x D 0; 1; 2; : : : : (2.14)

We write X � Poi.�/.

The Poisson distribution may be viewed as the limit of the Bin.n; �=n/ distribu-
tion. Namely, if Xn � Bin.n; �=n/, then

P.Xn D x/ D
 

n

x

!

�

�

n

�x �

1 � �

n

�n�x

D �x

xŠ

n � .n � 1/ � � � � � .n � x C 1/

n � n � � � � � n
�

1 � �

n

�n �

1 � �

n

��x
:

As n ! 1 the second and fourth factors converge to 1 and the third factor to
e�� (this is one of the defining properties of the exponential function). Hence, we
have

lim
n!1P.Xn D x/ D �x

xŠ
e��:

An example of the graph of the Poisson pdf is given in Fig. 2.8. Theorem 2.12
summarizes some properties of the Poisson distribution.
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Fig. 2.8 The pdf of the Poi.10/ distribution
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Theorem 2.12. (Properties of the Poisson Distribution). Let X � Poi.�/.
Then,

1. EX D � ,
2. Var.X/ D � ,
3. the PGF is G.z/ D e��.1�z/ .

Proof. The PGF was derived in Example 2.6. It follows from Corollary 2.2 that☞ 34

EX D G0.1/ D � and

Var.X/ D G00.1/CG0.1/� .G0.1//2 D �2 C � � �2 D � :

Thus, the parameter � can be interpreted as both the expectation and variance of X .
ut

2.6 Common Continuous Distributions

In this section we give a number of common continuous distributions and list some
of their properties. Note that the pdf of each of these distributions depends on one
or more parameters; so, as in the previous section, we are dealing with families of
distributions.

2.6.1 Uniform Distribution

Definition 2.14. (Uniform Distribution). A random variable X is said to
have a uniform distribution on the interval Œa; b� if its pdf is given by

f .x/ D 1

b � a
; a � x � b :

We write X � UŒa; b� (and X � U.a; b/ for a uniform random variable on an
open interval .a; b/).
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ba

1
b − a

x

Fig. 2.9 The pdf of the
uniform distribution on Œa; b�

The random variable X � UŒa; b� can model a randomly chosen point from the
interval Œa; b�, where each choice is equally likely. A graph of the pdf is given in
Fig. 2.9.

Theorem 2.13. (Properties of the Uniform Distribution). Let X � UŒa; b�.
Then,

1. EX D .aC b/=2 ,
2. Var.X/ D .b � a/2=12 .

Proof. We have

EX D
Z b

a

x

b � a dx D 1

b � a
�

b2 � a2
2

	

D a C b

2

and

Var.X/ D EX2 � .EX/2 D
Z b

a

x2

b � a
dx �

�

aC b

2

�2

D b3 � a3
3.b � a/ �

�

a C b

2

�2

D .b � a/2
12

:

ut

2.6.2 Exponential Distribution

Definition 2.15. (Exponential Distribution). A random variable X is said
to have an exponential distribution with parameter � if its pdf is given by

f .x/ D � e��x; x � 0 : (2.15)

We write X � Exp.�/.
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The exponential distribution can be viewed as a continuous version of the
geometric distribution. Graphs of the pdf for various values of � are given in
Fig. 2.10. Theorem 2.14 summarizes some properties of the exponential distribution.
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Fig. 2.10 The pdf of the Exp.�/ distribution for various �

Theorem 2.14. (Properties of the Exponential Distribution). Let X �
Exp.�/. Then,

1. EX D 1=� ,
2. Var.X/ D 1=�2 ,
3. the MGF of X is M.s/ D �=.� � s/; s < � ,
4. the cdf of X is F.x/ D 1 � e��x; x � 0 ,
5. the memoryless property holds: for any s; t > 0,

P.X > s C t jX > s/ D P.X > t/ : (2.16)

Proof.

3. The MGF is given by

M.s/ D
Z 1

0

esx�e��xdx D �

Z 1

0

e�.��s/x dx D �

��e�.��s/x

� � s

	1

0

D �

� � s
; s < � (andM.s/ D 1 for s � �):

1. From Theorem 2.7, we obtain☞ 36

EX D M 0.0/ D �

.� � s/2

ˇ

ˇ

ˇ

ˇ

sD0
D 1

�
:
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2. Similarly, the second moment is EX2 D M 00.0/ D 2�
.��s/3

ˇ

ˇ

sD0 D 2=�2, so that
the variance is

Var.X/ D EX2 � .EX/2 D 2

�2
� 1

�2
D 1

�2
:

4. The cdf of X is given by

F.x/ D P.X � x/ D
Z x

0

�e��udu D ��e��u
�x

0
D 1 � e��x; x � 0 :

Note that the tail probability P.X > x/ is exponentially decaying:

P.X > x/ D e��x; x � 0 :

5. Similar to the proof of the memoryless property for the geometric distribution
(Theorem 2.11), we have ☞ 40

P.X > s C t jX > s/ D P.X > s C t; X > s/

P.X > s/
D P.X > s C t/

P.X > s/

D e��.tCs/

e��s D e��t D P.X > t/ : ut
The memoryless property can be interpreted as a “non-aging” property. For

example, when X denotes the lifetime of a machine, then, given the fact that the
machine is alive at time s, the remaining lifetime of the machine, X � s, has the
same exponential distribution as a completely new machine. In other words, the
machine has no memory of its age and does not deteriorate (although it will break
down eventually).

2.6.3 Normal (Gaussian) Distribution

In this section we introduce the most important distribution in the study of statistics:
the normal (or Gaussian) distribution. Additional properties of this distribution will
be given in Sect. 3.6. ☞ 82

Definition 2.16. (Normal Distribution). A random variable X is said to
have a normal distribution with parameters � and �2 if its pdf is given by

f .x/ D 1

�
p
2�

e� 1
2 .

x��
� /

2

; x 2 R : (2.17)

We write X � N.�; �2/.
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The parameters � and �2 turn out to be the expectation and variance of the
distribution, respectively. If � D 0 and � D 1, then

f .x/ D 1p
2�

e�x2=2;

and the distribution is known as the standard normal distribution. The cdf of the
standard normal distribution is often denoted by ˚ and its pdf by '. In Fig. 2.11 the
pdf of the N.�; �2/ distribution is plotted for various � and �2.
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Fig. 2.11 The pdf of the N.�; �2/ distribution for various � and �2

We next consider some important properties of the normal distribution.

Theorem 2.15. (Standardization). Let X � N.�; �2/ and defineZ D .X �
�/=� . Then Z has a standard normal distribution.

Proof. The cdf of Z is given by

P.Z � z/ D P..X � �/=� � z/ D P.X � �C �z/

D
Z �C�z

�1
1

�
p
2�

e� 1
2 .

x��
� /

2

dx D
Z z

�1
1p
2�

e�y2=2dy D ˚.z/ ;

where we make a change of variable y D .x ��/=� in the fourth equation. Hence,
Z � N.0; 1/. ut

The rescaling procedure in Theorem 2.15 is called standardization. It follows
from Theorem 2.15 that any X � N.�; �2/ can be written as
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X D �C �Z; where Z � N.0; 1/ :

In other words, any normal random variable can be viewed as an affine transforma-
tion—that is, a linear transformation plus a constant—of a standard normal random
variable.

Next we prove the earlier claim that the parameters � and �2 are, respectively,
the expectation and variance of the distribution.

Theorem 2.16. (Expectation and Variance for the Normal Distribution).
If X � N.�; �2/, then EX D � and Var.X/ D �2.

Proof. Since the pdf is symmetric around � and EX < 1, it follows that EX D �.
To show that the variance of X is �2, we first write X D � C �Z, where Z �
N.0; 1/. Then, Var.X/ D Var.�C�Z/ D �2Var.Z/. Hence, it suffices to show that
Var.Z/ D 1. Now, since the expectation of Z is 0, we have

Var.Z/ D EZ2 D
Z 1

�1
z2

1p
2�

e�z2=2 dz D
Z 1

�1
z � zp

2�
e�z2=2 dz :

We apply integration by parts to the last integral to find

EZ2 D
�

� zp
2�

e�z2=2

	1

�1
C
Z 1

�1
1p
2�

e�z2=2 dz D 1 ;

since the last integrand is the pdf of the standard normal distribution. ut

Theorem 2.17. (MGF for the Normal Distribution). The MGF of X �
N.�; �2/ is

EesX D es�Cs2�2=2; s 2 R : (2.18)

Proof. Write X D �C �Z, where Z � N.0; 1/. We have

EesZ D
Z 1

�1
esz

1p
2�

e�z2=2 dz D es
2=2

Z 1

�1
1p
2�

e�.z�s/2=2

„ ƒ‚ …

pdf of N.s;1/

dz D es
2=2 ;

so that EesX D Ees.�C�Z/ D es� Ees�Z D es�e�
2s2=2 D es�C�2s2=2. ut
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2.6.4 Gamma and �2 Distribution

Definition 2.17. (Gamma Distribution). A random variable X is said to
have a gamma distribution with shape parameter ˛ > 0 and scale parameter
� > 0 if its pdf is given by

f .x/ D �˛x˛�1e��x

� .˛/
; x � 0 ; (2.19)

where � is the gamma function. We write X � Gamma.˛; �/.

The gamma function � .˛/ is an important special function in mathematics,
defined by

� .˛/ D
Z 1

0

u˛�1 e�u du : (2.20)

We mention a few properties of the � function:

1. � .˛ C 1/ D ˛ � .˛/ for ˛ 2 RC.
2. � .n/ D .n � 1/Š for n D 1; 2; : : : :.
3. � .1=2/ D p

� .

Two special cases of the Gamma.˛; �/ distribution are worth mentioning. Firstly,
the Gamma.1; �/ distribution is simply the Exp.�/ distribution. Secondly, the
Gamma.n=2; 1=2/ distribution, where n 2 f1; 2; : : :g, is called the chi-squared
distribution with n degrees of freedom. We write X � �2n. A graph of the pdf of
the �2n distribution for various n is given in Fig. 2.12.
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Fig. 2.12 The pdf of the �2n distribution for various degrees of freedom n
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The following theorem summarizes some properties of the gamma distribution.

Theorem 2.18. (Properties of the Gamma Distribution). Let X �
Gamma.˛; �/. Then,

1. EX D ˛=� ,
2. Var.X/ D ˛=�2 ,
3. the MGF is M.s/ D Œ�=.� � s/�˛; s < � (and 1 otherwise).

Proof.

3. For s < �, the MGF of X at s is given by

M.s/ D E esX D
Z 1

0

e��x �˛ x˛�1

� .˛/
esx dx

D
�

�

� � s

�˛ Z 1

0

e�.��s/x .� � s/˛ x˛�1

� .˛/
„ ƒ‚ …

pdf of Gamma.˛;��s/

dx

D
�

�

� � s

�˛

: (2.21)

1. Consequently, by Theorem 2.7, ☞ 36

EX D M 0.0/ D ˛

�

�

�

� � s

�˛C1 ˇ
ˇ

ˇ

ˇ

sD0
D ˛

�
:

2. Similarly, Var.X/ D M 00.0/� .M 0.0//2 D .˛C 1/˛=�2 � .˛=�/2 D ˛=�2: ut

2.6.5 F Distribution

Definition 2.18. (F Distribution). Letm and n be strictly positive integers. A
random variable X is said to have an F distribution with degrees of freedom
m and n if its pdf is given by

f .x/ D � .mCn
2
/ .m=n/m=2x.m�2/=2

� .m
2
/ � .n

2
/ Œ1C .m=n/x�.mCn/=2 ; x � 0 ; (2.22)

where � denotes the gamma function. We write X � F.m; n/.
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The F distribution plays an important role in classical statistics, through
Theorem 3.11. A graph of the pdf of the F.m; n/ distribution for various m and☞ 88

n is given in Fig. 2.13.
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Fig. 2.13 The pdf of the F.m; n/ distribution for various degrees of freedom m and n

2.6.6 Student’s t Distribution

Definition 2.19. (Student’s t Distribution). A random variable X is said to
have a Student’s t distribution with parameter 	 > 0 if its pdf is given by

f .x/ D � .	C1
2
/p

	� � .	
2
/

�

1C x2

	

��.	C1/=2
; x 2 R ; (2.23)

where � denotes the gamma function. We write X � t	 . For integer values
the parameter 	 is referred to as the degrees of freedom of the distribution.

A graph of the pdf of the t	 distribution for various 	 is given in Fig. 2.14. Note that
the pdf is symmetric. Moreover, it can be shown that the pdf of the t	 distribution
converges to the pdf of the N.0; 1/ distribution as 	 ! 1. The t1 distribution is
called the Cauchy distribution.

For completeness we mention that if X � t	 , then

EX D 0 .	 > 1/ and Var.X/ D 	

	 � 2
; .	 > 2/ :
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Fig. 2.14 The pdfs of t1 (Cauchy), t2, t10, and t
1

.N.0; 1// distributions

The t and F distributions are related in the following way.

Theorem 2.19. (Relationship Between the t and F Distribution). For
integer n � 1, if X � tn, then X2 � F.1; n/.

Proof. Let Z D X2. We can express the cdf of Z in terms of the cdf of X . Namely,
for every z > 0, we have

FZ.z/ D P.X2 � z/ D P.�p
z � X �

p
z/ D FX.

p
z/� FX.�p

z/ :

Differentiating with respect to z gives the following relation between the two pdfs:

fZ.z/ D fX.
p

z/
1

2
p

z
C fX.�p

z/
1

2
p

z
D fX.

p
z/
1p

z
;

using the symmetry of the t distribution. Substituting (2.23) into the last equation
yields

fZ.z/ D c.n/
z�1=2

.1C z=n/.nC1/=2 ; z > 0

for some constant c.n/. The only pdf of this form is that of the F.1; n/ distribution.
ut

2.7 Generating Random Variables

This section shows how to generate random variables on a computer. We first discuss
a modern uniform random generator and then introduce two general methods
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for drawing from an arbitrary one-dimensional distribution: the inverse-transform
method and the acceptance–rejection method.

2.7.1 Generating Uniform Random Variables

The MATLAB rand function simulates the drawing of a uniform random number
on the interval .0; 1/ by generating pseudorandom numbers, that is, numbers
that, although not actually random (because the computer is a deterministic
device), behave for all intended purposes as truly random. The following algorithm
(L’Ecuyer 1999) uses simple recurrences to produce high-quality pseudorandom
numbers, in the sense that the numbers pass all currently known statistical tests for
randomness and uniformity.

Algorithm 2.1. (Combined Multiple-Recursive Generator).

1. Suppose N random numbers are required. Define m1 D 232 � 209 and
m2 D 232 � 22853.

2. Initialize a vector .X�2; X�1; X0/ D .12345; 12345; 12345/ and a vector
.Y�2; Y�1; Y0/ D .12345; 12345; 12345/.

3. For t D 1 to N let

Xt D .1403580Xt�2 � 810728Xt�3/ mod m1 ;

Yt D .527612 Yt�1 � 1370589 Yt�3/ mod m2 ;

and output the t th random number as

Ut D

8

ˆ

ˆ

<

ˆ

ˆ

:

Xt � Yt Cm1

m1 C 1
if Xt � Yt ;

Xt � Yt

m1 C 1
if Xt > Yt :

Here, x mod m means the remainder of x when divided bym. The initialization
in Step 2 determines the initial state—the so-called seed—of the random number
stream. Restarting the stream from the same seed produces the same sequence.

Algorithm 2.1 is implemented as a core MATLAB uniform random number
generator from Version 7. Currently the default generator in MATLAB is the Mersenne
twister, which also passes (most) statistical tests and tends to be a little faster.
However, it is considerably more difficult to implement. A typical usage of
MATLAB’s uniform random number generator is as follows.
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>>rng(1,’combRecursive’) % use the CMRG with seed 1
>>rand(1,5) % draw 5 random numbers

ans =
0.4957 0.2243 0.2073 0.6823 0.6799

>>rng(1234) % set the seed to 1234
>>rand(1,5)

ans =
0.2830 0.2493 0.3600 0.9499 0.8071

>>rng(1234) % reset the seed to 1234

>>rand(1,5)

ans =
0.2830 0.2493 0.3600 0.9499 0.8071

2.7.2 Inverse-Transform Method

Once we have a method for drawing a uniform random number, we can, in principle,
simulate a random variable X from any cdf F by using the following algorithm.

Algorithm 2.2. (Inverse-Transform Method).

1. Generate U from U.0; 1/:
2. Return X D F �1.U /, where F�1 is the inverse function of F .

x
X

1

0

U

F (x)

Fig. 2.15 The
inverse-transform method
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Figure 2.15 illustrates the inverse-transform method. We see that the random
variable X D F �1.U / has cdf F , since

P.X � x/ D P.F�1.U / � x/ D P.U � F.x// D F.x/ : (2.24)

Example 2.7 (Generating Uniformly on a Unit Disk). Suppose we wish to draw a
random point .X; Y / uniformly on the unit disk; see Fig. 2.16. In polar coordinates
we have X D R cos
 and Y D R sin
, where 
 has a U.0; 2�/ distribution. The
cdf of R is given by

F.r/ D P.R � r/ D �r2

�
D r2; 0 < r < 1 :

Its inverse is F �1.u/ D p
u; 0 < u < 1. We can thus generate R via the inverse-

transform method as R D p
U1, where U1 � U.0; 1/. In addition, we can simulate


 as 
 D 2�U2, where U2 � U.0; 1/. Note that U1 and U2 should be independent
draws from U.0; 1/.

Fig. 2.16 Draw a point
.X; Y / uniformly on the unit
disk

The inverse-transform method holds for general cdfs F . Note that F for discrete
random variables is a step function, as illustrated in Fig. 2.17. The algorithm for
generating a random variable X from a discrete distribution that takes values
x1; x2; : : : with probabilities p1; p2; : : : is thus as follows.

Algorithm 2.3. (Discrete Inverse-Transform Method).

1. Generate U � U.0; 1/.
2. Find the smallest positive integer k such thatF.xk/�U and returnXDxk .
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Fig. 2.17 The inverse-transform method for a discrete random variable

Drawing one of the numbers 1; : : : ; n according to a probability vector
.p1; : : : ; pn/ can be done in one line of MATLAB code:

min(find(cumsum(p)> rand));

Here p is the vector of probabilities, such as .0:3; 0:2; 0:5/, cumsum gives the
cumulative vector, e.g., .0:3; 0:5; 1/, find.� � � / finds the indices i such that the
cumulative probability is greater than some random number rand, and min takes
the smallest of these indices.

2.7.3 Acceptance–Rejection Method

The inverse-transform method may not always be easy to implement, in particular
when the inverse cdf is difficult to compute. In that case the acceptance–rejection
method may prove to be useful. The idea of this method is depicted in Fig. 2.18.
Suppose we wish to sample from a pdf f . Let g be another pdf such that for some
constant C � 1 we have that Cg.x/ � f .x/ for all x. It is assumed that it is easy
to sample from g, for example, via the inverse-transform method.

x

f(x)

Cg(x)

Fig. 2.18 Illustration of the
acceptance–rejection method
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It is intuitively clear that if a random point .X; Y / is uniformly distributed under
the graph of f —that is, on the set f.x; y/ W 0 � y � f .x/g—then X must have pdf
f . To construct such a point, let us first draw a random point .Z; V / by drawing Z
from g and then drawing V uniformly on Œ0; Cg.Z/�. The point .Z; V / is uniformly
distributed under the graph of Cg. If we keep drawing such a point .Z; V / until
it lies under the graph of f , then the resulting point .X; Y / must be uniformly
distributed under the graph of f and hence the X coordinate must have pdf f . This
leads to the following algorithm.

Algorithm 2.4. (Acceptance–Rejection Method).

1. GenerateZ � g.
2. Generate Y � U.0; C g.Z//.
3. If Y � f .Z/, return X D Z; otherwise, repeat from Step 1.

Example 2.8 (Generating from the Standard Normal Distribution). To sample
from the standard normal pdf via the inverse-transform method requires knowledge
of the inverse of the corresponding cdf, which involves numerical integration.
Instead, we can use acceptance–rejection. First, observe that the standard normal
pdf is symmetric around 0. Hence, if we can generate a random variableX from the
positive normal pdf (see Fig. 2.19),

f .x/ D
r

2

�
e�x2=2; x � 0 ; (2.25)

then we can generate a standard normal random variable by multiplyingX with 1 or
�1, each with probability 1=2. We can bound f .x/ byC g.x/, where g.x/ D e�x is
the pdf of the Exp.1/ distribution. The smallest constantC such that f .x/ � Cg.x/

is
p

2e=�.
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Fig. 2.19 Bounding the
positive normal density (solid
curve) via an Exp.1/ pdf
(times C � 1:3155)
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Drawing from the Exp.1/ distribution can be easily done via the inverse-
transform method, noting that the corresponding cdf is the function 1� e�x; x � 0,
whose inverse is the function � ln.1 � u/, u 2 .0; 1/. This gives the following
specification of Algorithm 2.4, where f and C are defined above.

Algorithm 2.5. (N.0; 1/Generator).

1. Draw U1 � U.0; 1/, and let Z D � lnU1.
2. Draw U2 � U.0; 1/, and let Y D U2 C e�Z .
3. If Y � f .Z/, letX D Z and continue with Step 4. Otherwise, repeat from

Step 1.
4. Draw U3 � U.0; 1/ and return eX D X .2 IfU3<1=2g � 1/ as a standard

normal random variable.

In Step 1, we have used the fact that ifU � U.0; 1/, then also 1�U � U.0; 1/. In
Step 4, IfU3<1=2g denotes the indicator of the event fU3 < 1=2g, which is 1 if U3 <
1=2 and 0 otherwise. An alternative generation method is given in Algorithm 3.2. In ☞ 82

MATLAB normal random variable generation is implemented via therandn function.

2.8 Problems

2.1. Two fair dice are thrown and the smallest of the face values,M say, is noted.

(a) Give the discrete pdf of M in table form, as in Table 2.1. ☞ 27

(b) What is the probability that M is at least 3?
(c) Calculate the expectation and variance of M .

2.2. A continuous random variable X has cdf

F.x/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

0; x < 0

x2=5; 0 � x � 1

1
5

��x2 C 6x � 4� ; 1 < x � 3

1; x > 3 :

(a) Find the corresponding pdf and plot its graph.
(b) Calculate the following probabilities:

(i) P.X � 2/ .
(ii) P.1 < X � 2/ .

(iii) P.1 � X � 2/ .
(iv) P.X > 1=2/ .

(c) Show that EX D 22=15.
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2.3. In this book most random variables are either discrete or continuous; that
is, they have either a discrete or a continuous pdf. It is also possible to define
random variables that have a mix of discrete and continuous characteristics. A
simple example is a random variable X with cdf

F.x/ D
(

0; x < 0

1 � c e�x; x � 0

for some fixed 0 < c < 1.

(a) Sketch the cdf F .
(b) Find the following probabilities:

(i) P.0 � X � x/, x � 0 .
(ii) P.0 < X � x/, x � 0 .

(iii) P.X D x/, x � 0 .

(c) Describe how the inverse-transform method can be used to draw samples from
this distribution.

2.4. Let X be a positive random variable with cdf F . Prove that

EX D
Z 1

0

.1 � F.x// dx : (2.26)

2.5. Let X be a random variable that can possibly take values �1 and 1 with
probabilities P.X D �1/ D a and P.X D 1/ D b, respectively. Show that the
corresponding cdf F satisfies limx!�1 F.x/ D a and limx!1 F.x/ D 1 � b.

2.6. Suppose that in a large population the fraction of left-handers is 12 %. We
select at random 100 people from this population. Let X be the number of left-
handers among the selected people. What is the distribution of X? What is the
probability that at most 7 of the selected people are left-handed?

2.7. Let X � Geom.p/. Show that

P.X > k/ D .1 � p/k:

2.8. Find the MGF of X � UŒa; b�.

2.9. Let X D a C .b � a/U , where U � UŒ0; 1�. Prove that X � UŒa; b�. Use this
to provide a more elegant proof of Theorem 2.13.☞ 43

2.10. Show that the exponential distribution is the only continuous (positive)
distribution that possesses the memoryless property. Hint: show that the memoryless
property implies that the tail probability g.x/ D P.X > x/ satisfies g.x C y/ D
g.x/g.y/.
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2.11. Let X � Exp.2/. Calculate the following quantities:

(a) P.�1 � X � 1/ .
(b) P.X > 4/ .
(c) P.X > 4 jX > 2/ .
(d) EX2 .

2.12. What is the expectation of a random variable X with the following discrete
pdf on the set of integer numbers, excluding 0:

f .x/ D 3

�2
1

x2
; x 2 Z n f0g :

What is the pdf of the absolute value jX j and what is its expectation?

2.13. A random variable X is said to have a discrete uniform distribution on the
set fa; aC 1; : : : ; bg if

P.X D x/ D 1

b � aC 1
; x D a; a C 1; : : : ; b :

(a) What is the expectation of X?
(b) Show that Var.X/ D .b � a/.b � a C 2/=12.
(c) Find the PGF of X .
(d) Describe a simple way to generate X using a uniform number generator.

2.14. Let X and Y be random variables. Prove that if X � Y , then EX � EY .

2.15. A continuous random variable is said to have a logistic distribution if its pdf
is given by

f .x/ D e�x

.1C e�x/2
; x 2 R : (2.27)

(a) Plot the graph of the pdf.
(b) Show that P.X > x/ D 1=.1C ex/ for all x.
(c) Write an algorithm based on the inverse-transform method to generate random

variables from this distribution.

2.16. An electrical component has a lifetime (in years) that is distributed according
to an exponential distribution with expectation 3. What is the probability that the
component is still functioning after 4.5 years, given that it still works after 4 years?
Answer the same question for the case where the component’s lifetime is normally
distributed with the same expected value and variance as before.

2.17. Consider the pdf given by

f .x/ D



4 e�4.x�1/; x � 1 ;

0; x < 1 :
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(a) If X is distributed according to this pdf f , what is its expectation?
(b) Specify how one can generate a random variable X � f using a uniform

random number generator.

2.18. Let X � N.4; 9/.

(a) Plot the graph of the pdf.
(b) Express the following probabilities in terms of the cdf ˚ of the standard normal

distribution:

(i) P.X � 3/ .
(ii) P.X > 4/ .

(iii) P.�1 � X � 5/ .

(c) Find EŒ2X C 1�.
(d) Calculate EX2.

2.19.Let ˚ be the cdf of X � N.0; 1/. The integral

˚.x/ D
Z x

�1
1p
2�

e� 1
2 u2 du

needs to be evaluated numerically. In MATLAB there are several ways to do this:

(1) If the Statistics Toolbox is available, the cdf can be evaluated via the functions
normcdf or cdf. The inverse cdf can be evaluated using norminv or icdf.
See also their replacements cumdf and icumdf in Appendix A.9.☞ 365

(2) Or one could use the built-in error function erf, defined as

erf.x/ D 2p
�

Z x

0

e�u2 du ; x 2 R :

The inverse of the error function, erf�1, is implemented in MATLAB as erfinv.
(3) A third alternative is to use numerical integration (quadrature) via the quad

function. For example, quad(@f,0,1) integrates a MATLAB function f.m on
the interval Œ0; 1�.

(a) Show that ˚.x/ D .erf.x=
p
2/C 1/=2.

(b) Evaluate ˚.x/ for x D 1; 2, and 3 via (a) the error function and (b) numerical
integration of the pdf, using the fact that ˚.0/ D 1=2.

(c) Show that the inverse of ˚ is given by

˚�1.y/ D p
2 erf�1.2y � 1/ ; 0 < y < 1 :

2.20. Based on MATLAB’s rand and randn functions only, implement algorithms
that generate random variables from the following distributions:
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(a) UŒ2; 3� .
(b) N.3; 9/ .
(c) Exp.4/ .
(d) Bin.10; 1=2/ .
(e) Geom.1=6/ .

2.21.The Weibull distribution Weib.˛; �/ has cdf

F.x/ D 1 � e�.�x/˛ ; x � 0 : (2.28)

It can be viewed as a generalization of the exponential distribution. Write a MATLAB

program that draws 1000 samples from the Weib.2; 1/ distribution using the inverse-
transform method. Give a histogram of the sample.

2.22.Consider the pdf

f .x/ D c e�xx.1 � x/; 0 � x � 1 :

(a) Show that c D e=.3� e/.
(b) Devise an acceptance–rejection algorithm to generate random variables that are

distributed according to f .
(c) Implement the algorithm in MATLAB.

2.23. Implement two different algorithms to draw 100 uniformly generated points
on the unit disk: one based on Example 2.7 and the other using (two-dimensional) ☞ 54

acceptance–rejection.



Chapter 3
Joint Distributions

Often a random experiment is described via more than one random variable. Here
are some examples:

1. We randomly select n D 10 people and observe their heights. Let X1; : : : ; Xn be
the individual heights.

2. We toss a coin repeatedly. Let Xi D 1 if the i th toss is Heads and Xi D 0

otherwise. The experiment is thus described by the sequence X1;X2; : : : of
Bernoulli random variables.

3. We randomly select a person from a large population and measure his/her weight
X and height Y .

How can we specify the behavior of the random variables above? We should
not just specify the pdf of the individual random variables, but also say something
about the interaction (or lack thereof) between the random variables. For example,
in the third experiment above, if the height Y is large, then most likely X is large
as well. In contrast, in the first two experiments, it is reasonable to assume that the
random variables are “independent” in some way; that is, information about one of
the random variables does not give extra information about the others. What we need
to specify is the joint distribution of the random variables. The theory below for
multiple random variables follows a similar path to that of a single random variable
described in Sects. 2.1–2.3. ☞ 23

Let X1; : : : ; Xn be random variables describing some random experiment. We
can accumulate the fXig into a random vector X D .X1; : : : ; Xn/ (row vector)
or X D .X1; : : : ; Xn/

> (column vector). Recall that the distribution of a single
random variable X is completely specified by its cumulative distribution function.
For multiple random variables we have the following generalization.

Definition 3.1. (Joint Cdf). The joint cdf of X1; : : : ; Xn is the function F W
R
n ! Œ0; 1� defined by

F.x1; : : : ; xn/ D P.X1 � x1; : : : ; Xn � xn/ :

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__3, © The Author(s) 2014
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Notice that we have used the abbreviation P.fX1 � x1g \ � � � \ fXn � xng/ D
P.X1 � x1; : : : ; Xn � xn/ to denote the probability of the intersection of events.
We will use this abbreviation throughout the book.

As in the univariate (i.e., single variable) case we distinguish between discrete
and continuous distributions.

3.1 Discrete Joint Distributions

Example 3.1 (Dice Experiment). In a box there are three dice. Die 1 is an ordinary
die; die 2 has no 6 face, but instead two 5 faces; die 3 has no 5 face, but instead two
6 faces. The experiment consists of selecting a die at random followed by a toss with
that die. Let X be the die number that is selected and let Y be the face value of that
die. The probabilities P.X D x; Y D y/ in Table 3.1 specify the joint distribution
ofX and Y . Note that it is more convenient to specify the joint probabilities P.X D
x; Y D y/ than the joint cumulative probabilities P.X � x; Y � y/. The latter
can be found, however, from the former by applying the sum rule. For example,
P.X � 2; Y � 3/ D P.X D 1; Y D 1/C � � � C P.X D 2; Y D 3/ D 6=18 D 1=3.
Moreover, by that same sum rule, the distribution of X is found by summing the
P.X D x; Y D y/ over all values of y—giving the last column of Table 3.1.
Similarly, the distribution of Y is given by the column totals in the last row of
the table.

Table 3.1 The joint distribution of X (die number) and Y (face value)

x

y

1 2 3 4 5 6
P

1 1
18

1
18

1
18

1
18

1
18

1
18

1
3

2 1
18

1
18

1
18

1
18

1
9

0 1
3

3 1
18

1
18

1
18

1
18

0 1
9

1
3

P

1
6

1
6

1
6

1
6

1
6

1
6

1

In general, for discrete random variablesX1; : : : ; Xn, the joint distribution is easiest
to specify via the joint pdf.

Definition 3.2. (Discrete Joint Pdf). The joint pdf f of discrete random
variables X1; : : : ; Xn is given by the function

f .x1; : : : ; xn/ D P.X1 D x1; : : : ; Xn D xn/ :
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We sometimes write fX1;:::;Xn instead of f to show that this is the pdf of the
random variablesX1; : : : ; Xn. Or, if X D .X1; : : : ; Xn/ is the corresponding random
vector, we can write fX instead.

If the joint pdf f is known, we can calculate the probability of any event fX 2
Bg, B � R

n, via the sum rule as

P.X 2 B/ D
X

x2B
f .x/ :

Compare this with (2.2). In particular, as explained in Example 3.1, we can find ☞ 27

the pdf of Xi—often referred to as a marginal pdf, to distinguish it from the joint
pdf—by summing the joint pdf over all possible values of the other variables:

P.Xi D x/ D
X

x1

� � �
X

xi�1

X

xiC1

� � �
X

xn

f .x1; : : : ; xi�1; x; xiC1; xn/ : (3.1)

The converse is not true: from the marginal distributions one cannot in general
reconstruct the joint distribution. For example, in Example 3.1, we cannot recon-
struct the inside of the two-dimensional table if only given the column and row
totals.

However, there is an important exception, namely, when the random variables
are independent. We have so far only defined what independence is for events.
We can define random variables X1; : : : ; Xn to be independent if events fX1 2 ☞ 17

B1g; : : : ; fXn 2 Bng are independent for any choice of sets fBig. Intuitively, this
means that any information about one of the random variables does not affect our
knowledge about the others.

Definition 3.3. (Independence). Random variables X1; : : : ; Xn are called
independent if for all events fXi 2 Bi g with Bi � R, i D 1; : : : ; n

P.X1 2 B1; : : : ; Xn 2 Bn/ D P.X1 2 B1/ � � �P.Xn 2 Bn/ : (3.2)

A direct consequence of the above definition is the following important theorem.

Theorem 3.1. (Independence and Product Rule). Random variables
X1; : : : ; Xn with joint pdf f are independent if and only if

f .x1; : : : ; xn/ D fX1.x1/ � � �fXn.xn/ (3.3)

for all x1; : : : ; xn, where ffXi g are the marginal pdfs.
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Proof. The theorem is true in both the discrete and continuous case. We only show
the discrete case, where (3.3) is a special case of (3.2). It follows that (3.3) is a
necessary condition for independence. To see that it is also a sufficient condition, let
X D .X1; : : : ; Xn/ and observe that

P.X1 2 B1; : : : ; Xn 2 Bn/ D P.X 2 B1 � � � � � Bn
„ ƒ‚ …

A

/ D
X

x2A
f .x/

D
X

x2A
fX1.x1/ � � �fXn.xn/ D

X

x12B1
fX1.x1/ � � �

X

xn2Bn
fXn.xn/

D P.X1 2 B1/ � � �P.Xn 2 Bn/ :

Here A D B1 � � � � �Bn denotes the Cartesian product of B1; : : : ; Bn. ut
Example 3.2 (Dice Experiment Continued). We repeat the experiment in
Example 3.1 with three ordinary fair dice. Since the events fX D xg and fY D yg
are now independent, each entry in the pdf table is 1

3
� 1

6
. Clearly in the first

experiment not all events fX D xg and fY D yg are independent.

Remark 3.1. An infinite sequence X1;X2; : : : of random variables is said to be
independent if for any finite choice of positive integers i1; i2; : : : ; in (none of them
the same) the random variables Xi1; : : : ; Xin are independent. Many statistical
models involve random variables X1;X2; : : : that are independent and identically
distributed, abbreviated as iid. We will use this abbreviation throughout this book
and write the corresponding model as

X1;X2; : : :
iid� Dist (or f or F ) ;

where Dist is the common distribution with pdf f and cdf F .

Example 3.3 (Bernoulli Process). Consider the experiment where we toss a biased
coin n times, with probability p of Heads. We can model this experiment in the
following way. For i D 1; : : : ; n let Xi be the result of the i th toss: fXi D 1g means
Heads (or success), and fXi D 0g means Tails (or failure). Also, let

P.Xi D 1/ D p D 1� P.Xi D 0/; i D 1; 2; : : : ; n :

Finally, assume that X1; : : : ; Xn are independent. The sequence

X1;X2; : : :
iid� Ber.p/

is called a Bernoulli process with success probability p. Let X D X1 C � � � C Xn
be the total number of successes in n trials (tosses of the coin). Denote by Bk the
set of all binary vectors x D .x1; : : : ; xn/ such that

Pn
iD1 xi D k. Note that Bk has

�

n

k

�

elements. We have for every k D 0; : : : ; n,
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P.X D k/ D
X

x2Bk
P.X1 D x1; : : : ; Xn D xn/

D
X

x2Bk
P.X1 D x1/ � � �P.Xn D xn/ D

X

x2Bk
pk.1 � p/n�k

D
 

n

k

!

pk.1 � p/n�k :

In other words, X � Bin.n; p/. Compare this with Example 2.2. ☞ 24

For the joint pdf of dependent discrete random variables we can write, as a
consequence of the product rule (1.5), ☞ 14

f .x1; : : : ; xn/ D P.X1 D x1; : : : ; Xn D xn/

D P.X1 D x1/P.X2 D x2 jX1 D x1/ � � � �
� � � � P.Xn D xn jX1 D x1; : : : ; Xn�1 D xn�1/ ;

assuming that all probabilities P.X D x1/; : : : ;P.X1 D x1; : : : ; Xn�1 D xn�1/ are
nonzero. The function which maps, for a fixed x1, each variable x2 to the conditional
probability

P.X2 D x2 jX1 D x1/ D P.X1 D x1;X2 D x2/

P.X1 D x1/
(3.4)

is called the conditional pdf of X2 given X1 D x1. We write it as fX2 jX1.x2 j x1/.
Similarly, the function xn 7! P.Xn D xn jX1 D x1; : : : ; Xn�1 D xn�1/ is the
conditional pdf of Xn given X1 D x1; : : : ; Xn�1 D xn�1, which is written as
fXn jX1;:::;Xn�1

.xn j x1; : : : ; xn�1/.
Example 3.4 (Generating Uniformly on a Triangle). We uniformly select a point
.X; Y / from the triangle T D f.x; y/ W x; y 2 f1; : : : ; 6g; y � xg in Fig. 3.1.

6

1 2 3 4 5 6
1

2

3

4

5

Fig. 3.1 Uniformly select a
point from the triangle
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Because each of the 21 points is equally likely to be selected, the joint pdf is
constant on T :

f .x; y/ D 1

21
; .x; y/ 2 T :

The pdf of X is found by summing f .x; y/ over all y. Hence,

fX.x/ D x

21
; x 2 f1; : : : ; 6g :

Similarly,

fY .y/ D 7 � y
21

; y 2 f1; : : : ; 6g :

For a fixed x 2 f1; : : : ; 6g the conditional pdf of Y given X D x is

fY jX.y j x/ D f .x; y/

fX.x/
D 1=21

x=21
D 1

x
; y 2 f1; : : : ; xg ;

which simply means that, given X D x, Y has a discrete uniform distribution on
f1; : : : ; xg.

3.1.1 Multinomial Distribution

An important discrete joint distribution is the multinomial distribution. It can be
viewed as a generalization of the binomial distribution. We give the definition and
then an example of how this distribution arises in applications.

Definition 3.4. (Multinomial Distribution). A random vector .X1;X2;
: : : ; Xk/ is said to have a multinomial distribution with parameters n and
p1; p2; : : : ; pk (positive and summing up to 1), if

P.X1 D x1; : : : ; Xk D xk/ D nŠ

x1Šx2Š � � �xkŠ p
x1
1 p

x2
2 � � �pxkk (3.5)

for all x1; : : : ; xk 2 f0; 1; : : : ; ng such that x1 C x2 C � � � C xk D n. We write
.X1; : : : ; Xk/ � Mnom.n; p1; : : : ; pk/ .

Example 3.5 (Urn Problem). We independently throw n balls into k urns, such
that each ball is thrown in urn i with probability pi , i D 1; : : : ; k; see Fig. 3.2.
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Fig. 3.2 Throwing n balls into k urns with probabilities p1; : : : ; pk . The random configuration of
balls has a multinomial distribution

Let Xi be the total number of balls in urn i , i D 1; : : : ; k. We show that
.X1; : : : ; Xk/ � Mnom.n; p1; : : : ; pk/. Let x1; : : : ; xk be integers between 0 and
n that sum up to n. The probability that the first x1 balls fall in the first urn, the next
x2 balls fall in the second urn, etc., is

p
x1
1 p

x2
2 � � �pxkk :

To find the probability that there are x1 balls in the first urn, x2 in the second, and so
on, we have to multiply the probability above with the number of ways in which we
can fill the urns with x1; x2; : : : ; xk balls, i.e., nŠ=.x1Šx2Š � � �xkŠ/. This gives (3.5).

Remark 3.2. Note that for the binomial distribution there are only two possible urns.
Also, note that for each i D 1; : : : ; k, Xi � Bin.n; pi /.

3.2 Continuous Joint Distributions

Joint distributions for continuous random variables are usually defined via their
joint pdf. The theoretical development below follows very similar lines to both
the univariate continuous case in Sect. 2.2.2 and the multivariate discrete case in ☞ 28

Sect. 3.1. ☞ 64

Definition 3.5. (Continuous Joint Pdf). Continuous random variables
X1; : : : ; Xn are said to have a joint pdf f if

P.a1 < X1 � b1; : : : ; an < Xn � bn/ D
Z b1

a1

� � �
Z bn

an

f .x1; : : : ; xn/ dx1 � � � dxn

for all a1; : : : ; bn.
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This implies, similar to the univariate case in (2.3), that the probability of any event☞ 28

pertaining to X D .X1; : : : ; Xn/—say event fX 2 Bg, where B is some subset of
R
n—can be found by integration:

P.X 2 B/ D
Z

B

f .x1; : : : ; xn/ dx1 : : : dxn : (3.6)

As in (2.5) we can interpret f .x1; : : : ; xn/ as the density of the probability☞ 29

distribution at .x1; : : : ; xn/. For example, in the two-dimensional case, for small
h > 0,

P.x1 � X1 � x1 C h; x2 � X2 � x2 C h/

D
Z x1Ch

x1

Z x2Ch

x2

f .u; v/ du dv � h2 f .x1; x2/ :

Similar to the discrete multivariate case in (3.1), the marginal pdfs can be
recovered from the joint pdf by integrating out the other variables:

fXi .x/ D
Z 1

�1
� � �
Z 1

�1
f .x1; : : : ; xi�1; x; xiC1; : : : ; xn/ dx1 : : : dxi�1 dxiC1 : : : dxn :

We illustrate this for the two-dimensional case. We have

FX1.x/ D P.X1 � x;X2 � 1/ D
Z x

�1

�Z 1

�1
f .x1; x2/ dx2

�

dx1 :

By differentiating the last integral with respect to x, we obtain

fX1.x/ D
Z 1

�1
f .x; x2/ dx2 :

It is not possible, in general, to reconstruct the joint pdf from the marginal pdfs.
An exception is when the random variables are independent; see Definition 3.3.
By modifying the arguments in the proof of Theorem 3.3 to the continuous case—
basically replacing sums with integrals—it is not difficult to see that the theorem
also holds in the continuous case. In particular, continuous random variables
X1; : : : ; Xn are independent if and only if their joint pdf, f say, is the product of the
marginal pdfs:

f .x1; : : : ; xn/ D fX1.x1/ � � �fXn.xn/ (3.7)

for all x1; : : : ; xn. Independence for an infinite sequence of random variables is
discussed in Remark 3.1.☞ 66
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Example 3.6 (Generating a General iid Sample). Consider the sequence of
numbers produced by a uniform random number generator such as MATLAB’s
rand function. A mathematical model for the output stream is U1; U2; : : : ; are
independent and U.0; 1/ distributed; that is,

U1; U2; : : :
iid� U.0; 1/ :

Using the inverse-transform method it follows that for any cdf F , ☞ 53

F�1.U1/; F�1.U2/; : : :
iid� F :

Example 3.7 (Quotient of Two Independent Random Variables). Let X and Y
be independent continuous random variables, with Y > 0. What is the pdf of the
quotient U D X=Y in terms of the pdfs of X and Y ? Consider first the cdf of U .
We have

FU .u/ D P.U � u/ D P.X=Y � u/ D P.X � Y u/

D
Z 1

0

Z yu

�1
fX.x/fY .y/ dx dy D

Z u

�1

Z 1

0

yfX.yz/fY .y/ dy dz ;

where we have used the change of variable z D x=y and changed the order of
integration in the last equation. It follows that the pdf is given by

fU .u/ D d

du
FU .u/ D

Z 1

0

yfX .yu/ fY .y/ dy : (3.8)

As a particular example, suppose that X and V both have a standard normal
distribution. Note that X=V has the same distribution as U D X=Y , where
Y D jV j > 0 has a positive normal distribution. It follows from (3.8) that ☞ 56

fU .u/ D
Z 1

0

y
1p
2�

e� 1
2 y

2u2 2p
2�

e� 1
2 y

2

dy

D
Z 1

0

y
1

�
e� 1

2 y
2.1Cu2/ dy D 1

�

1

1C u2
; u 2 R :

This is the pdf of the Cauchy distribution. ☞ 50

Definition 3.6. (Conditional Pdf). Let X and Y have joint pdf f and
suppose fX.x/ > 0. The conditional pdf of Y given X D x is defined as

fY jX.y j x/ D f .x; y/

fX.x/
for all y : (3.9)
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For the discrete case, this is just a rewrite of (3.4). For the continuous case, the
interpretation is that fY jX.y j x/ is the density corresponding to the cdf FY jX.y j x/
defined by the limit

FY jX.y j x/ D lim
h#0

P.Y � y j x � X � xCh/ D lim
h#0

P.Y � y; x � X � x C h/

P.x � X � x C h/
:

In many statistical situations, the conditional and marginal pdfs are known and (3.9)
is used to find the joint pdf via

f .x; y/ D fX.x/ fY jX.y j x/ ;
or, more generally for the n-dimensional case,

f .x1; : : : ; xn/ D
fX1.x1/ fX2jX1.x2 j x1/ � � �fXnjX1;:::;Xn�1

.xn j x1; : : : ; xn�1/ ;
(3.10)

which in the discrete case is just a rephrasing of the product rule in terms of☞ 14

probability densities. For independent random variables (3.10) reduces to (3.7).
Equation (3.10) also shows how one could sequentially generate a random vector
X D .X1; : : : ; Xn/ according to a pdf f , provided that it is possible to generate
random variables from the successive conditional distributions, as summarized in
the following algorithm.

Algorithm 3.1. (Dependent Random Variable Generation).

1. Generate X1 from pdf fX1 . Set t D 1.
2. While t < n, given X1 D x1; : : : ; Xt D xt , generate XtC1 from the

conditional pdf fXtC1jX1;:::;Xt .xt j x1; : : : ; xt / and set t D t C 1.
3. Return X D .X1; : : : ; Xn/.

Example 3.8 (Nonuniform Distribution on Triangle). We select a point .X; Y /
from the triangle .0; 0/-.1; 0/-.1; 1/ in such a way that X has a uniform distribution
on .0; 1/ and the conditional distribution of Y given X D x is uniform on .0; x/.
Figure 3.3 shows the result of 1000 independent draws from the joint pdf f .x; y/ D
fX.x/ fY jX.y j x/, generated via Algorithm 3.1. It is clear that the points are not
uniformly distributed over the triangle.

Random variable X has a uniform distribution on .0; 1/; hence, its pdf is
fX.x/ D 1 on x 2 .0; 1/. For any fixed x 2 .0; 1/, the conditional distribution
of Y given X D x is uniform on the interval .0; x/, which means that

fY jX.y j x/ D 1

x
; 0 < y < x :
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%nutriang.m
N = 1000;
x = rand(N,1);
y = rand(N,1).*x;
plot(x,y,’.’)

0 1
0

1

x

y

Fig. 3.3 One thousand realizations from the joint density f .x; y/, generated using the MATLAB

program on the left, which implements Algorithm 3.1.

It follows that the joint pdf is given by

f .x; y/ D fX.x/ fY jX.y j x/ D 1

x
; 0 < x < 1; 0 < y < x :

From the joint pdf we can obtain the pdf of Y as

fY .y/ D
Z 1

�1
f .x; y/ dx D

Z 1

y

1

x
dx D � ln y; 0 < y < 1 :

Finally, for any fixed y 2 .0; 1/, the conditional pdf of X given Y D y is

fX jY .x j y/ D f .x; y/

fY .y/
D �1
x ln y

; y < x < 1 :

3.3 Mixed Joint Distributions

So far we have only considered joint distributions in which the random variables
are all discrete or all continuous. The theory can be extended to mixed cases in
a straightforward way. For example, the joint pdf of a discrete variable X and a
continuous variable Y is defined as the function f .x; y/ such that for all events
f.X; Y / 2 Ag, where A � R

2,

P..X; Y / 2 A/ D
X

x

Z

If.x;y/2Ag f .x; y/ dy ;

where I denotes the indicator. The pdf is often specified via (3.10).
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Example 3.9 (Beta Distribution). Let 
 � U.0; 1/ and .X j
 D �/ � Bin.n; �/.
Using (3.10), the joint pdf of X and 
 is given by

f .x; �/ D
 

n

x

!

�x.1 � �/n�x; � 2 .0; 1/; x D 0; 1; : : : ; n :

By integrating out � , we find the pdf of X :

fX.x/ D
Z 1

0

 

n

x

!

�x.1 � �/n�xd� D
 

n

x

!

B.x C 1; n � x C 1/ ;

where B is the beta function, defined as

B.˛; ˇ/ D
Z 1

0

t˛�1.1 � t/ˇ�1dt D � .˛/� .ˇ/

� .˛ C ˇ/
; (3.11)

and � is the gamma function in (2.20). The conditional pdf of 
 given X D x,☞ 48

where x 2 f0; : : : ; ng, is

f
jX.� j x/ D f .�; x/

fX.x/
D �x.1 � �/n�x

B.x C 1; n � x C 1/
; � 2 .0; 1/ :

The continuous distribution with pdf

f .xI˛; ˇ/ D �˛�1.1 � �/ˇ�1

B.˛; ˇ/
; x 2 .0; 1/ (3.12)

is called the beta distribution with parameters ˛ and ˇ. Both parameters are
assumed to be strictly positive. We write Beta.˛; ˇ/ for this distribution. For this
example we have thus .
 jX D x/ � Beta.x C 1; n � x C 1/.

3.4 Expectations for Joint Distributions

Similar to the univariate case in Theorem 2.2, the expected value of a real-☞ 31

valued function h of .X1; : : : ; Xn/ � f is a weighted average of all values that
h.X1; : : : ; Xn/ can take. Specifically, in the continuous case,

Eh.X1; : : : ; Xn/ D
Z

� � �
Z

h.x1; : : : ; xn/ f .x1; : : : ; xn/ dx1 : : : dxn : (3.13)

In the discrete case replace the integrals above with sums.



3.4 Expectations for Joint Distributions 75

Two important special cases are the expectation of the sum (or more generally
affine transformations) of random variables and the product of random variables.

Theorem 3.2. (Properties of the Expectation). Let X1; : : : ; Xn be random
variables with expectations �1; : : : ; �n. Then,

EŒa C b1X1 C b2X2 C � � � C bnXn� D a C b1�1 C � � � C bn�n (3.14)

for all constants a, b1; : : : ; bn. Also, for independent random variables,

EŒX1X2 � � �Xn� D �1 �2 � � ��n : (3.15)

Proof. We show it for the continuous case with two variables only. The general case
follows by analogy and, for the discrete case, by replacing integrals with sums. Let
X1 and X2 be continuous random variables with joint pdf f . Then, by (3.13),

EŒa C b1X1 C b2X2� D
“

.aC b1x1 C b2x2/ f .x1; x2/ dx1 dx2

D a C b1

“

x1f .x1; x2/ dx1 dx2 C b2

“

x2f .x1; x2/ dx1 dx2

D a C b1

Z

x1

�Z

f .x1; x2/ dx2

�

dx1 C b2

Z

x2

�Z

f .x1; x2/ dx1

�

dx2

D a C b1

Z

x1fX1.x1/ dx1 C b2

Z

x2fX2.x2/ dx2 D a C b1�1 C b2�2 :

Next, assume that X1 and X2 are independent, so that f .x1; x2/ D fX1.x1/�
fX2.x2/. Then,

EŒX1 X2� D
“

x1 x2 fX1.x1/fX2.x2/ dx1 dx2

D
Z

x1fX1.x1/ dx1 �
Z

x2fX2.x2/ dx2 D �1 �2 : ut

Definition 3.7. (Covariance). The covariance of two random variables X
and Y with expectations EX D �X and EY D �Y is defined as

Cov.X; Y / D EŒ.X � �X/.Y � �Y /� :
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The covariance is a measure of the amount of linear dependency between two
random variables. A scaled version of the covariance is given by the correlation
coefficient:

%.X; Y / D Cov.X; Y /

�X �Y
; (3.16)

where �2X D Var.X/ and �2Y D Var.Y /. The correlation coefficient always lies
between �1 and 1; see Problem 3.16.☞ 95

For easy reference Theorem 3.3 lists some important properties of the variance
and covariance.

Theorem 3.3. (Properties of the Variance and Covariance). For random
variables X , Y , and Z, and constants a and b, we have

1. Var.X/ D EX2 � .EX/2.
2. Var.a C bX/ D b2Var.X/.
3. Cov.X; Y / D EXY � EX EY .
4. Cov.X; Y / D Cov.Y;X/.
5. Cov.aX C bY;Z/ D aCov.X;Z/C b Cov.Y;Z/.
6. Cov.X;X/ D Var.X/.
7. Var.X C Y / D Var.X/C Var.Y /C 2Cov.X; Y /.
8. If X and Y are independent, then Cov.X; Y / D 0.

Proof. For simplicity of notation we write EZ D �Z for a generic random variable
Z. Properties 1 and 2 were already shown in Theorem 2.4.☞ 33

3. Cov.X; Y / D EŒ.X � �X/.Y � �Y /� D EŒX Y � X �Y � Y �X C �X �Y � D
EŒX Y � � �X �Y .

4. Cov.X; Y / D EŒ.X � �X/.Y � �Y /� D EŒ.Y � �Y /.X � �X/� D Cov.Y;X/.
5. Cov.aX C bY;Z/ D EŒ.aX C bY /Z� � EŒaX C bY �EZ D aEŒXZ� �
aEXEZ C b EŒYZ� � b EY EZ D aCov.X;Z/C b Cov.Y;Z/.

6. Cov.X;X/ D EŒ.X � �X/.X � �X/� D EŒ.X � �X/
2� D Var.X/.

7. By Property 6, Var.X C Y / D Cov.X C Y;X C Y /. By Property 5, Cov.X C
Y;X C Y / D Cov.X;X/C Cov.Y; Y /C Cov.X; Y /C Cov.Y;X/ D Var.X/C
Var.Y /C 2Cov.X; Y /, where in the last equation Properties 4 and 6 are used.

8. If X and Y are independent, then EŒX Y � D �X �Y . Therefore, Cov.X; Y / D 0

follows immediately from Property 3. ut
As a consequence of Properties 2 and 7, we have the following general result for the
variance of affine transformations of random variables.
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Corollary 3.1. (Variance of an Affine Transformation). LetX1; : : : ; Xn be
random variables with variances �21 ; : : : ; �

2
n . Then,

Var

 

a C
n
X

iD1
biXi

!

D
n
X

iD1
b2i �

2
i C 2

X

i<j

bibjCov.Xi ; Xj / (3.17)

for any choice of constants a and b1; : : : ; bn. In particular, for independent
random variablesX1; : : : ; Xn,

Var.aC b1X1 C � � � C bnXn/ D b21�
2
1 C � � � C b2n�

2
n : (3.18)

Let X D .X1; : : : ; Xn/
> be a random column vector. Sometimes it is convenient

to write the expectations and covariances in vector notation.

Definition 3.8. (Expectation Vector and Covariance Matrix). For any
random column vector X we define the expectation vector as the vector of
expectations

� D .�1; : : : ; �n/
> D .EX1; : : : ;EXn/

> :

The covariance matrix ˙ is defined as the matrix whose .i; j /th element is

Cov.Xi ; Xj / D EŒ.Xi � �i /.Xj � �j /� :

If we define the expectation of a matrix to be the matrix of expectations, then we
can write the covariance matrix succinctly as

˙ D E
�

.X ��/.X � �/>� :

Definition 3.9. (Conditional Expectation). The conditional expectation of
Y given X D x, denoted EŒY jX D x�, is the expectation corresponding to
the conditional pdf fY jX.y j x/. That is, in the continuous case,

EŒY jX D x� D
Z

y fY jX.y j x/ dy :

In the discrete case replace the integral with a sum.
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Note that EŒY jX D x� is a function of x, say h.x/. The corresponding
random variable h.X/ is written as EŒY jX�. The expectation of EŒY jX� is, in
the continuous case,

EEŒY jX� D
Z

EŒY jX D x�fX .x/ dx D
Z Z

y
f .x; y/

fX.x/
fX.x/ dy dx

D
Z

y fY .y/ dy D EY :

(3.19)

This “stacking” of (conditional) expectations is sometimes referred to as the tower
property.

Example 3.10 (Nonuniform Distribution on Triangle Continued). In Exam-
ple 3.8 the conditional expectation of Y given X D x, with 0 < x < 1, is

EŒY jX D x� D 1

2
x ;

because conditioned on X D x, Y is uniformly distributed on the interval .0; x/.
Using the tower property we find

EY D 1

2
EX D 1

4
:

3.5 Functions of Random Variables

Suppose X1; : : : ; Xn are measurements of a random experiment. What can be said
about the distribution of a function of the data, say Z D g.X1; : : : ; Xn/, when the
joint distribution of X1; : : : ; Xn is known?

Example 3.11 (Pdf of an Affine Transformation). Let X be a continuous random
variable with pdf fX and let Z D a C bX , where b ¤ 0. We wish to determine the
pdf fZ of Z. Suppose that b > 0. We have for any z

FZ.z/ D P.Z � z/ D P
�

X � .z � a/=b� D FX
�

.z � a/=b
�

:

Differentiating this with respect to z gives fZ.z/ D fX
�

.z � a/=b
�

=b. For b < 0

we similarly obtain fZ.z/ D fX
�

.z � a/=b
�

=.�b/: Thus, in general,

fZ.z/ D 1

jbj fX
� z � a

b

�

: (3.20)
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Example 3.12 (Pdf of a Monotone Transformation). Generalizing the previous
example, suppose that Z D g.X/ for some strictly increasing function g. To find
the pdf of Z from that of X we first write

FZ.z/ D P.Z � z/ D P
�

X � g�1.z/
� D FX

�

g�1.z/
�

;

where g�1 is the inverse of g. Differentiating with respect to z now gives

fZ.z/ D fX.g
�1.z//

d

dz
g�1.z/ D fX.g

�1.z//
g0.g�1.z//

: (3.21)

For strictly decreasing functions, g0 needs to be replaced with its negative value.

3.5.1 Linear Transformations

Let x D .x1; : : : ; xn/
> be a column vector in R

n and B an m � n matrix. The
mapping x 7! z, with z D Bx, is called a linear transformation. Now consider a
random vector X D .X1; : : : ; Xn/

>, and let

Z D BX :

Then Z is a random vector in R
m. In principle, if we know the joint distribution of

X, then we can derive the joint distribution of Z. Let us first see how the expectation
vector and covariance matrix are transformed.

Theorem 3.4. (Expectation and Covariance Under a Linear Transforma-
tion). If X has expectation vector �X and covariance matrix ˙X, then the
expectation vector and covariance matrix of Z D BX are given by

�Z D B�X (3.22)

and

˙Z D B˙XB
> : (3.23)
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Proof. We have �Z D EZ D EBX D B EX D B�X and

˙Z D EŒ.Z ��Z/.Z � �Z/
>� D EŒB.X � �X/.B.X � �X//

>�

D B EŒ.X � �X/.X ��X/
>�B>

D B˙XB
> : ut

Suppose that B is an invertible n � n matrix. If X has a joint pdf fX, what is
the joint density fZ of Z? Let us consider the continuous case. For any fixed x, let
z D Bx. Hence, x D B�1z. Consider the n-dimensional cube C D Œz1; z1 C h� �
� � � � Œzn; zn C h�. Then, by definition of the joint density for Z, we have

P.Z 2 C/ � hn fZ.z/ :

Let D be the image of C under B�1—that is, the parallelepiped of all points x
such that Bx 2 C ; see Fig. 3.4.

Fig. 3.4 Linear transformation

A basic result from linear algebra is that any matrix B linearly transforms an
n-dimensional rectangle with volume V into an n-dimensional parallelepiped with
volume V jBj, where jBj D j det.B/j. Thus, in addition to the above expression for
P.Z 2 C/, we also have

P.Z 2 C/ D P.X 2 D/ � hnjB�1j fX.x/ D hnjBj�1 fX.x/ :

Equating these two expressions for P.Z 2 C/ and letting h go to 0, we obtain

fZ.z/ D fX.B
�1z/

jBj ; z 2 R
n : (3.24)
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3.5.2 General Transformations

We can apply similar reasoning as in the previous subsection to deal with general
transformations x 7! g.x/, written out as

0

B

B

B

@

x1
x2
:::

xn

1

C

C

C

A

7!

0

B

B

B

@

g1.x/
g2.x/
:::

gn.x/

1

C

C

C

A

:

For a fixed x, let z D g.x/. Suppose g is invertible; hence, x D g�1.z/. Any
infinitesimal n-dimensional rectangle at x with volume V is transformed into an
n-dimensional parallelepiped at z with volume V jJg.x/j, where Jg.x/ is the matrix
of Jacobi at x of the transformation g; that is, ☞ 367

Jg.x/ D

0

B

B

@

@g1
@x1

� � � @g1
@xn

:::
: : :

:::
@gn
@x1

� � � @gn
@xn

1

C

C

A

:

Now consider a random column vector Z D g.X/. Let C be a small cube around z
with volume hn. Let D be the image of C under g�1. Then, as in the linear case,

hn fZ.z/ � P.Z 2 C/ � hnjJg�1 .z/j fX.x/ :

Hence, we have the following result.

Theorem 3.5. (Transformation Rule). Let X be a continuous n-dimensional
random vector with pdf fX and g a function from R

n to R
n with inverse g�1.

Then, Z D g.X/ has pdf

fZ.z/ D fX.g�1.z// jJg�1 .z/j ; z 2 R
n : (3.25)

Remark 3.3. Note that jJg�1 .z/j D 1=jJg.x/j.
Example 3.13 (Box–Muller Method). The joint distribution of X; Y

iid� N.0; 1/ is

fX;Y .x; y/ D 1

2�
e� 1

2 .x
2Cy2/ ; .x; y/ 2 R

2 :

In polar coordinates we have

X D R cos
 and Y D R sin
 ; (3.26)
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where R � 0 and 
 2 .0; 2�/. What is the joint pdf of R and 
? Consider the
inverse transformation g�1, defined by

�

r

�

�

g�1

7�!
�

r cos �
r sin �

�

D
�

x

y

�

:

The corresponding matrix of Jacobi is

Jg�1 .r; �/ D
�

cos � �r sin �
sin � r cos �

�

;

which has determinant r . Since x2 C y2 D r2.cos2 � C sin2 �/ D r2, it follows that

fR;
.r; �/ D fX;Y .x; y/ r D 1

2�
e� 1

2 r
2

r; � 2 .0; 2�/; r � 0 :

By integrating out � and r , respectively, we find fR.r/ D r e�r2=2 and f
.�/ D
1=.2�/. Since fR;
 is the product of fR and f
 , the random variablesR and
 are
independent. This shows how X and Y could be generated: independently generate
R � fR and
 � U.0; 2�/ and returnX and Y via (3.26). Generation from fR can
be done via the inverse-transform method. In particular,R has the same distribution☞ 53

as
p�2 lnU with U � U.0; 1/. This leads to the following method for generating

standard normal random variables.

Algorithm 3.2. (Box–Muller Method).

1. Generate U1; U2
iid� U.0; 1/.

2. Return two independent standard normal variables, X and Y , via

X D
p

�2 lnU1 cos.2�U2/ ;

Y D
p

�2 lnU1 sin.2�U2/ :
(3.27)

3.6 Multivariate Normal Distribution

It is helpful to view a normally distributed random variable as an affine transforma-
tion of a standard normal random variable. In particular, if Z has a standard normal
distribution, then X D �C �Z has a N.�; �2/ distribution; see Theorem 2.15.☞ 46
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We now generalize this to n dimensions. Let Z1; : : : ; Zn be independent and
standard normal random variables. The joint pdf of Z D .Z1; : : : ; Zn/

> is given by

fZ.z/ D
n
Y

iD1

1p
2�

e� 1
2 z2i D .2�/�

n
2 e� 1

2 z>z; z 2 R
n : (3.28)

We write Z � N.0; I /, where I is the identity matrix. Consider the affine
transformation (i.e., a linear transformation plus a constant vector)

X D �C B Z (3.29)

for some m � n matrix B and m-dimensional vector �. Note that, by Theorem 3.4,
X has expectation vector � and covariance matrix˙ D BB>:

Definition 3.10. (Multivariate Normal Distribution). A random vector X
is said to have a multivariate normal or multivariate Gaussian distribution
with mean vector � and covariance matrix ˙ if it can be written as X D
�C B Z, where Z � N.0; I / and BB> D ˙ . We write X � N.�; ˙/.

Suppose that B is an invertible n � n matrix. Then, by (3.24), the density of
Y D X �� is given by

fY.y/ D 1

jBjp.2�/n e� 1
2 .B

�1y/>B�1y D 1

jBjp.2�/n e� 1
2 y>.B�1/>B�1y :

We have jBj D pj˙ j and .B�1/>B�1 D .B>/�1B�1 D .BB>/�1 D ˙�1, so
that

fY.y/ D 1
p

.2�/n j˙ j e� 1
2 y>˙�1y :

Because X is obtained from Y by simply adding a constant vector �, we have
fX.x/ D fY.x � �/ and therefore

fX.x/ D 1
p

.2�/n j˙ j e� 1
2 .x��/>˙�1.x��/; x 2 R

n : (3.30)

Figure 3.5 shows the pdfs of two bivariate (i.e., two-dimensional) normal distri-
butions. In both cases the mean vector is � D .0; 0/> and the variances (the
diagonal elements of ˙) are 1. The correlation coefficients (or, equivalently here,
the covariances) are, respectively, % D 0 and % D 0:8.
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Fig. 3.5 Pdfs of bivariate normal distributions with means zero, variances 1, and correlation
coefficients 0 (left) and 0:8 (right)

Conversely, given a covariance matrix ˙ D .�ij /, there exists a unique
lower triangular matrix B such that ˙ D BB>. In MATLAB, the function chol
accomplishes this so-called Cholesky factorization. Note that it is important to
use the option ’lower’ when calling this function, as MATLAB produces an upper
triangular matrix by default. Once the Cholesky factorization is determined, it is
easy to sample from a multivariate normal distribution.

Algorithm 3.3. (Normal Random Vector Generation). To generate N

independent draws from a N.�; ˙/ distribution of dimension n carry out the
following steps:

1. Determine the lower Cholesky factorization˙ D BB>.
2. Generate Z D .Z1; : : : ; Zn/

> by drawingZ1; : : : ; Zn �iid N.0; 1/.
3. Output X D �C BZ.
4. Repeat Steps 2 and 3 independentlyN times.

Example 3.14 (Generating from a Bivariate Normal Distribution). The MATLAB

code below draws 1000 samples from the two pdfs in Fig. 3.5. The resulting point
clouds are given in Fig. 3.6.

%bivnorm.m
N = 1000; rho = 0.8;
Sigma = [1 rho; rho 1];
B=chol(Sigma,’lower’);
x=B*randn(2,N);
plot(x(1,:),x(2,:),’.’)
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Fig. 3.6 One thousand realizations of bivariate normal distributions with means zero, variances 1,
and correlation coefficients 0 (left) and 0:8 (right)

The following theorem states that any affine combination of independent multivari-
ate normal random variables is again multivariate normal.

Theorem 3.6. (Affine Transformation of Normal Random Vectors). Let
X1;X2; : : : ;Xr be independentmi -dimensional normal random vectors, with
Xi � N.�i ; ˙i /, i D 1; : : : ; r . Then, for any n � 1 vector a and n � mi

matrices B1; : : : ; Br ,

a C
r
X

iD1
Bi Xi � N

�

a C
r
X

iD1
Bi �i ;

r
X

iD1
Bi ˙i B

>
i

�

: (3.31)

Proof. Denote the n-dimensional random vector in the left-hand side of (3.31) by
Y. By Definition 3.10, each Xi can be written as �i C AiZi , where the fZi g are
independent (because the fXig are independent), so that

Y D a C
r
X

iD1
Bi .�i C AiZi / D a C

r
X

iD1
Bi �i C

r
X

iD1
BiAiZi ;

which is an affine combination of independent standard normal random vectors.
Hence, Y is multivariate normal. Its expectation vector and covariance matrix can
be found easily from Theorem 3.4. ut

The next theorem shows that the distribution of a subvector of a multivariate
normal random vector is again normal.
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Theorem 3.7. (Marginal Distributions of Normal Random Vectors). Let
X � N.�; ˙/ be an n-dimensional normal random vector. Decompose X, �,
and ˙ as

X D
�

Xp

Xq

�

; � D
 

�p
�q

!

; ˙ D
�

˙p ˙r

˙>
r ˙q

�

; (3.32)

where ˙p is the upper left p � p corner of˙ and ˙q is the lower right q � q
corner of ˙ . Then, Xp � N.�p;˙p/.

Proof. Let BB> be the lower Cholesky factorization of ˙ . We can write

�

Xp

Xq

�

D
 

�p
�q

!

C
�

Bp O

Cr Cq

�

„ ƒ‚ …

B

�

Zp
Zq

�

; (3.33)

where Zp and Zq are independent p- and q-dimensional standard normal random
vectors. In particular, Xp D �p CBpZp , which means that Xp � N.�p;˙p/, since
BpB

>
p D ˙p . ut

By relabeling the elements of X we see that Theorem 3.7 implies that any subvector
of X has a multivariate normal distribution. For example, Xq � N.�q;˙q/.

Not only the marginal distributions of a normal random vector are normal but
also its conditional distributions.

Theorem 3.8. (Conditional Distributions of Normal Random Vectors).
Let X � N.�; ˙/ be an n-dimensional normal random vector with
det.˙/ > 0. If X is decomposed as in (3.32), then

�

Xq j Xp D xp
� � N.�q C˙>

r ˙
�1
p .xp � �p/; ˙q �˙>

r ˙
�1
p ˙r/ : (3.34)

As a consequence, Xp and Xq are independent if and only if they are
uncorrelated; that is, if ˙r D O (zero matrix).

Proof. From (3.33) we see that

.Xq j Xp D xp/ D �q C Cr B
�1
p .xp � �p/C CqZq ;

where Zq is a q-dimensional multivariate standard normal random vector. It follows
that Xq conditional on Xp D xp has a N.�qCCr B�1

p .xp��p/; CqC>
q / distribution.
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The proof of (3.34) is completed by observing that˙>
r ˙

�1
p D CrB

>
p .B

>
p /

�1B�1
p D

Cr B
�1
p , and

˙q �˙>
r ˙

�1
p ˙r D CrC

>
r C CqC

>
q � CrB�1

p ˙r
„ƒ‚…

BpC>

r

D CqC
>
q :

If Xp and Xq are independent, then they are obviously uncorrelated, as ˙r D
EŒ.Xp � �p/.Xq � �q/

>� D E.Xp � �p/E.Xq � �q/
> D O . Conversely, if

˙r D O , then by (3.34), the conditional distribution of Xq given Xp is the same
as the unconditional distribution of Xq , that is, N.�q;˙q/. In other words, Xq is
independent of Xp . ut

Theorem 3.9. (Relationship Between Normal and �2 Distributions). If
X � N.�; ˙/ is an n-dimensional normal random with vector with
det.˙/ > 0, then

.X � �/>˙�1.X � �/ � �2n : (3.35)

Proof. Let BB> be the Cholesky factorization of ˙ , where B is invertible. Since
X can be written as �C BZ, where Z D .Z1; : : : ; Zn/

> is a vector of independent
standard normal random variables, we have

.X � �/>˙�1.X ��/ D .X � �/>.BB>/�1.X ��/ D Z>Z D
n
X

iD1
Z2
i :

The moment generating function of Y D Pn
iD1 Z2

i is given by

E etY D E et .Z
2
1C���CZ2n/ D E ŒetZ

2
1 � � � etZ

2
n � D

�

E etZ
2
�n

;

where Z � N.0; 1/. The moment generating function of Z2 is

E etZ
2 D

Z 1

�1
etz

2 1p
2�

e�z2=2dz D 1p
2�

Z 1

�1
e� 1

2 .1�2t/z2dz D 1p
1 � 2t ;

so that

EetY D
 

1
2

1
2

� t

! n
2

; t <
1

2
;

which is the moment generating function of the Gamma.n=2; 1=2/ distribution, that
is, the �2n distribution—see Theorem 2.18. ut ☞ 49
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A consequence of Theorem 3.9 is that if X D .X1; : : : ; Xn/
> is n-dimensional

standard normal, then the squared length kXk2 D X2
1 C � � � C X2

n has a �2n
distribution. If instead Xi � N.�i ; 1/, i D 1; : : :, then kXk2 is said to have a
noncentral �2n distribution. This distribution depends on the f�i g only through
the norm k�k; see Problem 3.22. We write kXk2 � �2n.�/, where � D k�k is the
noncentrality parameter.

Such distributions frequently occur in statistics when considering projections of
multivariate normal random variables. The proof of the following theorem can be
found in Appendix B.4.☞ 371

Theorem 3.10. (Relationship Between Normal and Noncentral �2

Distributions). Let X � N.�; I / be an n-dimensional normal random vector
and let Vk and Vm be linear subspaces of dimensions k and m, respectively,
with k < m � n. Let Xk and Xm be orthogonal projections of X onto Vk
and Vm, and let �k and �m be the corresponding projections of �. Then, the
following holds:

1. The random vectors Xk, Xm � Xk , and X � Xm are independent.

2. kXkk2 � �2k.k�kk/, kXm�Xkk2 � �2m�k.k�m��kk/, and kX�Xmk2 �
�2n�m.k� � �mk/ .

Theorem 3.10 is frequently used in the statistical analysis of normal linear
models; see Sect. 5.3.1. In typical situations � lies in the subspace Vm or even☞ 142

Vk—in which case kXm � Xkk2 � �2m�k and kX � Xmk2 � �2n�m, independently.
The (scaled) quotient then turns out to have an F distribution—a consequence of
the following theorem.

Theorem 3.11. (Relationship Between �2 and F Distributions). Let U �
�2m and V � �2n be independent. Then,

U=m

V=n
� F.m; n/ :

Proof. For notational simplicity, let c D m=2 and d D n=2. It follows from
Example 3.7 that the pdf of W D U=V is given by☞ 71

fW .w/ D
Z 1

0

fU .wv/ v fV .v/ dv
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D
Z 1

0

.wv/c�1 e�wv=2

� .c/ 2c
v

vd�1e�v=2

� .d/ 2d
dv

D wc�1

� .c/ � .d/ 2cCd

Z 1

0

vcCd�1 e�.1Cw/v=2 dv

D � .c C d/

� .c/ � .d/

wc�1

.1C w/cCd
;

where the last equality follows from the fact that the integrand is equal to � .˛/�˛

times the density of the Gamma.˛; �/ distribution with ˛ D c C d and � D .1 C
w/=2. The proof is completed by observing that the density of Z D n

m
U
V

is given by

fZ.z/ D fW .zm=n/m=n :

ut

Corollary 3.2. (Relationship Between Normal, �2, and t Distributions).
Let Z � N.0; 1/ and V � �2n be independent. Then,

Z
p

V=n
� tn :

Proof. Let T D Z=
p

V=n. Because Z2 � �21, we have by Theorem 3.11 that
T 2 � F.1; n/. The result follows now from Theorem 2.19 and the symmetry around ☞ 51

0 of the pdf of T . ut

3.7 Limit Theorems

Two main results in probability are the law of large numbers and the central limit
theorem. Both are limit theorems involving sums of independent random variables.
In particular, consider a sequence X1;X2; : : : of iid random variables with finite
expectation � and finite variance �2. For each n define Sn D X1 C � � � C Xn.
What can we say about the (random) sequence of sums S1; S2; : : : or averages
S1; S2=2; S3=3; : : :? By (3.14) and (3.18) we have EŒSn=n� D � and Var.Sn=n/ D ☞ 75

�2=n: Hence, as n increases, the variance of the (random) average Sn=n goes to 0.
Informally, this means that .Sn=n/ tends to the constant �, as n ! 1. This makes
intuitive sense, but the important point is that the mathematical theory confirms our
intuition in this respect. Here is a more precise statement.
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Theorem 3.12. (Weak Law of Large Numbers). If X1; : : : ; Xn are iid with
finite expectation � and finite variance �2, then for all " > 0

lim
n!1P .jSn=n� �j > "/ D 0 :

Proof. Let Y D .Sn=n� �/2 and ı D "2. We have

Var.Sn=n/ D EY D EŒY IfY >ıg�C EŒY IfY�ıg� � EŒı IfY>ıg�C 0

D ı P.Y > ı/ D "2 P.jSn=n � �j > "/ :
Rearranging gives

P.jSn=n� �j > "/ � Var.Sn=n/

"2
D �2

n "2
:

The proof is concluded by observing that �2=.n"2/ goes to 0 as n ! 1. ut
Remark 3.4. In Theorem 3.12 the qualifier “weak” is used to distinguish the result
from the strong law of large numbers, which states that

P. lim
n!1Sn=n D �/ D 1 :

In terms of a computer simulation this means that the probability of drawing a
sequence for which the sequence of averages fails to converge to � is zero. The
strong law implies the weak law, but is more difficult to prove in its full generality;
see, for example, (Feller 1970).

The central limit theorem describes the approximate distribution of Sn (or Sn=n),
and it applies to both continuous and discrete random variables. Loosely, it states
that

the sum of a large number of iid random variables approx-
imately has a normal distribution.

Specifically, the random variable Sn has a distribution that is approximately normal,
with expectation n� and variance n�2. A more precise statement is given next.

Theorem 3.13. (Central Limit Theorem). If X1; : : : ; Xn are iid with finite
expectation � and finite variance �2, then for all x 2 R,

lim
n!1P

�

Sn � n�
�

p
n

� x

�

D ˚.x/ ;

where ˚ is the cdf of the standard normal distribution.
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Proof. (Sketch) A full proof is out of the scope of this book. However, the main
ideas are not difficult. Without loss of generality assume � D 0 and � D 1. This
amounts to replacing Xn by .Xn � �/=� . We also assume, for simplicity, that the
moment generating function of Xi is finite in an open interval containing 0, so that
we can use Theorem 2.7. We wish to show that the cdf of Sn=

p
n converges to that ☞ 36

of the standard normal distribution. It can be proved (and makes intuitive sense)
that this is equivalent (up to some technical conditions) to demonstrating that the
corresponding moment generating functions converge. That is, we wish to show that

lim
n!1E exp

�

t
Snp
n

�

D e
1
2 t
2

; t 2 R ;

where the right-hand side is the moment generating function of the standard normal
distribution. Because EX1 D 0 and EX2

1 D Var.X1/ D 1, we have by Theorem 2.7
that the moment generation function of X1 has the following Taylor expansion: ☞ 369

M.t/
defD E etX1 D 1C t EX1 C 1

2
t2 EX2

1 C o.t2/ D 1C 1

2
t2 C o.t2/ ;

where o.t2/ is a function for which limt#0 o.t2/=t2 D 0. Because the fXig are iid,
it follows that the moment generating function of Sn=

p
n satisfies

E exp

�

t
Snp
n

�

D E exp

�

tp
n
.X1 C � � � CXn/

�

D
n
Y

iD1
E exp

�

tp
n
Xi

�

D Mn

�

tp
n

�

D
�

1C t2

2n
C o.t2=n/

	n

�! e
1
2 t
2

as n ! 1. ut
Figure 3.7 shows central limit theorem in action. The left part shows the pdfs of
S1; : : : ; S4 for the case where the fXig have a UŒ0; 1� distribution. The right part
shows the same for the Exp.1/ distribution. We clearly see convergence to a bell-
shaped curve, characteristic of the normal distribution.
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Fig. 3.7 Illustration of the central limit theorem for (left) the uniform distribution and (right) the
exponential distribution
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Recall that a binomial random variable X � Bin.n; p/ can be viewed as the sum
of n iid Ber.p/ random variables: X D X1 C � � � C Xn. As a direct consequence☞ 66

of the central limit theorem it follows that, for large n, P.X � k/ � P.Y � k/,
where Y � N.np; np.1�p//. As a rule of thumb, this normal approximation to the
binomial distribution is accurate if both np and n.1 � p/ are larger than 5.

There is also a central limit theorem for random vectors. The multidimensional
version is as follows.

Theorem 3.14. (Multivariate Central Limit Theorem). Let X1; : : : ;Xn be
iid random vectors with expectation vector � and covariance matrix ˙ . For
large n the random vector X1 C � � � C Xn approximately has a N.n�; n˙/
distribution.

A more precise formulation of the above theorem is that the average random
vector Zn D .X1 C � � � C Xn/=n, when rescaled via

p
n.Zn � �/, converges in

distribution to a random vector K � N.0; ˙/ as n ! 1. A useful consequence of
this is given next.

Theorem 3.15. (Delta Method). Let Z1;Z2; : : : be a sequence of random
vectors such that

p
n.Zn � �/ ! K � N.0; ˙/ as n ! 1. Then, for any

continuously differentiable function g of Zn,

p
n.g.Zn/� g.�// ! R � N.0; J˙J>/ ; (3.36)

where J D J.�/ D .@gi .�/=@xj / is the Jacobian matrix of g evaluated at �.

Proof. (Sketch) A formal proof requires some deeper knowledge of statistical
convergence, but the idea of the proof is quite straightforward. The key step is to
construct the first-order Taylor expansion (see Theorem B.1) of g around �, which☞ 369

yields

g.Zn/ D g.�/C J.�/.Zn ��/C O.kZn � �k2/ :

As n ! 1, the remainder term goes to 0, because Zn ! �. Hence, the left-
hand side of (3.36) is approximately J

p
n.Zn � �/. For large n this converges to

a random vector R D J K, where K � N.0; ˙/. Finally, by Theorem 3.4 , we have☞ 80

R � N.0; J˙ J>/. ut
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Example 3.15 (Ratio Estimator). Let .X1; Y1/; : : : ; .Xn; Yn/ be iid copies of
a random vector .X; Y / with mean vector .�X ; �Y / and covariance matrix ˙ .
Denoting the average of the fXig and fYig by NX and NY , respectively, what can
we say about the distribution of NX= NY for large n?

Let Zn D . NX; NY / and � D .�X ; �Y /. By the multivariate central limit theorem
Zn has approximately a N.�; ˙=n/ distribution. More precisely,

p
n.Zn � �/

converges to a N.0; ˙/-distributed random vector.
We apply the delta method using the function g.x; y/ D x=y, whose Jacobian

matrix is

J.x; y/ D
�

@g.x; y/

@x
;

@g.x; y/

@y

�

D
�

1

y
;

�x
y2

�

:

It follows from (3.36) that g. NX; NY / D NX= NY has approximately a normal distribution
with expectation g.�/ D �X=�Y and variance �2=n, where

�2 D J.�/˙J>.�/ D
�

1

�Y
;

��X
�2Y

��

Var.X/ Cov.X; Y /
Cov.X; Y / Var.Y /

�

 

1
�Y��X
�2Y

!

D
�

�X

�Y

�2 �Var.X/

�2X
C Var.Y /

�2Y
� 2

Cov.X; Y /

�X �Y

�

:

(3.37)

3.8 Problems

3.1. LetU and V be independent random variables with P.U D 1/ D P.V D 1/ D
1=4 and P.U D �1/ D P.V D �1/ D 3=4. Define X D U=V and Y D U C V .
Give the joint discrete pdf of X and Y in table form, as in Table 3.1. Are X and Y ☞ 64

independent?

3.2. Let X1; : : : ; X4 �iid Ber.p/.

(a) Give the joint discrete pdf of X1; : : : ; X4.
(b) Give the joint discrete pdf of X1; : : : ; X4 givenX1 C � � � CX4 D 2.

3.3. Three identical-looking urns each have 4 balls. Urn 1 has 1 red and 3 white
balls, urn 2 has 2 red and 2 white balls, and urn 3 has 3 red and 1 white ball. We
randomly select an urn with equal probability. Let X be the number of the urn. We
then draw 2 balls from the selected urn. Let Y be the number of red balls drawn.
Find the following discrete pdfs:

(a) The pdf of X .
(b) The conditional pdf of Y given X D x for x D 1; 2; 3.
(c) The joint pdf of X and Y .
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(d) The pdf of Y .
(e) The conditional pdf of X given Y D y for y D 0; 1; 2.

3.4. We randomly select a point .X; Y / from the triangle f.x; y/ W x; y 2
f1; : : : ; 6g; y � xg (see Fig. 3.1) in the following nonuniform way. First, select☞ 67

X discrete uniformly from f1; : : : ; 6g. Then, given X D x, select Y discrete
uniformly from f1; : : : ; xg. Find the conditional distribution of X given Y D 1

and its corresponding conditional expectation.

3.5. We randomly and uniformly select a continuous random vector .X; Y / in the
triangle .0; 0/–.1; 0/–.1; 1/, the same triangle as in Example 3.8.☞ 72

(a) Give the joint pdf of X and Y .
(b) Calculate the pdf of Y and sketch its graph.
(c) Specify the conditional pdf of Y given X D x for any fixed x 2 .0; 1/.
(d) Determine EŒY jX D 1=2�.

3.6. Let X � UŒ0; 1� and Y � Exp.1/ be independent.

(a) Determine the joint pdf of X and Y and sketch its graph.
(b) Calculate P..X; Y / 2 Œ0; 1� � Œ0; 1�/.
(c) Calculate P.X C Y < 1/.

3.7. Let X � Exp.�/ and Y � Exp.�/ be independent.

(a) Show that min.X; Y / also has an exponential distribution, and determine its
corresponding parameter.

(b) Show that

P.X < Y / D �

�C �
:

3.8. Let X � Exp.1/ and .Y jX D x/ � Exp.x/.

(a) What is the joint pdf of X and Y ?
(b) What is the marginal pdf of Y ?

3.9. Let X � U.��=2; �=2/. Show that Y D tan.X/ has a Cauchy distribution.☞ 71

3.10. Let X � Exp.3/ and Y D ln.X/. What is the pdf of Y ?

3.11. We draw n numbers independently and uniformly from the interval [0,1] and
denote their sum Sn.

(a) Determine the pdf of S2 and sketch its graph.
(b) What is approximately the distribution of S20?
(c) Approximate the probability that the average of the 20 numbers is greater

than 0.6.

3.12. A certain type of electrical component has an exponential lifetime distribution
with an expected lifetime of 1=2 year. When the component fails it is immediately
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replaced by a second (new) component; when the second component fails, it is
replaced by a third, etc. Suppose there are ten such identical components. Let T
be the time that the last of the components fails.

(a) What is the expectation and variance of T ?
(b) Approximate, using the central limit theorem, the probability that T exceeds

6 years.
(c) What is the exact distribution of T ?

3.13. Let A be an invertible n � n matrix and let X1; : : : ; Xn �iid N.0; 1/. Define
X D .X1; : : : ; Xn/

> and let .Z1; : : : ; Zn/> D AX. Show that Z1; : : : ; Zn are iid
standard normal only if AA> D I (identity matrix), in other words, only if A is an
orthogonal matrix. Can you find a geometric interpretation of this?

3.14. Let X1; : : : ; Xn be independent and identically distributed random variables
with mean � and variance �2. Let NX D .X1C� � �CXn/=n. Calculate the correlation
coefficient of X1 and NX .

3.15. Suppose that X1; : : : ; X6 are iid with pdf

f .x/ D



3x2; 0 � x � 1;

0; elsewhere:

(a) What is the probability that all fXig are greater than 1=2?
(b) Find the probability that at least one of the fXig is less than 1/2.

3.16. Let X and Y be random variables.

(a) Express Var.�aXCY /, where a is a constant, in terms of Var.X/;Var.Y /; and
Cov.X; Y /.

(b) Take a D Cov.X; Y /=Var.X/. Using the fact that the variance in (a) is always
nonnegative, prove the following Cauchy–Schwarz inequality:

.Cov.X; Y //2 � Var.X/Var.Y / :

(c) Show that, as a consequence, the correlation coefficient of X and Y must lie
between �1 and 1.

3.17. Suppose X and Y are independent uniform random variables on [0,1]. Let
U D X=Y and V D XY , which means X D p

UV and Y D p

V=U .

(a) Sketch the two-dimensional region where the density of .U; V / is nonzero.
(b) Find the matrix of Jacobi for the transformation .x; y/> 7! .u; v/>.
(c) Show that its determinant is 2x=y D 2u.
(d) What is the joint pdf of U and V ?
(e) Show that the marginal pdf of U is

fU .u/ D
(

1
2
; 0 < u < 1
1
2u2
; u � 1

: (3.38)
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3.18. LetX1; : : : ; Xn be iid with mean � and variance �2. Let NX D 1
n

Pn
iD1 Xi and

Y D 1
n

Pn
iD1.Xi � NX/2.

(a) Show that

Y D 1

n

n
X

iD1
X2
i � NX2 :

(b) Calculate EY .
(c) Show that EY ! �2 as n ! 1.

3.19. Let X D .X1; : : : ; Xn/
>, with fXig �iid N.�; 1/. Consider the orthogonal

projection, denoted X1, of X onto the subspace spanned by 1 D .1; : : : ; 1/>.

(a) Show that X1 D NX1.
(b) Show that X1 and X � X1 are independent.
(c) Show that kX � X1k2 D Pn

iD1.Xi � NX/2 has a �2n�1 distribution.

Hint: apply Theorem 3.10.

3.20. Let X1; : : : ; X6 be the weights of six randomly chosen people. Assume each
weight is N.75100/ distributed (in kg). Let W D X1 C � � � CX6 be the total weight
of the group. Explain why the distribution of W is equal or not equal to 6X1.

3.21. Let X � �2m and Y � �2n be independent. Show that X C Y � �2mCn. Hint:
use moment generating functions.

3.22. Let X � N.�; 1/. Show that the moment generation function of X2 is

M.t/ D e�
2t=.1�2t/

p
1 � 2t t < 1=2 :

Next, consider independent random variables Xi � N.�i ; 1/, i D 1; : : : ; n. Use the
result above to show that the distribution of kXk2 only depends on n and k�k. Can
you find a symmetry argument why this must be so?

3.23. A machine produces cylinders with a diameter which is normally distributed
with mean 3.97 cm and standard deviation 0.03 cm. Another machine produces
(independently of the first machine) shafts with a diameter which is normally dis-
tributed with mean 4.05 cm and standard deviation 0.02 cm. What is the probability
that a randomly chosen cylinder fits into a randomly chosen shaft?

3.24. A sieve with diameter d is used to separate a large number of blueberries
into two classes: small and large. Suppose that the diameters of the blueberries
are normally distributed with an expectation � D 1 cm and a standard deviation
� D 0:1 cm.

(a) Find the diameter of the sieve such that the proportion of large blueberries
is 30 %.
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(b) Suppose that the diameter is chosen such as in (a). What is the probability that
out of 1000 blueberries, fewer than 280 end up in the “large” class?

3.25. Suppose X , Y , and Z are independent N.1; 2/-distributed random variables.
Let U D X � 2Y C 3Z and V D 2X � Y C Z. Give the joint distribution of U
and V .

3.26. For many of the above problems it is instructive to simulate the corresponding
model on a computer in order to better understand the theory.

(a) Generate 105 points .X; Y / from the model in Problem 3.6.
(b) Compare the fraction of points falling in the unit square Œ0; 1� � Œ0; 1� with the

theoretical probability in Problem 3.6(b).
(c) Do the same for the probability P.X C Y < 1/.

3.27. Simulate 105 draws from U.��=2; �=2/ and transform these using the
tangent function, as in Problem 3.9. Compare the histogram of the transformed
values with the theoretical (Cauchy) pdf.

3.28. Simulate 105 independent draws of .U; V / in Problem 3.17. Verify with a
histogram of the U -values that the pdf of U is of the form (3.38).

3.29. Consider the MATLAB experiments in Example 3.14.

(a) Carry out the experiments with % D 0:4; 0:7; 0:9; 0:99, and �0:8, and observe ☞ 84

how the outcomes change.
(b) Plot the corresponding pdfs, as in Fig. 3.6.
(c) Give also the contour plots of the pdfs, for % D 0 and % D 0:8. Observe that the

contours are ellipses.
(d) Show that these ellipses are of the form

x21 C 2% x1 x2 C x22 D constant :



Part II
Statistical Modeling and Classical

and Bayesian Inference

In Part II of the book we consider the modeling and analysis of random data.
We describe various common models for data and discuss the mathematical tools
of statistical inference. Both the classical (frequentist) and Bayesian viewpoint of
statistics are covered. Classical statistics’ main focus is the likelihood concept,
whereas Bayesian statistics deals primarily with the posterior distribution of the
model parameters. Both classical and Bayesian methods often involve Monte Carlo
sampling techniques. It is assumed that the reader is familiar with the probability
topics discussed in Part I.



Chapter 4
Common Statistical Models

The conceptual framework for statistical modeling and analysis is sketched in
Fig. 4.1. The starting point is some real-life problem (reality) and a corresponding
set of data. On the basis of the data we wish to say something about the real-
life problem. The second step consists of finding a probabilistic model for the
data. This model contains what we know about the reality and how the data were
obtained. Within the model we carry out our calculations and analysis. This leads to
conclusions about the model. Finally, the conclusions about the model are translated
into conclusions about the reality.

Reality
+
Data

Model
for
Data

Conclusion
about
Model

Conclusion
about
Reality

mathematical

analysis

Fig. 4.1 Statistical modeling and analysis

Mathematical statistics uses probability theory and other branches of mathe-
matics to study data. In particular, the data are viewed as realizations of random
variables whose joint distribution is specified in advance, possibly up to some ☞ 63

unknown parameter(s). The mathematical analysis is then purely about the model
and its parameters.

4.1 Independent Sampling from a Fixed Distribution

One of the simplest statistical models is the one where the data X1; : : : ; Xn are
assumed to be independent and identically distributed (iid). We write ☞ 66

X1; : : : ; Xn
iid� Vf or X1; : : : ; Xn

iid� Dist ;

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__4, © The Author(s) 2014
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to indicate that the random variables form an iid sample from a sampling pdf Vf
or sampling distribution Dist. Let f denote the joint pdf of X1; : : : ; Xn. Then, by
Theorem 3.1,☞ 65

f .x1; : : : ; xn/ D Vf .x1/ � � � Vf .xn/ :

Example 4.1 (Experiments with Iid Samples). Each of the following scenarios
can be modeled via an iid sample.

1. We roll a die 100 times and record at each throw whether a 6 appears or not. Let
Xi D 1 if the i th throw yields a 6 and Xi D 0 otherwise, for i D 1; : : : ; 100.
Then,

X1; : : : ; X100
iid� Ber.p/

for some known or unknown p. For example, if the die is known to be fair, then
p D 1=6.

2. From a large population we select 300 men between 40 and 50 years of age
and measure their heights. Let Xi be the height of the i th selected person, i D
1; : : : ; 300. Then,

X1; : : : ; X300
iid� N.�; �2/

for some unknown parameters � and �2.
3. A large marine reserve is divided into 20 similar habitats. In each habitat the

number octopuses is recorded. Let Xi be the number of octopuses in habitat i ,
i D 1; : : : ; 20. Then,

X1; : : : ; X20
iid� Poi.�/

for some unknown parameter � > 0.
4. We run a simulation program for a production system for cars and record the total

production in a day. We repeat this 10 times, each time starting the simulation
with a different seed. Let Xi be the production per day in the i th simulation,
i D 1; : : : ; 10. Then,

X1; : : : ; X10
iid� Dist

for some unknown distribution Dist.

Remark 4.1 (About Statistical Modeling). At this point it is good to emphasize a
few points about modeling.

• Any model for data is likely to be wrong. For example, in Scenario 2 above
the height would normally be recorded on a discrete scale, say 1000–2200
(mm). However, samples from a N.�; �2/ can take any real value, including
negative values. Nevertheless, the normal distribution could be a reasonable
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approximation to the real sampling distribution. An important advantage of
using a normal distribution is that it has many nice mathematical properties, as
described in Sect. 3.6. ☞ 82

• Most statistical models depend on a number of unknown parameters. One of
the main objectives of statistical inference—to be discussed in subsequent
chapters—is to gain knowledge of the unknown parameters on the basis of
the observed data. Even in Scenario 4 of Example 4.1 the model depends on
underlying simulation parameters, although the distribution Dist may not be
explicitly known.

• Any model for data needs to be checked for suitability. An important criterion
is that data simulated from the model should resemble the observed data—at
least for a certain choice of model parameters. This is automatically satisfied for
Scenario 4 but should be verified for Scenarios 2 and 3. Model checking and
selection is discussed in Sects. 5.3.1, 5.4, 8.6, and 10.1.1. ☞ 142

☞ 251
☞ 287

4.2 Multiple Independent Samples

The single iid sample in Sect. 4.1 is easily generalized to multiple iid samples. The
most common models involve Bernoulli and normal random variables.

Example 4.2 (Two-Sample Binomial Model). To assess whether there is a
difference between boys and girls in their preference for two brands of cola, say
Sweet and Ultra cola, we select at random 100 boys and 100 girls and ask whether
they prefer Sweet or Ultra. We could model this via two independent Bernoulli
samples. That is, for each i D 1; : : : ; 100 let Xi D 1 if the i th boy prefers Sweet
over Ultra and let Xi D 0 otherwise. Similarly, let Yi D 1 if the i th girl prefers
Sweet over Ultra. We thus have the model

X1; : : : ; X100
iid� Ber.p1/ ;

Y1; : : : ; Y100
iid� Ber.p2/ ;

X1; : : : ; X100; Y1; : : : ; Y100 independent, with p1 and p2 unknown :

The objective is to assess the difference p1 � p2 on the basis of the observed values
for X1; : : : ; X100; Y1; : : : ; Y100. Note that it suffices to only record the total number
of boys or girls who prefer Sweet cola in each group; that is, X D P100

iD1 Xi and
Y D P100

iD1 Yi . This gives the two-sample binomial model:

X � Bin.100; p1/ ;

Y � Bin.100; p2/ ;

X; Y independent, with p1 and p2 unknown :
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Example 4.3 (Two-Sample Normal Model). From a large population we select
200 men between 25 and 30 years of age and measure their heights. For each person
we also record whether the mother smoked during pregnancy or not. Suppose that
60 mothers smoked during pregnancy.

Let X1; : : : ; X60 be the heights (in cm) of the men whose mothers smoked, and
let Y1; : : : ; Y140 be the heights of the men whose mothers did not smoke. Then, a
possible model is the two-sample normal model:

X1; : : : ; X60
iid� N.�1; �

2
1 / ;

Y1; : : : ; Y140
iid� N.�2; �

2
2 / ;

X1; : : : ; X60; Y1; : : : ; Y140 independent ;

where the model parameters �1; �2; �21 , and �22 are unknown. One would typically
like to assess the difference�1 ��2. That is, does smoking during pregnancy affect
the (expected) height of the child? A typical simulation outcome of the model is
given in Fig. 4.2, using parameters �1 D 175; �2 D 170; �21 D 100, and �22 D 200.

130 140 150 160 170 180 190 200 210 220

non−smoker

smoker

Fig. 4.2 Simulated height data from a two-sample normal model

Instead of dividing the data into two groups, one could further divide the
“smoking mother” group into several subgroups according to the intensity of
smoking, e.g., rarely, moderately, and heavily, so that in this case the data could
be modeled via four independent samples from a normal distribution. This model
would, in general, depend on eight unknown parameters—four expectations and
four variances.

4.3 Regression Models

Francis Galton observed in an article in 1889 that the heights of adult offspring are,
on the whole, more “average” than the heights of their parents. Galton interpreted
this as a degenerative phenomenon, using the term regression, to indicate this “return
to mediocrity.” Karl Pearson continued Galton’s original work and conducted
comprehensive studies comparing various relationships between members of the
same family. Figure 4.3 depicts the measurements of the heights of 1078 fathers and
their adult sons (one son per father).

The average height of the fathers was 67 inches and of the sons 68 inches.
Because sons are on average 1 inch taller than the fathers we could try to “explain”
the height of the son by taking the height of his father and adding 1 inch. However,
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Fig. 4.3 A scatter plot of heights from Pearson’s data

the line y D x C 1 (dashed) does not seem to predict the height of the sons
as accurately as the solid line in Fig. 4.3. This line has a slope less than 1 and
demonstrates Galton’s “regression” effect. For example, if a father is 5 % taller than
average, then his son will be on the whole less than 5 % taller than average.

In general, regression analysis is about finding relationships between a number
of variables. In particular, there is a response variable which we would like to
“explain” via one or more explanatory variables. Explanatory variables are also
called predictors, covariates, and independent variables. In the latter case the
response variable is called the dependent variable. Regression is usually seen as a
functional relationship between continuous variables.

4.3.1 Simple Linear Regression

The most basic regression model involves a linear relationship between the response
and a single explanatory variable. As in Pearson’s height data, we have measure-
ments .x1; y1/; : : : ; .xn; yn/ that lie approximately on a straight line. It is assumed
that these measurements are outcomes of vectors .x1; Y1/; : : :, .xn; Yn/, where, for
each deterministic explanatory variable xi , the response variable Yi is a random
variable with

EYi D ˇ0 C ˇ1 xi ; i D 1; : : : ; n (4.1)

for certain unknown parameters ˇ0 and ˇ1. The (unknown) line

y D ˇ0 C ˇ1 x (4.2)
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is called the regression line. To completely specify the model, we need to designate
the joint distribution of Y1; : : : ; Yn. The most common linear regression model is
given next. The adjective “simple” refers to the fact that a single explanatory variable
is used to explain the response.

Definition 4.1. (Simple Linear Regression Model). In a simple linear
regression model the response data Y1; : : : ; Yn depend on explanatory vari-
ables x1; : : : ; xn via the linear relationship

Yi D ˇ0 C ˇ1 xi C "i ; i D 1; : : : ; n ; (4.3)

where "1; : : : ; "n
iid� N.0; �2/.

This formulation makes it even more obvious that we view the responses as
random variables which would lie exactly on the regression line, were it not for
some “disturbance” or “error” term (represented by the f"ig).

Note that the simple linear regression model (4.3) is a Gaussian model; that is,
Y D .Y1; : : : ; Yn/

> has a multivariate normal distribution. Namely,☞ 83

Y � N.ˇ01C ˇ1x; �2I / ; (4.4)

where x D .x1; : : : ; xn/
>, 1 is the n-dimensional column vector of 1s, and I is the

n-dimensional identity matrix.

4.3.2 Multiple Linear Regression

A linear regression model that contains more than one explanatory variable is called
a multiple linear regression model.

Definition 4.2. (Multiple Linear Regression Model). In a multiple linear
regression model the response data Y1; : : : ; Yn depend on d -dimensional
explanatory variables x1; : : : ; xn, with xi D .xi1; : : : ; xid /

>, via the linear
relationship

Yi D ˇ0 C ˇ1 xi1 C � � � C ˇd xid C "i ; i D 1; : : : ; n ; (4.5)

where "1; : : : ; "n
iid� N.0; �2/.
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We can write (4.5) as Yi D ˇ0Cx>
i ˇC"i , whereˇ D .ˇ1; : : : ; ˇd /

>. In other words,
the data .xi ; Yi /—where the fYig are random—lie approximately on the plane y D
ˇ0 C x>ˇ for some (typically unknown) constant ˇ0 and vector ˇ. Defining Y D
.Y1; : : : ; Yn/

> and A as the matrix

A D

0

B

B

B

@

x>
1

x>
2
:::

x>
n

1

C

C

C

A

;

we can reformulate (4.5) as the Gaussian model

Y � N.ˇ01C Aˇ; �2I / ; (4.6)

where 1 is the n-dimensional column vector of 1s and I is the n-dimensional identity
matrix.

Example 4.4 (Multiple Linear Regression Model). Figure 4.4 gives a realization
of the multiple linear regression model

Yi D xi1 C xi2 C "i ; i D 1; : : : ; 100 ;

where "1; : : : ; "100 �iid N.0; 1=16/. The fixed vectors .xi1; xi2/; i D 1; : : : ; 100 of
explanatory variables lie in the unit square.

Fig. 4.4 Multiple linear regression

The multiple linear regression model can be viewed as a first-order approxima-
tion of the general model

Yi D b.xi /C "i ; i D 1; : : : ; n ; (4.7)
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where "1; : : : ; "n
iid� N.0; �2/ and b.x/ is some known or unknown function of a

d -dimensional vector x of explanatory variables. To see this, replace b.x/ with its
first-order Taylor approximation around some point x0:☞ 369

b.x/ � b.x0/C .x � x0/>rb.x0/
D b.x0/� x>

0 rb.x0/
„ ƒ‚ …

ˇ0

Cx> rb.x0/
„ ƒ‚ …

ˇ

D ˇ0 C x>ˇ : (4.8)

4.3.3 Regression in General

General regression models not only deal with multiple explanatory variables but
also with nonlinear relationships between the response and explanatory variables.
A broad class of regression models is (similar to (4.7)) of the form

Yi D g.xi Iˇ/C "i ; i D 1; : : : ; n ; (4.9)

where "1; : : : ; "n �iid N.0; �2/ and g.xIˇ/ is a known function of the explanatory
vector x and the parameter vector ˇ. Both �2 and ˇ are assumed to be unknown.

To specify regression models of this form it suffices to report only the functional
relationship between the expected response y D EY and the explanatory variable
(x or x). For the generic model in (4.9) this corresponds to reporting only y D
g.xIˇ/. We will do this from now on in this section, keeping in mind the general
formulation where there are n independent response variables, each with its own
explanatory variable and error term.

When g.xIˇ/ is linear in the parameters (or, equivalently, linear in ˇ), the model
is said to be a linear regression model. The obvious examples are the simple linear
regression and multiple linear regression models. The following example gives
another important class of linear regression models.

Example 4.5 (Polynomial Regression Models). Suppose the expected response y
depends on a single explanatory variable x via a polynomial relationship

y D ˇ0 C ˇ1 x C ˇ2 x
2 C � � � C ˇd x

d : (4.10)

This is an example of a polynomial regression model. Note that the model is
linear in the model parameters fˇig. In a similar way one can consider polynomial
regression models with multiple explanatory variables, as in

y D ˇ0 C ˇ1 x1 C ˇ2 x2 C ˇ11 x
2
1 C ˇ22 x

2
2 C ˇ12 x1 x2 ; (4.11)

which defines a second-order polynomial regression model with two explanatory
variables. Similar to (4.8), this model can be viewed as a second-order approxima-
tion to a general regression model of the form

y D b.x1; x2/



4.3 Regression Models 109

for some known or unknown function b. Polynomial regression models are also
called response surface models.

Common examples of nonlinear regression models are the following:

• Exponential model with parameters a and b:

y D a ebx :

• Power law model with parameters a and b:

y D a xb :

• Logistic model with parameters a and b and fixed L:

y D L

1C eaCbx :

• Weibull model with parameters a and b:

y D 1 � e� xb

a :

Example 4.6 (Exponential Model). Table 4.1 lists the free chlorine concentration
(in mg per liter) in a swimming pool, recorded every 8 h for 4 days.

Table 4.1 Chlorine concentration (in mg/L) as a function of time (hours).

Hours Concentration

0 1.0056
8 0.8497

16 0.6682
24 0.6056
32 0.4735
40 0.4745
48 0.3563

Hours Concentration

56 0.3293
64 0.2617
72 0.2460
80 0.1839
88 0.1867
96 0.1688

A simple chemistry-based model for the chlorine concentration y as a function
of time t is

y D a e�b t ;

where a is the initial concentration and b > 0 is the reaction rate. Figure 4.5 shows
that the data closely follow the curve y D e�0:02t . A common method for fitting
regression curves to data is the least-squares method, which will be discussed in
Sect. 5.1.2. ☞ 125
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Fig. 4.5 The chlorine concentration seems to have an exponential decay

Another way to deal with nonlinearities in the data is to transform the data in
order to achieve a linear relationship.

Example 4.7 (Log-Linear Model). Suppose that the expected chlorine concen-
tration in Example 4.6 satisfies y D a e�bt for some unknown a and b > 0.
Then, ln y D ln a � b t . Hence, there is a linear relationship between t and ln y.
Thus, if for some given data .t1; y1/; : : : ; .tn; yn/ we plot .t1; lny1/; : : : ; .tn; ln yn/,
these points should approximately lie on a straight line, and hence the simple linear
regression model applies. Figure 4.6 illustrates that the transformed data indeed lie
approximately on a straight line.

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

t

ln
y

ln y = −0.02t

Fig. 4.6 The log-transform of the chlorine concentration can be modeled via a simple linear
regression
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4.4 Analysis of Variance Models

In this section we discuss models that describe functional relationships between
continuous response variables and explanatory variables that take values in a
discrete number of categories, such as yes/no, green/blue/brown, and male/female.
Such variables are often called categorical. By assigning numerical values to the
categories, such as 0/1 and 1/2/3, one can treat them as discrete variables. Models
with continuous responses and categorical explanatory variables often arise in
factorial experiments. These are controlled statistical experiments in which the
aim is to assess how a response variable is affected by one or more factors tested
at several levels. A typical example is an agricultural experiment where one wishes
to investigate how the yield of a food crop depends on two factors: (1) pesticide, at
two levels (yes and no) and (2) fertilizer, at three levels (low, medium, and high). In
factorial experiments one usually wishes to collect one or more responses from each
of the different combinations of levels. A fictitious data set for the above agricultural
experiment with three responses (crop yield) per level pair is given in Table 4.2.

Table 4.2 Crop yield

Fertilizer

Pesticide Low Medium High

No 3.23, 3.20, 3.16 2.99, 2.85, 2.77 5.72, 5.77, 5.62
Yes 6.78, 6.73, 6.79 9.07, 9.09, 8.86 8.12, 8.04, 8.31

The main statistical tool to analyze such data is analysis of variance (ANOVA),
which will be discussed in Sect. 5.3.1. We describe next two common models that ☞ 142

are used in such situations.

4.4.1 Single-Factor ANOVA

Consider a response variable which depends on a single factor with d levels. Within
each level i there are ni independent measurements of the response variable. The
data thus consist of d independent samples with sizes n1; : : : ; nd :

Y1; : : : ; Yn1
„ ƒ‚ …

level 1

; Yn1C1; : : : ; Yn1Cn2
„ ƒ‚ …

level 2

; : : : ; Yn�ndC1; : : : ; Yn
„ ƒ‚ …

level d

; (4.12)

where n D n1C� � �Cnd . An obvious model for the data is that the fYig are assumed
to be independent and normally distributed with a mean and variance which depend
only on the level. Such a model is simply a d -sample generalization of the two-
sample normal model in Example 4.3. To be able to analyze the model via ANOVA ☞ 103

one needs however the additional model assumption that the variances are all equal;
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that is, they are the same for each level. Writing Yik as the response for the kth
replication at level i we can define the model as follows.

Definition 4.3. (Single-Factor ANOVA Model). In a single-factor
ANOVA model, let Yik be the response for the kth replication at level i . Then,

Yik D �i C "ik ; k D 1; : : : ; ni ; i D 1; : : : ; d ; (4.13)

where f"ikg iid� N.0; �2/.

Instead of (4.13) one often sees the “factor effects” formulation

Yik D �C ˛i C "ik ; k D 1; : : : ; ni ; i D 1; : : : ; d ; (4.14)

where � is interpreted as the overall effect, common to all levels, and ˛i D �i � �

is the incremental effect of level i . Although � can be defined in several ways, it is
customary to define it as the expected average response:

� D E

�

Y1 C � � � C Yn

n

	

D
Pd

iD1 ni �i
n

;

in which case the f˛ig must satisfy the relation

d
X

iD1

ni

n
˛i D 0 : (4.15)

In particular, for balanced designs—where the sample sizes in each group are
equal—we have

Pd
iD1 ˛i D 0.

Returning to the sequence of response variablesY1; : : : ; Yn in (4.12), suppose that
for each Yk we denote the corresponding level by uk , k D 1; : : : ; n. We can then
write the model in a form closely resembling a multiple linear regression model,
namely,

Yk D �1 IfukD1g C � � � C �d IfukDdg C "k ; k D 1; : : : ; n ; (4.16)

where f"kg �iid N.0; �2/ and IfuDag D 1 if u D a and 0 otherwise. It follows that
the vector Y D .Y1; : : : ; Yn/

> has a multivariate normal distribution with a mean
vector whose kth component is �1 IfukD1g C � � � C �d IfukDdg and with covariance
matrix �2I , where I is the n-dimensional identity matrix.
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4.4.2 Two-Factor ANOVA

Many designed experiments deal with responses that depend on more than one
factor. We consider for simplicity only the two-factor ANOVA model. Models with
more than two factors can be formulated analogously.

Suppose Factor 1 has d1 levels and Factor 2 has d2 levels. Within each pair of
levels .i; j /we assume that there are nij replications. Let Yijk be the kth observation
at level .i; j /. A direct generalization of (4.13) gives the following model.

Definition 4.4. (Two-Factor ANOVA Model). In a two-factor ANOVA
model let Yijk be the response for the kth replication at level .i; j /. Then,

Yijk D �ij C"ijk ; k D 1; : : : ; nij ; i D 1; : : : ; d1; j D 1; : : : ; d2 ; (4.17)

where f"ijkg �iid N.0; �2/.

Note that the variances of the responses are assumed to be equal to �2. To obtain
a “factor effects” representation, we can reparameterize model (4.17) as follows:

Yijk D �C ˛i C ˇj C �ij C "ijk ;

k D 1; : : : ; nij ; i D 1; : : : ; d1 ; j D 1; : : : ; d2 :
(4.18)

The parameter � can be interpreted as the overall mean response, ˛i as the
incremental effect due to Factor 1 at level i , and ˇj as the incremental effect of
Factor 2 at level j . The f�ij g represents the interaction effects of the two factors.
As in the one-factor model, the parameters can be defined in several ways. For the
most important balanced case (all the nij are the same), the default choice for the
parameters is as follows.

� D EY �� D
P

i

P

j �ij

d1d2
: (4.19)

˛i D EŒY i� � Y ��� D
P

j �ij

d2
� � : (4.20)

ˇj D EŒY �j � Y ��� D
P

i �ij

d1
� � : (4.21)

�ij D EŒYij � Y i� � Y �j C Y ��� D �ij � � � ˛i � ˇj : (4.22)



114 4 Common Statistical Models

Here, Y �� indicates the average of all the fYijkg. Similarly, Y i� is the average of all
the fYijkg within level i of Factor 1, and Y �j denotes the average of all the fYijkg
within level j of Factor 2. For this case it is easy to see that

P

i ˛i D P

j ˇj D
0 and

P

i �ij D P

j �ij D 0 for all i and j . Note that under these restrictions
model (4.18) has the same number of parameters as model (4.17); see Problem 4.5.

One objective of ANOVA is to assess whether the data are best described by
a “saturated” model such as (4.18) or if simpler models, with fewer parameters,
suffice. For example, a model without interaction terms is

Yijk D �C ˛i C ˇj C "ijk :

A model where Factor 2 is irrelevant is

Yijk D �C ˛i C "ijk :

If neither Factor 1 nor Factor 2 has an influence on the response, then the appropriate
model would simply be

Yijk D �C "ijk ;

that is, Yijk �iid N.�; �2/.

Remark 4.2 (Blocking). Not all of the factors in an ANOVA model need to be of
primary interest to the researcher. Some of the factors are included in the experiment
to reduce the variability of the measurements. Such factors are called nuisance
factors. An example of a nuisance factor in the crop data in Table 4.2 is the plant
location of the crop. Suppose the data were gathered from three different locations.
Different soil conditions in these locations could greatly influence the crop yield
and hence the findings of the research. To reduce the effect of plant location, one
could take one measurement for each (pesticide, fertilizer, location) triplet. The data
in Table 4.2 could represent this situation, where the three measurements for each
(pesticide, fertilizer) pair correspond to location 1, 2, and 3. The idea of grouping
data into levels of a nuisance factor in order to reduce the experimental error is
called blocking and is important in the design of controlled experiments.

4.5 Normal Linear Model

The regression model in Sect. 4.3 and the ANOVA models in Sects. 4.4.1 and 4.4.2
are both examples of normal (or Gaussian) linear models.
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Definition 4.5. (Normal Linear Model). A vector of data Y D
.Y1; : : : ; Yn/

> is said to satisfy a normal linear model if

Y D Xˇ C " (4.23)

for some n � m matrix X (the design matrix), an m-dimensional vector
of parameters ˇ D .ˇ1; : : : ; ˇm/

>, and a vector " D ."1; : : : ; "n/
> of iid

N.0; �2/ error terms.

To see that the simple linear regression model (4.3) is of the form (4.23), take ☞ 106

X D

0

B

B

B

@

1 x1

1 x2
:::
:::

1 xn

1

C

C

C

A

and ˇ D
�

ˇ0
ˇ1

�

:

An equivalent formulation is given in (4.4). Similarly, for the multiple linear
regression model (4.5), we have, in view of (4.6), ☞ 106

Y D

0

B

B

B

@

1 x>
1

1 x>
2

:::
:::

1 x>
n

1

C

C

C

A

„ ƒ‚ …

X

�

ˇ0
ˇ

�

„ƒ‚…

eˇ

C" :

To see that the one-factor ANOVA model is also of the form (4.3), let us define 1m
as the m-dimensional column vector of 1s and 0m as the vector of 0s. Using the
“regression” form (4.16) we can now write the vector Y as Xˇ C " with

X D

0

B

B

B

@

1n1 0n1 � � � 0n1
0n2 1n2 � � � 0n2
:::

:::
: : :

:::

0nd 0nd � � � 1nd

1

C

C

C

A

and ˇ D

0

B

@

�1
:::

�d

1

C

A :

A similar formulation can be given for the multifactor ANOVA case, as illustrated
in the following example.

Example 4.8 (ANOVA as a Normal Linear Model). Regression and ANOVA data
are often represented in the form of a spreadsheet, where each row corresponds
to a single measurement and the columns correspond to the response variable and
the various factors. Table 4.3 gives such a spreadsheet for the crop yield data in
Table 4.2.
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Table 4.3 Crop yield data as a spreadsheet

Crop Yield Pesticide Fertilizer

3.23 No Low
3.20 No Low
3.16 No Low
2.99 No Medium
2.85 No Medium
2.77 No Medium
5.72 No High
5.77 No High
5.62 No High
6.78 Yes Low
6.73 Yes Low
6.79 Yes Low
9.07 Yes Medium
9.09 Yes Medium
8.86 Yes Medium
8.12 Yes High
8.04 Yes High
8.31 Yes High

The design matrix can be directly constructed from this table. For example,
consider the representation (4.17) and define ˇ D .�11; �12; �13; �21; �22; �23/

>.
With the responses fYijkg ordered as .Y1; : : : ; Y18/> as in Table 4.3, the 18�6 design
matrix is given by

X D

0

B

B

B

@

1 0 � � � 0
0 1 � � � 0
:::
: : :

: : :
:::

0 0 � � � 1

1

C

C

C

A

;

where 1 D .1; 1; 1/> and 0 D .0; 0; 0/>: This may be written in compact notation
as X D I6 ˝ 1, where A ˝ B indicates the Kronecker product of A D .aij /

and B , that is, the block matrix with .i; j /th block aij B . For the “factor effects”
representation (4.18), define ˇ D .�; ˛1; ˛2; ˇ1; ˇ2; ˇ3; �11; �12; �13; �21; �22; �23/

>.
In this case the design matrix is an 18 � 12 matrix given by

X D

0

B

B

B

B

B

B

B

@

1 1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 1 0 0 0 0

1 1 0 0 0 1 0 0 1 0 0 0

1 0 1 1 0 0 0 0 0 1 0 0

1 0 1 0 1 0 0 0 0 0 1 0

1 0 1 0 0 1 0 0 0 0 0 1

1

C

C

C

C

C

C

C

A

:
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Note that in this case the parameters are linearly dependent. For example, ˛2 D
�˛1 and �13 D �.�11 C �12/. To retain only 6 linearly independent variables (as
in the case (4.17)) one could consider the 6-dimensional parameter vector eˇ D
.�; ˛1; ˇ1; ˇ2; �11; �12/, which is related to the 12-dimensional parameter vector ˇ
via the transformation
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The design matrix corresponding to eˇ is simply eX D XM ; see also Problem 4.10.

Returning to the general normal linear model Y D XˇC ", observe that Y has a
multivariate normal distribution with mean vector Xˇ and covariance matrix �2I ,
where I is the identity matrix of dimension n. The situation is graphically depicted
in Fig. 4.7. Imagine drawing multiple realizations of the random vector Y. These
would form a spherically symmetric cloud of points centered around Xˇ. More
precisely, because Y � N.Xˇ; �2 I /, it follows from (3.30) that the joint density of ☞ 83

Y at y is given by

fY.y/ D .2��2/�
n
2 e� 1

2�2
.y�Xˇ/>.y�Xˇ/ D .2��2/�

n
2 e� 1

2�2
jjy�Xˇjj2

:

Y

X
Xβ

ε = Y − Xβ

Fig. 4.7 Normal linear model. hXi is the subspace of Rn spanned by the columns of X
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4.6 Problems

4.1. Formulate a statistical model for each of the situations below, in terms of one or
more iid samples. If a model has more than one parameter, specify which parameter
is of primary interest.

a. A shipbuilder buys each week hundreds of tins of paint, labeled as containing
20 L. The builder suspects that the tins contain, on average, less than 20 L and
decides to determine the volume of paint in nine randomly chosen tins.

b. An electronics company wishes to examine if the rate of productivity differs
significantly between male and female employees involved in assembly work.
The time of completion of a certain component is observed for 12 men and 12
women.

c. The head of a mathematics department suspects that lecturers A and B differ
significantly in the way they assess student work. To test this, 12 exams are both
assessed by lecturer A and B.

d. We wish to investigate if a certain coin is fair. We toss the coin 500 times and
examine the results.

e. We investigate the effectiveness of a new teaching method by dividing 20 students
into two groups of 10, where the first group is taught by the old method and the
second group is taught by the new method. Each student is asked to complete an
exam before and after the teaching period.

f. We wish to assess which of two scales is the more sensitive. We measure, for
each scale, ten times a standard weight of 1 kg.

g. To investigate if the support for the Honest party is the same in two different
cities, one hundred voters in each city are asked if they would vote for the Honest
party or not.

h. In a study on the effectiveness of an advertising campaign, a survey was
conducted among 15 retail outlets. For each outlet the sales on a typical Saturday
was recorded one month before and one month after the advertising campaign.

i. To focus their marketing of remote-controlled cars an electronics company
wishes to investigate who in the end decides to buy: the child or the father. It
records who decides in 400 transactions involving a father and a son.

4.2. Formulate appropriate statistical models for the data occurring in the following
quality control processes.

a. Consider a packaging line for 500 gm packets of Yummy breakfast cereal. The
process is monitored by recording each hour the average weight of five randomly
selected packets.

b. A mail-order company selects each day at random 50 invoices from the many
invoices it receives on a day and has these examined for errors. The number of
invoices with errors is recorded.

4.3. An alternative approach to model the height data in Fig. 4.3 is to assume that
the observations are outcomes of iid random vectors .X1; Y1/; : : : ; .Xn; Yn/. What
would be a suitable two-dimensional distribution?



4.6 Problems 119

4.4. Consider a Gaussian model Y � N.�; ˙/, where Y is of dimension n. Show
that the maximum number of model parameters is n.nC 3/=2.

4.5. Show that under the restrictions
P

i ˛i D P

j ˇj D 0 and
P

i �ij D P

j �ij D
0, the factor effects ANOVA model in (4.18) has d1 d2 C 1 free parameters. ☞ 113

4.6. Verify the relation (4.15). ☞ 112

4.7. For each of the following situations, formulate a regression or ANOVA
model.

a. In a study of shipping costs, a company controller has randomly selected 9 air
freight invoices from current shippers in order to assess the relationship between
shipping costs and distance, for a given volume of goods.

b. We wish to test if three different brands of compact cars have the same average
fuel consumption. The fuel consumption for a traveled distance of 100 km is
measured for 20 cars of each brand.

c. Heart rates were monitored for 20 laboratory rats during three different stages of
sleep.

d. For the last 10 years a peace organization has been keeping record of the yearly
military expenditure and gross national product of a country, which appear to be
related linearly.

e. We investigate the effectiveness of a new fertilizer by dividing a large patch
of land into 20 test plots, each of which is divided into three small sub-
plots. In each of the three subplots a different concentration of fertilizer is
tested: weak, moderate, and strong. The product yield for each subplot is
recorded.

f. One hundred adults are randomly selected from a large population. The height
and weight of each person is recorded, along with their body mass index (i.e., the
weight in kilogram divided by the square of the height in meters).

4.8. Let Y1; : : : ; Yn be data from the polynomial regression model (4.10), with
corresponding explanatory variables x1; : : : ; xn. Write the model as a Gaussian
linear model of the form (4.23).

4.9. Specify the design matrix for the multiple polynomial regression model (4.11),
based on n explanatory variable pairs .x11; x21/; : : : ; .x1n; x2n/.

4.10. Give the 18�6 design matrix corresponding to the parameter vectoreˇ for the
two-factor ANOVA model in Example 4.8. Verify that the first column, consisting
of only 1s, is orthogonal (perpendicular) to all the other columns.

4.11. Table 4.2 was produced using the following parameters: � D 6, � D 0:1,
.˛1; ˛2/ D .�2; 2/, .ˇ1; ˇ2; ˇ3/ D .�1; 0; 1/, and ☞ 111

�

�11 �12 �13
�21 �22 �23

�

D
�

0:2 �1 0:8

�0:2 1 �0:8
�

:
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Implement a MATLAB program to draw realizations from the corresponding ANOVA
model, producing data similar to that in Table 4.2 .

4.12. The data in Table 4.1 was computer generated from the nonlinear regression
model☞ 109

Yi D e�0:02 ti C "i ;

where ti D .i�1/8; i D 1; : : : ; 13 and f"ig �iid N.0; .0:03/2/. Implement a MATLAB

program that generates (new) data from the model. Plot the data and the regression
curve as in Fig. 4.5.



Chapter 5
Statistical Inference

Recall the conceptual framework for statistics in Fig. 4.1. Statistical inference deals ☞ 101

with the middle part of this framework, that is, how to obtain conclusions about
the model on the basis of the observed data. The two main approaches to statistical
inference are:

• Classical statistics.
• Bayesian statistics.

In classical statistics the data vector x is viewed as the outcome of a random
vector X described by a probabilistic model—usually the model is specified up to
a (multidimensional) parameter �; that is, X � f .�I�/. The statistical inference is
then purely concerned with the model and in particular with the parameter � . For
example, on the basis of the data, one may wish to

1. estimate the parameter or
2. perform statistical tests on the parameter.

A main difference between the classical and the Bayesian approach is that in the
latter case the parameter vector � is considered to be random. Inference about � is
carried out by analyzing the conditional pdf f .� j x/—the so-called posterior pdf.
Bayesian inference is discussed in Chap. 8. For the remainder of this chapter we ☞ 227

will explain the main ingredients of the classical approach to statistical inference,
starting with a simple motivating example.

Example 5.1 (Biased Coin). We throw a coin 1000 times and observe 570 Heads.
Using this information, what can we say about the “fairness” of the coin? The data
(or better, datum) here is the number x D 570. Suppose we view x as the outcome
of a random variable X which describes the number of Heads in 1000 tosses. Our
statistical model is then

X � Bin.1000; p/ ;

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__5, © The Author(s) 2014
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where p 2 Œ0; 1� is unknown. Any statement about the fairness of the coin is
expressed in terms of p and is assessed via this model. It is important to understand
that p will never be known. The best we can do is to provide an estimate of p.
A common-sense estimate of p is simply the proportion of Heads x=1000 D 0:570.
But how accurate is this estimate? Is it possible that the unknown p could in fact
be 0:5? One can make sense of these questions through detailed analysis of the
statistical model.

5.1 Estimation

Suppose the distribution of the data X is completely specified up to an unknown
parameter vector � . The aim is to estimate � on the basis of the observed data x
only. Mathematically, the goal is to find function T D T.X/ of the data X such that
the random vector T is close to � . The random variable T is called an estimator
of � . The corresponding outcome t D T.x/ is the estimate of � . The bias of an
estimator T is defined as ET � � . T is said to be unbiased if ET D � . It is
important to note that T is a function of the data only, and not of the parameter.
Such a function is called a statistic.

Example 5.2 (Iid Sample from a Normal Distribution). Consider the standard
model for data (see Sect. 4.1):☞ 101

X1; : : : ; Xn
iid� N.�; �2/ ;

where � and �2 are unknown. The random measurements fXig could represent the
weights of randomly selected teenagers, the heights of the dorsal fin of sharks, the
dioxin concentrations in hamburgers, and so on. Suppose, for example, that, with
n D 10, the observed measurements x1; : : : ; xn are

77.01, 71.37, 77.15, 79.89, 76.46, 78.10, 77.18, 74.08, 75.88, 72.63 .

A common-sense estimate (a number) for � is the sample mean

Nx D x1 C � � � C xn

n
D 75:975 : (5.1)

Note that the estimate Nx is a function of the data x D .x1; : : : ; xn/ only. The
corresponding estimator (a random variable) is

NX D X1 C � � � CXn

n
:

To justify why Nx is a good estimate of �, imagine that we carry out the experiment
and the estimation tomorrow, obtaining the (random) sample mean NX as our guess
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for �. From the affine transformation property of the normal distribution (see
Theorem 3.6) we see that NX � N.�; �2=n/. Hence, NX is an unbiased estimator ☞ 85

for �—it is in expectation equal to the unknown �. Moreover, for large n, the
variance of NX tends to zero, implying that NX gets closer to � as the sample size
n is increased. To specify exactly how close NX is to � one needs to estimate also
�2, which is discussed in the next section.

Remark 5.1 (Notation). It is customary in statistics to denote the estimate of a
parameter � byb�; for example,b� D Nx in the example above. The same notation,b� ,
is often also used for the corresponding (random) estimator. It should be clear from
the context which meaning is used.

Three systematic approaches to constructing good estimators are the maximum
likelihood method, the method of moments, and least-squares minimization. Max-
imum likelihood estimation is the most powerful of the three and is based on the
concept of the likelihood function, which plays a central role in statistics. The
whole of Chap. 6 is devoted to likelihood methods. In particular, Sect. 6.3 deals ☞ 172

with maximum likelihood estimation. The other two estimation procedures are
described next.

5.1.1 Method of Moments

Suppose x1; : : : ; xn are outcomes from an iid sample X1; : : : ; Xn �iid f .xI�/,
where � D .�1; : : : ; �k/ is unknown. The moments of the sampling distribution ☞ 32

can be easily estimated. Namely, if X � f .xI�/, then the r th moment of X , that
is, �r.�/ D E�X

r (assuming it exists), can be estimated through the sample rth
moment

mr D 1

n

n
X

iD1
xri :

The method of moments involves choosing the estimate b� of � such that each of
the first k sample moments is matched with the true moments; that is,

mr D �r.b�/; r D 1; 2; : : : ; k :

In general, this gives a set of nonlinear equations, and so its solution often has to be
found numerically. In the following examples, however, the solution can be obtained
analytically.

Example 5.3 (Sample Mean and Sample Variance). Suppose that the data are
given by X D .X1; : : : ; Xn/

>, where the fXig form an iid sample from a general
distribution with mean � and variance �2 < 1. Matching the first moment gives
the equation
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1

n

n
X

iD1
xi D b� ; (5.2)

which yields the sample mean b� D Nx (already introduced in Example 5.2) as the
method of moments estimate for�. Matching the second moment, EX2 D .EX/2C
Var.X/, gives the equation

1

n

n
X

iD1
x2i D .b�/2 C b�2 : (5.3)

The method of moments estimate for �2 is therefore

b�2 D 1

n

n
X

iD1
x2i � . Nx/2 D 1

n

n
X

iD1
.xi � Nx/2 : (5.4)

The corresponding estimator turns out to be biased:

Eb�2 D EX2 � E. NX/2 D Var.X/C .EX/2 � .Var. NX/C .E NX/2/

D �2 C �2 � �2=n� �2 D n � 1

n
�2 :

By multiplying b�2 with n=.n� 1/ we obtain an unbiased estimator of �2, called the
sample variance, often denoted by S2:

S2 D b�2
n

n � 1
D 1

n � 1

n
X

iD1
.Xi � NX/2 : (5.5)

The square root of the sample variance S D p
S2 is called the sample standard

deviation.

The method of moments can also be used to estimate parameters of iid random
vectors, as illustrated in the following example.

Example 5.4 (Sample Correlation Coefficient). Let .X1; Y1/; : : : ; .Xn; Yn/ be
independent copies of a random vector .X; Y / with unknown correlation coefficient☞ 76

% D %.X; Y /. Think of iid samples from a bivariate normal distribution. We can
estimate % by using the same “moment matching” ideas as in the 1-dimensional
case. In particular, write

% D EŒXY � � �X �Y

�X �Y
; (5.6)

where �X and �Y are the expectations of X and Y , respectively, and �X and �Y are
the standard deviations of X and Y , respectively. We can estimate these parameters
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via the corresponding moment estimators, as discussed above. Moreover, we can
estimate EŒXY � via the moment estimator

1

n

n
X

iD1
XiYi :

Hence, we can estimate the numerator of (5.6) as

1

n

n
X

iD1
XiYi � NX NY D 1

n

n
X

iD1
.Xi � NX/.Yi � NY / :

This leads to the following estimator of %:

Pn
iD1.Xi � NX/.Yi � NY /

q

Pn
iD1.Xi � NX/2

q

Pn
iD1.Yi � NY /2

; (5.7)

which is called the sample correlation coefficient.

5.1.2 Least-Squares Estimation

Least-squares estimation is a simple estimation technique that is particularly useful
in regression analysis. In particular, consider the normal linear model (4.23) ☞ 115

Y D Xˇ C " ; " � N.0; �2I / ;

where the n � m design matrix X D .xij / is known, but the parameters ˇ D
.ˇ1; : : : ; ˇm/

> and �2 need to be estimated from an outcome y D .y1; : : : ; yn/
>

of Y. We assume that n > m; that is, there are at least as many observations as
model parameters. The main idea is illustrated in Fig. 5.1: choose the estimate bˇ
of ˇ such that the (Euclidean) distance between Xbˇ and the observed data y is as
small as possible.

y

X

Xβ

Xβ

Fig. 5.1 Xbˇ is the orthogonal projection of y onto the linear space spanned by the columns of the
design matrix X
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In other words, we seek to minimize ky � Xˇk with respect to ˇ. This is
equivalent to minimizing the squared distance

ky �Xˇk2 D
n
X

iD1
.yi �

m
X

jD1
xij ˇj /

2 : (5.8)

To find the optimal ˇ1; : : : ; ˇm we take the derivative of (5.8) with respect to each
ˇk; k D 1; : : : ; m and set it equal to 0. This leads to the set of linear equations

@
Pn

iD1.yi �Pm
jD1 xij ˇj /2

@̌ k

D �
n
X

iD1




2.yi�
m
X

jD1
xij ˇj /xik



D 0 ; k D 1; : : : ; m ;

which can be written in matrix notation as

X>Xˇ D X>y : (5.9)

These are the so-called normal equations. The rank ofX is the number of linearly
independent columns (recall that we assume that the number of columns is less than
the number of rows). If X is of full rank (i.e., none of the columns can be expressed
as a linear combination of the other columns), then X>X is invertible. In that case,

bˇ D .X>X/�1X>y : (5.10)

Note that the matrixP D X.X>X/�1X> is the projection matrix onto the subspace
hXi spanned by the columns of X—and hence Xbˇ D P y. Namely, P maps each
vector in hXi to itself, because PX D X ; and P maps any vector v perpendicular
to hXi to 0, because X>v D 0. The m � n matrix

XC D .X>X/�1X>

is called the (right) pseudo-inverse ofX , becauseXCX D Im—them-dimensional
identity matrix. We thus have

bˇ D XCy : (5.11)

Let "i D Yi � .Xˇ/i be the i th component of ". Note that the f"ig form an iid
sample from the N.0; �2/ distribution. To obtain the method of moments estimate of
�2, we match the second moment of " � N.0; �2/ to its sample average

1

n

n
X

iD1
.Yi � .Xbˇ/i /2 ;
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where we have plugged in the least-squares estimate bˇ for ˇ. The estimated errors
ui D Yi � .Xbˇ/i ; i D 1; : : : ; n are called the residuals. Simplifying the above
expression using vector notation, we obtain the estimator

b�2 D kY �Xbˇk2
n

D kuk2
n

; (5.12)

where u D .u1; : : : ; un/> is the vector of residuals.

Example 5.5 (Simple Linear Regression). For the simple linear regression case
we have a design matrix

X D .1 x/ D

0

B

B

B

@

1 x1
1 x2
:::
:::

1 xn

1

C

C

C

A

;

and a parameter vector ˇ D .ˇ0; ˇ1/
>. The least-squares estimator of ˇ is

given by

bˇ D .X>X/�1X>Y D
 

n
Pn

iD1 xi
Pn

iD1 xi
Pn

iD1 x2i

!�1  Pn
iD1 Yi

Pn
iD1 xi Yi

!

:

It is straightforward to write this out to obtain explicit expressions for bˇ0 and bˇ1
(see Problem 5.10), but in practice it is easier to simply solve the normal equations
(5.10) numerically. The estimator for �2 is

b�2 D 1

n
kY � Xbˇk2 D 1

n

n
X

iD1
.Yi � bˇ0 � bˇ1 xi /

2 :

By taking the square root of the above expression, one obtains a natural estimator
for � .

The following MATLAB program draws N D 100 samples from a simple
linear regression model with parameters ˇ D .6; 13/> and � D 2, where the
x-coordinates are evenly spaced on the interval Œ0; 1�. The parameters are estimated
in the last two lines of the program. An important thing to keep in mind when
solving linear equations is that one should avoid computing costly inverses. In
particular, an equation such as Ax D b should never be solved numerically via
x D A�1b. Instead, use MATLAB’s syntax x D A n b, as in the second-last
line of code below. Typical estimates for ˇ and � are b� D .6:3; 12:2/> and
b� D 1:86.
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%linregest.m
N = 100; x = ( (1:N)/N )’;
beta = [6;13]; sigma = 2; % parameters
X = [ones(N,1),x]; % design matrix
y = X*beta + sigma*randn(N,1); % draw the data
plot(x,y,’.’); % plot the data
betahat = X’*X\(X’*y) % solve the normal equations
sigmahat = norm(y - X*betahat)/sqrt(N) % estimate for sigma

5.2 Confidence Intervals

An essential part of any estimation procedure is to provide an assessment of the
accuracy of the estimate. Indeed, without information on its accuracy, the estimate
itself would be meaningless. Confidence intervals (sometimes called interval
estimates) provide a precise way of describing the uncertainty in the estimate. In
Sect. 6.3.1 we will discuss a systematic approach for constructing (approximate)☞ 174

confidence intervals, based on the likelihood concept. The bootstrap method (see☞ 203

Sect. 7.3) provides another useful way to construct confidence intervals. The
analogue of a confidence interval in Bayesian statistics is the credible interval;
see Example 8.1.☞ 228

Definition 5.1. (Confidence Interval). Let X1; : : : ; Xn be random variables
with a joint distribution depending on a parameter � 2 
. Let T1 < T2 be
functions of the data but not of � . The random interval .T1; T2/ is called a
stochastic confidence interval for � with confidence 1 � ˛ if

P� .T1 < � < T2/ � 1 � ˛ for all � 2 
 : (5.13)

If t1 and t2 are the observed values of T1 and T2, then the interval .t1; t2/ is
called the numerical confidence interval for � with confidence 1� ˛.

If (5.13) only holds approximately, the interval is called an approximate
confidence interval. The probability P� .T1 < � < T2/ is called the coverage
probability. The subscript � in P� indicates that the joint distribution ofX1; : : : ; Xn
depends on � . The coverage probability for an exact 1�˛ confidence interval is, by
definition, at least 1�˛ for every � . For approximate 1�˛ confidence intervals the
actual coverage probability could well be less than 1 � ˛ for certain choices of � .
An example is given in Problem 5.22.
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Remark 5.2. Reducing ˛ widens the confidence interval. A very large confidence
interval is not very useful. Common choices for ˛ are 0:01; 0:05, and 0:1.

We next describe a simple approach to constructing exact or approximate
confidence intervals that uses a so-called pivot variable T D T .X; �/, which is
a function of the data X and of the parameter of interest � , and for which the
distribution is known (sometimes only approximately) and does not depend on
� . The construction depends on specific quantiles of the pivot distribution. For
� 2 .0; 1/, the � -quantile of a distribution with cdf F is a number z� for which
F.z� / D � or, equivalently, z� D F�1.�/. Numerical values for quantiles of various
distributions can be obtained in MATLAB via the icdf (inverse cdf) function of the
Statistics Toolbox or alternatively by using the icumdf function in Appendix A.9. ☞ 365

In general, constructing a confidence interval using a pivot variable involves the
following steps.

Steps in the Pivot Method

1. Formulate a statistical model for the data X.
2. Choose an appropriate pivot variable T .X; �/.
3. Determine the (approximate) distribution of the pivot.
4. Calculate quantiles q1 and q2 for the (approximate) pivot distribution such

that P.q1 < T .X; �/ < q2/ D 1 � ˛.
5. Rearrange the event fq1 < T .X; �/ < q2g into fT1 < � < T2g and return
.T1; T2/ as an (approximate) stochastic 1 � ˛ confidence interval for � .

Remark 5.3. For a one-sided confidence interval, such as .T;1/ or .c; T /, where c
is fixed, only a single quantile needs to be calculated in Step 4.

Example 5.6 (Confidence Interval for Iid Normal Data). SupposeX1; : : : ; Xn �iid

N.�; 1/. We have seen that we can estimate � with the sample mean NX . Here,
NX � N.�; 1=n/, so T D . NX � �/n1=2 � N.0; 1/. Since T depends only on � and

the data, and has a distribution which does not depend on �, we can use it as a pivot
variable. To construct a 95% confidence interval (hence ˛ D 0:05) we consider the
1� ˛=2 D 0:975- and ˛=2 D 0:025-quantiles of the N.0; 1/ distribution, which are
1:96 and �1:96, respectively. Hence, P.�1:96 < T < 1:96/ D 0:95. Rearranging
f�1:96 < . NX ��/n1=2 < 1:96g into f NX �1:96 n�1=2 < � < NXC1:96 n�1=2g gives
the 0.95 stochastic confidence interval . NX�1:96 n�1=2; NXC1:96 n�1=2/, sometimes
written as NX˙1:96 n�1=2. Thus, if we would repeat the experiment many times, and
get many outcomes of the interval NX ˙ 1:96 n�1=2, the true � would be contained
in these intervals in 95 % of the cases.

The remainder of this section is about the construction of (approximate) confi-
dence intervals for a number of standard situations, using appropriate pivots.
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5.2.1 Iid Data: Approximate Confidence Interval for �

Let X1; : : : ; Xn be an iid sample from a distribution with mean � and variance
�2 < 1 (both assumed to be unknown). By the central limit theorem the sample☞ 90

mean NX has approximately a N.�; �2=n/ distribution, so . NX � �/=.�=
p
n/ has

approximately a standard normal distribution. However, this is not yet a pivot
variable for �, because it still depends on the unknown standard deviation � . This
can be remedied by substituting � with the sample standard deviation SX , which, by
the law of large numbers, will be close to � for large n. This gives the pivot variable☞ 89

T D
NX � �
SX=

p
n

approx:� N.0; 1/ : (5.14)

For � 2 .0; 1/, let z� denote the � -quantile of the standard normal distribution.
Rearranging the approximate equality P.jT j < z1�˛=2/ � 1 � ˛ yields

P

�

NX � z1�˛=2
SXp
n
< � < NX C z1�˛=2

SXp
n

�

� 1 � ˛ ;

so that
�

NX � z1�˛=2
SXp
n
; NX C z1�˛=2

SXp
n

�

; (5.15)

abbreviated as NX ˙ z1�˛=2SX=
p
n, is an approximate stochastic 1 � ˛ confidence

interval for �.
Since (5.15) is only an asymptotic result, care should be taken when applying it

to cases where the sample size is small or moderate and the sampling distribution is
heavily skewed.

Example 5.7 (Monte Carlo Integration). In Monte Carlo integration, random
sampling is used to evaluate complicated integrals. Consider, for example, the
integral

� D
Z 1

�1

Z 1

�1

Z 1

�1

p

jz1 C z2 C z3j e�.z21Cz22Cz23/=2 dz1 dz2 dz3 :

DefiningX D jZ1 CZ2 CZ3j1=2.2�/3=2, with Z1;Z2;Z3
iid� N.0; 1/, we can write

� D EX . In the following MATLAB program we generate an iid sample of N D 106

copies of X and estimate � via the corresponding sample mean. A typical outcome
is Nx D 17:04 with a 95% confidence interval .17:026; 17:054/.

%mcint.m
c = (2*pi)^(3/2); N = 10^6;
H = @(z) c*sqrt(abs(sum(z,2)));
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Z = randn(N,3); X = H(Z);
mX = mean(X); sX = std(X);
R = 1.96*sX/sqrt(N);
fprintf(’Estimate = %g, CI = (%g, %g)\n’, mX, mX - R, mX + R)

5.2.2 Normal Data: Confidence Intervals for � and � 2

For the standard model X1; : : : ; Xn �iid N.�; �2/ it is possible to construct exact
confidence intervals for both � and �2, based on the following result.

Theorem 5.1. (t and �2 Statistics for Normal Data). Let Y1; : : : ;

Yn �iid N.0; 1/ and let NY and S2Y be the sample mean and sample variance.
Then, NYp

n � N.0; 1/ and .n � 1/S2Y � �2n�1, independently. Moreover,

T D
NYp

n

SY
� tn�1 : (5.16)

Proof. By the linearity property of the normal distribution (see Theorem 3.6), we ☞ 85

have NYp
n � N.0; 1/. Let Y D .Y1; : : : ; Yn/

>, and let Y1 D NY 1 be the orthogonal
projection of Y onto 1 D .1; : : : ; 1/>. By Theorem 3.10, kY1k2 D n NY 2 is ☞ 88

independent of kY � Y1k2 D .n � 1/S2Y , and kY � Y1k2 � �2n�1. The result now
follows from Corollary 3.2. ut ☞ 89

To obtain a stochastic confidence for � we take the same pivot as in (5.14).
Defining Yi D .Xi � �/=� , i D 1; : : : ; n, we can write

T D
NX � �

SX=
p
n

D
NYp
n

SY
; (5.17)

where the fYig form an iid sample from the standard normal distribution. By
Theorem 5.1, T has a Student’s t distribution with n � 1 degrees of freedom.
We now rearrange, similar to what was done in Sect. 5.2.1, the equality P.jT j <
tn�1I1�˛=2/ D 1�˛, where tn�1I1�˛=2 is the 1�˛=2 quantile of the tn�1 distribution, ☞ 365

to find an exact confidence interval for �:

NX ˙ tn�1I1�˛=2
SXp
n
: (5.18)
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To obtain an exact confidence interval for �2, we can use the pivot

.n � 1/S2X
�2

D .n � 1/S2Y ;

which by Theorem 5.1 has a �2n�1 distribution. Note that the corresponding pdf is☞ 48

not symmetric. Let �2nI� be � -quantile of the �2n distribution. Then,

P

�

�2n�1I˛=2 <
.n � 1/S2X

�2
< �2n�1I1�˛=2

�

D 1 � ˛ :

Rearranging gives:

P

 

.n � 1/S2X
�2n�1I1�˛=2

< �2 <
.n� 1/S2X

�2n�1I˛=2

!

D 1 � ˛ :

Hence, a .1 � ˛/ stochastic confidence interval for �2 is

 

.n� 1/S2X

�2n�1I1�˛=2
;
.n � 1/S2X

�2n�1I˛=2

!

: (5.19)

Example 5.8 (Monte Carlo Experiment for Confidence Intervals). The follow-
ing MATLAB program draws an iid sample of size n D 10 from the N.3; 0:25/
distribution. It then determines 95 % confidence intervals for � and �2 and checks if
the true values are contained in the intervals or not. This is repeated independently
100 times and the total number of times that � and �2 are contained in the
confidence intervals is reported. The quantiles for the t and �2 distributions are
determined here via the inverse cdf function icdf from the MATLAB Statistics
Toolbox. If the Statistics Toolbox is not available, one can replace icdf by icumdf
introduced in Appendix A.9. The values are tq D 2:2622, cq1 D 19:0228, and☞ 365

cq2 D 2:7004. A typical estimate of� isb� D 3:22, with a 95 % confidence interval
.3:02; 3:41/. For �2 a typical estimate is b�2 D 0:0761, with a 95 % confidence
interval .0:0360; 0:2535/. In this case only the second confidence interval contains
the true parameter. However, out of the 100 confidence intervals, typically only 95
contain the true parameter.

%confintnorm.m
mu = 3; sig = 0.5; %true parameters
alpha = 0.05; n = 10; mu_count = 0; sig_count = 0;
for k = 1:100

x = mu + randn(n,1)*sig; %draw the iid sample
mu_est = mean(x); %estimate mu
sig_est = std(x); %estimate sigma
tq = icdf(’t’,1-alpha/2,n-1);
mu_lo = mu_est - tq*sig_est/sqrt(n); %low bound CI for mu
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mu_hi = mu_est + tq*sig_est/sqrt(n); %upper bound
cq1 = icdf(’chi2’,1-alpha/2,n-1);
cq2 = icdf(’chi2’,alpha/2,n-1);
sig_lo = (n-1)*sig_est^2/cq1; %lower bound CI for sigma
sig_hi = (n-1)*sig_est^2/cq2; %upper bound
mu_count = mu_count + (mu > mu_lo & mu < mu_hi);
sig_count = sig_count + (sig^2>sig_lo & sig^2<sig_hi);

end
disp([mu_count, sig_count]) % final counts

5.2.3 Two Normal Samples: Confidence Intervals
for �X ��Y and � 2

X
=� 2
Y

Suppose we have two independent samples X1; : : : ; Xm and Y1; : : : ; Yn from,
respectively, a N.�X ; �

2
X/ and N.�Y ; �

2
Y / distribution. We wish to make confidence

intervals for �X � �Y and �2X=�
2
Y . The difference �X � �Y tells us how the two

means relate to each other, and �2X=�
2
Y gives an indication how the variances relate

to each other.
Constructing a confidence interval for �X ��Y is very similar to the one-sample

case provided that we make the extra model assumption that the variances of the two
samples are the same. That is, we assume that �2X D �2Y D �2 for some unknown
�2. The analysis now proceeds as follows. The natural estimator for �X � �Y is
NX � NY . Next, observe that

. NX � NY /� .�X � �Y /

�
p

1=mC 1=n
� N.0; 1/ :

If �2 is unknown, we must replace it with an appropriate estimator in order to obtain
a pivot variable for �. For this we will use the pooled sample variance, S2p, which
is defined as

S2p D .m � 1/S2X C .n � 1/S2Y
mC n � 2

; (5.20)

where S2X and S2Y are the sample variances for the fXig and fYig, respectively. It is
not difficult to show that S2p is an unbiased estimator of �2; see Problem 5.9. The
following result is the analogue of Theorem 5.1 and is proved in Appendix B.5. ☞ 371



134 5 Statistical Inference

Theorem 5.2. (t Statistic for Two Normal Samples). Let the random
variables X1; : : : ; Xn; Y1; : : : ; Ym be defined as above; then

T D . NX � NY /� .�X � �Y /

Sp

q

1
m

C 1
n

� tmCn�2 :

Using the pivot T , we find (completely analogously to the one-sample case) the
following 1 � ˛ stochastic confidence interval for �X � �Y :

NX � NY ˙ tmCn�2I1�˛=2 Sp
r

1

m
C 1

n
: (5.21)

If the assumption �2X D �2Y is dropped, the pivot method no longer provides
the means to obtain an exact confidence interval for �X ��Y , although it is easy to
construct approximate confidence intervals for large sample sizes; see Problem 5.15.

Next, we turn our attention to a confidence interval for �2X=�
2
Y . Here, we can

employ the pivot

S2X=�
2
X

S2Y =�
2
Y

� F.m � 1; n � 1/ :

To see that this pivot has the mentioned F distribution, first observe that, by
Theorem 5.1, .m � 1/S2X=�

2
X � �2m�1 and .n � 1/S2Y =�

2
Y � �2n�1, and then apply

Theorem 3.11.☞ 88

Let Fm;nI� denote the � quantile of the F.m; n/ distribution. Then,

P

�

Fm�1;n�1I˛=2 <
S2X=�

2
X

S2Y =�
2
Y

< Fm�1;n�1I1�˛=2
�

D 1 � ˛ :

Rearranging gives the following .1 � ˛/ stochastic confidence interval for �2X=�
2
Y :

�

1

Fm�1;n�1I1�˛=2
S2X
S2Y
;

1

Fm�1;n�1I˛=2
S2X
S2Y

�

: (5.22)

Example 5.9 (Two-Sample t Test). A study of iron deficiency among infants
compared breast-fed with formula-fed babies. A sample of 25 breast-fed infants
gave a mean blood hemoglobin level of 13.3 and a standard deviation of 1.4, while
a sample of 21 formula-fed infants gave a mean and standard deviation of 12.4 and
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2.0, respectively. Assuming the hemoglobin levels are normally distributed, is there
statistical evidence that the mean hemoglobin levels of the two groups are different?

Let the hemoglobin levels for the breast-fed and formula-fed babies be
X1; : : : ; X25 �iid N.�X ; �

2
X/ and Y1; : : : ; Y21 �iid N.�Y ; �

2
Y /, respectively. The

samples are assumed to be independent of each other. A 95% numerical confidence
interval for �2X=�

2
Y is

�

1

2:40756

1:42

2:02
;

1

0:42969

1:42

2:02

�

D .0:2035; 1:1404/ :

Because 1 is an element of this interval, there is no reason to believe that �2X is
different from �2Y . We thus assume that the two variances are equal, which allows us
to apply (5.21). The pooled sample variance is s2p D .24.1:4/2 C 20.2:0/2/=44 D
2:8873, and the 0.975 quantile of the t44 distribution is 2:0154, so that a 95%
confidence interval for �X � �Y is

13:3� 12:4˙ 2:0154
p
2:8873

p

1=25C 1=21 D .�0:11; 1:91/ ;

which contains 0. Hence, on the basis of these data and the assumptions of normality,
there is no ground to believe that the expected hemoglobin levels are different for
the two groups.

5.2.4 Binomial Data: Approximate Confidence Intervals
for Proportions

Suppose we have an outcome x of a random variableX with a Bin.n; p/ distribution.
We wish to construct a confidence interval for p. In fact, it is not so easy to find
an exact confidence interval for p, so we settle for an approximate one. For large
n, X has approximately a N.np; np.1 � p// distribution; see (3.7). The natural ☞ 92

estimator for p, that is, bp D X=n, has therefore approximately a N.p; p.1� p/=n/
distribution. Thus, using the pivot .bp � p/=

p

p.1 � p/=n, we have

P

 

�z1�˛=2 <
bp � p

p

p.1 � p/=n
< z1�˛=2

!

� 1 � ˛ ;

where z1�˛=2 is the 1�˛=2 quantile of the standard normal distribution. Rearranging
gives

P

 

bp � z1�˛=2

r

p.1 � p/

n
< p < bp C z1�˛=2

r

p.1 � p/

n

!

� 1 � ˛ :
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This would suggest that we take bp ˙ z1�˛=2
q

p.1�p/
n

as an approximate 1 � ˛

confidence interval for p, were it not for the fact that the bounds still contain the
unknown p. However, for large n the estimator bp is close to the real p, so that we
may replace p with bp under the square roots in the expression above. Hence, an
approximate 1 � ˛ confidence interval for p is

bp ˙ z1�˛=2

r

bp.1� bp/

n
: (5.23)

Example 5.10 (Approximate Confidence Interval for Proportion). In an opinion
poll of 1000 registered voters, 227 voters say they will vote for the Honest party. We
wish to find a 95 % approximate confidence interval for the proportion p of Honest
voters of the total population. We hereto view the datum, 227, as the outcome of a
random variableX (the number of Honest voters out of 1000 registered voters) with
a Bin.1000; p/ distribution. We have bp D 227=1000D 0:227, and z0:975 D 1:96, so
that an approximate 95 % numerical confidence interval for p is

0:227˙ 1:96 � 0:0132 D .0:20; 0:25/ :

The same methodology can be used to construct approximate confidence inter-
vals for the difference between two proportions. In particular, consider outcomes x
and y of two independent random variables X � Bin.m; pX/ and Y � Bin.n; pY /.
We wish to construct an approximate confidence interval for pX � pY . The
corresponding estimator is bpX � bpY D X=m�Y=n. As in the one-sample case, for
m and n sufficiently large,

P

0

B

@�z1�˛=2 <
bpX � bpY � .pX � pY /
q

pX .1�pX /
m

C pY .1�pY /
n

< z1�˛=2

1

C

A � 1 � ˛ :

Rewriting this gives

P

�

bpX � bpY � z1�˛=2

r

pX.1 � pX/
m

C pY .1 � pY /

n
< pX � pY

< bpX � bpY C z1�˛=2

r

pX.1 � pX/
m

C pY .1 � pY /

n

�

� 1 � ˛ :

By substituting pX and pY with their estimators, we obtain the following
approximate 1 � ˛ confidence interval for pX � pY :

bpX � bpY ˙ z1�˛=2

r

bpX.1 � bpX/

m
C bpY .1 � bpY /

n
: (5.24)
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Example 5.11 (Approximate Confidence Interval for the Difference of Two
Proportions). Two groups of men and women are asked whether they would buy
Happy or Fun cola, if they were forced to choose between the two. The results are
given in Table 5.1.

Table 5.1 Counts of men and women preferring Happy or Fun cola

Men Women

Happy 55 60
Fun 105 132

The observed proportions of Happy cola drinkers among the men and women are
55=160 D 34:4% and 60=192 D 31:3%, respectively. Is this difference statistically
significant or due to chance?

We view the data as outcomes of a two-sample binomial model. Specifically,
let X be the number of Happy cola drinkers among 160 men and Y the number
of Happy cola drinkers among 192 women. We assume that X � Bin.160; pX/
and Y � Bin.192; pY / are independent. To assess the difference between the true
proportionspX and pY , we simply evaluate the numerical confidence interval of the
form (5.24). We have bpX D 0:344, bpY D 0:313, and z0:975 D 1:96, so that a 95%
numerical confidence interval for pX � pY is

0:031˙ 0:099 D .�0:07; 0:13/ :

This interval contains 0, so there is no evidence that men and women differ in their
preference for the two brands of cola.

5.2.5 Confidence Intervals for the Normal Linear Model

Consider the normal linear model

Y D Xˇ C "; " � N.0; �2I / ;

where X is an n � m matrix (m < n) of full rank m—thus, the columns of X are
linearly independent and, as a consequence, the matrix X>X has an inverse.

We saw in Sect. 5.1.2 that the parameter vector ˇ can be estimated via the ☞ 125

estimator

bˇ D XCY D .X>X/�1X>Y :
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Since the random vector bˇ is a linear transformation of a normal random vector,
it has a multivariate normal distribution. The mean vector and covariance matrix
follow from Theorem 3.4:☞ 80

Ebˇ D .X>X/�1X>
EY D .X>X/�1X>Xˇ D ˇ

and

˙
bˇ

D .X>X/�1X>�2I..X>X/�1X>/> D �2.X>X/�1 :

Let a be anym-dimensional vector. A natural estimator for � D a>ˇ isb� D a>
bˇ.

The following theorem gives an exact confidence interval for � .

Theorem 5.3. (Confidence Interval for Normal Linear Model). A 1 � ˛

stochastic confidence interval for � D a>ˇ is

b� ˙ tn�mI1�˛=2
kY � Xbˇkpa>.X>X/�1ap

n �m ; (5.25)

where tn�mI1�˛=2 is the 1 � ˛=2 quantile of the tn�m distribution.

Proof. Being linear in the components of ˇ, the random variable b� D a>
bˇ has a

normal distribution, with expectation a>ˇ D � and variance �2a>.X>X/�1a. Let

b�2 D kY � Ymk2
n

;

with Ym D Xbˇ, be the least-squares estimator of �2. The random variable kY �
Ymk2=�2 has, by Theorem 3.10, a �2n�m distribution and is independent of Ym.☞ 88

Sincebˇ D XCXbˇ D XCYm, we have that kY � Ymk2 is independent ofbˇ. Using
Corollary 3.2, we see that the pivot☞ 89

T D .b� � �/=pa>.X>X/�1a
q

kY �Xbˇk2=.n�m/

has a tn�m distribution. By rearranging the identity P.jT j < tn�mI1�˛=2/ D 1 � ˛ in
the usual way, we arrive at the confidence interval (5.25). �
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Example 5.12 (Confidence Limits in Simple Linear Regression). We continue
Example 5.5 by including confidence intervals, .l.x/; u.x// say, of the parameter ☞ 127

�.x/ D ˇ0 C ˇ1x, for various x. The points u.x/; x 2 Œ0; 1� form an upper
confidence curve for the regression line y D ˇ0 C ˇ1x; and l.x/ gives the lower
confidence curve. The following MATLAB code, to be appended to the code in
Example 5.5, implements (5.25) and yields a plot of the true regression line and
confidence curves similar to Fig. 5.2.

% linregestconf.m
tquant = icdf(’t’,0.975,N-2) % 0.975 quantile
ucl = zeros(1,N), lcl = zeros(1,N); % upper/lower conf. limits
rl = zeros(1,N); % (true) regression line
u=0;
for i=1:N

u = u + 1/N;
a = [1;u];
rl(i) = a’*beta;
ucl(i) = a’*betahat + tquant*norm(y - X*betahat)* ...

sqrt(a’*inv(X’*X)*a)/sqrt(N-2);
lcl(i) = a’*betahat - tquant*norm(y - X*betahat)* ...

sqrt(a’*inv(X’*X)*a)/sqrt(N-2);
end
hold on
plot(x,rl), plot(x,ucl), plot(x,lcl)
hold off

0 0.2 0.4 0.6 0.8 1
0
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25

True regression line y = ¯0+¯1x

Fig. 5.2 The true regression line (solid) and the upper and lower 95% confidence curves
(dashed)



140 5 Statistical Inference

5.3 Hypothesis Testing

Hypothesis testing involves making decisions about certain hypotheses on the basis
of the observed data. In many cases we have to decide whether the observations are
due to “chance” or due to an “effect.” Hypothesis testing has traditionally played a
prominent role in statistics, and many introductory books still are predominantly
about hypothesis testing. Modern statistical analyses, however, especially those
based on computer-intensive methods, do not so heavily rely on hypothesis testing
anymore, preferring, for example, inference via confidence intervals to inference
based on hypothesis tests. In Bayesian statistics hypothesis testing is done in
a different way, via Bayes factors. We will address the main ideas of classical☞ 252

hypothesis testing in this section.
Suppose the model for the data X is described by a family of probability

distributions that depend on a parameter � 2 
. The aim of hypothesis testing is
to decide, on the basis of the observed data x, which of two competing hypotheses,
H0 W � 2 
0 (the null hypothesis) and H1 W � 2 
1 (the alternative hypothesis),
holds true, where
0 and
1 are subsets of the parameter space
. Traditionally, the
null hypothesis and alternative hypothesis do not play equivalent roles.H0 contains
the “status quo” statement and is only rejected if the observed data are very unlikely
to have happened underH0.

The decision whether to reject H0 or not is dependent on the outcome of a
test statistic T D T.X/. For simplicity, we discuss only the one-dimensional case
T � T .

The p-value is the probability that under H0 the (random) test statistic takes a
value as extreme as or more extreme than the one observed. Let t be the observed
outcome of the test statistic T . We consider three types of tests:

• Left one-sided test. Here H0 is rejected for small values of t , and the p-value is
defined as p D PH0.T � t/.

• Right one-sided test: Here H0 is rejected for large values of t , and the p-value
is defined as p D PH0.T � t/,

• Two-sided test: In this test H0 is rejected for small or large values of t , and the
p-value is defined as p D minf2PH0.T � t/; 2PH0.T � t/g.

The smaller thep-value, the greater the strength of the evidence againstH0 provided
by the data. As a rule of thumb:

p < 0:10 suggestive evidence,
p < 0:05 reasonable evidence,
p < 0:01 strong evidence.

The following decision rule is generally used to decide betweenH0 andH1:

Decision rule: Reject H0 if the p-value is smaller than some p0.



5.3 Hypothesis Testing 141

In general, a statistical test involves the following steps.

Steps for a Statistical Test

1. Formulate a statistical model for the data.
2. Give the null and alternative hypotheses (H0 andH1).
3. Choose an appropriate test statistic.
4. Determine the distribution of the test statistic underH0.
5. Evaluate the outcome of the test statistic.
6. Calculate the p-value.
7. Accept or rejectH0 based on the p-value.

Choosing an appropriate test statistic is akin to selecting a good estimator for
the unknown parameter � . The test statistic should summarize the information
about � and make it possible to distinguish between the alternative hypotheses. The
likelihood ratio test provides a systematic approach to constructing powerful test
statistics; see Sect. 6.4. ☞ 178

Example 5.13 (Blood Pressure). Suppose the systolic blood pressure for white
males aged 35–44 is known to be normally distributed with expectation 127 and
standard deviation 7. A paper in a public health journal considers a sample of 101
diabetic males and reports a sample mean of 130. Is this good evidence that diabetics
have on average a higher blood pressure than the general population?

To assess this, we could ask the question how likely it would be, if diabetics were
similar to the general population, that a sample of 101 diabetics would have a mean
blood pressure this far from 127.

Let us perform the seven steps of a statistical test. A reasonable model for the
data is X1; : : : ; X101 �iid N.�; 49/. Alternatively, the model could simply be NX �
N.�; 49=101/, since we only have an outcome of the sample mean of the blood
pressures. The null hypothesis (the status quo) is H0 W � D 127; the alternative
hypothesis is H1 W � > 127. We take NX as the test statistic. Note that we have a
right one-sided test here, because we would reject H0 for high values of NX . Under
H0 we have NX � N.12749=101/. The outcome of NX is 130, so that the p-value is
given by

P. NX � 130/ D P

 NX � 127
p

49=101
� 130� 127
p

49=101

!

D P.Z � 4:31/ D 8:16 � 10�6 ;

where Z � N.0; 1/. So it is extremely unlikely that the event f NX � 130g occurs if
the two groups are the same with regard to blood pressure. However, the event has
occurred. Therefore, there is strong evidence that the blood pressure of diabetics
differs from the general public.
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Example 5.14 (Loaded Die). We suspect a certain die to be loaded. Throw-
ing 100 times we observe 25 sixes. Is there enough evidence to justify our
suspicion?

We ask ourselves the same type of question as in the previous example: Suppose
that the die is fair. What is the probability that out of 100 tosses 25 or more sixes
would appear? To calculate this, let X be the number of sixes out of 100. Our model
is X � Bin.100; p/, with p unknown. We would like to show the hypothesis H1 W
p > 1=6; otherwise, we do not reject (accept) the null hypothesis H0 W p D 1=6.
Our test statistic is simply X . Under H0, X � Bin.1001=6/, so that the p-value for
this right one-sided test is

P.X � 25/ D
100
X

kD25

 

100

k

!

.1=6/k .5=6/100�k � 0:0217 :

This is quite small. Hence, we have reasonable evidence that the die is loaded.

5.3.1 ANOVA for the Normal Linear Model

Hypothesis testing for the normal linear model in Sect. 4.23 is often related to☞ 115

model selection. In particular, suppose we have the following model for the data
Y D .Y1; : : : ; Yn/

>:

Y D X1ˇ1 CX2ˇ2
„ ƒ‚ …

Xˇ

C"; " � N.0; �2I / ; (5.26)

where ˇ1 and ˇ2 are unknown vectors of dimension k and m� k, respectively; and
X1 and X2 are full-rank design matrices of dimensions n � k and n � .m � k/,
respectively. Above we implicitly defined X D .X1;X2/ and ˇ> D .ˇ>

1 ;ˇ
>
2 /.

Suppose we wish to test the hypothesis H0 W ˇ2 D 0 against H1 W ˇ2 ¤ 0.
We saw in Sect. 5.1.2 how to estimate the parameters via least squares. Let bˇ be☞ 125

the estimate of ˇ under the full model, and let bˇ1 denote the estimate of ˇ1 for
the reduced model, that is, under H0. To simplify notation, let Ym D Xbˇ be the
projection of Y onto the space hXi spanned by the columns of X ; and let Yk D
X1bˇ1 be the projection of Y onto the space hX1i spanned by the columns ofX1 only.

A sensible strategy for deciding upon the reduced or full model is to compare
kY � Ykk with kY � Ymk via the quotient of the two. The larger this quotient, the
more evidence for the full model. It is more convenient to use instead the equivalent
statistic

T D n �m
m � k � kY � Ykk2 � kY � Ymk2

kY � Ymk2 D kYm � Ykk2=.m� k/

kY � Ymk2=.n�m/
; (5.27)

where we have used Pythagoras’ theorem in the second equation above, as
illustrated in Fig. 5.3.
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Y

O

X
X1

Yk

Ym

Ym − Yk

Y− Yk
Y− Ym

Fig. 5.3 Pythagoras’ theorem

Define X D Y=� with expectation� D Xˇ=� and Xj D Yj =� with expectation
�j , j D k;m. Note that � D �m, and underH0, �m D �k . We can directly apply
Theorem 3.10 to find that kY � Ymk2=�2 D kX � Xmk2 � �2n�m and, under H0, ☞ 88

kYm�Ykk2=�2 � �2m�k . Moreover, these random variables are independent of each
other. It follows from Theorem 3.11 that, underH0,

T � F.m � k; n �m/ :

We reject H0 for large values of T . The above methodology is often referred to as
analysis of variance (ANOVA).

Example 5.15 (Hypothesis Testing for Randomized Block Design). In a random-
ized block design the data are collected in blocks, in order to reduce variability in the
experiment. Consider, for example, the data in Table 5.2, representing the crop yield
using four different crop treatments (e.g., strengths of fertilizer) on four different
blocks (plots).

Table 5.2 Crop yield

Treatment

Block 1 2 3 4

1 9.2988 9.4978 9.7604 10.1025
2 8.2111 8.3387 8.5018 8.1942
3 9.0688 9.1284 9.3484 9.5086
4 8.2552 7.8999 8.4859 8.9485

Let us consider the data first as coming from four different groups, depending
only on the level of treatment. A possible model would be the single-factor ANOVA
model ☞ 112

Yik D �C ˛i C "ik; i; k D 1; : : : ; 4 ;
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with f"ikg �iid N.0; �2/, and
P4

iD1 ˛i D 0. Ordering the fYikg into a column vector
Y D .Y11; Y12; : : : Y14; Y21; : : : ; Y44/

>, we can write Y in the form (5.26):

Y D

0

B

B

@

1

1

1

1

1

C

C

A

„ƒ‚…

X1

�C

0

B

B

@

1 0 0

0 1 0

0 0 1

�1 �1 �1

1

C

C

A

„ ƒ‚ …

X2

0

@

˛1

˛2
˛3

1

A

„ƒ‚…

ˇ2

C " ;

where 1 and 0 are vectors of 1s and 0s, respectively. We wish to test whether the
treatments make a difference to the crop yield or not. The null hypothesis H0 W
˛1 D ˛2 D ˛3 D 0 is that the treatments have no effect. As a test statistic we use
(5.27). For the present model we have n D 16, m D 4, and k D 1. The squared
norm kY�Ymk2 D kY�Xbˇk2 is often written as SSerror, that is, the sum of squares
of the error terms. Note that kY � Xbˇk2=.n � m/ is an unbiased estimator of the
variance �2 of the model error.

Similarly, kYm � Ykk2 represents the sum of squares due to the treatment effect
and is written as SStreatment. Our test statistic T in (5.27) can thus be written as

T D SStreatment=.m � k/
SSerror=.n�m/

defD MStreatment

MSerror
;

where “MS” stands for “mean square.” Under H0 the test statistic T has an F.m �
k; n �m/ D F.3; 12/ distribution.

%solvehypotcrop1.m
yy = [9.2988, 9.4978, 9.7604, 10.1025;

8.2111, 8.3387, 8.5018, 8.1942;
9.0688, 9.1284, 9.3484, 9.5086;
8.2552, 7.8999, 8.4859, 8.9485];

n = numel(yy); [nrow,ncol] = size(yy); y = yy(:);
X_1 = ones(n,1);
KM = kron(eye(ncol),ones(nrow,1)); X_2 = KM(:,1:ncol-1);
X_2(n-nrow+1:n,:) = -ones(nrow,ncol-1);
X = [X_1 X_2];
m = size(X,2);
betahat = X’*X\(X’*y);
ym = X*betahat;
yk = X_1*mean(y); %omitting treatment effect
k=1; %number of parameters in reduced model
T = (n-m)/(m-k)*(norm(ym - yk)^2)/norm(y-ym)^2
pval = 1 - cdf(’F’,T,m-k,n-m)

The outcome of T is found to be 0:4724, which gives a p-value of 0:7072. This
suggests that the treatment does not have an effect on the crop yield. But what if the



5.3 Hypothesis Testing 145

crop yield is not only determined by the treatment levels but also by the blocks? To
investigate this, we could describe the data via a two-factor ANOVA model:

Yik D �C ˛i C k C "ik; i; k D 1; : : : ; 4 ;

with f"ikg �iid N.0; �2/, and
P4

iD1 ˛i D 0 and
P4

iD1 i D 0. Ordering the data in
the same way as for the one-factor case, we can write

Y D X1�CX2ˇ2 C

0

B

B

@

C

C

C

C

1

C

C

A

„ƒ‚…

X3

0

@

1
2
3

1

A

„ƒ‚…

ˇ3

C "; with C D

0

B

B

@

1 0 0

0 1 0

0 0 1

�1 �1 �1

1

C

C

A

;

and X1 and X2 are the same as in the one-factor case. We wish to test first if using
such an extended model (as opposed to the previous one-factor model) is justified.
In particular, we test if 1 D 0; : : : ; 4 D 0. We can use again a statistic of the form
(5.27). Now the vector Ym is the projection of Y onto the (m D 7)-dimensional
space spanned by the columns of X D .X1;X2;X3/; and Yk is the projection of Y
onto the (k D 4)-dimensional space spanned by the columns of X12 D .X1;X2/.
The test statistic (5.27), which we could write as

T12 D MSblocks

MSerror
;

has underH0 an F.3; 9/ distribution.
The MATLAB code below, which has to be appended to the first seven lines of

code for the one-factor case, calculates the outcome of the test statistic T12 and
the corresponding p-value. We find t12 D 34:9998, which gives a p-value 2:73 �
10�5. This shows that the block effects are extremely important for explaining the
data.

Using the extended model—thus with the block effects—we can again test
whether the f˛i g are all 0 or not. This is done in the last six lines of the code below.
The outcome of the test statistic is 4:4878, with a p-value of 0:0346. By including
the block effects, we effectively reduce the uncertainty in the model and are able to
more accurately assess the effects of the treatments, to conclude that the treatment
does seem to have an effect on the crop yield. A closer look at the data shows
that within each block (row) the crop yield roughly increases with the treatment
level.

%solvehypotcrop2.m
C = [eye(nrow-1), -ones(nrow-1,1)]’; X_3 = repmat(C,ncol,1);
X = [X_1 X_2 X_3];
m = size(X,2); %number of parameters in full model
betahat = X’*X\(X’*y); %estimate under the full model
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ym = X*betahat;
X_12 = [X_1 X_2]; %omitting the block effect
k = size(X_12, 2); %number of parameters in reduced model
betahat_12 = X_12’*X_12\(X_12’*y);
y_12 = X_12*betahat_12;
T_12=(n-m)/(m-k)*(norm(y-y_12)^2 - norm(y-ym)^2)/norm(y-ym)^2
pval_12 = 1 - cdf(’F’,T_12,m-k,n-m)
X_13 = [X_1 X_3]; %omitting the treatment effect
k = size(X_13, 2); %number of parameters in reduced model
betahat_13 = X_13’*X_13\(X_13’*y);
y_13 = X_13*betahat_13;
T_13=(n-m)/(m-k)*(norm(y-y_13)^2 - norm(y-ym)^2)/norm(y-ym)^2
pval_13 = 1 - cdf(’F’,T_13,m-k,n-m)

5.4 Cross-Validation

For experimental data it is often the case that several competing models seem
equally appropriate. As a concrete example, suppose we observe n independent
points in the x–y plane, as depicted in Fig. 5.4. We wish to find a suitable
polynomial that fits the data well. To that end, we consider the 5th-order polynomial
regression model; see (4.10):☞ 108

Yi D ˇ0 C ˇ1xi C � � � C ˇ5x
5
i C "i ;

where f"ig �iid N.0; �2/. The fitted line is also depicted in Fig. 5.4, which seems to
fit the points reasonably well.
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Fig. 5.4 Quadratic (dotted) and 5th-order (solid) polynomial regression lines
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Since the 5th-order polynomial is adequate, we might not need to consider
higher-order polynomials. However, it is plausible that a simpler model (e.g., a cubic
polynomial) would fit the data almost as well and is therefore more appropriate. One
common approach is to test a sequence of hypotheses to determine the exact degree
needed. That is, first we estimate the 5th-order polynomial regression model and test
the null hypothesis that ˇ5 D 0. If the null hypothesis is rejected, we stop and use the
5th-order polynomial. Otherwise, we estimate the 4th-order polynomial regression
model and test the null hypothesis that ˇ4 D 0. This process is continued until a
certain null hypothesis is rejected.

A more thoughtful approach is to select a model based on its predictive
performance. After all, one main goal of statistical inference is to predict future
observations. One way to assess the predictive ability of a model is to use it to predict
a set of observations not used in the estimation. This can be done, for example, by
partitioning the data into a “training set” and a “test set.” Then, use the “training set”
to estimate the model, and its predictive accuracy is assessed by some error measure
on the “test set.” This is an example of a cross-validation.

Fig. 5.5 A graphical
representation of a 4-fold
cross-validation

More generally, a K -fold cross-validation is implemented as follows:

1. Partition the data into K subsamples of equal (or nearly equal) size. Number the
subsamples from 1 to K .

2. For k D 1; : : : ; K , use all but the kth subsample to estimate the model
parameters. Compute the prediction errors for the omitted observations in the
kth subsample.

3. Summarize the predictive performance by some error measure, such as the sum
of squared errors.

A graphical representation of a 4-fold cross-validation is depicted in Fig. 5.5. For a
sample with n observations, we can implement at most an n-fold cross-validation.
In fact, this is a popular choice, and it is often called the leave-one-out cross-
validation.

More specifically, suppose there are n independent observations y1; : : : ; yn.
Let by�k denote the prediction for the kth observation using all the data except
yk . The prediction error yk � by�k is called a predicted residual—in contrast to
an ordinary residual, uk D yk � byk , which is the difference between an observation
and its fitted value obtained using the whole sample. At the end of n iterations, we
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obtain the collection of predicted residuals fyk �by�kg. One way to summarize them
is through the predicted residual sum of squares or PRESS:

PRESS D
n
X

kD1
.yk � by�k/2 :

In general, computing the PRESS is computationally intensive as it involves n
separate estimations and predictions. For linear models, however, the predicted☞ 115

residuals can be calculated quickly using only the ordinary residuals and the
projection matrix.

Theorem 5.4. (PRESS for Linear Models). Consider the normal linear
model (4.23)

Y D Xˇ C " ; " � N.0; �2I / ;

where the n � m design matrix X D .xij / is known and is of full rank.
Given an outcome y D .y1; : : : ; yn/

> of Y, the fitted values can be obtained
asby D P y; where P D X.X>X/�1X> is the projection matrix. Then, the
predicted residual sum of squares can be written as

PRESS D
n
X

kD1

�

uk
1 � pk

�2

;

where uk D yk � byk D yk � .Xbˇ/k is the kth residual and pk is the kth
diagonal element of the projection matrix P .

Proof (Sketch). It suffices to show that the kth predicted residual can be written
as yk � by�k D uk=.1 � pk/. Let X�k denote the design matrix X with the kth
row removed, and define y�k similarly. Then, the least-squares estimate for ˇ using
all but the kth observation is bˇ�k D .X>�kX�k/�1X>�ky�k . It can be shown (see

Problem 5.18) thatbˇ�k is related to the full-sample least-squares estimatebˇ via☞ 157

bˇ�k D bˇ � .X>X/�1xkuk
1 � pk ; (5.28)
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where x>
k is the kth row of the design matrix X . It follows that the predicted value

for the kth observation is given by

by�k D x>
k
bˇ�k D x>

k
bˇ � x>

k .X
>X/�1xkuk
1 � pk D byk � pkuk

1 � pk
;

where we used the fact that pk D x>
k .X

>X/�1xk. The desired result now follows
from direct calculation. �

Example 5.16 (Leave-One-Out Cross-Validation for Polynomial Regressions).
In this example we revisit the polynomial regression example in the beginning of this
section. Specifically, given the n D 20 points in the x–y plane listed in Table 5.3
(see also Fig. 5.4), we wish to find the simplest polynomial that fits the points well.

Table 5.3 Polynomial regression data

x y x y x y x y

4.7 6.57 3.7 8:95 4:8 3:56 0:4 �0:23
2.0 5.15 2.0 5:24 1:7 3:40 2:6 7:68

2.7 7.15 3.4 10:54 �0:4 2:18 4:0 9:09

0.1 0.18 1.3 1:24 4:5 7:16 2:9 9:13

4.7 6.48 3.8 8:05 1:3 2:32 1:6 4:04

For this purpose, we consider five different polynomial regression models:

Yi D ˇ0 C ˇ1xi C � � � C ˇkx
k
i C "i

for k D 1; : : : ; 5, where f"ig �iid N.0; �2/. Since they can all be written as normal
linear models, we can use Theorem 5.4 to compute their predicted residual sums of
squares. For each of these models, we compute the least-squares estimate and the
corresponding PRESS using the MATLAB script below.

% polyreg.m
x = [4.7,2,2.7,0.1,4.7,3.7,2,3.4,1.3,3.8,4.8,1.7,...

-0.4,4.5,1.3,0.4,2.6,4,2.9,1.6]’;
y = [6.57,5.15,7.15,0.18,6.48,8.95,5.24,10.54,1.24,...

8.05,3.56,3.4,2.18,7.16,2.32,-0.23,7.68,9.09,9.13,4.04]’;
n = size(x,1);
press = zeros(5,1);
X = ones(n,1);
for k=1:5

X = [X x.^k]; % construct the design matrix
P = X*((X’*X)\X’);
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e = y - P*y;
press(k) = sum((e./(1-diag(P))).^2);

end

The PRESS values for the linear, quadratic, cubic, 4th-, and 5th-order poly-
nomial regression models are, respectively, 117.388, 130.781, 16.0532, 16.3167,
and 25.727. Hence, the cubic polynomial regression has the lowest PRESS,
indicating that it has the best predictive performance. It illustrates that com-
plex models do not necessarily have better predictive accuracy than simpler
models.

5.5 Sufficiency and Exponential Families

A statistic—that is, a function of the data only—is said to be sufficient for a
parameter (vector) � if it captures all the information about � contained in the
data. Sufficient statistics can be used to summarize data, often giving a tremendous
reduction in size. To formalize this concept, suppose that T.X/ is a (possibly
multidimensional) statistic for � such that any inference about � depends on the
data X D .X1; : : : ; Xn/

> only through the value T.X/. That is, if x and y are
outcomes such that T.x/ D T.y/, then the inference about � should be the same
whether X D x or X D y is observed. This observation leads to the following
definition.

Definition 5.2. (Sufficient Statistic). A statistic T.X/ is a sufficient statis-
tic for � if the conditional distribution of X given T.X/ does not depend
on � .

The workhorse for establishing sufficiency is the following theorem.

Theorem 5.5. (Factorization Theorem). Let f .xI�/ denote the pdf of the
data X D .X1; : : : ; Xn/

>. A statistic T.X/ is sufficient for � if and only if
there exist functions g.t;�/ and h.x/ such that, for all x and � ,

f .xI�/ D g.T.x/;�/ h.x/ : (5.29)
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Proof. We give the proof only for the case where X is a discrete random vector. For
this case we can write f .xI�/ as

f .xI�/ D P�.X D x/

D P�.X D x;T.X/ D T.x//

D P�.T.X/ D T.x//P�.X D x j T.X/ D T.x// :

If T.X/ is a sufficient statistic, then P�.X D x j T.X/ D T.x// does not depend on
� . Consequently, (5.29) holds with g.t;�/ D P�.T.X/ D t/ and h.x/ D P�.X D
x j T.X/ D T.x//.

Conversely, suppose that (5.29) holds. We need to show that the conditional
probability

P�.X D x j T.X/ D t/ D P�.X D x;T.X/ D t/
P�.T.X/ D t/

does not depend on � . If x is a data point such that T.x/ ¤ t, then clearly P�.X D
x j T.X/ D t/ D 0. If T.x/ D t, then

P�.X D x j T.X/ D t/ D P�.X D x/
P�.T.X/ D t/

D f .xI�/
P

yWT.y/Dt f .yI�/

D g.T.x/;�/ h.x/
P

yWT.y/Dt g.T.y/;�/ h.y/
D g.t;�/ h.x/
g.t;�/

P

yWT.y/Dt h.y/

D h.x/
P

yWT.y/Dt h.y/
;

which does not depend on � . Hence T.X/ is a sufficient statistic. �

Example 5.17 (Sufficient Statistic for Iid Uniform Data). Let X D .X1; : : : ; Xn/

be an iid sample from U.0; �/. The pdf of X is given by

f .xI �/ D
(
�

1
�

�n
for maxfx1; : : : ; xng � � and xi � 0; i D 1; : : : ; n

0 otherwise :

It follows that T .X/ D max.X1; : : : ; Xn/ is a sufficient statistic for � .

Example 5.18 (Sufficient Statistic for Iid Normal Data). Let X D .X1; : : : ; Xn/

be an iid sample from N.�; 1/. We show that the sample mean T .X/ D NX is a
sufficient statistic for �. Namely, the pdf is
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f .xI�/ D
�

1p
2�

�n

exp

 

�1
2

n
X

iD1
.xi � �/2

!

D h.x/ exp
�

�n Nx � n�2=2
�

„ ƒ‚ …

g.T .x/;�/

for some function h, so that the required factorization holds.

The following general class of distributions plays an important role in statistics.

Definition 5.3. (Exponential Family). Let X D .X1; : : : ; Xn/
> be a random

vector with pdf f .xI�/, where � D .�1; : : : ; �d /
> is a parameter vector.

X is said to belong to an m-dimensional exponential family if there exist
real-valued functions ti .x/, �i .�/, i D 1; : : : ; m � n and h.x/ > 0, and a
(normalizing) function c.�/ > 0, such that

f .xI�/ D c.�/ exp

 

m
X

iD1
�i .�/ti .x/

!

h.x/ : (5.30)

The representation of an exponential family is in general not unique. It is often
convenient to reparameterize exponential families via the f�ig, that is, to take � D
.�1.�/; : : : ; �m.�//

> as the parameter vector rather than � . The reparameterized pdf
is then

ef .xI�/ Dec.�/ e�
>t.x/ h.x/ ; (5.31)

where ec.�/ is the normalization constant and t.x/ D .t1.x/; : : : ; tm.x//. Such an
exponential family is said to be in canonical form or is said to be a natural
exponential family.

Example 5.19 (Normal Distribution as a Two-Dimensional Exponential Fam-
ily). The normal distributions N.�; �2/, � 2 R, �2 > 0 form a two-dimensional
exponential family with parameter � D .�; �2/. To see this, write the logarithm of
the pdf of the N.�; �2/ distribution as

lnf .xI�/ D ln.1=
p
2��2/� 1

2

.x � �/2

�2

D ln.1=
p
2��2/� �2

2�2
C x

�

�2
� x2

1

2�2
;

which shows that we can take t1.x/ D x, t2.x/ D x2, �1.�/ D �=�2, and �2.�/ D
�1=.2�2/, with h.x/ D 1 and c.�/ D exp.��2=.2�2//=p2��2.
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Many other families of distributions are of this type, such as the binomial,
gamma, beta, geometric, and Poisson distributions, as summarized in Table 5.4.

Table 5.4 Various univariate exponential families

Distr. � t1.x/; t2.x/ c.�/ �1.�/; �2.�/ h.x/

Beta.˛; ˇ/ .˛; ˇ/ ln x; ln.1� x/ 1=B.˛; ˇ/ ˛ � 1; ˇ � 1 1

Bin.n; p/ p x; — .1� p/n ln

�

p

1� p

�

; —

 

n

x

!

Gamma.˛; �/ .˛; �/ x; ln x
�˛

� .˛/
��; ˛ � 1 1

Geom.p/ p x � 1; — p ln.1� p/; — 1

N.�; �2/ .�; �2/ x; x2 e��2=.2 �2/
p

2��2

�

�2
; � 1

2�2
1

Poi.�/ � x; — e�� ln�; —
1

xŠ

Sufficiency (and therefore data summarization) is particularly easy to estab-
lish for exponential families of distributions. In particular, suppose that X D
.X1; : : : ; Xn/

> is an iid sample from the exponential family with pdf

Vf .xI�/ D c.�/ e
Pm
iD1 �i .�/ ti .x/ Vh.x/ :

For simplicity suppose that x is 1-dimensional. By taking the product of the
marginal pdfs we obtain the pdf of X:

f .xI�/ D c.�/n e
Pm
iD1 �i .�/

Pn
kD1 ti .xk/

„ ƒ‚ …

g.T.x/;�/

n
Y

kD1
Vh.xk/

„ ƒ‚ …

h.x/

:

A direct consequence of the factorization theorem is that

T.X/ D
 

n
X

kD1
t1.Xk/; : : : ;

n
X

kD1
tm.Xk/

!>
(5.32)

is a sufficient statistic for � .

Example 5.20 (Sufficient Statistics for Iid Normal Data). As a particular instance
of the previous discussion, consider the case where X1; : : : ; Xn �iid N.�; �2/.
It follows from (5.32) and Example 5.19 that T.X/ D .T1.X/; T2.X//>, with
T1.X/ D Pn

kD1 Xk and T2.X/ D Pn
kD1 X2

k , is a sufficient statistic for � D .�; �2/.
This means that for this standard data model, the data can be summarized via only
T1 and T2.
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It is not difficult to see that any 1-to-1 function of a sufficient statistic yields
again a sufficient statistic. To see this, suppose that T.X/ is a sufficient statistic and
eT.X/ D r.T.X// is another statistic, with r being invertible with inverse r�1. By
the factorization theorem

f .xI�/ D g.T.x/;�/ h.x/ D g.r�1.eT.x//;�/ h.x/ D eg.eT.x/;�/ h.x/

for some functioneg. Thus, the factorization theorem also holds foreT, and therefore
the latter is also a sufficient statistic for � .

Example 5.21 (Sufficient Statistics for Iid Normal Data, Continued). We have
seen that T1.X/ D Pn

kD1 Xk and T2.X/ D Pn
kD1 X2

k are sufficient statistics for
� D .�; �2/ in the standard model for data. The sample mean eT1 D NX and the
sample variance

eT2 D 1

n � 1
n
X

kD1
.Xk � NX/2 D 1

n � 1

 

n
X

kD1
X2
k � n NX2

!

also form a pair of sufficient statistics, because the mapping

eT1 D T1

n
; eT2 D 1

n � 1
�

T2 � T 21 =n
�

is invertible.

5.6 Problems

5.1. Find the method of moments estimators for the parameters of the Geom.p/,
Poi.�/, and Gamma.˛; �/ distributions.

5.2. The mean square error (MSE) of a real-valued estimator T is defined as
MSE D E� .T � �/2. It can be used to assess the quality of an estimator: the smaller
the MSE, the more efficient the estimator. Show that the MSE can be written as the
sum

MSE D .E�T � �/2 C Var� .T / :

In particular, for an unbiased estimator the MSE is simply equal to its variance.

5.3. The normal equations (5.10) can be derived more directly by solving rˇky �
Xˇk2 D 0, where rˇ indicates the gradient with respect to ˇ. Show, using
Sect. B.1, that☞ 367

rˇky � Xˇk2 D 2X>.y � Xˇ/ :
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5.4. We wish to estimate the area a D �1�2 of a rectangular plot of land, with
length �1 and width �2. We measure the length and the width twice. There are two
natural ways to estimate the unknown constant a. We can either multiply the average
width and length, or we can take the average of the two estimated areas. Suppose the
measurements are outcomes of independent random variables X1;X2 � N.�1; �

2/

and Y1; Y2 � N.�2; �
2/. Here � describes the accuracy of our measuring instrument.

Let

T1 D X1 CX2

2
� Y1 C Y2

2
and T2 D X1 � Y1 CX2 � Y2

2
:

a. Show that T1 and T2 are unbiased estimators of a.
b. Show that Var.X1Y1/ D �2.�2 C �21 C �22/.
c. Derive the variance of T1 and the variance of T2 and infer from this which

estimator is preferred.

5.5. Let X1; : : : ; Xn �iid Exp.�/ for some unknown � > 0.

a. Show that the method of moments estimator of � is 1= NX .
b. Construct an approximate 1�˛ stochastic confidence interval for �, by applying

the central limit theorem to NX .

5.6. Let X1; : : : ; Xn �iid N.1; �2/ for some unknown �2 > 0.

a. Show that T D Pn
iD1.Xi � 1/2=�2 � �2n.

b. Construct a 1 � ˛ stochastic confidence interval for �2 using the pivot T .

5.7. A buret is a glass tube with scales that can be used to add a specified volume of
a fluid to a receiving vessel. Determine a 95 % confidence interval for the expected
volume of one drop of water that leaves the buret if the initial volume in the buret
is 25:35 (ml), the volume after 50 drops is 22:84, and the volume after 100 drops is
20:36.

5.8. On the label of a certain packet of aspirin it is written that the standard
deviation of the amount of aspirin per tablet is 1.0 mg, but we suspect this is not
true. To investigate this we take a sample of 25 tablets and find that the sample
standard deviation of the amount of aspirin is 1.3 mg. Determine a 95 % numerical
confidence interval for � . Is our suspicion justified?

5.9. Show that Sp in (5.20) is an unbiased estimator of �2.

5.10. Show that for the simple linear regression model in Example 5.5 we have ☞ 127
bˇ0 D NY � bˇ1 Nx and bˇ1 D SxY =Sxx, where

Sxx D
n
X

iD1
.xi � Nx/2 and SxY D

n
X

iD1
.xi � Nx/.Yi � NY / :
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5.11. Consider the model selection for the normal linear model in Sect. 5.3.1. We☞ 142

wish to assess how the extended model Y D XˇC ", where " � N.0; �2I /, fits the
data, compared to the default model Y D �1C " (i.e., the fYig are independent and
N.�; �2/ distributed). To do this we can compare the variance of the original data,
estimated via

P

i .Yi � NY /2=n D kY � NY 1k2=n, with the variance of the fitted data,
estimated via

P

i .
bYi � NY /2=n D kbY � NY 1k2=n, where bY D Xbˇ. Note that, in the

notation of Fig. 5.3,bY D Ym and NY 1 D Yk . The quantity

R2 D kbY � NY 1k2
kY � NY 1k2 (5.33)

is called the coefficient of determination of the linear model. Note that R2 lies
between 0 and 1. An R2 value close to 1 indicates that a large proportion of the
variance in the data has been explained by the model.

a. Show that

R2 D 1 � SSerror

SStotal

defD 1 �
P

i .Yi � bYi /
2

P

i .Yi � NY /2 :

Hint: use Pythagoras’ theorem, as in Fig. 5.3.
b. For the simple linear regression model in Problem 5.10 show that R D p

R2

is equal to the sample correlation coefficient (5.7) —where each Xi is replaced☞ 125

with xi . Hint: write out bYi D bˇ0 Cbˇ1xi using the explicit expressions for bˇ0 and
bˇ1 in Problem 5.10.

5.12. A small lead ball is dropped onto a floor from different heights (measured in
meters). The times (in seconds) when the ball hits the floor are given in the following
table.

height 1 2 3 4
time 0.38 0.67 0.76 0.94

From physics we expect that, ignoring air resistance and the diameter of the ball,
the relationship between the time y and the height h is y D a

p
h for some unknown

parameter a. Formulate a plausible statistical model for the data and fit a curve of
the form y D a

p
h to the data using the method of least squares.

5.13. In the past a milk vendor found that 30 % of his milk sales were of a low fat
variety. Recently, of his 1500 milk sales, 400 were low fat. Is there any indication
of a move toward low fat milk? Give the p-value associated with the test.

5.14. Two lakes are being analyzed with respect to their PCB concentration in fish.
The PCB concentration from 10 fish from lake A is given by

11.5 10.8 11.6 9.4 12.4 11.4 12.2 11.0 10.6 10.8
The concentration from eight fish from lake B is given by

11.8 12.6 12.2 12.5 11.7 12.1 10.4 12.6
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a. Assess whether the true sample variances are the same.
b. Assuming equality of variances, infer whether there is any difference in PCB

concentration between the fish from the two lakes.

5.15. Let X1; : : : ; Xm �iid N.�X ; �
2
X/ and Y1; : : : ; Yn �iid N.�Y ; �

2
Y / be two inde-

pendent normal samples with �2X ¤ �2Y . Find a pivot variable of the form

T D . NX � NY / � .�X � �Y /
V.X1; : : : ; Xm; Y1; : : : ; Yn/

that has approximately (for large m and n) a standard normal distribution, and use
this pivot to construct an approximate 1 � ˛ confidence interval for �X � �Y .

5.16. The Australian Bureau of Statistics reports that during 2003, 48300 babies
were born in the state of Queensland. Of these, 24800 were boys and 23500 were
girls. Does this suggest that the probability of a male birth is more likely than that
of a female birth? Conduct a suitable statistical analysis to find this out.

5.17. Gerrit from Gouda is an exporter of cheese. Gerrit requires that his suppliers
produce cheese with an expected percentage fat content (PFC) of 40. From past
experience it is known that the PFC has a normal distribution with standard deviation
4. Gerrit selects from each new batch of cheese n cheeses at random and measures
their fat content. If the average PFC is less than 39, Gerrit rejects the entire batch.

a. Suppose n D 5. Give the distribution of the average PFC of the 5 cheeses.
b. Calculate the probability that Gerrit will reject the batch if the expected PFC is

in fact 38.5.
c. Suppose the expected PFC is 38. How large should Gerrit choose n such that the

test rejects the batch with a probability of at least 90 %?

5.18. In this problem we prove the identity (5.28). ☞ 148

a. Suppose A is an m �m invertible matrix and b is an m � 1 vector. Show that

.A� bb>/�1 D A�1 C A�1bb>A�1

1 � b>A�1b
: (5.34)

Hint: by direct computation, show that the right-hand side of (5.34) is indeed the
inverse of A� bb>.

b. Using (5.34), show that

.X>�kX�k/�1 D .X>X/�1 C .X>X/�1xkx>
k .X

>X/�1

1 � pk ; (5.35)

where X�k is the design matrix X with the kth row removed, x>
k is the kth

row of X , and pk is the kth diagonal element of the projection matrix P D
X.X>X/�1X>.

c. Use (5.35) to show (5.28).
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5.19. Let X1; : : : ; Xn be an iid sample from the pdf

f .xI �/ D �

1 � �
x.2��1/=.1��/; x 2 .0; 1/; � 2 . 1

2
; 1/ :

Show that ff .xI �/g forms a 1-dimensional exponential family. Show that the joint
pdf of X1; : : : ; Xn forms again a 1-dimensional exponential family. Show that T D
Pn

iD1 lnXi is a sufficient statistic for � .

5.20. Implement a MATLAB program to estimate

` D
Z 1

0

Z 1

0

sin.x/ e�.xCy/

ln.1C x/
dx dy

via Monte Carlo integration, and give a 95 % confidence interval.

5.21. Implement a MATLAB program to estimate ` D R 2

�2 e�x2=2 dx D R

H.x/f .x/

dx via Monte Carlo integration using two different approaches: (1) by taking
H.x/ D 4 e�x2=2 and f the pdf of the UŒ�2; 2� distribution and (2) by taking
H.x/ D p

2� If�2�x�2g and f the pdf of the N.0; 1/ distribution.

a. For both cases estimate ` via the estimatorb` D N�1PN
iD1 H.Xi /. Use a sample

size of N D 1000.
b. Give an approximate 95 % confidence interval for ` for both cases.
c. Using (b), assess how large N should be such that the width of the confidence

interval is less than 0:01, and carry out the simulation with this N . Compare the
result with the true (numerical) value of `.

5.22. Consider the approximate confidence interval (5.23) for binomial data.
It is possible to calculate the exact coverage probability via total enumeration.☞ 136

Specifically, define

T1.x/ D x=n � z1�˛=2
p

.x=n/ � .1 � x=n/=n

and

T2.x/ D x=nC z1�˛=2
p

.x=n/ � .1 � x=n/=n :

Then, the coverage probability as a function of p is

Pp.T1.X/ < p < T2.X// D
n
X

xD0
IfT1.x/<p<T2.x/g

 

n

x

!

px.1 � p/n�x :
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For various n and ˛ D 0:95 (so that z1�˛=2 D 1:96) draw the graph of the coverage
probability as a function of p and comment on the quality of the coverage (which is
aimed to be 95%).

5.23. In order to investigate the effectiveness of “walking exercises” for babies,
24 babies (of the same age and sex) were randomly divided into four groups. Each
group followed a different training program. Table 5.5 shows the age (in months)
when the infants first walked alone. Implement a one-factor ANOVA model and
compute 95 % confidence intervals for the expected walking age in each group. Test
whether the training programs have any effect.

Table 5.5 Walking age of babies (in months)

Group

A B C D

9 11 11.5 13.25
9.5 10 12 11.5
9.75 10 9 12
10 11.75 11.5 13.5
13 10.5 13.25 11.5
9.5 15 13 11.5

5.24. Rattus Turpis is a manufacturer of rat poison. The company wants to
investigate if adding artificial flavors to their usual mix of cornmeal with strychnine
makes their bait more palatable to the rats. They try three artificial flavors, as well
as their usual plain bait. Table 5.6 lists the percentages of bait that is eaten for
five different surveys. Does the data suggest that adding artificial flavor makes a
difference? Use the two-factor ANOVA program in Example 5.15 to investigate
this.

Table 5.6 Percentage of bait eaten

Flavor

Survey Plain Butter Beef Bread

1 13.8 11.7 14.0 12.6
2 12.9 16.7 15.5 13.8
3 25.9 29.8 27.8 25.0
4 18.0 23.1 23.0 16.9
5 15.2 20.2 19.9 13.7



Chapter 6
Likelihood

The concept of likelihood is central in statistics. It describes in a precise manner the
information about the parameters of the model given the observed data.

Definition 6.1. (Likelihood Function). Let X be a random vector with pdf
f .�I�/ (discrete or continuous) with parameter vector � 2 
. For a given
outcome x of X, the function

L.� I x/ D f .xI�/

is called the likelihood function of � based on x.

Note thatL is a function of � for fixed x, whereas f is a function of x for fixed � .

Example 6.1 (Binomial Likelihood). Let X � Bin.n; p/. For a given observation
x the likelihood of x under p is given by

L.pI x/ D f .xIp/ D
 

n

x

!

px .1 � p/n�x; 0 < p < 1 : (6.1)

As a particular example, consider the experiment where we flip 100 times a biased
coin with success probability p. We know that the total number of successes (say,
Heads) in 100 tosses, X , has a Bin.100; p/ distribution. Suppose that x D 43

successes were observed. Thus, the likelihood of the observed data as a function
of p is

L.pI 43/ D
 

100

43

!

p43 .1 � p/57; 0 < p < 1 ;

the graph of which is plotted in Fig. 6.1.

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__6, © The Author(s) 2014
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Fig. 6.1 The likelihood
function for the Bin.100; p/
distribution, with 43 observed
successes

We see that the likelihood is largest for values of p that lie between 0.25 and
0.6. It is very implausible that the current datum was obtained from a p outside this
interval. In this sense the likelihood is used to compare the plausibilities of various
parameter values.

Example 6.2 (Normal Likelihood). Suppose we are given data x1; : : : ; xn from
an iid sample X D .X1; : : : ; Xn/ of the N.�; �2/ distribution, with � and �2

unknown—in this case � D .�; �2/. The pdf of X (i.e., the joint pdf of X1; : : : ; Xn)
is given by the product of the marginal pdfs; see (3.7). Consequently, the likelihood☞ 70

of the data as a function of the parameters is

L.�; �2I x/ D
n
Y

iD1
fXi .xi I�; �2/ D

�

1p
2��2

�n

exp

(

�1
2

n
X

iD1

.xi � �/2
�2

)

for � 2 R; � > 0. As a particular example, suppose n D 10 and that the data
(computer generated from some N.�; �2/ distribution) are

2.39876, �0:149451, �0:770132, 0.87627, �0:0852696,
1.58494, 1.32772 1.35611, �0:206479, 0.83773.

Figure 6.2 gives the three-dimensional graph and the corresponding contour plot
of the likelihood function. Note that the values for � for which the likelihood of the
data is largest are restricted to an ellipse-like region. The actual parameter values
for the data were � D 1 and �2 D 1 in this case.

In general, if X1; : : : ; Xn is an iid sample from Vf .�I�/, then the likelihood of the
data x D .x1; : : : ; xn/ under � is the product

L.�I x/ D
n
Y

iD1
Vf .xi I�/ : (6.2)
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Fig. 6.2 The graph and contour plot of the likelihood function for the N.�; �2/ distribution, for
the given data

Example 6.3 (Radioactive Source Detection). Suppose a low-intensity radioactive
source is emitting particles (in pairs). A screen registers the impact of one particle
from each pair. Suppose the position of the source is .a; b/ andX is the x-coordinate
of the location where a random particle will hit the screen, and let Y 2 .��=2; �=2/
be the angle between the line segments .a; b/-.a; 0/ and .a; b/-.X; 0/; see Fig. 6.3.

source

screena0

b

Y

X

Fig. 6.3 A radioactive source at position .a; b/ emits particles in a random direction

Since all angles are equally likely, Y is uniformly distributed in .��=2; �=2/.
Moreover, X and Y are related via tan.Y / D X�a

b
. It follows from the transforma-

tion formula (3.21) that ☞ 79

fX.x/ D b

�.b2 C .x � a/2/
; x 2 R :

In other words, X D aC bZ, where Z has a Cauchy distribution; see Problem 6.8.
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Suppose that we know that the source is at a distance b D 1 from the screen, but
we do not know its position a relative to the origin. However, we know the impact
positions of 10 particles:

1.3615, 3.5616, �14:2411; �4:4950; 2.3014,
1.1066, �9:3409; 0.3779, 0.9386, �0:1838.

Based on these data, what can we say about a? A naive guess is to simply take the
mean of the data to estimate the location, which turns out to be �1:8613. This, how-
ever, is a fundamentally flawed approach, because the expectation of the distribution
of X does not exist, namely,

R1
0
xfX.x/ dx D 1 and

R 0

�1 xfX.x/ dx D �1, and
1�1 is not well defined. Of course the mode of f (the point where f is maximal)
is a, but here the mode is not equal to the expectation (which does not exist). A much
better approach is to plot the likelihood function for a, which is

L.aI x/ D
�

1

�

�10 10
Y

iD1

1

1C .xi � a/2
:

The graph of the likelihood function is given in Fig. 6.4.
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Fig. 6.4 The graph of the likelihood function for the position a of the radioactive source

We see that the most likely position is around 1 and that our initial guess of
�1:8613 is extremely unlikely. We also see that the most likely positions fall
between roughly �1 and 3. In fact, the actual position was a D 1 in this case.
So we see that with relatively sparse information we can still make well-founded
decisions about a, as long as we use the likelihood.
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6.1 Log-Likelihood and Score Functions

Definition 6.2. (Log-Likelihood and Score Functions). Let X be a random
vector with pdf f .�I�/ (discrete or continuous) with parameter vector � 2 
.
For a given outcome x of X, the log-likelihood function, denoted l , is the
natural logarithm of the likelihood function:

l.�I x/ D lnL.� I x/ D lnf .xI�/ :

Its gradient, denoted S (column vector), is called the score function:

S.�I x/ D r� l.�I x/ D r�f .xI�/
f .xI�/ : (6.3)

Example 6.4 (Binomial Log-Likelihood and Score Functions). For the Bin.n; p/
distribution with observed datum x, the log-likelihood is

l.pI x/ D ln.

 

n

x

!

/C x ln.p/C .n � x/ ln.1 � p/ :

Differentiating l.pI x/ with respect to p gives the score function

S.pI x/ D x

p
� n � x

1 � p
: (6.4)

Theorem 6.1. (Log-Likelihood and Score Functions for Iid Data). Let

X D .X1; : : : ; Xn/ be an iid sample from Vf .�I�/, and let Vl and VS be,

respectively, the log-likelihood and the score function corresponding to Vf .
Then the log-likelihood and score functions of � based on an outcome x of
X are

l.�I x/ D
n
X

iD1
Vl.�I xi / and S.�I x/ D

n
X

iD1
VS.�I xi / :

Proof. The pdf of X is f .xI�/ D Qn
iD1 Vf .xi I�/. Taking the logarithm gives the

log-likelihood as the sum of the logarithms of the pdfs. By differentiating this sum
we obtain the score function as the sum of the derivatives. ut



166 6 Likelihood

Example 6.5 (Log-Likelihood and Score Functions for Normal Iid Data).
Consider the standard model for data: X1; : : : ; Xn �iid N.�; �2/. The log-likelihood
function of .�; �2/ for a single outcome x is given by the logarithm of the pdf of
the N.�; �2/ distribution:

Vl.�; �2I x/ D �1
2

ln.2�/ � 1

2
ln.�2/ � 1

2
.x � �/2=�2 :

By differentiating Vl with respect to � and �2 (note that �2 is viewed as a single
parameter), we obtain the two components of the score function:

VS1.�; �2I x/ D @ Vl.�; �2I x/
@�

D x � �
�2

;

and

VS2.�; �2I x/ D @ Vl.�; �2I x/
@�2

D � 1

2�2
C 1

2

.x � �/2

.�2/2
:

It follows from Theorem 6.1 that the log-likelihood and score functions of .�; �2/
based on an outcome x D .x1; : : : ; xn/ are given by

l.�; �2I x/ D �n
2

ln.2�/� n

2
ln.�2/�

n
X

iD1

1

2
.xi � �/2=�2 ;

S1.�; �
2I x/ D

n
X

iD1

xi � �

�2
; (6.5)

and

S2.�; �
2I x/ D � n

2�2
C 1

2

n
X

iD1

.xi � �/2

.�2/2
: (6.6)

Theorem 6.2. (Score Function for an Exponential Family). The score
function for a natural exponential family with pdf f .xI�/ D c.�/ e�

>t.x/ h.x/
is given by

S.� I x/ D rc.�/
c.�/

C t.x/ : (6.7)
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Proof. The log-likelihood function is l.�I x/ D ln c.�/ C �>t.x/ C lnh.x/. Now
take the gradient with respect to � . ut
Example 6.6 (Score Function for Gamma Data). The pdf of the Gamma.˛; �/
distribution, where ˛; � > 0, is

f .xI˛; �/ D �˛x˛�1e��x

� .˛/
; x > 0 :

Let us assume that ˛ is known. After the reparameterization � D ��, we obtain (see
Table 5.4) the natural exponential family with pdf ☞ 153

ef .xI �/ D c.�/ e�t.x/ h.x/ ;

where c.�/ D .��/˛ and t.x/ D x. Here, h.x/ does not depend on � (but does
depend on the known constant ˛). Since

c0.�/
c.�/

D ˛

�
;

we find the score function eS.�I x/ D ˛
�

C x. In the original parameter we have

(chain rule) S.�I x/ D eS.�.�/I x/ � d�
d� D � � ˛

�� C x
� D ˛

�
� x:

6.2 Fisher Information and Cramér–Rao Inequality

Definition 6.3. (Efficient Score). Let S.�I x/ be the score function corre-
sponding to an outcome x of X � f .�I�/. The random vector S.�/ D S.�I X/
is called the efficient score or simply score of � .

The expected score under � is equal to the zero vector; namely,

E�S.�/ D
Z r�f .xI�/

f .xI�/ f .xI�/ dx

D
Z

r�f .xI�/ dx D r�
Z

f .xI �/ dx D r�1 D 0 ;

(6.8)

provided that the interchange of differentiation and integration is justified. This is
true for large classes of distributions, including natural exponential families. From
now on we simply assume that such an interchange is permitted.
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Definition 6.4. (Fisher Information Matrix). For the model X � f .�I�/,
let S.�/ D S.�I X/ be the score of � . The covariance matrix of the random
vector S.�/, denoted by I.�/, is called the Fisher information matrix.

Since the expected score is 0, we have

I.�/ D E� ŒS.�/S.�/>� (6.9)

and in the one-dimensional case the information number is

I.�/ D E�

�

d lnf .XI �/
d�

�2

:

Example 6.7 (Information Number for Binomial Data). Let X � Bin.n; p/.
From (6.4) we see that the score is

S.pIX/ D X

p
� n � X

1 � p : (6.10)

The information number is therefore

Varp

�

X

p
� n �X
1 � p

�

D Varp

�

X

p.1 � p/
�

D np .1 � p/

p2 .1 � p/2
D n

p.1 � p/ : (6.11)

For iid samples the score has approximately a multivariate normal distribution
that is characterized by the Fisher information of the sampling distribution, as
summarized in the following theorem.

Theorem 6.3. (Asymptotic Distribution of the Score). Let X D .X1;

: : : ; Xn/ be an iid sample from Vf .xI�/ and let S.�/ D S.�I X/ be the score
of � . Then,

1. 1
n

S.�/ ! 0 as n ! 1, and

2. S.�/
approx:� N.0; n VI .�// for large n, where VI .�/ is the Fisher information

matrix corresponding to Vf .

Proof. By Theorem 6.1, we can write S.�/ D Pn
iD1 VS.�IXi/. Note that the random

vectors f VS.�IXi/g are independent and identically distributed with mean 0 and
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covariance matrix VI .�/. The law of large numbers and the multivariate central limit
theorem (see Theorem 3.14) now lead directly to the two properties above. ut ☞ 92

It is sometimes easier to compute the information number in a different way to
(6.9), based on the following equality (assuming a one-dimensional parameter �):

d2

d�2
lnf .xI �/ D

d2

d�2
f .xI �/

f .xI �/ �

0

B

@

d

d�
f .xI �/
f .xI �/

1

C

A

2

:

Multiplying both sides with f .xI �/ and integrating with respect to x gives

E�
d2 ln f .XI �/

d�2
D
Z

d2

d�2
f .xI �/ dx � I.�/ :

Now if we may change the order of differentiation and integration in the integral
(allowed for exponential families), then

Z

d2

d�2
f .xI �/ dx D d2

d�2
1 D 0 ;

so that the Fisher information number is also given by

I.�/ D �E�
d2 lnf .XI �/

d�2
D �E�

dS.� I X/
d�

: (6.12)

Example 6.8 (Information Number for Binomial Data Continued). Differenti-
ating the score in (6.10) with respect to p gives

dS.pIX/
dp

D � X

p2
� n �X
.1� p/2

:

The expectation of this random variable (underX � Bin.n; p/) is

�np
p2

� n � np

.1� p/2
D � n

p.1 � p/
;

which is exactly the negative of the information number found in (6.11). �

The multidimensional version of (6.12) is

I.�/ D �E� r2 lnf .XI�/ D �E� rS.�/ ; (6.13)
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where r2 ln f .XI�/ is the Hessian of lnf .XI�/, that is, the (random) matrix

�

@2 ln f .XI�/
@�i@�j

�

D
�

@2l.�I X/
@�i@�j

�

D
�

@Si.� I X/
@�j

�

;

where Si denotes the i th component of the score. The following is a direct
consequence of Theorem 6.1.

Theorem 6.4. (Information Matrix for Iid Data). Let X D .X1; : : : ; Xn/

be an iid sample from Vf .xI�/, and let VI .�/ be the information matrix

corresponding to X� Vf .xI�/. Then, the information matrix for X is given by

I.�/ D n VI .�/ :

Example 6.9 (Information Matrix for Iid Normal Data). Let X1; : : : ; Xn be an
iid sample from the N.�; �2/ distribution. Using Example 6.5 and (6.13), we see
that the information matrix VI .�; �2/ is the expectation of the following matrix of
partial derivatives:

�
0

@

@ VS1.�;�2IX/
@�

@ VS1.�;�2IX/
@�2

@ VS2.�;�2IX/
@�

@ VS2.�;�2IX/
@�2

1

A D �
 � 1

�2
� .X��/

.�2/2

� .X��/
.�2/2

1
2�4

� .X��/2
.�2/3

!

; (6.14)

where X � N.�; �2/. Taking expectations gives

VI .�; �2/ D
 

��2 0

0 ��4

2

!

: (6.15)

By Theorem 6.4 the information matrix corresponding to the whole iid sample is
simply a factor n larger: I.�; �2/ D n VI .�; �2/.
Example 6.10 (Information Matrix for Exponential Families). Consider a
natural exponential family with pdf

f .xI�/ D e�
>t.x/��.�/h.x/ : (6.16)

Then, similar to (6.7),

S.� I x/ D t.x/� r�.�/ : (6.17)
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Since the covariance matrix of a random vector Z is the same as that of Z C a for
any constant vector a, we have that the covariance matrix of S.�I X/, that is, the
information matrix, is simply the covariance matrix of t.X/.

Example 6.11 (Information Number for Location Families). For location fami-
lies ff .xI�/g, that is, when f .xI�/ D ef .x � �/ for some fixed pdf ef , the Fisher
information does not depend on � and is therefore constant. Namely, in this case,
the log-likelihood satisfies l.�I x/ D ln ef .x � �/, and the score function is thus a
function of � � x, say g.x � �/. The variance of the score, that is, the information
number, satisfies

I.�/ D
Z 1

�1
S2.�I x/f .xI�/ dx D

Z 1

�1
g2.x � �/ ef .x � �/ dx

D
Z 1

�1
g2.y/ ef .y/ dy ;

which does not depend on �.

The importance of the Fisher information in statistics is corroborated by the
famous Cramér–Rao inequality.

Theorem 6.5. (Cramér–Rao Information Inequality). Let X � f .xI�/.
The variance of any unbiased estimator Z D Z.X/ of g.�/ is bounded from
below via

Var.Z/ � .rg.�//> I�1.�/ rg.�/ : (6.18)

Proof. We prove only the one-dimensional case. All expectations and variances
below are taken with respect to f .xI �/. Recall that S D S.� I X/ D @

@�
lnf .XI �/

denotes the score and that Var.S/ D I.�/. The key is to apply the Cauchy–Schwarz
inequality: ☞ 95

Cov.Z; S/ �
p

Var.Z/Var.S/ ;

which immediately yields

Var.Z/ � .Cov.Z; S//2

I.�/
:

Thus, it remains to be shown that Cov.Z; S/ D g0.�/. This follows from
Cov.Z; S/ D EŒZS� � EZ ES D EZS (because ES D 0) and
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EŒZS� D E

"

Z

@
@�
f .XI �/
f .XI �/

#

D
Z

Z.x/
@

@�
f .xI �/ dx D d

d�
EZ D g0.�/ ;

assuming that we may change the order of integration and differentiation. ut

6.3 Likelihood Methods for Estimation

Suppose we are given data x from a model f .xI�/, yielding the likelihood function
L.�I x/ D f .xI�/. Although the entire shape of the likelihood function is valuable
for our inference about the unknown parameter � , it is often desirable to summarize
the information on the likelihood function into a few key numbers. One of these
numbers is the mode of the likelihood function, that is, the parameter value b�
for which the function is maximal. This number (or vector of numbers, in the
multiparameter case) is in a way our best estimate for � . It is called the maximum☞ 122

likelihood estimate (MLE). Note that b� D b�.x/ is a function of the data x.
The corresponding random variable, also denoted b� , is the maximum likelihood
estimator (also abbreviated as MLE).

Since the natural logarithm is an increasing function, the maximization of
L.�I x/ is equivalent (in terms of finding the mode) to the maximization of the
log-likelihood l.�I x/. This is often easier, especially when X is an iid sample from
some sampling distribution.

Remark 6.1 (Existence and Uniqueness). MLEs may not always exist (e.g., when
estimating a variance with only one data point) or could be non-unique (when the
likelihood function attains its maximum at more than one point).

If l.�I x/ is a differentiable function with respect to � and the maximum is
attained in the interior of 
 and there exists a unique maximum point, then we
can find the MLE of � by differentiating l.�I x/ with respect to �—more precisely,
by solving

r� l.�I x/ D 0 :

In other words, the MLE is obtained by solving the root of the score function, that
is, by solving

S.� I x/ D 0 : (6.19)

In general, solving the above equation only yields a local maximum. If the
likelihood function is multimodal, there will be more than one point � that satisfies
(6.19). The evaluation of l at all of these points may then identify the global
maximum.
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Example 6.12 (MLE for Binomial Data). Suppose x is an outcome of X �
Bin.n; p/. By (6.4) the MLE is found by solving ☞ 165

x

p
� n � x
1 � p

D 0 ;

which gives the MLE bp D x=n and the corresponding estimator bp D X=n.

Example 6.13 (MLE for Iid Normal Data). Suppose x1; : : : ; xn are the outcomes
of X1; : : : ; Xn �iid N.�; �2/. The MLEs follow (see (6.5) and (6.6)) from solving
the set of equations

n
X

iD1

.xi � �/
�2

D 0 ; (6.20)

� n

2�2
C 1

2

n
X

iD1

.xi � �/2

.�2/2
D 0 ; (6.21)

giving

b� D 1

n

n
X

iD1
xi D Nx and b�2 D 1

n

n
X

iD1
.xi � Nx/2 : (6.22)

We see that the maximum likelihood method and the method of moments yield ☞ 123

exactly the same estimates in this case.

Example 6.14 (MLE for the Normal Linear Model). Consider the normal linear
model ☞ 115

Y D Xˇ C " ; (6.23)

whereX is an n�m design matrix, ˇ anm-dimensional vector of parameters, and "
a vector of iid N.0; �2/ error terms. Since Y � N.Xˇ; �2I /, it follows from (3.30) ☞ 83

that the likelihood function is

L.ˇ; �2I y/ D
�

1p
2��2

�n

e� 1
2 ky�Xˇk2=�2

for a given outcome y of Y. Observe that for any fixed �2 the likelihoodL.ˇ; �2I y/,
as a function of ˇ, is maximized by choosing ˇ such that ky �Xˇk2 is minimized.
But this gives exactly the least-squares estimate of ˇ; see Sect. 5.1.2. To obtain the ☞ 125

MLE for �2 it remains to maximize L.bˇ; �2I y/ or, equivalently, solve

� n

2�2
C 1

2

ky �Xbˇk2
.�2/2

D 0 ;
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where bˇ is MLE of ˇ. This gives the same estimate b�2 D ky � Xbˇk2=n as in
(5.12). For a generalization to the general regression case (possibly nonlinear), see☞ 127

Problem 6.3.

Example 6.15 (MLE for Exponential Families). For natural exponential families
of the form (6.16) the MLE is found by solving

t.x/� r�.�/ D t.x/� E� t.X/ D 0 ; (6.24)

where we have used the fact that E� Œt.X/ � r�.�/� D E�S.� I X/ D 0; see (6.8).☞ 167

Thus, � is chosen such that the observed and expected values of t.X/ are matched.

6.3.1 Score Intervals

The score function is not onlyvaluable for finding point estimates, but it can alsobe
used to construct confidence intervals. The key observation here is that for large iid☞ 128

samples the score is approximately normally distributed; see Theorem 6.3. Let us☞ 168

concentrate on the one-dimensional case; that is, � is real-valued.
Let X D .X1; : : : ; Xn/�iid

Vf .�I �/ and let S.� I X/ denote the score. By

Theorem 6.3, the pivot variable S.� I X/.n VI .�//�1=2 has approximately a standard
normal distribution, and hence

8

ˆ

<

ˆ

:

� W �z1�˛=2 <
S.� I X/
q

n VI .�/
< z1�˛=2

9

>

=

>

;

is an approximate 1 � ˛ stochastic confidence set. We use here “set” instead of
“interval” because this set need not be an interval in general.

Example 6.16 (Score Interval for Iid Bernoulli Data). Let X be an iid sample
from Ber.p/. Since the Bernoulli distribution is a special case of the binomial
distribution, we can use (6.10) in combination with Theorem 6.1 to find the score
S.pI X/ D Pn

iD1.Xi � p/=.p.1 � p// D n. NX � p/=.p.1 � p//. By a similar
reasoning we find the information number I.p/ D n=.p.1�p//. So the confidence
set becomes

(

p W �z1�˛=2 <
n. NX � p/

p.1 � p/ �
r

p.1 � p/
n

< z1�˛=2

)

D
(

p W �a <
NX � p

p

p.1 � p/=n
< a

)

;
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where we have abbreviated z1�˛=2 to a. By solving with respect to p the quadratic
equation

. NX � p/2 D a2 p.1 � p/=n ;

this confidence set can be written as the interval fT1 < p < T2g with

T1 D a2 C 2n NX � a
p

a2 � 4n. NX � 1/ NX
2 .a2 C n/

T2 D a2 C 2n NX C a
p

a2 � 4n. NX � 1/ NX
2 .a2 C n/

:

This score interval has much better coverage behavior than the “standard” confi-
dence interval (5.23) over the complete range of p. ☞ 136

6.3.2 Properties of the ML Estimator

An important property of the MLE is that it is invariant under transformations.

Theorem 6.6. (Invariance of the MLE). Suppose X � f .xI�/. Letb� be the
MLE of � and let g be an invertible function. Then the MLE of � D g.�/ is
b� D g.b�/.

Proof. Let L.�/ D f .xI�/ be the likelihood function, and let eL.�/ D L.g�1.�//
be the reparameterized likelihood function. The MLE of � is, by definition, the
numberb� for which eL.b�/ is maximal. Since L is maximal for � D b� , the function
L.g�1.�// is maximal atb� for which g�1.b�/ D b� , which givesb� D g.b�/. ut
Remark 6.2. If g is not invertible, then we can still define the MLE of � asb� D g.b�/.
In effect, this amounts to defining eL.�/ D max�Wg.�/D�L.�I x/.

Next, we consider the case where X D .X1; : : : ; Xn/ is an iid sample from some

pdf Vf .xI�/. Letb� be the ML estimator of � . The random variableb� has some nice
asymptotic properties.
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Theorem 6.7. (Consistency of the MLE). The ML estimator b� is consis-
tent. That is, with probability tending to 1 as n ! 1, the likelihood equation
has a rootb� such that for all " > 0

P.kb� � �k > "/ ! 0 :

Proof. (Sketch.) Let Ca be a sphere with radius a centered at the true parameter � .
We want to show that for sufficiently small a the probability tends to 1 that

l.�/ > l.e�/

at all points e� on the surface of Ca. This can be established as follows. A second-
order Taylor expansion of l.�/ around � , divided by n, yields☞ 369

1

n
.l.e�I X/� l.�I X// D
1

n
S.�I X/>.e� � �/C 1

n

1

2
.e� � �/>H.� I X/.e� � �/C 1

n
Rn ; (6.25)

where S.�I X/ is the gradient of l (i.e., the score), H.�I X/ is the Hessian matrix
of l (i.e., the matrix of partial derivatives .@2l=@�i@�j /), and Rn is a random
remainder term. By Theorem 6.3, S.�I X/=n converges to the zero vector. Similarly,☞ 168

by Theorem 6.1, H.� I X/ can be written as the iid sum
Pn

kD1 VH.�IXk/, where☞ 165

VH.�IXk/ denotes the matrix of partial derivatives .@2 Vl.�IXk/=@�i@�j /. Hence, by
the law of large numbers and (6.13),

1

n
H.�I X/ ! E�

VH.�IX/ D � VI .�/ (6.26)

as n ! 1, where VI is the information matrix corresponding to Vf . Thus, the first

and second terms in (6.25) converge to 0 and � 1
2
.e���/> VI .�/.e���/, respectively,

as n ! 1. Since the information matrix is positive definite (i.e., w> VI .�/w > 0

for any vector w), the second term is strictly negative. If the remainder term, which
depends on the third derivative of l , can be bounded in norm by a constant times
a3=n, then with probability tending to 1 the right-hand side will be less than 0 for
a small enough, proving the assertion that l.�/ > l.e�/ on the surface of the sphere
Ca. From this we can conclude that with probability tending to 1 there must be an
MLEb� that lies inside Ca. For a sequence of an ! 0 we can thus find a sequence
ofb�n ! � , showing the consistency of the estimator. ut
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Note that the above theorem only says that there exists a sequence of MLEs fb�ng
that converge (in probability) to the true � . When there are multiple local maxima,
a particular sequenceb�n may in fact converge to a local maximum.

Theorem 6.8. (Asymptotic Distribution of the MLE). Suppose that fb�ng is
a sequence of consistent ML estimators for � . Then,

p
n.b�n��/ converges in

distribution to a N.�; VI�1.�//-distributed random vector as n ! 1. In other
words,

b�n
approx:� N.�; VI�1.�/=n/ :

Proof. A sketch of the proof for the one-dimensional case (thus, � D � is a scalar)
is as follows. The key idea is again to take a Taylor expansion, this time a Taylor
expansion of l 0.b�n/ around � :

l 0.b�n/ D l 0.�/C .b�n � �/l 00.�/C 1

2
.b�n � �/2l 000.��/ ;

where �� lies between � and b�n. Since l 0.b�n/ D 0 (by definition), it follows that

p
n.b�n � �/ D l 0.�/=

p
n

�l 00.�/=n� .b�n � �/l 000.��/=.2n/
: (6.27)

The numerator in the right-hand side of (6.27) is S.� I X/=
p
n, which by

Theorem 6.3 has approximately a N.0; VI .�// distribution for large n. The first

term of the denominator is � 1
n

Pn
iD1 VH.� IXi/; which by the law of large numbers

converges to VI .�/ (see (6.26)). The second term of the denominator goes to 0 by
the consistency property. This shows that either side of (6.27) is approximately

N.�; VI�1.�// distributed. �

Example 6.17 (Asymptotic Distribution of the Binomial MLE). Let us check
if this theorem makes sense for the case where X1; : : : ; Xn are iid and Ber.p/
distributed. Here the MLE is NX and the information number for Ber.p/ is 1=.p.1�
p// (see (6.11) with n D 1). Theorem 6.8 states that for large n

NX approx:� N

�

p;
p.1 � p/

n

�

;

which follows also directly from the normal approximation to the binomial distri-
bution by noting that n NX � Bin.n; p/. ☞ 92
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6.4 Likelihood Methods in Statistical Tests

The likelihood does not only provide a systematic way of defining good estimators
(via the maximum likelihood principle), but it also yields a systematic way of
finding test statistics.

Let X1; : : : ; Xn be an iid sample from a distribution with unknown parameter
� . Write X for the corresponding random vector, and let L.�I x/ be the likelihood
function for a given outcome x of X. Let 
 be the set of possible values for � .
Suppose 
0 and 
1 are two nonoverlapping subsets of 
 such that 
0 [ 
1 D 
.
Consider the following hypotheses:

H0 W � 2 
0 ;
H1 W � 2 
1 :

Definition 6.5. (Generalized Likelihood Ratio). The generalized likeli-
hood ratio is defined as the number

� D M0.x/
M.x/

defD max�2
0 L.� I x/
max�2
 L.� I x/

:

Note that M.x/ D L.b� I x/, where b� is the ML estimate of � . Let � denote
the random generalized likelihood ratio obtained by substituting X for x. We can
use � as a test statistic for testing the above hypotheses. The general principle is
to reject H0 if � is too small (left one-sided test). To determine the corresponding☞ 140

p-value P.� � �/, we need to know the distribution of � under H0. This is in
general a difficult task. However, it is sometimes possible to derive the distribution
of a function of � under H0, which is then taken as an equivalent test statistic. The
new rejection region is no longer necessarily left one-sided.

Example 6.18 (Generalized Likelihood Ratio Test for Iid Normal Data). Sup-
pose X1; : : : ; Xn �iid N.�; �2/, with � and �2 unknown. We wish to test

H0 W � D �0 ;

H1 W � ¤ �0 :

Hence,
0 D f.�0; �2/; �2 > 0g. The random likelihood function is given by

L.�; �2I X/ D
�

1

2��2

�n=2

exp

 

�1
2

n
X

iD1

.Xi � �/2

�2

!

:
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Maximizing L (or lnL) over
 gives the MLE .b�; b�2/ D . NX;Pn
iD1.Xi � NX/2=n/.

Hence, M.X/ D L.b�; b�2I X/. Optimizing L over 
0 gives the estimator .�0; e�2/,
with

e�2 D 1

n

n
X

iD1
.Xi � �0/2 :

Consequently,

� D L.�0; e�2I X/

L.b�; b�2I X/
D
 

Pn
iD1.Xi � NX/2

Pn
iD1.Xi � �0/2

!n=2

D
�

1C 1

n � 1
T 2
��n=2

;

where T D NX��0
S=

p
n

and S is the sample standard deviation. Rejecting H0 for small

values of � is equivalent to rejectingH0 for large values of jT j. By (5.17), T has a ☞ 131

tn�1 distribution underH0.

Theorem 6.9. (Asymptotic Distribution of the Generalized Likelihood
Ratio). For a k-dimensional parameter space (thus, � D .�1; : : : ; �k/), if
the null hypothesis has only one value H0 W � D �0 and the alternative
hypothesis is H1 W � ¤ �0, then for large n (under some mild regularity
conditions, which are satisfied for exponential families),

�2 ln�
approx:� �2k :

Proof. (Sketch.) This is again an exercise in Taylor expansions. Letb� be the MLE ☞ 369

of � and let l.�/ be the log-likelihood function. UnderH0

�2 ln� D �2.l.�0/ � l.b�// :

A second-order Taylor expansion at �0 aroundb� gives

l.�0/ D l.b�/C .rl.b�//>.b� ��0/C 1

2
.b� ��0/>r2l.b�/.b� ��0/CO.kb� ��0k3/ :

Because rl.b�/ D 0 and r2l.b�/ � �I.�0/, where I is the information matrix (of
dimension k), we have

�2 ln� � .b� � �0/>I.�0/.b� � �0/ :
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By Theorem 6.8,b���0 has approximately a N.0; I�1.�0// distribution. Thus, for a
large sample size, we have that �2 ln� is approximately distributed as X>I.�0/X
with X � N.0; I�1.�0//. From Theorem 3.9 it follows now that �2 ln� has☞ 87

approximately a �2k distribution. ut

6.5 Newton–Raphson Method

Recall that likelihood maximization often involves solving S.�/ D S.�I x/ D 0,
where S.�/ is the score function and � a k-dimensional parameter vector. The MLE
b� is the solution to this equation; that is, it is the root of S.�/. It is often not possible
to findb� in an explicit form. In that case one needs to solve the equation S.�/ D 0

numerically. There exist many standard techniques for root-finding. A well-known
method is the Newton–Raphson procedure. This is an iterative procedure where,
starting from a guess � , a “better” guess is obtained by approximating the score via
a linear function. More precisely, suppose that � is our initial guess forb� (the root of
S). Ifb� is reasonably close to � , a first-order Taylor approximation of Si D @l=@�i☞ 369

around � gives

Si.b�/ � Si.�/C ŒrSi .�/�>.b� � �/; i D 1; : : : ; k ;

or, in matrix notation, S.b�/ � S.�/ C H.�/.b� � �/, where H is the Hessian of
the log-likelihood, that is, the matrix of second-order partial derivatives of l . Since
S.b�/ D 0 by definition, we have

b� � � �H�1.�/ S.�/ :

This suggests the following Newton–Raphson recursion for finding successively
better guesses �1;�2; : : : converging tob�:

� tC1 D � t �H�1.� t / S.� t / : (6.28)

The sequence of successive values is guaranteed to converge to the actual root, pro-
vided the function is smooth enough (e.g., has continuous second-order derivatives)
and the initial guess is close enough to the root.

Notice that H.�/ D H.�I x/ depends on the parameter � and the data x and
may be quite complicated. On the other hand, the expectation ofH.�I X/ under � is
simply the negative of information matrix I.�/, which does not depend on the data.
This suggests the alternative iterative scheme, called Fisher’s scoring method:

� tC1 D � t C I�1.� t / S.� t / ; (6.29)

which may be much easier to implement if the information matrix can be readily
evaluated.
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Example 6.19 (MLE for Iid Normal Data). Suppose x D .x1; : : : ; xn/ is the
outcome of an iid sample from the N.�; �2/ distribution (both parameters unknown).
The score function is given in (6.5)–(6.6). From (6.14) we find that the Hessian ☞ 166

☞ 170matrix is given by

H.�; �2I x/ D
n
X

iD1
VH.�; �2I xi / D

n
X

iD1

 � 1
�2

� xi��
.�2/2

� xi��
.�2/2

1
2�4

� .xi��/2
.�2/3

!

;

where VH.�; �2I x/ is the Hessian for the 1-dimensional case. Apart from a starting
value, this is all that is required to carry out the Newton–Raphson iteration (6.28). It
is easier, however, to apply the recursion (6.29), using the exact expression for the
information matrix (see (6.15)): ☞ 170

I�1.�; �2/ D
�

n VI .�; �2/
��1 D 1

n

�

�2 0

0 2�4

�

:

It follows that the Fisher scoring procedure (6.29) involves the following iterative
steps:

�tC1 D �t C 1

n
�2t

n
X

iD1

.xi � �t/

�2t
D �t C 1

n

n
X

iD1
.xi � �t/ D Nx ;

�2tC1 D �2t C 2

n
�4t

 

�n
2�2t

C 1

2

n
X

iD1

.xi � �t/
2

�4t

!

D 1

n

n
X

iD1
.xi � �t /2 :

Note that, starting from any initial guess, after only two steps we get �t D Nx and
�2t D 1

n

Pn
iD1.xi � Nx/2, which are the MLEs for � and �2.

Example 6.20 (MLE for the Radioactive Source Detection Example). Let us
return to Example 6.3. Suppose we want to find the most likely estimate for the ☞ 163

position a of the source. The log-likelihood function is

l.aI x/ D �n ln� �
n
X

iD1
ln.1C .xi � a/2/ :

Taking the derivative with respect to a gives the score function

S.aI x/ D
n
X

iD1

2.xi � a/

1C .xi � a/2 :
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The information number is of form I.a/ D n VI .a/, where VI is the information
number for a single sample. Specifically,

VI .a/ D EaS
2.aIX/ D

Z 1

�1
4.x � a/2

.1C .x � a/2/2
1

�.1C .x � a/2/ dx

D
Z 1

�1
4y2

�.1C y2/3
dy .change of variable y D x � a/

D 1

2
:

Thus the information number is constant; this is in agreement with the fact that we
are dealing here with a location family of distributions; see Example 6.11. Now
(6.29) leads to the scheme

atC1 D at C 2

n

n
X

iD1

2.xi � at /

1C .xi � at /2
:

This is implemented in the following MATLAB code.

%lighthousemle.m
x = [1.3615,3.5616,-14.2411,-4.4950,2.3014,1.1066,...

-9.3409, 0.3779, 0.9386,-0.1838]; %the data
a = 2; %initial guess
n = 10;
for i=1:7

display(a)
a = a+4*sum((x-a)./(1 + (x-a).^2))/n; %note vectorization!

end

This gives the following succession of values, 2, 1:2626, 0:9536; 0:9654, 0:9648,
0:9648, and 0:9648, so that the MLE is ba D 0:9648, which is remarkably close to
the true value a D 1.

6.6 Expectation–Maximization (EM) Algorithm

Another useful numerical method for likelihood maximization is the expectation–
maximization (EM) algorithm.
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Suppose that, for a given vector of observations x D .x1; : : : ; xn/, we wish to
compute the MLE:

b� D argmax
�

L.�I x/ ; (6.30)

where L.� I x/ D f .xI�/ is the likelihood function.
One could use a root-finding routine, such as the Newton–Raphson method

described in Sect. 6.5, to obtain b� . However, for many problems, computing the
score function and the Hessian matrix analytically—required by the Newton–
Raphson method—might be difficult. Instead of maximizing the likelihood function
directly, the EM algorithm augments the data x with a suitable vector of latent (or
hidden) variables z such that

f .xI�/ D
Z

ef .x; zI�/ dz :

The function of �

eL.� I x; z/ D ef .x; zI�/

is usually referred to as the complete-data likelihood function. The main advantage
of the data augmentation step is that it is often possible to introduce latent variables
z in such a way that the maximization of the complete-data likelihood eL.�I x; z/ or
log-likelihoodel.�I x; z/ D lneL.�I x; z/ is much easier than maximizing the original
likelihood L.� I x/ or log-likelihood l.�I x/ D lnL.�I x/.

Of course, the latent variables z are not observed, and neither eL.�I x; z/ nor
el.�I x; z/ are available. One feasible approach is to replace it with the expectation
Eg
el.�I x;Z/ with respect to a suitable density g.z/. It can be shown (see Prob-

lem 6.20) that for all � and any density g,

lnf .xI�/ � L.g;�/ defD
Z

g.z/ ln

 

ef .x; zI�/
g.z/

!

dz

D Eg
el.�I x;Z/� Eg lng.Z/ :

(6.31)

That is, L.g;�/ is a lower bound for the log-likelihood l.�I x/. In addition, this
lower bound is attained (see Problem 6.20) for ☞ 192

g.z/ D efZ j X.z j xI�/ defD
ef .x; zI�/

R

ef .x; zI�/dz
: (6.32)

That is, the lower bound is attained when g.z/ is taken as the conditional pdf of the
latent data Z given the observed data X D x.
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Algorithm 6.1. (EM Algorithm). Suppose �0 is an initial guess for the
maximizer. The EM algorithm consists of iterating the following steps for
t D 1; 2; : : ::

1. Expectation Step (E-Step): Given the current vector � t�1, maximize
L.g;� t�1/ as a function of g. It follows from (6.32) that the exact
solution is

gt .z/
defD efZ j X.z j xI� t�1/ :

Compute the expected log-likelihood under gt :

Qt.�/
defD Egt

el.�I x;Z/ : (6.33)

2. Maximization Step (M-Step): Maximize L.gt ;�/ as a function of � .
Since L.gt ;�/ D Qt.�/ � Egt lngt .Z/, this is equivalent to finding

� t D argmax
�

Qt.�/ :

3. Stopping Condition: If, for example, jl.� t I x/� l.� t�1I x/j � " for some
small tolerance ", terminate the algorithm.

A direct consequence of the EM algorithm is that the sequence of log-likelihood
values does not decrease with each iteration. In fact, we have

l.� t�1I x/ D L.gt ;� t�1/ � L.gt ;� t / � L.gtC1;� t / D l.� t I x/ ; (6.34)

where the first and last equalities follow from the definitions of L, gt , and
gtC1, whereas the second and third inequalities follow from the M- and E-steps,
respectively. Under certain continuity conditions the sequence f� t g is guaranteed
to converge to a local maximizer of the log-likelihood ` (or the likelihood L).
Convergence to a global maximizer (the MLEb�) depends on the appropriate choice
for the starting value. Typically, the algorithm is run from different random starting
points. Note that (6.34) is useful for debugging computer implementations of the
EM algorithm: if likelihood values are observed to decrease at any iteration, then
there is an error in the program. For a further discussion of the theoretical and
practical aspects of the EM algorithm we refer to McLachlan and Krishnan 2008.
We illustrate the EM algorithm via two examples.
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Example 6.21 (EM for the Genetic Linkage Experiment). In a genetic linkage
experiment, n animals are randomly assigned (by nature) to four categories accord-
ing to the multinomial distribution with pdf

f .x1; x2; x3; x4I �/ / �
x1
1 �

x2
2 �

x3
3 �

x4
4 ;

where n D x1 C x2 C x3 C x4 and the cell probabilities are �1 D 1=2 C �=4,
�2 D .1 � �/=4, �3 D .1 � �/=4, and �4 D �=4. Suppose the observed data are
given as x D .x1; x2; x3; x4/ D .125; 18; 20; 34/, and we wish to obtain the MLE
for � .

It is easy to check that the log-likelihood function is given by

l.� I x/ D x1 ln.2C �/C .x2 C x3/ ln.1 � �/C x4 ln � C const :

The graph of the log-likelihood function (apart from the constant term) is given in
Fig. 6.5. Since this is a univariate problem, the MLE for � can be obtained by the

0 0.2 0.4 0.6 0.8 1
−60
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−20
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θ

; x
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Fig. 6.5 The log-likelihood function for the genetic linkage experiment

grid search or the Newton–Raphson method (see Problem 6.25). In this example ☞ 194

we use the EM algorithm to maximize the log-likelihood.
To that end, we augment the observed data as follows: suppose that the first of

the original 4 multinomial cells could be split into two subcells having probabilities
1=2 and �=4, respectively. Let Z and X1 �Z be the corresponding split of X1, and
note that Z is not observed. Now the random vector .Z;X1 �Z;X2;X3;X4/ has a
multinomial distribution with the following five cell probabilities,

�

1

2
;
�

4
;
1 � �

4
;
1 � �
4

;
�

4

�

;
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and the complete-data log-likelihood can be written as

el.� I z; x/ D .x1 � z C x4/ ln � C .x2 C x3/ ln.1 � �/C const :

Suppose that �t�1 is the current guess for � . To implement the E-step, we first
derive the conditional density gt .z/ D efZ j X.z j xI� t�1/: Note that given X1 D x1,
Z has a Bin.x1; p/ distribution, with success probability

p D 1=2

1=2C �t�1=4
D 2

2C �t�1
:

Recall that for Y � Bin.n; p/, we have EY D np. Hence, we have

EgtZ D EŒZ jX1 D x1I �t�1� D 2x1=.2C �t�1/ :

It follows that

Qt.�/DEgt
el.� IZ; x/D

�

x1Cx4� 2x1

2C�t�1
�

ln �C.x2Cx3/ ln.1��/Cconst :

To implement the M-step, we simply solve d
d� Qt .�/ D 0 for � . It is easy to check

that the solution is given by

�t D x1 C x4 � 2x1=.2C �t�1/
n � 2x1=.2C �t�1/

:

The following MATLAB program implements the EM algorithm to find the MLE
for � , which is estimated to beb� D 0:6268.

%genlink.m
x = [ 125 18 20 34 ]’; n = sum(x);
theta = 4*(x(1)/n-1/2); %% initial guess
err = 1;
while abs(err) > 10^(-5) %% stopping criterion

z = 2*x(1)/(2+theta); %% E-step
temp = (x(1)+x(4) - z)/(n-z); %% M-step
err = theta - temp;
theta = temp;

end

In the next example, we illustrate how one can use the EM algorithm for fitting
mixture models. A mixture pdf is a pdf of the form

f .x/ D w1f1.x/C� � �Cwc fc.x/; wz � 0; z D 1; : : : ; c;

c
X

zD1
wz D 1 ; (6.35)
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where each fz is itself a pdf. Such a mixture pdf can be thought of in the following
way. Consider two random variables, X and Z, where Z takes values 1; 2; : : : ; c
with probabilities w1; : : : ;wc , and conditional onZ D z, the random variableX has
pdf fz. By the product rule (3.10), the joint pdf ofX andZ is given by fX;Z.x; z/ D ☞ 72

wzfz.x/ and the marginal pdf ofX is found by summing the joint pdf over the values
of z—this gives (6.35).

Example 6.22 (EM for a Gaussian Mixture Model). Let x1; : : : ; xn be iid
observations drawn from the following Gaussian mixture pdf:

Vf .xI�/ D
c
X

zD1

wz

�z
'

�

x � �z

�z

�

;

where ' is the pdf of the N.0; 1/ distribution, � D .�; � ;w/ with � D .�1; : : : ;

�c/, � D .�1; : : : ; �c/, and w D .w1; : : : ;wc/. The likelihood of x under � is

L.� I x/ D f .xI�/ D
n
Y

iD1
Vf .xi I�/ D

n
Y

iD1

c
X

zD1

wz

�z
'

�

xi � �z

�z

�

: (6.36)

Such a mixture distribution is often used for modeling unobserved heterogeneity,
i.e., the presence of subpopulations that are not identified in the observed data. For
example, suppose that xi is, say, height of the i th student in a class. Further suppose
that there are both male and female students in the class, but the genders of the
students are not recorded. Then a suitable model for the outcomes is a mixture of
two Gaussian distributions.

Direct maximization of the likelihood in (6.36) could be difficult and time-
consuming. To simplify the computation, introduce a vector of latent variables
Z D .Z1; : : : ; Zn/, each Zi taking values in f1; 2; : : : ; cg and such that (Xi jZi D
zi / � N.�zi ; �

2
zi /. This gives the complete-data likelihood

eL.�I x; z/ D ef .x; zI�/ D
n
Y

iD1

wzi

�zi

'

�

xi � �zi

�zi

�

: (6.37)

Note that by summing ef .x; zI�/ over all z we obtain f .xI�/. The discussion
following (6.35) shows that the latent variable Zi can be interpreted as the
component of the mixture model from which Xi is drawn.

To implement the EM algorithm, suppose that � t�1 is the current guess for � . In
the E-step we first derive the (discrete) pdf of Z given the data X D x:

gt .z/ D efZjX.z j xI� t�1/ / ef .x; zI� t�1/ :

Thus, to find gt we view the right-hand side of (6.37) as a function of z D
.z1; : : : ; zn/. It follows that under gt the components of Z are independent and each
Zi has a (discrete) pdf
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gt;i .z/
defD wt�1;z
�t�1;z

'

�

xi � �t�1;z
�t�1;z

�� c
X

kD1

wt�1;k
�t�1;k

'

�

xi � �t�1;k
�t�1;k

�

(6.38)

for i D 1; : : : ; n and z D 1; : : : ; c. The expected complete-data likelihood in the
E-step is then

Qt.�/ D Egt
el.�I x;Z/ D

n
X

iD1

c
X

zD1
gt;i .z/

�

ln wz � ln �z � .xi � �z/
2

2�2z

�

C const :

Next, in the M-step, we maximize Qt.�/ with respect to w (under the constraints
P

z wz D 1; wz � 0 for all z), �, and � . It is easy to check that for z D 1; : : : ; c the
solution to rQt.�/ D 0 is

wz D 1

n

n
X

iD1
gt;i .z/ ;

�z D
Pn

iD1 gt;i .z/xi
Pn

iD1 gt;i .z/
;

�2z D
Pn

iD1 gt;i .z/.xi � �z/
2

Pn
iD1 gt;i .z/

:

(6.39)

We then set � t according to the values in (6.39) and keep iterating the E-step (6.38)
and the M-step (6.39) until convergence is reached.

6.7 Problems

6.1. In a guessing game Albert chooses a number � between 0 and 10, and the
other people have to guess the number; the person whose guess is closest to � wins.
To facilitate the guesswork, Albert draws seven numbers uniformly from the interval
Œ0; �� and displays the results to the others. Suppose these seven values (the observed
data) are

4.3180, 4.8007, 0.6730, 4.8409, 3.3515, 0.5170, 1.4760 .

a. Give a model for the data X1; : : : ; X7. Show that M D maxfX1; : : : ; X7g is a
sufficient statistic for � .

b. Determine the method of moment estimate of � . Is the corresponding estimator
a function of M ?

c. Sketch the graph of the likelihood function, and use it to determine the MLE. Is
the corresponding estimator a function ofM ?

d. Use T D M=� as a pivot variable to construct a 95% numerical confidence☞ 129

interval for � of the form .m; a/ for some a > m, where m D maxfx1; : : : ; x7g.
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6.2. Let X1; : : : ; Xn �iid N.�; �/ with an unknown � > 0. Find the MLE of � .

6.3. Consider the general regression model ☞ 108

Yi D g.xi Iˇ/C "i ; i D 1; : : : ; n ; (6.40)

where "1; : : : ; "n �iid N.0; �2/ and g.xIˇ/ is a known function of the explanatory
vector x and the parameter vector ˇ. Both �2 and ˇ are assumed to be unknown.

a. Show that the MLE of ˇ is found by minimizing the sum of the squared
deviations between the fYig and the fg.xi Iˇ/g; that is,

bˇ D argmin
ˇ

n
X

iD1
.Yi � g.xi Iˇ//2 :

b. Derive the MLE of �2.

6.4. For multidimensional parameters � it is sometimes useful to draw 1-
dimensional graphs for the likelihood function by substituting all parameters except
one with their MLEs (as a function of the remaining unknown parameter). The
function thus obtained is called the profile likelihood.

Consider the 10 iid samples from the N.�; �2/ distribution given in
Example 6.2. ☞ 162

a. Give the formula for the profile likelihood for �2.
b. Draw the graph of this profile likelihood. Does its mode correspond to the MLE

of �2?

6.5. Let X1; : : : ; Xn be iid random variables with pdf

f .xI �/ D .� C 1/ x� ; 0 � x � 1; � > �1 :

a. Find the method of moment estimator of � .
b. Find the MLE of � .

6.6. The weight X (in grams) of an egg is N.�; �2/ distributed. Let b� D 56:3 and
b� D 7:6 be the MLEs of � and � . Give the MLE of

P.X > 68:5/ :

6.7. For X1; : : : ; Xn
iid� N.�; �2/, let S2 be the sample variance and let b�2 be the

MLE of �2.

a. Which of the two is an unbiased estimator of �2?
b. Is

p
S2 an unbiased estimator of �?

c. Is
p

b�2 the MLE of �?



190 6 Likelihood

6.8. Let Y � U.��=2; �=2/ and define Z D tan.Y /. Show, using transformation
formula (3.21), that Z has a Cauchy distribution.☞ 79

☞ 50
6.9. The following iid data, 0:685, 2:586, �1:969, �2:673, 1:464, 2:977, �1:120,
1:594, �0:543, 1:505, �1:266, 1:981, have been drawn from a double exponential
distribution, with pdf

f .x/ D �

2
e��jxj; x 2 R :

Find the MLE for �.

6.10. The Weibull distribution with scale parameter � > 0 and shape parameter
˛ > 0 has cdf

F.x/ D 1 � e�.�x/˛ ; x � 0 :

Suppose x1; : : : ; xn are the outcomes of an iid sample from a Weibull distribution
with shape parameter ˛ D 2 and unknown scale parameter �. Find the MLE of �.

6.11. Suppose X1; : : : ; Xn �iid Geom.p/. Show that the generalized likelihood
ratio method for the hypothesis H0 W p D p0 versus H1 W p ¤ p0 yields the
test statistic

� D

�

p0

1 � p0

�n

.1 � p0/
.n NX/

 

1= NX
1 � 1= NX

!n

.1 � 1= NX/.n NX/
:

What is the approximate distribution of �2 ln� for large n?

6.12. Let X1; : : : ; Xn be an iid sample from the Bin.k; p/ distribution, where k is
given but p 2 Œ0; 1� is unknown.

a. Find the MLE bp of p.
b. Show that bp attains the Cramér–Rao lower bound.
c. Sketch the log-likelihood function for the case where n D 1, k D 10, and x1 D 5.

6.13. Suppose that 100 observations are taken from the N.�; 1/ distribution with an
unknown �. Instead of recording all the observations, one records only whether the
observation is less than 0. Suppose that 40 observations are less than 0. What is the
MLE for � based on these observations?

6.14. Let X1; : : : ; Xn be an iid sample from the Exp.1=v/ distribution, where v > 0
is unknown. Let X D .X1; : : : ; Xn/.

a. Find the score S.vI X/.
b. Give the corresponding Fisher information.
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c. Find the MLE of v.
d. Give the MLE of sin.v/.

6.15. LetX1; : : : ; Xn be an iid sample from the distribution with pdf f .xI �/, where

f .xI �/ D 1

2 �3
x2 e�x=� ; x > 0; � > 0 :

a. Show that EXi D 3 � and Var.Xi / D 3 �2.
b. Find a sufficient statistic for the parameter � using the factorization Theorem 5.5. ☞ 150

c. Find the MLE of � .
d. Find the Fisher information I.�/.
e. Give the asymptotic distribution of the MLE of � .
f. What are the bias and the variance of the MLE of �?
g. Determine whether or not the MLE of � attains the Cramér–Rao lower bound.

6.16. An iid sampleX1; : : : ; Xn is taken from the N.0; �/ distribution, where � > 0
is unknown. We wish to test the hypothesis H0 W � D 3 against H1 W � ¤ 3 using
an appropriate test statistic.

a. Show that the likelihood ratio test statistic is here a function of

T D
n
X

iD1

X2
i

3
:

b. What is the distribution of T underH0?

6.17. Verify that the score function corresponding to the observed iid sample
x1; : : : ; xn from the Gamma.˛; �/ distribution is

S.˛; �/ D
�

n.ln� �  .˛//CPn
iD1 ln xi

n˛
�

�Pn
iD1 xi

�

;

and that the corresponding Fisher information matrix is

I.˛; �/ D n

�

 0.˛/ � 1
�

� 1
�

˛
�2

�

;

where  0.˛/ is the derivative of the digamma function  .x/ D � 0.x/=� .x/.

6.18. Suppose x1; : : : ; x10 are the outcomes of an iid sample from Exp.�/. Con-
struct a score confidence interval for � with confidence coefficient 0:90 if the sum
of the fxi g is 10.
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6.19. Let X1; : : : ; Xn and Y1; : : : ; Yn be independent random samples from the
Exp.�/ and Exp.�/ distributions, for unknown � and �. Suppose we wish to test
the hypothesisH0 W � D � againstH1 W � ¤ �.

a. Find the MLEs for � and �.
b. Find the MLEs for � D � D � underH0.
c. Show that the following test statistic

T D
Pn

iD1 Yi
Pn

iD1 Xi

can be derived from the generalized likelihood ratio procedure.
d. For large n, T has approximately a normal distribution. Find the parameters of

this distribution via the delta method.☞ 92

6.20. A useful way to measure how far away a pdf g is from a pdf h is the
Kullback–Leibler (KL) distance (also called KL divergence or cross-entropy
distance), defined as

D.g; h/ D Eg ln
g.X/
h.X/

: (6.41)

In the EM algorithm it is used to derive the inequality (6.31) using the following☞ 183

decomposition:

lnf .xI�/ D
Z

g.z/ ln f .xI�/ dz

D
Z

g.z/ ln

 

ef .x; zI�/=g.z/
efZjX.z j xI�/=g.z/

!

dz

D
Z

g.z/ ln

 

ef .x; zI�/
g.z/

!

dz

„ ƒ‚ …

L.g;�/

CD.g; efZjX.� j xI�// : (6.42)

a. Using Jensen’s inequality, show that D.g; h/ � 0 in (6.41).☞ 33

b. Verify (6.42) and explain how g should be chosen such that the Kullback–Leibler
term in (6.42) is minimized.

6.21.Let X1; : : : ; Xn be an iid sample from the discrete pdf

f .xI �/ D �xe��

xŠ .1 � e�� /
; x 2 f1; 2; : : : g; � > 0 :
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Suppose that an iid sample of size n D 16 gives two 5s, four 4s, four 3s, four 2s,
and two 1s. Plot the likelihood function and the log-likelihood function of the data
and perform a grid search to obtain the MLE; that is, of the plotted values, find the
� for which the likelihood (or log-likelihood) is maximal.

6.22.The data 1:1668; 0:0738; 0:7740; 1:0160; 0:4822; 1:4559; 0:1752; 0:5209;
0:1537; 0:2947 are the outcomes of an iid sample X1; : : : ; X10 from the pdf

f .x/ D c .b � x/; 0 � x � b ;

where b > 0 is unknown and c is a normalization constant.

a. Show that c D 2=b2.
b. Estimate b via the method of moments.
c. Show that the MLEbb satisfies

10
X

iD1

bb

bb � xi
� 20 D 0; bb � 1:4559 ;

if this equation has a solution. Determine bb numerically using MATLAB’s root-
finding function fzero.

6.23. Consider the score interval for the binomial distribution in Example 6.16. As ☞ 174

in Problem 5.22 the exact coverage probability can be calculated as a function of p
by means of total enumeration. Plot the coverage probability for the score interval
and compare it with the “standard” one in Problem 5.22. ☞ 158

6.24.Using Problem 6.17, implement Fisher’s scoring method

� tC1 D � t C I�1.�/ S.�/

to find the MLEb� D .b̨;b�/ for the following iid data from Gamma.˛; �/):

29.7679 12.8406 105.3225 46.6101 75.7135 72.0340
33.9008 35.2510 50.9201 29.8086 32.6963 131.5229
29.1369 61.8774 31.0650 54.4877 103.6889 68.0230
30.1994 48.3140 54.4447 29.2253 27.0242 102.5929
43.0354 96.5552 64.1004 65.3381 89.6879 63.7344

Use the method of moment estimates as starting values for the Newton–Raphson
scheme. The digamma function  is implemented in MATLAB as psi(x) and its
derivative  0 as psi(1,x) (polygamma function).
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6.25.Consider the genetic linkage model in Example 6.21.

a. Show that the score and Hessian functions for � are given by☞ 184

S.�/ D 34

�
C 125

� C 2
� 38

1 � �
and H.�/ D �34

�2
� 125

.� C 2/2
� 38

.1 � �/2 :

b. Implement a Newton–Raphson procedure to find the MLE of � .
c. Implement a simple grid search to find the MLE.
d. Do the Newton–Raphson, grid search, and EM approaches give the same

estimate?



Chapter 7
Monte Carlo Sampling

Monte Carlo sampling—that is, random sampling on a computer—has become an
important methodology in modern statistics. By simulating random variables from
specified statistical models and probability distributions one can often estimate
certain statistical quantities that may otherwise be difficult to obtain. In Sect. 2.7 ☞ 51

we already saw how random variables can be generated from common probability
distributions via the inverse-transform and acceptance–rejection methods.

In this chapter we discuss two other important Monte Carlo sampling techniques:
the bootstrap method and Markov chain Monte Carlo (MCMC). The bootstrap
method is a sampling procedure in which new samples are generated by resampling
the observed data. MCMC is used extensively in Bayesian statistics to sample
from complicated multidimensional distributions. Bayesian statistics is introduced
in Chap. 8. ☞ 227

The following example illustrates how random sampling can be used to estimate
a p-value without having to derive the specific distribution of the test statistic.

Example 7.1 (Estimating a p-Value). Suppose an iid sample of size 4 from a
N.�; �2/ distribution has a sample mean Nx D �0:7 and sample standard deviation
s D 0:4. We wish to test the hypothesis H0 W � D 0 against H1 W � < 0, using
the test statistic T D 2 NX=S , whereby we reject H0 if the outcome of T is too ☞ 140

small. The observed outcome of T is t D 2� �0:7=0:4 D �3:5. The corresponding
p-value is

p D PH0.T � �3:5/ D EH0IfT��3:5g :

This can be estimated by simulating, under H0, a large iid sample T1; : : : ; TN of
copies of T and evaluating the sample average

bp D 1

N

N
X

iD1
IfTi��3:5g ;

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__7, © The Author(s) 2014
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similar to the Monte Carlo integration procedure in Example 5.7. In the MATLAB☞ 130

program below, each Ti is generated by drawing an iid sample of size 4 from the
standard normal distribution and evaluating T for that sample. The variable count
contains the total number of test statistics with a value less than or equal to the
observed value �3:5; the estimate bp is simply the value of count divided by N .
A typical estimate for bp is 0.02. This indicates that there is fairly strong evidence
that H0 is not true. A huge advantage of this approach is that we do not have to
analyze or evaluate the cdf of the test statistic underH0; we only have to repeat the
experiment underH0 many times. See Problem 7.1 for a further discussion.☞ 220

%pvalsim.m
xbar_obs = -0.7; s_obs = 0.4; t_obs = 2*xbar_obs/s_obs;
N = 10^5;
count = 0;
for i=1:N

x = randn(4,1);
xbar = mean(x); s = std(x); t = 2*xbar/s;
count = count + (t <= t_obs);

end
phat = count/N % estimated p-value

Statistical sampling often involves generating an iid sample from some specified
discrete or continuous pdf. Two important ways to analyze such data are to use the
empirical cdf and density estimation.

7.1 Empirical Cdf

Definition 7.1. (Empirical Cdf). Let x1; : : : ; xN be an iid real-valued sam-
ple from a cdf F . The function

FN .x/ D 1

N

N
X

iD1
Ifxi�xg; x 2 R ; (7.1)

is called the empirical cdf of the data.

Here, Ifxi�xg D 1 if xi � x and 0 otherwise. FN is a nondecreasing step function
which jumps up by an amount of 1=N at each of the points fxi g. Moreover, FN is
right-continuous and bounded between 0 and 1. In other words, FN is a cdf—see
Sect. 2.1. It is the cdf of a random variable that takes one of the values x1; : : : ; xN☞ 26

with equal probability 1=N , assuming that all the observations are different. In
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Fig. 7.1 the empirical cdf is shown of an iid sample of size 10 from the Exp.0:2/
distribution. The true cdf is plotted as well.
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Fig. 7.1 The empirical cdf for a sample of size 10 from the Exp.0:2/ distribution and the true cdf

We see that the empirical cdf follows the true cdf quite well. The fit becomes
better and better as the sample size increases. In Fig. 7.2 the empirical and true cdfs
are shown for the same distribution, but now for a sample size of 200.
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Fig. 7.2 The empirical cdf for a sample of size 200 from the Exp.0:2/ distribution and the
true cdf
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If we order the sample as x.1/ < x.2/ < � � � < x.N/, then for each i D 1; : : : ; N ,

FN .x.i// D i

N
; (7.2)

assuming for simplicity that all fxi g take different values.
If instead of deterministic fxig we take randomXi , in (7.1), then FN .x/ becomes

random as well. To distinguish between the deterministic and the random case, let
us denote the random empirical cdf by bFN .x/. We now have

P

�

bFN .x/ D i

N

�

D P.X.i/ � x;X.iC1/ > x/ D
 

N

i

!

.F.x//i .1 � F.x//N�i :

(7.3)

To see this, note that the event fX.i/ � xg \ fX.iC1/ > xg means that exactly i of
the N random variables that we draw from F are less than or equal to x. Thus, the
event is equivalent to having i successes in N independent Bernoulli experiments
with success probability F.x/, which leads to (7.3).

Equation (7.3) can be summarized as N bFN .x/ � Bin.N; F.x//. As a conse-
quence,

EbFN .x/ D F.x/

and

Var.bFN .x// D F.x/.1 � F.x//=N :

Moreover, by the law of large numbers and the central limit theorem, we have

P. lim
N!1

bFN .x/ D F.x// D 1 ; (7.4)

and

lim
N!1P

 

bFN .x/ � F.x/
p

F.x/.1 � F.x//=N � z

!

D ˚.z/ ; (7.5)

where ˚ is the cdf of the standard normal distribution.
Exactly as in (5.23) we see that an approximate 1 � ˛ confidence interval for☞ 136

F.x/ is

FN .x/˙ z1�˛=2

r

FN .x/.1 � FN .x//

N
;

where z1�˛=2 is the 1 � ˛=2 quantile of the standard normal distribution. Moreover,
if we order the observations x.1/ < � � � < x.N/, then, by (7.2), an approximate 1� ˛
confidence interval for F.x.i// is
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i

N
˙ z1�˛=2

r

i.1� i=N /
N 2

; i D 1; : : : ; N :

Example 7.2 (Confidence Interval for a Cdf). In Fig. 7.3 a 90 % confidence
interval (hence z1�˛=2 D z0:95 D 1:645) is given for the cdf of the Exp.1/
distribution, based on an iid sample of size N D 60. The true cdf is given by the
smooth line. We see that the true cdf lies convincingly within the confidence curves.
However, the actual width of the confidence intervals (as a function of x) is quite
sizeable, due to the fact that N is not large.
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Fig. 7.3 A 90 % confidence interval for the cdf F.x/ D 1� e�x; x � 0

Let X1; : : : ; XN �iid F , where F is continuous and strictly increasing. Define
U1 D F.X1/; : : : ; UN D F.XN /. From the inverse-transform method (see
Sect. 2.7.2) we see that U1; : : : ; UN is an iid sample from U.0; 1/. Denote the ☞ 53

empirical cdf of the fUig by bGN.u/, and let x and u be related via x D F �1.u/
and u D F.x/. Then,

bGN.u/ D 1

N

N
X

iD1
IfUi�ug D 1

N

N
X

iD1
IfF.Xi/�F.x/g D 1

N

N
X

iD1
IfXi�xg D bFN .x/ :

bGN is called the reduced empirical cdf. Note that N bGN .u/ � Bin.N; u/,
irrespective of F . Define the maximum distance between the empirical and the true
cdfs as

DN D sup
x2R

jbFN .x/ � F.x/j D sup
0�u�1

jbGN.u/� uj : (7.6)
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This is called the Kolmogorov–Smirnov statistic of the data. Note that this statistic
does not depend on F . It can be used to test whether iid samples X1; : : : ; XN come
from a specified cdf F .

Example 7.3 (Kolmogorov–Smirnov Test). The Weibull distribution Weib.˛; �/☞ 190

has cdf

F.x/ D 1 � e�.�x/˛ ; x � 0 :

To generate from this distribution, we can use the inverse-transform method:

generate U � U.0; 1/ and output X D 1
�
.� lnU /

1
˛ . Note that the Weib.1; �/

distribution is simply the Exp.�/ distribution.
Suppose we have an iid sample from the Weib.1:5; 1/ distribution. Would the

Kolmogorov–Smirnov statistic correctly reject the hypothesis H0 that the sample
is from the Exp.1/ distribution? The following MATLAB program carries out this
experiment. It generates an iid sample of size N D 100 from the Weib.1:5; 1/
distribution. It then evaluates the Kolmogorov–Smirnov statistic. Figure 7.4 shows
the reduced empirical cdf bGN.u/. The maximum distance between bGN.u/ and u is
dN � 0:1458 in this case. The p-value PH0.DN > dN / is determined by Monte
Carlo simulation, by repeating the experiment K D 1000 times under H0, that
is, using Exp.1/ data. The estimated p-value is approximately 0:026. There is thus
reasonable to strong evidence to suggest that the true distribution is not Exp.1/.

%kolsmirweib.m
rng(1234)
alpha = 1.5;
%generate data
N = 100;
U = rand(1,N);
x = (-log(U)).^(1/alpha);
y = sort(1 - exp(-x));
i=1:N;
%plot empirical cdf and calculate test statistic
stairs([0,y],[0,i/N],’r’), hold on, line([0,1],[0,1]);
dn_up = max(abs(y-i/N));dn_down = max(abs(y-(i-1)/N));
dn = max(dn_up, dn_down);
%use Monte Carlo simulation to find p-value
K = 10000;
for k=1:K

i=1:N;
y = sort(rand(1,N));
DN(k) = max( max(abs(y-i/N)), max(abs(y-(i-1)/N)));

end
p = sum(DN >= dn)/K
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Fig. 7.4 The reduced
empirical cdf bGN .x/

7.2 Density Estimation

Suppose that x1; : : : ; xN is an iid sample from some unknown continuous pdf f —
obtained from Monte Carlo sampling, for example. A useful approach to estimate
f from the data is to use a Gaussian kernel density estimator.

Definition 7.2. (Gaussian Kernel Density Estimator). Let x1; : : : ; xN be an
iid sample from a continuous pdf f . The Gaussian kernel density estimator
of f with bandwidth h > 0 is given by

bf .xIh/ D 1

N

N
X

iD1

1p
2�h2

e� .x�Xi /
2

2h2 ; x 2 R : (7.7)

The idea is illustrated in Fig. 7.5 for the case ofN D 5 data points. The Gaussian
kernel density estimate (KDE) is the equally weighed mixture (see (6.35)) of N ☞ 186

Gaussian/normal pdfs, where each pdf is centered around a data point and has
variance h2.

How well the Gaussian KDE bf .�Ih/ fits the true pdf f depends crucially on the
choice of the bandwidth parameter h. If h is too small, the density estimate will be
too spiky; if h is too large, the estimate will be too smooth. An often used rule of
thumb is to take

hRot D
�

4 S5

3N

�4=5

;
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Fig. 7.5 The Gaussian KDE (solid line) is the equally weighted mixture of normal pdfs centered
around the data and with standard deviation h (dashed)

where S is the standard deviation of the data. This choice is based on a mathematical
analysis of the discrepancy between bf .�Ih/ and f as n ! 1. There exist many
sophisticated modifications of the basic Gaussian KDE in (7.7). In this book we use
the fast and reliable theta KDE of Botev et al. (2010). The MATLAB function kde.m
can be downloaded from http://www.mathworks.com/matlabcentral/fileexchange/
14034-kernel-density-estimator.

Example 7.4 (Kernel Density Estimate). The following MATLAB program draws
an iid sample from the Exp.1/ distribution and constructs a Gaussian KDE. We see
in Fig. 7.6 that with an appropriate choice of the bandwidth a good fit to the true
pdf can be achieved, except at the boundary x D 0. The theta KDE, which can be
viewed as a generalization of the Gaussian KDE, does not exhibit this boundary
effect. Moreover, it chooses the bandwidth automatically, to achieve a superior fit.

%gausthetakde.m
h = 0.1; h2 = h^2; c = 1/sqrt(2*pi)/h; % constants
phi = @(x,x0) exp(-(x-x0).^2/(2*h2)); % unscaled kernel
f = @(x) exp(-x).*(x >= 0); % True pdf
N = 10^4; % sample size
x = -log(rand(N,1)); % generate the data

xx = [-0.5:0.01:6]; % plot range
phis = zeros(1,numel(xx));
for i = 1:N

phis = phis + phi(xx,x(i));
end
phis = c*phis/N;
hold on
plot(xx,phis,’r’); % plot Gaussian KDE
[bandwidth,density,xmesh] = kde(x,2^12,0,max(x));
idx = find(xmesh <= 6);
plot(xmesh(idx),density(idx),’b’) % plot theta KDE
plot(xx,f(xx),’k’); % plot true pdf

http://www.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator
http://www.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator
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Fig. 7.6 Kernel density estimates for Exp.1/-distributed data

7.3 Resampling and the Bootstrap Method

The idea behind resampling is very simple: an iid sample x D .x1; : : : ; xN /

from some unknown pdf f represents our best knowledge about f if we make no
further a priori assumptions about f . So, the best way to “repeat” the experiment
is to resample the fxi g by drawing from the empirical distribution. The following
algorithm is a direct consequence of the inverse-transform method.

Algorithm 7.1. (Sampling from an Empirical Cdf). Let x1; : : : ; xN be an
iid sample from a continuous cdf F . To generate an iid sample of sizeM from
the empirical cdf FN , carry out the following steps:

1. Draw U1; : : : ; UM
iid� U.0; 1/.

2. Set Ii D dNUie; i D 1; : : : ;M .
3. Return xI1 ; : : : ; xIM .

Here dxe (the ceiling of x) is the smallest integer larger than or equal to x. The
requirement that F be continuous is to rule out duplicate data points.

By sampling from the empirical cdf we can thus repeat (approximately) the
experiment that gave us the original data as many times as we like. This is useful if
we want to assess the properties of certain statistics obtained from the data. For
example, suppose that the original data x gave the statistic t.x/. By resampling
we can gain information about the distribution of the corresponding random
variable t.X/.
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Example 7.5 (Resampling Cauchy Data). Suppose we have an iid sample of size
N D 100 from the Cauchy distribution—that is, with pdf

fX.x/ D 1

�.1C x2/
; x 2 R I

see also Examples 6.3 and 6.20. We learned from the first example that the sample☞ 181

mean is a poor estimate of the mode (0) of the distribution. By resampling the data
we can get a good idea how the distribution of the sample mean compares with
that of other estimators—for example, the sample median of the data. Ordering the
data from smallest to largest, x.1/ � � � � � x.N/, the sample median ex is defined as
the “middle” observation; that is, ex D x..NC1/=2/ for odd N , and ex D .x.N=2/ C
x.N=2C1//=2 for even N .

Figure 7.7 depicts three graphs. The dashed line is the KDE of K D 5000 iid
sample means, where each sample mean is obtained from a resampled data set of
size M D 100 from the original iid Cauchy data of size N D 100. Similarly, the
solid line represents the KDE of the sample medians.
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Fig. 7.7 Kernel density estimates for the mean (dashed line) and median (solid line) of resampled
data, as well as for the median of newly sampled data (dotted line)

The figure shows that the sample median has much better statistical properties
than the sample mean. In particular, the pdf of the sample median (estimated via
the KDE) is much less spread out than that of the sample mean and is (here) mostly
concentrated in the interval .�0:5; 0:5/. For comparison, the figure also shows the
KDE of the sample median obtained from K D 5000 iid samples from the original
distribution (dotted line). Thus, instead of resampling the data, we draw each time
the data from scratch. The following MATLAB program can be used to carry out the
experiment. See Problem 7.6 for a further discussion of this example.
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%resampcauchy.m
N = 100; K = 5000;
xorg = tan(pi*(0.5 - rand(1,N))); % original data
medxorg = median(xorg);
meanxorg = mean(xorg);
x = zeros(1,N); mx = zeros(1,K);
for i=1:K

ind = ceil(n*rand(1,N)); % draw random indices
x = xorg(ind); % resampling the data (R)
% x = tan(pi*(0.5 - rand(1,N))); % sampling new

data (S)
mx(i) = median(x);
% mx(i) = mean(x);

end
[bandwidth,density,xmesh]=kde(mx,2^7);
plot(xmesh,density)

The bootstrap method is a formalization of the resampling idea. Suppose
we wish to estimate a number ` via some estimator H D H.X/, where X D
.X1; : : : ; XN / and the fXig form an iid sample from some unknown cdf F . It is
assumed thatH does not depend on the order of the fXig. To assess the quality (e.g.,
accuracy) of the estimator H , one could draw independent replications X1; : : : ;XK

of X and find sample estimates for quantities such as the variance of the estimator

Var.H/ D EH2 � .EH/2;

the bias

Bias D EH � ` ;

and the mean square error (MSE) ☞ 154

MSE D E.H � `/2 :
However, it may be too time-consuming, or simply not feasible, to obtain such
replications. An alternative is to resample the original data, as described above.
To reiterate, given an outcome .x1; : : : ; xN / of X, we draw an iid sample X� D
.X�

1 ; : : : ; X
�
N / not from F but from the empirical cdf FN , via Algorithm 7.1 (hence

M D N here).
The rationale is that the empirical cdf FN is close to the actual distribution F

and gets closer as N gets larger. Hence, any quantities depending on F , such as
EF h.H/, where h is a function, can be approximated by EFN h.H/. The latter is
usually still difficult to evaluate, but it can be simply estimated via Monte Carlo
simulation as

1

K

K
X

iD1
h.H�

i / ;
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where H�
1 ; : : : ;H

�
K are independent copies of H� D H.X�/. This seemingly self-

referent procedure is called bootstrapping—alluding to Baron von Münchhausen,
who pulled himself out of a swamp by his own bootstraps. As an example, the
bootstrap estimate of the expectation of H is

dEH D H
� D 1

K

K
X

iD1
H�
i ;

which is simply the sample mean of fH�
i g. Similarly, the bootstrap estimate for

Var.H/ is the sample variance

V̂ar.H/ D 1

K � 1

K
X

iD1
.H�

i �H
�
/2 : (7.8)

Bootstrap estimators for the bias and MSE are H
� � H and 1

K

PK
iD1.H�

i � H/2,
respectively. Note that for these estimators the unknown quantity ` is replaced
with the original estimator H . Confidence intervals can be constructed in the same
fashion. We mention two variants: the normal method and the percentile method.
In the normal method, a 1 � ˛ confidence interval for ` is given by

.H ˙ z1�˛=2S�/ ;

where S� is the bootstrap estimate of the standard deviation ofH , that is, the square
root of (7.8). In the percentile method, the upper and lower bounds of the 1 � ˛

confidence interval for ` are given by the 1� ˛=2 and ˛=2 quantiles ofH , which in
turn are estimated via the corresponding sample quantiles of the bootstrap sample
fH�

i g.

Example 7.6 (Bootstrapping Regression Data). Bootstrapping can be applied to a
variety of statistical models, including regression data. Suppose that we have linear
regression data f.xi ; yi /; i D 1; : : : ; 10g given in Table 7.1.

Table 7.1 Regression data

x y x y

13 5.0768 27 31.4085
16 21.1897 30 26.8648
19 17.1548 33 29.3894
21 22.8325 36 37.4476
24 26.5348 39 44.292

We wish to fit the data with a straight line. The least-squares method gives the☞ 125

following fitted regression line:

y D 3:3024 x C 8:0561 :
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We can assess the quality of this estimate by resampling the pairs f.xi ; yi /g
independently and then estimating the regression lines for the resampled data. This
is illustrated in Fig. 7.8 for 20 resampled regression lines. We see that there is quite
a lot of variability in the estimate.
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Fig. 7.8 Left: the linear regression data (10 points) and 20 resampled regression lines. Right: a
90 % bootstrapped confidence interval obtained from 1000 resampled regression lines

Let us determine percentile confidence intervals for the regression line ˇ1x C
ˇ0. We carry out the resampling many times, say, 1000 times, and calculate for
each x the values bˇ1x C bˇ0. A 90 % bootstrap confidence interval is then obtained
by recording the 5 % and the 95 % quantile of these 1000 values for each x. The
result is given in the right pane of Fig. 7.8. The straight line through the middle is
the estimated regression line. The curved lines form the confidence interval—as a
function of x.

Example 7.7 (Bootstrapping the Ratio Estimator). Let .X1; Y1/; : : : ; .XN ; YN /
be iid copies of a random vector .X; Y / with mean vector .�X ; �Y / and covariance
matrix ˙ . Suppose we wish to estimate the ratio �X=�Y . A straightforward
estimator is the so-called ratio estimator R D NX= NY .

As a particular example, consider the data in Fig. 7.9, where a sample of size
N D 100 of pairs .x; y/ is plotted. The model that was used to generate the data is

X � N.11; 25/ and .Y jX D x/ � U.0; x/ :

The estimate for �X=�Y is in this case Nx= Ny D 2:0359. But how accurate is
this estimate? From Example 3.15 (delta method) we see that the estimator R ☞ 93

has approximately a N.�X=�Y ; �
2=N / distribution, where the variance is given

in (3.37). By replacing expectations, variances, and covariance with their sample
means—that is, by using the method of moments—it is easy to estimate �2. The
sample means and the covariance matrix of the f.Xi ; Yi /g are in this case
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Fig. 7.9 An iid sample from a two-dimensional distribution

Nx D 10:3026; Ny D 5:0604; and b˙ D
�

19:7626 9:7052

9:7052 12:9859

�

;

which gives b�2 D 1:3305. Thus R has approximately a N.2:0359; 1:3305/
distribution. Its pdf is plotted in Fig. 7.10 (dotted graph). The 0.025 and 0.975
quantiles of this distribution give an approximate 95 % confidence interval for
�X=�Y :

2:0359˙ 1:96
p

1:33051=100D .1:81; 2:26/ :

The above analysis requires a good deal of mathematical sophistication. In contrast,
the application of the bootstrap method for this data is relatively easy: independently
resample the data K times and plot a KDE of the ratios, as in the following MATLAB

code.

%resampratio.m
N = 100; %size of data
K = 50000; %resample size
est = zeros(1,K);
xorg = 11 + 5*randn(1,N); yorg = rand(1,N).*xorg;

%orig. data
estorg = mean(xorg)/mean(yorg);
x = zeros(1,N); y = zeros(1,N);
est = zeros(1,K);
for i=1:K

ind = ceil(N*rand(1,N)); % draw random indices
x = xorg(ind); y = yorg(ind); % resampled data
est(i) = mean(x)/mean(y);

end
kde(est)
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Figure 7.10 shows the KDE for the bootstrapped sample of size K D 50000.
We see that the density estimate is in excellent agreement with that of the delta
method.
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Fig. 7.10 Estimates of the pdf of the ratio estimator R D NX= NY using the delta method (dotted
line) and the bootstrap method (solid line)

7.4 Markov Chain Monte Carlo

MCMC is a Monte Carlo sampling technique for (approximately) generating
samples from an arbitrary distribution—often referred to as the target distribution.
The basic idea is to run a Markov chain long enough such that its limiting
distribution is close to the target distribution.

Before we discuss the method in more detail, let us go over some facts about
Markov chains.

Definition 7.3. (Markov Chain). A Markov chain is a collection fXt; t D
0; 1; 2; : : :g of random variables (or random vectors) whose futures are
conditionally independent of their pasts given their present values. That is,

.XtC1 jXs; s � t/ � .XtC1 jXt/ for all t : (7.9)

In other words, the conditional distribution of the future variable XtC1, given the
entire past fXs; s � tg, is the same as the conditional distribution of XtC1 given
only the present Xt . Property (7.9) is called the Markov property.

The index t in Xt is usually seen as a “time” or “step” parameter. The index
set f0; 1; 2; : : :g in the definition above was chosen out of convenience. It can be
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replaced by any countable index set. We restrict ourselves to Markov chains for
which the conditional pdfs fXtC1 jXt .y j x/ do not depend on t ; we abbreviate these
as q.y j x/. The fq.y j x/g are called the (one-step) transition densities of the
Markov chain. Note that the random variables or vectors fXtg may be discrete
(e.g., taking values in some set f1; : : : ; rg) or continuous (e.g., taking values in an
interval Œ0; 1� or Rd ). In particular, in the discrete case, each q.y j x/ is a probability:
q.y j x/ D P.XtC1 D y jXt D x/.

The distribution of X0 is called the initial distribution of the Markov chain.
The one-step transition densities and the initial distribution completely specify the
distribution of the random vector .X0;X1; : : : ; Xt/. Namely, we have by the product
rule (3.10) and the Markov property (7.9) that the joint pdf is given by☞ 72

fX0;:::;Xt .x0; : : : ; xt /

D fX0.x0/ fX1 jX0.x1 j x0/ � � �fXt jXt�1;:::;X0.xt j xt�1; : : : ; x0/
D fX0.x0/ fX1 jX0.x1 j x0/ � � �fXt jXt�1 .xt j xt�1/
D fX0.x0/ q.x1 j x0/ q.x2 j x1/ � � � q.xt j xt�1/ :

This leads to the following generic generation algorithm for Markov chains.

Algorithm 7.2. (Generating a Markov Chain). To generate a Markov chain
X0; : : : ; XN with transition densities fq.y j x/g and initial pdf fX0 execute the
following steps:

1. Draw X0 � fX0 . Set t D 0.
2. Given Xt D x, draw XtC1 � q.� j x/. Set t D t C 1.
3. If t D N , stop; otherwise, repeat from Step 2.

Example 7.8 (Stepping Stones). Imagine a pond with six stepping stones. From
each stone one can step to a neighboring stone with a certain probability, indicated
by the graph in Fig. 7.11. Let Xt be the position (stepping stone) after t steps,
starting from position 1. Then, fXt; t D 0; 1; 2; : : :g is a Markov chain. The graph
in Fig. 7.11 is called the transition graph of the Markov chain. The arc weights
indicate the transition probabilities. For example, q.4 j 3/ D 0:7; q.3 j 6/ D 0:1, and
q.3 j 4/ D 0.

The following MATLAB program generates the Markov chain for N D 100 steps.
Note that the transition probabilities have been gathered into a matrix P , with
P.x; y/ D q.y j x/. P is called one-step transition matrix of the Markov chain.
Given that Xt D x, state XtC1 is generated from the discrete distribution defined
by the xth row of P . A typical outcome is depicted in Fig. 7.12. The program also
keeps track of the total number of visits to each state—in this case there were 5, 2,
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Fig. 7.11 The transition
graph for the Markov chain
fXt ; t D 0; 1; 2; : : :g

7, 29, 27, and 31 visits to states 1,. . . ,6. We see that the Markov process spends most
of its time in states 4, 5, and 6.

%stepstone.m
N = 101; %time index starts at 1, not 0, so add 1.
P = [0, 0.2, 0, 0.3, 0.5, 0;

0.5, 0, 0.5, 0, 0, 0;
0.3, 0, 0, 0.7, 0, 0;
0, 0, 0, 0, 0, 1 ;
0, 0, 0, 0.8, 0, 0.2;
0, 0, 0.1, 0, 0.9, 0];

x = zeros(1,N); x(1)= 1;
tot = zeros(1,6); tot(1) = 1;
for t=1:N-1 % generate the Markov chain

x(t+1) = min(find(cumsum(P(x(t),:))> rand));
tot(x(t+1)) = tot(x(t+1)) + 1;

end
plot(0:N-1,x) % plot the path, subtracting 1 from time indices
tot/N % fractions of visits to the states
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Fig. 7.12 A realization of the stepping stone Markov process fXt ; t D 0; 1; 2; : : : ; 100g
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A Markov chain is said to be ergodic if the probability distribution of Xt
converges to a fixed distribution as t ! 1. Ergodicity is a natural property
of Markov chains. For example, the Markov chain in Example 7.8 is ergodic.
Intuitively, since this Markov chain cannot run off to infinity (which can only happen
if the state space is infinite) and since each state can be reached from each other
state, the probability fXt .x/ D P.Xt D x/ of encountering the chain in state x at
time t far away in the future depends on x but not on t . In general, the pdf fXt .x/
of an ergodic Markov chain converges to a fixed limiting pdf f .x/ as t ! 1,
irrespective of the starting state. For the discrete case f .x/ corresponds to the long-
run fraction of times that the Markov process visits x.

The limiting pdf f .x/ can be found by solving the global balance equations:

f .x/ D
(

P

y f .y/ q.x j y/ (discrete case);
R

f .y/ q.x j y/ dy (continuous case):
(7.10)

For the discrete case the rationale behind this is as follows. Since f .x/ is the
long-run proportion of time that the Markov chain spends in x, the proportion
of transitions out of x is f .x/. This should be balanced with the proportion of
transitions into state x, which is

P

y f .y/ q.x j y/.
Example 7.9 (Limiting Probabilities for Stepping Stones Example). For the
discrete case, the global balance equations can be written in matrix form as f D
fP , where P is the one-step transition matrix and f the row vector of limiting
probabilities. This leads to solving the linear equation f.I �P/ D 0 or equivalently
.I �P>/f> D 0, where I denotes the identity matrix. In other words, f> lies in the
null space of .I � P/>. Also, the components of f must add to 1. By executing the
following lines

f = null(eye(6) - P’)’;
f = f/sum(f);

appended to the MATLAB code in Example 7.8, we find the limiting probabilities
f D .0:0120; 0:0024; 0:0359; 0:2837; 0:3186; 0:3474/.

In MCMC one is often interested in a stronger type of balance equations. Imagine
that we have taken a video of the evolution of the Markov chain, which we may run
in forward and reverse time. If we cannot determine whether the video is running
forward or backward (we cannot determine any systematic “looping”), the chain is
said to be time-reversible or simply reversible.

Although not every Markov chain is reversible, each ergodic Markov chain, when
run backward, gives another Markov chain—the reverse Markov chain— with
transition densities eq.y j x/ D f .y/ q.x j y/=f .x/. To see this, first observe that
f .x/ is the long-run proportion of time spent in x for both the original and reverse
Markov chains. Secondly, the “probability flux” from x to y in the reversed chain
must be equal to the probability flux from y to x in the original chain, meaning
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f .x/eq.y j x/ D f .y/ q.x j y/, which yields the stated transition probabilities for
the reversed chain. In particular, for a reversible Markov chain, we have

f .x/ q.y j x/ D f .y/ q.x j y/ for all x; y : (7.11)

These are the detailed (or local) balance equations. Note that the detailed
balance equations imply the global balance equations. Hence, if a Markov chain is
irreducible (i.e., every state can be reached from every other state) and there exists
a pdf such that (7.11) holds, then f .x/ must be the limiting pdf. In the discrete state
space case an additional condition is that the chain must be aperiodic, meaning that
the return times to the same state cannot always be a multiple of some integer � 2;
see Problem 7.13.

Example 7.10 (Random Walk on a Graph). Consider a Markov chain that
performs a “random walk” on the graph in Fig. 7.13, at each step jumping from
the current vertex (node) to one of the adjacent vertices, with equal probability.
Clearly this Markov chain is reversible. It is also irreducible and aperiodic. Let
f .x/ denote the limiting probability that the chain is in vertex x. By symmetry,
f .1/ D f .2/ D f .7/ D f .8/, f .4/ D f .5/, and f .3/ D f .6/. Moreover, by the
detailed balance equations, f .4/=5 D f .1/=3, and f .3/=4 D f .1/=3. It follows
that f .1/C � � � C f .8/ D 4f .1/C 2 � 5=3 f .1/C 2 � 4=3 f .1/ D 10 f .1/ D 1,
so that f .1/ D 1=10, f .2/ D 2=15, and f .4/ D 1=6.
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Fig. 7.13 The random walk
on this graph is reversible

The idea behind MCMC can be summarized as follows. To draw approximately
from an arbitrary pdf f .x/, run a Markov chain fXtg whose limiting distribution
is f .x/. Often such a Markov chain is constructed to be reversible, so that the
detailed balance equations (7.11) can be used. After a sufficiently long burn-in
period from 0 to T , say, the random variablesXTC1; XTC2; : : : form an approximate
and dependent sample from f .x/.

In the next two sections we discuss two specific MCMC samplers: the
Metropolis–Hastings sampler and the Gibbs sampler.
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7.5 Metropolis–Hastings Algorithm

Suppose we wish to sample from a discrete pdf f .x/, where x takes values in the
set f1; : : : ; rg. Following Metropolis et al. (1953), we construct a Markov chain
fXt; t D 0; 1; : : :g in such a way that its limiting pdf is f . Suppose the Markov chain
is in state x at time t . A transition of the Markov chain from state x is carried out
in two phases. Similar to the acceptance–rejection method, first, a trial or proposal☞ 55

state Y is drawn from a transition density q.� j x/. This state is accepted as the new
state, with probability ˛.x; Y /, or rejected otherwise. In the latter case the chain
remains in state x. For any outcome Y D y the one-step transition probabilities of
the Markov chain are thus

eq.y j x/ D
(

q.y j x/ ˛.x; y/; if y ¤ x

1 �P

z¤x q.z j x/ ˛.x; z/; if y D x :
(7.12)

By choosing the acceptance probability as

˛.x; y/ D min




f .y/ q.x j y/
f .x/ q.y j x/ ; 1



; (7.13)

such a Markov chain can be made (see Problem 7.12) to satisfy the detailed balance
equations (7.11):

f .x/eq.y j x/ D f .y/eq.x j y/ for all x; y : (7.14)

Consequently, if this Markov chain is irreducible and aperiodic, its limiting pdf is
f .x/.

Note that in order to evaluate the acceptance probability ˛.x; y/ in (7.13), we
only need to know the target pdf f .x/ up to a constant; that is, f .x/ D c Nf .x/ for
some known function Nf .x/ but unknown constant c.

The extension of the above MCMC approach for generating samples from an
arbitrary joint pdf f .x/ is straightforward, giving the following algorithm.

Algorithm 7.3. (Metropolis–Hastings Algorithm). Given a transition den-
sity q.y j x/ and starting from an initial state X0, repeat the following steps
from t D 1 to N :

1. Generate Y � q.y j Xt /.

2. Generate U � U.0; 1/ and set

(continued)
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(continued)

XtC1 D
(

Y; if U � ˛.Xt ;Y/

Xt otherwise ;
(7.15)

where

˛.x; y/ D min




f .y/ q.x j y/
f .x/ q.y j x/

; 1



: (7.16)

The above algorithm produces a sequence X1;X2; : : : of dependent random
vectors, with Xt approximately distributed according to f .x/ for large t .

Since Algorithm 7.3 is of the acceptance–rejection type, its efficiency depends
on the acceptance probability ˛.x; y/. Ideally, one would like the proposal transition
density q.y j x/ to reproduce the desired pdf f .y/ as faithfully as possible. Below
we consider two particular choices of q.y j x/.

Example 7.11 (Independence Sampler). The simplest Metropolis-type MCMC
algorithm is obtained by choosing the proposal transition density q.y j x/ to be
independent of x; that is, q.y j x/ D g.y/ for some pdf g.y/. Thus, starting from
a previous state X, a candidate state Y is generated from g.y/ and accepted with
probability

˛.X;Y/ D min




f .Y/ g.X/
f .X/ g.Y/

; 1



:

This procedure is very similar to the acceptance–rejection method of Sect. 2.7.3, ☞ 55

and, as in that method, it is important that the proposal distribution g is close to
the target f . Note, however, that in contrast to the acceptance–rejection method this
independence sampler produces dependent samples.

As a particular example, consider the pdf

f .x/ / x2 exp.�x2 C sin.x// ; x 2 R ;

where the normalization constant remains unspecified (/ means “is proportional
to”). To sample from this pdf using the independence sampler we choose the
symmetric proposal pdf g.x/ D e�jxj=2; x 2 R. Drawing from this pdf is easy; see
Problem 7.16. The program below provides a MATLAB implementation, and Fig. 7.14 ☞ 224

shows a KDE of the data (as well as a graph of the true pdf f ).
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Fig. 7.14 The kernel density estimate bf .x/ (smooth curve), obtained by the independence
sampler, is practically indistinguishable from the target pdf f .x/ (dotted curve)

%indepsamp.m
N = 10^5; % sample size
f = @(x) x.^2.*exp(-x.^2 + sin(x)); % unnormalized target pdf
g = @(x) exp(-abs(x))/2; % proposal pdf
alpha = @(x,y) min(f(y)*g(x)/(f(x)*g(y)), 1); % accept. prob.
x = 0; xx = zeros(1,N);
for t = 2:N

y = -log(rand)*(2*(rand < 1/2) - 1); % draw a proposal
if rand < alpha(x,y)

x = y;
end
xx(t) = x;

end
hold on
kde(xx(1:N)); % plot the kde of the data
c = quad(f,-5,5); % determine the normalization constant
tt = [-4:0.1:4]; plot(tt,f(tt)/c,’r’) % plot the target pdf
hold off

Example 7.12 (Random Walk Sampler). A popular Metropolis–Hastings-type
sampler is the random walk sampler. Here, the proposal state Y, for a given
current state x, is given by Y D x C Z, where Z is typically generated from
some spherically symmetric distribution, such as N.0; I /. In that case the proposal
transition density pdf is symmetric; that is, q.y j x/ D q.x j y/. It follows that the
acceptance probability is

˛.x; y/ D min




f .y/
f .x/

; 1



: (7.17)
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Example 7.13 (Sampling from a Pdf via Random Walk Sampler). Consider the
two-dimensional pdf

f .x1; x2/ D c exp.�4.x2 � x21/2 C .x2 � 1/2/; x1 2 R; x2 � 2 ; (7.18)

where c is an unknown normalization constant. The graph of this pdf (unnormalized)
is depicted in Fig. 7.15.

Fig. 7.15 The pdf f .x1; x2/

The following MATLAB program implements a random walk sampler to (approx-
imately) draw N D 104 dependent samples from the pdf f . At each step, given
a current state x, a proposal Y is drawn from the N.x; I / distribution. That is,
Y D x C Z, with Z bivariate standard normal. We see in Fig. 7.16 that the
samples closely follow the contour plot of the pdf, indicating that the sampler works
correctly. The starting point for the Markov chain is chosen as .0;�1/. Note that the
normalization constant c is not used in the program.

%rwsamp.m
f=@(X1,X2)exp(-4*(X2-X1.^2).^2+(X2-1).^2).*(X2 < 2);
N = 10000; %sample size
xx = zeros(N,2); x = [0,-1]; xx(1,:) = x;
for i=2:N

y = x + randn(1,2); %proposal
alpha = min(f(y(1),y(2))/f(x(1),x(2)),1);

%acceptance prob
r = (rand < alpha);
x = r*y + (1-r)*x; %next value of the Markov chain
xx(i,:) = x;

end
plot(xx(:,1),xx(:,2),’.’)
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Fig. 7.16 Approximate
samples from pdf f produced
via the random walk sampler

7.6 Gibbs Sampler

Suppose that X D .X1; : : : ; Xn/ is a random vector with joint pdf f .x/. Direct
sampling from f may be difficult, especially if n is large. However, often sampling
from the conditional pdf of Xi given Xj D xj ; j ¤ i is feasible. Let us denote
these one-dimensional pdfs by fi .xi j x1; : : : ; xi�1; xiC1; : : : ; xn/, i D 1; : : : ; n. If
drawing from each fi is easy, then one can use the Gibbs sampler to construct a
Markov chain X1;X2; : : : with limiting pdf f . This Markov chain is generated as
follows. As in the Metropolis–Hastings sampler, at each step t , given a current state
Xt D x, a proposal Y is drawn from a transition density q1!n.y j x/ given by

q1!n.y j x/ D f1.y1 j x2; : : : ; xn/f2.y2 j y1; x3; : : : ; xn/ � � �fn.yn j y1; : : : ; yn�1/ :

Thus, draw Y1 from the conditional pdf f1.y1 j x2; : : : ; xn/, draw Y2 from
f2.y2 j y1; x3; : : : ; xn/, and so on. However, unlike the Metropolis–Hastings
sampler, this proposal is always accepted; so XtC1 D Y. The algorithm is
summarized as follows.

Algorithm 7.4. (Gibbs Sampler). Starting from an initial state X0, repeat the
following steps from t D 1 to N :

1. Given the current state Xt D x, generate Y D .Y1; : : : ; Yn/ as follows:

a. Draw Y1 � f1.y1 j x2; : : : ; xn/.
b. Draw Yi � fi .yi jY1; : : : ; Yi�1; xiC1; : : : ; xn/, i D 2; : : : ; n � 1.
c. Draw Yn � fn.yn jY1; : : : ; Yn�1/.

2. Set XtC1 D Y.
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To verify that the Markov chain X0;X1; : : : indeed has limiting pdf f .x/, we need
to check that the global balance equations (7.10) hold. In general the detailed bal-
ance equations (7.11) do not hold—f .x/ q1!n.y j x/ ¤ f .y/ q1!n.x j y/. However,
a similar result, due to Hammersley and Clifford, does hold: if qn!1.x j y/ denotes
the transition density of the reverse move, in the order n ! n � 1 ! � � � ! 1,
that is,

qn!1.x j y/

D fn.xn j y1; : : : ; yn�1/fn�1.xn�1 j y1; : : : ; yn�2; xn/ � � �f1.x1 j x2; : : : ; xn/ ;

then

f .x/ q1!n.y j x/ D f .y/ qn!1.x j y/ : (7.19)

Intuitively, the long-run proportion of transitions x ! y for the “forward move”
chain is equal to the long-run proportion of transitions y ! x for the “reverse move”
chain. By integrating (in the continuous case) both sides in (7.19) with respect to x,
we see that the global balance equations hold:

Z

f .x/ q1!n.y j x/ dx D f .y/ :

Example 7.14 (Sampling from Pdf via Gibbs Sampler). Consider the two-
dimensional pdf

f .x1; x2/ D c e�x1x2�x1�x2 ; x1 � 0; x2 � 0 ;

where the normalization constant c remains unspecified. Let .X1;X2/ be distributed
according to f . The conditional pdf of X1 given X2 D x2 is ☞ 71

f1.x1 j x2/ defD fX1 jX2.x1 j x2/ D f .x1; x2/

fX2.x2/
/ f .x1; x2/ / e�x1.x2C1/ :

It follows that X1 givenX2 D x2 has an Exp.x2 C 1/ distribution and, by symmetry,
X2 givenX1 D x1 has an Exp.x1 C 1/ distribution. Sampling from the joint pdf can
thus be established via the Gibbs sampler by alternately generating from Exp.x2C1/
and Exp.x1 C 1/, as implemented in the following MATLAB program.
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%gibbssamp.m
f = @(X1,X2)exp(-(X1.*X2 + X1 +X2)).*(X1 > 0 & X2 > 0);
N = 10^4; x = zeros(N,2); x2 = 1;
for i = 2:N

x1 = -log(rand)/(x2+1);
x2 = -log(rand)/(x1+1);
x(i,:) = [x1,x2];

end
plot(x(:,1),x(:,2),’.’)

7.7 Problems

7.1.Consider the estimation of the p-value in Example 7.1
☞ 195

a. Under H0 we have � D 0, but �2 remains unspecified. Why is it allowed to take
� D 1 to generate the sample T1; : : : ; TN ?

b. Show, using Theorem 5.1, that T under H0 has a t3 distribution, and calculate☞ 131

the true p-value.
c. Speed up the given MATLAB code by “vectorizing” the slow for loop.

7.2. Monte Carlo sampling methods are useful for calculating p-values for a
goodness-of-fit test, where the data X1; : : : ; Xk is assumed to come from a
multinomial distribution Mnom.n; p1; : : : ; pk/.

As an example, consider a racetrack with 8 starting boxes. Out of 200 races, the
numbers of winning horses that started from boxes 1; 2; : : : ; 8 are 39, 29, 24, 20,
21, 24, 21, and 22, respectively. Is this an indication that the winning probabilities
p1; : : : ; p8 are not all equal to 1=8? The test statistic that is typically used for a
goodness-of-fit test is

T D
k
X

iD1

.Oi � Ei/
2

Ei
;

where Oi (=Xi ) is the observed number of observations in class i and Ei (D EXi )
is the expected number of observations in class i . In this case Ei D 25 for all i and
the observed counts are given above. The hypothesisH0 W p1 D : : : D p8 D 1=8 is
rejected in favor of the negation of H0 for large values of the test statistic.

a. Write a Monte Carlo sampling program to estimate the p-value for this
test. Do you reject the null hypothesis or not? Hint: to draw a vector
X D .X1; : : : ; X8/ � Mnom.200; 1=8; : : : ; 1=8/, you can use winner =
ceil(8*rand(200,1)); X = histc(winner,1:8);.
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b. It can be shown that under H0 the test statistic T has approximately a �27
distribution. Verify this by drawing an iid sample from T and comparing the
empirical cdf with that of the �27 distribution.

7.3. Let FN be the empirical cdf of x1; : : : ; xN , and let X be a random variable
with cdf FN . Show that EX D Nx and Var.X/ D PN

iD1.xi � Nx/2=N , where Nx D
.x1 C � � � C xN /=N .

7.4. Consider a mixture pdf

f .x/ D w1f1.x/C � � � C wk fk.x/; wj � 0; j D 1; : : : ; k;

k
X

jD1
wj D 1 ;

(7.20)
where each fj is itself a pdf. Let J be a discrete random variable taking values
1; : : : ; k with probabilities w1; : : : ;wk , respectively. Let X be a random variable
such that the conditional pdf of X given J D j is fj .

a. Show that X has mixture pdf (7.20).
b. Using (a.) describe how one could generate a random variable from the mixture

pdf (7.20).
c. Suppose pdf fj has mean �j and variance �2j , j D 1; : : : ; n. Express EX and

Var.X/ in terms of these parameters.

7.5. It can be shown that the Kolmogorov–Smirnov statistic DN in (7.6) satisfies ☞ 199

lim
N!1P.

p
N DN � x/ D

1
X

kD�1
.�1/ke�2.kx/2 ; x > 0 : (7.21)

Compare the estimatedp-value in Example 7.3 with an approximated one calculated
via (7.21).

7.6. In Example 7.5 we considered the quality of various estimators for the mode of
the Cauchy distribution using (re)sampling techniques. ☞ 203

a. Instead of estimating the pdf of the sample mean using resampled data (dashed
line in Fig. 7.7) estimate the pdf of the sample mean by sampling new data from
the Cauchy distribution. How do the KDEs compare?

b. Another possible estimator for the mode of the Cauchy distribution is the
trimmed mean estimator, which is given by the sample mean of all outcomes xi
with jxi j � ˇ, where ˇ is some positive number. Carry out a bootstrap procedure
for the trimmed mean with ˇ D 100 and ˇ D 10. How do the pdfs compare with
those of the sample median and sample mean?

7.7. In Example 7.7 we saw that for a sample size of N D 100 the bootstrap and
delta method gave identical results for the ratio estimator NX= NY . Repeat the analysis ☞ 207

and compare the two methods for a sample size N D 10, with x-values
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16.4321 2.4334 14.3433 7.9650 14.1052
6.7660 0.1430 10.0420 7.1071 13.5305

and y-values

14.9151 0.4312 11.5407 4.4538 8.7741
0.8462 0.0302 1.7955 1.4568 7.8052

7.8. The median of a distribution with pdf f is the number m such that
R m

�1 f .x/ dx D 1=2. The data

1.4066 1.2917 1.4080 4.2801 1.2136 2.7461
11.1076 0.9247 5.8833 10.2513 3.8285 3.2116
0.5451 0.9896 1.1602 7.7723 0.1702 0.8907
0.2276 3.1197 11.4909 0.6475 11.2279 0.7639

form an iid sample from an Exp.�/ distribution.

a. Show that the median of Exp.�/ is ln.2/=�.
b. This suggests that we could estimate � via the estimator T D ln.2/=eX , where
eX is the sample median. Find the corresponding estimate. What is the maximum
likelihood estimate of �?

c. Carry out a bootstrap analysis of both estimators and compare their accuracies.

7.9.The concentration of a certain chemical is measured at times 1; 2; 3; : : : ; 20. The
measurements are

18.9506 41.4228 52.0253 63.5451 71.9634
79.0504 80.9685 84.6222 89.6391 93.5085
95.8680 91.3177 97.7423 97.1969 96.7448
96.8155 96.4435 98.2087 98.3126 97.8173

(e.g., at time t D 12 the concentration is 91:3177). Suppose the data are modeled
by the following nonlinear regression model:

Yi D a .1 � e�b ti /C "i ; i D 1; : : : ; n ; (7.22)

where f"ig iid� N.0; �2/ and a, b, and �2 are unknown. To fit the model (7.22) to the
points f.ti ; yi /g we can apply a least-squares approach, where a and b are chosen☞ 125

such that the sum of the squared deviations,

r.a; b/ D
n
X

iD1
.yi � a .1 � e�b ti //2 ; (7.23)

is minimized. This requires numerical minimization.
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a. Plot the points .ti ; yi /, i D 1; : : : ; n D 20.
b. Show that the values ba and bb that minimize the function r in (7.23) are the

maximum likelihood estimates of a and b. Express the maximum likelihood
estimate of �2 in terms ofba andbb.

c. Implement a MATLAB program to find the optimal values ba D 99:14 and bb D
0:255, using the following code snippet (yorg and torg store the original data):

r = @(x) sum((yorg - x(1)*(1-exp(-x(2)*torg))).^2);
[xmin,fval] = fminsearch(r,[100,1])

d. To assess how accurate the estimates for a and b are, resample the data 1000
times. For each resampled data set estimate a and b via fminsearch, as above.
Plot KDEs for the pdfs ofba andbb, and determine 95% bootstrap intervals for a
and b.

7.10. Let X1; : : : ; Xn and Y1; : : : ; Yn be independent random samples from the
Exp.�/ and Exp.�/ distribution, respectively, for unknown � and �. Suppose
outcomes of X1; : : : ; Xn are given by the data in Problem 7.8 (so n D 24) and
outcomes of Y1; : : : ; Yn are

23.9618 4.9055 6.0424 0.5870 4.0856 1.6503
10.1976 4.0208 25.9484 15.3954 19.5160 0.5937
11.5481 18.3895 30.4093 7.6527 9.7329 8.6130
6.2353 5.5157 9.9489 21.3850 5.1142 28.2284

The maximum likelihood estimator for ` D �=� is
Pn

iD1 Yi=
Pn

iD1 Xi . Find a 95 %
bootstrap confidence interval (percentile method) for `.

7.11. Let X1; : : : ; Xn be an iid sample from a U.0; �/ distribution, where � > 0

is unknown. The maximum likelihood estimator of � is M D maxfX1; : : : ; Xng.
SupposeM �

1 ; : : : ;M
�
K is a bootstrap sample ofM , based on an outcome x1; : : : ; xn.

Explain why it is a bad idea to construct a confidence interval for � on the basis of
the fM �

i g.

7.12. For the Metropolis–Hastings sampler, verify that the local balance equations
(7.14) hold if the acceptance probability is chosen as in (7.13). Hint: consider two ☞ 214

cases: f .y/q.x j y/ � f .x/q.y j x/ and f .y/q.x j y/ � f .x/q.y j x/.
7.13. LetXt ; t D 0; 1; 2; : : : be a random walk on the graph in Fig. 7.17. From each
state the random walk chooses one of the adjacent states with equal probability. The
starting state is 1.

a. Is the chain irreducible and aperiodic?
b. Do the local balance equations hold? If so, find the solution f .1/; : : : ; f .6/.
c. Explain why the probabilities P.Xt D x/, x D 1; : : : ; 6, do not converge as
t ! 1.
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1 3 5

2 4 6

Fig. 7.17 The graph on
which the random walk is
performed

7.14.Run the random walk sampler with a N.10; 2/ target distribution and N.x; 0:01/
proposal, drawing the initial point from the N.0; 0:01/ distribution. Take a sample
size of N D 5000 and plot fXtg against t D 1; : : : ; N . Based on the graph give a
rough estimate of the burn-in period.

We can estimate ` D E ln.X2/, where X � N.10; 2/, by taking the sample
average of ln.X2

BC1/; : : : ; ln.X2
N /, where B is the burn-in size. By independently

generating K D 100 such estimates, find an approximate 95 % confidence interval
for `. Generate 20 such intervals and show that the true value for ` (which is
4:58453 : : :) is contained in these intervals with a probability much smaller than
95 %. Hence, the combination of a burn-in size of B D 1000 and a sample size of
N D 5000 is inadequate to provide an accurate estimate for `.

7.15. Let X be a finite set on which a neighborhood structure is defined; that is,
each x 2 X has a set of neighbors N .x/. Let nx be the number of neighbors of
x 2 X . Consider a Metropolis–Hastings algorithm with proposal density q.y j x/ D
1=nx for all y 2 N .x/. That is, from a current state x, the proposal state is drawn
from the set of neighbors with equal probability. Let the acceptance probability be
˛.x; y/ D minfnx=ny; 1g.

Assuming the chain is irreducible and aperiodic, what is its limiting distribution?

7.16. Let U1; U2 �iid U.0; 1/. Explain why X D � lnU1 � .2IfU2�1=2g � 1/ has pdf
g.x/ D e�jxj=2; x 2 R.

7.17. A Langevin Metropolis–Hastings sampler is a random walk sampler where
the proposal state, for a current state x, is given by

Y D x C h

2
r lnf .x/C

p
hZ; Z � N.0; I / ;

where h > 0 is a step size, f is the target pdf, and r lnf is the gradient of ln f .
Note that the proposal distribution is not symmetric around x. Use this sampler
to draw N D 105 dependent samples from the Gamma.2; 1/ distribution. Use the
kde.m program to assess how well the estimated pdf fits the true pdf. Investigate
how the step size h and the length of the burn-in period affect the fit.
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Since the kde.m program is designed for independent data and MCMC data
has typically many duplicate values, the KDEs will typically be very “spiky.” To
produce smoother estimates, reduce the number of mesh points.

7.18. Let X D .X; Y /> be a random column vector with a bivariate normal
distribution with expectation vector 0 D .0; 0/> and covariance matrix

˙ D
�

1 %

% 1

�

:

a. Show that .Y jX D x/ � N.% x; 1 � %2/ and .X jY D y/ � N.% y; 1 � %2/.
b. Write a Gibbs sampler to draw 104 samples from the bivariate distribution

N.0; ˙/ and plot the data for % D 0; 0:7, and 0:9.

7.19.Consider the two-dimensional pdf

f .x/ D c exp.�.x21x22 C x21 C x22 � 8x1 � 8x2/=2/ ; x 2 R
2 : (7.24)

a. Give a 3D plot and a contour plot for this function (ignoring c).
b. Implement a random walk sampler with proposals of the form Y D x C �Z,

where Z � N.0; I /. Start the sampler at the point .0; 4/.
c. Plot the progression of the first component of the Markov chain against time, for
� D 0:2 and � D 2. Comment on the difference.

d. Give a KDE of the pdf X1 if X D .X1;X2/ � f .

7.20.Consider the two-dimensional pdf (7.24) in Problem 7.19.

a. Show that conditional onX2 D x2,X1 has a normal distribution with expectation
4=.1C x22/ and variance 1=.1C x22/.

b. Implement a Gibbs sampler to sample from f .

7.21. In Algorithm 7.4 the vector X is updated in a systematic order:
1; 2; : : : ; n; 1; 2; : : :. A variant of the algorithm is to update the coordinates in
random order. Specifically, Step 1 of the algorithm is replaced by:

Given the current state Xt D x, generate Y as follows:

1. Draw J uniformly from f1; : : : ; ng.
2. Given J D j , draw Yj � fj .yj j x1; : : : ; xj�1; xjC1; : : : ; xn/.
3. For i ¤ j set Yi D xi .
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a. Show that, given Xt D x, Y has pdf (in the continuous case)

q.y j x/ D 1

n

f .y/
R1

�1 f .y/ dyj
; (7.25)

where y D .x1; : : : ; xj�1; yj ; xjC1; : : : ; xn/.
b. Show that the random-order Gibbs sampler can be viewed as an instance of the

Metropolis–Hastings sampler, with transition density q.y j x/ given in (7.25) and
with acceptance probability ˛.x; y/ D 1.



Chapter 8
Bayesian Inference

Bayesian statistics is a branch of statistics that is centered around Bayes’ formula
(1.8), which is repeated in (8.1) below. To fully appreciate Bayesian inference, it ☞ 16

is important to understand that the type of statistical reasoning here is somewhat
different from that in classical statistics. In particular, model parameters are usually
treated as random rather than fixed quantities. Moreover, Bayesian statistics uses a
notation system that deviates from the classical one in two aspects:

1. Pdfs and conditional pdfs always use the same letter f (sometimes p is used
instead of f ). For example, instead of writing fX.x/ and fY .y/ for the pdfs
of X and Y , one simply writes f .x/ and f .y/. Similarly, the conditional pdf
fX jY .x j y/ of X given Y is denoted in Bayesian notation as f .x j y/. This
style of notation can be of great descriptive value, despite its apparent ambiguity,
and we will use it in this book whenever we work in a Bayesian setting. As an
example, the Bayesian formula (1.8) in terms of (conditional) pdfs can be written
in Bayesian notation as

f .y j x/ D f .x j y/ f .y/
R

f .x j y/ f .y/ dy
/ f .x j y/ f .y/ : (8.1)

(Replace the integral with a sum in the discrete case.)
2. In Bayesian statistics the notation does not make a distinction between random

variables and their outcomes. Both are usually indicated by lowercase letters. It
is assumed that it is clear from the context whether a variable x or � should be
interpreted as an outcome (a number) or a random variable.

The general framework for Bayesian statistics is as follows (compare with the
classical framework in Chap. 5): It is assumed that the data vector, x, say, has been ☞ 121

drawn from a conditional pdf f .x j �/, where � is a random vector of parameters.
The pdf of � conveys the a priori (existing beforehand, before any experience)
information about � . Observing the data x will affect our knowledge of � , and the

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__8, © The Author(s) 2014
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way to update this information is to use Bayes’ formula (8.1). The main concepts
are summarized in the following definition.

Definition 8.1. (Prior, Likelihood, and Posterior). Let x and � denote the
data and parameters in a Bayesian statistical model.

• The pdf of � is called the prior pdf.
• The conditional pdf f .x j �/ is called the Bayesian likelihood function.
• The central object of interest is the posterior pdf f .� j x/which, by Bayes’

theorem, is proportional to the product of the prior and likelihood:

f .� j x/ / f .x j �/ f .�/ :

The posterior pdf thus conveys the knowledge of � after taking into account the
information x. Note that the likelihood function in Bayesian statistics differs slightly
from that in classical statistics. In Bayesian statistics the likelihood f .x j �/ is a☞ 161

conditional pdf of the data x, whereas in the classical case the likelihood L.� I x/ D
f .xI�/ is viewed as a function of � for fixed x. The posterior pdf can be viewed
as a scaled version of the classical likelihood. Indeed, if the prior pdf is constant,
then the posterior pdf coincides with the classical likelihood, up to a multiplicative
constant.

Example 8.1 ((Bayesian Inference for Coin Toss Experiment). Consider the basic
random experiment where we toss a biased coin n times. Suppose that the outcomes
are x1; : : : ; xn, with xi D 1 if the i th toss is Heads and xi D 0 otherwise, i D
1; : : : ; n. Let � denote the probability of Heads. We wish to obtain information about
� from the data x D .x1; : : : ; xn/. For example, we wish to construct a confidence
interval.

The a priori information about � is described by the prior pdf f .�/. For example,
the choice of a uniform prior f .�/ D 1; 0 � � � 1 indicates no prior knowledge
about � . We assume that conditional on � the fxi g are independent and Ber.�/
distributed. Thus, the Bayesian likelihood is

f .x j �/ D
n
Y

iD1
�xi .1 � �/1�xi D �s .1 � �/n�s ;

where s D x1 C � � � C xn represents the total number of successes. Using a uniform
prior gives the posterior pdf

f .� j x/ D c �s .1 � �/n�s ; 0 � � � 1 :
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This is the pdf of the Beta.sC1; n� sC1/ distribution. The normalization constant ☞ 74

is c D .nC 1/
�

n
s

�

. The graph of the posterior pdf for n D 100 and s D 1 is given in
Fig. 8.1.
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Fig. 8.1 Posterior pdf for � ,
with n D 100 and s D 1

A Bayesian confidence interval, called a credible interval, for � is formed by
taking the appropriate quantiles of the posterior pdf. As an example, suppose that
n D 100 and s D 1. Then, a left one-sided 95% credible interval for � is Œ0; 0:0461�,
where 0:0461 is the 0.95 quantile of the Beta.2; 100/ distribution. As an estimate for
� , one often takes the posterior mean, that is, the expectation corresponding to the
posterior pdf. In this case, for general n and s, the posterior mean is .s C 1/=.s C
1 C n � s C 1/ D .s C 1/=.n C 2/; see also Problem 8.1. An alternative estimate ☞ 256

for � is the value for which the posterior pdf is maximal—the so-called posterior
mode. The posterior mode is here b� D s=n, which coincides with the (classical)
sample mean.

8.1 Hierarchical Bayesian Models

In the coin flipping example both the parameter � and the data x are random
variables, and the joint distribution of � and x is specified in a “hierarchical” way:

� � f .�/

.x j �/ � f .x j �/ :

By the product rule of probability, the joint pdf is simply the product f .�/ f .x j �/,
and the posterior pdf is proportional to this last product (viewed as a function of �).
For models involving more than one parameter, a similar hierarchical structure is
often used to specify the model. For example, a three-parameter model could be
specified as follows:
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˛ � f .˛/

.ˇ j ˛/ � f .ˇ j ˛/
.� j ˛; ˇ/ � f .� j ˛; ˇ/

.x j ˛; ˇ; �/ � f .x j ˛; ˇ; �/ :

That is, first, specify the prior pdf of ˛, and then given ˛, specify the pdf of ˇ until
finally the likelihood as a function of all the parameters is given. Often in practice
the reverse order is used: the likelihood is specified first and the priors are defined
last. The hierarchical model approach allows for an easy evaluation of the joint pdf:
it is simply the product of the (conditional) pdfs:☞ 72

f .x; ˛; ˇ; �/ D f .x j ˛; ˇ; �/ f .� j ˛; ˇ/ f .ˇ j ˛/f .˛/ :

To find the posterior

f .˛; ˇ; � j x/ ;

view f .x; ˛; ˇ; �/ as a function of ˛; ˇ; and � for fixed x. To find the marginal
posterior pdfs, f .˛ j x/; f .ˇ j x/, f .� j x/, integrate out the other parameters. For☞ 70

example,

f .� j x/ D
“

f .˛; ˇ; � j x/ d˛ dˇ :

This may not always be easy or feasible. An alternative is to use the Gibbs sampler to☞ 218

sample from the posterior pdf. After initializing ˛; ˇ; � , iterate the following steps:

1. Draw ˛ from f .˛ jˇ; �; x/.
2. Draw ˇ from f .ˇ j ˛; �; x/.
3. Draw � from f .� j ˛; ˇ; x/.

After a (dependent) sample f.˛t ; ˇt ; �t /g from f .˛; ˇ; � j x/ is generated, output
only the variables of interest, e.g., only the f˛tg.

Example 8.2 ((Ticket Inspector). A ticket inspector has the option of taking three
different routes for inspection of parking violations. Each route is characterized by
the time it takes to complete the route and the intensity of ticket violations. Suppose
the time t spent on route k is exponentially distributed with mean k=2 (hours),
k D 1; 2; 3. For example, route 2 takes on average 1 h to complete. Suppose further
that the number of traffic violations encountered, x, say, has a Poisson distribution
with mean 10 k t . So if route 3 takes 2 h, an average of 60 tickets will be issued.
Suppose that on a particular day the ticket inspector has issued 60 tickets. Which
route has she/he taken?
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Assuming that our prior information about k is that each of the routes is taken
with equal probability, we obtain the following hierarchical model:

k � DUf1; 2; 3g (discrete uniform)

.t j k/ � Exp.2=k/

.x j k; t/ � Poi.10 k t/ :

It follows that the joint pdf is

f .k; t; x/ D f .k/f .t j k/f .x j t; k/ D 1

3

2

k
e� 2

k te�10kt .10kt/x

xŠ
(8.2)

for k D 1; 2; 3; t � 0; and x D 0; 1; 2; : : :. Note that k and x are discrete random
variables and t is continuous. The posterior pdf f .k; t j x D 60/ is thus of the form

f .k; t j x D 60/ / 1

k
e� 2

k te�10kt .kt/60 : (8.3)

The marginal posterior pdf of k can be found by integrating out t in (8.3). That
is, for each k D 1; 2; 3, calculate

1

k

Z 1

0

e� 2
k te�10kt .kt/60 dt ;

and normalize. Numerical evaluation yields the following posterior probabilities
(rounded):

0:000353516; 0:30469; and 0:694957 :

Hence, we have deduced from Bayes’ formula that the most likely route that was
followed is route 3. But route 2 is also quite possible. It is very unlikely that route 1
was used.

In a similar manner, to find f .t j x D 60/, we sum (8.3) with respect to k, giving

f .t j x D 60/ D c�1 t60
�

359e�92t=3 C 259e�21t C e�12t � :

The normalization constant (which can be expressed in terms of the gamma
function) evaluates to c � 3:481048347�1019. The graph of this marginal posterior
pdf is shown in Fig. 8.2 (solid line).

To (approximately) sample from f .k; t j x D 60/, we can use the Gibbs sampler
(Algorithm 7.4). For this we need to specify: ☞ 218

1. The conditional distribution of k given t and x.
2. The conditional distribution of t given k and x.
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Fig. 8.2 Posterior pdf of t
given x D 60 (solid line) and
its estimate obtained via
Gibbs sampling (dotted line)

By viewing t and x as constants in (8.2), we see that, given t and x, k has a discrete
distribution on f1; 2; 3g with probabilities proportional to

e�12 t ; 2x�1e�21t ; and 3x�1e�92t=3 :

Similarly, by viewing k and x as constants in (8.2), we have

f .t j x; k/ / tx exp




�t
�

2

k
C 10k

�

;

which is the pdf of the Gamma.x C 1; 2
k

C 10k/ distribution. By alternatively
sampling from f .k j t; x/ and f .t j k; x/ we obtain a dependent sample from
f .k; t j x/. The following MATLAB program implements the Gibbs sampler. It uses
the gamrand function (see Appendix A.8) to sample from the gamma distribution.☞ 364

The burn-in period was ignored. Throughout this chapter we use the function
kde.m to display a kernel density estimate of the simulated data.☞ 202

%ticketinspector.m
n = 10000;
x = 60; %number of tickets
p = [1/3,1/3,1/3] %initial value
kk = zeros(1,n);
tt = zeros(1,n);
k = min(find(cumsum(p)> rand));
for i=1:n

a = x+ 1;
b = 2/k + 10*k;
t = gamrand(a,b);
tt(i) = t;
p = [exp(-12*t),2^(x-1)*exp(-21*t), 3^(x-1)*exp(-92*t/3)];
p = p/sum(p);
k = min(find(cumsum(p)> rand));
kk(i) = k;
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end
p1est = sum(kk == 1)/n %estimate of posterior probability 1
p2est = sum(kk == 2)/n %estimate of posterior probability 2
p3est = sum(kk == 3)/n %estimate of posterior probability 3
figure(1)
hist(kk)
figure(2)
kde(tt)

Typical outcomes of the posterior probabilities for route k are 10�4, 0:32, and
0:68. These probabilities are in close correspondence with the actual probabilities.
The KDE of the posterior pdf of t is given in Fig. 8.2 (dotted line). This is in
excellent agreement with the true posterior pdf.

8.2 Common Bayesian Models

The common statistical models in Chap. 4 can also be formulated and analyzed ☞ 101

in a Bayesian framework. In this section we give various examples of how this is
done. Note that inference in a Bayesian setting depends on the prior information, in
contrast to the classical case.

8.2.1 Normal Model with Unknown � and � 2

Let x1; : : : ; xn be an iid sample from the N.�; �2/ distribution. Let x D
.x1; : : : ; xn/

>. In classical statistics the model can be written as x � N.�1; �2I /,
where 1 is the n-dimensional vector of 1s and I the n-dimensional identity matrix.
To formulate the corresponding Bayesian model, we start with a similar likelihood
as in the classical case; that is,

.x j�; �2/ � N.�1; �2I / :

In the Bayesian setting both� and �2 are random, and we need to specify their prior
distributions to complete the model. In practice the choice of the prior distribution
is governed by two considerations. Firstly, the prior should be simple enough to
facilitate the computation or simulation of the posterior pdf. Secondly, the prior
distribution should be general enough to model complete ignorance of the parameter
of interest. Priors that do not convey any pre-knowledge of the parameter are said to
be uninformative. The uniform or flat prior in Example 8.1 is an example.
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For the present model a standard prior for � is

� � N.0; �20 / ; (8.4)

where �20 > 0 is a constant. The larger the �20 is, the more uninformative is the prior.
A standard prior for �2 is

�2 � InvGamma.˛0; �0/ ; (8.5)

where ˛0 > 0 and �0 > 0 are constants and InvGamma.˛; �/ denotes the inverse-
gamma distribution.

Definition 8.2. (Inverse-Gamma Distribution). A random variable Z is
said to have an inverse-gamma distribution with shape parameter ˛ > 0

and scale parameter � > 0 if its pdf is given by

f .zI˛; �/ D �˛z�˛�1e��z�1

� .˛/
; z > 0 : (8.6)

This is the pdf of the random variableZ D 1=X with X � Gamma.˛; �/.

Thus, (8.5) is equivalent to

1

�2
� Gamma.˛0; �0/ : (8.7)

The smaller the ˛0 and �0 are, the less informative is the prior. It is further assumed
that � and �2 are independent.

The joint pdf of x; �, and �2 is therefore

f .x; �; �2/ D f .�/ � f .�2/ � f .x j�; �2/

D �

2��20
��1=2

exp




�1
2

�2

�20



� �
˛0
0 .�

2/�˛0�1 exp
˚��0 .�2/�1

�

� .˛0/

� �2��2��n=2 exp




�1
2

P

i .xi � �/2
�2



:
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It follows that the posterior pdf is given by

f .�; �2 j x/ / �

�2
��n=2�˛0�1 exp




�1
2

P

i .xi � �/2

�2
� 1

2

�2

�20
� �0

�2



: (8.8)

To simulate from it using the Gibbs sampler, we need the distributions of both
.� j �2; x/ and .�2 j�; x/. To find f .� j �2; x/, view the right-hand side of (8.8)
as a function of �. This gives

f .� j �2; x/ / exp




�n�
2 � 2�

P

i xi

2�2
� 1

2

�2

�20



D exp




�1
2

�

.n�2 � 2�Pi xi /�
2
0 C �2�2

�2 �20

�

D exp




�1
2

�

�2 � 2��20
P

i xi =.n�
2
0 C �2/

�2�20 =.n�
2
0 C �2/

�

: (8.9)

This shows that .� j �2; x/ has a normal distribution with mean �20
P

xi =.n�
2
0 C�2/

and variance �2�20 =.n�
2
0 C �2/. By defining �n D �2=.�20 n/, we can write this

succinctly as

.� j �2; x/ � N

� Nx
1C �n

;
�2=n

1C �n

�

;

where Nx is the sample mean. Similarly, to find f .�2 j�; x/, view (8.8) as a function
of �2. This gives

f .�2 j�; x/ / .�2/�n=2�˛0�1 exp

(

�1
2

n
X

iD1
.xi � �/2=�2 � �0=�2

)

: (8.10)

In other words,

.�2 j�; x/ � InvGamma

�

˛0 C n=2;

n
X

iD1
.xi � �/2=2C �0

�

:

It is interesting to note that in the limit �20 ! 1, ˛0 ! 0, and �0 ! 0, the
right-hand sides of (8.10) and (8.9) define valid probability distributions; namely,

.� j �2; x/ � N
� Nx; �2=n�

.�2 j�; x/ � InvGamma
�

n=2;

n
X

iD1
.xi � �/2=2

�

:
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The two distributions above correspond to the following simplified Bayesian model:

f .�; �2/ D 1=�2

.x j�; �2/ � N.�1; �2I / :

Here the prior for .�; �2/ is improper. That is, it is not a pdf in itself, but by
obstinately applying Bayes’ formula it does yield a proper posterior pdf. In some
sense this prior conveys the least amount of information about � and �2.

In the following MATLAB script an iid sample of size n D 10 is drawn from the
standard normal distribution, and a dependent sample from the posterior distribution
for the simplified model is obtained, using the Gibbs sampler with N D 105

samples.

%bayesnorm.m
n = 10;
X = randn(1,n); %generate the data
sample_mean = mean(X);
sample_var = var(X);
sig2 = var(X); mu = sample_mean; %initial state
N = 10^5; %sample size for Gibbs sampler
gibbs_sample = zeros(N,2);
for k=1:N

mu = sample_mean + sqrt(sig2/n)*randn; %draw mu
V = sum((X -mu).^2)/2;
sig2 = 1/gamrand(n/2,V); %draw sigma^2
gibbs_sample(k,:) = [mu,sig2];

end
kde(gibbs_sample(:,1)) %kde for posterior of mu
% kde(gibbs_sample(:,2)) %kde for posterior of sigma^2

The estimated posterior pdfs of � and �2 are given in Fig. 8.3. In this case
the sample mean and sample variance are �0:0562 and 0:7288, respectively. The
0:05 and 0:95 sample quantiles of the simulated posterior values for � give
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Fig. 8.3 The estimated posterior pdfs of � and �2. The dashed lines correspond to the sample
mean (left) and the sample variance (right)
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the 90% credible interval .�0:5522; 0:4389/. This is in close agreement with
the classical confidence interval (5.18), which in this case is .�0:5510; 0:4387/. ☞ 131

Similarly, an estimated 90% credible interval for �2 is .0:3885; 1:9695/, which
is in close agreement with the classical confidence interval (5.19), which here is
.0:3887; 1:9726/. See Problem 8.10 for a further discussion of this model. ☞ 257

8.2.2 Bayesian Normal Linear Model

Suppose y D .y1; : : : ; yn/
> is described via normal linear model. That is (see

(6.23)) the likelihood is specified by ☞ 173

.y jˇ; �2/ � N.Xˇ; �2I / ;

whereX D .xij / is the (known) n�m design matrix andˇ D .ˇ1; : : : ; ˇm/
> and �2

are unknown parameters. Again, both ˇ and �2 are random in the Bayesian setting,
and we need to specify their prior distributions. The prior for �2 is the same as in
the normal model:

�2 � InvGamma.˛0; �0/ ;

with ˛0 > 0 and �0 > 0 known. A standard prior for ˇ is

ˇ � N.ˇ0;˙0/ ;

where˙0 is a known covariance matrix and ˇ0 a known mean vector. The joint pdf
of y;ˇ, and �2 is thus

f .y;ˇ; �2/ D f .ˇ/ � f .�2/ � f .y jˇ; �2/

D ..2�/mj˙0j/�1=2 exp




�1
2
.ˇ � ˇ0/>˙�1

0 .ˇ � ˇ0/


� �
˛0
0 .�

2/�˛0�1 exp
˚��0 .�2/�1

�

� .˛0/

� �2��2��n=2 exp




� 1

2�2
.y �Xˇ/>.y � Xˇ/



:
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It follows that the posterior pdf is given by

f .ˇ; �2 j y/ / �

�2
��n=2�˛0�1 exp




� 1

2�2
.y �Xˇ/>.y � Xˇ/

�1
2
.ˇ � ˇ0/>˙�1

0 .ˇ � ˇ0/� �0

�2



:

(8.11)

As before, we use the Gibbs sampler to simulate from this posterior pdf. To that end,
we need to derive the distributions of both .ˇ j �2; y/ and .�2 jˇ; y/.

Following the same argument in Sect. 8.2.1, we can show that

.�2 jˇ; y/ � InvGamma

�

˛0 C n=2; .y � Xˇ/>.y � Xˇ/=2C �0

�

:

Next, to find f .ˇ j �2; y/, view the right-hand side of (8.11) as a function of ˇ.
This gives

f .ˇ j �2; y/ / exp




� 1

2�2
.y �Xˇ/>.y �Xˇ/ � 1

2
.ˇ � ˇ0/>˙�1

0 .ˇ � ˇ0/


/ exp




� 1

2�2
.ˇ>X>Xˇ � 2ˇ>X>y/C ˇ>˙�1

0 ˇ0 � 1

2
ˇ>˙�1

0 ˇ



D exp




�1
2

h

ˇ>.X>X=�2 C˙�1
0 /ˇ � 2ˇ>.X>y=�2 C˙�1

0 ˇ0/
i



:

(8.12)

Note that the exponent is quadratic in ˇ, and thus .ˇ j �2; y/ � N.�;D/ for some
mean vector � and covariance matrix D. Therefore,

f .ˇ j �2; y/ / exp




�1
2
.ˇ � �/>D�1.ˇ ��/



/ exp




�1
2

�

ˇ>D�1ˇ � 2ˇ>D�1�
�



:

To determine � and D we only need to compare the linear and quadratic terms
in (8.12) to those of the N.�;D/ density above. This process is sometimes called
completing the squares. Comparing the quadratic terms gives D D .X>X=�2 C
˙�1
0 /�1. Similarly, equating the linear terms in the two expressions gives D�1� D

X>y=�2 C˙�1
0 ˇ0. In summary, we have the following result.
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Theorem 8.1. (Conditional Posteriors for the Linear Model). Consider the
Bayesian model

ˇ � N.ˇ0;˙0/ ; (8.13)

�2 � InvGamma.˛0; �0/ ; (8.14)

.y jˇ; �2/ � N.Xˇ; �2I / ; (8.15)

whereX is a fixed n�m design matrix,˙0 is a fixed n�n covariance matrix,
ˇ0 is a fixed vector, and ˛0 and �0 are fixed constants. Then,

.ˇ j �2; y/ � N.�;D/ ;

where � D D.X>y=�2 C˙�1
0 ˇ0/, with D D .X>X=�2 C˙�1

0 /�1, and

.�2 jˇ; y/ � InvGamma

�

˛0 C n=2; .y � Xˇ/>.y � Xˇ/=2C �0

�

:

Note that as the prior precision matrix˙�1
0 approaches the zero matrix, the prior

for ˇ becomes more non-informative. For ˙�1
0 D O (zero matrix), the prior for ˇ

is improper. However, the conditional density f .ˇ j �2; y/ is still a proper pdf. In
fact, for ˙�1

0 D O , we have � D DX>y=�2, with D D �2.X>X/�1, so that

.ˇ j �2; y/ � N.XCy; �2.X>X/�1/ ;

where XC D .X>X/�1X> is the (right) pseudo-inverse of X . Using this improper
prior for ˇ, the conditional expectation EŒˇ j �2; y� therefore coincides with the
least-squares estimate in (5.11). ☞ 126

The following corollary presents an important generalization of Theorem 8.1 for
the situation where y�Xˇ is an affine transformation of y; that is, y�Xˇ D aCAy
for some vector a and matrix A. The result will be heavily relied on in later parts of ☞ 83

the book.

Corollary 8.1. (Conditional Posteriors for the Linear Model with Gen-
eral Error Covariance Matrix). Consider the Bayesian model

ˇ � N.ˇ0;˙0/ ; (8.16)

(continued)
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(continued)

�2 � InvGamma.˛0; �0/ ; (8.17)

.y �Xˇ jˇ; �2/ � N.0; �2R/ ; (8.18)

where y � Xˇ is an affine transformation of y, R and ˙0 are fixed n � n

(covariance) matrices, ˇ0 is a fixed vector, and ˛0 and �0 are fixed constants.
Then,

.ˇ j �2; y/ � N.�;D/ ;

where� D D.X>R�1y=�2C˙�1
0 ˇ0/, withD D .X>R�1X=�2C˙�1

0 /�1,
and

.�2 jˇ; y/ � InvGamma

�

˛0 C n=2; .y �Xˇ/>R�1.y � Xˇ/=2C �0

�

:

Proof. By assumption we have y�Xˇ D aCAy
defD z for some vector a and matrix

A, where .z j �2;ˇ/ � N.0; �2R/. It follows that

f .y j �2;ˇ/ / f .z j �2;ˇ/ / .2��2/�n=2 exp




� 1

2�2
.y � Xˇ/>R�1.y �Xˇ/



:

The rest of the proof follows exactly the same reasoning as for Theorem 8.1. �

8.2.3 Bayesian Multinomial Model

In this section we extend the Bayesian analysis of the binomial model in
Example 8.1 to the multinomial case. Recall (see Definition 3.4) that a random☞ 68

vector X D .X1;X2; : : : ; Xk/ has a multinomial distribution, with parameters n
and p1; p2; : : : ; pk (probabilities summing up to 1), if

P.X1 D x1; : : : ; Xk D xk/ D nŠ

x1Š x2Š � � �xkŠ p
x1
1 p

x2
2 � � �pxkk (8.19)

for all x1; : : : ; xk 2 f0; 1; : : : ; ng such that x1 C x2 C � � � C xk D n. We can think
of X � Mnom.n;p/ representing the configuration of n balls in k urns when the
balls are thrown independently into the urns according to a vector of probabilities
p D .p1; : : : ; pk/. For the binomial case there are only two urns and p D .p; 1�p/.
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Suppose we are given data x from an Mnom.n;p/ distribution and wish to gain
information about p on the basis of x. Assuming uniform priors, the Bayesian
model is

f .p/ / 1 ; f .x j p/ D nŠ

x1Š x2Š � � �xkŠ p
x1
1 p

x2
2 � � �pxkk :

It follows that the posterior pdf is of the form

f .p j x/ / p
x1
1 p

x2
2 : : : p

xk
k ; p 2 Œ0; 1�k ;

k
X

iD1
pi D 1 :

Since
Pk

iD1 xi D n and
Pk

iD1 pi D 1 we can drop pk from the analysis and look
instead at the posterior pdf of p1; : : : ; pk�1 given x, which is given by

f .p1; : : : ; pk�1 j x/ / p
x1
1 : : : p

xk�1

k�1
�

1 �
k�1
X

iD1
pi
�xk

;

where pi � 0; i D 1; : : : ; k � 1, and
Pk�1

iD1 pi � 1. This is the pdf of a Dirichlet
distribution: .p1; : : : ; pk�1 j x/ � Dirichlet.x1 C 1; x2 C 1; : : : ; xk C 1/.

Definition 8.3. (Dirichlet Distribution). A random vector Z D
.Z1; : : : ; Zm/ is said to have a Dirichlet distribution with shape parameter
˛ D .˛1; : : : ; ˛mC1/ if its pdf is given by

f .zI˛/ D �
�PmC1

iD1 ˛i
�

QmC1
iD1 � .˛i /

m
Y

iD1
z˛i�1i

�

1 �
m
X

iD1
zi

�˛mC1�1
; z 2 Œ0; 1�m ;

m
X

iD1
zi � 1 :

We write this distribution as Dirichlet.˛1; : : : ; ˛mC1/ or Dirichlet.˛/.

The m-dimensional Dirichlet.1; : : : ; 1/ distribution has a constant density on the
set fz 2 R

m W zi � 0; i D 1; : : : ; m;
Pm

iD1 zi � 1g and thus corresponds to the
uniform distribution on that set. The Dirichlet.˛1; ˛2/ distribution is the Beta.˛1; ˛2/
distribution. Moreover, if Z D .Z1; : : : ; Zm/ � Dirichlet.˛1; : : : ; ˛mC1/, the
marginal distribution of Zi is Beta.˛i ;

P

j¤i ˛j /; see Problem 8.6. The following
theorem shows how one can simulate from the Dirichlet distribution using Gamma
random variables.
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Theorem 8.2. (Sampling from the Dirichlet Distribution). Let
Y1; : : : ; YmC1 be independent random variables with Yi � Gamma.˛i ; 1/,
i D 1; : : : ; mC 1, and define

Zj D Yj
PmC1

iD1 Yi
; j D 1; : : : ; m : (8.20)

Then, Z D .Z1; : : : ; Zm/ � Dirichlet.˛1; : : : ; ˛mC1/.

Proof. This is a direct consequence of the transformation rule (3.25). In particular,☞ 81

consider the transformation g W .y1; : : : ; ymC1/> 7! .z1; : : : ; zmC1/> defined by
(8.20) and zmC1 D y1 C � � � C ymC1. By rewriting the fyi g in terms of the fzi g we
see that the inverse transformation is given by

yi D zi zmC1; i D 1; : : : ; m and ymC1 D .1 � .z1 C � � � C zm// zmC1 :

The determinant of the corresponding Jacobian matrix is zmmC1; see Problem 8.5.
Using classical notation for clarity and defining Y D .Y1; : : : ; YmC1/>, we have by
the transformation rule and the definition (2.19) of the Gamma pdf:☞ 48

fZ;ZmC1
.z; zmC1/ D fY.y/zmmC1 D

�

QmC1
iD1 y

˛i�1
i

�

e�PmC1
iD1 yi zmmC1

QmC1
iD1 � .˛i /

D
�

Qm
iD1 y

˛i�1
i

�

y
˛mC1�1
mC1 e�zmC1zmmC1

QmC1
iD1 � .˛i /

D
�

Qm
iD1 z˛i�1i

�

.1 �Pm
iD1 zi /˛mC1�1

QmC1
iD1 � .˛i /

z
.
PmC1
iD1 ˛i /�1

mC1 e�zmC1

„ ƒ‚ …

.?/

: (8.21)

To obtain the pdf of Z we need to integrate out zmC1 in (8.21). Since (?) is
proportional to the pdf of a Gamma.

PmC1
iD1 ˛i ; 1/ distribution, this integral is

� .
PmC1

iD1 ˛i /, which completes the proof. �

Example 8.3 ((Bayesian Inference for the Multinomial Model). Five hundred
people are randomly selected from a large population. They are asked if they like,
dislike, or are indifferent to the current anti-smoking campaign. Table 8.1 lists the
data.

Let xij be the count in row i and column j in Table 8.1; for example, x13 D 147

and x22 D 38. Denote by x D .x11; : : : ; x23/ the vector of counts, and let
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Table 8.1 Opinions on smoking campaign, by gender

Opinion

Gender Dislike Neutral Like

Male 53 57 147
Female 93 38 113

p D .p11; p12; p13; p21; p22; p23/ be the corresponding vector of probabilities. Thus,
p13 is the probability that a randomly selected person is male and likes the campaign.
A natural Bayesian model for the data is that .x j p/ � Mnom.501;p/, with a uniform
prior for p. It follows that .p11; : : : ; p22 j x/ (i.e., the vector p with component p23
removed) has a Dirichlet distribution with parameter ˛ D .x11 C 1; : : : ; x23 C 1/.

Can we conclude from the data that opinion is independent of gender? For this
to be true it must hold that

pij D p
.r/
i p

.c/
j ; i D 1; 2; j D 1; 2; 3 ;

where the row totals p.r/i D pi1 C pi2 C pi3, i D 1; 2 give the probability that
a selected person is male .i D 1/ or female .i D 2/; similarly, the column totals
p
.c/
j D p1j C p2j ; j D 1; 2; 3 give the probabilities of the opinions. It thus makes

sense to investigate the posterior distribution of

aij D pij � p
.r/
i p

.c/
j ; i D 1; 2; j D 1; 2; 3 (8.22)

and check if 0 lies within a reasonable (say, 95%) credible interval of each aij .
The following MATLAB program generates N D 10000 vectors p drawn from the
posterior distribution. For each p the row and column totals are calculated, and
subsequently realizations from the posterior distribution of a1j ; j D 1; 2; 3 are
obtained via (8.22). Since a1j D �a2j , it suffices to consider only a1j ; j D 1; 2; 3.
The function dirichrnd, which generates draws from a Dirichlet distribution,
is given in Appendix A.8. Kernel density plots of the posterior pdfs are shown in ☞ 364

Fig. 8.4. We see that opinion and gender are likely to be dependent, as 0 is not
contained in, for example, a 0:99 credible interval of the posterior pdf of a11.

%multinomex.m
x = [53,57,147,93,38,113];
N = 10000;
p = zeros(N,2,3); a = zeros(N,2,3);
alpha = x + 1;
for i=1:N

r = dirichrnd(alpha);
h = [r,1-sum(r)];
p(i,:,:) = reshape(h’,3,2)’;
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end
for i=1:2

p_row(i,:) = sum(p(:,i,:),3);
end
for j=1:3

p_col(j,:) = sum(p(:,:,j),2);
end
for i=1:2

for j=1:3
a(:,i,j) = p(:,i,j) - p_row(i,:)’.*p_col(j,:)’;

end
end
hold on
for j=1:3

kde(a(:,1,j));
end
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Fig. 8.4 Posterior pdfs of a1j D p1j � p
.r/
1 p

.c/
j ; j D 1; 2; 3, indicating that opinion and gender

are not independent

8.3 Bayesian Networks

The formulation and analysis of a Bayesian model can often be facilitated through
the use of Bayesian networks. Mathematically, a Bayesian network is a directed
acyclic graph, that is, a collection of vertices (nodes) and arcs (arrows between
nodes) such that arcs, when put head-to-tail, do not create loops. Figure 8.5 shows
two directed acyclic graphs ((a) and (b)) and a counterexample (c).
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(a) (b) (c)

Fig. 8.5 The directed graphs in (a) and (b) are acyclic. Graph (c) has a (directed) cycle and can
therefore not represent a Bayesian network

Bayesian networks can be used to graphically represent the joint probability
distribution of a collection of random variables. In particular, consider a Bayesian
network with vertices labeled x1; : : : ; xn. Let Pj denote the set of parents of xj ,
that is, the vertices xi for which there exists an arc from xi to xj in the graph. We
can associate with this network a joint pdf

f .x1; : : : ; xn/ D
n
Y

jD1
f .xj jPj / :

Note that any pdf can be represented by a Bayesian network in this way because, by
the product rule (3.10), ☞ 72

f .x1; : : : ; xn/ D f .x1/f .x2 j x1/ � � �f .xn j x1; : : : ; xn�1/ :

As an example, the left pane of Fig. 8.6 shows a Bayesian network with five
variables, representing the following structure for the pdf:

f .x1; : : : ; xn/ D f .x1/f .x2 j x1/f .x3 j x2/f .x4 j x2/f .x5 j x3; x4/ :

In the same figure two small black nodes have been added with labels �1 and �2.
This is a way of representing fixed parameters of the distribution. Thus, in this case,
the (classical) pdf is of the form

f .x1; : : : ; xn/ D f .x1I �1/f .x2 j x1I �2/f .x3 j x2/f .x4 j x2/f .x5 j x3; x4/ :

In the right pane of Fig. 8.6 the corresponding Bayesian model is depicted. It is
useful to distinguish between random variables and their observations, by using a
dark color or gray scale for the latter one. For example, the right pane of Fig. 8.6
represents the situation where the “data” x1; : : : ; xn have been observed. The aim is
to find the posterior pdf of �1 and �2 given the data.
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Fig. 8.6 Left: a graphical representation of a classical statistical model with random variables
x1; : : : ; x5 and fixed parameters �1; �2. The representation is in the form of a directed acyclic
graph (Bayesian network). Right: the graphical representation of the corresponding Bayesian
model with observed (i.e., fixed) data x1; : : : ; xn, indicated by shaded nodes. In this case the
parameters �1 and �2 are random and depend on fixed parameters a1 and a2 (sometimes called
hyperparameters)

Figure 8.7 gives two more examples of Bayesian networks. The first corresponds
to the ticket inspector model in Example 8.2; the second refers to the normal
Bayesian model in Sect. 8.2.1.

x

xt

k

1 x2 x3 xn

μ σ2

σ2
0 (α0, λ0)

Fig. 8.7 Left: the Bayesian network for the ticket inspector model in Example 8.2. Right: a
representation of the Bayesian model for iid normal data

Example 8.4 ((Belief Nets). Bayesian networks are frequently used for medical
diagnosis and statistical classification. In this context they are sometimes called
belief nets. An example belief net is shown in Fig. 8.8. The purpose of this
belief net is to determine if a patient is to be diagnosed with heart disease,
based on several factors and symptoms. Two important factors in heart disease
are smoking and age, and two main symptoms are chest pains and shortness of
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breath. The belief net in Fig. 8.8 shows the prior probabilities of smoking and
age, the conditional probabilities of heart disease given age and smoking, and
the conditional probabilities of chest pains and shortness of breath given heart
disease.

Fig. 8.8 A Bayesian belief net for the diagnosis of heart disease

Suppose a person experiences chest pains and shortness of breath, but we do not
know her/his age and if she/he is smoking. How likely is it that she/he has a heart
disease?

Define the variables s (smoking), a (age), h (heart disease), c (chest pains),
and b (shortness of breath). We assume that s and a are independent. We wish to
calculate

P.h D Yes j b D Yes; c D Yes/ :

From the Bayesian network structure, we see that the joint pdf of s; a; h; c, and b
can be written as

f .s; a; h; c; b/ D f .s/f .a/f .h j s; a/f .c j h/f .b j h/ :

It follows that

f .h j b; c/ / f .c j h/f .b j h/
X

a;s

f .h j s; a/f .s/f .a/
„ ƒ‚ …

f .h/

:
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We have

f .h D Yes/ D 0:2 � 0:3 � 0:6C 0:4 � 0:3 � 0:4
C 0:05 � 0:7 � 0:6C 0:15 � 0:7 � 0:4 D 0:147 :

Consequently,

f .h D Yes j b D Yes; c D Yes/ D ˇ � 0:2 � 0:3 � 0:147 D ˇ 0:00882

and

f .h D No j b D Yes; c D Yes/ D ˇ � 0:01 � 0:1 � .1 � 0:147/ D ˇ 0:000853

for some normalization constant ˇ. Thus,

f .h D Yes j b D Yes; c D Yes/ D 0:00882

0:0882C 0:000853
D 0:911816 � 0:91 :

8.4 Asymptotic Normality of the Posterior Distribution

We saw in Sect. 6.3.2 various asymptotic properties of the likelihood function.☞ 175

Similar results can be obtained for the posterior pdf. For clarity we identify the

(conditional) pdfs by different symbols: f; f
 , and Vf .

Theorem 8.3. (Asymptotic Distribution of the Posterior Pdf). Let x D
.x1; : : : ; xn/ be an iid sample from Vf .x j �0/, where �0 is fixed. The posterior
pdf with prior pdf f
.�/

f .� j x/ / f
.�/

n
Y

iD1
Vf .xi j �/ (8.23)

is approximately normal with mean �0 and variance VI�1.�0/=n, where VI .�0/
is the information number of Vf .x j �0/.

Proof. (Sketch). Let b� be the mode of the posterior pdf in (8.23). The proof of
Theorem 6.7 can be mimicked to show that b� is consistent; that is, b� ! �0 as☞ 176

n ! 1. A second-order Taylor expansion of lnf .� j x/ aroundb� gives☞ 369
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lnf .� j x/ D ln f .b� j x/C .� �b�/ d

d�
lnf .b� j x/C 1

2
.� �b�/2 d2

d�2
lnf .b� j x/CR

D ln f .b� j x/Cn

2
.��b�/2

�

1

n

d2

d�2
ln
�

c.x/f
.b�/
�

C 1

n

n
X

iD1

d2

d�2
ln Vf .xi jb�/

„ ƒ‚ …

.?/

�

CR ;

where c.x/ is the normalization constant of the posterior and R is the remainder
term, which includes higher-order polynomials .� �b�/k; k D 3; 4; : : :. Note that the
linear term in the Taylor expansion can be omitted since the derivative of ln.f .� j x/
at � D b� is 0. For large n the first term in .?/ becomes negligible compared to the

second one. Moreover, similar to (6.26), the second term converges to � VI .�0/. Since ☞ 176

R=n remains bounded as n ! 1 and lnf .b� j x/ is a constant with respect to � , the
posterior pdf f .� j x/ becomes more and more concentrated around �0 and tends to
the form

f .� j x/ / e� 1
2 .���0/2 n VI.�0/ ;

which is the pdf of the N.�0; VI�1.�0/=n/ distribution, in accordance with
Theorem 6.8. � ☞ 177

8.5 Priors and Conjugacy

In Bayesian analysis it is often useful to choose the prior pdf in the same family
of distributions as the posterior pdf. Consider for example the binomial model in
Example 8.1. Using a uniform prior, the posterior pdf belongs to Beta family of
distributions. Suppose we choose the prior in the same family, giving the Bayesian
model

� � Beta.a; b/

.x j �/ � Bin.n; �/

for some fixed a and b. By Bayes’ formula the posterior pdf satisfies

f .� j x/ / �a�1.1 � �/b�1�x.1 � �/n�x D �aCx�1 .1 � �/bCn�x�1 ;

which corresponds to the Beta.aCx; bCn�x/ distribution. We see that the posterior
and prior are in the same family of distributions. This property is called conjugacy.
The advantage of conjugacy is that only the parameters of the distribution need to
be considered. We say that the Beta family is a conjugate family for the binomial
distribution.
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Exponential families provide natural conjugate priors. Recall (see Defini-
tion 5.3) that a random variable x is said to belong to anm-dimensional exponential☞ 152

family if its pdf is of the form

Vf .x j �/ D c.�/ exp

� m
X

iD1
�i .�/ ti .x/

�

h.x/ ; (8.24)

where we have used the Bayesian notation Vf .x j �/ instead of the classical notation
Vf .xI�/.

Theorem 8.4. (Conjugate Prior for an Exponential Family). Let x D
.x1; : : : ; xn/ be an iid sample from Vf .x j �/ of the form (8.24). The prior

f .�/ / c.�/b exp

� m
X

iD1
�i .�/ai

�

; (8.25)

where the proportionality constant only depends on .a1; : : : ; am; b/, is conju-
gate to the conditional pdf

f .x j �/ D c.�/n exp

� m
X

iD1
�i .�/

n
X

kD1
ti .xk/

� n
Y

kD1
h.xk/ : (8.26)

Proof. By Bayes’ theorem the posterior pdf satisfies

f .� j x/ / f .�/f .x j �/ / c.�/nCb exp

� m
X

iD1
�i .�/

�

ai C
n
X

kD1
ti .xk/

�

�

;

where the proportionality constant does not depend on � . This shows that the
posterior pdf lies in the same .m C 1/-dimensional exponential family as the
prior (8.25). In particular, if the prior is specified by parameters .a1; : : : ; am; b/,
then the corresponding parameters for the posterior are .ea1; : : : ;eam;eb/, with eai D
ai CPn

kD1 ti .xk/, i D 1; : : : ; m, andeb D b C n. �

Example 8.5 ((Conjugate Prior for Bernoulli Likelihood). In Example 8.1 we are
dealing with independent Bernoulli random variables whose joint pdf conditional
on � is

f .x j �/ D �
Pn
kD1 xk .1 � �/n�Pn

kD1 xk ;
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which is of the form (8.26), with m D 1, �.�/ D ln.�=.1 � �//, t.xk/ D xk , and
c.�/ D 1 � � . The corresponding conjugate class is therefore of the form

c.�/be�.�/a D .1 � �/b
�

�

1 � �

�a

/ �a.1� �/b ;

which corresponds to the Beta family of distributions.

Example 8.6 ((Conjugate Prior for Poisson Likelihood). Let x1; : : : ; xn be an iid
sample from the Poisson distribution Poi.�/. This is an exponential family, and the
joint pdf can be written as

f .x j�/ D e�n�en Nx ln�
n
Y

kD1

1

xkŠ
:

This is of the form (8.26), which suggests a conjugate prior of the form

f .�/ / e�b�ea ln� D e�b��a :

This corresponds to the gamma density. In particular, if we take a Gamma.a; b/ prior
for �, that is,

f .�/ / e�b��a�1

(notice � is the variable here, not the parameter), then the posterior pdf is

f .� j x/ / e�.nCb/� �a�1Cn Nx ;

which corresponds to the Gamma.aC n Nx; b C n/ distribution.

8.6 Bayesian Model Comparison

Under the Bayesian framework, hypothesis testing, or more generally comparing
models, is straightforward. Suppose we wish to compare two models M1 and M2.
Each modelMi; i D 1; 2, is formally defined by a likelihood function f .x j � i ;Mi /

and a prior distribution on the model-specific parameter vector � i denoted as
f .� i jMi/. Note that in both the likelihood function and the prior distribution, we
make the dependence on the modelMi explicit.

A popular criterion for comparing models M1 and M2 is the Bayes factor in
favor of modelM1 against modelM2:

BF12
defD f .x jM1/

f .x jM2/
;
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where

f .x jMi/ D
Z

f .x j � i ;Mi/ f .� i jMi/ d� i (8.27)

is the marginal likelihood under model Mi; i D 1; 2.
The marginal likelihood f .x jMi/ is simply the marginal density of the data x

under model Mi . If the actual data are likely under model Mi , then the associated
marginal likelihood will be large, and vice versa. Hence, a Bayes factor BF12 greater
than 1 indicates that model M1 better predicts the observed data than M2. It is
therefore taken as evidence in favor of modelM1.

The Bayes factor between the two models is related to their posterior odds ratio:

PO12
defD P.M1 j x/

P.M2 j x/
D P.M1/

P.M2/
� f .x jM1/

f .x jM2/
;

where P.Mi/ and P.Mi j x/ are, respectively, the prior and posterior model prob-
abilities of model Mi; i D 1; 2. If both models are equally probable a priori, i.e.,
P.M1/ D P.M2/, the posterior odds ratio between the two models is then the same
as the Bayes factor. In that case, if, for example, BF12 D 50, we can say that model
M1 is 50 times more likely than modelM2 given the data.

Example 8.7 ((Comparing Multinomial Models). In Example 8.3 we investigated☞ 242

if opinions on an anti-smoking campaign are independent of gender. Using the data
in Table 8.1, we found evidence that suggests opinions differ by gender. In this
example we perform a formal model comparison exercise to quantify the weight of
evidence.

Let M1 denote the multinomial model .x j p;M1/ � Mnom.501;p/, where
p D .p11; p12; p13; p21; p22; p23/, with a uniform prior for p, or, equivalently,
.p11; : : : ; p22 jM1/ � Dirichlet.1; : : : ; 1/. Hence, the prior density is given by

f .p11; : : : ; p22 jM1/ D � .6/ D 5Š :

It follows that the marginal likelihood f .x jM1/ can be directly computed using the
definition (8.27):

f .x jM1/ D
Z

501Š

x11Š � � �x23Š p
x11
11 � � �px2323 � 5Š d.p11; : : : ; p22/

D 501Š 5Š

x11Š � � �x23Š
Z

p
x11
11 � � �px2323 d.p11; : : : ; p22/

D 501Š 5Š

x11Š � � �x23Š � � .x11 C 1/ � � �� .x23 C 1/

� .507/

D 501Š 5Š

506Š
� 3:6901� 10�12 :
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Next, if opinion is independent of gender, we must have

pij D p
.r/
i p

.c/
j ; i D 1; 2; j D 1; 2; 3 ;

where p.r/1 Cp.r/2 D 1 and p.c/1 Cp.c/2 Cp.c/3 D 1. Let ri D xi1Cxi2Cxi3; i D 1; 2,
and ci D x1j C x2j ; j D 1; 2; 3, denote the row and column counts, respectively.
Then, the likelihood function under the modelM2 (in which opinion is independent
of gender) is given by

f .x jep;M2/ D 501Š

x11Š � � �x23Š .p
.r/
1 p

.c/
1 /

x11 � � � .p.r/2 p.c/3 /x23

D 501Š

x11Š � � �x23Š .p
.r/
1 /

r1.p
.r/
2 /

r2.p
.c/
1 /

c1.p
.c/
2 /

c2.p
.c/
3 /

c3 ;

whereep D .p
.r/
1 ; p

.r/
2 ; p

.c/
1 ; p

.c/
2 ; p

.c/
3 /. Further, we assume independent and uniform

priors for .p.r/1 ; p
.r/
2 / and .p.c/1 ; p

.c/
2 ; p

.c/
3 /. Hence, the prior density is

f .p
.r/
1 ; p

.c/
1 ; p

.c/
2 jM2/ D � .2/� .3/ D 2 :

Following a similar computation as before, the marginal likelihood for modelM2 is
given by

f .x jM2/ D 2 � 501Š
x11Š � � �x23Š

� .r1 C 1/� .r2 C 1/� .c1 C 1/� .c2 C 1/� .c3 C 1/

� .r1 C r2 C 2/� .c1 C c2 C c3 C 3/

D 2 � r1Š r2Š c1Š c2Š c3Š
502 � x11Š � � �x23Š 503Š � 9:2122� 10�15 :

Finally, the Bayes factor is BF12 D f .x jM1/=f .x jM2/ � 400; showing
overwhelming evidence for M1 against M2: In other words, given the data, it is
highly likely (400 times more so) that opinion varies with gender.

The computation of the marginal likelihood in (8.27) involves “integrating out”
all the model parameters, and an analytic expression is often unavailable. In those
cases, Monte Carlo methods are required to estimate the marginal likelihood. One
popular method to do so using posterior output is the Chib’s method (Chib 1995;
Chib and Jeliazkov 2001).

However, when comparing nested models, i.e., when one model is a restricted
version of the other model, the Bayes factor has an alternative expression that can
often be easily estimated using posterior output. To set the stage, let Mu denote the
unrestricted model, where the model parameters are partitioned into two subsets
� D . ;!/. Suppose Mr is the restricted version of Mu, where � D . ;!0/ for
some constant vector!0. Clearly, comparingMu andMr is equivalent to testing the
hypothesis! D !0.
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Now, suppose f . ;! jMu/ is the prior distribution under the unrestricted model.
Then, the induced prior for  under the restricted modelMr is simply the marginal
distribution f . jMr/ D R

f . ;! jMu/ d!: It turns out that if this induced prior
is the same as the conditional prior for  given ! D !0, then the Bayes factor
is equivalent to the ratio of posterior and prior densities under Mu evaluated at
! D !0. This is referred to as the Savage–Dickey density ratio. The result
is summarized in the following theorem. Its proof can be found in, for example,
Verdinelli and Wasserman (1995).

Theorem 8.5. (Savage–Dickey Density Ratio). Let Mu denote the unre-
stricted model with model parameters � D . ;!/, and let Mr be a restricted
version ofMu, with ! D !0 and free parameter vector . Suppose the priors
in the two models satisfy

f . jMr/ D f . j! D !0;Mu/ : (8.28)

Then, the Bayes factor in favor of modelMr can be written as

BFru D f .! D !0 j x;Mu/

f .! D !0 jMu/
:

In particular, (8.28) holds if  and ! are a priori independent underMu; that
is, f . ;! jMu/ D f . jMu/f .! jMu/.

Writing the Bayes factor as such a ratio of densities avoids the often difficult
task of computing marginal likelihoods. The denominator f .! D !0 jMu/

can frequently be calculated analytically, when the conditional prior f .! jMu/

is of a standard form. In addition, the numerator can often be estimated from
posterior output of model Mu. In particular, the numerator can be estimated via
1
N

PN
iD1 f .! D !0 j x; i ;Mu/, where  1; : : : ; N are posterior draws from

modelMu.

Example 8.8 ((Comparing Polynomial Regression Models). In Example 5.16☞ 149

we considered five different polynomial regression models for fitting the data in
Table 5.3 and compared the models using cross-validation. In this example, we
perform a Bayesian model comparison on the same data. Let model Mi denote the
i th-order polynomial regression model, i D 1; : : : ; 5:

yk D ˇ0 C ˇ1xk C � � � C ˇix
i
k C "k ;

where f"kg �iid N.0; �2/. Clearly, models M1; : : : ;M4 are all nested within model
M5. To complete the model specification (of model M5), we take the following
independent priors: ˇ D .ˇ0; : : : ; ˇ5/

> � N.0; 100 I / and �2 � InvGamma.2; 1/.
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To compare models via the Bayes factor, we can obtain posterior draws from
model M5 and estimate the relevant Savage–Dickey density ratio (since ˇ0; : : : ; ˇ5
are independent under the prior, the condition (8.28) is satisfied). For example,
model M3 is obtained by imposing .ˇ4; ˇ5/ D 0. Hence, the Bayes factor BF35
can be written as

BF35 D f ..ˇ4; ˇ5/ D 0 j y;M5/

f ..ˇ4; ˇ5/ D 0 jM5/
:

Using the properties of the multivariate normal distribution (see Theorem 3.7), the ☞ 85

marginal prior f .ˇ4; ˇ5 jM5/ is a bivariate normal density and can be evaluated
easily. The conditional posterior f .ˇ j y; �2;M5/ is also a normal density, by
Theorem 8.1. Hence, the numerator in the ratio can be estimated using posterior ☞ 238

draws for �2.
The following MATLAB script estimates the log-Bayes factors ln BFi5; i D

1; : : : ; 4; via the Savage–Dickey density ratio approach. It calls the function
lmvnpdf.m (see below) that evaluates the log-density of the N.�; ˙/ distribution.

% polyreg_bayes.m
x = [4.7,2,2.7,0.1,4.7,3.7,2,3.4,1.3,3.8,4.8,1.7,...

-0.4,4.5,1.3,0.4,2.6,4,2.9,1.6]’;
y = [6.57,5.15,7.15,0.18,6.48,8.95,5.24,10.54,1.24,...

8.05,3.56,3.4,2.18,7.16,2.32,-0.23,7.68,9.09,9.13,4.04]’;
n = length(x);
X = [ones(n,1) x x.^2 x.^3 x.^4 x.^5];
XX = X’*X;
Xy = X’*y;
m = 6;
N = 10^5; % Gibbs sample size
V0 = eye(m)*100; % prior for beta
invV0 = V0\eye(m);
alp0 = 2; lam0 = 1; % prior for sig2
beta = XX\Xy;
sig2 = sum((y-X*beta).^2)/n;
gibbs_sample = zeros(N,m+1);
lpostden_sample = zeros(N,4);
for k=1:N

D = (invV0 + XX/sig2)\eye(m);
betahat = D*(Xy/sig2);
beta = betahat + chol(D,’lower’)*randn(m,1);
sig2 = 1/gamrand(alp0+n/2, lam0+sum((y-X*beta).^2)/2);
gibbs_sample(k,:)=[beta’ sig2];
lp1 = lmvnpdf([0 0 0 0]’,betahat(3:end),D(3:end,3:end));
lp2 = lmvnpdf([0 0 0]’,betahat(4:end),D(4:end,4:end));
lp3 = lmvnpdf([0 0]’,betahat(5:end),D(5:end,5:end));
lp4 = lmvnpdf(0,betahat(6),D(6,6));
lpostden_sample(k,:) = [lp1 lp2 lp3 lp4];

end
lpostden = zeros(4,1);
for i=1:4
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maxpden = max(lpostden_sample(:,i));
lpostden(i)=log(mean(exp(lpostden_sample(:,i)-maxpden)))...

+ maxpden;
end
lpriden = zeros(4,1);
lpriden(1) = lmvnpdf([0 0 0 0]’,[0 0 0 0]’,V0(3:end,3:end));
lpriden(2) = lmvnpdf([0 0 0]’,[0 0 0]’,V0(4:end,4:end));
lpriden(3) = lmvnpdf([0 0]’,[0 0]’,V0(5:end,5:end));
lpriden(4) = lmvnpdf(0,0,V0(6,6));
lBF = lpostden - lpriden;

function lden = lmvnpdf(x,mu,Sig)
m = size(mu,1);
e = x-mu;
c = -m/2*log(2*pi) - sum(log(diag(chol(Sig,’lower’))));
lden = c - .5*e’*(Sig\e);

The log-Bayes factors ln BF15; : : : ; ln BF45 are estimated to be, respectively,
�2:08, �2:63, 10:69, and 5:72. In other words, compared to model M5, the data
favor models M3 and M4, but not models M1 and M2. Furthermore, note that the
Bayes factor BF34 can be written as

BF34 D f .y jM3/

f .y jM4/
D f .y jM3/

f .y jM5/
� f .y jM5/

f .y jM4/
D BF35

BF45
:

Hence, an estimate of BF34 is e10:69�5:72 � 144: To conclude, the data decisively
prefer the cubic polynomial regression model. If we assume equal prior probabilities
for all the models, the cubic polynomial is about 144 times more likely than the next
best model (4th-order polynomial) given the data.

8.7 Problems

8.1. Let f .x/; x 2 .0; 1/ be the pdf of X � Beta.˛; ˇ/.☞ 74

a. Prove that the derivative of f (or, equivalently, of lnf ) has a unique zero at
x� D .˛�1/=.˛Cˇ�2/ in the interval .0; 1/, provided that either ˛ > 1; ˇ > 1
or ˛ < 1; ˇ < 1. For which of these two regimes is x� a maximum point?

b. Show that EX D B.˛ C 1; ˇ/=B.˛; ˇ/, where B is the beta function (3.11).☞ 74

Using the properties of the gamma function (2.20) show that EX D ˛=.˛ C ˇ/.☞ 48

8.2. Suppose x1 D 1:1065; x2 D 0:5343; x3 D 11:1438; x4 D 0:4893; x5 D
2:4748 is an observed iid sample from the Exp.�/ distribution. Consider Bayesian
inference for the parameter �, using an improper prior f .�/ D 1=�.
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a. Show that the posterior pdf of � has a Gamma.5; 15:7487/ distribution.
b. Give the expectation of the posterior pdf.

8.3. Let .x j�/ � Poi.�/, and suppose that the prior distribution for � is
Gamma.a; b/, where a and b are known. Find the posterior pdf of �.

8.4. Let x � Gamma.˛; �/. Show that the pdf of z D 1=x is given by (8.6). ☞ 234

8.5. Consider the transformation .z1; : : : ; zmC1/> 7! .y1; : : : ; ymC1/> defined by
yi D zi zmC1; i D 1; : : : ; m and ymC1 D .1 � .z1 C � � � C zm// zmC1. Show that the
determinant of the corresponding matrix of Jacobi is zmmC1. This is used in the proof
of Theorem 8.2. ☞ 241

8.6. Let Z D .Z1; : : : ; Zm/ � Dirichlet.˛1; : : : ; ˛mC1/. Show that the marginal
distribution of Zi is Beta.˛i ;

P

j¤i ˛j /. Hint: use Theorem 8.2. ☞ 241

8.7. Let .x jp/ � Geom.p/. Suppose that the prior distribution of p is U.0; 1/.

a. Find the posterior pdf of p.
b. Find the posterior mode.
c. Find the posterior expectation.

8.8. The data 0:4453; 9:2865; 0:4077; 2:0623; 10:4737; 5:7525; 2:7159; 0:1954;
0:1608, and 8:3143were drawn from an Exp.1=�/ distribution. Consider a Bayesian
model with a constant prior for � .

a. Show that the posterior distribution of � is inverse-gamma, and determine the
parameters.

b. Determine estimates of the 0.025 and 0.975 quantiles of the posterior distribution,
using N D 105 simulated samples from the posterior distribution.

8.9. Suppose x D .x1; : : : ; xn/ is an iid sample from N.�; �2/ with known variance
�2. As a prior for � take the N.�0; �

2
0 / distribution for some fixed parameters �0

and �20 . The Bayesian model is therefore

� � N.�0; �
2
0 / ;

.x1; : : : ; xn j�/ iid� N.�; �2/ :

Show that the posterior pdf f .� j x/ corresponds to the pdf of the N.�1; �
2
1 /

distribution with

�1 D
1

�20
�0 C n

�2
Nx

1

�20
C n

�2

and
1

�21
D 1

�20
C n

�2
:

8.10. Consider the simplified Bayesian model for normal data in Sect. 8.2.1; that is,

f .�; �2/ D 1=�2 ;

.x j�; �2/ � N.�1; �2I / :
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The joint posterior pdf is

f .�; �2 j x/ / �

�2
��n=2�1

exp




�1
2

Pn
iD1.xi � �/2

�2



: (8.29)

The marginal posterior pdfs of � and �2 can be obtained by integrating out the other
variable.

a. Prove that

n
X

iD1
.xi � �/2 D

n
X

iD1
.xi � Nx/2 C n.� � Nx/2 : (8.30)

b. By using (8.30) show that

f .�2 j x/ / �

�2
��n=2�1=2

exp




�1
2

Pn
iD1.xi � Nx/2

�2



: (8.31)

c. Show that (8.31) corresponds to the InvGamma
�

.n � 1/=2; s2x.n � 1/=2/
�

distribution, where s2x is the classical sample variance of the fxi g.
d. Let q1 and q2 be the �=2 and 1 � �=2 quantiles of (8.31). Show that the 1 � �

credible interval .q1; q2/ is identical to the classic confidence interval (5.19) (with☞ 132

˛ replaced by � ).
e. By using (8.30) and (8.6) show that☞ 234

f .� j x/ /
 

n
X

iD1
.xi � �/2

!�n=2
/
�

.�� Nx/2n
s2x	

C 1

��.	C1/=2
;

where 	 D n � 1. Verify that, in view of (2.23), this means that☞ 50

�

� � Nx
sx=

p
n

ˇ

ˇ x
�

� tn�1 :

f. Let q1 and q2 be the �=2 and 1 � �=2 quantiles of f .� j x/. Show that the 1 � �

credible interval .q1; q2/ is identical to the classic confidence interval (5.18) (with☞ 131

˛ replaced by � ).

8.11. In Problem 8.10 compare the simulated densities in Fig. 8.3 with the exact
ones. In particular, plot the pdf of .�2 j x/, that is, the pdf of the random variable
.n � 1/s2x Y , where Y � InvGamma..n � 1/=2; 1=2/. Similarly, plot the pdf of
.� j x/, that is, of the random variable Nx C T sx=

p
n, where T � tn�1.

8.12. In the zero-inflated Poisson model, random data x1; : : : ; xn are assumed to
be of the form xi D ri yi , where the fyi g have a Poi.�/ distribution and the
frig have a Ber.p/ distribution, all independent of each other. Given an outcome
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x D .x1; : : : ; xn/, the objective is to estimate both � and p. Consider the following
hierarchical Bayesian model:

p � U.0; 1/ ;

.� jp/ � Gamma.a; b/ ;

.ri jp; �/ � Ber.p/ independently ;

.xi j r; �; p/ � Poi.� ri / independently ;

where r D .r1; : : : ; rn/ and a and b are known parameters. We wish to sample from
the posterior pdf f .�; p; r j x/ using the Gibbs sampler.

a. Show that

f .r; �; p j x/ / �a�1e�b�
n
Y

iD1
e�� ri .� ri /xi pri .1 � p/1�ri :

b. Show that

.� jp; r; x/ � Gamma

 

a C
n
X

iD1
xi ; b C

n
X

iD1
ri

!

;

.p j�; r; x/ � Beta

 

1C
n
X

iD1
ri ; 1C n �

n
X

iD1
ri

!

;

and, for k D 1; : : : ; n,

.rk j�; p; x/ � Ber

�

p e��

p e�� C .1 � p/ IfxkD0g

�

:

c. Generate an iid sample of size n D 100 for the zero-inflated Poisson model using
parameters p D 0:3 and � D 2.

d. Implement the Gibbs sampler, generate a large (dependent) sample from the
posterior distribution, and use this to construct 95% credible intervals for p and
� using the data in (c). Compare these with the true values.

8.13. For a Markov chain x1; : : : ; xn, the joint pdf is of the form ☞ 209

f .x1; : : : ; xn/ D f .x1/f .x2 j x1/f .x3 j x2/ � � �f .xn j xn�1/ :

The corresponding Bayesian network is given in the left pane of Fig. 8.9. An
alternative Bayesian network for the same Markov chain is given in the right pane
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of the figure, where the arcs have been turned around. Show that both networks
represent the same joint pdf. Hint: write f .xtC1 j xt / in terms of f .xt j xtC1/.

Fig. 8.9 Bayesian networks for a Markov chain

8.14. Figure 8.10 shows the Bayesian network for a hidden Markov model. Here
x1; : : : ; xn is a Markov chain on f1; : : : ; Kg, defined by an initial (discrete) pdf
f .x1/ and transition probabilitiesf .xt j xt�1/, which are here assumed to be known.
For each time t D 1; 2; : : : ; n the state of the chain, xt , remains hidden. Instead,
a variable yt is observed, whose (known) distribution depends only on xt ; for
example, .yt j xt / � N.xt ; 1/.

Fig. 8.10 Bayesian network for a hidden Markov model

A typical object of interest for such models is the posterior pdf f .xt j y1Wt /, where
y1Wt D .y1; : : : ; yt /. That is, we wish to assess the state at time t given all the
observations at and before time t .

a. Prove that

f .xt ; y1Wt / D
X

xt�1

f .xt ; yt j xt�1; y1Wt�1/f .xt�1; y1Wt�1/ : (8.32)

b. Further, show that

f .xt ; yt j xt�1; y1Wt�1/ D f .xt j xt�1/f .yt j xt / : (8.33)

c. Express f .x1; y1/ in terms of f .x1/ and f .y1 j x1/. Explain how, with f .x1; y1/,
(8.32), and (8.33), the posterior distribution of xt given y1Wt can be determined
recursively for t D 2; 3; : : : ; n.
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8.15. Find an appropriate conjugate family for the Exp.�/ distribution, using
Theorem 8.4. ☞ 250

8.16. Let x D .x1; : : : ; xn/ be an iid sample from Exp.1=�/ for some � . Show
that � � InvGamma.˛0; �0/ is a conjugate prior for this distribution. Determine the
resulting posterior distribution.

8.17. Suppose f .� j x/ is the posterior pdf for some Bayesian estimation problem.
For example, � could represent the parameters of a regression model based on the
data x. An important use for the posterior pdf is to make predictions about the
distribution of other random variables. For example, suppose that, conditional on x,
some random vector y depends on � via the conditional pdf f .y j �; x/ D f .y j �/.
Thus, conditional on � , the random vector y is independent of x. The predictive pdf
of y given x is defined as f .y j x/, which can be written as

f .y j x/ D
Z

f .y j �/f .� j x/ d� : (8.34)

This can be viewed as the expectation of f .y j �/ under the posterior pdf. Therefore,
we can use Monte Carlo simulation to approximate f .y j x/ via

f .y j x/ � 1

N

N
X

iD1
f .y j � i / ;

where the sample f� i ; i D 1; : : : ; N g is obtained from f .� j x/, for example, via
MCMC.

a. Prove (8.34).
b. As a concrete example, suppose that the iid data �0:4326;�1:6656;
0:1253; 0:2877, and �1:1465 come from some N.�; �2/ distribution. Define
� D .�; �2/. Let Y � N.�; �2/ be a new measurement. Estimate and plot
the predictive pdf f .y j x/, using a sample �1; : : : ;�N obtained via the Gibbs
sampler of Example 8.2.1. Take N D 1000. Compare this with the “common- ☞ 233

sense” Gaussian pdf with expectation Nx (sample mean) and variance s2 (sample
variance).

8.18. The bag-of-words method is a popular procedure for classification. Given are
k objects that are each characterized by n features. For example, the objects could be
k different people and the features could be various facial measurements, such as the
width of the eyes divided by the distance between the eyes or the ratio of the nose
height and mouth width. The features, x1; : : : ; xn, say, have a known distribution
and are assumed to be conditionally independent of each other given the object p;
that is, f .x1; : : : ; xn jp/ D f .x1 jp/ � � �f .xn jp/. Assuming a uniform prior for p,
the posterior pdf is thus given by
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f .p j x1; : : : ; xn/ /
n
Y

iD1
f .xi jp/ :

To classify the object on the basis of the features, simply take the p that maximizes
the unnormalized posterior pdf.

a. Give the Bayesian network for the joint pdf of p; x1; : : : ; xn.
b. Suppose the i th feature distribution of object p is N.�pi ; �

2/, p D 1; : : : ; k,
i D 1; : : : ; n. Define �p D .�p1; : : : ; �pn/, p D 1; : : : ; k. Let x D .x1; : : : ; xn/

be the vector of observed features. Let p� D argminp k�p�xk; that is, among all
feature vectors f�pg, the vector�p�

is closest to x. Show that p� also maximizes
the posterior pdf.

c. Next, consider the case where the i th feature of object p is N.�pi ; �
2
pi /

distributed. Table 8.2 lists the means � and standard deviations � of the normal
feature distributions of four objects. The observed features of an object are
.x1; x2; x3/ D .1:67; 2:00; 4:23/. How should this object be classified?

Table 8.2 Feature parameters

Feature 1 Feature 2 Feature 3

Object � � � � � �

1 1.6 0.1 2.4 0.5 4.3 0.2
2 1.5 0.2 2.9 0.6 6.1 0.9
3 1.8 0.3 2.5 0.3 4.2 0.3
4 1.1 0.2 3.1 0.7 5.6 0.3



Part III
Advanced Models and Inference

In Part III of the book we consider estimation and inference for a wide variety of
advanced models. Topics include generalized linear models with discrete responses,
autoregressive–moving average models for time series, Gaussian models for data
arising from repeated measurements, and state space models for data exhibiting
time-varying persistence and volatility. Both classical and Bayesian estimation of
these models are covered. It is assumed that the reader is familiar with the statistical
concepts and computational techniques discussed in Part II.



Chapter 9
Generalized Linear Models

The linear models introduced in Chap. 4 deal with continuous response variables— ☞ 101

such as height and crop yield—and continuous or discrete explanatory variables.
For example, under a normal linear model, the responses fYig are independent ☞ 115

of each other, and each has a normal distribution with mean �i D x>
i ˇ, where

x>
i is the i th row of the design matrix X . However, these continuous models are

obviously not suitable for data that take on discrete values. For example, we might
want to analyze women’s labor market participation decision (whether to work or
not), voters’ opinion of the government (rating on the government performance on
a scale of five), or the choice among a few cereal brands, as a function of one
or more explanatory variables. In this chapter we discuss models that are suitable
for analyzing these discrete response variables. We will first introduce the flexible
framework of generalized linear models.

9.1 Generalized Linear Models

Definition 9.1. (Generalized Linear Model). A vector of (response) data
Y D .Y1; : : : ; Yn/

> is said to satisfy a generalized linear model if the
expectation vector � D EY can be written in the form

� D g�1.Xˇ/ ;

where X is an n �m design matrix (i.e., a matrix of explanatory variables),
ˇ is an m-dimensional vector of parameters, and g�1 is the inverse of a
link function g. The distribution of Y may depend on additional dispersion
parameters that model the randomness in the data that is not explained by the
explanatory variables.

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__9, © The Author(s) 2014

265



266 9 Generalized Linear Models

A common assumption for Y is that its components Y1; : : : ; Yn are independent
and come from some exponential family. The central focus is the parameter vector
ˇ, which summarizes how the matrix of explanatory variablesX affects the response
vector Y. By choosing different members of the exponential family and different
link functions, the class of generalized linear models can encompass a wide variety
of popular models as special cases, some of which are discussed below.

Example 9.1 (Normal Linear Model). The normal linear model Y D Xˇ C "

in Sect. 4.5 is a special case of a generalized linear model. Here, � D Xˇ, so that☞ 114

the link function is simply the identity function: g.z/ D z. The vector Y has a
multivariate normal distribution

Y � N.�; �2I / ;

where �2 is a dispersion parameter that models the residual randomness in the data.

Example 9.2 (Binary Variable Regression Model). Suppose we are interested in
the effectiveness of a certain insecticide. For this purpose an experiment is carried
out as follows: the i th insect is exposed to the insecticide with dose level xi , and we
observe Yi , whether the insect is killed or not. Thus, Yi � Ber.�i /, where�i D EYi
is the “success” probability, which has to lie in the interval .0; 1/. Let Y and x
be the response and explanatory vectors. One way to link the expectation vector
� D .�1; : : : ; �n/

> to x is to specify �i as

�i D F.ˇ0 C ˇ1xi /

for some cdf F and “regression” parameters ˇ0 and ˇ1. Defining the n � 2 design
matrix X D .1 x/ and ˇ D .ˇ0; ˇ1/

>, the distribution of Y D .Y1; : : : ; Yn/
> is

completely specified by�, which in turn is determined byXˇ. For different choices
of F , we have different binary variable models. Common choices for F are (1) the
cdf of the standard normal distribution and (2) the cdf of the logistic distribution.
These are discussed in detail in the next section. The choice

Fex.x/ D 1 � e�ex

gives the cdf of the extreme value distribution. The corresponding link function
for each component is F �1

ex .z/ D ln.� ln.1 � z//. Finally, by taking F as the cdf of
the Student’s t distribution with parameter 	, we obtain the so-called t-link model.
One attractive feature of the t-link model is its flexibility; in particular, it includes
the popular probit model (see next section) as a limiting case.
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9.2 Logit and Probit Models

In this section we discuss two popular specifications for binary data: the probit
model and the logit or logistic model. Both models are binary variable regression
models of the form discussed in Example 9.2. More precisely, the responses
Y1; : : : ; Yn are assumed to be independent Bernoulli random variables with success
probabilities

�i D F.x>
i ˇ/; i D 1; : : : ; n ;

where xi is the vector of explanatory variables corresponding to the i th response, ˇ
is the parameter vector of interest, and F is a cdf.

9.2.1 Logit Model

Definition 9.2. (Logit Model). Let Yi denote the i th binary response, and
let xi represent the vector of explanatory variables and ˇ the associated
parameter vector. In a logistic regression or logit model, the fYig are
independent and Yi � Ber.�i /, with �i D F.x>

i ˇ/; where F is the cdf of
logistic distribution:

F.x/ D 1

1C e�x :

In other words, the component link function is g.x/ D ln.x=.1 � x//:

Example 9.3 (Logit Model). Figure 9.1 shows the outcomes of 500 independent
binary response variables for a logistic regression model. The explanatory variables
xi D .xi1; xi2/

>, i D 1; : : : ; 500 were chosen uniformly on the unit square, and
ˇ D .�8; 8/>. The S-shaped surface depicts the graph of the function

p.x1; x2/ D F.x>ˇ/ D .1C exp.8.x2 � x1//�1 :

For each given vector of explanatory variables .xi1; xi2/>, the response Yi is
generated from a Bernoulli distribution with success probability p.xi1; xi2/.

Using the same notation as in Definition 9.2, we now derive the log-likelihood
function, the score function, and the information matrix for this model. Since the
responses are independent Bernoulli random variables, the log-likelihood function
is given by
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Fig. 9.1 Responses (0 or 1)
for a logistic regression
model, with two explanatory
variables for each response

l.ˇI y/ D
n
X

iD1
Œyi ln�i C .1 � yi / ln.1 � �i/� ;

where �i D .1 C e�x>

i ˇ/�1 and 1 � �i D e�x>

i ˇ=.1 C e�x>

i ˇ/. It follows that
ln�i D � ln.1 C e�x>

i ˇ/ and ln.1 � �i/ D �x>
i ˇ � ln.1 C e�x>

i ˇ/. After some
algebra, the log-likelihood function can be rewritten as

l.ˇI y/ D
n
X

iD1

h

.yi � 1/x>
i ˇ � ln.1C e�x>

i ˇ/
i

: (9.1)

Taking the gradient of the log-likelihood function, we obtain the score function☞ 368

S.ˇI y/ D rˇ l.ˇI y/ D
n
X

iD1

"

.yi � 1/xi C xi e�x>

i ˇ

1C e�x>

i ˇ

#

D
n
X

iD1

h

yi � .1C e�x>

i ˇ/�1
i

xi

D
n
X

iD1
.yi � �i/ xi :

Differentiating the score function with respect to ˇ and multiplying by �1, we
obtain the observed information matrix:☞ 168

I.ˇI y/ D �r2
ˇ l.ˇI y/ D

n
X

iD1

e�x>

i ˇ

.1C e�x>

i ˇ/2
xi x>

i

D
n
X

iD1
�i .1 � �i/ xi x>

i :

(9.2)
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It is worth noting that the observed information matrix does not depend on the
data y, and therefore it coincides with the Fisher information matrix I.ˇ/. Now, ☞ 169

the maximum likelihood estimate can be computed numerically using, say, Fisher’s
scoring method. Specifically, given an initial value ˇ0, for t D 1; 2; : : : ; iteratively ☞ 180

compute

ˇt D ˇt�1 C ŒI.ˇt�1/��1S.ˇt�1I y/ ;

until the sequence ˇ0;ˇ1;ˇ2; : : : is found to have converged, using some prefixed
convergence criterion. Once the maximum likelihood estimate bˇ is obtained, one
can readily compute the corresponding asymptotic covariance matrix as I�1.bˇ/;
see also Theorem 6.8. ☞ 177

Example 9.4 (MLE for the Logit Model). In the development of drugs, bioassay
experiments are often carried out on animals to test the potential toxicity of the
drugs. Various dose levels are given to batches of animals, and the animals’
responses—typically characterized by a binary outcome, say, alive or dead—are
recorded. The aim is to describe the probability of “success,” �, as a function of the
dose, x, via a link function g.�/ D ˇ0 C ˇ1x. In this example we analyze the data
with a logit model with

� D g�1.ˇ0 C ˇ1x/ D .1C e�.ˇ0Cˇ1x//�1 :

The outcomes of such an experiment are given in Table 9.1: a total of 20 animals
were tested, five at each of the four dose levels.

Table 9.1 Animal mortality data

Dose (log g/ml) Number of animals Number of deaths

�0:863 5 0
�0:296 5 1
�0:053 5 3
0:727 5 5

One obvious quantity of interest is the estimate for ˇ1. In particular, we are
interested to know whether or not it is positive (i.e., if the drug is toxic). In addition,
we might also want to learn about the effect of a specific dose level. Since we only
have two parameters, we first obtain a contour plot for the likelihood function to
get a rough estimate for ˇ D .ˇ0; ˇ1/

>. From Fig. 9.2 it can be seen that the
maximum likelihood estimate for ˇ is around .1; 8/>.

We use the following MATLAB code to implement Fisher’s scoring method to
obtain the maximum likelihood estimate bˇ and the information matrix evalu-
ated atbˇ.
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Fig. 9.2 Contour plot for the likelihood function of the parameters in the bioassay example

%bioassay.m
y = [0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1]’;
x = repmat([-0.863 -0.296 -0.053 0.727],5,1);
X = [ones(20,1) x(:)]; % design matrix
betat = (X’*X)\(X’*y); % initial guess
S = ones(2,1); % score
e = 10^(-5); % tolerance level
while sum(abs(S)) > e % stopping criteria

mu = 1./(1+exp(-X*betat));
S = sum(repmat((y - mu),1,2).*X)’;
I = X’*diag(mu.*(1-mu))*X; %info matrix
betat = betat + I\S;

end
V = I\eye(2); % covariance matrix

Note that we have vectorized the computation of the score and information matrix
in the code to avoid for loops. For example, the information matrix I in (9.2) can be
written as I D X>BX , with

X D

0

B

@

1 x1
:::
:::

1 x20

1

C

A and B D

0

B

@

�1.1 � �1/ � � � 0

: : :

0 � � � �20.1 � �20/

1

C

A :

The maximum likelihood estimate for ˇ and the associated covariance matrix V D
I�1.ˇ/ are

bˇ D
�

0:873

7:912

�

and V D
�

1:081 3:833

3:833 25:624

�

: (9.3)
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In particular, a 95% (approximate) confidence interval for ˇ1 is given as 7:912 ˙
1:96

p
25:624 or .�2; 17:83/. It is interesting to note that we cannot reject the null

hypothesis ˇ1 D 0 at significance level 0.05, even though the contour plot suggests
that most of the mass of the likelihood lies in the region 2–20. One reason might
be because the normal distribution is not a good approximation due to the small
sample size.

Further, suppose that we are interested in the “success” rate at dose level �0:1
log g/ml. An estimate can be computed as b� D .1; �0:1/bˇ D 0:082; or 8.2%.

For Bayesian estimation of the logit model, we need to have an efficient way
to obtain draws from the posterior distribution f .ˇ j y/ for a given prior f .ˇ/.
Since the likelihood function for the logit model is highly nonlinear, the posterior
distribution is typically nonstandard, and estimation requires more work. One
feasible approach to obtaining posterior draws is to use Markov chain Monte Carlo.
In particular, we will use an independence sampler (see Example 7.11) with a ☞ 215

multivariate Student’s t proposal distribution. The reason for sampling from a
Student’s t proposal is that the samples tend to be less concentrated around the
mode of the distribution than is the case for the normal distribution, for example. As
a result the samples from the independence sampler tend to be less correlated.

Definition 9.3. (Multivariate Student’s t Distribution). An n-dimensional
random vector X is said to have a multivariate Student’s t distribution with
mean vector � and scale matrix ˙ if its pdf is given by

f .xI 	;�; ˙/ D c
p

det.˙/

�

1C 1

	
.x ��/>˙�1.x � �/

�� 	Cn
2

; (9.4)

where c D �
�

	Cn
2

�

.�	/n=2 � . 	2 /
and 	 > 0 is the degrees of freedom parameter. We

write the distribution as t	.�; ˙/.

Similar to the multivariate N.�; ˙/ distribution, a vector X � t	.�; ˙/ can ☞ 83

be viewed as an affine transformation X D � C B Z of a random vector Z �
t	.0; I / from the standard multivariate Student’s t distribution, where BB> D ˙ .
To simulate draws from the latter distribution one can use the following theorem.
The proof is left as an exercise; see Problem 9.1.

Theorem 9.1. (Generating from the Multivariate Student’s t Distribu-
tion). Let R � N.0; I / andW � �2	 be independent. Then,

Z D
r

	

W
R � t	.0; I / :
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To sample from the posterior pdf f .ˇ j y/ of the logit model, we draw the
proposal from a t	.bˇ; V / distribution, wherebˇ is the maximum likelihood estimate
and V the inverse information matrix evaluated atbˇ.

Denote the pdf of the t	.bˇ; V / distribution by ft.ˇ/. In the independence sampler,
given a current draw ˇ, the candidate ˇ� is accepted with probability

˛.ˇ;ˇ�/ D min




f .y jˇ�/f .ˇ�/ft.ˇ/

f .y jˇ/f .ˇ/ft.ˇ
�/
; 1



;

where f .y jˇ/ is the likelihood function and f .ˇ/ is the prior density.

Example 9.5 (Bayesian Inference for Logit Model). We continue Example 9.4.
Taking a uniform prior for ˇ (i.e., f .ˇ/ / 1), the posterior pdf is proportional to the
likelihood function. In other words, Fig. 9.2 is also a contour plot for the posterior
distribution. For this example, the posterior pdf is proper even though the prior
pdf is not. To compute other useful summary statistics, we use the independence
sampler with t	.bˇ; V / proposal, as described above. Note that both the proposal pdf
ft and the likelihood only have to be specified up to a multiplicative normalization
constant. In fact, it is easier to specify the natural logarithms of both pdfs (up to an
additive constant) and evaluate

%.ˇ;ˇ�/ D lnf .y jˇ�/C lnft.ˇ/ � ln f .y jˇ/ � ln ft.ˇ
�/

and accept ˇ� with probability minfexp.%.ˇ;ˇ�//; 1g. To obtain a draw from the
proposal distribution we first sample Z D .Z1;Z2/

> � N.0; I / and W � �2	 D
Gamma.	=2; 1=2/ and return

ˇ� D bˇ C B Z
p

	=W ; (9.5)

where BB> D V . Then ˇ� follows the desired t distribution, by Theorem 9.1.
The following MATLAB code—to be appended to the code of Example 9.4—

implements the independence sampler and is used to obtain 10,000 draws from the
posterior distribution after a burn-in period of 500. We use 	 D 5, giving samples
that are spread out relatively far around the modebˇ.

%bioassay_bayes.m
B = chol(V,’lower’);
burnin = 500; nloop = 10000+burnin;
store_beta = zeros(nloop,2);
nu = 5; % df for the proposal
% log posterior density
logf = @(b) sum((y-1).*(X*b)-log((1+exp(-X*b))));
% log density of the t proposal
logprop = @(b) -.5*(nu+2)*log(1+(b-betat)’*(V\(b-betat))/nu);
beta = betat; % initialize the chain
for i = 1:nloop
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% candidate draw from the t proposal
betac = betat+B*randn(2,1)*sqrt(nu/gamrand(nu/2,1/2));
rho = logf(betac)-logf(beta) + ...

+logprop(beta)-logprop(betac);
if exp(rho) > rand

beta = betac;
end
store_beta(i,:) = beta’;

end
store_beta = store_beta(burnin+1:end,:); % discard the burnin

The posterior mean and posterior covariance matrix are estimated to be

E.ˇ j y/ D
�

1:36

11:98

�

; Var.ˇ j y/ D
�

1:25 4:47

4:47 35:62

�

:

It is interesting to note that even though the posterior mode coincides with
the maximum likelihood estimate under the flat prior, the posterior mean of
ˇ1 is substantially larger than the corresponding maximum likelihood estimate,
reflecting the fact that the marginal distribution of ˇ1 is positively skewed. Further,
a 95% credible interval for ˇ1 is estimated to be .3:52; 26:18/, which excludes the
value 0.

9.2.2 Probit Model

Definition 9.4. (Probit Model). Let Yi denote the i th binary response, and
let xi represent the vector of explanatory variables and ˇ the associated
parameter vector. In a probit model, the fYig are independent, and Yi �
Ber.�i /, with �i D ˚.x>

i ˇ/; where ˚ is the cdf of the standard normal
distribution. That is, the component link function is g.x/ D ˚�1.x/.

As in the logit model we first derive the log-likelihood function, score function, and
information matrix. Let '.x/ denote the pdf of the standard normal distribution.
Note that since the standard normal distribution is symmetric around 0, it follows
that '.x/ D '.�x/ and 1�˚.x/ D ˚.�x/. Now, given the independent Bernoulli
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responses and the component link function g.x/ D ˚�1.x/, the log-likelihood
function for the probit model is

l.ˇI y/ D
n
X

iD1

�

yi ln˚.x>
i ˇ/C .1 � yi / ln˚.�x>

i ˇ/
�

: (9.6)

The score function is the gradient of the log-likelihood function:

S.ˇ/ D rˇ l.ˇI y/ D
n
X

iD1

�

yi
'.x>

i ˇ/

˚.x>
i ˇ/

xi � .1 � yi / '.�x>
i ˇ/

˚.�x>
i ˇ/

xi

	

D
n
X

iD1
'.x>

i ˇ/

�

yi

˚.x>
i ˇ/

� 1 � yi
˚.�x>

i ˇ/

	

xi :

Noting that d
dx '.x/ D �x '.x/; we differentiate the score function again with

respect to ˇ to obtain

r2
ˇ l.ˇI y/ D �

n
X

iD1
.x>
i ˇ/ '.x

>
i ˇ/

�

yi

˚.x>
i ˇ/

� 1 � yi

˚.�x>
i ˇ/

	

xix>
i

�
n
X

iD1
'.x>

i ˇ/

�

yi '.x>
i ˇ/

˚.x>
i ˇ/

2
C .1 � yi / '.�x>

i ˇ/

˚.�x>
i ˇ/

2

	

xix>
i :

Using the fact that E.Yi / D ˚.x>
i ˇ/, the information matrix is therefore

I.ˇ/ D
n
X

iD1

'.x>
i ˇ/

2

˚.x>
i ˇ/ ˚.�x>

i ˇ/
xix>

i :

Given the score function and the information matrix, one can then obtain the
maximum likelihood estimate via Fisher’s scoring method as before.

For a Bayesian analysis, we can sample from the posterior pdf using MCMC,
for example, using a similar independence sampler as in the logit model. If we use
a normal prior ˇ � N.b0; V0/, then the logarithm of the posterior pdf f .ˇ j y/ /
f .ˇ/f .y jˇ/ is

lnf .ˇ j y/ D l.ˇI y/� 1

2
.ˇ � b0/>V �1

0 .ˇ � b0/C const ; (9.7)

with l.ˇI y/ given in (9.6). From the (dependent) sample of the posterior pdf it is
straightforward to estimate the posterior mean, standard deviation, and quantiles.
One can also estimate the marginal posterior pdfs ff .ˇi j y/g, using a kernel density
estimator.☞ 202
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Other quantities of interest include the marginal effects of the covariates, that is,
how a change in the covariate affects the response. To make the discussion concrete,
let xj be the j th element of a covariate vector x. If xj is a continuous explanatory
variable, then

@

@xj
E.Y jˇ/ D @

@xj
˚.x>ˇ/ D '.x>ˇ/ˇj ; (9.8)

where ˇj is the j th element of ˇ. This depends on both ˇ and x. For the “average”
marginal effect of xj one could consider '.Nx>ˇ/ˇj , where Nx is the average of the
explanatory vectors x1; : : : ; xn corresponding to the responses Y1; : : : ; Yn. Similarly,
if xj is a binary explanatory variable, the average marginal effect of xj is

˚.z>
1 ˇ/ �˚.z>

0 ˇ/ ;

where zx D . Nx1; : : : ; Nxj�1; x; NxjC1; : : : ; Nxn/> for x 2 f0; 1g.
Note that the marginal effect is a (continuous) function of the regression

parameter vector ˇ, and so it is a random variable. Given the posterior draws for
ˇ, the posterior distribution of the marginal effect can be obtained readily.

Example 9.6 (Modeling Extramarital Affairs with Probit Model). Fair (1978)
analyzed the decision to have an extramarital affair with a probit model, using
surveys conducted by Psychology Today and Redbook. The data used in this example
are obtained from Koop et al. (2007) and contain 601 independent observations. All
observations are taken from individuals currently married and married for the first
time.

The response is a binary variable that indicates if the respondent has (had)
an extramarital affair; the seven explanatory variables are an intercept (CONST),
a male indicator (MALE), number of years married (YEAR), a binary variable
to indicate if the respondent has children from the marriage (KIDS), a binary
variable for classifying one’s self as “religious” (RELIGIOUS), years of schooling
completed (ED), and a final binary variable denoting whether the person views the
marriage as happier than an average marriage (HAPPY).

We first obtain the maximum likelihood estimatebˇ via Fisher’s scoring method,
as well as the information matrix V evaluated at bˇ. The following MATLAB code
accomplishes this task. If the Statistics Toolbox is not available, one can replace
normcdf by cumdf introduced in Appendix A.9. ☞ 365

%probit_mle.m
load(’affair.csv’); % load data
y = affair(:,1);
X = affair(:,2:end);
[n k] = size(X);

%% find the MLE and the information matrix
S = ones(k,1); % score
betat = (X’*X)\(X’*y); % initial guess
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e = 10^(-5); % tolerance level
while sum(abs(S)) > e % stopping criterion

Xbetat = X*betat;
phi = normpdf(Xbetat);
Phi = normcdf(Xbetat);
S = sum(repmat(y.*phi./Phi-(1-y).*phi./(1-Phi),1,k).*X)’;
d = phi.^2./(Phi.*(1-Phi));
I = X’*diag(d)*X; % information matrix
betat = betat + I\S;

end

To sample from the posterior distribution we use the same MCMC approach
as for the logit model. That is, we use an independence sampler with a t	.bˇ; V /
proposal distribution. The hyperparameters for the normal prior are chosen as
b0 D 0 and V0 D 10I7, where I7 is the identity matrix. This gives a relatively
non-informative prior which is centered around zero. The logarithm of the posterior
pdf is given in (9.7). The degrees of freedom is set to 	 D 5. We use the method
described in (9.5) to generate a draw from the proposal distribution, and run the
sampler for 5,500 iterations, discarding the first 500 as burn-in.

%probit_bayes.m
burnin = 500;
nloop = 5000+burnin;
V = I\eye(k); % scale matrix for the proposal
B = chol(V,’lower’);
nu = 5; % df for the proposal
b0 = zeros(k,1); % prior mean
V0 = 10*eye(k); % prior covariance
% log-posterior density
logf=@(b) y’*log(normcdf(X*b)) + (1-y)’*log(normcdf(-X*b)) ...

- .5*(b-b0)’*(V0\(b-b0));
% log-proposal density
logprop=@(b) -.5*(k+nu)*log(1+(b-betat)’*(V\(b-betat))/nu);
store_beta = zeros(nloop,k);
beta = betat;
for i = 1:nloop

% candidate draw from the t proposal
betac=betat + B*randn(k,1)*sqrt(nu/gamrand(nu/2,1/2));
rho = logf(betac)-logf(beta) + ...

+ logprop(beta)-logprop(betac);
if exp(rho) > rand

beta = betac;
end
store_beta(i,:) = beta’;

end
store_beta = store_beta(burnin+1:end,:); % discard the burn-in
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Table 9.2 lists various summary statistics of the posterior distribution, including
the means, standard deviations, and 2.5 and 97.5 percentiles, based on the 5000
(dependent) samples from the posterior distribution. Of the six variables (excluding
the intercept), only three seem to have a substantial impact on the response. In
particular, the 95% credible intervals for the coefficients associated with YEAR,
RELIGIOUS, and HAPPY exclude zero, while the other three do not. On average,
people reporting themselves as religious or in happy marriages are less likely to
have affairs, while the longer someone is in a marriage, the more likely he or she
has an affair.

Table 9.2 Coefficient posterior means, standard deviations, and 2.5 and 97.5 percentiles for the
probit model

Variable Mean Std. dev. 2.5 percentile 97.5 percentile

CONST �0.728 0.408 �1.528 0.061
MALE 0.150 0.126 �0.098 0.392
YEAR 0.029 0.013 0.004 0.054
KIDS 0.249 0.161 �0.065 0.561
RELIGIOUS �0.516 0.122 �0.757 �0.277
ED 0.005 0.025 �0.045 0.055
HAPPY �0.517 0.124 �0.760 �0.269

To assess the quantitative impacts of the covariates we estimate the average
marginal effects of the covariates, using the following code:

%margeff.m
N = size(store_beta,1);
store_ME = zeros(nloop-burnin,6);
xbar = mean(X)’;
for loop=1:N

beta = store_beta(loop,:)’;
% ME for continuous variables

store_ME(loop,[2 5]) = normpdf(xbar’*beta)*beta([3 6]);
for j = [1 3 4 6]; % ME for discrete variables

z0 = xbar; z0(j+1) = 0;
z1 = xbar; z1(j+1) = 1;
store_ME(loop,j) =normcdf(z1’*beta)-normcdf(z0’*beta);

end
end

The summary statistics of the posterior distribution for the marginal effects are
reported in Table 9.3. For example, people who report themselves as religious are
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15% less likely to have affairs (fixing the other covariates at the sample means), and
those who report to be happy in their marriages are 17% less likely.

Table 9.3 Posterior means, standard deviations, and 2.5 and 97.5 percentiles for the marginal
effects

Variable Mean Std. dev. 2.5 percentile 97.5 percentile

MALE 0.045 0.038 �0.030 0.121
YEAR 0.009 0.004 0.001 0.016
KIDS 0.071 0.046 �0.024 0.157
RELIGIOUS �0.150 0.035 �0.217 �0.082
ED 0.002 0.008 �0.014 0.017
HAPPY �0.167 0.043 �0.255 �0.084

9.2.3 Latent Variable Representation

Estimation and inference under the logit and probit models can be simplified by
using data augmentation. The general idea behind data augmentation is to include
“hidden” variables in the model for the data in order to simplify the analysis of
the model. A prime example of data augmentation is found in the EM algorithm in
Sect. 6.6.☞ 182

For the logit and probit models data augmentation can be introduced by thinking
of an observed binary response in terms of whether or not an underlying continuous
latent (i.e., hidden) variable crosses a particular threshold: if it does, then we
observe, say, 1; otherwise, we observe 0. The advantage of the latent variable
representation is that it is often easier to work with the continuous latent variables
than the observed binary variable. To be mathematically precise, consider again
the probit model: each binary response Yi is distributed as Yi � Ber.�i /, where
�i D ˚.x>

i ˇ/; and xi is a vector of covariates.
Now, introduce the independent latent variables fZi g, each of which is distributed

according to the normal distribution with mean x>
i ˇ and variance 1:

Zi � N.x>
i ˇ; 1/ : (9.9)

These latent variables are then linked to the observed binary variables fYig as
follows:

Yi D



1 if Zi > 0 ;
0 if Zi � 0 :

(9.10)
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The values of the binary variables fYig are observed and the covariates fxig are
fixed. However, the latent variables fZi g are unobserved.

To check that this latent variable representation (9.9) and (9.10) does indeed
give the same probit model, we need to show that it implies the same likelihood
function. To this end, note that under the latent variable representation, each Yi is
an independent Bernoulli random variable with success probability:

P.Yi D 1/ D P.Zi > 0/ D 1 � ˚.�x>
i ˇ/ D ˚.x>

i ˇ/ ;

which is the same success probability under the probit model. Hence, the latent
variable representation in (9.9) and (9.10) implies the same probit model.

Introducing more unobserved variables might seem to be odd as they give rise
to exactly the same model. However, as it turns out, by augmenting the data with
these latent variables, computation becomes more tractable. In fact, we can use the
expectation–maximization algorithm discussed in Sect. 6.6 to obtain the maximum
likelihood estimate easily. ☞ 182

We first determine the complete-data log-likelihood—using classical rather than
Bayesian notation. Since conditional on Z the vector Y is deterministic, the joint
pdf of Y and Z has the same form as the pdf of Z. It follows that

l.ˇI y; z/ D lnfZ.zIˇ/ D �n
2

ln.2�/ � 1

2

n
X

iD1
.zi � x>

i ˇ/
2

D �1
2

n
X

iD1

˚

.x>
i ˇ/

2 � 2 zi x>
i ˇ
�C const : (9.11)

Now, suppose ˇt�1 is the current value for ˇ. To implement the E-step, we derive
the conditional density

gt .z/ D fZ j Y.z j yIˇt�1/ D
n
Y

iD1
fZi jYi .zi j yi Iˇt�1/ ;

where we use the fact that the latent variables Z1; : : : ; Zn are conditionally
independent. If yi D 1, the only extra information we have is thatZi > 0. What this
means is that given yi D 1, Zi follows the normal distribution with mean x>

i ˇt�1
and variance 1, left-truncated at 0. So, fZi j Yi .zi j yi D 1Iˇt�1/ D 0 for z < 0 and
proportional to exp.� 1

2
.zi � x>

i ˇt�1/2/ for zi � 0. We write

.Zi j yi D 1Iˇt�1/ � TN.0;1/.x>
i ˇt�1; 1/ : (9.12)

Similarly, if yi D 0, then

.Zi j yi D 0Iˇt�1/ � TN.�1;0/.x>
i ˇt�1; 1/ : (9.13)



280 9 Generalized Linear Models

In particular (see Problem 9.7), we have

EŒZi j yi D 1Iˇt�1� D x>
i ˇt�1 C '.x>

i ˇt�1/
˚.x>

i ˇt�1/
; (9.14)

EŒZi j yi D 0Iˇt�1� D x>
i ˇt�1 � '.x>

i ˇt�1/
˚.�x>

i ˇt�1/
: (9.15)

Writing vi D Egt ŒZi j yi Iˇt�1�, it follows from (9.11) that

Qt.ˇ/ D Egt l.ˇI y;Z/ D �1
2

n
X

iD1

˚

.x>
i ˇ/

2 � 2 vi x>
i ˇ

�C const :

Next, to implement the M-step, we simply solve rQt.ˇ/ D 0. Since Qt is
quadratic in ˇ we can use the differentiation rules in Sect. B.1 to find (see also☞ 367

Problem 9.8) the solution:

ˇt D
 

n
X

iD1
xix>

i

!�1 n
X

iD1
vi xi : (9.16)

Finally, the maximum likelihood estimate forˇ can be obtained by going through
the E- and M-steps iteratively until convergence.

For Bayesian estimation, the probit model can be fitted using the Gibbs sampler
with data augmentation. Specifically, if we have draws from the joint posterior pdf
f .z;ˇ j y/ and retain only the draws for ˇ, then those draws are from the desired
marginal pdf f .ˇ j y/. Therefore, we can construct a Gibbs sampler by sequentially
drawing from f .ˇ j y; z/ followed by f .z j y;ˇ/. As it turns out, both conditional
densities are of standard form and samples from each can be obtained quickly.

For concreteness, assume the prior ˇ � N.0; ˙0/. First, to derive f .ˇ j y; z/ note
that, given the latent vector z, we in fact have a linear regression model; see (9.9).
Hence, using Theorem 8.1 we have☞ 238

.ˇ j y; z/ � N.bˇ;D/ ;

where

D D .X>X C˙�1
0 /�1 and bˇ D DX>z ;

and X is the design matrix with i th row x>
i , i D 1; : : : ; n.

Second, the conditional density f .z j y;ˇ/ D Qn
iD1 f .zi j yi ;ˇ/ is given in

(9.12) and (9.13). A draw from a truncated normal distribution can be obtained,
say, via the inverse-transform method or (faster) the acceptance–rejection method.☞ 53

Example 9.7 (Gibbs Sampler for Probit Model). To demonstrate fitting the probit
model using the Gibbs sampler with data augmentation, we revisit Example 9.6. We
use the following function to draw from truncated normal distributions; see also



9.2 Logit and Probit Models 281

Problem 9.7. If the Statistics Toolbox is not available, one can replace normcdf
and norminv by cumdf and icumdf introduced in Appendix A.9, respectively. ☞ 365

function [draw] = tnormrnd(mu,sigma2,a,b)
N = length(mu);
sigma = sqrt(sigma2);
u = rand(N,1);
p1 = normcdf((a-mu)./sigma);
p2 = normcdf((b-mu)./sigma);
C = norminv(p1+(p2-p1).*u);
draw = mu + sigma.*C;

In the main script, we implement a Gibbs sampler by alternatively drawing from
f .ˇ j y; z/ and f .z j y;ˇ/. The estimation results are similar to those obtained in
Example 9.6, and they are not repeated here.

%probit_bayes_gibbs.m
load(’affair.csv’);
y = affair(:,1);
X = affair(:,2:end);
XX = X’*X;
[n k] = size(X);
V0 = 10*eye(k); % prior covariance
invV0 = V0\eye(k);
burnin = 500;
nloop = 5000+burnin;
store_beta = zeros(nloop,k);
z = y; % initial guess
beta = XX\(X’*z);

% compute a few things before the loop
id0 = find(y==0); id1 = find(y==1);
n0 = length(id0); n1=n-n0;
V = (invV0 + XX)\eye(k); % posterior covariance
for i = 1:nloop

% sample y^*
Xb = X*beta;
z(id0) = tnormrnd(Xb(id0),ones(n0,1),-inf,0);
z(id1) = tnormrnd(Xb(id1),ones(n1,1),0,inf);

% sample beta
dbeta = X’*z;
beta = V*dbeta + chol(V,’lower’)*randn(k,1);
store_beta(i,:) = beta’;

end
store_beta = store_beta(burnin+1:end,:); % discard the burn-in
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9.3 Poisson Regression

Poisson regression deals with count data Y ; for example, the number of cars
in a household. We are interested in how some observed characteristics x—e.g.,
household income, number of children in the household, and whether it is a single-
parent household—affect the response Y . Since Y takes values on the set of
nonnegative integers, one natural specification for Y is the Poisson model Y �
Poi.�/. In terms of a generalized linear model (see Definition 9.1) it remains to link☞ 265

x>ˇ to the mean �, which has to be positive. One easy way to guarantee this is to
specify � as

� D ex>ˇ :

This leads to the following definition.

Definition 9.5. (Poisson Regression Model). Let Yi denote the i th response
(count) and let xi represent the vector of explanatory variables and ˇ the
associated parameter vector. In a Poisson regression model, the fYig are
independent, and Yi � Poi.�i /, with �i D ex>

i ˇ: In other words, the
component link function is g.x/ D lnx.

Let x>
i be the i th row of the design matrix X , and let g D .g; : : : ; g/>. We

see that the distribution of Y D .Y1; : : : ; Yn/
> is completely specified by � D

g�1.Xˇ/. In this case no additional dispersion parameters are used.

Example 9.8 (MLE for the Poisson Regression Model). Suppose we are inter-
ested in determining the impact of research and development (R&D) on the number
of patents obtained by firms in a certain industry. For this purpose a total of n D 14

firms are interviewed. For each firm we record its number of patents obtained over
the last 3 years, as well as its R&D budget (in tens of thousands of dollars) over the
same period. The data are presented in Table 9.4.

Table 9.4 Number of patents and R&D

Number of patents R&D budget Number of patents R&D budget

6 26 8 29
3 21 2 13
2 19 0 5
1 11 2 3
3 21 6 29
1 16 1 3
1 19 3 21
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To investigate the effectiveness of R&D, let Yi denote the number of patents
obtained by the i th firm and let xi D .1; xi /

> be a 2 � 1 vector of explanatory
variables, where xi is the i th firm’s R&D budget. We consider the Poisson regression
Yi � Poi.�i /, where �i D ex>

i ˇ and ˇ D .ˇ1; ˇ2/
> is a 2 � 1 vector of regression

coefficients.
The log-likelihood function for the Poisson regression model is given by

l.ˇI y/ D
n
X

iD1

h

yix>
i ˇ � ex>

i ˇ � ln yi Š
i

:

Moreover, it can be shown that the score function and the information matrix are,
respectively (see Problem 9.2),

S.ˇ/ D
n
X

iD1
.yi � ex>

i ˇ/xi and I.ˇ/ D
n
X

iD1
ex>

i ˇxix>
i :

Hence, the maximum likelihood estimate of ˇ can be computed using Fisher’s
scoring method, which is implemented in the following MATLAB script. ☞ 180

% poissonreg.m
y = [6 3 2 1 3 1 1 8 2 0 2 6 1 3]’;
RnD = [26 21 19 11 21 16 19 29 13 5 3 29 3 21]’;
n = length(y);
X = [ones(n,1) RnD];
betat = (X’*X)\(X’*log(y+.001)); % initial guess
S = ones(2,1); % score
e = 10^(-5); % tolerance level
while sum(abs(S)) > 10^(-5) % stopping criteria

mu = exp(X*betat);
S = sum(repmat((y - mu),1,2).*X)’;
I = X’*sparse(1:n,1:n,mu)*X; % information matrix
betat = betat + I\S;

end
V = I\eye(2);

The maximum likelihood estimate of ˇ is bˇ D .�0:795; 0:092/>. In addition,
the .2; 2/-element of the inverse information matrix evaluated at bˇ is 0:02392. It
follows that an approximate 95% confidence interval for ˇ2 is .0:045; 0:139/, which
excludes 0, providing persuasive evidence that R&D has a positive effect on the
number of patents.
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9.4 Problems

9.1. Prove Theorem 9.1; that is, show that if R � N.0; I / and W �
Gamma.	=2; 1=2/ are independent, then the random vector Z D p

	=W R has pdf

f .z/ D � .	Cn
2
/

� .	=2/.�	/n=2

�

1C kzk2
	

�� 	C1
2

:

Hint: consider the coordinate transformation
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@
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:::
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A

7!

0

B

B

B

@

z1
p

w=	
:::

zn
p
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w

1
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A
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B

B
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@
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:::
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w
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and determine the determinant of the corresponding Jacobian matrix. Next, apply
the transformation rule (3.25) to find the joint pdf of .Z;W /. Finally integrate out☞ 81

W to obtain the pdf of Z.

9.2. Consider the Poisson regression model in Definition 9.5. Given the data
.y1; x>

n /; : : : .yn; x
>
n /, show that the log-likelihood function is given by

l.ˇI y/ D
n
X

iD1

h

yix>
i ˇ � ex>

i ˇ � ln yi Š
i

:

Further, show that the score function and the information matrix are, respectively,

S.ˇ/ D
n
X

iD1
.yi � ex>

i ˇ/xi and I.ˇ/ D
n
X

iD1
ex>

i ˇxix>
i :

9.3. It is generally believed that births by Caesarean section are more frequent in
private hospitals than in public ones. To investigate if there is any evidence for this
claim, data are collected on the number of Caesarean sections carried out in three
private hospitals (type 0) and seven public hospitals (type 1), as well as the total
number of births in each of the hospitals. These are presented in Table 9.5.

Use the data to fit a Poisson regression: regress the response variable “number
of Caesarean sections” on an intercept, “number of births,” and “hospital type”. Are
births by Caesarean section more frequent in private hospitals? Hint: use the results
in Problem 9.2.



9.4 Problems 285

Table 9.5 Poisson regression example

Number of
Caesarean
sections

Number of
births

Hospital
type

Number of
Caesarean
sections

Number of
births

Hospital
type

8 236 0 13 679 1
16 739 1 4 26 0
15 970 1 19 1272 1
23 2371 1 33 3246 1
5 309 1 2 28 0

9.4. Consider again Example 9.6 where we use the probit model to analyze
the decision to have an extramarital affair. For a nonreligious, college-educated
(16 years of education) male who has married for 10 years with one child from the
marriage, and who reports that his marriage is happier than average, what is the
probability that he has an extramarital affair? Use the kde.m program to plot a
kernel density estimate of the posterior probability.

9.5. In the linear regression model Y D x>ˇ C ", the parameter vector ˇ can
be interpreted as the marginal effects of the (continuous) covariates, that is, the
rate at which the response changes as the result of an infinitesimal change in the
covariate:

ˇ D rxEY :

However, for the probit model the marginal effects depend on both the parameter
vector ˇ and the covariates xi in a nonlinear functional form: '.x>ˇ/ˇ; see (9.8).
What are the marginal effects for the logit model?

9.6. In Definition 9.3 the matrix ˙ was intentionally called the scale matrix rather ☞ 271

than covariance matrix, because the covariance matrix of X (i.e., EŒ.X � �/.X �
�/>�) is not equal to ˙ .

(a) Show that the covariance matrix of X is ˙ EŒZZ>�, where Z has a standard
multivariate Student’s t distribution.

(b) Use Theorem 9.1 to show that the covariance matrix of Z, that is, EŒZZ>�, is
equal to c 	 I , where I is the identity matrix and

c D
Z 1

0

1

w

�

1
2

� 	
2 w

	
2�1e� 1

2w

�
�

	
2

� dw :

(c) Evaluate c.

9.7. Let Z � TN.�; �2; a; b/, where a < b. Thus, the distribution of Z is that of a
random variable X � N.�; �2/ conditioned on X lying in Œa; b�.
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(a) Show that the pdf of Z is

fZ.z/ D '..z � �/=�/=�
˚..b � �/=�/ �˚..a � �/=�/

;

where ' and ˚ are, respectively, the pdf and cdf of the standard normal
distribution.

(b) For � D 1, a D �1, and b D 0 show that EZ D � � '.�/=˚.��/.
(c) For � D 1, a D 0, and b D 1 show that EZ D �C '.�/=˚.�/.
(d) Show that the cdf of Z is

FZ.z/ D ˚..z � �/=�/ �˚..a � �/=�/
˚..b � �/=�/ � ˚..a � �/=�/

:

(e) Explain why the function tnormrnd in Example 9.7 can be used to
simulate Z.

9.8. Prove (9.16).



Chapter 10
Dependent Data Models

In the models considered so far the responses Y1; : : : ; Yn have been assumed to
be independent given the model parameters. Though convenient, this independence
assumption is implausible in two common situations. First, in the case of time
series—observations measured over time—the responses typically exhibit strong
serial dependence. For example, high unemployment tends to last for a long period
of time; given a high unemployment rate this period, one would expect that the
unemployment rates in the next few periods would also be high.

The other situation in which observations are likely to be dependent is when they
are measurements on the same or related subjects. For example, learning outcomes
of children in the same school tend to be more similar—because they share the
same academic environment and come from families of similar socioeconomic
backgrounds—than those of other children in a different school.

In this chapter we introduce models that relax the usual independence assumption
and are suitable for modeling data that arise in the two aforementioned situations.

10.1 Autoregressive and Moving Average Models

In this section we introduce a widely popular class of simple time series models
called autoregressive-moving average (ARMA) models. We begin our study of
ARMA models with purely autoregressive specifications.

10.1.1 Autoregressive Models

Example 10.1 (Sales and Ads). In this motivating example, we consider a linear
regression model in a time series context. Specifically, suppose a company has
collected data on its quarterly sales and advertisement expenditures for the last 30
quarters. The data are given in Table 10.1.

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__10, © The Author(s) 2014
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Table 10.1 Sales and advertisement expenditures

Time Sales Ads Time Sales Ads Time Sales Ads

1 23.45 5.41 11 24.92 4.59 21 21.42 2.61
2 26.03 6.30 12 25.58 5.04 22 30.99 6.59
3 21.73 4.21 13 28.74 5.87 23 20.79 2.65
4 23.66 4.50 14 24.69 3.73 24 22.99 4.43
5 26.54 5.63 15 29.39 6.02 25 23.56 5.18
6 26.62 5.67 16 28.47 5.60 26 23.36 5.27
7 23.59 4.33 17 28.66 5.50 27 19.03 3.52
8 20.05 3.54 18 25.49 4.39 28 24.53 5.76
9 20.67 3.86 19 28.57 5.68 29 19.56 4.30
10 25.97 5.66 20 28.23 6.05 30 20.90 4.45

The marketing manager wonders how the two figures are correlated. To address
this question, she considers the following linear regression model:

Yt D ˇ0 C ˇ1 xt C "t ; t D 1; : : : ; 30; f"tg iid� N.0; �2/ ;

where Yt is the sales at quarter t and xt is the corresponding advertisement
expenditure. Given the outcomes yt ; t D 1; : : : ; 30, the maximum likelihood
estimates of the model parameters, bˇ0, bˇ1, and b�2, can be readily computed; see
Example 5.5.☞ 127

As a model diagnostic check, we can compute and plot the residuals☞ 127

ut D yt � bˇ0 � bˇ1 xt ; t D 1; : : : ; 30 :

The residuals futg are our best guess for the (unknown) error terms f"tg. If the
model is correct the residuals should be approximately iid and normally distributed,
because the true error terms behave in this way. A plot of the residuals is given in
Fig. 10.1. As the graph shows, the residuals exhibit systemic patterns across time.
In particular, they tend to cluster together, indicating that the assumption of serially
independent errors might not hold.
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Fig. 10.1 A plot of the residuals of the linear regression model
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Instead of the model f"tg �iid N.0; �2/ for the errors, one could consider the
model where the current error depends on the past errors in a linear way, for
example, as in

"t D % "t�1 C Ut ; fUtg �iid N.0; �2/ ; (10.1)

where and % and �2 are fixed model parameters.

The model for the errors in (10.1) is an example of an autoregressive model.

Definition 10.1. (Autoregressive Model). In the pth-order autoregressive
(AR(p)) model, the observation at time t depends linearly on the previous p
observations Yt�1; : : : ; Yt�p:

Yt D %0 C %1Yt�1 C � � � C %pYt�p C "t ; (10.2)

t D 1; : : : ; T , where f"tg �iid N.0; �2/.

To complete the model one needs to specify the initial conditions, that is, the
probability distribution of the first p observations: Y�pC1; : : : ; Y0. For simplicity it
is often assumed that these values are known. An alternative approach is to assume
that (10.2) holds for every t 2 Z D f: : : ;�2;�1; 0; 1; 2; : : :g and that the time
series is stationary, meaning that the distribution of Y1; Y2; : : : is the same as that
of YnC1; YnC2; : : : for any n 2 Z. In particular, the distribution of Yt does not depend
on t (is the same for all t), and the joint distribution of .Yt ; YtCs/ does not depend
on t . Stationary AR processes only exist under certain conditions on the f%i g.

Example 10.2 (Autocorrelations of AR(1)). Consider an AR(1) time series on Z,
governed by

Yt D %Yt�1 C "t ; t 2 Z ;

where f"tg �iid N.0; �2/. By repeated substitution, we have

Yt D "t C %"t�1 C %2"t�2 C %3"t�3 C � � � : (10.3)

Since the f"tg are independent by assumption, the variance of Yt is finite if j%j < 1:

Var.Yt / D Var."t C %"t�1 C %2"t�2 C %3"t�3 C � � � /
D �2 C %2�2 C %4�2 C %6�2 C � � �

D �2

1 � %2
:
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It is worth noting that the variance of Yt is a constant and does not depend on the
time index t . In fact, using the representation (10.3) it is not difficult to see that the
time series fYtg is stationary and that each Yt has a N.0; �2=.1 � %2// distribution.

Next, we compute the covariance Cov.Yt ; Yt�1/, or the so-called (first-order)
autocovariance:

Cov.Yt ; Yt�1/ D Cov.%Yt�1 C "t ; Yt�1/ D Cov.%Yt�1; Yt�1/

D %Var.Yt�1/ D %
�2

1 � %2
;

where the second equality holds because Yt�1 is a function of "s; s � t � 1, and
is therefore uncorrelated with "t . Using a similar argument, one can show that in
general the autocovariance of lag s is given by

R.s/ D Cov.Yt ; Yt�s/ D %s
�2

1 � %2 :

Dividing by Var.Yt / D �2=.1� %2/ gives the autocorrelation function:

Corr.Yt ; Yt�s/ D %s ; s D 0; 1; 2; : : : :

In other words, under the assumption j%j < 1, the autocorrelations of the AR(1)
decrease geometrically. If % is positive, the autocorrelations monotonously decrease;
if % is negative, they alternate in sign. In Fig. 10.2 we plot the autocorrelations of
the AR(1) for four different values of %.
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Fig. 10.2 Autocorrelations for the AR(1) model. Left: % D 0:8 (solid) and % D 0:4 (dashed).
Right: % D �0:8 (solid) and % D �0:4 (dashed)

Remark 10.1 (Estimating Autocovariances). Suppose that X1;X2; : : : ; XT is a sta-
tionary time series with autocovariance function R.s/ D Cov.Xt ; XtCs/. Note that
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R.0/ D Var.Xt/. The autocovariances can be estimated via their (unbiased) sample
averages:

bR.s/ D 1

T � s � 1
T�s
X

tD1
.Xt � NX/.XtCs � NX/; s D 0; 1; : : : ; T : (10.4)

In order to obtain a meaningful estimate, the lag s should be significantly smaller
than T . If the time series is not stationary, it is customary to delete the first K , say,
samples, similar to the burn-in period for Markov chain Monte Carlo, and view the ☞ 214

remaining samples as stationary.

We now turn to the estimation of the model parameters. Under the AR(p) model
past observations feed into the current value of the series, where their effects are
determined by the vector of AR coefficients % D .%0; %1; : : : ; %p/

>. One main
appeal of the AR(p) model is that it is in the form of a normal linear model, and
as such, estimation of the model parameters � D .%>; �2/> is easy. To proceed,
let y D .y1; : : : ; yT /

> be the observed data and denote the initial observations by
Y0 D .Y�pC1; : : : ; Y0/>. Recall that the AR(p) model determines the conditional
pdf of the data given the initial conditions, that is fYjY0 .y j y0 I �/. The likelihood
function of � for the observed data y is thus given by

L.� I y/ D fYjY0 .y j y0 I �/fY0 .y0/ :

As mentioned before, there are two ways to deal with the initial observations. The
first is to assume that the time series is stationary and from this assumption we
derive the distributions of Y0 and Y. An easier approach, which we will follow
here, is to simply assume that Y0 D y0 is given and specify the likelihood
function as

L.� I y; y0/ D fY j Y0 .y j y0I �/ :

In typical situations where T is much greater than p it makes little difference for
parameter estimation whether or not the initial conditions are explicitly modeled.

Using the results of the normal linear model in Sect. 4.5, we can easily derive the ☞ 114

joint density fYjY0 .y j y0 I �/ and hence the likelihood function. To that end, write
the AR(p) model in matrix notation:

Y D X%C "; " � N.0; �2I / ;

where

X D

0

B

B

B

@

1 Y0 Y�1 � � � Y�pC1
1 Y1 Y0 � � � Y�pC2
:::

:::
:::

: : :
:::

1 YT�1 YT�2 � � � YT�p

1

C

C

C

A

:
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Thus, conditional on Y0 D y0 the random vector Z D Y �X% (with Yk in matrixX
replaced by yk for k D 0;�1; : : : ;�pC1) has a N.0; �2I / distribution with density
function

fZ.z/ D .2��2/�
T
2 e� 1

2�2
z>z

:

Now, given the outcome Y D y and initial conditions Y0 D y0, we have z D y�X%
(with Yk in matrix X replaced by yk for k D �p C 1; : : : ; T ), and the likelihood
function is given by

L.� I y; y0/ D .2��2/�
T
2 e� 1

2�2
.y�X%/>.y�X%/

:

The maximum likelihood estimators of % and �2 are given by

b% D .X>X/�1X>Y and b�2 D 1

T
.Y �Xb%/>.Y �Xb%/ :

Finally, Bayesian inference in the AR(p) model can proceed as in Sect. 8.2.2.☞ 237

Example 10.3 (Modeling Unemployment with AR Models). In this example, we
use autoregressive models with different lags to model US quarterly unemployment
rates from the first quarter in 2002 to the last quarter in 2011—a total of 40
observations. The data are given in Table 10.2.

Table 10.2 US quarterly unemployment rates from 2002 Q1 to 2011 Q4

Year
Unemployment
rate Year

Unemployment
rate Year

Unemployment
rate

2002 Q1 5.7 2006 Q1 4.7 2009 Q1 8.3
Q2 5.8 Q2 4.6 Q2 9.3
Q3 5.7 Q3 4.6 Q3 9.6
Q4 5.9 Q4 4.4 Q4 9.9

2003 Q1 5.9 2007 Q1 4.5 2010 Q1 9.8
Q2 6.1 Q2 4.5 Q2 9.6
Q3 6.1 Q3 4.7 Q3 9.5
Q4 5.8 Q4 4.8 Q4 9.6

2004 Q1 5.7 2008 Q1 5.0 2011 Q1 9.0
Q2 5.6 Q2 5.3 Q2 9.0
Q3 5.4 Q3 6.0 Q3 9.1
Q4 5.4 Q4 6.9 Q4 8.7

2005 Q1 5.3
Q2 5.1
Q3 5.5
Q4 5.5

We fit two autoregressive models with one and two lags respectively. To that
end, we divide the data into two subsets: the first two observations are reserved
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as the initial conditions, y�1 and y0, and we explicitly model the remaining 38
observations y1; : : : ; y38. First we fit the following AR(1) model:

Yt D %0 C %1Yt�1 C "t ;

where "t �iid N.0; �2/ for t D 1; : : : ; 38. By defining the design matrix X

appropriately, the maximum likelihood estimates of %0; %1, and �2 can be computed
easily; see the following MATLAB code.

%urate_ar.m
urate = [5.7 5.8 5.7 5.9 5.9 6.1 6.1 5.8 5.7 5.6 5.4 5.4 ...

5.3 5.1 5.0 5.0 4.7 4.6 4.6 4.4 4.5 4.5 4.7 4.8 5.0 ...
5.3 6.0 6.9 8.3 9.3 9.6 9.9 9.8 9.6 9.5 9.6 9.0 9.0 ...
9.1 8.7]’;

y = urate(3:end);
T = length(y);
X = [ones(T,1) urate(2:end-1)];
rhohat = (X’*X)\(X’*y);
yhat1 = X*rhohat; % fitted values
uhat = y-yhat1; % residuals
sig2hat = uhat’*uhat/T;

To assess the model fit, we also computed the fitted values under the AR(1)
model, as well as the residuals. The fitted values of the AR(1) are plotted in Fig. 10.3
(left panel).
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Fig. 10.3 The fitted values of the AR(1) (left panel) and the AR(2) (right panel)

It can be seen from the graph that the fitted values appear to be quite close
to the actual observations. However, the AR(1) model seems to systematically
underestimate the unemployment rate before 2007 and then overestimate it after
2007. To check whether the residuals have any serial correlation, we can estimate
the autocovariance function via (10.4). In MATLAB we can do this, for example, via
the following function.
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function a = acov(x,s)
a = sum((x(1:end-s) - mean(x)).*(x(s+1:end) - mean(x)))/...

(numel(x) - s - 1);

We find the autocorrelation at lag 1 via acov(uhat,1)/acov(uhat,0),
which turns out to be 0.7028. Similarly, for lags 2 and 3 we find the autocorrelations
0.5580 and 0.4421, respectively. This indicates that the model assumption of serially
independent errors might not be valid, since the autocorrelations of the residuals
remain substantial.

Next, we investigate if we can improve the model fit by using the AR(2) model:

Yt D �0 C �1yt�1 C �2yt�2 C "t ;

where "t �iid N.0; �2/ for t D 1; : : : ; 38. By defining the design matrix appro-
priately, the maximum likelihood estimates for the model parameters and the
corresponding fitted values can be obtained easily. The fitted values of the AR(2) are
plotted in Fig. 10.3 (right panel), which appear to fit the actual observations better.
In this case the lag-1 and lag-2 autocorrelations of the residuals are, respectively,
�0:12 and �0:001.

We now return to the modeling situation of Example 10.1, using a more general☞ 287

setting. In particular, we consider a linear regression model

Y D Xˇ C " ;

where the errors f"tg follow an AR(p) model (with %0 D 0):

"t D %1"t�1 C � � � C %p"t�p C Ut ; (10.5)

where fUtg �iid N.0; �2/ and "1�p D � � � D "0 D 0. To keep the discussion concrete,
we let p D 1 and define %1 D %; higher-order AR models can be estimated similarly.
Now, rewrite (10.5) in matrix notation:

H" D U ;

where " D ."1; : : : ; "T /
>, U D .U1; : : : ; UT /

> � N.0; �2I /, and

H D

0

B

B

B

B

B

@

1 0 0 � � � 0
�% 1 0 � � � 0
0 �% 1 � � � 0
:::

: : :
:::

0 0 � � � �% 1

1

C

C

C

C

C

A
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is a lower triangular T � T matrix with ones on the main diagonal. Note that H is
sparse, i.e., it contains only a small proportion of nonzero elements. Now, since its
determinant is 1,H is invertible for any %. By a simple change of variables, we have

Y � Xˇ D H�1U � N.0; �2.H>H/�1/ :

Noting that the determinant of H is 1, the log-likelihood function is given by

l.ˇ; %; �2I y/ D �T
2

ln.2��2/� 1

2�2
.y �Xˇ/>H>H.y � Xˇ/ : (10.6)

If the number of parameters is small, the maximum likelihood estimates can be
obtained by numerically maximizing the log-likelihood function in (10.6). But when
the dimension of the maximization is large, this approach is time-consuming and
sometimes even infeasible.

Here we introduce a method to reduce the dimension of the numerical optimiza-
tion; see also Example 6.14. First note that if % is known, the maximum likelihood ☞ 173

estimates of ˇ and �2 are available analytically (see Problem 10.6):

bˇ D .X>H>HX/�1X>H>Hy; b�2 D 1

T
.y �Xbˇ/>H>H.y � Xbˇ/ : (10.7)

Now, we plug the maximum likelihood estimators of ˇ and b�2 back into the log-
likelihood function to obtain the profile log-likelihood, also called the concentrated
log-likelihood:

el.%I y/ D l.bˇ; %; b�2I y/ ;

which is a function of % only. Thus, we can maximize numerically the profile log-
likelihood function to obtain the maximum likelihood estimate b%. Finally, given b%,
we can use (10.7) to obtainbˇ and b�2 analytically.

Example 10.4 (Sales and Ads Continued). Consider the model for the sales data
in Example 10.1:

Yt D ˇ0 C ˇ1xt C "t ;

"t D %"t�1 C Ut ;

where Yt is the sales in quarter t , xt is the corresponding ads expenditure, "0 D 0,
and fUtg �iid N.0; �2/. We wish to compute the maximum likelihood estimates for
ˇ; �2, and %. Note that throughout we will use the matrix notation introduced earlier.

To that end, we first write a MATLAB script to evaluate the profile log-likelihood
el.%I y/ D l.bˇ; %; b�2I y/.
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function [l betahat sigma2hat] = AR1_loglike(rho,y,X)
T = length(y);
H = speye(T) - rho*sparse(2:T,1:T-1,ones(1,T-1),T,T);
HH = H’*H;
betahat = (X’*HH*X)\(X’*HH*y);
e = y-X*betahat;
sigma2hat = e’*HH*e/T;
l = -T/2*log(2*pi*sigma2hat) - .5/sigma2hat*e’*HH*e;

In the above code, note that the matrixH is constructed by writing

H D

0

B

B

B

B

B

@

1 0 0 � � � 0
�% 1 0 � � � 0
0 �% 1 � � � 0
:::

: : :
:::

0 0 � � � �% 1

1

C

C

C

C

C

A

D

0

B

B

B

B

B

@

1 0 0 � � � 0
0 1 0 � � � 0
0 0 1 � � � 0
:::

: : :
:::

0 0 � � � 0 1

1

C

C

C

C

C

A

� %

0

B

B

B

B

B

@

0 0 0 � � � 0
1 0 0 � � � 0
0 1 0 � � � 0
:::

: : :
:::

0 0 � � � 1 0

1

C

C

C

C

C

A

:

Then, in the main script, we define the function f .%/ D �el.%I y/ and use
the built-in minimization routine fminsearch to minimize f to obtain the
maximum likelihood estimate b%. Finally, given b%, we use (10.7) to compute bˇ and
b�2 analytically.

%sales.m
load ’ads.csv’;
y = ads(:,1);
T = length(y);
X = [ones(T,1) ads(:,2)];
f = @(rho) -AR1_loglike(rho,y,X);
rhohat = fminsearch(f,0);
[l betahat sigma2hat] = AR1_loglike(rhohat,y,X);

The maximum likelihood estimate of % is 0.95, indicating very strong first-order
serial correlation in the error terms f"tg. The maximum likelihood estimates ofˇ and
�2 are, respectively, .11:03; 2:32/> and 0.81. To assess the appropriateness of the
model assumption fUtg �iid N.0; �2/, we compute the residuals futg, which are our
best guess for the (unknown) fUtg. Recall that under the model we have H" D U.
Hence, we can obtain the residuals using

u D bH.y �Xbˇ/ ;

where bH is the same asH but with % replaced by its estimateb%. This is implemented
in MATLAB as follows:
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e = y - X*betahat;
H = speye(T) - rhohat*sparse(2:T,1:T-1,ones(1,T-1),T,T);
u = H*e;
plot(u,’o’,’MarkerSize’,10,’MarkerEdgeColor’,’k’); box off;

A plot of the residuals is given in Fig. 10.4. As the graph shows, the residuals
now do not seem to have any systematic patterns across time, indicating no
evidence of invalidating the assumption that fUtg are serially independent; see also
Problem 10.4.
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Fig. 10.4 A plot of the
residuals of the linear
regression model with AR(1)
errors

10.1.2 Moving Average Models

In an AR model, dependence of the responses is constructed by defining the
current response in terms of a linear combination of previous responses. In contrast,
in a moving average (MA) model, the current response Yt depends on a linear
combination of past error terms.

Definition 10.2. (Moving Average Model). In the qth-order moving aver-
age (MA(q)) model the observation at time t depends linearly on the previous
q error terms:

Yt D "t C  1"t�1 C � � � C  q"t�q ; (10.8)

where f"tg �iid N.0; �2/.
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A standard way to treat the initial conditions is to assume "0 D "�1 D � � � D
"1�q D 0, although relaxing this assumption is straightforward (see Problem 10.3).

Under the MA(q) model, past shocks feed into the current value of the series,
where their effects are determined by the signs and magnitudes of the MA
coefficients  1; : : : ;  q . Unlike the AR(p) model each response always has a finite
variance, as the following example shows.

Example 10.5 (Autocorrelations of MA(q)). We investigate the autocorrelation
structure implied by the MA(q) model. First, we compute the variance of Yt for
t > q:

Var.Yt / D Var."t C  1"t�1 C � � � C  q"t�q/

D Var."t /C  21Var."t�1/C � � � C  2qVar."t�q/

D �2.1C  21 C � � � C  2q / ;

which is finite and independent of the time index t for t > q. Next, we compute the
autocovariance at lag 1 as

Cov.Yt ; Yt�1/ D Cov."t C � � � C  q"t�q; "t�1 C � � � C  q"t�q�1/

D  1Cov."t�1; "t�1/C  2 1Cov."t�2; "t�2/

C � � � C  q q�1Cov."t�q; "t�q/

D . 1 C  2 1 C � � � C  q q�1/�2 :

More generally, it can be shown that (see Problem 10.2)

Cov.Yt ; Yt�j / D



�2
Pq�j

iD0  iCj i ; j D 0; : : : ; q ;

0; j > q ;
(10.9)

where  0 D 1. Hence, the autocorrelations are

Corr.Yt ; Yt�j / D
Pq�j

iD0  iCj i
1C  21 C � � � C  2q

for j D 0; : : : ; q and Corr.Yt ; Yt�j / D 0 for j > q: In contrast to the AR case
where the autocorrelation declines geometrically, those of the MA drop to zero after
only q lags. As an illustration, in Fig. 10.5 we plot the autocorrelations of two MA(3)
models.
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Fig. 10.5 The autocorrelations for the MA(3) with 1 D 0:8;  2 D 0:6, and 3 D 0:4 (left panel)
and  1 D �0:8;  2 D �0:6, and  3 D �0:4 (right panel)

We now turn to estimation of the model parameters. Recall that under the
MA(q) model, the responses Y1; : : : ; YT are a linear combination of T normal
random variables "1; : : : ; "T . Therefore, Y D .Y1; : : : ; YT /

> has a multivariate
normal distribution, and evaluating the log-likelihood should be simple. In practice, ☞ 83

however, this approach requires manipulating large matrices, which is often time-
consuming. The key to make this approach feasible is to realize that, as in the
AR(p) case, the matrices involved in the MA(q) model are sparse, which makes
the computation quick.

To keep the discussion concrete, consider evaluating the log-likelihood of the
MA(1) model

Yt D "t C  "t�1; t D 1; : : : T; "0 D 0 :

First, we write this model in matrix form:

Y D H" ; (10.10)

where " D ."1; : : : ; "T /
> � N.0; �2I /, and

H D

0

B

B

B

B

B

@

1 0 0 � � � 0
 1 0 � � � 0
0  1 � � � 0
:::

: : :
:::

0 0 � � �  1

1

C

C

C

C

C

A
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is a sparse T �T matrix that contains only 2T � 1 nonzero elements. It follows that

Y � N.0; �2HH>/ :

Noting that the determinant of H is 1, the log-likelihood function is given by

l. ; �2I y/ D �T
2

ln.2��2/� 1

2�2
y>.HH>/�1y : (10.11)

It is important to note that one need not compute the inverse .HH>/�1 in order
to evaluate the log-likelihood—it is a time-consuming operation. Instead, one only
needs to obtain the product .HH>/�1y, which can be quickly computed by solving
the linear equation

HH>z D y

for z. In MATLAB it can be done by using the backslash (n) command. The latter
operation is much quicker, especially becauseHH> is a sparse matrix.

Hence, one can evaluate the log-likelihood function l. ; �2I y/ quickly without
inverting any large matrices. Then, the MLE of  and �2 can be obtained
numerically. To evaluate the log-likelihood function for a general MA(q) model,
one only needs to redefine the matrix H appropriately, and everything else follows
directly as in the MA(1) case.

Given the method to quickly evaluate the log-likelihood function described
above, the maximum likelihood estimate can be computed readily by numerical
methods. For Bayesian inference, posterior draws of the parameters can be obtained
using the Metropolis–Hastings algorithm.

Example 10.6 (Modeling US Inflation with MA(1)). In this example we model
the dynamics of US quarterly inflation rate—computed from the consumer price
index (CPI)—using a variant of the MA(1) model. Specifically, given the CPI zt
at time t , we compute the (annualized) inflation rate as yt D 400 ln.zt =zt�1/. The
CPI inflation rate from the second quarter of 1947 to the second quarter of 2011 is
plotted in Fig. 10.6. A prominent feature of the CPI inflation is that it exhibits high
persistence, in the sense that high (or low) inflation in the past tends to continue
into the future. For instance, inflation tends to stay high (and variable) in the late
1970s and early 1980s, but it has become much lower (and less variable) since the
mid-1980 until the global financial crisis in 2008.

There are various reasons why one might want to model the past inflation and
accurately forecast future inflation. For example, the prices of many financial and
real assets—such as bonds, properties, and precious metals—depend on future
inflation. Another example is for conducting monetary policy: many central banks
have explicit inflation targets, and in order to manage future inflation, it is important
to be able to forecast it accurately.
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In this example we consider the following model:

Yt D Yt�1 C "t C  "t�1 ;

where "1; : : : ; "T �iid N.0; �2/ and "0 D 0.
This is a variation of the MA(1) model, sometimes called the first-order

integrated moving average model. Instead of using the inflation rate as our
dependent variable to fit the MA(1) model, we use its first difference �Yt D
Yt �Yt�1. Estimation proceeds the same way as in the MA(1) model, with the minor
modification of using �Yt as the dependent variable.

To obtain the maximum likelihood estimates of �2 and  , we first need the
following function to evaluate the log-likelihood for the MA(1) model as given in
(10.11):

function l = loglike_MA1(theta,y)
% the log-likelihood function for MA(1)
% input: theta = [psi sigma2]; y = data
psi = theta(1); sigma2 = theta(2);
T = length(y);
H = speye(T) + psi*sparse(2:T,1:T-1,ones(1,T-1),T,T);
HH = H*H’;
l = -T/2*log(2*pi*sigma2) - .5/sigma2*y’*(HH\y);

Then, in the main script, we use the function loglike_MA1 to compute
the maximum likelihood estimates numerically. Specifically, we first construct the
function f that evaluates the negative log-likelihood for the MA(1) model. (Recall
that in MATLAB all optimization routines are framed in terms of minimization.)
Then, we minimize f using the numerical minimization routinefminsearchwith
starting values 0 for  and the sample variance of �yt for �2.
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%CPI_MA.m
load USCPI.csv
y0 = USCPI(1);
y = USCPI(2:end);
Dely = y - [y0; y(1:end-1)]; % define the dependent variable
T = length(Dely);

% negative of the log-likelihood
f = @(theta) -loglike_MA1(theta,Dely);
theta0 = [0 var(Dely)]; % initial guess
thetahat = fminsearch(f, theta0);
psihat = thetahat(1);
l = loglike_MA1(thetahat,Dely);

The maximum likelihood estimates of  and �2 are, respectively, �0:402 and
5:245, and the corresponding maximized log-likelihood value is �577:74. To assess
model fit, we compute the fitted value byt :

byt D yt�1 C b but�1 ;

where b is the maximum likelihood estimate of andbut�1 is the residual for period
t � 1. Note that the residuals can be computed easily by

Hhat = speye(T) + psihat*sparse(2:T,1:T-1,ones(1,T-1),T,T);
uhat = Hhat\Dely;

Finally, we plot the fitted versus the observed values of the inflation rates in
Fig. 10.7.
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Fig. 10.7 The fitted values
for the MA(1) model
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10.1.3 Autoregressive-Moving Average Models

Of course, we can combine autoregressive and moving average models to have more
complex autocorrelation patterns.

Definition 10.3. (Autoregressive-Moving Average Model). In the .p; q/th-
order autoregressive-moving average (ARMA(p; q)) model the observation
at time t depends linearly on the previous p observations as well as the
previous q error terms:

Yt D %0 C %1Yt�1 C � � � C %pYt�p C "t C  1"t�1 C � � � C  q"t�q ; (10.12)

where f"tg iid� N.0; �2/ for t D 1; : : : ; T; and "0 D � � � D "1�q D 0.

In matrix notation, we can write the system (10.12) as

Y D X%CH" ;

where " D ."1; : : : ; "T /
> � N.0; �2I /, % D .%0; %1; : : : ; %p/

>,

X D

0

B

B

B

@

1 Y0 Y�1 � � � Y�pC1
1 Y1 Y0 � � � Y�pC2
:::

:::
:::

: : :
:::

1 YT�1 YT�2 � � � YT�p

1

C

C

C

A

;

and H is a lower triangular matrix with ones on the main diagonal,  1 on the
first diagonal below the main diagonal,  2 on the second diagonal below the main
diagonal, and so on. We define  D . 1; : : : ;  q/

>. Similar to the AR and MA
models, we have

Y � X% � N.0; �2HH>/ ;

and the log-likelihood function l.%; ; �2I y; y0/ is given by (with Yk in matrix X
replaced by yk for k D �p C 1; : : : ; T ):

l.%; ; �2I y; y0/ D � T

2
ln.2��2/

� 1

2�2
.y � X%/>.HH>/�1.y � X%/ :

(10.13)
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In principle we can numerically maximize l.%; ; �2I y; y0/ to find the maximum
likelihood estimates of the parameters. But this approach is time-consuming in
this context as the dimension of the parameter vector is typically large. Instead, as
discussed earlier, we reduce the dimension of the numerical maximization by first
obtaining the profile log-likelihood:

el. I y/ D l.b%; ; b�2I y; y0/ ;

where the maximum likelihood estimates of % and �2 are available analytically (see
Problem 10.6):

b% D .X>˙�1X/�1X>˙�1y; b�2 D 1

T
.y � Xb%/>˙�1.y �Xb%/ ; (10.14)

where ˙ D HH>. We then maximize numerically the profile log-likelihood—
which is a function of  only—to obtain the maximum likelihood estimate b .
Finally, given b , we use (10.14) to obtainb% and b�2 analytically.

Example 10.7 (Modeling US Inflation with ARMA(1,1)). In Example 10.6 we
fitted the US inflation data with an integrated MA(1) model. In this example we
consider a slight generalization by including an intercept and allowing a first-order
AR coefficient:

Yt D %0 C %1Yt�1 C "t C  "t�1 ;

where "1; : : : ; "T �iid N.0; �2/ and "0 D 0. Hence, given the data, the design
matrix X is

X D

0

B

B

B

@

1 y0
1 y1
:::

:::

1 yT�1

1

C

C

C

A

:

In this example, we compute the maximum likelihood estimates of the model
parameters; for a Bayesian treatment of the model, see Problem 10.7.

The MATLAB function loglike_ARMA11 takes the design matrix X and the
outcomes y and evaluates the profile log-likelihood function at  . Note that the
function also reports the maximum likelihood estimates of % D .%0; %1/

> and �2

given the value of  .

function [l rhohat sigma2hat] = loglike_ARMA11(psi,X,y)
T = length(y);
H = speye(T) + psi*sparse(2:T,1:T-1,ones(1,T-1),T,T);
HH = H*H’;
rhohat = (X’*(HH\X))\(X’*(HH\y));
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uhat = y-X*rhohat;
sigma2hat = uhat’*(HH\uhat)/T;
l = -T/2*log(2*pi*sigma2hat) - .5/sigma2hat*uhat’*(HH\uhat);

Then, in the main script, we numerically minimize the negative of the function
loglike_ARMA11with respect to  . Given the maximum likelihood estimate b ,
which is calculated as �0:277, we use loglike_ARMA11 again to compute the
maximum likelihood estimates of % and �2, which are, respectively, .0:536; 0:849/>
and 4:91: The corresponding maximized log-likelihood value is �569:15.

%CPI_ARMA.m
load USCPI.csv
y0 = USCPI(1);
y = USCPI(2:end);
T = length(y);
X = [ones(T,1) [y0; y(1:end-1)]];
f = @(psi) -loglike_ARMA11(psi,X,y);
psihat = fminsearch(f,0);
[l rhohat sigma2hat] = loglike_ARMA11(psihat,X,y);

Compared with the integrated MA(1) model in Example 10.6, it is not obvious
that the ARMA(1,1) is a better model. Although it does fit the data better—its
maximized log-likelihood value is �569:15 compared to �577:74, the correspond-
ing value for the integrated MA(1) model—it is also more complex and has more
parameters.

To compare these two models while taking into account both goodness of fit
and model complexity, we make use of two popular information criteria: Akaike
information criterion (AIC) and the Bayesian information criterion (BIC); see
Problem 10.4. The AIC and BIC for the integrated MA(1) model are, respectively, ☞ 320

�1159:5 and �1166:6, whereas the corresponding values for the ARMA(1,1)
model are �1146:3 and �1160:5. Hence, both information criteria suggest that
ARMA(1,1) is a better model for the inflation data.

10.2 Gaussian Models

As discussed in the introduction, an important case where observations are likely to
be dependent is when there are measurements on related subjects. One convenient
class of models for dependent data is Gaussian models, where the data, say,
Y1; : : : ; Yn, are distributed according to a multivariate normal (i.e., Gaussian)
distribution: ☞ 83

Y D .Y1; : : : ; Yn/
> � N.�; ˙/
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for some known or unknown mean vector � and covariance matrix ˙ . In order for
the model to be meaningful for statistical analysis one usually needs to impose extra
structure on the parameters � and ˙ .

As a first illustration, consider an extension of the two-sample normal
model in Example 4.3, where in addition to measuring the heights of men☞ 103

whose mothers smoked (group 1) and did not smoke (group 2), we also
measure the weights. The data can then be described by a vector Y D
.X1; V1; : : : X60; V60; Y1;W1; : : : ; Y140;W140/

>, where .Xi ; Vi / is the (height,weight)
of person i in group 1 and .Yi ;Wi / the (height,weight) of person i in group 2.
The vector Y can be modeled with a N.�; ˙/ distribution, where � D
.�11; �12; : : : ; �11; �12; �21; �22; : : : ; �21; �22/

> (60 pairs �11; �12 followed by
140 pairs�21; �22), and the covariance matrix˙ is block-diagonal with 2�2 blocks.
The first 60 blocks on the diagonal (all the same) correspond to the covariance
matrix of the height X and weight W of a person from the first group, which are
clearly not independent. Similarly the remaining 140 diagonal blocks (all the same)
correspond to the covariance matrix of the height Y and weightW of a person from
the second group. This Gaussian model has only 10 parameters, as opposed to the
possibly 80600 parameters of the general multivariate Gaussian model; see also
Problem 4.4.☞ 119

Recall from Sect. 3.6 some important properties of the multivariate normal☞ 82

distribution. Let X D .X1; : : : ; Xn/
> � N.�; ˙/:

1. All the marginal distributions are Gaussian.
2. Conditional distributions are Gaussian.
3. Any affine combination b0 CPn

iD1 biXi has a normal distribution.
4. To simulate X:

a. Derive the Cholesky decomposition˙ D AA>.
b. Generate Z1; : : : ; Zn �iid N.0; 1/: Let Z D .Z1; : : : ; Zn/

>.
c. Return X D �CAZ.

10.2.1 Gaussian Graphical Model

Since a Gaussian distribution is fully characterized by the mean vector � and
the covariance matrix ˙ , it suffices to specify these two quantities to construct a
Gaussian model. It is often convenient to represent the covariance structure of a
Gaussian model via a graph: a Gaussian graphical model. This graph is similar to
a Bayesian network in Sect. 8.3, but is undirected.☞ 244

The purpose of a Gaussian graphical model is to summarize the conditional
independence properties of the variables. In particular, in a Gaussian graphical
model of a random vector X D .X1; : : : ; Xn/

> � N.�; ˙/, the nodes represent the
componentsX1; : : : ; Xn. Two nodes are connected by an undirected edge if and only
if the corresponding variables are conditionally dependent given all the other values.
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Recall that Xi and Xj are conditionally independent if (using Bayesian notation for
simplicity)

f .xi ; xj j xk; k ¤ i; j / D f .xi j xk; k ¤ i; j / f .xj j xk; k ¤ i; j / :

Because X is Gaussian, its pdf is given by

f .x/ D .2�/�n=2
p

det.�/ e� 1
2 .x��/>�.x��/ ;

where � D .�ij / is the inverse of the covariance matrix ˙ , called the precision
matrix. Therefore, the conditional joint pdf of Xi and Xj is

f .xi ; xj j xk; k ¤ i; j / / exp

�

�1
2
.�iix

2
i C 2xi a C �ij xi xj C �jj x

2
j C 2xj b/

�

;

where a and b may depend on xk; k ¤ i; j . This shows that Xi and Xj
are conditionally independent given fXk; k ¤ i; j g, if and only if �ij D 0.
Consequently, .i; j / is an edge in the graphical model if and only if �ij ¤ 0. In
typical applications (e.g., in image analysis), each vertex in the graphical model
only has a small number of adjacent vertices. In such cases the precision matrix is
thus sparse, and the Gaussian vector can be generated efficiently using, for example,
sparse Cholesky factorization.

For a sparse precision matrix the following algorithm is more efficient than
Algorithm 3.3 for generating independent samples. ☞ 84

Algorithm 10.1. (Multivariate Normal Vector Generation Using the Pre-
cision Matrix). To generate N independent draws from a N.�; ��1/ distri-
bution of dimension n carry out the following steps:

1. Determine the lower Cholesky factorization� D DD>.
2. Generate Z D .Z1; : : : ; Zn/

> by drawingZ1; : : : ; Zn �iid N.0; 1/.
3. Solve Y from Z D D>Y.
4. Output X D �C Y.
5. Repeat Steps 2–4 independentlyN times.

Example 10.8 (Gaussian Graphical Model). In Fig. 10.8 a Gaussian graphical
model is depicted for n D 8 normal random variables, divided into three groups.
Variables in different groups are independent of each other. The first group contains
onlyX1, which is independent of all the other variables. In the second group,X2;X3,
and X4, each variable is conditionally dependent of the other two. In the last group,
X5; : : : ; X8, each variable is conditionally dependent on one or two variables, while
conditionally independent of the rest. For example,X6 is conditionally independent
of X8 given X7:
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Fig. 10.8 An example of a
Gaussian graphical model

The covariance and precision matrices have the following structure:
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Namely, the .i; j /th element of the covariance matrix ˙ is the covariance between
Xi and Xj . Hence, ˙ consists of three diagonal blocks, each corresponding to
the covariances among the variables within each group. The precision matrix has
nonzero entries �ij precisely when .i; j / is an edge in the graph. Notice that here
the precision matrix is sparser than the covariance matrix.

10.2.2 Random Effects

In the ANOVA models introduced in Chap. 4, it was assumed that the “effects” of
the factors—that is, the parameters �; ˛j , and ˇk—are fixed (deterministic). In a
variety of situations it is more appropriate to assume that certain model parameters
are random. The following example illustrates the idea.

Example 10.9 (One-Factor Random Effects ANOVA Model). To investigate
whether geographical location is important in the effectiveness of a new type
of herbicide, a researcher selects ten locations from a large number of possible
locations within a country. At each location the herbicide is applied to three similar
test plots. Each test plot is divided in half. One half (randomly selected) receives
the herbicide and the other half is left untreated. The difference in crop yield for
each plot is measured, giving 30 measurements (response variables) in total. The
experimental design is here hierarchical in structure: first the locations are chosen,
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and then the measurements are taken. The selection of the location could be modeled
via independent random variables

�1; : : : ; �10
iid� N.�; �2�/ ;

representing the expected difference in crop yields at the ten locations, where � and
�2� are fixed parameters. Given the f�i g, the actual difference in crop yield for the
kth crop at location i could be modeled as

.Yik j�i/ � N.�i ; �
2/; independently for i D 1; : : : ; 10 ;

where �2 is fixed.
For this designed experiment the researcher is not interested per se in statements

about the ten selected locations, but rather in conclusions pertaining to all possible
geographical locations—in particular, regarding the parameters � and �2�. For
example, is the treatment effective across the country (� > 0)? Is geographical
location much more important than measurement error in explaining the variability
in the measurements (�2� is much greater than �2)?

We summarize the one-factor random effects ANOVA model as follows.

Definition 10.4. (One-Factor Random Effects ANOVA Model). Let Yik be
the response for the kth replication at level i . Then

Yik D �i C "ik ; k D 1; : : : ; ni ; i D 1; : : : ; d ; (10.15)

where

�1; : : : ; �d
iid� N.�; �2�/ ;

independent of f"ikg �iid N.0; �2/.

The model is again Gaussian, but, due to the hierarchical formulation, the fYikg are
no longer independent within the i th level. By the model assumptions in (10.15),
the responses Yi1; : : : ; Yini are independent conditional on the random effect �i .
However, marginalized over �i , the covariance between, say, Yij and Yik; j ¤ k; is
nonzero:

Cov.Yij ; Yik/ D Cov.�i C "ij ; �i C "ik/ D �2� :

If we define Yi D .Yi1; : : : ; Yini /
>, then each Yi is independent but not identically

distributed (denoted by “ind” below) as

Yi
ind� N.�1ni ; �

2Ini C �2�1ni 1
>
ni
/; i D 1; : : : ; d ;
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where 1ni is an ni � 1 column of ones and Ini is the ni -dimensional identity matrix.
To see this, first note that, by definition,

Yi D �i1ni C "i ;

where "i D ."1; : : : ; "ni /
> � N.0; �2Ini /: In other words, Yi is an affine

transformation of normal random variables and therefore has a normal distribution.
In addition, it is easy to check that its expectation is EYi D �1ni , and its covariance
matrix is

Cov.Yi / D Var.�i /1ni 1
>
ni

C Cov."i / D �2�1ni1
>
ni

C �2Ini :

Hence, the claim follows.
From the above discussion, we have also derived the log-likelihood function

for the one-factor random effects model in (10.15). More specifically, given the
outcomes Y1 D y1; : : : ;Yd D yd , the log-likelihood function is given by

l.�; �2�; �
2I y/ D � n

2
ln.2�/� 1

2

d
X

iD1
ln j˙i j

� 1

2

d
X

iD1
.yi � �1ni /

>˙�1
i .yi � �1ni / ;

(10.16)

where y D .y>
1 ; : : : ; y

>
d /

> and ˙i D �2�1ni 1
>
ni

C �2Ini .
Since the log-likelihood function is of low dimension, the maximum likelihood

estimates of �; �2�, and �2 can be obtained quickly by numerically maximizing the
log-likelihood. For a Bayesian analysis of the one-factor random effects model, see
Problem 10.11.

Example 10.10 (One-Factor Random Effects ANOVA Model Continued). Con-
sider again Example 10.9 in which we investigate if geographical location is
important in the effectiveness of a new type of herbicide. Suppose the researcher has
carried out the experiments and collected data from ten randomly selected locations.
Specifically, at each location the differences in crop yield (kg) for three test plots are
measured. The results are reported in Table 10.3.

Table 10.3 Differences in crop yield (kg)

Location Difference in crop yield Location Difference in crop yield

1 22.6 20.5 20.8 6 14.5 10.5 12.3
2 22.6 21.2 20.5 7 20.8 19.1 21.3
3 17.3 16.2 16.6 8 17.4 18.6 18.6
4 21.4 23.7 23.2 9 25.1 24.8 24.9
5 20.9 22.2 22.6 10 14.9 16.3 16.6
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To compute the maximum likelihood estimates of �; �2�, and �2, we first write
a MATLAB script to evaluate the log-likelihood function l.�; �2�; �

2I y/. Note that in
the code below the outcomes are stored as a matrix, where each row contains the
experimental results in one of the randomly selected locations.

function l = sfran_loglike(mu,sigma2_mu,sigma2,y)
[d ni] = size(y);
Sigmai = sigma2*eye(ni) + sigma2_mu*ones(ni,ni);
l = -(ni*d)/2*log(2*pi) - d/2*log(det(Sigmai));
for i=1:d

yi = y(i,:)’;
l = l - .5*(yi-mu)’*(Sigmai\(yi-mu));

end

Next, in the main script, we load the data and define a trivariate function
that evaluates the negative of the log-likelihood function sfran_loglike. The
new function is then passed to the built-in minimization routine fminsearch to
compute the minimizer. For the starting values for �; �2�, and �2, we use

Ny D 1

d

d
X

iD1
Nyi ; s2 D 1

d � 1

d
X

iD1
. Nyi � Ny/2; Ns2 D 1

d

d
X

iD1
s2i ;

where Nyi and s2i are, respectively, the sample mean and sample variance of the
outcomes in location i .

%sfran.m
y = [ 22.6 20.5 20.8; 22.6 21.2 20.5; 17.3 16.2 16.6; ...

21.4 23.7 23.2; 20.9 22.2 22.6; 14.5 10.5 12.3; ...
20.8 19.1 21.3; 17.4 18.6 18.6; 25.1 24.8 24.9; ...
14.9 16.3 16.6];

f = @(theta) -sfran_loglike(theta(1),theta(2),theta(3),y);
ybar = mean(y,2);
theta0 = [mean(ybar) var(ybar) mean(var(y,0,2))];
thetahat = fminsearch(f,theta0);

The maximum likelihood estimates of �; �2�, and �2 are 19.6, 12.19, and 1.167,
respectively. For this example the herbicide seems to be quite effective.

The two-factor random effects ANOVA model can be defined similarly. Below
we use the “factor effects” representation. ☞ 113
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Definition 10.5. (Two-Factor Random Effects ANOVA Model). Let Yijk
be the response for the kth replication at cell .i; j /. Then

Yijk D �C ˛i C ˇj C �ij C "ijk ;

k D 1; : : : ; nij ; i D 1; : : : ; d1 ; j D 1; : : : ; d2 ;
(10.17)

where � is a fixed constant and the following random variables are indepen-
dent of each other:

f˛i g iid� N.0; �2˛/ ; fˇj g iid� N.0; �2ˇ/ ;

f�ij g iid� N.0; �2� /; f"ijkg iid� N.0; �2/ :

Note that there are much fewer parameters than for the corresponding fixed
effects model. Also, there are no restrictions such as

P

i ˛i D 0 on the parameters.
To derive the likelihood function, we first rewrite (10.17) in matrix form. To

that end, let ˛ D .˛1; : : : ; ˛d1 /
>, ˇ D .ˇ1; : : : ; ˇd2 /

>, and � D .�11; : : : ; �d1d2/
>.

Arrange the responses fYijkg and errors f"ijkg as Y D .Y1; : : : ; Yn/
> and " D

."1; : : : ; "n/
>, where n D P

i;j nij . Then,

Y D �1CX˛˛CXˇˇ CX�� C " ; (10.18)

where 1 an n-dimensional vector of 1s, and the design matrices X˛, Xˇ, and X�
are appropriately defined. Again, Y is an affine transformation of normal random
variables and therefore has a multivariate normal distribution. Its mean is EY D �1

and its covariance matrix is given by

˙ D �2˛X˛X
>̨ C �2ˇXˇX

>̌ C �2�X�X
>
� C �2I :

Hence, given the outcomes Y D y, the log-likelihood function for the two-factor
ANOVA model is

l.�; �2˛; �
2
ˇ; �

2
� ; �

2I y/ D � n

2
ln.2�/� 1

2
ln j˙ j

� 1

2
.y � �1/>˙�1.y � �1/ :

(10.19)

Calculation of the maximum likelihood estimates involves a 5-dimensional
maximization problem, which may be time-consuming, but can still be done
numerically. There are two computational issues that are worth mentioning. First,
note that evaluation of the log-likelihood function (10.19) involves calculating the
log determinant ln j˙ j. When the dimension n is large, computing the determinant
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j˙ j first and then taking the log might lead to substantial rounding error. Instead,
consider the following equivalent calculations: obtain the Cholesky factor C of ˙ .
Since C is a lower triangular matrix, its determinant is equal to the product of the
diagonal elements, say, c11; : : : ; cnn. It follows then that

ln j˙ j D 2 ln jC j D 2

n
X

iD1
ln ci i :

The second issue concerns the restrictions on the variance parameters �2˛, �2ˇ;
�2� ; and �2—since they represent variances, they have to be positive. In other
words, computing their maximum likelihood estimates is in fact a constrained
maximization problem, and ignoring the restrictions might lead to numerical errors.
One solution to this problem is to reparameterize in terms of

�˛ D ln.�2˛/; �ˇ D ln.�2ˇ/; �� D ln.�2�/; � D ln.�2/ ;

and maximize the log-likelihood (10.19)

l.�; �2˛; �
2
ˇ; �

2
� ; �

2I y/ D l.�; e�˛ ; e�ˇ ; e�� ; e�I y/

with respect to �, �˛, �ˇ , �� , and �. Once the maximum likelihood estimates of
the new parameters are obtained, those for the original parameterization can be
computed easily. The following example illustrates these points.

Example 10.11 (Two-Factor Random Effects ANOVA Model). In this example
we investigate the breeding value of a set of five sires in raising pigs. Each sire is
mated to a random group of dams, and the mating produces a litter of pigs whose
characteristics are measured. In particular, the average daily gain of two piglets in
each litter (in pounds) over a given period of time is recorded. The outcomes are
reported in Table 10.4.

Table 10.4 Average daily gain of two piglets in each litter (in pounds)

Sire Dam Gain Sire Dam Gain

1 1 1.39 3 2 0.95
1 1 1.29 3 2 0.96
1 2 1.12 4 1 0.82
1 2 1.16 4 1 0.92
2 1 1.52 4 2 1.18
2 1 1.62 4 2 1.20
2 2 1.88 5 1 1.47
2 2 1.87 5 1 1.41
3 1 1.24 5 2 1.57
3 1 1.18 5 2 1.65
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The model we consider is

Yijk D �C ˛i C �ij C "ijk ;

where ˛i is the random effect associated with the i th sire and �ij is the random
effect associated with the i th sire and j th dam. To write the model in matrix
form, let Y D .Y111; Y112; Y121; Y122; : : : ; Y521; Y522/

>, ˛ D .˛1; : : : ; ˛5/
>; and

� D .�11; �12; : : : ; �51; �52/
>. Then,

Y D �120 CX˛˛CX�� C " ;

where X˛ D I5 ˝ 14, X� D I10 ˝ 12, ˝ is the Kronecker product, 1p is a p � 1

vector of ones, and Iq is the q-dimensional identity matrix.
As in the previous example, we first write a MATLAB script to evaluate the log-

likelihood function parameterized in terms of �, �˛ D ln.�2˛/; �� D ln.�2�/; and
� D ln.�2/.

function l = sfran2_loglike(mu,eta_alpha,eta_gamma, ...
eta,y,Xalpha,Xgamma)

sigma2_alpha = exp(eta_alpha);
sigma2_gamma = exp(eta_gamma);
sigma2 = exp(eta);
n = length(y);
Sigma = sigma2*speye(n) + sigma2_alpha*(Xalpha*Xalpha’)+...

sigma2_gamma*(Xgamma*Xgamma’);
l = -n/2*log(2*pi) - sum(log(diag(chol(Sigma)))) + ...

- .5*(y-mu)’*(Sigma\(y-mu));

Then, in the main script, we maximize the log-likelihood function numerically
with respect to �, �˛; �� ; and �. The maximizer is then transformed to get the
maximum likelihood estimates of the original parameters. The estimates of �, �2˛;
�2� ; and �2 are, respectively, 1.32, 0.0537, 0.0318, and 0.023. For this data set, the
sires seem to be the most important factor in explaining the variation in the average
daily gain of the piglets.

%sfran2.m
y = [1.39 1.29 1.12 1.16 1.52 1.62 1.88 1.87 1.24 1.18 ...

0.95 0.96 0.82 0.92 1.18 1.20 1.47 1.41 1.57 1.65]’;
Xalpha = kron(speye(5),ones(4,1));
Xgamma = kron(speye(10),ones(2,1));
f = @(theta) -sfran2_loglike(theta(1),theta(2),theta(3), ...

theta(4),y,Xalpha,Xgamma);
yhat = mean(reshape(y,4,5));
theta0 = [mean(y) log(var(yhat)) log(var(y)/3) log(var(y)/3)];
thetahat = fminsearch(f,theta0);
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10.2.3 Gaussian Linear Mixed Models

It is also possible to combine fixed and random factors. This leads to the so-called
mixed models. A general formulation for such models is given below. We first
discuss an example.

Example 10.12 (Two-Factor Mixed ANOVA Model). Suppose the experiment
in Example 10.9 is modified in the following way. Each of the 30 test plots is
subjected to three different treatments of herbicide: (1) the new herbicide, (2) a
standard herbicide, and (3) no herbicide. Specifically, each test plot is divided into
three subplots, and the three treatments are assigned in a random (and uniform) way
to the subplots. The crop yield is recorded for each of the subplots. For each of
the 10 plots there are thus 9 measurements—3 for each treatment. There are now
two factors to consider: herbicide and location. The first is a fixed factor, and the
second is a random factor. Denoting by Yijk the kth crop yield at location j , with
treatment i , we obtain the two-factor mixed ANOVA model

Yijk D �C ˛i C ˇj C �ij C "ijk ;

i D 1; 2; 3; j D 1; 2; : : : ; 10; k D 1; 2; 3 ;

where � is a constant, ˛1; : : : ; ˛3 are the fixed incremental effects of the herbicide,
and ˇ1; : : : ; ˇ10 are the random incremental effects due to location. As in the fixed
ANOVA case, we impose the restriction

P

i ˛i D 0. The random incremental effects
are modeled via fˇj g �iid N.0; �2ˇ/. The measurement errors f"ijkg are assumed to

be independent of each other and of the fˇj g and are all N.0; �2" / distributed, for
some fixed �2" . Finally, for the terms f�ij g there are two common model choices.
The simplest one is to assume that f�ij g �iid N.0; �2� /. However, this introduces a
subtle problem regarding the interpretation of ˛i as an “incremental effect” due to
treatment i . To circumvent this difficulty one often imposes the restriction

X

i

�ij D 0 for all j :

The latter is called a restricted mixed ANOVA model, as opposed to the former
unrestricted model.

Here we give a general formulation for the linear mixed models.

Definition 10.6. (Gaussian Linear Mixed Model). Let Y be an n�1 vector
of responses and then

Y D Xˇ CZU C " ; (10.20)

(continued)
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(continued)
where ˇ is a p � 1 vector of fixed effects, X is an n � p design matrix for
the fixed effects, and Z is an n � q design matrix for the random effects. In
addition, U and " are independent of each other, and

U � N.0; ˙U/ ; " � N.0; �2I / :

The covariance matrix of Y is ˙ D �2I C Z˙UZ
>. Hence, given the outcome

Y D y, the log-likelihood function is

l.ˇ; �2;˙UI y/ D �n
2

ln.2�/ � 1

2
ln j˙ j � 1

2
.y � Xˇ/>˙�1.y � Xˇ/ : (10.21)

Unless the dimension of the log-likelihood function is low, direct maximization
could be time-consuming. Instead, dimension reduction techniques such as using the
profile likelihood can be applied to speed up the estimation. Alternatively, the linear
mixed model can be estimated using the Gibbs sampler, as the following example
illustrates.

Example 10.13 (Gaussian Linear Mixed Model). In an experiment concerning the
growth rate of rats, 30 different rats are weighed at five different points in time—
8, 15, 22, 29, and 36 days since birth. Using Bayesian notation, let yik denote the
weight of the i th rat at the kth measurement, and let xik denote the corresponding
age of the rat. Then,

xi1 D 8 ; xi2 D 15 ; xi3 D 22 ; xi4 D 29 ; xi5 D 36

for i D 1; : : : ; 30. The data are taken from Gelfand et al. 1990, and the growth
curves are depicted in Fig. 10.9.
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Fig. 10.9 Growth curves for 30 rats
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In the model, we allow for individual-specific variation in the initial birth weight
but assume the same growth rate:

yik D ˇ0 C ˇ1xik C ˛i C "ik ;

where f˛i g �iid N.0; �2˛/ and f"ikg �iid N.0; �2/ are independent, i D 1; : : : ; 30,
k D 1; : : : ; 5.

To write the model in the form in (10.20), let

y D .y11; : : : ; y15; y21; : : : ; y25; : : : ; y30;1; : : : ; y30;5/
>;

and define " similarly. Further, let ˇ D .ˇ0; ˇ1/
>, ˛ D .˛1; : : : ; ˛30/

>,Z D I˝15,
X D 130˝ .15; xi /; and xi D .xi1; : : : ; xi5/

>, and let 1m be anm�1 vector of ones.
Then,

y D Xˇ CZ˛C " ;

where ˛ � N.0; �2˛I / and " � N.0; �2I / are independent. The actual outcomes of
the experiment are reported in Table 10.5.

Table 10.5 Weight measurements of rats

Rat Weights Rat Weights

i yi1 yi2 yi3 yi4 yi5 i yi1 yi2 yi3 yi4 yi5

1 151 199 246 283 320 16 160 207 248 288 324
2 145 199 249 293 354 17 142 187 234 280 316
3 147 214 263 312 328 18 156 203 243 283 317
4 155 200 237 272 297 19 157 212 259 307 336
5 135 188 230 280 323 20 152 203 246 286 321
6 159 210 252 298 331 21 154 205 253 298 334
7 141 189 231 275 305 22 139 190 225 267 302
8 159 201 248 297 338 23 146 191 229 272 302
9 177 236 285 340 376 24 157 211 250 285 323
10 134 182 220 260 296 25 132 185 237 286 331
11 160 208 261 313 352 26 160 207 257 303 345
12 143 188 220 273 314 27 169 216 261 295 333
13 154 200 244 289 325 28 157 205 248 289 316
14 171 221 270 326 358 29 137 180 219 258 291
15 163 216 242 281 312 30 153 200 244 286 324

To perform a Bayesian analysis, consider the following independent priors:

ˇ � N.ˇ0; 100 I /; �2˛ � InvGamma.3; 100/; �2 � InvGamma.3; 100/ ;
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where ˇ0 D .100; 10/>. The degrees of freedom parameters for the inverse-
gamma distributions are chosen to be small so that the prior variances are large.
Since ˛ and ˇ enter the likelihood additively, we sample them in one block
to improve efficiency. Specifically, we consider the 3-block Gibbs sampler: (1)
simulate from f .˛;ˇ j y; �2; �2˛/, (2) simulate from f .�2 j y;˛;ˇ; �2˛/, and (3)
simulate from f .�2˛ j y;˛;ˇ; �2/. Steps 2 and 3 are straightforward as the two
conditional distributions are both inverse-gamma (see Theorem 8.1):☞ 238

.�2 j y;˛;ˇ; �2˛/ � InvGamma.78; �/ ;

.�2˛ j y;˛;ˇ; �2/ � InvGamma.18; �˛/ ;

where � D 100C .y � Xˇ � Z˛/>.y � Xˇ � Z˛/=2 and �˛ D 100 C ˛>˛=2.
For Step 1, let � D .ˇ>;˛>/>. Then, the prior for � is N.�0; V�/, where

�0 D
�

ˇ0
0

�

; V� D
�

100 I 0

0 �2˛I

�

:

Note that the covariance matrix V� is in fact diagonal. In addition, the linear mixed
model can be written as

y D W � C " ;

whereW D .X;Z/. Hence, using Theorem 8.1, we have☞ 238

.� j y; �2; �2˛/ � N.b�; K�1
� / ;

where

K� D W >W=�2 C V �1
� ; b� D K�1

� .V �1
� �0 CW >y=�2/ :

It is important to realize that although � is high-dimensional, sampling from its
conditional distribution is quick if we use sparse matrix routines and avoid inverting
the large precision matrix; see Algorithm 10.1.☞ 307

The following MATLAB code implements the Gibbs sampler discussed above to
fit the experimental data.

%linmix.m
load ’rats.csv’;
[d ni] = size(rats);
n = d*ni;
y = reshape(rats’,n,1);
nloop = 11000;
burnin = 1000;

% storage
store_beta = zeros(nloop-burnin,2);
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store_alpha = zeros(nloop-burnin,d);
store_var = zeros(nloop-burnin,2);

% priors
beta0 = [100 10]’;
invVbeta = [1/100 1/100];
gamma0 = [beta0;sparse(d,1)];
nu_alpha = 3; lam_alpha = 100;
nu = 3; lam = 100;

% initialize the Markov chain
sigma2 = 100;
sigma2_alpha = 100;

% compute a few things before the loop
Z = kron(speye(d),ones(ni,1));
xi = [8 15 22 29 36]’;
X = kron(ones(d,1),[ones(ni,1) xi]);
W = [X Z];
WW = W’*W;
Wy = W’*y;
newnu_alpha = d/2 + nu_alpha;
newnu = n/2 + nu;
for loop=1:nloop

% sample alpha and beta
invVgamma = sparse(1:d+2,1:d+2, ...

[invVbeta 1/sigma2_alpha*ones(1,d)]);
invDgamma = invVgamma + WW/sigma2;
gammahat = invDgamma\(invVgamma*gamma0 + Wy/sigma2);
gamma = gammahat + chol(invDgamma,’lower’)’\randn(d+2,1);
beta = gamma(1:2);
alpha = gamma(3:end);

% sample sigma2_alpha
newlam_alpha = lam_alpha + sum(alpha.^2)/2;
sigma2_alpha = 1/gamrand(newnu_alpha, newlam_alpha);

% sample sigma2
newlam = lam + sum((y-W*gamma).^2)/2;
sigma2 = 1/gamrand(newnu, newlam);

% storage
if loop>burnin

i = loop-burnin;
store_beta(i,:) = beta’;
store_alpha(i,:) = alpha’;
store_var(i,:) = [sigma2 sigma2_alpha];

end
end
betahat = mean(store_beta)’;
alphahat = mean(store_alpha)’;
varhat = mean(store_var)’;

In Table 10.6 we report the posterior means, standard deviations, and quantiles
for selected parameters. The results indicate that there is substantial variation in
initial birth weight—the posterior mean of �2˛ is about three times the estimate
corresponding to the measurement error �2. Inference on individual random effects
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can also be easily carried out. For example, the birth weight of the 14th rat is
estimated to be between 19.90 and 34.73 above average with probability of 80 %.

Table 10.6 Posterior means, standard deviations, and quantiles for selected parameters

Parameter Post. mean Post. std. Post. 0.1 quantile Post. 0.9 quantile

ˇ0 106.10 2.73 102.82 112.58
ˇ1 6.19 0.07 6.11 6.35
�2 63.97 8.16 54.38 85.90
�2˛ 170.89 46.62 119.98 313.66
˛14 25.01 4.19 19.90 34.73

10.3 Problems

10.1. Calculate the lag-1, lag-2, and lag-3 autocorrelations of the residuals in
Example 10.1.

10.2. Prove Equation (10.9); that is, show that under the MA(q) model, the☞ 298

autocovariances of the responses are given by

Cov.Yt ; Yt�j / D



�2
Pq�j

iD0  iCj i ; j D 0; : : : ; q ;

0; j > q ;

where  0 D 1.

10.3. Consider again the MA(q) model:

Yt D "t C  "t�1 C � � � C  q"t�q :

In this exercise we relax the standard assumption that "0 D "�1 D � � � D "1�q D 0.
Instead, we assume f"tg �iid N.0; �2/ for t D 1 � q; : : : ; T . Derive the likelihood
function for the outcome Y D y, where Y D .Y1; : : : ; YT /

> and y D .yt ; : : : ; yT /
>.

10.4. In many situations the data can be described by several competing models,
and the question then is which model is “the best.” Complex models tend to fit
the data better, but they run the risk of overfitting. Hence, we want a measure that
awards goodness of fit while penalizing model complexity. Two popular selection
criteria that explicitly take this trade-off into account are the AIC and the BIC; see,
for example, Bishop (2006) for a detailed introduction. Given a model defined by
the log-likelihood function l.�I y/, where � is a p � 1 vector of model parameters
and y is an n � 1 vector of outcomes, the two information criteria are defined as
follows:

AIC D 2l.�I y/� 2p ;
BIC D 2l.�I y/� p ln n :
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The only difference between the two information criteria is the penalty term: BIC
tends to penalize complex model more heavily when n � 8. Given a set of
competing models, the preferred model is the one with the maximum AIC/BIC
value.

Use the two information criteria to compare the linear regression models in
Examples 10.1 and 10.4.

10.5. Show that the log-likelihood function of the ARMA(p; q) model in (10.12) is
given by (10.13). That is,

l.%; ; �2I y; y0/ D �T
2

ln.2��2/ � 1

2�2
.y �X%/>.HH>/�1.y � X%/ :

10.6. Consider the linear regression model with general covariance matrix �2˙ :

Y D Xˇ C " ; " � N.0; �2˙/ :

Suppose ˙ is a symmetric invertible constant matrix. Show that the maximum
likelihood estimators of ˇ and �2 are

bˇ D .X>˙�1X/�1X>˙�1y; b�2 D 1

T
.y �Xbˇ/>˙�1.y � Xbˇ/ :

10.7. We revisit Example 10.7 on fitting the inflation data with an ARMA(1,1) ☞ 304

model:

Yt D %0 C %1yt�1 C "t C  "t�1 ;

where "1; : : : ; "T �iid N.0; �2/ and "0 D 0. Specifically, we consider a Bayesian
analysis of the model using the following independent priors:

% � N.0; 10I /;  � U.�1; 1/; �2 � InvGamma.3; 1/ ;

where % D .%0; %1/
>.

(a) Derive the posterior conditional densities f .% j y;  ; �2/, f . j y;%; �2/, and
f .�2 j y;%;  /.

(b) Fit the model using the data set USCPI.csv.
(c) Compute the posterior means of %;  , and �2, and compare them with their

corresponding maximum likelihood estimates.

10.8. What is the “factor effects” representation of the one-factor random effects
model in (10.15)?

10.9. Write the two-factor mixed ANOVA model in Example 10.12 as a Gaussian
model. That is, arrange fYijkg as Y D .Y1; : : : ; Yn/

> � N.�; ˙/, and determine �
and˙ .
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10.10. Determine the Gaussian graphical model for each of the following
situations:

(a) For the random variables Y1; : : : ; Y6, Y2 depends only on Y1, and Yt depends
only on Yt�1 and Yt�2; t D 3; : : : ; 6:

(b) A one-factor ANOVA model with d D 3, n1 D 2; n2 D 3; and n3 D 4.
(c) A two-factor ANOVA model with d1 D 2; d2 D 3, and nij D 1; i D 1; 2;

j D 1; 2; 3:

10.11. We wish to design a Gibbs sampler for estimating the one-factor random
effects model. To that end, consider the following independent priors:

� � N.�0; V�/; �2� � InvGamma.˛�; ��/; �2 � InvGamma.˛; �/ :

Let � D .�1; : : : ; �d /
>. Derive the following conditional distributions:

(a) f .� j y; �; �2�; �
2/ D Qd

iD1 f .�i j y; �; �2�; �
2/ .

(b) f .� j y;�; �2�; �
2/ D f .� j�; �2�/ .

(c) f .�2� j y;�; �; �2/ D f .�2� j�; �/ .
(d) f .�2 j y;�; �; �2�/ D f .�2 j y;�/ .

10.12. Implement the Gibbs sampler developed in Problem 10.11 for the one-factor
random effects model to fit the crop yield data in Example 10.10. Use the following
independent priors:

� � N.0; 100/; �2� � InvGamma.3; 1/; �2 � InvGamma.3; 1/ :

Estimate the posterior means E.� j y/, E.�2� j y/, and E.�2 j y/. What is the posterior
probability that �2� > 5�

2?

10.13. Show that the two-factor random effects model in (10.18) is a special case
of the linear mixed model by writing the former in the form (10.20).



Chapter 11
State Space Models

In this chapter we discuss versatile generalizations of the basic time series models
in Sect. 10.1, collectively known under the name state space models. These ☞ 287

models not only can capture the serial dependence of the observations (i.e., the
dependence across time), but also can describe the persistence and volatility of
the measurements. That is, they can model continued periods of high or low
measurements and time-varying amounts of random fluctuation. In contrast, the
AR(p) model, for example, cannot capture these features, as the model parameters
do not depend on time. Throughout this chapter we shall use Bayesian notation
when specifying (conditional) densities, even when working in a non-Bayesian
setting.

A state space model typically consists of two modeling levels: in the first level,
observations are related to the latent or unobserved variables called states according
to the observation or measurement equation. In the second level, the evolution of
the states is modeled via the state or transition equation.

Definition 11.1. (State Space Model). In a state space model, the
observations yt ; t D 1; 2; : : : are drawn from a conditional pdf
f .yt j xt ; yt�1; : : : ; y1;�/, where xt is the hidden state at time t . The states
xt ; t D 1; 2; : : : evolve according to a Markov chain with transition density
f .xt j xt�1;�/. Here, � denotes the vector of model parameters.

Typically one assumes that each observation yt only depends on the latent state
xt and not on previous states or observations. In that case the state space model can
be viewed as a hidden Markov model; see Problem 8.14. Note that the fxt g and fyt g ☞ 260

may be vector-valued.

Example 11.1 (Kalman Filter). State space models originate from the analysis of
dynamical systems. One of the most fundamental examples is the linear Gaussian
discrete-time state space model:

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__11, © The Author(s) 2014
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xt D A xt�1 C ıt

yt D B xt C "t ; t D 1; 2; : : : ; (11.1)

where xt is an n-dimensional (hidden) state vector and yt anm-dimensional output
vector. A and B are fixed matrices, and ıt and "t are zero-mean normal random
vectors with covariance matrices D and E , respectively. All fıt g and f"t g are
independent. The initial state x0 is assumed to be N.�0;˙0/ distributed.

Define y1Wt D .y>
1 ; : : : ; y

>
t /

>. Assuming the model parameters are known, two
main objectives are to obtain the

• Predictive distribution, that is, the conditional distribution of xt given y1Wt�1
(the observations before time t).

• Filtering distribution, that is, the conditional distribution of xt given y1Wt (the
observations up to time t).

Since we are dealing only with affine transformations of Gaussian vectors, we have
by Theorem 3.6 that .xt j y1Wt / � N.�t ; ˙t / for some mean vector�t and covariance☞ 85

matrix ˙t . Similarly, .xt j y1Wt�1/ � N.e�t ; e˙t/ for some mean vector e�t and
covariance matrix e˙t . These mean vectors and covariance matrices can be computed
sequentially. First, since xt D A xt�1 C ıt and .xt�1 j y1Wt�1/ � N.�t�1;˙t�1/, we
have

.xt j y1Wt�1/ � N.A�t�1; A˙t�1A> CD/ :

Thus, the updating formulas for the predictive distribution are

e�t D A�t�1 ;

e˙t D A˙t�1A> CD :
(11.2)

Next, we determine the joint pdf of xt and yt , given y1Wt�1. Decomposing e˙t and E
as e˙t D RR> and E D QQ>, respectively, we can write (using Definition 3.10 of☞ 83

the multivariate normal distribution)
�

xt
yt

ˇ

ˇ

ˇ

ˇ

y1Wt�1
�

D
�

e�t
Be�t

�

C
�

R 0

BR Q

��

u
v

�

;

where, conditional on y1Wt�1, u and v are independent standard normal random
vectors. The corresponding covariance matrix is

�

R 0

BR Q

��

R> R>B>
0 Q>

�

D
�

RR> RR>B>
BRR> BRR>B> CQQ>

�

;

so that we have

�

xt
yt

ˇ

ˇ

ˇ

ˇ

y1Wt�1
�

� N

��

e�t
Be�t

�

;

�

e˙t
e˙tB

>
B e˙t B e˙tB

> C E

��

: (11.3)
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A direct application of Theorem 3.8 yields that xt given y1Wt has a N.�t ; ˙t / ☞ 86

distribution with

�t D e�t C e˙tB
>.B e˙tB

> C E/�1.yt � Be�t / ;
˙t D e˙t � e˙tB

>.B e˙tB
> C E/�1B e˙t :

(11.4)

We leave the details as an exercise; see Problem 11.1. Updating formulas (11.2)
and (11.4) form the (discrete-time) Kalman filter. Starting with some known �0
and ˙0, one determines e�1 and e˙1, then �1 and ˙1, and so on. Notice that e˙t and
˙t do not depend on the observations y1; y2; : : : and can therefore be determined
off-line.

In the remainder of this chapter we will discuss various popular state space
models that fall within the framework defined above. From the definition it is
obvious that state space models are high-dimensional, often with more latent
variables and parameters than observations. Instead of using generalizations of the
Kalman filter, we will discuss the precision-based approach to estimating state space
models, where the derivation is relatively simple and transparent.

11.1 Unobserved Components Model

An important state space model is the unobserved components model. In the first
level, the (real-valued) observable yt at time t is modeled to depend on the state or
unobserved component t as follows:

yt D t C "t ; (11.5)

where f"tg �iid N.0; �2/. That is, the observable yt is modeled as the sum of the
unobserved component t and the error term "t . As we shall see shortly, this is a
popular specification for modeling the evolution of univariate time series such as
inflation rate. For example, in the context of inflation modeling, the unobserved
component t can be interpreted as the stochastic trend or underlying inflation.

Since for every yt we have an associated latent variable t , there are more
latent variables and parameters (i.e., � D .1; : : : ; T /

> and �2) than the number
of observations. As such, if we have the measurement equation only, the maxi-
mum likelihood estimator for .�; �2/ is not defined. Specifically, the likelihood
function is unbounded in .�; �2/, and therefore the maximum does not exist (see
Problem 11.3).

The fundamental problem is that if the unobserved components are unrestricted,
then we have the extreme situation where we can fit the data perfectly (e.g., by
choosing t D yt ). One way to get around this problem is to impose some structure
on the model to make estimation feasible. Since we are dealing with time series data,
it seems reasonable to assume that the unobserved component evolves gradually
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over time. In the inflation example, consecutive inflation trends are likely to be
“close.” More precisely, consider the following random walk specification

t D t�1 C ut ; (11.6)

for t D 2; : : : ; T , where futg �iid N.0; !2/. That is, the conditional distribution of
t given t�1 and !2 is N.t�1; !2/: the current state t centers around the previous
one t�1, while !2 controls how close the two terms are on average.

The smoothness parameter!2 can either be fixed in advance to some “reasonable
value” or treated as a parameter to be estimated from the data. Should it be fixed as
a constant, its choice should reflect the desired smoothness of the evolution of the
states: large values for !2 allow t to evolve quickly, whereas for small values the
transition of t becomes more gradual. In a Bayesian framework one often assumes
a hierarchical prior distribution for !2 that reflects the desired smoothness of the
transition equation.

Note that (11.6) does not explicitly provide a distribution for 1. To complete
the model specification, one typically assumes that the process is initialized with
1 � N.0; !

2
0/ for some known constants 0 and !20 . This is referred to as the initial

condition.
We summarize the unobserved components model as follows:

Definition 11.2. (Unobserved Components Model). In the unobserved
components model, the measurement equation is given by

yt D t C "t ;

where f"tg �iid N.0; �2/. The states, in turn, are initialized with 1 �
N.0; !

2
0 / for some known constants 0 and !20 and evolve according to the

transition equation

t D t�1 C ut

for t D 2; : : : ; T , where futg �iid N.0; !2/.

It is obvious that the unobserved components model falls within the family of state
space models. In fact, in the notation of Definition 11.1, the state xt in this case is the
univariate unobserved component t and � D .�2; !2/. The conditional distribution
of yt given t is N.t ; �

2/, whereas the transition density f .t j t�1;�/ corresponds
to the pdf of the N.t�1; !2/ distribution. Furthermore, since both the measurement
and transition equations are linear in the states with Gaussian errors, the unobserved
components model is an example of the linear Gaussian state space model discussed
in Example 11.1.
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11.1.1 Classical Estimation

Let y D .y1; : : : ; yT /
> and � D .1; : : : ; T /

> be the vector of observations
and latent variables, respectively. Throughout this section we fix !2, and the only
parameter in the model is �2. To obtain the maximum likelihood estimate of �2,
which we denote as b�2, in principle we can maximize the likelihood function

L.�2I y/ D
Z

f .y j �; �2/f .� j!2/ d� (11.7)

with respect to �2, where the densities f .y j �; �2/ and f .� j!2/ follow from
(11.5) and (11.6), respectively (their exact expressions are given below). In practice,
however, evaluating the above integral directly is often time-consuming as it
involves high-dimensional integration (see Problem 11.5 for an alternative method).

Instead, we will obtain b�2 using the EM algorithm introduced in Chap. 6.6. To ☞ 182

this end we first write the system (11.5)–(11.6) in matrix form and derive explicit
expressions for ln f .y j �; �2/ and ln f .� j!2/.

Defining " D ."1; : : : ; "T /
>, we can rewrite (11.5) as

y D � C "; " � N.0; �2I / ; (11.8)

where 0 is a T � 1 column of zeros and I is the T � T identity matrix. From (11.8)
we see that

ln f .y j �; �2/ D �T
2

ln.2��2/ � 1

2�2
.y � �/>.y � �/ : (11.9)

Next, we derive an expression for lnf .� j!2/. For simplicity, we assume 0 D 0;
the general case follows similarly (see Problem 11.7). Note that we can rewrite the
transition equation (11.6) as

0

B

B

B

B

B

@

1 0 0 � � � 0
�1 1 0 � � � 0
0 �1 1 � � � 0
:::

: : :
:::

0 0 � � � �1 1

1

C

C

C

C

C

A

„ ƒ‚ …

H

0

B

B

B

B

B

@

1
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3
:::

T

1

C

C

C

C

C

A

D

0

B

B

B

B

B

@

u1
u2
u3
:::

uT

1

C

C

C

C

C

A

; (11.10)

i.e.,H� D u; u � N.0;˝/;where˝ D diag.!20 ; !
2; : : : ; !2/ is a diagonal matrix.

Noting that jH j defD j det.H/j D 1 and henceH is invertible, we have

� D H�1u � N.0; .H>˝�1H/�1/ ;
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where˝�1 D diag.!�2
0 ; !�2; : : : ; !�2/ is again a diagonal matrix. It follows that

lnf .� j!2/ D �1
2

ln..2�/T j.H>˝�1H/�1j/ � 1

2
�>.H>˝�1H/�

D �T
2

ln.2�/ � 1

2
ln!20 � T � 1

2
ln!2 � 1

2
�>.H>˝�1H/� : (11.11)

To implement the E-step, we need to derive the conditional density of the states
given the data

gi .�/ D f .� j y; �2i�1; !2/ ;

where �2i�1 is the current value for �2 in iteration i . We first show that
.� j y; �2i�1; !2/ has a multivariate normal density of dimension T . Then we discuss
how one can evaluate this typically high-dimensional density efficiently.

Using (11.9) and (11.11), while ignoring constant terms not involving �, we have

lnf .� j y; �2i�1; !2/ D ln f .y;� j �2i�1; !2/C const

D ln f .y j �; �2i�1/C lnf .� j!2/C const

D �1
2

�

.y � �/>.y � �/
�2i�1

C �>.H>˝�1H/�
�

C const

D �1
2

�

�>Ki � � 2

�2i�1
y>�

�

C const ;

where Ki D H>˝�1H C ��2
i�1I . Note that the expression above defines the pdf

of a normal distribution, and we only need to determine the mean vector and the
covariance matrix. By completing the squares as in Theorem 8.1, we see that☞ 238

.� j y; �2i�1; !2/ � N.b�i ; K
�1
i / ; (11.12)

whereb� i D ��2
i�1K�1

i y:
Next, we compute the expectation

Qi.�
2/ D Egi lnf .y;� j �2; !2/ :

To simplify the computation, we ignore all the terms not involving �2, as they will
eventually drop out when we maximizeQi.�

2/ with respect to �2. Hence, we have,
from (11.9),

Qi.�
2/ D Egi ln f .y j �; �2/C const

D �T
2

ln.2��2/ � 1

2�2
Egi .y � �/>.y � �/C const

D �T
2

ln.2��2/ � 1

2�2

�

tr.K�1
i /C .y �b�i />.y �b�i /

�C const :
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Note that we used the fact that for any random vector x with mean vector � and
covariance matrix˙ , we have E.x>x/ D tr.˙/C �>� (see Problem 11.2).

Finally, to implement the M-step, we differentiateQi.�
2/ with respect to �2 and

solve for the maximizer:

�2i D argmax
�2

Qi.�
2/ D 1

T

�

tr.K�1
i /C .y �b�i />.y �b� i /

�

: (11.13)

We summarize the EM algorithm as follows: given a starting value �20 , iterate the
following steps until convergence:

• E-Step. Given the current value �2i�1, compute

Ki D H>˝�1H C ��2
i�1I and b�i D K�1

i y=�2i�1 :

• M-Step. GivenKi andb� i from the E-step, update the value for �2 using (11.13).

Although the estimation procedures presented above are relatively straightfor-
ward, one thing to notice is that the computations involve various large matrices. For
example,K�1

i is a full T �T matrix. In typical applications the sample size T could
be as large as several hundred or a few thousand, and computing the inverseK�1

i is
very time-consuming. However, note that the matrix Ki , as well as H and ˝�1,
is sparse, and computations involving sparse matrices (multiplication, Cholesky
decomposition, etc.) are generally very fast. See also Appendix A for some useful
MATLAB built-in routines for handling sparse matrices.

Also, for computing b�i D K�1
i y=�2i�1, one need not obtain the inverse K�1

i ,
which is a time-consuming matrix operation. Instead, we solve the linear system
Kix D y for x, the solution of which isK�1

i y. In contrast to inverting large matrices,
the latter operation can be done much more quickly and accurately.

Finally, to compute tr.K�1
i / in (11.13) without obtaining the inverse K�1

i , we
use the following result:

tr.K�1
i / D

T
X

jD1
��1
j ;

where �1; : : : ; �T are the eigenvalues of the sparse matrixKi .
At the end of the EM iterations, we obtain the estimate b�2. However, it is typically

not the quantity of interest in the analysis—what we are really after is the expected
value of the underlying inflation, E.� j y; �2; !2/. We can estimate this quantity
using the “plug-in” estimate E.� j y; �2 D b�2; !2/, which is bK�1y=b�2, where bK is
the Ki matrix evaluated at the final iteration of the EM algorithm.

We illustrate the EM algorithm using the following empirical example that
involves fitting the US inflation with the unobserved components model.
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Example 11.2 (Modeling Inflation with Unobserved Components Model). In
Example 10.6 we first modeled the US inflation data with an integrated MA(1)☞ 300

model. Later we continued our analysis with a more general ARMA(1,1) model in
Example 10.7. In this empirical example, we consider the unobserved components☞ 304

model for the same data. The unobserved components model may be viewed as a
convenient way to allow for a stochastic trend (see Problem 11.4). As such, it is
highly flexible and is capable of modeling a variety of features. In addition, using
the state space framework makes it easy to consider further extensions with richer
dynamics (e.g., see Problem 11.8).

Recall that the quarterly inflation rate is computed from the consumer price index
(CPI). Specifically, given zt , the CPI at time t , we compute the (annualized) inflation
rate as yt D 400 ln.zt =zt�1/.

In what follows, we fit the unobserved components model (11.5) and (11.6) with
the US CPI inflation data. In order to proceed, we first need to set the values for !20
and !2. Recall that !20 is the variance of the initial condition (i.e., 1 � N.0; !20/).
We set !20 D 9. What this means is that the initial 1 is between �6 and 6 with a
probability approximately equal to 95 %. As for the smoothness parameter !2, we
consider two cases: !2 D 12 and !2 D 0:52. The value for !2 reflects the desired
smoothness of the transition for t . For example, if !2 D 0:52, then with high
probability the difference between consecutive unobserved components, t � t�1,
is between �1 and 1.

Recall that the estimation consists of two steps. First, given the prefixed values
for !20 and !2, we iterate the E- and M-steps until the sequence of �2t converges.

Then, given the maximum likelihood estimate b�2, we once again use the E-step
to obtain E.� j �2 D b�2; !2/. The following MATLAB script performs these two
tasks.

%UC_EM.m
load ’USCPI.csv’;
y = USCPI;
T = length(y);
omega2_0 = 9; % initial condition
omega = .5^2; % fix omega
H = speye(T) - sparse(2:T,1:(T-1),ones(1,T-1),T,T);
invOmega = sparse(1:T,1:T,[1/omega2_0 ...

1/omega*ones(1,T-1)],T,T);
HinvOmegaH = H’*invOmega*H;
sigma2t = var(y); % initial guess
err = 1;
while err> 10^(-4)

% E-step
Kt = HinvOmegaH + speye(T)/sigma2t;
taut = Kt\(y/sigma2t);

% M-step
lam = eig(Kt);
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newsigma2t = (sum(1./lam) + (y-taut)’*(y-taut))/T;
% update

err = abs(sigma2t-newsigma2t);
sigma2t = newsigma2t;

end
Kt = HinvOmegaH + speye(T)/sigma2t;
taut = Kt\(y/sigma2t);

We used the above code to obtain the maximum likelihood estimates for �2 with
!2 D 12 and !2 D 0:52. The plug-in estimates for � are plotted in Fig. 11.1. It can
be seen that both curves fit the data reasonably well, without fitting the observed
series too closely (otherwise we might run into overfitting problems). In particular,
both seem to be able to capture the high inflation periods in the 1970s and 1980s,
whereas the estimated trend remains low and stable since the 1990s until the last
credit crisis. But as expected, when !2 is larger, the estimated � fit the data better.
But we emphasize that if one sets !2 to be too large, one might run into overfitting
problems.
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Fig. 11.1 Fitted values for � under the unobserved components model with !2 D 12 (top panel)
and !2 D 0:52 (bottom panel)
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11.1.2 Bayesian Estimation

The unobserved components model, and state space models in general, may be
viewed as a Bayesian hierarchical model, where the measurement equation provides☞ 229

the likelihood function and the transition equation specifies a prior for the states. For
the remaining parameters, namely, �2 and !2 (note that !2 can be estimated if we
specify a proper prior for !2), we assume the independent priors:

�2 � InvGamma.˛�2 ; ��2/; !2 � InvGamma.˛!2 ; �!2/ ; (11.14)

where ˛�2 ; ��2 ; ˛!2 ; are �!2 constants specified by the user. Typically we set the
shape parameters ˛�2 and ˛!2 to be some small numbers, so that the priors are
relatively non-informative. We then choose the scale parameters ��2 and �!2 such
that the prior means for �2 and !2 have the desired values.

Given the measurement and state equations (11.5) and (11.6), as well as the prior
for �2 and !2 in (11.14), we have the following joint posterior density:

f .�; �2; !2 j y/ / f .y j �; �2/f .� j!2/f .�2/f .!2/ ; (11.15)

where f .�2/ and f .!2/ are the inverse-gamma priors. We can then obtain
posterior draws via the following two-step Gibbs sampler: alternatively draw from
f .� j y; �2; !2/ and f .�2; !2 j y;�/.

We first show that f .� j y; �2; !2/ is a normal density and then discuss how one
can sample from it efficiently. To this end, note that from (11.15) we have

lnf .� j y; �2; !2/ D ln f .�; �2; !2 j y/C const

D ln f .y j �; �2/C lnf .� j!2/C const

D �1
2

�

.y � �/>.y � �/
�2

C �>.H>˝�1H/�
�

C const

D �1
2

�

�>K� � 2

�2
y>�

�

C const :

It follows, similar to the derivation of (11.12), that

.� j y; �2; !2/ � N.b�; K�1/ ;

whereK D H>˝�1H C ��2I andb� D ��2K�1y.
Since the covariance matrix K�1 is a full matrix and is typically of very high

dimension, drawing N.b�; K�1/ the usual way (i.e., via Algorithm 3.3) is time-☞ 84

consuming. Instead, we exploit the special structure of the precision matrix K ,
namely, that it is sparse (see the discussion on page 329). As such, a Cholesky☞ 329

decomposition of the precision matrix K D CC> can be obtained quickly. Then,
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we can use Algorithm 10.1 to quickly sample from N.b�; K�1/. Specifically, if we ☞ 307

let x D .C>/�1z, where z � N.0; I /, then x � N.0; K�1/. Recall that one can
obtain b� efficiently by solving Kb� D ��2y. Finally, � D b� C .C>/�1z has the
desired distribution.

Next, we derive the conditional density f .�2; !2 j y;�/. From (11.15) we have

f .�2; !2 j y;�/ / f .�; �2; !2 j y/

/ f .y j �; �2/f .�2/ � f .� j!2/f .!2/ :

In other words, �2 and !2 are conditionally independent given y and �, with

f .�2 j y;�/ / f .y j �; �2/f .�2/ and f .!2 j y;�/ / f .� j!2/f .!2/ :

In fact, one can show that both conditional densities are inverse-gamma densities.
Namely, by (11.9) and the prior pdf of �2, we have (up to a constant)

ln f .�2 j y;�/ D T

2
ln.

1

�2
/� 1

2�2
.y � �/>.y � �/C .1C ˛�2/ ln.

1

�2
/� ��2

�2
;

which shows that ☞ 234

.�2 j y;�/ � InvGamma

�

˛�2 C T

2
; ��2 C 1

2
.y � �/>.y � �/

�

: (11.16)

Using a similar reasoning, we find

.!2 j y;�/ � InvGamma

 

˛!2 C T � 1
2

; �!2 C 1

2

T
X

tD2
.t � t�1/2

!

: (11.17)

11.2 Time-Varying Parameter Model

The unobserved components model discussed in the last section may be viewed as
a linear regression model with only an intercept, where the intercept is allowed to
change over time. More generally, one can consider linear regression models where
all the regression coefficients are time-varying. As discussed in the introduction,
this is motivated by the empirical findings that typical macroeconomic and financial
variables exhibit time-varying persistence and dynamics. In this section we discuss a
particular type of time-varying parameter models, called time-varying parameter
autoregressive models. Consider again the autoregressive model introduced in
Definition 10.1. Instead of assuming constant autoregressive coefficients, we allow
them to evolve over time.
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Definition 11.3. (Time-Varying Parameter Autoregressive Model). In the
pth-order time-varying parameter autoregressive model, or time-varying
parameter AR(p), the measurement equation is given by

yt D ˇ0t C ˇ1tyt�1 C � � � C ˇptyt�p C "t (11.18)

for t D 1; : : : ; T , where f"tg �iid N.0; �2/, and y0; : : : ; y1�p are initial
observations. The autoregressive coefficients ˇt D .ˇ0t ; ˇ1t ; : : : ; ˇpt /

> in
turn evolve according to the following transition equation:

ˇt D ˇt�1 C ut ; (11.19)

for t D 2; : : : ; T , where futg �iid N.0;˝/, and the transition equation is
initialized with ˇ1 � N.ˇ0;˝0/:

In the above definition, we treat the initial observations y0; : : : ; y1�p as given, and
we do not model them separately. For T much greater than p this has little influence
on estimation and inference.

11.2.1 Bayesian Estimation

We begin by writing (11.18) in matrix notation:

yt D x>
t ˇt C "t ;

where x>
t D .1; yt�1; : : : ; yt�p/, ˇt D .ˇ0t ; ˇ1t ; : : : ; ˇpt /

>, and "t � N.0; �2/.
Now, stack the observations over all times t :

y D Xˇ C " ; (11.20)

where y D .y1; : : : ; yT /
>, ˇ D .ˇ>

1 ; : : : ;ˇ
>
T /

>, " D ."1; : : : ; "T /
> � N.0; �2I /,

and

X D

0

B

B

B

@

x>
1 0 : : : 0

0 x>
2 : : : 0

:::
:::
: : :

:::

0 0 : : : x>
T

1

C

C

C

A

:



11.2 Time-Varying Parameter Model 335

Thus, the joint density of y is given by (suppressing the dependence on the initial
observations y0; : : : ; y1�p)

lnf .y jˇ; �2/ D �T
2

ln �2 � 1

2�2
.y �Xˇ/>.y �Xˇ/C const : (11.21)

Next, we stack the transition equation (11.19) over t . For simplicity we set ˇ0 D
0 (the general case follows similarly). The transition equations can be written in
matrix form as

Hˇ D u ;

where u � N.0; S/, u D .u>
1 ; : : : ;u

>
T /

>, with

H D

0

B

B

B

@

I 0 : : : 0 0

�I I : : : 0 0
:::
:::
: : :

:::
:::

0 0 : : : �I I

1

C

C

C

A

and S D

0

B

B

B

@

˝0 0 : : : 0

0 ˝ : : : 0
:::
:::
: : :

:::

0 0 : : : ˝

1

C

C

C

A

:

Note that jH j D 1 and jS j D j˝0j j˝jT�1. It follows that the joint density of ˇ
satisfies

ln f .ˇ j˝/ D �T � 1

2
ln j˝j � 1

2
ˇ>H>S�1Hˇ C const : (11.22)

Since ˝ is a .p C 1/ � .p C 1/ symmetric matrix, it contains .p C 1/.p C 2/=2

distinct parameters. Even when p is small, say, p D 4, there are 15 distinct
parameters. In typical empirical applications one cannot accurately estimate these
many parameters. We can reduce the number of parameters by assuming that ˝ is
diagonal. We adopt this approach and let!2 D .!20 ; !

2
1 ; : : : ; !

2
p/

> denote the vector
of diagonal elements of ˝ .

To derive the posterior density, it remains to specify the prior for �2 and !2

(note that !2 can be estimated from the data rather than fixed as a vector of
constants if a proper prior is adopted). We assume an independent prior f .�2;!2/ D
f .�2/f .!2/, where

�2 � InvGamma.˛�2 ; ��2/; !2i � InvGamma.˛!2i
; �!2i

/ ; (11.23)

and ˛�2 ; ��2 ; ˛!2i ; and �!2i ; i D 0; : : : ; p; are constants specified by the user.
Finally, the posterior density is given by

f .ˇ; �2;!2 j y/ / f .y jˇ; �2/f .ˇ j!2/f .�2/f .!2/ ; (11.24)

where f .y jˇ; �2/ and f .ˇ j˝/ D f .ˇ j!2/ are provided in (11.21) and (11.22),
respectively. Posterior draws can be obtained using the Gibbs sampler. Specif-
ically, we sequentially draw from f .ˇ j y; �2;!2/ followed by a draw from
f .�2;!2 j y;ˇ/.
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For the first step, we note that f .ˇ j y; �2;!2/ is again a normal density.
Hence, once we determine the mean vector and the precision matrix, we can apply
Algorithm 10.1 to obtain a draw from it efficiently. Using (11.21) and (11.22),☞ 307

we have

lnf .ˇ j y; �2;!2/ D ln f .y jˇ; �2/C ln f .ˇ j!2/C const

D � 1

2�2
.y � Xˇ/>.y �Xˇ/ � 1

2
ˇ>H>S�1Hˇ C const

D � 1

2
.ˇ �bˇ/>Kˇ.ˇ �bˇ/C const ;

where

Kˇ D 1

�2
X>X CH>S�1H and bˇ D K�1

ˇ

�

1

�2
X>y

�

:

In other words, .ˇ j y; �2;!2/ � N.bˇ; K�1
ˇ /.

Next, note that �2 and !2 are conditionally independent given y and ˇ. Namely,
from (11.24) we have

f .�2 j y;ˇ/ / f .y jˇ; �2/f .�2/ and f .!2 j y;ˇ/ / f .ˇ j!2/f .!2/ :

Similar to (11.16) it follows from (11.21) and the prior f .�2/ that

.�2 j y;ˇ/ � InvGamma

�

˛�2 C T

2
; ��2 C 1

2
.y � Xˇ/>.y � Xˇ/

�

:

To find the distribution of .!2 j y;ˇ/, we use (11.22) and the assumption that ˝ D
diag.!2/, to find

lnf .!2 j y;ˇ/ D �T � 1

2

p
X

iD0
ln!2i � 1

2

p
X

iD0

1

!2i

T
X

tD2
.ˇit � ˇi;t�1/2 C const :

From this we can deduce that conditional on y and ˇ the components of !2 are
independent of each other and each has an inverse-gamma distribution:

.!2i j y;ˇ/
ind� InvGamma

 

˛!2i
C T � 1

2
; �!2i

C 1

2

T
X

tD2
.ˇit � ˇi;t�1/2

!

for i D 0; : : : ; p:

Example 11.3 (Modeling Inflation with Time-Varying Parameter AR Model).
In Example 11.2 we used the unobserved components model to fit the US quarterly
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CPI inflation rate from 1947 to 2011. Here we illustrate Bayesian estimation
in the more general time-varying parameter AR model. Specifically, we fit the
time-varying parameter AR model in (11.18) and (11.19) using the inverse-gamma
priors in (11.23). For simplicity, we fix p, the number of lags, to be 2. As for
the hyperparameters in the prior, we choose relatively small values for the shape
parameters so that the prior is relatively non-informative (e.g., large prior variances):
˛�2 D ˛!2i

D 5; i D 0; : : : ; p. Next, we set ��2 D .˛�2 � 1/, �!20 D 0:52.˛!20
� 1/,

and �!2i
D 0:12.˛!2i

� 1/ for i D 1; : : : ; p. These values imply E�2 D 1,

E!20 D 0:52, and E!2i D 0:12 for i D 1; : : : ; p. The covariance matrix ˝0 is
set to be diagonal with diagonal elements 5.

Before we discuss the main Gibbs sampler, we need a fast routine to build an
appropriate sparse matrix. Recall that we want to write the measurement equation
in matrix notation y D Xˇ C " [see (11.20)].

The following function SURform takes the T � .p C 1/ matrix

0

B

B

B

@

x>
1

x>
2
:::

x>
T

1

C

C

C

A

and produces the sparse matrix X , which is of dimension T � T .p C 1/.

function Xout = SURform(X)
[r c] = size( X );
idi = kron((1:r)’,ones(c,1));
idj = (1:r*c)’;
Xout = sparse(idi,idj,reshape(X’,r*c,1));

The function to implement the Gibbs sampler is given below. The number
of iterations in the main Gibbs run is 11000, where the first 1000 is a burn-in
sample. Note that the Statistics Toolbox function gamrnd.m is used instead of
gamrand.m because the latter assumes scalar input parameters.

%TVPAR.m
load ’USCPI.csv’;
nloop = 11000;
burnin = 1000;
p = 2; % no of lags
y0 = USCPI(1:p);
y = USCPI(p+1:end);
T = length(y);
q = p+1; % dim of states



338 11 State Space Models

Tq = T*q;
%% prior

asigma2 = 5; lsigma2 = 1*(asigma2-1);
aomega2 = 5; lomega2 = (aomega2-1)*[0.5^2; 0.1^2*ones(p,1)];
invOmega0 = ones(q,1)/5;

%% initialize
omega2 = .1*ones(q,1);
sigma2 = 1;
store_omega2 = zeros(nloop-burnin,q);
store_sigma2 = zeros(nloop-burnin,1);
store_beta = zeros(Tq,1);

%% construct/compute a few things
X = [ones(T,1) [y0(end); y(1:end-1)] [y0; y(1:end-2)]];
bigX = SURform(X);
H = speye(Tq) - sparse(q+1:Tq,1:(T-1)*q, ...

ones(1,(T-1)*q),Tq,Tq);
newaomega2 = aomega2 + T - 1;
newasigma2 = asigma2 + T ;
for loop = 1:nloop

%% sample beta
invS = sparse(1:Tq,1:Tq,[invOmega0’ ...

repmat(1./omega2’,1,T-1)]);
K = H’*invS*H + bigX’*bigX/sigma2;
C = chol(K,’lower’);
betahat = K\(bigX’*y/sigma2);
beta = betahat + C’\randn(Tq,1);

%% sample omega2
erromega2 = reshape(H*beta,q,T);
newlomega2 = lomega2 + sum(erromega2(:,2:end).^2,2)/2;
omega2 = 1./gamrnd(newaomega2, 1./newlomega2);

%% sample sigma2
newlsigma2 = lsigma2 + sum((y-bigX*beta).^2)/2;
sigma2 = 1/gamrnd(newasigma2, 1./newlsigma2);
if loop>burnin

i=loop-burnin;
store_beta = store_beta + beta;
store_omega2(i,:) = omega2’;
store_sigma2(i,:) = sigma2;

end
end
betahat = store_beta/(nloop-burnin);
sigma2hat = mean(store_sigma2);
omega2hat = mean(store_omega2);

The estimated posterior means forˇt D .ˇ0t ; ˇ1t ; ˇ2t /
> are reported in Fig. 11.2.

It is evident from the plots that there is a lot of time variation in the regression
coefficients, which suggests that a time-invariant autoregressive model might not be
appropriate. For instance, the intercept ˇ0t is estimated to be about 1 % in the 1960s,
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Fig. 11.2 Estimated posterior means for ˇt

while the estimate jumps to around 2 % in the 1980s. Moreover, the estimate for the
lag-1 coefficient ˇ1t increases from around 0.5 in 1960 to about 0.65 in the 1980s,
which then decreases gradually in the following two decades, and reaches a small
value of 0.2 in 2010. Taken together, the hyperinflation in the 1970s–1980s may
be viewed as a combination of a large shift in the level of the underlying inflation,
together with an increase in persistence. After the 1980s, however, the underlying
inflation stays at around 2 %, but since the persistence decreases substantially, the
inflation rate remains at a relatively low level.

11.3 Stochastic Volatility Model

A prominent feature of many time series, particularly macroeconomic and financial
data, is the so-called volatility clustering—the phenomenon that large changes
in observations tend to be followed by large changes and small changes followed
by small changes. For example, large movements in asset returns tend to cluster
together (e.g., during crisis), whereas there might be little variation over long
stretches of “normal periods.” Models with constant variance obviously do not
allow the volatility of the observations to change over time and hence cannot model
volatility clustering. In this section we introduce a class of state space models that
can accommodate time-varying volatility. To focus our discussion on modeling the
variance of the time series, we assume for the moment that the observations fyt g
have zero mean; one could add a suitable conditional mean process such as an
AR(p) component later on.
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Definition 11.4. (Stochastic Volatility Model). In the stochastic volatility
model the observation at time t is given by

yt D eht =2"t ; (11.25)

where f"tg �iid N.0; 1/. Consequently, the volatility of yt is Var.yt / D eht .
The states are initialized with h1 � N.h0; �

2
0 / for some known constants h0

and �20 and evolve according to a random walk

ht D ht�1 C vt ; t D 2; : : : ; T ; (11.26)

where fvtg �iid N.0; !2/: The state ht is called the log-volatility.

The stochastic volatility model is an example of a nonlinear state space model
where the measurement equation (11.25) is not linear in the state. One challenge of
fitting this nonlinear model is that the joint conditional density of the states h D
.h1; : : : ; hT /

> given y is nonstandard (in contrast to previous examples where the
conditional densities of the states are all Gaussian). As such, Bayesian estimation
using MCMC and classical estimation via EM both become more difficult.

11.3.1 Auxiliary Mixture Sampling Approach

A popular method for estimating the stochastic volatility model is auxiliary
mixture sampling. The basic idea underlying this approach is as follows. First,
we transform the observation yt so that the measurement equation becomes linear
in ht . Specifically, we square both sides of the measurement equation (11.25) and
take the (natural) logarithm:

y�
t D ht C "�

t ; (11.27)

where y�
t D lny2t and "�

t D ln "2t . In practice, it is often recommended to set
y�
t D ln.y2t C c/ for some small constant c, say, c D 0:0001, to avoid numerical

problems when yt is close to zero. Now, after the transformation, (11.27) and (11.26)
define a linear state space model. However, the error "�

t no longer has a Gaussian
distribution (in fact, it has a log-�21 distribution), and the estimation techniques for
linear Gaussian state space models discussed earlier cannot be directly applied.

In view of this difficulty, the second ingredient of the auxiliary mixture sampling
approach is to find a suitable Gaussian mixture that approximates the pdf of "�

t :

f ."�
t / �

n
X

iD1
pi '."

�
t I �i ; �2i / ; (11.28)
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where '.x I �; �2/ is the Gaussian density with mean � and variance �2, pi is the
mixture probability for the i th component, and n is the number of components.
The idea is to approximate the nonlinear stochastic volatility model using a mixture
of linear Gaussian models, where the estimation of the latter models is standard.
We can equivalently write (11.28) in terms of an auxiliary random variable st 2
f1; : : : ; ng that serves as the mixture component indicator (hence, the name of the
approach):

."�
t j st D i/ � N.�i ; �

2
i / ; (11.29)

P.st D i/ D pi : (11.30)

Now, conditional on the component indicator st , we have a linear Gaussian model
and the machinery for estimating such models can be applied.

It remains to select a suitable Gaussian mixture. By matching the moments of the
log-�21 distribution, Kim et al. (1998) propose a seven-component Gaussian mixture

f .x/ D
7
X

iD1
pi '.x I �i � 1:2704; �2i / ;

where the values of the parameters are given in Table 11.1. It is important to note
that since the log-�21 distribution does not involve any unknown parameters, neither
does this Gaussian mixture. In fact, all the parameter values of the approximating
density are known.

Table 11.1 A seven-component Gaussian mixture for approximating the log-�21 distribution

Component pi �i �2i

1 0:00730 �10:12999 5:79596

2 0:10556 �3:97281 2:61369

3 0:00002 �8:56686 5:17950

4 0:04395 2:77786 0:16735

5 0:34001 0:61942 0:64009

6 0:24566 1:79518 0:34023

7 0:25750 �1:08819 1:26261

To summarize the model, define s D .s1; : : : ; sT /
>, y� D .y�

1 ; : : : ; y
�
T /

>, h D
.h1; : : : ; hT /

>, v D .v1; : : : ; vT />, and "� D ."�
1 ; : : : ; "

�
T /

>. Let H be the same
matrix as in (11.10). By (11.27) we can write

y� D h C "�;

where ."� j s/ � N.d; ˙y� /;with d D .�s1�1:2704; : : : ; �sT �1:2704/> and˙y� D
diag.�2s1 ; : : : ; �

2
sT
/: The (fixed) f�i g and f�2i g are given in Table 11.1. Consequently,

.y� j s;h/ � N.h C d; ˙y�/ : (11.31)
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Using an inverse-gamma prior for !2, the hierarchical Bayesian model is thus as
follows:

1. .y� j s;h/ � N.h C d; ˙y�/.
2. It follows from (11.26) that the random vector h is of the form h D H�1v, where

v � N.0;˝v/; with ˝v D diag.!20 ; !
2; : : : ; !2/.

3. The components s1; : : : ; st of s are independent, with P.st D i/ D pi ; i D
1; : : : ; 7.

4. !2 � InvGamma.˛!2 ; �!2/.

In order to perform a Bayesian analysis we need to be able to sample from the
posterior pdf f .h; s; !2 j y/. We can do this via a Gibbs sampler, by sequentially
sampling from (1) f .h j y�; s; !2/; (2) f .s j y�;h; !2/ D f .s j y�;h/; and (3)
f .!2 j y;h; s/ D f .!2 j h/.

To implement (1), we write

lnf .h j y�; s; !2/ D ln f .y� j s;h/C lnf .h j!2/C const ;

where f .y� j s;h/ follows from (11.31) and f .h j!2/ follows from

.h j!2/ � N.0; .H>˝�1
v H/�1/ :

Using a similar reasoning as in Sect. 11.1.2, we find

.h j y�; s; !2/ � N.bh; K�1
h / ;

where

Kh D ˙�1
y�

CH>˝�1
v H and bh D K�1

h ˙�1
y�

.y� � d/ :

A draw from the above Gaussian distribution can be efficiently obtained using
Algorithm 10.1.☞ 307

To implement (2), note that f .s j y�;h/ D QT
tD1 f .st j y�

t ; ht /, and therefore we
can draw each st independently. Since st is a discrete random variable that follows a
seven-point distribution, it can be easily sampled as long as we can compute P.st D
i j y�

t ; ht / for i D 1; : : : ; 7: In fact, we have

P.st D i j y�
t ; ht / D 1

ct
pi '.y

�
t I ht C �i � 1:2704; �2i / ;

where ct D P7
jD1 pj '.y�

t I ht C �j � 1:2704; �2j / is the normalization constant.
Finally, implementation of (3) is similar to the derivation in (11.17). In particular,

given y and h, !2 has again an inverse-gamma distribution:

.!2 j y;h/ � InvGamma

 

˛!2 C T � 1

2
; �!2 C 1

2

T
X

tD2
.ht � ht�1/2

!

:
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Example 11.4 (Modeling Inflation with Unobserved Components Stochastic
Volatility Model). We have considered in Example 11.2 an unobserved components
model with constant variance for modeling the US quarterly CPI inflation. In this
example we extend the constant variance to include stochastic volatility in the
measurement equation. Specifically, consider

yt D t C eht =2"t ;

t D t�1 C ut ;

ht D ht�1 C vt ;

where f"tg �iid N.0; 1/, futg �iid N.0; !2 /, and fvtg �iid N.0; !2h/. The state equa-
tions are initialized with 1 � N.0; V / and h1 � N.h0; Vh/, where 0 D h0 D 0

and V D Vh D 9. Again we assume independent inverse-gamma priors for !2
and !2h:

!2 � InvGamma.˛ ; � / and !2h � InvGamma.˛h; �h/ ;

where we set ˛ D ˛h D 10, � D 0:252.˛ � 1/; and �h D 0:22.˛h � 1/. These
values imply E!2 D 0:252 and E!2h D 0:22. By defining y�

t appropriately, the
results derived earlier in this section can be applied to construct a suitable Gibbs
sampler. More precisely, let

y�
t D ln..yt � t /

2 C 0:0001/ :

Then, by using the auxiliary mixture sampling approach, we sequentially draw
from (1) f .s j y;�;h; !2 ; !

2
h/ D f .s j y�;�;h/; (2) f .h j y;�; s; !2 ; !

2
h/ D

f .h j y�;�; s; !2h/; (3) f .� j y;h; s; !2 ; !
2
h/ D f .� j y;h; !2 /; and (4)

f .!2 ; !
2
h j y;�;h; s/ D f .!2 ; !

2
h j �;h/.

For Steps (1) and (2), we can use the following MATLAB function SVRW to draw
from the full conditional densities for s and h:

function [h s] = SVRW(ystar,h,omega2h,Vh)
T = length(h);

%% parameters for the Gaussian mixture
pi = [0.0073 .10556 .00002 .04395 .34001 .24566 .2575];
mui = [-10.12999 -3.97281 -8.56686 2.77786 .61942 1.79518 ...

-1.08819] - 1.2704;
sig2i =[5.79596 2.61369 5.17950 .16735 .64009 .34023 1.26261];
sigi = sqrt(sig2i);

%% sample s from a 7-point discrete distribution
temprand = rand(T,1);
q = repmat(pi,T,1).*normpdf(repmat(ystar,1,7),repmat(h,1,7)...

+repmat(mui,T,1),repmat(sigi,T,1));
q = q./repmat(sum(q,2),1,7);
s = 7 - sum(repmat(temprand,1,7)<cumsum(q,2),2)+1;
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%% sample h
H = speye(T) - sparse(2:T,1:(T-1),ones(1,T-1),T,T);
invOmegah = spdiags([1/Vh; 1/omega2h*ones(T-1,1)],0,T,T);
d = mui(s)’; invSigystar = spdiags(1./sig2i(s)’,0,T,T);
Kh = H’*invOmegah*H + invSigystar;
Ch = chol(Kh,’lower’);
hhat = Kh\(invSigystar*(ystar-d));
h = hhat + Ch’\randn(T,1);

Next, using a similar derivation as on page 332, one can show that

.� j y;h; !2 / � N.b�; K�1
� / ;

where˙�1
y D diag.e�h1 ; : : : ; e�hT /,

K� D H>˝�1
� H C˙�1

y ; and b� D K�1
� ˙�1

y y :

Hence, Step 3 can be implemented easily. Lastly, to complete Step 4, note that !2
and !2h are conditionally independent given the states. Moreover,

.!2 j �;h/ � InvGamma

 

˛ C T � 1
2

; � C 1

2

T
X

tD2
.t � t�1/2

!

;

.!2h j �;h/ � InvGamma

 

˛h C T � 1
2

; �h C 1

2

T
X

tD2
.ht � ht�1/2

!

:

The main script below fits the unobserved components model with stochastic
volatility using the auxiliary mixture sampling approach.

%UCSV.m
load ’USCPI.csv’;
y = USCPI;
T = length(y);
nloop = 11000;
burnin = 1000;

%% prior
Vtau = 9; Vh = 9;
atau = 10; ltau = .25^2*(atau-1);
ah = 10; lh = .2^2*(ah-1);

%% initialize the Markov chain
omega2tau = .25^2;
omega2h = .2^2;
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h = log(var(y)*.8)*ones(T,1);
H = speye(T) - sparse(2:T,1:(T-1),ones(1,T-1),T,T);

%% initialize for storage
store_omega2tau = zeros(nloop - burnin,1);
store_omega2h = zeros(nloop - burnin,1);
store_tau = zeros(nloop - burnin,T);
store_h = zeros(nloop - burnin,T);

%% compute a few things
newatau = (T-1)/2 + atau;
newah = (T-1)/2 + ah;
for loop = 1:nloop

%% sample tau
invOmegatau = sparse(1:T,1:T, ...

[1/Vtau 1/omega2tau*ones(1,T-1)]);
invSigy = sparse(1:T,1:T,exp(-h));
Ktau = H’*invOmegatau*H + invSigy;
Ctau = chol(Ktau,’lower’);
tauhat = Ktau\(invSigy*y);
tau = tauhat + Ctau’\randn(T,1);

%% sample h
ystar = log((y-tau).^2 + .0001 );
h = SVRW(ystar,h,omega2h,Vh);

%% sample omega2tau
newltau = ltau + sum((tau(2:end)-tau(1:end-1)).^2)/2;
omega2tau = 1/gamrnd(newatau, 1./newltau);

%% sample omega2h
newlh = lh + sum((h(2:end)-h(1:end-1)).^2)/2;
omega2h = 1/gamrnd(newah, 1./newlh);
if loop>burnin

i = loop-burnin;
store_tau(i,:) = tau’;
store_h(i,:) = h’;
store_omega2tau(i,:) = omega2tau;
store_omega2h(i,:) = omega2h;

end
end
tauhat = mean(store_tau)’;
hhat = mean(store_h)’;

We use the above code to obtain 10000 posterior draws after a period of 1000
draws as burn-in. We present in Fig. 11.3 the estimated posterior means for the
underlying inflation � and the log-volatilities h.

Compared to the results obtained under the constant variance unobserved
components model, the estimated underlying inflation exhibits a similar pattern,
but is seemingly more variable. In addition, the estimated log-volatilities show that
there is substantial time variation in the variance in the measurement equation,
highlighting the relevance of the stochastic volatility model.
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Fig. 11.3 Estimated posterior means for � (left panel) and h (right panel)

11.4 Problems

11.1. Prove the updating formulas in (11.4) by using the joint distribution in (11.3)
and Theorem 3.8.☞ 86

11.2. The trace of a square matrix A D .aij / is the sum of the diagonal elements:
tr.A/ D P

i ai i .

(a) Let A and B be matrices (not necessarily square) such that AB and BA are
square matrices (not necessarily of the same dimension). Show that tr.AB/ D
tr.BA/.

(b) Let A be a square matrix and let x be a random vector with mean � and
covariance matrix˙ . Using (a) and the fact that tr.EZ/ D E tr.Z/ for a random
square matrix Z, show that

E.x>Ax/ D tr.A˙/C �>A� :

11.3. Show that for the measurement equation in (11.5), if one fixes t D yt , then
the function

g.�2/ D lnf .y j �; �2/
is unbounded in �2.

11.4. Another interpretation of the unobserved components model is to view it as a
way to specify stochastic trends. Using the transition equation (11.6) and recursive
substitution, show that

Var.t j 1/ D .t � 1/!2 ;
i.e., the stochastic trend t has variance that is increasing with time, which implies
that t can wander over an increasing range of values as time increases.
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11.5. For the unobserved components model (and more generally linear Gaussian
state space models), it is possible to evaluate the likelihood function L.�2I y/
without computing the high-dimensional integral in (11.7). More specifically, by
Bayes’ theorem, the likelihood function can be written as (recall that !2 is a fixed
constant)

L.�2I y/ D f .y j �2; !2/ D f .y j �; �2/f .� j!2/
f .� j y; �2; !2/

;

where the densities f .y j �; �2/; f .� j!2/; and f .� j y; �2; !2/ are all normal, and
can be evaluated quickly. Since the second equality holds for all �, one can simply
choose some convenient values, say, � D 0.

Redo Example 11.2 by directly maximizing the log-likelihood function l.�2I y/.
Specifically, plot l.�2I y/ as a function of �2. Moreover, find the maximum
likelihood estimate for �2.

11.6. In this exercise we generalize the unobserved components model to allow for
an additional channel for persistence. Specifically, consider

yt D t C ˇ.yt�1 � t�1/C "t ;

t D t�1 C ut ;

where f"tg �iid N.0; �2/, futg �iid N.0; !2/, and !2 D 1. The underlying trend is
initialized with 1 � N.0; 5/ and 0 D 0. It is obvious that if ˇ D 0 it reduces to the
standard unobserved components model.

(a) Derive the log-density lnf .y j y0;�; ˇ; �2/.
(b) Show that the conditional density f .� j y; y0; ˇ; �2; !2/ is normal, and derive

its parameters.
(c) Describe how one can estimate the model parameters using classical and

Bayesian methods.

11.7. Under the unobserved components model, suppose the state equation is
given by

t D ˇt�1 C ut ; ut � N.0; !2/

for t D 2; : : : ; T; with 1 � N.0; !
2
0 /. Derive the joint density f .� jˇ; !2/.

11.8. Consider the following unobserved components model with AR(1) transition
equation:

yt D t C "t ;

t D ˇt�1 C ut ;
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where f"tg �iid N.0; �2/, futg �iid N.0; !2/, and the underlying trend is initial-
ized with 1 � N.0; 5/. Suppose we assume the priors: ˇ � N.0; 1/; �2 �
InvGamma.10; 9/; and !2 � InvGamma.10; 9/: Derive all the full conditional
distributions. Fit this model with the US CPI data. In particular, use the kde.m
program to plot a kernel density estimate of posterior distribution of ˇ.



Appendix A
Matlab Primer

MATLAB, a portmanteau of MATrix LABoratory, is an interactive matrix-based
program for numerical computation. It is a very easy to use high-level language
that requires minimal programming skills. The purpose of this appendix is to
introduce the reader to some basic MATLAB functions that are used in the main
text. For more detailed information and full documentation, please visit the official
documentation site

http://www.mathworks.com/help/techdoc/.

In addition, the command help function_name gives information about the
function function_name. Alternatively, select Help -> Product Help in the
toolbar in the MATLAB command window.

A.1 Matrices and Matrix Operations

The most fundamental objects in MATLAB are, not surprisingly, matrices. For
instance, to create a 1�3matrix (i.e., row vector) a, enter into the MATLAB command
window:

a = [1 2 3]

MATLAB returns

a =
1 2 3

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__12, © The Author(s) 2014
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To create a matrix with more than one row, use semicolons to separate the rows.
For example, the line

A = [1 2 3; 4 5 6; 7 8 9];

creates a 3� 3matrix A. It is worth noting that MATLAB is case sensitive for variable
names and built-in functions. That means MATLAB treats a andA as different objects.
To display the i th element in a vector x, just type x(i). For example,

a(2)

refers to the second element of a: Similarly, one can access a particular element of
A by specifying its row and column number (row first followed by column). For
instance,

A(2,3)

displays the .2; 3/ entry of the matrixA. To display multiple elements in the matrix,
one can use expressions involving colons. For example,

A(1,1:2)

displays the first and second elements in the first row, whereas

A(:,2)

displays all the elements in the second column.
To perform numerical computation, one needs some basic matrix operations. In

MATLAB, the following matrix operations, among many others, are available:

C addition = right division
� subtraction ˆ power
	 multiplication 0 transpose
n left division

For example,

a’
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returns the transpose of a:

ans =

1
2
3

whereas

a*A

gives the product of a and A:

ans =

30 36 42

Other operations are obvious, except for the matrix divisions n and =. If A is
an invertible square matrix and a is a compatible vector, then x D Ana is the
solution of A x D a and x D a=A is the solution of xA D a: In other words,
Ana gives the same result (in principle) as A�1 a, though they compute their results
in different ways. Specifically, the former solves the linear system A x D a for x
by Gaussian elimination, whereas the latter first computes the inverse A�1, then
multiplies it by a. As such, the second method is in general slower as computing the
inverse of a matrix is time-consuming (and inaccurate).

It is important to note that although addition and subtraction are element-wise
operations, the other operations listed above are not—they are matrix operations.
For example, Aˆ2 gives the square of the matrix A, not a matrix whose entries are
the squares of those in A. One can make the operations 	, n, =, and ˆ to operate
element-wise by preceding them by a full stop. For example,

A^2

returns the square of the matrix A:

ans =

30 36 42
66 81 96
102 126 150
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On the other hand,

A.^2

computes the squares element-wise:

ans =

1 4 9
16 25 36
49 64 81

A.2 Some Useful Built-In Functions

In this section we list some common built-in functions which are used throughout
the main text. One can learn more about a specific function, say, eye, by
typing help eye in the command window. Here are some useful matrix-building
functions:

eye create an identity matrix
zeros create a matrix of zeros
ones create a matrix of ones
diag create a diagonal matrix or extract the diagonal from a matrix
rand generate U.0; 1/ random variables
randn generate N.0; 1/ random variables

For example, eye(n) creates an n � n identity matrix, and ones(m,n)
produces an m � n matrix of ones. Given the 3 � 3 matrix A,

diag(A)

extracts the diagonal of the matrix A:

ans =

1
5
9

But for the 3 � 1 vector a, the same command

diag(a)
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builds a diagonal matrix whose main diagonal is a:

ans =

1 0 0
0 2 0
0 0 3

Some other useful vector and matrix functions:

exp exponential log natural log
sqrt square root abs absolute value
sin sine cos cosine
sum sum prod product
max maximum min minimum
chol Cholesky factorization inv inverse
det determinant size size

If x is a vector, sum(x) returns the sum of the elements in x. For a matrix X ,
sum(X) returns a row vector consisting of sums of each column, while sum(X,2)
returns a column vector of sums of each row. For example,

sum(A)

returns

ans =

12 15 18

whereas

sum(A,2)

gives

ans =

6
15
24

For a positive definite matrix C , chol(C,’lower’) returns the lower
Cholesky factorization B such that BB> D C . For example,
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B = [ 1 0 0; 2 3 0; 4 5 6];
C = B*B’;
chol(C,’lower’)

returns the lower Cholesky factor of BB>, which is, of course, B .

A.3 Flow Control

MATLAB has the usual control flow statements such as if-then-else, while,
and for. For instance, the general form of a simple if statement is

if condition
statements

end

The statements will be executed if the condition is true. Multiple branching is done
by using elseif and else. For example, the following code simulates rolling a
four-sided die:

u = rand;
if u <= .25

disp(’1’);
elseif u <= .5

disp(’2’);
elseif u <= .75

disp(’3’);
else

disp(’4’);
end

The general form of a while loop is

while condition
statements

end

The statements will be repeatedly executed while the condition remains true. To
illustrate the while loop syntax, suppose we wish to generate a positive normal
random variable [with pdf given in (2.25)]. We can do that using the following☞ 56

simple while loop:

u = randn;
while u <= 0

u = randn;
end
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Another useful control flow statement is the for loop, whose general form is

for count
statements

end

Unlike a while loop, the for loop executes the statements for a fixed number of
times. As an example, the following code generates five draws from the positive
normal distribution.

x = zeros(1,5); %% create a storage vector
for i=1:5

u = randn;
while u <= 0

u = randn;
end
x(i)=u;

end

A.4 Function Handles and Function Files

In previous sections we have introduced some built-in functions in MATLAB. For
instance, sqrt is a function that takes an argument and returns an output (its square
root). Later on we will need to create our own functions that take one or more input
arguments, operate on them, and return the results. One way to create new functions
is through function handles. For example,

f = @(x) x.^2 + 5*x - 10 ; % Note the use of the dot

creates the function f .x/ D x2 C 5x � 10 with the function handle f. The function
handle gives you a means of invoking the function. To evaluate, say, f .10/, we can
type feval(f,10), or simply, f(10).

Function handles can be passed to other functions as inputs. For instance, if we
want to find the minimum point of f .x/ in the interval .�10; 10/, we can use
the built-in function fminbnd (see Sect. A.6 for a more detailed discussion on
optimization routines):

[xmin fmin] = fminbnd(f,-10, 10)

Note that fminbnd takes three inputs (a function handle and the two end-points
of the interval) and returns two outputs (the minimizer and the minimal value). In
our example, the minimizer of f .x/ in .�10; 10/ is �2:5, and the corresponding
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functional value is �16:25. To create a function that takes more than one input is
just as easy. For example,

g = @(x,y) x.^2 + y.^3 + x.*y

defines the two-variable function g.x; y/ D x2 C y3 C xy.
For more complex functions that involve multiple lines and intermediate vari-

ables, we need the command function. For example, the following code takes a
column vector of data and computes its mean and standard deviation:

function [meanx, stdevx] = stat(x)
n = length(x);
meanx = sum(x)/n;
stdevx = sqrt(sum(x.^2)/n - meanx.^2);

It is important to note that all the code must be written and saved in a separate
m-file. Also, the name of the file should coincide with the name of the function; in
this case, the file must be called stat.m. After saving the file, it can be used the
same way as other built-in functions, for example:

[meanx stdx] = stat(randn(100,1))

returns

meanx =

0.0530

stdx =

0.9902

A.5 Graphics

MATLAB has several high-level graphical routines and very extensive plotting
capabilities. It allows users to create various graphical objects including two- and
three-dimensional graphs. One can also have a title on a graph, add a legend, change
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the font and font size, label the axis, etc. For more information, in the command
window, click on Help and next select Demos. Then choose Graphics followed
by 2D Plots.

In MATLAB the most basic function used to create 2D graphs is plot. For
example, to make a graph of y D sin.x/ on the interval from x D 0 to x D 2� , we
use the following code:

x = 0:.01:2*pi;
y = sin(x);
plot(x,y);

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1Fig. A.1 A plot of the graph
y D sin.x/ from 0 to 2�

The graph produced is given in Fig. A.1. Note that the command x =
0:.01:2*pi; creates a vector whose components range from 0 to 2� in steps
of 0.01. Another useful command to create a grid is linspace (use help
linspace to learn more about this function).

Another useful function is hist, which allows us to plot histograms. For
example,

hist(randn(1000,1),50);

creates a histogram where the 1000 standard normal draws are put into 50 equally
spaced bins (see Fig. A.2).
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70Fig. A.2 A histogram of
1000 standard normal draws

Instead of a histogram, it is often more useful to have a density estimate. One
fast and reliable Gaussian kernel density estimator is the theta KDE of Botev
et al. (2010). The MATLAB function kde.m can be downloaded from http://www.
mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator. See
also Example 7.4 for an illustration.☞ 202

It is often desirable to plot several graphs in the same figure window. For this
purpose we need the function subplot. The function subplot(i,j,k) takes
three arguments: the first two tells MATLAB that an i � j array of plots will be
created, and the third is the running index that indicates the kth subplot is currently
generated. Suppose we wish to plot the functions y D sin.x2=2/ and y D sin.2x/
in the same figure window. A little modification of the above code accomplishes this
goal:
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Fig. A.3 Plots of the graphs y D sin.x2=2/ and y D sin.2x/ from 0 to 2�

http://www.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator
http://www.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator
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x = 0:.01:2*pi;
y1 = sin(x.^2/2); y2 = sin(2*x);
subplot(1,2,1); plot(x,y1);
subplot(1,2,2); plot(x,y2);

In addition, one can also easily produce 3D graphical objects in MATLAB. To
illustrate various useful routines, suppose we want to plot the density function of
the bivariate normal distribution (see Sect. 3.6) given by ☞ 82

f .x; yI %/ D 1

2�
p

1 � %2
e

� 1

2.1�%2/
.x2�2%xyCy2/

:

As in plotting a 2D graph, we first need to build a grid, and this can be done
with the function meshgrid. After computing the values of the function at each
point on the grid, we can plot the 3D graph using mesh. For example, we use the
following code

rho = .6;
[x y] = meshgrid(-2:.1:2, -2:.1:2); %% build a 2D grid
z = 1/(2*pi*sqrt(1-rho^2)) ...

* exp(-(x.^2 -2*rho*x.*y + y.^2)/(2*(1-rho^2)));
mesh(x,y,z);

to plot the bivariate normal density function with % D 0:6 in Fig. A.4. The ellipsis
(. . . ) is used to break up a long line into multiple lines.
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Fig. A.4 The density
function of the bivariate
normal distribution with
% D 0:6
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We can produce a contour plot by using the function contour:

contour(x,y,z);

The result is shown in Fig. A.5.
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2Fig. A.5 A contour plot of
the bivariate normal density
function with % D 0:6

A.6 Optimization Routines

MATLAB provides various built-in optimization routines. In this section we discuss
some of them that are used in the main text. Note that all the optimization routines
in MATLAB are framed in terms of minimization. In order to perform maximization,
some minor changes to the objective function are required. More precisely, suppose
we want to maximize the function f .x/ and find a maximizer xmax D argmaxx f .x/.
Instead of the original maximization problem, consider minimizing �f .x/ and
noting that

xmax D argmax
x

f .x/ D argmin
x

�f .x/ :

Hence, without loss of generality, we will focus on minimization routines. One
basic minimization function is fminbnd, which finds the minimum of a single-
variable function on a fixed interval. To illustrate its usage, suppose we wish to
minimize the function f .x/ D sin.x2/ over the interval Œ0; 3� (see Fig. A.6).
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Fig. A.6 A plot of
f .x/ D sin.x2/ from 0 to 3

After defining the function f .x/ D sin.x2/ using the command

f = @(x) sin(x.^2);

we pass f to fminbnd, which takes three inputs (the function handle, lower and
upper bounds of the interval) and gives two outputs (the minimizer and value of the
function evaluated at the minimizer):

[xmin fmin] = fminbnd(f,0,3);

For this example, we have

[xmin fmin]

ans =

2.1708 -1.0000

The function fminbnd can only be used to minimize univariate functions
on a closed interval. For multivariate minimization, one very useful function is
fminsearch that finds the unconstrained minimum of a function of several
variables. fminsearch takes two inputs, namely, the function handle and a
starting value. Like fminbnd, fminsearch gives two outputs: the minimizer and
the minimum (the value of the function evaluated at the minimizer). As an example,
suppose we wish to maximize the bivariate normal pdf
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f .x1; x2I %/ D 1

2�
p

1 � %2 e
� 1

2.1�%2/
.x21�2%x1x2Cy22 /

with respect to x D .x1; x2/ with % D 0:6. To this end, first define g.x1; x2/ D
�f .x1; x2I %/:

rho = .6;
g = @(x) -1/(2*pi*sqrt(1-rho^2)) ...

*exp(-(x(1).^2 -2*rho*x(1).*x(2) +x(2).^2)
/(2*(1-rho^2)));

Note that the variable x is a 1� 2 vector. Then, we pass g to fminsearchwith
starting values, say, Œ1;�1�:

[xmin gmin] = fminsearch(g, [1 -1]);

For this example, we have

[xmin gmin]

ans =

0.0000 0.0000 -0.1989

That is, the mode of f .x1; x2I % D 0:6/ is x D .0; 0/; and f .0; 0/ D 0:1989.

A.7 Handling Sparse Matrices

A sparse matrix is simply a matrix that contains a large proportion of zeros.
Computation for sparse matrices can typically be done much faster than for full
matrices. In addition, as most of the elements in a sparse matrix are zeros, the storage
cost of a sparse matrix is also small. In statistics we often need to deal with large
sparse matrices. Thus it is useful to learn how to handle them in MATLAB.

A basic function for creating sparse matrices is sparse. For example, suppose
the matrix

W D

0

B

B

@

1 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 3 1

1

C

C

A
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is stored as a full matrix in MATLAB. The command sparse(W) converts W to
sparse form by squeezing out any zero elements and returns:

ans =

(1,1) 1
(2,2) 1
(3,3) 2
(4,4) 3
(4,5) 1

Notice that only the nonzero elements in W are stored. In general, we can create
a matrix S by the command S = sparse(i,j,s,m,n), which uses vectors i,
j, and s to generate an m � n sparse matrix such that S.i.k/; j.k// D s.k/: For
example, to create the matrix W above, we first need to build a vector s that stores
all the nonzero elements:

s = [1 1 2 3 1]’;

Next, we create a vector i that stores the row position for each element in s.
For example, the first element in s should be in the first row, the second element in
second row, and so on. We then do the same thing for the column positions and store
them in the vector j:

i = [1 2 3 4 4]’;
j = [1 2 3 4 5]’;

Finally,

W = sparse(i,j,s,4,5);

creates the 4 � 5 matrix W above.
There are several useful built-in functions for creating special sparse matrices.

For example,

I = speye(100);
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creates the 100� 100 sparse identity matrix. Of course we can accomplish the same
goal by using

I = sparse(1:100,1:100,ones(1,100));

though the latter is more clumsy. Another useful function is spdiags, the sparse
version of diag, which can be used to extract and create sparse diagonal matrices.
Use help spdiags to learn more about this function.

As mentioned earlier, one main advantage of working with sparse rather than full
matrices is that computations involving sparse matrices are usually much quicker.
For instance, it takes about 2.7 seconds to obtain the Cholesky decomposition of the
full 5000� 5000 identity matrix:

tic; chol(eye(5000)); toc;
Elapsed time is 2.728245 seconds.

whereas the same operation takes only 0.015 second for a sparse 5000 � 5000

identity matrix:

tic; chol(speye(5000)); toc;
Elapsed time is 0.014867 seconds.

A.8 Gamma and Dirichlet Generator

The following MATLAB program gamrand implements the method developed in
(Marsaglia and Tsang 2000) to generate samples from a Gamma.˛; �/ distribution.
If the Statistics Toolbox is available, the function gamrnd can be used instead;
but note that gamrnd(a,b) generates random variables from a Gamma.a; 1=b/
distribution.

function x=gamrand(alpha,lambda)
if alpha>1

d=alpha-1/3; c=1/sqrt(9*d); flag=1;
while flag

Z=randn;
if Z>-1/c

V=(1+c*Z)^3; U=rand;
flag=log(U)>(0.5*Z^2+d-d*V+d*log(V));

end
end
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x=d*V/lambda;
else

x=gamrand(alpha+1,lambda);
x=x*rand^(1/alpha);

end

As a direct consequence of Theorem 8.2, the following MATLAB program ☞ 241

dirichrnd generates samples from a Dirichlet.˛/ distribution. Draws from a
Beta.˛; ˇ/ are obtained by taking ˛ D .˛; ˇ/.

function x=dirichrnd(alpha)
n=length(alpha)-1;
Y=nan(1,n+1);
for k=1:n+1

Y(k)=gamrand(alpha(k),1);
end
x=Y(1:n)/sum(Y);

A.9 Cdfs and Inverse Cdfs

The following MATLAB program cumdf evaluates the cdfs of normal, Student’s t ,
gamma, chi-squared, and F distributions. If the Statistics Toolbox is available, the
function cdf can be used instead.

function y = cumdf(dist,x,varargin)
switch dist

case ’norm’
mu = varargin{1}; sigma = varargin{2};
y = (erf(( (x - mu)/sigma )/sqrt(2)) + 1)/2;

case ’t’
nu = varargin{1};
y = 1-0.5*betainc(nu/(nu+x.^2),nu/2,1/2);

case ’gamma’
alpha = varargin{1}; lambda = varargin{2};

% different from Stats toolbox
y = gammainc(lambda*x,alpha);

case ’chi2’
n = varargin{1};
y = gammainc(x/2,n/2);

case ’F’
m = varargin{1}; n = varargin{2};
y = 1 - betainc(n/(n+m*x),n/2,m/2);

end
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The following MATLAB program icumdf evaluates the inverse cdfs of normal,
Student’s t , gamma, chi-squared, and F distributions. The corresponding built-in
function in the Statistics Toolbox is icdf.

function x = icumdf(dist,y,varargin)
switch dist

case ’norm’
mu = varargin{1}; sigma = varargin{2};
x = mu + sigma*sqrt(2)*erfinv(2*y -1);

case ’t’
nu = varargin{1};
x = sqrt(nu/betaincinv(2*(1-y),nu/2,1/2) - nu);

case ’gamma’
alpha = varargin{1}; lambda = varargin{2};

% different from Stats toolbox
x = gammaincinv(y,alpha)/lambda;

case ’chi2’
n = varargin{1};
x = gammaincinv(y,n/2)*2;

case ’F’
m = varargin{1}; n = varargin{2};
x = n/m/betaincinv(1-y,n/2,m/2) - n/m;

end

A.10 Further Reading and References

The official MATLAB documentation site is

http://www.mathworks.com/help/techdoc/

A good place to learn more about the major functionality in MATLAB is the MATLAB

Getting Started Guide available at

http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf

MATLAB programs for generating random variables from a wide range of distri-
butions may be found on the homepage of the Handbook of Monte Carlo Methods
(Kroese et al. 2011):

http://www.montecarlohandbook.org

Finally, all programs and (large) data files in this book may be downloaded from
the homepage

http://www.statmodcomp.org

To accommodate the users of the statistical programming language R, we have
mirrored each MATLAB program with its equivalent in R.

http://www.mathworks.com/help/techdoc/
http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf
http://www.montecarlohandbook.org
http://www.statmodcomp.org


Appendix B
Mathematical Supplement

B.1 Multivariate Differentiation

For a real-valued multivariate function f .x1; : : : ; xn/ the partial derivative with
respect to xi , denoted @f

@xi
or simply @if , is the derivative taken with respect to xi

while all other variables are held constant. The partial derivative of @if with respect

to xj is denoted @2f

@xi @xj
or simply @ij f .

Let f be a multivariate function taking values in R
m, defined by

x D

0

B

B

B

@

x1
x2
:::

xn

1

C

C

C

A

7!

0

B

B

B

@

f1.x/
f2.x/
:::

fm.x/

1

C

C

C

A

D f.x/ :

The derivative of f at x is defined as the matrix of partial derivatives,

Jf.x/ D

0

B

@

@1f1.x/ � � � @nf1.x/
::: � � � :::

@1fm.x/ � � � @nfm.x/

1

C

A ; (B.1)

and is called the matrix of Jacobi of f at x, sometimes written as @f
@x .x/.

Example B.1 (Differentiating a Linear Function). Let f.x/ D Ax for somem�n
constant matrix A. Then,

@f.x/
@x

D A : (B.2)

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3__13, © The Author(s) 2014
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To see this, let aij denote the .i; j /th element of A, so that

f.x/ D Ax D

0

B

@

Pn
kD1 a1kxk
:::

Pn
kD1 amkxk

1

C

A :

To find the .i; j /th element of them� n Jacobian matrix Jf, we differentiate the i th
element of f with respect to xj :

@fi .x/
@xj

D @

@xj

n
X

kD1
aikxk D aij :

In other words, the .i; j /th element of Jf is aij , the .i; j /th element of A.
For a real-valued multivariate function, that is, f W Rn ! R, the gradient of f

is the transpose of the Jacobian matrix, that is, the column vector

rf .x/ D

0

B

@

@1f .x/
:::

@nf .x/

1

C

A : (B.3)

The derivative of the function x 7! rf .x/ is called the Hessian matrix of f ,
denoted Hf .x/ or r2f .x/. In other words, the Hessian is the matrix of second
derivatives:

r2f .x/ D

0

B

@

@11f .x/ � � � @1nf .x/
::: � � � :::

@n1f .x/ � � � @nnf .x/

1

C

A : (B.4)

If the partial derivatives are continuous in a region around x, then @ij f .x/ D
@j if .x/ and, hence, the Hessian matrix Hf .x/ is symmetric.

Example B.2 (Differentiating a Quadratic Function). Let f .x/ D x>Ax for
some n � n constant matrix A. Then,

rf .x/ D .AC A>/x : (B.5)

It follows immediately that if A is symmetric, i.e., A D A>, then r.x>Ax/ D 2Ax
and r2 .x>Ax/ D 2A.

To prove (B.5), first, observe that the quadratic function f .x/ D x>Ax is real-
valued, and therefore the Jacobian Jf is a 1 � n vector (and its transpose is the
gradient). Specifically,
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f .x/ D
n
X

iD1

n
X

jD1
aij xixj ;

and the kth element of Jf is obtained by differentiating f .x/ with respect to xk :

@f .x/
@xk

D @

@xk

n
X

iD1

n
X

jD1
aij xi xj D

n
X

jD1
akj xj C

n
X

iD1
aikxi :

The first term on the right-hand side is equal to the kth element of Ax, whereas the
second term equals the kth element of x>A; or equivalently the kth element ofA>x.

Gradients and Hessian matrices feature prominently in multidimensional Taylor
expansions.

Theorem B.1. (Multidimensional Taylor Expansions). Let X be an open
subset of R

n and let a 2 X . If f W X ! R is a continuously twice
differentiable function with gradient rf .x/ and Hessian matrix Hf .x/, then
for every x 2 X we have the following first- and second-order Taylor
expansions:

f .x/ D f .a/C Œrf .a/�> .x � a/C O.kx � ak2/

and

f .x/ D f .a/C Œrf .a/�> .x � a/C 1

2
.x � a/>Hf .a/ .x � a/CO.kx � ak3/

as kx � ak ! 0. By dropping the O remainder terms, one obtains the
corresponding Taylor approximations.

B.2 Proof of Theorem 2.6 and Corollary 2.2

☞ 34

The proof makes use of two fundamental properties of the expectation E: the
monotone convergence theorem and the dominated convergence theorem. The first
states that if X1 � X2 � X3 � : : : is a sequence of positive random variables
that increases to a random variable X , then the corresponding expectations EX1 �
EX2 � EX3 : : : converge to EX . The second theorem states that the same holds
true for any positive sequence X1;X2; : : : converging to X , if there exists a Y with
EY < 1 such that Xn � Y for all n. An accessible account of these theorems may
be found, for example, in (Williams 1991).
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We prove Theorem 2.6 for the case k D 1 only. Let G.z/ D EzX . Take a fixed
z with jzj < R and any r < R such that r < jzj < R. Let .hn/ be any sequence
converging to 0 such that jz C hnj < r . By definition, the derivative of G at z is
limn!1 ECn, where Cn D h�1

n Œ.z C hn/
X � zX �. Observe that

1. jCnj is dominated by X rX�1,
2. EXrX�1 < 1, because the power series

P1
xD0 xzx�1f .x/ has again radius of

convergenceR,
3. limn!1 Cn D XzX�1.

It follows by the dominated convergence theorem that

lim
n!1ECn D E lim

n!1Cn D EXzX�1 :

Next, let .zn/ be a sequence of real numbers that is converging to 1, where
jznj < 1 for all n. The sequence of random variables .Yn/ defined by Yn D
X.X � 1/ � � � .X � kC 1/zkn is increasing to Y D X.X � 1/ � � � .X � kC 1/. Hence,
by the monotone convergence theorem limn!1 EYn D EY . This shows (2.10). The
second statement of the corollary is left as an exercise.

B.3 Proof of Theorem 2.7

If the moment generating function of a random variable X is finite in an open
interval containing 0, then for all n D 0; 1; : : :,

EXn D M.n/.0/ ;

whereM.n/ is the nth derivative of the MGF M evaluated at 0.

Proof. Let R > 0 be such that M.s/ < 1 for all jsj < R. Choose any numbers
r and s such that 0 < r < R and jsj < r . Let .hn/ be a sequence converging to 0
satisfying jhnj < " and jsChnj < r for some " > 0. LetCn D h�1

n Œe
.sChn/X�esX � D

esX .ehnX � 1/=hn, which converges to XesX . Also, jCnj � H.X/
defD e.jsjC"/ jX jjX j,

because 0 � .et � 1/=t � ejt j for all t . Moreover, because jsj C " < r and x grows
at a lesser rate than eax for any a > 0, there must exist an M > 0 such that for all
jxj > M ,H.x/ < er jxj. It follows that

EH.X/ � EH.X/ IfjX j>M g C EH.X/ IfjX j�M g

� Eer jX j C max
jxj�M

H.x/ < 1 :

By the dominated convergence theorem we have M 0.s/ D limn!1 ECn D
E limn!1Cn D EŒXesX �. Finally, take a monotone sequence .sn/ converging to
0 and apply the monotone convergence theorem to the sequence .XesnX / to find
M 0.0/ D EX . The proof for higher moments is similar. ut
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B.4 Proof of Theorem 3.10

Let v1; : : : ; vn be an orthonormal basis of R
n such that v1; : : : ; vk spans Vk and

v1; : : : ; vm spans Vm. We can write the orthogonal projection matrices onto Vj , as
Pj D Pj

iD1 viv>
i , j D k;m; n, where Vn is defined as Rn. Note that Pn is simply

the identity matrix. Let V D .v1; : : : ; vn/ and define Z D .Z1; : : : ; Zn/
> D V >X.

Recall that any orthogonal transformation such as z D V >x is length preserving;
that is, kzk D kxk.

To prove the first statement of the theorem, note that V >Xj D V >PjX D
.Z1; : : : ; Zj ; 0; : : : ; 0/

>, j D k;m. It follows that V >.Xm � Xk/ D .0; : : : ; 0;

ZkC1; : : : ; Zm; 0; : : : ; 0/> and V >.X � Xm/ D .0; : : : ; 0; ZmC1; : : : ; Zn/>. More-
over, being a linear transformation of a normal random vector, Z is also normal,
with covariance matrix V >V D I ; see also Problem 3.13. In particular, the fZi g ☞ 95

are independent. This shows that Xk, Xm � Xk , and X � Xm are independent
as well.

Next, observe that kXkk D kV >Xkk D kZkk, where Zk D .Z1; : : : ; Zk/
>.

The latter vector has independent components with variances 1, and its squared
norm has therefore (by definition) a �2k.�/ distribution. The noncentrality parameter
is � D kEZkk D kEXkk D k�kk, again by the length-preserving property of
orthogonal transformations. This shows that kXkk2 � �2k.k�kk/. The distributions
of kXm � Xkk2 and kX � Xmk2 follow by analogy. ut

B.5 Proof of Theorem 5.2

First, observe that, by Theorem 5.1, ☞ 131

.m � 1/S2X
�2

� �2m�1 and
.n � 1/S2Y

�2
� �2n�1 :

Because these random variables are independent of each other, their sum, V , say,
can be written as the sum of m C n independent squared standard normal random
variables and has therefore a �2mCn�2 distribution. Thus,

V D .mC n � 2/S2p

�2
� �2mCn�2 :

Second, let

Z D
NX � NY � .�X � �Y /

�=

q

1
m

C 1
n

:
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Then, Z � N.0; 1/ and the square of the pivot T in Theorem 5.2 can be written as

T 2 D Z2

V=.mC n � 2/
;

where Z and V are independent, because NX and NY are independent of each other,
and are both independent of S2X and S2Y ; see Theorem 5.1. The random variable T 2

is thus the independent quotient of a �21 and a �2mCn�2 random variable. Hence, by
Theorem 3.11, T 2 � F.1;mC n � 2/. It follows now from Theorem 2.19 (and the☞ 88

☞ 51 fact that the pdf of T is symmetric around 0) that T � tmCn�2. ut
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Solutions

Selected Problems of Chap. 1

1.1 (a) ˝ D f1; 2; 3; 4; 5; 6g; (b) ˝ D RC; (c) ˝ D f0; 1; : : : g; (d) ˝ D
f0; 1; : : : ; 50g; (e) ˝ D f.x1; : : : ; x10/ W xi � 0; i D 1; : : : ; 10g D R

10C .

1.4 (a) 1=5; (b) 5=36.

1.5 (a) ˝ is the set of all 6Š permutations of .1; : : : ; 6/; (b) P.A/ D jAj=720; (c)
15=720.

1.8 (a) ˝ D f.1; 2; 3/; : : : ; .52; 51; 50/g. Each elementary event is equally likely;
(b) 4�3�2

52�51�50 D 3
16575

; (c) 6�44
52�51�50 D 64=5525; (d) 36�35�34

52�51�50 D 1071
3315

.

1.9 .177 /
.2010/

D 2
19

.

1.10 (a) 1
6
; (b) 1

3
.

1.13 1
3652

.

1.14
�

10
4

� � 0:44 � 0:66 D 0:2508.

1.15 (a) 0:0791; (b) 0:1239.

1.17 0:01.

1.19 (a) 1
36

� � 35
36

�9 D 0:0216; (b) 1 � .35=36/100 D 0:94022.

1.21 ceil(6*rand(1,100)).

D.P. Kroese and J.C.C. Chan, Statistical Modeling and Computation,
DOI 10.1007/978-1-4614-8775-3, © The Author(s) 2014
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376 Solutions

Selected Problems of Chap. 2

2.1 (a)
x 1 2 3 4 5 6

f .x/ 11
36

9
36

7
36

5
36

3
36

1
36

; (b) 4
9
; (c) EM D 91

36
,

Var.M/ D 2555
1296

.

2.2 (b): (i) 4/5; (ii) 3/5; (iii) 3/5; (iv) 19/20.

2.6 X � Bin.100; 0:12/; P.X � 7/ D P7
kD0

�

100
k

�

0:12k.1 � 0:12/100�k D 0:0761.

2.8 M.s/ D ebs�eas

s.b�a/ ; s 2 R.

2.11 (a) 1� e�2; (b) e�8; (c) e�4; (d) 1=2.

2.12 (a) The expectation does not exist (1 � 1 is ill-defined); (b) the expectation
is 1.

2.16 In the first model X � Exp.1=3/ and P.X > 4:5 jX > 4/ D 0:8465. In the
second modelX � N.3; 9/ and P.X > 4:5 jX > 4/ D 0:8351.

2.18 (b): (i) ˚.�1=3/, (ii) 1 �˚.0/ D 1=2, (iii) ˚.1=3/� ˚.�5=3/; (c) 9; (d) 25.

2.20 (a) 2+rand; (b) 3+3*randn; (c) -log(rand)/4; (d)sum(rand(10,1)
<0.5); (e) ceil(log(rand)/(1-1/6)).

2.21 Use X = sqrt(-log(rand(1000,1))); hist(X).

Selected Problems of Chap. 3

3.1 x

y

-2 0 2
�1 0 1

2
0 1

2

1 1
4

0 1
4

1
2

1
4

1
2

1
4

1
X and Y are not independent since, for example, P.X D �1; Y D �2/ D 0 ¤
1
2

� 1
4

D P.X D �1/P.Y D �2/.
3.3 (a) fX.x/ D 1

3
for x D 1; 2; 3; (b) fY jX.y j 1/ D 1

2
for y D 0; 1, fY jX.y j 2/ D

4�3.y�1/2
6

for y D 0; 1; 2, fY jX.y j 3/ D 1
2

for y D 1; 2;

(c) x

y

0 1 2
1 1

6
1
6

0 1
3

2 1
18

2
9

1
18

1
3

3 0 1
6

1
6

1
3

2
9

5
9

2
9

1

; (d) fY .0/ D fY .2/ D 2=9 and fY .1/ D 5=9; (e)
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fX jY .x j 0/ D
(

3
4
; x D 1

1
4
; x D 2;

, fX jY .x j 1/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

3
10
; x D 1

2
5
; x D 2

3
10
; x D 3;

,

fX jY .x j 2/ D
(

1
4
; x D 2
3
4
; x D 3

.

3.4 fX jY .x j 1/ D 1=.6x/

147=360
D 60

147x
for x D 1; : : : ; 6, and EŒX jY D 1� D P6

xD1 x�
60
147x

D 360
147

.

3.6 (a) f .x; y/ D fX.x/fY .y/ D e�y for 0 � x � 1; and y � 0; (b) 1 � e�1;
(c) e�1.

3.8 (a) f .x; y/ D fX.x/fY jX.y j x/ D e�x � xe�xy D xe�x.yC1/ for
x > 0; y > 0; (b) fY .y/ D 1

.yC1/2 ; y � 0.

3.9 Since X � UŒ��=2; �=2�, fX.x/ D 1=�; x 2 .��=2; �=2/. Let Y D tan.X/.
Then, the inverse transformation is g�1.y/ D arctan.x/ and the associated matrix
of Jacobi is Jg�1 .y/ D 1=.1 C y2/. Hence, fY .y/ D 1

�.1Cy2/ , which is the pdf of
the Cauchy distribution.

3.11 (a) fS2.x/ D x for 0 � x � 1, fS2.x/ D 2 � x for 1 < x � 2, and 0
otherwise; (b) N.10; 5=3/; (c) 0:0607.

3.12 (a) ET D 5;Var.T / D 5
2
; (b) 0:2635; (c) T � Gamma.10; 2/.

3.15 (a)
�

7
8

�6
; (b) 1 � �

7
8

�6
.

3.18 (b) .n�1/
n
�2.

3.20 W is the sum of the weights of 6 randomly chosen people and has a
N.600; 600/ distribution. 6X1 is 6 times the weight of the first chosen person and
has a N.600; 3600/ distribution.

3.21 Recall that if Z � �2	 , then its moment generating function is MZ.s/ D
1=.1 � 2s/	=2 D .1 � 2s/�	=2. Now, MXCY .s/ D Ees.XCY / D EesXEesY D .1 �
2s/�m=2.1� 2s/�n=2 D .1� 2s/�.mCn/=2, which is the moment generating function
of �2mCn.

3.23 0.9867.

3.24 (a) 1:0524; (b) 0:0838.
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Selected Problems of Chap. 4

4.1

(a) X1; : : : ; X9 �iid N.�; �2/, where Xi is the volume of paint in the i th tin. The
primary interest is to determine if � is less than 20.

(b) X1; : : : ; X12 �iid N.�1; �
2
1 / and Y1; : : : ; Y12 �iid N.�2; �

2
2 / independently. Here,

Xi (Yi ) is the time of completion for the i th man (woman). The primary interest
is to determine if �1 � �2 is significantly different from 0 or not.

(c) Z1; : : : ; Z12 �iid N.�; �2/, whereZi is the difference in marks for the i th exam
as marked by lecturers A and B. The primary interest is to determine if � is
significantly different from 0 or not.

(d) X1; : : : ; X500 �iid Ber.p/, whereXi D 1 if the i th coin toss is Heads andXi D 0

otherwise. The primary interest is to determine if p equals 1/2.

4.2 (a) Let Xi be the average weight of 5 randomly selected packets from the
packaging line at hour i , i D 1; : : : ; 24. A possible model is to assume that the
fXig are independent and that each Xi � N.�i ; �

2
i / for some unknown �i and �2i .

Typical questions of interest are whether the f�i g and f�2i g lie within an acceptable
range.

4.7

(a) If one expects that shipping cost is a linear or quadratic function in distance, then
a possible model is Yi D ˇ0Cˇ1xiCˇ2x2i C"i ; f"ig �iid N.0; �2/, i D 1; : : : ; 9,
where Yi is the shipping cost of the i th air freight and xi the corresponding
distance traveled.

(b) Single-factor ANOVA model Yik D �i C "ik; f"ikg �iid N.0; �2/; k D
1; : : : ; 20; i D 1; 2; 3, where Yik is the average fuel consumption for the
kth car of brand i , k D 1; : : : ; 20; i D 1; 2; 3:

(d) Simple linear regression model Yi D ˇ0 C ˇ1xi C "i ; f"ig �iid N.0; �2/; i D
1; : : : ; 10, where Yi is the military expenditure of the country in year i , and xi
is the gross national product in that year.

4.9 The n � 6 design matrix is given by

0

B

B

B

@

1 x11 x21 x211 x221 x11x21
1 x12 x22 x212 x222 x12x22
:::

:::
:::

:::
:::

:::

1 x1n x2n x21n x22n x1nx2n

1

C

C

C

A

:

4.11 The following MATLAB script generates realizations from the ANOVA model.

%p4_11.m
beta= [-1 0 1]; % 2 free parameters
alpha = [-2 2]; % 1 free parameter
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mu = 6; % 1 parameter
gamma = [0.2 -1 0.8; -0.2 1 -0.8]; %2 free parameters
eps = 0.1*randn(2,3,3);
y = zeros(2,3,3);
for i=1:2 % generate the responses
for j=1:3
y(i,j,:) = mu + alpha(i) + beta(j) + gamma(i,j) + eps(i,j,:);

end
end
for i=1:2 % print the table

for j=1:3
for k=1:3

fprintf(’%3.2f, ’,y(i,j,k))
end
fprintf(’\n’);

end
end

Selected Problems of Chap. 5

5.1 For Geom.p/, bp D 1= Nx; for Poi.�/,b� D Nx; for Gamma.˛; �/, b̨ D Nx2=v2 and
b� D Nx=v2, where v2 D n�1Pn

iD1.xi � Nx/2.
5.5 (a)b� D NX ; (b) from the central limit theorem, NX has approximately a normal
distribution with expectation E NX D 1=� and variance Var. NX/ D 1=.�2n/, so that

P

�

1 � z1�˛=2=
p
n

NX � � � 1C z1�˛=2=
p
n

NX
�

� 1 � ˛;

from which the 1 � ˛ approximate confidence interval for � follows.

5.7 .0:045; 0:055/ml.

5.8 The confidence interval .1:015; 1:810/ does not contain the value 1, so there is
reasonable evidence to suspect that the claim on the packet is not true.

5.10 Evaluatingbˇ D .X>X/�1X>Y gives

bˇ D
 

n
Pn

iD1 xi
Pn

iD1 xi
Pn

iD1 x2i

!�1  Pn
iD1 Yi

Pn
iD1 xi Yi

!

D 1

n
Pn

iD1 x2i � n2 Nx2
 Pn

iD1 x2i �n Nx
�n Nx n

!  

n NY
Pn

iD1 xi Yi

!

D 1

nSxx

�Pn
iD1 x2i n NY � n NxPn

iD1 xi Yi
�n2 Nx NY C n

Pn
iD1 xi Yi

�

D 1

Sxx

�Pn
iD1 x2i NY � NxPn

iD1 xi Yi
SxY

�

D 1

Sxx

� NY .Pn
iD1 x2i � n Nx2/C Nx. NY n Nx �P

iD1 xiYi /
SxY

�

D
� NY � NxSxY =Sxx

SxY =Sxx

�

:
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5.12 Model: Yi D a
p
hi C "i , i D 1; : : : ; 4, where the f"ig are iid and N.0; �2/

distributed. The least-squares estimate of a isba D 0:452.

5.13 Let X be the number of low fat milk sales out of 1500. The model is X �
Bin.1500; p/ for some unknown p. We wish to test H0 W p D 0:3 versus H1 W p <
0:3. The outcome ofX is x D 400. The correspondingp-value is PH0.X � 400/ �
0:00243. There is thus very strong evidence that the true proportion p is less than
0.3, indicating a move toward low fat milk.

5.17 Let X1; : : : ; Xn �iid N.�; 16/ be the PFC amounts.

(a) The average PFC is NX , which has a N.�; 16=n/ D N.�; 4/ distribution.
(b) P�D38:5. NX < 39/ D ˚.0:025/ D 0:51.
(c) Find n such that P�D38. NX < 39/ � 0:9. The smallest such n is 27.

5.23 Let Yik be the walking age of the kth baby in group i D 1; 2; 3; 4

(corresponding to A,B,C,D). Consider the 1-factor ANOVA model

Yik D �C ˛i C "ik; i D 1; : : : ; 4; k D 1; : : : ; 6;

with f"ikg �iid N.0; �2/, and
P4

iD1 ˛i D 0. To test the hypothesis ˛1 D : : : D ˛4 D
0we use the test statistic T D MStreatment

MSerror
, which underH0 has an F.3; 20/ distribution.

By changing the data matrix yy in the first MATLAB program in Example 5.15 we☞ 143

find the outcome 2:1370 for the test statistic, which gives a p-value of 0.1275. Since
this is not very small, we accept the null hypothesis that there is no difference in
expected walking age between the groups.

To compute the 95 % confidence intervals for the expected walking ages �i D
�C ˛i , i D 1; : : : ; 4, we apply Theorem 5.3 using specific vectors a. For example,☞ 138

to find a confidence interval for �1, take a D .1; 1; 0; 0/>. Similarly, for �4, take
a D .1;�1;�1;�1/>. By modifying the MATLAB program linregestconf.m
in Example 5.12 (see the code below), we find the following 95% numerical confi-☞ 139

dence intervals, .8:85; 11:39/, .10:10; 12:64/, .10:44; 12:97/, and .10:94; 13:48/,
which clearly overlap, corroborating our finding that there is no evidence for a
difference in expected walking age.

%p5_22.m
tquant = icdf(’t’,0.975,n-m) % 0.975 quantile
a = [1 1 0 0]’; %change for other mu’s
ucl = a’*betahat + tquant*norm(y - X*betahat)* ...
sqrt(a’*inv(X’*X)*a)/sqrt(n-m);
lcl = a’*betahat - tquant*norm(y - X*betahat)* ...
sqrt(a’*inv(X’*X)*a)/sqrt(n-m);
display([lcl,ucl])
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Selected Problems of Chap. 6

6.2 The derivative of the log-likelihood for � is dl
d� D � n

2�
C 1

2�2

Pn
iD1 x2i � n

2
.

Solving the likelihood equation dl
d� D 0, one obtains the maximum likelihood

estimateb� D � 1
2

C 1
2

q

1C 4
n

Pn
iD1 x2i : Substitute Xi for xi to obtain the estimator.

6.5 (a)b�M D .2 NX � 1/=.1� NX/; (b)b� D �1 � n=
Pn

iD1 lnXi .

6.6 P.X > 68:5/ D P..X � �/=� > .68:5 � �/=�/ D 1 � ˚..68:5 � �/=�/.
Hence, by Theorem 6.6, the MLE is 1 � ˚..68:5� 56:3/=7:6/ D 0:0542. ☞ 175

6.9 l.�I x/ D n ln.�=2/ � �
Pn

iD1 jxi j. Setting l 0.�I x/ D 0 gives b� D
n=
Pn

iD1 jxi j D 0:5893.

6.12 l.pI x/ D lnp
Pn

iD1 xi C ln.1�p/Pn
iD1.k � xi /C const, so that l 0.pI X/ D

Pn
iD1 Xi=p � Pn

iD1.k � Xi/=.1 � p/. Setting l 0.pI X/ D 0 gives the maximum
likelihood estimator bp D NX=k. The information number I.p/ is, by Theorem 6.4, ☞ 170

equal to n VI .p/, where VI .p/ is the information number forX � Bin.k; p/. By (6.11)
VI .p/ D k=.p.1 � p//. Also, Var.bp/ D Var. NX=k/ D Var.X1/=.nk2/ D kp.1 �
p/=.nk2/ D p.1 � p/=.nk/ D I�1.p/. Hence, bp attains the Cramér–Rao lower
bound.

6.14

(a) The log-likelihood corresponding to X � Exp.1=v/ is Vl.vI x/ D � ln.v/� x=v,
with score function VS.vI x/ D �1=v C x=v2. The score function correspond-

ing to X1; : : : ; Xn �iid Exp.1=v/ is S.vI x/ D Pn
iD1 VS.vI xi / D �n=v C

Pn
iD1 xi=v2.

(b) The Fisher information for X � Exp.1=v/ is VI .v/ D Var. VS.v;X// D
Var.X/=v4 D v2=v4 D 1=v2. The Fisher information corresponding to
X1; : : : ; Xn �iid Exp.1=v/ is I.v/ D n VI .v/ D n=v2.

(c) Setting S.vI X/ D 0, we find the MLEbv D NX .

(d) ŝin.v/ D sin.bv/ D sin. NX/.
(e) Var.bv/ D Var. NX/ D Var.X1/=n D v2=n D I�1.v/.

6.18 The score function is n=� �Pn
iD1 Xi and the Fisher information is nVar.� �

X1/ D n=�2. The 1 � ˛ stochastic confidence set is thus
(

� W �z1�˛=2 <
n=� �Pn

iD1 Xi
p

n=�2
< z1�˛=2

)

D



n � z1�˛=2
p
n

Pn
iD1 Xi

< � <
nC z1�˛=2

p
n

Pn
iD1 Xi



;

which is an interval. Taking z1�˛=2 D z0:95 D 1:645, we find the numeric 90 %
confidence interval .0:480; 1:520/.
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6.19 Let X D .X1; : : : ; Xn/ be an iid sample from Exp.�/ and Y D .Y1; : : : ; Yn/ an
iid sample from Exp.�/.

(a) The MLEs of � and � are, respectively,b� D 1= NX and 1= NY .
(b) UnderH0, the MLE of � is b� D 2n

Pn
iD1 XiC

Pn
iD1 Yi

:

(c) The likelihood ratio is given by

� D .2n/2n

�Pn
iD1 xi CPn

iD1 yi
�2n

�
�Pn

iD1 xi
�n �Pn

iD1 yi
�n

n2n

D 22n

�

1C
Pn
iD1 yi

Pn
iD1 xi

�2n
�
�Pn

iD1 yi
Pn

iD1 xi

�n

D 22n.1C T /�2nT n D 22n
�

T

.1C T /2

�n

:

Hence, we can use T=.1 C T /2 as a test statistic and we reject H0 when the
likelihood ratio is “too small,” i.e., when T

.1CT /2 < ˛ for some critical value ˛.

(d) T has approximately a N.�=�; �2=n/ distribution, with

�2 D J˙J> D
�

��
2

�
; �

��

��2 0

0 ��2
�

 

��2

�

�

!

D 2�2

�2
:

6.24 Initial guesses for ˛ and � are obtained via the method of moments: ˛0 D
Nx2
s2
; �0 D Nx

s2
: The following MATLAB program implements the Newton–Raphson

scheme to find the MLE of ˛ and �, which are estimated to be b̨ D 3:9853 and
b� D 0:0696.

%p6_24.m
x = [
29.7679 12.8406 105.3225 46.6101 75.7135 72.0340...
64.1004 33.9008 35.2510 50.9201 29.8086 32.6963...
131.5229 65.3381 29.1369 61.8774 31.0650 54.4877...
103.6889 68.0230 89.6879 30.1994 48.3140 54.4447...
29.2253 27.0242 102.5929 63.7344 43.0354 96.5552]’;
n = length(x);
sumlogx = sum(log(x)); sumx = sum(x);
alpt = mean(x)^2/var(x); lamt = mean(x)/var(x); %intl. guess
thetat = [alpt; lamt]
for i=1:5 %just repeat the NR step 5 times

S = [ n*(log(lamt) - psi(alpt)) + sumlogx; ...
n*alpt/lamt - sumx ];

I = n * [psi(1,alpt) -1/lamt; -1/lamt alpt/lamt^2 ];
thetat = thetat + inv(I)*S % using inv is OK (dim =2)
alpt = thetat(1); lamt = thetat(2);

end
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Selected Problems of Chap. 7

7.1

(a) The distribution of T does not depend on � .
(b) Let Yi D Xi=� . Then Y1; : : : ; Yn �iid N.0; 1/ under H0, and T D p

n NX=SX Dp
n NY =SY , which is exactly of the form (5.16). The true p-value is 0.0197 (using ☞ 131

cdf(’t’,-3.5,3) in MATLAB).
(c) The following code uses vectorization.

%p7_1.m
xbar_obs = -0.7; s_obs = 0.4; t_obs = 2*xbar_obs/s_obs;
N = 10^5;
x = randn(4,N);
xbar = mean(x,1);
s = std(x,0,1);
t = 2*xbar./s;
count = sum(t <= t_obs);
phat = count/N % estimated p-value

7.3 X takes values x1; : : : ; xN with probability 1=N , so the expectation is EX D
x1=NCx2=NC� � �CxN =N D Nx, and the second moment is EX2 D N�1PN

iD1 x2i .
The variance is therefore Var.X/ D EX2 � .EX/2 D N�1PN

iD1 x2i � Nx2 D
N�1PN

iD1.xi � Nx/2.
7.4

(a) By the product rule, the joint pdf of X and J is fX;J .x; j / D fJ .j /fX jJ .x j j /
D wj fj .x/ and the marginal pdf of X is f .x/ D Pk

jD1 fX;J .x; j / D
Pk

jD1 wj fj .x/.
(b) First, draw J 2 f1; : : : ; kg with probabilities w1; : : : ;wk . Then, given J D j ,

draw X from the pdf fj .
(c) EX D Pk

jD1 wj �j and Var.X/ D Pk
jD1 wj .�2j C �2j /� .

Pk
jD1 wj�j /2.

7.8

(a) Solving P.X � m/ D e��m D 1=2 givesm D ln.2/=�.
(b) The sample median is ex D 1:4073. Hence, the estimate is e� D ln.2/=ex D

0:4925. The maximum likelihood estimate is 1= Nx D 0:2773.
(c) The following code produces Fig. 1. The pdf of the “median” estimator (solid

line) is bimodal and much more spread-out than the pdf of the maximum
likelihood estimator.

%p7_8.m
xorg = [1.4066, 1.2917, 1.408, 4.2801, 1.2136, 2.7461,...

11.1076, 0.9247, 5.8833, 10.2513, 3.8285, 3.2116, ...
0.5451, 0.9896, 1.1602, 7.7723, 0.1702, 0.8907,...
0.2276, 3.1197, 11.4909, 0.6475, 11.2279, 0.7639]
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n = numel(xorg);
est1org = log(2)/median(xorg)
est2org = 1/mean(xorg)
K= 10000;
for i=1:K

ind = ceil(n*rand(1,n)); % draw random indices
x = xorg(ind); % resampled data
est1(i) =log(2)/median(x);
est2(i) =1/mean(x);

end
hold on
kde(est1,2^4) %choose here a low number of meshpoint
kde(est2,2^8)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

Fig. 1 KDEs for the pdfs of ln.2/=eX (solid line) and 1= NX (dashed line)

7.11 All the x1; : : : ; xn are smaller than � , and so are theM �
i ; k D i; : : : ; K . Hence,

� is not contained in any 1 � ˛ bootstrap confidence interval.

7.13

(a) With positive probability it is possible to reach each state from another state,
in at most 4 steps. So the chain is irreducible. However, to return to a starting
state, it always requires a multiple of 2 steps. Hence, the chain is periodic with
period 2.

(b) The local balance equations hold, because the system is reversible. By sym-
metry f .1/ D f .2/ D f .5/ D f .6/ and f .3/ D f .4/. By local balance,
f .1/=2 D f .3/=3. Hence, 4f .1/ C 3f .1/ D 1, so that f .1/ D 1=7 and
f .3/ D 3=14.

(c) For example, for odd t the probability P.Xt D 1/ D 0, because, starting
from 1 at time 0, it requires an even number of steps to return to 1. On the
other hand, the probability P.X2t D 1/ converges to 2=7 as t ! 1. Hence,
the sequence P.Xt D 1/; t D 0; 1; 2; : : : does not converge. In this case the
stationary probability is not equal to the limiting probability.



Solutions 385

7.16 Z D � lnU1 has an Exp.1/ distribution by the inverse-transform method and
R D 2IfU2�1=2g � 1 takes values �1 and 1 with equal probability. Hence, X is
obtained by first generating Z and then flipping its sign with probability 1=2. The
cdf of X is therefore given by

P.X � x/ D
8

<

:

1 � P.X > x/ D 1 � P.Z > x/=2 D 1 � e�x=2 for x � 0

P.Z > �x/=2 D ex=2 for x � 0:

By differentiating the cdf we obtain the pdf g.x/ D e�jxj=2 for all x.

Selected Problems of Chap. 8

8.2

(a) The posterior pdf is f .� j x/ / f .�/�f .x j�/ D .1=�/��5 exp.��P5
iD1 xi /.

This is the pdf of the Gamma.5;
P5

iD1 xi / distribution, where
P5

iD1 xi D
15:7487.

(b) The expectation is 5=
P5

iD1 xi D 0:317487.

8.3 The posterior pdf is f .� j x/ / f .�/ � f .x j�/ / �a�1 exp.�b�/ �
�x exp.��/ D �aCx�1 exp.��.1C b//. This is the pdf of the Gamma.aCx; bC 1/

distribution.

8.6 Let Y1; : : : ; YmC1 with Yi � Gamma.˛i ; 1/; i D 1; : : : ; m C 1 be inde-
pendent random variables. By Theorem 8.2, Zi D Yi=.Yi C Y /, with Y D ☞ 241
P

j¤i Yj , has the same distribution as the i th coordinate of Z D .Z1; : : : ; Zm/ �
Dirichlet.˛1; : : : ; ˛mC1/. Moreover, Yi and Y are independent, and Y � Gamma
.
P

j¤i ˛j ; 1/, because its moment generating function is .1=.1�s//
P

j¤i ˛j . Hence,
again by Theorem 8.2, Zi � Dirichlet.˛i ;

P

j¤i ˛j /.

8.7

(a) The prior pdf is f .p j x/ / f .x jp/ D p.1 � p/x�1, which is a Beta.2; x/
distribution.

(b) The posterior mode is 1=x; see Problem 8.6.
(c) The posterior expectation is 2=.2C x/; see Problem 8.6.

8.13 We have f .xiC1 j xi / D f .xi ; xiC1/=f .xi / D f .xi j xiC1/f .xiC1/=f .xi /.
Hence,

f .x1; : : : ; xn/ D f .x1/f .x2 j x1/ � � �f .xn j xn�1/

D f .x1/f .x1 j x2/f .x2/
f .x1/

f .x2 j x3/f .x3/
f .x2/

� � �f .xn�1 j xn/ f .xn/
f .xn�1/

D f .xn/f .xn�1 j xn/ � � �f .x1 j x2/ :
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8.14

(a) By the law of total probability f .xt ; y1Wt / D P

xt�1
f .xt ; xt�1; yt ; y1Wt�1/.☞ 16

By conditioning f .xt ; xt�1; yt ; y1Wt�1/ on xt�1 and y1Wt�1 we find f .xt ; y1Wt /
D P

xt�1
f .xt ; yt j xt�1; y1Wt�1/f .xt�1; y1Wt�1/.

(b) f .xt ; yt j xt�1; y1Wt�1/ D f .xt j xt�1; y1Wt�1/f .yt j xt ; xt�1; y1Wt�1/. Because of
the structure of the Bayesian network, xt given xt�1 is independent of y1Wt�1,
and yt given xt is independent of xt�1 and y1Wt�1. Hence, f .xt j xt�1; y1Wt�1/
D f .xt j xt�1/ and f .yt j xt ; xt�1; y1Wt�1/ D f .yt j xt /.

(c) f .x1; y1/ D f .y1 j x1/f .x1/, where both f .x1/ and f .y1 j x1/ are known.
Hence, f .x1; y1/ can be evaluated. Next, f .x2 j y1; y2/ can be evaluated via
(8.32) because both factors in the sum are known. The first one is known via
(8.33) and the second as part of the recursion for t D 1. Repeating this, we
see that f .xt ; y1Wt / can be evaluated for any t . The posterior pdf f .xt j y1Wt / /
f .xt ; y1Wt / follows simply by normalization.

8.18

(a) The Bayesian network is given in Fig. 2.

Fig. 2 The Bayesian network
for the bag-of-words model

(b) The posterior pdf is

f .p j x/ / exp

 

�1
2

n
X

iD1

.xi � �pi /
2

�2

!

D exp

 

�1
2

kx � �pk2
�2

!

:

This is maximal when kx � �pk is minimal. Thus p� maximizes the posterior
pdf.

(c) The posterior pdf is

f .p j x/ / .�p1 � � ��pn/�1 exp

 

�1
2

n
X

iD1

.xi � �pi /
2

�2pi

!

:

The (unscaled) values for f .p/; p D 1; : : : ; 4 are 53, 0:24, 8:36, and 3:5�10�6.
Hence the object should be classified as 1. The following code was used.

%p8_17c.m
x = [1.67,2,4.23]
mu = [1.6, 2.4, 4.3; 1.5, 2.9, 6.1; ...
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1.8, 2.5, 4.2; 1.1, 3.1, 5.6];
sig = [0.1, 0.5, 0.2; 0.2, 0.6, 0.9;...

0.3, 0.3, 0.3; 0.2, 0.7, 0.3];
f =@(p) prod(sig(p,:))^(-1)*...

exp(-0.5*sum((x-mu(p,:)).^2./sig(p,:).^2));
f(1), f(2), f(3), f(4)

Selected Problems of Chap. 9

9.4 We are interested in the pdf of ˚.x>ˇ/, where ˇ is distributed according to
the posterior pdf and x> D .1; 1; 10; 1; 0; 16; 1/. The following MATLAB script uses
the posterior draws for ˇ (stored in store_beta) to draw from the corresponding
posterior pdf.

%p9_4.m
N = length(store_beta);
store_prob = zeros(N,1);
x = [1 1 10 1 0 16 1];
for loop=1:N

store_prob(loop) = normcdf(x*store_beta(loop,:)’);
end

The expected value of the posterior probability is estimated to be 0.324. A KDE
of the posterior probability is plotted in Fig. 3.

0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10Fig. 3 A KDE of the
posterior probability that a
subject with certain
characteristics will have an
extramarital affair

9.6 (c) 1=.	 � 2/.
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9.8 First recall that Qt.ˇ/ D � 1
2

Pn
iD1

˚

.x>
i ˇ/

2 � 2 vi x>
i ˇ

� C const. Noting
that .x>

i ˇ/
2 D ˇ>xix>

i ˇ and using the formulas for multivariate differentiation
in Appendix B.1, we have☞ 367

rQt.ˇ/ D �1
2

n
X

iD1

�

2xix>
i ˇ � 2 vi xi

�

:

Now solve rQt.ˇ/ D 0 for ˇ to find
Pn

iD1 xix>
i ˇ D Pn

iD1 vi xi .

Selected Problems of Chap. 10

10.1 The lag-1, lag-2, and lag-3 autocorrelations are, respectively, 0.830, 0.618, and
0.448.

10.3 Let " D ."1�q; : : : ; "T /> be the vector of error terms, and let  D
. 1; : : : ;  q/

> denote the vector of MA coefficients. Then we can write the MA(q)
model as

Y D H " ;

where H is a T � .T C q/ circulant matrix, where each row vector is rotated one
element to the right relative to the previous row vector. In particular, the first row
is . q;  q�1; : : : ;  1; 0; : : : ; 0/. Since " � N.0; �2 I /, the log-likelihood function is
given by

l. ; �2I y/ D �T
2

ln.2��2/� 1

2
jHH>j � 1

2�2
y>.HH>/�1y :

10.7 (a) To derive the full conditional distribution, we first write the ARMA(1,1) as

y D X%CH" ;

where " D ."1; : : : ; "T /
> � N.0; �2I /, % D .%0; %1/

>,

X D

0

B

B

B

@

1 y0
1 y1
:::

:::

1 yT�1

1

C

C

C

A

; H D

0

B

B

B

B

B

@

1 0 0 � � � 0
 1 0 � � � 0
0  1 � � � 0
:::

: : :
:::

0 0 � � �  1

1

C

C

C

C

C

A

:
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The likelihood function is given by

f .y j%;  ; �2/ D .2��2/� T
2 e� 1

2�2
.y�X%/>.HH>/�1.y�X%/

:

Since this has the form of a linear regression model with covariance matrix
�2HH>, it follows from Corollary 8.1 that ☞ 239

.% j y;  ; �2/ � N.b%;D%/ ;

where

D% D
�

1

10
I C 1

�2
X>.HH>/�1X

��1
; b% D D%

�

1

�2
X>.HH>/�1y

�

:

Next, using the likelihood function given above, it can be easily checked that

.�2 j y;%;  / � InvGamma

�

3C T

2
; �

�

;

where � D 1C .y �X%/>.HH>/�1.y � X%/=2.
Lastly, given the uniform prior  � UŒ�1; 1�, the full conditional posterior

distribution for  is simply

f . j y;%; �2/ / f .y;%;  ; �2/ / e� 1

2�2
.y�X%/>.HH>/�1.y�X%/

for �1 <  < 1 and 0 otherwise.

10.9 We first write the two-factor mixed model in matrix form. To that end, let

Y D .Y111; Y112; Y113; Y121; Y122; Y123; : : : ; Y3;10;1; Y3;10;2; Y3;10;3/
>;

and define " accordingly. In addition, stack ˛ D .˛1; ˛2; ˛3/
>; ˇ D .ˇ1; : : : ; ˇ10/

>;
and � D .�11; �12; : : : ; �39; �3;10/

>. Then,

Y D �190 CX˛˛CXˇˇ CX�� C ";

where X˛ D I3 ˝ 130, Xˇ D 13 ˝ A; A D I10 ˝ 13, X� D I30 ˝ 13, ˝ is the
Kronecker product, 1p is a p�1 vector of ones, and Iq is the q-dimensional identity ☞ 116

matrix.
Since Y is an affine transformation of normal random variables, it has a normal

distribution. Its expected value is EY D �190 and its covariance matrix is given by

˙ D �2˛X˛X
>̨ C �2ˇXˇX

>̌ C �2�X�X
>
� C �2I90 :
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10.11 In deriving the full conditional distributions, we will repeatedly make use
Theorem 8.1. First, the one-factor random effects model can be written as☞ 238

Yi D �i1ni C "i ;

where "i D ."1; : : : ; "ni /
> �ind N.0; �2Ini /: From this and the assumption

f�i g �iid N.�; �2�/, the random effects �1; : : : ; �d are conditionally independent
given y; �; �2�; and �2. In fact, using Theorem 8.1, we have

.�i j y; �; �2�; �
2/

ind� N.b�i ;D�i / ;

whereD�i D .1=�2� C ni =�
2/�1 and b�i D D�i .�=�

2
� C 1>

ni
yi =�2/.

Next, to derive f .� j y;�; �2�; �
2/, the relevant distributions are the prior for

� and f�i g �iid N.�; �2�/. It is then clear that given � and �2�, � is conditionally
independent of y and �2. Again, using Theorem 8.1,

.� j�; �2�/ � N.b�;D�/ ;

whereD� D .1=V� C d=�2�/
�1 and b� D D�.�0=V� CPd

iD1 �i =�2�/.
Similarly, �2� is conditionally independent of y and �2 given � and �. In fact,

using Theorem 8.1, we have

.�2� j�; �/ � InvGamma

 

˛� C d

2
; �� C

Pd
iD1.�i � �/2

2

!

:

Finally, following a similar reasoning,

.�2 j y;�/ � InvGamma

 

˛ C n

2
; �C

Pd
iD1.yi � �i1ni /

>.yi � �i1ni /
2

!

:

Selected Problems of Chap. 11

11.3 Recall that the log-density ln f .y j �; �2/ is given by

ln f .y j �; �2/ D �T
2

ln.2��2/ � 1

2�2
.y � �/>.y � �/ :

Hence, setting � D y, we obtain ln f .y j � D y; �2/ D �T
2

ln.2��2/, which
approaches infinity as �2 approaches 0.
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11.4 By recursive substitution using the transition equation, we have t D 1 C
Pt

sD2 us . Hence,

Var.t j 1/ D Var

 

t
X

sD2
us

!

D
t
X

sD2
Var.us/ D .t � 1/!2 :

11.5 We first write a MATLAB script to evaluate the log-likelihood function via

l.�2I y/ D ln f .y j �; �2/C ln f .� j!2/ � ln f .� j y; �2; !2/ :

Since the equality holds for any �, we choose � D 0 to reduce the number of
computations involved.

function l = loglike_UC(sigma2,omega2,omega2_0,y)
T = length(y);
H = speye(T) - sparse(2:T,1:(T-1),ones(1,T-1),T,T);
invOmega = sparse(1:T,1:T, ...

[1/omega2_0 1/omega2*ones(1,T-1)],T,T);
HinvOmegaH = H’*invOmega*H;
K = HinvOmegaH + speye(T)/sigma2;
tauhat = K\y/sigma2;
C = chol(K,’lower’);
logfy = -T/2*log(2*pi*sigma2) - .5/sigma2*(y’*y);
logftau_pri = -T/2*log(2*pi) - .5*log(omega2_0) ...

- (T-1)/2*log(omega2);
logftau_post = -T/2*log(2*pi) + sum(log(diag(C))) ...

-.5*tauhat’*K*tauhat;
l = logfy + logftau_pri - logftau_post;

Note that evaluating the log-density lnf .� j y; �2; !2/ involves the term
� 1
2

ln jK�1j, where K D H˝�1H C I=�2. To speed up computation, we use
the fact that if C is the Cholesky factor of K such that K D CC>, then

�1
2

ln jK�1j D 1

2
ln jKj D ln jC j D

X

i

ln ci i ;

where ci i is the i th diagonal element of C . The last equality holds because C is
lower triangular.

Next, in the main script, we build a grid and use the function loglike_UC to
evaluate the log-likelihood function at every point on the grid. A plot of l.�2I y/
is given in Fig. 4. The maximum likelihood estimate of �2 computed using this
grid search is about 4.401, compared to the value 4.405 obtained by the numerical
maximization.
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%p11_5.m
load ’USCPI.csv’;
y = USCPI;
T = length(y);
omega2_0 = 9; % initial condition
omega2 = .5^2; % fix omega2
ngrid = 300; % # of grid points
sigma2grid = linspace(1,10,ngrid)’;
l = zeros(ngrid,1);
for i=1:ngrid

l(i) = loglike_UC(sigma2grid(i),omega2,omega2_0,y);
end
plot(sigma2grid,l,’k’,’LineWidth’,2); box off;
[maxl maxid] = max(l);
sigma2hat = sigma2grid(maxid);

0 2 4 6 8 10
−740

−720

−700

−680

−660

−640

−620

−600

σ2

Fig. 4 The log-likelihood
function l.�2I y/ under the
unobserved components
model

11.6

(a) First write the model in matrix form: Hˇy D Hˇ� C ę C ", where y D
.y1; : : : ; yT /

>, " D ."1; : : : ; "T /
>, ęD .ˇy0; 0; : : : ; 0/

>, and

Hˇ D

0

B

B

B

B

B

@

1 0 0 � � � 0
�ˇ 1 0 � � � 0
0 �ˇ 1 � � � 0
:::

: : :
:::

0 0 � � � �ˇ 1

1

C

C

C

C

C

A

:
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Since the determinant of Hˇ is 1 for any ˇ, Hˇ is invertible. Then, y D � C
˛CH�1

ˇ ", where ˛ D H�1
ˇ ę. In other words,

.y j y0;�; ˇ; �2/ � N.� C ˛; �2.H >̌Hˇ/
�1/ ;

and the joint log-density of y is

lnf .y j y0;�; ˇ; �2/ D �T
2

ln.2��2/

� 1

2�2
.y � � � ˛/>H >̌Hˇ.y � � � ˛/ :

(b) The derivation of f .� j y; y0; ˇ; �2; !2/ follows closely the discussion in
Sect. 11.1.2. More specifically, since the transition equation is exactly the same ☞ 332

as before, we have

lnf .� j!2/ D �T
2

ln.2�/� 1

2
ln!20 � T � 1

2
ln!2 � 1

2
�>.H>˝�1H/� ;

where H is the usual first difference matrix, ˝ D diag.!20 ; !
2; : : : ; !2/, and

!20 D 5. Then, using the expression for ln f .y j y0;�; ˇ; �2/ given above, we
“complete the squares” to obtain ☞ 238

.� j y; y0; ˇ; �2; !2/ � N.b�; K�1/ ;

whereK D H>˝�1H CH >̌Hˇ=�
2 andb� D K�1H >̌Hˇ.y � ˛/=�2.

(c) For classical estimation, we can maximize the log-likelihood function numer-
ically using the method of direct likelihood evaluation described in Prob-
lem 11.5. Since the number of parameters is only two (ˇ and �2), this approach
is computationally feasible.

For Bayesian estimation, if we assume conjugate priors for ˇ and �2, we can
implement a 3-block Gibbs sampler for posterior analysis. The full conditional
distribution for � is normal as given above. The full conditional distributions for
ˇ and �2 are normal and inverse-gamma, respectively, which can be sampled
from easily.
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Symbols
� distributed as, 28
E expectation, 29
iid� independent and identically distributed as,

66
I indicator, 73
\ intersection, 7
P probability, 9
/ proportional to, 215
' standard normal pdf, 46
˚ standard normal cdf, 46
[ union, 7

A
acceptance–rejection method, 55, 214, 215
affine transformation, 47, 75, 76, 82, 83
Akaike information criterion, 305, 320
alternative hypothesis, 140
Analysis of Variance (ANOVA), 111, 142, 143,

156
model, 111–114
single-factor, 112, 115, 143
two-factor, 113

autocorrelation, 290
autocovariance, 290
autoregressive moving average, 287, 303
auxiliary mixture sampling, 340
auxiliary variable methods, 183

B
bag of words method, 261
balanced design, 112
bandwidth, 201
bar.m, 4

Bayes factor, 140, 251
Savage–Dickey density ratio, 254

Bayes’ rule, 16, 227, 228
Bayesian information criterion, 305, 320
Bayesian network, 244–248
Bayesian statistics, 121, 228, 233
belief net, 246
Bernoulli

distribution, 36
process, 66
regression, 266

beta distribution, 74, 229, 241, 256, 365
beta function, 74
bias, 122, 205
binomial distribution, 18, 24, 37, 67, 69, 92

normal approximation to, 92
binomial formula, 38
binomial model, 135

two-sample, 103, 136
birthday problem, 15
blocking, 114
bootstrap method, 128, 203, 205
Box–Muller method, 82
burn-in, 213, 291

C
categorical variable, 111
Cauchy distribution, 50, 71, 94, 163, 204
Cauchy–Schwartz inequality, 95, 171
ceil.m, 21
central limit theorem, 90, 130

for random vectors, 92
chi-squared distribution, 48, 86, 89, 96, 132,

134
classical statistics, 121
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coefficient of determination, 156
coin tossing, 3, 7, 18, 24, 37, 39, 66, 121, 228
combined multiple-recursive generator, 52
complete-data likelihood, 183
completing the squares, 238, 393
concentration matrix, 308
conditional

expectation, 77
pdf, 71
probability, 12–19

confidence
set, 174

confidence interval, 128, 174, 175, 206
approximate, 128
approximate – for p (binomial distribution),

136
approximate – for p (two-sample, binomial

distribution), 136
Bayesian, 128, 229
bootstrap, 206
for �X � �Y (two-sample normal

distribution), 134, 157
for �2 (normal distribution), 132
for �2X=�

2
Y (two-sample normal

distribution), 134
conjugate family, 249
consistent estimator, 176
convex function, 33
correlation coefficient, 76, 85, 95, 124

sample, 125, 156
counting problems, 19
covariance, 75

matrix, 77, 79, 83, 84, 86, 92, 168, 285, 306,
308, 310

method, 290
covariate, 105
coverage probability, 128
Cramér–Rao inequality, 171
credible interval, 128, 229
cross-validation, 146
K-fold, 147
leave-one-out, 147
linear model, 148

cumdf.m, 60, 366
cumsum.m, 4, 55
cumulative distribution function (cdf), 25, 29

joint, 63

D
data

reduction, 150
transformation, 110

data augmentation, 278
De Morgan’s rules, 8, 19

delta method, 92, 207
dependent variable, 105
derivatives

multidimensional, 367
partial, 367

design matrix, 115, 116, 125, 127, 148, 173,
237, 265, 291, 304, 316

detailed balance equations, 213, 214
digamma function, 191
directed acyclic graph, 244
Dirichlet distribution, 241, 365
discrete joint pdf, 64
discrete random variable, 111
disjoint events, 7, 9
distribution

Bernoulli, 36
beta, 74, 229, 241, 256, 365
binomial, 37, 67, 69, 92
Cauchy, 50, 71, 94, 163, 204
chi-squared, 48, 86, 89, 96, 132, 134
continuous joint, 69, 73
Dirichlet, 241, 365
discrete joint, 64–69
discrete uniform, 59
double exponential, 190
exponential, 43, 94
exponential family, 152, 167, 174, 266
F , 50, 51, 89, 134
gamma, 48, 49, 232, 242
Gaussian, see normal
geometric, 38
inverse-gamma, 234, 318, 333, 336, 342
logistic, 59
mixed joint, 73–74
mixture, 187, 201, 221
multinomial, 68, 185, 220, 240
multivariate normal, 83, 106, 307
multivariate Student’s t , 271, 285
noncentral �2, 88
normal, 45, 57, 81, 82
Poisson, 34, 40
positive normal, 56, 71, 354–355
Student’s t , 50, 89, 131, 133
truncated normal, 279, 286
uniform, 42, 188
Weibull, 61, 190, 200

dominated convergence theorem, 370
double exponential distribution, 190
drawing with or without replacement, 19

E
efficient score, 167
erf.m, 60
EM-algorithm, 182, 279, 327
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empirical cdf, 196, 203
reduced, 199

ergodic Markov chain, 212
error terms, 115, 173
estimate, 122
estimator, 122

bias, 122
unbiased, 122

event, 6
elementary, 10

expectation, 31, 29–33
conditional, 77
for joint distributions, 74
properties, 33, 75
vector, 77, 79, 83

explanatory variable, 105
exponential distribution, 43, 94
exponential family, 152, 167, 174, 266

conjugate prior, 249–251
information matrix, 170
natural, 152

exponential model, 109

F
factor level, 111
factorial experiment, 111
factorization theorem, 150
F distribution, 50, 51, 89, 134
find.m, 55
Fisher information matrix, 168

observed, 268
Fisher’s scoring method, 180, 283
full rank matrix, 126
functions of random variables, 78
fzero.m, 193

G
Galton, Francis, 104
gamma distribution, 48, 49, 232, 242
gamma function, 48, 49, 74, 191, 193
gamrand.m, 232, 364
gamrnd.m, 337, 364
Gaussian distribution, see normal distribution
generalized likelihood ratio, 178
generalized linear model, 265
geometric distribution, 18, 38
geometric sum, 39
Gibbs sampler, 218–219, 225, 226, 230, 232,

234–236, 258–259, 280, 316–320,
332–333, 335–339, 342–345

global balance equations, 212
goodness of fit test, 220

gradient, 368
grid search, 193

H
Hessian matrix, 170, 176, 180, 183, 368
hierarchical model, 229, 332
hyperparameter, 245
hypothesis testing, 140–195

I
icumdf.m, 60, 129, 366
improper prior, 236
independence

of events, 17
of random variables, 65, 66, 70, 75

independence sampler, 215
independent and identically distributed (iid),

66, 71, 89, 101–104, 130
independent variable, 105
indicator, 57, 74
initial distribution, 210
integrated moving average, 301
interval estimate, see confidence interval, 174
inverse-gamma distribution, 234, 318, 333,

336, 342
inverse-transform method, 54, 71, 200, 203

discrete, 54
irreducible, 213

J
Jacobian matrix, see matrix of Jacobi
Jensen’s inequality, 33, 192
joint

cdf, 63
distribution, 63, 79

joint pdf, 69
for dependent random variables, 67

jointly normal distribution, see multivariate
normal distribution

K
Kalman filter, 325
kde.m, 202
kernel density estimation, 201–203, 209, 216,

232
Kolmogorov–Smirnov statistic, 200, 221
Kronecker product, 116, 314, 317, 389
Kullback–Leibler distance, 192
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L
Langevin Metropolis–Hastings sampler, 224
latent variable methods, see auxiliary variable

methods
law of large numbers, 89, 130
law of total probability, 16
least-squares method, 125–128, 222
likelihood, 123, 161

Bayesian, 228
binomial, 161
complete-data, 183
concentrated, 295
normal, 162
optimization, 182
profile, 189, 295, 304

limiting pdf, 212
linear model, 115, 173
linear regression model, 108
linear transformation, 79
local balance equations, see detailed balance

equations
location family, 171, 182
log-likelihood, 165
logistic distribution, 59, 267
logistic model, 109
logistic regression, 267
logit model, 267

M
marginal likelihood, 252
marginal pdf, 65, 70, 86, 230, 241, 257
Markov

property, 209
Markov chain, 209–213, 217–219, 259, 323

ergodic, 212
reversible, 212

Markov chain Monte Carlo, 209–220, 274,
276, 291

MATLAB

basic matrix operations, 349–352
built-in functions, 352–354
for-loop, 355
function, 356
function handle, 355
graphics, 356–360
if-then-else, 354
optimization routines, 360–362
sparse matrix routines, 362–364
while-loop, 354–355

matrix
covariance, 77, 84, 86, 92, 168, 285, 306,

308, 310
matrix of Jacobi, 81, 242, 257, 284, 367

maximum likelihood estimator, 172–180,
182

mean square error, 154, 205
measurement equation, 323
median, 222

sample, 204
memoryless property, 40, 44, 58
method of moments, 123, 124
Metropolis–Hastings algorithm, 214–217
mixture distribution, 187, 201, 221
mixture model, 187–188
mode, 172, 229
model

Analysis of Variance (ANOVA), 111–114
autoregressive moving average, 287, 303
binomial, 103, 135
exponential, 109
hierarchical Bayesian model, 229, 332
linear regression, 108
logistic, 109
multinomial, 240
multiple linear regression, 106, 115
nested, 253
normal linear, 88, 114–117, 125, 137, 142,

148, 156, 237
power law, 109
probability, 10, 121
randomized block design, 143
regression, 104–111
response surface, 109
selection, 114, 142, 146, 251, 287
simple linear regression, 106, 115, 127, 139
single-factor ANOVA, 112, 143
state space, 323
stochastic volatility, 339–345
time-varying parameter autoregressive,

333–339
two-factor ANOVA, 113
unobserved components, 325–333
Weibull, 109
zero inflated Poisson, 258

moment, 32
sample-, 123

moment generating function (MGF), 35, 86,
91, 96

Monte Carlo
integration, 130
sampling, 195–226

Monty Hall problem, 13
moving average, 289, 297

integrated, 301
multinomial distribution, 68, 185, 220, 240
multinomial model

Bayesian, 240
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multiple linear regression, 106, 115
multivariate normal distribution, 83, 82–89, 95,

106, 307

N
natural exponential family, 152
neighborhood structure, 224
nested model, 253
Newton’s binomial formula, 38
Newton–Raphson method, 180
noncentral �2 distribution, 88
nonlinear regression, 109, 189, 222
normal distribution, 45, 57, 81, 83

generating from, 82
positive, 56, 71, 354–355

normal equations, 126
normal linear model, 88, 114–117, 125, 137,

142, 148, 156, 266
Bayesian, 237

normal model
two-sample, 103, 111, 133

nuisance factor, 114
null hypothesis, 140

O
observed information matrix, 268
orthogonal matrix, 95

P
p-value, 140, 195
partial derivative, 367
partition, 16
Pearson’s height data, 104
pivot variable, 129
plot.m, 4
Poisson distribution, 34, 40
Poisson regression, 282
polynomial regression, 108
pooled sample variance, 133
positive normal distribution, 56, 71, 354–355
posterior

mean, 229
mode, 229

posterior pdf, 121
asymptotic normality, 248

power law model, 109
precision matrix, 308
predicted residual, 147
predictive pdf, 261
predictor, 105

prior pdf, 227, 249
improper, 236
uninformative, 233

probability, 3, 4, 9–11
probability density function (pdf)

discrete joint, 64
conditional, 67
continuous, 28
discrete, 27

probability distribution, 25
continuous, 28
discrete, 27

probability generating function (PGF), 34
probability model, 10, 121
probit model, 273
product rule, 14, 67, 72, 210, 229, 245
profile likelihood, 189, 295, 304
projection matrix, 96, 126, 148
pseudo-inverse, 126, 239

Q
quad.m, 60
quotient of independent random variables, 71

R
radius of convergence, 34
rand.m, 4, 71
randn.m, 57
random

experiment, 3, 5, 10
number generator, 52
vector, 79

random variable, 23
continuous, 25, 28
discrete, 25, 111
functions of, 78
quotient of, 71
range, 25

random vector, 63
transformation, 81

random walk sampler, 216
randomized block design, 143
range

of a random variable, 25
rank, 126
ratio estimator, 93, 207
reduction of data, 150
regression

line, 106
model, 104–111
multiple linear, 106
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regression (cont.)
nonlinear, 109, 189, 222
polynomial, 108
simple linear, 105–106, 108, 206

reliability, 8
replacement

drawing with or without —, 19
resampling, 203, 205
residuals, 127, 147, 288
response surface model, 109
response variable, 105
reversibility, 212
R2, see coefficient of determination

S
sample

correlation coefficient, 124, 125, 156
mean, 122, 123, 124
median, 204
standard deviation, 124
variance, 123, 124, 206

pooled, 133
sample space, 5

continuous, 11
discrete, 10

Savage–Dickey density ratio, 254
score

efficient, 167
function, 165, 167
interval, 174, 175

seed, 52
simple linear regression, 105–106, 115, 127,

139
sort.m, 21
sparse matrix, 295, 299, 307, 329, 362
spreadsheet, 115
standard deviation, 32

sample, 124
standard normal distribution, 46
state space model, 323

initial condition, 326
stationarity, 289, 291
statistic, 122, 140

sufficient, see sufficient statistic
statistical model, 102
statistical test

goodness of fit, 220
steps for, 129, 141

statistics, 3, 5
Bayesian, 121
classical, 121

stochastic volatility model, 339–345
Student’s t distribution, 50, 89, 131, 133, 266

multivariate, 271, 285
sufficient statistic, 150, 151, 153, 188
sum rule, 9, 10, 16, 26, 27, 64, 65

T
target distribution, 209
Taylor’s theorem, 91

multidimensional, 92, 108, 176, 177, 179,
180, 369

test statistic, 140
time series, 287–305, 323–345
time-varying parameter autoregressive model,

333–339
tower property, 78
transformation

of data, 110
transformation rule, 79, 81, 242
transition

density, 210
equation, 323
graph, 210

trimmed mean, 221
truncated normal distribution, 279, 286
two-sample

binomial model, 103, 136
normal model, 103, 111, 133

U
unbiased estimator, 122
uniform distribution, 42, 188

discrete, 59
unobserved components model, 325–333

V
variance, 32

properties, 33, 35, 36, 76, 77, 94
sample, 123, 124, 206

W
Weibull

distribution, 61, 190, 200
model, 109

Z
zero inflated Poisson, 258
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