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Preface

Life expectancy is an essential concept in the analysis of time-
to-event data, which can be encountered in many research fields.
Traditionally life expectancy has been defined as the mean resid-
ual lifetime, and much research effort has been devoted to the
topic until recently. Potential asymmetric nature of time-to-event
data also triggered researchers’ interests in nonparametric ap-
proaches to inferring the remaining lifetimes in the mid-1980s,
which has recently revived as a robust yet practical summary
measure for censored survival data. In this book, we review the
history and research achievements first in the topic of the mean
residual lifetime and then elaborate on recent developments in
statistical inference on the quantile residual lifetime.

Chapter 1 introduces the basic concepts needed to investi-
gate the properties of the quantile (residual life) function such as
almost sure convergence, strong law of large numbers, Brownian
motion and bridge, empirical and quantile process, counting pro-
cess martingale, and the check function. In Chap.2, we briefly
overview statistical methods developed to infer the mean residual
life function. In Chap.3, the quantile (residual life) function is
defined and its properties are described, and recently developed
inference methods are reviewed in detail. In Chap. 4, we elaborate
on the extension of the results reviewed in Chap. 3 to the compet-
ing risks setting. In Chap. 5, we discuss some issues in inference on
the quantile (residual life) function and review alternative meth-
ods based on the empirical likelihood and a Bayesian approach.
In Chap.6, we touch on a design aspect based on the quantile
(residual life) function. In Appendix, we provide R codes that
were written for the numerical examples throughout the book.

vii



viil PREFACE

The targeted audience would be graduate students and re-
searchers both in the academia and in the industry who are inter-
ested in learning theory and application of the quantile (residual
life) function. Numerical examples in the book use small datasets,
so that the readers can easily follow detailed calculations of the
mathematical formulas, coupled with provided R codes. Real
examples based on a dataset from a clinical trial are also included.
At the end of each main chapter, future research directions are
also suggested to stimulate researchers to move the field forward.

I would like to thank Professor David Oakes, who first
introduced me to the topic of the proportional mean residual
life model. My sincere thanks also go to Professors Jason Fine,
Sin-Ho Jung, and Mai Zhou for our productive collaborations on
the topics of competing risks analysis, quantile residual life in-
ference, and empirical likelihood ratio inference, which had re-
ally broaden my knowledge in statistical theory and application.
[ would also like to thank the previous and current leadership
of the Biostatistical Center for the National Surgical Adjuvant
Breast and Bowel Project (NSABP), Professors Samuel Wieand,
John Bryant, and Joseph P. Costantino, for their strong support
for my methodological research. Finally I am very thankful to
Professor Sally C. Morton, Chair of our department, for her con-

stant encouragement and strong support while I was working on
the book.

Pittsburgh, PA Jong-Hyeon Jeong
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Chapter 1

Introduction

In this chapter, we review some fundamental mathematical tools
often used in development of probability and statistics theory, esp-
ecially for the quantile (residual life) function, such as almost sure
convergence, strong law of large numbers (SLLN), empirical pro-
cesses, quantile processes, counting process martingale, Brownian
motion, Brownian bridge, and the check function.

1.1 Almost Sure Convergence

The concept of almost sure convergence (a.s. convergence) is often
used to prove uniform consistency of the empirical processes. Let
us define €2 to be a sample space with its elements w, and {X,,} is
a sequence of random variables defined on 2. First, pointwise con-
vergence of the sequence {X,} is defined such that the sequence
of real numbers { X, } is convergent for all w € Q. The a.s. con-
vergence is a weaker convergence than the pointwise convergence
in that it only requires the convergence of { X, } for a large enough
subset of 2 with positive probability measure, not for all w € Q.
We denote the a.s. convergence of the sequence {X,,} to its limit
X as X, — X as.

J.-H. Jeong, Statistical Inference on Residual Life, 1
Statistics for Biology and Health, DOI 10.1007/978-1-4939-0005-3_1,
© Springer Science+Business Media New York 2014



2 CHAPTER 1. INTRODUCTION

Example 1.1 (Statlec, The Digital Textbook, Lectures
on Probability and Statistics, http://www.statlect.com/
asconvl.htm). Suppose that we have the sample space Q2 = [0, 1].
For a sub-interval [a, b] € [0, 1], it is possible to build a probability
measure P such that P([a,b]) = b — a (Williams, 1991). Under
this probability model, we have P({w}) = P(jw,w]) = w—w =0,
implying that a zero-probability is assigned to all the sample ele-
ments w. Now define a sequence of random variables as {X,,} =1
if w =0and 1/n if w # 0. This implies that X,, — 0 as
n — oo when w € (0,1], while X,, — 1 as n — oo when
w = 0. Therefore we can say that X,, - X = 0 a.s. because
it converges to 0 for all the sample points w but 0, which is a
zero-probability event. Often the sequence of random variables
{X,} is also defined to converge a.s. to a constant c if and only if
P(|X,—c| > ¢, i.0.) =0forall e > 0, where i.o. implies “infinitely
often,” or limsup,,_, . | X, — ¢| = inf, (supmz” | X, — c|) =0.
That is, the almost sure convergence is equivalent to the statement
that the probability of occurrence of an event of the absolute dis-
tance from the sequence X, to the constant ¢ remaining as large
infinitely often becomes 0 as n — oc.

1.2 Strong Law of Large Numbers

The strong law of large numbers (SLLN) is also essential for prov-
ing the uniform consistency of the empirical processes.

Theorem 1 (SLLN). Suppose that X1, Xs, ..., X, is a random
sample that has the cumulative distribution function F(zx). At a
fized value of x, define the indicator function §; = I(X; < x) =1
if Xi < x or 0 otherwise. If we define F,,(x) = Y, (z)/n,where
Yo(z) = X0, 05, as the empirical distribution function, then F,(x)
converges a.s. to p = F(x).

Proof: Note that at a fixed z, the indicator function d; is a
Bernoulli random variable with mean p and variance p(1 — p),
and hence E(d) = p < oo. Furthermore, by the Chebychev’s
inequality, for any €, we have


http://www.statlect.com/asconv1.htm
http://www.statlect.com/asconv1.htm

1.3. BROWNIAN MOTION AND BROWNIAN BRIDGE 3

PP -5l > 0 < LRl I Sl -

Since Y, (x) follows a binomial distribution with mean np, the
4™ central moment E[Y,(z) —npl* = E[YX(x)] —4(np)E[Y?(x)] +
6(np)*E[Y,?(x)]—4(np)>E[Y,,(z)]+(np)* can be evaluated as np(1—
p) + 3n(n — 2)p*(1 — p)? which is bounded by cn? as n — oo,
where ¢ = 3p*(1 — p)? < oo. Replacing E[Y,,(z) — np|]* with cn?
in inequality (1.1), we have

P(Fu(x)=pl >0 < —

— )
n2et

which implies
(o] (o] c
ZP(|Fn(x) —pl>€) < Z —— < 0.
n=1 n=1 n-e

Therefore by the Borel-Cantelli lemma (Borel, 1909; Cantelli,
1917), we finally have

P(|F,(x) — p| > €,1.0.) =0,

which implies that F,,(x) converges to p a.s.

1.3 Brownian Motion and Brownian
Bridge

In this section, we review a limiting process that plays crucial
roles in deriving the limiting behavior of quantile (residual life)

processes. The material being reviewed here is a summary from
Ross (1985, Chap. 10).

1.3.1 Brownian Motion

The concept of the Brownian motion can be cast as a limiting
behavior of the symmetric random walk. Under the symmet-
ric random walk process, in each time unit, an object would be
equally likely to take a unit step either to the left or to the right.
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More formally, let us define X (t) to be the position of the pro-
cess, i.e. X(t) = (Az)(Xy + Xo+ ...+ X}/aq), where X; = 1 if
the " step of length Az is to the left and -1 if it is to the right,
and [t/At] is the largest integer less than or equal to t/At. Note
that P(X; = 1) = P(X; = —1) = 1/2, and hence E[X(t)] = 0
and Var[X (t)] = (Az)?(t/At) since E(X;) = 0 and Var(X;) =
E(X?) =1. For ¢ > 0, letting Az = ¢v/At gives Var(X;) = c*t as
At — 0. By the central limit theorem, the process X (¢) follows
a normal distribution with mean 0 and variance ¢?t. In fact, un-
der the simple random walk process, taking smaller and smaller
steps (Ax) in smaller and smaller time intervals (At) leads to a
Brownian motion as formally defined below.

Definiton 1.1. A stochastic process {X(t),t > 0} is said to be
a Brownian motion process (Wiener process) if

1. X(0)=0

2. X(t),t > 0 has stationary and independent increments. For
example, the changes of value of the random walk in non-
overlapping time intervals can be reasonably assumed to be
independent and its distribution does not depend on t.

3. For all t > 0, X(¢) is normally distributed with mean 0 and
variance c¢*t, which only depends on the length of time that
has passed since the previous time point. When ¢ = 1, it is
called standard Brownian motion.

Definiton 1.2. A stochastic process X (t), (t > 0), is called Gaus-
sian or a normal process if X (¢1), ... X(¢,) has a multivariate nor-
mal distribution for all ¢1,...¢,.

In general, the covariance process gives Cov(X (t1), X (t2)) =
min(ty, t9) because

Cov(X (1), X (t2))= Cov(X (t1), X (t1)+X (t2
= Cov(X(t1), X (t1))+Cov
= Cov(X (t1), X(t1))=Var(X (t1))=ty, (1.2)

—X(t))

—~ —

when t; < ts.
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We will now show that the Brownian motion is the Gaussian
process. Suppose {X(f),t > 0} is a standard Brownian motion
process with the probability density function

1 2
fi(z) = \/2_7rtexp(—x /2t).

Note that for t; < ty < ... < t,, the set of equalities X (t1) = z,
X(ty) = xg,..., X(t,) = x, is equivalent to X (t1) = x1, X(t2)
—X(t1) =xg—x1,..., X(tn) — X(tn_1) = ¥, — x,_1. Since X (1),
X(ty) — X (t1),..., X(t,) — X(t,—1) are independent and X (t;) —
X (tg—1) is normally distributed with mean 0 and variance tj —tj_,
from (1.2), the joint probability density function is given by

f(xlv L2y .- ,SL’n) = ftl (x1>ft2 —t1 (x2 xl) ftn—tn 1(‘7;” xn—1>

exp [ { +(f”2 z1)? | +MH

to—11 tn—tn—1

2m) 2 {ty (ta—t1) . . . (tp—tn_1 }1/2
(1.3)

Equation (1.3) implies that the random variables X (¢1), X (t2),.. .,
X(t,) follow a multivariate normal distribution. When n = 2, for
example, the probability density function (1.3) reduces to

1 [ x? (z2—21)?
exw [ {2 + )]
(2m)\/t1(ta — t1)
which, after some manipulation, can be expressed as
1 x? 22 N N
oo = 22t (2 20 () ()]

(2m)y/tata(1 = p?)
where p? = t,/ty. This is the probability density function of a
bivariate normal distribution with (1, e, 03,032, p) = (0,0, 11, o,
\/t1/t2). From (1.2), the correlation coefficient p between X (t;)
and X (t2) (t1 < t2) is given by
o Cox < > X(t2))
\/ Var(X ( r(X( )

min tl, t2
Vitits

f(l'l,xz) =
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1.3.2 Brownian Bridge

The Brownian bridge is the Brownian motion process tied down
both at 0 and 1. Denote {X(¢),t > 0} for the Brownian motion
process and consider the process between 0 and 1 conditional on
X (1) = 0. The conditional distribution of X (s) given X (t) = b
when s < t can be generally derived from

P[X(s) =z and X (t) = b]

N P OEY
_ P[X(s) =z and X(t) — X(s) = b — z]
P[X(t) = b
_ PIX(s) = 2] P[X(t) — X(s) = b— ]
P[X(t) = b
t(x — bs/t)?
x exp{—m}, (1.4)

because X(s) and X (t) — X(s) are independent and normally
distributed with the common mean 0 and variances s and t—s, res-
pectively. This implies that the conditional distribution of X(s)
given X (t) = b follows a normal distribution with mean b(s/t) and
variance s(t — s). Applying this result to the Brownian bridge
with a constraint of X (1) = 0, for any s < t < 1, we have
E{X(s)|X (1) =0} = 0 and the covariance process

Cov[(X(s), X ()| X(1)=0] = E[X(s)X(#)|X(1)=0]
X(OE{X (s)| X (1)} X (1)=0]
() (s/H) X ()] X (1)=0] by (1.4)
JE[X ()% X (1)=0]

(

/t |
Jt)Var[ X (t)| X (1)=0]
Jt

1

Ll
ElX
= (5
(s
(s/t)t(1—t) by (1.4)

= s(1-t).

Therefore, Brownian bridge is a Gaussian process with mean 0
and the covariance function s(1 —¢) (0 <s <t <1).
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1.4 Empirical and Quantile Processes

1.4.1 Empirical Process

Suppose X, Xo,..., X, is a random sample from a population
with the distribution function F'(z). We first define F,(x) =
(1/n) Y0, I(X; < t) as an empirical distribution function. By the
SLLN, F,(z) converges a.s. to F(z) at every fixed x, which
can be extended to uniform consistency by the Glivenko—Cantelli
theorem (Glivenko, 1933; Cantelli, 1933).

Theorem 2 (Glivenko—Cantelli). If X, X5, ... are indepen-
dently and identically distributed with the distribution function
F(x), then as n — oo

sup |F(z) — F(z)] = 0 a.s.

Proof (Durrett, 1991, p. 56): Suppose that F'(z) is continuous.
Let z; = inf{x : F(x) >i/k} (1 <i<k—1), where k is defined
such that

| Falak,) — Fawa )| < 1/k,

for each ¢ and a large n, by the strong law of the large numbers.
This inequality also naturally holds for ;o = —00 and xy ; = oo.
Therefore, for any = € (2,1, 2;;) and a large n, we have

F.(z) < F(2k;) < Fag) +1/k = Fag—1) +2/k < F(z)+2/k
and

F.(z) > F(xgio1) > F(og—1)—1/k=F(xr;)—2/k > F(x)—2/k,
which implies that

sup |Fy,(z) — F(x)] <2/k — 0 as n — oo.

For an independent sequence of random variables X, of iden-
tically distributed real random variables, the Glivenko—Cantelli
theorem allows the common distribution function F' to be deter-
mined approximately (from the data), in the sense of almost sure
uniform convergence (Bauer, 1995, p. 102).
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Now we derive the limiting distribution of the empirical process

Vn[F,(z) — F(z)] through its inverse transformation. By the
probability integral transformation, & = F~1(X;) (i = 1,2,...,n)
would be a random sample following a uniform distribution
between 0 and 1. Let us define the empirical distribution func-
tion of the uniform random variables ;’s as G,(t) = (1/n)
I(¢ <t) (Fig.1.1a) and its corresponding true distribution func-
tion as G(t). Note that both nF,(x) and nG,(F(zx)) follow the
same binomial distribution (n, F'(x)), because the events X < x
and ¢ < F(x) are equivalent and hence P(X < z) = P({ <
F(z)) = G(F(z)) = F(x). Therefore by setting t = F(z), the
process y/alGa(t) — 1] = (1/y/) S 1(E <) — 1] (0 < ¢ < 1)
can be defined as the uniform emplrlcal process (Shorack and
Wellner, 2009). This implies that the probablistic investigation
of the process /n[F,(x) — F(x)] can be reduced to the uniform
empirical process /n[Gn(t) —t] (0 < ¢t < 1). It can be easily
seen that E[U,(t)] = 0 and, for s < t, the covariance process is
given by

Cov[Up(s), Un(t)] = Cov %g{f(e < 5)—s}, \/15 zn:{l (6 < )-8

= Cov [I(& < s)—s,1(& < t)—t]
=E[{I(& < s)—sHI(& < t)-t}]
=P(& < s)—tP(& < s)—sP(& < t)+ts

= s—ts—st+ts=s(1—t).

Similarly, for ¢ < s, we obtain Cov[U,(s),U,(t)] = t(1 — s),
so that in general we have Cov|[U,(s),U,(t)] = min(s,t) — st
(0 < s,t < 1). This implies that under the assumptions for
the Brownian bridge presented in Sect.1.3 and by the ordinary
multivariate central limit theorem, the uniform empirical process
U, (t) converges to a Brownian bridge B(t) (Doob, 1949; Donsker,
1951). This is equivalent to the statement that the original emp-
irical process \/n[F,(z) — F(x)] converges to a Brownian motion
B(F(z)) with the covariance process of F/(min(u,v))— F(u)F(v).
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1.4.2 Uniform Quantile Process

The asymptotic behavior of the uniform quantile process as a
Brownian bridge will be useful later in Chap.3 for deriving the
asymptotic distribution of the quantile residual life function.
Let us define V,,(t) = /n[G,'(t) — t] as the uniform quantile
process, where G} (t) = inf{z : G,,(z) >t} =&, for (i —1)/n <
t <i/n (1 <i<n)(Fig. 1.1b), implying that the order statis-
tic &,.; has its mean value of i/(n + 1) because it follows a Beta
distribution (i,m — i + 1). By noting that

Uy (G'(1) = Vi |Ga (GL(1) — Gl (1) + 1 — ]
= V|Gt —t] + Vi |G (G1(1) — 1]

we can rewrite V,(t) as
V() = =Un (G (1) + Vi |G (G1(1) — ] (1.5)

The second term in (1.5) is not equal to 0 when there is no jump
(Fig. 1.1a, ¢), but it converges to 0 as the jump sizes get smaller
as n — o0o. Also note that sup, |G, (t) —t| = sup, |G, (t) —t| from
Fig. 1.1a, b, and furthermore sup, |G, (t) —t| = sup, |G, * (¢t)—t| —
0 a.s. by the Glivenko-Cantelli theorem (Shorack and Wellner,
2009, p. 95). This implies that both G, (t) and G () converge
in distribution to G(t) =t (0 <t < 1), so that V,,(¢) converges to
a Brownian bridge —B(t).

1.5 Counting Process Martingale

We review the martingale and counting process theory here
because it plays an important role in our development of the test
statistics for the quantile residual life inference later.

1.5.1 Definition of Counting Process

First we define stochastic processes, or random processes, which
are sequences of events governed by probabilistic laws (Karlin and
Taylor, 1975), i.e. a time-indexed collection of random variables
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a b
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Fig. 1.1: (a) Uniform empirical distribution; (b) uniform quantile
distribution; (c) inverse of uniform quantile distribution

or a mapping that assigns a time function to every outcome of
points in the sample space. Suppose we have right-censored data
with X; = min(7;,C;) and §; = I(T; < C;), where T; and C;
are potential failure time and censoring time, respectively. Let us
define a counting process for a subject i as N;(t) = [(X; < t,6; =
1) (i=1,...n)and N(t) = X", N;(t). Then a stochastic process
N(t) is a counting process if

(i) N(0)=0
(ii) N(t) < oo for all ¢ with probability 1.

(iii) Sample paths are right-continuous and piecewise constant
with jump size 1 when there are no ties.
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Counting process theory for survival data has been developed
by Aalen (1975), and well-known reference books on martingale
and counting processes include Counting Processes and Survival
Analysis (Fleming and Harrington, 1991), Statistical Models Based
on Counting Processes (Andersen et al., 1993), The Statistical
Analysis of Failure Time Data (Kalbfleisch and Prentice, 2002,
2nd edn., Chap.5), and Empirical Processes with Applications to
Statistics (Shorack and Wellner, 2009, Chaps. 6-7).

1.5.2 Martingale

Martingale is a stochastic process where the best estimate of the
future value conditional on the past, including the present, is the
present value. The concept of martingale in probability theory
was introduced by Paul Pierre Levy, and much of the original
development of the theory was done by Joseph Leo Doob.

As a simple example of a martingale process, suppose a player
tosses a fair coin with p = ¢ = 1/2, and wins a dollar if heads
come up and loses a dollar if tails come up. If we let W,, =31 | X
be his/her fortune at the end of n tosses, then E(W,,11|X,,, X,_1,
LX) =30 X+ E(X41) = W, implying that the average for-
tune of the player at the (n + 1) toss is the same as his/her
current fortune W,,, which is not affected by how (s)he arrived
at this current fortune (a fair game). Depending on p, the game
could be biased in favor of the player (submartingale) or against
the player (supermartingale).

Let us define F; as history, or filtration, of the counting process
up to time ¢, and F;_ = history up to just before t. Note that
Fi consists of knowledge of the pairs (7}, 9;) if 7; < t and the
knowledge that T; > t for the subjects still at risk at time ¢,
as well as information on possibly time-dependent covariates at
time t.

Definiton 1.3 (Martingale). M(t) is a martingale if, for s < t
E(M(t)|Fs) = M(s).
This definition is equivalent to

E(dM(t)|Fs) =0 forall ¢,
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BQM()F) = M(s) = EQM(®) - M()\F)=E [ a7

:l[Ewwa»a]VJ=Q
if E[dM(t)|F;,_] = 0.

We can construct a martingale structure for the simple count-
ing process N (t) under censoring when 7; and C; are independent.
The conditional probability that a subject fails instantaneously at
or after time t given that the subject did not fail prior to ¢ can
be expressed as

0, X; <t,
PQ§&<t+%&_HEJz{h®ﬁ’&ZL
where h(t) is the hazard function and the event {X; > t} would
represent all information in the filtration F;_ in this case (without
covariates) because it implies that X; was neither censored nor
occurred as an event prior to t. Here note that the identical
failure time distribution is assumed for all observations (X, d;),
which shares the common hazard function h(t).

We have earlier defined the “individual” counting process N;(t)
= I(X; <t,6; = 1) for the i’ subject. Similarly let Y;(t) = I(X; >
t) denote an individual risk process. The increment of the indi-
vidual counting process can be defined as dN;(t) = N;((t+dt)™)—
N;(t™), which can be viewed as a conditional Bernoulli random
variable because it can take only 0 or 1 with an instantaneous haz-
ard rate h(t) between t and t + dt given that X; > t. Therefore
we have

E(dN;(t)|F-) = Yi(t)h(t)dt = Xi(t)dt,

where \;(t) is an individual intensity process that leads to the
definition of the individual cumulative intensity process A;(t) =
Js Xi(s)ds. Now for the “total” counting process N(t) = Y7,
N;(t), we have
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E{dN(t)|ft—} = E{Z dNi(t)|ft—}
i=1

= > B{N()IF)
— Y(O)h(t)dt = A(t)dt = dA(E),

whete Y (£) = S0, Yi(t) and A(t) = S0y [ Ai(s)ds =Sy i Yi(s)
h(s)ds = [{ Y (s)h(s)ds.

1.5.3 Basic Counting Process Martingale

The stochastic process M (t) = N(t) — A(t) will be referred to as
the basic counting process martingale since

E(dM(t)|Fe-) = E(AN(t) — dA(1)|F-)
E(AN()|Fis) — E((t)dt|F,_) = 0.

Note that Y(¢) is not random any more once all the history of
the process is known just prior to t. The function A(t) is called
a compensator of the counting process N(t), which is a smooth
(predictable) function as the conditional expectation of the count-
ing process given F;_. It is well known that numerous statistics
frequently used to analyze censored survival data, such as Nelson—
Aalen estimator (Nelson, 1972; Aalen, 1978), Kaplan—Meier esti-
mator (Kaplan and Meier, 1958), log-rank test statistic (Peto and
Peto, 1972), and partial likelihood function (Cox, 1975), can be
expressed as stochastic integrals with respect to the basic count-
ing process martingale. Here the stochastic integral takes a form
of 3 K(s)dM(s), where K(s) is a predictable process such as
Y'(t). Evaluation of the variance process of a stochastic integral
involves the predictable variation process of the basic counting
process martingale, denoted by (M) (t). The name of the pre-
dictable variation process comes from the fact that the increment
of the process (M) (t) is the variance of the increments of the
martingale M (t) given the history just prior to ¢, which is iden-
tical to the variance of the increments of the counting process
N(t) given the history just prior to ¢t. Now to find the increment
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of the process (M) (t), we start from the individual variation
increment process d (M;) (t). Because dA;(t) is predictable and
E{dN;(t)|Fi—} = dA\;(t), we have

d(M;)(t) = Var{dM; (t)lft } = E{dM;(t)}?|F-]
= E[{dN;(t) — dAi(t)}*| Fi ]
E{dN;(t )}2 — 2{dN; (1) H{As(t)} + {dNi(t) | Fi ]
E[{dN;(t)} Fo] — 20 () E{dN; (t)| Fo -} + dA(t)*
dA; (1) — 2{dA; (1)} + {dA ()}
dA;(t){1 — dA;(t)}
= Yi(t)h(t)dt{1 — Y;(t)h(t)dt}
)
)

= Yi(t)h(t)dt{1 — h(t)dt}

= Yi(t)dH (t){1 - dH(t)}, (1.6)
where H(t) = [i h(s)ds is the cumulative hazard function. Since
the individual martingale increments dM;(t) (i = 1,2,...,n) are

independent, we have the total variation increment process as
d(M)(t) = Var{dM(t)|F_}

= Zn: Var{dM;(t)|F;-}

- ZY ({1 — dH (1))
Y (AW - dH ).

This implies that the predictable variation process of M(t) is
given by

(M) ()= [ V()1 ~ AH ()} dH(s).

This also implies that the process Q(t) = M?(t)— (M) (t) is a mar-
tingale because E{dQ(t)|F;_} = E{dM?*(t) — d (M) (t)|F:_} =
and (M) (t) is the compensator for the square integrable martin-
gale process M?(t).

Now the predictable variation process of stochastic integrals

can be expressed as (Fleming and Harrington, 1991, Theorems 2.4.2
and 2.4.3)



1.5. COUNTING PROCESS MARTINGALE 15

< / tK(s)dM(s)> - | " K (s)2d (M) (s)

-/ 'K (5)2Y (5){1 — AH(s)}dH(s).

This implies that the variance of the stochastic integrals is the
weighted sum of the variances of conditionally independent incre-
ments of the total basic martingale process M(t).

1.5.4 Martingale Representation
of the Kaplan—Meier Estimator

The Kaplan—Meier estimator can be defined via the Nelson—Aalen
estimator of the cumulative hazard function, i.e.

t

S(t) =TI —df(s)),

s=0

where H(t) = J!J(s)dN(s)/Y (s), where J(s) = I(Y(s) > 0),
is the Nelson—Aalen estimator for the cumulative hazard func-
tion. The Kaplan—Meier estimator itself cannot be expressed di-
rectly as a stochastic process with respect to the basic martingale,
but S(t)/S(t) — 1 can as follows (Fleming and Harrington, 1991,
Theorem 3.2.3 and Corollary 3.2.1):

Ay = g /o £5(s—)J(s)
G(t)=S(t)/S*(t)—1= ) SV (s) dM(s), (1.7)
where S*(t) = [T'_o{1 — J(s)dH (s)} for a discrete case, which is
assumed to approach asymptotically to S(t) for all £. One can
see that G(t) in Eq. (1.7) is a stochastic integral because S(s—),
J(s), S*(s), and Y(s) are predictable at any given s. Therefore
the predictable variation process of G (t) is given by

Vot = )0 = [ {55} aon )
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where d (M) (s) = Y(s){1 — AH(s)}dH(s). By replacing H(s)
with its estimate H(s) = [3 ﬂfldN( ), S*(s) with S(s)=T'_,{1—

dH(s)}, and noting that S(s—)/S(s) = {1 —dJ(s)H(s)}™", we
have the estimated variation process for G(t)

B dN(s)
)=}, T = AN (18)

Since Var[G(t)] = Var[S(t)]/{S*(t)}?, the estimated variation

~

process for S(t) is given by

Vs(t) = Varl3(0) = BOP [ v avi

which coincides with the Greenwood’s formula (Greenwood, 1926).

To investigate the limiting behavior of the modified Kaplan—
Meier process (1.7), we heuristically mention here Rebolledo’s
Martingale Central Limit Theorem (MCLT) (Shorack and Wellner,
2009, p. 262). The crucial assumptions for the MCLT
(Kalbfleisch and Prentice, 2002, pp. 165-166) are (i) the stochas-
tic integrals with appropriately standardized predictable functions
(divided by n, for example) approach a limit as n — oo and (ii) the
influence of any single process is negligible in the limit (Fleming
and Harrington, 1991, Lindberg condition, p. 207).

Theorem 3 (Martingale Central Limit Theorem (Reboll
edo)). If M,(t) is a martingale that satisfies the Lindberg con-
dition and its predictable variation process (M, )(t) converges in
probability to some limiting value V(t) as n — oo for each t,
where V (t) is increasing and right-continuous with V(—oo) = 0,
then M, (t) converges to the Brownian motion B(V(t)) with its
variance process of V(t).

For example, the modified Kaplan—Meier process in (1.7) is a
martingale with its predictable variation process given in (1.8),
which has the limiting value of nVg(t) = [i h(s)ds/y(s), where
y(s) = lim,,_, Y(s)/n. Interestingly, this is the same predictable
variation process as one for the Nelson—Aalen estimator. There-
fore, from the MCLT, the process /n|G(t) — G(t)] converges
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weakly to the Brownian motion with the covariance process of
nVg(min(s, t)), and hence the Kaplan Meier process /n[S(t) —
S(t)] converges weakly to the Brownian motion with the covari-
ance process

nVs(min(s,t)) = S*(min(s, 1)) /Omin(s’t) h:(;gl)ju

pr(ui)

b i

Fig. 1.2: A graph of the p-function, viewed as the loss function
for the T-quantile

1.6 Check Function

The estimating function for the quantile (residual life) function can
be often expressed as the “check function” (Koenker and Bassett,
1978), which is briefly defined in this section. Let us consider
a random sample of X, Xy, ..., X,, from a population with its
median 9%. By its definition, the sample median would mini-
mize the sum of the absolute deviations of X;’s from itself, i.e.
X — 01 |. Here the individual absolute deviation can be
rewritten as

(X 01— I(X, < 03)] — (X, — 0)I(X, < )
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where u; = X; — 0. To find 0 that minimizes 37i, p; (u;) from
observed Values of X s, taking “the first derivative with respect to
0 1 provides an estimating equation

n n

/2 —I(u; <0)] = Z@D%(ui) = 0.

i=1 i=1

In general, for any 7—quantile, the check function is defined as
pr(u;) = w;[t — I(u; < 0)], which can be interpreted as the loss
function for the quantile of interest, analogous to the squared error
loss for the mean (Fig.1.2). In general, note that the absolute
deviation function takes a form of |Y — f(X)|, where Y is the
response variable and f(X) is the systematic part of the model
such as the median, the mean, or the regression function.



Chapter 2

Inference on Mean
Residual Life-Overview

Statistical inference based on the remaining lifetimes would be
intuitively more appealing than the popular hazard function def-
ined as the risk of immediate failure, whose interpretation could
be sometimes difficult to be grasped. For example, when an effi-
cacy of a new drug is concerned, it would be more straightforward
to explain it as “if one with the similar genetic and environmental
background like you takes this drug, it is expected, on average,
that it will prolong your remaining life years by 10 years” rather
than simply saying “the average hazard reduction in the treatment
group will be 25%.” Common summary measures for the remain-
ing lifetimes have been the mean and median residual lifetimes.
This chapter presents a brief overview of statistical inference on
the mean residual life, because the main focus of this book will
be on the quantile residual life function.

We first define the mean residual life function and discuss
the asymptotic properties of one-sample nonparametric estimator.
Various regression models are then reviewed such as the propor-
tional mean residual life model (Oakes and Dasu, 1990), the exp-
ectancy regression model (Chen and Cheng, 2006; Chen, 2007),
the proportional scaled mean residual life model (Liu and Ghosh,

J.-H. Jeong, Statistical Inference on Residual Life, 19
Statistics for Biology and Health, DOI 10.1007/978-1-4939-0005-3_2,
© Springer Science+Business Media New York 2014
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2008), and a general family of transformation models under the
additive mean residual life structure (Sun and Zhang, 2009).

2.1 Mean Residual Life Function

The usage of mean residual life dates back to the third cen-
tury A.D. (Deevey, 1947; Chiang, 1968; Guess and Proschan,
1985). Assuming that 7" is a continuous random variable with
survival function S(t¢), the mean residual life function is defined
as the expected value of the remaining lifetimes after a fixed time
point ¢, i.e.

e(t) = E(T—t|T >1t)

[ S(v)dv
S(t)

S vfw)de
S(t)

which exists for all ¢ if and only if ¢(0) = E(7) is finite (Oakes and
Dasu, 2003). For example, for an exponential distribution with
the probability density function f(f) = pexp(—pt), the mean
residual life function is given as the mean of the distribution, i.e.
e(t) =1/p.

As succinctly summarized in McLain and Ghosh (2011), Hall
and Wellner (1981, Proposition 2) provided a characterization
theorem that gives the necessary and sufficient conditions for exi-
stence of the mean residual life function of a continuous nonneg-
ative random variable:

t, (2.1)

(a) e(t) > 0 for all t > 0, and continuous,
(b) e(t) + t is nondecreasing in t,

(c) if there exists a w such that e(w) = 0, then e(t) = 0 for all
t > w; otherwise, [;°e ! (v)dv = oc.

The mean residual life function can be inverted to the sur-
vival function for more tractability by using the Inversion Formula
(Gumbel, 1924; Cox, 1962, p. 128)
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S(t):%exp{—/ot%}. (2.2)

The variance formula for the mean residual life function, attributed
by Hall and Wellner (1981) to Pyke (1965), can be derived as

7= () (0)do

o(t)=Var(T —t|T > t) = S@)

This formula also shows that o(t) is finite for all ¢ if and only
if 0(0) = Var(T) is finite. Hall and Wellner (1981) considered a
family of the mean residual life function linear in ¢, i.e. e(t) =
at + b (Hall-Wellner family), which gives the survival function

b 1+1/a
S(t) = (at+b> ’

J’_

where the subscript + implies that only the positive part of the
expression in the parentheses is taken. Special cases of this family
are a Pareto distribution, an exponential distribution, and a beta
distribution for ¢ > 0, a = 0, and —1 < a < 0, respectively
(Oakes and Dasu, 2003).

2.2 One- and Two-sample Cases

For a random sample T}, T5,...,T,, from a distribution with the
cumulative distribution function F(t), and hence the survival
function S(t) = 1 — F(t), without censoring the natural one-
sample nonparametric estimator for the mean residual life func-
tion at age ¢ would be the sample mean of the residual lifetimes
of the observations that exceed t, i.e.

) - ST =0T >
S [

where [(T; > t) = 1if T; > t and 0 otherwise, so the denominator
is the total number of observations that exceed t. Yang (1978)
and Csorgd, Csorgd and Horvath (1986) showed that the process

Zy(t) = v/n[e(t) — e(t)]
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converges to a Gaussian process Z(t) with 0 mean and covariance
function

—~

o(max(s,t))

Cov[Z(s), Z(t)] = S(min(s,1)”

Yang (1978) noted that for ¢ > 0, é(¢) become slightly biased
as Elé(t)] = e(t)[1 — F™(t)], which, however, converges to e(t)
asymptotically (see also Gertsbakh and Kordonskiy, 1969).

Hall and Wellner (1981) and Bhattacharjee (1982) studied
thoroughly on the mean residual life function, deriving necessary
and sufficient conditions for an arbitrary function to be a mean
residual life function. As mentioned above, Hall and Wellner
(1981) also characterized a family of the mean residual life func-
tions that are linear in age t. Guess and Proschan (1985) exten-
sively reviewed both theory and application aspects of the mean
residual life function. As they stated, for any distribution with a
finite mean, the mean residual life function completely determines
the distribution via the Inversion Formula as the probability den-
sity function, the moment generating function, or the charac-
teristic function does. Bryson and Siddiqui (1969) defined var-
ious criteria for aging such as increasing failure rate (IFR) class,
new better than used (NBU) class, decreasing mean residual life
(DMRL) class, and new better than used in expectation (NBUE)
class. Hollander and Proschan (1975) derived statistics to test
the null hypothesis that the underlying failure distribution is ex-
ponential against the alternative hypothesis that it has a mono-
tone mean residual life function. Chen et al. (1983) extended
the Hollander—Proschan tests to censored survival data. Nair and
Nair (1989) introduced the concept of the bivariate mean resid-
ual life function. Other related work in reliability theory also
includes Watson and Wells (1961), Mute (1977), Bartholomew
(1973), and Morrison and Schmittlein (1980). Berger, Boos, and
Guess (1988) proposed a nonparametric test statistic to com-
pare the mean residual life functions based on two independent
samples.
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2.3 Regression on Mean Residual Life

Analogous to Cox’s proportional hazards model (Cox, 1972),
Oakes and Dasu (1990) proposed the proportional mean residual
life model

e1(t;0) = Oeo(t), (2.3)

where 6§ = exp('z), [ being a vector of regression coefficients
and z a vector of covariates. Here eg(t) and e;(t;6) are the mean
residual life function for the baseline and one adjusted for z, res-
pectively. It seems that early literature on regression modeling
for the mean residual life function has been revolving around the
proportional mean residual life model. Therefore, we first review
briefly existing statistical inference procedures under the propor-
tional mean residual life model.

Applying the Inversion Formula in (2.2) twice under the model
(2.3), we have

Si(t:0) = :(Ofg)) exp {— / el(? 9)}

where g = €¢(0) is the mean of the distribution at the origin.
Taking the first derivative of the middle line in (2.4) gives the
probability density function

f1(t:0)=—dSy (t; 9>/dt=e§ft> {e’o@)*%} P {‘% /(f ef@) } |
(2.5)

Once the baseline survival function is specified in (2.4) or the base-
line mean residual life function is specified in (2.5), the maximum
likelihood estimation method under the proportional mean resid-
ual life model can be readily applied to estimate the parameters
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for the baseline distribution and the proportionality parameter 6
simultaneously, for both uncensored and censored survival data.
Specifically, denoting C; (i = 1,...,n) to be the random censoring
time, X; = min(7;,C;), and §; = I(T; < C;), the log-likelihood
function will be given as

n

1(0; ;) = Z[él log{fi(x;;0)} + (1 — 0;) log{S1(z;0)}].

i=1

For the uncensored case where the baseline distribution is com-
pletely known, Dasu (1991) and Oakes and Dasu (2003) showed
that the score function per observation takes the form of

do R

U(e):dlogf(:z;e) 1 /Ow dv 1

B co(v)  O{1 + Oe(z)}

and hence the Fisher information is given by

_ e Siwe)
10=5 ), awonea®

Therefore from the large sample theory, the asymptotic distribu-
tion of /n(0 — ), where  is the maximum likelihood estima-
tor of #, follows a normal distribution with mean 0 and variance
I719).

For the semiparametric inference under the proportional mean
residual life model, Oakes and Dasu (2003) proposed an estima-
tor for # for a binary covariate case, but its asymptotic behavior
was not proved. Maguluri and Zhang (1994) modified the partial
likelihood-based inference (Cox, 1972, 1975) by using the fact that
for any stationary renewal process (Karlin and Taylor, 1975) the
mean residual life function can be expressed as the reciprocal of
the hazard function of the residual life distribution, but mainly
for the uncensored case. Chen and Cheng (2005) and Chen et al.
(2005) employed the counting process theory to develop a new
inference procedure for censored survival data under the propor-
tional mean residual life model. Their approach mimics the Cox
partial score function, resulting in a closed form of the baseline
mean residual life estimator and hence a regression coefficient est-
imator that resembles the maximum partial likelihood estimator.
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Zhao and Qin (2006) applied an empirical likelihood ratio to
construct the confidence regions for the regression parameters.
Chan et al. (2012) considered inference on the proportional mean
residual life model for right-censored and length-biased data. Chen
and Wang (2013) proposed an estimation procedure via the aug-
mented inverse probability weighting and kernel smoothing techn-
iques under the proportional mean residual life model with missing
at random.

For other regression models, Chen and Cheng (2006) and Chen
(2007) proposed expectancy regression model where the mean
residual life functions are additive, i.e.

e(t; 2) = eg(t) + 5z

However, estimation under this model is subject to the constraint
that e(t;z) > 0 for all z and ¢ > 0, which is difficult to be satis-
fied, as noted in McLain and Ghosh (2011). Zhang et al. (2010)
developed goodness-of-fit tests for this model. Liu and Ghosh
(2008) proposed a proportional scaled mean residual life model
that satisfies the first two characterization conditions (a) and (b),

e(t; 2) = eo{texp(—5'2)} exp(8'2).

This model can be shown to be equivalent to the accelerated fail-
ure time model, but interpretation of [ is not straightforward
in terms of the mean residual life function. Sun and Zhang
(2009) proposed the general family of semiparametric transfor-
mation models,

e(t; z) = gleo(t) + B2},

for a transformation function g(-), which includes the propor-
tional and additive mean residual life models as special cases,
but they noted that the characterization condition (b) is still
difficult to be met in general. Sun et al. (2011) extended this
model to the case with time-dependent covariates under right
censoring. McLain and Ghosh (2011) interestingly proposed two
semiparametric estimators to estimate directly the mean residual
life function adjusted for covariates. By using existing smooth-
ing techniques, they estimated the adjusted survival functions
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first and plug them into the middle line in (2.1) to ensure that
their estimators produce the mean residual life estimates that sat-
isfy all of the characterization conditions (a)—(c). Their methods
were applied to both proportional and additive mean residual life
models.

In this chapter, a brief overview of statistical inference on the
mean residual life function was presented. Major advantages of
using the mean residual life function would be that it can be
uniquely defined as long as the mean and variance of the distri-
bution at the origin are defined, and that the proper statistical
methods are well established in the literature and are expected
to work nicely especially when the distribution of interest is sym-
metric. However, as first mentioned by Schmittlein and Morrison
(1981), event-time data can be easily skewed, which might intro-
duce biases in inference based on the center of the distribution.
Parallel to the development of statistical methods in the topic of
the mean residual life, there also has been vigorous research re-
cently on the median or quantile residual life function. Starting
from the next chapter, this book will be devoted to review recent
developments in statistical inference on the quantile residual life
function and to introduce new approaches where it is appropriate.



Chapter 3

Quantile Residual Life

As mentioned in Chap.2, the mean residual life function is
sensitive to outliers. In this chapter, as an alternative we con-
sider the quantile residual life function, which is robust under
any skewed distribution. We first review asymptotic theories
of the quantile function and quantile residual life function and
derive the quantile residual life process as a Brownian bridge.
We also discuss parametric and nonparametric inferences on the
quantile residual life function for one-sample, two-sample, and
regression settings. Specifically, parametric inference based on
the invariance property of the maximum likelihood estimator is
outlined for one-sample and two-sample cases. For parametric
regression, we consider a conditional log-linear regression on the
residual lifetimes at a fixed time point and the maximum like-
lihood principles are also applied here. For parametric regres-
sion, we also review an invariance property of a certain family
of distributions in their residual life distributions (Rao, Dama-
raju, and Alhumoud, 1993). For nonparametric inference for two-
sample case and semiparametric regression, we mainly review the
methods proposed by Jeong, Jung, and Costantino (2007) and
Jung, Jeong, and Bandos (2009), respectively. We also present
an alternative estimating equation to one proposed by Jung et al.
(2009) by using the check function. For each numerical example

J.-H. Jeong, Statistical Inference on Residual Life, 27
Statistics for Biology and Health, DOI 10.1007/978-1-4939-0005-3_3,
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used in this chapter, the —R— codes (R Development Core
Team, 2008) are provided in Appendix.

3.1 Quantile Function

Before defining the quantile residual life function, let us define the
quantile function first. When there is no censoring, suppose that
T is time to an event with the survival function S(t) = Pr(T > t).
The 7-quantile function under the survival function is generally
defined as 0, = S™!(7) = inf{t : S(t) < 7}, or F7Y(7) = inf{t :
F(t) > 7} under the cumulative distribution function F(-) (see
Fig.3.1). This Inversion Formula gives the median when 7 = 1/2.

F(t) A

I
e

Fl(y=inf{t:F@) =21}

%
Fig. 3.1: The 7-quantile function

3.1.1 Asymptotic Variance Formula

Suppose 11,715, ..., T, is a random sample from a continuous dis-
tribution with the probability density function f(t), ¢, defines the
T-quantile (0 < 7 < 1), and T{y) is the k' order statistic. Since
the probability density function of T{; is given by

gi(tw) = = 1)7!1(!” - k)!F(t(m)k‘l{l = F(te)} ™" (tw),

Uy = F(T()) follows a Beta(k,n — k + 1) distribution after the
change of variable, which has the mean k/(n+1) and the variance

{k/in+1)H{1—-k/(n+1)} ~ T(1—17)
n+ 2 n

Y
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as n — oo and k/n — 7. By using the delta method, the
asymptotic variance of the 7-quantile T(y) = F~'(U)) is given by

Var(T(k)) = Val"(U(k))(dt(k)/dU(k))2 = {7‘(1 — T)}/nf(@T)2

3.1.2 Asymptotic Normality

We will show the asymptotic normality of the quantile function
by using the fact that the sample quantile function is a linear
function of the influence functions (asymptotic linearity).

Let us first define the influence function. Suppose 11,75, ...,T,
is a random sample from a population with the cumulative dis-
tribution function F'. The empirical distribution of F'is defined
as F,(t) = (1/n) X0 A, (t), where A, (¢) is the point mass 1 at
x defined as an indicator function I(t > ) = 1[5 o0)(t). Denote
o(F,) = ¢on(Th, Ty, ..., T),) as an estimator for the parameter of
interest, and ¢(F') as the limiting value of ¢(F,) as n — oo. For
example, ¢(F') and ¢(F,) can be the population mean with the
distribution function F' and the corresponding sample mean, res-
pectively. The influence function is theoretically defined as

(0, F) — tim QL= OF + D) = 6(F)

e—0 €

but we start from the finite-sample version of Tukey’s sensitivity
curve (SC) (1977) for clearer interpretation of this function. The
sample SC curve is defined as n times the change of ¢(F,,) caused
by an additional observation in z, i.e.

SCn(J;) = n[¢n(t17t27 L 7tn—17 ZL’) - ¢n—1(t17t27 L 7tn—1)]7

which, by translating and rescaling, can be rewritten as

1
/(5)
when ¢, (t1,ta, . .. ,t,)=0¢(F,) for any n, any sample (t1, s, . .. t,),
and corresponding empirical distribution F,,. Replacing 1/n and

F,, with € and F', respectively, gives the definition of the influ-
ence function in the above. Therefore the interpretation of the

SC(x) = [¢ ((1 - %) Foi+ %AgE) _G(F, )
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influence function would be the change in the value ¢(F) if an
infinitesimally small part of F' is replaced by a point mass at z,
which is also referred to as Gateauzr derivative (Gateaux, 1913,
1919).

The asymptotic linearity plays an important role in establish-

ing the asymptotic normality of the sampling distribution of a
statistic.
Definiton 2.1 (Asymptotic Linearity). A statistic V}, is asymp-
totically linear AL(v, k(-),7%) if there exists a finite and posi-
tive function of random variables [ F(-) with E[/F(T)] = 0 and
var[I F(T)] = 72 such that

Vo= vt S IF(T) + 0,(1/VA)

i=1
where IF(-) is the influence function. As a simple example, the
sample mean Ty, is AL(u, IF(-),0%) with IF(t) = t — u, which
has mean 0 and variance 0. Ignoring the error term, I F(T;)/n is
the amount that T; pulls V,, away from its limiting value v. Since
we are dealing with the quantile function, which is a function of
the distribution function, i.e. ¢(F) = F~!(7), we need to find the
influence function of ¢(F')

[%qg (1 —e)F(t) + fo(t))]

Setting F.(t) = (1 — €)F(t) + eA,(t) implies
T=F (F7'(7) = (1= F (F7'(r)) + €A, (F7' (7).

By differentiating both sides with respect to €, we have

o= e o) [ ] ),

which gives the influence function of the quantile function at
e=0as

‘6:0

Lre)] = [Eew-aro+ao)

le=0
o) (FTHT) =7
(F=Y(r))

Ie:O
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Finally the Bahadur Representation Theorem (Bahadur, 1966)
asserts that the sample quantiles are asymptotically linear
because they can be expressed with the error term of order

0p(1/y/) as

D S TNDNERY

which is equivalent to

(F(r) -
(F=4(7))

. + 0p(1).

Vi [E ) = ()] = ey e

By the central limit theorem (CLT), we have the asymptotic nor-
mality (AN)

Va0 = £ )]~ (057 T ).

which also implies that the sample 7-quantile F/;1(7) is an asymp-
totically consistent estimator of the population 7-quantile F'~*(7)
because lim,, o, E[F; ()] = F~!(7). Shorack and Wellner (2009,
p. 638) also show that the quantile process converges to a Brow-

nian bridge.

3.2 Quantile Residual Life Function

We first consider the median residual life function, which is a
special case of the quantile residual life function and has been
popular in the literature. The median residual life function is
defined as the median of the remaining lifetimes among survivors
beyond time ty, or more formally (o) = median(T; — to|T; > to).
In other words, half the population is below or above 0(t,) under
the distribution of the remaining lifetimes T; — ty at a fixed time
point to. Dropping the subscripts, this definition is equivalent to
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Table 3.1: Survival functions and corresponding median residual
life function (MDRL) for various distribution functions

Distribution Survival function, S(t) MDRL, 6(t)
Exponential exp(—At) In(2)/A
Weibull exp(—At*) {In(2)/\ + tF}/r —¢
Log-logistic (14 Ate)—1 ATVEL2(1 4 Ate) — 1}/F — ¢
Pareto (14 Xt)—*F QY — 1)t +1/N)

Exponential power exp[l — exp{(At)"}] (1/M)[In{In(2) 4 exp{(At)®}}1/* — ¢t

Pr(T —t > 0(t)|T > t) = 1/2, (3.2)

which can be rewritten as S(t + 0(t)) = (1/2)S(t). Therefore for
a continuous and strictly decreasing S(t) with a closed form, the
median residual lifetime 6(¢) can be uniquely determined as

o(t) = S~ [(1/2)S(¢)] — t. (3.3)

Table 3.1 summarizes the survival function and corresponding me-
dian residual life function for various distributions.

Example 3.1 (Exponential and Weibull). For the exponen-
tial distribution, because S~ (u)=—(1/\)In(u), 6(t)=5"1 (%e"\t)
—t = In(2)/A. In this case, note that the median residual life
function is constant over time, which may not be suitable in
practice. Figure 3.2 plots the pattern of the median residual life
for the Weibull distribution with the scale parameter A\ = 0.05
and different values of the shape parameter x over the time win-
dow between 0 and 10. One can observe that 6(t) increases and
decreases over time when x < 1 and k > 1, respectively.

In general, the T-quantile residual life function is defined as
0 (t) = T-percentile(T — t|T > t), so that

Pr(T —t> 07T >t)=1-7. (3.4)

The quantile residual life function enjoys the following prop-
erties (Bandos, 2007):
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1. 07(t) > 0 and 0 (0) = quantile(T)
2. 0 (t)+t=S"1[(1 - 7)S(t)] is always nondecreasing

3. The median residual life function does not uniquely define
the underlying distribution while the mean residual life func-
tion does (Joe and Proschan, 1984; Gupta and Langford,

1984)
125
]
” 120
. 17 e
ﬁ_\_%LE‘:S_‘T‘ » 15
"-.._\_ ]
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Fig. 3.2: A graph of the median residual life function from Weibull
distribution

3.3 Quantile Residual Life Process

As defined in Sect. 3.2, the 7-quantile residual life function at a
time point ¢ is defined as

00 () = STV [(1 — 7)S(1)] — t. (3.5)

Without censoring, the survival function S(-) can be estimated by
the complement of the empirical cumulative distribution function
estimate, i.e. S,(-) = 1—F,(+), which can be inverted by S, *(u) =
inf{t : S,(t) < u}. When there is censoring, the Kaplan-Meier
estimator (Kaplan and Meier, 1958) would be a reasonable choice
to replace S,(-). Figure 3.3 shows graphically how the median
residual life function can be nonparametrically estimated.
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()

(1/2)S()

T ST1/2)8(0)]

STN1/2)S(0)]-t

Fig. 3.3: Graphical presentation of how the median residual life
can be estimated by inverting the estimated survival function

Following Shorack and Wellner (2009), we show here that the
sample quantile residual life process converges to a Brown bridge.
Let us consider a process of Q,(t) = +/n {97({) (t) — o) (t)} where

0.7 (t) = S, (1= 7)Sa(t)] — t

is the sample quantile residual life process. By defining ,(t) =
(1 —7)S,(t) with its limiting value of £(t), we have

Qu(t) = VS, (&) — STHE®)]

. R 0)
S(5;1(6n(1))) — (1)
XV [S(8, " (6a() — ()] (3.6)
Note that &,; (i = 1,...,n) is a random sample from the uni-

form distribution (0,1) for a fixed value of 7 and S(S;1(&,(¢))) is
equivalent to the quantile process of the ordered uniform random
variables, &u1,. .., &nm, 1.6 S(S,; 1)) = G (E.(t)), where
G, is the empirical distribution function of &,;’s, if the true sur-
vival function intersects the vertical line of the empirical survival
function at S, 1(&,(t)) (Fig.3.4). This would occur almost surely
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by the Glivenko—Cantelli theorem as n — oo (see also Csorgd
(1983)). Here note that the vertical lines of the empirical sur-
vival function are the quantile function of the uniform random
variables, &,;'s (i =1,...,n).

Therefore, defining

PR [ (& (@) — STHE))
! 2En() =€)

Eq. (3.6) is now equivalent to

Qu(t) = An/n[GrH(Ea(1) — £(1)]
= A [GLNE(1) = &alt) — {E() — &)}
= A/ G (&) = &lt) — (1= 7){S(1) = Su(0)] -

As n — oo, the uniform quantile process \/n[G,*(£.(t)) — &.(2)]
converges to a Brownian bridge —B(£(t)) (Shorack and Wellner,
2009, p. 86), the empirical process of the survival function v/n[S(t)
— Su(t)] = —/n[Sn(t) — S(t)] converges to a Brownian bridge
—B(S(t)), and we have

lim A, = lim

dS~H(¢(1)
dg(t) FE(®)”

STHGL (En(1)] = STH(E())
(1)) = £(1)
1

since sup |G (&, () — &(t)| — 0 a.s. as n — oo by the Glivenko—
Cantelli theorem (Shorack and Wellner, 2009, p. 95). Putting all
these together, we have just shown that the quantile residual life
process f(£(t))Qn(t) converges to a Brownian bridge

B((1 =7)5@)) = (1 = 7)B(5(1))-

The variance of the Brownian bridge is given by Var{B((1 — 1)
S(t)}+(1—7)*Var{ B(S(t)}—2(1—7)Cov{B(1-7)S(t)), B(S(t))}
= (1=7)SE{1-(1=7)S ()} +(1-7)2S(E){1-5(t) } —2(1-7){(1-
7)S(t) — (1 —7)S(#)*} = (1 — 7)S(t), since S(t) > 7(1 — 7)S(t),
which coincides with the results in Csérgd and Csorgd (1987).
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A

Sn O --=------

S(S7M () femmmm i 4

E,()) = (1=0) S, (1) ¥ == == = = = = =1 ->.¥]

5,71 (& )

Fig. 3.4: Graphical presentation of equivalence of S(S,*(&,(t)))
and G (6, (1))

3.4 Parametric Inference

Parametric methods would provide more accurate inference results
if the data fit the assumed distribution or model reasonably well.
In this section, we outline the maximum likelihood principle to
infer the quantile residual life function for one-sample case and
a difference between two quantile residual lifetimes. One major
advantage of the parametric approach would be that estimation
of the probability density function to evaluate the variance of the
quantile estimator does not need a smoothing technique.

3.4.1 One-Sample Case

From the definition of the 7-quantile residual life function given
in (3.4), the cumulative distribution function of the residual life
distribution at time t = ¢y, denoted by Fj,(t), can be defined in
terms of the cumulative distribution function F'(¢) and survival
function S(t) at the origin as follows:

F(t+to; 1) — F(to; )
S(to; 1) ’

where 1) is a vector of parameters. By setting Eq. (3.7) equal to
7 and solving it for t gives the 7-quantile residual life function,

eto (7—7 d)% as

Fy(t;9) = (3.7)



3.4. PARAMETRIC INFERENCE 37

O (T39p) = F[F(to; ) + 7S (to; ¥)] — to, (3.8)

which is a function of the parameters for the distribution at the
origin, once a closed form of the distribution function is provided
as in Table 3.1. Therefore, parametric inference on the T-quantile
residual life function would be straightforward by using the invari-
ance property of the maximum likelihood estimator. We consider
the right censoring here, which would include an uncensored case
as a special case. For the " subject, define T, as the poten-
tial event time and Cj; as the potential censoring time, so that
we observe the minimum, i.e. X; = min(7;,C;). Then an event
indicator function is §; = I(T; < C;). Based on the observable
random variable (X;, d;) and under the independence assumption
between T; and C;, the maximum likelihood function is given by

n

L(vp;x;,0;) = Hf(¢ ) 'S(w;xi)l_‘si

(l/) i)™ S (s ),

I
Ims

where f(z) = —dS(x)/dx and h(x) = f(x)/S(z) are the probabil-
ity density function and hazard function of 7', respectively. The
maximum likelihood estimate(s) (MLE) of @ can be obtained by
taking the first derivative of the logarithm of the likelihood func-
tion, setting it to 0, and solve the equation simultaneously for the
parameters in @. Let us denote the MLE as {b, which will be
asymptotically consistent and normally distributed. By plugging
the consistent estimator 4 into (3.7), the cumulative distribu-
tion function of the residual life distribution can be consistently
estimated as Fi,(z; v:[)) with its asymptotic variance

OF (@i )\ 1) (OFu(2:9)

where 0Fy, (x;4p)/0 is a vector containing the first derivatives
of the residual life distribution function Fj (x;) with respect
to the parameter vector 1, and I(¢)) is the Fisher information
matrix, i.e. the expectation of the negative second derivatives of

Var | F, (239)] = (
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the log-likelihood function with respect to the parameter vector .
The Fisher information matrix is often replaced by the observed
information matrix in practice.

Because the quantile residual life function 6, (7;) is the
inverse transformation of the residual life cumulative distribution
function Fy (¢;1) and hence a function of 4, application of the
delta method gives

Var [0y (7;9)] = (1/ fio (01 (73 95); 49))* Var | Fy (64 (7390);98)]
(3.9)

where A A )
O, (T3 9) = F~'[F(to; %) + 7S (to; 1)) — to

and

OF, (tv) _ f(t+to;9p)
L) = T = . 3.10
fto( 71/)> 81& S(t07’l/J) ( )
The asymptotic variance of 0, (7; v:[)) can be consistently estimated
by replacing v, 0;, (7; 1), and fy, (04, (7; %); 1) with the maximum
likelihood estimates v, 6y, (7;9), and fi, (04, (T;9); 7).

Example 3.2 (Exponential Distribution with Censoring).
For simplicity, let us consider the exponential distribution with a
rate parameter A, so that S(t; \) = exp(—At). The log-likelihood
function is given by

l=InL(\ x;,6) = zn: {&:In(\) — Az}

i=1

Taking the first derivative of [ with respect to A and setting it to
0 gives the ML estimating equation

0/ {326~ a0} <o,

i=1

which yields the MLE for \ as

=1 i
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To find the variance of 5\, the negative second derivative of
the log-likelihood function is given by -7, §;/A\?, which can be
actually estimated from the data to be an observed information.
The Fisher information can be obtained by taking expectation of
the observed information as

I(A) = (n/X)E(6;)
= (n/N)E[E{I(T <O)|T = t}]
= (n/N)E{Pr(T <C|T =1t)}
= (n/N)E{Pr(C > {|T =1)},

which reduces to
—(n/N?) [ Glosm)dsS(o; N
0

when 7" and C' are independent, where G(v;7) is a parametric
form of the survival function for C'. Finally the variance of \ is
given by

)\2
—n fo° G(vin)dS(v; A)’

which is estimable once the data are observed. Note that when
there is no censoring the variance formula reduces to A\*/n be-
cause Pr(T < (') = 1, implying that censoring would inflate the
variance of the estimator \.
Now, from Table 3.1, the MLE for the median residual life

functlon for the exponentlal distribution is given by 6;,(1/2; A) =

In(2)/X. To obtain the variance of 6;,(1/2; ), we note that F},
(t;\) = 1 — exp(—=At) from (3.10) and hence OF;,(t;\)/ON =
t exp(—At), which gives

Var(\) = I7H(\) =

Var | Fy (t: A)] = {texp(—=Xt) I ().

Finally, since 0F, (t; ) /0t = fi,(t; ) = Aexp(—At), the formula
(3.9) gives

{In(2)}”
—nA? [5° G(v;n)dS(v; A)

Var {91&0(1/2; 5\)} =
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which can be consistently estimated by

- . {In(2)}?
Var [9t0(1/2’ W —nA2 22 G(v; )dS(v; \)

where G(v;7) and S(v;\) are the parametric estimates of the
survival functions of 7" and C'.

When the distribution under consideration involves more than
one parameters such as in Weibull distribution, it is common that
no closed form of the MLE exists, so that a numerical method
such as the Newton—-Raphson (Cajori, 1911) needs to be used to
maximize the log-likelihood function.

3.4.2 Independent Two-Sample Case

Investigators would often be interested in comparing two quantile
residual lifetimes to evaluate, say, a therapeutic effect of a new
drug. For example, suppose a patient is being followed after the
initial treatment for a disease, and in the middle of the follow-up
period, a new drug is developed to prevent or delay a relapse of
the disease. To assess this new drug for a secondary therapy, a
study can be designed to compare the median residual lifetimes to
a relapse between patients with or without the secondary therapy.

The results obtained for one-sample case presented in the pre-
vious section can be directly extended to a two-sample case by
using the nice asymptotic properties of the maximum likelihood
estimators. Suppose Ggf ) (T;l/)(k)) denote the 7-quantile from a
residual life distribution for group k (k = 1,2) at time ¢y. Because

the estimator 9§f ) (1; 'l:b(k)) asymptotically follows the normal dis-
tribution with mean ng )(7;4™) and the variance given in (3.9)
for each group k, under the null hypothesis of H : 9753)(7'; Py =
9,&? )(7'; v,[)(z)), a two-sample statistic can be constructed as

~ (1) ~(2)
O (rip ) =0 ()

\/\7a\r {Hto (1; zAb(pwled))} + Var

Wi, (1) =
~ (pooled)

‘9150 (T; ¢ )

(3.11)
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~ (pooled
where 0, (T; zb(poo ‘ )) is the T-quantile residual life estimates from

the pooled sample. The statistic (3.11) would converge in dis-
tribution to the standard normal distribution with mean 0 and
variance 1 by the Slutsky’s theorem (Slutsky, 1925). Here

Var O, (T; 1/)p0016d

of Oy, (7; 'l,b ) For a two-sided test, a small or large value of
Wi, (1) would reject the null hypothesis given a significance level.

)| is the consistent estimator for the variance

(pooled)

3.5 Nonparametric Inference

First we begin with a brief literature review in nonparametric
analysis of the quantile or the quantile residual life. Wang and
Hettmansperger (1990) proposed a confidence interval approach
to compare two quantiles from failure time distributions, but not
for the residual life distributions. Since their method involves esti-
mation of the probability density function under censoring, Su and
Wei (1993) introduced a nonparametric test statistic by using the
minimum dispersion statistic (Basawa and Koul, 1988). To gen-
eralize the previous results to a residual life distribution, Berger,
Boos, and Guess (1988) proposed a modified test statistic based
on Fligner and Rust’s approach (1982) to compare two median
residual lifetimes, which also required estimation of the probabil-
ity density function. To overcome this disadvantage, Jeong, Jung,
and Costantino (2007) extended Su and Wei’s method to compare
median residual lifetimes based on the minimum dispersion statis-
tic. Here we elaborate on the two-sample statistic for the median
residual life proposed by Jeong et al. (2007), but the results can
be easily generalized to the 7-quantile.

3.5.1 One-Sample Case

Let us define T; and C; (i = 1,2,...,n) as potential failure time
and censoring time, respectively, and assume that they are inde-
pendent. For the " subject, let us denote X; = min(7}, C;) for
an observed survival time and §; = I(7; < C;) for an associated
indicator function. For one-sample case, the survivor function of
the residual lifetime for a patient who has survived beyond time
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to, i.e. (T; —to|T; > tg), is given as S(t|ty) = S(t + to)/S(ty) for
to > 0. Denoting 6, for the true median residual lifetime at ¢, it
would be natural to estimate 6,, by solving the following equation
for 6,,:

~

w(Oy) = S(to +6,,) — %ﬁ(to) 0, (3.12)

where S(t) is the Kaplan-Meier estimator of S(t) based on (X;, §;)
(1=1,2,...,n). Equation (3.12) can be written in general for the
T-quantile as

~ ~

w(byy) = S(to + 04) — (1 —7)S(tg) = 0.
Let’s define the median residual life estimator from (3.12) as
by = 571((1/2)S(t0)) — to,

which can be heuristically shown to be the consistent estima-
tor of 0;,. First, Fleming and Harrington (1991, Theorem 3.4.2)
proved that the Kaplan-Meier estimator S(t) is uniformly con-
sistent with the true curve S(t) over 0 < t < M, where M =
sup{t : Pr(X > t) > 0}. Hence, for to+6;, < M, u(6;,) uniformly
converges to

i(0h,) = Sty + 61,) — 55 10) (3.13)

Recalling that 6;, denotes for the true value of the median residual
lifetime at time ¢y, we have 4(6;,) = 0, and consequently 6;, is a
consistent estimator of 6y, .

Once data are observed, it would be straightforward to obtain
the median residual life estimate ,,. As shown in Sect. 3.3, how-
ever, the variance of the quantile residual life estimator would
involve the probability density function of the underlying true
failure time distribution under censoring. Therefore, to infer the
true median residual life function, we adopt to construct a test
statistic based on the entire estimating function (3.12) via the
martingale representation of the Kaplan—Meier estimator. For a
large sample from a continuous true survival function S(t), from
Eq. (1.7) in Sect. 1.5.4 the Kaplan—Meier process S(t) — S(t) can
be expressed as a martingale

tdM(v) o (n~1/2
Y(U) + p( )7

S(t) = S(t) = =S(t) i (3.14)
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where M(t) = I, My(t) = Sy Ni(t) — S0y Jy Yi(v)dH (v)
is the basic counting process martingale defined in Sect.1.5.3.
Therefore the process (3.14) can be re-expressed as

S(t) - Z / t dM 0p(n”Y%),  (3.15)

where M;(t) = N;(t) — [ Yi(v)dH(v) is an individual martin-
gale. Here 0,(n~'/2) implies that the remainder terms converge
in probability to 0 after being multiplied by y/n. By using this
martingale representation of the Kaplan—Meier process in (3.15),
the estimating equation in (3.12) can be expressed as

u(eto) _ _S(to n Qto) i/to—i-@to d]\4(z£;])

{ Z 5 ’ dM to>} +o,(n1),

which reduces to

+ S(to + 04)

u(eto) _ _S(to n eto) i/to-l-eto d]\ﬁil)))
S(to) Z/to dM 0p(n~1%),

because u(6;,) = 0 from (3.13).
After replacing Y (t)/n with its limiting value y(t), we obtain

eto Z €i eto + Op 1/2)>
i=1
where

==t [ 450 [T

are independent random variables with mean 0 because

(3.16)

E{dM(t)} = E[E{dM,(t)|F}] = 0
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for a filtration {F; : ¢t > 0}. Again because u(6;,) = 0 from
(3.13), which implies S(ty + 6;,) = (1/2)S(to), Eq. (3.16) further
simplifies to

1 to+x dMZ(U)
o) = Lty [ M)
(z) 2 (to) to ny(v)
The CLT justifies that u(6;,) would follow an asymptotically nor-
mal distribution with mean 0 and variance o7, (6;,) = 21, €Z(6y,)
assuming that e;(6;,)’s are identically distributed.
The variance can be simply estimated by replacing e;(6y, o)

with its consistent estimate é;(6,,), where

&(x) = —%S(to) /t:+ dy("f);’), (3.17)

and M;(t) = Ny(t) — [LY;(v)dH (v) and H(t) = [ Y~ (v)dN(v)
is the Nelson-Aalen estimator (Nelson, 1972; Aalen, 1975) of the
cumulative hazard function.

To test the null hypothesis of Hy : 6y, = mg, one-sample test
statistic can be constructed as

-2
V(mg) = ?Q(%), (3.18)
Uto (eto)
where @(mg) = Y1, éi(mg) and 62 (0,)) = S0, €2(0,,)-

Since the Wald type statistic @(mg) /6y, (6, ) follows asymptot-
ically the standard normal distribution under the null hypothesis
by the Slutsky’s theorem, the test statistic (3.18) would follow
a x2-distribution with 1 degree of freedom, so that a large value
of V(mg) would reject the null hypothesis. A 100 x (1 — a)%
confidence interval for 6;, can also be obtained from

{eto : ﬁ(9t0)2/&§0(éto) < X%—a,l}> (319)

where x7_, ; is the 100x (1 —a)™ percentile of the y*-distribution
with 1 degree of freedom.

Example 3.3 (Numerical Calculation of One-Sample Test
Statistic). In this example, we demonstrate numerical evaluation
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of the one-sample test statistic. First we simulate a dataset from a
Weibull distribution with the survival function S(t) = exp(—At"),
under which the true median residual life function at time ¢, is
defined as (Table 3.1)

Qo = {In(2) /X + 5}/ — 1. (3.20)

By using the probability integral transformation, the potential
event time 7; can be generated from

Ti = {—log(1 - Uy)/A\}'",

where U; is a random number from a Uniform distribution between
0 and 1. The potential censoring time C; can be generated from a
Uniform distribution between a and b, where a and b control the
censoring proportion. Finally the observed survival time can be
determined as the minimum of the potential event and censoring
times, i.e. X; = min(7}, C;). In this example, we have generated
10 observed survival times with associated event indicators after
setting A = 0.09, k = 2, a = 1.5, and b = 10. Table 3.2 shows the
observed survival times and event indicators. Figure 3.5 shows
the Kaplan—Meier estimates based on this dataset.

Q
=

0.6 0.8
| |

Probability of Event-free
0.4
!

0.0

Fig. 3.5: Kaplan—Meier estimates for the simulated dataset
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Table 3.2: A simulated dataset from a Weibull distribution: z;,
observed survival times; §;=1 for event and 0 for censored

x;, observed survival time J;, event indicator
1.1580810
3.2891294
3.2313578
3.2939626
3.9846846
3.3706485
0.3255957
1.7149105
3.0871437
2.8324774

— O = == O

Since (1/2)5(to) and S(t+0;,) may not be close to each other
in practice, especially for a small sample, we will use a sample
version of the formula (3.16). Denoting that z¢) (i = 1,...,n) is
the ordered observed survival times (censored or uncensored),
sample version of the formula (3.16) at éto can be written as

60) = =S+ [ G550 [ GRS )

Y(v) Y(v)
Since Y- (0)dN (0)
~ U v
dMZ(’U) = dNZ(’U) - Wv
the term A )
/f0+9to dM;(v)
0 Y (v)
can be written in a discrete form as
dN,'(ZB(i))
Di — ] A D) <~
1 [0,t0+01] (flf( )) Y(flf(z))

Z": (2, )dN(x(ﬂ)
0 min :c(z) to—l—@to)] () Y(l’(]))2

Dzl,l - DZI,Z
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where I (t) = 1if ¢ € [a,b] and 0 otherwise. Note that the first
term of D;;, Dj; 1, contributes by 1/Y (z(;)) only when z(;) is an
event that occurs between 0 and ¢y + éto. The second term of Dy,
D1 5, contributes by the cumulative sum of 1/Y (z;)* between 0
and ;) if z(;) is between 0 and #o + éto and by the cumulative
sum of 1/Y (z(;))? between 0 and ¢, + éto if ;) is beyond to + éto.
Similarly the term

to dM;(v)
o Y(v)
can be written as
AN, (z()) AN (z;))
Dy = I(], (LU)— ]Ommx ( )—J
OOV (@) Z OminGe WDy ()2
= Di2,1 - Di2,2,
so that we have
A A A 1,
ei(9t0> = —S(to —+ HtO)Dil —+ §S(t0)D22, (322)

where S(-) is the Kaplan-Meier estimates.

Suppose that we are interested in evaluating one-sample statis-
tic to infer the median residual lifetime at t; = 2. From Fig. 3.5
and Table 3.2, S(to) = 0.7, so that the median residual life esti-
mate is 9t0 = 1.294 and S(to + Qto) = 0.24. Table 3.3 shows the
quantities needed to calculate é;(6;,). For example for ID=9, we
have

Dil,l =0

Dia = 1/10%41/9%+1/8%+1/7*4+1/5*+1/4%+1/3%=0.272
Di2,1 =0

Dino = 1/10% +1/9% +1/8% = 0.038,

which gives
A L 1,
9(0r) = —S(to+0s)Di + §S(to)D 2

N 14
= —5(3.204)(0 - 0.272) + £5(2)(0 ~ 0.038)
= —0.24 x (—0.272) + 0.5 x 0.70 x (—0.038) = 0.052.
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Table 3.3: Quantities required for calculating éi(éto): x(;), ordered
observed survival times; dN(z(;), increment of #events at x(;);
Y (x@)), # of subjects at risk at a;; S(z(i)), the Kaplan—Meier
estimates; Iy = Ijo 4 (2a)); Jo = I[O,to+9}0](x(i))

ID x4 dN(vy) Y(vy) S@e) It o Dy Diz Dign Dige
1 0.326 1 10 0.90 1 1 0.100 0.010 0.100 0.010
2 1.158 1 9 0.80 1 1 0.111 0.022 0.111 0.022
3 1.715 1 8 0.70 1 1 0.125 0.038 0.125 0.038
4 2832 1 7 0.60 0 1 0.143 0.058 0.000 0.038
5 3.087 0 6 0.60 0 1 0.000 0.058 0.000 0.038
6 3.231 1 5 0.48 0 1 0.200 0.098 0.000 0.038
7 3.289 1 4 0.36 0 1 0.250 0.161 0.000 0.038
8 3.294 1 3 0.24 0 1 0.333 0.272 0.000 0.038
9 3.371 1 2 0.12 0 0 0.000 0.272 0.000 0.038
10 3.985 0 1 0.12 0 0 0.000 0.272 0.000 0.038

Completing similar calculations for the other IDs, we have

é(01,) (é1(01), - - 10(01,))
= (.010,.010,.010, —.034, .001, —.038, —.035, —.028, .052, .052),

which gives the variance estimate of @(6y,) as
Varli(fs,)] = 62 (0:) = > €2(6,) = 0.01.
i=1

Therefore 95% confidence interval for 6, evaluated from (3.19)
is [1.24, 00), which includes the true median residual lifetime at
to = 2, 1.42, evaluated from (3.20). This would be expected to
happen for the 95% of the time. The open upper limit of this
confidence interval is due to the small sample size. An increase of
the sample size to 100 gives a tighter 95% confidence interval of
[0.81, 1.62].

To validate the procedure used in Table 3.3 to estimate (3.22),
a simulation study was performed to assess type I error probabili-
ties for testing the null hypothesis of 95% confidence intervals in-
cluding the true median residual lifetime, which provided a close
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empirical type I error probability to the nominal level of 5%. This
implies that it is important to include the cumulative information
up to the censored observations in the test statistic as well, espe-
cially when the terms D;; o and D;5 5 are evaluated.

R codes used to generate the dataset and to perform data
analysis presented in this example are provided in Appendix A.1.

3.5.2 Independent Two-Sample Case

Now suppose we are interested in comparing the median resid-
ual lifetimes between two groups at time ty. Suppose that ny
(k = 1,2) patients are randomized to a group k. Let n = ny + na.
In group k, let Ty, (i = 1,...,ng) be failure times with sur-
vivor function Sk(t) and cumulative hazard function Hg(t) =
—log Sk(t). In conjunction with failure time Ty;, let Cy; be the
censoring time. Then, for a patient ¢ from group k, we ob-
serve (X, Agi) (i = 1,...,ny), where Xj; = min(Ty;, Cy;) and
AgiI(Xy; < t) be the at-risk and death processes, respectively,
for patient 7 in group k. We also define Yj(t) = Y%, Yii(t)
and Ni(t) = Y%, Nii(t), and an associated martingale process
Myi(t) = Nii(t) = Jo Yii(v)dHy(v).

For group k, let égf ) denote the sample estimate of the true

median residual lifetime at time ¢, 915(]:,)0- Note that éﬁf ) is noth-
ing but the sample quantile of the conditional distribution of
the residual lifetimes at time ¢y, so that it is asymptotically a
consistent estimator of the population quantile through the Ba-
hadur representation given in (3.1) under the conditional distri-
bution.

In general, comparison of two median residual lifetimes can
be performed through either a difference or a ratio. Jeong et al.
(2007) proposed to make inference based on the ratio of two me-
dian residual lifetimes, i.e. 7, = Gg,)o /9,5;?0. Investigators would
often be interested in testing Hy : 74, = 71450 VS. Hi : 14y 7 7490,
where 74, is a specified value of r;, under the null hypothesis.
When 74, o = 1 it will be tested whether two median residual life-
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times at a given time ty are equal or not. For group k, let the
estimating function be

~ 1 -
uk(ﬁﬁff)) = Sk(to + 9155)) - §Sk(t0)-

In Sect.3.5.1, we have shown that uk(ﬁgf )) follows a normal
distribution with mean 0 and variance afo(et(f )), and hence the
sample version of one-sample statistic ﬁi(@gf )) / &fo(égf )) follows a
x2-distribution with 1 degree of freedom, which is extended to a
two-sample case in the following theorem:

Theorem 4 (Jeong et al., 2007). Under the null hypothesis of
Hy :ryy = 1150, define a two-sample test statistic

1 2 1 1
V(o) gy = GC) | w0 wiO) | )
0 0 ) 0, ~ A(1 A~ A(2 ~ A(1 ~ A (2
G205y 62 (62 20y 62(00)

Then statistic Wy, (ry,0) = min 1) V}O(H,S), Tt0.0) follows asymptot-
to

ically a x3-distribution with 1 degree of freedom.

Note that one way of eliminating the nuisance parameter 9& )
in V, ((9,5; ), T't,.0) 1S to minimize it out, so that the statistic Wy, (74,.0)
was referred to as the minimum dispersion statistic by Su and Wei
(1993).
Proof. For group 1, at a value of Qg) in a small neighborhood
around the true value 98 ?0, we have

to

u () = 5 (to+ ) — Ji(t0)
= S (to+0y,)) =51 (to+01,)) —% {S1(to)=S1(t0)} ,
since Sy (to + 9%)) — (1/2)51(ty) = 0 asymptotically.

Together with the asymptotic uniform consistency of the
Kaplan-Meier estimator (Shorack and Wellner, 2009, Theorem
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7.3.1, p. 304), Taylor series expansion of (Gg)) at the estimate

A~

9,&) gives

wn (0)) = —F1 (to+040) (O = 0)) +0p (n77), (3.23)
where fr(-) (kK = 1,2) defines the probability density function of
Se(+). -

Now let r;, = 9,&? ?0 / 98?0 and 7y, = Qg ) / 98 ), Then, similarly for
group 2, we have

~ 1

up (0,)) = Sy (to+0)) - 5 5(to)
= —f2(to+000) (9(2 —02)) + 0, (n'1?)
= _f2 (tO + Hto 0) { to,0 Tto Tt070) + Tto,o(ég) - ‘98))}

+o, (n_l/z) , (3.24)

after applying the bivariate Taylor series expansion to ftoég ) at
(oo 60).

From (3.23) and (3.24), we have V;, (Tto,o, Qg)) =Ky, (Tto,o, Qg))
+ 0, (n71), where

o rny) = ) ()
to | 7t0,0, 0y - 0?0 (95[1))0) 0t20 (9,5(2))0)
72 (to+ 682, ) (1) - 953))2
B o? (02)0)
12 (104 02,) {000 = o) + i (8 —00) Y

2
o2 (06%)

Therefore, minimizing V, (rto,o,eﬁj)) over 91%) is equivalent to

—+

minimizing the quadratic form K, (Tto,o, (9,5; )), which occurs asym-
ptotically at 91%) = ég) because ég) is a consistent estimator
of Qtoo as well as 91%) converges to ég) as n — oo. This im-

plies that for any arbitrary point Qg) close to the true value
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(987)0, K, (Tto,o, 9,% )) gets minimized at its estimate ég) Finally

Ky, (Tto,o, 9& )) asymptotically minimizes to

12 (0 + 020) {60} (o — 710.0)?

o (61o0) |

which is equivalent to (7 — rg)?/var(#) from (3.24), following an
asymptotic y? distribution with 1 degree of freedom. This result
still holds, by the Slutsky’ theorem (Slutsky, 1925) , for the sam-
ple version of the two-sample test statistic Wy, (r4,0) by replacing
the true parameters by their consistent estimators.

A large value of the statistic Wy, (ry, o) would reject the null
hypothesis of Hy : 14, = 140, say if Wi (r450) > x7_,, at the
significance level of a. Also, a 100x (1 — )% confidence interval
for r,, can be constructed from

ro +int Vi (. 0) < xfaad (3.25)

to

To obtain a confidence interval from (3.25), the statistic
Vi (rto,@%)) needs to be first minimized over 91%) for each fixed
value of r,,. Then the minimum and maximum values of r;, asso-
ciated with the values of the minimum statistic less than X%—a,l
will be the lower and upper limits of the confidence interval.

To accommodate heterogeneity in the population, a stratified
test statistic can also be constructed. Denoting [ to be the number
of strata, the stratified test statistic can be formed as

At() Tto, () Z Wto rt(), (326)

where Wt(oj)(rtmo) is the statistic W, (r4,0) that corresponds to the
j™" stratum. The statistic Ay, (ry,0) will asymptotically follow a
x2-distribution with [ degrees of freedom.

Again the results developed for the two-sample median resid-

ual life inference can be easily extended to the 7-quantile residual
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lifetime simply by replacing the estimating equation for group
k by

ur(0) = Si(to + 0F) — (1 — 1) Si(to).

Example 3.4 (Numerical Calculation of Two-Sample Stati
stic). In Example 3.3, we have demonstrated how to calculate
one-sample test statistic numerically. For a two-sample case, we
have generated two datasets for groups 1 and 2 from the same
distribution used for one-sample case with a sample size of 100
for each group. Suppose we are interested in testing the null
hypothesis of Hy : 7o = 1, where ry = 95?3 /9513 is the ratio
of two median residual lifetimes at a given time t; = 2. The
estimated median residual lifetimes from the simulated dataset
were éél) = 1.33 for group 1 and éém = 1.36 for group 2, respec-
tively, so that the estimated ratio was 1.02, close to 1 as expected.
The variances of 121(951)) and 122(952)) can be calculated similarly
as in Example 3.3. The test statistic W(1) gives the value of
0.22 < X351 = 3.841, where X345, is the 95" percentile of a
x2-distribution with 1 degree of freedom, suggesting a lack of sta-
tistical evidence to reject the null hypothesis. Figure 3.6 shows
the numerical evaluation of the statistic Wa(rs) as a function of
ro. A 95% confidence interval for ro can be obtained as (0.64,
1.62) by inverting the curve in Fig. 3.6 at the dashed line.

R codes used to generate the dataset and to perform data
analysis presented in this example are provided in Appendix A.2.

Example 3.5 (Real Data Example). Jeong et al. (2007) con-
sidered a real data example from a phase III clinical trial on
breast cancer treatment, referred to as NSABP B-04 data, where
“NSABP” stands for National Surgical Adjuvant Breast and Bowel
Project, a National Cancer Institute (NCI) cooperative group. In
early to mid-1970s, the study was designed to compare two sur-
gical procedures for breast cancer patients; radical mastectomy
vs. total mastectomy, a less extensive surgery, with or without
radiation therapy. A total of 1,079 women with negative axillary
nodes were randomized to radical mastectomy, total mastectomy
without axillary dissection but with post-operative irradiation, or
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Two-sample Statistic

Ratio of two medians

Fig. 3.6: Estimation of 95% confidence interval for ry by inverting
two-sample test statistic when sample size is 100 per group

total mastectomy with axillary dissection if their nodes became
positive. A total of 586 women with positive axillary nodes under-
went either radical mastectomy or total mastectomy without axi-
llary dissection but with post-operative irradiation. Fisher et al.
(2002) reported an analysis of the 25-year follow-up update of the
B-04 data. The long-term follow-up analysis confirmed that there
was no significant difference between the two surgical procedures
in terms of disease-free survival and overall survival. Therefore
Jeong et al. (2007) used the nodal status as a significant group in-
dicator in their analysis. The procedures discussed in Sects. 3.5.1
and 3.5.2 were applied to estimate the median residual lifetimes
in node-positive and node-negative patients and 95% confidence
interval for the ratio of the two median residual lifetimes at a
given time point. Table 3.4 summarizes the results from Jeong
et al. (2007).

In Table 3.4, for a node-negative woman, the median resid-
ual lifetime at 4 years after the surgery would be about 13 years
whereas it would be 8 years for a node-positive woman. This can
be used as the baseline information, if a new drug for secondary
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Table 3.4: Estimated median residual lifetimes (MRL) in node-
negative and node-positive groups, the ratios, and 95% confidence
intervals for the ratios (NSABP B-04 data) [Jeong et al., 2007,
Biometrics|

MRL MRL ratio 95% CI

to Node — Node +

0 12.46 6.87 0.55 (0.49, 0.63)
2 12.44 6.93 0.56 (0.47, 0.70)
4 13.05 8.24 0.63 (0.49, 0.81)
6 13.40 8.75 0.65 (0.54, 0.81)
8 12.91 10.19 0.79 (0.66, 0.93)
10 12.48 9.66 0.77 (0.62, 1.00)
12 11.85 9.66 0.82 (0.63, 1.08)

therapy is being tested during the follow-up period in terms of
prolonging the remaining life years. The ratio of the two median
residual life estimates at year 4 is 0.63 with 95% confidence inter-
val (0.49,0.81), implying a significant difference between the two
nodal groups in the median residual lifetime. Statistically signif-
icant difference in the median residual lifetimes sustains through
about 10 years and then it fades away. This is a major advantage
of the analysis based on the residual life, providing a panoramic
view of the change in the population as time progresses.

3.6 Regression on Quantile Residual
Life

In the previous section, we have considered a two-sample test
statistic to compare the median, or quantile, residual lifetimes.
In practice, however, the data analysis might benefit more from a
regression modeling if a relationship between the quantile residual
lifetimes and a continuous covariate such as age is investigated,
or to adjust for possible confounding factors as covariates. In this
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section we consider a linear regression model for the T-quantile of
residual lifetimes at time ¢y, on a log-scale,

m-quantile{log(T; — to)|Ti > to,2:} = B, 2, (3.27)
where B, = (5T|t0, /BT‘t()’ e 5Tft0)’ denotes a vector of the regres-
sion coefficients, and z; = (1, z1;, ..., 2,;)’ is a vector of covariates

for a subject i. The model (3.27) specifies a linear relationship
between the 7-quantile residual lifetimes on a log-scale and the
vector of covariates at a specific time ty, allowing for testing, say,
a group effect adjusting for other covariates.

To examine interpretation of the regression parameters under
the model (3.27), let us consider a simple median residual life
regression model

median{log(Z; — to)|T} > to, 21} = By + By 21, (3.28)

where zy; is a binary covariate, say, 0 for the control group and
1 for an intervention group. Here ﬁt(f ) (k = 0,1) denotes the
regression coefficients for the intercept (k = 0) and slope (k = 1)
at time ¢y. By the invariance property of the median with respect
to monotone transformations, the model (3. 28) is equivalent to

median(7; — to|T; > to, 21;) = exp(ﬁ + Bt(ol)zu).

Therefore exp(ﬁtO ) and exp(ﬁto + Bto ) can be interpreted as the
median residual lifetimes for the control and intervention groups
at time tg, respectively, so that the difference in median residual
lifetime between the two groups is given by

exp(B0) {exp(B)) — 1}.

In this case, the slope parameter ﬁt(ol ) can be interpreted as the
logarithm of the ratio of the two median residual lifetimes at time
point .

3.6.1 Parametric Estimation of Regression
Parameters
For the conditional parametric inference on the effects of the co-

variates on the quantile residual life, let us consider a simple log-
linear model

r-quantile{log(T;)|T; > to, z:} = T‘to + 5T‘t0zz +oW;,  (3.29)
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where 17" =T, — ty and W;’s follow an error distribution that can
take a parametric form such as Weibull, log-logistic, or Pareto.
Denoting S} (t[z) for the survival function of the residual lifetime
T given T > to and the covariate z, the log-linear model (3.29)
is equivalent to the accelerated failure time (AFT) model

* * 1
Si (tlzs) = Si o (texp(—BY) 20)) |
since

Si(tlz) = Pr(Ty > t]z)
= Pr(exp(8Y), + Bz + W) > t)
= Pr (exp(ﬁi?t)o +oW;) > texp(—ﬁﬁt)ozi))
= Siy0 (tem(=5,7) (3.30)

where S} (-) is the baseline survival function for T} = exp

(5£Ito + O’W) Here note that the signs of the regression coef-
ficients have been reversed. Furthermore, when the distribution
of W;’s is given by the standard extreme value distribution with

the survival function Sy (w) = exp(— exp(w)), we have

Sp(tlz) = Spo(texp(—p1) 2))

log (tex
= exp [—exp{ g(t p(= ﬁflto )) 6”0”

o

{ (log( ) — ﬁrto) H exp( Bi‘tOZZ/U)
A

- sy

Y
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because, without covariates, we have
Spot) = Pr(T7 >1t) = Pr(exp(8Y) +oW;) > 1)
= Pr (VVi > (log(t) T‘to) /o’)
= Sw ((log(®) - 8%,) /o)

B [ (103( ) — /BTto)}
= exp |—exp | ——————
= exp [— exp{ ( T|t0) /O’} tl/U} .

This implies that the log-linear quantile residual life regression
model, or equivalently, the AFT model for the residual life dis-
tribution, reduces to the proportional hazards model with the
proportionality parameter exp (— 57(-|1t)0 i/ O’) . In this case, the base-
line distribution of 77 follows a Weibull distribution with the
survival function of S(¢) = exp(—At") where k = 1/0 is a shape

parameter and A\ = e_ﬁi(‘)zo/  is a rate parameter. Similarly, when
the distribution of W’s follows the standard logistic distribution
with the survival function Sy (w) = 1/(1 + exp(w)), it reduces to
the proportlonal odds model with the proportionality parameter
exp (ﬁﬂtozl / a) The baseline distribution of the residual lifetime
T for this case would be the log-logistic distribution with the
survival function S(¢) = 1/(1 4+ At") where x and A were defined
above.

Now the general formula for the 7-quantile residual lifetime
can be derived regardless of any parametric assumption for the
error distribution. As also noted earlier, the conditional survival
function of the random variable T given a covariate z; at time
t(] is

St () = Pr(Ty > t]z) = P (exp (89, + 5002 + o10;) > 1)
= Pr (WZ > log( ) BT‘tO BT|tOZZ)
g

o

— Sw (log() 5T\to 5T\to )
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Note that the 7-quantile residual life function given the co-
variate z; under the distribution of 77", 0,4, (%), is given by

Orpio(21) = S5, (1= 7) = exp (0S5 (1 = 7) + B + B =) |

(3.31)

because
Pr(T; — to > Oy (2:)|T; > to;20) =1 — 7
implies
S* -1 97’ .
L)
St (0)
and

Sp M alz) = exp (oS3 @) + B9, + B4 )

Equation (3.31) can be further specified once the distribution of
W’s is determined as shown in the following example.

Example 3.6. Suppose that the error distribution of the residual
lifetimes 77 at time ¢, follows the standard extreme value distri-
bution with the survival function Sy (w) = exp(— exp(w)), which
has the inverse function as Sy’ (z) = log{—log(z)}. Therefore
the 7-quantile residual lifetime at time ¢ in (3.31) simplifies to

Orjt,(2i) = exp (57(-?20 + ﬁgt)ozl) {—log(1 —1)}7.

Note that when there is no covariate, this reduces to A=/*{— log
(1 — 7)}'/%, which is the 7-quantile residual life function for the

_ (0) g .
Weibull distribution with kK = 1/0 and A = ¢ %710/ without to.

Similarly when we have the error distribution of the standard
logistic distribution with the survival function Sy (w) = 1/(14¢e")
with its inverse function Sy (z) = log(1/x — 1), the 7-quantile
residual lifetime at time ¢q is given by

Oral) = exp (85, + 85, ) { =}

T

Again, without the covariate, this reduces to A™V*{r/(1 —7)}/*,
which is the 7-quantile residual life function for the log-logistic

_ (0) ag .
distribution with Kk = 1/0 and A = ¢ %710/ without to.
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To estimate 6.4, (), the parameters o, B( ity and BT|tO can
be replaced by their maximum likelihood estimators by the in-
variance property. Let us denote C; for the potential censoring
time, so that X = min(7}, C;) is the observed residual lifetime
TF at to, and 6 = I(T} < C;). For parametric inference for

the observed right-censored data {(X/, 0], z),i = 1,...,n}, the
likelihood function is given by

LB, 89 o) = TIUf (o 2001% 15 ()=
=1

:H[aig " (log(fﬁz‘) Brite — Brinn® )]

—07

«y _ 50 _ o)
y [SW (log(%) 5r|to 5r|to )] . (3.32)

g

where fw(v|z) = —(d/ dv)SW( |zi). The maximum likelihood
estimators for o, BT 1> and B 7, Can be obtained by maximizing
the likelihood functlon (3.32) Vla an optimization algorithm such
as the Newton—Raphson. The variances of those estimators can
be achieved from the inverse of the observed information matrix
whose elements will be the negative second derivatives with res-
pect to the parameters, evaluated at the observed data and the
parameter estimates. As mentioned earlier, the 7-quantile resid-
ual lifetime at time ¢, given some covariate values, 0., (2;), can
be estimated by replacing the parameters in (3.31) with their
estimates. The variance of the estimated 7-quantile residual life
éﬂto (z;) can be evaluated by applying the tri-variate delta method.

3.6.2 “Setting the Clock Back to 0” Property

In the previous section, we have considered parametric inference
on the log-linear model of the quantile residual life by assuming
a specific parametric form for the residual life distribution condi-
tional on a given time point ¢5. We have shown that the log-linear
regression model is equivalent to the AFT regression model with
the signs of the regression parameters reversed, which gives the
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proportional hazards model with Weibull baseline and propor-
tional odds model with log-logistic baseline as special cases with
the standard extreme value error distribution and the standard
logistic error distribution, respectively. One legitimate concern for
the parametric inference on the regression model for the residual
lifetimes could be that the family of the residual life distribution
might change over time, so that the parametric assumption for
the baseline residual life distribution might be violated, resulting
in invalid analysis results. It would be useful if a family of dis-
tributions can be identified, which has the distribution invariance
property over time, referred to as “setting the clock back to zero”
(SCBZ) property studied by Rao et al. (1993). In this section, we
review the main results from Rao et al. (1993).

Definiton 3.2 (Setting the Clock Back to Zero Property).
Suppose S(t,1p) is the survival function of the random variable
T determined by the parameter vector @ and S(t + to, 1)) is the
survival function of the residual life distribution at time ¢,. The
family of survival functions S(t, ) (¢ € €, where (2 is a parame-
ter space) is said to have “SCBZ” property or said to be invariant
if the following equation holds:

Pr(T >t +to|T > to,¢) = Pr(T > t,¢"),

or

S(t+ to, )
S(to,'l,[))

where S(t, ") is the survival function of the same distribution as
T, with an updated parameter vector tp*. This implies that the
residual life distribution remains in the same family as the initial
distribution.

= S(t, "), (3.33)

Two well-known distributions, Pareto and Gompertz, have the
SCBZ property as illustrated in the following examples.

Example 3.7 (Pareto). Suppose the initial distribution of 7" fol-
lows the Pareto distribution with the survival function of S(¢, ¢) =
(L+Xt)~" (A >0,k > 1), so that ¢p = (\, k) is a vector of the pa-
rameters. Under this distribution, the left-hand side of Eq. (3.33),
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the residual life survival function, gives

S(t + to, ) _{1+>\(t+t0
S(to, ) 1+ Mo

where " = (M1 + Ay)™1, k), so that the Pareto distribution
family enjoys the SCBZ property.

N s,

Example 3.8 (Gompertz). Let us consider the family of the
Gompertz distribution (Gompertz, 1825) with the survival func-
tion of

S(t, ) = exp {—(r/A) (e = 1)},

where ¢ = (A, k) (—o00 < A < 00,0 < kK < 00). With this survival
function, the conditional residual life survival function is given by

S(t+ to, )

S(T,O’ '(p) exp [—(Ii/)\) {6Mt+t0) _ e)\tOH

= exp [~ (re¥ /N {e* — 1}] = S(t,9"),

where 9" = (), keM?). An important feature of the Gompertz is
that it can model an improper distribution that can be useful for
the cure fraction or competing risks analysis.

Another distribution that has the SCBZ property is the ex-
tended exponential family with the survival function S(¢,v) =
exp [— {\t + (k/2)t?}], where ¢ = (A, k) (A > 0,5 > 0). Note
that this reduces to an exponential distribution with the rate pa-
rameter A when « = 0. Unfortunately, though, some popular
parametric distributions in survival analysis such as Weibull and
log-logistic do not enjoy this property.

This result is extended to the AFT regression model in the
following theorem:

Theorem 5 (Rao et al., 1993). The family of the survival distri-
butions under the AFT model has the SCBZ property if the family
of the baseline survival distributions of the AFT regression model
has the SCBZ property.
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Proof: Necessity. Suppose we have the AFT regression model
S(t,|z) = So(nt,p), where n = exp(—/fz) for the notational
consistency with (3.30). Note that g could be a vector of the
regression parameters from the original log-linear residual life re-
gression model (3.29). By the assumption, we have

S(t+ to,|2)
S(to, ¥|2)

which, under the AFT model, implies that

Solt™ + 15, %)
SO(tBa 77[;)

where t* = nt and t = nty, implying the SCBZ property holds
for the baseline residual life distribution.

Sufficiency. 1f the SCBZ property holds for the baseline condi-
tional residual life distribution under the AFT regression model,
we have

S(t —|—t0,l/)|2)) _ SO(t tt07¢> _ SO(t*a",b*) _ S(t,v,/)*|z),

S(to, ¥|z2) So(t5, )
which implies that if the baseline residual life distribution is closed
under the SCBZ property, so does the residual life distribution
adjusted for the covariates under the AFT model.

When a family of the baseline distributions under the log-
linear quantile residual life regression model (3.29), or equiva-
lently under the corresponding AFT regression model, has the
SCBZ property, then it is straightforward to estimate the quan-
tile residual lifetime at any time point given some covariate values
through the parameter estimates from the initial distribution. To
see this, the 7-quantile residual lifetime at o, 04, under the AFT
regression model can be estimated from

= S(t,"[2),

= So(t", ¢7),

Pr(T > to + O[T > to, 2,9) =1 — 7,
or equivalently

S(T > tO +97\toa’¢|z) —1—7
S(T>t0,’(/)|2) .
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Now by the AFT assumption and the SCBZ property of the base-
line distributions, we have

S()(T > n(to + 97\t0)7 1/)|Z)
So(T > nto, |2)

so that the T-quantile residual life adjusted for covariates under
the AFT regression model can be expressed as

Orje (2) = (1/m) S5 (1 — 7,9"), (3.34)

where 1 = exp(—[£2).

=1-7= SO(nHT\toaw*)a

Example 3.9 (Pareto). When we have the Pareto distribution
as the baseline with Sy(t, 1) = (14 At)~", recall that the resulting
survival function for the residual lifetime at ¢, belongs to the
Pareto distribution, with an updated rate parameter \* = A(1 +
Mo)~t. Since Sy t(z, A, k) = (1/A*)(x~'/* — 1), Eq. (3.34) gives

Ot (2) = (1/77)50_1(1 — T, AN R) = 1 _;;\to {(1 _ 7.)—1/;-@ _ 1} .

Example 3.10 (Gompertz). Similarly when the baseline dis-
tribution follows the Gompertz distribution with Sy(¢, %) = exp
{—(H/ A) (e)‘t — 1) }, the resulting survival function for the resid-
ual lifetime at ¢y again belongs to the Gompertz distribution, with
an updated shape parameter x* = ke, Since Syt (z, A\, k*) =
(1/X)log{1l — (A/k*)log(z)}, we have the T-quantile residual life
at ty given covariates as

GT\to(z) = (1/77)50_1(1 -7, )‘7 ’KL*)
= (1/n\)log{l — (\e™/k)log(1 — 7)}.

From the previous examples, one can see that once the SCBZ
property of the baseline distributions under the log-linear quan-
tile residual life regression model holds, the 7-quantile residual
lifetime can be estimated based on the parameter estimates from
the likelihood function formed for the initial distribution, together
with the variance estimation by using the delta method.
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When the SCBZ assumption is satisfied, it would be more
efficient to use the Pareto or Gompertz distribution for the base-
line for the parametric inference on the quantile residual lifetime
through the AFT regression model than using the Weibull or log-
logistic distribution.

3.6.3 Semiparametric Regression

In the previous section, we have considered a parametric inference
procedure for the regression parameters from the log-linear regres-
sion model on the 7-quantile residual lifetimes given in (3.27).
Here we review a semiparametric procedure (Jung et al., 2009)
for the regression parameters assuming an arbitrary error distri-
bution.

First we derive an estimating equation for the median residual
lifetime based on the least absolute deviation (LAD) between the
residual life on a log-scale and the linear predictor. Suppose T;
denotes failure time without censoring. Then finding the median
of the residual lifetimes on a log-scale as the linear function of the
covariates requires minimization of A(3, ) over 3, , where

AB,) = Y |log(T, —to) — B,z
=1

n

= Z [{log(T — to) — B}, 2} {log(T; — to) — B,z > 0}

i=1

— {log(Ti — to) — B, zi} [ {log(Ti — to) — B}, 7 < 0}]

n

= > [{loa(T: — to) — B,z H{log(Ti — to) — B, z: > 0}

i=1

—{log(T: — to) — B, z:}[1 — I{log(Ti — to) — B}y z: > 0}]]

n

= > [2{log(Ti - to) — B}, 7} {log(T; — to) — B, 2: > 0}

i=1

—{log(T; — to) — ,3;021'}}

= 22 {log (T — to) — B, z:}[I{log(T; — to) — B,z > 0} —1/2]
i=1

where the indicator function I(7; > t,) was omitted for nota-
tional convenience. Note that the absolute function was defined
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as f(x) =|z|] = —xif x <0 and z if x > 0, so that 1 — I(z <
0)=1(x > 0).
For the 7-quantile, this can be generalized to

(=

-) Z {log(Ts — to) — B4,z I {log(Ti — to) — Bz > 0} — (1= 7)]

Il
/\
—
v
~
—
[}
UQ
I
o~
o

— B 4oz} T — I{log(T; — to) — B, < 0}]

= (1i7) ;pT(ui), (3.35)

where u; = log(T; —to) — By;,2i and p-(u;) = u; (1 — I (u; < 0)) is
the check function defined in (1.9). By taking the first derivative
of A(B.,) with respect to B, the estimating equation is given
by U(B,;,) = 0, where

UBri,) = —( : )Zzi[l{log(Ti_tO)_IB:—\tozi>0}_(1_T)]

i=1

= —(122) S mlHT > to +exp(Bl, 20}t — (1= 7)

) >zl — T < to + exp(Bly,,2:)}]

i=1

Il
~~
—_

| [~
\]

n

T 7) Z zip (ui), (3.36)

i=1

I
/
—_

where t_(u;) = 7 — I(u; < 0) is the first derivative of the check
function.

Now suppose C; is the potential censoring time, and let X; =
min(7;, C;) be the observed survival time. Assuming conditional
independence between T; and C; given z; and independence of C;
from z;, the following is true for the censored data,

E[I{log(X;—ty) > ﬁg"tozi}\zi] = P{X;>to+ exp(BT|t0zZ)|Zi}
= P{T; > to+exp(BY),zi) 2}
x P{C; > to+ exp(ﬁ?"tozmz,-},
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which is equivalent to

P{T; > to+exp(BY);,2i) |z}
P(T; > to|z;)

P(T; > to|z:) P{C; > to+ exp(BY),2:) }-

Under the model (3.27) and by definition of the T-quantile residual
life function

P{T; > to + exp(BY),,2:)|2:}

—1-
P(T, > to|z:) T

Therefore,

Ell{log(X; —to) > ﬂtozz}lzz]
G{to + exp(B7);,2:)}

_ pla_nGh +2{(20()6 2/"fozi)}l(xi > t0) zi] ,

and the following can be used as an estimating equation for the
regression parameter 3

T|to?
& [HX > o+ exp(B,)}
Sriton(Briy) = ;ZZ{ @{to—i—exp(ﬁ;mzi)}
_(1_7)% ~ 0, (3.37)

Equation (3.37) reduces to one derived for the noncensored case
given in (3.36), omitting the term —1/(1 — 7) and recalling that
the indicator function I(7; > t,) was suppressed in the latter.
Jung et al. (2009, Web Appendix A) showed that under certain
regularity conditions, a solution BT|tO to the estimating equation
(3.37) is a consistent estimator of its true value /67-|t0 Once the
regression parameters 3., are estimated from this equation, the
median residual lifetime conditional on some covariate values can
be estimated by exp(83.,, z;), where BT\t is the LAD estimate of

T‘t()
/
BT‘to'
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Note that by the invariance property of the quantile with
respect to monotone transformations, the estimating equation
(3.37) can be evaluated on the original scale of the observed sur-
vival data, although the model (3.27) is based on a log-scale. The

estimator 3 Srito.n(Brit)
where || - || is often defined as the square root of sum of squares.
For the non-censored case, the regression parameters can be easily
estimated from Eq. (3.36) by using the unit weights in rq.wfit
which was used in the procedure WRegEst from the R package
emplik. Under censoring, however, a dynamic grid search method
can be used like throwing a fish net. First, a net of coarse grids
is set up over the parameter space around some reasonable initial
guesses and find the parameter values along the grid points that
minimize the estimating equation close to 0. Next, a finer net
of grids is set up around the parameter values achieved from the
previous step and again obtain the updated parameter values that
minimize the estimating equation close to 0, and so on. The size
of the grid net can be reduced as the steps progress to shorten the
computing time. However, as the number of covariates increases,
the grid search method could be overly time-consuming, so that
a more efficient optimization procedure needs to be developed for
the estimating equation (3.37).

An alternative estimating equation can be formulated by fur-
ther noticing in (3.36) that

7lto May be a minimizer of the function ’ ,

Elags(T)|z) = [~ 2s(T)F(T]2) =0, (339)
where
9a(T) = I(T > to)[7 = {T < to + exp(B},2)})
because
Elzgs(T)lz) = 2B [I(T > to)[r — I{T < to + exp(Bl,,2)})|2]

= —z[(1 = 7)S(te) — S(to + exp(Bry,,2))| =0,

by the definition of the 7-quantile residual lifetime at ¢y under the
model (3.27).
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Based on the observed data, the expectation in (3.38) can be
rewritten as

Zz,gg dF Xilz;),

where dF(X;|z) = A, is the estimated probability mass func-
tion for the non-censored case at X; and a jump of the Kaplan—
Meier estimates based on (Xj,d;) given z for the censored data.
Therefore, for censored data, the alternative estimating equation
is given by

i AZZZ[(XZ > to)[T — [{Xz <ty+ exp(ﬁ/ﬂtozi)}] =0. (339)

i=1

Assuming independence between the censoring distribution and
the covariates, i.e. with A; unconditionally based on (X}, §;), Kim
et al. (2012) showed that the estimator for 3., from Eq. (3.39) is
asymptotically consistent for the true parameter and follows an
asymptotically normal distribution. The independence assump-
tion is rather strong, but it often holds for a well-conducted clin-
ical trial where the major cause of censoring is administrative.
When the independence assumption is suspicious, a jump of the
conditional cumulative probability, F'(X;|z;), can be estimated
from a stratified or adjusted Kaplan—Meier estimator (Xie and
Liu, 2005). The function rq.wfit with the option of choosing
the weights as A; in the procedure WRegEst from the R pack-
age emplik can be modified to obtain the estimate of 3, from
Eq. (3.39) (see Example 3.11).

Now let us consider testing the null hypothesis Hy : B, =
B-ito,0- Asshown in Sect. 3.1, the variance of the quantile function,
and hence the quantile residual life function, involves the proba-
bility density function of the underlying distribution. Similarly,
because the limiting variance—covariance matrix of the estimators
BT‘tO involves unknown conditional probability density functions
of log(T; — to) — B, 0%: given z; under the model (3.27), Jung
et al. (2009) used the estimating function Sy, »(8,,,) directly to
test Hy. They showed that, by using the multivariate central limit
theorem, the distribution of n='/2S;,,,(8%,,) is asymptotically
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normal with mean 0 and a variance—covariance matrix, which can
be consistently estimated by

~ ~ _ no. ~/
I‘T|t0 (BT|t0) =n"! Zér\to,iér\to,w (3-40)
i=1

where

Tlto,i =

HX > tote(Brgzd) (1> 1) |
Gi{to -+ exp(B )} G(to) |

n

Rk

f{to +exp(BLy,z) < Xi} | [ (1= 0)1{X; < to +exp(B,,2)}
G{to + exp(B.,,21)} Do [(Xm > X5)

_ 3o oI, < minfio + exp (B, 7), Xi}]
j=1 {Em 1 X 2 Xj)}Q

‘Z , (1 —7)I(X; > to) (1 —0:)I1(X; < to)
" nGlt) >t I(Xm > X3)

1=1 m=1

- (1 —§;)I{X; < min(to, X;)}
Z S 1(Xm = X)) ]

where BT\to is a consistent estimate of the true parameter 6T|to
A natural test statistic based on Sy (B, 0) for testing Hy
would be

1

_1ST\to n(BT\tO,O)f‘;to (Bﬂto)ST\tOW(BT\tO,O)? (341)

which approximately follows a y2-distribution with p+1 degrees of
freedom. A large observed value of this statistic suggests evidence
against the null hypothesis Hy. Jung et al. (2009) also showed that
the distribution of Br\to is asymptotically normal for given z; and
fixed ¢y based on the local linearity of S, (8, )-

Now let us consider a partition of the regression coefficients,

/
BT\to = (,BT‘tO ’6(72|Zo ), where 6T|t is an r x 1 vector. Suppose
that B

only interested in testing the hypothesis Hy : BT‘tO ﬁﬂto 0
specified vector, against a general alternative. Jung et al. (2009)

2) . .
T|t0 and ﬁﬂto are the corresponding estimates, and we are
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proposed a variation of the minimum dispersion statistic (Basawa
and Koul, 1988),

(ﬁr\tg 0) = H%gl {n~ lsl/tg n((/67—1|t0 0 >/67—|t0 ))

Tltg
<1y (Brii) S (B0 8D} (3.42)

Note that evaluating this statistic does not require estimation of
the probability density function of the survival distribution, which
is needed for a Wald-type test statistic based on BT‘tO. By using
similar arguments given in  Wei, Ying, and Lin (1990, Appendix
2) and Ying et al. (1995, Appendix C), it can be shown that (3.42)
is approximately x2-distributed with 7 degrees of freedom (Jung
et al., 2009). We reject Hy for a large value of V(BT|t o) By
inverting this test statistic, a 100 x (1 — )% confidence region for
BT\to can be obtained as

(B V(B <Xiant

where xi_,, is the 100 x (1 — «)" percentile of a y*-distribution
with r degrees of freedom.

Example 3.11. As introduced in Sect. 3.6, we consider a simple
median residual life regression model

median{log(T; — to)|T} > to, z1:} = B + Bto 214,
or equivalently
median(7; — to|T; > to, 21;) = exp(ﬁ + ﬂt(ol)zli),

where zy; is a binary covariate, say, 0 for the control group and 1
for an intervention group. Under this model, recall that exp(ﬁtoo )
is the median residual hfetlme at to in the control group, or under
the null hypothesis of Hy : Bto =0.

Suppose that failure times 7T} follow a Weibull distribution
with survival function S(t) = exp(—At"). For this distribution,
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note that under H, : Bt(ol ) = 0, we have the median residual life-
time at time £, as

O, = exp(Bly) = S7H(1/2)S(t)} — to
= {log(2)/Xo +t§}'/" —to, to>0. (3.43)

Note that by setting 6;, = exp(ﬂt(oo)) under Hy, we have \g =
{log(2)}/ exp(B)" when t, = 0.

By using the probability integral transformation, failure times
were generated for both groups from 7; = {—log(1 — U;) /Ao }'/*,
where Uj is from a uniform random variable between 0 and 1. Un-
der H, : Bt(ol) =0, Eq. (3.43) gives the true values of Bt((?) as 1.61,
1.41, 1.22, and 1.04 at {5 = 0,1, 2,3, respectively. We assumed
that k = 2 and exp(ﬁéo)) = 5, implying that the shape parameter
k does not change in the surviving population. The true value
of @(01 ) must be 0 for all to > 0 because an identical survival dis-
tribution was assumed for both groups. Censoring times C; were
generated from a uniform distribution between 0 and ¢, where con-
stant c is for a certain censoring proportion. Finally the observed
survival times X; were determined as the minimum of 7T; and C;.

For the illustrative purpose, we simulate a dataset with a small
sample size of 20 under the scenario described above. Table 3.5
displays the simulated dataset including observed survival time
(z;), event indicator (J;), and group indicator (z;).

Because optimization and numerical evaluation of the score
statistic and its variance are complicated in this case, we provide
the R codes (R Development Core Team, 2008) in Appendix A.3.
The function MMRRegEst is to estimate the regression parameters
Bt((? ) and Bt(ol ) from Eq. (3.39). When t, = 0, the estimates were
1.64 and -0.42, respectively, which are slightly off the targets due
to the small sample size. With an increase of the sample size
to 500 gave more accurate estimates of 1.60 and -0.01. With
the small sample estimates plugged in, the estimated variance—
covariance matrix for the score functions in (3.40) was

. 0.2743 0.1371
Loyt (Briry) = ( 0.1371 0.1508 ) ’
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Table 3.5: A simulated dataset from a Weibull distribution: x;,
observed survival time; §;=1 for event and 0 for censored; z;=0
for control group and 1 for intervention group

x;, observed survival time J;, event indicator z;, group indicator
0.586
0.818
1.077
1.533
1.766
1.775
2.390
3.053
3.374
3.387
3.438
4.774
5.166
6.089
6.317
6.798
7.076
7.174
9.642
12.950

= R e e e e e e e e e O = O e
— O R P OO0 O0OO0OKFRMFEFEFEMFHFOOORO M

so that the statistic for the global test of the null hypothesis H :
Brite0 = (615((?)> @(01)) = (0,0) in (3.41) was estimated as

’ —1

1S o (Briio ) Erite (Britg)Sriton (Brire.0) = 12:27,

which is greater than Xg.%g = 5.99, implying that at least one
of the regression parameters deviates significantly from 0 at the
significance level of 0.05.
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Now to perform the local test of the null hypothesis Hy Bt(ol ) = 0,
the grid search method was used to estimate the minimum dis-
persion statistic in (3.42). The estimate was

Al oA

V(0) = min{n '8}, , (B 0)F 1y (Bry, o (657, 0))} = 0.95.
B

to

which is smaller than x§ 45 ; = 3.84, implying that the slope coef-
ficient is not significantly different from 0 at the significance level
of 0.05. Together with the result from the global test, this also
implies that the intercept, or the logarithm of the median residual
lifetime in the control group, is significantly greater than 0 at the
significance level of 0.05.

Example 3.12 (Application to NSABP B-04 Data). Jung
et al. (2009) applied the regression analysis based on the estimat-
ing equation (3.37) and the variance formula (3.42) to the NSABP
B-04 dataset. They have included age at surgery (age), nodal sta-
tus (node) (negative or positive), and tumor size (tsize) as cov-
ariates in the regression model (3.27). Age and tumor size values
were rescaled by being multiplied by 0.01, so that the regular-
ity condition holds in the estimates of the censoring distribution
in the estimating equation. Table 3.6 summarizes the analysis
results from Jung et al. (2009).

The results show that all the covariate effects are negative on
the median residual lifetimes at any fixed time points. Specifi-
cally, the negative effect of age at diagnosis tends to get worse at
later time points, whereas the effects of nodal status and patho-
logical tumor size are significant only through first 4 or 5 years,
when adjusting for other cov ariates. These results can be used to
predict a patient’s median residual lifetime at a given time t, as
baseline information without adjuvant chemo- or hormonal ther-
apies, as pointed out by Jung et al. (2009). For example, for a
patient with positive lymph nodes, median age at diagnosis of 56,
and median pathological tumor size of 30 mm, the median residual
lifetime 6 years after the original diagnosis of cancer was predicted
as exp{3.92—1x0.28—2.11 % (0.01 x56.0)—0.48 x (0.01 x 30.0) } =
10.1. For node-negative patients, similarly, the predicted median
residual lifetime was 13.4 years.
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Table 3.6: Regression parameter estimates from the median resid-
ual life regression model with multiple covariates and 95% con-
fidence intervals (CI) for testing the null hypothesis Hy : §; = 0
(1 = 0, intercept; i = 1, node; i = 2, age; i = 3, tsize) [Jung
et al., 2009, Biometrics|

to Bo 95% CI B1 95% CI Bo 95% CI B3 95% CI

0 3.20  (2.91,4.24) —.51 (—.72,—.32) —.83 (—2.33,—.21) —1.02  (—1.85,—.61)
2 3.94  (3.31,4.83) —.44 (—.65,—.21) —2.06  (—3.17,—1.10) —.89 (—1.18,—.40)
4 4.06  (3.43,4.79) —.35 (—.63,—.13) —2.29  (—3.38,—1.63) —.71 (—1.59,.97)
6 3.92  (3.54,4.68) —.14 (—.65,.10) —2.11  (—3.65,—1.59) —.48 (—1.40,.96)
8 3.88  (3.42,4.77) —~1.60 (—.51,.13) —2.21  (—3.18,—1.61) —.36 (—1.05,.81)
10 3.87  (3.27,4.84) —.10 (—.47,.12) —2.33  (—3.90,—1.60) —.36 (—.91,.84)

3.7 Further Reading and Future
Direction

A general concept of the 7-quantile residual life function was orig-
inally introduced by Haines and Singpurwalla (1974). One of the
major difficulties in making inferences based on the quantile resid-
ual function is a non-uniqueness of the corresponding life distribu-
tion. This problem has been intensively explored by many authors
(Schmittlein and Morrison, 1981; Arnold and Brockett, 1983; Joe
and Proschan, 1984; Joe, 1985; Song and Cho, 1995 and Lillo,
2005). Gupta and Langford (1984) under mild assumptions det-
ermined a general form of distribution when its median residual
life function is known. Ghosh and Mustafi (1986), Csorgd and
Csorgo (1987), and Alam and Kulasekera (1993), among others,
investigated asymptotic properties of the sample quantile resid-
ual life process. Also substantial amount of work was done on the
confidence bands for the quantile residual life function (Barabas
et al., 1986; Aly, 1992; Chung, 1989; Csorgd and Viharos, 1992).
Recently, Franco-Pereira et al. (2012) proposed a nonparamet-
ric method for constructing confidence bands for the difference
of the two quantile residual life functions based on the func-
tional depth (Lopez-Pintado and Romo, 2009). Bandos (2007)
proposed a proportional scaled quantile residual life model, but
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the interpretation of the regression parameters in terms of the
quantile residual life functions is not clear, as in the proportional
scaled mean residual life model (Liu and Ghosh, 2008). Ma and
Yin (2009) proposed a general class of the semiparametric me-
dian residual life regression model and formulated the estimating
equation via the “check” function, which can be shown to be
equivalent to Eq.(3.39) because the jumps of the Kaplan—Meier
estimator are closely related to the inversely weighted censoring
probability (see Sect.5.2.2). Ma and Wei (2012) considered esti-
mation of the time-varying coefficients for the quantile residual
life regression model.

Interestingly, Kim and Yang (2011) extended the quantile reg-
ression model to a clustered response data without censoring, by
using the empirical likelihood and Markov chain and Monte carlo
(MCMC) samplers in the Bayesian framework. Their results pre-
sented in this chapter might be able to be further extended to the
quantile residual life model with random effects. A length-biased
sample arises in survival data when investigators are interested
in estimating the quantile residual lifetime to death, for exam-
ple, among patients who recurred within 5 years after the initial
treatment. Extension might be useful for this case as well.



Chapter 4

Quantile Residual Life
Under Competing Risks

Competing risks data are often encountered in many research
areas such as medicine, engineering, and econometrics whenever
one type of events precludes other types of events from being
observed. For example, in cancer research, investigators might
want to know a drug effect that would only affect a disease-specific
endpoint, say time-to-death due to breast cancer. In this case,
any death due to other causes that occurs first would preclude a
breast-cancer-related death from being observed. In this chapter,
we extend the results developed in Chap.3 to both parametric
and nonparametric competing risks settings. We first review sta-
tistical literature on competing risks. Then we define the cumu-
lative distribution function for the residual life distribution under
competing risks, an inversion of which would provide the quantile
residual lifetime for a subdistribution of a specific event type. For
parametric inference on two-sample case and parametric regres-
sion, we extend existing methods to infer the quantile residual life
under competing risks by using the maximum likelihood principle.
For nonparametric inference on one-sample and two-sample cases
and semiparametric inference, we review recent work by Jeong and
Fine (2009, 2013) and Lim (2011). R codes used in the numerical
examples are provided in Appendix.

J.-H. Jeong, Statistical Inference on Residual Life, 77
Statistics for Biology and Health, DOI 10.1007/978-1-4939-0005-3_4,
© Springer Science+Business Media New York 2014
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4.1 Competing Risks

The history of the concept of competing risks dates back to the
eighteenth century when Daniel Bernoulli attempted to adjust
the survival probability from the life tables developed by Edmond
Halley after eliminating smallpox as a cause of death (David and
Moeschberger, 1978; Pintilie, 2006). In this section, we review the
fundamental quantities that are commonly used in the analysis of
competing risks data, such as cause-specific hazard, subdistribu-
tion hazard, and the cumulative incidence function.

4.1.1 Cause-Specific Hazard and Cumulative
Incidence Function

When investigators are interested in estimating the cumulative
probability of the cause-specific events of interest in the presence
of competing events, one potentially tempting approach would
be to censor the competing events at the time of occurrence,
and calculate the complement of the Kaplan—-Meier estimator
(Kaplan and Meier, 1958), which will be referred to as 1-KM.
However, it is well known that the 1-KM approach overestimates
the true cumulative probability of the cause-specific events (Korn
and Dorey, 1992; Pepe and Mori, 1993; Gaynor, Feuer et al., 1993;
Lin, 1997). The cumulative incidence function (Kalbfleisch and
Prentice, 1980) provides the correct estimate for the cumulative
probability of the cause-specific events in the presence of compet-
ing events without assumptions about the dependence among the
risks.

The basic identifiable quantities from competing risks data
(T, €) are the cause-specific hazard and cumulative incidence func-
tions, where T is time to the first event under competing risks with
an index e = 1,2, ..., J for a set of mutually exclusive competing
events. We first derive the cumulative incidence function from the
cause-specific hazard function. The cause-specific hazard function
is the limiting conditional probability that an individual would
experience an event € = j at time ¢ given that he/she did not
have any event up to ¢, that is,
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Pt <T <t+Ae=jT>t
hy(t) = lim ( A | )

We see that, for a small A,

hi(t)A ~ Prt<T <t+Aje=jlT >1)
Prt <T <t+Aje=j)/Pr(T >1),

which implies
Pr(t <T <t+Aje=j)~Pr(T >t)h;(t)A. (4.1)

Noticing that the left-hand side in (4.1) approximates the proba-
bility density function for the type j events, say f;(t), as A — 0,
the cumulative probability of the type j events can be obtained
by integrating both sides in (4.1) as A — 0. Thus the cumulative
incidence function for the type j events can be defined as

t t
F(t)=Pr(T <te=j) = [ fiw)du= [ S(u=)dA;(u),
0 0
(4.2)
where S(t) = Pr(T > t) and A;(t) = [y h;(u)du is the cumulative
hazard function for the type j events. We can easily see that the
cumulative incidence function is improper because

lim Fj(t) = lim Pr(T <t e=j)

t—o00 t—o00

= tli}m Pr(T < tle = j)Pr(e = j) = Pr(e = j),

so that the empirical version of the cumulative incidence function
for a random sample of 17,75, ...,T,, can be expressed as

n

ST < te = ). (43)

i=1

Fi(t) =

SRS

Parametrically, the cumulative incidence function Fj(t) can
be directly modeled by a family of improper distributions such as
Gompertz (Jeong and Fine, 2006). For nonparametric estimation
of the cumulative incidence function in Eq. (4.2), the overall sur-
vival function S(-) may be replaced by the Kaplan—Meier estima-
tor, and the cause-specific cumulative hazard function A;(-) may



80 CHAPTER 4. QUANTILE RESIDUAL LIFE UNDER...

be replaced by a Nelson—Aalen estimator (Nelson, 1972; Aalen,
1978) after treating the competing events as independent censor-
ing. This leads to the nonparametric estimator of the cumulative
incidence function for type j events as

Bo-S{T (-2 (5).

t; <t (k=1

where Y}, is the number of subjects at risk at an ordered observed
event time t;, and r, and dj are numbers of type j events and the
other events at time #j, respectively.

4.1.2 Subdistribution Hazard Function

For the right-censored data, let us denote X = min(7,C') for the
independent censoring time C' and § = I(T" < C) is the event indi-
cator function. Another nonparametric approach to modeling the
cumulative incidence function would be to introduce the improper
random variable (Gray, 1988; Fine and Gray, 1999), ignoring the
fact that competing events have occurred, so that they are not
censored at the time of occurrence. When there is no censoring,
the improper random variable is defined as

T"=1(e=j)xT+{1—-1I(e=7)} x 00,

so that the subdistribution hazard function is
Prt <T <t+ANe=jT>tU(T <tNe#j)

() = lim A
_ 1f—§f><t) =~ log{1 — Fy (1)} (4.5)

Note that hypothetically all the subjects who had competing
events would be included indefinitely in the risk set in (4.5).
For the competing events considered as dependently censored,
the risk indicator for the event type 7 would be unknown there-
after, making the usual counting and risk processes incomputable.
To estimate the potential times for the competing events to remain
in the risk set, Fine and Gray (1999) extended the inverse prob-
ability censoring weighting (IPCW) by noticing that multiplying
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the risk indicator for the event type j into the usual risk and
counting processes make them still computable. Specifically the
weight function for the i individual at time ¢ is given by

r(H)G(t)

wz(t = =
G(min(X;, 1))

where X; = min(7;, C;), r;(t) = I[(X; > tU(6; = 1Ne¢; # 7)) is the
risk indicator function for the event type j, ignoring occurrence
of the competing events, and G (+) is the Kaplan—Meier estimator
based on {(X;,1 —6;),i = 1,2,...,n}. As further clarified by
Katsahian et al. (2006), the weight would stay as 1 only until
a type j event or a right censoring occurs, and then drop to 0.
After a competing event occurs, however, the weight would be
decreasing over time.

There exists an interesting relationship between the cause-
specific hazard function and the subdistribution hazard function
as shown in Beyersmann et al. (2007, 2009). From Egs. (4.2) and
(4.5), we have

fi(t) = S@)h;(t) = v, (0){1 — F;(1)},
which gives

i = {522 .

This implies that when there are no competing events, the cause-
specific hazard and subdistribution hazard functions become
identical, but the cause-specific hazard is always higher than the
subdistribution hazard under competing risks because S(t) <
1 — F;(t).

4.1.3 Bivariate Point of View

The cumulative incidence function can also be derived from a
bivariate point of view. Let us define T' = min(7},T3) with-
out censoring, implying that 7" would be the time to event that
occurs first when two types of events are competing. As a specific
example, let us consider Fig. 4.1 where the bivariate probabilities
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are defined on the grid support points between 1 and 5 for both
Ty and T5. One can see that the probability of T" = 3 can be
expressed as

HTz@zzixﬂﬂ:@R:$+HE:uﬂ:$}
Z—_P(Tl =3,Ty =3),

so in general we can write

P(T=t) = P(Ty >t, Ty=t)+P(Ty > t, Ty=t)—P(Ty=t, Ty=t)
= P(T = t) {ha(t)+h(t)—h12(0)}, (4.6)

where, for j =1, 2,

(80t )P(Ty > t1, Ty > ty)],—ty—t

hilt) = P(T > t)
tp
5
4
Fao(t) 3
2
1

I I I I

1 2 3 4 5 t,

Fq()

Fig. 4.1: Defining the cumulative incidence function in the bivari-
ate setting

is the cause-specific hazard function for type j events and

2
_ Bt?é)tg P(Ty =2 1, T 2 to) |1y,
hia(t) = P(T >1t)

is the joint hazard function.



4.2 QUANTILE RESIDUAL LIFE UNDER... 83

Because only the event that occurs first is observed under
competing risks, from (4.6) the probability density function for
a cause-specific type j (j = 1,2) event is given by

and
P(T=tj=2)=P(Ty >t,To =t) = P(T > t)ha(t),

respectively. Integrating both sides in the above equations leads
to the definition of the cumulative incidence function for each
type events. Therefore in Fig.4.1, the subdistribution of type 1
events is defined as the vertical sums of the probabilities assigned
to the grids in the upper triangular area and the subdistribution
of type 2 events is defined as the horizontal sums of the prob-
abilities assigned to the grids in the lower triangular area. The
probabilities assigned to the diagonal grids are often assumed to
be 0 for practical convenience.

4.2 Quantile Residual Life Under
Competing Risks

As mentioned in the previous section, investigators might be often
interested in cause-specific treatment effects in terms of extending
a patient’s remaining life years, e.g. the median residual lifetime
to a breast-cancer-related-death. In this section, we define the
quantile for the residual life distribution under competing risks.
First, the importance of using the correct method under com-
peting risks can be further emphasized when the quantile residual
life function is concerned. Figure 4.2 (Jeong and Fine, 2013) shows
the estimated cumulative probability of breast-cancer-related
deaths from a subset of a phase III clinical trial dataset by using
the 1-KM method and the cumulative incidence function for the
residual life distributions at follow-up years of 0, 1, 2, and 3,
respectively. The median residual life years can be estimated by
inverting the estimated curves in each panel (see the dotted lines).
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One can notice that the gap between the two median residual
life estimates widens as the fixed follow-up year increases. For
example, the difference between the two estimates at follow-up
year 3 is about 10 years (24.4 vs. 14.6). This warns that the
1-KM approach should be avoided especially in estimating the
quantiles of the cause-specific residual life distribution.

a b
1 1
© —— CI Approach © —— CI Approach
g 08 - L~ 1-KM Approach g 0.8 - L~ 1-KM Approach
o o -
8 0.6 — 8 0.6
C C
8 8
— 0.4 —~ 04 —
[} [}
© ©
o o
m 0.2 — m 0.2
2 2
0 — 0 —
I I I I I I I I I I I I
0 5 10 15 20 25 30 0 5 10 15 20 25
From Year O From Year 1
c d
1 1
@ — CI Approach @ — Cl Approach
§ 08 - L~ 1-KM Approach § 08 -1~ 1-KM Approach
=] ~ o
8 0.6 — B P 8 0.6 JEp—
C - C
S S )
— 0.4 —~ 04 —
(2] (2]
© ©
o o
m 0.2 — m 0.2
* *
0 — 0 -
I I I I I I I I I I I I
0 5 10 15 20 25 0 5 10 15 20 25
From Year 2 From Year 3

Fig. 4.2: Comparison between two approaches to estimating
quantile residual lifetimes under competing risks; 1-KM vs.
Cumulative Incidence Function (Jeong and Fine, 2013, Biometri-
cal Journal)

Let us now define the cumulative distribution function for the
residual life distribution at a fixed time ¢y in terms of the all-cause
survival function S(t) as

Fto(t) = P(T — 1y < t|T > to) = {S(to) — S(t + to)}/S(to)
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Similarly, for a specific cause j under competing risks, Jeong
and Fine (2009) defined the cumulative incidence function for the
residual life distribution given survival up to ¢y as

F’]'7t0(t) = P(T —tg<t,e= ]|T > t())
{Fj(t +to) — Fj(to)}/S(to), (4.7)

where F;(-) is the cumulative incidence function for type j events.
Therefore the T-quantile residual life estimator of cause j, 8,4, (7),
can be estimated from the equation

w04 (T)} = Fi{to + 00 (1)} — F(to) — 7S(to) =0, (4.8)

where F(-) and S(-) are parametric or nonparametric estimators
of the cumulative incidence function for type j events, Fj(-), and
all-cause survival function, S(-), respectively.

4.3 Parametric Inference

In this section, we present the parametric inference methods for
the quantiles for the residual life distribution of events of interest
under competing risks. As long as the observed data fit a para-
metric distribution reasonably well, a parametric inference would
provide more accurate analysis results. Another advantage of the
parametric inference particularly on the quantiles would be no
need to use a smoothing method for estimation of the probability
density function under competing risks to evaluate the variance
of the quantile estimate.

4.3.1 One-Sample Case

For notational simplicity, suppose there are only two types of
competing events, type 1 and type 2, with type 1 events being
of interest. Jeong and Fine (2006) compared two parameteri-
zation methods for the cumulative incidence function; direct vs.
cause-specific. First we consider inference on the 7-quantile resid-
ual life function through the direct parameterization.
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Direct Parameterization

The direct parameterization assumes the additivity of two cause-
specific cumulative incidence functions, i.e. F(t) = Fi(t) + Fy(t),
where F'(t) is the all-cause cumulative distribution function and
F;(t) (j = 1,2) is the cumulative incidence function for type j
events. Therefore, with smooth cumulative incidence functions
of Fi(-;v,) and Fy(-;1p,) with parameter vectors b, and b,
the direct parameterization would give S(-;v) =1 — Fi(+;v,) —
Fy(1b,), where 1 — (7, 7).

Thus, the T-quantile for the residual life distribution of type
1 events from (4.8) is given by

1o (7 9)=F1 1[F1<to;¢1>+f{1—F1<to;¢1>—F2<to;w2>};wll(_ i
4.9

Once the invertible cumulative incidence functions are specified, a
parametric form of the residual life 7-quantile can be analytically
expressed.

To estimate 0, 4, (7; ), we first need to estimate the parameter
vectors 1, and 1), from the maximum the likelihood function
under competing risks, which is generally given by

n

L) = T] fi(wis aby)* fo(wis py) S (s ap) 070, (4.10)

i=1

where
filw;ap;) = dFy(z; ;) /de,  j=1,2 (4.11)

is an improper probability density function for the distribution
of type j events, S(x;;1) is the all-cause survival function, and
d;; is the indicator function for a type j event, i.e. d; = 1 if the
i'" subject experiences an event type j and 0 otherwise. Under
the direct parameterization, the likelihood function (4.10) can be
rewritten as (Jeong and Fine, 2006)

n

1:[ Fil@s )™ fo(wis ho) ™ {1 — Fi(wsipy) — Fo(wisapy) } 040
i (4.12)
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Example 4.1 (Gompertz Distribution). Let us consider the
two-parameter Gompertz distribution for the cumulative incidence
function for type j events at ty = 0, that is

Fi(z;p;) =1 — explr;{1 — exp(p;z)}/pjl; (4.13)

where ¥, = (pj,r;) (j = 1,2). Note that when p; < 0, the
cumulative incidence function Fj(z;1);) has an improper asymp-
tote 1 — exp(k;/p;) as © — oo. The likelihood function (4.12)
would involve four parameters, two for each event type, which
are estimated simultaneously. Now the estimates of 1, and 1,
denoted as {bl and 1])2, can be plugged into (4.13) to estimate the
cumulative incidence function for each cause, denoted as F (to; p,)
and Fy(to; 1,), and hence to estimate the 7-quantile residual life
for type 1 events as

01,10 (75 &):Ffl[Fl(tm 12)1)+T{1—F1(t0; %1)_172(750% 12)2)}7 ‘bl]_to-

By the invariance property of the maximum likelihood estima-
tor, this estimator will be asymptotically consistent and normally
distributed.

To find the variance of the 7-quantile residual life estima-
tor @y 4,(7;1)), we need to first obtain the observed information
matrix for the parameter vector ¥ = (¢!, 2" = (ay, 1, s, Ba)
by evaluating the negative second derivatives of the logarithm of
the likelihood (4.12). Let us denote the 4 x 4 observed informa-
tion matrix by Iips)(9), so that the variance-covariance matrix
is given by I(_O;S) (). Then, by applying the multivariate delta
method, the asymptotic variance of the residual life cumulative
incidence function for type 1 events at time ty can be evaluated by

OF 4, (x; T _ OF} 4, (x;
178’5; ’l’b)> I(o;s)(w) < 178’5; ¢)> )

where OF) 4, (x; 1) /0 is a 4 x 1 vector containing the first deriva-
tives of the residual life cumulative incidence function Fy 4 ()
with respect to the parameter vector (ay, 81, ag, 52). This variance
formula can be consistently estimated by replacing @ with the

Var | Fi g, (2;9)| = <
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maximum likelihood estimates v:/) Applying the delta method
once again, the variance of the 7-quantile residual life estimate
for type 1 events at time ¢, under competing risks can be approx-
imated by

Var [Fl,to (‘91,1&0 (T§ 1/))7 {b)}
{frio(Oro(T590)590) 12 ’

where f,(t;9) = dF14,(t;9)/dt, which can be specified from
(4.7) as

Var {Ql,to (1; v:[))} = (4.14)

Ji(t +to; )
1 — Fi(to;¢,) — Fo(to; ¥,)
Again the asymptotic variance of 6y 4,(7; 1) can be consistently

estimated by replacing v, 614, (7; %), and f; t0(91 1o (T57); 1) with
the maximum likelihood estimates ), 61, (7;: %), and fi4, (614

(759); ).

flto(t ¢)

Cause-Specific Parameterization

Under the cause-specific parameterization, the additive hazard
property between two types of competing events leads to the
multiplicity of two cause-specific pseudo-survival functions. That
is, by denoting h(t) is the all-cause hazard function and h;(t)
(j = 1,2) is the cause-specific hazard function for type j events,
the cause-specific parameterization assumes that h(t) = hy(t) +
ho(t), which implies that S;(t)S2(t), where S;(t) (7 = 1,2) is
the pseudo-survival function for type j events. Together with
the definition of f;(z;%) given in (4.11), under the cause-specific
parameterization, the likelihood function (4.10) can be expressed
as (Jeong and Fine, 2006)

Hfl IZ’ f2($27¢2) (1'2777[;)1_6”_6%

= H{S l'“ h'l Ilawl)}éll{s(zlv )h'2(xi;’l7b2)}62i
xS(x,,q,z;)l 1o
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= H hl (xiv wl)éuh?(xiv ¢2)52i {Sl (xiv ¢1)52(xi7 1/)2)} :
=1
(4.15)

Unlike the direct approach, the cause-specific hazard and all
-cause survival functions in (4.15) can be modeled by the proper
distributions (Prentice et al., 1978; Jeong and Fine, 2006). As
Jeong and Fine (2006) pointed out, the likelihood function (4.12)
involves information from all event types and does not factor into
separate pieces for each type. This differs from the parameteriza-
tion based on the cause-specific hazard functions (Prentice et al.,
1978), where the likelihood function factors, so that inference
about type 1 events of interest may be carried out separately from
the models for type 2 events. Under the cause-specific hazard for-
mulation, misspecification of cause-specific hazard functions for
type 2 events does not lead to bias in the estimated model for type
1 events. However, a limitation of the cause-specific approach is
that direct inference on the cumulative incidence functions is not
possible.

As mentioned previously, one can easily see that the score
function from the likelihood function (4.15) would have a simpler
form than one under the direct parameterization. Taking the
logarithm of (4.15) gives

i (Sh log{h1 Z;, ’l,bl)} + 521 10g{h2 (zza 77[)2)}
=1
+log{ Sy (s, 11)} + log{Sa(wi, 1)},

which has the first derivative with respect to 1, as

zn:{ Ohi (i, 1)/ 00y i 851(37@'71/)1)/8‘#1}. (4.16)
3% = ha (i, 1) Si(xi, 1)

Example 4.2 (Exponential Distribution). To obtain a closed
form of the analytic results, suppose the cause-specific distribution
for type 1 events follows an exponential with a rate parameter \q,
so that the cause-specific hazard and survival function are given
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by hi(z, A1) = A\ and Si(x, A1) = exp(—A\it), respectively. Then
the score function in (4.16) simplifies to

M) & (o
o > <A_1 — x) : (4.17)

i=1

Setting the score function (4.17) to 0 and solving it for A; gives
the maximum likelihood estimator of A\; as

A = i=1 01
2?21 X
The observed information can be obtained from the negative sec-
ond derivative of the log-likelihood function as

Pl(\) _ iz Ou
N N

[(obs) ()\1) =

so that the variance of \; can be consistently estimated by
A X0
im0 (i @)?

Similarly, for the cause-specific distribution of type 2 events, we
find

Var(Ay) = Iy (A1) =

o 0y
)\2 _ zn—l 2 ’
Do T
and .
A% _ 2?21 52i
Y10 (X i)
Under the cause-specific parameterization via the exponential
distribution, the 7-quantile for the residual life distribution of
type 1 events is defined as

95505’(7; ) = Fy ' [Fi(to; A1) 4 751 (F0; M) Sa(to; A2); M) — to,

Var(Ay) =

(4.18)
where ¥ = (A1, \y). Because Fy'(v) = —(1/\;)log(l — v),
Eq. (4.18) simplifies to
1
9%7(’;5)(7'; ) = ——log (1 — Te_)‘zto) , (4.19)

A
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which can be consistently estimated by replacing ¥ = (A, A
by ¥ = (A, A2). Let us denote the estimator by Gﬁos ( ;

2

)
By using the bivariate delta method, the variance of leto (1 7’(]))
can be directly evaluated from

1 (0w 005 (r:
Var 013, (7 ;zb)}—( 13; ¢>) I@is)(¢)< (7 "’>),

where

0 () (0050 () 05D ()
o B oM O

. 1 ot Ttoe_)\ZtO
— <)\2 lOg (1 TE 2 O) 5 _)\1(1—T6_)\2t0) )

and [ (;;s (1) is a 2 x 2 variance—covariance matrix with diagonal
elements of Var(};) = A2 b (=1 2) and off-diagonal

elements of 0s. Therefore the variance of leto (73 4p) simplifies to

A2 1 ?
log (1—re 2t
<E?:1 51i> {)\2 Og( e )}

N A2 Ttoe 2t 2
?:1 527; )\1(1 — ’7‘6_)‘2t0) ’

which can be again consistently estimated by replacing Ph=(A1, \2)
by ¥ = (A1, Ag).

4.3.2 Independent Two-Sample Case

Suppose we are interested in comparing the quantiles from two

resmlual life distributions under competing risks. Let us denote

( :p®)) for the 7-quantile from a residual life distribution

of type 1 events for group k (k = 1,2) at time ;. Because the
~ (k

estimator 91 i (7‘;1,[;( )) asymptotically follows the normal distri-

bution with mean 9%’3)0(7'; ")) and the variance given in (4.14)
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or in (4.20) for each group k, under the null hypothesis of Hy :
1t0( ) = 9%)0 (r:9), a two-sample statistic can be
constructed as

~(2)
o) (i) = 02 (1™

\/Var [91 1o (T; 1/) (pooted) )] 1 Var {Hl,to (1; zAb

Wl,to (T) =

(pooled) 7
)
(4.21)

ooled
where 64, (T; 1/;(” )) is the pooled estimate of the 7-quantile

residual life for type 1 events. The test statistic (4.21) converges
in distribution to the standard normal distribution with mean 0
and variance 1 by the Slutsky’s theorem (Slutsky, 1925). Here

ooled)
note that Var |6; 10 (T ’I/J(p ) is the consistent estimator for

(pooled
the variance of 0y 4, (7; P p )). For a two-sided test, a small

or large value of Wi (7) would favor the rejection of the null
hypothesis.

4.3.3 Parametric Regression

The parametric modeling under the popular proportional hazards
model (Cox, 1972, 1975) often assumes the Weibull distribution
as the baseline distribution, which is defined as the distribution
with all the covariate values being 0. Under the competing risks,
however, the baseline distribution could be improper. For exam-
ple, consider a regression model with a single covariate coded 0 for
placebo group and 1 for treatment group, and suppose that we are
interested in comparing the distributions of time-to-breast-cancer-
related deaths between the two groups. This implies that the
baseline distribution of the time-to-breast-cancer-related deaths
for the placebo group must be improper.

As presented for one-sample case in Sect. 4.3.1, in this section
we will first consider inference on the regression coefficients and
the baseline parameters. Then the delta method will be used to
infer the 7-residual life quantile for type j events, which would be
a function of those parameters.



4.3. PARAMETRIC INFERENCE 93

Fine and Gray (1999) considered the proportional hazards
model to directly infer the effects of covariates on the subdis-
tribution hazard of type j events, which specifies that

V5 (t; B, 2) = v50(t) exp(B2), (4.22)

where the subdistribution hazard function was defined in (4.5),
B, is a (p+1) x 1 parameter vector, and z is a time-independent
(p+ 1) x 1 covariate vector. Defining ¢;(v) = log{—1log(1 — v)},
the model (4.22) can be expressed as the general transformation
model

gj{Fj(t;/Bj’Z)} = u](t) +B;’Z> ] = ]-7 ceey J7 (423)

where u;(t) = log { Iy fyjo(v)dv}. Equivalently, the cumulative
probability of a type j event is given by

F(t;8;,2) = 1 — exp{—exp(8)z) Hj(t)},

where Hj(t) = [37;0(v)dv is the baseline cumulative hazard func-
tion for the subdistribution of type j events.

To allow for more flexibility, the link function g;(v) might take
the odds rate transformation

gi(vj; o) =log[{(1 —v;)™ = 1}/aj], —o0 < a; < oo, (4.24)

which includes the proportional hazards and proportional odds
models (Dabrowska and Doksum, 1998) as special cases when
a; — 0 and a; = 1, respectively. Under model (4.23) with the
link function (4.24), the cumulative probability of a type j event
is given by

Fi(t;a5,85,2z) =1 - {1+ exp(ﬁ;—z)Hjo(t)}_l/aﬂ'. (4.25)

Jeong and Fine (2007) considered the two-parameter Gompertz
distribution for the baseline distribution with the cumulative dis-
tribution function

F\(t: pj, 15) = 1 — explr{1 — exp(p;t) }/pj], (4.26)
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where —oo < p; < oo and 0 < k; < oo. Note that an improper
distribution occurs when p; < 0 and k; < oo. Under this distri-
bution, the hazard function and the cumulative hazard function
are given by 7§g2) (t) = K, exp(p,t) and H](gm) (t) = k;{exp(p;t) —
1}/pj, respectively.

It can be easily seen that the hazard function VJ(OGQ)(t) can fit
only either increasing or decreasing hazards, but in practice the
baseline hazard shape is often observed as unimodal or a U-shape.
For example, Fig. 4.3 shows a plot of the estimated subdistribution
hazard function from a breast cancer study when the events of
interest is local or regional recurrence in the presence of other
competing events such as distant recurrence, other types of cancer,
or death prior to any disease.

To fit this type of unimodal subdistribution hazard shape,
Haile (2008) extended the two-parameter Gompertz distribution
to a three-parameter case. The three-parameter Gompertz distri-
bution has the cumulative distribution function for type j events

0.05
1

—— Other Events
- - - Local or Regional Recurrence

0.02 0.03 0.04
| | |

Subdistribution Hazard Estimates

0.01
|

0.00
|

0 1 2 3 4 5
Years Since Randomization

Fig. 4.3: Estimated unimodal subdistribution hazard shapes from
a breast cancer study
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K; v
Fj(OGs)(t;pj, Kj,1;) = 1—exp [— <—j> {exp (nje”ﬂt) - exp(nj)}l ;

PjT;j
(4.27)
and hence the hazard function is
G3
V62 (& psy gmy) = 5y exp{pjt + mj explp;t) },
and the cumulative hazard function is
G Ry )
HG(t5 pj, 15m5) = (ﬁ) {exp (nje?!) —exp(n;)}.  (4.28)
i

Figure 4.4 shows various shapes of the hazard function 7(_@3)

(t; pj, kj,m;) for different p; values when x; and 7); are fixed zis 1
and -0.25, respectively. The shapes include monotonely decreas-
ing or increasing, and unimodal. In fact, the hazard function
7)(003) (t: p;, kj,m;) reaches the maximum at ¢ = (1/p;) log(—1/n;)
implying its unimodality when 7; < 0.

As t — oo, the asymptote of Fj(g;g)(t; pj, Kj,N;) approaches

o
(aV]

Hazard Function
1.0 15
|

0.5

Fig. 4.4: Various hazard shapes from the three-parameter Gom-
pertz distribution
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. G kj
)ggof}(o Vtipjokjong) = 1—exp l( . ) {exp(n;) — 1}1 0 <0

(pinj)

_ 1_p{ﬂ} 5y > 0, < 0
(pin;)

= 17 Py > 0777] > 07

implying both proper and improper features in it.

Once it is determined which baseline distribution will be em-
ployed, the complete parametric form of Fj(t;z) in (4.25) can
also be determined. Suppose we have decided to adopt the three-
parameter Gompertz distribution for the baseline. Then, by set-
ting ¥; = (o, B, pj, Kj,7;), our parametric regression model will
be given by

Fi(tiah;,2) =1 — {1+ ayexp(Bj2) Hig D (t4p,)} 1, (4.29)

where HJ(»OG?’) (t;1;) was defined in (4.28).

We can now proceed with the usual maximum likelihood
estimation under the parametric model (4.29). Let T; and C;
be the potential failure time and the potential censoring time,
respectively, for the i subject. Define X; = min(7;,C;). The
indicator function for a type j event is

0;; = 1, if the ith subject experiences a type j event first

0, otherwise,

for j = 1,...,J. For the simple case where there exist only
two types of competing events as before, §;;=1 if the i*" subject
experiences an event of interest as first event and 0 otherwise,
and &y, is similarly defined for the i subject experiencing com-
peting events. Therefore the observable data can be denoted as
(Xi,014,02,2;) (1 =1,...,n) in this case.

Following similar arguments for direct inference as in
Sect. 4.3.1, given covariate z; = z;, the likelihood function in gen-
eral is given by
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n J J I_Zj:15ji
H {H fj(l)fi;@[’j,Zi)éﬂ} {1—25(%;7/’@%)} )
1 j=1

i=1 | |j=

(4.30)

where f;(z;;,2;) = dFj(x;4;,2:)/dr (j = 1,...,J). For the
special case where there are only two types of competing events,
the likelihood function (4.30) simplifies to

H Fr(@is 1,207 fo (@43 b0, 20) 2 {1— Fy (24591, 20) — Fa (w45 49, 7)1 00 7020,

i=1
(4.31)
From (4.31), the log-likelihood function can be written as

n

2 2 2
Z 25]‘1' log{f;(xi,;;2i)}+ <1—Z5ji> log {1—2Fj(wi7¢j;zi)}] .
j=1 j=1

i=1 Lj=1
(4.32)

Differentiating (4.32) and setting the resulting score function equal
to 0 with respect to ¥ = (T, 42)T, the maximum likelihood
estimator ¥ = (1:111,1:122) can be obtained. By the invariance
property, the maximum likelihood estimator of Fj(t;;,2) is
Fj(t; ’l/)jv Z) (j = 17 2)

Now, by applying the formula (4.7) for the residual life cumu-
lative incidence for type 1 events, given z; = z;, we have

_ Fi(tHtos by, z) — Fi(to; ¥y, 2:)

Fi, (t: i) = 7
ol = TG, ) Falt )

which gives the T-quantile function as

01,10 (759, 25)=F; '[F1(tos ¥y, 2i)+7{1—F1(to; %1, 2:)—Fa(to; o, 2:) }; 1, 2] —to.
(4.33)

The 7-quantile residual life given covariates z;, 0, 4, (7; %, z;), can
be estimated consistently by replacing ), (j = 1,2) with their

maximum likelihood estimates 121]- (7 =1,2) in (4.33), which will
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be denoted by 6 4, (7; b, z;). By the two-step delta method used
in Sect. 4.3.1, the variance formula for 0, 4, (7;, ;) is given by

Var [Fl,to (0140 (757, 2:); P, Zz)}

Var [0y (riob )| =~ e 43
where
. (AP (G z) it +to; vy, 2)
freo (64, 2:)= dt 1= Fi(to;hy, zi) — Folto; vy, 2;)

and

aFl,t0($§¢aZi) ' -1 aFl,to(x§¢aZi)
8'1/’ > I(obs)(,lnb) < 8'1/’ > .

Here OF 4, (x5, z;) /0 is a vector containing the first derivatives
of the residual life cumulative incidence function F,(z;,2;)
with respect to the parameter vector @, and I (ng) () is the
observed information matrix for 40, i.e. the negative second deriva-
tives of the log-likelihood function (4.32) with respect to ¥. Given
the covariate values z;, the variance formula (4.34) can be consis-
tently estimated by replacing ¥, 01 4, (7; %, z;), and fi 4, (614, (7; 9,

~

z;); ¥, z;) with the maximum likelihood estimates P, O 4,(T3 %, 2;),
and .fl,t() (el,to (7_7 77[)7 Zi); 77[)7 Zi)‘

Var {Fl_,to(:n;{b,zi)} = <

4.4 Nonparametric Inference

The parametric inference procedures considered in the previous
sections would be useful and more accurate when an assumed
parametric distribution fits the data well. However, the more
flexible the adopted distribution is, the more parameters to be
estimated, especially under a regression model with competing
risks, which would make the surface of the likelihood function
flatter, and hence difficult to find the global maximum. The
nonparametric procedures can often overcome this hurdle at the
cost of minimal efficiency loss. In this section, we review the non-
parametric and semiparametric methods recently developed for
inference on the quantile residual life function.
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4.4.1 Omne-Sample Case

Under competing risks, the cause-specific 7-quantile residual life-
time can be inferred once the residual life subdistribution of type
j events of interest is specified. The subdistribution function of
type j residual lifetimes at time ¢, was defined as (Jeong and Fine,
2009)

F’]'7t0(t) = PI(T —tg<t,e= ]|T > to)
= {F(t+t0) — F;(t0)}/S(to), t>to, (4.35)

where Fj(t) = Pr(T < t,e = j) is the cause j cumulative incidence
function and S(-) is the all-cause survival function. The residual
cumulative incidence function Fj, (t) can be nonparametrically
estimated by replacing Fj(-) by the estimate given in (4.4) and
S(+) by the Kaplan—-Meier estimates.

Again for simplicity, it will be assumed that there are only
two types of competing events other than independently censored
observations, denoted as type 1 and type 2, where the type 1
events are of primary interest. Then the estimating equation for
the T-quantile residual lifetime for the subdistribution of type 1
events, 61 4,(7), can be expressed as

u(@l,to (T)) = Fl (to + Gl,to (T)) - Fl(t0> - Tg(t(]) - O, (436)

where 13’1() is an empirical estimate of the cumulative incidence
function for type 1 events, Fi(-), and S () is the Kaplan—Meier
estimates for the all-cause survival function, S(-). Solving
Eq. (4.36) provides the estimate of 6y 4, (7) as

Or4(r) = F* (Falto) + 75(t0)) — to. (4.37)

Jeong and Fine (2009) showed that the estimate 6y, (7) is uni-
formly consistent for all 7 such that 6y 4(7) < oo and n/2[f; 4, (7)—
01+,(7)] converges weakly to a Gaussian process whose variance
depends on improper probability density function for cause-specific
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events. To avoid the difficulty in estimating the improper proba-
bility density function nonparametrically, Jeong and Fine (2009)
proposed to use an inference procedure based on the estimating
equation (4.36) itself.

Let us first define some notations under the competing risks
martingale framework. Let T; (i = 1,...,n) be failure times with
survivor function S(¢) and cumulative hazard function A(t) =
—log S(t). Because of early termination of study, or loss to follow-
up, 7; may not be completely observed. In conjunction with the
event time T;, let C; be the censoring time. Then, for a subject
i, we observe {(X;,d;),i =1,...,n}, where 6, = ¢,1(T; < C;) and
X; = min(7;, C;). Recall that ¢; = 1,2 is an index for the event
type for the i subject.

Suppose that Y;(t)=1(X; > t) and N;(t)=1(T; < C))I(X; <'t)
are the individual at-risk and event processes associated with all
causes, respectively. For the cause-specific events of type 1, we
define the event process as Ni(t) = I(T; < C;,6; = 1)I(X; < 1).
Also define y(t) = lim, o > Yi(f)/n to be the limiting at-risk
process, and Mi(t) = Ni(t) — [¢Yi(v)dAi(v), Ai(v) being the
cause-specific cumulative hazard function for type 1 events, and
M;(t) = Ni(t) — [ Y;(v)dA(v) to be the cause-specific and all-
cause martingale processes, respectively. The total all-cause and
cause 1 counting processes are denoted as N(t) = >, N;(t) and
Ny (t) = ¥, Ni(t), respectively.

Using the martingale representations of the cumulative inci-
dence function (Aalen, 1978; Andersen et al., 1993; Pepe, 1991)
and survival function (Andersen et al, 1993), Jeong and Fine
(2013) showed that w(f; (7)) follows an asymptotically normal
distribution with mean 0 and variance 37, (?, where

o to+01,¢0(T) S(U) i o) to+01,60 () v v de(S) v
G = /to ny(v)dMl( ) /to S( ){/0 ny(s) }d
—75(t0) /to dMi(S),

o ny(s)
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which can be consistently estimated by

N t0+é1,t0 (7) . t0+é1,t0 (r) . v ri
to Y( ) 0

v 2 V(s)
~75(to) /0 v dxj\f(is()S)’ (4.38)
where
' ' t i A v dN
W) = Ni() - [ Vi)dhaw),  Aa) = | YES)

) t R . v dN(s)
Mtzmt—/n dA(v),  Aw)= %)
0 = M) = [ Ytk Aw) = [T
We will denote Var [u (éuo (7'))} — >, (2 for the consistent
estimate of the variance of u (61 4,(7)). Therefore, the test statistic

u? (140(7)) /Var [u (014, (7))]

follows a x2-distribution with 1 degree of freedom, which can
be inverted to obtain the 100x(1 — )% confidence interval for
917%(7'), i.e.

{0140(7) = u? (0140 (7)) /Var [u (6145(7))] < XFan},  (4.39)

where x7_,; is the (1 — a)-percentile of the x*-distribution with
1 degree of freedom.

Example 4.3. For the illustrative purpose, we have simulated
a dataset following the same steps from Jeong and Fine (2013).
Specifically, we have used the following model to generate the
dataset:

Fi(t) = Pr(T <te=j)
= Pr(e=j)Pr(T < tle = j)
= m; {1l —exp(—\;t")}, (4.40)
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where 7; is a leveling-off parameter for the type j subdistribu-
tion, so that m + my = 1 without censoring, and \; and &; are
scale and index parameters for the assumed Weibull distribution,
respectively. Therefore first one can simulate the event type in-
dicator € (=1 or 2) from a Bernoulli distribution with success
probability of 7;, and then conditional on the € value, an event
time is generated from the proper Weibull distribution Fj(t)/x;.
The independent censoring variable C' is assumed to follow a uni-
form distribution between 0 and ¢, where the constant ¢ controls
the censoring proportion.

The simulated dataset of size 10 consists of observed event or
follow-up time x;=(0.504, 0.974, 1.326, 1.358, 2.309, 2.577, 3.425,
3.666, 5.524, 11.482) and the event type indicator 6;=(2, 1, 0, 1,
2,1, 2,1, 2, 2), where 1=type 1, 2=type 2, and 0=censored.

Figure 4.5 shows the cumulative incidence estimates for each
event type. For ordered survival times, zy) (1 = 1,2,...,10),
Table 4.1 shows the estimated cumulative incidence functions for
type 1 events (ﬁl(:ﬂ(i))) and type 2 events (ﬁg(z(i))), and the
Kaplan-Meier estimates (S (7(;y)) based on both types of events.

Now suppose that we are interested in estimating the 0.2-
quantile residual lifetime of the subdistribution of type 1 events
at tp = 2. From Table 4.1 and Fig. 4.5, since F1(2) = 0.214 and
S(2) = 0.686, Eq. (4.37) gives

012(02) = F'(Fi(2)+02x5(2)) -
= F71(0.214+ 0.2 x 0.686) — 2
= [71(0.351) — 2 = 3.666 — 2 = 1.666.

To estimate the variance of u(6; 5(0.2)), we need to re-express
(4.38) in a discrete version. Noting that the jump size of the
counting process of type 1 event for the subject i, dNj(t), equals
1 at t = x(;) only with 6 = 1, Eq. (4.38) can be rewritten as

2 S(t@)dNi(t)
= A (te
Cz [to,to+4] (t(l)) Y(t(l))
5 (t())dN1(t )

Z [to,to+d] t(]

= Y(t(;))?
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Fig. 4.5: The cumulative incidence estimates from the simulated
dataset
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(0>{ Y(tw) z:: ot Y(t<j))2

where § = 91,2 (0.2). Recall that in our numerical example above,
q = 1.666. Table 4.2 completes all the components required to
calculate the variance estimate.

Therefore the first term of @ can be calculated from

Gin = S(tw)dNi(te) min(iz’g:ﬁ%) <5 (fE(j))le(%)))
Y(tw) = Y(z(;))?
which generates a vector of 0.0, 0.073, -0.018, 0.033, -0.044, and

-0.044 for ¢ = 5,..., 10, respectively. Similarly the second term
can be calculated from
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Table 4.1: A simulated dataset under competing risks: z;, ord-
ered survival times; d;)=1 for type 1 events, 2 for type 2 events,

and 0 for censored; ﬁl( r(;)), the cumulative incidence estimates
for type 1 events; Fg( i), the cumulative incidence estimates for

type 2 events; S (zs), the Kaplan—Meier estimates based on both
types of events

i re  dpy Flte) Fate) Sle)
1 0504 2 0000 0.100 0.900
2 0974 1 0100 0100 0.800
3 1326 0 0100 0100 0.800
4 1358 1 0214 0100 0.686
5 2309 2 0214 0214 0571
6 2577 1 0329 0214 0457
73425 2 0329 0329 0.343
8 3666 1 0443 0329 0.229
9 5524 2 0443 0443 0.114
10 11482 2 0443 0557  0.000

A . dNZ (.CL’(”) min(z,3.666) le (.]7(]))
Cz', = (xz —Z(— )S(m i— ) — ~ . o )
2 (@) 1) (i-1) Y(I(i)) ;{) Y(I(j))z

which gives a vector of 0.0, 0.025, -0.016, 0.015, -0.064, and -0.103
for i = 5,..., 10, respectively. Lastly, the third term simplifies to

S aoy JANI() S (AN (1)
Ci’S_O'QS(Q){—Y(t(i)) - ]Z:: <Y(t(j))2>}’

5

which gives 0.012, 0.012, -0.003, 0.014, -0.006, -0.006, -0.006,
-0.006, -0.006, and -0.006, for < = 1, .., 10. Finally the variance of
u(#12(0.2)) can be calculated as

10

Var(u(6y 2(0.2)) Zg"? S (Gin — Gio — Gi3)? = 0.0090.

i=1
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Table 4.2: Quantities required for variance calculation; I; =
Lito to+a) (%(0))s L2 = Lo o) (T (1))

(i) Y(xw) I I dN(z@) dNi(ze) z6 —za-n S(za-1)
1 10 0 1 1 0 0.504 1.000
2 9 0 1 1 1 0.470 0.900
3 8 01 0 0 0.352 0.800
4 7 0 1 1 1 0.384 0.800
5 6 1 0 1 0 0.951 0.686
6 5 1.0 1 1 0.268 0.571
704 1.0 1 0 0.848 0.457
8 3 1.0 1 1 0.241 0.343
9 2 0 0 1 0 1.858 0.229
0 1 00 1 0 5.958 0.114

The 95% confidence interval can be obtained by inverting
(4.39) as a function of ¢ = 6;5(0.2), which gave a noninforma-
tive 95% confidence interval (-0o, 0o) in this case due to the small
sample size. To see a better picture, the sample size was increased
to 100. Figure 4.6 shows the numerical evaluation of one-sample
statistic for the 0.2-quantile of the residual life distribution of type
1 events at time ty = 2. The estimated 0.2-quantile in this case
was 2.361 and associated 95% confidence interval was (0.87, 4.21)
by inverting the curve in Fig.4.6 at the dashed line, which is the
95" percentile of a x2-distribution with 1 degree of freedom.

R codes used to generate the dataset and to perform data
analysis presented in this example are provided in Appendix A 4.

4.4.2 Independent Two-Sample Case

The results established for one-sample case in the previous section
can be extended directly to the two-sample case. Suppose that
ny patients are randomized to group k (k = 1,2), so that the
total number of patients is n = n; + ny, and we want to compare
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Fig. 4.6: Estimation of 95% confidence interval for the true 0.2-
quantile for the residual life distribution of type 1 events by in-
verting one-sample test statistic when sample size is 100

the T-residual lifetimes from subdistributions of type 1 events be-
tween two groups at time ty. For group k, let 95?0 (1) be the
true 7-percentile residual lifetime of the subdistribution of type
1 events at time ty. Suppose we are interested in making infer-
ence through the ratio of two 7-percentile residual lifetimes, i.e.
Tty = «9%)0 (1)/ 957120 (7). A statistical hypothesis can be formulated
as Hy : 114y = r§?20 vs. Hy 114y # rﬁ)o, where rft)o is a specified
value of ry 4, associated with type 1 events under the null hypoth-
esis. When r%?t)o = 1, the equality of the two 7-quantile residual
lifetimes at a given time ty will be tested. For group k, let the

estimating function be
Lok Ak k Ak A
(075, (r)) = BV (to + 0, (1)) = B (t) — pSP(to).

Noticing that Gft)o (1) = ri?t)oefgo (1) under Hy : 114, = rg?go, Jeong
and Fine (2013) considered a two-sample test statistic for rq 4, as
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) 2 (019,(r) a3 (ri01 (7))
(7)) = EE w [f@Z
GV} w47}

where ¢ (k =1,2) is similarly defined as in (4.38) for group k.

The statistic (4.41) would be still a function of the nuisance
parameter 9820 (1), even though rg?t)o will be known under the null
hypothesis. One way of eliminating the nuisance parameter would
be to minimize the statistic over it. Following similar arguments
as in Jeong et al. (2007, Web Appendix), for any given time t; it

can be shown that

Wi (ridy) = inf Vig, (r9,000,(7)) (4.42)

Vit (ri, 01, (4.41)

follows asymptotically a y2-distribution with 1 degree of freedom.
We reject the null hypothesis Hy : 114, = rg?t)o with type I error
probability of « if W4, (ri?ﬁo) > X1.1_o- Recall that an important
advantage of using this type of statistic is that there is no need
for estimating the underlying probability density function of a
cause-specific failure time subdistribution under competing risks
to make inference about the ratio of the two median residual life-
times.

A 100x (1 — a)% confidence interval for 74, can be obtained
from

fra s dnf Vi (ras.010,() < xiaoal (4.43)

1,tg

Note that, to achieve a confidence interval from (4.43), the statis-
tic Vi, (71405 «9820 (7')) needs to be minimized over 9820(7) for
each fixed value of r14,. Thus values of r1,, associated with the
minimum values of the statistic that exceeds the value of X%,l—a
will be the lower and upper limits of the confidence interval.

To accommodate variability of the quantile residual lifetimes
in the population by such as age at diagnosis of breast cancer, a
stratified test statistic can also be constructed. Denoting L to be
the number of strata, the stratified test statistic can be formed as

Alto 7“1 to Z 1t0 7“1 to
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where Wf?o (7{0) ) is the statistic W4, (T@O) that corresponds to

sto
the " stratum. The statistic A; 4, (r%?t)o) will asymptotically follow
a x2-distribution with L degrees of freedom.

Example 4.4 (Confidence Interval for the Quantile Ra-
tio). We have generated two datasets for groups 1 and 2 from
the same distribution used for one-sample case with a sample size
of 100 for each group. Suppose we are interested in testing the
null hypothesis of Hy : 72 = 1, where r 5 = 952%(02)/951%(02)
is the ratio of two 0.2-quantile residual lifetimes for the distri-
bution of type 1 events at a given time ty5 = 2. The estimated
0.2-quantile residual lifetimes from the simulated dataset were
9A§12)(02) = 2.36 for group 1 and é§2§(02) = 2.34 for group 2,
respectively, so that the estimated ratio was 0.99, close to 1 as
expected. The variances of u(ég(OQ)) and u(é@(OQ}) can be
calculated similarly as in Example 4.3. The test statistic (4.42)
gives the value of 0.021 < x5, = 3.841, where x5, is the
95" percentile of a y2-distribution with 1 degree of freedom, sug-
gesting a lack of statistical evidence to reject the null hypothesis.
Figure 4.7 shows the numerical evaluation of the statistic given
in (4.43) as a function of r;5. A 95% confidence interval for 7 o
can be obtained as (0.44, 2.93) by inverting the curve in Fig. 4.7
at the dashed line.

R codes used to generate the dataset and to perform data
analysis presented in this example are provided in Appendix A.5.

Example 4.5 (Application to NSABP B-04 Dataset). Jeong
and Fine (2009, 2013) applied the nonparametric methods of one-
sample and two-sample inference on the quantile residual life-
times under competing risks developed in Sects.4.4.1 and 4.4.2 to
the NSABP B-04 dataset. Competing events were deaths follow-
ing breast cancer recurrence (both ipsilateral and contralateral)
vs. non-breast-cancer-related deaths. They estimated 0.1-, 0.2-,
and 0.3-quantile residual lifetimes to breast-cancer-related deaths
and non-breast-cancer-related deaths in node-negative and node-
positive patients, and then the ratio of the quantiles of the cause-
specific residual life distributions was compared between the two
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Two-sample Statistic

Ratio of two 0.2—quantiles

Fig. 4.7: Estimation of 95% confidence interval for the true ratio
(=1) of two 0.2-quantiles for the residual life distributions of type
1 events by inverting two-sample test statistic when sample size
is 100 per group

nodal groups. Table 4.3, extracted from Jeong and Fine (2013),
summarizes the estimated 7-quantile residual lifetimes of breast-
cancer-related-deaths in node-negative and node-positive groups,
their ratios, and 95% confidence intervals for the ratios. As shown
in Table 4.3, statistical analysis based on the quantiles provides
more specific information about a distribution being inferred. For
example, 4 years after surgery, the 0.3-quantile of the residual life-
time distribution of breast-cancer-related deaths in node-negative
and node-positive populations was estimated as about 16 and 6
years, respectively, with the ratio of 0.35 (95% CI; 0.26-0.53) in-
dicating a significant difference. The magnitudes of differences
between the two quantile residual lifetimes vary for different time
points and quantiles. The choice of a specific quantile to be re-
ported may depend on the investigator’s scientific and clinical
interests. For example, an investigator may be interested in com-
paring two cause-specific quantile residual lifetimes among pa-
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Table 4.3: Estimated 7-percentile residual lifetimes of breast-
cancer-related-deaths in node-negative and node-positive groups,
the ratios, and 95% confidence intervals for the ratios (Jeong and
Fine, 2013, Biometrical Journal)

Quantile residual lifetime Ratio  95% CI

to 7 Node-negative Node-positive

0 0.1 2.72 1.28 0.47  (0.42, 0.57)
0.2 5.26 2.36 0.45 (0.37, 0.56)
0.3 10.53 4.07 0.39  (0.29, 0.50)

2 0.1 1.95 1.04 0.53  (0.37, 0.74)
0.2 4.81 2.76 0.57 (0.41, 0.75)
0.3 11.45 4.98 0.43  (0.34, 0.54)

4 0.1 2.63 1.73 0.66  (0.40, 1.12)
0.2 7.87 3.16 0.40  (0.31, 0.57)
0.3 16.03 5.63 0.35  (0.26, 0.53)

6 0.1 3.96 1.04 0.26  (0.15, 0.41)
0.2 9.99 2.98 0.30  (0.19, 0.45)
0.3 21.41 6.77 0.32  (0.17, 0.55)

8 0.1 4.92 2.17 0.44  (0.24, 0.71)
0.2 11.8 6.57 0.56  (0.30, 0.91)
0.3 - - - -

tients least affected by a study drug, e.g. using the 0.1-quantile
of a subdistribution of time to events of interest while another in-
vestigator might be interested in comparing patients with better
prognosis by using higher percentiles.

4.4.3 Semiparametric Regression

It would be useful to have a regression model that associates a set
of covariates with the 7-quantile of a residual life distribution at
time t, of a cause-specific event of interest in the presence of other
competing events. For example, investigators might be interested
in knowing a treatment effect on the median residual lifetime
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of the distribution of breast-cancer-related deaths in the pres-
ence of non-breast-cancer-related deaths such as cardiac deaths,
adjusting for age and tumor size. We have considered a T-quantile
residual life regression model in Sect. 3.6, which will be extended
here to the competing risks setting.

Without loss of generality, it will be assumed that there are
only two types of events, i.e. type 1 and type 2, as before. Also
let X;, i =1,2,...,n, denote the minimum of the failure time 7;
and censoring time Cj, and let ¢; indicate the cause of failure and

Without censoring, for subject i, we define the conditional
cumulative incidence function for the residual life distribution of
type 1 events at time ty, given a vector of covariates z;, as

Fl,to(t‘zi) = PI‘(T; — 15 < t, €= 1|E > to,ZZ’)
{Fl(t—l—t0|zi) —Fl(t0|Zi)}/S(t0|Zi), t >t0.

Setting this equal to 7 gives the equation for the 7-quantile resid-
ual lifetime for type 1 events, 6y 4, (7|z;), given the covariates z;, as

(01,4, (7|2:)) = Fi(to + 014, (7|2)|2:) — Fi(to|zi) — 7S(to|z:) = 0.
(4.44)

Similarly as in Sect. 3.6, 61 4,(7|z;) in (4.44) can be formulated as
log-linear in z;, i.e.

01,40 (T|2:) = eXp(ﬁi,ﬂtoZi),

where formally B34 ., is a (p + 1) x 1 vector of the regression
coefficients, and z; is a (p + 1) x 1 vector of covariates. Then
Eq. (4.44) implies

PI‘(,_TZ <to+ exp(ﬁiﬂtozi), € = 1‘21) - PI‘(T; < to, €, = 1‘21)
= 7Pr(T; > to|z;). (4.45)

Assuming conditional independence between (73, ¢;) and C;
given z; (Peng and Fine, 2007), the first term of the left-hand
side of Eq. (4.45) has the following equivalence:
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|

{I(X <ty +exp(B] rlteZi)s 0 = 1)

G(Xi — |2)

[ { T <o +eXp(B/1,T|toZi)’€i = 1701' > TZ) T } ‘|

= ir€isZi ¢ |%g
G(T; — |2)

[I (T; < to+ exp(B] rltoZi): € = D)G(T; — |z;) ]

= F Z;
G(T; — |2)

= Pr(T; < to+exp(B 5, 2:): € = 1]24),

where G(t—) is the survival function of the censoring distribution
just prior to t. Similarly, the second term of the left-hand side in
Eq. (4.45) satisfies

Zi} .

o [ <t exp(B1 7,20} = 13 < t0)] 10 = 1)
G(X, — |z)
o [(Xl>t0) -
B E{ G(to|z:) Z}’

which, following similar arguments as in Sect. 3.6.3, leads to an
estimating equation for the regression parameter B, ., (Lim,
2011),

G(Xi — |z)

PI’(T‘Z S to,éi = 1|Z2) = E{

Therefore Eq. (4.45) can be re-expressed as

Sl,t0|7,”(61,7—|t0) = 07 (446)

where Sy to/r.n(B1,-1,) is defined as

G(X; — |z0) "Gltolz)

i=1

where G(:|z;) is the Kaplan—Meier estimator of the conditional
censoring distribution given covariates. However, as pointed out
in Sect. 3.6.3, it can be assumed that the censoring distribution is

independent of the covariates since in a well-designed clinical trial,
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important prognostic factors are balanced across the treatment
groups, featured with administrative censoring.

An alternative approach to constructing an estimating equa-
tion is to re-express Eq.(4.45) via the check function defined in
Sect. 1.6. Note that given the covariate vector z;, Eq. (4.45) can
be rewritten as

Pr(ty < Ti < to +exp(B] ,4,): € = 1) — 7Pr(Ti > ty) = 0,
or equivalently
ElI(to < Ti < to + exp(B) 74,2i), € = 1)] = TE[I(T; > t0)] = 0,
which is also identical to
E[I(T; > to){r — I(T; < to + exp(B) ;,2z:), € = 1)}] = 0.
Let us define

g10(T) = 1(T; > to){7 = I(T3 < to+ exp(By 1y, 21) € = 1)}
= I(Ti > to)[r — I[log(T; — to) < B 7,2, & = 1]]
(T > to)r - (us), (4.47)

where u; = log(T; —to) — B ,1,2: and
V1, (ui) =7 —I(u; 0,6 = 1),

which is the derivative of the check function associated with type
1 events
prr(ui) = wi[t — I{u; < 0,6 = 1)].

Here note that the check function was defined to include 0 in the
upper limit of u;.
One can notice that, given z;, it is also true that

Elzigs(T)lz] = [ 2ig1s(T) A (T2 = 0,

where Fi(T;|z;] is the cumulative incidence function for type 1
events given z;. Therefore, following the similar arguments as in
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Sect. 3.6.3, we can form a score function type estimating equation
for type 1 events as

Z Al,izi](Xi > to)[T — I{XZ <ty+ exp(ﬁ/lﬂtozi), € = 1}] = 0,

i=1
(4.48)

where X; is the minimum of the potential event time 7; and the
potential censoring time C;, and A, ; is a jump of the pooled cu-
mulative incidence estimates for the distribution of type 1 events.
Lim (2011) showed that the estimate Blﬂto from the estimat-
ing equation (4.46) is asymptotically consistent and the asymp-
totic distribution of n=/28; 41 (8Y -, ) at the true value of B, |,
ﬁ(l],ﬂto, is normal with mean zero and a variance-covariance ma-

trix, which can be consistently estimated by I'y ;;, = n=tyr
~ ~l
&1, r1to.i §1,7jto,i» Where

G(Xio) " Gt)

: ] l [1{X; < to + exp(B 1 5020)} — (X <) 16 = 1) 1(X, > m)]
1,7|tg,s — Zi

" [1{X1 < to + exp(B 1 ¢oz)} — 1(X1 < t0)] 1(8) =1)
2 [z’ ()

I(8; = 0)I{X; < to + exp(By reg2)}
Do 1(Xm = X0

Z I(6; =0)I XJ < min{tg + exp(,éll’T‘tozl),Xj}]
2ot I(Xm > Xj)?

B Z e Xl > to 16 = 0)I(Xi < to) i 1(8; = 0)I{X; < min(to, X;)}
S (X > X)) ST IXm > XpP |

j=1 m=1

To test the null hypothesis of Hy : 8y ;) = BLT%O, a statistic
can be constructed as

n_lsll,ﬂ-\to,n (/6177‘t070)rl_,71'|t0 Sl,7-|t07n (61,7\t0,0)7 (449)

which asymptotically follows a y2-distribution with p + 1 degrees
of freedom. A large observed value of this statistic would result
in rejection of the null hypothesis. As for the non-competing
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risks case discussed in 3.6.3, using the estimating equation itself
to form the test statistic would avoid the necessity of estimating
the probability density function of type 1 events under competing
risks.

Now suppose that we are interested in a local test for a subset
of the regression coefﬁcients Given a partition of the regression
coefficients, B ,;, = (ﬁl o o ﬁl T|t0,), where ﬁl o 15 an T x 1
n  _

1,7to —
. . . . 2

B rjto0- One way of eliminating the nuisance parameters 5§ 3‘ t0

would be to form a variation of the minimum dispersion statistic

(Basawa and Koul, 1988),

vector, let us consider testing the null hypothesis of Hy : 3

5(1)
V(ﬁm\to,o) = mln {n~ Sltolfn((ﬁl T[t0,0 51 Tlto )) tl()\T
/61 Tltg
S to\Tn((/Bl ,T[t0,0 61 Tlto ))} (4-50)

Following the arguments in Wei et al. (1990, Appendix 2) and
Ying et al. (1995, Appendix C), it can also be shown that the

statistic V(Bg‘tmo) has approximately a y2-distribution with r
degrees of freedom (Lim, 2011).

Example 4.6 (Application to NSABP B-04 Dataset). Lim
(2011) applied the method developed for the semiparametric quan-
tile residual life regression model under competing risks developed
in this section to NSABP B-04 dataset. Competing events were
again breast-cancer-related deaths vs. non-breast-cancer-related
deaths. Three covariates were included in a multiple regression
model, i.e. nodal status, age at diagnosis, and pathological tu-
mor size. Table 4.4, extracted from Lim (2011), summarizes the
estimated effects of the covariates on the quantile residual life dis-
tribution of breast-cancer-related deaths and associated p-values.
As Lim (2011) pointed out, both nodal status and tumor size had
negative effects on the quantiles of the residual life distribution
of breast-cancer-related deaths at all fixed time points, implying
that patients with positive lymph nodes and larger tumor sizes at
the diagnosis tend to live shorter than ones with negative lymph
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Table 4.4: Regression coefficient estimates (60 for the intercept, B
for nodal status, 52 for age, and 53 for tumor size) and associated
p-values for different quantiles (0.1,0.2, and 0.3) at different time
points (tp = 0,2,4,6,8) (Lim, 2011)

~ ~ ~

T to Do J4 o J4 o5 D B3 J4
0.1 1 1.11 <.0001 —0.67 <.0001 0.78 .010 —1.56 <.0001
2 020 2806 —-041 .296 1.85 .067 —1.89 .008
4 093 .145 —-0.44 .103 0.79 554 —1.49 147
6 1.80 <.0001 —1.27 <.0001 0.10 .748 —1.51 .063
8 2.61 .005 -0.93 .001 -—-1.51 289 —0.42 .374
0.2 0 1.02 <.0001 —0.56 <.0001 2.14 .003 —1.63 <.0001
2 074 004 —-044 .004 249 .007 —1.63 .0003
4  3.77 <.0001 —0.71 <.0001 —1.89 .838 —2.04 .026
6 3.54 <.0001 —1.20 <.0001 —1.08 .075 —1.64 .002
8 6.76 <.0001 —1.07 .005 —=5.70 .005 —2.24 .019
0.3 0 1.97 <.0001 —0.77 <.0001 1.75 .0009 —1.81 <.0001
2 3.18 <.0001 —0.79 <.0001 —0.02 .048 —2.11 <.0001
4 4.09 <.0001 —1.09 <.0001 —0.92 .189 —1.92 <.0001

nodes and smaller tumor sizes. Interestingly, however, age at dia-
gnosis had positive effects at earlier time points, but the effects go
in the other direction at later time points. This might imply that
because breast cancers developed in younger patients (possibly
genetic effect) are known to be more aggressive, those patients
tend to die earlier due to breast cancer recurrence, but patients
who have overcome the “high-risk” period (about 2 years) would
have longer life expectancy than ones whose diseases were devel-
oped at older ages (possibly age effect). In this case, statistical
analyses based on a series of quantile residual lifetimes capture a
panoramic view of shifting effects of the covariates on the cause-
specific quantile residual lifetimes, which could help generating
biological or etiological hypotheses.
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4.5 Further Reading and Future
Direction

Regarding statistical methods for the quantile residual life func-
tion for competing risks data, not much other work can be found
in the literature. One possible extension of work presented in
this chapter would be under the constraint that the sum of the
asymptotes of the subdistributions given covariates be 1 (Shi,
Cheng, and Jeong, 2013), which is not imposed in the usual para-
metric and nonparametric competing risks regressions (Fine and
Gray, 1999; Jeong and Fine, 2007).

The results may also be extended to a conditional setting.
For example, investigators might be interested in inference on the
quantile residual lifetime to death conditionally among patients
who has recurrence at or beyond a given time point. This case
could be viewed as a semi-competing risks setting where a non-
terminal event (recurrence) can censor a terminal event (death)
but not vice versa (Fine, Jiang, and Chappell, 2001).



Chapter 5

Other Methods
for Inference on Quantiles

5.1 Issues in Inference on Quantiles

While the quantiles have many advantages including robustness,
straightforward interpretation, and presentation of specific infor-
mation, they also suffer from some pitfalls. First of all, eval-
uation of the variance formulas of the quantiles involves estima-
tion of the probability density function under independent and/or
dependent censoring, which is often cumbersome. To avoid that
hurdle, the minimum dispersion statistics based on an estimat-
ing equation as discussed in Chaps.3 and 4 has been adopted,
which, however, produced complicated variance formulas. Sec-
ond, when the censoring proportion is high, higher quantiles can-
not be defined. For example, the censoring proportion is greater
than 50%, any quantiles equal to or above the median does not
exist, even though investigators might be still interested in those
quantities. In this chapter, we review two recent approaches that
addressed these issues. The first method is based on the empirical
likelihood ratio (ELR), which does not need any variance estima-
tion to infer the quantiles, and the second method is a Bayesian
approach that allows nonparametric but stable extrapolation for

J.-H. Jeong, Statistical Inference on Residual Life, 119
Statistics for Biology and Health, DOI 10.1007/978-1-4939-0005-3_5,
© Springer Science+Business Media New York 2014



120 CHAPTER 5. OTHER METHODS FOR INFERENCE...

any non-observable quantiles. For the empirical likelihood ap-
proach, we provide a simple example to explain how the method
works and then move on to application to the quantile residual life
inference. For the Bayesian method, we only provide a brief
overview. R codes used in the numerical example are provided
in Appendix.

5.2 Empirical Likelihood Approach

The cornerstone for the empirical likelihood-based inference is
that the population consists of discrete probability space where
the probability mass is assigned to each atom that supports the
population. Once an experiment is performed and data are col-
lected, the empirical distribution would reflect the discrete popu-
lation distribution.

The original concept of the empirical likelihood dates back
to Thomas and Grunkemeier (1975), who proposed the likelihood
ratio method to estimate the confidence interval for survival prob-
abilities for censored data. Forming the likelihood ratio in their
work required estimation of the Kaplan—Meier estimator under
the null hypothesis (constrained) by using the Lagrangian multi-
plier technique. The term “empirical likelihood” was coined by
Owen (1988, 1990, 2001) who extended the results from Thomas
and Grunkemeier (1975) to the more general settings such as ordi-
nary random sampling models, regression models, autoregressive
models. First we review some basics of the empirical likelihood
theory presented in Hall and La Scala (1990).

The empirical likelihood method can be mainly used to con-
struct confidence regions of the true parameters. Major advan-
tages of the empirical likelihood method are that (1) confidence
regions are not shaped in a predetermined way by forcing symme-
try or normality and (2) evaluation of confidence regions via the
empirical likelihood requires neither estimation of scale or skew-
ness nor construction of a pivotal statistic.
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5.2.1 Empirical Likelihood Ratio
for the Population Mean

Let X1, Xs, ..., X,, be a random sample from a population with a
parameter 6 and p = (py, pa, ..., Pn) be a vector of discrete prob-
ability masses such that p; > 0 and >, p; = 1. Suppose 0(p) is
a value assumed by the parameter # when the population has a
discrete probability mass p; at X;. This implies that the distri-
bution that X;’s are from is characterized only by a set of prob-
abilities p;’s on X;’s. For example, if § is the population mean,
then 0(p) = 3 p;X;. With the random sample of X, Xs,..., X,
it will be shown later that p; = 1/n (i = 1,2,...,n) maximizes
the empirical likelihood function under the general constraint of

1 p; = 1 to obtain the nonparametric maximum likelihood est-
imator (MLE) for the population mean.

Now we will investigate the asymptotic distribution of the
empirical log-likelihood ratio test statistic to test the null hyp-
othesis of Hy : 6(p) = po, where pg is a specified value of the
population mean. In general, the empirical likelihood function
evaluated at 6 = pg is given by

EL(po) = mgxi:]_[lpi, subject to 6(p) = po, > _pi =1,
so that the ELR can be formed as

Rpg) = A p:0(p)=po, - pi=1 [Ty pi (5.1)
VT s, e -

Because both numerator and denominator in (5.1) require max-
imization subject to constraints, the Lagrangian multiplier tech-
nique (Lagrange, 1806) needs to be applied. In the denominator,
let us set the objective function to be maximized on a log-scale
as fi(p) = v, In(p;) and the constraint as h(p) = >0 p; — 1.
Therefore, to maximize the objective function fi(p), a Lagrange
multiplier A needs to be determined from the gradient vector

equation ) )
dfi(p)  dh(p
o N ap (5.2)
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By taking the derivative with respect to each p;, Eq. (5.2) gives
the simultaneous equations of 1 — Ap; = 0, 1 — Aps = 0,...,
1 — Ap, = 0. By summing them up, we have n — A>" ; p; = 0,
which gives A\ = n. Thus any i"* equation of 1 — A\p; = 0 (i =
1,2,...,n) gives p; = 1/n. That is, by applying the Lagrange
multiplier, the denominator in (5.1) is maximized at p; = 1/n,
which gives the nonparametric MLE for the population mean as
0(p) = X7, X;/n. Therefore, the ELR R(p) reduces to

n

R(po) = max [T(np:). (5.3)

p:0(p)=po,y  pi=1;_4

To obtain the complete likelihood ratio, we need to further max-
imize fo(p) = I, In(np;) with respect to p under an additional

constraint .
=n(d_pXi—
i=1

where the constant term n has been included for convenience.
Now we have the gradient vector equation with two Lagrange
multipliers A and v as

dfa(p)  dg(p) . _dh(p)
a0 =A i + 7 R (5.4)

By taking the derivative in (5.4) with respect to each p;, we obtain
a set of simultaneous equations of 1 — nAp1 Xy —yp; = 0, 1 —
nApaXo — yp2 = 0,...,1 — nAp, X, — yp, = 0. Summing up both
sides of all of these equations gives

n— nAZpiXi —”yZpi =0,
i=1 i=1

which leads to v = n(1 — Ayyg) and hence
B 1
Pl )}

Replacing p; in g(p) = 2L piXi — po = 22 pi(Xi — po) = 0
with (5.5), we have an equation to determine A as

i(lﬂ; MO)) (X, — o) = 0. (56)

i=1

(5.5)
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Since {1+ AM(X; — o)} ' = 1 — AM(X; — po) asymptotically under
the null hypothesis of Hy : (p) = po by the binomial expansion,
Eq. (5.6) reduces to

S 1= MK — )} (X — ) = 0.

which gives A\ = (X — pg)/S?, where X = Y%, X;/n and S? =
" (X;—po)?/n is the variance of X;’s under the null hypothesis.
From (5.3) and (5.5), the empirical log-likelihood is given by

U(po) = =2 log(np;) =2 log{1 + A(X; — o)},
i=1 i=1

which, by the Taylor series expansion, can be asymptotically app-
roximated by 2A " (X; — po) — A2 (Xi — po)? = n(X —
to)?/S?%, which follows asymptotically a chi-square distribution
with 1 degree of freedom under the null hypothesis. Thus the
asymptotic 100(1 — «)% coverage probability for true p can be
obtained by inverting P{l(p) < x7_,,} for pn where x3_, , is the
(1 — «) percentile of the x2-distribution with 1 degree of freedom.

The following theorem modifies the results in (5.5) and (5.6) to
a more general case where the weighted probabilities are assigned
to the discrete sample space.

Theorem 6 (Zhou, 2005). Suppose we have a random sample
of Ty, Ts,..., T,, (uncensored, UC) from a population with the
cumulative distribution function F(-) associated with nonnegative

weights w", W, ... w8, The empirical likelihood func-

WO
tion based on the weighted random variables is given by 1", p;

so that the logarithm of the empirical likelihood function is

Z wz( v 10%(]%)-

i=1

The maximization of the above empirical log-likelihood function
with respect to p; subject to two constraints

dopi=1, > 9(T)pi = o
i—1 i—1
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s given by

LU0

Di = : , (5.7)
i wy )+ Ma(Th) — po}

where X is the solution of the equation

n (ue)
w; {g(Tz) - Mo} —0 5 8
> (Z?:1 w7+ Mo(T,) - ,Uo}) oY

As will be exemplified in Sect.5.2.3, in the above theorem the
weight w; can be the number of tied event times for uncensored
observations plus the distributed conditional probabilities that a
censored observation would be realized on any of the uncensored
observations beyond it.

5.2.2 Kaplan—Meier Estimator;
Nonparametric MLE

In Sect. 1.5.4, the martingale representation of the Kaplan—Meier
estimator and its asymptotic behavior were reviewed. The empir-
ical likelihood approach for censored data involves nonparametric
global maximization of one of the empirical likelihood functions
(not under the null hypothesis) by using the fact that the Kaplan—
Meier estimator is the nonparametric MLE. In this section, we
provide a simple proof of that fact from Kaplan and Meier (1958)
as a basis for the ELR for the quantile residual life function to be
presented in the next section.

For the right-censored data, suppose that X; = min(7;, C;)
(1t =1,2,...,n) is a random variable for observed survival time
and S(t) is the survival function for 7". Excluding observed cen-
soring times, suppose that Z(),%(), ... and ¢, are ordered failure
times. It is convenient to partition the entire time interval as
0="to <t <tg <...<tg <tgse) = oo to present con-
ditional arguments in terms of number of failures and number of
subjects at risk. Define d; and ¢; to be the number of failures at
tjy (7 = 1,2,...,k) and the number of censored events within a
half-closed interval [t(;),%(j+1)), respectively. Assuming that the
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nonparametric MLE would assign 0 probabilities between failure
times, the likelihood function takes a form of

L = 1:[1{5(%-_1) S(t) 14 S (k)

= JT{1 = S(t)/S(tG-1) 3 S (tG-1) S(t) 7. (5.9)

J=1

Note that this is a nonparametric version of the likelihood func-
tion, or the empirical likelihood, in that the probability mass at
each failure time is expressed as a jump of the discrete survival
function and any censoring time that occurred between ;) and
just prior to #(;11) is assumed to have been censored at ;).

Because the conditional probability of surviving from ¢(;_1) to
t(;) is given by P(T > t(j)|T > t(j_l)) = S(t(j))/S(t(j_l)) =7, we
have S(t(j)) = mmy ... m;. Therefore the likelihood function (5.9)
becomes

k
H (1—m)% (mma. .. mj) B t7, (5.10)

Defining my = 1, the likelihood function (5.10) can be rewritten as
L = [(1 — 7T1)d1ﬂ.8l1+clﬂ-§1} {(1 _ Wz)dzﬂ.ilz—l—cQﬂ_gQ}

X [(1 _ 7T3>d3(7T17T2)d3+637T§3}

(1 =y Yt Db (v port iy (drken)

X (1 — 73) %, oYt iter)

= H 1— )b ™4, (5.11)

where r; = >7,5;(d; + ¢;). Taking the first derivative of the log-
arithm of the likelihood function (5.11) and setting it to 0 gives
the maximum likelihood equation

T

j=1 Ty
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which implies that for all j,

ri(l—m) —d;

= 0.
(1 — ;)

From this, we obtain the MLE for 7; as ; = 1 — d;/r;. By using
the invariance property of the MLE, the nonparametric MLE for
S(t(;) is given by

or, in general

St) =TI A —d;/ry), (5.12)

which is the product-limit, or Kaplan—Meier, estimator.

From (5.12), note that a jump of the Kaplan—Meier estimator
at each ordered uncensored observation t¢;) (j = 1,2,...,k) can
be expressed as k() = 1/n and

d;\ dl>
kiy= |- 1——, j=2,...,k
o= ()I0-7)

By using all the indicator functions for both uncensored and cen-
sored observations 6 (2 = 1,2,...,n) corresponding to ordered
observations x(;, k¢;) can be equivalently expressed as (Stute,
1996) Al = 5(1)/n and

i—1

S _1 \°0
_ 0) H( i l) . i=2,...,n (5.13)

n—i+1 2 \n—I+1

Zhou et al. (2012) interestingly showed that the jumps of
the Kaplan—Meier estimator are closely related to the inverse
probability weighted censoring (IPWC) estimator of Laan and
Robins (2003) and Rotnitzky and Robins (2005). Specifically
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under the independence assumption between T and C, we have
Pr(X >t) =Pr(T > t)Pr(C > t), which empirically implies that

A A N

1—H(t)=[1 - F@)[L - G, (5.14)

where H(t) is the empirical cumulative distribution based on Xj,
and F'(t) and G(t) are the estimated cumulative probabilities from
the Kaplan—Meier estimators for 7; based on (Xj,d;) and for C;
based on (X;,1 — ¢;), respectively. Consider the increments of
both sides in (5.14) when ¢t = X; with ¢; = 1. Because the term
1 — G(t) is constant when §; = 1, we have

dll - H(t)] = [1 - G)d[L - F(1)],
which gives 1/n = k;[1 — G(X;)], so that a jump of the Kaplan-
Meier can also be expressed as k}/n, where

RO
1= Gru(X))

Y

which is the IPWC estimator.

5.2.3 Constrained EM Algorithm
for Censored Data

In Sect.5.2.1, we have demonstrated that the Lagrangian multi-
plier technique could be applied to maximize the empirical likeli-
hood functions for the population mean (uncensored) under the
constraints. However, application of the Lagrangian multiplier is
not straightforward for censored data as illustrated in the follow-
ing example.

Example 5.1. (Zhou, 2005): Suppose that 71,73, ... T, is a ran-
dom sample from the population with the cumulative distribu-
tion function F(-) subject to right censoring, so that we observe
X; = min(T;, C;) and §; = [(T; < C;), where C;’s are the potential
censoring times.
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In the light of the nonparametric likelihood function given
n (5.9), the empirical likelihood function for censored data can
generally be expressed as

H{pz}‘s{ > o (5.15)

X;i>X;

where 0 < p; for 1 < i <n and > p; = 1, so that the logarithm
of the empirical likelihood function is given by

n

log(EL(p)) =) _ {52- log(pi) + (1 — d;) log ( 2. pz) } :

i=1 X;>X;

As in Sect.5.2.1, let us consider the maximization of the above
log-likelihood function with the constraints of > | p; X; = o and
> pi = 1 under the null hypothesis of Hy : mean(F') = 0 = py.
An immediate application of the Lagrangian multipliers A and ~
yields the following equation: for each ¢,

—A\X, —
pi ZXJ>Xk pj '

which does not have a simple solution for p;. Maximization of the
empirical likelihood function under the general form of the mean
type constraint [ g(t)dF(t) = po would have the similar difficulty.

To overcome this hurdle, Zhou (2005) modified the constrained
EM algorithm (Turnbull, 1976) and applied it to the empirical

likelihood inference for censored data. The modified constrained
EM is described below.

E-Step: Given the cumulative distribution function F, the weight,
w;, at an uncensored observation ¢; is evaluated from

wj =Y Ee{Il(T; = 1;)|X;, 6}
=1

Specifically, first we determine the initial weight on each uncen-
sored observation t;’s as Ep{l(T; =t;)|X;,0;} = Pr(T; = t;|X; =
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T;,0; = 1) = 1 and the value of w; = 2, for example, would im-
ply that there are two uncensored observations tied at ¢;. For a
censored observation X, it is known that the true failure time
T; should be greater than X; and furthermore it could be one of
the uncensored observations beyond that censoring time, given
the realized data. Given that X; = C; and §; = 0, we have
Pr(T; = t;|X; = C;,0; = 0) = Pr(T; = |1, > X;) = Pr(T; =
t;)/Pr(T; > X;) = dF(t;)/{1 — F(X;)} for t; > X;. This im-
plies that the conditional probability of T; = t; given T; > X,
ie. dF(t;)/{1 — F(X;)}, needs to be added to all of the initial
weights for t; beyond X; (See Example 5.2 for more details). This
weighting scheme attempts to recover the effect of censored ob-
servations by assigning an additional weight to each uncensored
(case-wise) observation given the data, rather than synthesizing
the data (Koul et al., 1981) or necessitating iterative calculation of
the estimator (Buckley and James, 1979). This step is identical to
the E-Step of Turnbull (1976) and produces pseudo observations
X, = t; and associated weights w;.

M-Step: With the values of (t;,w;) (j =1,2,..., k) from the E-
Step, determine p;’s by using the formulas (5.7) and (5.8), which
would be a new estimate of the cumulative distribution function.

These EM steps need to be iterated until convergence. The
convergence criterion can be set in such a way that the iteration
stops when the values of the log-empirical likelihood no longer
increase. Zhou (2005) showed that the solution of this EM al-
gorithm is equivalent to the constrained maximization of the log-
likelihood function. A reasonable set of the starting values for the
EM algorithm would be the nonparametric maximum likelihood
estimates such as the Kaplan—-Meier estimates. Zhou (2005) also
considered the case of left-truncated and right-censored data.

Example 5.2. In this example, first we are interested in calculat-
ing the empirical likelihood function under the null hypothesis of
Hy : 0(p) = Z?zlg(tj)pj = po, where k is the number of distinct
uncensored observations ¢;’s. For simplicity, we take g(t;) = t;.

Suppose we have the original observed data

2@ = (@0 20 a0y =(1,1,15,2,2,3,4,4,4.5,5,5,6)
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and
5O = (59 5O 59y =(1,0,1,0,0,1,0,1,1,1,1,1).
© _ (0 _

Note that there are two tied censored observations at x, ' = x5~ =
2.0 and two tied uncensored observations at atg%) = xg(i) = 5.0.

Figure 5.1 graphically displays the mock dataset ordered in length,

[}

where “x” and “0” imply uncensored and censored observations,
respectively.

1 15 2 3 4 45 5 6
Time

Fig. 5.1: A mock dataset ordered in length

After eliminating each of the same kind of the tied observa-
tions, we have

x = (x1,29,...,210) = (1,1,1.5,2,3,4,4,4.5,5,6)
and
§= (81,0, ...,010) = (1,0,1,0,1,0,1,1,1,1), (5.16)
with the initial weights
w = (wy,wy,...,wy) = (1,1,1,2,1,1,1,1,2,1).
Therefore only for the uncensored (UC) observations

t=(ti,ta, ..., t:) =(1,1.5,3,4,4.5,5,6)
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the initial weights are given by
w = (W W Wy = (1,1,1,1,1,2,1).

Now for each censored observation z; (i = 2,4,6), we need to
calculate the conditional probability of dF'(¢;)/{1—F(x;)} for t; >

x; and add it to the initial weights w](-UC)’s beyond z;. Here dF'(t;)
can be replaced by the weighted point probability mass at ¢;, de-
noted as p;, and 1—F'(z;) can be replaced by the partial sum of the
weighted point probability masses beyond z;, denoted as S(x;),
under the null hypothesis. Since the indicator vector (5.16) indi-
cates that the second, fourth, and sixth observations are censored,

the weights adjusted for the censored observations are given by

wled)  — (wgadj),wgadj)’ . ’wgadj))
B (1’ S G 52@)’1 +San t Sii)’
H 5?;2) ’ SQ(IZ) ’ Sf:ia)’2 * Siiz) * SQ(Zi) * 5?26)’
L St S0+ )

where S(zy) = 237':2173" S(zy) = Zzzgpj, and S(zg) = 2]7-:5}9]-.
Note that two censored observations tied at 2 were weighted
accordingly.

One step estimates for p; and hence S(z;) (1 = 2,4,
be achieved by plugging ¢t; (j = 1,2,...,7) and wj(»Uc) (j =
1,2,...,7) into (5.7) and (5.8). By setting ug = 3.5, we obtain

6) can

ﬁ = (ﬁbﬁ% s aﬁ7)
(0.159,0.151,0.131,0.120, 0.115, 0.222,0.103),

and hence
S(xs) =0.841, S(z4) = 0.690, S(z) = 0.440,
so that the adjusted weights can be estimated as

) = (1.0,1.179,1.534, 1.490, 1.733, 3.409, 1.655).
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After repeating this procedure until convergence, we obtain the
final estimates of the empirical distribution as

plmal = (0.149,0.152,0.145,0.111,0.128,0.225, 0.091),
and hence
S(z5) =0.851, S(xq) =0.70, S(xg) = 0.444.

Finally the log-empirical likelihood function under the null
hypothesis can be evaluated as

logELu, = log(EL(p’""))

7

3 {5§.Uc> 1og(ﬁ;fi"“l)} + Y {550) 1og(§(:ci))} — _17.05,
j=1 i=2,4,6

where 6UC) = (1,1,1,1,1,2,1) and 6© = (57, 6{7,6(") =
(1,2,1).

Evaluation of the log-empirical likelihood under the general
constraint Z?lej = 1 is straightforward. In Sect.5.2.2, we
have shown that the Kaplan—Meier would be the nonparamet-
ric MLE that maximizes the empirical log-likelihood function.
Table 5.1 summarizes the weighted Kaplan-Meier (WKM) esti-
mates together with the estimated jumps (p;) based on (z;, §;, w;)
(1=1,2,...,10) in (5.16). The WKM estimates were calculated

from p

Z‘(i)gt Ti

Therefore the log-empirical likelihood function under the gen-
eral constraint of >F | p; = 1 can be evaluated as

logE Lyeneral = Z w; log(p;)+ Z W; 10g{gWKM(Iz‘)} = —16.43,
i:5,=1 i:6,=0

so that the empirical log-likelihood ratio is given by 2(logE'Lgenerai
—logFE Ly,) = 2(—16.43 + 17.05) = 1.24, which gives the p-value
of 0.26 under the x? distribution with 1 degree of freedom. This
implies that the null hypothesis Hy : 6(p) = 3.5 cannot be rejected
at the significance level of 0.05.

R codes used to generate the dataset and to perform data
analysis presented in this example are provided in Appendix A.6.
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Table 5.1: Estimation of the jumps of the WKM as the empirical
probability masses under the general constraint of 3% p; = 1

Xi 6w Swrm(X;) Jumps (p;)
1.0 1 1 09166667 0.08333333
1.0 0 1 09166667 0.00000000
1.5 1 1 0.8250000 0.09166667
20 0 2 0.8250000 0.00000000
3.0 1 1 0.7071429 0.11785714
40 1 1 0.5892857 0.11785714
40 0 1 0.5892857 0.00000000
45 1 1 04419643 0.14732143
50 1 2 0.1473214 0.29464286
6.0 1 1 0.0000000 0.14732143

5.2.4 Estimating Equation for Quantile
Residual Life

As defined in Chap. 3, the 7-quantile residual life function is the
T-percentile of the distribution of the residual lifetimes 1" — ¢, at
time tog given T' > ty. In this section, we express the estimating
equation for the 7-quantile residual life function in terms of the
check function, which will be used as the constraint under the null
hypothesis in the ELR (Zhou and Jeong, 2011). The 7-quantile
residual life function ¢ at time t; can be defined from the cumu-
lative distribution function of the residual life distribution

Pr(T —to < q|T > ty) =7,
which is equivalent to

F(to+q) — (1 =7)F(ty) — 7 =0, (5.17)

where F'(t) = Pr(T < t) is the cumulative distribution function
of the random variable T'. Once the data are observed, the cumu-
lative distribution function F'(¢) can be replaced by the empirical
distribution function F,(t) to estimate g.
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Or equivalently, we can consider the equation

Ho: Elgy(T)) = [~ g,(0)dF(t) =0, (5.18)
where
94(t) =I[(T' —to) < q] = (1= 7)[(T < to) — 7.

From (5.18), the estimating equation for the 7-th quantile residual
life ¢ is given by

[ aavyarnie) = o, (5.19)

where F,(t) denotes the empirical distribution function without
censoring. For censored data with X; = min(7;,C;) and ¢; =
I(T; < C;), however, the empirical distribution F,(t) needs to be
replaced with the Kaplan-Meier estimator Fiy(t). Therefore the
estimating Eq. (5.19) becomes

iAigq(X» —0, (5.20)

where A, is the probability mass that F(t) assigns on (X;, d;),
defined in (5.13).

The estimating equation in (5.20) can be expressed as the
derivative of the check function defined in Sect.1.6. Note that
the function g,(¢) in (5.18) at X; can be written as

9q(Xi) = I[(Xi—to) <ql = (L =7)[X; <to] =7
FI(X > to) + T((Xi — to) < q) — I(Xi — tg < 0)

because the event I((X; —ty) < q) — I(X; — to < 0) is equivalent
to 1(0 < X; —tg < q) and hence to I(X; —to > 0)I(X; —to < q).
Therefore the estimating Eq. (5.20) can be expressed as

n

SOAMXG > toler (X — o) — q) =0, (5.22)

1=1
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or equivalently as a minimization problem of

mqinzn: ANI[X; > tolp-((Xi —to) — q).

1=1

Note that in Example 5.2 the function g(¢) and pg can be rep-
laced by g,(t) in (5.21) and 0, respectively, to evaluate the ELR
for testing the quantile residual life in one-sample case. Zhou
and Jeong (2012) further extended it to the two-sample case.
R package emplik has been developed by Zhou (2005), which
includes the procedures el.cen.EM and el.cen.EM2. The util-
ity of the procedure el.cen.EM2 was demonstrated in Zhou and
Jeong (2012) to numerically calculate the ELR statistic and con-
fidence intervals for the mean and median residual lifetimes for
censored survival data.

5.2.5 Empirical Likelihood Inference
on Quantile Residual Life Regression

As discussed in Sect. 3.6, we consider an accelerated failure time
(AFT) model (Cox and Oakes, 1984) that regresses potential con-
founding factors (covariates, z;) on the residual lifetimes on a
log-scale at a fixed time point .

Suppose n independent and identically distributed random
variables (T;,z;) (i = 1,2,...,n) are generated from the true
model subject to error ¢;

7 — quantile{log(T; — to)|T; > to,z;} = B'z; + €, (5.23)

where ’ denotes a transpose of a vector and 8 = B, represents
the 7-quantile-specific covariate effects on the residual lifetimes
at to. The dependency of the covariate effects on the follow-
up time ty distinguishes the proposed residual quantile residual
life regression from the regular quantile regression. The model
implicitly assumes that the conditional quantile of the residual
life distribution on a log-scale (= log(7; — ty)) is a linear function
of the given covariates (= 3'z;)). Testing the null hypothesis of
Hy : B = B, would imply to test any specific linear relationship
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with the slope of B, between the quantiles of log(7; — t9) (i =
1,2,...,n) and the covariate vector z;.

For the right-censored data, we observe (X, 0;,2;)
(1 =1,2,...,n) where X; = min(7;,C;), §; = I[(T; < C;). From
(3.39), the estimating equation for the regression parameters un-
der the model (5.23) is given by

n

i=1

where A; is a jump of the Kaplan—Meier estimates based on
(X, d;) defined in (5.13). Note that this estimating equation pro-
vides a weighted quantile regression estimator for the residual life
distribution under censoring and reduces to the estimating equa-
tion used by Jung et al. (2009) with A; = 1 for all ¢ when there is
no censoring. When there is censoring, the two estimating equa-
tions use slightly different weighting schemes, but both methods
provide consistent estimates (Jung et al., 2009; Kim et al., 2012).
Now let us consider the ELR under the model (5.23)

maXP:Z?:im:l,Z?:l pig(Xi—to)=0 EL(p)

RO = et BED)

, (5.25)

EL(p) = f[l{pi}&{ S ),

Xj>X7;

and
95(X; — to) = I[X; > to]zi)-(log(X; — to) — B'z;).

As shown in Sect. 5.2.2, the jumps of the Kaplan—Meier est-
imates, Axy = (A1, Ay, ..., A,), based on (X, 6;) in (5.13) max-
imize the denominator of the ELR R(8). Accordingly the ELR
in (5.25) under the null hypothesis of Hy : 3 = 3, can be exp-

ressed as LiplB0)
~ EL(po| By
R(B,) = FL(Br) (5.26)
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where py is the estimates of p that maximizes EL(p) under the
constraint of

i=1

and FL(py|B,) and EL(Ak ) are the empirical likelihood func-
tions evaluated at py and at Agys, respectively.

Under some regularity conditions and if 3, denotes a vector
of the null values of B in r dimension, it can be proven that
—2log R(B,) is asymptotically y?-distributed with r degrees of
freedom (Kim et al., 2012). A 100(1 — )% confidence interval or
region can be also constructed by inverting the likelihood ratio,
e, {8 : —2logR(B) < xI_,,} where x7_, . is the (1 —a)”
quantile of a x? distribution with r degrees of freedom. Note that
the constraint Eq. (5.27) is equivalent to the estimating Eq. (5.24)
when p;’s in the constraint equation are replaced by A;’s.

In many applications, only a subset of the vector B is of
interest. If we have a partition of 8 = (3,,3,) and only 3,
is of interest, the profile likelihood ratio can be constructed as
supg, R(B, Bs). If B, denotes the null value of B, in r; dimen-

sion, it can also be proven that —2logsup 3 R (B, By) follows
2

asymptotically a x? distribution with r; degrees of freedom (Kim
et al., 2012).

Extending the computational procedure of the constrained EM
algorithm to this quantile residual life regression only requires to
replace the g-function g(7;) and po in (5.7) and (5.8) with gg(t; —
to) and By, respectively, where ¢; is an uncensored observation.

5.3 Bayesian Inference Under Heavy
Censoring

As briefly mentioned in Sect. 5.1, higher quantiles might not be
able to be nonparametrically estimated under heavy censoring.
For example, the median cannot be estimated nonparametrically
unless the estimated Kaplan—Meier curve reaches 0.5. Frequentist
and Bayesian parametric methods could be adopted for the pur-
pose, but it is well known that the parametric approaches might
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suffer from violation of strong underlying assumption unless it
is correctly specified. These difficulties seem to have motivated
development of a series of nonparametric Bayesian approaches
in the literature, which allow for flexible and adaptive modeling
of the unknown failure time distribution via a Dirichlet process
(DP) mixture (Ferguson, 1973, 1974). For example, Kottas and
Gelfand (2001) developed nonparametric Bayesian methods to
model the error distribution of the log-transformed survival times,
which Gelfand and Kottas (2003) applied to inference on the med-
ian residual lifetimes under the AFT model. As pointed out by
Ishwaran and James (2001) and Gelfand and Kottas (2002), in
the Bayesian nonparametric methods developed up to that point,
the DP mixture models were fitted by marginalizing over a DP
mixture prior, resulting in the Pélya urn Gibbs sampler (Escobar,
1994; Escobar and West, 1995), which does not allow for direct
inference on the general functionals of the DP mixture model such
as the survival function and hazard function. Later Kottas (2006)
provided a method to approximate the general functions associ-
ated with survival data by extending Gelfand and Kottas (2002).

For inference on the quantile residual life, Park, Jeong, and
Lee (2012) recently proposed the blocked Gibbs sampler (Ish-
waran and James, 2001) to fit the Weibull DP mixture model
for the unknown failure time distribution, which allows for direct
posterior inference on the general functionals of the DP mixture
model. They also exploited partial collapse (van Dyk and Park,
2008) to improve the convergence of the blocked Gibbs sampler.
They applied the proposed procedure to a dataset from a clinical
trial on breast cancer, which consisted of two comparison groups,
placebo and tamoxifen. Figure 5.2 compares the Kaplan—Meier
(solid line) and nonparametric Bayesian estimates (dashed line)
for the tamoxifen group at the origin, i.e. ¢y = 0. Since the esti-
mated Kaplan—Meier curve does not reach 0.5, the median failure
time cannot be estimated nonparametrically. However, the sur-
vival curve estimated from the nonparametric Bayesian method
gives almost identical estimates up to the last observed failure,
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but extrapolates further even though 95 % credible intervals (dot-
ted lines) become wider toward the tail of the distribution as the
level of uncertainty increases.

Tamoxifen

1.0

Survival function
00 02 04 06 08

Fig. 5.2: Comparison of Kaplan—Meier and nonparametric
Bayesian estimates in a treatment group from a breast cancer
study (Park et al., 2012, Statistics in Medicine)

5.4 Further Reading and Future
Direction

The book by Owen (2001) would be an excellent reference for the
empirical likelihood theory and application. Not much work can
be found in the topic of empirical likelihood inference and quan-
tile residual life combined. As mentioned in Sect. 3.7, Kim and
Yang (2011) extended the quantile regression model to a clus-
tered response case, but without censoring. Further extension of
their work to a regression model for quantile residual life with
censoring might be of interest. Also the results presented in this
chapter might be extended to the (semi)competing risks setting
even though a stronger assumption may be needed.



Chapter 6

Study Design Based
on Quantile (Residual Life)

Statistical design of a time-to-event study is usually based on
the log-rank test, which is optimal for the proportional hazards
model to test for the hazard ratio. However, it would be more
straightforward to design a study to test for a difference in quan-
tile (residual) lifetimes, say to detect a difference in the median
residual lifetime due to a drug effect. In this chapter, we consider
such design strategies both in the absence and in the presence of
competing risks. First for the non-competing risks case, we derive
the sample size formula based on the difference in two quantile
residual lifetimes, assuming exponential distributions for event
and censoring distributions, which is compared with one derived
from the log-rank test statistic that uses the hazard ratio. For
the competing risks case, the sample size formula is derived from
the cause-specific parameterization discussed in Sect. 4.3.1.
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6.1 Sample Size Calculation
in the Absence of Competing
Risks

Let us define ¢, = ng ) (1; ’l,[J(k)) to be the 7-quantile from a residual
life distribution for group k (k = 1,2) at time ¢ and V}, = Var(gx),
where ¢, = Ht(f)(T; v,A[)(k)). Under the null hypothesis Hy : A = ¢ —
g2 = 0, the two-sample statistic proposed in Sect. 3.4.2, W, (1) =
(G1—G2)/\/Vi + V3, can be used to derive the sample size formula.
For a two-sided test with type I error probability of a, to detect
a T—quantile residual life difference A = Ay, the power function
To(T) can be defined as

Ta(7) = Pr(Wiy (1) > 21-a|A = Ay), (6.1)

where z1-g is the (1 — §)th percentile of the standard normal
distribution. Denoting 8 for type II error probability, the power
function (6.1) can be further specified as

7o) = Pr M>21_Q_L =1- 8,
NS A BV e

implying that
A
21— — L

Ve

As a specific example, let us consider the exponential distribu-
tion to design a study with time-to-event outcome. Suppose that
the true event time in group k follows an exponential distribution
with survival function Si(t; \r) = exp(—Axt). The parameter Ay
here can be interpreted as the event rate in a prespecified time unit
such as monthly or annual hazard rate. Recall that the 7-quantile
residual lifetime at a given time ¢, under the exponential distri-
bution is given by —log(1 — 7)/Ax, which does not depend on
tg. Let us assume that the event times 7}, are independent of
the common censoring times C, which has the survival function
G(t;n) = exp(—nt). By extending the results in Example 3.2 to

(6.2)
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the general 7-quantile case, the variance of the 7-quantile residual
life estimator for group k is given by

_ {log(1 — 1)} _ f{log(1—17)}?
Vi = —p A2 [ G(v;n)dSk(v; \) A2 (A;\in) , (6.3)

where ny, is the sample size for group k. Here note that
Pr(T; < C) = — /0 (03 7)dSk(v; Ae) = Ax/ O + 1)

is the total probability of occurrence of events in group k.

When the preliminary data are available from a pilot study,
the variance in denominator of the test statistic W, (7) can be esti-
mated from the pooled sample under the null hypothesis. Specif-
ically for the exponential case being considered here, the par-
ameter Ay (kK = 1,2) can be replaced by its pooled estimate
X(pooled) =d/ Zizl > Tki, where d is the total number of events
across two groups and xy; is the follow-up time for the i** subject
in group k, either event or censored. When there are no prelim-
inary data available, however, the simple average of A; and Ag
might be reasonable to be assumed because the total sample size
n would be split evenly between two groups in a well-executed
randomized study.

Now by replacing A by A\g = (A1 + A2)/2 in (6.3), Eq. (6.2)

can be rewritten as

Ay B
f-g (L + L) losl
\/ " " A%(Ag+n)

Assuming that n; ~ no, we have

. )\0 ~9 2’1_%—2’5 2 log(l—T) ?

! Ao + n ~ A1 Ao .
Here \g/(Ao + 1) = Pr(T < C|H,) is the pooled probability of
occurrence of events in both groups combined under the null hyp-

othesis. Therefore the total required number of events for both
groups is given by

)\0 Z1-2 — 28 2 log(l — 7‘) ?
d= ~ 4 2 6.4
" <)\0 +77> ( Ay ) { Ao ’ &4
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which also gives the total number of subjects as

n%4<a_i:@ﬁ2{bﬁi:ﬂ}2Oﬁﬁ%>. (6.5)

This implies that when the censoring rate in a specific time unit
n is 0, the required number of subjects would be identical to
the number of events. However, as the censoring rate becomes
greater than 0, the number of subjects will be always larger than
the number of events.

In fact, the sample size formula (6.4) can be re-expressed in
terms of the hazard ratio. Since Ay = —log(1 — 7)(1/A; — 1/X2)
and A\g = (A1 + A2)/2, denoting the hazard ratio by 8 = \y/\; the
formula (6.4) reduces to

d:4{é?%%@}, (6.6)

which resembles the sample size formula based on the log-rank

test,
2
Zl1-a — 23
1 i B G .
dun { = } (6.7)

One can show that the formula (6.6) always gives a smaller sam-
ple size, expectedly, than the formula (6.7) does, because |(6% —
1)/(20)] > log(d) when 0 < 6 < 2. This can be easily seen
by using Taylor expansion of log(x) around z = 1 that gives
log(xz) ~x —1— (1/2)(x — 1)*> + .... By using the Taylor series
approximation, the difference of the two functions can be writ-
ten as

2 -1 (x—1)°
or - 10g($) ~ 20 ’
which implies that (z* — 1)/(2z) > log(z) if > 1 and (2* —
1)/(2z) < log(z) if x < 1.
The formula (6.4) also has an additional advantage in that it
can be used to design a study to detect a quantile residual life
difference directly. Specifically, again because

0<ax <2,

Al = —log(l —’7')(]_/)\1 — 1/)\2)
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- —roatt-0) (4.

once the hazard rate for the control group (\;) and the quantile
residual life to be detected (A1) are specified, the hazard ratio 6,
and hence )\, is accordingly determined, but it would not be of
direct interest.

Example 6.1 (Comparison with Log-rank Test): In this
example, we compare the proposed method based on a difference
in the median residual lifetimes (7 = 1/2) and one based on the
commonly used log-rank test statistic that tests for the logarithm
of the hazard ratio. Suppose that the hazard rate for the con-
trol group is A\; = 0.05 and we want to detect 30% reduction
in the hazard rate in the experimental group, i.e. Ay = 0.035,
with 80% power with a two-sided 5% type I error probability.
In this setting, the median residual lifetimes at any given time
point for the control and experimental group would be constant as
log(2)/0.05 = 13.9 and log(2)/0.035 = 19.8, respectively. There-
fore we want to determine the required number of events to detect
A; = 6-year difference in the median residual lifetimes between
the two groups, possibly, due to an intervention such as treatment
by a new drug. With the pooled hazard rate A\g = 0.0425, the for-
mula (6.4) gives the desired number of events of d = 369. Since
f# = 0.67 in our example, the required number of events based
on the log-rank test statistic from (6.7) is dpg = 379. One can
see that both methods provide similar results, as expected, but
the approach based on the two-sample test comparing the median
residual lifetimes seems a little more efficient.

Given the accrual and event rates, there are two ways to reach
the required number of events: (1) accrue the patients for a longer
time period, which would increase the total number of subjects,
and hence more events will occur faster and (2) fix the accrual
period and hence the total number of subjects, but follow the
accrued patients up for a longer time period until the required
number of events is reached. Thus, once the total required number
of events and the patient accrual rate is determined, based on
the hypothesized event rate in each group, the duration of the
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study, including both accrual and follow-up periods, and the total
number of subjects required can also be projected simultaneously.
In a phase III clinical trial on breast cancer, for example, it would
be reasonable to have a 2- to 3-years of the accrual period and
follow the patients for another 2-3 years until the final analysis,
the entire study period being 5-6 years.

6.2 Sample Size Calculation Under
Competing Risks

In this section, we consider sample size calculation for a study
to compare two quantile residual lifetimes under competing risks.
We will be assuming that there are two types of competing events,
type 1 and type 2, and interested in determining the number of
events of type 1 events. For simplification, we will follow the
cause-specific parametrization approach discussed in Sect.4.3.1
and assume exponential distributions for both event type distri-
butions, but different event rates, i.e. A\; for type 1 and A, for type
2. We will also assume that the independent censoring distribu-
tion follows an exponential distribution with the rate parameter 7.

Let us define ¢y = 9%{?0 (7:9™) to be the 7-quantile from a
residual life distribution for group k (k = 1,2) at time ¢y, defined
in (4.19) under the cause-specific exponential formulation, and
Vik = Var(qix), where g1 = 9@0 (7;17;(“). Similarly as in the
previous section, under the null hypothesis Hy : A = ¢11—q12 = 0,
the two-sample statistic Wy, (1) = (¢11 — ¢12)/v/ Vi1 + Va2 can
be used to derive the sample size formula under the asymptotic
normality assumption.

Suppose that we want to detect a 7—quantile difference A =
A1 = q11 — q12 between two residual life distributions of type 1
events under competing risks by using a two-sided test with type
[ error probability of . Following the similar arguments as in the
previous section, Eq. (6.2) can be modified to

A11
Zl—a —

— = 23. 6.8
2 Vi + Vi 7 (6.8)
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From Sect. 4.3.1, the variance of ¢y is given by

A2, log (1 — Te‘)‘ZktO) ’
Z?:H 01, AT

Aok Ttoe A2kto 2 "
i Eﬂ_zl 5§k) )\lk(l — Te_)‘ZktO) ) ( . )

where 5](-15) =1 (Ti(k) < C,e = j) is the type j event indicator for
the " subject in group k.
We need to first find the expectation of 5](-2“) in (6.9), i.e. for two

competing event times T12 and T2Z and the common censoring
time C},

E(6;) = E[I(Tl(lk) < T2Z and T ) « Cy]
— P < 7 a9 < )
= B[Py < T8 and T{) < Gi|TLY = t)]

Pr(Ty) > t,C > ¢, T = 1)
Pr(T¥ =t

(6.10)

Assuming that the type 1 and type 2 event times and the censoring
time are independent, the expectation in (6.10) can be written as

E

Pr(T2Z > ¢, T = t)Pr(C; > t)
Pr(TF = t)

Under the cause-specific parameterization, from Sect. 4.3.1, since

Pr(TQ(f) > t, Tl(f) = 1) is equivalent to Pr(min(Tl(f), TQ(f)) =tj=

1) = Prmin(7}, 74) > )h" (t) = S®(—)h{" (1) = £ () =

Pr(Tl(f) = t), we finally have

EE®) = E[Pr(C, > )] = — / T Qs ), (6.11)

0

where G(v) is the survival function of the censoring distribution
and ka) (v) is the cause-specific survival function for type 1 events
in group k. Assuming that the cause-specific distribution for
type 1 events follows an exponential distribution with the rate
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parameter A\j, and the censoring distribution follows an exponen-
tial distribution with the rate parameter 7, the expectation (6.11)
reduces to

A1k
Ae + 1

E(6W) / Ape=Caet gy — (6.12)

By defining the pooled event rates as Ajg = (A1 + A2)/2 and
Aoo = (Aa1 + Ag2)/2 under the null hypothesis, and by using (6.9),
Vi1 + Vig can be simplified to

) A2, log (1 - Te_’\zoto) ’
nim )‘%0
N A2, Ttoe A20t0 2
N9y )\10(1 — T€_>‘20t0) ’
where m1 = Ag/(A1o + 1) and m = Ago/(A20 + 1) are the total

probabilities of type 1 and type 2 events under the null hypothesis.
Further assuming that ny = ny = n/2 and m = ¢m, Eq. (6.8)

gives
) A2, [ log (1 — T€_>‘20t0) ’
n17m )\%0
N A2 Ttoe 20t 2
n1¢7T1 )\10(1 — 7'6_)‘20t0)

2
_ (L)
fl—aj2 — %8 ’

which gives the required number of type 1 events, d;, as

2
dl =nm = 4 (Zl—a/2 - Zﬁ>2 lOg (1 — 7—6—>\20t0)
A11 >\10

1 T)\gotoe_)\zoto 2
’ (5) {Alo(l - 76_A20t°)} ] . 019
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One can notice that this formula reduces to (6.4) with Ay replaced
by A9, the pooled cause-specific hazard rate for type 1 events,
when ty = 0, which would be of most interest in practice, even
though the formula (6.13) provides a panoramic view about how
the sample size would be changed if the study is designed at a
different time point.

When ¢y = 0, the sample size formula (6.13) reduces to

_(Pi—a2 — 28\ [log(1 —7) ?
dl =4 9
Ay A1o

which can be re-expressed similarly as before in terms of the cause-
specific hazard ratio of type 1 events, 61 = Aj2/A11 as

2

Zl_% — Z8
1 -
( 201 )
because
1 1 0, —1
A = —log(l -7 (———>=—1O 1—7'< >>
=l =D T ST
(6.15)

and Ao = (A11+A12)/2. Again once the cause-specific hazard rate
for type 1 events in the control group (A1) and the difference
in 7-quantile failure times of the distribution of type 1 events
between two groups to be detected (Aj;) are specified, the cause-
specific hazard ratio (6;) and hence the cause-specific hazard rate
of type 1 events for the experimental group (A1) are implicitly
determined in Eq. (6.15). Also the formula (6.14) would provide
a smaller sample size than one based on the log-rank test statistic
under competing risks.



Appendix: R Codes

In this chapter, we include the R codes that were used in the examples
throughout the book.

A.1 Example 3.3 in Sect. 3.5.1

## Functions to extract Kaplan-Meier estimates
## corresponding to survival probabilities x

fct.ql.t0<-function(x){km.1$time [km.1$surv <= x] [1]}

library(survival)
library(base)

# Setting up the parameter values
lambda<-0.09
kappa<-2

# Setting up the number of observations
n.obs<-10

# Fixed time point for residual life distribution
t0<-2.0

# Data generation (a=1.5 and b=10 for the censoring
# distribution)
set.seed(1234)
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u.1<-runif(n.obs)
time<-(-(1/lambda)*log(1-u.1)) "~ (1/kappa)
cens<-runif(n.obs,1.5,10)
event<-c(rep(0,n.obs))

event [time <= cens]<-1
new.time<-apply(cbind(time,cens),1,min)
time.obs<-new.time

data.tmp<-data.frame(cbind(time.obs,event))
my.data<-round(data.tmp[order(data.tmp[,1]),],3)

# Kaplan-Meier estimates
km.1<-survfit(Surv(time.obs,event) “1,data=my.data)
# Kaplan-Meier estimate at t0=2
surv.t0<-min(km.1$surv[km.1$time <= t0])

# Estimate of the quantile residual life at t0=2
ql.t0<-fct.ql.t0(surv.t0/2)-t0

surv.t0/2

#[1] 0.35
fct.ql.t0(surv.t0/2)
#[1] 3.293963

ql.to0

#[1] 1.293963

# Creating Figure 3.5
plot(km.1,xlab="Time",ylab="Probability of Event-free")

# Calculation of 95Y, confidence interval from one-sample

# test statistic

unique.1<-data.frame(cbind (km.1$time,km.1$n.event,
km.1$n.risk,km.1$surv))

names (unique.1)<-c("time","dN","y","k-m"

unique.1$indi.0.t0<-rep(0,length(unique.1[,1]))
unique.1$indi.0.t0[unique.1$time >= O & unique.1$time

<= t0]<-1

unique.1$indi.0.ql.t0<-rep(0,length(unique.1[,1]))
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unique.1$indi.0.ql.t0[unique.1$time >= 0 & unique.1$time
<= t0+ql.t0]<-1

unique.1$indi.t0.ql.t0<-rep(0,length(unique.1[,1]))
unique.1$indi.t0.q1.t0[unique.1$time >= t0 & unique.l1$time
<= t0+ql.t0]<-1

names (unique.1)<-c("time","dN","y","k-m","indi.0.t0",
"indi.0.ql.t0", "indi.t0.ql.t0")

term.11<-(unique.1$indi.0.ql.tO0*unique.1$dN) /unique.1$y

term.12<-cumsum((unique.1$indi.0.ql.t0*unique.1$dN)
/unique.1$y~2)

epsilon.il<--min(km.1$surv[km.1$time <= t0+ql.t0])
*x(term.11-term.12)

term.21<-(unique.1$indi.0.tO0*unique.1$dN) /unique.1$y

term.22<-cumsum( (unique.1$indi.0.tO0*unique.1$dN)
/unique.1$y~2)

epsilon.i2<-(1/2)*surv.tO*(term.21-term.22)

epsilon.i<-epsilon.il+epsilon.i2

var.1l<-sum(epsilon.i"~2)
var.1
#[1] 0.01022456

time.max.0<-max (time.obs)-t0
support.points.0<-seq(0,time.max.0,0.01)
disp.0<-apply(as.matrix(support.points.0),1,function(x)
{(summary (km. 1, times=t0+x) $surv-(1/2) *surv.t0) "2/var.1})

covered.qO<-support.points.0[disp.0 < qchisq(0.95,1)]

# 95J, confidence interval when n.obs=10

c(min(covered.q0) ,max(covered.q0)) # 95, confidence
# interval

c(min(covered.q0) ,max(covered.q0))

#[1] 1.24 1.37

# Calculating the true quantile residual life at t0=2
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true.qg<-lambda” (-1/kappa)* (log(2)+lambda*t0 ~kappa)
(1/kappa)-t0

true.q

#[1] 1.420765

## Recalculation of 95% confidence interval when n.obs=100
c(min(covered.q0) ,max(covered.q0))
#[1] 0.81 1.62

A.2 Example 3.4 in Sect. 3.5.2

## Functions to extract Kaplan-Meier estimates
## corresponding to survival probabilities x

fct.ql.t0<-function(x){km.1$time [km.1$surv <= x] [1]}
fct.q2.t0<-function(x){km.2$time [km.2$surv <= x] [1]}

library(survival)
library(base)

# Setting up the parameter values
lambda<-0.09
kappa<-2

# Setting up the number of observations
n.obs<-100

# Fixing a time point for the residual life distribution
t0<-2

# Data generation (an identical distribution for both
# groups)

set.seed(1234)

u.0<-runif (n.obs)

u.1<-runif (n.obs)
time.0<-(-(1/1lambda)*log(l-u.1)) " (1/kappa)
time.1<-(-(1/lambda)*log(1-u.1)) " (1/kappa)
time<-c(time.O,time.1)
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cens<-runif (2*n.obs,1.5,10)
event<-c(rep(0,2+*n.obs))

event [time <= cens]<-1
new.time<-apply(cbind(time,cens),1,min)
group<-c(rep(0,n.obs) ,rep(1,n.obs))
time.obs<-new.time

data.tmp<-data.frame(cbind(time.obs,group,event))
data.tmp.new<-round(data.tmp[order(data.tmp[,1]),],3)

## Evaluating the two-sample statistic under the null
## hypothesis and estimating 95% confidence intervals
## by converting it

# Group 1

my .data<-data.tmp.new[data.tmp.new$group==0, ]
km.1<-survfit(Surv(time.obs,event) “1,data=my.data)
surv.t0<-min(km.1$surv[km.1$time <= t0])
ql.t0<-fct.ql.t0(surv.t0/2)-t0

surv.t0/2
fct.ql.t0(surv.t0/2)
ql.to0

#> surv.t0/2

#[1] 0.3735127

#> fct.ql.t0(surv.t0/2)
#[1] 3.332

#> q1.t0

#[1] 1.332

unique.1<-data.frame(cbind (km.1$time,km.1$n.event,km.1%n.
risk,km.1$surv))
names (unique.1)<-c("time","dN","y","k-m"

unique.1$indi.0.t0<-rep(0,length(unique.1[,1]))
unique.1$indi.0.t0[unique.1$time >= O & unique.l1$time
<= t0]<-1
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unique.1$indi.0.ql.t0<-rep(0,length(unique.1[,1]))
unique.1$indi.0.ql.t0[unique.1$time >= 0 & unique.1$time
<= t0+ql.t0]<-1

names (unique.1)<-c("time","dN","y","k-m","indi.0.t0",
"indi.0.ql.t0")

term.11<-(unique.1$indi.0.ql.tO0*unique.1$dN) /unique. 18y

term.12<-cumsum((unique.1$indi.0.ql.tO*unique.1$dN)
/unique.1$y~2)

epsilon.il<--min(km.1$surv[km.1$time <= tO0+ql.t0])*
(term.11-term.12)

term.21<-(unique.1$indi.0.t0O*unique.1$dN) /unique.13$y

term.22<-cumsum( (unique.1$indi.0.t0*unique. 1$dN)
/unique.1$y~2)

epsilon.i2<-(1/2)*surv.t0*(term.21-term.22)

epsilon.i<-epsilon.il+epsilon.i2
var.1l<-sum(epsilon.i"~2)

## Group 2

my .data<-data.tmp.new[data.tmp.new$group==1,]
km.2<-survfit (Surv(time.obs,event) “1,data=my.data)
surv.t0<-min(km.2$surv[km.2$time <= t0])
g2.t0<-fct.q2.t0(surv.t0/2)-t0

surv.t0/2
fct.q2.t0(surv.t0/2)
q2.t0

#> surv.t0/2

#[1] 0.3726659

#> fct.q2.t0(surv.t0/2)
#[1] 3.357

#> g2.t0

#[1] 1.357
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unique.1<-data.frame(cbind (km.2$time,km.2%n.event,
km.2$n.risk,km.2$surv))
names (unique.1)<-c("time","dN","y","k-m")

unique.1$indi.0.t0<-rep(0,length(unique.1[,1]))
unique.1$indi.0.t0[unique.1$time >= 0 & unique.1$time
<= t0]<-1

unique.1$indi.0.q92.t0<-rep(0,length(unique.1[,1]))
unique.1$indi.0.q2.t0[unique.1$time >= 0 & unique.1$time
<= t0+qg2.t0]<-1

names (unique.1)<-c("time","dN","y","k-m","indi.0.t0",
"indi.0.q2.t0")

term.11<-(unique.1$indi.0.q2.t0*unique.1$dN) /unique.1$y

term.12<-cumsum((unique.1$indi.0.q2.t0*unique.1$dN)
/unique.1$y~2)

epsilon.il<--min(km.2$surv[km.2$time <= t0+q2.t0])
*x(term.11-term.12)

term.21<-(unique.1$indi.0.t0O*unique.1$dN) /unique. 138y

term.22<-cumsum( (unique.1$indi.0.t0*unique. 1$dN)
/unique.1$y~2)

epsilon.i2<-(1/2)*surv.t0*(term.21-term.22)

epsilon.i<-epsilon.il+epsilon.i2
var.2<-sum(epsilon.i"~2)

eta<-seq(0,10,0.01)

time.max<-max(time.obs)
support.points<-seq(0,time.max,0.01)
term.1<-(summary(km.1,times=support.points+t0) $surv
-0.5*summary (km. 1, times=t0)$surv) "2/var.1

support.matrix.group2<-apply(as.matrix(eta),1,
function(x){x*support.points})
min.dispersion.eta<-apply(support.matrix.group2,2,
function(x){
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term.2<-(summary (km.2, times=x+t0) $surv-0.5*summary
(km.2,times=t0)$surv) "2/var.2;
support.limit<-min(length(term.1),length(term.2))
test.stat<-cbind(support.points[1:support.limit],
term.1[1:support.limit]
+term.2[1:support.limit]);
min.rows<-as.numeric(test.stat[test.stat[,2]==
min(test.stat[,2]1),])

min.rows[length(min.rows)]

b

covered.qO<-support.points[min.dispersion.eta <=
qchisq(0.95,1)]

# 95Y, confidence interval for the ratio of two median

# residual lifetimes

c(min(covered.q0) ,max(covered.q0))

#[1] 0.64 1.62

# Evaluated two sample statistic under the null hypothesis
min.dispersion.etaleta==1]
#[1] 0.2154452

## Creating Figure 3.6

plot(etal[1:500] ,min.dispersion.eta[1:500],type="1",1ty=1,
xlab="Ratio of two medians",ylab="Two-sample Statistic")
abline (h=qchisq(0.95,1),1ty=2)

A.3 Example 3.11 in Sect.3.6.3

MMRRegEst <- function(x, U, delta, tzero, LS=TRUE,
tau=0.5) {

This R function computes the residual median/mean case

weighted regression estimator for randomly right

censored data. It can compute the least squares

estimator or quantile regression estimator. In the

later case, it calls a function in the quantreg()

package.

Input:

H OH H H H K H
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# x: is a matrix of N rows (covariates). Intercept,

# if needed, has to be added explicitly.

# U: is the observed (censored) responses, No log

# transformation.

# The code will later apply a log transformation

# after getting the residual times.

# delta: is a vector of length N. delta =1 means (U) is

# not censored. delta = 0 means U is

# right censored, i.e. the true response is

# larger than U.

# tzero: the residual life after this time. Same as t_0O
# in the text.

# LS: is logical. indicates if this is a least square

# regression or quantile regression.

# tau: if LS=TRUE then this is ignored, otherwise tau is
# used in rqfit.

#

# Output:

# the estimates of regression parameters, \hat beta.

n <- length(U)
x <- as.matrix(x)
xdim <- dim(x)
if ( xdim[1] != n ) stop("check dim of x")
if ( length(delta) !'= n ) stop("check length of delta")
if (any((delta!=0)&(delta!=1)))
stop("delta must be O(right-censored) or
1(uncensored)")

temp <- WKM(x=U, d=delta, zc=1:n)
KMweight <- temp$jump

norder <- order (U, -delta)

ZZ <- Ul[norder]

residualAfter <- as.numeric( ZZ > tzero )
KMweight <- KMweight*residualAfter

### the zero weights should be removed

Wplace <- which(KMweight > 0)

if( length(Wplace) <= 3) stop("too few uncensored Y that
exceed tzero")
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KMweight <- KMweight [Wplace]

ZZ <- ZZ[Wplace] - tzero

ZZ <- log(ZZ)  #### or some other transformation,
logl0(ZZ) etc

XX <- as.matrix(x[norder,])

xmat <- as.matrix(XX[Wplace,])

if (LS) estim <- coef(Im.wfit(x=xmat, y=ZZ, w=KMweight))

if (!LS) estim <- coef(rq.wfit(x=xmat, y=ZZ,

weights=KMweight, tau=tau))
return(estim)

}
## Data Generaton ##
total.size<-20

time.temp<-rep(0,total.size)
x1<-rep(0,total.size) # covariate 1
rho<-rep(0,total.size)
u<-rep(0,total.size)
cens<-rep(0,total.size)
death<-rep(0,total.size)
new.time<-rep(0,total.size)

intercept<-1.609438 # true intercept value, so that
exp(1.609438)=5

betal<-0 # true beta_1 value

kappa<-2.0

cens.para<-52

t.fixed<-0 # A time point where the median residual
# lifetime is estimated.

set.seed(3224)

for (i in 1:total.size){
x1[i]<-floor(round(runif(1,0,1))) # Covariate (binary)
rho[i]l<-1log(2)*(exp(intercept+betal*x1[i])) "~ (-kappa)
uli]<-runif(1,0,1)
time.temp[i]<-(-log(1-ulil)/rho[il) " (1/kappa)
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cens[i]<-runif (1,0, cens.para)

death[i]<-ifelse(time.temp[i] <= cens[i],1,0)

new.time[i]<-min(time.temp[i],cens[i])

}

temp.dat<-data.frame(cbind(time.temp,x1,cens,death,
new.time))

temp<-round(temp.dat [order (temp.dat$new.time),],3)

## Estimation ##

library (emplik)
para<-MMRRegEst (x=cbind (1, temp$xl) ,U=tempPnew.time,
delta=temp$death, LS=F, tau=0.5, tzero=t.fixed)
para

#[1] 1.6420987 -0.4221541

# When sample size=500
para
#[1] 1.60341984 -0.01357258

## Calculating the variance-covariance matrix of
## score functions for the global test

library(survival)

time.obs<-new.time
z.original<-cbind(rep(1l,length(x1)),x1)

beta.hat<-para

reg.line.hat<-exp(z.original¥%*’beta.hat) # exp(beta.hat*z)
t.beta.z<-t.fixed+reg.line.hat [order(reg.line.hat)]

# t+exp(beta.hat*z)
time<-time.obs [order(reg.line.hat)]
death.new<-death[order(reg.line.hat)]
z<-z.original [order(reg.line.hat),]
km.cens.new<-survfit (Surv(time,1-death.new)~1)
indi.1.new<-as.numeric(time >= t.beta.z)
indi.2.new<-as.numeric(time >= t.fixed)
is.in.range<-t.beta.z >= min(time) & t.beta.z <= max(time)
km.cens.1.new<-

ifelse(is.in.range,summary(km.cens.new,time=
c(t.beta.z[is.in.range]))$surv,



162 APPENDIX: R CODES

min(summary (km.cens.new) $surv))
km.cens.l.new[t.beta.z < min(time)]<-1
km.cens.1.new[km.cens.1.new==0]<-sort (summary
(km.cens.new) $surv) [2]
km.cens.2.new<-ifelse(t.fixed <=
max (time) , summary (km. cens.new,time=c(t.fixed))$surv,
min(summary (km.cens.new)$surv))
terml<-z*(indi.1.new/km.cens.1.new-indi.2.new
/(2%km.cens.2.new))
term22<-matrix(rep(0,total.size”2) ,ncol=total.size)
term32<-matrix(rep(0,total.size"2) ,ncol=total.size)
sum.risk<-apply(as.matrix(time),1,function(x)
{sum(x <= time)})
term21<-t (apply(as.matrix(time),1,function(x)
{(1-death.new[time==x])*
(x <= t.beta.z)/sum(x <= time)}))
term31<-t (apply(as.matrix(time),1,function(x)
{(1-death.new[time==x])*
(x <= rep(t.fixed,total.size))/sum(x <= time)}))
min.temp22<-apply(as.matrix(time),1,function(x)
{apply(matrix(c(rep(x,length(time)),t.beta.z),
ncol=2),1,min)})
term22<-apply(as.matrix(min.temp22),1,function(x)
{apply ((1-
death.new)*(apply(as.matrix(x),1,function(y){time <= y3})
/sum.risk”~2),2,sum)})
min.temp32<-apply(as.matrix(time),1,function(x)
{apply(matrix(c(rep(x,length(time)) ,rep(t.fixed,
length(time))),ncol=2),1,min)})
term32<-apply(as.matrix(min.temp32),1,function(x)
{apply ((1-
death.new)*(apply(as.matrix(x),1,function(y){time <= y})
/sum.risk~2),2,sum)})
temp.z1<-(indi.1.new/km.cens.1.new)*z
temp.term2<-term21-term22
term2<-temp.term2%*%temp.z1
temp.z2<-(indi.2.new/(2*total.sizexkm.cens.2.new))*z
temp.term3<-term31-term32
term3<-temp.term3)*%temp.z2
tau<-terml+term2-term3
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variance<-(1/total.size)*t (tau)¥%*’tau

variance

# x1
# 0.2743142 0.1371484
#x1 0.1371484 0.1507630

## Calculating the global test statistic##

para.null<-c(0,0)

reg.line<-exp(z.originall*jpara.null) #exp(beta_hat*z)
time<-time.obs[order(reg.line)]

death.new<-death[order (reg.line)]

z<-z.original [order(reg.line),]
t.beta.z<-t.fixed+reg.line[order(reg.line)]

# t+exp(betaxz)
indi.1<-as.numeric(time >= t.beta.z)
indi.2<-as.numeric(time >= t.fixed)
km.cens<-survfit (Surv(time,l-death.new) 1)
is.in.range<-t.beta.z >= min(time) & t.beta.z <= max(time)
km.cens.1<-ifelse(is.in.range,summary(km.cens,

time=c(t.beta.z[is.in.range]))$surv,min(summary (km.cens)

$surv))
km.cens.1[t.beta.z < min(time)]<-1
km.cens.1[km.cens.1==0]<-sort (summary (km.cens)$surv) [2]

km.cens.2<-ifelse(t.fixed <= max(time),summary(km.cens,
time=c(t.fixed))$surv,min(summary (km.cens)$surv))
global.stat<-((total.size) " (-1))*t(apply((indi.1/km.cens.
1-indi.2/ (2%km.cens.2))*z,2,sum) ) %*%
solve(variance) %*
apply((indi.1/km.cens.1-indi.2/(2*km.cens.2))*z,2,sum)

global.stat
# [,1]
#[1,] 12.27347

qchisq(0.95,2)
#[1] 5.991465

## Calculating the minimum dispersion statistic for
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## testing the null hypothetsis for beta_2=0 (local test)

s.var<-function(b1){
reg.line<-exp(z.original%*’c(bl,b2)) #exp(betaxz)
time<-time.obs [order(reg.line)]
death.new<-death[order (reg.line)]
z<-z.original[order(reg.line),]
t.beta.z<-t.fixed+reg.line[order(reg.line)]

# t+exp(betax*z)
indi.1<-as.numeric(time >= t.beta.z)
indi.2<-as.numeric(time >= t.fixed)
km.cens<-survfit (Surv(time,l-death.new)~1)
is.in.range<-t.beta.z >= min(time) & t.beta.z <= max(time)
km.cens.1<-ifelse(is.in.range,summary (km.cens,

time=c(t.beta.z[is.in.range]))$surv,min(summary
(km.cens) $surv))
km.cens.1[t.beta.z < min(time)]<-1
km.cens.1[km.cens.1==0]<-sort (summary (km.cens)$surv) [2]
km.cens.2<-ifelse(t.fixed <= max(time),
summary (km.cens,time=c(t.fixed))$surv,min(summary
(km.cens) $surv))
((total.size) " (-1))*t(apply((indi.1/km.cens.1-
indi.2/(2*km.cens.2))*z,2,sum))%*%solve(variance)%*Y
apply((indi.1/km.cens.1-indi.2/(2*km.cens.2))*z,2, sum)
}

b2<-0
0ld.init<-5.0
range<-5

1.1limit.x<-old.init-range

u.limit.x<-old.init+range

incre.x<-(u.limit.x-1.limit.x)/5

n.points.x<-(1/incre.x)*((u.limit.x-1.limit.x)+incre.x)

bil<-seq(l.limit.x,u.limit.x,incre.x)

score<-apply(as.matrix(bl),1,s.var)

min.score.old<-min(score)

if (length(bl[score==min.score.o0ld])>1) new.init<-

bl[score==min.score.old] [1] else new.init<-bl[score==min.
score.old]



A.3. EXAMPLE 3.11 IN SECT. 3.6.3 165

range<-0.75%range

1.limit.x<-new.init-range

u.limit.x<-new.init+range
incre.x<-(u.limit.x-1.limit.x)/5
n.points.x<-(1/incre.x)*((u.limit.x-1.limit.x)+incre.x)
bl<-seq(l.limit.x,u.limit.x,incre.x)
score<-apply(as.matrix(bl),1,s.var)
min.score.new<-min(score)

while (abs(min.score.new-min.score.old) > 0.001){

if (length(bl[score==min.score.new])>1) new.init<-

bl[score==min.score.new] [1] else new.init<-
bl[score==min.score.new]

range<-0.75%range

1.limit.x<-new.init-range

u.limit.x<-new.init+range
incre.x<-(u.limit.x-1.limit.x)/5
n.points.x<-(1/incre.x)*((u.limit.x-1.limit.x)+incre.x)
bl<-seq(l.limit.x,u.limit.x,incre.x)
score<-apply(as.matrix(bl),1,s.var)
min.score.old<-min.score.new

min.score.new<-min(score)

3

min.disp<-min.score.new
min.disp
#[1] 0.9491851

qchisq(0.95, 1)
#[1] 3.841459

## Generating Table 3.4

tbl.1<-data.frame(cbind (temp$new.time, temp$death,temp$xl))
names (tbl.1)<-c("Time","Event Indicator",

"Group Indicator")
tbl.1
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A.4 Example 4.3 in Sect.4.3.1

## Functions to select a cuminc estimate (Gray) at a
## fixed time x when there are two trt groups and

## two types of events. First subscript is group

## (O=control;l=active) and second subscript is type of
## events (1=of interest (F1); 2=other (F2))

cuminc.01<-function(x){

max (xx[[1]]$est [xx[[1]1]1$time <= x])
}

cuminc.02<-function(x){

max (xx[[2]]1$est [xx[[2]]$time <= x])
}

## Functions to invert the cuminc estimates (Gray) when
## there are two trt groups and two types of events. First
## subscript is group (O=control;l=active) and second

## subscript is type of events (1=of interest (F1);

## 2=other (F2))

inv.cuminc.01<-function(x){
min(xx[[1]1]1$time[xx[[1]]$est >= x])
}

inv.cuminc.02<-function(x){
min(xx[[2]]1$time [xx[[2]]$est >= x])
}

## Data Generation

generate.data<-function(n.obs,pi.1l,lambda.1,kappa.1,
lambda.2,kappa.2,cens)

{

set.seed(3224)

binom.number<-rbinom(n.obs,1,pi.1)

u.1<-runif(as.numeric(table(binom.number) [1]),0,1)

u.2<-runif (as.numeric(table(binom.number) [2]),0,1)

time<-rep(NA,n.obs)

time [binom.number==0]<-(-(1/lambda.1)*log(1-u.1))
~(1/kappa.1)
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time [binom.number==1]<-(-(1/lambda.2)*log(1-u.2))
~(1/kappa.2)
censored<-runif (n.obs,0,cens)
obs.time<-apply(cbind(time,censored),1,min)
event.i<-rep(NA,n.obs)
event.i[binom.number==0]<-1
event.i[binom.number==1]<-2
event.i[obs.time==censored]<-0
temp<-data.frame(cbind(obs.time,event.i))

}
temp<-generate.data(10,0.5,0.09,1.5,0.09,1.5,45)

names (temp)<-c("time","event")
my .data<-round (temp [order (temp$time),],3)

library(cmprsk)
xx <- cuminc(my.data$time,my.data$event)

## How to extract F_1(x) and F_2(x)
time.comb<-sort(my.data$time [my.data$event==1 |
my .data$event==2])
FO1.x<-apply(t(time.comb),2,cuminc.01)
F02.x<-apply(t(time.comb) ,2,cuminc.02)

kml.x<-(1-F01.x-F02.x) # This is equivalent to KM est.

p<-0.2
t0<-2

km.1.t0<-1-cuminc.01(t0)-cuminc.02(t0)
ql.t0<-inv.cuminc.01(cuminc.01(t0)+p*km.1.t0)-t0
#> q1.t0

#[1] 1.59

temp.surv.1<-survfit (Surv(my.data$time,my.data$event>0) 1)
temp.my<-my.data[!is.na(pmatch(my.data$time,
temp.surv.1$time)),]
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unique.1<-data.frame(cbind(temp.surv.1$time,
temp.surv.1$surv,
temp.surv.1$n.risk,temp.surv.1$n.event,temp.my$event))
names (unique.1)<-c("time","km.1.all","y","dN",
"event.type")

unique.1$indi.t0.ql.t0<-rep(0,length(unique.1[,1]))
unique.1$indi.t0.ql.t0[unique.1$time >= t0 &
unique.1$time <= tO+ql.t0]<-1

unique.1$indi.0.t0<-rep(0,length(unique.1[,1]))
unique.1$indi.0.t0[unique.1$time > O & unique.1$time
<= t0]<-1

unique.1$indi.all.events<-rep(0,length(unique.1[,1]))
unique.1$indi.all.events[unique.1$event.type > 0]<-1

unique.1$indi.event.j<-rep(0,length(unique.1[,1]))
unique.1$indi.event. j[unique.1$event.type == 1]<-1

unique.1$dS.diff<-diff(c(0,unique.1$time))*
c(1,unique.1$km.1.all1[1:c(length(unique.1$km.1.al11)-1)]1)

term.1.1<-(unique.1$indi.t0.ql.t0*unique.1$km.1.all*
unique.1$indi.event.j)/unique.1$y
term.1.2<-cumsum((unique.1$indi.t0.ql.t0*

unique.1$km.1.all*
unique.1$indi.event.j)/unique.1$y~2)
term.1<-term.1.1-term.1.2

term.2.1<-unique.1$indi.t0.ql.t0*unique.1$dS.diff*
((unique.1$indi.event. j) /unique.1$y)
term.2.2<-unique.1$dS.diff*cumsum(unique.1$indi.t0.ql.t0*
(unique.1$indi.event.j)/unique.1$y~2)
term.2<-term.2.1-term.2.2

term.3.1<-p*km.1.tO*unique.1$indi.0.t0*
(unique.1$indi.all.events/unique.1$y)
term.3.2<-p*km.1.tO*cumsum(unique.1$indi.0.t0x*
(unique.1$indi.all.events/unique.1$y~2))
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term.3<-term.3.1-term.3.2

var.1<-sum((term.1-term.2-term.3)"2) # variance of u.1 in
group 1

#> var.1

#[1] 0.008985795

time.max.0<-max(my.data$time)
support.points.0<-seq(0,time.max.0,0.01)
disp.0<-apply(as.matrix(support.points.0),1,function(x){
(cuminc.01(t0+x)-cuminc.01(t0)-p*km.1.t0)"2/var.1})

covered.qO<-support.points.0[disp.0 < qchisq(0.95,1)]

## 95J, confidence interval for the 0.2-quantile of the
## residual life distribution of type 1 events

c(min(covered.q0) ,max(covered.q0))
#[1] 0.00 11.48 # Equivalent to (-infty, infty)

## 95Y% confidence interval when n=100

covered.qO<-support.points.0[disp.0 < qchisq(0.95,1)]
c(min(covered.q0) ,max(covered.q0)) # 95%, ci
#[1] 0.87 4.21

pi.1<-0.5
lambda.1<-0.09
kappa.1<-1.5
lambda.2<-0.09
kappa.2<-1.5

## True value of the 0.2-quantile of the residual life
## distribution of type 1 event

true.q<-(-(1/lambda.1)*log(1-(1/pi.1)*(pi.1
xp(-lambda.1*t0" (kappa.1)))

+p*(pi.1*exp(-lambda.1*t0" (kappa.1))+(1-pi.1)*

exp(-lambda.2*t0" (kappa.2)))))) " (1/kappa.1)-t0
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#> true.q
#[1] 2.166371

## Creating Table 4.1

out<-timepoints(xx,unique.1$time)

tbl.1<-round(cbind (unique.1[,c(1,5)],as.
numeric(out$est[1,]),

as.numeric(out$est[2,]) ,unique.1[,2]1),3)

names (tbl.1)<-c("x","delta","ci.1","ci.2","km")

tbl.1

## Creating Table 4.2

tdiff<-diff(c(0,unique.1$time))
km.new<-c(1,unique.1$km.1.all[1:
c(length(unique.1$km.1.a11)-1)1)
tbl.2<-round(cbind (unique.1[,c(1,5,3,6:9)],tdiff,km.new,
unique.1[,10]),3)

names (tbl.2)<-c("time","event","y","indi.1","indi.2",
"indi.all","indi.j",

||tdiff|| s "kIn" s n incre")

tbl.2[,1:9]

## Creating Figure 4.5

plot(xx,color=c("blue","red"),lty=1:2,x1lab="Time",
ylab="Cumulative Incidence Estimates",curvlab=c("Type 1",
llType 2" ) )

## Creating Figure 4.6 when sample size=100 (Need to to
## run the above lines after changing the sample size
## to 100

plot(support.points.0,disp.0,type="1",1ty=1,

xlab="Support points for 0.2-quantiles",
ylab="0One-sample Statistic")

abline (h=qchisq(0.95,1),1ty=2)
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A.5 Example 4.4 in Sect.4.4.2

## Functions to select a cuminc estimate (Gray) at a fixed
## time x when there are two trt groups and two types

## of events. First subscript is group (O=control;

## l=active) and second subscript is type of events (1=of
## interest (F1); 2=other (F2))

cuminc.01<-function(x){

max (xx[[1]]$est [xx[[1]1]1$time <= x])
}

cuminc.11<-function(x){

max (xx[[2]]1$est [xx[[2]]$time <= x])
}

cuminc.02<-function(x){

max (xx [[3]]$est [xx[[3]]1$time <= x])
}

cuminc.12<-function(x){

max (xx[[4]]$est [xx[[4]]$time <= x])
}

## Functions to select a cuminc estimate (Gray) at a fixed
## time x—- when there are two trt groups and two types

## of events. First subscript is group (O=control;

## l=active) and second subscript is type of events (l=of
## interest (F1); 2=other (F2))

cuminc.01.minus<-function(x){
max(xx[[1]]$est [xx[[1]]$time < x])
}

cuminc.11.minus<-function(x){

max (xx[[2]1$est [xx[[2]]$time < x])
}

cuminc.02.minus<-function(x){

max (xx[[3]]$est[xx[[3]]$time < x])
}

cuminc.12.minus<-function(x){

max (xx[[4]]$est [xx[[4]]$time < x])
}
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## Functions to invert the cuminc estimates (Gray) when
## there are two groups and two types of events. First
## subscript is group (O=control;l=active) and second
## subscript is type of events (1=of interest (F1);

## 2=other (F2))

inv.cuminc.01<-function(x){
min(xx[[1]]$time[xx[[1]]$est >= x])
}

inv.cuminc.11<-function(x){
min(xx[[2]]1$time[xx[[2]]1$est >= x])
}

inv.cuminc.02<-function(x){
min(xx[[3]]1$time[xx[[3]]1$est >= x])
}

inv.cuminc.12<-function(x){
min(xx[[4]]$time [xx[[4]]$est >= x])
}

## Data Generation

generate.data<-function(n.obs,pi.1l,lambda.1,kappa.1,
lambda.2,

kappa.2,cens,group,seed.no)

{

set.seed(seed.no)

binom.number<-rbinom(n.obs,1,pi.1)

u.1<-runif (as.numeric(table(binom.number) [1]),0,1)

u.2<-runif (as.numeric(table(binom.number) [2]),0,1)

time<-rep(NA,n.obs)

time [binom.number==0]<-(-(1/lambda.1)*log(l-u.1))
~(1/kappa.1)

time [binom.number==1]<-(-(1/lambda.2)*log(1-u.2))
~(1/kappa.2)

censored<-runif (n.obs,0,cens)

obs.time<-apply(cbind(time,censored),1,min)

event.i<-rep(NA,n.obs)

event.i[binom.number==0]<-1

event.i[binom.number==1]<-2

event.i[obs.time==censored]<-0

group.i<-rep(group,n.obs) #Defining group
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data.frame(cbind(obs.time,group.i,event.i))

3

temp.O0<-generate.data(100,0.5,0.09,1.5,0.09,1.5,45,0,3224)
temp.1<-generate.data(100,0.5,0.09,1.5,0.09,1.5,45,1,7344)

temp<-data.frame(rbind(temp.0,temp.1))
names (temp)<-c("time","group","event")

my .data<-temp [order (temp$time),]

library(cmprsk)
xx <- cuminc(my.data$time,my.data$event,my.data$group)

obs.time<-temp$time
event.i<-temp$event
group.i<-temp$group

## Setting up p—quantile and a fixed time point for
## the residual life distribution

p<-0.2
t0<-2

## How to extract F_1(x), F_1(x-), F_2(x), and F_2(x-) to
## calculate S(x)-S(x-) in control group

time.comb<-sort(obs.time[event.i==1 | event.i==2])
FO1.x<-apply(t(time.comb),2,cuminc.01)
FO1.x.minus<-apply(t(time.comb),2,cuminc.01.minus)
F02.x<-apply(t(time.comb),2,cuminc.02)
F02.x.minus<-apply(t(time.comb),2,cuminc.02.minus)

F11.x<-apply(t(time.comb),2,cuminc.11)
F11.x.minus<-apply(t(time.comb),2,cuminc.11.minus)
F12.x<-apply(t(time.comb),2,cuminc.12)
F12.x.minus<-apply(t(time.comb),2,cuminc.12.minus)

km1.x<-(1-F01.x-F02.x)
kml.x.minus<-(1-F01.x.minus-F02.x.minus)
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km2.x<-(1-F11.x-F12.%)
km2.x.minus<-(1-F11.x.minus-F12.x.minus)

## Calculating the variance of u.l in group 1

km.1.t0<-1-cuminc.01(t0)-cuminc.02(t0)
ql.t0<-inv.cuminc.01(cuminc.01(t0)+p*km.1.t0)-t0

temp.surv.1<-survfit (Surv(obs.time[group.i==0],
as.numeric(event.i[group.i==0]>0))"1)
temp.my<-my.data[!is.na(pmatch(round(my.data$time,3),
round (temp.surv.1$time,3))),]

unique.1<-data.frame(cbind(temp.surv.1$time,
temp.surv.1$surv,
temp.surv.1$n.risk,temp.surv.1$n.event,temp.my$event))
names (unique.1)<-c("time","km.1.all","y","dN",
"event.type")

unique.1$indi.t0.ql.t0<-rep(0,length(unique.1[,1]))
unique.1$indi.t0.ql.t0[unique.1$time >= t0 &
unique.1$time <= tO+ql.t0]<-1

unique.1$indi.0.t0<-rep(0,length(unique.1[,1]))
unique.1$indi.0.t0[unique.1$time > 0 &
unique.1$time <= t0]<-1

unique.1$indi.all.events<-rep(0,length(unique.1[,1]))
unique.1$indi.all.events[unique.1$event.type > 0]<-1

unique.1$indi.event.j<-rep(0,length(unique.1[,1]))
unique.1$indi.event. j[unique.1$event.type == 1]<-1

unique.1$dS.diff<-diff(c(0,unique.1$time))*
c(1l,unique.1$km.1.all[1:c(length(unique.1$km.1.a11)-1)])

term.1.1<-(unique.1$indi.t0.ql.t0*unique.1$km.1.all*

unique.1$indi.event.j)/unique.1$y

term.1.2<-cumsum((unique.1$indi.t0.ql.t0*
unique.1$km.1.all*
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unique.1$indi.event.j)/unique.1$y~2)
term.1<-term.1.1-term.1.2

term.2.1<-unique.1$indi.t0.ql.tO*unique.1$dS.diff*
((unique.1$indi.event. j)/unique.13$y)
term.2.2<-unique.1$dS.diff*cumsum(unique.1$indi.t0.ql.t0*
(unique.1$indi.event.j) /unique.1$y~2)
term.2<-term.2.1-term.2.2

term.3.1<-p*km.1.tO*unique.1$indi.0.t0*
(unique.1$indi.all.events/unique.1$y)
term.3.2<-p*km.1.tO*cumsum(unique.1$indi.0.t0x*
(unique.1$indi.all.events/unique.1$y~2))
term.3<-term.3.1-term.3.2

var.1<-sum((term.l-term.2-term.3) "2) # variance of u.1
# in group 1

## Calculating the variance of u.2 in group 2

km.2.t0<-1-cuminc.11(t0)-cuminc.12(t0)
g2.t0<-inv.cuminc.11(cuminc.11(t0)+p*km.2.t0)-t0

temp.surv.2<-survfit (Surv(obs.time[group.i==1],
as.numeric(event.i[group.i==11>0))"1)
temp.my<-my.datal[!is.na(pmatch(round(my.data$time,3),
round (temp.surv.2$time,3))),]

unique.2<-data.frame(cbind(temp.surv.2$time,
temp.surv.2$surv,
temp.surv.2$n.risk,temp.surv.2%n.event,temp.my$event))
names (unique.2)<-c("time","km.2.all","y","dN",
"event.type")

unique.2$indi.t0.92.t0<-rep(0,length(unique.2[,1]))
unique.2$indi.t0.9q2.t0[unique.2$time >= t0 &
unique.2$time <= t0+q2.t0]1<-1

unique.2$indi.0.t0<-rep(0,length(unique.2[,1]))
unique.2$indi.0.t0[unique.2$time > 0 &
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unique.2$time <= t0]<-1

unique.2$indi.all.events<-rep(0,length(unique.2[,1]))
unique.2$indi.all.events[unique.2$event.type > 0]<-1

unique.2$indi.event. j<-rep(0,length(unique.2[,1]))
unique.2$indi.event. j[unique.2$event.type == 1]<-1

unique.2$dS.diff<-diff (c(0,unique.2$time))*
c(1,unique.2$km.1.all[1:c(length(unique.28km.1.a11)-1)])

term.1.1<-(unique.2$indi.t0.92.t0*unique.28km.2.all*
unique.2$indi.event. j) /unique.2$y
term.1.2<-cumsum((unique.2$indi.t0.92.t0

*unique.2$km.2.allx*
unique.2$indi.event.j)/unique.2$y"2)
term.1<-term.1.1-term.1.2

term.2.1<-unique.2$indi.t0.92.t0*unique.2$dS.diff*
((unique.2$indi.event. j)/unique.23%y)
term.2.2<-unique.2$dS.diff*cumsum(unique.2$indi.t0.q2.t0*
(unique.2$indi.event.j) /unique.2$y"2)
term.2<-term.2.1-term.2.2

term.3.1<-p*xkm.1.tO*unique.2$indi.0.t0*
(unique.2$indi.all.events/unique.23%y)
term.3.2<-p*km.1.tO*cumsum(unique.2$indi.0.t0x*
(unique.2$indi.all.events/unique.2%y"~2))
term.3<-term.3.1-term.3.2

var.2<-sum((term.1l-term.2-term.3)"2) # variance of u.2
# in group 2

eta<-seq(0.0,4.0,0.01)

time.minimax<-min(max(obs.time [group.i==0]),

max (obs.time[group.i==1]))

support.points<-seq(0,time.minimax,0.01)

term.1<-apply(as.matrix(support.points),1,

function(x){(cuminc.01(t0+x)-cuminc.01(t0)-p*km.1.t0)"2
/var.1})



A.5. EXAMPLE 4.4 IN SECT. 4.4.2 177

support.matrix.group2<-apply(as.matrix(eta),1,
function(x){x*support.points})
min.dispersion.eta<-apply(support.matrix.group2,2,
function(x){
term.2<-apply(as.matrix(x),1,function(x){
(cuminc.11(t0+x)-cuminc.11(t0)-p*km.2.t0) "2/var.2})
support.limit<-min(length(term.1),length(term.2))
test.stat<-cbind(support.points[1:support.limit],
term.1[1:support.limit]+term.2[1:support.limit])
min.rows<-as.numeric(test.stat[test.stat[,2]==
min(test.stat[,2]1),])

min.rows[length(min.rows)]

b
covered.eta<-eta[min.dispersion.eta < qchisq(0.95,1)]

## 95% confidence interval for the ratio of two
## 0.2-quantile residual lifetimes of type 1 events

c(min(covered.eta) ,max(covered.eta))
# [1] 0.44 2.93

## Value of the two-sample statistic under the null
## hypothesis

min.dispersion.etaleta==1]

#[1] 0.02063819

## Creating Figure 4.7

plot(eta,min.dispersion.eta,type="1",1ty=1,
xlab="Ratio of two 0.2-quantiles",
ylab="Two-sample Statistic")

abline (h=qchisq(0.95,1),1ty=2)

## 0.2-quantile residual lifetime for group O
ql.to0
#[1] 2.361196
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## 0.2-quantile residual lifetime for group 1
q2.t0
#[1] 2.341192

A.6 Example 5.2 in Sect.5.2.3

library (emplik)

fun<-function(t){t}
maxit<-25
mu<-3.5

## Mock dataset
x <- c(1, 1.5, 2, 3, 4, 5, 6, 5, 4, 1, 2, 4.5)
d <- c(1, i, 0, 1, 0, 1, 1, 1, 1, 0, O, 1)

b b

xvec <- as.vector(x)
nn <- length(xvec)
temp <- Wdataclean2(xvec, d)
x <- temp$value

d <- temp$dd

w <- temp$weight

xdl <- x[d == 1]
funxdl <- fun(xdil)
xd0 <- x[d == 0]

wdl <- w[d == 1]

wd0 <- w[d == 0]

m <- length(xd0)

## Empirical likelihood under the general constraint
## (under H_1)
temp3 <- WKM(x = x, d = d, w = w) # Yields the same
# results from survfit
logelO0 <- temp3$logel
logelO0
#[1] -16.42593

## One step estimates of p_j
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pnew <- el.test.wt(x = funxdl, wt = wdl, mu = mu)$prob
n <- length(pnew)
k <- rep(NA, m)
for (i in 1:m) { # Generate positions censored
observations+1
k[i] <- 1 + n - sum(xdl > xdO[i])

## Constrained EM algorithm
num <- 1
while (num < maxit) {
wdlnew <- wdl
sur <- rev(cumsum(rev(pnew)))
for (i in 1:m) {
wdlnew[k[i] :n] <- wdlnew([k[i]:n] + wdO[i] =
pnew[k[i]:n]/sur[k[i]]
}
temp9 <- el.test.wt(funxdl, wt = wdlnew, mu)
pnew <- temp9$prob
lam <- temp9$lam
num <- num + 1
}

sur <- rev(cumsum(rev(pnew)))

## Final estimates of p_j

pnew

#[1] 0.1489836 0.1516380 0.1447664 0.1108301 0.1277623
0.2251085 0.0909112

## Survival probability estimates based on final estimates
of p_j

sur [k]

#[1] 0.8510164 0.6993784 0.4437820

## Empirical likelihood under H_O

logel <- sum(wdl * log(pnew)) + sum(wdO * log(surl[k]))
logel

#[1] -17.04924
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## Empirical log-likelihood ratio
2 * (logelO0 - logel)
#[1] 1.246634
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