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Preface

Preface to First Edition

I am very indebted to a number of people without whom I would not have
envisioned this book. First, Paul Green helped me tremendously in the preparation
of the first doctoral seminar I taught at the Wharton School. The orientations and
objectives set for that book reflect those he had for the seminar on data analysis
which he used to teach before I did. A second individual, Lee Cooper at UCLA, was
determinant in the approach I used for teaching statistics. As my first teacher of
multivariate statistics, the exercise of having to program all the methods in APL
taught me the benefits of such an approach for the complete understanding of this
material. Finally, I owe a debt to all the doctoral students in the various fields of
management, both at Wharton and INSEAD, who have, by their questions and
feedback, helped me develop this approach. I hope it will benefit future students in
learning these statistical tools, which are basic to academic research in the field of
management especially. Special thanks go to Bruce Hardie who helped me put
together some of the databases and to Frédéric Dalsace who carefully identified
sections that needed further explanation and editing. Also, my research assistant at
INSEAD, Gueram Sargsyan, was instrumental in preparing the examples used in
this manual to illustrate the various methods.

Preface to Second Edition

This second edition reflects a slight evolution in the methods for analysis of data for
research in the field of management and in related fields in the social sciences. In
particular, it places a greater emphasis on measurement models. This new version
includes a separate chapter on confirmatory factor analysis, with new sections on
second order factor analytic models and multiple group factor analysis. A new,
separate section on analysis of covariance structure discusses multigroup problems

vii
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that are particularly useful for testing moderating effects. Some fundamental
multivariate methods such as canonical correlation analysis and cluster analysis
have also been added. Canonical correlation analysis is useful because it helps
better understand other methodologies already covered in the first version of this
book. Cluster analysis remains a classic method used across fields and in applied
research.

The philosophy of the book remains identical to that of its original version,
which I have put in practice continuously in teaching this material in my doctoral
classes. The objectives articulated in Chap. 1 have guided the writing of the first
edition of this book but also of this new edition.

In addition to all the individuals I am endebted to and who have been identified
in the first edition of this book, I would like to express my thanks to the cohorts of
students since then. The continuous feedback has helped select the new material
covered in this book with the objective to improve the understanding of the
material. Finally, I would like to thank my assistant of fifteen years, Georgette
Duprat whose commitment to detail never fails.

Preface to Third Edition

The methods for analyzing data are evolving rapidly as are the software packages
that are available. On the one hand, this software, combined with more sophisti-
cated hardware, is increasingly user-friendly. On the other hand, the theories that
are being empirically tested and the large databases that have become more easily
available require more complex statistical methodologies. While preserving the
original objective to provide foundations for the analysis of such data, this third
edition develops further those methodologies that are particularly well suited to
data analysis in the social sciences. This explains the extensive new chapter on the
analysis of mediation and moderation effects. For each of these methods, this
edition also contains illustrations of analysis using STATA. I have also introduced
XLSTAT as an alternative to multidimensional scaling because of its flexibility and
ease of use as Excel macros. I would like to thank especially all my students at
INSEAD who have provided feedback on the drafts of these chapters. Particular
thanks go to Kathy Sheram who has advised me in editing the third edition of this
book. Her professionalism and precision allowed me to communicate more clearly.
This is particularly important for social scientists who may not have a technical
background. Kathy contributed immensely to presenting the complex material of
this book with concision, precision, and clarity.
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Chapter 1
Introduction

This introduction presents important insights into the basic learning philosophy that
underpins the presentation style of the statistical methods and techniques explored
in this book. It discusses the types of measurements that are available to researchers
and how these measurements often determine what statistical methods may be used
to analyze particular data. Indeed, as this first chapter describes, the nature of the
measurement scales has determined the structure of this book.

1.1 Overview

This book covers multivariate statistical analyses that are important for researchers
in all fields of management whether finance, production, accounting, marketing,
strategy, technology, or human resources management. Although multivariate
statistical techniques such as those described in this book play key roles in funda-
mental disciplines of the social sciences (e.g., economics and econometrics or
psychology and psychometrics), the methodologies particularly relevant to and
typically used in management research are the central focus of this study.

This book is especially designed to provide doctoral students with a theoretical
knowledge of the basic concepts underlying the most important multivariate
techniques and with an overview of actual applications in various fields. The
book addresses both the underlying mathematics and problems of application. As
such, a reasonable level of competence in both statistics and mathematics is needed.
This book is not intended as a first introduction to statistics and statistical analysis.
Instead, it assumes that the student is familiar with basic univariate statistical
techniques. The book presents the techniques in a fundamental way but in a format
accessible to students in a doctoral program, as well as to practicing academicians
and data analysts. With this in mind, the reader may wish to review some basic
statistics and matrix algebra such as those provided in the following books:

H. Gatignon, Statistical Analysis of Management Data, 1
DOI 10.1007/978-1-4614-8594-0_1, © Springer Science+Business Media New York 2014
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Green, Paul E. (1978), Mathematical Tools for Applied Multivariate Analysis,
New York, NY: Academic Press, [Chapters 2—4].

Maddala, Gangadharrao S. (1977), Econometrics, New York, NY: McGraw Hill,
Inc. [Appendix Al].

This book offers a clear, succinct exposition of each technique, with emphasis on
when it is appropriate to use each technique and how to do so. The focus is on the
essential aspects that a working researcher will encounter, in short, on using
multivariate analysis appropriately through an understanding of the foundations
of the methods to gain valid and fruitful insights into management problems. This
book presents methodologies for analyzing primary or secondary data typically
used by academics as well as analysts in management research and provides an
opportunity for the researcher to gain hands-on experience with such methods.

1.2 Objectives

The main objectives of this book are:

1. To develop the student’s knowledge of the technical details of various
techniques for analyzing data.

2. To expose students to applications and hands-on use of various computer
programs: This experience will enable students to carry out statistical analyses
of their own data. Commonly available software is used throughout the book as
much as possible, across methodologies, to avoid having to learn multiple
systems, each with its own specific data manipulations and commands. In
particular, most analyses are demonstrated with SAS and STATA. However,
several additional statistical packages are used when particularly adapted to
specific types of analysis, e.g., LIMDEP, LISREL, or XLSTAT.

1.2.1 Develop the Student’s Knowledge of the Technical
Details of Various Techniques for Analyzing Data

The first objective is to prepare the researcher with the basic technical knowledge
required to understand the methods, to be able to use them appropriately, to know
their limitations, and to access more advanced material about them. This requires a
thorough understanding of the fundamental properties of the techniques. “Basic”
knowledge means the book will not go into the more advanced issues of the
methodologies. Understanding of such issues should be acquired later through
specialized, more advanced study on the specific topics. The objective of this
book is to provide enough detail for what is the minimum knowledge expected
from a doctoral candidate in management studies or an academic researcher in
management.
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1.2.2 Expose the Student to Applications and Hands-On Use
of Various Computer Programs for Carrying Out
Statistical Analyses of Data

While the basic statistical methods corresponding to the various types of analysis
are necessary, they are not sufficient to do research. The use of any method requires
the knowledge of the statistical software corresponding to these analyses. It is
indispensable that students learn both the statistical theory and the practice of
using these methods at the same time. A very effective, albeit time-consuming,
way to ensure that the intricacies of a technique are mastered is by programming the
software oneself. A quicker way is to ensure that the use of the software coincides
with the learning of the method by associating application examples with the
abstract knowledge of the method and by analyzing data oneself using these
methods.

Consequently, in this book each chapter contains four sections. The first section
presents the methods from a theoretical point of view with the various properties of
the method. The second section shows an example of an analysis with instructions
on how to use a particular software program appropriate for that analysis. The third
section gives an assignment so that students can actually practice the method of
analysis. The data sets for these assignments are described in Appendix C (Chap. 14)
and can be downloaded from the Web page of Hubert Gatignon at http://www.
insead.edu/facultyresearch/faculty/profiles/hgatignon. Finally, the fourth section
consists of a list of reference articles that use such techniques appropriately and
serve as templates. Selected readings could have been reprinted in this book for each
application; however, few articles illustrate all the facets of the techniques. Offering
arange of articles allows students to choose the applications that correspond best to
their interests. By accessing multiple articles in the area of interest, students enrich
their learning. All these articles illustrating the particular multivariate techniques
used in empirical analysis are drawn from the major research journals in the field of
management.

1.3 Types of Scales

Data used in management research are obtained from existing sources (secondary
data) such as data published by Ward for automobile sales in the USA or from
vendors who collect data, such as panel data. Data are also collected for the explicit
purpose of the study (primary data): survey data, scanner data, or panels.

In addition to this variety of data sources, differences in the type of data that are
collected can be critical for their analysis. Some data are continuous measures, for
example, the age of a person, with an absolute starting point at birth or the distance
between two points. Some commonly used data do not have such an absolute
starting point, for example, temperature. Yet in both cases, i.e., temperatures and


http://dx.doi.org/10.1007/978-1-4614-8594-0_14
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distances, multiple units of measurement exist throughout the world. These
differences in the type of data are critical because the appropriateness of data
analysis methods varies depending on the type of data at hand. In fact, very often
the data may have to be collected in a certain way in order to be able to test
hypotheses using the appropriate methodology. Failure to collect the appropriate
type of data would prevent performing the test.

In this first chapter, we discuss the different types of scales that can be found in
measuring variables used in management research.

1.3.1 Definition of Different Types of Scales

Scales are quantitative measures of a particular construct, usually not observed
directly. Four basic types of scales can categorize management measurements:

e Ratio

¢ Interval

¢ Rank order or ordinal
e Categorical or nominal

1.3.2 The Impact of the Type of Scale on Statistical Analysis

The nature of analysis depends in particular on the scale of the variable(s). Table 1.1
summarizes the most frequently used statistics that are permissible according to the
scale type. The order of the scales in the first column of Table 1.1 (from the top with
“nominal” to the bottom with “ratio”) is hierarchical in the sense that statistics that
are permissible for a scale (a row of Table 1.1) are also permissible for the scale(s)
below it. For example, a median is a legitimate statistic for an ordinal-scale variable
but is also legitimate for an interval or a ratio scale. The reverse is not true; for
example, a mean is not legitimate for an ordinal scale.

1.4 Topics Covered

This book presents the major methods of analysis that have been used in the recent
management research literature. A survey of the leading journals in the various
fields of management was conducted to identify these methods. This survey
revealed interesting observations.

It is striking that the majority of the analyses involve the estimation of a single
equation or of several equations independent of one another. Analyses involving a
system of equations represent a very small percentage of the analyses performed in
these articles. This appears at first glance surprising given the complexity of
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Table 1.1 Scales of measurement and their properties

Scale Mathematical group structure Permissible statistics ~ Typical examples
Nominal Permutation group * Frequency *  Numbering of brands
y = f(x) distribution » Assignment of numbers
[f(x) means any one-to-one * Mode to types of products
correspondence] or models

* Gender of consumers
» Organization types

Ordinal  Isotonic group ¢ Median » Order of entry
y = f(x) « Percentiles * Rank order of preferences
[f(x) means any ¢ Order (Spearman)
increasing monotonic correlations
function] e Sign test
Interval ~ General linear group ¢ Mean » Likert scale items
y =a+bx * Average deviation (agree—disagree)
b>0 » Standard deviation < Semantic scale items
¢ Product-moment (ratings on opposite
correlation adjectives)
e ttest
« Ftest
Ratio Similarity group * Geometric mean » Sales
y =cx * Coefficient of * Market share
c>0 variation * Advertising expenditures

Adapted from Stevens (1962), p. 25, Stevens (1959), p. 27, and Green and Tull (1970), p.181

management phenomena. Possibly some of the simultaneous relationships analyzed
are reflected in methodologies that explicitly consider measurement errors; these
techniques appear to have grown in recent years. This is why the methodologies
used for measurement modeling receive special attention in this book. Factor
analysis is a fundamental method found in a significant proportion of the studies,
typically to verify the unidimensionality of the constructs measured. The more
advanced aspects such as second-order factor analysis and multiple-group factor
analysis have gained popularity and are also discussed. Choice modeling has been
an important topic, especially in marketing but also in the other fields of manage-
ment, with studies estimating probit or logit models. A still very small percentage of
articles use these models for ordered choice data (i.e., where the data reflect only the
order in which brands are ranked from best to worst). Analysis of proximity data
concerns few studies but cluster analysis and multidimensional scaling remain
favorite methods for practice analysts.

Based on these survey results, the topics listed below were selected. They have
been classified according to the type of key variable(s) that is of primary interest in
the analysis. Indeed, as we discuss in Chap. 2 the nature of the criterion (also called
dependent or endogenous) variable(s) determines the type of statistical analysis that
may be performed. Consequently, the first issue that we address concerns the nature
and properties of variables and the process of generating scales with the appropriate
statistical procedures, followed by discussions of the various statistical methods of
data analysis.


http://dx.doi.org/10.1007/978-1-4614-8594-0_2

6 1 Introduction

Introduction to multivariate statistics and tests about means
e Multivariate analysis of variance
Multiple item measures

« Reliability alpha

» Principle component analysis
» Exploratory factor analysis

¢ Confirmatory factor analysis
* Second-order factor analysis
e Multi-group factor analysis
Canonical correlation analysis
Single-equation econometrics

e Ordinary least squares

* Generalized least squares
» Tests of homogeneity of coefficients: pooling tests

System of equations econometrics

¢ Seemingly unrelated regression
» Two-stage least squares
¢ Three-stage least squares

Categorical dependent variables

¢ Discriminant analysis
¢ Quantal choice models: logit

Rank-ordered data

e Conjoint analysis
e Ordered probit

Analysis of covariance structure—Structural equation models
« LISREL

Testing mediation and moderation effects

Analysis of similarity data

¢ Cluster analysis
¢ Multidimensional scaling

A new chapter (Chap. 11) has been added in this third edition of Statistical
Analysis of Management Data to reflect the increased use of mediation and
moderation analysis in management research. This chapter covers the various
techniques that are adapted to test theories that involve such processes.
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1.5 Pedagogy

Three key learning outcomes are necessary in order to achieve the objectives of this
book:

1. Having sufficient knowledge of statistical theory to be able to understand the
methodologies, when they are applicable and when they are not appropriate.

2. Being able to perform such analyses using the proper statistical software.

3. Understanding how these methodologies have been applied in management
research.

This book differs from others in that it is the only text on multivariate statistics or
data analysis that addresses the specific needs of doctoral education. The three
outcomes outlined above are weighted differently. This book emphasizes the first
outcome by providing the mathematical and statistical analyses necessary to fully
understand the given methodologies. This is in contrast to other books that prefer
primarily or exclusively a verbal description of the method.

This book favors the understanding of the rationale for modeling choices, issues,
and problems. While the verbal description of a method may be more easily
accessible to a wider audience, it is often more difficult to follow the rationale,
which is based on mathematics. For example, it is difficult to understand the
problem of multicollinearity without understanding the effect on the determinant
of the covariance matrix that needs to be inverted. The learning that results from
verbal presentation tends, therefore, to be more mechanical.

This book also differs in that, instead of choosing only a few articles to illustrate
the applications of the methods, as would be found in a book of readings (some-
times with short introductions), a broad list of application readings is provided.
These readings tend to be relatively easy to access, especially with services
available through the Internet. They cover a large cross section of examples and a
history of the literature in this domain.

Finally, the examples of analyses are relatively self-explanatory and, although
some explanations of the statistical software used are provided with each example,
this book does not intend to replace the instruction manuals of those particular
software packages. The reader is referred to those packages for details.

In summary, this book puts the emphasis on understanding the statistical meth-
odology while providing enough information for the reader to develop skills in
performing the analyses and in understanding how to apply them to management
research problems.

More specifically, the learning of this material involves two parts: the learning of
the statistical theory behind the technique and the learning of how to use the
technique. Although there may be different ways to combine these two experiences,
we recommend that students (1) learn the theory by reading the sections where the
methodologies are presented and discussed, (2) study an actual example of the
statistical software package (e.g., SAS, STATA, LIMDEP, LISREL, and other
specialized packages) that is used to apply the methodology, (3) apply the technique
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themselves using the data sets available from the Web page of Hubert Gatignon
at http://www.insead.edu/facultyresearch/faculty/profiles/hgatignon, and finally,
(4) explore application issues as illustrated by applications found in prior research
and listed at the end of each chapter.

In addition to the books and articles listed in each chapter, the following books
are highly recommended to further develop the student’s skills in various methods
of data analysis. Each of these books is more specialized and covers only a subset of
the methods presented in this book. However, they are indispensable complements
for students wishing to become proficient in the techniques used in research.
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Chapter 2
Multivariate Normal Distribution

In this chapter, we define the univariate and multivariate normal distribution
density functions and then we discuss the tests of differences of means for multiple
variables simultaneously across groups.

2.1 Univariate Normal Distribution

To review, in the case of a single random variable, the probability distribution or the
density function of that variable x is represented by Eq. (2.1):

@ (x) :ﬁexp{—z—;(x—uf} 2.1)

2.2 Bivariate Normal Distribution

The bivariate distribution represents the joint distribution of two random variables.
The two random variables x; and x, are related to each other in the sense that they
are not independent of each other. This dependence is reflected by the correlation p
between the two variables x; and x,. The density function for the two variables
jointly is

q)(xl )Cz) = 1 exps — 1 (xl 7”1)2 + ()C2 — yz)z
7 2101021/1 - p? 2(1=p?) o? o2
3 20(x1 — py) (2 — py) o
0107 .

This function can be represented graphically as in Fig. 2.1.

H. Gatignon, Statistical Analysis of Management Data, 9
DOI 10.1007/978-1-4614-8594-0_2, © Springer Science+Business Media New York 2014
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Fig. 2.1 The bivariate
normal distribution D (x1,X2)
X2
X1
Fig. 2.2 The locus X
of points of the bivariate 2
normal distribution A
at a given density level
H
0
L
/ H X,

The isodensity contour is defined as the set of points for which the values of x;
and x, give the same value for the density function ®. This contour is given by
Eq. (2.3) for a fixed value of C, which defines a constant probability:

2 2
) o p) , —m) ) 23)
ol o5 0102

Equation (2.3) defines an ellipse with centroid (u,, u5). This ellipse is the locus of
points representing the combinations of the values of x; and x, with the same
probability, as defined by the constant C (Fig. 2.2).

For various values of C, we get a family of concentric ellipses (at a different cut, i.e.,
cross section of the density surface with planes at various elevations) (see Fig. 2.3).
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Fig. 2.3 Concentric
ellipses at various
density levels

The angle 6 depends only on the values of oy, 05, and p. The higher the
correlation between x; and x,, the steeper the line going through the origin with
angle 0, i.e., the bigger the angle.

2.3 Generalization to Multivariate Case

Let us represent the bivariate distribution in matrix algebra notation in order to
derive the generalized format for more than two random variables.
The covariance matrix of (x;, x2) can be written as

T = {"% p"lf’z} (2.4)
pPoO10? 6%

The determinant of the matrix X is
12| = 6105 (1 — p?) (2.5)

Equation (2.3) can now be re-written as

_ . . -1 X1 — #
C=[—ppx2— )X sz _qu] (2.6)
where
L=
2
2 _ 1 o7 0107
-1 2201 _ .2\ 92 poroy| _ 1

X 1/[6162(1 P )] [_p0102 0% :| 1 _p2 —p i 2.7
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Note that £~' = |Z|~' x matrix of cofactors.
Let

X — [XI - /‘1:|
X2 =l
Then X'Z7'X = ;(2, which is a quadratic form of the variables x and is,
therefore, a chi-square variate.

Also, because |Z| = 6,26,2(1 — p?),|Z|"? = 6102+/(1 — p?), and consequently,
1 liai—h
=) |5 (2.8)
261074/ 1 — p?

The bivariate distribution function can now be expressed in matrix notation as

@(x1,x0) = (27) '[E[ e X EX 2.9)
Now, more generally with p random variables (x;, x, .. ., x,), let
X1 H
X = xz N ﬂ = ﬂz
Xp Hp

The density function is

O(x) = (27) 2[5 e [4x—)'= " (x| 2.10)

For a fixed value of the density @, an ellipsoid is described. Let X = x — p.
The inequality X2~ 'X < »? defines any point within the ellipsoid.

2.4 Tests About Means

2.4.1 Sampling Distribution of Sample Centroids

2.4.1.1 Univariate Distribution

A random variable is normally distributed with mean x and variance 67:

x ~N(u,0%) 2.11)
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After n independent draws, the mean is randomly distributed with mean p and
variance o*/n:

¥ NN(ﬂ,“—) 2.12)

2.4.1.2 Multivariate Distribution
In the multivariate case with p random variables, where x = (x1, X2, .. ., X,,)’, X is
normally distributed following the multivariate normal distribution with mean p
and covariance X:

x ~N(p,X) (2.13)

The mean vector for the sample of size n is denoted by

X

ol
|

Xp

This sample mean vector is normally distributed with a multivariate normal
distribution with mean g and covariance X/n:

X ~ N(ué) (2.14)

2.4.2 Significance Test: One-Sample Problem

2.4.2.1 Univariate Test

The univariate test is illustrated in the following example. Let us test the hypothesis
that the mean is 150 (i.e., #, = 150) with the following information:

6> =256; n=64; ¥ =154
Then, the z score can be computed:
154 — 150 4
==

256 16
64 8

2



14 2 Multivariate Normal Distribution

At a = 0.05 (95% confidence interval), z = 1.96, as obtained from a normal
distribution table. Therefore, the hypothesis is rejected. The confidence interval is

16 16
154 — 1.96 x 3 154 +1.96 x 3= [150.08, 157.92]

This interval excludes 150. The hypothesis that y, = 150 is rejected. If the
variance ¢ had been unknown, the ¢ statistic would have been used:

_f_/’to
T (2.15)

where s is the observed sample standard deviation.

2.4.2.2 Multivariate Test with Known X

Let us take an example with two random variables:

25 10
= n=736
10 16

20.3
Y =
12.6
The hypothesis is now about the mean values stated in terms of the two

variables jointly:
20
e pe= {15}

At the alpha level of 0.05, the value of the density function can be written as in
Eq. (2.16), which follows a chi-square distribution at the specified significance level a:

n(p, —X) 27 (1, = X) ~ 13(a) (2.16)

Computing the value of the statistics,

IZ| =25 x 16 — 10 x 10 = 300

si_ L [16 —10
T300[-10 25

1
7 =36x—(20—-203, 15— 12.6){

16 —-10(|20—-20.3
300

-10 25 15—12.6]:15'72
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The critical value at an alpha value of 0.05 with 2 degrees of freedom is provided
by tables:

Ko (@ =0.05) = 5.991
The observed value is greater than the critical value. Therefore, the hypothesis

that p = [?2] is rejected.

2.4.2.3 Multivariate Test with Unknown X

Just as in the univariate case, X is replaced with the sample value S/(n—1), where
S is the sums-of-squares-and-cross-products (SSCP) matrix, which provides an
unbiased estimate of the covariance matrix. The following statistics are then used
to test the hypothesis:

Hotelling: T2 =n(n—1)(X — p.)S™" (X — p.) (2.17)
where if
Xi1— X1 X1 — X2
xd— [Y127 %1 Xm—X
nxp . .
xln_fl in—)Tz
then S = X¥x¢

Hotelling showed that

n—p
(n—1)p

Replacing T2 by its expression given in Eq. (2.17) leads to

T~ F) (2.18)

n(n—p),_ ol e

M) (s ) ~ 219
Consequently, the test is performed by computing the expression in Eq. (2.19)

and by comparing its value with the critical value obtained in an F table with p and

n-p degrees of freedom.
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2.4.3 Significance Test: Two-Sample Problem

2.4.3.1 Univariate Test

Let us define ¥} and X as the means of a variable on two unrelated samples. The
test for the significance of the difference between the two means is given by

- — 2
PO ek ) S e £V (220)

Sy/—+— S\

n ny niny
where
\/ > 2%
n—1)——— 4 (np — 1)L

§— ( 1 ) n—1 ( 2 ) -1 — (221)

(m = 1)+ (n2 = 1)

s is the pooled within-groups variance. It is an estimate of the assumed common
variance 6> of the two populations.

2.4.3.2 Multivariate Test

Let X(!) be the mean vector in sample 1 = and similarly for sample 2.

We need to test the significance of the difference between X! and X(*). We will
consider first the case where the covariance matrix, which is assumed to be the same
in the two samples, is known. Then we will consider the case where an estimate of
the covariance matrix needs to be used.

2 Is Known (The Same in the Two Samples)

In this case, the difference between the two group means is normally distributed
with a multivariate normal distribution:

11
(Ym _ Y<z>) ~ N(m . z(_ +_)> (2.22)
n ny

The computations for testing the significance of the differences are similar to
those in Sect. 2.4.2.2 using the chi-square test.

2 Is Unknown

If the covariance matrix is not known, it is estimated using the covariance
matrices within each group but pooled.
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Let W be the within-groups SSCP matrix. This matrix is computed from the
matrix of deviations from the means on all p variables for each of n; observations
(individuals). For each group %,

0 _ =) (K _ k)
Y
XAk — | X =X Xy =Xy .. (2.23)
ngXp : :
k —(k k —(k
=) )t

For each of the two groups (each k), the SSCP matrix can be derived:

s, = X xaw (2.24)

pXxng g Xp

The pooled SSCP matrix for the more general case of K groups is

M=

w

pXp o k

Sk (2.25)

L pxp

In the case of two groups, K is simply equal to 2.
Then, we can apply Hotelling’s 7, just as in Sect. 2.4.2.3, where the proper degrees
of freedom depending on the number of observations in each group (7;) are applied:

, -1
T2 = (i(l) - Y(2)> W _mtm (Y(l) - Y@)) (2.26)
nm4+n—2 nn
-2 !
_ mnz(:ll II’Z ) (Y(U _ i<2>) w-! (i(” _ i(2)) 2.27)
m+n—-p—1_, »
— T " ~F 2.2
(”1 +ny — 2)]7 ny+ny—p—1 ( 8)

2.4.4 Significance Test: K-Sample Problem

As in the case of two samples, the null hypothesis is that the mean vectors across the
K groups are the same and the alternative hypothesis is that they are different.
Let us define Wilk’s likelihood-ratio criterion:

_ W

A=
IT|

(2.29)

where T = total SSCP matrix and W = within-groups SSCP matrix.

W is defined as in Eq. (2.25). The total SSCP matrix is the sums of squares and
cross products applied to the deviations from the grand means (i.e., the overall mean
across the total sample with the observations of all the groups for each variable).
Therefore, let the mean centered data for group k be noted as
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k) _ =

X1 — X1 Xo1 — X2

d*(k) x<k> — X X(k) — X3
nk)gp = 12 ’ 22 . (2'30)

XYZ — X ngl)k —X

where X is the overall mean of the ;’s variate.
We create a new data matrix that comprises the centered data for each of the
groups, stacked one upon the other:

x4 ()
. d(2)
x¢ = | X 2.31)
nxp :
x4 (K)
The total SSCP matrix T is then defined as
T =X X4 (2.32)
pPXp pxn nxp

Intuitively, if we reduce the space to a single variate so that we are only dealing
with variances and no covariances, Wilk’s lambda (A) is the ratio of the pooled within-
groups variance to the total variance. If the group means are the same, the variances are
equal and the ratio equals one. As the group means differ, the total variance becomes
larger than the pooled within-groups variance. Consequently, the ratio A becomes
smaller. Because of the existence of more than one variate, which implies more than
one variance and covariances, the within-SSCP and total-SSCP matrices need to be
reduced to a scalar in order to derive a scalar ratio. This is the role of the determinants.
However, the interpretation remains the same as for the univariate case.

It should be noted that Wilk’s A can be expressed as a function of the eigenvalues
of W'B where B is the between-group covariance matrix (eigenvalues are
explained in the next chapter). From the definition of A in Eq. (2.29), it follows that

1 |T| ~1 -1 —1 ~
—=—= W T|=W (W+B)|=|I+W Bl = 1+ 4 2.33
A= w = WO = W W B) = [T Ig(+,)<)
and consequently,
1 1
A= = 2.34
3 a7 (239
[T+
i=1
Also, it follows that
1 K
LnA =Ln————=—) "Ln(l +4) (2.35)
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When Wilk’s A approaches 1, we showed that it means that the difference in
means is negligible. This is the case when Ln A approaches 0. However, when A
approaches 0, it means that the difference is large. Therefore, a large value of
— LnA is an indication of the significance of the difference between the means.

Based on Wilk’s A, we present two statistical tests: Bartlett’s V and Rao’s R.

Let N = total sample size across samples, p = number of variables, and K =
number of groups (number of samples).

Bartlett’s V is approximately distributed as a chi-square when N — 1 — (p + K)/2
is large:

V=—[N-1-(p+K)/2ILnA ~ z7 (2.36)

Bartlett’s V is relatively easy to calculate and can be used when
N —1—(p+ K)/2is large.

Another test, Rao’s R, can be applied; it is distributed approximately as an
F variate. It is calculated as follows:

1—AY"wr—p(K—1)/2+1 ~ pr=P(K=1)

Al p(K 1) ~ A =wr—p(K—1)/2+1 (2.37)

where

w=N-1-(p+K)/2

| PK—1) -4
PP+ (K—1)7> -5
The parameter ¢ is set to 1 if either the numerator or the denominator of this last
expression equals 0. The F statistic is exact when there are only one or two variables
(p) or when the number of groups (K) equals 2 or 3.

A significant chi-square for Bartlett’s test or a significant F test for Rao’s test
indicates significant differences in the group means.

2.5 Examples

2.5.1 Test of the Difference Between Two Mean Vectors:
One-Sample Problem

In this example, the file “MKT_DATA” contains data about the market share of a
brand over seven periods, as well as the percentage of distribution coverage and the
price of the brand. These data correspond to one market, Norway. The question is
whether or not the market share, distribution coverage, and prices are similar or
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Table 2.1 Data example
for the analysis of three
variables

2 Multivariate Normal Distribution

PERIOD M_SHARE DIST PRICE
1 0.038 11 0.98
2 0.044 11 1.08
3 0.039 9 1.13
4 0.03 9 1.31
5 0.036 14 1.36
6 0.051 14 1.38
7 0.044 9 1.34

OPTIONS LS=B0;
DATA work;
INFILE

dlm = ',' firstcbs=2;
INPUT PERIOD M SHARE DIST FRICE;
data work;

sat work (drop = period)
run;

proc iml;

start SSCP;
n=nrow(x) ;
mean=x[+,]/n;
x=x-repeat (mean,n, 1) ;

sscp = X *x;
finish sscp;
x=Mkt_Data;
p=ncol (Mkt_Data) ;
run sscp;

print SSCP n p;

¥bar = mean;
mo={ 0.17 32.28 1.39 };

dX = Xbar - m _o;
dXt = dx°;

print m o;
print Xbar;
print dx;
sscp_l = inv(sscp);
T sq =
F -

n*(n-1) *dX*sscp l*dXt;
T_sg* (n-p) / ((n-1) *p) ;

Df num
Df_den n-p ;

F_crit finv(.95,df num,df den);
Print F F_crit;

quit;

)

wnon

J* kkkkkkkrkkrx ExampleZ-l.sSas trekkkkdtkkkrk ¥/

"C:\SAMD\Chapter2\Examples\Mkt Data.csv"

/* Multivariate Test with Unknown Sigma */

print " Multivariate Test with Unknown Sigma " ;
Print fememmmeeme e e Mo
/* Specifying the matrix with raw market data for Norway */
read all var (M Share Dist Price} into Mkt Data;
/* SUBROUTINE for calculation of the SSCP matrix */

/*
/*

/*
Fi

Calculation of the inverse of SSCP matrix */

/*
/*

/* Critical F for .05 for df num, df den */

Number of rows */

Column means */
Variances */
S8CP matrix *f

END SUEBROUTINE */
Definition of the data matrix */

Execution of the SUBROUTINE  */

Definition of the mean vector */
Myu zero: the mean vector for Eurcpe */

Matrix of deviations */
Calculation of the transpose of dX */

Calculation of the T square */
Calculation of the F statistic */

Fig. 2.4 SAS input to perform the test of a mean vector (examp?2-1.sas)

different from the data of that same brand for the rest of Europe, i.e., with values of
market share, distribution coverage, and price, respectively, of 0.17, 32.28, and
1.39. The data are shown in Table 2.1.

The SAS file showing the SAS code needed to compute the necessary statistics is
shown in Fig. 2.4. The first lines correspond to the basic SAS commands to read the
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Multivariate Test with Unknown Sigma
SSCP N P
0.0002734 0.035 0.0007786 7 3
0.035 30 0.66
0.0007786 0.66 0.1527714
MO
0.17 32.28 1.39
XBAR
0.0402857 11 1.2257143
DX
-0.129714 -21.28 -0.164286
F F_CRIT
588.72944 6.5913821

Fig. 2.5 SAS output of analysis defined in Fig. 2.4 (examp2-1.1st)

data from the file. Here, the data file was saved as a text file from Microsoft Excel.
Consequently, the values in the file corresponding to different data points are
separated by commas. This is indicated as the delimiter (“dlm”). Also, the data
(first observation) start on line 2 because the first line is used for the names of the
variables (as illustrated in Table 2.1). The variable PERIOD is dropped so that only
the three variables needed for the analysis are kept in the SAS working data set. The
IML procedure is used to perform matrix algebra computations.

This file could easily be used for the analysis of different databases. Obviously, it
would be necessary to adapt some of the commands, especially the file name and path
and the variables. Within the IML subroutine, only two items would need to be changed:
(1) the variables used for the analysis and (2) the values for the null hypothesis (m_o).

The results are printed in the output file shown in Fig. 2.5.

The critical F statistic with 3 and 4 degrees of freedom at the 0.05 confidence
level is 6.591, while the computed value is 588.7, indicating that the hypothesis of
no difference is rejected.

2.5.2 Test of the Difference Between Several Mean Vectors:
K-Sample Problem

The next example considers similar data for three different countries (Belgium,
France, and the United Kingdom) for seven periods, as shown in Table 2.2. The
question is whether or not the mean vectors are the same for the three countries.
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Table 2.2 Data example for three variables in three countries (groups)

CNTRYNO CNTRY PERIOD M_SHARE DIST PRICE
1 BELG 1 0.223 61 1.53
1 BELG 2 0.22 69 1.53
1 BELG 3 0.227 69 1.58
1 BELG 4 0.212 67 1.58
1 BELG 5 0.172 64 1.58
1 BELG 6 0.168 64 1.53
1 BELG 7 0.179 62 1.69
2 FRAN 1 0.038 11 0.98
2 FRAN 2 0.044 11 1.08
2 FRAN 3 0.039 9 1.13
2 FRAN 4 0.03 9 1.31
2 FRAN 5 0.036 14 1.36
2 FRAN 6 0.051 14 1.38
2 FRAN 7 0.044 9 1.34
3 UKIN 1 0.031 3 1.43
3 UKIN 2 0.038 3 1.43
3 UKIN 3 0.042 3 1.3
3 UKIN 4 0.037 3 1.43
3 UKIN 5 0.031 13 1.36
3 UKIN 6 0.031 14 1.49
3 UKIN 7 0.036 14 1.56

We first present an analysis that shows the matrix computations following
precisely the equations presented in Sect. 2.4.4. These involve the same matrix
manipulations in SAS as in the prior example, using the IML procedure in SAS.
Then we present the MANOVA analysis proposed by SAS using the GLM proce-
dure. The reader who wishes to skip the detailed calculations can go directly to the
SAS GLM procedure that is illustrated in Fig. 2.8.

The SAS file that derived the computations for the test statistics is shown
in Fig. 2.6.

The results are shown in the SAS output in Fig. 2.7.

These results indicate that the Bartlett’s V statistic of 82.54 is larger than
the critical chi-square with 6 degrees of freedom at the 0.05 confidence level
=6, a= 0,05)2 = 12.59). Consequently, the hypothesis that the mean vectors
are the same is rejected. The same conclusion can be derived from Rao’s R statistic
with its value of 55.10, which is larger than the corresponding F value with 6 and

32 degrees of freedom (FZ;gz(a =0.05) = 2.399).

The first lines of SAS commands in Fig. 2.8 read the data file in the same manner
as in the prior examples. However, the code that follows is much simpler because
the procedure automatically performs the MANOVA tests. For that analysis, the
general procedure of the general linear model is called with the command “proc
glm”. The class statement indicates that the variable that follows (here CNTRY) is a
discrete (nominal scaled) variable. This is the variable used to determine the
K groups. K is calculated automatically according to the different values contained
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HEAREESRRERRSNNRAS Examp2-2. a5 FARAREEESARRREARRAE %[
OPTIONS LS=80;
DATA work;
INFILE
"C:\SAMD\CHAPTER2\EXAMPLES\Mkt Dt K.csv"
dlm = ',' firstobs=2;
INPUT CNTRYNO CNTRY § PERIOD M_SHARE DIST PRICE;
data work;

set work (drop = cntry period) ;
proc print;
proc freq;
tables cntryno / ocut = Nk _out (keep = count):
run;
/* Significance Test: K-Sample Problem */
proc iml;
reset center;
print " Multivariate Significance Test: K-Sample Prcblem " ;
P I e e e e e e e e e i ;
use work ; /* Specifying the matrix with raw data */
read all var { CNTRYNO M SHARE DIST PRICE} into Mkt Data;
use Nk_out;
read all var {count} intoc Nk_new;

/

* Number of cbservations within each group */
n_tot = nrow(Mkt_Data) ;
K=max (Mkt_Data[,1]); /* Number of groups (samples) */
p=ncol (Mkt_Data)-1; /* Number of variables */
print n_tot " "R R - H
start SSCP; /* SUBROUTINE for calculation of the SSCP matrix */
n=nrow (x) ;
mean=x[+,]/n; /* Column means (mean vector) */
x=x-repeat (mean.,n,l); /* Matrix of variances */
SSCP = x'*x; /* SSCP matrix */
print i " " mean;
finish SSCP; /* END SUBROUTINE */
& = J(p,p.0): /* Definition of a p x p square matrix with zeros */
do i =1 to K;
if i = 1 then a = 1;
else
a=1+(i-1)*nk_new([i-1];
b=atnk_new[i]-1;
x = Mkt _Data[a:b,2:4];
run SSCP; /* Execution of the SUBROUTINE for each group */
5 = 5 + S3CP; /* Accumulation of the sum of SSCP matrices */
end; /* in order to calculate W (within-the-groups SSCP) */
W = 5; DetW = Det(W);
print W " " DetwW;
x=Mkt _Dataf[,2:4]; /* Definition of the data matrix (dropping the first column:
CNTRYNO) */
run SSCP; /* Execution of the SUBROUTINE for total data */
T=8SCP;
DetT = Det(T):
print T " " DetT;

Lmbd = Det(W) / Det(T):
m = n_tot-1-(p+K) / 2;
reset noname fw=5 nocenter;
print "Lambda =" Lmbd [format=10.6];
print "m =" m [format=2.0]
" Use Bartlett's V for large m's and Rao's R otherwise " ;

V = -m*Log(Lmbd) ;
s = sqrt((p*p* (K-1)**2-4)/ (p*p+(K-1) **2-5)) ;
R = (1-Lmbd**(1/s))* (m*s-p*(K-1)/2 + 1)/ (Lmbd** (1/s)*p*(K-1)):
Df_num = p*(K-1); Df_den = m*s-Df_num/2 +1 ;
Chi_crit = CINV(0.95,Df_num); F_crit = finv(.95,df_num,df_den);
print "Bartlett's V = " V [format=5.6] " DF =" DF_num [format=2.0] ;
print " Chi_crit =" Chi_crit [format=9.6];
print "Rac's R =" R [format=9.6]
" DF_NUM =" Df num [format=2.0]
L DF_DEN =" Df_den [format=2.0] ;
print " F_crit =" F_crit [format=9.6];
quit;

Fig. 2.6 SAS input to perform a test of difference in mean vectors across K groups (examp2-2.sas)

in the variable. On the left side of the equal sign, the model statement shows the list
of the variates for which the means will be compared. On the right side is the group
variable. The GLM procedure is in fact a regression where the dependent variable is
regressed on the dummy variables that are automatically created by SAS (different
dummy variables are created for each of the values of the grouping variable).
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Multivariate Significance Test: K-Sample Problem

N_TOT K P
21 3 3

I MEAN

1 0.2001429 65.142857 1.5742857

I MEAN

2 0.0402857 11 1.2257143

I MEAN

3 0.0351429 7.5714286 1.4285714

W DETW
0.0044351 0.2002857 -0.002814 0.246783

0.2002857 288.57143 1.8214286
-0.002814 1.8214286 0.2144286

I MEAN

4 0.0918571 27.904762 1.4095238

T DETT
0.1276486 42.601714 0.1808686 31.691145

42.601714 14889.81 63.809048
0.1808686 63.809048 0.6434952

Lambda = 0.007787
m= 17 Use Bartlett's V for large m's and Rao's R otherwise

Bartlett's V = 82.539814 DF = 6
Chi_crit = 12.591587

Rao's R = 55.104665 DF_NUM = 6 DF_DEN = 32
F_crit = 2.399080

Fig. 2.7 SAS output of test of difference across K groups (examp2-2.1st)

JE kkkkkkrkkkxkrkrirt Examp2-3-ManovASAaS.SAas *rEkkkakkrkdkkkrker k)

OPTICNS LS=B0;

DATA work;

INFILE

nep: \SM\CHAPTERE\EXAMPLES\WKt_Dt_K. csv"

dlm = ',' firstobs=2;

INPUT CNTRYNO CNTRY $ PERIOD M SHARE DIST PRICE;

/* Chapter 2, IV.4 Significance Test: K-Sample Prcblem */
proc glm;

class CNTRY;

model M SHARE DIST PRICE=CNTRY /nouni ;

manova h = CNTRY/ printe;
run;

quit;

Fig. 2.8 SAS input for MANOVA test of mean differences across K groups (examp2-3.sas)

The optional parameter “nouni” after the slash indicates that the univariate tests
should not be performed (and consequently their corresponding output will not be
shown). Finally, the last line of code is necessary to indicate that the MANOVA test
concerns the differences across the grouping variable CNTRY.

The output shown in Fig. 2.9 provides the same information as shown in Fig. 2.7.
Wilk’s A has the same value of 0.007787. Several other tests are provided, and they
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The GLM Procedure

Class Level Information

Class Levels Values

CNTRY 3 BELG FRAN UKIN
Number of Observations Read 21
Number of Observations Used 21

Multivariate Analysis of Variance

E = Error SSCP Matrix

M _SHARE DIST PRICE
M _SHARE 0.0044351429 0.2002857143 -0.002814286
DIST 0.2002857143 288.57142857 1.8214285714
PRICE -0.002814286 1.8214285714 0.2144285714

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 18 M_SHARE DIST PRICE

M_SHARE 1.000000 0.177039 -0.091258

0.4684 0.7102

DIST 0.177039 1.000000 0.231550

0.4684 0.3402

PRICE -0.091258 0.231550 1.000000
0.7102 0.3402

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for CNTRY
E = Error SSCP Matrix

Characteristic Characteristic Vector V'EV=1
Root Percent M_SHARE DIST PRICE
67.2013787 98.70 7.5885004 0.0457830 0.0045113
0.8829099 1.30 3.7773797 -0.0204742 2.2231712
0.0000000 0.00 -12.8623871 0.0361429 0.2847771

MANOVA Test Criteria and F Approximations for
the Hypothesis of No Overall CNTRY Effect
H = Type III SSCP Matrix for CNTRY
E = Error SSCP Matrix

s=2 M=0 N=7

Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.00778713 55.10 6 32 <.0001
Pillai's Trace 1.45424468 15.10 6 34 <.0001
Hotelling-Lawley Trace 68.08428858 176.86 6 19.652 <.0001
Roy's Greatest Root 67.20137868 380.81 3 17 <.0001

NOTE: F Statistic for Roy's Greatest Root is an upper bound.
NOTE: F Statistic for Wilks' Lambda is exact.

Fig. 2.9 SAS output for MANOVA test of mean differences across K groups (examp2-3.Ist)

all lead to the same conclusion that the differences in means are significant. In
addition to the expression of Wilk’s A as a function of the eigenvalues of W 'B,
three other measures are provided in the SAS output.

Pillai’s trace is defined as Z I + R
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insheet using
"/users/gatignon/documents/WORK_STATA/SAMD/Chapter2_MANOVA/Mkt_Dt_K.csv", clear
* manova test

manova m_share dist price = cntryno

mat list e(E)

mat list e(H_m)

mat list e(eigvals_m)

mat list e(aux_m)

Fig. 2.10 STATA input for MANOVA test of mean differences across K groups (examp2-3.do)

K
Hotelling—Lawley trace is simply the sum of the eigenvalues: Z Ai.
i=1
. . A
Roy’s greatest root is the ratio ————
/11'1’121)(

These tests tend to be consistent but the numbers are different. As noted in the
SAS output, Roy’s greatest root is an upper bound to the statistic.

Similar output is provided by STATA. Figure 2.10 shows the input for
requesting MANOVA analysis in STATA.

Figure 2.11 presents the results of the analysis. It includes the within- and the
between-SSCP matrices. The command “mat list e(E)” is used to print the within-
SSCP matrix and “mat list e(H_m)” the between-SSCP matrix. The largest root is read
from the eigenvector computed by “e(eigenvals_m).” Finally, the command “mat list
e(aux_m)” lists the parameters mz, s, and n that are used for the F values corresponding
to the various statistics shown in the output. These parameters are defined as follows:

s =min(K — 1,p) (2.38)
m=(K—-1-p|—1)/2 (2.39)
n=N-K—p-1)/2 (2.40)

where

N = total number of observations across groups;
K = number of groups;
p = number of variables.

For example, an approximate F statistic for Pillai’s trace V with s2m + s + 1)
and s(2n + s + 1) degrees of freedom is

. @n+s+ 1)V
F_(2m+s+1)(s—V) 241)

2.6 Assignment

In order to practice with these analyses, you will need to use the databases INDUP
and PANEL described in Appendix C. These databases provide market share and
marketing mix variables for a number of brands competing in five market segments.
You can test the following hypotheses:
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. insheet using
"/users/gatignon/documents/WORK_STATA/SAMD/Chapter2_MANOVA/Mkt_Dt_K.csv", clear
(6 vars, 21 obs)

. * manova test
. manova m_share dist price = cntryno

Number of obs = 21
W = Wilks' lambda L = Lawley-Hotelling trace
P = Pillai's trace R = Roy's largest root
Source | Statistic as F(df1, daf2) = F Prob>F
cntryno | W 0.0078 2 6.0 32.0 55.10 0.0000 e
| p 1.4542 6.0 34.0 15.10 0.0000 a
| L 68.0843 6.0 30.0 170.21 0.0000 a
| R 67.2014 3.0 17.0 380.81 0.0000 u
|
Residual | 18
+
Total | 20

e = exact, a = approximate, u = upper bound on F
. mat list e(E)

symmetric e(E)[3,3]
m_share dist price
m_share .00443514
dist .20028564 288.57143
price -.00281429 1.8214294 .21442857

. mat list e(H_m)
symmetric e(H_m)[3,3]
m_share dist price
m_share .12321343
dist 42.401429 14601.238
price .18368288 61.987627 .42906667
. mat list e(eigvals_m)
e(eigvals_m)[1,2]
cl c2
rl 67.201384 .88290968

. mat list e(aux_m)

e(aux_m)[3,1]

value
s 2
m 0o
n 7

Fig.2.11 STATA output for MANOVA test of mean differences across K groups (examp2-3.log)

1. The market behavioral responses of a given brand (e.g., awareness, perceptions,
or purchase intentions) are different across segments.

2. The marketing strategy (i.e., the values of the marketing mix variables) of
selected brands is different (perhaps corresponding to different strategic groups).

Figure 2.12 shows how to read the data within an SAS file and how to create new
files with a subset of the data saved in a format that can be read easily using the
examples provided throughout this chapter. Using the model described in the
examples above, adapt these examples to the database to perform tests of
differences across groups.

The commands to merge the INDUP and PANEL data sets in STATA are shown
in Fig. 2.13.
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Fig. 2.12 Example of SAS file for reading data sets INDUP and PANEL and creating new data

2 Multivariate Normal Distribution

[ Rk R KRR KRR KRR KRR KRR KRR KRR R R R R KRR kR KRR kR kR R R K
Assign2.sas

Creation of additional data files for Chapter2 assignments.
T Ty
option 1s=120 ;

/*

Creating the dataset PANEL by reading data from c:\...\panel.csv

data panel;
infile 'C:\SAMD\Chapter2\Assignments\panel.csv' firstobs=2 dlm = ',' ;
input period segment segsize ideall-ideal3
brand $§ adv_pct aware intent shopl-shop3
percl-perc3 devl-dev3 share ;
run;
proc sort data=panel;
by period brand;
run;

*/

/*
Creating the dataset INDUP by reading data from c:\...\indup.csv

data indup;
infile 'C:\SAMD\Chapter2\Assignments\indup.csv' firstobs=2 dlm = ',' ;
input period firm brand $ price advert
charl-char5 salmenl-salmen3
cost distl-dist3 usales dsales ushare dshare adshare relprice ;
run;
proc sort data =indup;
by period brand;
run;

/*

*/

Merging PANEL and INDUP into ECON

data econ;
merge panel indup;
by period brand;
if segment<5 then delete;
run;
proc means noprint;
var intent share ;
output out = mean=1I. ;
run;

/*

*/

Writing EconMean to a CSV file (easily opened by Excel)

data _NULL_;
set EconMean (keep = IntMean ShrMean);
by IntMean ;

o

C:\SAMD\CHAPTER2 \ASSIGNMENTS \Meanlgrp.CSV";
file PLOTFILE filevar=FN;
if ( FIRST.IntMean ) then
do;
put "IntMean" TAB "ShrMean" ;
end;
put IntMean TAB ShrMean ;
run;

/*

*/

Creating a new dataset EconNew with selected variables from ECON

data EconNew;

set Econ H

keep segment period brand intent share ;
where brand = 'salt’;

run;

proc sort ;

by Brand Segment Period ;

run;

/*

*/

Writing EconNew to a CSV file (easily opened by Excel)

data _NULL_;
set EconNew;
by BRAND Segment ;
TAB = ',' ;
FN = "C:\SAMD\CHAPTER2\ASSIGNMENTS\DatKgrp.CSV";
file PLOTFILE filevar=FN;
if ( FIRST.Brand ) then
do;

put "SEGMENT" TAB "BRAND" TAB "PERIOD" TAB "INTENT" TAB "SHARE" ;
end;
put SEGMENT TAB BRAND TAB PERIOD TAB Intent TAB Share ;
run;

*/

files (assign2.sas)




Bibliography 29

insheet using "/users/fblgatignon/Documents/WORK_STATA/SAMD/panel.csv", clear

merge m:m period brand using "/users/fblgatignon/Documents/WORK_STATA/SAMD/indup.dta”
keep if segment ==

drop if period ==0

regress awareness adshare

manova dolshare adshare relprice = firm

Fig. 2.13 Example of STATA file for reading and merging data sets INDUP and PANEL
(Mergelndup_Panel_Mac.do)
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Chapter 3
Reliability Alpha, Principal Component
Analysis, and Exploratory Factor Analysis

In this chapter, we discuss the issues involved in building measures or scales.
We focus the chapter on two types of analyses: (1) the measurement of reliability
with Cronbach’s alpha and (2) the verification of unidimensionality using factor
analysis. We concentrate on exploratory factor analysis (EFA) and we only intro-
duce the notion of confirmatory factor analysis. In the next chapter, we develop in
detail the confirmatory factor analytic model and examine the measures of conver-
gent and discriminant validity.

3.1 Notions of Measurement Theory

3.1.1 Definition of a Measure

If T is the true score of a construct and e represents the error associated with the
measurement, the measure X is expressed as

X=T+e 3.1)

This relationship can be represented graphically as in Fig. 3.1 where the
observed variable or measure is shown in a box and the unobserved true score or
construct is distinguished by a circle. The measurement error term is represented by
the letter e. The directions of the arrows represent the “causal” directionality of the
relationships. The heads of both arrows point towards the measure X because both
the true construct and the measurement error are determinants of what is being
observed.

H. Gatignon, Statistical Analysis of Management Data, 31
DOI 10.1007/978-1-4614-8594-0_3, © Springer Science+Business Media New York 2014
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Fig. 3.1 Representation of e

simple measurement model /
([

In addition, we assume that E[e] = 0 and Cov[e,T] = 0.

3.1.2 Parallel Measurements

Measures Y| and Y, are parallel if they meet the following characteristics:

Yi=T+e (3.2)
Yo=T+e (3.3)
Ele] = E[ea] =0 (34)
Vie)] = Vies] = 62 (3.5)
pler,er) =0 (3.6)

3.1.3 Reliability

The reliability of a measure is the squared correlation between the measure and the
true score: pZ(X,T), also noted as pxrz. It is also the ratio of the true score variance
to the measured variance:

P =L (3.7)
This can be demonstrated as follows:
o(X,T) = E[(X — E[X])(T — E[T])]
= E[XT — E[X]T + E[X]E[T] — XE[T]]
= E[XT] — E[X]E[T] + E[X]E[T] — E[X]E[T]
= E[XT] — E[X]E[T]
= E[(T 4 ¢)T] — E[T + ¢]E[T]
= E[T? + T] — (E[T])
)2

— (E[T]
E [(T - E[T])z] (3.8)

E[T?]
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Fig. 3.2 A graphical e
representation of measures

€
:
This last equality can be shown as follows:
(T — E[T))* = T + (E[T])* — 2TE[T] (3.9)
= T2 + (E[T])* — 2(E[T])* (3.10)
=712 — (B[T])* (3.11)

but E[(T — E[T])z] = O'TZ, which is the numerator of the reliability expression.
Let us now express the correlation between the true score and the measure:

2
_ _ _or (3.12)

2 5%
= Pxr == (3.13)

Therefore, the reliability can be expressed as the proportion of the observed
score variance that is the true score variance. The problem with the definition and
formulae above is that the variance of the true score is not known since the true
score is not observed. This explains the need to use multiple measures and to form
scales.

3.1.4 Composite Scales

A composite scale is built from using multiple items or components measuring the
constructs. This can be represented graphically as in Fig. 3.2. Note that by conven-
tion, circles represent unobserved constructs and squares identify observable
variables or measures.

The unweighted composite scale is the sum of the two items:

X=Y +Y, (3.14)
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3.1.4.1 Reliability of a Two-Component Scale

In this section, we show that the reliability of a composite scale has a lower bound,
which is the coefficient alpha. The two components of the scale are

Yi=T+e (3.15)
Yo =T)+ e (3.16)

The composite scale corresponds to a formative index:

X=Y14+Y,=T{+Tr+e +e

N N (3.17)
= T + e

Although, a priori, T| and T, appear as different true scores, we will see that they
must be positively correlated, and we will show the impact of that correlation on the
reliability of the scale. As a consequence, it is best to think of these scores as
corresponding to different items of a single construct.

Computation of Coefficient o

From Eq. (3.17), the composite scale is defined as

X=Y14+Y, (3.18)
T=T +T, (3.19)
o7 = 6*(T1) + 6*(T2) + 26(T, T>) (3.20)
However, because
[o(T1) = o(T2)] > 0 (3.21)

(equality if the test is parallel), then it follows that

6*(T1) + 6*(T) > 26(T), T>) (3.22)

This last inequality results from developing the left side of the inequality in
Eq. (3.21):

[0(T1) = o(T2)* = [o(T1)]* + [6(T2))* = 2[o(T))a(T>2)] (3.23)

Given a positive correlation between T and T, and p(T,,T5) < 1,

()'(T17 Tz) = p(Tl,TQ)O'(TI)O'(TQ) S O'(Tl)G(Tz) (324)
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It follows that

[o(T)]* + [6(T2)) = 2[6(T1)o(T2)] < [o(T1)]* + [o(T2)]" = 2[o(T1,T2)] (3.25)

The left side of the inequality above being positive, a fortiori, the right side is
also positive. This is the conclusion in Eq. (3.22).

It should be noted that this property is only interesting for cases where the items
(components) are positively correlated. Indeed, in the case of a negative correlation,
the inequality is dominated by the fact that the left side is greater or equal to zero.

Therefore, in cases of positively correlated items, bringing together Egs. (3.20)
and (3.22) leads to

o2 > 40(Ty, T>) (3.26)

Consequently, the reliability has a lower bound, which is given by

2
2 O 40<T1, Tz)
P =z (3.27)
But
U(Yl, Yz) = E[(T1 + 61)(T2 + 62)]
= E[T'T,]
= O'(Tl, Tz) (328)
Therefore,
d6(Y,Y
Prr > M (3.29)
Ox
Since
o} =E[(Y: + 2’| =E[¥3] +E[¥3] + EQY Y] (3.30)
=6*(Y1) + 6*(Y2) +20(Y1,Y>) (3.31)
it follows that
26(Y1,Y2) = 63 — 6*(Y1) — 6*(Y2) (3.32)
and, therefore,
2 _ 2 Y.) — 2 Y 2 Y 2 Y
P > 2|1 6(2)}:2[1——6( Yedato) (3.33)
Ox Oy
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This demonstrates that there is a lower bound to the reliability. If this lower
bound is high enough, it means that the actual reliability is even higher, and
therefore the scale is reliable. It is also clear from Eq. (3.33) that as the (positive)
correlation between the two items or components increases, the portion that is
subtracted from one decreases so that coefficient alpha increases. If the correlation
is zero, then coefficient alpha is zero.

3.1.4.2 Generalization to Composite Measurement with K Components

For a scale formed from K components or items,

x=S"v, (3.34)

M~

k=1

The reliability coefficient alpha is a generalized form of the above calculation:
K

K
> )
a= i

K—1 6)2(

(3.35)

o is a lower bound estimate of the reliability of the composite scale X that is of py;~.

3.2 Exploratory Factor Analysis

Factor analysis can be viewed as a method to discover or confirm the structure of a
covariance matrix. However, in the case of EFA, the analysis attempts to discover
the underlying unobserved factor structure. In the case of confirmatory factor
analysis, a measurement model is specified and tested against the observed covari-
ance matrix.

EFA is a special type of rotation. Consequently, rotations are first reviewed in
the general context of space geometry.

3.2.1 Axis Rotation

Let us consider Fig. 3.3, which shows a set of orthogonal axes X; and X,. The vector
Y, shows an angle 0 relative to X,. Similarly, the vector ¥, forms an angle 6 with X,.

The problem consists in expressing the transformation that occurs when going
from the coordinates in the original axes to the new axes. The derivation of
such a transformation can be explained with a more detailed representation as
in Fig. 3.4.
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Fig. 3.3 Axis rotation X5
Y, A
g
- X
Fig. 3.4 The geometry Xo
of axis rotation
1
X1
Let us define OP =r.
Applying the basic definitions of sines and cosines, we have
cos ¢p =1 (3.36)
and
singp =22 (3.37)
r
It follows that
Y =7r-cos¢ (3.38)
and
Yo =1 sing (3.39)
Furthermore,
X1
cos(p+6)=— (3.40)
r
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and
sin (¢ + 0) =)% (3.41)
which leads to
x;=r-cos(¢p+0) (3.42)
and
Xy =71 sin (¢ +0) (3.43)

Using the trigonometric rule that cos(a + ) = cos a - cos f — sin a - sin f,

x; =r-cos(¢p+80)=r(cos¢cosd — sin¢sin6)
=rcos¢cosfd — rsingsinf (3.44)

However, using Egs. (3.38) and (3.39), Eq. (3.44) becomes
X1 =y, cosf —y,sinf (3.45)
Similarly, using the rule on the sine of the sum of two angles, i.e.,
sin (a 4+ ) = sinacos B + cosasinf

equation (3.43) becomes

X, =r-sin(¢p+60) = r(singcosd + cos ¢ sin0)
=rsin¢cosd + rcos¢sinf (3.46)

which, again using Egs. (3.38) and (3.39), leads to

Xy =Yy,cos6 4y, sind (3.47)

Equations (3.45) and (3.47) form a system of two equations with two unknowns.
To solve that system, let us multiply the right and left sides of Eq. (3.45) by cos 8
and both sides of Eq. (3.47) by sin 6. This leads to the system of equations

_ 29 _ i
{xlcose—ylcos 6 — y,sinfcos 6 (3.48)

X2 8in@ =y, sin?@ — y, sinfcos #

Taking the sum of each side of the two equations, this gives

x1cos@ + xysin@ = y, (cos >0 + sin?0) (3.49)
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However, because cos 20 + sin 2q = 1, it follows that Eq. (3.49) is simply

y; =Xx1c080 + xpsinf (3.50)

We apply the same procedure to derive y,.
Let us multiply the right and left sides of Eq. (3.45) by sin € and both sides of
Eq. (3.47) by (—cos ). This leads to the system of equations

{ x1sinf =y, sinoﬁcosﬁ—yz sin292 3.51)
—Xxpcos ) = —y; sinfcosf — y, cos -0
Taking the sum of each side of the equations leads to
Xy 8inf — x,cosf = fyz( sin 26 + cos 29) (3.52)
This is more simply
Yy = —x1sinf + x, cos b (3.53)

Therefore, Egs. (3.50) and (3.53) provide the formulae for a rotation transfor-
mation of axes, which in matrix notation gives

Yi| _ | cos@ sinf | |x;
{yz] N [sinH cosﬁ] [xz} (3.54)
The weights represented in Eq. (3.54) correspond, therefore, to an orthogonal
rotation and the constraints of orthogonality are respected. Indeed,

(cos)* + (sin6) =1 (3.55)
(—sin@)* + (cos6)* = 1 (3.56)
(cosB)(—sinf) + (sinB)(cosh) =0 (3.57)

These constraints can be expressed in matrix notations as

cos@ sind cos —sind 1 0
[sinﬁ cosﬁ]{sine cos@}_{o 1] (3.58)

This corresponds to the constraint expressed more generally in Eq. (3.60).

Therefore, the rotation corresponds to a special linear transformation of x to y. If
X is a p-dimensional vector and V is a square matrix of size p by p (which represents
the linear weights applied to vector x), then y, the linear transformation of x, is also
with dimension p. However, orthogonality conditions must be met so that V cannot
be just any matrix. Therefore, the rotation can be expressed in the equations
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y =V x (3.59)
pxl P pxl
stVV =1 (3.60)

so that conditions for orthogonal rotation are met.

3.2.2 Variance-Maximizing Rotations (Eigenvalues
and Eigenvectors)

The advantage of an orthogonal rotation is that it enables the same points to be
represented in a space using different axes but without affecting the covariance
matrix, which remains unchanged. The idea is to find a specific rotation or linear
transformation that will maximize the variance of the linear transformations.

3.2.2.1 The Objective

The objective is, therefore, to find the linear transformation of a vector that
maximizes the variance of the transformed variable (of the linear combination),
i.e., to find the weights v/ such that if for one observation (assumed to be mean
centered) the transformation is

1x1 Ixp px1
and for all N observations

! ’ ’
y =v X
1xN Ixp pxN

then the variance of the transformed variable which is proportional to

Ixp pxp px1

Yy=) yi=vXXv=v S v
1x1 i=1
is maximized.

In other words, the problem is

Find V |Max.y'y (3.61)

p
! _ 2 _
StV = g V=1 (3.62)

J=1
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By replacing y with its expression as a linear combination of X, the problem
becomes equivalent to

Max v Sv (3.63)

!

s.t. vv=1 (3.64)

This can be resolved by maximizing the Lagrangian L:

Max L =vSv— /1(v’v - 1) (3.65)

Using the derivative rule 0 x’Ax/0 x = 2Ax

oL _ 2Sv —2av =0 (3.66)

ov

:(s-m) v=20 (3.67)
pxp  pXp) pxl pxl1

Solving these equations provides the eigenvalues and eigenvectors. First we
show how to derive the eigenvalues. Then, we will proceed with the calculation of
the eigenvectors.

Finding the Eigenvalues

We need to resolve the following system of equations for v and A:

(S—iv=0 (3.68)

A trivial solution is v = 0. Pre-multiplying by (S — AI)~ !

v=(S—-a)"'0=0 (3.69)

This also implies that, for a nontrivial solution to exist, (S — AI) must not have
an inverse because if it does, v = 0 and it gives a trivial solution.

Therefore, a condition for a nontrivial solution to Eq. (3.68) to exist is that the
determinant is zero because the operation shown in Eq. (3.69) cannot then be
performed:

IS— A1 =0 (3.70)

Equation (3.70) results in a polynomial in A of degree p which therefore has
p roots. Following is an example. Let us assume that the covariance matrix is

g_ [1681 .88
| 88 6.64
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Then

16.81 — 1 .88

S -1 = ‘ 88  6.64—1

. =* 234504 110.844 = 0 (3.71)

Resolving this second-degree equation gives the two roots:

{xl = 16.8856 (3.72)

A = 6.5644

They are the eigenvalues.
Finding the Eigenvectors
Knowing the eigenvalues, the eigenvectors can now be easily computed. For

each eigenvalue, there are p equations with p unknowns

(S—v=0 (3.73)

subject to normality, i.e., vV'v = 1.
The p unknowns are then straightforward to estimate.

3.2.2.2 Properties of Eigenvalues and Eigenvectors

Two properties of eigenvectors and eigenvalues are indispensable in order to
understand the implications of this rotation:

1. VV = Land therefore: V = V! (3.74)
2. VSV = A, where A, = diag{4;} (3.75)

It is important to understand the proof of this last property because it shows how
the covariance matrix can be reconstituted with the knowledge of eigenvectors and
eigenvalues.

From the first-order derivative of the Lagrangian (0 L/0 v = 2Sv — siv = 0),
and putting all eigenvectors together

S V=V A (3.76)

PXp pXp  pXp pxp
Pre-multiplying each side by V' gives

VSV=VVA=A (3.77)
I
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Furthermore, a third property is that the eigenvalue is the variance of the linearly
transformed variable y. From Eq. (3.73), pre-multiplying the left side by v/, one
obtains for eigenvalue i and eigenvector i

vi(S— A1)y, =0 (3.78)

or

V/,'SV,' = ﬂiV/,'V,' (379)

However, the left side of Eq. (3.79) is the variance of the transformed variable y;:

ViSvi=vXXvi=yy, =4 (3.80)

Therefore, the eigenvalue represents the variance of the new variable formed as
a linear combination of the original variables.
In addition, considering the equality A = V'SV in Eq. (3.77)

ir(A) = tr (V’SV) — 1 (V’Vs) _——) (3.81)

This means that the total variance in X as measured by the sum of the variances
of all the xs is equal to the sum of the eigenvalues.

It should be clear that if the variables x are normalized, the S matrix is the
correlation matrix R. The trace of R (i.e., the sum of the diagonal terms) is equal to
the number of variables p. It then follows from the equality in Eq. (3.81) that the
sum of the eigenvalues of a correlation matrix is equal to the number of variables p.

Furthermore, considering only the rth largest values of the eigenvalues, these
first r linear combinations explain a percentage of the total variance in X. This
percentage is

S
k=1
L% 100 (3.82)

Ak

>~

=1
3.2.3 Principal Component Analysis

The problem in principal component analysis (PCA) is just what has been described
in the prior section. It consists in finding the linear combination that maximizes the
variance of the linear combinations of a set of variables (the first linear combina-
tion, then the second given that it should be perpendicular to the first, etc.) and
reconstituting the covariance matrix S = VAV’ Therefore, the problem is identical
to finding the eigenvalues and eigenvectors of the covariance matrix.
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Fig. 3.5 A graphical

. X
representation of the !
principal component model

X2
X3
X4
Xs

3.2.3.1 PCA: A Data Reduction Method

In PCA, new variables y are constructed as exact linear combinations of the original
variables. This is represented graphically in Fig. 3.5, using the same convention for
the representation of observed and unobserved variables with boxes and circles,
respectively.

Furthermore, it is a data reduction method in the sense that the covariance matrix
can be approximated with a number of dimensions smaller than p, the number of
original variables. Indeed, from Eq. (3.77)

VV'SV = VA (3.83)
SV = VA (3.84)
SVV = VAV (3.85)
S = VAV (3.86)

Let V* include the eigenvectors corresponding to the r largest eigenvalues and
A* include the r largest eigenvalues:

S =V A"V (3.87)

PX[) pX?' rXr 7'><p
Therefore, it can be seen from Eq. (3.87) that replacing the small eigenvalues by
zero should not affect the ability to reconstitute the variance—covariance matrix

S (S” should approximate S). Consequently, r data points are needed for each
i instead of the original p variables.

3.2.3.2 Principal Component Loadings

The correlation between a single variable x; and the composite variable y;
corresponding to the k’s eigenvalue is called a loading. Let us consider the

normalized data matrix NX . The principal component variables Y are such that
xp
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Y =XV (3.88)

Nxp Nxp pxp

where the weights V are the eigenvectors such that
15 /
R = NX X = VAV (3.89)

The cross products of Y are given by

1 ’ 1 /~,~ ’ / ’
NYY:NVXXV:VRV:VVAVV:A (3.90)

Consequently, Y is normalized by post-multiplying Y by A2, Let us write the
normalized Ys as

Y = YA: (3.91)

The correlation between X and Y is

1= ~ 1 1o
Cor(X,Y)=— X Y =—X YA ?=—X XVA™ (3.92)

pxp N pxN Nxp N N
=RVA 2= VAV VA = VA (3.93)

Consequently, the loadings are given by

L = VA? (3.94)

pxp

3.2.3.3 PCA Versus Exploratory Factor Analysis

Two points can be made that distinguish PCA from factor analysis:

1. The new variables y are determined exactly by the p x variables. There is no
noise introduced and, therefore, no measurement error as discussed in Sect. 3.1
on measurement theory is represented. Factor analysis introduces this notion of
measurement error.

2. The new unobserved variables y are built by putting together the original
p variables. Therefore, y is constructed from the original x variables in an
index. This is represented graphically in Fig. 3.5. As opposed to this formative
index, in factor analysis the observed x variables are reflections of the various
unobserved variables or constructs.

This last distinction between reflective indicators and constitutive indices is
developed in the next section.
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Fig. 3.6 A graphical
representation of the
exploratory factor analytic
model

Fig. 3.7 A graphical

representation of multiple
measures with a

confirmatory factor e /
structure

3.2.4 Exploratory Factor Analysis

Now that we have explained the difference between PCA and factor analysis, we
need to distinguish between two different types of factor analysis: EFA and
confirmatory factor analysis. The basic difference lies in the fact that in confirma-
tory factor analysis, a structure is proposed in which the observed, measurable
variables reflect only specific unobserved constructs while exploratory factor anal-
ysis allows all measurable variables to reflect each factor (where reflection implies
a causal direction from the construct to the measure). These two types of factor
analysis can easily be distinguished by the differences in their graphical represen-
tation. We examine the differences analytically in this chapter and the next.

EFA is graphically represented in Fig. 3.6 in an example with two unobserved
constructs and five observed variables or measures.

The unobserved constructs are represented with circles while the measures are
represented by squares. The arrows on the left side coming into the measured
variable boxes indicate the random measurement errors.

Although the fundamental difference between the exploratory factor analytic
model and the confirmatory factor analytic model is presented in the next chapter, it
can be helpful to compare these models here. The basic distinction is that, in
confirmatory factor analysis, only some measures reflect specific, individual unob-
served constructs, as shown in Fig. 3.7.

EFA can be characterized by the fact that it is data driven, as opposed to
confirmatory analysis, which represents a strong theory of measurement. The
purpose of EFA is, in fact, to find or discover patterns that may help understand
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the nature of the unobserved variables. Consequently, it is a method that, based on
patterns of correlations among variables, inductively brings insights into the under-
lying factors. Considering Fig. 3.5, the weights assigned to each arrow linking each
factor to each observed variable indicate the extent to which each variable reflects
each factor. This can be shown analytically.

3.2.4.1 The Exploratory Factor Analysis Model

As discussed above, each observed variable is a function of all the factors underly-
ing the structure. These variables also contain a measurement error term. For
example, for two observed variables and two factors

X1 =AnF1 + Ak + e (3.95)
Xo = AoF + Anfr + & (3.96)

where

O'% = Vie]; o% = V]e,]

VI = V[F)] = 1 (3:97)

The variances are equal to 1 because such standardization does not impose
additional constraints while it allows identification. This in a sense simply
determines the units of measure of the unobserved construct.

Let us now consider the consequences that these equations impose on the
structure of the covariance matrix of the observed variables:

VIXi] =4}, + 43, + o7 (3.98)

Using the property that the factors are orthogonal (uncorrelated, with a variance
of 1),

COV[X] ,Xz] = E[(/l]]Fl + AoFH + 81)(/1211:1 + ApnFH + 82)] (3.99)
= 1111 B[F}] + A12AnE[F3] + Ele )] (3.100)
= Mida1 + A2 (3.101)

These equalities follow from the fact that
CovlF,F,] =0 (3.102)
Ele1e:] =0 (3.103)
VIF|] = V[F,] =1 (3.104)



48 3 Reliability Alpha, Principal Component Analysis, and Exploratory Factor Analysis

Therefore, the variances in the covariance matrix are composed of two
components—commonalities and unique components:

VIXi] =41, + A7, +o7 (3.105)
N——

2

(,']

In Eq. (3.105) ¢, represents the proportion of variance explained by the
common factors while 6, represents the unique variance.

The commonalities are our main concern because the error variance or the
unique variances do not contain information about the data structure. This
demonstrates that the noise or the measurement error needs to be removed, although
measurement error only affects the variances (the diagonal of the covariance
matrix) and not the covariances.

More generally, we can represent the data structure as

2=C+U (3.106)

where U = diag{u}.

C is the matrix of common variances and covariances, and U is the matrix of
unique variances. In EFA, the objective is to reduce the dimensionality of the
C matrix to understand better the underlying factors driving this structure pattern.

Four steps are involved in EFA: (1) estimating commonalities, (2) extracting the
initial factors, (3) determining the number of factors, and (4) rotating to a terminal
solution. We discuss each step in turn and then we derive the factor loadings and the
factor scores.

3.24.2 Estimating Commonalities

In this first step, we need to remove the unique component of the variance so that
the variance is explained only by the common factors. In a typical EFA, the
diagonal elements of C are specified as the squared multiple correlations of each
variable with the remainder of the variables in the set (i.e., the percentage of
explained variance obtained in regressing variable j on the (p — 1) other variables).
U (a diagonal matrix) contains the residual variances from these regressions.

3.2.4.3 Extracting Initial Factors

The initial factors are obtained by performing a PCA on C:

C=V A V (3.107)

pxp pXp PXp pXxp
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Fig. 3.8 The elbow rule A

3.2.4.4 Determining the Number of Factors

The issue is to find the number of factors r < p that are necessary to represent
the covariance structure. Following from the properties of eigenvalues and
eigenvectors:

C =VAV (3.108)

Let V* include the eigenvectors corresponding to the r largest eigenvalues and
A* include the r largest eigenvalues:

C'=V'" A" V' (3.109)
pPXp pXr rxr rxp
The problem is to find r in order to account for most of the covariance matrix C.
Two rules are typically used to decide how many factors to retain.

1. A > 1 (Kaiser’s rule): Eliminate values less than 1. The rationale for this rule is
that each factor should account for at least the variance of a single variable.
However, this value is somewhat arbitrary.

2. The elbow rule based on the Scree plot: The Scree plot consists in plotting the
eigenvalues in the order of their decreasing size. The elbow rule corresponds to
finding the point on the Scree plot where the plotted line makes an elbow, as
shown in Fig. 3.8. The elbow in the curve is due to the sharp decrease in the
eigenvalues followed by smaller differences of the successive eigenvalues. Note
that it may not always be easy to identify the exact point of the elbow.

None of these methods should be used blindly, even though the rule of the
eigenvalue greater than 1 is the default option on most statistical analysis software
packages, including SAS. Indeed, the interpretation of the factors is an important
criterion for making sense out of the covariance structure.

3.2.4.5 Rotation to Terminal Solution

The reason why we perform a rotation at this stage, using only the retained factors,
is to find factors that are more easily interpretable.
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The most commonly used method is the VARIMAX rotation method. With this
method, the rotation searches to give the maximum variance of the squared
loadings for each factor (in order to avoid problems due to negative loadings).
This results in obtaining extreme loadings (very high or very low).

3.2.4.6 Factor Loadings

If we consider the standardized correlation matrix of the x variables, which we write
as R, Eq. (3.106) becomes

R=C+U (3.110)

The principal decomposition of C leads to

C=VAV (3.111)

However,

where
SO
L =VA® (3.112)

L is the matrix of factor loadings, similar to the formulation developed for PCA in
Eq. (3.94), with the difference that it corresponded then to the principal decompo-
sition of the common variance matrix rather than the full correlation matrix. The
factor loadings are the correlations between the x variables and the factors.

3.2.4.7 Factor Scores

The factor scores provide the coordinates of the N observations on the (reduced
number of) factors. The values of the x variables are combined in a linear fashion to
form the factor scores Y:
Y =X B (3.113)
Nxp Nxp pxp
where B is a matrix of the weights to apply. The problem consists in finding the
weights that need to be applied. If we pre-multiply each side of Eq. (3.113) by ﬁ X,
we obtain



3.3 Application Examples 51
155 15'o
XY =-X XB=RB (3.114)
N N

1 o/~
Noticing that ]VX Y =L from Egs. (3.92), (3.93), and (3.94), it follows that

L =RB (3.115)
Consequently,
B=R L (3.116)
Therefore,
Y =X R'L (3.117)

Nxp NXp pXp pXp

3.3 Application Examples

Figure 3.9 illustrates how to compute the means and the correlation matrix for a list
of variables in SAS. The output is shown in Fig. 3.10. A factor analysis on the same
list of variables is requested in Fig. 3.11 using the SAS procedure “Factor.” The
results are shown in Fig. 3.12. This factor analysis of the perception of innovations
on nine characteristics is summarized by two factors with eigenvalues greater than
1 (the default option in SAS); these two factors explain 89.69% of the variance.
The rotated factor pattern shows that Factor 1 is reflected by variables IT1, IT3, IT4,
IT6, and IT7, while Factor 2 is reflected by variables IT5, IT8, and IT9. Variable
IT2 does not discriminate well between the two factors, as it loads simultaneously

I examp3-1.sas
computes means and correlation matrix
*f
option 1ls=120;
data datal;
infile 'e:\SAMD\Chapter3\Examples\product.dat';
input prod rad itl it2 it3 itd it5 it6 it7 itB it9;
if itl=9 then itl=.;
if it2=9 then it2=.;
if it3=9% then it3=.;
if it4=9 then itd=.;
if it5=9 then it5=.;
if it6=% then ité=.;
if it7=9% then it7=.;
if it8=9 then it8=.;
if it9=9 then it9=.;

proc means;

var itl it2 it3 itd it5 it6 it7 it8 it9;
run;
pProc corr;

var itl it2 it3 itd it5 ité it7 itB it9;
run;

Fig. 3.9 SAS input file example for computing means and correlation matrix (examp3-1.sas)
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/* examp3-2.sas
Factor analysis
*f
option 1s5=120;
data datal;
infile 'ec:\SAMD\Chapter3\Examples\product.dat';
input prod rad itl it2 it3 it4d it5 it6 it7 it8 it9;
if itl=9 then itl=.;
if it2=9 then it2=.;
if it3=9 then it3=.;
if it4=9 then itd=.;
if it5=9 then it5=.;
if it6=9 then ité=.;
if it7=9 then it7=.;
if it8=9 then it8=.;
if it9=9 then it9=.;

proc factor rotate=varimax:;
var itl it2 it3 itd it5 ité it7 it8 it9;
run;

Fig. 3.11 SAS input file example for factor analysis (examp3-2.sas)

on both, although it loads slightly more on Factor 2. The reliability coefficients of
the scales (corresponding to the two factors) are then calculated in Fig. 3.13 when
the variables are first standardized. Those variables with negative loadings are
reversed so that each component has the same direction (positive correlations).
The results are listed in Fig. 3.14, which shows the reliability coefficient alpha for
each scale and the improvements that could be obtained by deleting any single
variable one at a time. Finally, Fig. 3.15 shows how to create a scale composed of
these standardized variables. The new scales “tech” and “mkt” involve two
SAS functions: (1) the “sum(varl, var2, etc...)” function takes the sum of each
variable in the list of variables in parentheses following the function (omitting
the missing variables) and (2) the “n(varl, var2, etc...)” function returns the
number of non-missing items in the variable list. As an example, also in
Fig. 3.15, these scales are then used to perform a single analysis of variance,
using the SAS procedure “proc ANOVA.” The corresponding output in Fig. 3.16
shows, for example, the means of the two scales (labeled Tech and MKT) for two
levels of the variable RAD.

Using STATA, the input file corresponding to the same example is given in
Fig. 3.17.

The “pca” procedure refers to PCA, as described earlier in this chapter. The list
of variables to be analyzed simply follows the “pca” command. The commands are
similar for EFA where “pca” is replaced with “factor.” The option “mineigen(1)”
indicates that only eigenvalues with a minimum of 1 will be retained. Note that the
“pause” command is intended to give temporary control back to the researcher and
thus provide the opportunity to save the graphs. To continue the execution of the
do-file, just type “end” or “q” in the command zone. Alternatively, the graphs can
be saved as files (STATA .gph files or other formats, such as .pdf files), using the
commands shown in Fig. 3.18.

The command “graph save” saves the graph (with a .gph file extension) so that it
can be read later using STATA. The command “graph export” is used for other
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/* examp3-3.sas
Reliability Coefficient Alpha
%/
option 1s=120;
data datal;
infile 'c:\SAMD\Chapter3\Examples\product.dat'
input prod rad itl it2 it3 itd it5 it6 it7 it8 it9;
if itl1=9 then itl=.;
if it2=9 then it2=,;
if it3=9 then it3=.;
if it4=9 then itd=.;
if it5=9 then it5=.;
if ité=9 then ité=.;
if it7=9 then it7=.;
if itB=9 then itB=.;
if it9=9 then it9=,;
itlr=7-itl;
it3r=T7-it3;

proc means;
var itlr it2 it3r itd it5 ité it7 it8 it9;
output out=results mean=mlr m2 m3r md m5 mé m7 mB m%
std=slr s2 s3r s4 s5 =56 s7 s8 s9;
run;

data data2;
set datal;
if n =1 then set results;

itlrs=(itlr-mlr)/slr;
it2s=(it2-m2)/s2;
it3rs=(it3r-m3r) /s3r;
itds=(itd-md)/s4;
itS5s=(it5-m5) /s5;
it6s=(it6-m6) /s6;
itTs=(1t7-m7) /s7;
it8s=(itB-mB) /=8;
it9s=(it9-m9) /s9;
run;
proc corr alpha;

var itlrs it3rs itds ités it7s;

run;
proc corr alpha;

var it2s itS5s it8s itSs;
run;

Fig. 3.13 SAS input file for reliability coefficient alpha (examp3-3.sas)

formats such as .pdf. The graph can then be imported into a document or a
presentation. The “replace” option prevents an error message if the file already
exists. The corresponding STATA output is shown in Fig. 3.19.

Figure 3.20 shows the Scree plot of eigenvalues that can help identify the
number of relevant factors.

Finally, Fig. 3.21 can be used for the interpretation of the factors. As shown in
the figure, the vector from the origin to the point representing a variable reflects the
correlations between the variable and each of the factors. Consequently, the closer
the vector is to a factor axis, the higher the correlation is between the variable and
that factor.

Figure 3.17 also gives the commands to calculate the reliability coefficient alpha
and to create unweighted composite scales. The simple command “alpha itl it3 it4
it6 it7, generate(Tech) reverse(itl it3) std” gives the instruction to compute the
reliability coefficient alpha for the scale formed by the items that follow “alpha.”
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/*  examp3-4.sas
Scales
r/
option 1ls=120;
data datal;
infile 'c:\SAMD\Chapter3\Examples'product.dat';
input prod rad itl it2 it3 itd it5 it6 it7 itB it9;
if itl=% then itl=.;
if it2=9% then it2=,;
if it3=9 then it3=.;
if it4=9% then itd=.;
if it5=9 then it5=.;
if it6=5 then it6=.;
if it7=9 then it7=.;
if itB=9 then itB8=.;
if it9=9 then it9=. ;
itle=T7-itl;
it3r=T-it3;
proc means;
var itlr it2 it3r itd it5 it6 it7 it8 it9;
output outsresults mean=mlr mZ m3r md4d m5 mé m7 m8 m9
std=slr s2 s3r s4 35 s6 s7 38 s89;
run;
data data2;
set datal;
if n =1 then set results;

itlrs=(itlr-mlr)/slr;
it2sm(it2-m2) /82;
it3rs=(it3r-m3r)/s3r;
itds=(itd-md) /sd;
itSg=(it5-m5) /35;
it6s=(it6-m6) /s6;
it7e=(it7-m7}/37;
itBs=(it8-m8)/s8;
it9s=(it9-m9) /s9;

tech=sum(itlrs, it3rs,itds, it6s,it7s) /nlitlcs, it3rs, itds, it6s, it7s);
mkt=sum(it2s,it5s,itBs,it9s) /n(it2s,1t5s5,it8s,1t9s);
run;

proc anova;
class rad;
model tech mkt = rad;
means rad;

ran;

Fig. 3.15 SAS input file example for scale construction (examp3-4.sas)

The scale “Tech” is then generated from the list of variables included in the list
following the “alpha” command. Note that there is no need to generate separate
variables that are reverse coded, as it is sufficient to list these items in parentheses
after the word “reverse.” The command “std” indicates that the standardized
variables will be used as components of the unweighted composite scale.

Principal component scores and factor scores can be computed easily in STATA.
Figure 3.22 lists the input to create new variables in the database containing the
scores of the first four factors (as an example). The new variable names are scorel,
score2, score3, and score4. It is then easy to check that the correlation matrix of
these variables is the identity matrix.

Similarly for factor analysis, the factor scores corresponding to the two factors
obtained after rotation are obtained by the commands listed in Fig. 3.23.
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infile prod rad itl-it9 using
“fusers/fblgatignon/Documents/WORK_STATA/SAMD/Chapter3 PCA-EFA/PRODUCT.DAT", clear
replace itl=. if itl==

replace it2=. if it2==9

replace it3=, if it3==9

replace itd=. if itd==

replace it5=. if it5==9

replace ité=. if it6==9

replace it7=. if it7==9

replace it8=. if it8==9

replace it9=. if it9==9

mean itl-it9

pweorr itl-it9

pause on

pca itl- it9

factor itl-it9, mineigen(l)

rotate

screeplot

pause screeplot

loadingplot

pause loadplot

scoreplot

alpha itl it3 itd it6 it7, generate(Tech) reverse(itl it3) std
alpha it2 it5 it8 it9, generate(Mkt) std
oneway Tech rad

oneway Mkt rad

mean Tech, over(rad)

mean Mkt, over (rad)

Fig. 3.17 STATA input file for principal component analysis, exploratory factor analysis, reli-
ability coefficient alpha, scale construction, and analysis of variance example (Examp3-1.do)

screeplot

graph save "/Users/gatignon/Documents/WORK_STATA/SAMD/Chapter3_PCA-EFA/screeplot”,
replace

graph export "/Users/gatignon/Documents/WORK_STATA/SAMD/Chapter3_PCA-
EFA/screeplot.pdf"”, replace

loadingplot

graph save "/Users/gatignon/Documents/WORK_STATA/SAMD/Chapter3_PCA-EFA/loadingplot”,
replace

graph export "/Users/gatignon/Documents/WORK_STATA/SAMD/Chapter3_PCA-
EFA/loadingplot.pdf", replace

scoreplot

graph save "/Users/gatignon/Documents/WORK_STATA/SAMD/Chapter3_PCA-EFA/scoregplot”,
replace

graph export "/Users/gatignon/Documents/WORK_STATA/SAMD/Chapter3_PCA-
EFA/scoreplot.pdf", replace

Fig. 3.18 STATA commands for saving graphs (Examp3-1B.do)

3.3.1 Assignment

The assignment consists in developing a composite scale, demonstrating its unidi-
mensionality and computing its reliability. For that purpose, survey data are
provided in the file SURVEY.ASC (Appendix C, Chap. 14). These data concern
items about psychographic variables, which contain opinion, attitude, and lifestyle
characteristics of individuals. A detailed description of the data is given in Appen-
dix C. This type of data is useful for advertising and segmentation purposes.

In order to develop a scale, it may be useful to summarize the data using EFA on
a wide range of variables. It is important, however, to make sure that only variables
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possessing the properties necessary for the analysis are included. For example,
because factor analysis is based on correlations, categorical or ordinal scale
variables should be excluded from the analysis, since correlations are not permissi-
ble statistics with such scales. You need to interpret the factors, and you can
concentrate on a subset of these factors to derive a single scale or multiple
composite scales.

An alternative would be to reflect on the questions that seem interrelated and use
them to develop a scale. This is in essence a mental factor analysis.

You need to demonstrate that each of the scales developed is unidimensional
(through factor analysis) and that its reliability is sufficiently high.

Figure 3.24 lists the SAS file that can be used to read the data.

The commands to read the survey data with STATA are shown in Fig. 3.25. This
defines how the data in the file “survey.asc” are formatted.

The data are then imported into STATA by executing the file “assign3_Mac.do”
shown in Fig. 3.26.

. infile prod rad itl-it9 using "C:\DATA\WORK_STATA\SAMD\Chapter3_PCA-
EFA\PRODUCT.DAT", clear
(13 observations read)

. replace itl=. if itl==9
(0 real changes made)

. replace it2=. if it2==
(1 real change made, 1 to missing)

. replace it3=. if it3==
(0 real changes made)

. replace it4=. if it4==
(1 real change made, 1 to missing)

. replace it5=. if it5==9
(2 real changes made, 2 to missing)

. replace it6=. if it6==9
(1 real change made, 1 to missing)

. replace it7=. if it7==
(0 real changes made)

. replace it8=., if it8==
(0 real changes made)

. replace it9=. if it9==
(0 real changes made)

. mean itl-it9

Mean estimation Number of obs = 9
| Mean  Std. Err. [95% Conf. Interval]
+
itl | 3 .5773503 1.668628 4.331372
it2 | 4.777778 .3643021 3.937696 5.61786

Fig. 3.19 STATA output file for principal component analysis, exploratory factor analysis,
reliability coefficient alpha, scale construction, and analysis of variance example (Examp3-1.log)
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it3 | 3 .5773503 1.668628 4.331372

it4 | 3.222222  .7412036 1.513004 4.931441

it5 | 3.111111  .5638273 1.810923 4.411299

it6 | 3.666667  .5773503 2.335295 4.998039

it7 | 3.444444  .6260793 2.000703 4.888186

it8 |  4.222222  .4937886 3.083544 5.360901

it9 |  4.666667  .5527708 3.391975 5.941358

. pwcorr itl-it9

| itl it2 it3 ita it5 it6 it7

itl | 1.0000

it2 | -0.8102 1.0000

it3 | 0.9884 -0.7827  1.0000

it4 | -0.8010 0.8085 -0.7934 1.0000

it5 | -0.6679 0.7328 -0.6679 0.5107 1.0000

it6 | -0.8553 0.6367 -0.8539 0.8978 0.3569 1.0000

it7 | -0.9069 0.7737 -0.9070 0.8778 0.6348 0.8846 1.0000

it8 | -0.6752 0.8640 -0.6761 0.5946 0.7479 0.4672 0.5995

it9 | -0.4111 0.5761 -0.4106 0.5023 0.4473 0.3188 0.2583
| it8 it9

its | 1.0000

it9 | 0.7277  1.0000

. pca itl- it9

Principal components/correlation Number of obs = 9
Number of comp. = 8
Trace = 9
Rotation: (unrotated = principal) Rho = 1.0000
Component | Eigenvalue Difference Proportion Cumulative
+
compl | 6.3837 4.69493 0.7093 0.7093
comp2 | 1.68877 1.22104 0.1876 0.8969
Comp3 | .467731 .274166 0.0520 0.9489
Ccomp4 | .193565 .0489504 0.0215 0.9704
comp5 | .144614 .0653901 0.0161 0.9865
Comp6 | .0792242 .0446557 0.0088 0.9953
Comp7 | .0345684 .0267408 0.0038 0.9991
comp8 | .00782764 .00782764 0.0009 1.0000
comp9 | o . 0.0000 1.0000
Principal components (eigenvectors)
Variable | Compl Comp2 Comp3 Comp4 Comp5 Comp6
Comp7 Comp8
itl | -0.3678 0.2021 0.2732 0.0454 0.4702 0.0473 -
0.0116 0.1541
it2 | 0.3722 0.1811 0.1012 -0.3829 0.1511 -0.2089 -
0.7673 0.1291
it3 | -0.3678 0.2021 0.2732 0.0454 0.4702 0.0473 -
0.0116 0.1541
its | 0.3550 -0.1698 0.4729 0.3704 0.2614 -0.1856
0.0077 -0.6177
it5 | 0.3001 0.3279 -0.6193 0.4249 0.4001 0.2658 -

0.0724 -0.0484

Fig. 3.19 (continued)
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it6 | 0.3143 -0.4116 0.3062 0.1510 0.0214 0.6497

0.0798 0.4316

it7 | 0.3589 -0.2624 -0.1130 -0.1757 0.4024 -0.4708

0.4604 0.4040

it8 | 0.3015 0.4411 0.1706 -0.5520 0.0498 0.3892
0.4119 -0.2391
it9 | 0.2375 0.5625 0.3125 0.4161 -0.3765 -0.2270
0.1333 0.3812
Variable | Unexplained
+
itl | o
it2 | (]
it3 | 0
its | (4]
it5 | 0
ité | 0
it7 | o
its | 0
it9 | 0

. factor itl-it9, mineigen(1l)

(obs=9)

(collinear variables specified)

Factor analysis/correlation Number of obs = 9
Method: principal factors Retained factors = 2
Rotation: (unrotated) Number of params = 17

Factor | Eigenvalue Difference Proportion Cumulative
Factorl | 6.33841 4.70974 0.7436 0.7436
Factor2 | 1.62867 1.24160 0.1911 0.9346
Factor3 | 0.38707 0.25467 0.0454 0.9800
Factord | 0.13240 0.05566 0.0155 0.9956
Factor5 | 0.07674 0.07094 0.0090 1.0046
Factor6 | 0.00580 0.00580 0.0007 1.0053
Factor7 | -0.00000 0.01705 -0.0000 1.0053
Factor8 | -0.01705 0.01069 -0.0020 1.0033
Factor9 | -0.02773 . -0.0033 1.0000

LR test: independent vs. saturated: chi2(36) = . Prob>chi2 = .
Factor loadings (pattern matrix) and unique variances
Variable | Factorl Factor2 | Uniqueness
+ +

itl | -0.9333 0.2576 | 0.0627

it2 | 0.9358 0.2460 | 0.0637

it3 | -0.9333 0.2576 | 0.0627

ita | 0.8984  -0.2065 | 0.1503

it5 | 0.7318 0.3805 | 0.3197

ité | 0.7946  -0.5209 | 0.0973

it7 | 0.9064 -0.3299 | 0.0696

it8 | 0.7551 0.5735 | 0.1009

it9 | 0.5958 0.7341 | 0.1061

. rotate

Factor analysis/correlation Number of obs = 9
Method: principal factors Retained factors = 2

Fig. 3.19 (continued)
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Rotation: orthogonal varimax (Kaiser off) Number of params = 17
Factor | Variance Difference Proportion Cumulative
Factorl | 4.78896 1.61085 0.5618 0.5618
Factor2 | 3.17812 . 0.3728 0.9346

LR test: independent vs. saturated: chi2(36) = . Prob>chi2 = .

Rotated factor loadings (pattern matrix) and unique variances

Vvariable | Factorl Factor2 | Uniqueness
+ +

itl | -0.9122  -0.3243 | 0.0627
it2 | 0.6254 0.7383 | 0.0637
it3 | -0.9122 -0.3243 | 0.0627
it4 | 0.8543 0.3462 | 0.1503
it5 |  0.3811 0.7314 | 0.3197
it6é |  0.9497 0.0291 | 0.0973
it7 | 0.9317 0.2497 | 0.0696
it8 |  0.2896 0.9029 | 0.1009
it9 | 0.0669 0.9431 | 0.1061

Factor rotation matrix

Factorl Factor2

+

Factorl 0.8192 0.5736
Factor2 -0.5736 0.8192
. screeplot
. loadingplot
. scoreplot

alpha itl it3 it4 it6 it7, generate(Tech) reverse(itl it3) std

Test scale = mean(standardized items)

Reversed items: itl it3

Average interitem correlation: 0.8780
Number of items in the scale: 5
Scale reliability coefficient: 0.9730

. alpha it2 it5 it8 it9, generate(Mkt) std

Test scale = mean(standardized items)

Average interitem correlation: 0.6843
Number of items in the scale: 4
Scale reliability coefficient: 0.8966

Fig. 3.19 (continued)
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. oneway Tech rad

Analysis of Variance

. oneway Mkt rad

Analysis of Variance

Source ss daf MS F Prob > F
Between groups 4.20121221 1 4.20121221 7.21 0.0212
Within groups 6.40830405 11 .582573096

Total 10.6095163 12 .884126356
Bartlett's test for equal variances: chi2(1l) = 0.0577 Prob>chi2 = 0.810

Bartlett's test for equal variances: chi2(1l) =

. mean Tech, over(rad)

Mean estimation Number of obs = 13
0: rad = 0
1: rad = 1
over | Mean Std. Err. [95% Conf. Interval]
+
Tech |
0| -.5951888 .2929506 -1.233473 .0430958
1 .5451512 .3021235 -.1131194 1.203422
. mean Mkt, over (rad)
Mean estimation Number of obs = 13
0: rad = 0
1: rad = 1
over | Mean std. Err. [95% Conf. Interval]
+
Mkt |
0 | -.6829459 .3283951 -1.398457 .0325655
1 | .5840281 .1312626 .2980315 .8700247

Source ss daf MS F Prob > F
Between groups 5.18610509 1 5.18610509 14.41 0.0030
Within groups 3.95895361 11 .359904874

Total 9.1450587 12 .762088225

3.3214 Prob>chi2 = 0.068

Fig. 3.19 (continued)
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Scree plot of eigenvalues after factor
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Fig. 3.21 STATA plot of factor loadings

pca itl- it9
predict scorel-score4

Fig. 3.22 STATA commands to create variables for component scores
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factor itl-it9, mineigen(1)
rotate
predict factorl factor2

Fig. 3.23 STATA commands to create variables for factor scores

/* Assign3.sas */
filename survey 'c:\SAMD\Chapter3\Assignments\survey.asc';
data new;
infile survey firstobs=19;
input (Age Marital Income Educatn HHSize Occuptn Location
TryHair LatStyle DrssSmrt BlndsFun LookDif
LookAttr GrocShp LikeBkng ClthFrsh WashHnds Sportng LikeClrs
FeelAttr TooMchSx Social LikeMaid ServDnrs SaveRcps LikeKtch) (3.)
#2 (LoveEat SpirtVal Mother ClascMsc Children Applianc ClsFamly
LovFamly TalkChld Exercise LikeSelf CareSkin MedChckp
EvngHome TripWrld HomeBody LondnPrs Comfort Ballet Parties
WmnNtSmk BrghtFun Seasonng ColorTV SlppyPpl Smoke) (3.)
#3 (Gasoline Headache Whiskey Bourbon FastFood Restrnts OutFrDnr
OutFrLnc RentVide Catsup KnowSont PercvDif BrndLylt
CatgMotv BrndMotv OwnSonit NecssSon OthrInfl DecsnTim
RdWomen RdHomSrv RdFashn RdMenMag RdBusMag RdNewsMg
RdG1Mag) (3.)
#4 (RdYouthM RdNwsppr WtchDay WtchEve WtchPrm
WTchLate WtchWknd WtchCsby WtchFmTs WtchChrs WtchMoon
WtchBoss WtchGrwP WtchMiaV WtchDns WtchGold WtchBowl) (3.);
proc freq;
tables OwnSonit* (Age Marital Income Educatn HHSize Occuptn) ;
run;

Fig. 3.24 SAS file to read SURVEY.ASC data file (assign3.sas)

infile dictionary using "/users/fblgatignon/Documents/WORK_STATA/SAMD/survey.asc" {

_first(19)

_lines(4)

_line(l)
Age %3f
Marital $3f
Income 33f
Educatn 3%3f
HHSize %3f
Occuptn %3f
Location %3f
TryHair %$3f
LatStyle %3f
DrssSmrt 3%3f
BlndsFun 3%3f
LookDif 33f
LookAttr 3%3f
GrocShp %3f
LikeBkng %3f
ClthFrsh 3%3f
WashHnds %3f
Sportng %3f
LikeClrs 3%3f
FeelAttr 3%3f
TooMchSx %3f
Social %3f
LikeMaid %3f

Fig. 3.25 STATA dictionary file to read SURVEY.ASC data file (assign3_Mac.dct)
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ServDnrs $3f
SaveRcps $%3f
LikeKtch %3f
_line(2)
LoveEat %3f
Spirtval $3f
Mother %3f
ClascMsc 3%3f
Children %3f
Applianc %3f
ClsFamly %3f
LovFamly %3f
TalkChld 3%3f
Exercise %3f
LikeSelf %3f
CareSkin %3f
MedChckp 3%3f
EvngHome 33f
TripWwrld 3%3f
HomeBody %3f
LondnPrs 3%3f
Comfort %3f
Ballet 3%3f
Parties 3%3f
WmnNtSmk 33f
BrghtFun 3%3f
Seasonng $3f
ColorTV 3%3f
SlppyPpl $3f
Smoke %3f
_line(3)
Gasoline %3f
Headache 3%3f
Whiskey %3f
Bourbon %3f
FastFood 3%3f
Restrnts %3f
OutFrDnr 3%3f
OutFrLnc %3f
RentVide %3f
Catsup %3f
KnowSont %3f
PercvDif 33f
BrndLylt %3f
CatgMotv %3f
BrndMotv 3%3f
OownSonit $%3f
NecssSon $%3f
OthrInfl %3f
DecsnTim %3f
RdWomen 3%3f
RdHomSrv %3f
RdFashn 3%3f
RdMenMag %3f
RdBusMag 3%3f
RdNewsMg 3%3f
RdGlMag %3f
_line(4)
RdYouthM $%$3f
RANwsppr %3f
Wtchbay %3f
WtchEve 33f
WtchPrm 33f
WIchLate %3f
WtchWknd $3f
WtchCsby 33f
WtchFmTs $3f
WtchChrs 33f

Fig. 3.25 (continued)
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WtchMoon $%3f
WtchBoss %3f
WtchGrwP $3f
WtchMiaVv %$3f
WtchDns %3f
WtchGold $3f£
WtchBowl %3f
}

Fig. 3.25 (continued)

infile using "/users/fblgatignon/Documents/WORK_STATA/SAMD/Chapter3 PCA-EFA

/Assign3_Mac"

Fig. 3.26 STATA do-file to read the file survey.asc
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Chapter 4
Confirmatory Factor Analysis

As noted in Chap. 3, a measurement model of the type illustrated in Fig. 4.1 is
assumed in confirmatory factor analysis (CFA).
The objective of a confirmatory analysis is to test if the data fit the measurement

model.

4.1 Confirmatory Factor Analysis: A Strong
Measurement Model

The graphical representation of the model shown in Fig. 4.1 can be expressed by the
system of equations

X =AuFi +e
Xo =MF1+e
X3 = A31F1 +¢e3 4.1

X4 =ApFr + ey
X5 = As2F> +es5

Let
X A A £
X2 F A A2 &
X, A1 A €4
X5 As1 As2 €s

Equation (4.1) can be expressed in matrix notation as

x =A F +e 4.2)
5x1 5%2 2x1  5x1
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Fig. 4.1 A graphical
representation of multiple :
measures with a
confirmatory factor
structure
X

with
E [e=0 (4.3)

E [e ¢]=D =diag{5;} (4.4)

E{FF} —® (4.5)

If the factors are assumed to be independent,

E[FF] —1 (4.6)

While we were referring to the specific model with five indicators in the
expressions above, the matrix notation is general and can be used for representing
a measurement model with ¢ indicators and a factor matrix containing # unobserved

factors:
x =A F+e 4.7)
gx1 gxn nx1  gxl1
The theoretical covariance matrix of x is given by
E [xx} ~E {(AF +e)(AF + e)/} (4.8)
—E {AFF'A' + ee/}
— AE [FF] A+E [eel} (4.9)

T =A®A +D (4.10)
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Therefore, Eq. (4.10) expresses how the covariance matrix is structured, given
the measurement model specification in Eq. (4.7). The structure is simplified in case
of the independence of the factors:

T=AA +D 4.11)

To facilitate comparison, especially between exploratory factor analysis (EFA)
and CFA, the notation used above closely resembles the notation used in the
previous chapter. However, we now introduce the notation found in LISREL
because the software refers to specific variable names. In particular, Eq. (4.12)
uses & for the vector of factors and é for the vector of measurement errors. Thus the
measurement model is expressed as

X —A, E+6 (4.12)
gx1 gxn nx1  qx1
with
E{gg’} - (4.13)
and
E{&S’} — 0, (4.14)

The methodology for estimating these parameters is presented in the next
section.

4.2 Estimation

If the observed covariance matrix estimated from the sample is S, we need to find
the values of the lambdas (the elements of A) and of the deltas (the elements of D)
that will reproduce a covariance matrix as similar as possible to the observed one.
Maximum likelihood estimation is used to minimize S — X. The estimation
consists in finding the parameters of the model that will replicate as closely as
possible the observed covariance matrix in Eq. (4.10). For the maximum likelihood
estimation, the comparison of the matrices S and X is made through the following
expression:

F =Ln|Z| +tr(ST™") — Ln|S| — (¢) (4.15)

This expression follows directly from the maximization of the likelihood func-
tion. Indeed, based on the multivariate normal distribution of the data matrix NXd,
xq

which has been mean centered, the sampling distribution is
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N -1 )
fX) =] @n) |2|‘%exp{— %x? zlx;’} (4.16)

i=1
which is also the likelihood
12,

1 !
¢ = ¢(parameters of X|X) = H ’exp{— Exf{ ):_lel} 4.17)

i=1

=
|
I

or

N q 1
¢=> " |—>Ln(2r) ——Ln|2|——xd2
i=1 2

N

= _%L (27) ——Ln|2| - Z( )

N

1 dy—1d
gLn(27) + Ln|X| +N;<Xi xS ) (4.18)

N
2

1 /
gLn(27) 4 Ln|X| + i (Xd E’IXd)

1 /
qLn(2x) + Ln[Z| + 1 (xd xdz*)

L— _%’ [qLn(27) + Ln|Z| + or(SE1)] (4.19)

Therefore, given that the constant terms do not impact the function to maximize,
the maximization of the likelihood function corresponds to minimizing the expres-
sion in Eq. (4.15). Note that the last terms of Eq. (4.15), i.e., —LnlISI — (g), are
constant terms.

The expression F' is minimized by searching over the values for each of the
parameters. If the observed variables x are distributed as a multivariate normal
distribution, the parameter estimates that minimize Eq. (4.15) are the maximum
likelihood estimates.

There are Y2(g)(g + 1) distinct elements that constitute the data; this comes from
half of the symmetric matrix to which one needs to add back half of the diagonal in
order to count the variances of the variables themselves (i.e., [(¢)x(¢)/2 +4]).
Consequently, the number of degrees of freedom corresponds to the number of
distinct data points as defined above minus the number of parameters in the model
to estimate.



4.2 Estimation 81

In the example shown in Fig. 4.1, ten parameters must be estimated:
5 ﬂij/S +5 8's

These correspond to each of the arrows in the figure, i.e., the factor loadings and
the variances of the measurement errors. There would be 11 parameters to estimate
if the two factors were correlated.

4.2.1 Model Fit

The measure of the fit of the model to the data corresponds to the criterion that was
minimized, i.e., a measure of the extent to which the model, given the best possible
values of the parameters, can lead to a covariance matrix of the observed variables
that is sufficiently similar to the actually observed covariance matrix. We first
present and discuss the basic chi-square test of the fit of the model. We then
introduce a number of measures of fit that are typically reported and that alleviate
the problems inherent to the chi-square test. Finally, we discuss how modification
indices can be used as diagnostics for model improvement.

4.2.1.1 Chi-Square Tests

Based on large-sample distribution theory, v = (N — 1)F (where N is the sample
size used to generate the covariance matrix of the observed variables and F is the
minimum value of the expression F as defined by Eq. (4.15)) is distributed as a
chi-square with the number of degrees of freedom corresponding to the number of
data points minus the number of estimated parameters. If the value of v is signifi-
cantly greater than zero, the model is rejected; this means that the theoretical model
is unable to generate data with a covariance matrix close enough to the one obtained
from the actual data.

The chi-square distribution of v follows from the normal distribution assumption
of the data. As discussed above, the likelihood function at its maximum value (L)
can be compared with L, the likelihood of the full or saturated model with zero
degrees of freedom. Such a saturated model reproduces the covariance matrix
perfectly so that £ = S and r7(SE~ ') = tr(I) = ¢. Consequently,

N
Ly=— 5 [qLn(27) 4 Ln|S| + q] (4.20)
The likelihood ratio test is

—2[L —Lo] ~ )(czlf:[q(qﬂ)ﬁ]—T (4.21)
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where T is the number of parameters estimated.
Equation (4.21) results in the expression

N[Ln|Z| + tr(SZ™") — Ln[S| — (¢)] (4.22)

which is distributed as a chi-square with [¢g(g + 1)/2] — T degrees of freedom.

It should be noted that it is possible to compare nested models. Indeed, the test of
a restriction of a subset of the parameters implies the comparison of two of the
measures of fit v, each distributed as a chi-square. Consequently, the difference
between the value v, of a restricted model and v, of the unrestricted model follows a
chi-square distribution with a number of degrees of freedom corresponding to the
number of restrictions.

One problem with the expression v (or Eq. (4.22)) is that it contains N, the
sample size. This means that as the sample size increases, it becomes less likely
that the researcher will fail to reject the model. This is why several other
measures of fit have been developed. They are discussed below. While this
sample-size effect corresponds to the statistical power of a test consisting in
rejecting a null hypothesis that a parameter is equal to zero, it is an issue in
this context because the hypothesis for which the researcher would like to get
support is the null hypothesis that there is no difference between the observed
covariance matrix and the matrix that can be generated by the model. Failure to
reject the hypothesis, and thus “accepting” the model, can, therefore, be due to
the lack of power of the test. A small enough sample size can contribute to
finding “fitting” models based on chi-square tests. It follows that it is more
difficult to find fitting models when the sample size is large.

4.2.1.2 Other Goodness-of-Fit Measures

The LISREL output gives a goodness-of-fit index (GFI) that is a direct measure of
the fit between the theoretical and observed covariance matrices following from the
fit criterion of Eq. (4.15). This GFI is defined as

n[(ils —1)2]
vl (=7's)]

From this equation, it is clear that if the estimated and the observed variances are
identical, the numerator of the expression subtracted from 1 is 0 and, therefore,
GFI = 1. To correct for the fact that the GFI is affected by the number of indicators,
an adjusted goodness-of-fit index (AGFI) is also proposed. This measure of fit

GFI=1—

(4.23)
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corrects the GFI for the degrees of freedom, just as an adjusted R-squared would in
a regression context:

AGFI = 1 — { (@)(g+1)

where T is the number of estimated parameters.

As the number of estimated parameters increases, holding everything else
constant, the adjusted GFI decreases.

A threshold value of 0.9 (for either the GFI or AGFI) has become a norm for the
acceptability of the model fit (Bagozzi & Yi, 1988; Baumgartner & Homburg,
1996; Kuester, Homburg, & Robertson, 1999).

Another index that is often used to assess model fit is the root mean square error
of approximation (RMSEA). It is defined as a function of the minimum fit function
corrected by the degrees of freedom and the sample size:

RMSEA = \/% (4.25)

Fo=Max{(F —[d/(N - 1)]),0} (4.26)

where

d=lglq+1)/2] T 4.27)

A value of RMSEA smaller than 0.08 is considered to reflect reasonable errors of
approximation, while a value of 0.05 indicates a close fit.

4.2.1.3 Modification Indices

The solution obtained for the parameter estimates uses the derivatives of the
objective function relative to each parameter. This means that for a given solution,
it is possible to know the direction in which a parameter should change in order to
improve the fit and how steeply it should change. As a result, the modification
indices indicate the expected gains in fit that would be obtained if a particular
coefficient should become unconstrained (holding all other parameters fixed at their
estimated value). Although not a substitute for the theory that leads to the model
specification, this modification index can be useful in analyzing structural
relationships and in particular in refining the correlational assumptions of random
terms and for modeling control factors.
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4.2.2 Test of Significance of Model Parameters

Because of the maximum likelihood properties of the estimates, which follow from
the normal distribution assumption of the variables, the significance of each param-
eter can be tested using the standard ¢ statistics formed by the ratio of the parameter
estimate and its standard deviation.

4.2.3 Factor Scores

Similar to the process described in Chap. 3 for EFA, factor scores can be computed
using the equation

Y =X R'L (4.28)
Nxp NXp pXp pXp
In contrast to the case of EFA, however, zeros appear in the matrix of factor
loadings. In addition, it should be noted that when multiple factors are analyzed
simultaneously in a single CFA, the information contained in the correlations with
all the variables is used to predict the scores. Therefore, it is not the case that only
the variables loading into a factor are used to predict the factor scores. This can
easily be seen from the fact that the matrix of “regression” weights R~ 'L uses all
the information from the correlation matrix. Only a CFA per factor can provide
factor scores determined solely by the items loading on that factor.

4.3 Summary Procedures for Scale Construction

Scale construction involves several procedures that are sequentially applied and
that bring together the methods discussed in Chap. 3 with those presented in this
chapter. These procedures include the following statistical analyses: EFA, CFA ,
and reliability coefficient alpha. The CFA technique can also be used to assess the
discriminant and convergent validity of a scale. We now review these steps and the
corresponding statistical analyses in turn.

4.3.1 Exploratory Factor Analysis

EFA can be performed separately for each hypothesized factor. This demonstrates
the unidimensionality of each factor. One global factor analysis can also be
performed in order to assess the degree of independence between the factors.


http://dx.doi.org/10.1007/978-1-4614-8594-0_3
http://dx.doi.org/10.1007/978-1-4614-8594-0_3
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CFA can be used to assess the overall fit of the entire measurement model and to
obtain the final estimates of the measurement model parameters. Although CFA is
sometimes performed on the same sample as the EFA, it is preferable to use a new
sample when it is possible to collect more data.

4.3.3 Reliability Coefficient Alpha

In cases where composite scales are developed, the reliability coefficient alpha is a
measure of the reliability of the scales. Reliabilities of less than 0.7 for academic
research and 0.9 for market research are typically not sufficient to warrant further
analyses using these composite scales.

In addition, scale construction involves determining that the new scale devel-
oped is different (i.e., reflects and measures a construct that is different) from
measures of other related constructs. This is a test of the scale’s discriminant
validity. It also involves a test of convergent validity, i.e., that this new measure
relates to other, yet different, constructs.

4.3.4 Discriminant Validity

A construct must be different from other constructs (discriminant validity) but, at
the same time, be mutually conceptually related (convergent validity). The discrim-
inant validity of the constructs is assessed by comparing a measurement model
where the correlation between the two constructs is estimated with a model where
the correlation is constrained to be equal to one (thereby assuming a single-factor
structure). The discriminant validity of the constructs is examined for each pair at a
time. This procedure, proposed by Bagozzi, Yi, and Phillips (1991), indicates that,
if the model where the correlation is not equal to one significantly improves the fit,
then the two constructs are distinct from each other, although it is possible for them
to be significantly correlated.

4.3.5 Convergent Validity

Convergent validity concerns the verification that some constructs thought to be
conceptually and/or structurally related exhibit significant correlations among
themselves. The convergent validity of the constructs is assessed by comparing a
measurement model where the correlation between the two constructs is estimated
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with a model where the correlation is constrained to be equal to zero. A significant
improvement in fit indicates that the two constructs are indeed related, which
confirms convergence validity. Combining the two tests (that the correlation is
different from one and different from zero) demonstrates that the two constructs are
different (discriminant validity), although related with a significantly different from
zero correlation (convergent validity).

4.4 Second-Order Confirmatory Factor Analysis

In the second-order factor model, there are two levels of constructs. At the first
level, constructs are measured through observable variables. These constructs are
not independent and, in fact, their correlation is hypothesized to follow from the
fact that they are themselves reflective of common second-order unobserved
constructs of a higher conceptual level. This can be represented as in Fig. 4.2.

The relationships displayed in Fig. 4.2 can be expressed algebraically by the
following equations:

y=A n+e (4.29)
px1  PXMmx1 pxl

and
n="= &+ ¢ (4.30)
mx1 mxn px1  mxl

Equation (4.29) expresses the first-order factor analytic model. The unobserved
constructs n are the first-order factors; they are measured by the reflective items

G4 / i

. e
Fig. 4.2 Graphical
i €11
representation of a second- y
11

order factor analytic model
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represented by the variables y. Equation (4.30) shows that the constructs n are
derived from the second-order factors €. The factor loadings corresponding, respec-
tively, to the first-order and second-order factor models are the elements of matrices
A and I'. Finally, the errors in measurement are represented by the vectors € and .

In addition to the structure expressed by these two equations, we use the
following notation of the covariances:

E{z;z;’} - 4.31)
E[CC’} =¥ (4.32)
and
E[es’] -0, (4.33)
pPXp

Furthermore, we assume that the elements of £ are uncorrelated to the elements
of &, and similarly that the elements of & are uncorrelated to the elements of n.

If the second-order factor model described by the equations above is correct, the
covariance matrix of the observed variables y must have a particular structure. This
structure is obtained as

E[yy] =E[(An+e)(an+e)] (4.34)
If we develop
E {yyl =AE {rm/}A, +E {es/} (4.35)

replacing n by its value expressed in Eq. (4.30)

E [yy’} — AE {(rg L E)(TE+ g)’] A +E [ee/} (4.36)
E [yy’} - A(rE {f;g’} r' +E {cc’} )A’ +E [es’} (4.37)
E [yy’} - A(rcpr’ + \P)A’ +0, 4.38)

where the elements on the right side of Eq. (4.38) are model parameters to be
estimated such that their values combined in that matrix structure reproduce as
closely as possible the observed covariance matrix S calculated from the
sample data.
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The estimation procedure follows the same principle as described above for the
simple confirmatory factor analytic model. The number of parameters is, however,
different.

How many parameters need to be estimated?

We typically define the covariance matrices @, y, and O, to be diagonal.
Therefore, these correspond to n + m + p parameters to be estimated, to which
we would need to add the factor-loading parameters contained in matrices I' and A.
Taking the example in Fig. 4.2, n =2, m =5, and p = 11. One of the factor
loadings for each first-order factor should be set to 1 to define the units of
measurement of these factors. Consequently, A contains 11 — 5 = 6 parameters
to be estimated and I' contains five parameters to be estimated. That gives a total of
2+ 5+ 11 + 6 +5 = 29 parameters to be estimated. Given that the sample data
covariance matrix (an 11 by 11 matrix) contains (11 x 12)/2 = 66 data points, the
degrees of freedom are 66 — 29 = 37.

The same measures of fit as described above for CFA are used to assess the
appropriateness of the structure imposed on the data.

4.5 Multi-Group Confirmatory Factor Analysis

Multi-group CFA is appropriate for testing the homogeneity of measurement
models across samples. It is particularly useful in the context of cross-national
research where measurement instruments may vary due to cultural differences. This
corresponds to the notion of measurement invariance. From that point of view, the
model described by Eq. (4.2) must be expanded along two dimensions: (1) several
sets of parameters must be estimated simultaneously for each of the groups and
(2) some differences in the means of the unobserved constructs must be recognized
between groups while they are ignored (assumed to be zero) in single-group CFA.
These expansions are represented in Egs. (4.39), (4.40), and (4.41). Equation (4.39)
is identical to the single-group confirmatory factor analytic model.

The means of the factors are represented by the vector k in Eq. (4.40), which
contains n rows for the mean of each of the n factors. The vector t, in Eq. (4.39)
contains g rows for the scalar constant term of each of the g items:

X =1, +A, €+ O 4.39)
axl  gx1 gxnoax1 4%l
Elg] = x (4.40)
E[S&’} — 0, (4.41)
qxq

Therefore, the means of the observed measures x are
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uX:E[x]:'cX—kAXE{é}:tx—kAx K (4.42)

gx1 gx1 gxn nx1 gx1 pxn nxl1

This model, with a mean structure such as is imposed in Eq. (4.42), can be
estimated if we recognize that the log-likelihood function specified in Eq. (4.19)
now contains not only the parameters that determine the covariance matrix X but
also the expected values of the x variables, so that

S=X-p)X—p) (4.43)

Consequently, when modeling the means in addition to the covariance structure,
the objective function (the log likelihood) is

L= —]g qLn(2z) + Ln|Z| + n»{(x (X — )z }] (4.44)

We now add a notation to reflect that the model applies to group g with
g=1,...G:

Ve=1,...G: x® =18 476 gl(fx)l + 8@ (4.45)
gx1 gx1 gxn gx1
and
E[g@} — ® (4.46)

For identification, one of the groups must serve as a reference with the means of
its factors centered at zero (the same requirement as for a single-group CFA).
Usually group 1 serves as that reference, although in principle it can be any group:

«U =0 (4.47)

It is also necessary to fix one factor loading for each factor in A, to define the
measurement unit of the unobserved constructs.

The estimation is again based on the maximum likelihood. The log likelihood is
the sum of the log likelihoods for all the groups so that we now search for the values
of the parameters that maximize

:——ZN [ 9 Ln(2x) +Ln|E® |+rr{(x<>—p f»’>)(x<g >)/2<g>‘H
(4.48)

It is then possible to impose equality constraints on the parameters to be
estimated by defining them as invariant across groups. Different types of invariance
can be imposed and tested.
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Fig. 4.3 Graphical Group 1 Group 2
representation of two-group
confirmatory factor analysis

Metric invariance concerns the constraint of equality of factor loadings across
groups:

A® = Al = A, (4.49)

29 = 2l¥) = ¢, (4.50)

In order to illustrate the types of restrictions that need to be imposed, let us
consider the example of two groups, as depicted in Fig. 4.3.
For the first item of the first group, the measurement model is

A=z el s 4.51)

with

K =0 (4.52)

This means that the latent construct & .Y is measured in the units of x;V.

For identification, constraining t; to be equal across groups is the same as
estimating it in one group and fixing the value in the other groups to be equal
across groups. For the first item of the second group, the measurement model is

2 2 2
A =0+ + 67 (4.53)

Even though the mean of & 1 can be different from &7, the measurement units

are fixed to be the units of xl(l).

For the model to have different factor means Kk that are meaningful, the following
conditions must be met:

1. Metric invariance, i.e., the same factor loadings A, across groups
2. Scalar invariance, i.e., the same constant for the scale of each item T, across
groups
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These issues are particularly relevant in cross-cultural research where measure-
ment instruments must be comparable across cultures/countries and especially
when the factor means are of interest to the research.

Factor scores can also be computed as discussed earlier in Sect. 4.2.3. In the case
of different means (which require scalar invariance properties), the factor scores are
computed to reflect these differences in the distribution of the latent constructs.

4.6 Application Examples

We now present examples of the various methods discussed in this chapter using
LISREL and STATA (with a quick example using AMOS). First we provide
examples of CFA (Sect. 4.6.1). Next we give examples of discriminant validity
tests (Sect. 4.6.2) and of convergent validity tests (Sect. 4.6.3) that demonstrate the
estimation of a single-factor analytic structure and the estimation of a factor
analytic structure with two correlated factors. Then we show examples of second-
order factor analysis (Sect. 4.6.4), and finally, we illustrate multi-group factor
analysis (Sect. 4.6.5).

4.6.1 Example of Confirmatory Factor Analysis

The example in Fig. 4.4 shows the input file in LISREL.

An exclamation mark indicates that what follows is a comment and is not part of
the LISREL commands. Therefore, the first real input line in Fig. 4.4 starts with
DA, which stands for data. On that line, NI indicates the number of input (observed)
variables (six in this example), and MA = KM indicates the type of matrix to be
modeled, KM for correlation or CV for covariance.

The second line of input is used to specify how to read the data. RA indicates that
the raw data will be read (from which the correlation matrix will be automatically
computed), and FI = filename indicates the name of the file containing those data,
where filename is the Windows file name including the full path.

The third line, with LA, indicates that next come the labels of the indicator
(input) variables. These are shown as Q5, Q7, etc., on the following line.

The next line specifies the model, as indicated by the code MO at the beginning
of that line. NX indicates the number of indicators corresponding to the exogenous
constructs (here, there are six). NK stands for the number of ksi constructs (we have
a unique factor in this example). PH = ST indicates that the covariance matrix phi
is specified here as a standardized matrix, i.e., a correlation matrix with 1s in the
diagonal and Os off-diagonal. The covariance matrix of the measurement model
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!Examp4-1.spl
'Raw Data From File: Examp4-1.txt

DA NI=6 MA = KM XM = 9

RA FI=C:\SAMD\Chapter4\Examples\Examp4-1.txt

LA

Q5 Q7 Q8 Q12 Q13 Q14

MO NX = 6 NK =1 PH = ST TD = SY

LK

FactorOne !The First Factor

FR LX(1,1) LX(2,1) LX(3,1) LX(4,1) LX(5,1) LX(6,1) TD(3,2) TD(6,5)
Path Diagram

OU SE TV AD = 50 MI

Fig. 4.4 LISREL input example for confirmatory factor analytic model (examp4-1.spl)

error terms, theta delta, is specified as a symmetric matrix (TD = SY). A diagonal
matrix (TD = DI) could have presented a simpler model where all covariances are
zero. However, our example of a symmetric matrix illustrates how some of these
covariance parameters can be estimated.

In the next line, LK stands for the label of the ksi constructs, although there is
only one of them in this example. That label (“FactorOne”’) follows on the next line.

The following line starting with FR is the list of the parameters that are estimated
where LX stands for lambda x and TD for theta delta. Each is followed by the row
and column of the corresponding matrix, as defined by the model specification in
Egs. (4.2) and (4.4). In the standard factor analytic model, the measurement errors
are typically uncorrelated and theta delta is just a diagonal matrix. Occasionally, a
better fit is obtained if these correlations are estimated. Modification indices
provide the information regarding the extent to which freeing these parameters
can lead to a better fit. Nevertheless, caution should be exercised when letting these
correlations take values other than zero. This is because correlated measurement
errors mean that the items have something in common beyond what is already
shared by all items reflecting a factor. It is especially critical to exercise caution
when the error terms correspond to items that reflect different factors. Such a case
would indicate that two items are used to measure different factors, although they
also share common meanings through their residuals. This raises questions about
the validity of such measures and about the appropriateness of the choice of items.
In the example, the error correlations (identified by “TD(3,2) TD(6,5)”") concern the
same factor. They are estimated based on a preliminary analysis that indicated,
based on the modification indices, that the fit would be improved if these were
allowed to be different from zero.

The line “Path Diagram” indicates that a graphical representation of the model is
requested.

The last line of the input file describes the output (OU) requested. SE means
standard errors, TV their t-values, and MI the modification indices.

The input file in STATA is shown in Fig. 4.5.
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infile Q5 Q7 Q8 Q12 Q13 Q14 using
"/users/fblgatignon/Documents/WORK_STATA/SAMD/Chapter4 CFA/Exampd4-1.txt", clear
replace Q5=. if Q5==9

replace Q7=. if Q7==9

replace Q8=. if Q8==9

replace Ql2=. if Ql2==

replace Ql3=. if Q13==9

replace Qld=. if Ql4==9

egen stQ5 = std(Q5)

egen stQ7 = std(Q7)

egen stQB = std(0Q8)

egen stQl2 = std(Q1l2)

egen stQl3 = std(Ql3)

egen stQl4 = std(Ql4)

sem (FactorOne -> stQ5) (FactorOne -> stQ7) (FactorOne -> st(Q8) (FactorOne -> stQ12)
(FactorOne -> stQl3) (FactorOne -> stQld) ///
, cov(e.stQ7*e.st08) cov(e.stQl3*e.stQl4) ///
var (FactorOne@l) ///

nomeans latent(FactorOne )

estat gof, stats(all)

estat mindices, min(l)

estat framework, fitted

predict FactorScore, latent

Fig. 4.5 STATA input example for confirmatory factor analytic model (examp4-1_Mac.do)

The command “sem” signals input for structural equation models. Each relation-
ship is represented by two variables separated by an arrow (“->" or “<-"), which
indicates the causality or directionality. The variables are either observable
measures (e.g., “stQ5”) or latent variables (e.g., “FactorOne”). In this particular
example, which is identical to the model described above to be estimated with
LISREL (Fig. 4.4), the covariances to be estimated are indicated after a “,” by
means of the “cov(e.stQ7%e.stQ8)” option. The term “cov” stands for covariance
and “e.var” for the error of the “var” variable. As we discussed when presenting the
LISREL input, you would only request the estimation of these covariances of
measurement errors ex post and if necessary based on the information provided in
the modification indices.

Furthermore, “var(FactorOne@1)” indicates that the latent factor variance
should be constrained to 1. The next three lines request statistics such as good-
ness-of-fit measures or modification indices. The last line (“predict FactorScore,
latent”) is optional. It computes the factor scores of the latent variable(s) and
appends the scores in new variables in the data set. In this case, only one new
variable name is given (‘“FactorScore”) because the analysis specifies a single
factor. If more than one factor were involved, the list of the names to be used
would follow the “predict” command. The modified data set can then be saved as a
“.dta” file for further analysis using separate do-files.

The LISREL output of such a model is given in Fig. 4.6 and the output from
STATA follows.
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LI SREL 8.30
BY

Karl G. Jdreskog & Dag Sérbom

This program is published exclusively by
Scientific Software International, Inc.
7383 N. Lincoln Avenue, Suite 100
Chicago, IL 60646-1704, U.S.A.
Phone: (800)247-6113, (847)675-0720, Fax: (847)675-2140
Copyright by Scientific Software International, Inc., 1981-99
Use of this program is subject to the terms specified in the
Universal Copyright Convention.
Website: www.ssicentral.com

The following lines were read from file C:\SAMD\CHAPTERS8\EXAMPLES\EXAMP4-1.SPL:

!Examp4-1.spl
!Raw Data From File: Examp4-1.txt

DA NI=6 MA = KM XM = 9

RA FI=C:\SAMD\Chapter4\Examples\Examp4-1l.txt

LA

Q5 Q7 Q8 Q12 Q13 Q14

MO NX = 6 NK = 1 PH = ST TD = SY

LK

FactorOne !The First Factor

FR LX(1,1) LX(2,1) LX(3,1) LX(4,1) LX(5,1) LX(6,1) TD(3,2) TD(6,5)
Path Diagram

OU SE TV AD = 50 MI

!Examp4-1.s8pl

Number of Input Variables
Number of Y - Variables
Number of X - Variables
Number of ETA - Variables
Number of KSI - Variables
Number of Observations 13

®HOOMNON

Covariance Matrix to be Analyzed

Q5 Q7 08 Q12 013 Q14
Q5 1.00
Q7 0.47 1.00
08 0.58 0.75 1.00
Q12 0.55 0.60 0.65 1.00
013 0.44 0.40 0.51 0.50 1.00
014 0.39 0.44 0.57 0.55 0.59 1.00

Parameter Specifications

LAMBDA-X

FactorOn
Q5 1
Q7 2
Q8 3
Q12 4
Q13 5
Q14 6

Q5 Q7 08 Q12 013 Q14
Q5 7
Q7 0 8
Q8 0 9 10
Q12 0 0 0 11
Q13 0 0 0 0 12

Fig. 4.6 LISREL for Windows output example for confirmatory factor analytic model (examp4-1.out)
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Number of Iterations =

LAMBDA-X

FactorOn

Q7 0.71
(0.08)
8.69

08 0.83
(0.08)
11.01

012 0.81
(0.08)
10.64

Q13 0.62
(0.08)
7.46

014 0.66

(0.08)
8.07

PHI

FactorOn

Q5

05 0.54
(0.08)

7.09

Q7 - -
08 - -
012 - -
013 - -
014 - -

7

LISREL Estimates (Maximum Likelihood)

Q7 Q8 Q12 Q13
0.50
(0.08)
6.44
0.16 0.31
(0.06) (0.06)
2.81 4.99
- - - - 0.35
(0.06)
5.54
- - - - - - 0.62
(0.08)
7.36
- - - - - - 0.18
(0.06)
2.89
Squared Multiple Correlations for X - Variables
Q7 Q8 Q12 Q13
0.50 0.69 0.65 0.38

0.57
(0.08)
7.17

Fig. 4.6 (continued)

95
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Goodness of Fit Statistics

Degrees of Freedom = 7
Minimum Fit Function Chi-Sgquare = 6.61 (P =
NHormal Theory Weighted Least Squares Chi-Square = 6.
Estimated Non-centrality Parameter (NCP) = 0.
90 Percent Confidence Interval for NCP = (0.0 ; 9.27)

0.47)
27 (P = 0.51)
0

Minimum Fit Function Value = 0.048
Population Discrepancy Function Value (F0) = 0.0
90 Percent Confidence Interval for FO = (0.0 ; 0.068)
Root Mean Sguare Error of Approximation (RMSEA) = 0.0
90 Percent Confidence Interval for RMSEA = (0.0 ; 0.098)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.71

Expected Cross-Validation Index (ECVI) = 0.26
90 Percent Confidence Interval for ECVI = (0.26 ; 0.32)
ECVI for Saturated Model = 0.31
ECVI for Independence Model = 3.02

Chi-Square for Independence Mocdel with 15 Degrees of Freedom = 402.09
Independence AIC = 414.09
Model AIC = 34.27
Saturated AIC = 42.00
Independence CAIC = 437.65
Model CAIC = 89.26
Saturated CAIC = 124.47

Root Mean Square Residual (RMR) = 0.020
Standardized RMR = 0.020
Goodness of Fit Index (GFI) = 0.98
Adjusted Goodness of Fit Index (AGFI) = 0.95
Parsimony Goodness of Fit Index (PGFI) = 0.33

Normed Fit Index (NFI) = 0.98
Non-Normed Fit Index (NNFI) = 1.00
Parsimony Normed Fit Index (PNFI) = 0.46
Comparative Fit Index (CFI) = 1.00
Incremental Fit Index (IFI) = 1.00
Relative Fit Index (RFI) = 0.96

Critical N (CN) = 383.87

Modification Indices and Expected Change
Neo Non-Zero Modification Indices for LAMBDA-X

No Non-Zero Modification Indices for PHI

Modification Indices for THETA-DELTA

Q5 Q7 o8 Q12 013 Q14
Q5 - -
Q7 0.50 - -
Q8 1.00 - - - -
Q12 0.00 3.20 3.82 - -
013 0.96 0.43 0.00 0.00 - -
014 2.38 0.54 1.23 0.33 - - - -

Expected Change for THETA-DELTA

Q5 Q7 Q8 Q12 Q13 Q14
Q5 -
Q7 -0.03 - -
o8 0.04 - - - -
Ql2 0.00 0.08 -0.09 i
QL3 0.05 -0.03 0.00 0.00 o
Q14 -0.08 -0.03 0.04 0.03 - -
Maximum Modification Index is 3.82 for Element ( 4, 3) of THETA-DELTA

Fig. 4.6 (continued)
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0.547" Q5 \

fo.5o’ Q7 ‘\0.68

0.16 0.71
\).31’ Q8 ~=—).83 @ 1.00

0.357" Q12 /0.6

0.66
Yo.62’ Q13 /

0.18
(0.57* Q14

Chi-Square=6.27, df=7, P-value=0.50813, RMSEA=0.000

Fig. 4.7 Path diagram of confirmatory factor analytic model from LISREL (examp4-1.pth)

In the output, as shown in Fig. 4.6, after listing the commands described earlier
according to the model specified in the corresponding input file, the observed
covariance matrix (in this case a correlation matrix) to be modeled is printed.

The “Parameter Specifications” section indicates the list and number of
parameters to be estimated, with a detail of all the matrices containing the
parameters. The value zero indicates that the corresponding parameter is fixed
and is not to be estimated. Unless specified otherwise, the default value of these
fixed parameters is set to zero.

The number of iterations shows the number that was necessary to obtain
convergence and the parameter estimates follow. Below each parameter estimate
value, its standard error is shown in parentheses and the 7-value below it.

Then follow the goodness-of-fit statistics, among which those described earlier
can be found. The example run in Fig. 4.6 shows that the single-factor model
represents well the observed correlation matrix since the chi-square is not statisti-
cally significant and the GFI is high with a value of 0.98 (highlighted in grey in the
figure).

The modification indices are reasonably small, which indicates that freeing
additional parameters would not lead to a big gain in fit.

The diagram of such a confirmatory factor analytic model is shown in Fig. 4.7.

The STATA output follows in Fig. 4.8.
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4.6.2 Example of Model to Test Discriminant Validity
Between Two Constructs

The following example (illustrated with LISREL and STATA) is typical of an
analysis where the goal is to assess the validity of a construct. Figure 4.9 shows the
input file to estimate a two-factor model (such analyses are usually performed two
factors at a time because the modeling of all the factors at once typically involves

. infile Q5 Q7 Q8 Q12 Q13 Q14 using "C:\DATA\WORK_STATA\SAMD\Chapter4_ CFA\Examp4-1l.txt", clear
(146 observations read)

. replace Q5=. if Q5==9

(5 real changes made, 5 to missing)

. replace Q7=. if Q7==9

(6 real changes made, 6 to missing)

. replace 08=. if Q8==9

(6 real changes made, 6 to missing)

. replace Q12=. if Q12==9

(5 real changes made, 5 to missing)

. replace Q13=. if Q13==9

(5 real changes made, 5 to missing)

. replace Qld=. if Q14==9

(6 real changes made, 6 to missing)

. egen stQ5 = std(Q5)

(5 missing values generated)

. egen stQ7 = std(Q7)

(6 missing values generated)

. egen stQ8 = std(Q8)

(6 missing values generated)

. egen stQl2 = std(Q12)

(5 missing values generated)

. egen stQ13 = std(Q13)

(5 missing values generated)

. egen stQl4 = std(Q1l4)

(6 missing values generated)

. sem (FactorOne -> stQ5) (FactorOne -> stQ7) (FactorOne -> stQ8) (FactorOne -> stQl2) (FactorOne
> -> stQ13) (FactorOne -> stQl4) ///

> , cov(e.stQ7*e.stQ8) cov(e.stQl3*e.stQ14) ///
> var(FactorOne@l) ///

> nomeans latent(FactorOne )

(8 observations with missing values excluded;

specify option 'method(mlmv)' to use all observations)

Fig. 4.8 STATA output example for confirmatory factor analytic model (examp4-1.log)
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Measurement:

Latent:

Endogenous variables

st05 stQ7 st08 stQl2 stQl3 stQld

Exogenous variables

FactorOne

Fitting target model:

Iteration 0: log likelihood = -989.65934
Iteration 1: log likelihood -979.43554
Iteration 2: log likelihood -976.06586
Iteration 3: log likelihood -976.01067
Iteration 4: log likelihood -976.01056
Iteration 5: log likelihood -976.01056
Structural equation model Number of obs 138
Estimation method = ml
Log likelihood = =-976.01056
( 1) [var(FactorOne)]_cons = 1
| OIM
| Coef.  Std. Err. z P>|z| [95% Conf. Interval]
Measurement |
stQ5 <- |
FactorOne | .6788884 .0800289 8.48 0.000 .5220346 .8357422
+
stQ7 <- |
FactorOne | .7039627 .0806121 8.73 0.000 .5459659 .8619595
+
stQ8 <- |
FactorOne | .8316671 .0755962 11.00 0.000 .6835012 .9798331
+
stQl2 <- |
FactorOne | .8093582 .0762004 10.62  0.000 .6600081 .9587083
stQ13 <- |
FactorOne | .6201457 .0829863 7.47 0.000 .4574955 .782796
stQl4 <- |
FactorOne | .6586628 .081367 8.09 0.000 .4991864 .8181391
+
Variance |
e.stQ5 | .5384067 .075745 .4086583 .7093501
e.stQ7 | .4919239 .0759154 .3635278 .6656689
e.sto8 | .312071 .0635017 .2094339 .4650073
e.stol2 | .3499078 .0642353 .2441698 .5014359
e.stQl13 | .6210431 .0843644 .475874 .8104973
e.stol4 | .5707536 .0794053 .4345366 .7496714
FactorOne | 1 (constrained)
+
Covariance |
e.stQ7 |
e.stQs8 | .1588179 .0563846 2.82 0.005 .0483063 -2693296
+
e.stQl3 |
e.stQl4 | .1802037 .0622552 2.89 0.004 .0581858 .3022217
LR test of model vs. saturated: chi2(7) = 6.67, Prob > chi2 = 0.4642

Fig. 4.8 (continued)
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. estat gof, stats(all)

Fit statistic Value Description

Size of residuals
SRMR
CD

0.020 Standardized root mean squared residual
0.861 Coefficient of determination

|
+
Likelihood ratio |
chi2_ms(7) | 6.668 model vs. saturated
p > chi2 | 0.464
chi2_bs(15) | 405.180 baseline vs. saturated
p > chi2 | 0.000
+
Population error |
RMSEA | 0.000 Root mean squared error of approximation
90% CI, lower bound | 0.000
upper bound | 0.102
pclose | 0.675 Probability RMSEA <= 0.05
Information criteria |
aIc | 1980.021 Akaike's information criterion
BIC | 2021.003 Bayesian information criterion
+
Baseline comparison |
CFI | 1.000 Comparative fit index
TLI | 1.002 Tucker-Lewis index
|
|
I

. estat mindices, min(1)

Modification indices

| Standard
| MI df  P>MI EPC EPC

+

Covariance |

e.stQ5 |
e.stQs8 | 1.006 1 0.32 .0450477  .1098983
e.stQl4 | 2.402 1 0.12 -.0811566 -.1464011

e.stQ7 |
e.stQl2 | 3.220 1 0.07 .0840234  .2025231

+

e.stQs8 |
e.stQ12 | 3.853 1 0.05 -.0949834 -.287438
e.stQl4 | 1.238 1 0.27 .044602  .1056827

EPC = expected parameter change
. estat framework, fitted
Endogenous variables on endogenous variables

observed

Beta stQ5 stQ7 stQ8 stQl2 stQl3 stQl4

observed

stQ7
stQ8
stQ12
stQ13

|
|
+
|
sto5 |
|
|
|
stol4 |

ocoooo0o0
ocoooo
ocooo
coo

oo

o

Fig. 4.8 (continued)
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| latent
Gamma | FactorOne
+
observed |
stQ5 | .6788884
stQ7 | .7039627
sto8 | .8316671
stQl2 | .8093582
stQ13 | .6201457
stQl4 | .6586628

Covariances of error variables

Exogenous variables on endogenous variables

| observed
Psi | e.stQ5 e.stQ7 e.stQ8 e.stQl2 e.stQl3 e.stQl4
observed |
e.st05 | .5384067
e.stQ7 | 0o .4919239
e.sto8 | 0 .1588179 .312071
e.stol2 | [} [} [} .3499078
e.stQl3 | 0 0 [} o .6210431
e.stQl4 | 0 o o ) .1802037 .5707536
Covariances of exogenous variables
| latent
Phi | FactorOne
+
latent |
FactorOne | 1
Fitted covariances of observed and latent variables
| observed | latent
Sigma | stQ5 stQ7 stQ8 stQl12 stQ13 stQl4 | FacorOne
observed | |
sto5 | .9992962 |
stQ7 | .4779121  .9874874 |
stp8 | .5646092  .7442806  1.003741 |
stQl2 | .5494639 .569758 .6731166 1.004969 |
stol3 | .4210097 .4365595 .5157548 .50192 1.005624 |
stQl4 | .4471585 .463674 .5477882 .5330941 .5886706 1.00459 |
latent | |
FactorOne | .6788884 .7039627 .8316671 .8093582 .6201457 .6586628 | 1
Fig. 4.8 (continued)
!'Examp4-2.spl
'Raw Data From File: Examp4-2.txt
DA NI=12 MA = KM XM = 9
RA FI=C:\SAMD\Chapter4\Examples\Examp4-2.txt
LA
Q5 Q7 Q8 Q12 Q13 Q14
Q6 Q9 Q10 Q11 Q17 Q18
MO NX = 12 NK = 2 PH = ST TD = SY {CORR = Free
LK
FactorOne !Competence Destroying
FactorTwo !Competence Enhancing
FR LX(1,1) LX(2,1) LX(3,1) LX(4,1) LX(5,1) LX(6,1) C
LX(7,2) LX(8,2) LX(9,2) Lx(10,2) LX(11,2) LX(12,2) C
TD(3,2) TD(6,5) TD(8,7) TD(10,8) TD(10,7)
Path Diagram
OU SE TV RS MR FS AD = 50 MI

Fig. 4.9 LISREL input for model with two factors (examp4-2.spl)
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infile Q5 Q7 08 Q12 013 Q14 06 Q9 010 Q11 Q17 Q18 using
"/users/fblgatignon/Documents/WORK_STATA/SAMD/Chapter4_CFA/Examp4-2.txt", clear

replace Q5=. if Q5==
replace Q7=. if Q7==9
replace Q8=. if Q8==9
replace Q12=. if Q12==9
replace Q13=. if Q13==9
replace Ql4=. if Ql4==
replace Q6=. if Q6==9
replace Q9=. if Q9==
replace Q10=. if Q10==9
replace Qll=. if Q1l1==9
replace Q17=. if Q17==9
replace Q18=. if Q18==
egen stQ5 = std(Q5)
egen stQ7 = std(Q7)
egen stQ8 = std(Q8)
egen stQl2 = std(Q1l2)
egen stQl3 = std(Q13)
egen stQl4 = std(Q1l4)
egen stQ6 = std(Q6)
egen stQ9 = std(Q9)
egen stQl0 = std(Q1l0)
egen stQll = std(Qll)
egen stQl7 = std(Q17)
egen stQl8 = std(Q18)

sem (FactorOne -> stQ5 stQ7 stQ8 stQl12 stQ13 stQl4) ///
(FactorTwo -> stQ6 stQ9 stQl0 stQll stQl7 stQl8) ///

, cov(e.stQ7*e.stQ8) cov(e.stQl3*e.stQl4) ///
cov(e.stQ6*e.stQll) cov(e.stQ9*e.stQll) cov(e.stQ6*e.stQ9) ///
var (FactorOne@l) var(FactorTwo@l) ///

nomeans latent (FactorOne FactorTwo)

estat gof, stats(all)

estat mindices, min(1)

estat framework, fitted

Fig. 4.10 STATA input for model with two factors (examp4-2_Mac.do)

problems too big to obtain satisfactory fits). The commands are identical to those
described earlier, except that now two constructs (“FactorOne” and “FactorTwo”)
are specified.

Commands in STATA that are equivalent to those illustrated above with
LISREL are shown in Fig. 4.10.

In this case, each of the variances of the latent factors is set to 1 with the “var
(FactorOne@1)” and “var(FactorTwo@1)” commands. In this example, you can
also see that the measurement model is defined without repeating the relationships
between the factor and each of the items, as was the case in the prior example. Thus
here FactorOne is defined only once by using “(FactorOne -> stQ5 stQ7 stQ8 stQ12
stQ13 stQ14)” as a single command. If no specific instructions are given, then the
correlation between the two latent variables is estimated.

The output is shown first for LISREL and then for STATA. The LISREL output
corresponding to this two-factor confirmatory factor structure is shown in Fig. 4.11.
The description of this output is similar to the one described above involving a
single factor. The major difference is the estimate of the correlation between the
two factors, which is shown to be —0.56 in this particular example. The diagram
representing that factor analytic structure is shown in Fig. 4.12.

The STATA output is shown in Fig. 4.13, where the first lines corresponding to
data recoding have been deleted.



4.6  Application Examples 103

LISREL 8.30
BY
Karl G. Joreskog & Dag Sérbom

This program is published exclusively by
Scientific Software International, Inc.
7383 N. Lincoln Avenue, Suite 100
Chicago, IL 60646-1704, U.S.A.
Phone: (800)247-6113, (847)675-0720, Fax: (847)675-2140
Copyright by Scientific Software International, Inc., 1981-99
Use of this program is subject to the terms specified in the
Universal Copyright Convention.
Website: www.ssicentral.com

The following lines were read from file C:\SAMD\CHAPTERS\EXAMPLES\EXAMP4-2.SPL:

!Examp4-2.spl
'Raw Data From File: Examp4-2.txt

DA NI=12 MA = KM XM = 9

RA FI=C:\SAMD\Chapter4\Examples\Examp4-2.txt
LA

05 Q7 @8 012 Q13 Ql4

06 Q9 Q10 Q11 Q17 Q18

MO NX = 12 NK = 2 PH = ST TD = SY !CORR = Free

LK
FactorOne !Competence Destroying
FactorTwo !Competence Enhancing

FR LX(1,1) LX(2,1) LX(3,1) LX(4,1) LX(5,1) LX(6,1) LX(7,2) LX(8,2) LX(9,2) LX(10,2) C
LX(11,2) LX(12,2) TD(3,2) TD(6,5) TD(8,7) TD(10,8) TD(10,7)

Path Diagram

OU SE TV RS MR FS AD = 50 MI

THETA-DELTA

Q5 1
Q7
08
Q12
013
014
Q6
Q9
Q10
Q11
017
018

[
o
=

=

Oo0oo0oo0co0o0o0Oo0®

19

O0OO0OO0OO0OO0O0OO0O0OO0O M
coooocooo
cocooo0oocoocoooo04
ococooo
Ococooocoocor

THETA-DELTA

Q6 Q9 Q10 Q11 017 Q18
Q6 22
Q9 23 24
010 0 0 25
011 26 27 0 28
017 0 0 0 0 29
018 0 0 0 0 0 30

Fig. 4.11 LISREL output for model with two factors (examp4-2.out)
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Number of Iterations

LAMBDA-X
FactorOn
Q5 0.65
(0.08)
7.92
Q7 0.70
(0.08)
8.59
Q8 0.80
(0.08)
10.35
Q12 0.84
(0.08)
11.06
Q13 0.60
(0.08)
7.14
Q14 0.67
(0.08)
8.18
Q6 - -
Q9 - -
Q10 - -
Q11 - -
Q17 - -
Q18 - -

PHI

FactorOn
FactorOn 1.00
FactorTw -0.56
(0.08)
-6.93

= 10

LISREL Estimates (Maximum Likelihood)

FactorTw

0.57
(0.09)
6.22

0.56
(0.09)
6.12

0.65
(0.09)
7.48

0.62
(0.09)
6.99

0.69
(0.09)
8.01

0.69
(0.09)
8.01

FactorTw

Fig. 4.11 (continued)
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THETA-DELTA

Q5 Q7 Q8 Q12 Q13 Q14
Q5 0.58
(0.08)
7.19
Q7 - - 0.51
(0.08)
6.60
08 - - 0.18 0.36
(0.06) (0.06)
3.21 5.65
Q12 - - - - - - 0.30
(0.06)
5.01
Q13 - - - - - - - - 0.64
(0.09)
7.35
014 - - - - - - - - 0.19 0.55
(0.06) (0.08)
3.01 7.04
06 - - - - - - - - - - - -
Q9 - - - - - - - - - - - -
Q10 == - - - - - - - - - -
011 = = - - - - - - - - - -
Q17 = = - - - - - - - - - -
018 - - - - - - - - - - --

Q6 Q9 Q10 Q11 017 Q18
Q6 0.68
(0.10)
7.00
Q9 0.25 0.69
(0.08) (0.10)
3.27 7.04
Q10 - - - - 0.58
(0.09)
6.51
Q11 0.23 0.35 - - 0.61
(0.07) (0.08) (0.09)
3.13 4.48 6.67
Q17 - - - - - - - - 0.52
(0.09)
6.13
Q18 - - - - - - - - - - 0.52
(0.09)
6.12

Fig. 4.11 (continued)
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Squared Multiple Correlations for X - Variables

Q5 Q7 08 Q12 013 Q14

0.42 0.49 0.64 0.70 0.36 0.45

Squared Multiple Correlations for X - Variables

Q6 Q9 Q10 Q11 Q17 018

0.32 0.31 0.42 0.39 0.48 0.48

Goodness of Fit Statistics

Degrees of Freedom = 48
Minimum Fit Function Chi-Square = 54.78 (P = 0.23)
Normal Theory Weighted Least Squares Chi-Square = 55.76 (P = 0.21)
Estimated Non-centrality Parameter (NCP) = 7.76
90 Percent Confidence Interval for NCP = (0.0 ; 30.50)

Minimum Fit Function Value = 0.41
Population Discrepancy Function Value (F0) = 0.058
90 Percent Confidence Interval for FO = (0.0 ; 0.23)
Root Mean Square Error of Approximation (RMSEA) = 0.035
90 Percent Confidence Interval for RMSEA = (0.0 ; 0.069)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.73

Expected Cross-Validation Index (ECVI) = 0.87
90 Percent Confidence Interval for ECVI = (0.81 ; 1.04)
ECVI for Saturated Model = 1.17
ECVI for Independence Model = 5.81

Chi-Square for Independence Model with 66 Degrees of Freedom = 748.31
Independence AIC = 772.31
Model AIC = 115.76
Saturated AIC = 156.00
Independence CAIC = 819.08
Model CAIC = 232.69
Saturated CAIC = 460.03

Root Mean Square Residual (RMR) = 0.048
Standardized RMR = 0.048
Goodness of Fit Index (GFI) = 0.93
Adjusted Goodness of Fit Index (AGFI)
Parsimony Goodness of Fit Index (PGFI)

nou

Normed Fit Index (NFI) = 0.93
Non-Normed Fit Index (NNFI) = 0.99
Parsimony Normed Fit Index (PNFI) = 0.67
Comparative Fit Index (CFI) = 0.99
Incremental Fit Index (IFI) = 0.99
Relative Fit Index (RFI) = 0.90

Critical N (CN) = 179.90

Fitted Covariance Matrix

Q5 Q7 o8 Q12 013 Q14
Q5 1.00

07 0.46 1.00

08 0.52 0.74 1.00

Q12 0.54 0.59 0.67 1.00
013 0.39 0.42 0.48 0.50 1.00

014 0.44 0.47 0.53 0.56 0.59 1.00
06 -0.21 -0.22 -0.25 -0.26 -0.19 -0.21
Q9 -0.20 -0.22 -0.25 -0.26 -0.19 -0.21
010 -0.24 -0.26 -0.29 -0.30 -0.22 -0.24
011 -0.23 -0.24 -0.28 -0.29 -0.21 -0.23
017 -0.25 -0.27 -0.31 -0.32 -0.23 -0.26
018 -0.25 -0.27 -0.31 -0.32 -0.23 -0.26

Fig. 4.11 (continued)
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Fitted Covariance Matrix

Q6 Q9 Q10 Q11 Q17 Q18
Q6 1.00
Q9 0.56 1.00
Q10 0.37 0.36 1.00
Q11 0.58 0.70 0.40 1.00
Q17 0.39 0.38 0.45 0.43 1.00
Q18 0.39 0.38 0.45 0.43 0.48 1.00

Q5 Q7 08 Q12 013 Q14
Q5 0.00

Q7 0.00 0.00

08 0.05 0.00 0.00

Q12 -0.01 0.01 -0.03 0.00

Q13 0.04 -0.02 0.03 -0.01 0.00

014 -0.04 -0.03 0.04 0.00 0.00 0.00
06 0.07 -0.05 0.05 -0.09 0.13 0.02
Q9 0.03 -0.04 0.07 -0.12 0.11 0.10
010 0.11 -0.01 0.07 -0.09 0.03 -0.01
Q11 -0.04 -0.01 0.05 -0.07 0.02 0.04
017 0.06 -0.02 -0.01 -0.02 -0.03 -0.06
018 0.05 0.00 0.10 -0.08 0.13 0.04

Fitted Residuals

06 09 Q10 Q11 017 Q18
Q6 0.00

Q9 0.00 0.00

010 -0.01 -0.03 0.00

Q11 0.00 0.00 0.00 0.00

Q17 -0.01 0.03 -0.01 0.00 0.00

018 0.01 0.00 0.02 -0.01 0.00 0.00

Summary Statistics for Fitted Residuals

Smallest Fitted Residual = -0.12
Median Fitted Residual = 0.00
Largest Fitted Residual = 0.13

Modification Indices and Expected Change
Modification Indices for LAMBDA-X

FactorOn FactorTw

Q5 - - 2.14
Q7 - - 1.44
08 - - 4.74
012 - - 9.41
Q13 - - 1.70
014 - - 0.09
Q6 0.00 - -
Q9 0.01 - -
010 0.00 - -
011 0.08 - -
017 0.11 - -
018 0.29 - -

Fig. 4.11 (continued)
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Expected Change for LAMBDA-X
FactorOn FactorTw
Q5 - - 0.15
Q7 - - -0.10
Q8 - - 0.17

Q12 - - -0.29

Q13 - - 0.13

Q14 - - -0.03
Q6 0.00 - -

Q9 0.01 - -

Q10 0.00 - -

Q11 -0.02 - -

Q17 -0.04 - -

Qlis 0.06 - -

No Non-Zero Modification Indices for PHI
Modification Indices for THETA-DELTA
Q5 Q7 Q8 Q12 Q13 Q14
Q5 - -
Q7 0.48 - -
Q8 3.12 - - - -

Q12 0.22 1.53 4.28 - -

Q13 1.54 0.20 0.24 0.16 - -

Q14 1.72 1.35 2.58 0.00 - - - -
Q6 1.47 1.03 0.39 1.11 3.57 0.95
Q9 0.46 1.00 1.30 4.69 0.66 1.61

Q10 2.69 0.25 1.55 2.84 0.00 0.13

Q11 3.77 0.73 0.17 1.55 1.97 0.26

Q17 0.53 0.36 2.02 2.86 1.18 0.89

Q18 0.02 0.37 2.27 3.02 3.07 0.00

Modification Indices for THETA-DELTA
Q6 Q9 Q10 Q11 Q17 018

06 - -

Q9 - - - -

Q10 0.00 0.86 - -

Q11 - - - - 0.39 - -

Q17 0.13 0.73 0.09 0.15 - -

Q18 0.15 0.01 0.33 0.17 0.01 - -

Expected Change for THETA-DELTA
Q5 Q7 Q8 Q12 Q13 Q14

05 - -

Q7 -0.03 - -

Q8 0.08 - - - -

Q12 -0.03 0.06 -0.10 - -

Q13 0.07 -0.02 0.02 -0.02 - -

Q14 -0.07 -0.05 0.06 0.00 - - - -
Q6 0.06 -0.04 0.02 -0.05 0.10 -0.05
Q9 0.03 -0.04 0.04 -0.09 0.04 0.05

Q10 0.09 -0.02 0.05 -0.08 0.00 -0.02

Q11 -0.09 0.03 -0.01 0.05 -0.06 0.02

Q17 0.04 0.03 -0.06 0.08 -0.06 -0.05

Q18 -0.01 -0.03 0.06 -0.08 0.09 0.00

Expected Change for THETA-DELTA
Q6 Q9 Q10 Q11 Q17 Q18

06 - -

Q9 - - - -

Q10 0.00 -0.05 - -

Q11 - - - - 0.03 - -

Q17 -0.02 0.04 -0.02 -0.02 - -

Qis 0.02 0.00 0.04 -0.02 -0.01 - -

Maximum Modification Index is 9.41 for Element ( 4, 2) of LAMBDA-X

Fig. 4.11 (continued)
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Covariances
X - KSI
Q5 Q7 Q8 Q12 Q13
Factoron  0.65  0.70  0.80 0.84 0.60
FactorTw -0.36 -0.39 -0.45 -0.47 -0.34
X - KSI
Q6 Q9 Q10 Q11
Factoron  -0.32  -0.31  -0.36  -0.35  -0.38
FactorTw 0.57 0.56 0.65 0.62 0.69
Factor Scores Regressions
KSI
Q5 Q7 Q8 Q12 Q13
Factoron 0.5 0.0  0.25  0.37  0.09
FactorTw -0.03 -0.02 -0.04 -0.06 -0.01
KSI
Q6 Q9 Q10 Q11 Q17
Factoron  -0.01  -0.01  -0.03  -0.01 -0.03
FactorTw 0.11 0.06 0.24 0.14 0.28
The Problem used 22936 Bytes (= 0.0% of Available Workspace)
Time used: 0.230 Seconds

Fig. 4.11 (continued)
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Chi-Square=55.76, df=48, P-value=0.20619,

RMSEA=0.035

Fig. 4.12 Path diagram for model with two factors from LISREL (examp4-2.pth)
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Endogenous variables
Measurement: stQ5 stQ7 stQ8 stQl2 stQl3 stQl4 stQ6 stQ9 stQl0 stQll stQl7 stQl8
Exogenous variables
Latent: FactorOne FactorTwo
Fitting target model:
Iteration O0: log likelihood = -1961.4632 (not concave)
Iteration 1: log likelihood = -1946.4116
Iteration 2: log likelihood = -1935.4528
Iteration 3: log likelihood = -1929.9116
Iteration 4: log likelihood = -1929.6055
Iteration 5: log likelihood = -1929.6051
Iteration 6: log likelihood = -1929.6051
Structural equation model Number of obs = 134
Estimation method = ml
Log likelihood = -1929.6051
( 1) [var(FactorOne)]_cons = 1
( 2) [var(FactorTwo)]_cons = 1
| OIM
| Coef.  Std. Err. z P>|z| [95% Conf. Interval]
+
Measurement |
stQ5 <- |
FactorOne | .652372 .0823235 7.92 0.000 .4910209 .813723
+
stQ7 <- |
FactorOne | .7009202 .0813093 8.62 0.000 .5415568 .8602835
+
stQ8 <- |
FactorOne | .7963326 .0778098 10.23 0.000 .6438282 .948837
stQ12 <- |
FactorOne | .8310708 .0760511 10.93 0.000 .6820134 .9801281
+
stQ13 <- |
FactorOne | .6059133 .0848436 7.14 0.000 .4396229 .7722038
+
stQl4 <- |
FactorOne | .677898 .0827758 8.19 0.000 .5156604 .8401355
+
stQ6 <- |
FactorTwo | .5622107 .0901373 6.24 0.000 .3855448 .7388765
stQ9 <- |
FactorTwo | .5534423 .090282 6.13 0.000 .376493 .7303917
stQ10 <- |
FactorTwo | .6445772 .0859819 7.50 0.000 .4760557 .8130987
+
stQll <- |
FactorTwo | .6184136 .0881891 7.01 0.000 .4455662 .791261
+
stQl17 <- |
FactorTwo | .6895885 .0859867 8.02 0.000 .5210576 .8581194
+
st018 <- |
FactorTwo | .6897951 .0858138 8.04 0.000 .5216031 .857987

Fig. 4.13 STATA output for model with two factors (examp4-2.log)
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+
Variance
e.stQs .5763156 .080433 .4383926 .7576307
e.stQ7 .5042038 .0760896 .3751034 .677737
e.stQ8 .3598109 .0669065 .2499161 .5180293
e.stQl2 .2989374 .0634779 .1971659 .4532405
e.stQl3 .6442079 .0877125 .4933216 .8412439
e.stQl4 .5651523 .0803581 .4276954 .7467865
e.stQ6 .6732243 .095884 .5092457 .8900046
e.stQ9 .6785103 .0961955 .5138989 .8958497
e.stQl0 .5629018 .0863587 .4167195 .7603639
e.stQl1l .60936 .0911042 .4545823 .8168371
e.stQl7 .5250779 .0857337 .3812775 .7231132
e.stQ18 .5242229 .0853955 .3809395 .7213998
FactorOne 1 (constrained)
FactorTwo 1 (constrained)
+
Covariance |
e.stQ7 |
e.sto8 | .1823409 .0577028 3.16 0.002 .0692455 .2954363
+
e.stQl13 |
e.stol4 | .1928592 .064171 3.01 0.003 .0670863 .318632
+
e.stQ6 |
e.stQ9 | .2443625 .0746056 3.28 0.001 .0981382 .3905869
e.stoll | .2288315 .0728893 3.14 0.002 .0859711 .3716919
+
e.stQ9 |
e.stQll | .3494844 .0777755 4.49 0.000 .1970473 .5019215
+
FactorOne |
FactorTwo | -.5579635 .0820559 -6.80 0.000 -.7187901 -.397137
LR test of model vs. saturated: chi2(48) = 55.23, Prob > chi2 = 0.2204

Fig. 4.13 (continued)

Figure 4.14 shows the input file in LISREL for a factor analytic structure where a
single factor is assumed to be reflected by all the items.

Figure 4.15 is the corresponding LISREL output for the factor analytic structure
where a single factor is assumed to be reflected by all the items.

In Fig. 4.15, the resulting chi-square (y*> = 126.75) can be compared with the
chi-square resulting from a model with a correlation between the two factors
(x* = 54.78 in Fig. 4.11). The %* difference (126.75 — 54.78) has 1 degree of
freedom and its significance indicates that there are indeed two different constructs
(factors). This demonstrates the discriminant validity of the constructs.

4.6.3 Example of Model to Assess the Convergent
Validity of a Construct

Next, in order to assess the convergent validity, we need to compare the fit of a
model with zero correlation between the factors with a model where the factors are
correlated (as in Fig. 4.11 for LISREL or Fig. 4.13 for STATA). The input file in
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estat gof, stats(all)

Fit statistic Value Description

Size of residuals
SRMR
cp

0.048 Standardized root mean squared residual
0.960 Coefficient of determination

|
Likelihood ratio |
chi2_ms(48) | 55.227 model vs. saturated
p > chi2 | 0.220
chi2_bs(66) | 754.104 baseline vs. saturated
p > chi2 | 0.000
+
Population error
RMSEA | 0.034 Root mean squared error of approximation
90% CI, lower bound | 0.000
upper bound | 0.068
pclose | 0.748 Probability RMSEA <= 0.05
+
Information criteria |
aIC | 3919.210 Akaike's information criterion
BIC | 4006.145 Bayesian information criterion
+
Baseline comparison |
CFI | 0.989 Comparative fit index
TLI | 0.986  Tucker-Lewis index
+
|
|
|

. estat mindices, min(1)

Modification indices

| Standard
| MI df P>MI EPC EPC

+

Measurement |

stQ5 <- |
FactorTwo | 2.158 1 0.14 .1533973 .1532514

stQ7 <- |
FactorTwo | 1.454 1 0.23 -.101899 -.1021294

+

stQ8 <- |
FactorTwo | 4.778 1 0.03 .1695152 .1700298

+

stQl2 <- |
FactorTwo | 9.485 1 0.00 -.2869304 -.2884319

+

stQl3 <- |
FactorTwo | 1.715 1 0.19 .130595 .1298608

Covariance
e.stQ5

e.stQ8 3.148 1 0.08 .0789308 .1733321
e.stQ13 1.556 1 0.21 .0689573 .1131715
e.stQl4 1.735 1 0.19 -.0702762 -.1231388
e.stQ6 1.481 1 0.22 .0640008 .1027484
e.stQl0 2.721 1 0.10 .0933285 .1638581
e.stQll 3.807 1 0.05 -.0882305 -.1488852

+

e.stQ7

e.stQl2 1.544 1 0.21 .0566216 .1458442
e.stQl4 1.358 1 0.24 -.049985 -.0936385
e.stQ6 1.034 1 0.31 -.0434994 -.0746621
e.stQ9 1.009 1 0.32 -.0383362 -.0655431

+

e.stQs8 |
e.stQl2 | 4.313 1 0.04 -.0949785 -.2895998

Fig. 4.13 (continued)
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e.stQl4 2.598 1 0.11 .0646087 .1432752
e.stQ9 1.304 1 0.25 .039059 .0790508
e.stQl0 1.556 1 0.21 .0515188 .1144753
e.stQ17 2.035 1 0.15 -.0581871 -.1338683
e.stQ18 2.288 1 0.13 .0616638 .1419826
+
e.stQl2
e.stQ6 1.116 1 0.29 -.0459271 -.1023761
e.stQ9 4.727 1 0.03 -.0842564 -.1870831
e.stQl0 2.865 1 0.09 -.0795793 -.1939965
e.stQl1l 1.559 1 0.21 .0466886 .1093915
e.stQl7 2.874 1 0.09 .0788534 .1990298
e.stQ18 3.039 1 0.08 -.0810514 -.2047445
+
e.stQl3
e.stQ6 3.599 1 0.06 .0963776 .1463468
e.stQll 1.984 1 0.16 -.0615165 -.0981842
e.stQ17 1.193 1 0.27 -.0588443 -.1011765
e.stQ18 3.096 1 0.08 .0947413 .1630304
+
e.stQl4 |
e.stQ9 | 1.622 1 0.20 .055032 .0888698
EPC = expected parameter change
. estat framework, fitted
Endogenous variables on endogenous variables
| observed
Beta | stQ5 stQ7 stQ8 stQl12 stQl13 stQl4 stQ6
+
observed |
stQ5 | 4
stQ7 | [} o
stQ8 | [ o ]
stol2 | 0 0 [J 0
stQ13 | 0 o [ 0 0
stQl4 | 0 0 [ 0 0 0
stQ6 | 0 0 4 0 0 0 0
stQ9 | 0 0 o 0 0 0 0
stQ10 | o [ [J 0 0 0 0
stol11 | 0 [ o 0 0 0 0
stQ17 | o [ o 0 0 0 o
stQ18 | 0 [ o 4 0 0 o
| observed
Beta | stQ9 stQ10 stoll stQ17 stQ18
+
observed |
stQ9 | [}
stQ10 | [ [
stoll | [ [ 0
sto17 | [ [ [ [
sto18 | [ [ [ 0 [

Fig. 4.13 (continued)

LISREL for a model with independent factors (zero correlation) is shown in

Fig. 4.16.

The commands in STATA that correspond to the LISREL example in Fig. 4.16
are shown in Fig. 4.17.
The constraint that the covariance between the two latent factors is zero is
represented by the “cov(FactorOne*FactorTwo@0)” commands. The LISREL
output file for such a model with independent factors (zero correlation) is shown

in Fig. 4.18.
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Exogenous variables on endogenous variables
| latent
Gamma | FactorOne FactorTwo
observed
stQ5 .652372 ]
stQ7 .7009202 ]
stQs8 .7963326 1]
stQl2 .8310708 ]
stQ13 .6059133 o
stol4 .677898 [
stQ6 o .5622107
stQ9 0  .5534423
stQ10 1] .6445772
stol1l o .6184136
stQ17 ] .6895885
stQls8 o .6897951
Covariances of error variables
| observed
Psi | e.stQ5 e.stQ7 e.stQ8 e.stQl2 e.stQ13 e.stQl4 e.stQ6
+
observed |
e.stp5 | .5763156
e.sto7 | 0  .5042038
e.st08 | 0  .1823409  .3598109
e.stQl2 | [ o o .2989374
e.stQ13 | 0 0 o 0 .6442079
e.stQl4 | o o o o .1928592 .5651523
e.sto6 | ] o o o o o .6732243
e.stQ9 | o o o o o o .2443625
e.stQlo | 0 0 0 0 0 0 )
e.stQll | o o o o o o .2288315
e.stol7 | 0 0 0 0 0 0 0
e.stQl18 | o o o o o o o
| observed
Psi | e.stQ9 e.stQ10 e.stQll e.stQl7 e.stQl8
observed |
e.stQ9 | .6785103
e.stol10 | 0  .5629018
e.stQll | .3494844 ] .60936
e.stQl7 | ] ] ] .5250779
e.stol18 | [ [ [ 0 .5242229
Covariances of exogenous variables
| latent
Phi | FactorOne FactorTwo
+
latent |
FactorOne | 1
FactorTwo | -.5579635 1

Fig. 4.13 (continued)
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Fitted covariances of observed and latent variables
| observed
sigma | stQ5 stQ7 stos sto12 stol3 stQld stQ6
observed |
stQ5 | 1.001905
stQ7 | .4572607  .9954929
stQ8 | .5195051 .7405065 .9939565
stQl2 | .5421673 .5825143 .6618088 .9896161
stQl3 | .3952809 .4246969 .4825085 .5035568 1.011339
stQld | .4422416 .4751523 .5398323 .5633812 .6036066 1.024698
stQ6 | -.2046445 -.2198738 -.249804 -.2607011 -.1900708 -.2126519 .9893052
stQ9 | -.2014529 -.2164446 -.245908 -.2566352 -.1871064 -.2093353 .5555137
stQl0 | -.234626 -.2520864 -.2864015 -.2988951 -.2179171 -.2438064 .3623882
stQll | -.2251024 -.2418541 -.2747764 -.2867628 -.2090717 -.2339102 .5765102
stQl7 | -.25101 -.2696897 -.3064011 -.3197671 -.2331344 -.2608316 .387694
stQl8 | -.2510852 -.2697705 -.3064929 -.3198629 -.2332042 -.2609097 .3878101
latent |
FactorOne | .652372 .7009202 .7963326 .8310708 .6059133 .677898 -.3136931
FactorTwo | -.3639998 -.3910879 -.4443246 -.4637072 -.3380775 -.3782423 .5622107
| observed | latent
sigma | stQ9 stQ10 stQ11l stQ17 stQl8 | FactorOne FactorTwo
observed | |
stQ9 | .9848087 |
stQl0 | .3567363  .9783816 |
stQll | .6917407 .3986153 .9917954 |
stQl7 | .3816474 .444493 .4264509 1.00061 |
stQ18 | .3817618 .4446262 .4265786 .4756747 1.00004
latent | |
FactorOne | -.3088006 -.3596506 -.3450522 -.3847652 -.3848805 | 1
FactorTwo | .5534423 .6445772 .6184136 .6895885 .6897951 | -.5579635 1
Fig. 4.13 (continued)
'Examp4-3.spl
'Raw Data From File: Examp4-2.txt
DA NI=12 MA = KM XM = 9
RA FI=C:\SAMD\Chapter4\Examples\Examp4-2.txt
LA
Q5 Q7 Q8 Q12 Q13 Q14
Q6 Q9 Q10 Q11 Q17 Q18
MO NX = 12 NK = 1 PH = ST TD = SY
LK
FactOne
FR LX(1,1) LX(2,1) LxX(3,1) LX(4,1) LX(5,1) LX(6,1) c
LX(7,1) LX(8,1) LX(9,1) Lx(10,1) LX(11,1) LX(12,1) [¢]
TD(3,2) TD(6,5) TD(8,7) TD(10,8) TD(10,7)
Path Diagram
OU SE TV RS MR FS AD = 50 MI

Fig. 4.14 LISREL input for model with single factor (examp4-3.spl)

Still using the example in LISREL, the independent factor model has a
chi-square of 84.34 (Fig. 4.18), which, when compared with the chi-square of the
model estimating a correlation between the two constructs (Fig. 4.11), shows a
chi-square difference of 29.56. This difference is significant (with 1 degree of
freedom at the 0.05 level), and thus it indicates that the constructs are not indepen-
dent. Therefore, the chi-square test supports the convergent validity of the two
constructs.
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LISRETL 8.30
BY
Karl G. Joéreskog & Dag Sérbom

This program is published exclusively by
Scientific Software International, Inc.
7383 N. Lincoln Avenue, Suite 100
Chicago, IL 60646-1704, U.S.A.
Phone: (800)247-6113, (847)675-0720, Fax: (847)675-2140
Copyright by Scientific Software International, Inc., 1981-99
Use of this program is subject to the terms specified in the
Universal Copyright Convention.
Website: www.ssicentral.com

The following lines were read from file C:\SAMD\CHAPTERS\EXAMPLES\EXAMP4-3.SPL:

!Examp4-3.spl
{Raw Data From File: Examp4-2.txt

DA NI=12 MA = KM XM = 9

RA FI=C:\SAMD\Chapter4\Examples\Examp4-2.txt
LA

Q5 Q7 Q8 Q12 Q13 Q14

Q6 Q9 Q10 Q11 Q17 Q18

MO NX = 12 NK = 1 PH = ST TD = SY

LK

FactOne !Competence Destroying

FR LX(1,1) LX(2,1) LX(3,1) LX(4,1) LX(5,1) LX(6,1) C
LX(7,1) LX(8,1) LX(9,1) LX(10,1) LX(11,1) LX(12,1) C
TD(3,2) TD(6,5) TD(8,7) TD(10,8) TD(10,7)

Path Diagram

OU SE TV RS MR FS AD = 50 MI

!Examp4-3.spl
Number of Input Variables 12
Number of Y - Variables 0
Number of X - Variables 12
Number of ETA - Variables 0
Number of KSI - Variables 1
Number of Observations 134

Covariance Matrix to be Analyzed

Q5 Q7 08 Q12 013 014
Q5 1.00
Q7 0.46 1.00
08 0.57 0.74 1.00
Q12 0.53 0.60 0.64 1.00
Q13 0.43 0.40 0.51 0.49 1.00
014 0.40 0.44 0.58 0.56 0.59 1.00
Q6 -0.13 -0.27 -0.20 -0.36 -0.06 -0.19
Q9 -0.17 -0.26 -0.18 -0.38 -0.08 -0.11
010 -0.13 -0.27 -0.22 -0.40 -0.19 -0.26
Q11 -0.26 -0.25 -0.23 -0.36 -0.18 -0.19
Q17 -0.19 -0.29 -0.32 -0.34 -0.26 -0.32
018 -0.20 -0.27 -0.21 -0.40 -0.10 -0.22

Fig. 4.15 LISREL output of model with single factor (examp4-3.out)
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