
Hubert Gatignon

Statistical 
Analysis of 
Management 
Data
 Third Edition 



Statistical Analysis of Management Data





Hubert Gatignon

Statistical Analysis
of Management Data

Third Edition



Hubert Gatignon
INSEAD
Fontainebleau Cedex, France

Statistical Analysis of Management Data. 1st Edition. Kluwer Academic Publishers, 2003
Statistical Analysis of Management Data. 2nd Edition. Springer Science+Business Media,
LLC, 2010

ISBN 978-1-4614-8593-3 ISBN 978-1-4614-8594-0 (eBook)
DOI 10.1007/978-1-4614-8594-0
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013945080

© Springer Science+Business Media New York 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To my daughters, Aline and Valérie





Preface

Preface to First Edition

I am very indebted to a number of people without whom I would not have

envisioned this book. First, Paul Green helped me tremendously in the preparation

of the first doctoral seminar I taught at the Wharton School. The orientations and

objectives set for that book reflect those he had for the seminar on data analysis

which he used to teach before I did. A second individual, Lee Cooper at UCLA, was

determinant in the approach I used for teaching statistics. As my first teacher of

multivariate statistics, the exercise of having to program all the methods in APL

taught me the benefits of such an approach for the complete understanding of this

material. Finally, I owe a debt to all the doctoral students in the various fields of

management, both at Wharton and INSEAD, who have, by their questions and

feedback, helped me develop this approach. I hope it will benefit future students in

learning these statistical tools, which are basic to academic research in the field of

management especially. Special thanks go to Bruce Hardie who helped me put

together some of the databases and to Frédéric Dalsace who carefully identified

sections that needed further explanation and editing. Also, my research assistant at

INSEAD, Gueram Sargsyan, was instrumental in preparing the examples used in

this manual to illustrate the various methods.

Preface to Second Edition

This second edition reflects a slight evolution in the methods for analysis of data for

research in the field of management and in related fields in the social sciences. In

particular, it places a greater emphasis on measurement models. This new version

includes a separate chapter on confirmatory factor analysis, with new sections on

second order factor analytic models and multiple group factor analysis. A new,

separate section on analysis of covariance structure discusses multigroup problems

vii



that are particularly useful for testing moderating effects. Some fundamental

multivariate methods such as canonical correlation analysis and cluster analysis

have also been added. Canonical correlation analysis is useful because it helps

better understand other methodologies already covered in the first version of this

book. Cluster analysis remains a classic method used across fields and in applied

research.

The philosophy of the book remains identical to that of its original version,

which I have put in practice continuously in teaching this material in my doctoral

classes. The objectives articulated in Chap. 1 have guided the writing of the first

edition of this book but also of this new edition.

In addition to all the individuals I am endebted to and who have been identified

in the first edition of this book, I would like to express my thanks to the cohorts of

students since then. The continuous feedback has helped select the new material

covered in this book with the objective to improve the understanding of the

material. Finally, I would like to thank my assistant of fifteen years, Georgette

Duprat whose commitment to detail never fails.

Preface to Third Edition

The methods for analyzing data are evolving rapidly as are the software packages

that are available. On the one hand, this software, combined with more sophisti-

cated hardware, is increasingly user-friendly. On the other hand, the theories that

are being empirically tested and the large databases that have become more easily

available require more complex statistical methodologies. While preserving the

original objective to provide foundations for the analysis of such data, this third

edition develops further those methodologies that are particularly well suited to

data analysis in the social sciences. This explains the extensive new chapter on the

analysis of mediation and moderation effects. For each of these methods, this

edition also contains illustrations of analysis using STATA. I have also introduced

XLSTAT as an alternative to multidimensional scaling because of its flexibility and

ease of use as Excel macros. I would like to thank especially all my students at

INSEAD who have provided feedback on the drafts of these chapters. Particular

thanks go to Kathy Sheram who has advised me in editing the third edition of this

book. Her professionalism and precision allowed me to communicate more clearly.

This is particularly important for social scientists who may not have a technical

background. Kathy contributed immensely to presenting the complex material of

this book with concision, precision, and clarity.

viii Preface

http://dx.doi.org/10.1007/978-1-4614-8594-0_1


Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Develop the Student’s Knowledge of the

Technical Details of Various Techniques

for Analyzing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Expose the Student to Applications and

Hands-On Use of Various Computer Programs

for Carrying Out Statistical Analyses of Data . . . . . . . . . . . . . 3

1.3 Types of Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Definition of Different Types of Scales . . . . . . . . . . . . . . . . . . . 4

1.3.2 The Impact of the Type of Scale

on Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Topics Covered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Pedagogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Multivariate Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Univariate Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Bivariate Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Generalization to Multivariate Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Tests About Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Sampling Distribution of Sample Centroids . . . . . . . . . . . . . . 12

2.4.2 Significance Test: One-Sample Problem . . . . . . . . . . . . . . . . . . 13

2.4.3 Significance Test: Two-Sample Problem . . . . . . . . . . . . . . . . . 16

2.4.4 Significance Test: K-Sample Problem . . . . . . . . . . . . . . . . . . . . 17

2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Test of the Difference Between Two Mean

Vectors: One-Sample Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.2 Test of the Difference Between Several

Mean Vectors: K-Sample Problem . . . . . . . . . . . . . . . . . . . . . . . 21

ix



2.6 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Reliability Alpha, Principal Component Analysis,

and Exploratory Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Notions of Measurement Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Definition of a Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Parallel Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.3 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.4 Composite Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Exploratory Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Axis Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Variance-Maximizing Rotations (Eigenvalues

and Eigenvectors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.4 Exploratory Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Confirmatory Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Confirmatory Factor Analysis: A Strong Measurement Model . . . . 77

4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.2 Test of Significance of Model Parameters . . . . . . . . . . . . . . . . 84

4.2.3 Factor Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Summary Procedures for Scale Construction . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Exploratory Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.2 Confirmatory Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.3 Reliability Coefficient Alpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.4 Discriminant Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.5 Convergent Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Second-Order Confirmatory Factor Analysis . . . . . . . . . . . . . . . . . . . . . 86

4.5 Multi-Group Confirmatory Factor Analysis . . . . . . . . . . . . . . . . . . . . . 88

4.6 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6.1 Example of Confirmatory Factor Analysis . . . . . . . . . . . . . . . . 91

4.6.2 Example of Model to Test Discriminant

Validity Between Two Constructs . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.3 Example of Model to Assess the Convergent

Validity of a Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.6.4 Example of Second-Order Factor Model . . . . . . . . . . . . . . . . . 123

4.6.5 Example of Multi-Group Factor Analysis . . . . . . . . . . . . . . . . 126

4.7 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

x Contents



5 Multiple Regression with a Single Dependent Variable . . . . . . . . . . . . . 155

5.1 Statistical Inference: Least Squares and Maximum

Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.1.1 The Linear Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.1.2 Point Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.1.3 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . 159

5.1.4 Properties of Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.1.5 R-Squared as a Measure of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.2 Pooling Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.2.1 Linear Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.2.2 Pooling Tests and Dummy Variable Models . . . . . . . . . . . . . . 172

5.2.3 Strategy for Pooling Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.3 Examples of Linear Model Estimation with SAS

and STATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.4 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6 System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.1 Seemingly Unrelated Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.1.1 Set of Equations with Contemporaneously

Correlated Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.1.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.1.3 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.2 A System of Simultaneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.2.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.2.2 Two-Stage Least Squares (2SLS) . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.2.3 Three-Stage Least Squares (3SLS) . . . . . . . . . . . . . . . . . . . . . . . 196

6.3 Simultaneity and Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.3.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.3.2 Order and Rank Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.4.1 Structure of Γ Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.4.2 Structure of Σ Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.4.3 Test of Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.4.4 Use of 3SLS Versus 2SLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.5 Examples of Estimation of Systems of Equations

Using SAS and STATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.5.1 Seemingly Unrelated Regression Example . . . . . . . . . . . . . . . 203

6.5.2 Two-Stage Least Squares Example . . . . . . . . . . . . . . . . . . . . . . . 209

6.5.3 Three-Stage Least Squares Example . . . . . . . . . . . . . . . . . . . . . . 213

6.6 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7 Canonical Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.1 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.1.1 Canonical Loadings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.1.2 Canonical Redundancy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 221

Contents xi



7.2 Testing the Significance of the Canonical Correlations . . . . . . . . . . . 221

7.3 Multiple Regression as a Special Case of Canonical

Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.5 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

8 Categorical Dependent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8.1 Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8.1.1 The Discriminant Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.1.2 Discriminant Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.1.3 Classification and Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8.2 Quantal Choice Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

8.2.1 The Difficulties of the Standard Regression Model

with Categorical Dependent Variables . . . . . . . . . . . . . . . . . . . . 240

8.2.2 Transformational Logit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

8.2.3 Conditional Logit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

8.2.4 Fit Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

8.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

8.3.1 Example of Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . 251

8.3.2 Example of Multinomial Logit: Case 1 Analysis

Using LIMDEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

8.3.3 Example of Conditional Logit: Case 2 Analysis

Using LIMDEP and STATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

8.4 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

9 Rank-Ordered Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

9.1 Conjoint Analysis: MONANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

9.1.1 Effect Coding Versus Dummy Variable Coding . . . . . . . . . . 269

9.1.2 Design Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

9.1.3 Estimation of Part-Worth Coefficients . . . . . . . . . . . . . . . . . . . . 276

9.2 Ordered Probit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

9.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

9.3.1 Example of MONANOVA Using PC-MDS

and XLSTAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

9.3.2 Example of Conjoint Analysis with Interval

Scale Rating Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

9.3.3 Example of Ordered Probit Analysis Using LIMDEP . . . . . 289

9.4 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

10 Error in Variables: Analysis of Covariance

Structure – Structural Equation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

10.1 Impact of Imperfect Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

10.1.1 Effect of Errors-in-Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

10.1.2 Reverse Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

10.1.3 Case with Multiple Independent Variables . . . . . . . . . . . . . . 300

xii Contents



10.2 Analysis of Covariance Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

10.2.1 Description of Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

10.2.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

10.2.3 Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

10.2.4 Test of Significance of Model Parameters . . . . . . . . . . . . . . 307

10.2.5 Simultaneous Estimation of Measurement

Model Parameters with Structural Relationship

Parameters Versus Sequential Estimation . . . . . . . . . . . . . . 307

10.2.6 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

10.2.7 Special Cases of Analysis of Covariance Structure . . . . . 308

10.3 Analysis of Covariance Structure with Means . . . . . . . . . . . . . . . . . . 310

10.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

10.4.1 Example of Structural Model with Measurement

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

10.5 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

11 Testing Mediation and Moderation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 349

11.1 Mediation vs. Moderation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

11.1.1 Mediation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

11.1.2 Moderation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

11.1.3 Mediated Moderation and Moderated Mediation

Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

11.2 Testing Mediation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

11.2.1 Baron and Kenny’s Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 354

11.2.2 Best Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

11.2.3 Sequential Multiple Mediation Effects . . . . . . . . . . . . . . . . . 370

11.2.4 Testing Mediation When Constituent Paths

Are Nonlinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

11.2.5 Experimental vs. Non-experimental Data . . . . . . . . . . . . . . 382

11.2.6 Regression vs. Structural Equation Modeling . . . . . . . . . . 383

11.2.7 Other Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

11.3 Testing Moderation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

11.3.1 Moderated Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

11.3.2 Incorporating Moderating Effects in Analysis

of Covariance Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

11.4 Testing Moderated Mediation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

11.5 Stating Mediation and Moderation Effect Hypotheses . . . . . . . . . . 446

11.5.1 Stating Hypotheses About Mediation . . . . . . . . . . . . . . . . . . 446

11.5.2 Stating Hypotheses About Moderation . . . . . . . . . . . . . . . . . 446

11.6 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

12 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

12.1 The Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

12.1.1 Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

12.1.2 The Centroid Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

Contents xiii



12.1.3 Ward’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

12.1.4 Nonhierarchical Clustering: K-Means Method . . . . . . . . . 462

12.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

12.2.1 Example of Clustering with the Centroid Method . . . . . . 463

12.2.2 Example of Clustering with Ward’s Method . . . . . . . . . . . 471

12.2.3 Examples of K-Means Analysis . . . . . . . . . . . . . . . . . . . . . . . . 472

12.3 Evaluation and Interpretation of Clustering Results . . . . . . . . . . . . . 472

12.3.1 Determining the Number of Clusters . . . . . . . . . . . . . . . . . . . 476

12.3.2 Size, Density, and Separation of Clusters . . . . . . . . . . . . . . 478

12.3.3 Tests of Significance on Variables Other

than Those Used to Create Clusters . . . . . . . . . . . . . . . . . . . . 483

12.3.4 Stability of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

12.4 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

13 Analysis of Similarity and Preference Data . . . . . . . . . . . . . . . . . . . . . . . . . 487

13.1 Proximity Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

13.1.1 Metric Versus Nonmetric Data . . . . . . . . . . . . . . . . . . . . . . . . . 487

13.1.2 Unconditional Versus Conditional Data . . . . . . . . . . . . . . . . 488

13.1.3 Derived Measures of Proximity . . . . . . . . . . . . . . . . . . . . . . . . 488

13.1.4 Alternative Proximity Matrices . . . . . . . . . . . . . . . . . . . . . . . . 489

13.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

13.2.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

13.2.2 Stress as an Index of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

13.2.3 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

13.2.4 Minimum Number of Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . 492

13.2.5 Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

13.2.6 Interpretation of MDS Solution . . . . . . . . . . . . . . . . . . . . . . . 493

13.2.7 The KYST Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

13.3 Individual Differences in Similarity Judgments . . . . . . . . . . . . . . . . 494

13.4 Analysis of Preference Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

13.4.1 Vector Model of Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . 495

13.4.2 Ideal Point Model of Preferences . . . . . . . . . . . . . . . . . . . . . . 496

13.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

13.5.1 Example of KYST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

13.5.2 Example of INDSCAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

13.5.3 Example of PROFIT (Property Fitting) Analysis . . . . . . 508

13.5.4 Example of MDPREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

13.5.5 Example of PREFMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

13.6 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

14 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

14.1 Appendix A: Rules in Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 543

14.1.1 Vector and Matrix Differentiation . . . . . . . . . . . . . . . . . . . . . 543

14.1.2 Kronecker Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

xiv Contents



14.1.3 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

14.1.4 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

14.2 Appendix B: Statistical Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

14.2.1 Cumulative Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . 544

14.2.2 Chi-Square Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

14.2.3 F Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

14.3 Appendix C: Description of Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 547

14.3.1 The MARKSTRAT® Environment . . . . . . . . . . . . . . . . . . . . . 547

14.3.2 Marketing Mix Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

14.3.3 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

14.3.4 Indup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

14.3.5 Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

14.3.6 Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Contents xv



Chapter 1

Introduction

This introduction presents important insights into the basic learning philosophy that

underpins the presentation style of the statistical methods and techniques explored

in this book. It discusses the types of measurements that are available to researchers

and how these measurements often determine what statistical methods may be used

to analyze particular data. Indeed, as this first chapter describes, the nature of the

measurement scales has determined the structure of this book.

1.1 Overview

This book covers multivariate statistical analyses that are important for researchers

in all fields of management whether finance, production, accounting, marketing,

strategy, technology, or human resources management. Although multivariate

statistical techniques such as those described in this book play key roles in funda-

mental disciplines of the social sciences (e.g., economics and econometrics or

psychology and psychometrics), the methodologies particularly relevant to and

typically used in management research are the central focus of this study.

This book is especially designed to provide doctoral students with a theoretical

knowledge of the basic concepts underlying the most important multivariate

techniques and with an overview of actual applications in various fields. The

book addresses both the underlying mathematics and problems of application. As
such, a reasonable level of competence in both statistics and mathematics is needed.

This book is not intended as a first introduction to statistics and statistical analysis.

Instead, it assumes that the student is familiar with basic univariate statistical

techniques. The book presents the techniques in a fundamental way but in a format

accessible to students in a doctoral program, as well as to practicing academicians

and data analysts. With this in mind, the reader may wish to review some basic

statistics and matrix algebra such as those provided in the following books:

H. Gatignon, Statistical Analysis of Management Data,
DOI 10.1007/978-1-4614-8594-0_1, © Springer Science+Business Media New York 2014
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Green, Paul E. (1978), Mathematical Tools for Applied Multivariate Analysis,
New York, NY: Academic Press, [Chapters 2–4].

Maddala, Gangadharrao S. (1977), Econometrics, New York, NY: McGraw Hill,

Inc. [Appendix A].

This book offers a clear, succinct exposition of each technique, with emphasis on

when it is appropriate to use each technique and how to do so. The focus is on the

essential aspects that a working researcher will encounter, in short, on using

multivariate analysis appropriately through an understanding of the foundations

of the methods to gain valid and fruitful insights into management problems. This

book presents methodologies for analyzing primary or secondary data typically

used by academics as well as analysts in management research and provides an

opportunity for the researcher to gain hands-on experience with such methods.

1.2 Objectives

The main objectives of this book are:

1. To develop the student’s knowledge of the technical details of various

techniques for analyzing data.

2. To expose students to applications and hands-on use of various computer

programs: This experience will enable students to carry out statistical analyses

of their own data. Commonly available software is used throughout the book as

much as possible, across methodologies, to avoid having to learn multiple

systems, each with its own specific data manipulations and commands. In

particular, most analyses are demonstrated with SAS and STATA. However,

several additional statistical packages are used when particularly adapted to

specific types of analysis, e.g., LIMDEP, LISREL, or XLSTAT.

1.2.1 Develop the Student’s Knowledge of the Technical
Details of Various Techniques for Analyzing Data

The first objective is to prepare the researcher with the basic technical knowledge

required to understand the methods, to be able to use them appropriately, to know

their limitations, and to access more advanced material about them. This requires a

thorough understanding of the fundamental properties of the techniques. “Basic”

knowledge means the book will not go into the more advanced issues of the

methodologies. Understanding of such issues should be acquired later through

specialized, more advanced study on the specific topics. The objective of this

book is to provide enough detail for what is the minimum knowledge expected

from a doctoral candidate in management studies or an academic researcher in

management.
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1.2.2 Expose the Student to Applications and Hands-On Use
of Various Computer Programs for Carrying Out
Statistical Analyses of Data

While the basic statistical methods corresponding to the various types of analysis

are necessary, they are not sufficient to do research. The use of any method requires

the knowledge of the statistical software corresponding to these analyses. It is

indispensable that students learn both the statistical theory and the practice of

using these methods at the same time. A very effective, albeit time-consuming,

way to ensure that the intricacies of a technique are mastered is by programming the

software oneself. A quicker way is to ensure that the use of the software coincides

with the learning of the method by associating application examples with the

abstract knowledge of the method and by analyzing data oneself using these

methods.

Consequently, in this book each chapter contains four sections. The first section

presents the methods from a theoretical point of view with the various properties of

the method. The second section shows an example of an analysis with instructions

on how to use a particular software program appropriate for that analysis. The third

section gives an assignment so that students can actually practice the method of

analysis. The data sets for these assignments are described in Appendix C (Chap. 14)

and can be downloaded from the Web page of Hubert Gatignon at http://www.

insead.edu/facultyresearch/faculty/profiles/hgatignon. Finally, the fourth section

consists of a list of reference articles that use such techniques appropriately and

serve as templates. Selected readings could have been reprinted in this book for each

application; however, few articles illustrate all the facets of the techniques. Offering

a range of articles allows students to choose the applications that correspond best to

their interests. By accessing multiple articles in the area of interest, students enrich

their learning. All these articles illustrating the particular multivariate techniques

used in empirical analysis are drawn from the major research journals in the field of

management.

1.3 Types of Scales

Data used in management research are obtained from existing sources (secondary

data) such as data published by Ward for automobile sales in the USA or from

vendors who collect data, such as panel data. Data are also collected for the explicit

purpose of the study (primary data): survey data, scanner data, or panels.

In addition to this variety of data sources, differences in the type of data that are

collected can be critical for their analysis. Some data are continuous measures, for

example, the age of a person, with an absolute starting point at birth or the distance

between two points. Some commonly used data do not have such an absolute

starting point, for example, temperature. Yet in both cases, i.e., temperatures and

1.3 Types of Scales 3

http://dx.doi.org/10.1007/978-1-4614-8594-0_14
http://www.insead.edu/facultyresearch/faculty/profiles/hgatignon
http://www.insead.edu/facultyresearch/faculty/profiles/hgatignon


distances, multiple units of measurement exist throughout the world. These

differences in the type of data are critical because the appropriateness of data

analysis methods varies depending on the type of data at hand. In fact, very often

the data may have to be collected in a certain way in order to be able to test

hypotheses using the appropriate methodology. Failure to collect the appropriate

type of data would prevent performing the test.

In this first chapter, we discuss the different types of scales that can be found in

measuring variables used in management research.

1.3.1 Definition of Different Types of Scales

Scales are quantitative measures of a particular construct, usually not observed

directly. Four basic types of scales can categorize management measurements:

• Ratio

• Interval

• Rank order or ordinal

• Categorical or nominal

1.3.2 The Impact of the Type of Scale on Statistical Analysis

The nature of analysis depends in particular on the scale of the variable(s). Table 1.1

summarizes the most frequently used statistics that are permissible according to the

scale type. The order of the scales in the first column of Table 1.1 (from the top with

“nominal” to the bottom with “ratio”) is hierarchical in the sense that statistics that

are permissible for a scale (a row of Table 1.1) are also permissible for the scale(s)

below it. For example, a median is a legitimate statistic for an ordinal-scale variable

but is also legitimate for an interval or a ratio scale. The reverse is not true; for

example, a mean is not legitimate for an ordinal scale.

1.4 Topics Covered

This book presents the major methods of analysis that have been used in the recent

management research literature. A survey of the leading journals in the various

fields of management was conducted to identify these methods. This survey

revealed interesting observations.

It is striking that the majority of the analyses involve the estimation of a single

equation or of several equations independent of one another. Analyses involving a

system of equations represent a very small percentage of the analyses performed in

these articles. This appears at first glance surprising given the complexity of
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management phenomena. Possibly some of the simultaneous relationships analyzed

are reflected in methodologies that explicitly consider measurement errors; these

techniques appear to have grown in recent years. This is why the methodologies

used for measurement modeling receive special attention in this book. Factor

analysis is a fundamental method found in a significant proportion of the studies,

typically to verify the unidimensionality of the constructs measured. The more

advanced aspects such as second-order factor analysis and multiple-group factor

analysis have gained popularity and are also discussed. Choice modeling has been

an important topic, especially in marketing but also in the other fields of manage-

ment, with studies estimating probit or logit models. A still very small percentage of

articles use these models for ordered choice data (i.e., where the data reflect only the

order in which brands are ranked from best to worst). Analysis of proximity data

concerns few studies but cluster analysis and multidimensional scaling remain

favorite methods for practice analysts.

Based on these survey results, the topics listed below were selected. They have

been classified according to the type of key variable(s) that is of primary interest in

the analysis. Indeed, as we discuss in Chap. 2 the nature of the criterion (also called

dependent or endogenous) variable(s) determines the type of statistical analysis that

may be performed. Consequently, the first issue that we address concerns the nature

and properties of variables and the process of generating scales with the appropriate

statistical procedures, followed by discussions of the various statistical methods of

data analysis.

Table 1.1 Scales of measurement and their properties

Scale Mathematical group structure Permissible statistics Typical examples

Nominal Permutation group

y ¼ f(x)

[f(x) means any one-to-one

correspondence]

• Frequency

distribution

• Mode

• Numbering of brands

• Assignment of numbers

to types of products

or models

• Gender of consumers

• Organization types

Ordinal Isotonic group

y ¼ f(x)

[f(x) means any

increasing monotonic

function]

• Median

• Percentiles

• Order (Spearman)

correlations

• Sign test

• Order of entry

• Rank order of preferences

Interval General linear group

y ¼ a + bx

b > 0

• Mean

• Average deviation

• Standard deviation

• Product–moment

correlation

• t test

• F test

• Likert scale items

(agree–disagree)

• Semantic scale items

(ratings on opposite

adjectives)

Ratio Similarity group

y ¼ cx

c > 0

• Geometric mean

• Coefficient of

variation

• Sales

• Market share

• Advertising expenditures

Adapted from Stevens (1962), p. 25, Stevens (1959), p. 27, and Green and Tull (1970), p.181
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Introduction to multivariate statistics and tests about means

• Multivariate analysis of variance

Multiple item measures

• Reliability alpha

• Principle component analysis

• Exploratory factor analysis

• Confirmatory factor analysis

• Second-order factor analysis

• Multi-group factor analysis

Canonical correlation analysis

Single-equation econometrics

• Ordinary least squares

• Generalized least squares

• Tests of homogeneity of coefficients: pooling tests

System of equations econometrics

• Seemingly unrelated regression

• Two-stage least squares

• Three-stage least squares

Categorical dependent variables

• Discriminant analysis

• Quantal choice models: logit

Rank-ordered data

• Conjoint analysis

• Ordered probit

Analysis of covariance structure—Structural equation models

• LISREL

Testing mediation and moderation effects

Analysis of similarity data

• Cluster analysis

• Multidimensional scaling

A new chapter (Chap. 11) has been added in this third edition of Statistical
Analysis of Management Data to reflect the increased use of mediation and

moderation analysis in management research. This chapter covers the various

techniques that are adapted to test theories that involve such processes.

6 1 Introduction
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1.5 Pedagogy

Three key learning outcomes are necessary in order to achieve the objectives of this

book:

1. Having sufficient knowledge of statistical theory to be able to understand the

methodologies, when they are applicable and when they are not appropriate.

2. Being able to perform such analyses using the proper statistical software.

3. Understanding how these methodologies have been applied in management

research.

This book differs from others in that it is the only text on multivariate statistics or

data analysis that addresses the specific needs of doctoral education. The three

outcomes outlined above are weighted differently. This book emphasizes the first

outcome by providing the mathematical and statistical analyses necessary to fully

understand the given methodologies. This is in contrast to other books that prefer

primarily or exclusively a verbal description of the method.

This book favors the understanding of the rationale for modeling choices, issues,

and problems. While the verbal description of a method may be more easily

accessible to a wider audience, it is often more difficult to follow the rationale,

which is based on mathematics. For example, it is difficult to understand the

problem of multicollinearity without understanding the effect on the determinant

of the covariance matrix that needs to be inverted. The learning that results from

verbal presentation tends, therefore, to be more mechanical.

This book also differs in that, instead of choosing only a few articles to illustrate

the applications of the methods, as would be found in a book of readings (some-

times with short introductions), a broad list of application readings is provided.

These readings tend to be relatively easy to access, especially with services

available through the Internet. They cover a large cross section of examples and a

history of the literature in this domain.

Finally, the examples of analyses are relatively self-explanatory and, although

some explanations of the statistical software used are provided with each example,

this book does not intend to replace the instruction manuals of those particular

software packages. The reader is referred to those packages for details.

In summary, this book puts the emphasis on understanding the statistical meth-

odology while providing enough information for the reader to develop skills in

performing the analyses and in understanding how to apply them to management

research problems.

More specifically, the learning of this material involves two parts: the learning of

the statistical theory behind the technique and the learning of how to use the

technique. Although there may be different ways to combine these two experiences,

we recommend that students (1) learn the theory by reading the sections where the

methodologies are presented and discussed, (2) study an actual example of the

statistical software package (e.g., SAS, STATA, LIMDEP, LISREL, and other

specialized packages) that is used to apply the methodology, (3) apply the technique
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themselves using the data sets available from the Web page of Hubert Gatignon

at http://www.insead.edu/facultyresearch/faculty/profiles/hgatignon, and finally,

(4) explore application issues as illustrated by applications found in prior research

and listed at the end of each chapter.

In addition to the books and articles listed in each chapter, the following books

are highly recommended to further develop the student’s skills in various methods

of data analysis. Each of these books is more specialized and covers only a subset of

the methods presented in this book. However, they are indispensable complements

for students wishing to become proficient in the techniques used in research.

Bibliography

Green, P. E., & Tull, D. S. (1970). Research for marketing decisions. Englewood Cliffs, NJ:

Prentice-Hall.

Greene, W. H. (1993). Econometric analysis. New York: MacMillan.

Hanssens, D. M., Parsons, L. J., & Shultz, R. L. (1990).Market response models: econometric and
time series analysis. Norwell: Kluwer.

Judge, G. G., Griffiths, W. E., Carter Hill, R., Lutkepohl, H., & Lee, T.-C. (1985). The theory and
practice of econometrics. New York, NY: Wiley.

Stevens, S. S. (1959). Measurement, psychophysics and utility. In C. W. Churchman & P. Ratoosh

(Eds.), Measurement: Definitions and theories. New York, NY: Wiley.

Stevens, S. S. (1962). Mathematics, measurement and psychophysics. In S. S. Stevens (Ed.),

Handbook of experimental psychology. New York, NY: Wiley.

8 1 Introduction

http://www.insead.edu/facultyresearch/faculty/profiles/hgatignon


Chapter 2

Multivariate Normal Distribution

In this chapter, we define the univariate and multivariate normal distribution

density functions and then we discuss the tests of differences of means for multiple

variables simultaneously across groups.

2.1 Univariate Normal Distribution

To review, in the case of a single random variable, the probability distribution or the

density function of that variable x is represented by Eq. (2.1):

Φ xð Þ ¼ 1ffiffiffiffiffi
2π

p
σ
exp � 1

2σ2
x� μð Þ2

� �
(2.1)

2.2 Bivariate Normal Distribution

The bivariate distribution represents the joint distribution of two random variables.

The two random variables x1 and x2 are related to each other in the sense that they

are not independent of each other. This dependence is reflected by the correlation ρ
between the two variables x1 and x2. The density function for the two variables

jointly is

Φ x1; x2ð Þ ¼ 1

2πσ1σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p exp � 1

2 1� ρ2ð Þ
x1 � μ1ð Þ2

σ21
þ x2 � μ2ð Þ2

σ22

"(

� 2ρ x1 � μ1ð Þ x2 � μ2ð Þ
σ1σ2

��
(2.2)

This function can be represented graphically as in Fig. 2.1.

H. Gatignon, Statistical Analysis of Management Data,
DOI 10.1007/978-1-4614-8594-0_2, © Springer Science+Business Media New York 2014
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The isodensity contour is defined as the set of points for which the values of x1
and x2 give the same value for the density function Φ. This contour is given by

Eq. (2.3) for a fixed value of C, which defines a constant probability:

x1 � μ1ð Þ2
σ21

þ x2 � μ2ð Þ2
σ22

� 2ρ
x1 � μ1ð Þ x2 � μ2ð Þ

σ1σ2
¼ C (2.3)

Equation (2.3) defines an ellipse with centroid (μ1, μ2). This ellipse is the locus of
points representing the combinations of the values of x1 and x2 with the same

probability, as defined by the constant C (Fig. 2.2).

For various values of C, we get a family of concentric ellipses (at a different cut, i.e.,

cross section of the density surface with planes at various elevations) (see Fig. 2.3).

(x1,x2)

x2

x1

Fig. 2.1 The bivariate

normal distribution

X2

X1

µ2

µ1

Fig. 2.2 The locus

of points of the bivariate

normal distribution

at a given density level
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The angle θ depends only on the values of σ1, σ2, and ρ. The higher the

correlation between x1 and x2, the steeper the line going through the origin with

angle θ, i.e., the bigger the angle.

2.3 Generalization to Multivariate Case

Let us represent the bivariate distribution in matrix algebra notation in order to

derive the generalized format for more than two random variables.

The covariance matrix of (x1, x2) can be written as

Σ ¼ σ21 ρσ1σ2
ρσ1σ2 σ22

� �
(2.4)

The determinant of the matrix Σ is

Σj j ¼ σ21σ
2
2 1� ρ2
� �

(2.5)

Equation (2.3) can now be re-written as

C ¼ x1 � μ1, x2 � μ2½ �Σ�1 x1 � μ1
x2 � μ2

� �
(2.6)

where

Σ�1 ¼ 1= σ21σ
2
2 1� ρ2
� �	 
 σ22 � ρσ1σ2

�ρσ1σ2 σ21

� �
¼ 1

1� ρ2

1

σ21

�ρ

σ1σ2

�ρ

σ1σ2

1

σ22

2
6664

3
7775 (2.7)

X2

X1

Fig. 2.3 Concentric

ellipses at various

density levels
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Note that Σ�1 ¼ jΣj�1 � matrix of cofactors.

Let

X ¼ x1 � μ1
x2 � μ2

� �

Then X0Σ�1X ¼ χ2, which is a quadratic form of the variables x and is,

therefore, a chi-square variate.

Also, because jΣj ¼ σ1
2σ2

2(1 � ρ2), Σj j1=2 ¼ σ1σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2ð Þp

, and consequently,

1

2πσ1σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p ¼ 2πð Þ�1 Σj j�1=2
(2.8)

The bivariate distribution function can now be expressed in matrix notation as

Φ x1; x2ð Þ ¼ 2πð Þ�1 Σj j�1
2e�

1
2
X

0Σ�1X (2.9)

Now, more generally with p random variables (x1, x2, . . ., xp), let

x ¼
x1
x2
⋮
xp

2
664

3
775; μ ¼

μ1
μ2
⋮
μp

2
664

3
775

The density function is

Φ xð Þ ¼ 2πð Þ�p=2 Σj j�1
2e �1

2
x�μð Þ0Σ�1 x�μð Þ

	 

(2.10)

For a fixed value of the density Φ, an ellipsoid is described. Let X ¼ x � μ.
The inequality X0Σ�1X � χ2 defines any point within the ellipsoid.

2.4 Tests About Means

2.4.1 Sampling Distribution of Sample Centroids

2.4.1.1 Univariate Distribution

A random variable is normally distributed with mean μ and variance σ2:

x � N μ; σ2
� �

(2.11)
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After n independent draws, the mean is randomly distributed with mean μ and

variance σ2/n:

x � N μ;
σ2

n

� �
(2.12)

2.4.1.2 Multivariate Distribution

In the multivariate case with p random variables, where x ¼ (x1, x2, . . ., xp)’, x is

normally distributed following the multivariate normal distribution with mean μ
and covariance Σ:

x � N μ;Σð Þ (2.13)

The mean vector for the sample of size n is denoted by

x ¼
x 1

x 2

⋮
x p

2
664

3
775

This sample mean vector is normally distributed with a multivariate normal

distribution with mean μ and covariance Σ/n:

x � N μ;
Σ
n

� �
(2.14)

2.4.2 Significance Test: One-Sample Problem

2.4.2.1 Univariate Test

The univariate test is illustrated in the following example. Let us test the hypothesis

that the mean is 150 (i.e., μ∘ ¼ 150) with the following information:

σ2 ¼ 256; n ¼ 64; x ¼ 154

Then, the z score can be computed:

z ¼ 154� 150ffiffiffiffiffiffiffiffi
256

64

r ¼ 4

16

8

¼ 2
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At α ¼ 0.05 (95% confidence interval), z ¼ 1.96, as obtained from a normal

distribution table. Therefore, the hypothesis is rejected. The confidence interval is

154� 1:96� 16

8
, 154þ 1:96� 16

8

� �
¼ 150:08, 157:92½ �

This interval excludes 150. The hypothesis that μ∘ ¼ 150 is rejected. If the

variance σ had been unknown, the t statistic would have been used:

t ¼ x � μ∘
s=

ffiffiffi
n

p (2.15)

where s is the observed sample standard deviation.

2.4.2.2 Multivariate Test with Known Σ

Let us take an example with two random variables:

Σ ¼
25 10

10 16

" #
n ¼ 36

x ¼
20:3

12:6

" #

The hypothesis is now about the mean values stated in terms of the two

variables jointly:

H : μ∘ ¼ 20

15

� �

At the alpha level of 0.05, the value of the density function can be written as in

Eq. (2.16), which follows a chi-square distribution at the specified significance level α:

n μ∘ � xð Þ0Σ�1 μ∘ � xð Þ � χ2p αð Þ (2.16)

Computing the value of the statistics,

Σj j ¼ 25� 16� 10� 10 ¼ 300

Σ�1 ¼ 1

300

16 �10

�10 25

� �

χ2 ¼ 36� 1

300
20� 20:3, 15� 12:6ð Þ 16 �10

�10 25

� �
20� 20:3
15� 12:6

� �
¼ 15:72
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The critical value at an alpha value of 0.05 with 2 degrees of freedom is provided

by tables:

χ2p¼2 α ¼ 0:05ð Þ ¼ 5:991

The observed value is greater than the critical value. Therefore, the hypothesis

that μ ¼ 20

15

� �
is rejected.

2.4.2.3 Multivariate Test with Unknown Σ

Just as in the univariate case, Σ is replaced with the sample value S/(n�1), where

S is the sums-of-squares-and-cross-products (SSCP) matrix, which provides an

unbiased estimate of the covariance matrix. The following statistics are then used

to test the hypothesis:

Hotelling : T2 ¼ n n� 1ð Þ x � μ∘ð Þ0S�1 x � μ∘ð Þ (2.17)

where if

X
n�p

d ¼
x11 � x 1 x21 � x 2 . . .
x12 � x 1 x22 � x 2 . . .

: :
x1n � x 1 x2n � x 2 . . .

2
664

3
775

then S ¼ Xd0Xd

Hotelling showed that

n� p

n� 1ð Þp T
2 � Fp

n�p (2.18)

Replacing T2 by its expression given in Eq. (2.17) leads to

n n� pð Þ
p

x � μ∘ð Þ0S�1 x � μ∘ð Þ � Fp
n�p (2.19)

Consequently, the test is performed by computing the expression in Eq. (2.19)

and by comparing its value with the critical value obtained in an F table with p and
n-p degrees of freedom.
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2.4.3 Significance Test: Two-Sample Problem

2.4.3.1 Univariate Test

Let us define x 1 and x 2 as the means of a variable on two unrelated samples. The

test for the significance of the difference between the two means is given by

t ¼ x 1 � x 2ð Þ
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r or t2 ¼ x 1 � x 2ð Þ2

s2
n1 þ n2
n1n2

� � (2.20)

where

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þ

X
i

x21i

n1�1
þ n2 � 1ð Þ

X
i

x22i

n2�1

s

n1 � 1ð Þ þ n2 � 1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

x21i þ
X
i

x22i

n1 þ n2 � 2

vuut
(2.21)

s2 is the pooled within-groups variance. It is an estimate of the assumed common

variance σ2 of the two populations.

2.4.3.2 Multivariate Test

Let x 1ð Þ be the mean vector in sample 1 ¼
x

1ð Þ
1

x
1ð Þ
2

:
x

1ð Þ
p

2
6664

3
7775 and similarly for sample 2.

We need to test the significance of the difference between x 1ð Þ and x 2ð Þ. We will

consider first the case where the covariance matrix, which is assumed to be the same

in the two samples, is known. Then we will consider the case where an estimate of

the covariance matrix needs to be used.

Σ Is Known (The Same in the Two Samples)

In this case, the difference between the two group means is normally distributed

with a multivariate normal distribution:

x 1ð Þ � x 2ð Þ
 �

� N μ1 � μ2, Σ
1

n1
þ 1

n2

� �� �
(2.22)

The computations for testing the significance of the differences are similar to

those in Sect. 2.4.2.2 using the chi-square test.

Σ Is Unknown

If the covariance matrix is not known, it is estimated using the covariance

matrices within each group but pooled.
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Let W be the within-groups SSCP matrix. This matrix is computed from the

matrix of deviations from the means on all p variables for each of nk observations
(individuals). For each group k,

X
nk�p

d kð Þ ¼
x

kð Þ
11 � x

kð Þ
1 x

kð Þ
21 � x

kð Þ
2 . . .

x
kð Þ
12 � x

kð Þ
1 x

kð Þ
22 � x

kð Þ
2 . . .

: :
x

kð Þ
1nk

� x
kð Þ
1 x

kð Þ
2nk

� x
kð Þ
2 . . .

2
6664

3
7775 (2.23)

For each of the two groups (each k), the SSCP matrix can be derived:

Sk ¼ X
0

p�nk

d kð Þ
X

nk�p

d kð Þ (2.24)

The pooled SSCP matrix for the more general case of K groups is

W
p�p

¼ Σ
K

k¼1
Sk
p�p

(2.25)

In the case of two groups, K is simply equal to 2.

Then, we can apply Hotelling’s T, just as in Sect. 2.4.2.3, where the proper degrees
of freedom depending on the number of observations in each group (nk) are applied:

T2 ¼ x 1ð Þ � x 2ð Þ
 �0 W

n1 þ n2 � 2

n1 þ n2
n1n2

� ��1

x 1ð Þ � x 2ð Þ
 �

(2.26)

¼ n1n2 n1 þ n2 � 2ð Þ
n1 þ n2

x 1ð Þ � x 2ð Þ
 �0

W�1 x 1ð Þ � x 2ð Þ
 �

(2.27)

n1 þ n2 � p� 1

n1 þ n2 � 2ð Þp T2 � Fp
n1þn2�p�1 (2.28)

2.4.4 Significance Test: K-Sample Problem

As in the case of two samples, the null hypothesis is that the mean vectors across the

K groups are the same and the alternative hypothesis is that they are different.

Let us define Wilk’s likelihood-ratio criterion:

Λ ¼ Wj j
Tj j (2.29)

where T ¼ total SSCP matrix and W ¼ within-groups SSCP matrix.

W is defined as in Eq. (2.25). The total SSCP matrix is the sums of squares and

cross products applied to the deviations from the grand means (i.e., the overall mean

across the total sample with the observations of all the groups for each variable).

Therefore, let the mean centered data for group k be noted as
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X
nk�p

d� kð Þ ¼
x

kð Þ
11 � x 1 x

kð Þ
21 � x 2 . . .

x
kð Þ
12 � x 1 x

kð Þ
22 � x 2 . . .

: :
x

kð Þ
1nk

� x 1 x
kð Þ
2nk

� x 2 . . .

2
6664

3
7775 (2.30)

where x j is the overall mean of the j’s variate.
We create a new data matrix that comprises the centered data for each of the

groups, stacked one upon the other:

X
n x p

d� ¼
Xd� 1ð Þ

Xd� 2ð Þ

⋮
Xd� Kð Þ

2
664

3
775 (2.31)

The total SSCP matrix T is then defined as

T
p x p

¼ Xd� 0

p x n
Xd�

n x p
(2.32)

Intuitively, if we reduce the space to a single variate so that we are only dealing

with variances and no covariances,Wilk’s lambda (Λ) is the ratio of the pooledwithin-
groups variance to the total variance. If the groupmeans are the same, the variances are

equal and the ratio equals one. As the group means differ, the total variance becomes

larger than the pooled within-groups variance. Consequently, the ratio Λ becomes

smaller. Because of the existence of more than one variate, which implies more than

one variance and covariances, the within-SSCP and total-SSCP matrices need to be

reduced to a scalar in order to derive a scalar ratio. This is the role of the determinants.

However, the interpretation remains the same as for the univariate case.

It should be noted that Wilk’sΛ can be expressed as a function of the eigenvalues

of W
�1
B where B is the between-group covariance matrix (eigenvalues are

explained in the next chapter). From the definition of Λ in Eq. (2.29), it follows that

1

Λ
¼ Tj j

Wj j ¼ W�1T
�� �� ¼ W�1 Wþ Bð Þ�� �� ¼ IþW�1B

�� �� ¼ YK
i¼1

1þ λið Þ (2.33)

and consequently,

Λ ¼ 1YK
i¼1

1þ λið Þ
¼

YK
i¼1

1

1þ λið Þ (2.34)

Also, it follows that

LnΛ ¼ Ln
1YK

i¼1

1þ λið Þ
¼ �

XK
i¼1

Ln 1þ λið Þ (2.35)
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When Wilk’s Λ approaches 1, we showed that it means that the difference in

means is negligible. This is the case when Ln Λ approaches 0. However, when Λ
approaches 0, it means that the difference is large. Therefore, a large value of

� LnΛ is an indication of the significance of the difference between the means.

Based on Wilk’s Λ, we present two statistical tests: Bartlett’s V and Rao’s R.
Let N ¼ total sample size across samples, p ¼ number of variables, and K ¼

number of groups (number of samples).

Bartlett’s V is approximately distributed as a chi-square when N � 1 � (p + K)/2

is large:

V ¼ � N � 1� pþ Kð Þ=2½ �LnΛ � χ2p K�1ð Þ (2.36)

Bartlett’s V is relatively easy to calculate and can be used when

N � 1 � (p þ K)/2 is large.

Another test, Rao’s R, can be applied; it is distributed approximately as an

F variate. It is calculated as follows:

R ¼ 1� Λ1=t

Λ1=t

wt� p K � 1ð Þ=2þ 1

p K � 1ð Þ � F
ν1¼p K�1ð Þ
ν2¼wt�p K�1ð Þ=2þ1

(2.37)

where

w ¼ N � 1� pþ Kð Þ=2

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 K � 1ð Þ2 � 4

p2 þ K � 1ð Þ2 � 5

s

The parameter t is set to 1 if either the numerator or the denominator of this last

expression equals 0. The F statistic is exact when there are only one or two variables

( p) or when the number of groups (K ) equals 2 or 3.

A significant chi-square for Bartlett’s test or a significant F test for Rao’s test

indicates significant differences in the group means.

2.5 Examples

2.5.1 Test of the Difference Between Two Mean Vectors:
One-Sample Problem

In this example, the file “MKT_DATA” contains data about the market share of a

brand over seven periods, as well as the percentage of distribution coverage and the

price of the brand. These data correspond to one market, Norway. The question is

whether or not the market share, distribution coverage, and prices are similar or
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different from the data of that same brand for the rest of Europe, i.e., with values of

market share, distribution coverage, and price, respectively, of 0.17, 32.28, and

1.39. The data are shown in Table 2.1.

The SAS file showing the SAS code needed to compute the necessary statistics is

shown in Fig. 2.4. The first lines correspond to the basic SAS commands to read the

Table 2.1 Data example

for the analysis of three

variables

PERIOD M_SHARE DIST PRICE

1 0.038 11 0.98

2 0.044 11 1.08

3 0.039 9 1.13

4 0.03 9 1.31

5 0.036 14 1.36

6 0.051 14 1.38

7 0.044 9 1.34

Fig. 2.4 SAS input to perform the test of a mean vector (examp2-1.sas)
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data from the file. Here, the data file was saved as a text file from Microsoft Excel.

Consequently, the values in the file corresponding to different data points are

separated by commas. This is indicated as the delimiter (“dlm”). Also, the data

(first observation) start on line 2 because the first line is used for the names of the

variables (as illustrated in Table 2.1). The variable PERIOD is dropped so that only

the three variables needed for the analysis are kept in the SAS working data set. The

IML procedure is used to perform matrix algebra computations.

This file could easily be used for the analysis of different databases. Obviously, it

would be necessary to adapt some of the commands, especially the file name and path

and the variables.Within the IML subroutine, only two itemswould need to be changed:

(1) the variables used for the analysis and (2) the values for the null hypothesis (m_o).

The results are printed in the output file shown in Fig. 2.5.

The critical F statistic with 3 and 4 degrees of freedom at the 0.05 confidence

level is 6.591, while the computed value is 588.7, indicating that the hypothesis of

no difference is rejected.

2.5.2 Test of the Difference Between Several Mean Vectors:
K-Sample Problem

The next example considers similar data for three different countries (Belgium,

France, and the United Kingdom) for seven periods, as shown in Table 2.2. The

question is whether or not the mean vectors are the same for the three countries.

Fig. 2.5 SAS output of analysis defined in Fig. 2.4 (examp2-1.lst)
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We first present an analysis that shows the matrix computations following

precisely the equations presented in Sect. 2.4.4. These involve the same matrix

manipulations in SAS as in the prior example, using the IML procedure in SAS.

Then we present the MANOVA analysis proposed by SAS using the GLM proce-

dure. The reader who wishes to skip the detailed calculations can go directly to the

SAS GLM procedure that is illustrated in Fig. 2.8.

The SAS file that derived the computations for the test statistics is shown

in Fig. 2.6.

The results are shown in the SAS output in Fig. 2.7.

These results indicate that the Bartlett’s V statistic of 82.54 is larger than

the critical chi-square with 6 degrees of freedom at the 0.05 confidence level

(χ(df ¼ 6, α ¼ 0.05)
2 ¼ 12.59). Consequently, the hypothesis that the mean vectors

are the same is rejected. The same conclusion can be derived from Rao’s R statistic

with its value of 55.10, which is larger than the corresponding F value with 6 and

32 degrees of freedom Fν1¼6
ν2¼32 α ¼ 0:05ð Þ ¼ 2:399

 �
.

The first lines of SAS commands in Fig. 2.8 read the data file in the same manner

as in the prior examples. However, the code that follows is much simpler because

the procedure automatically performs the MANOVA tests. For that analysis, the

general procedure of the general linear model is called with the command “proc

glm”. The class statement indicates that the variable that follows (here CNTRY) is a

discrete (nominal scaled) variable. This is the variable used to determine the

K groups. K is calculated automatically according to the different values contained

Table 2.2 Data example for three variables in three countries (groups)

CNTRYNO CNTRY PERIOD M_SHARE DIST PRICE

1 BELG 1 0.223 61 1.53

1 BELG 2 0.22 69 1.53

1 BELG 3 0.227 69 1.58

1 BELG 4 0.212 67 1.58

1 BELG 5 0.172 64 1.58

1 BELG 6 0.168 64 1.53

1 BELG 7 0.179 62 1.69

2 FRAN 1 0.038 11 0.98

2 FRAN 2 0.044 11 1.08

2 FRAN 3 0.039 9 1.13

2 FRAN 4 0.03 9 1.31

2 FRAN 5 0.036 14 1.36

2 FRAN 6 0.051 14 1.38

2 FRAN 7 0.044 9 1.34

3 UKIN 1 0.031 3 1.43

3 UKIN 2 0.038 3 1.43

3 UKIN 3 0.042 3 1.3

3 UKIN 4 0.037 3 1.43

3 UKIN 5 0.031 13 1.36

3 UKIN 6 0.031 14 1.49

3 UKIN 7 0.036 14 1.56

22 2 Multivariate Normal Distribution



in the variable. On the left side of the equal sign, the model statement shows the list

of the variates for which the means will be compared. On the right side is the group

variable. The GLM procedure is in fact a regression where the dependent variable is

regressed on the dummy variables that are automatically created by SAS (different

dummy variables are created for each of the values of the grouping variable).

Fig. 2.6 SAS input to perform a test of difference in mean vectors across K groups (examp2-2.sas)
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The optional parameter “nouni” after the slash indicates that the univariate tests

should not be performed (and consequently their corresponding output will not be

shown). Finally, the last line of code is necessary to indicate that the MANOVA test

concerns the differences across the grouping variable CNTRY.

The output shown in Fig. 2.9 provides the same information as shown in Fig. 2.7.

Wilk’s Λ has the same value of 0.007787. Several other tests are provided, and they

Fig. 2.7 SAS output of test of difference across K groups (examp2-2.lst)

Fig. 2.8 SAS input for MANOVA test of mean differences across K groups (examp2-3.sas)
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all lead to the same conclusion that the differences in means are significant. In

addition to the expression of Wilk’s Λ as a function of the eigenvalues of W�1B,

three other measures are provided in the SAS output.

Pillai’s trace is defined as
XK
i¼1

λi
1þ λi

.

Fig. 2.9 SAS output for MANOVA test of mean differences across K groups (examp2-3.lst)
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Hotelling–Lawley trace is simply the sum of the eigenvalues:
XK
i¼1

λi.

Roy’s greatest root is the ratio
λmax

1þ λmax

.

These tests tend to be consistent but the numbers are different. As noted in the

SAS output, Roy’s greatest root is an upper bound to the statistic.

Similar output is provided by STATA. Figure 2.10 shows the input for

requesting MANOVA analysis in STATA.

Figure 2.11 presents the results of the analysis. It includes the within- and the

between-SSCP matrices. The command “mat list e(E)” is used to print the within-

SSCPmatrix and “mat list e(H_m)” the between-SSCPmatrix. The largest root is read

from the eigenvector computed by “e(eigenvals_m).” Finally, the command “mat list

e(aux_m)” lists the parametersm, s, and n that are used for theF values corresponding

to the various statistics shown in the output. These parameters are defined as follows:

s ¼ min K � 1, pð Þ (2.38)

m ¼ K � 1� pj j � 1ð Þ=2 (2.39)

n ¼ N � K � p� 1ð Þ=2 (2.40)

where

N ¼ total number of observations across groups;

K ¼ number of groups;

p ¼ number of variables.

For example, an approximate F statistic for Pillai’s trace V with s(2m + s + 1)

and s(2n + s + 1) degrees of freedom is

F ¼ 2nþ sþ 1ð ÞV
2mþ sþ 1ð Þ s� Vð Þ (2.41)

2.6 Assignment

In order to practice with these analyses, you will need to use the databases INDUP

and PANEL described in Appendix C. These databases provide market share and

marketing mix variables for a number of brands competing in five market segments.

You can test the following hypotheses:

Fig. 2.10 STATA input for MANOVA test of mean differences across K groups (examp2-3.do)
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1. The market behavioral responses of a given brand (e.g., awareness, perceptions,

or purchase intentions) are different across segments.

2. The marketing strategy (i.e., the values of the marketing mix variables) of

selected brands is different (perhaps corresponding to different strategic groups).

Figure 2.12 shows how to read the data within an SAS file and how to create new

files with a subset of the data saved in a format that can be read easily using the

examples provided throughout this chapter. Using the model described in the

examples above, adapt these examples to the database to perform tests of

differences across groups.

The commands to merge the INDUP and PANEL data sets in STATA are shown

in Fig. 2.13.

Fig. 2.11 STATA output for MANOVA test of mean differences across K groups (examp2-3.log)
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Fig. 2.12 Example of SAS file for reading data sets INDUP and PANEL and creating new data

files (assign2.sas)
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Chapter 3

Reliability Alpha, Principal Component

Analysis, and Exploratory Factor Analysis

In this chapter, we discuss the issues involved in building measures or scales.

We focus the chapter on two types of analyses: (1) the measurement of reliability

with Cronbach’s alpha and (2) the verification of unidimensionality using factor

analysis. We concentrate on exploratory factor analysis (EFA) and we only intro-

duce the notion of confirmatory factor analysis. In the next chapter, we develop in

detail the confirmatory factor analytic model and examine the measures of conver-

gent and discriminant validity.

3.1 Notions of Measurement Theory

3.1.1 Definition of a Measure

If T is the true score of a construct and e represents the error associated with the

measurement, the measure X is expressed as

X ¼ T þ e (3.1)

This relationship can be represented graphically as in Fig. 3.1 where the

observed variable or measure is shown in a box and the unobserved true score or

construct is distinguished by a circle. The measurement error term is represented by

the letter e. The directions of the arrows represent the “causal” directionality of the

relationships. The heads of both arrows point towards the measure X because both

the true construct and the measurement error are determinants of what is being

observed.

H. Gatignon, Statistical Analysis of Management Data,
DOI 10.1007/978-1-4614-8594-0_3, © Springer Science+Business Media New York 2014
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In addition, we assume that E[e] ¼ 0 and Cov[e,T] ¼ 0.

3.1.2 Parallel Measurements

Measures Y1 and Y2 are parallel if they meet the following characteristics:

Y1 ¼ T þ e1 (3.2)

Y2 ¼ T þ e2 (3.3)

E e1½ � ¼ E e2½ � ¼ 0 (3.4)

V e1½ � ¼ V e2½ � ¼ σ2e (3.5)

ρ e1; e2ð Þ ¼ 0 (3.6)

3.1.3 Reliability

The reliability of a measure is the squared correlation between the measure and the

true score: ρ2(X,T), also noted as ρXT
2. It is also the ratio of the true score variance

to the measured variance:

ρ2XT ¼ σ2T
σ2X

(3.7)

This can be demonstrated as follows:

σ X; Tð Þ ¼ E X � E X½ �ð Þ T � E T½ �ð Þ½ �
¼ E XT � E X½ �T þ E X½ �E T½ � � XE T½ �½ �
¼ E XT½ � � E X½ �E T½ � þ E X½ �E T½ � � E X½ �E T½ �
¼ E XT½ � � E X½ �E T½ �
¼ E T þ eð ÞT½ � � E T þ e½ �E T½ �

¼ E T2 þ eT
� �� E T½ �ð Þ2

¼ E T2
� �� E T½ �ð Þ2

¼ E T � E T½ �ð Þ2
h i

(3.8)

T X

eFig. 3.1 Representation of

simple measurement model
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This last equality can be shown as follows:

T � E T½ �ð Þ2 ¼ T2 þ E T½ �ð Þ2 � 2TE T½ � (3.9)

¼ T2 þ E T½ �ð Þ2 � 2 E T½ �ð Þ2 (3.10)

¼ T2 � E T½ �ð Þ2 (3.11)

but E[(T � E[T])2] ¼ σT
2, which is the numerator of the reliability expression.

Let us now express the correlation between the true score and the measure:

ρXT ¼ σ X; Tð Þ
σ Xð Þσ Tð Þ ¼

σ2T
σXσT

¼ σT
σX

(3.12)

) ρ2XT ¼ σ2T
σ2X

(3.13)

Therefore, the reliability can be expressed as the proportion of the observed

score variance that is the true score variance. The problem with the definition and

formulae above is that the variance of the true score is not known since the true

score is not observed. This explains the need to use multiple measures and to form

scales.

3.1.4 Composite Scales

A composite scale is built from using multiple items or components measuring the

constructs. This can be represented graphically as in Fig. 3.2. Note that by conven-

tion, circles represent unobserved constructs and squares identify observable

variables or measures.

The unweighted composite scale is the sum of the two items:

X ¼ Y1 þ Y2 (3.14)

T1 Y1

e1

T2 Y2

e2

Fig. 3.2 A graphical

representation of measures
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3.1.4.1 Reliability of a Two-Component Scale

In this section, we show that the reliability of a composite scale has a lower bound,

which is the coefficient alpha. The two components of the scale are

Y1 ¼ T1 þ e1 (3.15)

Y2 ¼ T2 þ e2 (3.16)

The composite scale corresponds to a formative index:

X ¼ Y1 þ Y2 ¼ T1 þ T2|{z} þ e1 þ e2|{z}
¼ T þ e

(3.17)

Although, a priori, T1 and T2 appear as different true scores, we will see that they
must be positively correlated, and we will show the impact of that correlation on the

reliability of the scale. As a consequence, it is best to think of these scores as

corresponding to different items of a single construct.

Computation of Coefficient α

From Eq. (3.17), the composite scale is defined as

X ¼ Y1 þ Y2 (3.18)

T ¼ T1 þ T2 (3.19)

σ2T ¼ σ2 T1ð Þ þ σ2 T2ð Þ þ 2σ T1; T2ð Þ (3.20)

However, because

σ T1ð Þ � σ T2ð Þ½ �2 � 0 (3.21)

(equality if the test is parallel), then it follows that

σ2 T1ð Þ þ σ2 T2ð Þ � 2σ T1; T2ð Þ (3.22)

This last inequality results from developing the left side of the inequality in

Eq. (3.21):

σ T1ð Þ � σ T2ð Þ½ �2 ¼ σ T1ð Þ½ �2 þ σ T2ð Þ½ �2 � 2 σ T1ð Þσ T2ð Þ½ � (3.23)

Given a positive correlation between T1 and T2 and ρ(T1,T2) < 1,

σ T1; T2ð Þ ¼ ρ T1; T2ð Þσ T1ð Þσ T2ð Þ � σ T1ð Þσ T2ð Þ (3.24)
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It follows that

σ T1ð Þ½ �2 þ σ T2ð Þ½ �2 � 2 σ T1ð Þσ T2ð Þ½ � � σ T1ð Þ½ �2 þ σ T2ð Þ½ �2 � 2 σ T1; T2ð Þ½ � (3.25)

The left side of the inequality above being positive, a fortiori, the right side is

also positive. This is the conclusion in Eq. (3.22).

It should be noted that this property is only interesting for cases where the items

(components) are positively correlated. Indeed, in the case of a negative correlation,

the inequality is dominated by the fact that the left side is greater or equal to zero.

Therefore, in cases of positively correlated items, bringing together Eqs. (3.20)

and (3.22) leads to

σ2T � 4σ T1; T2ð Þ (3.26)

Consequently, the reliability has a lower bound, which is given by

ρ2XT ¼ σ2T
σ2X

� 4σ T1; T2ð Þ
σ2X

(3.27)

But

σ Y1; Y2ð Þ ¼ E T1 þ e1ð Þ T2 þ e2ð Þ½ �
¼ E T1T2½ �
¼ σ T1; T2ð Þ (3.28)

Therefore,

ρ2XT � 4σ Y1; Y2ð Þ
σ2X

(3.29)

Since

σ2X ¼ E Y1 þ Y2ð Þ2
h i

¼ E Y2
1

� �þ E Y2
2

� �þ E 2Y1Y2½ � (3.30)

¼ σ2 Y1ð Þ þ σ2 Y2ð Þ þ 2σ Y1; Y2ð Þ (3.31)

it follows that

2σ Y1; Y2ð Þ ¼ σ2X � σ2 Y1ð Þ � σ2 Y2ð Þ (3.32)

and, therefore,

ρ2XT � 2
σ2X � σ2 Y1ð Þ � σ2 Y2ð Þ

σ2X

� �
¼ 2 1� σ2 Y1ð Þ þ σ2 Y2ð Þ

σ2X

� �
(3.33)
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This demonstrates that there is a lower bound to the reliability. If this lower

bound is high enough, it means that the actual reliability is even higher, and

therefore the scale is reliable. It is also clear from Eq. (3.33) that as the (positive)

correlation between the two items or components increases, the portion that is

subtracted from one decreases so that coefficient alpha increases. If the correlation

is zero, then coefficient alpha is zero.

3.1.4.2 Generalization to Composite Measurement with K Components

For a scale formed from K components or items,

X ¼
XK
k¼1

Yk (3.34)

The reliability coefficient alpha is a generalized form of the above calculation:

α ¼ K

K � 1
1�

XK
k¼1

σ2 Ykð Þ

σ2X

2
66664

3
77775 (3.35)

α is a lower bound estimate of the reliability of the composite scale X that is of ρXT
2.

3.2 Exploratory Factor Analysis

Factor analysis can be viewed as a method to discover or confirm the structure of a

covariance matrix. However, in the case of EFA, the analysis attempts to discover

the underlying unobserved factor structure. In the case of confirmatory factor

analysis, a measurement model is specified and tested against the observed covari-

ance matrix.

EFA is a special type of rotation. Consequently, rotations are first reviewed in

the general context of space geometry.

3.2.1 Axis Rotation

Let us consider Fig. 3.3, which shows a set of orthogonal axes X1 and X2. The vector

Y1 shows an angle θ relative to X1. Similarly, the vector Y2 forms an angle θwith X2.

The problem consists in expressing the transformation that occurs when going

from the coordinates in the original axes to the new axes. The derivation of

such a transformation can be explained with a more detailed representation as

in Fig. 3.4.

36 3 Reliability Alpha, Principal Component Analysis, and Exploratory Factor Analysis



Let us define OP ¼ r.

Applying the basic definitions of sines and cosines, we have

cosϕ ¼ y1
r

(3.36)

and

sinϕ ¼ y2
r

(3.37)

It follows that

y1 ¼ r � cosϕ (3.38)

and

y2 ¼ r � sinϕ (3.39)

Furthermore,

cos ϕþ θð Þ ¼ x1
r

(3.40)

X2

X1

Y1

Y2
Fig. 3.3 Axis rotation

x2

x2

x1 x1

y2

y2

y1

y1

P

O

Fig. 3.4 The geometry

of axis rotation
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and

sin ϕþ θð Þ ¼ x2
r

(3.41)

which leads to

x1 ¼ r � cos ϕþ θð Þ (3.42)

and

x2 ¼ r � sin ϕþ θð Þ (3.43)

Using the trigonometric rule that cos(α + β) ¼ cos α � cos β � sin α � sin β,

x1 ¼ r � cos ϕþ θð Þ ¼ r cosϕ cos θ � sinϕ sin θð Þ
¼ r cosϕ cos θ � r sinϕ sin θ (3.44)

However, using Eqs. (3.38) and (3.39), Eq. (3.44) becomes

x1 ¼ y1 cos θ � y2 sin θ (3.45)

Similarly, using the rule on the sine of the sum of two angles, i.e.,

sin αþ βð Þ ¼ sin α cos β þ cos α sin β

equation (3.43) becomes

x2 ¼ r � sin ϕþ θð Þ ¼ r sinϕ cos θ þ cosϕ sin θð Þ
¼ r sinϕ cos θ þ r cosϕ sin θ (3.46)

which, again using Eqs. (3.38) and (3.39), leads to

x2 ¼ y2 cos θ þ y1 sin θ (3.47)

Equations (3.45) and (3.47) form a system of two equations with two unknowns.

To solve that system, let us multiply the right and left sides of Eq. (3.45) by cos θ
and both sides of Eq. (3.47) by sin θ. This leads to the system of equations

x1 cos θ ¼ y1 cos
2θ � y2 sin θ cos θ

x2 sin θ ¼ y1 sin
2θ � y2 sin θ cos θ

�
(3.48)

Taking the sum of each side of the two equations, this gives

x1 cos θ þ x2 sin θ ¼ y1 cos 2θ þ sin 2θ
� �

(3.49)
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However, because cos 2α + sin 2α ¼ 1, it follows that Eq. (3.49) is simply

y1 ¼ x1 cos θ þ x2 sin θ (3.50)

We apply the same procedure to derive y2.
Let us multiply the right and left sides of Eq. (3.45) by sin θ and both sides of

Eq. (3.47) by (�cos θ). This leads to the system of equations

x1 sin θ ¼ y1 sin θ cos θ � y2 sin
2θ

�x2 cos θ ¼ �y1 sin θ cos θ � y2 cos
2θ

�
(3.51)

Taking the sum of each side of the equations leads to

x1 sin θ � x2 cos θ ¼ �y2 sin 2θ þ cos 2θ
� �

(3.52)

This is more simply

y2 ¼ �x1 sin θ þ x2 cos θ (3.53)

Therefore, Eqs. (3.50) and (3.53) provide the formulae for a rotation transfor-

mation of axes, which in matrix notation gives

y1
y2

� �
¼ cos θ sin θ

� sin θ cos θ

� �
x1
x2

� �
(3.54)

The weights represented in Eq. (3.54) correspond, therefore, to an orthogonal

rotation and the constraints of orthogonality are respected. Indeed,

cos θð Þ2 þ sin θð Þ2 ¼ 1 (3.55)

� sin θð Þ2 þ cos θð Þ2 ¼ 1 (3.56)

cos θð Þ � sin θð Þ þ sin θð Þ cos θð Þ ¼ 0 (3.57)

These constraints can be expressed in matrix notations as

cos θ sin θ
� sin θ cos θ

� �
cos θ � sin θ
sin θ cos θ

� �
¼ 1 0

0 1

� �
(3.58)

This corresponds to the constraint expressed more generally in Eq. (3.60).

Therefore, the rotation corresponds to a special linear transformation of x to y. If

x is a p-dimensional vector and V is a square matrix of size p by p (which represents
the linear weights applied to vector x), then y, the linear transformation of x, is also

with dimension p. However, orthogonality conditions must be met so that V cannot

be just any matrix. Therefore, the rotation can be expressed in the equations
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y
px1

¼ V
0

pxp
x
px1

(3.59)

s:t:V
0
V ¼ I (3.60)

so that conditions for orthogonal rotation are met.

3.2.2 Variance-Maximizing Rotations (Eigenvalues
and Eigenvectors)

The advantage of an orthogonal rotation is that it enables the same points to be

represented in a space using different axes but without affecting the covariance

matrix, which remains unchanged. The idea is to find a specific rotation or linear

transformation that will maximize the variance of the linear transformations.

3.2.2.1 The Objective

The objective is, therefore, to find the linear transformation of a vector that

maximizes the variance of the transformed variable (of the linear combination),

i.e., to find the weights v0 such that if for one observation (assumed to be mean

centered) the transformation is

yi
1�1

¼ v
0

1�p
xi
p�1

and for all N observations

y
0

1�N

¼ v
0

1�p
X

0

p�N

then the variance of the transformed variable which is proportional to

y
0
y

1�1

¼
XN
i¼1

y2i ¼ v
0
X

0
Xv ¼ v

0

1�p
S
p�p

v
p�1

is maximized.

In other words, the problem is

Find V Max:y
0
y

		 (3.61)

s:t: v
0
v

1�1
¼

Xp
j¼1

v2j ¼ 1 (3.62)
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By replacing y with its expression as a linear combination of X, the problem

becomes equivalent to

Max v
0
Sv (3.63)

s:t: v
0
v ¼ 1 (3.64)

This can be resolved by maximizing the Lagrangian L:

Max L ¼ v
0
Sv� λ v

0
v� 1


 �
(3.65)

Using the derivative rule ∂ x0Ax/∂ x ¼ 2Ax

∂L
∂v

¼ 2Sv� 2λv ¼ 0 (3.66)

¼ S
p�p

� λI
p�p

� 
v

p�1
¼ 0

p�1
(3.67)

Solving these equations provides the eigenvalues and eigenvectors. First we

show how to derive the eigenvalues. Then, we will proceed with the calculation of

the eigenvectors.

Finding the Eigenvalues

We need to resolve the following system of equations for v and λ:

S� λIð Þv ¼ 0 (3.68)

A trivial solution is v ¼ 0. Pre-multiplying by (S � λI)� 1

v ¼ S� λIð Þ�1
0 ¼ 0 (3.69)

This also implies that, for a nontrivial solution to exist, (S � λI) must not have

an inverse because if it does, v ¼ 0 and it gives a trivial solution.

Therefore, a condition for a nontrivial solution to Eq. (3.68) to exist is that the

determinant is zero because the operation shown in Eq. (3.69) cannot then be

performed:

S� λIj j ¼ 0 (3.70)

Equation (3.70) results in a polynomial in λ of degree p which therefore has

p roots. Following is an example. Let us assume that the covariance matrix is

S ¼ 16:81 :88
:88 6:64

� �

3.2 Exploratory Factor Analysis 41



Then

S� λIj j ¼ 16:81� λ :88
:88 6:64� λ

				
				 ¼ λ2 � 23:45λþ 110:844 ¼ 0 (3.71)

Resolving this second-degree equation gives the two roots:

λ1 ¼ 16:8856
λ2 ¼ 6:5644

�
(3.72)

They are the eigenvalues.

Finding the Eigenvectors

Knowing the eigenvalues, the eigenvectors can now be easily computed. For

each eigenvalue, there are p equations with p unknowns

S� λIð Þv ¼ 0 (3.73)

subject to normality, i.e., v0v ¼ 1.

The p unknowns are then straightforward to estimate.

3.2.2.2 Properties of Eigenvalues and Eigenvectors

Two properties of eigenvectors and eigenvalues are indispensable in order to

understand the implications of this rotation:

1. V
0
V ¼ I, and therefore : V

0 ¼ V�1 (3.74)

2. V
0
SV ¼ Λ, where Λp�p ¼ diag λif g (3.75)

It is important to understand the proof of this last property because it shows how

the covariance matrix can be reconstituted with the knowledge of eigenvectors and

eigenvalues.

From the first-order derivative of the Lagrangian (∂ L/∂ v ¼ 2Sv � sλv ¼ 0),

and putting all eigenvectors together

S
p�p

V
p�p

¼ V
p�p

Λ
p�p

(3.76)

Pre-multiplying each side by V0 gives

V
0
SV ¼ V

0
V|{z}
I

Λ ¼ Λ (3.77)

42 3 Reliability Alpha, Principal Component Analysis, and Exploratory Factor Analysis



Furthermore, a third property is that the eigenvalue is the variance of the linearly

transformed variable y. From Eq. (3.73), pre-multiplying the left side by v0, one
obtains for eigenvalue i and eigenvector i

v
0
i S� λiIð Þvi ¼ 0 (3.78)

or

v
0
iSvi ¼ λiv

0
ivi (3.79)

However, the left side of Eq. (3.79) is the variance of the transformed variable yi:

v
0
iSvi ¼ v

0
iX

0
Xvi ¼ y

0
iyi ¼ λi (3.80)

Therefore, the eigenvalue represents the variance of the new variable formed as

a linear combination of the original variables.

In addition, considering the equality Λ ¼ V0SV in Eq. (3.77)

tr Λð Þ ¼ tr V
0
SV


 �
¼ tr V

0
VS


 �
¼ tr Sð Þ (3.81)

This means that the total variance in X as measured by the sum of the variances

of all the xs is equal to the sum of the eigenvalues.

It should be clear that if the variables x are normalized, the S matrix is the

correlation matrix R. The trace of R (i.e., the sum of the diagonal terms) is equal to

the number of variables p. It then follows from the equality in Eq. (3.81) that the

sum of the eigenvalues of a correlation matrix is equal to the number of variables p.
Furthermore, considering only the rth largest values of the eigenvalues, these

first r linear combinations explain a percentage of the total variance in X. This

percentage is

Xr

k¼1

λk

Xp
k¼1

λk

� 100 (3.82)

3.2.3 Principal Component Analysis

The problem in principal component analysis (PCA) is just what has been described

in the prior section. It consists in finding the linear combination that maximizes the

variance of the linear combinations of a set of variables (the first linear combina-

tion, then the second given that it should be perpendicular to the first, etc.) and

reconstituting the covariance matrix S ¼ VΛV0. Therefore, the problem is identical

to finding the eigenvalues and eigenvectors of the covariance matrix.
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3.2.3.1 PCA: A Data Reduction Method

In PCA, new variables y are constructed as exact linear combinations of the original

variables. This is represented graphically in Fig. 3.5, using the same convention for

the representation of observed and unobserved variables with boxes and circles,

respectively.

Furthermore, it is a data reduction method in the sense that the covariance matrix

can be approximated with a number of dimensions smaller than p, the number of

original variables. Indeed, from Eq. (3.77)

VV
0
SV ¼ VΛ (3.83)

SV ¼ VΛ (3.84)

SVV
0 ¼ VΛV0

(3.85)

S ¼ VΛV0
(3.86)

Let V* include the eigenvectors corresponding to the r largest eigenvalues and
Λ* include the r largest eigenvalues:

S�
p�p

¼ V�
p�r

Λ�
r�r

V�0

r�p
(3.87)

Therefore, it can be seen from Eq. (3.87) that replacing the small eigenvalues by

zero should not affect the ability to reconstitute the variance–covariance matrix

S (S* should approximate S). Consequently, r data points are needed for each

i instead of the original p variables.

3.2.3.2 Principal Component Loadings

The correlation between a single variable xi and the composite variable yk
corresponding to the k’s eigenvalue is called a loading. Let us consider the

normalized data matrix eX
N�p

. The principal component variables Y are such that

x1

x2

x3

x4

x5

y1

y2

Fig. 3.5 A graphical

representation of the

principal component model
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Y
N�p

¼ eX
N�p

V
p�p

(3.88)

where the weights V are the eigenvectors such that

R ¼ 1

N
eX 0 eX ¼ VΛV

0
(3.89)

The cross products of Y are given by

1

N
Y

0
Y ¼ 1

N
V

0 eX 0 eXV ¼ V
0
RV ¼ V

0
VΛV

0
V ¼ Λ (3.90)

Consequently, Y is normalized by post-multiplying Y by Λ�1
2. Let us write the

normalized Ys as

eY ¼ YΛ�1
2 (3.91)

The correlation between X and Y is

Cor X;Yð Þ
p�p

¼ 1

N
e
X

0

p�N
eY
N�p

¼ 1

N
eX 0

YΛ�1
2 ¼ 1

N
eX 0 eXVΛ�1

2 (3.92)

¼ RVΛ�1
2 ¼ VΛV0

VΛ�1
2 ¼ VΛ1

2 (3.93)

Consequently, the loadings are given by

L
p�p

¼ VΛ1
2 (3.94)

3.2.3.3 PCA Versus Exploratory Factor Analysis

Two points can be made that distinguish PCA from factor analysis:

1. The new variables y are determined exactly by the p x variables. There is no

noise introduced and, therefore, no measurement error as discussed in Sect. 3.1

on measurement theory is represented. Factor analysis introduces this notion of

measurement error.

2. The new unobserved variables y are built by putting together the original

p variables. Therefore, y is constructed from the original x variables in an

index. This is represented graphically in Fig. 3.5. As opposed to this formative

index, in factor analysis the observed x variables are reflections of the various

unobserved variables or constructs.

This last distinction between reflective indicators and constitutive indices is

developed in the next section.
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3.2.4 Exploratory Factor Analysis

Now that we have explained the difference between PCA and factor analysis, we

need to distinguish between two different types of factor analysis: EFA and

confirmatory factor analysis. The basic difference lies in the fact that in confirma-

tory factor analysis, a structure is proposed in which the observed, measurable

variables reflect only specific unobserved constructs while exploratory factor anal-

ysis allows all measurable variables to reflect each factor (where reflection implies

a causal direction from the construct to the measure). These two types of factor

analysis can easily be distinguished by the differences in their graphical represen-

tation. We examine the differences analytically in this chapter and the next.

EFA is graphically represented in Fig. 3.6 in an example with two unobserved

constructs and five observed variables or measures.

The unobserved constructs are represented with circles while the measures are

represented by squares. The arrows on the left side coming into the measured

variable boxes indicate the random measurement errors.

Although the fundamental difference between the exploratory factor analytic

model and the confirmatory factor analytic model is presented in the next chapter, it

can be helpful to compare these models here. The basic distinction is that, in

confirmatory factor analysis, only some measures reflect specific, individual unob-

served constructs, as shown in Fig. 3.7.

EFA can be characterized by the fact that it is data driven, as opposed to

confirmatory analysis, which represents a strong theory of measurement. The

purpose of EFA is, in fact, to find or discover patterns that may help understand

X1

X2

X3

X4

X5

F1

F2

Fig. 3.6 A graphical

representation of the

exploratory factor analytic

model

X1

X2

X3

X4

X5

F1

F2

Fig. 3.7 A graphical

representation of multiple

measures with a

confirmatory factor

structure
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the nature of the unobserved variables. Consequently, it is a method that, based on

patterns of correlations among variables, inductively brings insights into the under-

lying factors. Considering Fig. 3.5, the weights assigned to each arrow linking each

factor to each observed variable indicate the extent to which each variable reflects

each factor. This can be shown analytically.

3.2.4.1 The Exploratory Factor Analysis Model

As discussed above, each observed variable is a function of all the factors underly-

ing the structure. These variables also contain a measurement error term. For

example, for two observed variables and two factors

X1 ¼ λ11F1 þ λ12F2 þ ε1 (3.95)

X2 ¼ λ21F1 þ λ22F2 þ ε2 (3.96)

where

σ21 ¼ V ε1½ �; σ22 ¼ V ε2½ �
V F1½ � ¼ V F2½ � ¼ 1

(3.97)

The variances are equal to 1 because such standardization does not impose

additional constraints while it allows identification. This in a sense simply

determines the units of measure of the unobserved construct.

Let us now consider the consequences that these equations impose on the

structure of the covariance matrix of the observed variables:

V X1½ � ¼ λ211 þ λ212 þ σ21 (3.98)

Using the property that the factors are orthogonal (uncorrelated, with a variance

of 1),

Cov X1;X2½ � ¼ E λ11F1 þ λ12F2 þ ε1ð Þ λ21F1 þ λ22F2 þ ε2ð Þ½ � (3.99)

¼ λ11λ21E F2
1

� �þ λ12λ22E F2
2

� �þ E ε1ε2½ � (3.100)

¼ λ11λ21 þ λ12λ22 (3.101)

These equalities follow from the fact that

Cov F1;F2½ � ¼ 0 (3.102)

E ε1ε2½ � ¼ 0 (3.103)

V F1½ � ¼ V F2½ � ¼ 1 (3.104)
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Therefore, the variances in the covariance matrix are composed of two

components—commonalities and unique components:

V X1½ � ¼ λ211 þ λ212|fflfflfflfflffl{zfflfflfflfflffl}
c2
1

þσ21 (3.105)

In Eq. (3.105) c1
2 represents the proportion of variance explained by the

common factors while σ12 represents the unique variance.
The commonalities are our main concern because the error variance or the

unique variances do not contain information about the data structure. This

demonstrates that the noise or the measurement error needs to be removed, although

measurement error only affects the variances (the diagonal of the covariance

matrix) and not the covariances.

More generally, we can represent the data structure as

Σ ¼ Cþ U (3.106)

where U ¼ diag{u}.

C is the matrix of common variances and covariances, and U is the matrix of

unique variances. In EFA, the objective is to reduce the dimensionality of the

C matrix to understand better the underlying factors driving this structure pattern.

Four steps are involved in EFA: (1) estimating commonalities, (2) extracting the

initial factors, (3) determining the number of factors, and (4) rotating to a terminal

solution. We discuss each step in turn and then we derive the factor loadings and the

factor scores.

3.2.4.2 Estimating Commonalities

In this first step, we need to remove the unique component of the variance so that

the variance is explained only by the common factors. In a typical EFA, the

diagonal elements of C are specified as the squared multiple correlations of each

variable with the remainder of the variables in the set (i.e., the percentage of

explained variance obtained in regressing variable j on the ( p � 1) other variables).

U (a diagonal matrix) contains the residual variances from these regressions.

3.2.4.3 Extracting Initial Factors

The initial factors are obtained by performing a PCA on C:

C
p�p

¼ V
p�p

Λ
p�p

V
0

p�p
(3.107)
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3.2.4.4 Determining the Number of Factors

The issue is to find the number of factors r < p that are necessary to represent

the covariance structure. Following from the properties of eigenvalues and

eigenvectors:

C ¼ VΛV0
(3.108)

Let V* include the eigenvectors corresponding to the r largest eigenvalues and
Λ* include the r largest eigenvalues:

C�
p�p

¼ V�
p�r

Λ�
r�r

V�0
r�p (3.109)

The problem is to find r in order to account for most of the covariance matrix C.

Two rules are typically used to decide how many factors to retain.

1. λ > 1 (Kaiser’s rule): Eliminate values less than 1. The rationale for this rule is

that each factor should account for at least the variance of a single variable.

However, this value is somewhat arbitrary.

2. The elbow rule based on the Scree plot: The Scree plot consists in plotting the

eigenvalues in the order of their decreasing size. The elbow rule corresponds to

finding the point on the Scree plot where the plotted line makes an elbow, as

shown in Fig. 3.8. The elbow in the curve is due to the sharp decrease in the

eigenvalues followed by smaller differences of the successive eigenvalues. Note

that it may not always be easy to identify the exact point of the elbow.

None of these methods should be used blindly, even though the rule of the

eigenvalue greater than 1 is the default option on most statistical analysis software

packages, including SAS. Indeed, the interpretation of the factors is an important

criterion for making sense out of the covariance structure.

3.2.4.5 Rotation to Terminal Solution

The reason why we perform a rotation at this stage, using only the retained factors,

is to find factors that are more easily interpretable.

21 3

Fig. 3.8 The elbow rule
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The most commonly used method is the VARIMAX rotation method. With this

method, the rotation searches to give the maximum variance of the squared
loadings for each factor (in order to avoid problems due to negative loadings).

This results in obtaining extreme loadings (very high or very low).

3.2.4.6 Factor Loadings

If we consider the standardized correlation matrix of the x variables, which we write

as R, Eq. (3.106) becomes

R ¼ eC þ eU (3.110)

The principal decomposition of eC leads to

eC ¼ eV eΛ eV 0
(3.111)

However,

eC ¼ eV eΛ eV 0
¼ eV eΛ 1

2eΛ 1
2eV 0

¼ LL
0

where

L
p�p

¼ eV eΛ 1
2 (3.112)

L is the matrix of factor loadings, similar to the formulation developed for PCA in

Eq. (3.94), with the difference that it corresponded then to the principal decompo-

sition of the common variance matrix rather than the full correlation matrix. The

factor loadings are the correlations between the x variables and the factors.

3.2.4.7 Factor Scores

The factor scores provide the coordinates of the N observations on the (reduced

number of) factors. The values of the x variables are combined in a linear fashion to

form the factor scores eY:
eY
N�p

¼ eX
N�p

B
p�p

(3.113)

where B is a matrix of the weights to apply. The problem consists in finding the

weights that need to be applied. If we pre-multiply each side of Eq. (3.113) by 1
NX

0
,

we obtain
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1

N
eX 0 eY ¼ 1

N
eX 0 eXB ¼ RB (3.114)

Noticing that
1

N
eX 0 eY ¼ L from Eqs. (3.92), (3.93), and (3.94), it follows that

L ¼ RB (3.115)

Consequently,

B ¼ R�1L (3.116)

Therefore,

eY
N�p

¼ eX
N�p

R�1

p�p
L
p�p

(3.117)

3.3 Application Examples

Figure 3.9 illustrates how to compute the means and the correlation matrix for a list

of variables in SAS. The output is shown in Fig. 3.10. A factor analysis on the same

list of variables is requested in Fig. 3.11 using the SAS procedure “Factor.” The

results are shown in Fig. 3.12. This factor analysis of the perception of innovations

on nine characteristics is summarized by two factors with eigenvalues greater than

1 (the default option in SAS); these two factors explain 89.69% of the variance.

The rotated factor pattern shows that Factor 1 is reflected by variables IT1, IT3, IT4,

IT6, and IT7, while Factor 2 is reflected by variables IT5, IT8, and IT9. Variable

IT2 does not discriminate well between the two factors, as it loads simultaneously

Fig. 3.9 SAS input file example for computing means and correlation matrix (examp3-1.sas)
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on both, although it loads slightly more on Factor 2. The reliability coefficients of

the scales (corresponding to the two factors) are then calculated in Fig. 3.13 when

the variables are first standardized. Those variables with negative loadings are

reversed so that each component has the same direction (positive correlations).

The results are listed in Fig. 3.14, which shows the reliability coefficient alpha for

each scale and the improvements that could be obtained by deleting any single

variable one at a time. Finally, Fig. 3.15 shows how to create a scale composed of

these standardized variables. The new scales “tech” and “mkt” involve two

SAS functions: (1) the “sum(var1, var2, etc. . .)” function takes the sum of each

variable in the list of variables in parentheses following the function (omitting

the missing variables) and (2) the “n(var1, var2, etc. . .)” function returns the

number of non-missing items in the variable list. As an example, also in

Fig. 3.15, these scales are then used to perform a single analysis of variance,

using the SAS procedure “proc ANOVA.” The corresponding output in Fig. 3.16

shows, for example, the means of the two scales (labeled Tech and MKT) for two

levels of the variable RAD.

Using STATA, the input file corresponding to the same example is given in

Fig. 3.17.

The “pca” procedure refers to PCA, as described earlier in this chapter. The list

of variables to be analyzed simply follows the “pca” command. The commands are

similar for EFA where “pca” is replaced with “factor.” The option “mineigen(1)”

indicates that only eigenvalues with a minimum of 1 will be retained. Note that the

“pause” command is intended to give temporary control back to the researcher and

thus provide the opportunity to save the graphs. To continue the execution of the

do-file, just type “end” or “q” in the command zone. Alternatively, the graphs can

be saved as files (STATA .gph files or other formats, such as .pdf files), using the

commands shown in Fig. 3.18.

The command “graph save” saves the graph (with a .gph file extension) so that it

can be read later using STATA. The command “graph export” is used for other

Fig. 3.11 SAS input file example for factor analysis (examp3-2.sas)
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formats such as .pdf. The graph can then be imported into a document or a

presentation. The “replace” option prevents an error message if the file already

exists. The corresponding STATA output is shown in Fig. 3.19.

Figure 3.20 shows the Scree plot of eigenvalues that can help identify the

number of relevant factors.

Finally, Fig. 3.21 can be used for the interpretation of the factors. As shown in

the figure, the vector from the origin to the point representing a variable reflects the

correlations between the variable and each of the factors. Consequently, the closer

the vector is to a factor axis, the higher the correlation is between the variable and

that factor.

Figure 3.17 also gives the commands to calculate the reliability coefficient alpha

and to create unweighted composite scales. The simple command “alpha it1 it3 it4

it6 it7, generate(Tech) reverse(it1 it3) std” gives the instruction to compute the

reliability coefficient alpha for the scale formed by the items that follow “alpha.”

Fig. 3.13 SAS input file for reliability coefficient alpha (examp3-3.sas)
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The scale “Tech” is then generated from the list of variables included in the list

following the “alpha” command. Note that there is no need to generate separate

variables that are reverse coded, as it is sufficient to list these items in parentheses

after the word “reverse.” The command “std” indicates that the standardized

variables will be used as components of the unweighted composite scale.

Principal component scores and factor scores can be computed easily in STATA.

Figure 3.22 lists the input to create new variables in the database containing the

scores of the first four factors (as an example). The new variable names are score1,

score2, score3, and score4. It is then easy to check that the correlation matrix of

these variables is the identity matrix.

Similarly for factor analysis, the factor scores corresponding to the two factors

obtained after rotation are obtained by the commands listed in Fig. 3.23.

Fig. 3.15 SAS input file example for scale construction (examp3-4.sas)

3.3 Application Examples 63



F
ig
.
3
.1
6

S
A
S
o
u
tp
u
t
ex
am

p
le

o
f
sc
al
e
co
n
st
ru
ct
io
n
an
d
an
al
y
si
s
o
f
v
ar
ia
n
ce

(e
x
am

p
3
-4
.l
st
)

64 3 Reliability Alpha, Principal Component Analysis, and Exploratory Factor Analysis



F
ig
.
3
.1
6
(c
o
n
ti
n
u
ed
)

3.3 Application Examples 65



3.3.1 Assignment

The assignment consists in developing a composite scale, demonstrating its unidi-

mensionality and computing its reliability. For that purpose, survey data are

provided in the file SURVEY.ASC (Appendix C, Chap. 14). These data concern

items about psychographic variables, which contain opinion, attitude, and lifestyle

characteristics of individuals. A detailed description of the data is given in Appen-

dix C. This type of data is useful for advertising and segmentation purposes.

In order to develop a scale, it may be useful to summarize the data using EFA on

a wide range of variables. It is important, however, to make sure that only variables

Fig. 3.17 STATA input file for principal component analysis, exploratory factor analysis, reli-

ability coefficient alpha, scale construction, and analysis of variance example (Examp3-1.do)

Fig. 3.18 STATA commands for saving graphs (Examp3-1B.do)
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possessing the properties necessary for the analysis are included. For example,

because factor analysis is based on correlations, categorical or ordinal scale

variables should be excluded from the analysis, since correlations are not permissi-

ble statistics with such scales. You need to interpret the factors, and you can

concentrate on a subset of these factors to derive a single scale or multiple

composite scales.

An alternative would be to reflect on the questions that seem interrelated and use

them to develop a scale. This is in essence a mental factor analysis.

You need to demonstrate that each of the scales developed is unidimensional

(through factor analysis) and that its reliability is sufficiently high.

Figure 3.24 lists the SAS file that can be used to read the data.

The commands to read the survey data with STATA are shown in Fig. 3.25. This

defines how the data in the file “survey.asc” are formatted.

The data are then imported into STATA by executing the file “assign3_Mac.do”

shown in Fig. 3.26.

Fig. 3.19 STATA output file for principal component analysis, exploratory factor analysis,

reliability coefficient alpha, scale construction, and analysis of variance example (Examp3-1.log)

3.3 Application Examples 67



Fig. 3.19 (continued)
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Fig. 3.19 (continued)
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Fig. 3.19 (continued)
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Fig. 3.19 (continued)
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Fig. 3.20 STATA plot of eigenvalues

Fig. 3.21 STATA plot of factor loadings

Fig. 3.22 STATA commands to create variables for component scores
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Fig. 3.23 STATA commands to create variables for factor scores

Fig. 3.24 SAS file to read SURVEY.ASC data file (assign3.sas)

Fig. 3.25 STATA dictionary file to read SURVEY.ASC data file (assign3_Mac.dct)
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Fig. 3.25 (continued)
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Chapter 4

Confirmatory Factor Analysis

As noted in Chap. 3, a measurement model of the type illustrated in Fig. 4.1 is

assumed in confirmatory factor analysis (CFA).

The objective of a confirmatory analysis is to test if the data fit the measurement

model.

4.1 Confirmatory Factor Analysis: A Strong

Measurement Model

The graphical representation of the model shown in Fig. 4.1 can be expressed by the

system of equations

X1 ¼ λ11F1 þ e1
X2 ¼ λ21F1 þ e2
X3 ¼ λ31F1 þ e3
X4 ¼ λ42F2 þ e4
X5 ¼ λ52F2 þ e5

8>>>><
>>>>:

(4.1)

Let

x
5�1

¼

X1

X2

X3

X4

X5

2
66664

3
77775; F

2�1
¼ F1

F2

� �
; Λ
5�2

¼

λ11 λ12
λ21 λ22
λ31 λ32
λ41 λ42
λ51 λ52

2
66664

3
77775; e

5�1
¼

ε1
ε2
ε3
ε4
ε5

2
66664

3
77775

Equation (4.1) can be expressed in matrix notation as

x
5�1

¼ Λ
5�2

F
2�1

þ e
5�1

(4.2)
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with

E e½ � ¼ 0 (4.3)

E e e
0� � ¼ D ¼ diag δiif g (4.4)

E FF
0

h i
¼ Φ (4.5)

If the factors are assumed to be independent,

E FF
0

h i
¼ I (4.6)

While we were referring to the specific model with five indicators in the

expressions above, the matrix notation is general and can be used for representing

a measurement model with q indicators and a factor matrix containing n unobserved
factors:

x
q�1

¼ Λ
q�n

F
n�1

þ e
q�1

(4.7)

The theoretical covariance matrix of x is given by

E xx
0

h i
¼ E ΛFþ eð Þ ΛFþ eð Þ0

h i
(4.8)

¼ E ΛFF0Λ0 þ ee
0

h i

¼ ΛE FF
0

h i
Λ0 þ E ee

0
h i

(4.9)

Σ ¼ ΛΦΛ0 þ D (4.10)

X1

X2

X3

X4

X5

F1

F2

Fig. 4.1 A graphical

representation of multiple

measures with a

confirmatory factor

structure
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Therefore, Eq. (4.10) expresses how the covariance matrix is structured, given

the measurement model specification in Eq. (4.7). The structure is simplified in case

of the independence of the factors:

Σ ¼ ΛΛ0 þ D (4.11)

To facilitate comparison, especially between exploratory factor analysis (EFA)

and CFA, the notation used above closely resembles the notation used in the

previous chapter. However, we now introduce the notation found in LISREL

because the software refers to specific variable names. In particular, Eq. (4.12)

uses ξ for the vector of factors and δ for the vector of measurement errors. Thus the

measurement model is expressed as

x
q�1

¼ Λx
q�n

ξ
n�1

þ δ
q�1

(4.12)

with

E ξξ
0h i
¼ Φ (4.13)

and

E δδ
0h i
¼ θδ (4.14)

The methodology for estimating these parameters is presented in the next

section.

4.2 Estimation

If the observed covariance matrix estimated from the sample is S, we need to find

the values of the lambdas (the elements of Λ) and of the deltas (the elements of D)

that will reproduce a covariance matrix as similar as possible to the observed one.

Maximum likelihood estimation is used to minimize S � Σ. The estimation

consists in finding the parameters of the model that will replicate as closely as

possible the observed covariance matrix in Eq. (4.10). For the maximum likelihood

estimation, the comparison of the matrices S and Σ is made through the following

expression:

F ¼ Ln Σj j þ tr SΣ�1
� �� Ln Sj j � qð Þ (4.15)

This expression follows directly from the maximization of the likelihood func-

tion. Indeed, based on the multivariate normal distribution of the data matrix Xd

N�q
,

which has been mean centered, the sampling distribution is
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f Xð Þ ¼
YN
i¼1

2πð Þ
�q

2

Σj j�1
2exp � 1

2
xd

0

i Σ
�1xdi

� 	
(4.16)

which is also the likelihood

l ¼ l
�
parameters of ΣjX� ¼ YN

i¼1

2πð Þ
�q

2

Σj j�1
2exp � 1

2
xd

0

i Σ
�1xdi

� 	
(4.17)

or

L ¼ Ln l ¼
XN
i¼1

� q

2
Ln 2πð Þ � 1

2
Ln Σj j � 1

2
xd

0

i Σ
�1xdi

2
4

3
5

¼ �Nq

2
Ln 2πð Þ � N

2
Ln Σj j � 1

2

XN
i¼1

xd
0

i Σ
�1xdi


 �

¼ �N

2
qLn 2πð Þ þ Ln Σj j þ 1

N

XN
i¼1

xd
0

i Σ
�1xdi


 �2
4

3
5

¼ �N

2
qLn 2πð Þ þ Ln Σj j þ 1

N
tr Xd

0
Σ�1Xd


 �2
4

3
5

¼ �N

2
qLn 2πð Þ þ Ln Σj j þ 1

N
tr Xd

0
XdΣ�1


 �2
4

3
5

(4.18)

L ¼ �N

2
qLn 2πð Þ þ Ln Σj j þ tr SΣ�1

� �� �
(4.19)

Therefore, given that the constant terms do not impact the function to maximize,

the maximization of the likelihood function corresponds to minimizing the expres-

sion in Eq. (4.15). Note that the last terms of Eq. (4.15), i.e., �Ln|S| � (q), are
constant terms.

The expression F is minimized by searching over the values for each of the

parameters. If the observed variables x are distributed as a multivariate normal

distribution, the parameter estimates that minimize Eq. (4.15) are the maximum

likelihood estimates.

There are ½(q)(q + 1) distinct elements that constitute the data; this comes from

half of the symmetric matrix to which one needs to add back half of the diagonal in

order to count the variances of the variables themselves (i.e., qð Þx qð Þ=2þ q
2

� �
).

Consequently, the number of degrees of freedom corresponds to the number of

distinct data points as defined above minus the number of parameters in the model

to estimate.
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In the example shown in Fig. 4.1, ten parameters must be estimated:

5 λij
0sþ 5 δii0s

These correspond to each of the arrows in the figure, i.e., the factor loadings and

the variances of the measurement errors. There would be 11 parameters to estimate

if the two factors were correlated.

4.2.1 Model Fit

The measure of the fit of the model to the data corresponds to the criterion that was

minimized, i.e., a measure of the extent to which the model, given the best possible

values of the parameters, can lead to a covariance matrix of the observed variables

that is sufficiently similar to the actually observed covariance matrix. We first

present and discuss the basic chi-square test of the fit of the model. We then

introduce a number of measures of fit that are typically reported and that alleviate

the problems inherent to the chi-square test. Finally, we discuss how modification

indices can be used as diagnostics for model improvement.

4.2.1.1 Chi-Square Tests

Based on large-sample distribution theory, ν ¼ N � 1ð ÞF̂ (where N is the sample

size used to generate the covariance matrix of the observed variables and F̂ is the

minimum value of the expression F as defined by Eq. (4.15)) is distributed as a

chi-square with the number of degrees of freedom corresponding to the number of

data points minus the number of estimated parameters. If the value of v is signifi-
cantly greater than zero, the model is rejected; this means that the theoretical model

is unable to generate data with a covariance matrix close enough to the one obtained

from the actual data.

The chi-square distribution of ν follows from the normal distribution assumption

of the data. As discussed above, the likelihood function at its maximum value (L)

can be compared with L0, the likelihood of the full or saturated model with zero

degrees of freedom. Such a saturated model reproduces the covariance matrix

perfectly so that Σ ¼ S and tr(SΣ� 1) ¼ tr(I) ¼ q. Consequently,

L0 ¼ �N

2
qLn 2πð Þ þ Ln Sj j þ q½ � (4.20)

The likelihood ratio test is

�2 L� L0½ � � χ2df¼ q qþ1ð Þ=2½ ��T (4.21)
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where T is the number of parameters estimated.

Equation (4.21) results in the expression

N Ln Σj j þ tr SΣ�1
� �� Ln Sj j � qð Þ� �

(4.22)

which is distributed as a chi-square with [q(q + 1)/2] � T degrees of freedom.

It should be noted that it is possible to compare nested models. Indeed, the test of

a restriction of a subset of the parameters implies the comparison of two of the

measures of fit v, each distributed as a chi-square. Consequently, the difference

between the value vr of a restricted model and vu of the unrestricted model follows a

chi-square distribution with a number of degrees of freedom corresponding to the

number of restrictions.

One problem with the expression v (or Eq. (4.22)) is that it contains N, the
sample size. This means that as the sample size increases, it becomes less likely

that the researcher will fail to reject the model. This is why several other

measures of fit have been developed. They are discussed below. While this

sample-size effect corresponds to the statistical power of a test consisting in

rejecting a null hypothesis that a parameter is equal to zero, it is an issue in

this context because the hypothesis for which the researcher would like to get

support is the null hypothesis that there is no difference between the observed

covariance matrix and the matrix that can be generated by the model. Failure to

reject the hypothesis, and thus “accepting” the model, can, therefore, be due to

the lack of power of the test. A small enough sample size can contribute to

finding “fitting” models based on chi-square tests. It follows that it is more

difficult to find fitting models when the sample size is large.

4.2.1.2 Other Goodness-of-Fit Measures

The LISREL output gives a goodness-of-fit index (GFI) that is a direct measure of

the fit between the theoretical and observed covariance matrices following from the

fit criterion of Eq. (4.15). This GFI is defined as

GFI ¼ 1�
tr Σ̂ �1

S� I

 �2

� �

tr Σ̂ �1
S


 �2
� � (4.23)

From this equation, it is clear that if the estimated and the observed variances are

identical, the numerator of the expression subtracted from 1 is 0 and, therefore,

GFI ¼ 1. To correct for the fact that the GFI is affected by the number of indicators,

an adjusted goodness-of-fit index (AGFI) is also proposed. This measure of fit
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corrects the GFI for the degrees of freedom, just as an adjusted R-squared would in

a regression context:

AGFI ¼ 1� qð Þ qþ 1ð Þ
qð Þ qþ 1ð Þ � 2T

� �
1� GFI½ � (4.24)

where T is the number of estimated parameters.

As the number of estimated parameters increases, holding everything else

constant, the adjusted GFI decreases.

A threshold value of 0.9 (for either the GFI or AGFI) has become a norm for the

acceptability of the model fit (Bagozzi & Yi, 1988; Baumgartner & Homburg,

1996; Kuester, Homburg, & Robertson, 1999).

Another index that is often used to assess model fit is the root mean square error

of approximation (RMSEA). It is defined as a function of the minimum fit function

corrected by the degrees of freedom and the sample size:

RMSEA ¼
ffiffiffiffiffiffi
F̂ 0

d

s
(4.25)

where

F̂ 0 ¼ Max F̂ � d= N � 1ð Þ½ �� �
; 0

 �
(4.26)

d ¼ q qþ 1ð Þ=2½ � � T (4.27)

A value of RMSEA smaller than 0.08 is considered to reflect reasonable errors of

approximation, while a value of 0.05 indicates a close fit.

4.2.1.3 Modification Indices

The solution obtained for the parameter estimates uses the derivatives of the

objective function relative to each parameter. This means that for a given solution,

it is possible to know the direction in which a parameter should change in order to

improve the fit and how steeply it should change. As a result, the modification

indices indicate the expected gains in fit that would be obtained if a particular

coefficient should become unconstrained (holding all other parameters fixed at their

estimated value). Although not a substitute for the theory that leads to the model

specification, this modification index can be useful in analyzing structural

relationships and in particular in refining the correlational assumptions of random

terms and for modeling control factors.
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4.2.2 Test of Significance of Model Parameters

Because of the maximum likelihood properties of the estimates, which follow from

the normal distribution assumption of the variables, the significance of each param-

eter can be tested using the standard t statistics formed by the ratio of the parameter

estimate and its standard deviation.

4.2.3 Factor Scores

Similar to the process described in Chap. 3 for EFA, factor scores can be computed

using the equation

eY
N�p

¼ eX
N�p

R�1

p�p
L
p�p

(4.28)

In contrast to the case of EFA, however, zeros appear in the matrix of factor

loadings. In addition, it should be noted that when multiple factors are analyzed

simultaneously in a single CFA, the information contained in the correlations with

all the variables is used to predict the scores. Therefore, it is not the case that only

the variables loading into a factor are used to predict the factor scores. This can

easily be seen from the fact that the matrix of “regression” weights R� 1
L uses all

the information from the correlation matrix. Only a CFA per factor can provide

factor scores determined solely by the items loading on that factor.

4.3 Summary Procedures for Scale Construction

Scale construction involves several procedures that are sequentially applied and

that bring together the methods discussed in Chap. 3 with those presented in this

chapter. These procedures include the following statistical analyses: EFA, CFA ,

and reliability coefficient alpha. The CFA technique can also be used to assess the

discriminant and convergent validity of a scale. We now review these steps and the

corresponding statistical analyses in turn.

4.3.1 Exploratory Factor Analysis

EFA can be performed separately for each hypothesized factor. This demonstrates

the unidimensionality of each factor. One global factor analysis can also be

performed in order to assess the degree of independence between the factors.
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4.3.2 Confirmatory Factor Analysis

CFA can be used to assess the overall fit of the entire measurement model and to

obtain the final estimates of the measurement model parameters. Although CFA is

sometimes performed on the same sample as the EFA, it is preferable to use a new

sample when it is possible to collect more data.

4.3.3 Reliability Coefficient Alpha

In cases where composite scales are developed, the reliability coefficient alpha is a

measure of the reliability of the scales. Reliabilities of less than 0.7 for academic

research and 0.9 for market research are typically not sufficient to warrant further

analyses using these composite scales.

In addition, scale construction involves determining that the new scale devel-

oped is different (i.e., reflects and measures a construct that is different) from

measures of other related constructs. This is a test of the scale’s discriminant

validity. It also involves a test of convergent validity, i.e., that this new measure

relates to other, yet different, constructs.

4.3.4 Discriminant Validity

A construct must be different from other constructs (discriminant validity) but, at

the same time, be mutually conceptually related (convergent validity). The discrim-

inant validity of the constructs is assessed by comparing a measurement model

where the correlation between the two constructs is estimated with a model where

the correlation is constrained to be equal to one (thereby assuming a single-factor

structure). The discriminant validity of the constructs is examined for each pair at a

time. This procedure, proposed by Bagozzi, Yi, and Phillips (1991), indicates that,

if the model where the correlation is not equal to one significantly improves the fit,

then the two constructs are distinct from each other, although it is possible for them

to be significantly correlated.

4.3.5 Convergent Validity

Convergent validity concerns the verification that some constructs thought to be

conceptually and/or structurally related exhibit significant correlations among

themselves. The convergent validity of the constructs is assessed by comparing a

measurement model where the correlation between the two constructs is estimated
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with a model where the correlation is constrained to be equal to zero. A significant

improvement in fit indicates that the two constructs are indeed related, which

confirms convergence validity. Combining the two tests (that the correlation is

different from one and different from zero) demonstrates that the two constructs are

different (discriminant validity), although related with a significantly different from

zero correlation (convergent validity).

4.4 Second-Order Confirmatory Factor Analysis

In the second-order factor model, there are two levels of constructs. At the first

level, constructs are measured through observable variables. These constructs are

not independent and, in fact, their correlation is hypothesized to follow from the

fact that they are themselves reflective of common second-order unobserved

constructs of a higher conceptual level. This can be represented as in Fig. 4.2.

The relationships displayed in Fig. 4.2 can be expressed algebraically by the

following equations:

y
p�1

¼ Λ
p�m

η
m�1

þ ε
p�1

(4.29)

and

η
m�1

¼ Γ
m�n

ξ
n�1

þ ζ
m�1

(4.30)

Equation (4.29) expresses the first-order factor analytic model. The unobserved

constructs η are the first-order factors; they are measured by the reflective items
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Fig. 4.2 Graphical

representation of a second-

order factor analytic model
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represented by the variables y. Equation (4.30) shows that the constructs η are

derived from the second-order factors ξ. The factor loadings corresponding, respec-
tively, to the first-order and second-order factor models are the elements of matrices

Λ and Γ. Finally, the errors in measurement are represented by the vectors ε and ζ.
In addition to the structure expressed by these two equations, we use the

following notation of the covariances:

E ξξ0
h i

¼ Φ
n�n

(4.31)

E ζζ0
h i

¼ Ψ
m�m

(4.32)

and

E εε0
h i

¼ Θε
p�p

(4.33)

Furthermore, we assume that the elements of ζ are uncorrelated to the elements

of ξ, and similarly that the elements of ε are uncorrelated to the elements of η.
If the second-order factor model described by the equations above is correct, the

covariance matrix of the observed variables ymust have a particular structure. This

structure is obtained as

E yy
0

h i
¼ E Ληþ εð Þ Ληþ εð Þ0

h i
(4.34)

If we develop

E yy
0

h i
¼ ΛE ηη0

h i
Λ0 þ E εε0

h i
(4.35)

replacing η by its value expressed in Eq. (4.30)

E yy
0

h i
¼ ΛE Γξþ ζð Þ Γξþ ζð Þ0

h i
Λ0 þ E εε0

h i
(4.36)

E yy
0

h i
¼ Λ ΓE ξξ0

h i
Γ0 þ E ζζ0

h i
 �
Λ0 þ E εε0

h i
(4.37)

E yy
0

h i
¼ Σ ¼ Λ ΓΦΓ0 þΨ


 �
Λ0 þΘε (4.38)

where the elements on the right side of Eq. (4.38) are model parameters to be

estimated such that their values combined in that matrix structure reproduce as

closely as possible the observed covariance matrix S calculated from the

sample data.
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The estimation procedure follows the same principle as described above for the

simple confirmatory factor analytic model. The number of parameters is, however,

different.

How many parameters need to be estimated?

We typically define the covariance matrices Φ, ψ, and Θε to be diagonal.

Therefore, these correspond to n + m + p parameters to be estimated, to which

we would need to add the factor-loading parameters contained in matrices Γ and Λ.
Taking the example in Fig. 4.2, n ¼ 2, m ¼ 5, and p ¼ 11. One of the factor

loadings for each first-order factor should be set to 1 to define the units of

measurement of these factors. Consequently, Λ contains 11 � 5 ¼ 6 parameters

to be estimated and Γ contains five parameters to be estimated. That gives a total of

2 + 5 + 11 + 6 + 5 ¼ 29 parameters to be estimated. Given that the sample data

covariance matrix (an 11 by 11 matrix) contains (11 � 12)/2 ¼ 66 data points, the

degrees of freedom are 66 � 29 ¼ 37.

The same measures of fit as described above for CFA are used to assess the

appropriateness of the structure imposed on the data.

4.5 Multi-Group Confirmatory Factor Analysis

Multi-group CFA is appropriate for testing the homogeneity of measurement

models across samples. It is particularly useful in the context of cross-national

research where measurement instruments may vary due to cultural differences. This

corresponds to the notion of measurement invariance. From that point of view, the

model described by Eq. (4.2) must be expanded along two dimensions: (1) several

sets of parameters must be estimated simultaneously for each of the groups and

(2) some differences in the means of the unobserved constructs must be recognized

between groups while they are ignored (assumed to be zero) in single-group CFA.

These expansions are represented in Eqs. (4.39), (4.40), and (4.41). Equation (4.39)

is identical to the single-group confirmatory factor analytic model.

The means of the factors are represented by the vector κ in Eq. (4.40), which

contains n rows for the mean of each of the n factors. The vector τx in Eq. (4.39)

contains q rows for the scalar constant term of each of the q items:

x
q�1

¼ τx
q�1

þ Λx
q�n

ξ
n�1

þ δ
q�1

(4.39)

E ξ½ � ¼ κ
n�1

(4.40)

E δδ0
h i

¼ Θδ
q�q

(4.41)

Therefore, the means of the observed measures x are
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μx
q�1

¼ E x½ � ¼ τx
q�1

þ Λx
q�n

E ξ
n�1

� �
¼ τx

q�1
þ Λx

p�n
κ
n�1

(4.42)

This model, with a mean structure such as is imposed in Eq. (4.42), can be

estimated if we recognize that the log-likelihood function specified in Eq. (4.19)

now contains not only the parameters that determine the covariance matrix Σ but

also the expected values of the x variables, so that

S ¼ X� μxð Þ X� μxð Þ0 (4.43)

Consequently, when modeling the means in addition to the covariance structure,

the objective function (the log likelihood) is

L ¼ �N

2
qLn 2πð Þ þ Ln Σj j þ tr X� μxð Þ X� μxð Þ0Σ�1

n oh i
(4.44)

We now add a notation to reflect that the model applies to group g with

g ¼ 1,. . .,G:

8g ¼ 1, . . .G : x gð Þ
q�1

¼ τx gð Þ
q�1

þΛx
gð Þ

q�n
ξ gð Þ
n�1 þ δ gð Þ

q�1
(4.45)

and

E ξ gð Þ
h i

¼ κ gð Þ (4.46)

For identification, one of the groups must serve as a reference with the means of

its factors centered at zero (the same requirement as for a single-group CFA).

Usually group 1 serves as that reference, although in principle it can be any group:

κ 1ð Þ ¼ 0 (4.47)

It is also necessary to fix one factor loading for each factor in Λx to define the

measurement unit of the unobserved constructs.

The estimation is again based on the maximum likelihood. The log likelihood is

the sum of the log likelihoods for all the groups so that we now search for the values

of the parameters that maximize

L¼�1

2

XG
g¼1

N gð Þ q gð ÞLn 2πð ÞþLn Σ gð Þ�� ��þ tr X gð Þ �μx
gð Þ


 �
X gð Þ �μx

gð Þ

 �0

Σ gð Þ�1

� 	� �

(4.48)

It is then possible to impose equality constraints on the parameters to be

estimated by defining them as invariant across groups. Different types of invariance

can be imposed and tested.
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Metric invariance concerns the constraint of equality of factor loadings across

groups:

Λ gð Þ
x ¼ Λ g0ð Þ

x ¼ Λx (4.49)

Scalar invariance restricts the scalar constants to be identical across groups:

τ gð Þ
x ¼ τ g0ð Þ

x ¼ τx (4.50)

In order to illustrate the types of restrictions that need to be imposed, let us

consider the example of two groups, as depicted in Fig. 4.3.

For the first item of the first group, the measurement model is

x
1ð Þ
1 ¼ τ1 þ ξ 1ð Þ

1 þ δ 1ð Þ
1 (4.51)

with

κ 1ð Þ
1 ¼ 0 (4.52)

This means that the latent construct ξ1
(1) is measured in the units of x1

(1).

For identification, constraining τ1 to be equal across groups is the same as

estimating it in one group and fixing the value in the other groups to be equal

across groups. For the first item of the second group, the measurement model is

x
2ð Þ
1 ¼ τ1 þ ξ 2ð Þ

1 þ δ 2ð Þ
1 (4.53)

Even though the mean of ξ1
(2) can be different from ξ1

(1), the measurement units

are fixed to be the units of x1
(1).

For the model to have different factor means κ that are meaningful, the following

conditions must be met:

1. Metric invariance, i.e., the same factor loadings Λx across groups

2. Scalar invariance, i.e., the same constant for the scale of each item τx across
groups

1
(1)

X1
(1) X1

(2)

X2
(2)

X3
(2)

X2
(1)

X3
(1)

11
(1)=1 11

(2)=1

Group 1

1
(2)

Group 2Fig. 4.3 Graphical

representation of two-group

confirmatory factor analysis
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These issues are particularly relevant in cross-cultural research where measure-

ment instruments must be comparable across cultures/countries and especially

when the factor means are of interest to the research.

Factor scores can also be computed as discussed earlier in Sect. 4.2.3. In the case

of different means (which require scalar invariance properties), the factor scores are

computed to reflect these differences in the distribution of the latent constructs.

4.6 Application Examples

We now present examples of the various methods discussed in this chapter using

LISREL and STATA (with a quick example using AMOS). First we provide

examples of CFA (Sect. 4.6.1). Next we give examples of discriminant validity

tests (Sect. 4.6.2) and of convergent validity tests (Sect. 4.6.3) that demonstrate the

estimation of a single-factor analytic structure and the estimation of a factor

analytic structure with two correlated factors. Then we show examples of second-

order factor analysis (Sect. 4.6.4), and finally, we illustrate multi-group factor

analysis (Sect. 4.6.5).

4.6.1 Example of Confirmatory Factor Analysis

The example in Fig. 4.4 shows the input file in LISREL.

An exclamation mark indicates that what follows is a comment and is not part of

the LISREL commands. Therefore, the first real input line in Fig. 4.4 starts with

DA, which stands for data. On that line, NI indicates the number of input (observed)

variables (six in this example), and MA ¼ KM indicates the type of matrix to be

modeled, KM for correlation or CV for covariance.

The second line of input is used to specify how to read the data. RA indicates that

the raw data will be read (from which the correlation matrix will be automatically

computed), and FI ¼ filename indicates the name of the file containing those data,

where filename is the Windows file name including the full path.

The third line, with LA, indicates that next come the labels of the indicator

(input) variables. These are shown as Q5, Q7, etc., on the following line.

The next line specifies the model, as indicated by the code MO at the beginning

of that line. NX indicates the number of indicators corresponding to the exogenous

constructs (here, there are six). NK stands for the number of ksi constructs (we have

a unique factor in this example). PH ¼ ST indicates that the covariance matrix phi

is specified here as a standardized matrix, i.e., a correlation matrix with 1s in the

diagonal and 0s off-diagonal. The covariance matrix of the measurement model
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error terms, theta delta, is specified as a symmetric matrix (TD ¼ SY). A diagonal

matrix (TD ¼ DI) could have presented a simpler model where all covariances are

zero. However, our example of a symmetric matrix illustrates how some of these

covariance parameters can be estimated.

In the next line, LK stands for the label of the ksi constructs, although there is

only one of them in this example. That label (“FactorOne”) follows on the next line.

The following line starting with FR is the list of the parameters that are estimated

where LX stands for lambda x and TD for theta delta. Each is followed by the row

and column of the corresponding matrix, as defined by the model specification in

Eqs. (4.2) and (4.4). In the standard factor analytic model, the measurement errors

are typically uncorrelated and theta delta is just a diagonal matrix. Occasionally, a

better fit is obtained if these correlations are estimated. Modification indices

provide the information regarding the extent to which freeing these parameters

can lead to a better fit. Nevertheless, caution should be exercised when letting these

correlations take values other than zero. This is because correlated measurement

errors mean that the items have something in common beyond what is already

shared by all items reflecting a factor. It is especially critical to exercise caution

when the error terms correspond to items that reflect different factors. Such a case

would indicate that two items are used to measure different factors, although they

also share common meanings through their residuals. This raises questions about

the validity of such measures and about the appropriateness of the choice of items.

In the example, the error correlations (identified by “TD(3,2) TD(6,5)”) concern the

same factor. They are estimated based on a preliminary analysis that indicated,

based on the modification indices, that the fit would be improved if these were

allowed to be different from zero.

The line “Path Diagram” indicates that a graphical representation of the model is

requested.

The last line of the input file describes the output (OU) requested. SE means

standard errors, TV their t-values, and MI the modification indices.

The input file in STATA is shown in Fig. 4.5.

Fig. 4.4 LISREL input example for confirmatory factor analytic model (examp4-1.spl)
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The command “sem” signals input for structural equation models. Each relation-

ship is represented by two variables separated by an arrow (“->” or “<-”), which

indicates the causality or directionality. The variables are either observable

measures (e.g., “stQ5”) or latent variables (e.g., “FactorOne”). In this particular

example, which is identical to the model described above to be estimated with

LISREL (Fig. 4.4), the covariances to be estimated are indicated after a “,” by

means of the “cov(e.stQ7*e.stQ8)” option. The term “cov” stands for covariance

and “e.var” for the error of the “var” variable. As we discussed when presenting the

LISREL input, you would only request the estimation of these covariances of

measurement errors ex post and if necessary based on the information provided in

the modification indices.

Furthermore, “var(FactorOne@1)” indicates that the latent factor variance

should be constrained to 1. The next three lines request statistics such as good-

ness-of-fit measures or modification indices. The last line (“predict FactorScore,

latent”) is optional. It computes the factor scores of the latent variable(s) and

appends the scores in new variables in the data set. In this case, only one new

variable name is given (“FactorScore”) because the analysis specifies a single

factor. If more than one factor were involved, the list of the names to be used

would follow the “predict” command. The modified data set can then be saved as a

“.dta” file for further analysis using separate do-files.

The LISREL output of such a model is given in Fig. 4.6 and the output from

STATA follows.

Fig. 4.5 STATA input example for confirmatory factor analytic model (examp4-1_Mac.do)
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Fig. 4.6 LISRELforWindowsoutput example forconfirmatory factor analyticmodel (examp4-1.out)
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Fig. 4.6 (continued)
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Fig. 4.6 (continued)
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In the output, as shown in Fig. 4.6, after listing the commands described earlier

according to the model specified in the corresponding input file, the observed

covariance matrix (in this case a correlation matrix) to be modeled is printed.

The “Parameter Specifications” section indicates the list and number of

parameters to be estimated, with a detail of all the matrices containing the

parameters. The value zero indicates that the corresponding parameter is fixed

and is not to be estimated. Unless specified otherwise, the default value of these

fixed parameters is set to zero.

The number of iterations shows the number that was necessary to obtain

convergence and the parameter estimates follow. Below each parameter estimate

value, its standard error is shown in parentheses and the t-value below it.

Then follow the goodness-of-fit statistics, among which those described earlier

can be found. The example run in Fig. 4.6 shows that the single-factor model

represents well the observed correlation matrix since the chi-square is not statisti-

cally significant and the GFI is high with a value of 0.98 (highlighted in grey in the

figure).

The modification indices are reasonably small, which indicates that freeing

additional parameters would not lead to a big gain in fit.

The diagram of such a confirmatory factor analytic model is shown in Fig. 4.7.

The STATA output follows in Fig. 4.8.

0.54

0.50

0.31

0.35

0.62

0.57

FactorOn 1.00

Chi-Square=6.27, df=7, P-value=0.50813, RMSEA=0.000

0.68

0.71

0.83

0.81

0.62

0.66

0.16

0.18

Q5

Q7

Q8

Q12

Q13

Q14

Fig. 4.7 Path diagram of confirmatory factor analytic model from LISREL (examp4-1.pth)
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4.6.2 Example of Model to Test Discriminant Validity
Between Two Constructs

The following example (illustrated with LISREL and STATA) is typical of an

analysis where the goal is to assess the validity of a construct. Figure 4.9 shows the

input file to estimate a two-factor model (such analyses are usually performed two

factors at a time because the modeling of all the factors at once typically involves

Fig. 4.8 STATA output example for confirmatory factor analytic model (examp4-1.log)
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Fig. 4.8 (continued)

4.6 Application Examples 99



Fig. 4.8 (continued)
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Fig. 4.8 (continued)

Fig. 4.9 LISREL input for model with two factors (examp4-2.spl)
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problems too big to obtain satisfactory fits). The commands are identical to those

described earlier, except that now two constructs (“FactorOne” and “FactorTwo”)

are specified.

Commands in STATA that are equivalent to those illustrated above with

LISREL are shown in Fig. 4.10.

In this case, each of the variances of the latent factors is set to 1 with the “var

(FactorOne@1)” and “var(FactorTwo@1)” commands. In this example, you can

also see that the measurement model is defined without repeating the relationships

between the factor and each of the items, as was the case in the prior example. Thus

here FactorOne is defined only once by using “(FactorOne -> stQ5 stQ7 stQ8 stQ12

stQ13 stQ14)” as a single command. If no specific instructions are given, then the

correlation between the two latent variables is estimated.

The output is shown first for LISREL and then for STATA. The LISREL output

corresponding to this two-factor confirmatory factor structure is shown in Fig. 4.11.

The description of this output is similar to the one described above involving a

single factor. The major difference is the estimate of the correlation between the

two factors, which is shown to be �0.56 in this particular example. The diagram

representing that factor analytic structure is shown in Fig. 4.12.

The STATA output is shown in Fig. 4.13, where the first lines corresponding to

data recoding have been deleted.

Fig. 4.10 STATA input for model with two factors (examp4-2_Mac.do)
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Fig. 4.11 LISREL output for model with two factors (examp4-2.out)
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Fig. 4.11 (continued)
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Fig. 4.11 (continued)
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Fig. 4.11 (continued)
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Fig. 4.11 (continued)
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Fig. 4.11 (continued)
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Fig. 4.11 (continued)

Q5

Q7

Q8

Q12

Q13

Q14

Q6

Q9

Q10

Q11

Q17

Q18

0.58

0.51

0.36

0.30

0.64
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FactorOn 1.00

FactorTw 1.00

Chi-Square=55.76, df=48, P-value=0.20619, RMSEA=0.035
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Fig. 4.12 Path diagram for model with two factors from LISREL (examp4-2.pth)
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Fig. 4.13 STATA output for model with two factors (examp4-2.log)
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Figure 4.14 shows the input file in LISREL for a factor analytic structure where a

single factor is assumed to be reflected by all the items.

Figure 4.15 is the corresponding LISREL output for the factor analytic structure

where a single factor is assumed to be reflected by all the items.

In Fig. 4.15, the resulting chi-square (χ2 ¼ 126.75) can be compared with the

chi-square resulting from a model with a correlation between the two factors

(χ2 ¼ 54.78 in Fig. 4.11). The χ2 difference (126.75 � 54.78) has 1 degree of

freedom and its significance indicates that there are indeed two different constructs

(factors). This demonstrates the discriminant validity of the constructs.

4.6.3 Example of Model to Assess the Convergent
Validity of a Construct

Next, in order to assess the convergent validity, we need to compare the fit of a

model with zero correlation between the factors with a model where the factors are

correlated (as in Fig. 4.11 for LISREL or Fig. 4.13 for STATA). The input file in

Fig. 4.13 (continued)
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Fig. 4.13 (continued)
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LISREL for a model with independent factors (zero correlation) is shown in

Fig. 4.16.

The commands in STATA that correspond to the LISREL example in Fig. 4.16

are shown in Fig. 4.17.

The constraint that the covariance between the two latent factors is zero is

represented by the “cov(FactorOne*FactorTwo@0)” commands. The LISREL

output file for such a model with independent factors (zero correlation) is shown

in Fig. 4.18.

Fig. 4.13 (continued)
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Fig. 4.13 (continued)

114 4 Confirmatory Factor Analysis



Still using the example in LISREL, the independent factor model has a

chi-square of 84.34 (Fig. 4.18), which, when compared with the chi-square of the

model estimating a correlation between the two constructs (Fig. 4.11), shows a

chi-square difference of 29.56. This difference is significant (with 1 degree of

freedom at the 0.05 level), and thus it indicates that the constructs are not indepen-

dent. Therefore, the chi-square test supports the convergent validity of the two

constructs.

Fig. 4.13 (continued)

Fig. 4.14 LISREL input for model with single factor (examp4-3.spl)
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Fig. 4.15 LISREL output of model with single factor (examp4-3.out)
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Instead of defining the variances of the unobserved constructs to unity, we would

have obtained the same result if we had fixed one lambda to one for each construct.

In that case, we would have estimated the variances of these constructs. Although

we could have illustrated this model easily using LISREL or STATA following the

principles described above, we use the input needed to run the model with AMOS in

order to introduce its commands.

The input of the corresponding two-factor confirmatory factor model with

AMOS is shown in Fig. 4.19.

In AMOS (Fig. 4.19), each equation for the measurement model can be

represented with a variable on the left side of an equation and a linear combination

of other variables on the right side. These equations correspond to the measurement

Fig. 4.15 (continued)
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Fig. 4.15 (continued)
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Fig. 4.15 (continued)
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Fig. 4.15 (continued)
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Fig. 4.15 (continued)
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model as specified by Eq. (4.2). Inserting “(1)” before a variable on the right side

indicates that the coefficient is fixed to that value and that the corresponding

parameters will not be estimated. The program recognizes automatically which

variables are observed and which are unobserved.

Correlations are indicated by “variable1 <> variable”, where variable1 and

variable2 are the labels of observed variables or of hypothetical constructs. The

output provides information similar to that which is available in LISREL or

STATA.

Fig. 4.15 (continued)
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4.6.4 Example of Second-Order Factor Model

Next we present an example of second-order factor analysis using the same data as

in the previous examples. Since two factors are correlated, we can test a model

where these two factors reflect a single higher-order construct. Figure 4.20 shows

the LISREL input file.

For the most part, the input file contains commands similar to the description of

the input files of regular (first-order) CFA. It should be noted that the matrix to be

Fig. 4.15 (continued)

Fig. 4.16 LISREL input for model with two independent factors (examp4-4.spl)

Fig. 4.17 STATA input for model with two independent factors (examp4-4_Mac.do)
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analyzed here is the covariance matrix, rather than the correlation matrix typically

analyzed in single-group CFA. This is indicated in the data line (“DA” line) with

the “MA ¼ CM” command. In this particular example, the sample size is also

provided on the data line (“NO ¼ 145”). The difference is that in the model

statement NX has been replaced by NY, the number of indicator variables for the

elements of η. NE corresponds to the number of first-order factors (the ηs). NK is

set to 1 in this example because only one second-order factor is assumed. GA

indicates that the elements of the Γmatrix will be fixed by default, although we will

specify which elements to estimate in the “FREE” line below. The covariance

matrix of the second-order factors is set to be standardized (“PH ¼ ST”); although

in our example this matrix is simply a scalar, the LISREL command sets the

variance of the second-order factor to be fixed to unity for identification. Alterna-

tively, one of the gamma parameters could be set to unity. This is the choice made

in the STATA formulation of the same example shown in Fig. 4.21. The labels for

the first-order factors are the same as in the earlier example of regular CFA, except

that they now correspond to the ηs, which is why they are introduced by “LE”

(Label Etas). The label for the second-order factor (“new”) follows the “LK” (Label
Ksis) command.

One of the factor loadings for each first-order factor is fixed to 1 in order to

define the unit of the factors to the units of that item. Finally, the parameters to be

estimated are freed; they are the elements of the factor loading matrices Λ and Γ.
The commands in STATA are straightforward, as shown in Fig. 4.21.

Although it is not strictly necessary to indicate the constraints for the unit

loadings needed for identification (STATA generates the constraints

Fig. 4.18 LISREL output of model with two independent factors (examp4-4.out)
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automatically), it is informative to be explicit about these constraints at the model

specification stage.

The LISREL output corresponding to this second-order factor analysis is shown

in Fig. 4.22.

The graphical representation of the results is shown in Fig. 4.23.

As seen in Fig. 4.22, the highly significant chi-square indicates that the second-

order factor model has a poor fit. Nevertheless, the parameter estimates for the

second-order factor loadings on the first-order factors correspond to what would be

expected from the correlation pattern between these two constructs (a positive

loading on FactorOne and a negative loading on FactorTwo).

Fig. 4.18 (continued)
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4.6.5 Example of Multi-Group Factor Analysis

The example we use to illustrate the analysis of factors across groups concerns the

subjective well-being of men in three different countries (USA, Austria, and

Australia). There are five items to measure subjective well-being. We first illustrate

this analysis using LISREL and then using STATA. Figure 4.24 lists the input for

performing this analysis in LISREL.

We indicate that the data file contains raw data (rather than correlations or

covariances) by specifying on the third line “RA ¼” followed by the full name of

Fig. 4.18 (continued)
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Fig. 4.18 (continued)
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Fig. 4.18 (continued)
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Fig. 4.18 (continued)
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Fig. 4.18 (continued)
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Fig. 4.18 (continued)
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Fig. 4.18 (continued)
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Fig. 4.19 AMOS input example for confirmatory factor analytic model with two factors (examp4-

5.ami)

Fig. 4.20 Input for second-order factor analysis using LISREL (examp4-6.spl)

Fig. 4.21 Input for second-order factor analysis using STATA (examp4-6_Mac.do)
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the file, including the directory path. The first line indicates the label for the first

group (country, in this case).

The second line indicates that the data contain five indicators (“NI ¼ 5”), that

there are three groups (“NG ¼ 3”), that the number of observations in the first

group is 226 (“NO ¼ 226”), and that the covariance matrix is analyzed

(“MA ¼ CM”).

The model line (which starts with “MO”) indicates that there are five x indicators

(observed items) and one factor ξ (“NK ¼ 1”), and that tau is estimated (“TA ¼
FR”) but kappa is fixed (“KA ¼ FI”). Θδ is specified as symmetric because we

estimate some of the covariance terms that appear to be non-zero.

We label the factor as “SWB” for subjective well-being, below the line LK for

Label Xsi. The lambda matrix is then specified with five rows of 1s and the first

value is fixed to the value 1 (the line “FI LX 1 1” fixes the parameter and the line

“VA 1 LX 1 1” sets it to the value 1). The diagonal elements of the measurement

error covariance matrix are then freed so that these elements can be estimated

(as well as one of the covariances).

Then the output line “OU MI” requests that the modification indices be included

in the output.

Similar information is then entered in turn for the other two groups, except that

some of the parameters do not need to be repeated.

The path diagram is requested through the “PD” command.

For this unconstrained analysis, the CFA is conducted separately country by

country. The chi-square for the three countries is the sum of the chi-squares for each

of the three groups.

Fig. 4.22 LISREL output for second-order factor analytic model (examp4-6.out)
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Because no constraints are imposed, the construct means (one mean value for

each country) cannot be estimated and the mean for each country is zero. Fig-

ure 4.25 gives the values of the parameters estimated by LISREL on a graphical

representation of the model.

It is clear from Fig. 4.25 that the estimated loading parameters are country

specific.

Fig. 4.22 (continued)
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The input corresponding to unconstrained multi-group analysis in STATA is

shown in Fig. 4.26.

An alternative (also STATA) is shown in Fig. 4.27. Although the commands

appear more complex, they have the advantage of being precise and explicit about

the parameters to be estimated. The commands used in Fig. 4.27 are especially

useful to know, as they are needed for the subsequent models that make parameter

restrictions across groups.

The STATA output corresponding to the input of Fig. 4.26 is listed in Fig. 4.28.

In metric invariance, the factor loadings are constrained to be the same across

groups. The scalar values tau can, however, vary across groups, which makes it

impossible to assess different means for the construct across groups. Figure 4.29

Fig. 4.22 (continued)

136 4 Confirmatory Factor Analysis



lists the LISREL input to run such a partially constrained model (the example in

STATA follows in Fig. 4.31).

The input in Fig. 4.29 is identical to the unconstrained estimation, except for the

statement concerning the factor loadings in the second and third groups. Indeed, for

these two countries, the statement “LX ¼ IN” indicates that these parameters must

be constrained to be invariant, i.e., equal across groups. Figure 4.30 provides the

LISREL output for this problem.

Fig. 4.22 (continued)
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Although the error variances vary across countries, the factor loadings are

identical, i.e., invariant. As indicated in Fig. 4.28, the means of the unobserved

factors are still zero for each group.

The STATA input for metric invariance is shown in Fig. 4.31. The STATA

output is not shown since it gives the same results as that of LISREL.

Fig. 4.22 (continued)
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In the scalar invariance model, the factor loadings are equal, i.e., invariant across

groups as in metric invariance. However, in addition, the scalars corresponding to

the elements of tau are also invariant. We illustrate scalar invariance estimation in

LISREL and then in STATA. In LISREL, tau is specified as invariant (i.e., equal

across groups) by indicating “TX ¼ IN” for the last two groups, as shown in

Fig. 4.32.

The means are then shown in Fig. 4.33.

It can be seen from Fig. 4.33 that the means of the SWB factor in the USA and

Austria are almost the same (zero for the USA and close to zero for Austria but

slightly below as indicated by the negative sign before the 0.00). However, the

mean is�0.58 for SWB in Australia, indicating an inferior perception of well-being

in that country relative to the USA and Austria.

The input in STATA that is equivalent to the LISREL input (Fig. 4.32) is shown

in Fig. 4.34. The STATA output is not shown, as it gives the same results as the

LISREL output.

Fig. 4.22 (continued)
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Fig. 4.23 Second-order factor analytic model in LISREL (examp4-6.pth)
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Fig. 4.24 Unconstrained CFA for subjective well-being of men in three countries-LISREL

(examp4-7.ls8)

Fig. 4.25 Unconstrained estimates from LISREL (examp4-7.pth)

Fig. 4.26 Unconstrained CFA for subjective well-being of men in three countries-STATA

(examp4-7_Mac_Unconstrained.do)
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Fig. 4.27 Unconstrained CFA for subjective well-being of men in three countries-STATA

alternative (examp4-7_Mac_Unconstrained_Alt.do)

Fig. 4.28 STATA output of unconstrained CFA for subjective well-being of men in three

countries (examp4-7_Unconstrained.log)
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Fig. 4.28 (continued)
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Fig. 4.28 (continued)
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Fig. 4.28 (continued)
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Fig. 4.28 (continued)
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Fig. 4.28 (continued)
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The full outputs are not listed, as they provide the same information as in the

case of single-group CFA. The chi-square of each of these models can be compared

because these are nested constrained models. The difference in chi-squares with the

proper difference across models in the degrees of freedom is also chi-square

distributed and can serve to test the extent of the loss in fit due to the imposition

Fig. 4.28 (continued)

Fig. 4.29 LISREL input for metric invariance model of subjective well-being for three countries

(examp4-8.ls8)
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Fig. 4.30 Output from LISREL for metric invariance (examp4-8.pth)

Fig. 4.31 STATA input for metric invariance model of subjective well-being for three countries

(examp4-7_MetricInvariance.do)

Fig. 4.32 LISREL input for scalar invariance model (examp4-9.spl)
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of the constraint. The constructs can only be compared across groups if the

chi-square values are insignificant when imposing metric invariance first and scalar

invariance next.

The graphical representations of the outputs of the three models under different

constraints were discussed above. The corresponding basic statistics needed are

(1) the number of data points to be reproduced, (2) the number of parameters to be

estimated, and (3) the chi-square values for each of the models.
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Fig. 4.33 Factor means with scalar invariance model (examp4-9.pth)

Fig. 4.34 STATA input for scalar invariance model (examp4-7_Mac_ScalarInvariance.do)

Table 4.1 Number of parameters and degrees of freedom of each model

Parameter

Unconstrained

model

Metric invariance

model

Scalar invariance

model

Λx 4+4+4 4 4

Φ 1+1+1 1+1+1 1+1+1

Θδ 6+6+5 6+6+5 6+6+5

Τ 5+5+5 5+5+5 5

K 0 0 0+1+1

Number of parameters 47 39 31

Number of degrees of freedom 13 21 29

Chi-square 14.79 25.26 40.00
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First, we calculate the number of data points available. For each country, there is

a 5 � 5 covariance matrix, which provides 15 different data points, i.e., 45 for the

three countries. In addition, there are five means for the five items for each country,

i.e., 15 means. The total number of data points is, therefore, 45 + 15 ¼ 60.

Next, we calculate the number of parameters to be estimated for each model.

Table 4.1 provides the details.

In the unconstrained model, there are four lambdas to be estimated for each

country (one loading must be fixed to unity to define the unit of measurement); this

is indicated in the corresponding cell of the table by “4+4+4.” In both the metric and

scalar invariance models, only four lambdas are estimated since these lambdas are

constrained to be equal across groups. The error term variances are five for each

country, but for two countries a covariance term has also been estimated. This

explains the “6+6+5,” as no covariance is estimated for the third country.

When we subtract the number of parameters from the number of data points (i.e.,

60), we obtain the degrees of freedom for each model.

Given the nested structure of these three models, it is possible to compare the

extent to which imposing additional constraints makes the fit worse. When we

compare the unrestricted model to the metric invariance constraint (same loadings

across groups) model, the chi-square goes from 14.79 to 25.26 (a difference of

10.47), which is chi-square distributed with 8 degrees of freedom (21 � 13). The

critical chi-square with 8 degrees of freedom at α ¼ 0.05 is 15.51. Consequently,

we fail to reject this difference as significant. This supports the restriction that there

is metric invariance.

Similarly, we can further evaluate the impact of the restriction that there is scalar

invariance by comparing the chi-square of the metric invariance model with that of

the scalar invariance model. The chi-square increases from 25.26 to 40.00 when we

impose the constraint that the tau’s are the same, even if we now can estimate the

mean of the unobserved construct relative to one of the countries (USA) that serves

as reference. The difference (40.00 � 25.26) ¼ 14.74 is still not significant with

8 degrees of freedom (29 � 21) at α ¼ 0.05. We therefore infer scalar invariance,

which allows us to interpret the means estimated under this scalar invariance model.

Figure 4.33 shows an example of these means estimated with LISREL.

4.7 Assignment

Using the SURVEY data (Appendix C, Chap. 14), estimate the parameters of a

measurement model corresponding to a CFA of two or three constructs. Include an

analysis of convergent and discriminant validity.

Considering a categorical variable that distinguishes between respondents,

define several groups of respondents (e.g., respondents of different ages). Then

perform a multi-group analysis to test the invariance of the measurement model of

your choice.
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It is useful to first create a new data file that contains only the items relevant for

your analysis. The SAS file listed in Fig. 4.35 shows an example of how to create

such a new data file. This data file containing only the subset of relevant data can

then be used with LISREL.

With STATA, the commands provided in the previous chapter can be used to

read the data file created for this assignment. An alternative, once the data are saved

as a STATA file (“survey.dta”), is to read the STATA file directly, as shown in

Fig. 4.36.
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Chapter 5

Multiple Regression with a Single Dependent

Variable

In this chapter we examine the principles that are basic to a proper understanding of

the issues involved in the analysis of management data. The chapter cannot provide

the depth of a specialized econometric book. It is, however, designed to provide

the elements of econometric theory essential for a researcher to develop and

evaluate regression models. Multiple regression is not a multivariate technique in

the strictest sense because the focus of the analysis is a single dependent variable.

Nevertheless, the multivariate normal distribution is involved in the distribution of

the error term, which, combined with the fact that there are multiple independent or

predictor variables, leads to considering simple multiple regression within the

domain of multivariate data analysis techniques.

The first section of this chapter presents the basic linear model with inferences

obtained through the estimation of the model parameters. The second section

discusses the issue of heterogeneity of coefficients, an important aspect of data

analysis, especially in the context of testing contingency theories. While many

other econometric issues remain, such as autocorrelation or multicollinearity, the

reader is referred to specialized books for these topics.

5.1 Statistical Inference: Least Squares

and Maximum Likelihood

The linear model is first presented with its basic assumptions. Then, point estimates

using the least squares criterion are derived, followed by the maximum likelihood

estimation. Finally, the properties of these estimators are discussed.

H. Gatignon, Statistical Analysis of Management Data,
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5.1.1 The Linear Statistical Model

The dependent variable yt is modeled as a linear function of K independent

variables:

y
T�1

¼ X
T�K

β
K�1

þ e
T�1

(5.1)

where T ¼ number of observations (for example T periods), X ¼ matrix of

K independent variables, β ¼ vector of K weights applied to each independent

variable k, y ¼ vector of the dependent variable for t ¼ 1 to T, and e ¼ vector of

residuals corresponding to a unique aspect of y that is not explained by X.

It should be noted that X is given, fixed, observed data. X is, in fact, not only

observable but is also measured without error (the case of measurement error is

discussed in Chap. 10). We assume that X is correctly specified. This means that

X contains the proper variables explaining the dependent variable with the proper

functional form (i.e., some of the variables expressed in X may have been

transformed, for example, by taking their logarithm). Finally, the first column of

X is typically a vector where each element is 1. This means that the first element of

the parameter vector β is a parameter that corresponds to a constant term that

applies equally to each value of the dependent variable yt from t ¼ 1 to T.

5.1.1.1 Error Structure

Some assumptions are needed in order to make some statistical inferences. Not all

the assumptions below are necessarily used. In fact, in Sect. 5.1.4.3, we identify

which assumptions are necessary in order to be able to obtain the specific properties

of the estimators. Because y and X are given data points and β is the parameter

vector on which we want to make inferences, the assumptions can only be on the

unobserved factor e.

Assumption 1: Expected Value of Error Term

E e½ � ¼ 0 (5.2)

Assumption 2: Covariance Matrix of Error Term

Homoscedasticity
Usually, each observation has an error term et independently and identically

distributed with the same variance:

et � iid ) E ee
0

h i
¼ σ2IT (5.3)

where I ¼ identity matrix.

This means that the variances for each observation t are the same and that they

are uncorrelated. The unknown parameters that need to be estimated are β and σ2.

156 5 Multiple Regression with a Single Dependent Variable

http://dx.doi.org/10.1007/978-1-4614-8594-0_10


Heteroscedasticity
More generally

E ee
0

h i
¼ σ2Ψ ¼ Φ (5.4)

Note that Φ, a covariance matrix, is a symmetric matrix. Heteroscedasticity

occurs, therefore, when Ψ 6¼ I. This occurs if either the diagonal elements of the

matrix Ψ are not identical (each error term et has a different variance) or if its

off-diagonal elements are different from zero.

Assumption 3: Normality of Distribution

The probability density function of the error vector can be written formally as per

Eq. (5.5) for the case of homoscedasticity or Eq. (5.6) for the case of

heteroscedasticity:

e � N 0, σ2I
� �

(5.5)

or

e � N 0;Φð Þ (5.6)

5.1.2 Point Estimation

Point estimates are inferences that can be made without the normality assumption

of the distribution of the error term e. The problem can be defined as follows: to find

a suitable function of the observed random variables y, given x, that will yield the

“best” estimate of unknown parameters.

We will restrict β to the class that are linear functions of y:

β̂
K�1

¼ A
K�T

y
T�1

(5.7)

The elements {akt} of the matrix A are scalars that weight each observation; A is

a summarizing operator.

In order to solve the problem defined above, we need to (1) select a criterion,

(2) determine the A matrix and consequently β̂ , and (3) evaluate the sampling

performance of the estimator. These three issues are discussed in the following

sections.

5.1.2.1 Ordinary Least Squares Estimator

We now consider the case of homoscedasticity where

Ψ ¼ IT (5.8)
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The criterion we use to estimate the “best” parameter is to minimize the sum of

squares residuals:

Min l1 ¼ e
0

1�T
e

T�1
¼ y� Xβð Þ0 y� Xβð Þ (5.9)

¼ y
0
y� 2y

0
Xβþ β0

X
0
Xβ, (5.10)

noting that y0Xβ ¼ β0 X0y is a scalar.

We resolve the problem of finding the parameters that minimize this least

squares quantity (l1 in Eq. (5.9)) by taking the derivative relative to the parameter

vector β, setting it to zero, and solving that equation:

∂l1
∂β

¼ 2X
0
Xβ� 2X

0
y ¼ 0 (5.11)

Note that the derivative in Eq. (5.11) is obtained by using the following matrix

derivative rules also found in Appendix A (Chap. 14):

∂a
0
v

∂v
¼ a, and

∂v
0
Av

∂v
¼ Aþ A

0
� �

v

and especially

∂2y
0
Xβ

∂β
¼ 2X

0
y (5.12)

Therefore, applying these rules to Eq. (5.10), we obtain

β̂ ¼ b ¼ X
0
X

� ��1

X
0
y (5.13)

This assumes that X’X can be inverted. If collinearity in the data exists, i.e., if a

variable xk is a linear combination of a subset of the other x variables, the inverse

does not exist (the determinant is zero). In a less strict case, multicollinearity can

occur if the determinant of X’X approaches zero. The matrix may still be invertible

and an estimate of βwill exist. We will briefly discuss the problem in the subsection

Computation of Covariance Matrix of Sect. 5.1.4.2.

b is a linear function of y:

b ¼ Ay (5.14)

where

A ¼ X
0
X

� ��1

X
0

(5.15)
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5.1.2.2 Generalized Least Squares or Aitken Estimator

In the general case of heteroscedasticity, the covariance matrix of the error term

vector is positive definite symmetric:

Ψ 6¼ IT (5.16)

The criterion is the quadratic form of the error terms weighted by the inverse of

the covariance matrix. The rationale for that criterion is best understood in the case

where Ψ is diagonal. In such a case, it can be easily seen that the observations with

the largest variances are given smaller weights than the others.

The objective is then

Min l2 ¼ e
0Ψ�1e ¼ y� Xβð Þ0Ψ�1 y� Xβð Þ (5.17)

¼ y
0Ψ�1 � β0

X
0Ψ�1

� �
y� Xβð Þ (5.18)

¼ y
0Ψ�1yþ β0

X
0Ψ�1Xβ� β0

1�k
X

0

k�T
Ψ�1

T�T y
T�1

� y
0Ψ�1Xβ

1�1

(5.19)

¼ y
0Ψ�1yþ β0

X
0Ψ�1Xβ� 2y

0Ψ�1Xβ (5.20)

Minimizing of the quadratic expression in Eq. (5.20) is performed by solving the

equation

∂l2
∂β

¼ 2 X
0Ψ�1X

� �
β� 2X

0Ψ�1y ¼ 0 (5.21)

) β̂ ¼ β̂ GLS ¼ X
0Ψ�1X

� ��1

X
0Ψ�1y (5.22)

Consequently, β̂ is still a linear function of y such as in Eq. (5.14), but with the

linear weights given by

A ¼ X
0Ψ�1X

� ��1

X
0Ψ�1 (5.23)

5.1.3 Maximum Likelihood Estimation

So far, the estimators that we have derived are point estimates. They do not allow

the researcher to perform statistical tests of significance on the parameter vector β.
In this section, we derive the maximum likelihood estimators, which leads to the

presentation of the distributional properties of these estimators. The problem is to

find the value of the parameter β that will maximize the probability of obtaining the

observed sample.
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The assumption that is needed to derive the maximum likelihood estimator is the

normal distribution of the error term

e � N 0, σ2IT
� �

(5.24)

It is then possible to write the likelihood function, which for the homoscedastic

case is

l1 β, σ2 yj Þ ¼ 2πσ2
� ��T=2

exp � 1

2σ2
y� Xβð Þ0 y� Xβð Þ

� ��
(5.25)

or for the case of heteroscedasticity

l2 β, σ2 yj Þ ¼ 2πσ2
� ��T=2 Ψj j�T=2

exp � 1

2σ2
y� Xβð Þ0Ψ�1 y� Xβð Þ

� ��
(5.26)

We can then maximize the likelihood or, equivalently, its logarithm:

Max l1 , Max Ln l1 , Max �T

2
Ln 2πσ2

� �� 1

2σ2
y� Xβð Þ0 y� Xβð Þ

	 

(5.27)

which is equivalent to minimizing the negative of that expression, i.e.,

Min
T

2
Ln 2πσ2

� �þ 1

2σ2
y� Xβð Þ0 y� Xβð Þ

	 

(5.28)

This can be done by solving the derivative of Eq. (5.28) relative to β:

∂ �Ln l1ð Þ½ �
∂β

¼ 0 ) βe1 ¼ X
0
X

� ��1

X
0
y (5.29)

which is simply the least squares estimator.

Similar computations lead to the maximum likelihood estimator in the case of

heteroscedasticity, which is identical to the generalized least squares (GLS)

estimator:

eβ 2 ¼ X
0Ψ�1X

� ��1

X
0Ψ�1y (5.30)

We can now compute the maximum likelihood estimator of the variance by

finding the value of σ that maximizes the likelihood or minimizes the expression in

Eq. (5.28):

Min
σ

T

2
Ln2π þ TLnσ þ 1

2
σ�2 y� Xβð Þ0 y� Xβð Þ

	 

(5.31)
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This is solved by setting the derivative relative to σ to zero:

∂ �Ln l1ð Þ½ �
∂σ

¼ T

σ
þ 1

2
�2σ�3
� �

y� Xβð Þ0 y� Xβð Þ ¼ 0 (5.32)

This results in

T

σ
� 1

σ3
y� Xβð Þ0 y� Xβð Þ ¼ 0 ) 1

σ3
y� Xβð Þ0 y� Xβð Þ ¼ T

σ
(5.33)

which leads to the maximum likelihood estimator:

eσ 2 ¼ 1

T
y� Xeβ 1

� �0

y� Xeβ 1

� �
¼ 1

T
ê

0
ê (5.34)

where ê is the vector of residuals obtained when using the maximum likelihood

estimator of β to predict y.

The same computational approach can be applied for the heteroscedastic case.

5.1.4 Properties of Estimator

We have obtained estimators for the parameters β and σ. The next question is to

determine how good these estimators are. Two criteria are important for evaluating

these parameters. Unbiasedness refers to the fact that on average the parameters are

correct, i.e., on average, we obtain the true parameter. The second criterion

concerns the fact that the estimator should have the smallest possible variance.

5.1.4.1 Unbiasedness

Definition: An estimator is unbiased if its expected value is equal to the true

parameter, i.e.,

E β̂
h i

¼ β (5.35)

b and β̂ , and, a fortiori, the maximum likelihood estimators βe1 and β2e , are linear

functions of random vector y. Consequently, they are also random vectors with the

following mean:

E b½ � ¼ E X
0
X

� ��1

X
0
y

	 

¼ E X

0
X

� ��1

X
0
Xβþ eð Þ

	 

(5.36)
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¼ E X
0
X

� ��1

X
0
X|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

I

βþ X
0
X

� ��1

X
0
e

2
664

3
775 (5.37)

¼ βþ X
0
X

� ��1

X
0
E e½ �|{z}
¼0

¼ β (5.38)

This proves the least squares estimator is unbiased. Similarly for the GLS

estimator

E β̂
h i

¼ E X
0Ψ�1X

� ��1

X
0Ψ�1y

	 

¼ βþ E X

0Ψ�1X
� ��1

X
0Ψ�1e

	 

¼ β (5.39)

This means that on average the GLS estimator is the true parameter and is thus

unbiased.

5.1.4.2 Best Linear Estimator

How do the linear rules above compare with other linear unbiased rules in terms of

the precision, i.e., in terms of the covariance matrix? We want an estimator that has

the smallest variance possible. This means that we need to compute the covariance

matrix of the estimator, and then we need to show that it has minimum variance.

Computation of Covariance Matrix

The covariance of the least squares estimator b is

Σb
K�K

¼ E b� E b½ �ð Þ b� E b½ �ð Þ0
h i

¼ E b� βð Þ b� βð Þ0
h i

¼ E X
0
X

� ��1
X

0
y� β

� �
X

0
X

� ��1
X

0
y� β

� �0	 


¼ E X
0
X

� ��1
X

0
Xβþ eð Þ � β

� �
X

0
X

� ��1
X

0
Xβþ eð Þ � β

� �0	 


¼ E X
0
X

� ��1
X

0
ee

0
X X

0
X

� ��1
h i

¼ X
0
X

� ��1
X

0
E ee

0� 
X X

0
X

� ��1

¼ X
0
X

� ��1
X

0
σ2Ið ÞX X

0
X

� ��1

¼ σ2 X
0
X

� ��1
X

0
X X

0
X

� ��1

¼ σ2 X
0
X

� ��1

(5.40)
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Therefore,

Σb
K�K

¼ σ2 X
0
X

� ��1

(5.41)

In the case of multicollinearity, (X0X)� 1 is very large (because the determinant

is close to zero). This means that the variance of the estimator will be very large.

Consequently, multicollinearity results in parameter estimates that are unstable.

Following similar calculations, the variance–covariance matrix of the GLS

estimator β̂ is

Σβ̂ ¼ E β̂ � β
� �

β̂ � β
� �0	 


¼ E X
0Ψ�1X

� ��1

X
0Ψ�1ee

0Ψ�1X X
0Ψ�1X

� ��1

(5.42)

Σβ̂ ¼ σ2 X
0Ψ�1X

� ��1

(5.43)

Best Linear Unbiased Estimator

Out of the class of linear unbiased rules, the ordinary least squares (OLS) (or the

GLS depending on the error term covariance structure) estimator is the best, i.e.,

provides minimum variance. We will provide the proof with the OLS estimator

when Ψ ¼ IT; however, the proof is similar for the GLS estimator when Ψ 6¼ IT.

The problem is equivalent to minimizing the variance of a linear combination of

the K parameters for any linear combination.

Let φ
K�1

be a vector of constants. The scalar θ is the linear combination of the

regression parameters β:

θ
1�1

¼ φ0

1�K
β

K�1

The least squares estimator of θ is

θ̂ LS ¼ φ0
b ¼ φ0

X
0
X

� ��1

X
0
y (5.44)

The problem is therefore to determine if there exists another unbiased linear

estimator that is better than the least squares estimator.

An alternative linear estimator would be written in a general way as

θ̂
1�1

¼ A
0

1�T
y

T�1

þ a
1�1

(5.45)

θ̂ should be unbiased. This means that
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8β : E θ̂
h i

¼ φ0β (5.46)

By substitution of the expression of the estimator θ̂ ,

E θ̂
�  ¼ E A

0
yþ a

h i
¼ A

0
E y½ � þ a (5.47)

¼ A
0
Xβþ a (5.48)

For θ̂ to be unbiased, Eq. (5.46) must be verified, i.e.,

φ0β ¼ A
0
Xβþ a (5.49)

This can only be true if

a ¼ 0 (5.50)

and

φ0 ¼ A
0
X (5.51)

What is the value of A that will minimize the variance of the estimator? The

variance is

V θ̂
�  ¼ A

0
V y½ �A (5.52)

However,

V y½ �
T�1

¼ V Xβþ e½ �

¼ E Xβþ eð Þ � E Xβþ eð Þð Þ Xβþ eð Þ � E Xβþ eð Þð Þ0
h i

¼ E ee
0�  ¼ σ2I

(5.53)

Therefore,

V θ̂
�  ¼ σ2A

0
A (5.54)

The problem now is to minimize V θ̂
� 

subject to the unbiasedness restrictions

stated in Eqs. (5.50) and (5.51), i.e.,

Min σ2A
0
A

s:t:φ0 ¼ A
0
X
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This is a Lagrangian multiplier problem.

The Lagrangian is

L ¼ σ2 A
0

1�T
A
T�1

þ2 λ0

1�K
φ

K�1

� X
0

K�T
A
T�1

� �
(5.55)

∂L
∂A

¼ 2σ2A
0 � 2λ0

X
0 ¼ 0 (5.56)

Therefore,

σ2A
0 � λ0

X
0 ¼ 0

σ2A
0
X� λ0

X
0
X ¼ 0

λ0 ¼ σ2A
0
X X

0
X

� ��1

λ0 ¼ σ2φ0
X

0
X

� ��1

(5.57)

In addition,

∂L
∂λ

¼ φ0 � A
0
X ¼ 0 (5.58)

Considering again the derivative relative to A given in Eq. (5.56), i.e.,

∂L
∂A

¼ 2σ2A
0 � 2λ0

X
0

replacing λ by the expression obtained in Eq. (5.57), we obtain

∂L
∂A

¼ 2σ2A
0 � 2σ2φ0

X
0
X

� ��1

X
0 ¼ 0 (5.59)

and, therefore,

A
0 ¼ φ0

X
0
X

� ��1

X
0

(5.60)

However,

θ ¼ A
0
y

Thus, the minimum variance linear unbiased estimator of φ0β is obtained by

replacing A0 with the expression in Eq. (5.60):

θ̂ ¼ φ0
X

0
X

� ��1

X
0
y (5.61)
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which is the one obtained from the OLS estimator:

θ̂ ¼ φ0
b (5.62)

We have just shown that the OLS estimator has minimum variance.

5.1.4.3 Summary of Properties

Not all three assumptions discussed in Sect. 5.1.1 are needed for all the properties of

the estimator. Unbiasedness only requires assumption no.1. The computation of the

variance and the best linear unbiased estimator (BLUE) property of the estimator

only involve assumptions no.1 and no.2, and do not require the normal distribu-

tional assumption of the error term. Statistical tests about the significance of the

parameters can only be performed with assumption no.3 about the normal distribu-

tion of the error term. These properties are shown in Table 5.1.

5.1.5 R-Squared as a Measure of Fit

We first present the R-squared measure and its interpretation as a percentage of

explained variance in the presence of homoscedasticity. We then discuss the issues

that appear when the error term is heteroscedastic.

5.1.5.1 Normal Case of Homoscedasticity

y ¼ ŷ þ ê (5.63)

Lety be the T � 1 vector containing T times the mean of y. Subtractingy from each

side of Eq. (5.63):

y� y ¼ ŷ � y þ ê (5.64)

Table 5.1 Properties

of estimators
Property Assumption(s) needed

E[b|X] ¼ β No.1

V[b|X,s2] ¼ σ2(X0X)� 1 No.1, 2

b is BLUE No.1, 2

b is the MLE No.3

b � N(β, σ2(X0X)� 1) No.3
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Multiplying each side by its transpose:

y� y
�0

y� yð Þ ¼ �
ŷ � y þ ê

�0�
ŷ � y þ ê

� �
(5.65)

¼ �
ŷ � y

�0
ŷ � yð Þ þ ê

0
ê þ ê

0
ŷ � yð Þ þ �

ŷ � y
�0
ê (5.66)

¼ �
ŷ � y

�0
ŷ � yð Þ þ ê

0
ê þ 2

�
ŷ � y

�0
ê (5.67)

¼ �
ŷ � y

�0
ŷ � yð Þ þ ê

0
ê þ 2 ŷ

0
ê � y

0
ê

� �
(5.68)

The last term in the equation is equal to 0 because

ŷ
0
ê ¼ �

Xβ̂
�0
ê ¼ β̂

0
X

0
ê ¼ β̂

0
X

0
y� Xβ̂

� �
¼ β̂

0�
X

0
y� X

0
Xβ̂

�
¼ β̂

0
X

0
y� X

0
X X

0
X

� ��1

X
0
y

� �
¼ β̂

0�
X

0
y� X

0
y
� ¼ 0 (5.69)

and y
0
ê ¼ 0 because it is the mean of the error term, which is zero if the equation

contains a constant term.

Therefore, the equality in Eq. (5.65) shows that the total sum of squares (TSS) is
equal to the regression sum of squares (RSS) plus the error sum of squares (ESS):

�
y� y

�0
y� yð Þ ¼ �

ŷ � y
�0

ŷ � yð Þ þ ê
0
ê (5.70)

TSS ¼ RSSþ ESS

Consequently, a measure of fit is the R2:

R2 ¼ 1� ê
0
ê�

y� y
�0

y� yð Þ
¼ 1� ESS

TSS
(5.71)

This measure can be interpreted as the proportion of explained variance because

of Eq. (5.70). For the same reason,

R2∈ 0; 1½ �
It should be noted that if Eq. (5.63) does not contain a constant term, the equality

in Eq. (5.70) does not hold because y
0
ê 6¼ 0. In such a case, the R2 computed as in

Eq. (5.71) cannot be interpreted as the percentage of explained variance.
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5.1.5.2 Case with Non-scalar Error Covariance Matrix:

E[ee0] ¼ Φ 6¼ σ2I

y ¼ Xβ̂ þ ê ¼ ŷ þ ê (5.72)

where the appropriate estimator is the GLS estimator:

β̂ ¼ X
0Φ�1X

� ��1

X
0Φ�1y (5.73)

Considering again Eq. (5.64),

y� y ¼ ŷ � y þ ê (5.74)

Multiplying each side by its transpose:

y� y
�0

y� yð Þ ¼ �
ŷ � y þ ê

�0�
ŷ � y þ ê

� �
(5.75)

¼ �
ŷ � y

�0
ŷ � yð Þ þ ê

0
ê þ ê

0
ŷ � yð Þ þ �

ŷ � y
�0
ê (5.76)

¼ �
ŷ � y

�0
ŷ � yð Þ þ ê

0
ê þ 2

�
ŷ � y

�0
ê (5.77)

¼ �
ŷ � y

�0
ŷ � yð Þ þ ê

0
ê þ 2 ŷ

0
ê � y

0
ê

� �
(5.78)

The problem this time is that the last term in the equation is not equal to

0, because

ŷ
0
ê ¼ �

Xβ̂
�0
ê ¼ β̂

0
X

0
ê ¼ β̂

0
X

0
y� Xβ̂

� �
¼ β̂

0�
X

0
y� X

0
Xβ̂

�
¼ β̂

0
X

0
y� X

0
X X

0Φ�1X
� ��1

X
0Φ�1y

� �
6¼ 0 (5.79)

Therefore,

R2 ¼ 1� ê
0
ê

y� yð Þ0 y� yð Þ (5.80)

cannot be interpreted any longer as the proportion of explained variance because

the equality in Eq. (5.70) is no longer true. For the same reason, R2 =2 [0,1]. In fact,

R2∈[�1,1].
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5.2 Pooling Issues

The pooling issues refer to the ability to pool together subsets of data. Therefore,

this concerns the extent to which data sets are homogeneous or are generated by the

same data-generating function. This question can be addressed by testing whether

or not the parameters of different subsets of data are the same. If the parameters are

different, the objective may become, in a second stage, to develop models that

contain variables explaining why these parameters differ. This would lead to

varying parameter models that are outside the scope of this book, but which

students may wish to explore in specialized manuals.

5.2.1 Linear Restrictions

Let us write a linear model for two sets of data with T1 and T2 observations,

respectively:

Data set1 : y1
T1�1

¼ X1
T1�K

β1 þ u1 (5.81)

Data set2 : y2
T2�1

¼ X2
T2�K

β2 þ u2 (5.82)

where the ys and the Xs represent the same variables in each subset of data. The

subscripts in Eqs. (5.81) and (5.82) represent the two subsets of observations. For

example, the dependent variable may be sales of a product and X may contain a

vector of 1s for an intercept and the price of the product. The subscript can represent

the country (in this case, countries 1 and 2). There would be T1 time periods of

observations in country 1 and T2 periods in country 2.

Assembling the two data sets gives

y1
y2

	 

¼ X1 0

0 X2

	 

β1
β2

	 

þ u1

u2

	 

(5.83)

or

y
T�1

¼ eX
T�2K

β
2K�1

þ u
T�1

(5.84)

where T ¼ T1 + T2.
β1 ¼ β2 can also be written as β1 � β2 ¼ 0 or
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1 �1½ � β1
β2

	 

¼ 0 (5.85)

which can also be written as

Rβ ¼ 0 (5.86)

where R ¼ 1 �1½ �.
This can be generalized to more than two subsets of data. Then the estimation

can be done as for any linear restriction on the parameters as described in

Sect. 5.2.1.1.

This linear restriction can also be represented by the model

Y1

Y2

	 

¼ X1

X2

	 

βþ u (5.87)

or

y
T�1

¼ X
T�K

β
K�1

þ u
T�1

(5.88)

Let RRSS be the restricted residual sum of squares coming from Eq. (5.87) and

URSS be the unrestricted residual sum of squares coming from Eq. (5.83) or

obtained by summing up the residual sum of squares of each equation estimated

separately. Each one follows a chi-square distribution:

RRSS � χ2ν¼T1þT2�K

URSS � χ2ν¼T1þT2�2K

The test involves checking if the fit is made significantly worse by imposing the

constraint on the parameters. Therefore, a test of the restriction that the coefficients

from the two data sets are equal is given by the following F test, which compares

the residual sum of squares after corrections for differences in degrees of freedom:

RRSS� URSSð Þ=K
URSS= T1 þ T2 � 2Kð Þ � Fν1¼K

ν2¼T1þT2�2K (5.89)

This test requires that the number of observations in each set be greater than the

number of parameters in order to have sufficient degrees of freedom. Otherwise,

the unrestricted model cannot be estimated. If T2 < K, it is still possible to test that
the T2 observations are generated by the same model as the one used for the T1
observations.

The model is first estimated using only the T1 observations from the first set of

data, as in Eq. (5.81). The residual sum of squares for these T1 observations is RSS1.
Then, the pooled model is estimated as in Eq. (5.87) to obtain the residual sum of

squares RRSS.
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The two residual sums of squares RSS1 and RRSS have independent chi-square

distributions, each with, respectively, T1 � K and T1 + T2 � K degrees of freedom.

The test of homogeneity of coefficients is therefore obtained from the significance

of the difference between the two residual sums of squares:

RRSS� RSS1ð Þ= T1 þ T2 � K � T1 � Kð Þð Þ
RSS1= T1 � Kð Þ

Therefore, the test considers the F distribution:

RRSS� RSS1ð Þ=T2

RSS1= T1 � Kð Þ ¼ Fν1¼T2

ν2¼T1�K (5.90)

5.2.1.1 Constrained Estimation

Any linear constraint on the parameters can be written as

Rβ� r ¼ 0 (5.91)

Minimizing the sum of squares under the linear constraint consists in minimizing

the Lagrangian:

y� Xβð Þ0 y� Xβð Þ � 2λ
0
Rβ� rð Þ (5.92)

This leads to

X
0
y� Xβð Þ � R

0
λ ¼ 0 (5.93)

Pre-multiplying by R(X0X)� 1:

R X
0
X

� ��1

X
0
y|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

b

�R X
0
X

� ��1

X
0
Xβ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

r

¼ R X
0
X

� ��1

R
0
λ (5.94)

with Rβ � r ¼ 0.

Therefore,

λ ¼ R X
0
X

� ��1

R
0

� ��1

Rb� r½ � (5.95)

Replacing the value of λ into Eq. (5.93):

X
0
y� Xβð Þ � R

0
R X

0
X

� ��1

R
0

� ��1

Rb� rð Þ ¼ 0 (5.96)
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This develops into

X
0
Xβ ¼ X

0
y� R

0
R X

0
X

� ��1

R
0

� ��1

Rb� rð Þ (5.97)

and

β̂
R ¼ X

0
X

� ��1

X
0
y� X

0
X

� ��1

R
0
R X

0
X

� ��1

R
0

� ��1

Rb� rð Þ (5.98)

or

β̂ R ¼ b� X
0
X

� ��1

R
0
R X

0
X

� ��1

R
0

� ��1

Rb� rð Þ (5.99)

5.2.2 Pooling Tests and Dummy Variable Models

In this section we assume that there are multiple firms, individuals, or territories.

There are T observations for each of these N firms, individuals, or territories. We

can write the equation for a single observation yit. The subscripts i and t indicate
that the observations vary along two dimensions, for example individuals (i) and
time (t). For example, if yit represents sales in a district in a given month, then it can

be expressed as a linear function of factors measured in this same district at the

same time period:

yit ¼ β1i þ Σ
K

k¼2
βkxkit þ eit (5.100)

β1i represents the intercept for observation i. This can be expressed in terms of an

individual difference from a mean value of the intercept across all observations:

β1i ¼ β þ μi (5.101)

which, when inserted into Eq. (5.100), gives

yit ¼ β 1 þ μi þ Σ
K

k¼2
βkxkit þ eit (5.102)

Depending on the nature of the variable μ, the model is a dummy variable model

or an error component model.

If μi is fixed, then it is a dummy variable or a covariance model. If μi is random,

we would be dealing with an error component model. In this section, we consider

the dummy variable model (i.e., μi is fixed).
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Let us consider a model with constant slope coefficients and an intercept that

varies over individuals. The dummy variable model can be represented for all the

T observations in a given territory i as

yi
T�1

¼ β 1 þ μi
� �

jT
T�1

þ Xsi
T� K�1ð Þ

βs
K�1ð Þ�1

þei (5.103)

where

E ei½ � ¼ 0

E eiei
0�  ¼ σ2eIT

E eiej
0�  ¼ 0 8i 6¼ j

This is identical to creating a dummy variable, where each observation ditm is

such that

ditm ¼ 1 if i ¼ m and 0 otherwise,

where i and m represent indices for the cross sections.

Equations (5.100) or (5.102) can then be rewritten as

yit ¼
XN
m¼1

β1mditm þ Σ
K

k¼2
βkxkit þ eit (5.104)

We can then form a vector of dummy variables for each territory (D1, . . . Di, . . .
DN). Each of these dummy variables vector has T rows (T � 1) where each row

is a 1. Then the full data can be expressed as

y1
y2
⋮
yi
⋮
yN

2
6666664

3
7777775
¼

D1 0 � � � � � � 0

0 D2

⋮ ⋱
Di

⋮ ⋱ ⋮
0 � � � � � � DN

2
6666664

3
7777775

β11
β12
⋮
β1i
⋮
β1N

2
6666664

3
7777775
þ Xsβs þ e (5.105)

Let PRSSslopes denote the residual sum of squares obtained from the least squares

estimation of Eq. (5.105). This indicates that the model is partially restricted

(PR) on the slopes, which are assumed to be equal.

The model with equal intercepts and different slopes is

y1
y2
⋮
yi
⋮
yN

2
6666664

3
7777775
¼

D1

D2

⋮
Di

⋮
DN

2
6666664

3
7777775
β1 þ

Xs1 0 � � � � � � 0

0 Xs2 ⋮
⋮ ⋱

Xsi

⋮ ⋱ ⋮
0 � � � � � � XsN

2
6666664

3
7777775

β1s
β2s

βis

βNs

2
6666664

3
7777775
þ e (5.106)

5.2 Pooling Issues 173



Let PRSSintercept denote the residual sum of squares obtained from the least

square estimation of Eq. (5.106). This indicates a partial restriction on the intercepts

that are assumed to be equal.

With the complete restriction that the intercepts and the slopes are equal, the

model is given by

y1
y2
⋮
yi
⋮
yN

2
6666664

3
7777775
¼

X1

X2

⋮
Xi

⋮
XN

2
6666664

3
7777775
βþ e (5.107)

This results in the residual sum of squares CRSS.

Finally, the completely unrestricted model is one where slopes and intercepts are

different. This model is estimated by running N separate regressions, one for each

individual or territory. The completely unrestricted residual sum of squares is CUSS.

We now develop an example of these models with two groups.

Let d1i ¼ 1 if observation i belongs to group 1 and 0 otherwise, and d2i ¼ 1 if

observation i belongs to group 2 and 0 otherwise. The model can be written as

yit ¼ d1iβ01 þ d2iβ02 þ xitd1iβ11 þ xitd2iβ12 þ uit (5.108)

The first two terms correspond to the dummy intercepts and the last two terms

correspond to the dummy slopes (the interaction between the variable x and the

group dummy variables).

Homogeneity (i.e., equality) of intercepts and/or slopes can be tested using

F tests based on the comparison of restricted and unrestricted residual sum of

squares. The next section discusses the strategies for such pooling tests. Note that

in all cases, the homogeneity along the second dimension is assumed. For example,

homogeneity across time periods is assumed and pooling tests are performed across

sections (i.e., firms, territories, or individuals, for example).

5.2.3 Strategy for Pooling Tests

The two possible strategies are based on decomposing the tests of equality of the

intercepts and of the slopes across sections. The two strategies differ according to

the sequencing of the tests. The process follows the one depicted in Fig. 5.1.

The first test consists of an overall test of homogeneity of intercept and slopes.

For that purpose, the residual sum of squares from the completely unrestrictedmodel

(CUSS) is compared to the partially restricted model where intercept and slopes are

restricted to be the same (CRSS). A failure to reject this test indicates that the

intercept and slopes are the same across all sections. No more tests are needed. In
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the case of rejection of the equality of intercepts and slopes, we now must perform a

second test of whether the difference comes from the intercept only, the slope only,

or both. A third test is then performed to check for the equality of the slopes.

For that purpose, we now compare the residual sum of squares from the

completely unrestricted model (CUSS) with the residual sum of squares obtained

from constraining the slopes to be equal (PRSSslopes). A failure to reject the

difference between these two models indicates that the slopes are equal. Because

the slopes are equal but the full restriction leads to significant differences, we must

conclude that the intercept is different across sections. If we reject the hypothesis of

equal slopes, the slopes are different, in which case we must still determine if the

intercept of the cross sections is the same or not.

Therefore, a third test is performed where we now compare the completely

unrestricted residual sum of squares (CUSS) with the residual sum of squares of

the model, with the restriction that the intercept is the same across sections

(PRSSintercept). A failure to reject the hypothesis indicates that the slopes are the

only source of heterogeneity (the intercept is the same across sections). A rejection

of the test indicates that both intercept and slopes are different across sections.

In this case, we began by checking the source of heterogeneity by restricting the

slopes and checking if the slopes where statistically different or not across sections.

Instead, we could have first restricted the intercept, i.e., tested for the homogeneity

of the intercept. If the hypothesis had been rejected, we would then have tested for

the homogeneity of slopes. This is the second line of tests shown in Fig. 5.1.

Fig. 5.1 Strategy for pooling tests
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5.3 Examples of Linear Model Estimation

with SAS and STATA

Let us consider an example where the data set consists of the market share of four

brands during seven periods. This market share is predicted by two variables, the

percentage of distribution outlets carrying the brand during each period and the

price charged for each brand during the period.

Figure 5.2 shows an example of an SAS file to run a regression with such data. The

data are first read: period (period), brand number (brandno), market share (ms),

distribution (dist), and price (price). The variables are then transformed to obtain

their logarithms so that the coefficients correspond to sensitivity parameters. Dummy

variables for each brand except the first one (that serves as the base) are created. These

will be used for estimating a model with a different intercept for each brand. They are

also used to compute new variables created for distribution and price for each brand.

Three models are estimated as per the SAS file shown in Fig. 5.2. The SAS

procedure REG is first called. Then a model statement indicates the model specifi-

cation with the dependent variable on the left side of the equal sign and the list of

independent variables on the right side. The first model statement is the completely

unrestricted model where each brand has a different intercept and slopes. A second

model statement is used for the completely restricted model (same intercept and

slopes for all the brands). Finally, the third model statement corresponds to the

partially restricted model where each brand has a different intercept but the same

distribution and price parameters.

The corresponding input for STATA is given in Fig. 5.3.

The SAS output is shown in Fig. 5.4.

Similarly, the output in STATA is listed in Fig. 5.5.

Fig. 5.2 Example of SAS input file for regression analysis (examp5.sas)
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From the output shown in Fig. 5.5, the residual sum of squares for the completely

unrestricted model appears in the first model (i.e., CUSS ¼ 0.14833). The degrees

of freedom for this model are the number of observations (28, which follows from

four brands having seven periods of data each) minus the number of parameters

(12), that is, 16 degrees of freedom. The second model shows the completely

restricted case where all intercepts are the same and the slopes are the same as

well. There are three parameters estimated and the CRSS is 46.3733. The third

model has a different intercept for each brand but the same slopes. Therefore, six

parameters are estimated and the PRSSslopes is 0.19812.

Tests of poolability can then be performed following the discussion in Sect. 5.2.

The test for complete homogeneity is given by the statistic

CRSS � CUSSð Þ=9
CUSS=16

¼ 46:37733� 0:14833ð Þ=9
0:14833=16

¼ 554:07

Checking in the table for the F distribution with 9 and 16 degrees of freedom

(Appendix B, Chap. 14), the difference is clearly significant and the hypothesis of

complete homogeneity is clearly rejected.

We then proceed with testing for the homogeneity of slopes. We therefore

compare the completely unrestricted model with the model where the slopes are

restricted to be equal, which corresponds to the specification of the thirdmodel. There

are six parameters and the residual sum of squares is 0.19812. The test is, therefore,

PRSSslopes � CUSS
� �

=6

CUSS=16
¼ 0:19812� 0:14833ð Þ=6

0:14833=16
¼ 0:895

Comparing this statisticwith the critical value ofFwith 6 and 16 degrees of freedom,

it is clear that the constraint does not imply a significantly worse fit. Consequently, we

Fig. 5.3 Example of STATA input file for regression analysis (examp5_Mac.do)
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can conclude that the parameters of the distribution and price variables are homoge-

neous across the brands. However, each brand has a separate intercept.

Tests of equality of coefficients (or any linear combination of coefficients)

can be easily performed in STATA using the “lincom” command. This is illustrated

in Fig. 5.6.

The expression highlighted in grey in Fig. 5.6 represents the difference between

the coefficient of the variable “brand2” (indicated by _b[brand2]) and the

Fig. 5.5 STATA output for regression analysis (examp5.log)
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coefficient of the variable “brand3” (indicated by _b[brand3]). The results are

shown in Fig. 5.7.

In this example, the brand-specific constants are different from each other for

brand2 and brand3 because the difference between the two corresponding

parameters is highly significant (coef. ¼ �1.217395, t ¼ �23.58). In the expres-

sion for the “lincom” command, we could have used any linear combination of the

estimated parameters.

Note that, in the calculation of the standard error of such a linear expression, the

covariances of the parameters involved must be used to compute the variance of the

linear combination of normally distributed random variables. The standard output

Fig. 5.5 (continued)

Fig. 5.6 STATA input for test of equality of coefficients (examp6.do)
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in SAS or STATA does not list the covariances. We can, however, request them by

the command “vce” in STATA, as shown in Fig. 5.8.

The results are shown in Fig. 5.9, where the covariance matrix appears following

the regression results.

5.4 Assignment

Two data sets are available that contain information about a market in which

multiple brands compete in an industry composed of five market segments. The

full description of the data is given in Appendix C (Chap. 14).

Fig. 5.7 STATA output of test of equality of coefficients (examp6.log)

Fig. 5.8 STATA input for requesting the covariance matrix of coefficients (examp7.do)

Fig. 5.9 STATA output of covariances of coefficients (examp7.log)
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The PANEL.CSV data set contains information at the segment level while the

INDUP.CSV data set provides information at the industry level.

The file ASSIGN5.SAS in Fig. 5.10 is a SAS file that reads both data sets

(INDUP.CSV and PANEL.CSV) and merges the two files.

The equivalent commands in STATA are shown in Fig. 5.11.

Fig. 5.10 Example of SAS file for reading data sets INDUP.CSV and PANEL.CSV and for

running regressions (assign5.sas)
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It should be noted that STATA registers the panel nature of the data with the

commands “tsset brandno period” that define the structure of the time series.

The lagged awareness does not need to be created, as it can be used with the

command “L.awareness” directly in the regression model statement highlighted in

grey in Fig. 5.11.

The assignment consists in developing a model using cross sections and time

series data. For example, it is possible to model sales for each brand as a function of

the price and the advertising for the brand, sales force size, etc.

Regardless of the model, you need to test whether the intercepts and slopes are

homogenous. As another example, you may decide to model the awareness of each

brand as a function of the awareness in the prior period and of the brand advertising

of the current period. You may want to test if the process of awareness development

is the same across brands.
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Chapter 6

System of Equations

In this chapter we consider the case where several dependent variables are explained

by linear relationships with other variables. Independent analysis of each relation-

ship by ordinary least squares could result in incorrect statistical inferences either

because the estimation is not efficient (a simultaneous consideration of all the

explained variables may lead to more efficient estimators for the parameters) or

may be biased in cases where the dependent variables influence each other.

In Sect. 6.1 we present a model of seemingly unrelated regression (SUR).

In Sect. 6.2, we discuss the estimation of simultaneous relationships between

dependent or endogenous variables. And in Sect. 6.3, we discuss the issue of

identification when systems of equations are involved.

6.1 Seemingly Unrelated Regression

The case of SUR occurs when several dependent variables are expressed as a linear

function of explanatory variables, leading to multiple equations with error terms

that may not be independent of each other. Therefore, each equation appears

unrelated to the other. However, they are in fact linked by the error terms, which

leads to a disturbance-related set of equations. After first presenting the model, we

derive the proper efficient estimator for the parameters, and then discuss the

particular case when the predictor variables are the same in each equation.

6.1.1 Set of Equations with Contemporaneously
Correlated Disturbances

Let us consider time series of M cross sections. Each cross section i presents
T observations, usually over time, although t could represent individuals for

which M characteristics are modeled. Therefore, for each cross section, the vector

H. Gatignon, Statistical Analysis of Management Data,
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of dependent variables has T observations (the vector yi is dimensioned T � 1).

In this equation for the ith cross section, there are Ki predictor variables. A priori,

the variables explaining a dependent variable yit are different for each cross section
or variable i. Consequently, the matrix Xi contains T rows and Ki columns. The

linear equation for each cross section can, therefore, be represented by Eq. (6.1):

8i ¼ 1, . . .M : yi
T�1

¼ Xi
T�Ki

βi
Ki�1

þ ei
T�1

(6.1)

Stacking all the cross sections together, the model for all cross sections can be

expressed as

y1
y2
⋮
yi
⋮
yM

2
6666664

3
7777775

MT�1

¼

X1

X2 0

. .
.

Xi

0 . .
.

XM

2
66666664

3
77777775

MT�K

β1
β2
⋮
βi
⋮
βM

2
6666664

3
7777775

K�1

þ

e1
e2
⋮
ei
⋮
eM

2
6666664

3
7777775

MT�1

(6.2)

where K ¼ ΣM
i¼1Ki

This can be written more compactly as

y ¼ Zβþ e (6.3)

The error terms have zero mean and their variances (σii) vary for each equation.

In addition, the covariance corresponding to the same time period t for each pair of

cross sections is σij. All other covariances are zero. This can be expressed for each

cross-sectional vector of disturbances as

8i : E ei½ � ¼ 0 (6.4)

and

8i, j : E eie
0
j

h i
¼ σijIT (6.5)

It may be useful to write the full expression for Eq. (6.5) for two cross sections

i and j:

E

ei1
ei2
⋮
eit
⋮
eiT

0
BBBBBB@

1
CCCCCCA

ej1 ej2 � � � ejt � � � ejTð Þ

2
6666664

3
7777775
¼

σij
σij

0

0 σij

. .
.

σij

2
66666664

3
77777775

(6.6)
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The matrix for all time periods of all cross sections is expressed as

Ω ¼

σ11 0 � � � 0 σ12 0 � � � 0

0 σ11 � � � 0 0 σ12 � � � 0

⋮ ⋮ . .
.

⋮ ⋮ ⋮ . .
.

⋮
0 0 � � � σ11 0 0 � � � σ12
σ12 0 � � � 0 σ22 0 � � � 0

0 σ12 � � � 0 0 σ22 � � � 0

⋮ ⋮ . .
.

⋮ ⋮ ⋮ . .
.

⋮
0 0 � � � σ12 0 0 � � � σ22

⋮ ⋮ ⋮ ⋮ . .
.

⋮ ⋮ ⋮ ⋮ . .
.

σ1M 0 � � � 0 . .
.

0 σ1M � � � 0

⋮ ⋮ ⋮
0 0 � � � σ1M � � � � � �

2
666666666666666666666666664

3
777777777777777777777777775

(6.7)

Let Σ be the contemporaneous covariance matrix, i.e., the matrix where each cell

represents the covariance of the error term of two equations (cross sections) for the

same t:

Σ ¼
σ11 σ12 � � � σ1M
σ12 σ22 � � � σ2M

⋮ . .
.

⋮
σ1M � � � � � � σMM

2
6664

3
7775 (6.8)

Consequently, using the Kronecker product, we can write the covariance matrix

for the full set of cross sections and time series data in Eq. (6.7):

E ee
0

h i
¼ Ω ¼ Σ� IT (6.9)

6.1.2 Estimation

The structure of the covariancematrix of the error term is characteristic of heterosce-

dasticity. Consequently, the generalized least squares estimator will be the best

linear unbiased estimator:

β̂ GLS ¼ Z
0Ω�1Z

� ��1

Z
0Ω�1y (6.10)
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However, from Eq. (6.9) and using the property of the inverse of a Kronecker

product of two matrices

Σ� Ið Þ�1 ¼ Σ�1 � I (6.11)

and, therefore,

β̂ GLS ¼ Z
0 Σ�1 � I
� �

Z
h i�1

Z
0 Σ�1 � I
� �

y (6.12)

This estimation only requires the inversion of an M � M matrix, the matrix of

contemporaneous covariances.

The generalized least squares estimator is unbiased:

E β̂ GLS

h i
¼ β (6.13)

Its variance–covariance matrix is

V β̂ GLS

h i
¼ Z

0 Σ�1 � I
� �

Z
� ��1

(6.14)

In practice, however, the contemporaneous covariance matrix is unknown. If the

matrix can be estimated by a consistent estimator, then the estimated generalized

least squares (EGLS) estimator can be computed by replacing the contemporaneous

covariance matrix in Eq. (6.12) by its estimated value.

Σ is estimated by following the three steps below:

Step 1: Ordinary least squares (OLS) are performed on each equation separately to

obtain the parameters for each equation or cross section i:

bi ¼ X
0
iXi

� ��1

X
0
iyi (6.15)

These OLS estimators are unbiased.

Step 2: The residuals are computed:

ê i ¼ yi � Xibi (6.16)

Step 3: The contemporaneous covariance matrix can then be computed:

Σ̂ ¼ σ̂ ij

� � ¼ 1

T
ê

0
iê j

� 	
(6.17)

Alternatively, the cross-product residuals can be divided by T � Ki instead of T.
The EGLS estimator is then found as
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β̂ EGLS ¼ Z
0
Σ̂ �1 � I

� �
Z

h i�1

Z
0
Σ̂ �1 � I

� �
y (6.18)

It is then possible to compute the new residuals obtained from the EGLS

estimation and recalculate an updated covariance matrix to find a new EGLS

estimate. This iterative procedure (ITSUR) converges to the maximum likelihood

estimator.

6.1.3 Special Cases

There are two special cases where it can be demonstrated that the generalized least

squares estimator obtained from the SUR is identical to the ordinary least squares

estimator obtained one equation (cross section) over time. These two cases are

when:

1. The independent variables in each equation are identical (i.e., same variables and

same values):

8i, j : Xi ¼ Xj (6.19)

2. The contemporaneous covariance matrix is diagonal, i.e., the errors across

equations or cross sections are independent:

Σ ¼ diag σiif g (6.20)

Consequently, in both of these cases, there is no need to compute the covariance

matrix.

6.2 A System of Simultaneous Equations

In this section we first describe the problem caused by simultaneity in estimating the

parameters of the equations. We then present two estimation methods, two-stage

least squares, and three-stage least squares, that provide proper estimators for these

parameters.

6.2.1 The Problem

As in Sect. 6.1 for SUR, the problem here consists in estimating several equations,

each corresponding to a variable to be explained by explanatory variables. The

difference now, however, is that one of the variables that is explained by the model
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can itself be an explanatory variable of another one, thereby creating an endogenous

system. These variables are then called endogenous variables, and the variables that

are not explained by the system are exogenous variables. Therefore, we need to

estimate the parameters of a system of N linear equations, where there are

T observations for each equation.

For one observation t:

yt
N�1

is a vector of endogenous variables

xt
K�1

is a vector of all the exogenous variables in the system:

For two equations (i.e., N ¼ 2 for two endogenous variables) and two exogenous

variables, we have the following system of equations:

γ11y1t þ γ12y2t ¼ β11x1t þ β12x2t þ ε1t
γ21y1t þ γ22y2t ¼ β21x1t þ β22x2t þ ε2t

�
(6.21)

Or, in matrix notation:

y1t y2tð Þ γ11 γ21
γ12 γ22


 �
¼ x1t x2tð Þ β11 β21

β12 β22


 �
þ ε1t ε2tð Þ (6.22)

Generally, the system of N equations for each t can, therefore, be expressed as

y
0
t

1�N

Γ
N�N

¼ x
0
t

1�K
B

K�N
þ ε0

t
1�N

(6.23)

where the matrices Γ and Β contain the parameters of all the equations.

In addition, the error terms have the following properties:

8t : E ε0
t

h i
N�1

¼ 0
N�1

(6.24)

and the contemporaneous covariance matrix is the symmetric matrix:

8t : E εtε
0
t

h i
N�N

¼ Σ
N�N

(6.25)

while the noncontemporaneous error terms are independent:

8t 6¼ j : E εtε
0
j

h i
N�N

¼ 0
N�N

(6.26)

The reduced form can be obtained by post-multiplying Eq. (6.23) by Γ� 1,

assuming the inverse exists:

y
0
t ¼ x

0
tBΓ�1 þ ε0

tΓ�1 (6.27)
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or

y
0
t

1�N

¼ x
0
t

1�K
Π

K�N
þ u

0
t

1�N
(6.28)

where Π ¼ BΓ� 1 and u0t ¼ ε0tΓ� 1 (or ut ¼ (Γ� 1)0εt).
The elements of the matrix Π are the parameters of the reduced form of the

system of equations.

The random term ut is distributed with the following mean and covariance:

8t : E ut½ �
N�1

¼ 0 (6.29)

8t : E utu
0
t

h i
¼ E Γ�1

� �0
εtε

0
tΓ�1

h i
¼ Γ�1

� �0
ΣΓ�1 (6.30)

Equation (6.28) represents a straightforward set of equations similar to those

discussed in Sect. 6.1. We can always get estimates Π̂ . The issue is to determine

whether or not we can go fromΠ̂ to B̂ and Γ̂ , i.e., is the knowledge about Π̂ sufficient

to enable us to make inferences about the individual coefficients of B̂ and Γ̂ .

Let us write the entire model represented by Eq. (6.23) for the T observations

(t ¼ 1, . . .T ).
Let

Y
T�N

¼

y
0
1

y
0
2

⋮
y

0
t

⋮
y

0
T

2
6666664

3
7777775
¼

y11 y21 � � �
y12 y22 � � �
⋮ ⋮
y1t y2t � � �
⋮ ⋮
y1T y2T � � �

2
6666664

3
7777775

and

X
T�K

¼

x
0
1

x
0
2

⋮
x

0
t

⋮
x

0
T

2
6666664

3
7777775
¼

x11 x21 � � �
x12 x22 � � �
⋮ ⋮
x1t x2t � � �
⋮ ⋮
x1T x2T � � �

2
6666664

3
7777775

Then, the system of equations is

Y
T�N

Γ
N�N

¼ X
T�K

B
K�N

þ E
T�N

(6.31)

Similar to what was done above by post-multiplying by the inverse of Γ:

Y ¼ XBΓ�1 þ EΓ�1 (6.32)
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or

Y
T�N

¼ X
T�K

Π
K�N

þ U
T�N

(6.33)

Because E [U] ¼ 0, the ordinary least squares estimator of Π is unbiased:

Π̂
K�N

¼ X
0

K�T
X

T�K


 ��1

X
0

K�T
Y

T�N
(6.34)

Therefore we can predict Ŷ .

Why is this useful? Let us consider one equation (i ¼ 1). LetΓ ¼ [Γ1Γ2 . . . ΓN]

and B ¼ [B1 B2 . . . BN].

Then, the first equation can be represented by

Y
T�N

Γ1
N�1

¼ X
T�K

B1
K�1

þ e1
T�1

(6.35)

so that

y1
T�1

γ11 þ y2γ12 þ . . . yNγ1N ¼ x1
T�1

β11
1�1

þ x2
T�1

β12 þ . . . xK
T�1

β1K þ e1 (6.36)

Let γ11 ¼ 1

y1 ¼ �y2γ12 . . .� yNγ1N þ x1β11 þ x2β12 þ . . . xKβ1K þ e1 (6.37)

or

y1 ¼ Z1α1 þ e1 (6.38)

Why are we unable to estimate the parameter vector α using ordinary least

squares?

The reason is that the estimator would be biased because yn and e1 are correlated.

This comes from the fact that yn ¼ Zn αn + en and that e1 and en are correlated due

to Σ. Indeed, for example, with two equations and one exogenous variable in each

equation:

y1 ¼ �y2γ12 þ x1β11 þ e1
y2 ¼ �y1γ21 þ x2β22 þ e2

�
(6.39)

The covariance matrix between e1 and y2 is

E e1 � E e1½ �ð Þ y2 � E y2
� � �0h i

(6.40)
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¼ E e1 �y1γ21 þ x2β22 þ e2 � E �y1γ21 þ x2β22 þ e2
� � �0h i

¼ E e1 �y1γ21 þ x2β22 þ e2 � x2β22 þ γ21E y1
� � �0h i

¼ E e1 �y1γ21 þ e2 þ γ21E y1
� � �0h i

¼ E e1 e2 � γ21 y1 � E y1
� � �� �0h i

¼ E e1 e2 � γ21e1ð Þ0
h i

¼ E e1e
0
2 � γ21e1e

0
1

h i
¼ σ12I� γ21σ11I 6¼ 0 (6.41)

What, then, can we do? We can predict ŷ1 from the reduced form, which is

y1
T�1

¼ X
T�K

Π1
K�1

þ u1T�1 (6.42)

This estimation is based on the ordinary least squares estimates of the Π
parameters that are obtained by regressing y1 on the entire set of exogenous

variables, as follows from Eq. (6.42). This means that all the variables found

throughout all the equations in the system are included and not just the variables

in the first equation of the system of equations. The OLS estimator is

Π̂ 1 ¼ X
0
X

� ��1

X
0
y1 (6.43)

Therefore, the predicted values of y1 are given by

ŷ 1 ¼ XΠ̂ 1 (6.44)

Note that ŷ1 is not correlated with e1, because the Xs are uncorrelated with e1 and

that ŷ2 is not correlated with e1 because e2 has been removed. Therefore, we can

replace y2 in Eq. (6.38) by its predicted value ŷ2.

6.2.2 Two-Stage Least Squares (2SLS)

The two-stage least squares estimation follows directly from the conclusion derived

in the prior section. We can remove the bias introduced by the endogeneity of the

dependent variables by regressing separately each endogenous variable on the full

set of exogenous variables in a first stage; we can then use the estimated coefficients

to predict each endogenous variable. In the second stage, each equation is estimated

separately using the model as specified in each equation but replacing the actual

6.2 A System of Simultaneous Equations 195



values of the endogenous variables specified on the right side of the equation by its

predicted values as computed from the first stage. More specifically:

Stage 1: Using ordinary least squares, regress each y on all exogenous variables X:

Y ¼ XΠþ U (6.45)

) Π̂ ¼ X
0
X

� ��1

X
0
Y (6.46)

and compute the predicted endogenous variables Y:

Ŷ ¼ XΠ̂ (6.47)

Stage 2: Using ordinary least squares, regress each yn on the exogenous variables of
the equation for yn and on the predicted endogenous as well as exogenous variables

specified in that equation:

yn ¼ Ẑ nαn þ en (6.48)

The estimated parameters Γ̂ n and B̂ n are unbiased.

However, because of the nonzero covariances (Σ 6¼ diag(σnn)), the estimation

does not provide efficient estimators. As we discuss in the next section, the purpose,

therefore, of the third stage in the three-stage least squares estimation method is to

obtain efficient estimates, at least asymptotically.

6.2.3 Three-Stage Least Squares (3SLS)

The first two stages of 3SLS are identical to those described above for the two-stage

least squares estimation. We now add the third stage:

Stage 3: (i) Compute the residuals for each equation from the estimated coefficients

obtained in the second stage:

ê n ¼ yn � Ẑ nα̂ n (6.49)

(ii) Estimate the contemporaneous covariance matrix Σ:

Σ̂ ¼

σ̂ 11 σ̂ 12 � � � σ̂ 1N

σ̂ 12 σ̂ 22 � � � ⋮

⋮ ⋮ . .
.

σ̂ 1ν

⋮
σ̂ 1N � � � � � � σ̂ NN

2
66666664

3
77777775

(6.50)
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where

σ̂ in ¼ 1

T � K
ê

0
i

1�T
ê n
T�1

(6.51)

(iii) Compute the EGLS estimate similar to the SUR case using the following

system of equations

y1 ¼ Ẑ 1α1 þ e1

y2 ¼ Ẑ 2α2 þ e2
⋮

yN ¼ Ẑ NαN þ eN

8>><
>>:

6.3 Simultaneity and Identification

Simultaneity in a system of equations introduces a complexity in the sense that it

raises the question of how to distinguish between the effect of y1 on y2 and the effect
of y2 on y1. In this section, we examine this problem and discuss methods of

ensuring that it is possible to make such a distinction, i.e., that it is possible to

identify the system of equations.

6.3.1 The Problem

The typical example used in economics to discuss the problem of identification

concerns the interrelationship of supply and demand. While the supply and demand

curves in the price–quantity map can be represented as in Fig. 6.1, we only observe

Pt and Qt.

supply

demand

Q

P
Fig. 6.1 Supply

and demand curves
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The question consists, therefore, in determining how we can differentiate empir-

ically between these two curves.

We now provide a similar marketing example using sales and advertising

expenditures to illustrate the problem. While sales are a function of advertising

expenditures, advertising budgets are very often a reflection of the level of sales.

This is an issue especially with cross-sectional data. Therefore, we are dealing with

the following two functions:

Equation 1 : St ¼ f Atð Þ (6.52)

Equation 2 : At ¼ g Stð Þ (6.53)

The first equation is the market response function. The second equation is the

marketing decision function.

Fortunately, in most circumstances sales are not driven solely by advertising.

Similarly, the decision regarding the advertising budget is a complex one.

The solution to the identification problem resides in specifying additional (exog-

enous) variables that will help differentiate the two curves. It is important to note

that these additional variables must be different across equations; otherwise, the

problem remains.

6.3.2 Order and Rank Conditions

We now present two conditions that provide information regarding the identifica-

tion of a system of equations. The second condition, known as the rank condition,

guarantees identification but is complex to verify. The first condition, called the

order condition, is simple to apply but does not guarantee identification. The order

and the rank conditions are alternative ways of verifying the identification of a

system of equations.

6.3.2.1 Order Condition

If an equation n is identified, then the number of excluded variables in that equation

is equal to at least the number of equations minus one (i.e., N � 1). Therefore,

checking for the order condition consists in making sure that each equation

excludes on the right side at least N � 1 variables (exogenous or endogenous).

This order condition is necessary but not sufficient for the system of equations to

be identified.
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6.3.2.2 Rank Condition

The rank condition provides necessary and sufficient conditions for identification.

Recall the system of equations for a time period or cross section t:

y
0
t

1�N

Γ
N�N

¼ x
0
t

1�K
B

K�N
þ ε0

t
1�N

(6.54)

We will use the example with two equations, which, for a time period t, can be

written as

y1t y2tð Þ γ11 γ21
γ12 γ22


 �
¼ x1t x2tð Þ β11 β21

β12 β22


 �
þ ε1t ε2tð Þ (6.55)

or

γ11y1t þ γ12y2t ¼ β11x1t þ β12x2t þ ε1t
γ21y1t þ γ22y2t ¼ β21x1t þ β22x2t þ ε2t

�
(6.56)

It should be clear from Eq. (6.56) that the two equations are indistinguishable.

More generally, from Eq. (6.54)

y
0
tΓ� x

0
tB ¼ ε0

t (6.57)

or

y
0
tx

0
t

� � Γ
�B


 �
¼ ε

0
t

Let

A ¼ Γ
�B


 �
¼ α1 α2 . . . αn . . . αN½ � (6.58)

Using again the case of two equations expressed in Eq. (6.56),

A ¼
γ11 γ21
γ12 γ22
�β11 �β21
�β12 �β22

2
664

3
775 ¼ α1 α2½ � (6.59)

Let rn be the row vector of zeros and ones, which when applied to the

corresponding column vector αn defines a restriction imposed on Equation n.
For example, the restriction on Equation 1 that β11 ¼ 0 can be expressed in a

general way as r1 α1 ¼ 0.

It follows that β11 ¼ 0 by defining r1 ¼ (0 0 1 0)

Indeed, we then have
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r1 α1 ¼ 0 0 1 0ð Þ
γ11
γ12
�β11
�β12

0
BB@

1
CCA ¼ 0 (6.60)

, β11 ¼ 0

By post-multiplying the restriction vector rn by the matrix A, the rank condition

for the equation n to be identified is that the rank of this matrix is at least equal to the

number of equations minus one. The equation is just-identified if ρ(rnA) ¼ N � 1.

If the rank is less than N � 1, the equation is under-identified. If the rank is greater

than N � 1, the equation is over-identified. The equation must be just or over-

identified to be able to obtain parameter estimates. For example,

r1 A ¼ 0 0 1 0ð Þ
γ11 γ21
γ12 γ22
�β11 �β21
�β12 �β22

2
664

3
775 (6.61)

¼ �β11 � β21ð Þ ¼ 0 �β21ð Þ (6.62)

if β21 6¼ 0, then ρ(r1A) ¼ 1. Because N � 1 ¼ 1 (N ¼ 2), the first equation is just-

identified.

6.4 Conclusion

In this chapter, we have presented the issues that arise when estimating models

involving different cases of simultaneity of variables. The various cases presented

in the above sections can be defined by the structure of two of the matrices defined

earlier, i.e., Γ and Σ.

6.4.1 Structure of Γ Matrix

If the matrix Γ is diagonal, the system of equations is not simultaneous, except as

expressed by the correlation of the error terms. In such a case, the model

corresponds to the case of SURs. If the matrix Γ is not diagonal but triangular,

this also results in a system that is not truly simultaneous. In such a case, one

dependent variable may affect another but not the inverse. The system is then

recursive. The various estimations that are appropriate for each of these cases are

summarized in Fig. 6.2.
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As shown in Fig. 6.2, the estimation method depends on the model specification

as reflected in the matrix Γ discussed above and in the covariance structure of the

error term Σ.

6.4.2 Structure of Σ Matrix

When Γ is diagonal, the SUR estimator provides an efficient estimator if the

covariance matrix Σ is not diagonal; otherwise (i.e., in the absence of correlated

errors), each equation can be estimated separately by OLS since the results are

identical to the SUR estimator.

If the Γ matrix is triangular, i.e., the case of a recursive system, OLS estimation

of each equation separately provides unbiased parameter estimates. However, in the

case where the covariance matrix Σ is not diagonal, the covariance structure must

be taken into consideration and the EGLS obtained from the 3SLS procedure

provides an efficient estimator. Note that in this case the second stage in 3SLS

does not serve any purpose because there is no bias to correct for due to simultane-

ity (which only arises with non-recursive systems of equations). If Σ is diagonal,

there is no need to proceed with multiple stage estimation and parameters can be

estimated via OLS.

Finally, if the system of equations is simultaneous, i.e., Γ is neither diagonal nor

triangular, the OLS estimators would be biased. Therefore, depending on whether Σ
is diagonal or not, 2SLS or 3SLS should be used.

This points out the importance of knowing the structure of the covariance matrix

Σ. In most cases, it is an empirical question. Therefore, it is critical to estimate the

covariance matrix, to report it, and to use the appropriate estimator. This means

that a test must be performed to check the structure of the error term covariance

matrix Σ.

diag? triang?
NO NO

NO NO NO

YES YES

YES YES YES

Recursive System

diag? diag? diag?

OLS SUR OLS 3SLS 2SLS

Fig. 6.2 Model

specification and estimation

methods (adapted from

Parsons and Schultz 1976)
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6.4.3 Test of Covariance Matrix

The test concerns the hypothesis that the correlation matrix of the error terms is the

identity matrix (Morrison 1976):

H0 : R ¼ I

H1 : R 6¼ I

�
(6.63)

where R is the correlation matrix computed from the covariance matrix Σ.
Two statistical tests of the identity structure of a correlation matrix are possible.

6.4.3.1 Bartlett’s Test

The following function of the determinant of the correlation matrix follows a

chi-square distribution with ν degrees of freedom:

� T � 1� 2N þ 5

6


 �
Ln Rj j ¼ χν

2 (6.64)

where T is the number of observations in each equation, N is the number of

equations and ν ¼ 1
2
N N � 1ð Þ , i.e., the number of correlations in the correlation

matrix.

6.4.3.2 Lawley’s Approximation

The statistic as expressed in Eq. (6.64) can be approximated by

T � 1� 2N þ 5

6


 �X
i

X
j>i

r2ij ¼ χν
2 (6.65)

where only the upper half of the correlations is considered in the summation.

6.4.4 Use of 3SLS Versus 2SLS

The EGLS estimator is only asymptotically more efficient than the OLS estimator.

Consequently, in small samples, the property of the EGLS estimator is not clear.

Therefore, when the sample size is small, it may be appropriate to report the 2SLS

estimates instead of the 3SLS ones.
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6.5 Examples of Estimation of Systems of Equations

Using SAS and STATA

The three estimation methods presented in this chapter—SUR, 2SLS, and 3SLS—are

now illustrated with examples using SAS and STATA.

6.5.1 Seemingly Unrelated Regression Example

In the following example, three characteristics of innovations developed by firms

are modeled as a function of company factors and industry characteristics. We first

present the analysis performed using SAS and then using STATA.

The SAS file is presented without going into the details of the substantive

content of the model in order to focus on the technical aspects. Figure 6.3 shows

that after reading the file containing the data, SAS standardizes the variables and

builds the scales. The model is specified within the SAS procedure SYSLIN for

systems of linear equations. The SUR statement following the PROC SYSLIN

commands indicates that the parameters will be estimated using SUR. The depen-

dent variables concern the relative advantage of the innovation, the radicalness of

the innovation and its relative cost. The model statements for each equation specify

the independent or predictor variables. Some variables are the same but others are

different across equations.

The same model can also be estimated with iterative SUR (ITSUR). The only

difference with the single iteration SUR in the SAS commands is that SUR is

replaced with ITSUR (see Fig. 6.4).

We will take advantage of this SAS example to illustrate the use of STATA to

read a data file that requires multiple lines per observation, in which case a

dictionary complementary file is set up. Figure 6.5 lists the information on the

variables to be read and their structure (i.e., on which line the information on each

observation for each variable can be found).

The actual input file in STATA is listed in Fig. 6.6.

The example in Fig. 6.6 highlights the distinction between the “regress” com-

mand presented in the previous chapter for multiple regression analysis and SUR

estimation. The commands highlighted in grey show that the procedure “sureg” is

the STATA equivalent of “SUR” in SAS. Each equation is specified within

parentheses with the list of variables used in that equation. The dependent variable

is listed first within the parentheses. The last line “mat list e(Sigma)” instructs

STATA to display the covariance matrix of error terms.

The output of the SUR estimation with SAS is shown in Fig. 6.7.

The output of the iterative method ITSUR estimation is shown in Fig. 6.8.

First, in both cases the OLS estimation is performed separately for each equation

and the results are printed in the output.
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Then, the correlations from the residuals estimated from the OLS estimates are

shown. A test should be performed to check that the correlation matrix is statisti-

cally significantly different from the identity matrix in order to detect whether it is

useful to use the SUR estimator.

Finally, the SUR estimates are provided for each equation.

Fig. 6.3 Example of SAS input file for SUR estimation (examp6-1.sas)

Fig. 6.4 Example of SAS input file for iterative SUR estimation (examp6-2.sas)
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Fig. 6.5 Example of dictionary file to specify data structure and variable list in STATA

(Techdic_Mac.dct)

Fig. 6.6 Example of STATA input file for SUR estimation (examp6-1_Mac.do)
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It can be seen from the output of the iterative SUR that the steps are identical.

The estimates reported are those obtained at the last step when convergence is

achieved.

The SUR output using STATA is shown in Fig. 6.9.

6.5.2 Two-Stage Least Squares Example

In the example here for two-stage least squares (as well as the example for three-

stage least squares in the next section), we now specify some endogeneity in the

system in that some variables on the left side of an equation can also be found on the

right side of another equation. In the example shown in Fig. 6.10, the model

Fig. 6.8 Example of SAS output file for iterative ITSUR estimation (examp6-2.lst)
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definition shows that the variable “dadvl” is a predicted variable and is also found in

the equation to predict the “dcostl” variable.

The endogenous variables are identified by the command “ENDOGENOUS”

followed by the names of these endogenous variables.

The statement “INSTRUMENTS” lists all the exogenous variables in the sys-

tem. These variables will be used in the first stage of the estimation procedure to

calculate the predicted values of the endogenous variables. These predicted values

will then be used in the second stage of the estimation procedure.

The estimation method is simply indicated on the procedure line “proc syslin” by

the “2SLS” command.

Fig. 6.9 Example of STATA output file for SUR estimation (examp6-1_Mac.log)

Fig. 6.10 Example of SAS input file for two-stage least squares estimation (examp6-3.sas)
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The STATA commands are given in Fig. 6.11, where the procedure “reg3”

(highlighted in grey in the figure) corresponds to systems of equations (using three-

stage least squares as the default, as discussed in the next section). However, the

option “2SLS” shown at the end of the model specification (highlighted in grey in

the figure) is selected to obtain a two-stage least squares estimation.

The output shown in Fig. 6.12 provides the estimates of the second stage for each

equation.

The output for STATA is similarly provided in Fig. 6.13.

Fig. 6.11 Example of STATA input file for two-stage least squares estimation (examp6-

3_Mac.do)

Fig. 6.12 Example of SAS output file for two-stage least squares estimation (examp6-3.lst)
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Fig. 6.13 Example of STATA output file for two-stage least squares estimation (examp6-3_Mac.

log)

Fig. 6.14 Example of SAS input file for three-stage least squares estimation (examp6-4.sas)

Fig. 6.15 Example of STATA input file for three-stage least squares estimation (examp6-4_Mac.do)
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6.5.3 Three-Stage Least Squares Example

Similar to the case of two-stage least squares, the estimation method is simply

indicated on the procedure line “proc syslin” by the “3SLS” command, as shown in

Fig. 6.14 (highlighted in grey). All other statements are identical to those for

two-stage least squares.

Figure 6.15 gives the STATA input for three-stage least squares.

As noted in the previous section, the default of “reg3” is three-stage least squares.

Consequently, there is no need to indicate “3SLS” as an option. The commands “mat

list e(Sigma)” serve to obtain the covariance matrix of the error terms.

The SAS output for the 3SLS procedure first provides the estimates of the second

stage for each equation. These estimates are not shown in Fig. 6.16 because they are

identical to the SAS output shown in Fig. 6.12. In Fig. 6.16, however, the estimated

Fig. 6.16 Example of SAS output file for three-stage least squares estimation (examp6-4.lst)
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correlation matrix of the error terms across equations is shown. A test of signifi-

cance of the set of correlations can then be performed to know whether it can be

useful to continue to the third stage. These third-stage EGLS estimates are then

provided in the SAS output.

In Fig. 6.17, the STATA output immediately gives the estimated parameters of

the third stage (i.e., without intermediary information). The covariance matrix of

the error terms is displayed after the three-stage least squares estimates.

Fig. 6.17 Example of STATA output file for three-stage least squares estimation (examp6-4.log)
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6.6 Assignment

The data found in the files INDUP.CSV and PANEL.CSV, which are described in

Appendix C (Chap. 14), provide opportunities to apply the estimation of systems of

equations discussed in this chapter. Chapter 5 describes how to read these data in

SAS and STATA. The assignment consists simply in specifying a system of

equations to be estimated via the proper estimation method. The modeling exercise

should include (1) a system of seemingly unrelated equations or a recursive system

of equations and (2) a model with simultaneous relationships.

Examples of such models can concern the following:

1. A model of the hierarchy of effects that consists of awareness, purchase

intentions, and sales;

2. A model of the sales or market share for multiple segments or for multiple

brands;

3. A model of a market response function and of the marketing decisions.

Proper justification for the estimation method used must be included (i.e., test of

the covariance structure of the error terms).
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Chapter 7

Canonical Correlation Analysis

In canonical correlation analysis the objective is to relate a set of dependent or

criterion variables to another set of independent or predictor variables. For exam-

ple, we would like to establish the relationship between socioeconomic status and

consumption by households. A set of characteristics determines socioeconomic

status: education level, age, income, etc. Another set of variables measures con-

sumption such as purchases of cars, luxury items, or food products.

7.1 The Method

In order to establish a relationship between these two sets of variables, we find two

scalars, one defined as a linear combination of the dependent variables, and the

other defined as a linear combination of the independent variables. The criterion

used to judge the relationship between this set of independent variables with the set

of dependent variables is simply the correlation between the two scalars. Canonical

correlation analysis then consists in finding the weights to apply to the linear

combinations of the independent and dependent variables that will maximize the

correlation coefficient between those two linear combinations. The problem can be

represented graphically as in Fig. 7.1.

In the figure, z and w represent two unobserved constructs that are correlated.

The Xs are indicators that determine z and the Ys are indicators that determine w.

Formally, let X
N�p

be the matrix of p predictor variables (centered, i.e., taking the

deviations from their means) on N observations and Y
N�p

be the matrix of q criterion

variables (also centered) on the same N observations.

We will call zi the scalar representing a linear combination of the independent

variables for observation i. Therefore

zi
1�1

¼ x0i
1�p

u
p�1

(7.1)
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Similarly, wi is the scalar representing a linear combination of the dependent

variables for observation i:

wi
1�1

¼ y0i
1�q

v
q�1

(7.2)

The correlation between variables z and w is

rzw ¼
PN
i¼1

ziwiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

z2i

� � PN
i¼1

w2
i

� �s (7.3)

More compactly, for the N observations

z
N�1

¼ X
N�p

u
p�1

(7.4)

and

w
N�1

¼ Y
N�q

v
q�1

(7.5)

The problem consists in finding the vectors (u, v) so as to maximize the

correlation between z and w. In matrix notation, the correlation in Eq. (7.3) is

rzw ¼ z0wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz0zÞðw0wÞp ¼ u0X0Yvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0X0Xuð Þ v0Y0Yvð Þ

p (7.6)

Let Sxy ¼ X0Y, Sxx ¼ X0X, and Syy ¼ Y0Y. Then

rzw ¼ u0Sxyvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0Sxxuð Þ v0Syyv

� �q (7.7)

z w

X1
Y1

Y2

Y3

Y4

X2

X3

X4

Fig. 7.1 Graphical

representation of the

canonical correlation model
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The latent variables z and w can be normalized without loss of generality and for

determinacy, i.e.,

u0Sxxu ¼ v0Syyv ¼ 1 (7.8)

Therefore, the problem is to find (u, v) so as to maximize u0Sxyv subject to

u0Sxxu ¼ v0Syyv ¼ 1.

The Lagrangian is

L u; vð Þ ¼ u0Sxyv� λ

2
u0Sxxu� 1ð Þ � μ

2
v0Syyv� 1
� �

(7.9)

The maximum of the Lagrangian can be obtained by setting the derivatives

relative to u and v equal to zero:

@L

@u
¼ Sxyv� λSxxu ¼ 0 (7.10)

and

@L

@v
¼ u0Sxy � μv0Syy ¼ 0 (7.11)

From Eqs. (7.10) and (7.11), it follows that

u0Sxyv ¼ λu0Sxxu (7.12)

and

u0Sxyv ¼ μv0Syyv (7.13)

Consequently,

λu0Sxxu ¼ μv0Syyv (7.14)

However, because the transformed linear combination variables are standardized

with unit variance, the result is

λ ¼ μ (7.15)

Therefore, from Eq. (7.10), replacing λ by μ

Sxyv ¼ μSxxu (7.16)
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and from Eq. (7.11), by taking its transpose

Syxu ¼ μSyyv (7.17)

Solving for v in Eq. (7.17) leads to

v ¼ 1

μ
S�1
yy Syxu (7.18)

Replacing the value of v expressed in Eq. (7.18) into Eq. (7.16):

Sxy
1

μ
S�1
yy Syxu

� �
¼ μSxxu (7.19)

Or, multiplying each side of the equation by μS�1
xx :

S�1
xx SxyS

�1
yy Syxu ¼ μ2S�1

xx Sxxu (7.20)

Equation (7.20) results in solving for the equation

S�1
xx SxyS

�1
yy Syx � μ2I

� �
u ¼ 0 (7.21)

which is resolved by finding the eigenvalues and eigenvectors of S�1
xx SxyS

�1
yy Syx.

The eigenvalue gives the maximum squared correlation rzw. This is the percent-
age of variance in w explained by z.

Two additional notions can be helpful in understanding the relationships

between the set of x and the set of y variables: canonical loadings and redundancy

analysis.

7.1.1 Canonical Loadings

The canonical loadings are defined as the correlations between the original x and

y variables and their corresponding canonical variate z and w. For the x variables

ρxz
p�1

¼ 1

N � 1
X0
p�N

z
N�1

¼ 1

N � 1
X0 Xuð Þ ¼ 1

N � 1
Sxxu (7.22)

Similarly, for the y variables

ρyw
q�1

¼ 1

N � 1
Y0
q�N

w
N�1

¼ 1

N � 1
Y0 Yvð Þ ¼ 1

N � 1
Syyv (7.23)
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7.1.2 Canonical Redundancy Analysis

Canonical redundancy measures how well the original variables y can be predicted

from the canonical variables. It reflects the correlation between the z and the

y variables. Redundancy is the product of the percentage variance in w explained

by z and the percentage variance in y explained by w. The first component is the

squared correlation μ2. The second component is the sum of squares of the canoni-

cal loadings for y.

Therefore,

Redundancy ¼ μ2
ρ0ywρyw

q
(7.24)

7.2 Testing the Significance of the Canonical Correlations

It is possible to test the significance of these eigenvalues directly. However, the

output in SAS shows eigenvalues that are different, albeit equivalent, from these

eigenvalues or canonical correlation coefficients. These eigenvalues are related to

the solution to the equation

W�1B� λI
� �

u (7.25)

Such an equation corresponds to Wilk’s lambda in MANOVA (see Chap. 2) and

to discriminant analysis discussed in Chap. 7. However, canonical correlation

analysis differs from these two contexts because here we do not have the notions

of between- and within-group variances due to the nonexistence of groups. These

notions are generalized, however, to the concepts of total variance and error

variance. Therefore, Λ is redefined as

Λ ¼ E

T

				
				 (7.26)

where T is the total variance–covariance matrix and E is the residual variance–

covariance matrix after removing the effects of each pair of canonical variable

correlations. However, it should be noted here that the solution to Eq. (7.25) or

(7.26) can be expressed as a function of the eigenvalues of Eq. (7.21):

λi ¼ μi
2

1� μi2
(7.27)
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where the μi
2s are the solution to Eq. (7.21) and λi is the solution to

E�1H� λI
� �

u ¼ 0 (7.28)

From the generalized definition of Wilk’s lambda Λ ¼ E
T

		 		, it follows that
1

Λ
¼ T

E

				
				 ¼ E�1T

		 		 ¼ E�1 Hþ Eð Þ		 		 ¼ E�1Hþ I
		 		 ¼ Y

i

λi þ 1ð Þ (7.29)

where T ¼ H + E because of their independence. When we replace the λis by the

μis using the equality in Eq. (7.27), Λ can be expressed as a function of the μis, i.e.,
the canonical correlations:

Λ ¼
Y
i

1

λi þ 1
¼

Y
i

1

1þ μi
2

1� μi2

¼
Y
i

1� μi
2

� �
(7.30)

Based on this expression of Λ, either as a function of the λis or as a function of

the μis, it is possible to compute Bartlett’s V or Rao’s R, as discussed in Chap. 2.

The degrees of freedom are not expressed in terms of the number of groups K, since
this notion of group does not fit the canonical correlation model concerned with

continuous variables. Instead, the equivalent is the parameter (q � 1), the number

of variates on the left side, which corresponds to the number of dummy variables

that would be required to determine K groups.

Bartlett’s V is

V ¼ � N � 1� pþ q� 1ð Þ=2½ �Ln Λ ¼ N � 3

2
� pþ qð Þ=2


 �Xq
i¼1

Ln 1þ λið Þ

(7.31)

or equivalently

V ¼ � N � 1� pþ q� 1ð Þ=2½ �Ln Λ ¼ N � 3

2
� pþ qð Þ=2


 �Xq
i¼1

Ln 1� μ2i
� �

(7.32)

Bartlett’s V is approximately distributed as a chi-square with pq degrees of

freedom. Alternatively, Rao’s R can be computed as shown in Chap. 2 for

MANOVA, where K is replaced by q � 1:

R ¼ 1� Λ
1
t

Λ
1
t

wt� pq
2
þ 1

pq
(7.33)
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where w ¼ N � 3

2
� pþ q

2
and t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2q2 � 4

p2 þ q2 � 5

s
.

R is distributed approximately as an F distribution with pq degrees of freedom in

the numerator andwt� pq
2
þ 1 degrees of freedom in the denominator. This last test

(Rao’s R) is the one reported in the SAS output (rather than Bartlett’s V).
These tests are joint tests of the significance of the q canonical correlations.

However, each term in the sum containing the eigenvalues in Eq. (7.31) or (7.32) is

distributed approximately as a chi-square with p + q � (2i � 1) degrees of free-

dom where i is the ith eigenvalue from i ¼ 1 to q.
Any subset of eigenvalues is the sum of that subset of terms in Ln (1 � μi

2).

Consequently, one can test if the residual canonical correlations are significant,

after having removed the first canonical variate, then the first two, and so on. For

example, the joint test of all q canonical correlations is V as in Eq. (7.32) with pq
degrees of freedom. The test of the first eigenvalue is

V1 ¼ N � 3

2
� pþ qð Þ=2


 �
Ln 1� μ21

� �
(7.34)

with ( p + q � 1) degrees of freedom.

Consequently, the joint test that the remaining canonical correlations μ2, μ3, μ4,
. . . μq are zero is obtained by subtracting V1 from V. V � V1 is approximately

chi-square distributed and the number of degrees of freedom is the difference

between the degrees of freedom of V and those of V1, i.e., pq � ( p + q�1). This

can be continued until the last qth eigenvalue. The same computations as those

detailed above with Bartlett’s V can be performed with Rao’s R.

7.3 Multiple Regression as a Special Case of Canonical

Correlation Analysis

In the case of multiple regression analysis, the dependent variable is a single variate

represented by the vector y
N�1

for the N observations. Consequently, the vector

v reduces to a single scalar, set to the value 1. It follows that w ¼ y. The expression

for the correlation between x and w in Eq. (7.7) becomes

rzw ¼ u0X0yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0X0Xuð Þ y0yð Þ

p (7.35)

However, because the transformed independent variables are standardized and

the single dependent variable y can be standardized to unit variance without loss of

generality, the problem is to maximize the correlation coefficient rzw subject to the

constraint u0X0Xu ¼ 1. This is solved by maximizing the Lagrangian:
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L ¼ u0X0y� λ

2
u0X0Xu� 1ð Þ (7.36)

@L

@u
¼ X0y� λX0Xu ¼ 0 (7.37)

Solving for u leads to the least square estimator presented in Chap. 4:

u ¼ 1

λ
X0Xð Þ�1

X0y (7.38)

7.4 Examples

Figure 7.2 shows the SAS commands to run a canonical correlation analysis. The

data concern a number of new products that are characterized by a number of

innovation characteristics, all rated on 7-point Likert scales from 1 (disagree) to

7 (agree):

X1: This new product is hard to understand.

X2: This new product is not really easy to use.

X3: Using this new product is not very compatible with the way I do things.

. . .
X13: I feel positive about this new product.

X14: I really like this new product.

X15: I am favorably disposed towards this new product.

The SAS procedure “proc cancorr” runs the canonical correlation analysis. The

X variables (see Fig. 7.1) are indicated in the list following the key word “VAR”

and the Y variables (see Fig. 7.1) are listed after the key word “with.” Titles can be

inserted for the output in single quotes after the word “title.”

The input for STATA is shown in Fig. 7.3.

/* ************ Examp7_1.sas ************** */
OPTIONS LS=120;
DATA work;
INFILE "F:\WORK_STATA\WORK_SAS\SASMVS\CanonicalCorr\NewProdSurvey.csv" firstobs=2
dlm=',';
INPUT x1-x16;
proc cancorr;
var x1-x3;
with x13-x15;
title 'Example of Canonical Correlation Analysis';

run;

Fig. 7.2 Example of SAS code for canonical correlation analysis (examp7-1.sas)
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The procedure “canon” is used in STATA with the X and the Y variables listed

in their own sets of parentheses. The matrices “canload11” and “canload22”

correspond to the canonical loadings of the X and Y variables, respectively.

These canonical loadings can also be displayed using the command “estat

loadings.” In addition to the canonical loadings, the correlations between the X

variables and the W canonical variates, as well as the correlations between the Y

variables and the Z canonical variates, are displayed. The last line of commands in

Fig. 7.3 concerns the test of the significance of the individual canonical

correlations. The command “canon” (without arguments) repeats the output of the

prior canonical analysis requested and the “test” option is followed by the canonical

correlation numbers for which testing is requested: test (1) tests for all three

canonical correlations, test (2) tests for the significance of canonical correlations

2 and 3 jointly, and so on.

Figure 7.4 lists the SAS output from running the canonical correlation analysis.

When the canonical correlations are listed, we see that one correlation coeffi-

cient of 0.35131 appears larger than the other two values. Therefore, we can

concentrate on this larger value. These correlations correspond to the eigenvalues

that give a solution to Eq. (7.21) (the canonical correlation is the square root of

these eigenvalues).

The eigenvalues λi, which are the solution to Eq. (7.28), are those shown under

the column “Eigenvalue” in the SAS output. For example, the first (highest)

eigenvalue of 0.1408 is related to the first canonical correlation as

0:1408 ¼ 0:3513ð Þ2

1� 0:3513ð Þ2
h i (7.39)

Given the relationship between the λis and the μis, these eigenvalues provide the
same information as the canonical correlations. The F test corresponding to Rao’s R
(highlighted in grey in Fig. 7.4) indicates that the set of canonical correlations

(or eigenvalues) are jointly significantly different from zero (F ¼ 6.21 with 9 and

959.04 degrees of freedom). Then, the next row in that part of the table shows that

after removing the first canonical correlation, the remaining canonical correlations

are jointly statistically insignificant at the 0.05 level (F ¼ 0.61 with 4 and

790 degrees of freedom). Therefore, we can concentrate on the results concerning

the first canonical variable.

insheet using "/users/fblgatignon/Documents/WORK_STATA/SAMD/Chapter7-
CCA/NewProdSurvey.csv", clear
canon (x1 x2 x3) (x13 x14 x15)
mat list e(canload11)
mat list e(canload22)
estat loadings
canon , test (1 2 3)

Fig. 7.3 Example of STATA code for canonical correlation analysis (examp7-1.do)
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Fig. 7.4 Example of SAS output of canonical correlation analysis (examp7-1.out)
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The raw (highlighted in grey in Fig. 7.4) and the standardized eigenvectors are

then listed in the SAS output. The raw values are subject to variations due to the

scale units of each variate and should be interpreted accordingly. It should be noted

that the canonical variables are normalized to unit variance as per Eq. (7.8), and

consequently, the magnitude of the coefficients that are the elements of the

eigenvectors u and v are affected as well by the unit of the variates. The first

eigenvector indicates that innovations that are not complex and that are easy to

Fig. 7.4 (continued)
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Fig. 7.5 Example of STATA output of canonical correlation analysis (examp7-1.log)
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understand (x1, x2, and x3) are associated with greater positive responses (x13,

x14, and x15).

Then, the correlation of each variate to the canonical variables (composite

variable v and then w) is contained in the last tables of Fig. 7.4. This allows us to

assess the strength of the relationships that form a composite (unobserved) canoni-

cal variable and of the relationship of a variable to the other composite canonical

variable.

The STATA output is shown in Fig. 7.5.

Fig. 7.5 (continued)
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In the last section of the STATA output, the heading “Test of significance of

canonical correlation 1–3” corresponds to the joint test of all the canonical

correlations shown at the top of the output. The “Test of significance of canonical

correlation 2–3” is the joint test of canonical correlations 2 through 3. Given that it

is insignificant (F ¼ 0.6138), we conclude that only the first canonical correlation is

significant.

7.5 Assignment

Using the survey data described for the assignment in Chap. 3, associate certain

types of consumer behaviors to their psychographic profiles. The sample SAS code

file to read the data is shown in Fig. 3.16.
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Chapter 8

Categorical Dependent Variables

In this chapter, we consider statistical models to analyze variables where the

numbering does not have any meaning and, in particular, where there is no

relationship between one level of the variable and another level. In these cases,

we are typically trying to establish whether it is possible to explain with other

variables the level observed of the criterion variable. The chapter is divided into

two parts. The first part presents discriminant analysis, which is a traditional

method in multivariate statistical analysis. The second part introduces quantal

choice statistical models. The models are described, as well as their estimation.

Their measures of fit are also discussed.

8.1 Discriminant Analysis

If there is only one variable, the test (i.e., a measure) of the extent of differences

across groups is the ratio of the sum of squares between groups to the sum of

squares within groups corrected by the degrees of freedom of the numerator and the

denominator:

SSb xð Þ= K � 1ð Þ
SSw xð Þ= N � Kð Þ (8.1)

where N is the sample size and K is the number of groups. This is simply the F test

for the significance of differences across groups for one variable.

In presenting discriminant analysis, the discriminant criterion, which is the basis

for understanding the methodology, is first introduced. Then the derivation and the

explanation of the discriminant functions are provided. Finally issues of classifica-

tion and measures of fit are discussed.

H. Gatignon, Statistical Analysis of Management Data,
DOI 10.1007/978-1-4614-8594-0_8, © Springer Science+Business Media New York 2014
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8.1.1 The Discriminant Criterion

The objective in discriminant analysis is to determine a linear combination of a set

of variables such that several group means (each group corresponding to a level of

the dependent variable) will differ widely on this linear combination.

Let p ¼ number of independent variables, N ¼ number of observations, Nj ¼
number of observations for group j ¼ 1 . . . K, and K ¼ number of groups. Then,

x
0
i1�p is the vector representing the values on p variables for one observation i, and

vp�1 is the vector of weights to be attributed to each of the p variables to form a

linear combination. The linear combination is given by Eq. (8.2):

yi
1�1

¼ x
0
i

1�p
v

p�1
¼ v1xi1 þ v2xi2 þ . . . vpxip (8.2)

We will assume that xi follows a multivariate normal distribution. It follows that

each yi is normally distributed.

The problem consists in finding v that is going to maximize the F-ratio for

testing the significance of the overall difference among several group means on a

single variable y.
This value F is given by the ratio of the between-group variance to the pooled

within-group variance of the variable y:

F ¼ SSb yð Þ= K � 1ð Þ
SSw yð Þ= N � Kð Þ (8.3)

where N ¼ number of observations or individuals, K ¼ number of groups, SSb(y)
¼ between-group sum of squares, and SSw(y) ¼ pooled within-group sum of

squares.

In the case where there are only two groups (K ¼ 2), it is the classic t test of a
difference of two means. The problem, therefore, is to find the value of v that will

maximize F.
The ratio (K � 1)/(N � K ) is a constant; therefore,

Max
v

F , Max
v

SSb yð Þ
SSw yð Þ ¼ λ

The pooled within-group sum of squares is the sum over the groups ( j) of the
squares of the deviations of variable y from their group mean:

SSw yð Þ ¼ Σ
K

j¼1
SSj yð Þ (8.4)

Let

X j
Nj�p

¼ x
0
j

n o
(8.5)
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where the mean vector for group j (x
0
j) is repeated Nj times (i.e., Nj rows).

For each group j (where j ¼ 1, . . . K), we can write the vector of the values

obtained from the linear combination of the variables. This vector has Nj elements

corresponding to the number of observations in group j.
Let

Xd
j ¼ Xj

Nj�p

� X j
Nj�p

(8.6)

and

8j : ydj
Nj�1

¼ Xj � X j

� �
Nj�p

v
p�1

¼ Xd
j v (8.7)

Then,

SSj yð Þ ¼ yd
0

j y
d
j ¼ v

0
Xd0

j X
d
j

p�p

v ¼ v
0
Sjv (8.8)

where Sj ¼ Xj
d 0 Xj

d. Therefore,

SSw yð Þ ¼ Σ
K

j¼1
v

0
Sjv ¼ v

0
Σ
K

j¼1
Sj

� �
v (8.9)

Let

W ¼ Σ
K

j¼1
Sj (8.10)

Then,

SSw yð Þ ¼ v
0
Wv (8.11)

Let

X
N�p

¼
X 1

X 2

⋮
X K

2
664

3
775

X
N�p

¼matrix composed of the vector of grand means (across all groups) repeated

N times:

B ¼ X � X
� �0

X � X
� �

(8.12)
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Therefore,

SSb yð Þ ¼ v
0
Bv (8.13)

and consequently,

λ ¼ v
0
Bv

v
0
Wv

(8.14)

We can maximize λ (the discriminant criterion) by taking the first derivative

relative to v and setting it equal to 0 (we use the matrix derivation rule A.2 in

Appendix A: ∂ v0Av/∂ v ¼ 2Av):

∂λ
∂ v
p�1

¼
v

0
Wv
1�1

� �
2 B
p�p

v
p�1

� �
� v

0
Bv

1�1

� �
2W
p�p

v
p�1

� �

v
0
Wv
1�1

� �2
¼ 0 (8.15)

From Eq. (8.14)

v
0
Bv ¼ λv

0
Wv (8.16)

By substitution in Eq. (8.15)

∂λ
∂ v
p�1

¼ v
0
Wv

� �
2Bvð Þ � λ v

0
Wv

� �
2Wvð Þ

v
0
Wvð Þ2 (8.17)

and consequently,

∂λ
∂ v
p�1

¼ 2
Bv

v
0
Wv

� λWv

v
0
Wv

� 	
¼ 0 (8.18)

Bv� λWv

v
0
Wv

¼ 0 (8.19)

Equation (8.19) is true if

Bv� λWv ¼ 0 (8.20)

or

B� λWð Þv ¼ 0 (8.21)

which by premultiplying by W�1 gives

W�1B� λI
� �

v ¼ 0 (8.22)

Therefore, the solution for λ is given by the eigenvalues of W�1 B, and the

solution for v is given by the corresponding eigenvectors of W�1 B.
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8.1.2 Discriminant Function

The matrix W�1 B is not symmetric. In fact, there are K � 1 linearly independent

rows in X� X.

Consequently, the rank of B is K�1.W�1 is of full rank ( p); if it were singular, it
could not be inverted.

Therefore, the number of nonzero eigenvalues is the smaller of the rank ofW�1

and of B, which is usually K�1 (following from the fact that typically there are

more variables than groups, i.e., K�1 < p).
This means that discriminant analysis provides K�1 nonzero eigenvalues and

K�1 discriminant functions.

The first discriminant function v1 has the largest discriminant criterion value λ1
(eigenvalue), and each of the others has a conditionally maximal discriminant

criterion value.

The centroids for each group j consist of the mean value of y for the group for

each of the K � 1 eigenvectors or discriminating functions:

y 1j, y 2j, � � �y rj, � � �y K�1, j (8.23)

where r represents the index for the rth eigenvalue and eigenvector:

y rj ¼ x
0
jvr (8.24)

These are the dimensions along which one can find the largest differences across

groups.

8.1.2.1 Special Case of K ¼ 2

It is possible to estimate a multiple regression equation where the dependent

variable is a dummy variable (0 for alternative 1 and 1 for the other alternative).

Such a regression would yield weights for the independent variables that would be

proportional to the discriminant weights. However, it is important to note that the

t statistics should not be used. Indeed, the errors are not normally distributed with

mean 0 and variance σ2I, as will be demonstrated in the sections below.

8.1.2.2 Testing the Significance of the Discriminant Solutions

Recalling that Wilk’s lambda is the statistic we discussed when testing the signifi-

cance of differences of means for multiple variates (MANOVA), we consider this

statistic in the context of discriminant analysis. As indicated in Chap. 2,
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Λ ¼ Wj j
Tj j (8.25)

Consequently, using rule (A.8) in Appendix A

1

Λ
¼ Tj j

Wj j ¼ W�1T


 

 ¼ W�1 Wþ Bð Þ

 

 ¼ IþW�1B

� �

 

 (8.26)

However, according to this rule, the inverse of Wilk’s lambda can be expressed

in terms of the eigenvalues of W�1B:

1

Λ
¼
YK�1

i¼1

1þ λið Þ (8.27)

Consequently,

Λ ¼ 1YK�1

i¼1

1þ λið Þ
¼
YK�1

i¼1

1

1þ λið Þ (8.28)

The statistic used for MANOVA, Bartlett’s V, can then be expressed in terms of

the eigenvalues of W�1B:

V ¼ � N � 1� pþ Kð Þ=2½ �LnΛ ¼ N � 1� pþ Kð Þ=2½ �
XK�1

i¼1

Ln 1þ λið Þ (8.29)

Bartlett’s V is distributed approximately as a chi-square with p(K � 1) degrees

of freedom and, because each of the discriminant functions is uncorrelated, each

element of the terms of the sum in Eq. (8.29) corresponding to the r’s eigenvalue is
distributed as a chi-square with degrees of freedom p + K � 2r. Let

Vr ¼ N � 1� pþ Kð Þ=2½ �Ln 1þ λrð Þ (8.30)

It is then feasible to test the significance of the residual discrimination after

removing the first discriminant function by comparing the value of V � V1. If this

difference is still significant, it means that the remaining discriminant functions still

have a discriminant power. The process continues by comparing V � (V1 + V2) and

then more generally V �
Xr
i¼1

Vr

 !
until this expression becomes insignificant.
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8.1.3 Classification and Fit

8.1.3.1 Classification

The issue we need to address now concerns how to classify the observations.

A group prediction can be made, based on the value of the linear combination

obtained from the first discriminant function:

ŷ 1i ¼ x
0
iv̂ 1 (8.31)

The group prediction then depends on the value obtained in Eq. (8.31), relative

to a critical value y1crit, i.e., based on the sign of

ŷ 1i � ŷ 1crit (8.32)

The rule can then be based on the distance from group means: assign observation

i to the group to which it is closest (corrected for covariance). The midpoints are

then used as the critical values.

For example, in the two-group case, there is a single eigenvector:

v ¼ W�1 x 1 � x 2ð Þ (8.33)

y ¼ x
0
W�1 x 1 � x 2ð Þ (8.34)

Group 1 : y 1 ¼ x
0
1W

�1 x 1 � x 2ð Þ (8.35)

Group 2 : y 2 ¼ x
0
2W

�1 x 1 � x 2ð Þ (8.36)

The classification is based on the midpoint:

ycrit ¼
1

2
y 1 þ y 2ð Þ ) ycrit ¼

1

2
x 1 þ x 2ð Þ0W�1 x 1 � x 2ð Þ (8.37)

Then the classification rule is

if y1i < ycrit ) i ∈ Group 1 else i ∈ Group 2,

which is equivalent to defining w as

w ¼ yi � ycrit

Then, if w < 0 then i ∈ Group 1 or else i ∈ Group 2. This is represented

graphically in Fig. 8.1, where the vertical line represents the critical value appearing

at the midpoint between the mean of each of the two groups y 1 and y 2.

As discussed above

yi < ycrit ) i ∈ Group 1
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or equivalently

w ¼ yi � ycrit < 0 ) i ∈ Group 1

For more than two groups (i.e., K > 2), similar concepts apply.

Let

wjk ið Þ ¼ x
0
iW

�1 x j � x k

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

yi

�1

2
x j þ x k

� �0
W�1 x j � x k

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ycrit

(8.38)

The rule consists of assigning i to group j if wjki) > 0 for all k 6¼ j, which means

that yi is closer to k than to j.
For example, for three groups (K ¼ 3), we can compute w12, w13, and w23 (note

that w21 ¼ �w12). But, because w23 ¼ w13 � w12, we do not need w23.

Then we can classify i as belonging to

Group 1: if w12 > 0 and w13 > 0

Group 2: if w12 < 0 and w13 > w12

Group 3: if w13 < 0 and w12 > w13

For more than two groups, a plot of the centroids y j on the discriminant functions

as axes can help to interpret them.

8.1.3.2 Measures of Fit

Fit measures are based on the ability of the discriminant functions to classify

observations correctly. This information is contained in the classification table, as

shown in Fig. 8.2.

Percent Correctly Classified

The classification table is a K � K matrix that indicates the number or the percent-

age of observations in each group that have been classified into that same group

(therefore the correctly classified observations) or into another group (the

incorrectly classified observations).

The diagonal cells in Fig. 8.2 represent the observations that are correctly

classified. The percentage of correctly classified observations can easily be

computed as

ycrit

yi

y1 y2
Fig. 8.1 Classification

of observations
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nc ¼

X
j

njj

 !

N
(8.39)

where njj ¼ number of observations actually in category j and predicted to be in

category j, and N ¼ total number of observations.

This measure of fit presents two problems:

• It uses the same N individuals for discrimination and prediction. This leads

to an upward bias in the probability of classifying the observations correctly.

A solution is to use a split sample for prediction.

• If the sample is not distributed evenly across the groups (i.e., the observed

proportions are different across groups), then by merely classifying all

observations arbitrarily into the group with the highest proportion, one can get

at least max {pj} classified correctly, where pj is the actual proportion of

observations in Group j.

Maximum Chance Criterion

This last value, i.e., max {pj}, is defined as the maximum chance criterion. Because

no model is required in order for us to arrive at such a rate of correct assignment to

groups, we can use the maximum chance criterion as a minimum standard, and any

model should be able to improve on this rate.

Percent Correctly Classified by Chance: The Proportional Chance Criterion

Assume two groups:

P correctð Þ ¼ P correct j ¼ 1j Þ: P j ¼ 1ð Þ þ P correct j ¼ 2j Þ: P j ¼ 2ð Þðð
Let pj be the observed proportion of observations actually in group j, as defined

earlier, and αj the proportion of observations classified in group j:

N

nKKK

n222

n111

K21Actual

PredictedFig. 8.2 Classification

table
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P
correct

by chance

� �
¼ Σ

j
pjαj (8.40)

Let us assume that the discriminant function is meaningful. Then we want to

classify in the same proportion as the actual groups.

Under our decision rule, αj ¼ pj; therefore,

P
correct

by chance

� �
¼ Σ

j
pjαj ¼ Σ

j
p2j (8.41)

Equation (8.41) provides the formula for the proportional chance criterion.

Tau Statistic

The tau statistic involves the same rationale but standardizes the information:

τ ¼ nc � Σjpjnj

N � Σj pjnj
¼ nc=Nð Þ � Σjpjαj

1� Σj pjαj
(8.42)

where nj ¼ number of observations classified in group j, and nc ¼ number of

correctly classified observations.

8.2 Quantal Choice Models

In this section, we introduce logit models of choice. Although we could also discuss

probit models here, we do not because they follow the same rationale as for the logit

model. We start by discussing the difficulties inherent in using the standard

regression model with a categorical dependent variable, even a binomial one.

Then we discuss methodologies that can be used to resolve some of those problems.

We then present the logit model with two variants and explain the estimation of the

logit model parameters. Finally, we present the various measures of fit.

8.2.1 The Difficulties of the Standard Regression Model
with Categorical Dependent Variables

Let us assume the case of two groups. The variable representing the group assign-

ment can take two values, 0 and 1:

yi ¼ 0

1

�
(8.43)
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This group assignment is made on the basis of a linear model:

8i ¼ 1, . . . ,N : yi
1�1

¼ x
0
i

1�p
β
p�1

þ ei
1�1

(8.44)

Are the usual assumptions verified?

1. Is E [ei] ¼ 0?

This would imply in this case that the error terms for each observation follow a

specific random process. Indeed, from Eq. (8.44) it follows that

ei ¼ yi � x
0
iβ (8.45)

Consequently, the following distribution for yi would be required for the

expectation of the error term to be zero, i.e., for E [ei] ¼ 0:

P yi ¼ 0ð Þ ¼ 1� x
0
iβ (8.46)

P yi ¼ 1ð Þ ¼ x
0
i (8.47)

However, this is not generally the case, in part because

x
0
iβ =2 0; 1½ �

Therefore, the distribution is impossible. Hence, β̂ OLS is biased.

2. Is E[ei
2] ¼ σ2 ?

The second assumption is the homoscedasticity of the error terms.

ei is distributed as a Bernoulli process:

V ei½ � ¼ x
0
iβ

� �
1� x

0
iβ

� �
(8.48)

This implies that heteroscedasticity and consequently ordinary least squares

are inefficient.

3. The range constraint problem: ŷ i =2 0; 1½ �.
A third problem occurs because the predicted values of the predicted variable

can be outside the range of the theoretical values, which are either 0 or 1.

8.2.2 Transformational Logit

8.2.2.1 Resolving the Efficiency Problem

We may be able to resolve the efficiency problem with the estimated generalized

least squares estimator.
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Let us assume that the data can be grouped into K groups:

j ¼ 1, . . . ,K

nj ¼ size of group j

where the K groups correspond to “settings” of independent variables.

Let

zj ¼ Σ
ijj
yij (8.49)

where

yij
0

1

�

zj is the number of 1s in group j:

pj ¼
zj
nj

(8.50)

The model for a given group is

pj ¼ Xjβþ ej (8.51)

For the entire K groups, the proportions are represented by

p
K�1

¼ X
K�p

β
p�1

þ e
K�1

(8.52)

In Eq. (8.51), the true proportion for group j is given by

Pj ¼ Xjβ (8.53)

Therefore,

pj ¼ Pj þ ej (8.54)

ej follows a binomial distribution:

ej � B 0,Pj 1� Pj

� �
=nj

� �
(8.55)

The variance is obtained because zj is such that

E zj
 � ¼ njPj (8.56)

242 8 Categorical Dependent Variables



V zj
 � ¼ njPj 1� Pj

� �
(8.57)

Therefore, dividing by nj

E pj
 � ¼ E

zj
nj

� 	
¼ Pj (8.58)

V pj
 � ¼ V

zj
nj

� 	
¼ 1

n2j
V zj
 � ¼ Pj 1� Pj

� �
nj

(8.59)

Consequently, the covariance of the error term in Eq. (8.52) is

E ee
0

h i
¼ Φ ¼ diag Pj 1� Pj

� �
=nj

� �
(8.60)

The generalized least squares estimator would be

β̂ GLS ¼ X
0Φ�1X

� ��1

X
0Φ�1p (8.61)

But Φ is unknown. It can be replaced by a consistent estimator to obtain the

estimated generalized least squares estimator. Such an estimator of Φ is

Φ̂ ¼ diag p̂ j 1� p̂ j

� �
=nj

� �
(8.62)

where

p̂ ¼ Xb ¼ X X
0
X

� ��1

X
0
p (8.63)

The ordinary least squares estimator b provides estimates for p that are consis-

tent with the theoretical model specification. The estimated generalized least

squares estimator is

β̂ EGLS ¼ X
0Φ̂ �1

X
� ��1

X
0Φ̂ �1

p (8.64)

Several problems remain:

(i) There is no guarantee that the predicted probabilities p̂ j ¼ Xjb are between

0 and 1: an empirical solution that has been recommended is to restrict the

variance so that if p̂ i 1� p̂ ið Þ � 0, set p̂ ¼ 0:05 or p̂ ¼ 0:98.

(ii) Even then, there is no guarantee that ^̂p based on β̂ EGLS is between 0 and 1.

This points out the need to constrain the range of the elements of p to the

interval [0,1].
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8.2.2.2 Resolving the Range Constraint Problem

We can also solve the range constraint problem through the transformational logit.

Let

Ij ¼ x
0
jβ (8.65)

Pj ¼ 1

1þ e�Ij
(8.65)

pj ¼ Pj þ ej ¼ 1

1þ e�Ij
þ ej (8.66)

It can be shown that

Ln
pj

1� pj
¼ x

0
jβþ ej

Pj 1� Pj

� � (8.67)

Let

Ln
pj

1� pj
¼ vj and

ej

Pj 1� Pj

� � ¼ uj

Then

vj ¼ x
0
jβ þ uj (8.68)

or for the full sample

v
K�1

¼ X
K�p

β
p�1

þ u
K�1

(8.69)

Φ ¼ E uu
0

h i
K�K

¼ diag E u2j

h in o
(8.70)

E u2j

h i
¼ E

ej

Pj 1� Pj

� �
 !2
2
4

3
5 ¼ 1

P2
j 1� Pj

� �2 V ej
 �

(8.71)

¼ 1

P2
j 1� Pj

� �2 Pj 1� Pj

� �
nj

� 	
(8.72)

¼ 1

njPj 1� Pj

� � (8.73)

Therefore, the generalized least squares estimator provides the minimum vari-

ance estimator:
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β̂ GLS ¼ X
0Φ�1X

� ��1

X
0Φ�1v (8.74)

where

Φ ¼ diag
1

njPj 1� Pj

� �
( )

(8.75)

But Pj is unknown. We can replace Pj by pj in Eq. (8.75) and obtain the estimated

generalized least squares estimator:

β̂ EGLS ¼ X
0Φ̂ �1

X
� ��1

X
0Φ̂ �1

v (8.76)

In practice, let us define

Φ̂ �1=2 ¼ diag nipi 1� pið Þ½ �1=2
n o

(8.77)

β̂ EGLS ¼ X
0Φ̂ �1=2Φ̂ �1=2

X
� ��1

X
0Φ̂ �1=2Φ̂ �1=2

v (8.78)

Therefore, we can perform a transformation of the right and left sides of the

equation and obtain the ordinary least squares of the transformed variables.

Let

v� ¼ Φ̂ �1=2
v (8.79)

X� ¼ Φ̂ �1=2
X (8.80)

and consequently,

β̂ EGLS ¼ X�0
X�

� ��1

X�0
v� (8.81)

8.2.3 Conditional Logit Model

Let us consider an individual i facing a choice among K alternatives.

Let us define the variable yij:

8j ¼ 1, . . . ,K : yij ¼ 1 if alternative j is chosen
0 otherwise

�
(8.82)
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Pij ¼ P yij ¼ 1
h i

(8.83)

Only one alternative can be chosen; therefore

Σ
K

j¼1
yij ¼ 1 (8.84)

Also, probabilities sum to 1 by definition and therefore

Σ
K

j¼1
Pij ¼ 1 (8.85)

Consequently, the likelihood function for an individual i is

li ¼
YK
j¼1

P
yij
ij (8.86)

The likelihood function for all individuals is

l ¼ Π
N

i¼1
Π
K

j¼1
P
yij
ij (8.87)

For the multinomial logit model, if the unobserved utilities are a function of

attributes and an error term that is distributed iid with the extreme value distribution

(i.e., the cumulative distribution function is F(εi < ε) ¼ exp(�e� ε)), then the

probability Pij is defined as

Pij ¼ euij

Σ
K

k¼1
euik

(8.88)

where uij represents the utility associated with alternative j for individual i.
For the conditional logit model, two cases can be found depending on whether or

not the explanatory variables determining the utility of the alternatives vary across

alternatives. The first case (see Sect. 8.2.3.1) is when the variation in utilities of the

alternatives comes from the differences in the explanatory variables but the mar-

ginal utilities are invariant. The second case (see Sect. 8.2.3.2) is when the source of

variation in the utilities of the alternatives comes from the marginal utilities only.

8.2.3.1 Conditional Logit: Case 1

Different names are used for this first case of the conditional logit model. It is called

Discrete Choice in LIMDEP and Alternative-Specific Conditional Logit in STATA.
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The utility of an option varies because of different values of xs (e.g., attribute values

of a brand):

Pij ¼ ex
0
ijβ

Σ
K

k¼1
ex

0
ikβ

(8.89)

For identification, we set x0i1 ¼ 0 or let us define

x�ij
0 ¼ x

0
ij � x

0
i1 (8.90)

This demonstrates that no constant term can be estimated in this model; a constant

term would be indeterminate because the intercept disappears in Eq. (8.90).

The model parameters are estimated by maximum likelihood. The likelihood for

individual i is

li ¼ Π
K

j¼1
P
yij
ij (8.91)

¼ Π
K

j¼1

ex
0
ijβ

Σ
K

k¼1
ex

0
ijβ

0
BB@

1
CCA

yij

(8.92)

For the N observations, the likelihood is

l ¼ Π
N

i¼1
li ¼ Π

N

i¼1
Π
K

j¼1

ex
0
ijβ

Σ
K

k¼1
ex

0
ikβ

0
BB@

1
CCA

yij

(8.93)

L ¼ Lnl ¼ Σ
N

i¼1
Σ
K

j¼1
Ln

ex
0
ijβ

Σ
K

k¼1
ex

0
ikβ

0
BB@

1
CCA

yij

(8.94)

¼ Σ
N

i¼1
Σ
K

j¼1
yijLn

ex
0
ijβ

Σ
K

k¼1
ex

0
ikβ

(8.95)

L ¼ Σ
N

i¼1
Σ
K

j¼1
yij x

0
ijβ� Ln Σ

K

k¼1
ex

0
ikβ

� �
(8.96)

The optimization follows the iterative procedure described below.
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Let t ¼ iteration number. The gradient at iteration t is

S β tð Þ½ �
p�1

¼ ∂L
∂βp tð Þ

( )
(8.97)

Let us further define

Q β tð Þ½ �
p�p

¼ Σ
N

i¼1
Si β tð Þ½ �Si β tð Þ½ �0
h i

The value of the parameters at the next iteration is given by Eq. (8.98):

β tþ 1ð Þ
p�1

¼ β tð Þ þ Q β tð Þ½ ��1S β tð Þ½ �
h i

(8.98)

The parameter estimates are obtained by convergence when the gradient vector

approaches zero.

8.2.3.2 Conditional Logit: Case 2

This second case corresponds to the multinomial logit model (or binomial logit in

the case of only two alternatives to choose from). In this case, the utility of an

option varies because of different values of the marginal utilities βs and because the
factors predicting the utilities are the same across options:

Pij ¼ ex
0
iβj

Σ
K

k¼1
ex

0
iβk

(8.99)

For identification, it is necessary to set β1 ¼ 0.

The estimation of the model follows the same procedure as in the first case of the

conditional model discussed in the prior section. We maximize the likelihood that is

expressed as

l ¼ Π
N

i¼1
Π
K

j¼1

ex
0
iβj

Σ
K

k¼1
ex

0
iβk

0
BB@

1
CCA

yij

(8.100)

Taking the logarithms,

L ¼ Σ
N

i¼1
Σ
K

j¼1
yijx

0
iβj � Σ

N

i¼1
Ln Σ

K

j¼1
ex

0
iβj (8.101)
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An iterative procedure similar to case 1 above is used to obtain the maximum

likelihood estimates. The only difference compared with case 1 comes from the

larger size of the vector of parameters. The vector of all coefficients at iteration t is
the vector with (K�1)p elements β K�1ð Þp�1 tð Þ.

The interpretation is, therefore, somewhat more complex in the case 2 model.

The marginal utilities due to the increase of a unit of an explanatory variable are

different across alternatives. Therefore, for example, variable x1 may contribute

marginally to the utility of alternative j but not significantly to the utility of

alternative k.

8.2.4 Fit Measures

The fit measures follow for the most part those used in discriminant analysis, which

are based on the classification table. We summarize them in Sect. 8.2.4.1. However,

some additional measures are available because of the maximum likelihood esti-

mation and its properties. These fit statistics are presented in Sect. 8.2.4.2.

8.2.4.1 Classification Table

These measures are the same as in discriminant analysis:

• Percentage of observations correctly classified

• Maximum chance criterion

• Proportional chance criterion

• Tau statistic

8.2.4.2 Statistics of Fit

Because of the properties of the likelihood function, two statistics can be used to

test the model.

Log Likelihood Chi-Square Test

The null model is that the marginal utilities, apart from the constant term, are zero:

Ho : bslopes ¼ 0
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If n is the number of successes (yi ¼ 1) observed in T observations, e.g., in the

binary case

under Ho : l β̂ 0

� �
¼ n

T

� �n T � n

T

� �T�n

(8.102)

where β̂ 0 represents the maximum likelihood estimates of the parameters of the

reduced model with no slopes and l β̂ 0

� �
is the value of the likelihood function

obtained with these parameter estimates.

Taking the logarithm

Lnl β̂ 0

� �
¼ nLn

n

T
þ T � nð ÞLn T � n

T

� �
(8.103)

If β̂ 1 is the value of the likelihood function estimated at the maximum likelihood

estimate β̂ 1, then

�2 Lnl β̂ 0

� �
� Lnl β̂ 1

� �h i
� χ2p�1ð Þ (8.104)

Therefore, an obvious advantage of the logit model vis-a-vis discriminant

analysis is that it offers the possibility of testing the significance of the model.

Likelihood Ratio Index or Pseudo-R2

Based on the same properties, the following index can be used:

ρ2 ¼ 1�
Lnl β̂ 1

� �
Lnl β̂ 0

� � (8.105)

If the model is a perfect predictor in the sense that P̂ i ¼ 1 when yi ¼ 1 and

P̂ i ¼ 0 when yi ¼ 0, then

l β̂ 1

� �
¼ 1 ) Lnl β̂ 1

� �
¼ 0 ) ρ2 ¼ 1 (8.106)

When there is no improvement in fit due to the predictor variables, then

Lnl β̂ 1

� �
¼ Lnl β̂ 0

� �
) ρ2 ¼ 0
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8.3 Examples

8.3.1 Example of Discriminant Analysis

In Fig. 8.3, the SAS procedure “discrim” is used (highlighted in grey in the figure).

The command “canonical” is also highlighted in grey because this gives the

instructions to output all the relevant coefficients presented in Sect. 8.1. The

variables used to discriminate are listed after the “var” term (highlighted in grey)

and then the variable that contains the group numbering follows the term “class”

(highlighted in grey) to indicate that it is a categorical variable.

Similarly, the same data file is read in STATA using the description of the format

given in Fig. 8.4.

STATA commands indicate that there are three lines of data per record (i.e.,

observation) and the variables are then listed for each line. This dictionary file is

called by the do-file that is shown in Fig. 8.5. The categorical variable is indicated

by “group(variable)” where “variable” is the name of the variable being analyzed.

The command “candisc” is used to perform canonical linear discriminant analysis.

The command “discrim” can be used but only reports the classification table, as

shown at the bottom of the figure.

The key sections of the SAS output are shown in Fig. 8.6. The output of

discriminant analysis clearly shows the within-group SSCP matrices (separately

for each group), the pooled-within SSCP matrix W, the between-group SSCP

matrix B, and the total-sample SSCP matrix T. The raw (unstandardized) and

standardized (correcting for the different units and variances of each of the

variables) canonical coefficients, that is the discriminant coefficients, are then listed

(highlighted in grey in Fig. 8.6). The raw coefficients indicate the weights to apply

OPTIONS LS=80;
DATA ALLIANCE;
INFILE "c:\SAMD\Chapter8\Examples\al8.dat";
INPUT   #1 choice dunc techu grow

#2 firmsiz x1 7.4 x2 x3 asc
#3 nccc;

proc discrim bsscp psscp wsscp tsscp canonical ;
var dunc techu grow firmsiz asc nccc;
class choice;

run;

Fig. 8.3 Example of SAS file for discriminant analysis (examp8-1.sas)
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infile dictionary using "/users/fblgatignon/Documents/WORK_STATA/SAMD/Chapter8-MDA-
LOGIT/al8.dat" {

_lines(3)
_line(1) 

choice dunc techu grow z1 z2 z3
_line(2) 

firmsiz x1 x2 x3 asc
_line(3)

nccc z4 z5 z6 ads
}

Fig. 8.4 STATA dictionary file for reading the example data (Al8dic_Mac.dct)

infile using "/users/gatignon/Documents/WORK_STATA/SAMD/Chapter8_MDA-
LOGIT/al8dic_Mac.dct", clear
candisc dunc techu grow firmsiz asc nccc, group(choice)
discrim lda dunc techu grow firmsiz asc nccc, group(choice)

Fig. 8.5 Example of STATA file for discriminant analysis (examp8-1.do)

Fig. 8.6 SAS output for discriminant analysis (examp8-1.lst)
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Fig. 8.6 (continued)
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Fig. 8.6 (continued)
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Fig. 8.6 (continued)
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to the p variates in order to form the most discriminating linear function. In

the example, yi ¼ 0.455*DUNCi � 1.031*TECHUi + 0.858*GROWi � 0.00008*

FIRMSIZi � 0.808*ASCi + 0.557*NCCCi. In the particular case where only two

groups are analyzed, a single discriminant function exists; there is only one eigen-

vector. The eigenvectors, or the discriminant functions, discussed earlier are inter-

pretable in such a way that a positive (negative) sign of the discriminant function

coefficients (weights) indicates that the corresponding variable contributes posi-

tively (negatively) to the discriminant function. A comparison with the group

Fig. 8.6 (continued)
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means on the discriminant function indicates in what way the variates discriminate

among the groups. For example, considering the values highlighted in grey in

Fig. 8.6, choice 1 has a higher (positive) mean value (0.142) on the discriminant

function y (the mean for choice 2 is negative, i.e., �0.488). Therefore, the positive

coefficient of DUNC means that the higher the demand uncertainty (the higher the

value of DUNC), the higher the discriminant function and, consequently, the more

likely is choice 1 (corresponding to internal development mode). In contrast to

DUNC that has a positive coefficient, the negative coefficient of TECHU means

that higher technological uncertainty makes choice 2 (corresponding to using an

alliance) more likely.

In addition, the absolute value of the standardized discriminant function

coefficients (where the raw coefficients are multiplied by the standard deviation

of the corresponding variables) reflects the contribution of the variables to that

discriminant function so that a larger standardized weight indicates a bigger role of

that variable in discriminating between the options. For example, the variable

technology uncertainty (“techu”) appears to be the most discriminant variable

(�0.75), followed closely by the variables “asc” (�0.71) and “grow” (0.69),

although observations with higher values of growth (“grow”) are likely to belong

to different groups from those with high ratings on “asc” and “techu” because of the

opposite signs of these coefficients. Therefore, these standardized coefficients

explain the contribution (extent and direction) of each variable for discriminating

between the two groups.

For two-group discriminant analysis, the interpretation of the discriminant

function weights is relatively clear, as presented above. When there are more

than two groups, each discriminant function represents different dimensions on

which the discrimination between groups would occur. For example, the first

discriminant function could discriminate between groups 1 and 3 versus group

2, and the second discriminant function could discriminate between groups 1 and

2 on the one hand and group 3 on the other hand. The interpretation in such cases

requires the comparison of the group means on the discriminant function values (y).
Because it can sometimes be difficult to find an interpretation for the discriminant

functions, it helps to plot the group means or centroids on the discriminant functions

(as axes). It is also very useful to analyze the profiles of each group in terms of the

means of the predictor variables for each group.

In Fig. 8.6, a vector of coefficients for each group is printed under the heading of

“linear discriminant function.” These are not, however, the discriminant functions

discussed earlier; they are the classification functions. Indeed, in this particular

example with only two choices, there could not be two discriminant functions. The

SAS output shows the classification functions, which are the two components of

Eq. (8.33), i.e., W�1x 1 and W�1x 2.

The classification table is also shown in Fig. 8.6 and the number of observations

correctly classified is highlighted in grey. In this example, 62.58% of the

observations in group 1 were classified in the correct group and 73.3% for group 2.

Equivalent output is given by STATA, as shown in Fig. 8.7.
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Fig. 8.7 STATA output for discriminant analysis (examp8-1.log)
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8.3.2 Example of Multinomial Logit: Case 1 Analysis
Using LIMDEP

Figure 8.8 presents a typical input file using LIMDEP to estimate a conditional logit

model of the case 1 type. The data set used for this example, scanner.dat, has the

same structure as the data scan.dat described in Appendix C (Chap. 14). The first

part of the file defines the data variables and reads them from the data file. The

specification of the analysis follows in the second part with the command “discrete

choice” (highlighted in grey in the figure). The variables on the left side of the

Fig. 8.7 (continued)

read; nrec = 4648; nvar=14; file = scanner.dat;
format = (f8.0,f4.0,2f2.0,f3.0,2f5.2,f2.0,f9.6,5f2.0);
names(x1  = panelid,

x2  = week,
x3  = purchase,
x4  = count,
x5  = brand,
x6  = price,
x7  = prcut,
x8  = feature,
x9  = loy,
x10 = dum1,
x11 = dum2,
x12 = dum3,
x13 = dum4,
x14 = dum5);

$
open; output=c:\SAMD\Chapter8\Examples\Examp8-2.out$
discrete choice; lhs=purchase, count;

rhs=price, prcut, feature, loy, dum1, dum2,dum3, dum4, dum5$
close$

Fig. 8.8 Example of LIMDEP file for logit model—case 1 (examp8-2.lim)
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equation are then specified (purchase) following the code “lhs¼” (highlighted in

grey). Finally, the explanatory variables are listed after the code “rhs¼” for the right

side of the equation (highlighted in grey). It is important to note that in LIMDEP the

options must be coded from 0 to K�1. The predicted variables in the example of

Fig. 8.8 consist of the price of each brand, any price cut applied to each transaction,

and whether or not the brand was on display. Each brand is also specified as having

a different intrinsic preference or utility that is modeled as a different constant term

with dummy variables (the reference where all brand dummies are zero corresponds

to private labels). Some heterogeneity in preferences across consumers is also

captured by a loyalty measure representing past purchases of the brand.

The LIMDEP output is shown in Fig. 8.9.

The output shown in Fig. 8.9 should be self-explanatory. The gradient is printed

at each iteration until convergence is achieved. Then, the estimated parameters are

listed with the usual statistics that enable us to test the hypotheses and compute the

fit statistics based on the likelihood function. The coefficients represent the mar-

ginal utility of each choice option (brand) of one additional unit of the

corresponding variable. In the example in Fig. 8.9, price has a significant negative

impact while price cuts and being on display add to the brand utility.

Normal exit from iterations. Exit status=0. 
: LIMDEP Estimation Results                      Run log line    3  Page   1 :
: Current sample contains    4648 observa tions.                              :

+--------------------------------------------- +
| Discrete choice (multinomial logit) model   |
| Maximum Likelihood Estimates                |
| Dependent variable               Choice     |
| Weighting variable                  ONE     |
| Number of observations              949     |
| Iterations completed                  6     |
| Log likelihoo d function -814.1519 |
| Log-L for Choice   model =    -814.1519     |
| R2=1-LogL/LogL*  Log -L fncn  R -sqrd  RsqAdj |
| No coefficients  -1700.3797  .52119  .52003 |
| Constants only.  Must be computed directly. |
|                  Use NLOGIT ;...; RHS=ONE $ |
| Response data are given as ind. choice.     |
| Number of obs.=   949, skipped   0 bad obs. |
+---------------------- ----------------------- +

+--------- +-------------- +---------------- +-------- +--------- +---------- +
|Variable | Coefficient | Standard Error | b/St.Er. |P[|Z|>z] | Mean of X|
+--------- +-------------- +---------------- +-------- +--------- +---------- +
PRICE    -2.372695061 .33603584       -7.061 .0000
PRCUT     1.973968500 .35129043        5.619 .0000
FEATURE   .7023317528 .13901356        5.052 .0000
LOY       3.791733215 .15780806       24.028 .0000
DUM1      .97173189 76E-01 .24160340         .402   .6875
DUM2      .9067318292 .25947016        3.495 .0005
DUM3      .9511561911 .31347219        3.034 .0024
DUM4      .4835120963 .25106381        1.926 .0541
DUM5      .9019121730 .3899720 9        2.313 .0207

Fig. 8.9 LIMDEP output for logit model—case 1 (examp8-2.out)

260 8 Categorical Dependent Variables



For STATA, we first define a dictionary to read the scanner data file. Fig. 8.10

shows that file.

The commands for estimating the conditional logit choice model in STATA

(alternative-specific conditional logit) are shown in Fig. 8.11.

However, before explaining the logit command, we must use the panelid and the

week variable to generate the variable that identifies each case. We first generate

strings from these numeric variables, then we concatenate them with the “+”

operator, and finally, we reconvert the new identification number by combining

panelid and week. This means that each case corresponds to a panelist for a given

week. The command for the conditional logit—case 1 model is “asclogit” (for

alternative-specific conditional logit). Because multiple units of the brands are

chosen at each purchase occasion (indicated by the variable “count”), this informa-

tion was used in the example using LIMDEP. Similarly in STATA, the command

line would simply become

asclogit purchase price prcut feature loy dum1 dum2 dum3
dum4 dum5 [fweight ¼ count], case(case2) alternative
(brand) noconstant

The output is shown in Fig. 8.12.

8.3.3 Example of Conditional Logit: Case 2 Analysis
Using LIMDEP and STATA

Figure 8.13 shows the LIMDEP file that estimates the same choice as for the

discriminant analysis example above. The “logit” command is highlighted in grey

in the figure and the variables on the right and left sides of the equation follow the

infile using "/users/gatignon/Documents/WORK_STATA/SAMD/Chapter8_MDA-
LOGIT/Scandic_Mac.dct", clear
gen pan1=string(panelid,"%03.0f")
gen week1=string(week,"%03.0f")
gen panelidnew=pan1+week1
encode panelidnew, generate(case2)
asclogit purchase price prcut feature loy dum1 dum2 dum3 dum4 dum5, case(case2) 
alternative(brand) noconstant

Fig. 8.11 Example of STATA file for logit model—case 1 (examp8-2.do)

infile dictionary using "/users/gatignon/Documents/WORK_STATA/SAMD/Chapter8_MDA-
LOGIT/scan.dat" {
_lines(1)
_line(1) 
panelid week purchase count brand price prcut feature loy dum1 dum2 dum3 dum4 dum5
}

Fig. 8.10 Dictionary file for reading the scanner data file in STATA (scandic.dct)
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same rules as those described for the “discrete choice” command in the prior

section. These commands “lhs¼” and “rhs¼” are highlighted in grey in Fig. 8.13.

Two aspects of the file require particular attention:

Iteration 0:   log likelihood = -566.63846
Iteration 1:   log likelihood = -544.56834
Iteration 2:   log likelihood = -530.19524
Iteration 3:   log likelihood = -530.13254
Iteration 4:   log likelihood = -530.13251

Alternative-specific conditional logit         Number of obs      =       2967
Case variable: case2                           Number of cases    =        634

Alternative variable: brand                    Alts per case: min =          2
avg =        4.7
max =          6

Wald chi2(9)    =     472.21
Log likelihood = -530.13251                       Prob > chi2     =     0.0000

------------------------- -----------------------------------------------------
purchase |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
brand        |

price    -2.323626   .4515947    -5.15   0.000    -3.208736   -1.438517
prcut |   2.476117   .4170589     5.94   0.000     1.658697    3.293538

feature |   .6756557   .1672598     4.04   0.000     .3478326    1.003479
loy |   3.810995   .2002705    19.03   0.000     3.418472    4.203518

dum1 |   .7056693   .3777715     1.87   0.062    -.0347492    1.446088
dum2 |   1.490968   .4035483     3.69   0.000     .7000282    2.281908
dum3 |   1.458424   .4700251     3.10   0.002     .5371918    2.379656
dum4 |   1.029559   .4067982     2.53   0.011     .2322488    1.826868
dum5 |   1.281715   .5588563     2.29   0.022     .1863768    2.377053

------------------------------------------------------------------------------

Fig. 8.12 STATA output for logit model—case 1 (examp8-2.do)

read; nrec = 200; nvar=8; file = al8.dat;
format = (f1.0,3f8.4/f17.4,24x,f8.4/f17.4,24x,f8.4);
names(x1 = rdmode,

x2 = dunc,
x3 = techu,
x4 = grow,
x5 = firmsiz,
x6 = as2,
x7 = nccc,
x8 = ads,

$
create; rdmode= rdmode-1$
open; output=c:\SAMD\chapter8\examples\examp8-3.out$

logit; lhs=rdmode;
rhs=one, dunc, techu, grow, firmsiz, as2, nccc, ads$

close$

Fig. 8.13 Example of input for logit model using LIMDEP (examp8-3.lim)
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1. The choice variables should have a value of zero for the base case, up to the

number of choice options minus one. In the example, the choice variable, which

is the R&D mode, is re-coded to take the value 0 or 1 depending on whether the

original variable read from the data file is 1 or 2.

2. LIMDEP does not automatically estimate a constant term. Therefore, if one

expects different proportions to be chosen for the same values of the independent

variables, then the variable called “one” in LIMDEP serves to add the

constant term.

It can be seen from the LIMDEP output, shown in Fig. 8.14, that the results are

displayed with the parameter estimates and the classification table, as was described

previously (the key results are highlighted in grey in Fig. 8.14). The information

necessary to compute the likelihood ratio test is also given with the log-likelihood

functions for the full model and for the restricted version (no slopes). The

chi-square statistic is also provided. The pseudo R-squared can be computed with

this information as well.

The STATA input for this conditional logit—case 2 model is shown in Fig. 8.15.

The STATA command corresponding to this model is “mlogit” for multinomial

logistic regression.

The results shown in Fig. 8.16 reproduce those obtained with LIMDEP.

Because of the binary nature of the dependent variable “choice,” the binomial

model command “logit” could be used in place of “mlogit.” This assumes, however,

that the dependent variable takes the values 0 and 1. In the input file shown in

Fig. 8.17, a new variable “rdchoice” is generated to satisfy this assumption.

The STATA output is shown in Fig. 8.18, including the classification table with

the percentage of correctly classified observations.

In the case of the multinomial model, the classification table could be derived but

the various thresholds need to be determined. Instead, the focus is on the interpre-

tation of the coefficients, which, however, do not represent the effect of the x

variables on the probabilities of each option but rather represent the changes in the

utility of each option. The STATA post-estimation command “. margins, dydx

(*) predict(outcome(2))” (highlighted in grey in Fig. 8.19) estimates the average

marginal effects of each variable on choice option 2, as shown in Fig. 8.19.

8.4 Assignment

Use SURVEY.ASC data (described in Chap. 14, Appendix C) to run a model where

the dependent variable is a categorical scale (choose preferably a variable with

more than two categories). For example, you may want to address the following

questions:

• Can purchase process variables be explained by psychographics?

• Are demographics and/or psychographics determinants of media habits?
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Fig. 8.14 Example of LIMDEP output for logit model (examp8-3.out)
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Note that for these analyses, you can use discriminant analysis with SAS or

STATA, or the conditional logit—case 2 model estimated using STATA or LIMDEP.

In both cases (discriminant analysis andmultinomial logit model), provide fit statistics

in addition to the explanation of the coefficients. Compare the results of both analyses.

Pay particular attention to the format for reading the variables in LIMDEP, because

the Windows version does not recognize format i for integers.

infile using "/users/gatignon/Documents/WORK_STATA/SAMD/Chapter8_MDA-
LOGIT/al8dic_Mac.dct", clear
mlogit choice dunc techu grow firmsiz asc nccc ads

Fig. 8.15 Example of STATA input command for multinomial logit model (examp8-3_Mac.do)

. mlogit choice dunc techu grow firmsiz asc nccc ads

Iteration 0:   log likelihood = -106.63277
Iteration 1:   log likelihood = -78.511669
Iteration 2:   log likelihood = -73.675095
Iteration 3:   log likelihood = -73.576887
Iteration 4:   log likelihood =   -73.5768
Iteration 5:   log likelihood =   -73.5768

Multinomial logistic regression                   Number of obs   =        200
LR chi2(7)      =      66.11
Prob > chi2     =     0.0000

Log likelihood =   -73.5768 Pseudo R2       =     0.3100

------------------------------------------------------------------------------
choice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+------------------------------------ ----------------------------
1            |  (base outcome)
-------------+----------------------------------------------------------------
2            |

dunc |  -.1341132   .3016753    -0.44   0.657     -.725386    .4571595
techu |   .5217616   .3842333     1.36   0.174    -.2313218    1.274845
grow |  -.7767891   .3276965    -2.37   0.018    -1.419062   -.1345157

firmsiz |   .0001237   .0001736     0.71   0.476    -.0002164    .0004639
asc |   .1825139   .2762264     0.66   0.509    -.3588799    .7239078

nccc |  -.6736857   .3145464    -2.14   0.032    -1.290185   -.0571861
ads |   2.038876   .3628429     5.62   0.000     1.327717    2.750035

_cons |  -2.247596   .4047093    -5.55   0.000    -3.040812   -1.454381
------------------------------------------------------------------------------

Fig. 8.16 Example of STATA output of mlogit (examp8-3.log)

infile using "/users/gatignon/Documents/WORK_STATA/SAMD/Chapter8_MDA-
LOGIT/al8dic2_Mac.dct", clear
gen rdchoice=choice-1
logit rdchoice dunc techu grow firmsiz asc nccc ads
estat classification

Fig. 8.17 STATA command for binomial logit model
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Using grocery scanner data in the file SCAN.DAT (the description of the file can

be found in Chap. 14, Appendix C), model the brand choice of the frequently

purchased grocery product for which the data has been collected. Use LIMDEP

(discrete choice) or STATA (alternative-specific conditional logit) to estimate the

conditional logit—case 1 models.

You may want to consider the following ideas for possible analysis:

• How does the inclusion of the “loyalty” variable (i.e., a measure of cross-

sectional heterogeneity and nonstationarity) affect the brand choice model?

Fig. 8.18 STATA output for binomial logit model
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• What do we gain, if anything, by separating price paid into its two components?

• Are there brand-specific price effects?
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Chapter 9

Rank-Ordered Data

When the criterion variable is defined on an ordinal scale, the typical analyses based

on correlations or covariances are not appropriate. The methods described in

Chap. 6 do not use the ordered nature of the data and, consequently, do not use

all the information available. In this chapter, we present methodologies that take

into account the ordinal property of the dependent variable.

A particular methodology that typically uses ordinal dependent variables is

based on experimental designs to obtain preferences of respondents to different

stimuli: conjoint analysis. We first discuss the methodology involved in conjoint

analysis and methods used to estimate the parameters of the conjoint models, i.e.,

monotone analysis of variance (MONANOVA). We then discuss a choice proba-

bility model that takes into consideration the ordinal property of the dependent

variable, the ordered probit model.

9.1 Conjoint Analysis: MONANOVA

In the conjoint problem, preference responses to stimuli are obtained. These stimuli

are designed to represent a combination of characteristics or attributes. Therefore,

we start by discussing the design itself that defines the independent or the predictor

variables and the manners in which the combination of attributes can be coded for

analysis.

9.1.1 Effect Coding Versus Dummy Variable Coding

In a typical experimental setting, the independent variables that characterize the

conditions of a cell or a stimulus are discrete categories or levels of attributes. For

example, the color of the packaging of a product is red or yellow. It can be ordered

(for example, a “low,” “medium,” or “high” value) or not (for example, colors).

H. Gatignon, Statistical Analysis of Management Data,
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Each combination of levels of all the attributes can correspond in principle to a

stimulus, although responses to all the combinations may not be necessary. Two

methods can be used to code these combinations of levels of attributes. Effect

coding is the traditional method in experimental research using analyses of variance

models. Dummy variables are typically used in regression analysis. We present

each coding scheme and discuss the differences.

The coding principle is best described by taking an example of a two-by-two

factorial design. This means that there are two factors in the experiment, each with

two levels. For example, the stimulus may or may not have property A and may or

may not have property B. This is illustrated in Table 9.1.

This 22 factorial design can easily be generalized to the 2n design or any design

m � n � � � � � k.
In Table 9.1, the stimulus possesses the attribute A or not. If it does, the condition

is noted as a, and if it does not, it is noted as a . The same two cases for attribute

B are noted as b and b . The combinations of levels of the two attributes lead to four

cases (conditions) that can be labeled and described as follows:

(1) ¼ Treatment combination that consists of the first level of all factors

(a) ¼ Treatment combination that consists of the second level of the first factor and

the first level of the second factor

(b) ¼ Treatment combination that consists of the first level of the first factor and

the second level of the second factor

(ab) ¼ Treatment combination that consists of the second level of the two factors

The labels for these cases are shown in the cells of Table 9.1. Assuming that the

various stimuli are evaluated on an interval scale response measure, the values,

which are also shown in the cells of Table 9.1, are the average ratings provided by

respondents in each of these conditions. Assuming that the number of respondents

in each cell is the same, one can derive the grand mean rating, the main effects of

each attribute or factor, and the specific incremental effect of the combination of

A and B.
The grand mean is the average value across the four cells:

M ¼ Grand Mean ¼ 1

4
abþ aþ bþ 1ð Þð Þ (9.1)

The main effect of A is the average of the effect of the presence of A (i.e., the

difference in the ratings whether A is present or not) across the two conditions

determined by whether B is present or not. If B is present, the effect of A is (ab)�(b);
if B is not present, it is (a)�(1) or

Table 9.1 A 2 � 2

factorial design
A

a a

B b 40.9(1) 47.8(a) 44.4

b 42.4(b) 50.2(ab) 46.3

41.6 49.0 45.3
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A Main Effect ofAð Þ ¼ 1

2
abð Þ � bð Þf g þ að Þ � 1ð Þf g½ � (9.2)

Similarly, the main effect of B is the average of the effect of the presence of

B (i.e., the difference in the ratings whether B is present or not) across the two

conditions determined by whether A is present or not. If A is present, the effect of

B is (ab)�(a); if B is not present, it is (b)�(1) or

B Main Effect ofBð Þ ¼ 1

2
abð Þ � að Þf g þ bð Þ � 1ð Þf g½ � (9.3)

The joint effect of A and B beyond the main effects of A and B is given by the

difference between the value of the criterion variable when both effects are present

and its value when none are present (i.e., (ab)�(1)), after removing the main effect

of A (i.e., (a)�(1)) and the main effect of B (i.e., (b)�(1)):

AB¼ abð Þ � 1ð Þf g � bð Þ � 1ð Þf g � að Þ � 1ð Þf g½ �

¼ abð Þ � bð Þ � að Þ þ 1ð Þ½ � (9.4)

Using the data in Table 9.1

(1) ¼ 40.9

(ab) ¼ 50.2

(a) ¼ 47.8

(b) ¼ 42.4

Therefore, using Eqs. (9.2), (9.3), and (9.4)

A ¼ 1

2
50:2� 42:4þ 47:8� 40:9½ � ¼ 1

2
7:8þ 6:9ð Þ ¼ 7:4

B ¼ 1

2
50:2� 47:8þ 42:4� 40:9½ � ¼ 1

2
2:4þ 1:5ð Þ ¼ 1:9

AB ¼ 50:2� 42:4� 47:8þ 40:9½ � ¼ 0:9

These effects can easily be computed using a linear model where the indepen-

dent variables are coded using a specific scheme. The coding scheme is different

depending on whether the effects are coded directly (effect coding) or whether the

levels are coded (dummy coding).

9.1.1.1 Effect Coding

A variable is created for each factor, for example x1 for factor A and x2 for factor B.
We first present the coding scheme with two levels, and then with more than two

levels.
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Effect Coding with Two Levels

Let us assume a factor with two levels. The upper level is coded “+1” and the lower

level “�1.”

Therefore, a stimulus (a cell) is represented by the vector
x1
x2

� �
, which for the

four cells in Table 9.1 gives the following combinations:

1
�1

�1

� �
a

1

�1

� �

b
�1

1

� �
ab

1

1

� �

A main effect model can be represented by the linear model:

y ¼ β0 þ β1x1 þ β2x2 (9.5)

The ratings of the individual cells can then be obtained by combining the values

of x1 and x2:

x1 x2
1ð Þ �1 �1

að Þ 1 �1

bð Þ �1 1

abð Þ 1 1

For each cell, this leads to the equations

1ð Þ y ¼ β0 � β1 � β2
að Þ y ¼ β0 þ β1 � β2
bð Þ y ¼ β0 � β1 þ β2
abð Þ y ¼ β0 þ β1 þ β2

The effects of each factor are therefore represented by the values of the βs:

A ¼ 1

2
β0 þ β1 � β2ð Þ � β0 � β1 � β2ð Þ þ β0 þ β1 þ β2ð Þ � β0 � β1 þ β2ð Þ

¼ β1 � β2 þ β1 þ β2 þ β1 þ β2 þ β1 � β2
¼ 2β1

B ¼ β1 þ β2 � β1 � β2ð Þ ¼ β1 þ β2 � β1 þ β2 � β1 þ β2 � �β1 � β2ð Þ
¼ �β1 þ β2 þ β1 þ β2
¼ 2β2
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Effect Coding with More Than Two Levels

When more than two levels are involved, the coding scheme depends on the

assumptions made about the functional form of the relationship between the factor

(independent variable) and the dependent variable. This issue obviously does not

arise in the case of only two levels.

We present below the case of three levels of a variable. The effects can be coded

to reflect either a linear or a nonlinear relationship.

Linear Effect Coding

Let us consider first the coding scheme for a linear effect. Such a coding is

represented in Table 9.2.

It can be seen that the difference between level one and level two is the same as

the difference between level two and level three, i.e., one unit. The difference

between level one and level three is twice the difference between level one and

level two. Therefore, the effect is linear.

Nonlinear Effect Coding

The coding of nonlinear effects varies depending on the functional form that the

researcher wants to represent and test. Table 9.3 shows the coding scheme for a

quadratic form.

The shape of the function shows symmetry around level two, and the values

depend on the coefficient that multiplies this variable. Furthermore, a positive value

of the coefficient would imply a decreasing and then increasing function, and vice

versa for a negative coefficient.

The coding scheme can become quite complex. Table 9.4 provides the appropri-

ate schemes for more than three levels.

9.1.1.2 Dummy Variable

Dummy coding corresponds to creating a variable for each level of each factor

minus one. Therefore, for a design where a factor has three levels, two variables are

created: variable x1 takes the value 0 for level one and level three, and 1 for level

Table 9.2 Linear effect

coding for three-level variable
Level 1 2 3

Coding �1 0 +1

Table 9.3 Quadratic effect

coding for three-level variable
Level 1 2 3

Coding +1 �2 +1
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two, and x2 takes the value 0 for level one and level two, and 1 for level three. This
implies that a separate coefficient will be estimated for each level, relative to the

reference cell where all the dummy variables are 0.

9.1.1.3 Decomposing the Effects in a Regression Model

Let us assume the following model:

yi ¼ β1xi1 þ β2xi2 þ β3xi1xi2 þ εi (9.6)

Table 9.4 Coefficient of orthogonal polynomials

Number of levels Polynomial Coefficients (di) ∑ di
2

3 Linear �1 0 1 2

Quadratic 1 �2 1 6

Linear �3 �1 1 3 20

4 Quadratic 1 �1 �1 1 4

Cubic �1 3 �3 1 20

Linear �2 �1 0 1 2 10

5 Quadratic 2 �1 �2 �1 2 14

Cubic �1 2 0 �2 1 10

Quartic 1 �4 6 �4 1 70

Linear �5 �3 �1 1 3 5 70

6 Quadratic 5 �1 �4 �4 �1 5 84

Cubic �5 7 4 �4 �7 5 180

Quartic 1 �3 2 2 �3 1 28

Linear �3 �2 �1 0 1 2 3 28

7 Quadratic 5 0 �3 �4 �3 0 5 84

Cubic �1 1 1 0 �1 �1 1 6

Quartic 3 �7 1 6 1 �7 3 154

Linear �7 �5 �3 �1 1 3 5 7 168

8 Quadratic 7 1 �3 �5 �5 �3 1 7 168

Cubic �7 5 7 3 �3 �7 �5 7 264

Quartic 7 �13 �3 9 9 �3 �13 7 616

Quintic �7 23 �17 �15 15 17 �23 7 2,184

Linear �4 �3 �2 �1 0 1 2 3 4 60

9 Quadratic 28 7 �8 �17 �20 �17 �8 7 28 2,772

Cubic �14 7 13 9 0 �9 �13 �7 14 990

Quartic 14 �21 �11 9 18 9 �11 �21 14 2,002

Quintic �4 11 �4 �9 0 9 4 �11 4 468

Linear �9 �7 �5 �3 �1 1 3 5 7 9 330

10 Quadratic 6 2 �1 �3 �4 �4 �3 �1 2 6 132

Cubic �42 14 35 31 12 �12 �31 �35 �14 42 8,580

Quartic 18 �22 �17 3 18 18 3 �17 �22 18 2,860

Quintic �6 14 �1 �11 �6 6 11 1 �14 6 780

Adapted from Fisher and Yates, Statistical Tables for Biological, Agricultural and Medical
Research, published by Oliver and Boyd Ltd., Edinburgh (Table 23).
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where the variables are coded (�1, +1) and each group is balanced because N/2
observations are coded �1 and N/2 observations are coded +1.

The dependent variable yi is assumed to be mean centered or to have a mean

of zero.

The three variables are orthogonal so that the effects can be analyzed indepen-

dently. Indeed, it can be shown that the interaction term is independent of the other

effects.

The covariance between the product term of two variables x1 and x2 with one of

its components x1 is

V x1, x1x2½ � ¼ V x1x2½ �E x1½ � þ E x1 � x 1ð Þ2 x2 � x 2ð Þ
h i

þ E x2½ �V x1½ � (9.7)

In ANOVA, the mean of the two variables that are coding the effects is zero.

Consequently, the expression reduces to

V x1, x1x2½ � ¼ V x1x2½ �:0þ E x1 � x 1ð Þ2 x2 � x 2ð Þ
h i

þ 0:V x1½ � (9.8)

or

V x1, x1x2½ � ¼ E x1 � x 1ð Þ2 x2 � x 2ð Þ
h i

(9.9)

But in ANOVA, the covariance of the two variables coding the effects is also

zero (they are independent). Therefore,

E x1 � x 1ð Þ2 x2 � x 2ð Þ
h i

¼ E x1
2x2

� � ¼ 0 (9.10)

Therefore,

β̂ 1 ¼

XN
i¼1

xiyi

XN
i¼1

x2i

¼

XN
ijxi>0

yi �
XN
ijxi<0

yi

N
¼ 2 y 2 � y 1ð Þ (9.11)

where y 1¼ the mean of the dependent variable over the observations when x1 is
coded �1, and y 2¼ the mean of the dependent variable over the observations when

x1 is coded +1.

This means that the coefficient of x1 can be interpreted as the difference in group
means due to that variable.
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9.1.1.4 Comparing Effect Coding and Dummy Coding

The two coding schemes do not give identical results because, as shown in the

presentation above, effect coding places a restriction on the relationship that does

not apply to dummy variable coding. Consequently, like any restricted form of a

relationship compared to its unrestricted form, a test of the appropriateness of the

restriction can be performed. The two approaches can consequently be combined to

perform tests about the functional forms.

In summary, effect coding is appropriate when testing for the significance of the

effect of a variable (conditionally, on assuming a specific form of the relationship).

Dummy coding is used to estimate and test the effects of each level of a variable

independently from the other levels.

9.1.2 Design Programs

A particularity of conjoint analysis concerns the generation of the experimental

design itself. Recently, several companies have developed PC-based software for

generating stimuli reflecting the combinations of the levels of attributes. Two such

software packages are Conjoint Designer by Bretton-Clark and Consurv by IMS

Inc. Each of these packages offers similar services that, once the attributes and their

levels are determined, generate the combination of the attributes in the form of the

description of the stimuli, enable the entry of the data by respondents, and analyze

the data.

9.1.3 Estimation of Part-Worth Coefficients

In Sect. 9.1.1, we discussed one of the characteristics of conjoint analysis: the

specific nature of the independent variables. The other characteristic of conjoint

analysis concerns the rank-ordered nature of the dependent variable. Although the

term “conjoint” has recently been used more broadly, these two characteristics were

initially what distinguished conjoint analysis from other methodologies.

MONANOVA was developed as an appropriate methodology for estimating the

effects of variables using the rank-ordered nature of the dependent variable. More

recently, as conjoint studies have been successfully developed in industry, the

simpler ordinary least squares (OLS) estimation has replaced the use of

MONANOVA. This is due to not only the simplicity of OLS but also two other

factors: (1) the robustness of OLS that gives generally similar results to those

obtained from MONANOVA and (2) the increased usage of ratings instead of

rankings for the dependent variables.
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First, we present MONANOVA and illustrate the estimation using PC-MDS

running under the Windows operating system. PC-MDS is one of several proprie-

tary software packages that offer the ability to estimate MONANOVA models

(http://www.surveypro.com/info/pcmds.html). XLSTAT is another package that

uses Microsoft Excel running under Windows or OS Mac (http://www.xlstat.com/

en/download.html). Then, we show how to perform OLS estimations using the SAS

GLM procedure and STATA commands.

9.1.3.1 MONANOVA

Monotone analysis of variance is an estimation procedure based on an algorithm

that transforms the dependent variable using a monotonic transformation so that the

data can best be explained by a linear model of main effects of the independent

variables or factors. More formally, let the data be represented by the set of values

{δij}, each corresponding to the evaluation of alternative j by individual i (i ¼ 1,

. . ., I; j ¼ 1, . . ., J ). For each individual, the data are presented in a separate table,

as shown in Table 9.5.

The objective is, therefore, to estimate the main effects of each factor to best fit

the relationship:

f δij
� � ¼ β0 þ β1x1ij þ β2x2ij þ εij (9.12)

where f(.) is a monotonic transformation of the rank-ordered dependent variable and

x1 and x2 are the variables representing the main effects of the two factors using

effect coding.

The monotone transformations are performed using an algorithm to improve

the fit.

9.1.3.2 OLS Estimation

The GLM procedure found in SAS automatically creates the dummy variables that

correspond to the design. When a variable is defined as a discrete variable using the

CLASS function, the levels of the variable are automatically generated with the

proper dummy variables. The model is linear and the estimation follows the OLS

estimation described in Chap. 5.

It remains that MONANOVA is technically more appropriate when rank data are

obtained and used as a dependent variable. This is particularly important for

Table 9.5 Example of input

data for a 2 � 3 design
Second factor

Levels 1 2 3

First factor 1 δ11 δ12 δ13
2 δ21 δ22 δ23
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academic research where technically inappropriate methods should not be used,

even if they provide generally robust results. Obviously, the use of ratings makes

OLS a perfectly appropriate methodology.

9.2 Ordered Probit

Ordered probit modeling is a relatively recent approach to analyzing rank-ordered

dependent variables (McKelvey and Zavoina 1975). Let us assume that there exists

an unobserved variable y that can be expressed as a linear function of a single

predictor variable x. Furthermore, the variable y is not observed; only discrete

levels of that variable can be observed (e.g., levels one, two, and three).

Figure 9.1 illustrates the case of a trichotomous dependent variable (observed

variable) with a single independent variable.

It is important to distinguish between the theoretical dependent variable y and

the observed dependent variable z, which, in the example of Fig. 9.1, takes three

possible values.

The variable y is an interval scale variable and, if we could observe it, it would fit
a linear model y ¼ xβ + u.

The variable z is ordinal and generally presents M observed response categories

R1, . . ., RM.

The model of the unobserved dependent variable y follows the usual linear

model assumptions with multiple explanatory variables X:

y¼Xβþu (9.13)

with

u � N 0, σ2I
� �

(9.14)

underlying relationship

Y

3

2

1

X

Fig. 9.1 The underlying

linear relationship of the

ordered probit model
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We define M + 1 real numbers μ0, . . ., μM with the following prespecified

values:

μ0 ¼ �1
μM ¼ þ1

These values are rank ordered such that μ0 � μ1 � � � � � μM.
Let us consider an individual observation i. The value of the dependent variable

zij will be 1 if the underlying unobserved variable falls within the values of yι in the
range of [μ j�1, μj]. This can be expressed as

μj�1 < yi � μj , zij ¼ 1; 8k 6¼ j : zik ¼ 0 (9.15)

Let us focus our attention on the interval in which the value of yi falls:

μj�1 < yi � μj (9.16)

We can replace the unobserved variable by the linear function of observed

variables that determines it:

μj�1 < xiβþ ui � μj (9.17)

Subtracting the deterministic component from the boundaries, we obtain

μj�1 � xiβ < ui � μj � xiβ (9.18)

We can now standardize the values by dividing each element of the inequality by

the standard deviation of the error term:

μj�1 � xiβ
σ

<
ui
σ
� μj � xiβ

σ
(9.19)

The central element is a random variable with the normal distribution:

ui
σ
� N 0; 1ð Þ (9.20)

We can, therefore, write the probability that this variable is within the range

given by Eq. (9.19) by subtracting the cumulative density functions at the upper and

lower levels:

P zij ¼ 1
� � ¼ ϕ

μj � xiβ
σ

� 	
� ϕ

μj�1 � xiβ
σ

� 	
(9.21)
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where ϕ is the cumulative density function:

ϕ tð Þ ¼
ðt

�1

1ffiffiffiffiffiffiffi
2Π

p e
�x2=

2dx (9.22)

In order to identify the model, we need to impose the restrictions

μ1 ¼ 0

σ ¼ 1

The first restriction has no consequence and the unit variance of the unobserved

variable simply standardizes that variable. Consequently, Eq. (9.21) reduces to

P zij ¼ 1
� � ¼ ϕ μj � xiβ

� �� ϕ μj�1 � xiβ
� �

(9.23)

The parameters that need to be estimated are

β
K�1

; μ2, . . . , μM�1

This means that there are (K + M�2) parameters to be estimated.

The estimation is obtained by maximum likelihood.

Let

yij ¼ μj � xiβ (9.24)

and, for simplification of the notation,

ϕi, j ¼ ϕ yij

� �
(9.25)

Then, the probability of zij being in the interval [μ j�1, μj] is

P zij ¼ 1
� � ¼ ϕi, j � ϕi, j�1 (9.26)

Consequently, the likelihood of observing all the values of Z for all the

observations in the data set is

L ¼ L z β; μ2; . . . μM�1j Þð (9.27)

¼ Π
N

i¼1
Π
M

j¼1
ϕi, j � ϕi, j�1

� �zij (9.28)

The logarithm of the likelihood is

l ¼ LnL ¼ Σ
N

i¼1
Σ
M

j¼1
zijLn ϕi, j � ϕi, j�1

� �
(9.29)
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The estimation problem consists in finding the values of the parameters that

maximize the logarithm of the likelihood function l , subject to the inequality

constraints about the values of μs, i.e.:

μ1 � μ2 � � � � � μM�1

One potential issue is that it is not always clear whether or not the dependent

variable is ordered. The question, then, is whether one is better off using an ordered

or an unordered model.

On the one hand, using an ordered model assumption when the true model is

unordered creates a bias of the parameter estimates. On the other hand, using an

unordered model when the true model is ordered does not create a bias but a loss of

efficiency rather than consistency (Amemiya 1985, p. 293). Consequently, if the

data are indeed ordered, the efficient and unbiased estimator will be provided by the

ordered model. Using an unordered model may lead to parameters that are not

significant but that would have been significant had the most efficient model been

used. Of course, this is not an issue if all the parameters are significant. Using an

ordered model if the data are not ordered is more risky because the parameter

estimates are biased. Consequently, unless there is a strong theoretical reason for

using an ordered model, it is best to use a non-ordered model when the order

property of the dependent variable is not clearly proven.

9.3 Examples

9.3.1 Example of MONANOVA Using PC-MDS
and XLSTAT

To illustrate the use of the PC-MDS software for MONANOVA analysis, we take

the example of a 2 � 2 � 2 design where the data are as given in Table 9.6.

The MONANOVA program used to analyze data that are structured as in

Fig. 9.6 is run by clicking on the monanova.exe file from Windows Explorer. The

data as well as the information about the run are contained in an input file. An

example of a full input file is shown in Fig. 9.2. The first line of this input file

contains the parameters that characterize the analysis. The meaning of the numbers

on that first line is detailed in Table 9.7.

Table 9.6 Example of data

for data entry using PC-MDS

MONANOVA (a 23 design)

Third factor

Second factor Second factor

Level 1 2 1 2

First factor 1 x111 x121 x112 x122
2 x211 x221 x212 x222
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The second line corresponds to the format in which the data can be read using

FORTRAN conventions.

The third line (and subsequent lines if there is more than one replication)

corresponds to the data line(s). The data must be entered in a specific sequence.

This sequence is best described through an example. In our 2 � 2 � 2 example, the

indices of the x variable are such that the first index represents the level on the first

factor, the second represents the level on the second factor, and the third the level on

the third factor. The sequence should then appear as

111 112 121 122

211 212 221 222

The results of the MONANOVA analysis are shown in Fig. 9.3.

The utilities for the levels within each factor are shown under the heading

“UTILITIES OUTPUT FOR LEVELS WITHIN FACTORS” (highlighted in grey

in Fig. 9.3).

For illustrating MONANOVA with XLSTAT, we use the responses of several

individuals to a conjoint analysis regarding academic job preferences. Ten

individuals provide their rankings of several profiles that are a full factorial

combination of the various levels of three factors: compensation (higher

vs. average), research reputation (excellent vs. good), and geographical location

(North America, Europe, or Asia). The data are simply entered into an Excel

spreadsheet. The beginning of the spreadsheet is shown in Fig. 9.4: the rows

correspond to the responses of individuals to the profiles and the columns represent

the profile descriptions that will be used as predictor variables and the

corresponding profile ranking.

In the MONANOVA analysis module within the XLSTAT-Conjoint menu, a

simple dialog box appears that is filled in using the cell location of the dependent

and explanatory variables. This dialog box is shown in Fig. 9.5.

Drawn from the detailed statistical output that appears in a separate worksheet,

the standardized utilities are plotted as shown in Fig. 9.6.

3  2  2  2  1
(8F10.2)
98.18     65.62     39.97     7.41      87.08     54.52     28.86    .0

Fig. 9.2 Example of input file for MONANOVA using PC-MDS (examp9-1.dat)

Table 9.7 Parameter line for reading data shown in Table 9.6

Parameter

line

3 2 2 2 1

# of factors # of levels of

first factor

# of levels of

second factor

# of levels of

third factor

# of

replications
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The analysis pooled the data across the ten respondents. MONANOVA can

also be used in XLSTAT from the Conjoint Analysis menu to be performed by a

respondent. When we know the utilities of each individual respondent, we can then

Fig. 9.3 Output file for MONANOVA example (examp9-1.out)
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form clusters that correspond to market segments where each cluster (segment) has

different preferences. Predictions of market share are also available as a function of

the variations of offerings in the market.

9.3.2 Example of Conjoint Analysis with Interval
Scale Rating Data

When the dependent variable is interval scale, the analysis is done with regression.

The example in Fig. 9.7, which gives the sample input file used with SAS, provides

a variant of the illustration in Fig. 9.6 where potential students rated different

Fig. 9.3 (continued)
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Fig. 9.4 Excel spreadsheet for MONANOVA analysis in XLSTAT (examp9-1.xlsx)

Fig. 9.5 Dialog box for MONANOVA analysis in XLSTAT (examp9-1.xlsx)
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hypothetical schools. The hypothetical schools were described in terms of (1) being

either (a) not very or (b) very quantitative; (2) using methods of instruction

characterized by (a) the case method, (b) half case and half lectures, or

(c) lectures only; (3) the research reputation of the faculty, which can be (a) low,

(b) moderate, or (c) high; (4) the teaching reputation of the faculty, which can also

be (a) low, (b) moderate, or (c) high; and (5) the overall prestige of the school as

(a) one of the Ivy League colleges, (b) a private school but not part of the Ivy

League, or (c) a state school. We then use the SAS procedure “glm” as highlighted

in grey in Fig. 9.7. Within this highlighted area, discrete variables are identified by

the “class” command, and the regression model specification is contained after the

Fig. 9.6 XLSTAT output file for MONANOVA example (examp9-1.xlsx)

options ls=80;
DATA DATA1;
INFILE "C:\SAMD\Chapter9\Examples\Examp9-2.dat";
INPUT rating xid quant instruct resrep tearep prestige;
PROC glm;
CLASS xid quant instruct resrep tearep prestige;
MODEL rating = quant instruct resrep tearep prestige;
MEANS QUANT INSTRUCT RESREP TEAREP PRESTIGE;
estimate 'quant' quant 1 -1;
estimate 'instr2 vs 1' instruct 1 -1 0;
estimate 'instr3 vs 1' instruct 1 0 -1;
run;

Fig. 9.7 Example of input file for conjoint analysis using SAS (examp9-2.sas)
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“model” command. The command “means” requests that the means of the rating

variable be displayed for each of the levels of the predictor variables. Finally, the

last command highlighted in grey in Fig. 9.7 is the “estimate” command that is used

to compare the means at different levels of a variable (i.e., to perform specific

contrasts).

Fig. 9.8 gives the output of such analysis. The tests of significance of each factor

are performed and then the marginal means of the dependent variable is shown for

each level of each factor, one at a time. The example also illustrates the test for

restrictions on the parameters such as for linear effects. The statistics at the bottom

of the output in Fig. 9.8 show that the difference between levels 1 and 2 of

instruction (i.e., “instr2 vs 1”) is insignificant (t ¼ 0.42) but the difference between

levels 3 and 1 (i.e., “instr3 vs 1”) is significant (t ¼ 2.04).

In STATA, we use the “regress” command. Quantitative variables that have

finite levels are converted and treated as categorical variables by specifying the

prefix “i.” attached to the variable. For example, the variable “quant” is treated as a

discrete-level factor by specifying “i.quant.” When the independent variables are

all qualitative factors of that sort, the regression analysis is an ANOVA. The same

Fig. 9.8 Output for GLM procedure using SAS example (examp9-2.lst)
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analysis as in Fig. 9.8 can then be easily performed using the “regress” command in

STATA. Fig. 9.9 lists a dictionary file to describe the format in which the data in file

examp9-2.dat should be read.

The commands to run the analysis in STATA are shown in Fig. 9.10.

Fig. 9.8 (continued)
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The “anova” command (highlighted in grey in Fig. 9.10) provides the overall test

of significance of each factor. The “regress” command performs a regression

analysis where the coefficients of each level of each factor (except for the first

level of each factor that serves as the base) are estimated. The highlighted

“margins” command provides the estimates of the cell means. Finally, the “lincom”

command is used to test the significance of the difference of level effects (or any

linear combination). For example, “lincom _b[1.instruct] - _b[3.instruct]”

(highlighted in grey in Fig. 9.10) compares the effect of the third level of the

variable “instruct” with the first level of that variable. The last line of commands

uses a “glm” command in STATA that parallels the “glm” procedure in SAS. In this

case, the results are the same as in regression. The results of running these

commands are shown in Fig. 9.11.

The command lines are highlighted in grey in Fig. 9.11 to better identify each

section of the analysis. The results are obviously identical to those obtained with the

“glm” procedure in SAS.

9.3.3 Example of Ordered Probit Analysis Using LIMDEP

The use of ordered probit is illustrated with two examples, one with LIMDEP and

the other with STATA. The input file for LIMDEP, which enables the estimation of

an ordered probit model, is straightforward (Fig. 9.12). The only difference with the

statements for a logit-type model specification is the use of the command

“ORDERED” (the command is highlighted in grey in the figure, as well as the

commands that are identical to those used for the logit model explained in Chap. 8,

i.e., “lhs” and “rhs”). It should be noted that the right side list of variables must

infile dictionary using "/users/gatignon/Documents/WORK_STATA/SAMD/Chapter9_MONANOVA-
OL/Examp9-2.dat" {
_lines(2)
_line(1) 

rating xid quant instruct resrep tearep
_line(2) 

prestige
}

Fig. 9.9 STATA dictionary file to read data in examp9-2.dat (examp9-2.dct)

infile using "/users/gatignon/Documents/WORK_STATA/SAMD/Chapter9_MONANOVA-OL/Examp9-
2_Mac.dct", clear
anova rating i.quant i.instruct i.resrep i.tearep i.prestige
regress rating i.quant i.instruct i.resrep i.tearep i.prestige
margins i.quant i.instruct i.resrep i.tearep i.prestige
lincom _b[1.quant] -_b[2.quant]
lincom _b[1.instruct] -_b[2.instruct]
lincom _b[1.instruct] - _b[3.instruct]
glm rating i.quant i.instruct i.resrep i.tearep i.prestige

Fig. 9.10 STATA command file to analyze data in examp9-2.dat (examp9-2_Mac.do)
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Fig. 9.11 STATA output of analysis for data in examp9-2.dat (examp9-2_Mac.log)
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Fig. 9.11 (continued)
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include “ONE” to specify a constant term. This particular example concerns the

ranking of business schools (Rnk) as a function of ratings on the MBA programs

(MBA_rate), the diversity of populations represented in the schools (Div_rate), and

the ratings of the research activities of the schools (R_Drate).

Fig. 9.13 shows the results of this analysis where the main components are

highlighted in grey. These include the log-likelihood at its maximum value and the

parameter estimates.

Diversity (DIV_RATE) appears insignificant but the rating of the MBA program

(MBA_RATE) as well as the rating of the school on research activities

(R_DRATE) appear to strongly predict the overall ranking of the school.

For STATA, we use the same data as used for MONANOVA. The data file is an

Excel spreadsheet (“examp9-4.xlxs”) with the same structure as described in

Fig. 9.4. The STATA commands are represented in Fig. 9.14.

The profiles in this data file have been entered as alphabetical characters (e.g.,

“Higher,” “Average”). These levels of each factor need first to be converted into

numerical values. We therefore generate new variables for the three factors

(“Comp” for compensation, “Resrep” for research reputation, and “Loc” for geo-

graphical location) and replace the values by numbers. The ordered probit com-

mand is highlighted in grey. The dependent variable is the variable “Ranking” and

the predictor variables are the three newly recreated factor variables. A prefix “i.” is

added in front of each of these factor variables in order to indicate the need to use

appropriate automatically created dummy variables for each level.

The output is shown in Fig. 9.15.

These results show that the second level of compensation (“Average”) has a

significant positive marginal utility, which indicates that it contributes to the

increase in the ranking (i.e., less preferred) relative to a “Higher” compensation.

Similarly, having a “Good” (versus “Excellent”) research reputation lowers the

ranking. Finally, concerning the location effect, the difference between North

America and Europe is not statistically significant, but Asia is less preferred as a

whole. Further analysis could also be performed to identify individual differences

that could be used as a basis for cluster/segmentation analysis.

The ordered logit model results can be compared to the ordered probit model.

The command line is simply changed to “. ologit Ranking i.Comp i.Resrep i.Loc.”

The same conclusions are drawn from such an analysis.

read; file = Examp9-3.wks;
format = WKS ;
names
$

open; output = c:\SAMD\Chapter9\Examples\Examp9-3.out$
ORDERED; lhs = Rnk;

rhs = ONE, MBA_rate, Div_rate, R_Drate $
close$

Fig. 9.12 Example of ordered probit estimation using LIMDEP (examp9-3.lim)
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Fig. 9.13 Output of ordered probit model using LIMDEP (examp9-3.out)
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9.4 Assignment

1. Decide on an issue to be analyzed with a conjoint study and gather data yourself

on a few (10–20) individuals. Make sure that at least one of the factors has more

than two levels.

Investigate issues concerned with the level of analysis and estimation

procedures:

Types of analysis

Aggregate analysis

Individual-level analysis

import excel "/Users/gatignon/Documents/WORK_STATA/SAMD/Chapter9_MONANOVA-OL/Examp9-
4.xlsx", sheet("Sheet1") firstrow clear
gen Comp=1 if Compensation=="Higher"
replace Comp=2 if Compensation=="Average"
gen Resrep=1 if ResearchRep=="Excellent"
replace Resrep=2 if ResearchRep=="Good"
gen Loc=1 if GeographicalLoc=="North America"
replace Loc=2 if GeographicalLoc=="Europe"
replace Loc=3 if GeographicalLoc=="Asia"
oprobit Ranking i.Comp i.Resrep i.Loc

Fig. 9.14 STATA commands for ordered probit model example (examp9-4.do)

. oprobit Ranking i.Comp i.Resrep i.Loc

Iteration 0:   log likelihood =  -298.1888  
Iteration 1:   log likelihood = -252.15288  
Iteration 2:   log likelihood = -251.59271  
Iteration 3:   log likelihood = -251.59193  
Iteration 4:  log likelihood = -251.59193  

Ordered probit regression                       Number of obs   =        120
LR chi2(4)      =      93.19
Prob > chi2     =     0.0000

Log likelihood = -251.59193                     Pseudo R2       =     0.1563

------------------------------------------------------------------------------
Ranking |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
2.Comp |   1.365533   .2063363     6.62   0.000     .9611212    1.769945

2.Resrep |   1.570412   .2121635     7.40   0.000     1.154579    1.986245
|

Loc |
2  |  -.3640599   .2304488    -1.58   0.114    -.8157312    .0876114
3  |   .5582931   .2338327     2.39   0.017     .0999894    1.016597

-------------+----------------------------------------------------------------
/cut1 |  -.5730945   .2588788                     -1.080488   -.0657014
/cut2 |   .0925388   .2402791                     -.3783997    .5634772
/cut3 |   .5700556   .2382819                      .1030317    1.037079
/cut4 |   .9128469   .2388882                      .4446345    1.381059
/cut5 |   1.206877   .2410636                      .7344007    1.679353
/cut6 |   1.508688   .2463593                      1.025833    1.991544
/cut7 |   1.813262    .254846                      1.313773    2.312751
/cut8 |   2.141778   .2663604                      1.619721    2.663835
/cut9 |   2.534498   .2850483                      1.975814    3.093183
/cut10 |   3.001398   .3108749                      2.392095    3.610702
/cut11 |   3.611815   .3491821                       2.92743    4.296199

------------------------------------------------------------------------------

Fig. 9.15 STATA commands for ordered probit model example (examp9-4.log)
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Estimation

GLM

Regression with dummy variables

Regression with effect coding

MONANOVA

2. Using data from the SURVEY (Appendix C, Chap. 14), choose a rank-ordered

variable and develop a model to explain and predict this variable. Compare the

multinomial logit model with the ordered logit or probit model. In addition,

choose a categorical variable and illustrate the problem of using an ordered logit

or probit model when it is not appropriate.
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Chapter 10

Error in Variables: Analysis of Covariance

Structure – Structural Equation Models

In this chapter, we bring together the notions of measurement error discussed in

Chaps. 3 and 4 with the structural modeling of simultaneous relationships presented

in Chap. 6. We demonstrate that a bias is introduced when estimating the relation-

ship between two variables measured with error if that measurement error is

ignored. We then present a methodology for estimating the parameters of structural

relationships between variables that are not observed directly: analysis of covari-

ance structures. We focus on the role of the measurement model as discussed in

Chap. 4 with the confirmatory factor analytic model.

10.1 Impact of Imperfect Measures

In this section, we discuss the bias introduced by estimating a regression model with

variables that are measured with error.

10.1.1 Effect of Errors-in-Variables

Let us assume two mean-centered variables, a dependent variable and an indepen-

dent variable, yt and xt respectively, that are observed. However, these variables are
imperfect measures of the true unobserved variables yt

* and xt
*. The measurement

models for both variables are expressed by the equations

xt ¼ x�t þ ut (10.1)

yt ¼ y�t þ vt (10.2)
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There exists a structural relationship between these two unobserved variables, as

indicated by the equation below:

y�t ¼ x�t β (10.3)

This equation can be expressed in terms of the observed variables by replacing

each unobserved variable with its expression as a function of the observed variable

obtained from Eqs. (10.1) and (10.2):

yt ¼ xt � utð Þβ þ vt (10.4)

or by placing the random error term at the end:

yt ¼ xtβ þ vt � utβ (10.5)

It should be noted that the error on the dependent variable y is similar to the error

on the structural relationship. Indeed, if we had added an error term to Eq. (10.3), it

would have been confounded with the measurement error of the dependent

variable νt.
Because these variables are not observed, only the relationship between the

observed variables can be estimated. This can be done by using the ordinary least

squares estimator of the regression of yt on xt:

β̂ OLS1�1
¼ x

0

1�T
x

T�1

� ��1

x
0

1�T
y

T�1

(10.6)

The bias can be evaluated by taking the expectation of the OLS estimator:

E β̂ OLS

� �¼ E x
0
x

� ��1
x

0
y

h i
¼ E x

0
x

� ��1
x

0
xβ þ v� uβð Þ

h i
¼ β þ x

0
x

� ��1
E x

0
v� uβð Þ� �

¼ β þ x
0
x

� ��1
E x� þ uð Þ0 v� uβð Þ
h i

E βOLS½ � ¼ β þ E x
0
x

� ��1 �βu
0
u

� �h i
(10.7)

Let

E u
0
u

h i
¼ σ2u

If x has a mean of 0, the bias is

E β̂ OLS

� �� β ¼ �β
σ2u
σ2x

(10.8)

Since σ2x ¼ σ2x� þ σ2u, the bias can be expressed as
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�β
σ2u

σ2x� þ σ2u
¼ �β

1

1þ ρ
(10.9)

where ρ ¼ σ2
x�
σ2u

is the signal-to-noise ratio.

From Eq. (10.9), we cannot only assert that there is a bias but we can also

indicate properties about this bias. Because the variances in the signal-to-noise ratio

are positive σ2u, σ
2
x� > 0

� �
, this means that the bias is always negative, i.e., Eq. (10.9)

is always negative, thus the OLS estimates are underestimated when using a

predictor variable with error. This is known as the attenuation effect. It may lead

to failing to reject the null hypothesis that the effect of the independent variable on

the dependent variable is insignificant.

As the signal-to-noise ratio ρ increases, the bias decreases, i.e., 1/(1 + ρ)
becomes smaller. Therefore, we can summarize the results as follows:

1. We have found a lower bound for β. Indeed, we have shown that the OLS

estimator β̂ OLS is smaller than the true β.
2. Error in measurement of x attenuates the effect of x.
3. Error in measurement of y does not bias the effect of x (the measurement error is

then confounded with the noise in the relationship between the independent and

dependent variables).

10.1.2 Reverse Regression

Let us write the equation that expresses the independent variable xt as a function of
the dependent variable yt:

xt ¼ γyt þ εt (10.10)

Or, for all the observations:

x ¼ γyþ ε (10.11)

The OLS estimator of the parameter γ is

γ̂ OLS ¼ y
0
y

� 	�1

y
0
x (10.12)

Let

β̂
R ¼ 1

γ̂ OLS

¼ y
0
y

y
0
x

(10.13)

If the variables are centered to zero mean,
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β̂
R ¼ V y½ �

Cov x; y½ � (10.14)

However, from Eqs. (10.2) and (10.3),

y ¼ x�β þ v (10.15)

Consequently,

V y½ � ¼ β2σ2x� þ σ2v (10.16)

and

Cov x; y½ � ¼ βσ2x� (10.17)

Therefore, Eq. (10.14) can be expressed as

β̂
R ¼ β2σ2x� þ σ2v

βσ2x�
¼ β

β2σ2x� þ σ2v
βσ2x�

� �
¼ β 1þ σ2v

β2σ2x�

� �
¼ β 1þ ωð Þ (10.18)

where ω ¼ σ2v
β2σ2

x�
, which is always positive.

Because ω is positive, it follows that β̂
R
overestimates β.

If we recall that the coefficient obtained from a direct regression Eq.(10.6),

which we may call β̂
D
, always underestimates the true value of β, we then have

shown that β̂
D
and β̂

R
provide bounds in the range where the true β falls.

Consequently, the choice of the dependent variable in a simple regression has

nothing to do with causality. It follows from the analysis presented above that if σv
2

is small, we should use reverse regression (ω in Eq. (10.18) is then close to 0 and

the bias is small). If, however, σu
2 is small (i.e., little measurement error in the

predictor variable), direct regression should be used because the bias in Eq. (10.6) is

then small. From this discussion it follows that the variable with the largest

measurement error should be selected as the dependent variable.

10.1.3 Case with Multiple Independent Variables

The case with several independent variables is more complex. Let us consider

Eq. (10.19), where some variables zt are estimated without measurement error and

others xt
* are estimated with measurement error:

y�t ¼ ztγ þ x�t β (10.19)
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In such cases, the direction of the bias is not easy to determine. Some

conclusions are possible, however, in the special case when only one of the

independent variables is measured with error, i.e., xt contains a single variable.

Then, it can be shown that the bias can be expressed as follows:

�β
σ2u

σ2x 1� R2
xz

� � (10.20)

where Rxz
2 is the R2 of the regression of the variable measured with error (xt) on

those measured without error (zt).

Because the ratio that multiplies –β in Eq. (10.20) is always positive, the

coefficient is, therefore, always underestimated.

It should be noted that having one of the independent variables measured with

error not only affects the estimation of the impact of that variable, but also the

coefficients of the variables measured without error. Furthermore, both the overall

F statistics and the individual coefficient variances are affected. The Fstatistic is

always understated. Therefore, we would expect to reject the models more often

than we should. The impact on individual statistics is not as clear, however, as there

is no unambiguous bias.

This case of a single variable measured with error is, however, unusual. Most of

the research in the social sciences involves the formation of scales that cannot be

considered to be without measurement error. In such cases, the analysis shown in

this section does not provide any guidance. The next section presents a methodol-

ogy called analysis of covariance structure that resolves the problems associated

with measurement errors.

10.2 Analysis of Covariance Structures

In the analysis of covariance structures, both the measurement errors and the

structural relationships between the variables of interest are modeled.

10.2.1 Description of Model

We start with a system of simultaneous equations identical to the ones analyzed in

Chap. 6:

B
m�n

η
m�1

¼ Γ
m�n

ξ
n�1

þ ζ
m�1

(10.21)
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where

m ¼ Numberof endogenous constructs

n ¼ Numberof exogenous constructs

η ¼ Column vector of m endogenous constructs

ξ ¼ Column vector of n endogenous constructs

ζ ¼ Column vector of m distrubance terms

B ¼ Matrix of structural parameters of endogenous variables

Γ ¼ Matrix of structural parameters of exogenous variables

The endogenous constructs are represented by the vector η and the exogenous

ones by ξ. Eq. (10.21) represents the structural relationships that exist among the

constructs η and ξ with a random disturbance ζ. The diagonal elements of

the matrix B are specified as being equal to one without affecting the generality

of the model. The endogenous and exogenous constructs η and ξ are not observed
but are, instead, measured with error using multiple items. Before defining the

measurement models, we should note that these unobserved constructs are defined

as centered with zero mean without any loss of generality:

E η½ � ¼ 0; E ξ½ � ¼ 0 (10.22)

Like for the regression model, the error term is assumed to have zero mean:

E ζ½ � ¼ 0 (10.23)

In addition, the matrix of parameters B should be non-singular.

Let us now define the factor analytic measurement models. These are

represented by Eqs. (10.24) and (10.25). There are p items or observable variables

reflecting them endogenous constructs and there are q items or observable variables

reflecting the n exogenous constructs:

y
p�1

¼ Λy
p�m

η
m�1

þ ε
p�1

(10.24)

where

p ¼ Number of items measuring the m endogenous constructs

y ¼ Column vector of the p items or observable variable reflecting

the endogenous constructs

Λy ¼ Matrix of factor loadings

ε ¼ Column vector of measurement errors

The elements of the matrix Λy represent the factor loadings. Similarly, for the

measurement model of the exogenous constructs

x
q�1

¼ Λx
q�n

ξ
n�1

þ δ
q�1

(10.25)
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where

q ¼ Number of items measuring the n endogenous constructs
x ¼ Column vector of the q items or observable variable

reflecting the endogenous constructs

Λx ¼ Matrix of factor loadings

δ ¼ Column vector of measurement errors

Furthermore, we can express the covariances of the latent variables and of the

error terms according to Eqs. (10.26)–(10.29):

E ξξ0
h i

¼ Φ
n�m

(10.26)

E ζζ0
h i

¼ ψ
m�m

(10.27)

E εε0
h i

¼ Θε
p�p

(10.28)

E δδ0
h i

¼ Θε
q�q

(10.29)

We can now write the expression of what would theoretically be the covariance

matrix of all the observed variables (x and y), assuming the model expressed in the

equations above.

Let

z
pþqð Þ�1

¼ y

x

� �
(10.30)

The theoretical covariance matrix of z is

Σ ¼ E zz
0

h i
¼ E

y

x

� �
y

0
x

0
� 	
 �

¼ E
yy

0
yx

0

xy
0

xx
0


 �
(10.31)

We derive the expression of each of the four submatrices in Eq. (10.31) with the

following three blocks (the off-diagonal blocks are symmetric):

E xx
0� �¼ E Λxξþ δð Þ�Λxξþ δ

�0h i
¼ E Λxξξ

0Λ0
x

� 	h i
þ E δδ0

h i
¼ ΛxΦΛ0

x þΘδ

(10.32)

E yy
0� � ¼ Λyηþ ε

� �
Λyηþ ε
� �0h i

¼ ΛyE ηη0� �
Λ0

y þΘε

¼ ΛyE B�1ΓξξΓ0
B�1 0 þ B�1ξξ0

B�1 0
h i

Λ0
y þΘε (10.33)

¼ Λy B�1ΓΦΓ0
B�1 0 þ B�1ΨB�1 0� �

Λ0
y þΘε
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E yx
0

h i
¼ E Λyηþ ε

� �
Λxξþ δð Þ0

h i
¼ E ΛyB

�1Γξþ B�1ξþ ε
� ��

Λxξþ δ
�0h i

¼ ΛyB
�1ΓΦΛ0

x (10.34)

Equations (10.32)–(10.34) provide the information to complete the covariance

matrix in Eq. (10.31).

In fact, the observed covariance matrix can be computed from the sample of

observations:

S ¼ Syy Syx
Sxy Sxx


 �
(10.35)

10.2.2 Estimation

The estimation consists in finding the parameters of the model that will replicate as

closely as possible the observed covariance matrix in Eq. (10.35). The maximum

likelihood estimation compares the matrices S and ∑ using the following expres-

sion, which is derived from the likelihood function as presented in Chap. 4 for the

confirmatory factor analytic model:

F ¼ Ln
X��� ���þ tr S

X�1
� 	

� Ln Sj j � pþ qð Þ (10.36)

The only difference with the derivations in Chap. 4 is inherent in the fact that the

covariance matrices contain the variances and covariances among the ( p + q) x and
y variables. Therefore, under the assumption that the observed variables (x

y) are

distributed as a multivariate normal distribution, the parameter estimates that

minimize Eq. (10.36) are the maximum likelihood estimates.

There are 1
2
pþ qð Þ pþ qþ 1ð Þ distinct elements that constitute the data. This

expression comes from half of the symmetric matrix to which one needs to add back

half of the diagonal in order to include the variances of the variables, i.e., [( p + q)
� ( p + q)/2 + ( p + q)/2]. Consequently, the number of degrees of freedom

corresponds to the number of distinct data points as defined above minus the

number of parameters in the model to estimate.

An example will illustrate the model and the degrees of freedom. MacKenzie,

Lutz, and Belch (1986) compare several models of the role of attitude toward the ad

on brand attitude and purchase intentions. Focusing on their dual-mediation

hypothesis model (DMH) represented in Fig. 10.1, which they found to be

supported by the data, three types of cognitive responses to advertising (about the

ad execution, about the source, and about repetition) are the three exogenous

constructs explaining the attitude toward the ad. Attitude toward the ad, according

to that DMH theory, affects the attitude toward the brand not only directly but also

indirectly by affecting brand cognitions that, in turn, affect the attitude toward the

brand. Purchase intentions are affected by the attitude toward the brand as well as
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directly by the attitude toward the ad. The relationships among the three exogenous

constructs (the three types of cognitive responses) and the four endogenous

constructs (attitude toward the ad, attitude toward the brand, brand cognitions,

and purchase intentions) are drawn in Fig. 10.1. They can be expressed by the

following system of four equations:

η1 ¼ β12η2 þ γ11ξ1 þ γ12ξ2 þ γ13ξ3 þ ζ1
η2 ¼ β21η1 þ β24η4 þ ζ2
η3 ¼ β31η1 þ β32η2 þ ζ3

(10.37)

η4 ¼ β41η1 þ ζ4

or

1 �β12 0 0

�β21 1 0 �β24
�β31 �β32 1 0

�β41 0 0 1

2
664

3
775

η1
η2
η3
η4

2
664

3
775 ¼

γ11 γ12 γ13
0 0 0

0 0 0

0 0 0

2
664

3
775

ξ1
ξ2
ξ3

2
4

3
5þ

ζ1
ζ2
ζ3
ζ4

2
664

3
775 (10.38)

In addition, Fig. 10.1 indicates that each of the exogenous constructs is measured

by a single item, x1 for ξ1, x2 for ξ2, and x3 for ξ3. The attitude toward the ad (η1) is
measured by two items y1 and y2. The attitude toward the brand (η2) and the

purchase intentions (η3) are both measured by three items:y3, y4, and y5 for η2,

2

1

3

x1

x2

x3

1

2

3

1

2 34

y1 y2

y3 y4 y5 y6 y7 y8y9

1 2

3 4 5 6 7 89

11

12

13

41

12 21

31

24 32

x1 = ad execution cognitive responses
x2 = source bolstering/derogation cognitive
      responses
x3 = repetition-related cognitive responses

y1 = favorable/unfavorable reaction to ad
y2 = interesting/boring reaction to ad
y3 = favorable/unfavorable feeling toward
      using brand
y4 = good/bad feeling toward using brand
y5 = wise/foolish feeling toward using brand
y6 = likely/unlikely estimate of trying brand
y7 = probable/improbable estimate of trying
      brand
y8 = possible/impossible estimate of trying
      brand
y9 = product/claim-related cognitive responses

Fig. 10.1 A graphical representation of MacKenzie, Lutz, and Belch (1986)’s model of the role of

attitude toward the ad. Adapted from MacKenzie et al. (1986)
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and y6, y7, and y8 for η3. Finally, the brand cognitions (η4) are measured by a single

indicator y9. The measurement model for the endogenous constructs can then be

represented by Eq. (10.39), and the measurement model for the exogenous

constructs can be expressed by Eq. (10.40):

y1
y2
y3
y4
y5
y6
y7
y8
y9

2
6666666666664

3
7777777777775
¼

λy1 0 0 0

λy2 0 0 0

0 λy3 0 0

0 λy4 0 0

0 λy5 0 0

0 0 λy6 0

0 0 λy7 0

0 0 λy8 0

0 0 0 λy9

2
6666666666664

3
7777777777775

η1
η2
η3
η4

2
664

3
775þ

ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9

2
6666666666664

3
7777777777775

(10.39)

and

x1
x2
x3

2
4

3
5 ¼

λx1 0 0

0 λx2 0

0 0 λx3

2
4

3
5 ξ1

ξ2
ξ3

2
4

3
5þ

δ1
δ2
δ3

2
4

3
5 (10.40)

It should be noted that some restrictions on the measurement model parameters

must be made for identification purposes. For each construct, the unit or scale of

measurement must be defined. This is accomplished by setting one of the lambdas

for a given construct to one; the corresponding variable will then serve as the unit of

reference for that construct. For example, we can define λy1 ¼ λy3 ¼ λy6 ¼ λy9 ¼
λx1 ¼ λx2 ¼ λx3 ¼ 1. Alternatively, especially in the case of confirmatory factor

analysis, the variance of the constructs could be set to unity.

We also need to impose some restrictions on some parameters in the cases where

the constructs are measured by a single item. In such cases, the loading parameter is

set to one, as discussed above and the error term is necessarily equal to zero. This

means that the variance of the error term of that measurement equation must be

constrained to be zero. This is the case for the example with θε9, θδ1, θδ2, and θδ3.
Normally, the covariance matrices θδ and θε are assumed to be diagonal. In a few,

exceptional cases, correlations between error terms of measurement equations can

be estimated. This was the case in the example reported above from MacKenzie

et al. (1986). However, estimating such correlations should only be done with great

care, as the interpretation may be difficult.

The covariance matrix of the exogenous constructs can be symmetric or, with

orthogonal factors, it can be defined as diagonal with zero covariances. In the

example with orthogonal factors, three variances Ψ must be estimated.

Finally, the covariance matrix Φ must be specified. It can be symmetric in the

general case where the error terms of the structural equations are correlated. In such

an example, there would be four variances and six covariances to estimate. The

matrix is often assumed to be diagonal, in which case only four parameters (four

variances) need to be estimated.
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The equations described and the restrictions applied above indicate that

29 parameters must be estimated: five lambdas, six betas, three gammas, eight thetas,

four phis, and three psis. Given that with 12 observed variables the covariance matrix

consists of 78 different data points (i.e., (12 � 13)/2), this leaves 49 degrees of

freedom.

10.2.3 Model Fit

We refer here to Sect. 4.2.1 in Chap. 4, since the measures of fit are identical to the

description given when discussing the confirmatory factor analytic model. It should

be noted that, for the adjusted goodness-of-fit index (AGFI), the adjustment for the

degrees of freedom must take into account the p + q variables, instead of just the

q variables in confirmatory factor analysis:

AGFI ¼ 1� pþ qð Þ pþ qþ 1ð Þ
pþ qð Þ pþ qþ 1ð Þ � 2T


 �
1� GFI½ � (10.41)

where T is the number of estimated parameters.

The same change must be applied to the formula for the root mean square error

of approximation (RMSEA) as the degrees of freedom d is given by

d ¼ pþ qð Þ pþ qþ 1ð Þ=2½ � � T (10.42)

10.2.4 Test of Significance of Model Parameters

The significance of each parameter can be tested using the standard t statistics
formed by the ratio of the parameter estimate and its standard deviation. It should be

recalled that this is possible because of the assumption about the normal distribution

of the variables that enabled us to perform a maximum likelihood estimation.

10.2.5 Simultaneous Estimation of Measurement Model
Parameters with Structural Relationship Parameters
Versus Sequential Estimation

It can be noted that in the estimation method described above, the measurement

model parameters are estimated at the same time as the structural model

parameters. This means that the fit of the structural model and the structural

model parameters are affected by the measurement model parameters. The rationale

for the approach was to correct the bias produced by errors in measurement.

However, the simultaneity of the estimation of all the parameters (measurement
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model and structural model) implies that a trade-off is made between the values

estimated for the measurement model and those for the structural model. To avoid

this problem, it is best to first estimate the measurement model and then estimate the

structural model parameters in a fully specified model (i.e., with the measurement

model) where the parameters of the measurement model are fixed to the values

estimated when the measurement model is estimated alone (Anderson and Gerbing

1988). This procedure does take into account the fact that the variables in the

structural model are measured with error in order to estimate the structural model

parameters, but it does not let the estimation of the measurement model interfere

with the estimation of the structural model and vice versa.

10.2.6 Identification

As discussed earlier in Chap. 6, a model is identified if its parameters are identified,

which means that there is only one set of values of the parameters that generates the

covariance matrix. There are no general necessary and sufficient conditions to

identify the general model discussed here; however, if the information matrix is

not positive definite, the model is not identified. Furthermore, it appears logical that

the structural model should be identified independently of the measurement model.

Consequently, the order and rank conditions presented in Chap. 6 should be used to

verify the identification of the structural relationships in an analysis of covariance

structure model.

10.2.7 Special Cases of Analysis of Covariance Structure

The system of equations discussed in Chap. 6 and, a fortiori, the multiple regression

analysis presented in Chap. 5 are obviously directly related to the general analysis

of covariance models described above. This is because the fundamental

relationships establishing the structural model follow the linear model. The

distinguishing feature is the simultaneous modeling of measurement errors. If,

however, each unobserved construct is defined by a single indicator (therefore

fixing the factor loading to one and the error variance to zero), the models described

in Chaps. 5 and 6 are reproduced.

Although less obvious, three of the analytical methods discussed in earlier

chapters are also special cases of the general model we presented in this chapter:

confirmatory factor analysis, second-order factor analysis and canonical correlation

analysis. We show in this section how the general model reduces to each of these

special cases.
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10.2.7.1 Confirmatory Factor Analysis

In confirmatory factor analysis, there is no endogenous latent construct. The model

simply reduces to the measurement model expressed in Eq. (10.25). Consequently,

only the submatrix corresponding to the covariances among the exogenous items is

considered in Eq. (10.31), i.e., the part given in Eq. (10.32).

10.2.7.2 Second-Order Factor Analysis

It is less obvious how the general model can reduce to the second-order factor

analytic model. However, the relationships between the second order factors and

the first order factors are established through Eq. (10.21) but with the peculiarity

that B ¼ I. This means that there is no endogeneity and that each η is a function of

only the exogenous constructs. It may be confusing that, in this particular case, the

structural relationships expressed by Eq. (10.21) represent a measurement model;

however, this representation is in fact mathematically and statistically equivalent to

a second-order factor analytic model. The other distinction with the general model

is the lack of exogenous indicators. Indeed, the η’s are considered as the reflective

measures for the ξ’s. Consequently, we are only interested in reproducing the

submatrix in Eq. (10.31) that deals with the y variables, i.e., the covariances

represented in Eq. (10.33).

10.2.7.3 Canonical Correlation Analysis

The equivalence of canonical correlation analysis with the general model described

in this chapter is even more subtle. Again, the structural parameters are not truly

considered as such. Let us consider a case where the exogenous constructs (the ξ’s)
are each measured by a single indicator. This means that the corresponding factor

loadings will be set to one and the corresponding measurement error variances will

be zero. If we now consider a single endogenous construct η, the “structural

relationship parameters” can be interpreted as the weights applied to the x’s to

form a linear combination of these variables. This can be seen more clearly by

considering the graphical representation in Fig. 10.2.

The dotted box in Fig. 10.2 shows the part of the graphic that corresponds to the

right side of the canonical correlation equation. Then, the relationships between the

single η and the y variables are established through the “measurement” parameters

in Λy, combined with the specification of a full covariance matrix among the error

terms ε’s. Once again, the role of structural and measurement parameters as

described earlier in this chapter does not hold; however, there is a statistical

equivalence between these representations. This model is expressed as a multiple

indicators/multiple causes (MIMIC) model of a single latent construct. We should

be careful not to interpret the parameters Λy as being equivalent to the weights of
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the dependent variables in the canonical correlation model specification. However,

these parameters and weights are directly related to each other, and the canonical

weights could then easily be inferred from the estimated parameters Λy.

Indeed, λy1 in Fig. 10.2 represents the correlation between y1 and η1 (assuming

that η1 has unit variance). However, η1 is the canonical variate corresponding to the
x variables in canonical correlation analysis (i.e., η ¼ z ¼ λx1x1 + λx2x2). But the
squared correlation between y and z is precisely the definition of the redundancy

measure in canonical correlation analysis (see Chap. 7). Therefore,

Λy
2�1

¼ μ
1�1

Ryy
2�2

v
2�1

(10.43)

where v are the weights applied to the y variables to form the y canonical variate, μ
is the correlation between the two canonical variates, and Ryy is the correlation

matrix among the y variables (note in this case that q ¼ 1).

Consequently, there is equivalence between the factor loadings in the analysis of

covariance specification of the canonical correlation model and the weights of the

linear combination of the y variables, as seen in Chap. 7 when canonical correlation
analysis is performed.

10.3 Analysis of Covariance Structure with Means

Just as we introduced means and scalar constants in multi-group confirmatory factor

analysis (Chap. 4), we now introduce them in the general model not only for the

exogenous variables Eq. (10.45) but also for the endogenous variables Eq. (10.44):

y
p�1

¼ τy
p�1

þ Λy
p�m

η
m�1

þ ε
p�1

(10.44)

1
X1

X2

x1=1

2
x2=1

1

y1

y2

1

2

12

Independent Canonical Variate

y1=1

11

21

Fig. 10.2 Graphical representation of a canonical correlation model within the general analysis of

covariance structure model
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x
q�1

¼ τx
q�1

þ Λx
q�n

ξ
q�1

þ δ
q�1

(10.45)

In addition, we introduce constant terms (intercepts) in the structural

relationships to acknowledge the fact that the means of the unobserved constructs

are not zero. These constant terms are the α’s in Eq. (10.46):

η
m�1

¼ α
m�1

þ B
m�n

η
m�1

þ Γ
m�n

ξ
n�1

þ ζ
m�1

(10.46)

with

E ξ½ � ¼ κ
m�1

(10.47)

E ξξ0
h i

¼ ψ
m�n

(10.48)

E εε0
h i

¼ θε
p�p

(10.49)

E δδ0
h i

¼ θδ
q�q

(10.50)

It follows that the expected values of the observed exogenous variables are

E x
q�1


 �
¼ μx

q�1

¼ τx
q�1

þ Λx
p�n

κ
n�1

(10.51)

The means of the endogenous constructs follow from Eqs. (10.46) and (10.51).

From Eq. (10.46)

I� Bð ÞE η½ � ¼ αþ ΓE ξ½ � (10.52)

E η½ � ¼ I� Bð Þ�1 αþ Γκð Þ (10.53)

However, the expected value of the endogenous observable items is

E y½ � ¼ μy ¼ τy þ ΛyE η½ � (10.54)

Consequently, the expected value of the endogenous observable items expressed

as a function of the theoretical parameters is

μy ¼ τy þ Λy I� Bð Þ�1 αþ Γκð Þ: (10.55)

Similar to the likelihood function discussed for confirmatory factor analysis with

means and multiple groups in Chap. 4, the log likelihood function also contains the
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parameters that model the means. Generalizing to the case of multiple groups, as

was done in Chap. 4, leads to the log likelihood:

L ¼ � 1

2

XG
g¼1

N gð Þ p gð Þ þ q gð Þ
� 	

Ln 2πð Þ þ Ln Σ gð Þ�� ��þ tr Z gð Þ � μz
gð Þ

� 	
Z gð Þ � μz

gð Þ
� 	0

Σ gð Þ�1

 �
 �

(10.56)

If the theoretical model fits the data, Eqs. (10.51) and (10.54) provide the

constraints that must be met to replicate the means of the observed variables.

Therefore, in the full model with means, we model simultaneously the covariance

matrix and the means of the observed variables in order to replicate as closely as

possible the observed values. Then, the data will not only consist of the covariance

matrix but also of the mean values of the observed variables. This is particularly

useful in the presence of multiple groups where means across groups are likely to

differ. Such multi-group analyses are common when testing the homogeneity of

coefficients across groups. This is the type of analysis presented with multiple

regression in Chap. 5 where we performed pooling tests. However, with this general

model, the structural relationships tested take into consideration the measurement

errors that would introduce a bias if ignored.

A particular type of test of homogeneity occurs when a moderator variable

explains differences in structural relationships. In this case, one frequently used

approach consists in splitting the observations into two (or more) groups according

to the values of the moderator variable. Then a rejection of the homogeneity of

coefficients hypothesis lends support to the moderating hypothesis.

10.4 Examples

We now present examples of analysis of covariance structure using LISREL for

Windows, STATA or AMOS. These examples illustrate full structural models with

error in measurement. The multi-group structural modeling described in Sect. 10.3

is illustrated with examples in Chap. 11 that compares alternative methods to test

moderating effects.

10.4.1 Example of Structural Model
with Measurement Models

Examples were given in prior chapters that were concerned exclusively with

measurement models or confirmatory factor analysis. As shown earlier in this

chapter, this is only one component of analysis of covariance structures. The full

model also contains structural relationships among the unobserved constructs that
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need to be estimated. An example is provided below, where two characteristics of

innovations (the extent to which an innovation is radical and the extent to which it is

competence enhancing) are hypothesized to affect two constructs, one being

changes in the management of the organization and the other being the success of

that organization. We illustrate how to set up the problems in LISREL and then in

STATA. Figure 10.3 presents the LISREL input file for step 1 of the analysis, i.e.,

the measurement model for all the constructs (including both the exogenous and

endogenous constructs, although it would be feasible to estimate a separate mea-

surement model for each).

The output results of the measurement model are shown in Fig. 10.4.

The output results shown in Fig. 10.4 are now represented graphically in

Fig. 10.5.

The same model is now set up in STATA as shown in Fig. 10.6.

The STATA output results are shown in Fig. 10.7.

The values obtained in step 1 are then used as input for step 2, which consists in

estimating the structural model parameters with the measurement parameters fixed

to the values obtained in step 1. The LISREL input file for step 2 is shown in

Fig. 10.8. The estimation of the model presented in that figure leads to maximum

likelihood structural parameter estimates that take into consideration the fact that

the constructs are measured with error.

The resulting parameter estimates of the structural relationships are shown

graphically by LISREL in Fig. 10.9. Also included in that figure are the values of

the measurement model parameters estimated in Fig. 10.4 and fixed to estimate the

structural model parameters.

The full LISREL output is listed in Fig. 10.10. The example given in the figure is

for illustrative purposes only because the results do not indicate that the fit between

the model and the data is sufficiently close.

The corresponding input file for step 2 in STATA is shown in Fig. 10.11.

The output results of step 2 using STATA are given in Fig. 10.12.

!Examp10-1.spl
!Raw Data From File: Examp10-1.txt
!Path Diagram

DA NI=19 MA = KM
RA FI=C:\SAMD\Chapter10\Examples\Examp10-1.txt
MO NX = 19 NK = 4 PH = SY TD = SY
FI   LX(1,1) LX(4,2) LX(9,3) LX(15,4)
VA 1 LX(1,1) LX(4,2) LX(9,3) LX(15,4)
LA
Q46 Q47 Q48 Q40 Q42 Q43 Q44 Q45 Q5 Q7 Q8 Q12 Q13 Q14 Q19r Q20 Q21 Q22 Q23
LK                
Success Org2 CompEnh Radical
FR LX(2,1)  LX(3,1)  C

LX(5,2)  LX(6,2)  LX(7,2)  LX(8,2) C 
LX(10,3) LX(11,3) LX(12,3) LX(13,3) LX(14,3)    C
LX(16,4) LX(17,4) LX(18,4) LX(19,4) C

TD(14,11)
Path Diagram
OU SE TV AD = 50 MI

Fig. 10.3 Step 1: Input of measurement model for exogenous and endogenous constructs—

LISREL (examp10-1.spl)
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Fig. 10.4 Step 1: The measurement model output results—LISREL (examp10-1.out)
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Fig. 10.4 (continued)
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Fig. 10.4 (continued)
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Fig. 10.4 (continued)
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Fig. 10.4 (continued)
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Fig. 10.4 (continued)
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Fig. 10.4 (continued)

320 10 Error in Variables: Analysis of Covariance Structure – Structural. . .



Fig. 10.4 (continued)
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Fig. 10.4 (continued)



Q460.47

Q470.05

Q480.28

Q400.35

Q420.47

Q430.25

Q440.40

Q450.37

Q50.44

Q70.28

Q81.00

Q120.29

Q130.99

Q140.98

Q19r0.44

Q200.28

Q210.26

Q220.68

Q230.44

Success 0.53
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Fig. 10.5 Step 1: Graphical representation of measurement model for exogenous and endogenous

constructs—LISREL (examp10-1.pth)
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Fig. 10.6 Step 1: The measurement model input—STATA (examp10-1.do)

Fig. 10.7 Step 1: The measurement model results—STATA (examp10-1.log)
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Fig. 10.7 (continued)
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Fig. 10.7 (continued)
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Fig. 10.7 (continued)
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Fig. 10.7 (continued)

328 10 Error in Variables: Analysis of Covariance Structure – Structural. . .



Fig. 10.8 Step 2: Input of full structural model—LISREL (examp10-2.spl)
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Fig. 10.8 (continued)
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Fig. 10.9 Step 2: Graphical representation of full structural model—LISREL (examp10-2.pth)

Fig. 10.10 Step 2: Output results of full structural model—LISREL (examp10-2.out)
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Fig. 10.10 (continued)
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Fig. 10.10 (continued)

332 10 Error in Variables: Analysis of Covariance Structure – Structural. . .



Fig. 10.10 (continued)
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Fig. 10.10 (continued)
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Fig. 10.10 (continued)
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Fig. 10.10 (continued)
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Fig. 10.10 (continued)

10.4 Examples 337



Fig. 10.10 (continued)
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Fig. 10.10 (continued)

Fig. 10.11 Step 2: Input of full structural model—STATA (examp10-2.do)
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Fig. 10.11 (continued)

Fig. 10.12 Step 2: Output of full structural model—STATA (examp10-2.log)
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Fig. 10.12 (continued)
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Fig. 10.12 (continued)
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Fig. 10.12 (continued)
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Fig. 10.12 (continued)
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Fig. 10.12 (continued)
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10.5 Assignment

Using the SURVEY data described in Chap. 14 (Appendix C), develop a model that

specifies structural relationships between unobservable constructs measured with

multiple items. Develop a model with multiple equations and verify the identifica-

tion of the structural model. Estimate the measurement model corresponding to a

confirmatory factor analysis, and then estimate the structural model parameters.
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Chapter 11

Testing Mediation and Moderation Effects

In this chapter we present the methods for modeling and testing the relationships

among variables that are characterized by mediation or moderation effects. As is

illustrated throughout the chapter, the social sciences abound with theories that

require the modeling and testing of such effects. We first describe the distinction

between mediation and moderation and define the concept of moderated mediation

as well as mediated moderation. We then discuss how such relationships can be

estimated and the methods that are typically employed to test hypotheses

corresponding to such effects.

11.1 Mediation vs. Moderation Effects

In this section we introduce the concepts of mediation and moderation and we

illustrate them using examples selected from the literature.

11.1.1 Mediation Effects

In studying a mediation process, the focus is typically on the relationship between

an independent variable X and a dependent variable Y. The independent variable

can be either a continuous variable with at least interval-scale properties or a

categorical or an ordinal variable such as with experimental data. The dependent

variable is interval scale or ratio scale. In the simplest case that corresponds to

most analyses encountered in the literature, the focus is on a single relationship

between two variables, one independent variable represented by X and one depen-

dent variable represented by Y. A theory usually predicts that there is a nonzero link

(i.e., a direct effect) between these two variables with a causality that goes

from X to Y. The mediation effect hypothesized typically corresponds to the

explanatory mechanism of this causal relationship (i.e., the theory being tested).

H. Gatignon, Statistical Analysis of Management Data,
DOI 10.1007/978-1-4614-8594-0_11, © Springer Science+Business Media New York 2014
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This explanatory mechanism is reflected by a measure of the process that causes the

effect of X on Y. Such an intermediary explanatory mechanism corresponds to a

mediating process that is represented by a variable M measured on an interval or a

ratio scale. The relationships between these three variables X, Y, and M are

illustrated in Fig. 11.1.

The effect of X onY represented by the intervening or themediating variableM is

the indirect effect. Examples of such mediating effects can be found in all the

disciplines of the social sciences.Wewill use two examples to illustrate the relevance

of the concept to management science. First, we introduce an example in the field of

organizational behavior, and then we present a more strategic application.

The role of leadership in explaining performance provides a first example.

Hofmann and Jones (2005) explore the collective level of leadership in a store.

They relate this level of leadership to store-level performance.More specifically, the

focus is on transformational leadership, i.e., leadership designed to motivate

subordinates to exceed expectations. A positive effect of transformational leadership

on store performance is hypothesized; however, the thesis developed in this research

is that this relationship is due, at least in part, to the personality traits collectively

exhibited as a character of the organizational unit. These include collective consci-

entiousness, collective agreeableness, collective openness, and collective emotional

stability. Therefore, these collective personality characteristics are the mediating

explanations for the superior performance of the transformational leaders.

Innovation is at the core of a firm’s business strategy. The role of R&D spending

and of the innovativeness of firms in predicting their market performance or profit

performance has long been investigated in the marketing and strategy literature. In

recent years, the strategic orientation of firms and more particularly the extent to

which they are market orientated have been examined as determinants of perfor-

mance. According to Gatignon and Xuereb (1997) and Han, Kim, and Srivastava

(1998), the reason for the impact of strategic orientation on performance is that

market-oriented organizations are more innovative. The mediating variable in this

case is the extent to which a firm brings innovations to the market.

11.1.2 Moderation Effects

Let us now consider the relationship between X and Y. In the case of mediation, the

purpose is to help explain the reason for the existence of the relationship. However,

the relationship itself is fundamentally stable and generalizable. If this relationship

Independent
Variable X

Dependent
Variable Y

Mediating
Variable M

Explanatory mechanism

Fig. 11.1 Graphical

representation of mediation

effect
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is contingent on particular conditions (also called contingencies), the conditions

provide explanations for why the relationship between X and Y changes depending

on these conditions. The conditions can be represented by variables Z, which can be

either continuous or categorical factors. These conditioning variables are called

moderator variables. A moderating variable is shown in Fig. 11.2 that impacts the

relationship between X and Y; the relationship between X and Y is represented by

the line and arrow going from X to Y. The moderating effect is represented by the

arrow going from the moderator variable Z to the line between X and Y.

Much strategy research is based on contingency theories. Typically, environmen-

tal conditions impact the extent of the relationships between performance and its

determinants. In more technical terminology, the impact of these determinants on

performance is said to be conditional on environmental factors. Theories involving

moderation effects are found throughout the literature. This can be explained in part

by the complexity of the phenomena that are studied and that leave little room for

unconditional effects. Such moderating effects are also often found in multi-level

theories where both the organizational level and the individual level are interrelated.

For example, an interesting study by West and Broniarczyck (1998) analyzes

how consumers respond when faced with critics whose collective opinions may

either differ from each other or form a consensus. More specifically, the study

hypothesizes that responses by consumers depend on their level of expectations of

the decision outcome, i.e., their aspiration level. Consequently, the study

hypothesizes that consumers will evaluate an alternative more favorably when

there is more disagreement than agreement among critics, if the critics’ opinions

are on average below the consumer’s aspiration level. However, consumers will

evaluate an alternative more favorably when there is more agreement than dis-

agreement among critics, if the critics’ opinions are on average above the

consumer’s aspiration level. Thus, whether the critics’ opinions on average are

above or below the consumer’s aspiration level moderates the effect of the critics’

agreement or disagreement on the consumer’s evaluation.

In the relationships between distribution channel partners, Kumar, Scheer, and

Steenkamp (1998) analyze the asymmetries in interdependence between a dealer

and a supplier. As the asymmetry in channel partners’ punitive capabilities

increases, (a) the firm with greater punitive capability is more likely to reciprocate

punitive actions and (b) the firm with less punitive capability is less likely to

reciprocate punitive actions. Thus, in this example, a firm’s punitive capability is

a moderator variable for the effect of the asymmetry in channel partners’ punitive

capabilities and reciprocation of punitive actions.

Independent
Variable X

Dependent 
Variable Y

Moderating 
Variable Z

Contingency

Fig. 11.2 Graphical

representation of

moderation effect
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11.1.3 Mediated Moderation and Moderated
Mediation Effects

Mediation and moderation are often both involved in a given theoretical explanation.

In particular, as science advances, theories increase in complexity to better explain the

diversity of phenomena. The concepts introduced in the previous sections can be

combined to form multiple configurations. We can identify three basic configurations

in which the fundamental theory states that the relationship between X and Y goes

through an intermediary variable (amediation) and that the indirect effect of X onY is

conditioned by a moderator variable. These three configurations are shown in

Fig. 11.3; each corresponds to a different explanatory mechanism of the conditioning

effect of variable Z.

In Fig. 11.3 the first mechanism is expressed by the arrow labeled (1) between the

moderator variable Z and the mediating variable M. The reason that the indirect

effect of X onY differs depending on Z is that this variable Z changes the level of the

mediating variable M. This process is called a mediated moderation. An example of

this first mechanism is provided in Galunic and Anderson (2000) where the commit-

ment of a sales agent to the firm he represents explains why relation-specific

investments made by the firm and the agent, as well as generalized investments

made by the firm, lead to enhanced performance: commitment of the sales agent

(variable M) mediates the effect of investments in a relationship (variable X) on

performance (variable Y). However, the level of commitment of the sales agent is

not always the same depending on the characteristics of the relationship, such as the

age of the relationship (variable Z). These variables condition the indirect effect by

conditioning the explanatory (mediating) variable itself.

The other two mechanisms more clearly resemble the definition provided for a

moderating effect. In both cases, the mediation is moderated by Z. Therefore, these

cases are called moderated mediation. The difference between these two cases of

moderated mediation stems from where the moderation occurs. In considering a

mediated relationship (the indirect effect), there are really two relationships. The

first relationship is the effect of X on M, and the second is the effect of M on Y. The

first case of moderated mediation (expressed by the arrow labeled (2) in Fig. 11.3) is

when the moderation conditions the effect of X on M. Edwards and Lambert (2007)

refer to this as a first-stage moderated mediation. The second case (expressed by the

arrow labeled (3) in Fig. 11.3) occurs when the moderation conditions the effect of

Independent
Variable X

Dependent
Variable Y

Mediating
Variable M

Moderating
Variable Z

(1)
(2) (3)

Fig. 11.3 Graphical

representations of mediated

moderation and moderated

mediation effects
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M on Y (second-stage moderated mediation). Each can be thought of as a simple

case of moderation (as defined in Sect. 11.1.2) where the mediation variable is

considered as a dependent variable (in the first case) or as an independent variable

(in the second case). In other words, the relationships representing the mediation

process form a recursive system (without feedback loop) where each relationship is

treated separately; one is moderated and the other is not. Both can occur at the same

time with the same or different moderator variables.

An example of moderated mediation corresponding to the first of these two cases

is found in a study of the impact of new product development team compositions by

Haon, Gotteland, and Fornerino (2009). The authors consider that the instrumental

use of information (variable M) mediates the positive impact of group competence

diversity (variable X) on new product performance (variable Y). However, the

extent to which competence diversity (variable X) leads to instrumental information

use (variable M) depends on the familiarity characterizing the group members

(variable Z). Familiarity enhances the positive effect of diversity of competences

on information use because it encourages group communication, in particular

through enhanced interpersonal trust. Therefore, familiarity moderates the relation-

ship between the independent variable (competence diversity) and the mediator

variable (instrumental use of information).

An example of the second case of moderated mediation is provided in Ganesan,

Malter, and Rindfleisch (2005), with the added particularity that the moderator

variable Z is the same as the independent variable X. This case is illustrated in

Fig. 11.4.

In analyzing the sales performance of salespeople (variable Y), trust (variable

M) is specified as a mediating explanation for why the type of control used on

salespeople—output-based vs. process-based—(variable X1) and supervisor

behaviors (variable X2) affects performance. They also hypothesize that the inde-

pendent variables (variables Z1 ¼ X1 and Z2 ¼ X2) moderate the extent to which

better trust (variable M) translates into more or less performance (variable Y).

Therefore, this is a case where the link between the mediator and the dependent

variable is moderated by another factor, namely, the independent variable itself.

These relationships can be quite complex, and theory is critical since the

methods may not always help to unequivocally discriminate between alternative

effects. For example, even considering the relatively simple example provided in

Fig. 11.4, it is probable that, except in experiments where X and Z are especially

designed to be orthogonal, they are correlated with a causal relationship from X to Z

or Z to X. The remaining sections of this chapter discuss the methods that can be

Output-based
Vs. Input-based
Control (X1= Z1)

Salespeople
Performance (Y)

Trust (M)

Supervisor
Behaviors (X2 = Z2)

Fig. 11.4 Graphical representation of the hypotheses of Ganesan, Malter, and Rindfleisch (2005)
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used to estimate these complex processes. Meanwhile, this first section provides an

introduction to the way in which basic elements can be combined and points to the

importance of specifying a model based on solid theoretical foundations.

11.2 Testing Mediation Effects

In this section we present the methods typically used in the social sciences to test

mediation effects. We first describe the Baron and Kenny (1986) procedure, which

is widely cited in the literature. Then we discuss the issues and the solutions that

have been proposed to solve each particular problem associated with this procedure.

11.2.1 Baron and Kenny’s Procedure

Baron and Kenny (1986) propose a method that is intended to test the explanation

(or mediation role) represented by an intermediary variable (M) that intervenes in

the process between the independent variable (X) and the dependent variable (Y).

Assuming that there is an effect of X on Y, the question is to know whether that

effect goes through M either completely or partially. Therefore, they suggest that

the researcher run three regressions. All the variables are mean centered so that

none of the three equations has an intercept and we can more easily focus on the

other coefficients:

yi ¼ xicþ ui (11.1)

mi ¼ xiaþ vi (11.2)

yi ¼ mibþ xic
0 þ wi (11.3)

where i represents the unit of the observation (for example, an individual or an

organization), and ui, vi, and wi are the error terms of each of the three equations.

The first regression of y on x provides an estimate of the direct effect of the

independent variable x on the dependent variable y through the coefficient c. The
second regression of m on x indicates to what extent the proposed mediating

variable m is related to the independent variable; this relationship is expressed by

the coefficient a. Finally, the third regression of y on m and x estimates the

coefficient b, which reflects the effect of m on y conditional on x, and the coefficient
c0, which represents the effect of x on y, controlling for m.

The conclusion depends on the comparison of the two coefficients c and c0. The
rationale for performing this comparison comes from the relationship expressed in

Eq. (11.4). Indeed, assuming that there is a single mediator (no missing data and

correct model specification), then
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c ¼ Cov Y;Xð Þ
Var Xð Þ ¼ c

0
Var Xð Þ þ bCov X;Mð Þ

Var Xð Þ ¼ c
0 þ b

Cov X;Mð Þ
Var Xð Þ

� �
¼ c

0 þ ab (11.4)

The first equality in Eq. (11.4) follows from Eq. (11.1) and the second equality

follows from Eq. (11.3).

Therefore,

ab ¼ c� c
0

(11.5)

It results in the global direct effect of x on y being fully explained through the

indirect path reflected by the product term ab when c0 is zero, i.e., once controlling
for the effect of m, x has no more effect on y.

This also follows algebraically. Inserting the expression of m in Eq. (11.2) into

Eq. (11.3) results in

yi ¼ b axi þ við Þ þ c
0
xi þ wi ¼ abxi þ c

0
xi þ ei ¼ abþ c

0
� �

xi þ ei (11.6)

where ei ¼ wi + bvi.
Comparing with Eq. (11.1), which expresses the total effect of x on y just as

expressed in Eq. (11.6), the coefficients of xi in both equations must be equal.

Therefore, c ¼ ab + c0 and consequently ab ¼ c � c0.
Yet another way to express the indirect effect of X on Y through M is by consider-

ing the sequence of the two functions. The marginal effect of X on Y through M is

∂Y
∂X

¼ ∂Y
∂M

∂M
∂X

¼ b� a (11.7)

Baron and Kenny indicate that (1) there must be a relationship between x and

y that needs to be explained and (2) the comparison of c and c0 in the estimated

Eqs. (11.1) and (11.3) provides information about the extent to which the explana-

tion is valid, i.e., the extent of the mediation. More specifically on this second point,

if c0 ¼ 0, then the researcher concludes that m performs a full mediation, and if

c0 < c then m performs a partial mediation.

This comparison does not provide a statistical test but, because of the relation-

ship established in Eq. (11.5), the product ab provides the same information, since it

corresponds to the same quantity c � c0. This product term ab can also be compared

to c and it must be significantly different from zero. Therefore, Baron and Kenny

suggest calculating the product ab and comparing this product term to c � c0

(or just to c if a full mediation is expected). They also suggest testing the signifi-

cance of this indirect effect using the test proposed by Sobel (1982).

The test follows from the computation of the variance of the product of two

random variables. When two variables X and Y are independent,

V XY½ � ¼ E Y½ �ð Þ E Y½ �ð ÞV X½ � þ E X½ �ð Þ E X½ �ð ÞV Y½ � þ V X½ �V Y½ � (11.8)

11.2 Testing Mediation Effects 355



Applying this equation to the parameters a and b in Eqs. (11.2) and (11.3),

sab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2s2a þ a2s2b þ s2as

2
b

q
(11.9)

where:

sab ¼ standard deviation of the product term ab
sa ¼ standard deviation of the estimated parameter a
sb ¼ standard deviation of the estimated parameter b

Assuming a normal distribution of the product term, the Sobel test uses the

standard deviation in Eq. (11.9) to compute the probability that the product term is

greater than zero.

Because the last term in Eq. (11.9) is practically negligible (due to taking the

product of squared terms that are small), it is often ignored and the standard

deviation is approximated by Eq. (11.10):

sab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2s2a þ a2s2b

q
(11.10)

While much research in the behavioral sciences is based on these procedures and

tests, some issues have been raised in the literature, and best practice has shifted

over the last few years. In the next sections we discuss these issues and the best

practice now recommended.

11.2.2 Best Practice

Zhao, Lynch, and Chen (2010) provide a clear presentation of the main issues that

arise when using the Baron and Kenney procedure and the Sobel test and solutions.

These issues have been recognized for years but there has been a recent conver-

gence on what constitutes best practice.

11.2.2.1 Irrelevance of Direct Effect

The first issue with the Baron and Kenny procedure concerns the requirement, and

even usefulness, of estimating the direct effect through Eq. (11.1) in order to

compare c0 with c or even ab with c0. Indeed, in most circumstances these

comparisons are irrelevant. The reason is related to model misspecification. Thus

far, the model we have presented has assumed that there is a single mediator

variable M (simple mediation). If this assumption is correct, it is logical that the

single mediator must explain a significant relationship between X and Y. The

coefficient of the regression of Y on X provides an estimate of the direct effect of

X on Y. If this correlation is zero, what is it that M could explain? Therefore, if
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there were only a single plausible explanatory variable X, it is logical to assume that

there must be a relationship between x and y. However, this situation rarely occurs

because there are few theories where the only explanation of the effect of X on Y

can be due to a single mediator variable. Once the relationship is not explained by a

single mediator but by the coexistence of competing theories, the information on

the direct effect from regressing Y on X can be misleading. We must distinguish,

however, between two cases depending on whether the impact of the (multiple)

mediators on the dependent variable Y is of the same sign or of the opposite sign

(assuming that they are positively correlated to the independent variable X). Note

that this assumption that the mediators are correlated positively to the independent

variable does not reduce the generality of the discussion because a mediator

can always be defined by its opposite and measured by its reversed scale to meet

that condition.

Before analyzing more generally the case of multiple mediators, it is useful to

present two examples that illustrate the distinction between these two cases

(we use the same examples described by Zhao et al. (2010)). An example where

both mediators impact the dependent variable positively is found in Morgan and

Hunt (1994). The constructs involved and their relationships are represented in

Fig. 11.5. Strong marketing relationships should relate positively to business

performance through two mechanisms identified as trust and commitment (these

constructs have been shown to have discriminant validity). Relationship marketing

not only leads to greater trust between the parties but also to greater commitment

toward each other. In turn, both trust and commitment enhance business perfor-

mance. Therefore, these two mediators are complementary, and are referred to as

complementary mediators.

Figure 11.5 shows the example where the direct relationship between the

independent variable “relationship marketing” and the dependent variable “busi-

ness performance” must be positive. As noted above, trust and commitment are two

complementary explanations for why this positive relationship exists.

A different example is depicted in Fig. 11.6 where the impact of the mediators on

the dependent variable goes in opposite directions. In studying the effect of

advertising on consumer price sensitivity, Mitra and Lynch (1995) propose that

two opposing mechanisms operate simultaneously. On the one hand, advertising

increases the consideration set size, which leads to greater price sensitivity. On the

other hand, it simultaneously exacerbates perceived differences in utilities among

the brands, which leads to less price sensitivity. If both of these opposite effects

Relationship
Marketing

Trust

Commitment

Business
Performance

+ +

+ +

Fig. 11.5 Example of two

complementary mediating

variables
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occur simultaneously, the resulting direct relationship between advertising expo-

sure and price sensitivity depends entirely on the joint effects that are determined by

the relative strength of each mediator. If the relative effects are weighted similarly,

the resulting direct effect will be insignificant. Consequently, this demonstrates that

the estimated coefficient c of the direct effect of X on Y is irrelevant.

This last example illustrates that when two mediating variables have competing

effects, the only relevant information is provided by the estimation of the indirect

effect.

It is, therefore, essential to specify the model correctly. We now examine the

case of multiple mediators represented graphically in Fig. 11.7.

This model is represented algebraically by the following system of equations:

m1i ¼ a1xi þ u11i
m2i ¼ a2xi þ u12i
yi ¼ b1m1i þ b2m2i þ c

0
xi þ u2i

(11.11)

It is important to note at this point that the third equation abovemust not omit any of

the mediating variables, nor the independent variable for that matter. Any omission of

the variables would lead to biased estimates because these three variables are struc-

turally linked and therefore correlated. Consequently, any inference based on an

analysis that would consider only, for example, M1 through its coefficient

b combined with a (the impact of X on that mediator) would bemisleading. However,

if the model is properly specified as in Eq. (11.11), then we can identify the indirect

effects that are specific to each mediating variable (one for each) and the total indirect

X Y

M1

M2

a1 b1

b2
a2

c’

Fig. 11.7 General

representation of two

mediating variables

Advertising

Consideration
Set size

Perceived
Differences
In Utilities

Price Sensitivity

+

++

-

Fig. 11.6 Example of two

competing mediating

variables
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effect corresponding to the sum of these effects. In the case depicted by Fig. 11.7,

these effects are

Indirect effect specific to M1: a1b1
Indirect effect specific to M2: a2b2
Total indirect effect: a1b1 + a2b2

This notion of indirect effect is general and is very clear in this context. However,

conceptually, the notion of a mediating process explaining a direct effect may be a bit

confusing. These intermediary variables are mediating in the sense that they intervene

in between the independent and the dependent variables. Nevertheless, the structure of

such relationships does not distinguish between a model of the process mechanism

that explains a direct relationship vs. a systemof relationships among variables that are

structurally related in that particular recursive sequence. Consequently, with more

than one mediator, can these variables still be interpreted as “mediation,” or are we

simply considering a set of structural relationships among related constructs? Regard-

less of the label used for these “intermediary” variables, the notion of indirect effect

remains valid and this is the critical factor for testing the theory.

In the discussion above, we have emphasized the necessity of including all the

mediating variables in the model. However, as we also noted, it is critical to specify

the direct link in the model in order to avoid a misspecification bias. The coefficient

c0 indicates whether any additional information is left in the relationship between X

and Y, once the indirect effects have been considered.

The dependent variable Y may not be solely determined by the focal variables X

and its mediators. Similar to the argument of model misspecification discussed

above for the inclusion of X and of all the mediators in the third equation of

Eq. (11.11), the relevant covariates must also be included in the model. Failing to

incorporate these covariates has the same effect as that of the irrelevance of the

direct effect estimate that would consider only the estimation of Eq. (11.1).

The model with a covariate is represented graphically in Fig. 11.8.

3λ

X Y

M1

M2

a1

a2

b1

b2

c’

1λ
2λ

ξ

Fig. 11.8 Representation

of two mediating variables

with a covariate
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Such a model is represented by the following system of equations:

m1i ¼ a1xi þ λ1ξi þ u11i

m2i ¼ a2xi þ λ2ξi þ u12i

yi ¼ b1m1i þ b2m2i þ c
0
xi þ λ3ξi þ u2i

(11.12)

where ξ represents the covariate.
Although there is a single covariate expressed in Fig. 11.8 and in Eq. (11.12), it

can easily be generalized to multiple covariates with the addition of the

corresponding λ parameters.

11.2.2.2 Focus on Product of Indirect Effect Coefficients

The consequence of the prior discussion is that all the relevant information is

contained in the product of the two coefficients a and b or the set of such

coefficients when multiple mediators are involved. Therefore, the only requirement

is that these coefficients be jointly significant and, more specifically, that each of the

indirect effects reflected by the product terms akbk for each of the k indirect effects
be significant. This is the rationale for the Sobel test. However, this test has been

criticized for lacking power. We examine this test and alternatives in the next

section. However, before proceeding with the ways in which the product term of the

indirect effect can be tested for significance, it is useful to highlight the difference

between the test that the product ab is different from zero and the joint test that the

coefficients a and b are different from zero.

If coefficient a or b is equal to zero, then it follows that the product ab is zero. If
we call the event A ¼ {coefficient a is equal to zero} and event B ¼ {coefficient

b is equal to zero}, the null hypothesis in the test that the product ab is equal to zero
corresponds to event A [ B. The null hypothesis of a joint test is a test of the event

A \ B. Therefore, the probability corresponding to the joint test that a and b are

each different from zero is much larger than the probability corresponding to the

test of the product ab. We will, therefore, focus our attention on the test of the

product ab rather than on joint tests.

11.2.2.3 Testing Indirect Effects with Bootstrap Confidence Intervals

The literature has clearly pointed out the deficiency of the Sobel test. It is low in

power because (1) the product ab is not normally distributed and (2) a and b may

not be independently distributed (when errors in each equation are correlated).

1. The product ab is not normally distributed

In Eq. (11.8) we have provided the formula for the calculation of the variance of

the product term of two normally distributed random variables. However, the
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variance is insufficient to perform a test of significance. The probability distribution

of the product term needs to be defined. The Sobel test is based on the approxima-

tion of the distribution by a normal distribution. However, the non-normality of the

distribution of the product of two normally distributed random variables is clearly

established. More specifically, products of normal variables with positive means

tend to have a positive skew and those with negative means tend to have a negative

skew (Shrout & Bolger, 2002). The issue concerns the extent to which this approxi-

mation biases the results. As discussed below, an empirically based solution is

recommended.

2. a and b may not be independently distributed

We should estimate the two key equations representing the mediation process

(i.e., Eqs. (11.2) and (11.3)) simultaneously to recognize that the error terms of

these two equations, rewritten in Eq. (11.13), can be correlated. Such correlated

errors can be due to missing factors that affect the dependent variable and the

mediating variable in a related manner:

mi ¼ axi þ u1i
yi ¼ bmi þ c

0
xi þ u2i

(11.13)

We now rewrite these equations more generally to demonstrate the impact of the

correlation between the error terms on the independence of the two coefficients

composing the indirect effect.

We rewrite Eq. (11.13) using β to represent all the coefficients. This leads to

Eq. (11.14) for each observation i:

mi ¼ xiβ11 þ u1i
yi ¼ xiβ21 þ miβ22 þ u2i

�
(11.14)

For all observations and letting X2
N�2

¼ x
N�1

m
N�1

h i

m
N�1

¼ x
N�1

β11 þ u1
N�1

y
N�1

¼ x
N�1

β21 þ m
N�1

β22 þ u2
N�1

¼ x
N�1

m
N�1

h i β21
β22

� �
2�1

þ u2
N�1

¼ X2
N�2

β2
2�1

þ u2
N�1

8>><
>>:

(11.15)

Let x1 ¼ x. Bringing the two equations in the system into a single equation

m

y

� �
2N�1

¼
2N�3

x1
N�1

0

0 X2
N�2

2
4

3
5 β1

β2

� �
3�1

þ u1
u2

� �
2N�1

(11.16)
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Let w
2N�1

¼ m

y

� �
; Z

2N�3
¼

x1
N�1

0

0 X2
N�2

2
4

3
5.

Then, the generalized least square estimator is the efficient estimator of the

parameters:

β̂ GLS ¼ Z
0
Σ�1

2�2
�IN

� 	
Z

� 	�1

Z
0
Σ�1
2�2 � IN


 �
w (11.17)

And the variance of the estimator is

V β̂ GLS

� 
3�3

¼ Z
0

3�2N
Σ�1
2�2 � IN


 �
Z

2N�3

� 	�1

(11.18)

We first consider the case where the correlation for each observation of the two

equation errors (called contemporaneous correlation) is 0 (Σ ¼ diag):

Σ ¼ σ21 0

0 σ22

� �
; Σ�1 ¼ σ�2

1 0

0 σ�2
2

� �

Let

Z
2N�3

¼
x1
N�1

0

0 X2
N�2

2
4

3
5; Z

0

3�2N
¼

x
0
1

1�N
0

0 X
0
2

2�N

2
4

3
5

Then,

Σ�1 � IN ¼

σ�2
1 0 � � � 0 � � � 0 0 0 � � � 0 � � � 0

0 σ�2
1 � � � 0 � � � 0 0 0 � � � 0 � � � 0

⋮ ⋮ . .
.

⋮ ⋮ ⋮ ⋮ ⋮ � � � ⋮ ⋮ ⋮
0 0 � � � σ�2

1 � � � 0 0 0 � � � 0 � � � 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 � � � 0 � � � σ�2

1 0 0 � � � 0 � � � 0
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(11.19)
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And

V β̂ GLS
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Consequently,
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(11.20)

The variances of the estimated coefficients a and b are the first two diagonal

elements in Eq. (11.20). The off-diagonal elements of that submatrix represent the

covariances that are zero. Therefore, the estimated coefficients a and b are

uncorrelated.

This is different, however, in the case where the contemporaneous correlation is

not 0, i.e., Σ 6¼ diag. In that case, if we note the inverse of the contemporaneous

covariance matrix as in Eq. (11.21):

Σ�1 ¼ σ�2
1 σ�1

12

σ�1
12 σ�2

2

� �
(11.21)

Then, it follows that

Σ�1 � IN ¼

σ�2
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(11.22)
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Consequently, the covariance matrix of the generalized least square estimator is

V β̂ GLS
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which leads to
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In Eq. (11.23), the off-diagonal elements of the submatrix corresponding to the

variances and covariances of a and b are no longer zero. Therefore, the estimated

coefficients a and b are correlated. The consequence of this correlation is that

Eq. (11.8) no longer applies and the Sobel test based on this assumption of

independence is inappropriate.

3. The bootstrapping approach and Preacher and Hayes’ algorithm (2004, 2008)

The use of a bootstrapping method for estimating the distribution of the indirect

effect (the product ab) was proposed by Bollen and Stine (1990) in order to compute

the confidence interval of the non-symmetric distribution. MacKinnon, Lockwood,

and Williams (2004) demonstrate the superiority of empirically estimating the

distribution of the product term representing the indirect effect using such a

bootstrapping approach. Multiple samples are drawn randomly with replacement

from the original data, each with the same number of observations as in the original

data set. Each sample provides an estimate of the effect for which the distribution is

built over the repetitions. This empirically based distribution does not make any

assumption about the form (normality) or about the independence of the elements

of the product term. Preacher and Hayes (2004, 2008) made available a subroutine

in SAS as part of several statistical software packages that popularized the use

of the method.

Although Preacher and Hayes have proposed different SAS subroutines adapted

to different models1 that vary in complexity, the “%INDIRECT.SAS” subroutine is

1A more complete subroutine (PROCESS) for SPSS and SAS is available for download from

Andrew F. Hayes at http://www.afhayes.com/spss-sas-and-mplus-macros-and-code.html.
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flexible enough to include multiple mediators and covariates (the “%” is used in

SAS to indicate that it is a subroutine). By running the subroutine first, the

researcher can then call this subroutine from within the SAS file. An example of

how to use the method is described in the next section.

A similar subroutine can easily be written in STATA. Such a subroutine

(a do-file in STATA to be run once in a STATA session) is shown in Fig. 11.9.

In this program, the subroutine consists in executing an estimation with seem-

ingly unrelated regression (SUR) of three equations: (1) the first mediator variable

(med1) on the independent variable, (2) the second mediator variable (med2) on

the independent/exogenous variable (iv), and (3) the ultimate dependent variable in

the system of equations on the two mediator variables and the independent/exoge-

nous variable (iv). This program can easily be adapted to reflect the specifications of

the equations, using the derivations to compute the indirect effects explained in

Sect. 11.2.1, and in particular Eq. (11.7). The coefficients from the SUR estimation

that come in the product term for the indirect effects are noted by [var1]_b[var2]

where var1 is the name of the dependent variable of the relevant equation and var2

is the name of the variables of the coefficient that is of interest. For example,

indirect 1 is the product of [med1]_b[iv], which is the coefficient of the iv variable

in the med1 equation, and [dv]_b[med1], which is the coefficient of the med1

variable in the equation where dv is the dependent variable. This do-file should be

executed once so that it can be called from another do-file with the relevant

analysis, as demonstrated below.

11.2.2.4 Example of Mediation in SAS and STATA

Multiple Mediators: No Covariates

Figure 11.10 shows an SAS file used to analyze a data set of 400 observations with

x1 as the independent variable, x4 as the dependent variable, and x2 and x3 as two
mediating variables. Standard OLS regressions are performed. Three equations are

highlighted in grey, one for each mediator as a function of the independent variable,

and a third one that models the dependent variable as a function of the two

mediators, controlling for the possible direct effect of the independent variable

remaining after the indirect effects are considered. After running these ordinary

Fig. 11.9 STATA subroutine with two mediators and no covariates (bootcm2med.do)
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regressions, the “indirect” subroutine is called (also in grey in Fig. 11.10) with the

following parameters in parentheses:

data ¼ simdata3 to indicate the name of the SAS data set containing the data to be

analyzed

y ¼ dv to indicate which variable is the dependent variable (here it is dv)

x ¼ iv to indicate which variable is the independent variable (here it is iv)

m ¼ med1 med2 where the list on the right side of the equal sign indicates all the

mediating variables (here the two mediators are med1 and med2)

boot ¼ 5,000 indicates the number of repeated samples used for the bootstrapping

method (5,000 is usually advised, e.g., Hayes, 2009)

The equivalent do-file in STATA is shown in Fig. 11.11.

The only difference between the two programs shown in Figs. 11.10 and 11.11

comes from the fact that the estimators in STATA are generalized least square

estimators while those in the SAS program are ordinary least squares. However,

both subroutines perform the bootstrapping for the estimation of the confidence

intervals.

The output of running the SAS program appears in Fig. 11.12. The first regres-

sion estimating the direct effect with a simple regression of the dependent variable

on the independent variable shows an insignificant effect (parameter ¼ 0.00974

with a t value of 0.27). However, the next two regressions show that each mediating

Fig. 11.10 SAS example with two mediators and no covariates (Examp11-1.sas)

Fig. 11.11 STATA example with two mediators and no covariates (Examp11-1_Mac.do)
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variable is significantly related to the independent variable (0.37503 with t ¼ 7.56

for med1 and 0.238 with t ¼ 6.48 for med2). Also the mediating variables have a

significant effect on the dependent variable with a coefficient of 0.47992

(t ¼ 22.22) and �0.53416 (t ¼ 18.31) for med1 and med2, respectively. The

independent variable is still insignificant in that regression. This leads us to believe

that the two mediators together mediate fully, but competitively, the impact of

the independent variable on the dependent variable. These effects could not be

estimated directly because of the counterbalancing effects of each mediator. But

before concluding that this process correctly reflects the complex (invisible)

Fig. 11.12 SAS output of bootstrapping estimates (Examp11-1.lst)
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Fig. 11.12 (continued)
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Fig. 11.12 (continued)
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relationship between the iv and the dv, we want to test that the indirect effects are

significant. The bootstrapping tests are performed in the last part of the output. The

subroutine performs the OLS estimations on the original sample and the same

results as previously described are reported. These results are highlighted in grey.

First, the indirect effect through med1 is shown to be 0.18 (the product of

0.37503 � 0.47992), and then the indirect effect through med2 is �0.1271 (the

product of 0.238 � �0.53416). Finally, the confidence intervals for both indirect

effects at the 0.05 level exclude the value of zero, from which we infer that the

indirect mediating effects are significant.

The STATA output follows in Fig. 11.13 with almost identical results.

The confidence intervals that are bias corrected take into account the skewness

of the distribution of a product term.

Multiple Mediators: With Covariates

The syntax for introducing covariates in the subroutine “indirect” is

%indirect (data¼filename, y¼Dv, x¼Iv, m¼MlistCovlist, c¼Cov, boot¼ Z )
where:

Dv is the unique dependent variable name.

Iv is the unique independent variable name.

Mlist is the list of the mediating variables, separated by a space.

Covlist is the list of the covariates separated by a space.

Cov is the number of covariates (this number is used to identify the last items in

the names that follow the “m¼” list to distinguish them from the mediating

variables).

Z is the resampling number; Hayes (2009) recommends at least 5,000 sampling

iterations.

Some additional optional parameters can be added but are not necessary. Except

for the additional parameters related to the covariates, the interpretation of the

output remains identical to the description of the example in Fig. 11.12.

In STATA, the solution to the problem of covariates is easily solved. It simply

requires adding these covariates into the specification of the “sureg” equations.

These covariates will impact the estimates of the components of the indirect effects

but not their calculation in the subroutine.

11.2.3 Sequential Multiple Mediation Effects

The cases presented in Sect. 11.2.2.4 may include multiple mediators but there are

no links among these mediators. Sometimes, however, the explanation for a phe-

nomenon (or a relationship from x to y) may involve a sequence of factors

influencing each other. For example, when consumers are exposed repeatedly to

given advertising, they process more information about that ad, which in turn
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affects their attitude toward the ad and subsequently toward the brand itself. This is

reflected in the sequence of mediations represented graphically in Fig. 11.14 where

X represents advertising exposures, M1 the amount of information processing, M2

the attitude toward the ad, and Y the attitude toward the brand advertised.

The indirect effect going through the path X ! M1 ! M2 ! Y is given by

Eq. (11.24):

Fig. 11.13 STATA output of bootstrapping estimates (Examp11-1_Mac.log)
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∂y
∂x

¼ ∂y
∂m2

∂m2

∂m1

∂m1

∂x
¼ b2a3a1 (11.24)

where b2, a3, and a1 correspond to the coefficients of the respective linear functions.
The total effect of x on y corresponds to the sum of all the linear combinations

that influence the dependent variable y. Therefore, the principles are exactly the

same as for the cases discussed in the prior sections of this chapter.

It is then straightforward to modify the commands in STATA to obtain the

parameter estimates from the “sureg” model specification and the appropriate

bootstrapping estimation of the confidence intervals. In the example of

Fig. 11.14, the indirect effect through M1 and M2 is given by the product b2a3a1.
Another approach (Chandukala, Dotson, Brazell, and Allenby, 2011) has been

proposed that allows for the introduction of more complex relationships. The joint

distribution of all the variables involved in the sequential system is expressed as a

set of marginal and conditional distribution. The joint distribution is decomposed

according to the hypothesized process as the product of conditional distributions

that are independent from each other. The total effect of a variable on the last

dependent variable in the sequence can then be computed using the chain rule to

compute derivatives. Thus, in the example illustrated in Fig. 11.14

f x;m1;m2; yð Þ ¼ f y
��m2


 �
f m2

��m1


 �
f m1

��x
 �
f xð Þ (11.25)

The functions in Eq. (11.25) do not necessarily correspond to simple regression

equations, as we have discussed. In this more general modeling approach, we can

assume a finite mixture of likelihoods to represent the heterogeneity of responses

(the heterogeneity can be expressed only in selected parts of the chain of variables).

The major difference with this approach, beyond its greater flexibility to incorpo-

rate more complex response functions, is in its estimation that uses a Bayesian

approach. As noted by Chandukala et al. (2011), “computing the joint marginal

density requires the specification of the marginal density of model factors that are

not conditionally related to other variables” (p. 126). For example, in the model in

Eq. (11.25), the specification of the marginal density of x is required. Assuming the

normal distribution of the marginal distributions, the Bayesian approach provides

estimates of the model parameters. This approach is mentioned here because it is

specific to the modeling of the sequential mediation structure. However, its

approach based on the joint distribution of all the variables in the sequence builds

on the analysis of covariance structure approach to systems of equations, even if the

variables are directly observed rather than relying on latent factor structures

underlying the observed data.

X Y

M1 M2

a1

a3

b2

c’

a2 b1

Fig. 11.14 Representation

of a sequence of mediations
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11.2.4 Testing Mediation When Constituent Paths
Are Nonlinear

Two cases can be found where the relationships, either between the independent

variable and the mediator or between the mediator and the dependent variable, are

not linear. In the first case, a particular functional form is specified for which

the parameters can be estimated. The estimation can be ordinary least squares if

the variables can be transformed to make the model linear in the parameters, or if

this is not the case, maximum likelihood estimation can be used. The second case

occurs when the dependent variable is not measured on an interval or a ratio scale.

In that case, a logit type of model can be used.

In each of these cases, the conceptual analysis of mediating effects remains the

same as what we have discussed thus far. The paths, however, may not correspond

to a single parameter, so it is important to first address the question of the identifi-

cation of the paths in terms of the nonlinear parameters. This leads to a complica-

tion when calculating and testing the indirect effect, which we discuss next. Finally,

we present a subroutine proposed by Preacher and Hayes (2004, 2008) to find

confidence intervals of the indirect effects based on the bootstrapping method.

11.2.4.1 Nonlinear Functional Form

Let us consider an example where the independent variable is the number of

exposures to an ad for a brand. The dependent variable is the attitude toward the

brand. Examining this relationship can be complex because a wear-out effect has

been observed that leads to a decrease in advertising effectiveness. This wear-out

could be explained by the extent of information processing, which then is a

mediating factor. Therefore, as a first step in the mediation process, ad exposure

leads to more processing as pieces of information in the ad get through to the

audience. However, at a certain level of repetition, distraction starts to occur, so not

only do increases in the processing level occur at a decreasing rate, but, overall, the

audience starts to decrease its level of processing about both the ad and the brand.

This would suggest a relationship between the number of exposures and the level of

processing that could be represented by a second-order polynomial function.

Considering now the second step in the mediation process, attitude toward the

brand may improve with more processing about the brand (assuming no counter-

arguing and that positive information is conveyed in the ad). There must be,

however, a saturation effect in such a relationship so that attitude does not improve

to infinity as more processing occurs. Such a saturation effect could be reflected by

a functional form such as a power function or a logarithmic transformation of the

level of processing variable. These equations would, therefore, be
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mi ¼ a0 þ a1xi þ a2xi
2 þ vi

yi ¼ b0 þ b1Ln mið Þ þ xic
0 þ wi

(11.26)

This example illustrates the need to consider the theoretical functional form of

each of the links involved in the mediating process. Apart from leading us to specify

two equations that may not be linear, the conceptual approach to investigating

mediation remains identical. We can estimate the parameters of the two equations,

in this case using ordinary least squares, as the models are linear in the parameters.

We can then easily test the significance of the various paths. However, the joint

test or the test of the indirect effect due to the particular path that goes through

the mediating variable is not straightforward. The issue stems from the fact that

the indirect effect cannot be easily represented by the simple product of two of the

estimated coefficients a and b. For such nonlinear relationships, the indirect effect is
best described by referring back to Eq. (11.7). The indirect effect is still described

by the derivatives

∂y
∂x

¼ ∂y
∂m

∂m
∂x

(11.27)

However, the result is a bit more complex. Considering the example expressed in

Eq. (11.26), the two partial derivatives are

∂y
∂m

¼ b1
m

(11.28)

and

∂m
∂x

¼ a1 þ 2a2x (11.29)

The marginal effect is no longer a constant effect but varies depending on the

level of the independent variable x. This function of x is clearly visible in

Eq. (11.29). Moreover, in Eq. (11.28), the presence of m indicates that this deriva-

tive is also dependent on the level of the independent variable x, as m can be

expressed in terms of x using the first equation in Eq. (11.26).

These indirect effects have been labeled instantaneous indirect effects (Hayes &

Preacher, 2010), even though no time dimension is involved. The value theta

represented by the partial derivatives is best thought of as the marginal indirect

effect when moving slightly away from a reference value x0:

θx0 ¼ ∂y
∂m

∂m
∂x

(11.30)

Now we are confronted with the same issues as discussed earlier regarding the

test of significance of the indirect linear effect, except that the test is complicated by

the fact that the indirect effect could be significant at a particular level of x and not
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at another. At least, the empirically based method of bootstrapping provides a

solution to the confidence interval estimation. The difference with the procedure

we described earlier for the linear models is that now we need to test the signifi-

cance for several values of x. Taking a large range of values, significance over the

range provides a test that the mediation explains the relationship between x and

y without ambiguity. However, significance that occurs only over a specific range

indicates that there are values of x for which the mediation mechanism is not valid.

Hayes and Preacher (2010) provide a subroutine available in SAS (i.e., %
MEDCURVE.SAS) to compute these confidence intervals based on the

bootstrapping distribution of the indirect effects θ for nonlinear paths. A number

of frequently used functional forms can be specified. We now present an example

using simulated data.

We use the model specification presented in Eq. (11.26) where we rename the

variables as iv, med1, dv, ivsq, and logmed1 for the independent variable, the media-

tor, the dependent variable, the squared independent variable, and the logarithm of the

mediator variable, respectively. Figure 11.15 corresponds to the SAS input file.

As in the earlier example, the paths are estimated by ordinary least squares after

having transformed the variables. Although not strictly necessary because these

estimations are also performed within the bootstrapping procedure, it is useful to

compare these OLS estimates with the estimates from the bootstrapping procedure

in order to help follow the output of the procedure. The subroutine requires the

following specifications:

%medcurve (data¼filename, y¼Dv, x¼Iv, m¼Mv, aform¼a, bform¼b,
cpform¼c, boot¼Z )

where:

Dv is the unique dependent variable name;

Iv is the unique independent variable name;

Mv is the unique mediating variable (med1 in the illustration represented in

Fig. 11.15).

a, b, and c each represents a number used as a code to indicate the specific form

of the path, respectively, from the independent variable to the mediator (a), from

Fig. 11.15 SAS example with nonlinear paths (Examp11-2.sas)
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the mediator to the dependent variable (b), and, for the direct path, from the

independent variable to the dependent variable (c), any of which can take any of

the following possible values:

1 ¼ linear relationship

2 ¼ logarithmic relationship

3 ¼ exponential relationship

4 ¼ quadratic relationship

5 ¼ inverse relationship

Z is the number of resamplings (i.e., sampling iterations); Hayes (2009)

recommends at least 5,000 sampling iterations.

The results of running the file represented in Fig. 11.15 are shown in Fig. 11.16

(note that the subroutine “medcurve.sas” should first be submitted in SAS by

opening and running the corresponding file).

Figure 11.16 first shows the SAS output for the OLS runs for each of the three

models requested within the “regress” procedure, and then it shows the output

of the “medcurv” subroutine. Although the results of this “medcurv” subroutine

are identical to the key parameter estimates of the OLS “regress” procedure, we

have chosen to highlight the “regress” output section because the variable names

here are chosen by the researcher and thus the results may be easier to follow.

However, the structure of the report of each model from the “medcurv” subroutine

is also straightforward, even if the variable names are automatically generated by

the subroutine.

The results in Fig. 11.16 show that the coefficients of all the paths are significant.

Considering the mediator equation (model 2 in the output corresponding to the

model with dependent variable “med1”), the quadratic terms contain a linear term

of 0.39592 (the coefficient of “iv”) and a square term of �0.25919 (the coefficient

of ivsq), indicating an increasing function at a decreasing rate (they have t values of
8.51 and 7.82, respectively, indicating strong significance). The coefficient of the

logarithm of the mediator (the coefficient of logmed1) in the dependent variable

equation (model 3 corresponding to model with dependent variable “dv”) is also

significant with a value of 1.00073 with a t statistic of 23.82. The independent

variable does not have any residual information that is not contained in the media-

tor, as the coefficient of this “iv” variable is not significant. Consequently, the

mediation appears to provide a very good explanation for the dependent variable.

The estimates of the marginal indirect effects are highlighted in the “medcurve”

section of the output. In that section, the dependent variable (“dv”) is represented

by Y, the independent variable (“iv”) is represented by X, and the mediator

(“med1”) is represented by M. The estimates for the “instantaneous indirect effect

(THETA)” are given in two tables, the first one presenting the mean value of the

estimates and the second providing the confidence intervals. In both tables these

estimates are listed under the “THETA” column at three values of the independent

variable (the three rows in the “XVAL” column). The second row is the estimate of

the indirect effect at the value of the mean of the independent variable

(x ¼ �0.0156). The first and third rows correspond to estimates evaluated at
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minus and plus one standard deviation from the mean of the independent variable

(i.e., x ¼ �1.0047 and x ¼ 0.9734). These marginal indirect effect values are

0.3942 when x ¼ �1.0047, 0.1357 when x ¼ �0.0156, and �0.0348 when

x ¼ 0.9734. More importantly, while the confidence intervals do not include the

zero value when x ¼ �1.0047 or when x ¼ �0.0156 (the values of the lower

bound, i.e., LowerCI, and higher bound, i.e., UpperCI, confidence intervals are

Fig. 11.16 SAS output for nonlinear path example (Examp11-2a.lst)
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both positive), the value of theta when x ¼ 0.9734 is not significant (the LowerCI

bound is negative, i.e., �0.0819, and the HigherCI bound is positive, i.e., 0.0170).

Therefore, one could conclude that there is a level of the independent variable at

which the indirect effect is not significantly different from zero, i.e., the mediating

variable does not explain the relationship from x to y at these levels.

Fig. 11.16 (continued)

378 11 Testing Mediation and Moderation Effects



It is also possible to request the computation of the confidence interval of the

indirect effect at a specific value of the independent variable. This is indicated by

adding another parameter “xval¼” followed by the value at which the estimation is

desired. In the line below, the request is made for a value of the independent

variable of 1.0:

%medcurve(data¼simdata3,y¼dv,x¼iv,m¼med1,aform¼4,bform¼2,

cpform¼1,xval¼1,boot¼5000)

Figure 11.17 shows the output that is obtained.

The marginal indirect effect theta at x ¼ 1 is �0.0392, and it is not significantly

different from zero since the confidence interval contains the zero.

This raises an interesting question: Can the intermediary variable be thought of

as a mediating explanation if the indirect effect going through that variable has no

explanatory power at a range of values of the independent variable? Indeed, the

paths from the independent variable to the mediator and from the mediator to the

dependent variable are both clearly significant throughout the full range of that

independent variable. More generally, could a mediator variable explain the lack of

effect of x on y? This could generally occur when the paths from the independent

variable to the mediator and from the mediator to the dependent variable are in

opposite directions so that the direct effect cannot be observed without understand-

ing the role played by the “mediator” in the lack of direct effect. Perhaps it is best,

then, not to speak of mediation but simply of explanation, assuming that a media-

tion is more clearly explaining an effect rather than the lack of an effect. In the

example above, this lack of indirect effect in spite of significant paths occurs only

on a limited range of the independent variable, but it could happen on a larger range.

This points out, however, that, if the significance of the paths alone is insufficient to

evaluate a mediation, the insignificance of the indirect effect cannot ignore the

explanation provided by the significance of the paths. This is especially important

when nonlinear relationships are involved because effects can be significant only at

some levels of the independent variable.

We have illustrated the problem using SAS but the STATA procedure presented

earlier in Figs. 11.11 and 11.13 can also be adapted. The indirect effect is computed

at different levels of the variable and the bootstrapping procedure is applied to these

nonlinear combinations of parameters. The same model presented above is

specified in the subroutine “bootcmNonLinear.do” shown in Fig. 11.18.

This estimation takes into account the correlations between the two mediating

equations using a seemingly unrelated regression, as described earlier (see Fig. 11.9).

Fig. 11.17 SAS output for nonlinear path example at a specific value of x (Examp11-2b.lst)
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The marginal indirect effect is estimated at a value of the independent variable of 1.9.

This value can be changed to any value within the range of feasible values of that

variable. This is also the model estimated from the data using the STATA input file

shown in Fig. 11.19.

The results using STATA are shown in Fig. 11.20.

After considering the correction for bias, the 95% confidence interval [0.0039,

0.0997] does not contain 0 and, therefore, we can conclude that the indirect effect of

iv is significant at the 0.05 level. The subroutine can be modified for estimation of

the marginal indirect effect at different values of the independent variable. As

mentioned earlier, the value of 1.9 was used as an illustration, but the estimation

is often done at the mean value of the independent variable, at plus and minus one

Fig. 11.18 STATA subroutine for nonlinear indirect effects evaluated at a given value of the

independent variable

Fig. 11.19 STATA input file for bootstrapping estimation of nonlinear indirect effects

Fig. 11.20 STATA output example for bootstrapping estimation of nonlinear indirect effects
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and two standard deviations from the mean and at the extreme range of the feasible

values. The subroutine can also be easily adapted to reflect the derivatives of the

specific mediating equations.

11.2.4.2 Dependent Variable Is Less Than Interval Scale

In the cases analyzed above, the mediator and the independent variables are

continuous variables, at least with interval scales. This is not always the case. Let

us consider, for example, the study by Waarts and Wierenga (2000) of how a firm

reacts when a competing firm introduces a new product. In this case, the dependent

variable is whether or not the firm responds, i.e., the dependent variable is binary.

The model tested proposes that it is the perceived threat of the introduction that

determines whether a firm reacts or not to a competitor, and that this perceived

threat is the result of the characteristics of the new product and of the firm

introducing it (see Fig. 11.21).

The first path from the independent variables to the mediator (i.e., perceived

threat) is similar to what has been discussed thus far. The difference comes from the

use of a binomial logit model to estimate the relationship from the mediator to the

dichotomous competitive reaction dependent variable. The coefficient from

the second path (mediator to dependent variable) determines the probability that

the event (here a competitive reaction) will occur. Taking the sequence of paths, the

product of the probability of the event multiplied by the marginal effect due to

the first path gives the expected indirect effect. Therefore, the relevant calculation

in this case is not the product ab but the probability associated with a value of x,
which must first be computed. This probability is conditioned by a value of x, just as
in the case of nonlinear component paths. In principle, researchers could use the

same methods to estimate the indirect effect; however, using these methods with the

bootstrapping calculations would be more complicated, although nothing prevents

researchers from doing so.

Fig. 11.21 The mediation model tested in Waarts and Wierenga (2000)
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Another example is provided by Chandon, Wesley Hutchinson, Bradlow, and

Young (2009), who consider the indirect impact of in-store marketing on brand

evaluation through the greater attention that it generates. Brand evaluation is

assessed by an ordered scale on three levels: whether the brand was (1) neither

chosen nor considered, (2) considered but not chosen, or (3) considered and chosen.

They perform a path analysis as discussed earlier in this chapter, except that they

estimate the model as a structural equation model as discussed in Sect. 11.2.6.4.

11.2.5 Experimental vs. Non-experimental Data

Thus far in this chapter, we have assumed that the mediating variables were at least

interval scales. Except for the example where the dependent variable was a binary

variable, the same assumption was made for the dependent variable. When analyzing

experimental data, the dependent variables are typically also measured on interval

scale items. The mediating variable is typically not part of the manipulated factors

in the experimental design. It is usually measured on an interval scale. However, in

experimental data (and sometimes with non-experimental data), the independent

variable(s) is discrete. Statistically, this does not change the analysis since the use of

dummyvariables enables us to use the regressionmethod to estimate the differences in

effects across levels of the dependent variable. InChap. 9 (Sect. 9.1.1), we showed that

the regression estimation provides estimates of the differences in group means due to

different levels of the independent variable. Therefore, a is no longer the marginal

effect on themediator of incrementing the independent variable by one unit, but is now

interpretable as the effect of one of the levels vs. the other. Assuming only two levels,

with one coded 0 and the other coded 1, the intercept of the moderator equation

corresponds to the mean of the first level and the “slope” is the difference in effect for

that group. The impact of the second sequence of the indirect path (b) is still the
marginal effect ofm on y. Therefore, the total indirect effect of switching from the first

group (coded 0) to the second group (coded 1) is still the product ab. As there are

K � 1 dummy variables (whereK is the number of groups), there is an estimate of the

indirect effect for each of theK � 1 groups, i.e., akbk. The testing approach is identical
whether analyzing experimental or non-experimental data. Note that if the indepen-

dent variable is effect coded rather than dummy coded (see Chap. 9 on rank-ordered

data for the explanation of effect coding vs. dummy variable coding of discrete

variables), the effect estimate ab reflects the estimated differences from the grand

mean due to the indirect path.

The mediator variable can be categorical. In such a case, the relationship

from the independent variable (dummy variables with experimental data) to the

mediator variable can be expressed by a logit type of probabilistic model. If the

dependent variable is at least interval scale, the second path is identical to what was

discussed above.
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11.2.6 Regression vs. Structural Equation Modeling

The discussion in this chapter has presented regression approaches outlined in the

Baron and Kenny or Preach and Hayes procedures. However, arguments have been

presented for preferring a structural equation modeling (SEM) approach instead of

testing the validity of paths that correspond to mediation hypotheses. In fact,

Iacobucci, Saldanha, and Deng (2007) demonstrate with simulated data that over

a significant number of cases, the SEM approach dominates the regression

approach.

The test of the joint significance of an indirect path when using structural

equation models comes from the likelihood ratio test that compares the significance

of the worsening of the fit when constraining the indirect path(s) to be zero.

However, in comparing the use of SEM vs. regression à la Baron and Kenney, it

is useful to distinguish between three separate issues: correlated errors, measure-

ment errors, and complex nomological networks of relationships.

11.2.6.1 Correlated Errors

As mentioned above, if the errors in the two equations corresponding to the

mediator variable model and to the mediator variable effect model are independent,

the ordinary least square estimator of individual equations will be identical to the

generalized least squares or maximum likelihood estimator that would be derived

from a simultaneous estimation of the two equations, i.e., using seemingly unre-

lated regression or a structural equation model. But in most cases, there is no reason

to believe that the correlation would be zero in a simple model that is likely to omit

variables, even if these variables are independent from those included in the model

(i.e., X). This clearly would favor the use of SUR or SEM. However, a test of the

correlation of the errors between the equations is straightforward (see Chap. 6). If

the correlation is significant, a simultaneous estimation of the seemingly unrelated

regressions would lead to asymptotically more efficient estimators. As indicated in

Chap. 6, however, in the case of samples of limited size, the superiority of the

simultaneous estimation is not clear and performing both analyses could be useful,

as the parameter estimates differ but we do not know which are better.

11.2.6.2 Measurement Errors

The second aspect of the question concerns the incorporation of measurement

errors. From that point of view, it is clear that ignoring errors in measurement

leads to biased structural parameters, as discussed in Chap. 10. SEM provides a

method for estimating structural relationships while taking into account errors in

measurement. Therefore, the superiority of this approach is theoretically undeni-

able. The approach is particularly important as it corrects for a bias that would exist
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in the simple models that do not take measurement errors into account. However,

the empirical superiority from a practical point of view may not be quite as clear.

This is due to the need for excellent measurement model fits in order to reliably

estimate structural models of a certain complexity. However, in these more com-

plex cases, the researcher knows that the corrections for measurement errors are

small and, consequently, the bias will be minimal. Researchers then face a trade-off

between a small theoretical gain and the stability of parameter estimates (especially

over model specifications with different paths constrained to zero). Again, it is

advisable to perform both the regression and SEM analyses.

11.2.6.3 Complex Nomological Network of Relationships

The third consideration is the number and the complexity of the relationships

modeled and estimated. Here it is not an issue of using regressions (in a system

of equations simultaneously estimated) vs. analysis of covariance structure

modeling. The important point is that the model should not be misspecified by

omitting relevant and possibly endogenous variables. The model should accurately

reflect the complexity of the phenomenon in a set of nomological networks of

relationships. This calls for avoiding simple mediation analyses that involve one

independent variable and one mediating factor to explain the dependent variable.

Even in experiments that consider a single manipulated variable, there may still be

control variables that explain the mediator and the independent variable and there

may not be a single mediating variable. The existence of feedback loops is also

important to take into consideration, especially because of the ordering of the

questions asked in the experiment and of the temporal proximity with which the

observations are made. Any endogeneity that would not be considered explicitly in

the estimation method leads to biased parameter estimates.

11.2.6.4 Requesting Estimates of Indirect Effects in Structural

Equation Models

There are several possible solutions for estimating indirect effects in systems of

equations that present some of the characteristics mentioned above. We start with

the commands in LISREL and in STATA to obtain these estimates. We illustrate a

full case where the constructs that follow a structural path are latent and observed

with error. We then illustrate an application where the variables are observed

without measurement error. We also suggest the possibility of using a combination

where the factor scores reflecting the estimated measurement model are submitted

to one of the subroutines proposed by Preacher and Hayes (2004, 2008) or Hayes

and Preacher (2010).
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Estimates of Indirect Effects in LISREL

The model represented in Fig. 11.14 (with two mediating variables following a

sequence) is now estimated using data where the variables reflect measures from

latent constructs. Therefore, the independent construct X (labeled here IV)

influences the dependent variable Y (labeled here DV) through two mediating

latent constructs. In the example, the dependent variable is an observed rather

than a latent construct, but it could also be an unobserved construct. The LISREL

file to estimate such a model is shown in Fig. 11.22.

In this example, there are 13 observed variables. Nine of these (X5 through X13)

correspond to the three endogenous constructs (η1, η2, η3, relabeled as M1, M2, and

DV) and four (X1 through X4) correspond to the exogenous construct ξ1 (relabeled
IV). Each construct is measured by four variables, except for DV which is not a

latent construct and corresponds exactly to the variable X13. Parameter matrices Γ
and B are defined in the model specification (the line starting by “MO”) as full and

fixed (in LISREL a “full” matrix means each of the parameters is defined differently

and a “fixed” matrix means the parameters are constant rather than estimated); the

specific parameters to be estimated are defined subsequently in the line starting with

“FR” (which stands for “FREE”). Note that, in this example, the measurement

model parameters are estimated simultaneously with the structural parameters.

Following the recommendations in Chap. 10, it is preferable to first estimate the

measurement model parameters and then estimate the structural model parameters

with the measurement model parameters constrained to the values estimated in the

first stage.

The request for estimating the indirect (and the total) effects is included in the

last line with all the output options. The option “EF” (highlighted in grey in the

figure) instructs the program to provide that information. Figure 11.23 gives the

graphical representation of the results (note that the measurement model fits

particularly well, with factor loadings that are all rounded to one and variances of

the measurement errors that are all rounded to zero). These simulated data serve to

illustrate the possibility of using several different methods.

Fig. 11.22 LISREL input file (Examp11-3.ls8)
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The parameter estimates indicate that, while the effect of IV onDV, controlling for

the indirect effects, is not significant (�0.04which is not significant as indicated by the

t value in the full output), the indirect effect throughM1 is 0.43 � 0.40 ¼ 0.172, and

the indirect effect through M2 is 0.22 � (�0.49) ¼ �0.108. The information

concerning the indirect and total effects with their significance levels is provided

toward the end of the output. The relevant section is reproduced in Fig. 11.24.
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0.00

0.00

0.00

0.00
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0.00
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Chi-Square=0.10, df=61, P-value=1.00000, RMSEA=0.000

1.000.40
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1.00
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Fig. 11.23 LISREL output graphical representation (Examp11-3.pth)

Fig. 11.24 LISREL output on indirect effects (Examp11-8.out)
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The indirect effect of IV on DV is shown to be 0.06, i.e., the sum of the effects

through the two indirect paths through M1 and M2 calculated above

(0.172 + (�0.108)). This estimate of the indirect effect (highlighted in grey in

Fig. 11.24) is statistically significant as indicated by the t value of 2.43 (or the

standard error of 0.03 in parentheses). The total effect is the sum of this indirect

effect plus the direct path (�0.04 for the link from IV to DV in Fig. 11.23) and,

therefore, 0.06 + (�0.04) ¼ 0.02. Figure 11.24 gives the standard error and t statis-
tic for that total effect, which in this case is not significant (t ¼ 0.80).

We have illustrated the estimation of structural models using LISREL. As

indicated in Chap. 4, AMOS is an alternative software for estimating such models.

The structural model parameters can be estimated using different estimation

methods, and in particular Bayesian estimations are effective for complex

relationships such as those mentioned earlier with the example in Chandon

et al. (2009) where the dependent variable is ordinal. The indirect effects are

estimated using either the bootstrapping method or the Bayesian method. The

interactive commands are straightforward to use and produce results similar to

those described in this chapter.

To illustrate the use of STATA for estimating indirect effects in models with

multiple mediators, let us consider data from a new product survey. Multiple items

measure four constructs: the relative advantage of the new product, the new product

complexity, its ease of comprehension by the user, and the respondent’s attitude

toward the new product. We propose a model where new product complexity

affects attitudes toward the new product both directly and indirectly. The indirect

path suggests that complexity has an effect through the new product’s relative

advantage and through the new product’s ease of comprehension. The request to

estimate such a model with STATA is shown in Fig. 11.25.

Fig. 11.25 STATA input for estimation of indirect effects (Examp11-4a_Mac.do)
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The STATA output is shown in Fig. 11.26.

Alternatively, bootstrapping estimation can be requested as in Fig. 11.27.

The output for such bootstrapping estimation is shown in Fig. 11.28.

Instead of investigating the mediation by using a model that contains both the

measurement model and the structural model, there are two alternatives using

LISREL or SAS. Both of these methods require that the factor analytic model be

estimated first, from which the factor scores are derived.

Exporting Factor Scores

The first step in the estimation is to perform a factor analysis (as set out in Chap. 4).

We then compute the latent variable scores (Jöreskog, 2000), which are exported

and appended to the data set for further utilization with any other statistical software

package. In Chap. 4, we presented the “predict” command in STATA; this com-

mand computes the factor scores and saves them with a new variable name to the

working data set that can then be saved as a “.dta” data file. With LISREL, these

tasks are best performed through the interactive facilities. The steps to follow are

described below.

Step 1. Create LISREL system file “.PSF”

(a) Import raw data file.

Fig. 11.26 STATA output for estimation of indirect effects—Maximum likelihood estimates

(Examp11-4a.log)
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Fig. 11.26 (continued)
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Fig. 11.26 (continued)
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Fig. 11.26 (continued)
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Fig. 11.26 (continued)
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An easy way to create such a system data file is to import the data contained

in a text file (or Excel or other format) by clicking on File|Import Data in Free

Format. This opens a dialog box where you can search through the computer

directories for the proper file with the “txt” extension. Click on the file name

Fig. 11.27 STATA input for estimation of indirect effects—Bootstrapping (Examp11-4b_Mac.

do)

Fig. 11.28 STATA output for estimation of indirect effects—Bootstrapping (Examp11-4b.log)
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Fig. 11.28 (continued)
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Fig. 11.28 (continued)
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Fig. 11.28 (continued)
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when found. This opens a new dialog box asking for the number of variables

contained in the file (i.e., the number of columns). If the variable names (i.e.,

labels) are on the first row, check the box for “Variable names at top of file.”

Clicking “ok” will then create the PSF file.

(b) Rename variables if the names were not on the first row of raw data file.

Renaming is done by clicking on Data|Define Variables, which opens a dialog

box where you can select a variable by clicking on its name, then clicking on

“Rename,” and modifying the name. This should be done for all the variables in

order to have a consistent data set with the labels used in the LISREL program

or other statistical analysis software.

Fig. 11.28 (continued)
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Step 2. Compute latent variable scores

(c) Create a LISREL file using the SIMPLIS commands.

A new file is created by clicking on File|New, which opens a dialog box where

you can select “SIMPLIS Project.” Enter a name for this file (which will have

an “spj” extension). This opens a new dialog box that has a name corresponding

to that project file, including the “spj” extension.

(d) Define the LISREL system file containing the data to be used.

This is done by clicking on Setup|Data, which opens a new dialog box. In that

box, choose “LISREL System Data” and click on the “Browse” button to select

the data file with the extension “.DSF” corresponding to the proper .PSF data

file as created in step 1 above (note that when the PSF file is created, it also

creates a file with the “.DSF” extension). Click on “ok” when done.

(e) Start setting up the SIMPLIS commands.

The SIMPLIS basic instructions are inserted at the beginning of the file by

clicking on Setup|Build SIMPLIS Syntax.

(f) Define observed and latent variables.

Choose Setup|Variables and click on Add/Read Variables button on the left side

of the label dialog box. Make sure that the “Read from file:” option is checked

and “LISREL System File” is selected, and then browse through the directory to

select the proper data file (with the “DSF” extension). The variables in the

database are listed in the table. When the observed variables are read from the

data file, add the names of the latent variables, one by one, by clicking on Add

Latent Variables.

(g) Complete instructions by inserting commands between the “Relationships” and

“End of Problem” lines.

The commands to include correspond to the measurement model. The example

in Fig. 11.29 shows the measurement model for three of the constructs used in

Chap. 10 (Examp10-1.spl).

(h) Note the command “PSFfile name.PSF” (highlighted in grey in Fig. 11.29).

This command appends the latent variable scores to the data file.

(i) Verify that the latent variable scores have been added to the data file.

Fig. 11.29 PRELIS input example for factor analytic model
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Click on File|Open and when the dialog box opens, select “PRELIS Data

(*.psf)” in the “Files of Type:” option. Then click on the appropriate data file

(“Examp10-1.psf” in Fig. 11.29). Additional columns have been entered with

the scores corresponding to the latent variables.

Estimation Using Factor Scores

Once the factor scores have been added to the data file, a structural model can be

estimated using these new factor scores. Coming back to the previous example with

IV, M1, M2, and DV, the structural model can be specified in LISREL as shown in

Fig. 11.30.

The variables that are read from the file that contains the computed factor scores

are labeled M1, M2, X13, and IV. The model is identical to the model represented

in Fig. 11.23. Here the estimation is done through LISREL, but no measurement

model is included with the variables specified in the model. Therefore, for all the

constructs, i.e., those labeled Xsi1, Eta1, Eta2, and Eta3, a single measure is read

from the data set (labeled M1, M2, X13, and IV). The measurement error variances

(θδ and θε) are fixed to zero and the factor loadings (Λy and Λx) are fixed to unity.

This results in the structural parameter estimates represented in Fig. 11.31.

From the results shown in Fig. 11.31, it can be seen that the indirect effect of

Xsi1 on Eta3 through Eta1 is 0.44 � 0.63 ¼ 0.2772. The indirect effect through

Eta2 is 0.30 � (�0.57) ¼ �0.171. The direct effect of Xsi1 on Eta3, controlling

for the mediating factors, is �0.07.

The request for estimating indirect and total effects on the output parameter line

leads to the section of the output shown in Fig. 11.32.

The indirect effect through all mediating factors, i.e., Eta1 and Eta2, is the sum

of all the specific indirect effects, i.e., 0.2772 + (�0.171) ¼ 0.1062 (rounded to

0.11 in Fig. 11.32). This indirect effect is significantly different from zero

(t ¼ 2.43). The total indirect effect is the sum of the indirect effect (0.1062) and

of the direct effect (�0.07), i.e., 0.0362 (rounded to 0.04 in Fig. 11.32).

Fig. 11.30 LISREL input example for structural model using factor scores (Examp11-5.lpj)
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Estimation Using Factor Scores with STATA or SAS

Given the availability of the factor scores in a regular data file, nothing prevents us

from using Preacher and Hayes (2004, 2008, 2010) subroutines in SAS, as

illustrated earlier in this chapter (Sect. 11.2.2.3). The STATA subroutine presented

earlier with Figs. 11.10, 11.11, and 11.12 can also be used to implement Preacher

and Hayes’ bootstrap procedure. An illustration for an SAS input file is shown in

Fig. 11.33.

Even though the results are consistent, the parameter estimates are not quite the

same due to the use of different estimation methods. The results from the

bootstrapping method are shown in Fig. 11.34.

Eta1 M1

M2

X13

Chi-Square=0.10, df=1, P-value=0.74641, RMSEA=0.000

Eta2
Xsi10.00 1.00

0.44

0.30

0.63
1.00

1.00

1.00 0.00

0.00

0.00

-0.07
-0.57

Eta3

IV

Fig. 11.31 LISREL output example for structural model using factor scores (Examp11-5.pth)

Fig. 11.32 LISREL output example of indirect effects using factor scores (Examp11-5.out)
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Yet another alternative, especially when the error in measurement is negligible,

is to perform the analysis using unweighted scores rather than factor scores to

represent the constructs. This is particularly useful because the measures are not

idiosyncratic to the sample, as they are when using factor scores that are derived

from fitting the factor loading to the data sample.

Analysis With Unweighted Scores in SAS

Such an analysis does not require new commands. The scores are simply calculated

as the averages of the variables measuring each construct and the analysis can be

done easily using these constructed unweighted scores.

11.2.7 Other Issues

11.2.7.1 Standardized vs. Mean-Centered vs. Raw Variables

These transformations, whether we are mean centering all variables or

standardizing them, present no particular issues in mediation analysis. Just as in

regression analysis, mean centering necessitates estimating the regressions without

intercept terms since the intercepts are zero. It does not affect the regression

coefficients or their standard errors. The coefficients are interpretable in terms of

marginal effects in the original unit of the variables, whether or not the variables are

mean centered. Consequently, the size of the effects is readily interpretable in the

units of the variables.

Standardization transforms the regression coefficients into partial correlations.

In some cases, it may be easier to reason in terms of these relative effects. However,

Fig. 11.33 SAS input example of indirect effects using factor scores (Examp11-6.sas)
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the indirect effect estimated by the ab product term must also be interpreted in

terms of these transformed units (i.e., deviations from the mean or the standardized

scale), which is not as intuitive as when thinking in the original units of the

variables.

Fig. 11.34 SAS output example of indirect effects using factor scores (Examp11-6.lst)
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11.2.7.2 Multicollinearity Due to Correlation Between Mediator

and Independent Variable

The regression of the dependent variable on the mediator and the independent

variable may be affected by collinearity. Indeed, if x predicts m, then these two

variables, which are included as regressors in the estimated equation, are correlated.

At the extreme, a perfect mediator would predict both the outcome accurately

without much noise as well as the original “cause” of the effect. This correlation

could cause multicollinearity whereby the coefficients of the dependent variable

regression would be unstable and unreliable with large standard errors. The regres-

sion coefficients would be insignificant even though the model could predict well.

Fortunately, the theories expressed in a mediating process are not so strongly

associated with the effect that this happens in practice. This correlation problem

is related, however, to the next issue, which can be more critical in research.

11.2.7.3 Discriminant Validity of X and M and M with Y

The mediating construct and its measure cannot be too closely related to the

independent variable on the one hand and to the dependent variable on the other

hand. The constructs should conceptually correspond to differentiated concepts

where the mediator is not merely reflecting the same construct as the independent

variable. Constructs that were insufficiently differentiated would not only cause the

multicollinearity issues alluded to in the previous section, but more critically, they

would also simply state tautological relationships of no interest. While multicol-

linearity is not an issue if the similarity is too great between the mediator and the

dependent variable, the tautological issue still applies. Therefore, the mediating

variable must provide a true theoretical link between the independent variable

(or experimental condition) and the dependent variable, where there is a clear

conceptual and empirical discrimination among these three variables (i.e., indepen-

dent variable, mediator, and dependent variable). This is an important aspect of the

evaluation of a mediation model.

11.2.7.4 Temporal Proximity

Another aspect of the evaluation of a mediation model concerns the fact that

measures of the effect and its consequences (mediation and dependent variable)

are taken in a temporal sequence. The time during which the causal process occurs

can be very short, especially in experimental conditions. If the causal mechanism

occurs rapidly (temporally proximal), the effects will tend to be larger than if the

process is temporally distant (or distal). Shrout and Bolger (2002) indicate that

distal processes are smaller because (1) there are multiple causal mechanisms

involved sequentially, (2) competing causal mechanisms appear, and (3) random
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factors are more likely to intervene. Failing to incorporate all these factors

(as discussed in Sect. 11.2.2.1) can make it difficult to detect a relationship between

x and y, although the mediating relationships may be more easily observed.

Nevertheless, the temporal proximity may not always be desirable, as demand

characteristics can undermine the causal process.

11.2.7.5 Recursivity vs. Feedback Loops (Endogeneity)

In mediation models, the focus is clearly on the process where one variable (x) leads
to a temporal sequence of events in a chain of causal links. This is indeed the case in

experiments where the processes occur within short periods of time (proximal

processes). Therefore, the recursive assumption of the mediation model appears

to be well justified. When the processes and the measures are more distant,

especially in non-experimental data analysis, the pure recursive nature of the

system cannot be taken for granted. Mediation analysis as discussed above may

become inappropriate because there may be feedback loops in the processes that

would require modeling the endogeneity of some of the variables. For example, if

there is too much temporal distance between the occurrences of the independent

variable, on the one hand, and the measures of the mediating and the dependent

variables, on the other hand, the mediating variable can be affected by the outcome.

We would then estimate a system of equations with the appropriate structural form

and identification, as discussed in Chap. 6. The methods discussed above to test

mediation, especially the use of the bootstrapping method for estimating the

indirect effects, can still be used. These methods simply need to be adapted to the

corresponding parameters estimated with the proper statistical methods

(generalized least squares or maximum likelihood). As discussed in Sect. 11.2.6,

the joint test of the significance of the indirect parameters comparing the full model

with a constrained model without the indirect path is a straightforward alternative.

11.3 Testing Moderation Effects

Moderated effects are represented in Fig. 11.2 above. Although the basic approach

is identical whether or not errors in measurement are taken into account, two

methodologies for estimating moderation effects are discussed in this section.

The first methodology does not take into account errors in measurement and

fundamentally applies a regression model that has been labeled moderated regres-

sion. The second methodology is based on the analysis of covariance structure, and

therefore takes into account the errors in measurement in estimating the moderating

effects. We consider several approaches, one which consists in dividing the sample

into subgroups and in testing for the differences in structural parameters across

groups. The other approaches are more like moderated regression but take into

account the errors in measurement.
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11.3.1 Moderated Regression

In the case of a single independent variable x and a moderator z, the model is

represented algebraically by Eqs. (11.31) and (11.32):

yi ¼ β0 þ β1ixi þ ui (11.31)

β1i ¼ α0 þ α1zi (11.32)

Equation (11.31) indicates how the dependent variable y responds to the focal

independent variable x. Additional independent variables can be added in a linear

fashion to control for the effects they may have on the dependent variable y. The
only distinction between Eq. (11.31) and any ordinary regression equation is that

the response coefficient of the focal variable x (i.e., β1i) contains a subscript for the
observation i. This is because this parameter is not fixed across all observations.

Instead its value changes depending on the value of the moderating variable z. This
variability is expressed by the linear function shown in Eq. (11.32). This second

equation expresses the process driving the coefficient and has been called a process

equation. It also corresponds to a level-two equation in multi-level modeling or

hierarchical linear modeling.

When Eq. (11.32) is inserted into Eq. (11.31), the single moderated equation is

yi ¼ β0 þ α0xi þ α1xizi þ ui (11.33)

This last equation contains the focal independent variable x and the product term
of the focal variable with the moderator variable z. Therefore, a test of a moderation

effect can be performed by augmenting the equation of the focal variable (the

response function) with a product term.

Such model specification being linear in the parameters, its estimation should a

priori not raise any particular difficulty. Furthermore, the versatility of the regres-

sion model to analyze both experimental and non-experimental data allows the

application of such a moderated regression model to both kinds of data. In the case

of experimental data, the focal variable is represented by one or several dummy

variables.

The moderator variable can be discrete as well. If the focal independent variable

is continuous and the moderator variable is discrete, a test of moderation is simply a

pooling test that the coefficients of the response function are equal across groups.

Similar multi-group analysis of the constraint that the coefficients across groups are

equal can be performed in analysis of covariance structure models. When both the

focal variable and the moderator variable are discrete, i.e., x and z are dummy

variables, the model becomes the usual ANOVA model. An example can be found

in Franke, Schreier, and Kaiser (2009) where they look at the extent to which

individuals who design their own products (for example, a pair of athletic shoes) are

willing to pay for them and whether this willingness to pay is moderated by the
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extent of the fit with their preferences. Franke et al. manipulate preference fit on two

levels and end up with a traditional 2 � 2 ANOVA design.

11.3.1.1 Experimental Data

In experiments, the variables are treatments that are manipulated so as to be

independent. In addition, the variables are typically coded so that the means

are zero.

Independence of Interaction Term with Its Components in ANOVA

The covariance between the product term of two variables x and z with one of its

components x is

V x; xz½ � ¼ V xz½ �E x½ � þ E x� xð Þ2 z� zð Þ
h i

þ E z½ �V x½ � (11.34)

In ANOVA, as mentioned above, the mean of the two variables coding the

effects is zero. Consequently, the expression reduces to

V x; xz½ � ¼ V xz½ �:0þ E x� xð Þ2 z� zð Þ
h i

þ 0:V x½ � (11.35)

or

V x; xz½ � ¼ E x� xð Þ2 z� zð Þ
h i

(11.36)

And, since the means are zero

E x� xð Þ2 z� zð Þ
h i

¼ E x2z
� 

(11.37)

But in ANOVA, the covariance of the two variables coding the effects is zero

(they are independent). Therefore,

E x2z
�  ¼ 0 (11.38)

Coding and Interpretation of Effects

Because it is important to understand the implications of using coding of effects

with experimental data, the reader should review the discussion of this issue in

Chap. 9, Sect. 9.1.1.
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11.3.1.2 Mean Centering

Even if the moderated regression model seems to be flexible and essentially a

traditional regression technique, much has been written about it in the literature.

Much of this literature is concerned with not being able to detect moderation effects

when using the model, especially considering the danger of multicollinearity

introduced by having the product term and its components in the estimated regres-

sion. These concerns can be addressed by focusing on two issues: mean centering

and whether to include the moderator as a single factor in the regression equation.

While much has been written about mean centering, Echambadi and Hess (2007)

used a mathematical proof to clarify that mean centering the focal variable and the

moderator variable before taking the product term has no effect on the multicol-

linearity inherent in the moderator regression. Thus, while many authors claim to

perform mean centering of the variables to reduce multicollinearity, such mean

centering is unnecessary. Mean centering has no impact on the parameter estimate

of the product term, neither on the mean estimate nor on its standard deviation.

Mean centering changes the interpretation of the “main” effects simply because

the coefficients obtained are estimates that correspond to different values of the

moderator variable. More specifically, when using raw data, the coefficient of the

focal variable is estimated when the moderator takes the value 0; with mean-

centered variables, the coefficient of the focal variable is estimated when the

moderator is at the mean value of the moderator. This can facilitate the interpreta-

tion in some cases but it depends on the cases. Regardless of mean centering or not,

the parameter estimates at the same value of the moderator variable are identical.

What may appear troubling is that mean centering “orthogonalizes” the data

matrix. Cronbach (1987) shows that the variance of the product term with the focal

variable can be expressed according to Eq. (11.39):

V x; xz½ � ¼ V xz½ � E x½ �ð Þ þ E x� xð Þ2 z� zð Þ
h i

þ E z½ �ð ÞV x½ � (11.39)

When mean-centered variables xd ¼ x� x and zd ¼ z� z are used, the expres-

sion above is reduced to

V xd , xdzd
�  ¼ E x� xð Þ2 z� zð Þ

h i
(11.40)

Because the variances of the raw and the mean-centered variables are equal

V x½ � ¼ E x� xð Þ2
h i

¼ E x� x � x d

 �2h i

¼ V xd
� � �

, we can compare correlations

by comparing the covariances. Inserting Eq. (11.40) into Eq. (11.39) yields

V x; xz½ � ¼ V xd, xdzd
� þ V xz½ �E x½ � þ E z½ �V x½ � (11.41)

If the expected values of the raw variables are positive (the variances are positive

by definition), the covariance of the raw variables is at least as large as the
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covariance of the mean-centered variables. And as the expected values of the raw

variables increase, so does the difference between the two covariances. So mean

centering reduces the bivariate correlation between x and xz, and the greater the

means of the variables, the greater this reduction.

How can the relationship described above be reconciled with the proof that

multicollinearity is not affected and that none of the parameter estimates changes

(given a constant value of the moderator)? The proof has thus far focused on the

bivariate correlations. However, the correlations with the intercept term are also

changed when mean centering is performed. In fact, the transformation does not

change the multivariate relationships since the determinant of the transformed and

of the untransformed independent variable covariance matrix remains identical.

This is consistent with Belsley (1984), who shows that coefficients from mean-

centered data are as sensitive to the addition or the deletion of a few observations as

are coefficients from raw data, and who concludes that typical multicollinearity

indicators (such as the variance inflation indicator) are misleading.

Independence of X and Z

It is clear from Eq. (11.40), however, that if the focal variable and the moderator

variable are independent, then all the terms in the regression are independent,

including the product term. However, the correlation between x and z is rarely the

source of a problem, as this correlation remains moderate.

11.3.1.3 Including All Components of the Product Term

The moderating hypothesis is specifically expressed in Eq. (11.33). This equation

contains two terms on the right side: the focal variable and the product term of this

focal variable with the moderator. The moderating variable does not appear on its

own. Theories often do not exclude the possibility that the moderator also has a

direct effect. Consequently, we include the moderator variable by itself, and the

model to be estimated, then, is shown in Eq. (11.42):

yi ¼ β0 þ α0xi þ γ0zi þ α1xizi þ ui (11.42)

In addition, the inclusion of the moderator as a third term as in Eq. (11.42) is

necessary if the focal variable is measured on an interval scale rather than a ratio

scale. Because the measure is then only defined up to a scalar κ, a term in the

moderating variable is introduced through the product term. This is demonstrated

below where xi is replaced with (κ + xi):
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yi ¼ β0 þ α0 þ α1zið Þ κ þ xið Þ þ ui
¼ β0 þ α0κð Þ þ α0xi þ α1κzi þ α1xizi þ ui
¼ β

0
0 þ α0xi þ γ0zi þ α1xizþ ui

(11.43)

This contributes to a significant worsening of the collinearity problem in

moderated regression. However, this problem is inherent in the model specification

and mean centering does not solve it, especially for the estimation of the interaction

coefficient (on which mean centering has no impact at all). In the case of ratio

scales, if the theory postulates only a moderation effect and excludes the possibility

of a direct effect of the moderating variable, it may be possible to minimize the

problem by estimating a model without a direct effect, i.e., as specified in

Eq. (11.33). However, in the case of interval scale variables, which is the most

frequent, the complete model specification of Eq. (11.42) cannot be avoided. The

major issue, however, concerns the estimation of the coefficients of the component

terms (i.e., x and z). In such cases, the estimates, as shown in Eq. (11.43), contain an

indeterminate constant, which makes the estimated coefficients impossible to

interpret. Fortunately, the theories under investigation in the research typically do

not concern these parameters but focus instead on the moderation effect.

11.3.1.4 Estimating the Effects of a Focal Variable Over

the Range of the Moderator

In some cases, the test of the existence of a moderating effect is all that the test of

the theory requires. This is particularly true in experimental designs where the

range of the value of the variables (focal and mediator) is arbitrary, so the magni-

tude of the differences across groups may be difficult to interpret since the effect

sizes are relative to the size of the manipulations. Yet, very often, the presence of a

moderation is only one component of the hypothesis, which also requires that the

effects be significant at some levels of the moderators and perhaps not significant at

other levels or be of the opposite sign. Consequently, it is critical to provide tests of

the significance of the effects over a range of values of the moderator variable.

Fortunately, the moderation is linear and it is easy to calculate the variance and

standard deviation of a linear function of a parameter. When the theory does not

focus attention on particular values, it is common practice to evaluate the effect at

the mean value of the moderator and at � 1σz and � 2σz. The partial derivative
∂y
∂x

can then be plotted as a function of z, as shown in Fig. 11.35 (Schoonhoven, 1981).
The conditional effects are linear combinations of normally distributed

parameters, and thus are normally distributed as well. However, the computation

involves the covariance of the estimated parameters. In STATA, the command

“lincom” introduced in Chap. 5 for testing linear restrictions of parameters can be

used to estimate such conditional effects. The STATA commands for estimating the

effects of the focal variable x at two values (�2 and +2) of the moderator variable z

are shown in Fig. 11.36.
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The estimated effects are shown in Fig. 11.37.

The effect of x when the moderator value is �2 is negative and significant

(coef ¼ �0.5693079, t ¼ �5.27), while it is positive and significant at the moder-

ator value of +2 (coef ¼ 1.235332, t ¼ 10.49). The estimated values of the effect

of x at different levels of the moderator variable z can then be plotted in a graph

similar to the one shown in Fig. 11.35.
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Fig. 11.35 Representation

of marginal effect over

range of mediator

Fig. 11.36 STATA commands to estimate the conditional effect of a focal variable x

Fig. 11.37 STATA output of the estimates of conditional effects of a focal variable x
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It is recommended that the moderating variables be mean centered. While this

has no effect on statistical results, as indicated above, it facilitates the interpretation

of the parameter estimates. The coefficient of the focal variable can then be

interpreted as the conditional effect of that variable at the mean value of the

moderator. In the case of multiple moderator variables, it is the conditional effect

of that focal variable when all the moderators are at their mean values and not just

when a particular moderator is at its mean value. Mean centering becomes espe-

cially convenient when calculating the conditional effect of the focal variable at

another value of a moderator variable. If considering the conditional effect when all

other moderators are at their mean values, then the coefficients of the other

moderators can be ignored since they are multiplied by zero.

Another question may be raised when computing these conditional effects. If the

coefficient of the focal variable is insignificant, should it be included in the

calculation of the conditional effect at some value of the moderator? Assuming

that the moderator variable is mean centered, insignificance of the focal variable

coefficient means that the effect of that variable at the mean value of the moderator

variable is not significantly different from zero. This does not mean, however, that

this coefficient should be ignored in the computation of the effect of the focal

variable at another value of the moderator. The linear combination that forms the

condition effect needs to take into consideration the parameter of the focal variable

as well as the parameter of the interaction term and their variances and covariances.

Similarly, when estimating the effect via the bootstrap method, the variance of that

linear combination must be estimated.

11.3.1.5 Nonlinear Moderating Effects

As long as the model is linear in the parameters, regression estimations can be used.

This requires that the nonlinear relationships be expressed in ways that can be

transformed into a linear-in-parameter model. Just as was discussed in the case of

nonlinear mediation analysis, a consequence of nonlinearity of moderating

relationships is that the effects must be evaluated at a specific value of the

moderator. The partial derivatives mentioned in the previous section will need to

be estimated at a specific value of the moderator. A range of values of the moderator

variable can then be used to assess the significance of such effects over this range.

STATA is particularly well suited to perform these analyses by easily adapting the

subroutine “bootcm2med.do” described earlier in this chapter.

11.3.1.6 Stochastic/Hierarchical Linear Models

and Multi-Level Models

Thus far, moderation effects have been considered as strict constraints on model

parameters. However, such effects can also be subject to stochastic error. Such a

model specification is used particularly in the context of hierarchical linear models
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(HLM). HLM specification leads to random coefficient models that impose a

particular structure on the covariance matrix. When the coefficients are conditional

on variables at a particular level, these coefficients also reflect moderating effects.

While maximum likelihood estimation is possible in many cases, the complexity of

the models leads to using Bayesian methods for estimation. Most standard statisti-

cal packages that include SEM provide estimations of these hierarchical models.

11.3.1.7 Double Moderation: Three-Way Interactions

When the effect of a moderator variable is itself conditional on a third factor, it

leads to a three-way interaction. This creates additional product terms to represent

such effects. However, the basic estimation approach is identical to what has been

discussed so far in this chapter. Nevertheless, three-way interactions are not always

easy to interpret. It is, therefore, highly recommended that there be a strong theory

and hypotheses before embarking on higher level interactions.

11.3.1.8 Binomial Dependent Variable: Moderation

Effect with Logit Model

The bootstrapping method can also be used with the logit model specification,

which is appropriate when the dependent variable takes the values of 0 or 1. An

example is shown in Fig. 11.38, where the subroutine calculates the values of the

conditional effects of x1 at several values of the moderator variable (“Inter”

represents the product term for x1 with the moderator variable). In this example,

“effect1” and “effect2” are, respectively, the effect at minus and plus one standard

deviation of the moderator (which is centered); “effect3” and “effect4” are, respec-

tively, the effect at minus and plus two standard deviations of the moderator; and

“effect5” and “effect6” are, respectively, the effect at the minimum and the

maximum values of the moderator variable.

The relevant section of the do-file to estimate the parameters using the actual

data is shown in Fig. 11.39.

11.3.2 Incorporating Moderating Effects in Analysis
of Covariance Structure

When taking into account the fact that the relationships that are being estimated are

among constructs that are measured with error, moderated regression is compli-

cated by the product of the measurement errors. Indeed, the moderated regression is

expressed in terms of the unobserved constructs; when computing the product term

of these constructs, the measurement errors are multiplied. Therefore, the
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researcher cannot simply add another variable representing the product term to the

analysis of covariance structure models proposed in Chap. 10. One straightforward

approach to this issue—the subsample approach—has been widely applied in the

social sciences literature and consists in dividing the sample into subsamples in

order to show that the structural parameters (the betas and the gammas) are different

across subsamples. A second type of approach specifies a moderated causal struc-

tural equation model that implies a particular measurement error structure of the

product terms to be recognized for the estimation.

11.3.2.1 Multi-Group Analysis or Subgroup Approach

In order to test a moderating hypothesis using multi-group analysis of covariance

structure, if the moderator variable is a continuous variable, it is necessary to

determine cutoff points along the moderator variable that will be used to form a

number of subsamples. The first step raises some important questions concerning

how and howmany subgroups should be formed. The number of subgroups depends

in large part on the hypothesized functional form of the moderating effect. If the

moderating effect is linear, two points are sufficient to test this effect. If the

hypothesized moderation effect is nonlinear, usually U-shaped or inverted

U-shaped, at least three points would be required. The sizes of the subsamples are

also critical because they must be large enough to ensure the robustness of the

analysis. Given that the unrestricted estimates will require a separate analysis for

each group, the minimum size of a group should be similar to the minimum size of

any analysis of covariance structure.

The appropriate cutoff values on the moderating factor are more uncertain. If the

moderating effect is linear, for example, the estimated value of a subsample will

reflect the average effect along the linear relationship. Assuming a normal distribu-

tion of the moderator variable and a median split, the effects for each group will

Fig. 11.38 STATA subroutine to estimate conditional effects in logit model with the bootstrap

method

Fig. 11.39 STATA example to estimate conditional effects with the bootstrap method
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reflect average subgroup effects that will be relatively close to each other. This may

lead to a lack of significance of the differences in the structural parameters across

subgroups. An alternative would be to consider a larger number of quartiles and

possibly delete observations that fall in the middle subgroup(s). However, this

approach loses information in truncating the moderating variable, and the choice

of cutoff points is somewhat arbitrary. One positive aspect is that, if the median split

leads to significant differences in the structural parameters, it lends support to the

hypothesis of a moderating effect. An issue arises, however, when this approach

leads to insignificant differences. One could then test the sensitivity of the results to

different cutoff values, or proceed with more complex approaches as discussed in

the next section.

Given a number of groups defined along the moderating variable, the analysis

consists in estimating a multi-group structural model as presented in Chap. 10. This

provides an unrestricted model where the structural parameters may differ across

groups. Just as in single-group analysis of covariance structure, it is appropriate to

fix the measurement parameters to those obtained in an estimation of the measure-

ment model without structural relationships. The problem when simultaneously

estimating the measurement parameters and the structural parameters is illustrated

in the example in Figs. 11.38 and 11.39. Similarly, the issues of measurement

invariance discussed in the section on multiple group confirmatory factor analysis

(Chap. 4, Sect. 4.5) apply equally in this context. This is due to the fact that the

covariances that are analyzed according to the underlying structure among the

unobserved constructs and that would be consistent with their empirical values

are affected by the measurement parameters. Different factor loadings (lambdas)

and different scalars (taus) affect these covariances, even if the means of the

unobserved constructs were to be different (because the means do not affect the

covariances). Again, the example in Figs. 11.38 and 11.39 illustrates the problem

that arises if this precaution is not taken.

To illustrate with a simple example, a two-group sample is now analyzed

according to age (“young” respondents and “old” respondents). The LISREL

input is shown in Fig. 11.40.

The graphical representation of the output for each group is shown in Fig. 11.41.

The restricted LISREL input is shown in Fig. 11.42.

The results graphically represented in Fig. 11.43 clearly show that the structural

parameters are now identical for the two groups.

However, in comparing the unrestricted and restricted estimates of the measure-

ment model, we can see the problem that results from simultaneously estimating the

structural parameters and the measurement model parameters. First, we can see that

the measurement model of the old group for the second exogenous factor is much

poorer than for the young group. The factor loadings are all of similar magnitude in

the young group but three out of four are close to zero for the older group. One

factor loading for that factor is fixed to one and only the loading for item 11 is

estimated and significant (0.59). When imposing the restriction on the structural

parameters, this factor loading goes from 0.59 to 0.15. This demonstrates the
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inappropriate trade-off between structural parameter estimates and measurement

model parameter estimates when these are estimated simultaneously.

In this example, the imposition of the restriction of equal structural parameters

leads to a significantly worse fit. The difference in chi-square is obtained from the

Fig. 11.40 LISREL input for multiple group structural equation model—Unrestricted (Examp11-

7.spl)

Fig. 11.41 LISREL output of unrestricted analysis (Examp11-7_Young.pth and Examp11-7_Old.

pth)
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output of the analyses shown in Figs. 11.41 and 11.43. The global (i.e., for all the

groups) chi-square of the unrestricted model is 151.24 with 148 degrees of freedom

while the global chi-square for the restricted model is 171.84 with 150 degrees of

freedom. The difference of 20.60 with 2 degrees of freedom (the number of

restricted parameters, i.e., the two structural parameters for group 2 in the example)

Fig. 11.42 LISREL input for multiple group structural equation model—Restricted (Examp11-8.

spl)

Fig. 11.43 LISREL output of restricted analysis (Examp11-8.pth)
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is statistically significant. Consequently, this test provides support for a moderated

effect of age. It is important to recall that this example does not constrain the

measurement model parameters. This allows us to illustrate the effect of simulta-

neous estimation (i.e., estimating both measurement and structural parameters

simultaneously), as the consequences are more easily identifiable with multi-

group analysis. However, actual tests of moderation using multi-group analysis of

covariance structure should follow the procedure of stepwise estimation

recommended in single-group analysis (Chap. 10).

The same analysis can be performed in STATA. Figure 11.44 lists the input for

testing the equality of coefficients across groups using the “ginvariant” procedure.

In that run, the two data sets (for young and old subjects) are combined (using the

“append” STATA command) into a single data set with the creation of a new

variable to indicate the group (young or old).

The model specification indicates that the model is estimated by groups deter-

mined by the “AgeGroup” variable, and the request “estat ginvariant” returns the

statistics needed to test the hypothesis of equality of coefficients across groups. The

output is shown in Fig. 11.45.

As shown in the grey-highlighted part of Fig. 11.45, both coefficients

corresponding to the path from Exo1 to Endo and from Exo2 to Endo are signifi-

cantly different with a chi-square of almost 20 and 1 degree of freedom. The

coefficients are indeed different with a value of 0.0016 and 0.538, respectively,

for the effect of Exo1 on the young group and the old group, and 0.137 and 0.913,

respectively, for the effect of Exo2.

The simple model specification shown in the STATA example above illustrates

how easy it is to perform global tests of equality of parameters. The commands

simply required an analysis by group and some basic assumptions were automati-

cally made to test the equality of structural parameters. It is also possible to specify

which parameters should be equal across groups and which should be freely

estimated as different parameters across groups. Table 11.1 shows the various

possibilities.

The option ginvariant(class name) defines the parameters that should not vary

across groups (to be invariant across groups). For example, ginvariant(scoef)

constrains all the structural parameters to be the same in all the groups. The fit of

such a constrained model can then be compared with the fit of a model where

separate structural coefficients are estimated for each group. The difference in

Fig. 11.44 STATA input for testing invariance of structural parameters across groups (Examp11-

9_Mac.do)

11.3 Testing Moderation Effects 417

http://dx.doi.org/10.1007/978-1-4614-8594-0_10


Fig. 11.45 STATA output for testing invariance of structural parameters across groups

(Examp11-9.log)
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Fig. 11.45 (continued)
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Fig. 11.45 (continued)
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Fig. 11.45 (continued)
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chi-square is also chi-square distributed and provides a joint test that all the

structural coefficients are different across groups. Note that STATA automatically

sets the measurement model parameters to be equal across groups when estimating

multi-group structural relationships. These equal coefficients are indicated by a “*”

in the output.

11.3.2.2 Moderated Causal Approach: Product of Constructs

Measured with Error

When the moderator variable is discrete, the multi-group analysis presented in the

previous section is appropriate but, as discussed above, if the moderator variable is

continuous, discretization leads to a loss of information. Moderated regression

allows us to keep the continuous moderator variable as such. However, when the

variables involved are latent variables, measured with error that can be estimated

with multiple-item indicators, a similar approach can be used in an analysis of

covariance structure framework.

Jöreskog (2000) Procedure

The procedure presented earlier in the context of mediation effects with latent

variables (Sect. 11.2.6) can also be used for interactions among latent variables.

The procedure proposed by Jöreskog consists in estimating the factor scores for the

unobserved, latent constructs and creating a product term of these scores for the

Fig. 11.45 (continued)

Table 11.1 STATA

commands for tests of

equality of parameters

across groups

Class description Class name

Structural coefficients scoef

Structural intercepts scons

Measurement coefficients mcoef

Measurement intercepts mcons
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latent variables concerned. Then a moderated regression including the interaction

term can be estimated.

With this approach, the errors in measurement are taken into consideration in the

formation of the latent variable scores and, consequently, the regression results do

take into account these measurement errors into account. However, the errors in

measurement are then reflected only on the factor loadings and consequently on the

weights applied to the items reflecting the latent construct. The same problem as

indicated earlier applies here as well, i.e., the fact that the factor scores are specific

to the sample. But more critical here is the fact that the reliability of the measures

(the variance of the measurement error terms) is not used. This means that the

regression weights are still biased due to the measurement uncertainty. The method

proposed in the next section, the extended LISREL model, solves this problem. As

such, it should now be recommended as best practice.

Jöreskog’s method has an advantage, however, because it uses factor scores and

is thus very robust, while the extended LISREL model may not easily converge.

The fact that the least squares estimator also uses factor scores makes it possible to

apply the bootstrapping estimation of a moderated mediation effect using the

subroutine described earlier in Sect. 11.2.2.3. In fact, if the variances of the

measurement errors are small, as they should be if the measurement model provides

a good fit, the results of both methods should be very similar. In general, from a

practical point of view, it is advisable to use both approaches and to compare

their results.

The Extended LISREL Model

In this method, the approach used in moderated regression is applied to the case of

latent variables. Let us consider the model represented graphically in Fig. 11.46.
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Fig. 11.46 Interactions

among latent constructs
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In Fig. 11.46, two latent constructs ξ1 and ξ2 interact (as a result of, for example,

ξ2 moderating the effect of ξ1 on η1). Each construct is measured by three manifest

variables (items). The product term of the two latent constructs expresses the

interaction just as in moderated regression analysis. The difference is that the

components of this “product construct” are not measured without error. Neverthe-

less, each of the combinations of the items measuring its components is a measure

of the product/interaction construct. If one would consider all the combinations of

the items involved in the interaction term, it would lead to the full model as

originally proposed by Jöreskog and Yang (1996), following the Kenny and Judd

(1984) procedure. This, however, implies a repetition of each item in creating

multiple product terms among the observed indicators. Therefore, the extended

model typically considers the matched-pair strategy where each item is used only in

one combination. This strategy is reflected in Fig. 11.46 where the product of latent

constructs is reflected by the three product terms of the measures of the latent

constructs ξ1 and ξ2.
This does not solve all the issues because the model described in Fig. 11.46 has

implicit constraints on the parameters due to the repetition of the measures and of

the latent variables. These restrictions should be imposed while estimating the

model parameters. This will lead to the constrained extended interaction model.

We now examine the nature of the restrictions that need to be imposed and then we

illustrate the method with an example.

Let us consider two items i and j, each measuring a different latent variable ξ1
and ξ2. The measurement equations are given by Eqs. (11.44) and (11.45):

Xi¼λi1ξ1þδi (11.44)

Xj¼λj2ξ2þδj (11.45)

The product term item is Xij ¼ XiXj. Replacing these variables with their theo-

retical expression leads to

Xij ¼ λi1ξ1 þ δið Þ λj2ξ2 þ δj

 �

(11.46)

¼ λi1λj2ξ1ξ2 þ λi1ξ1δj þ λj2ξ2δi þ δiδj (11.47)

Grouping the last three terms in Eq. (11.47) as the measurement error term δqþ1,

Xij ¼ λqþ1ξ1ξ2 þ δqþ1 (11.48)

The subscript (q + 1) corresponds to the fact that there are q exogenous items

and that each product term of the components of the interaction term adds to the

number of exogenous variables. The expression in Eq. (11.48) implies a particular

structure of the variance:
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V Xij


 � ¼ λ2qþ1V ξ1ξ2ð Þ þ θδqþ1
(11.49)

Furthermore, the augmented factor loading matrix, the Φ matrix of the covari-

ance of the latent constructs, and the θδ matrix of the covariance of measurement

errors must be constrained to reflect the specific structure imposed by the interac-

tion terms:

λ2qþ1 ¼ λ2i1λ
2
j2 (11.50)

θδqþ1
¼ λ2i1V ξ1½ �θδ j þ λ2j2V ξ2½ �θδ i þ θδ iθδ j ¼ λ2i1Φ1θδ j þ λ2j2Φ2θδ i þ θδ iθδj (11.51)

V ξ1ξ2½ � ¼ V ξ1½ �V ξ2½ � þ Cov ξ1; ξ2½ �ð Þ2 ¼ Φ1Φ2 þΦ2
12 (11.52)

Equations (11.51) and (11.52) follow from the formula for the variance of the

product of two normally distributed random variables. The general formula for two

random variables X and Y is

V XY½ � ¼ E X½ �ð Þ2V Y½ � þ E Y½ �ð Þ2V X½ � þ V X½ �V Y½ � þ 2E X½ �E Y½ �Cov X; Y½ �
þ Cov X; Y½ �ð Þ2 (11.53)

In single-group analysis of covariance, the variables are mean centered (i.e.,

have a mean of 0) because the mean of the unobserved constructs cannot be

estimated. Then, when the variables in Eq. (11.53) are mean centered, this expres-

sion reduces to

V XY½ � ¼ þV X½ �V Y½ � þ Cov X; Y½ �ð Þ2 (11.54)

This expression reduces further when the two random variables are indepen-

dently distributed to

V XY½ � ¼ þV X½ �V Y½ � (11.55)

Equation (11.51) follows directly from this last formula applied to Eq. (11.47)

because of the independence of the unobserved construct with the measurement

errors. Equation (11.52) is purely derived from the formula in Eq. (11.54). In

addition, the means of the product term of the latent constructs is simply the

covariance between the two constructs:

E ξ1ξ2½ � ¼ Φ12 (11.56)

Consequently, the mean vector κ contains these constraints for the product term
means. This implies that a mean structure must always be specified when estimating

a model with interaction terms among the latent constructs.

One additional covariance must be examined; it is the covariance between the

product term of the unobserved constructs with each of its components, i.e., Cov

[ξ1, ξ1ξ2].
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The covariance between a product term XY and one of its components X is

given by

Cov X;XY½ � ¼ V XY½ �E X½ � þ E X � X

 �2

Y � Y

 �h i

þ E Y½ �V X½ � (11.57)

When the variables are mean centered, Eq. (11.57) reduces to

Cov X;XY½ � ¼ E X � X

 �2

Y � Y

 �h i

¼ E X2Y
� 

(11.58)

Applying Eq. (11.58) to the latent variables ξ1 and ξ2,

Cov ξ1, ξ1ξ2½ � ¼ E ξ21ξ2
� 

(11.59)

It should be noted that, as shown in the literature on mean centering in

moderated regression, the expression in Eq. (11.59) is not zero. The fact that the

variables have zero mean, however, reduces the correlation. McClelland and Judd

(1993) note that when the two components “are centered and are either jointly

symmetric or stochastically independent,” the expression in Eq. (11.58) is equal to

zero (p. 378). This may explain why this expression has been constrained to zero,

even though the latent constructs are correlated (Φ12 6¼ 0). Furthermore, as noted

by Kenny and Judd (1984), this model and estimation through maximum likelihood

implies that the product terms are normally distributed, which is not the case if the

individual components are themselves normally distributed.

We now illustrate the method with an example involving three latent constructs,

each measured with four items. The second latent factor is expected to moderate the

effect of the first latent factor; consequently, an interaction between these two latent

variables is specified. The endogenous variable is observed, i.e., has only one

measure for which the loading is constrained to unity and the corresponding error

variance to zero.

The LISREL file corresponding to the problem is shown in Fig. 11.47.

The code highlighted in grey indicates the constraints that are imposed on the

parameters. The first set of constraints applies to the factor loadings of the product

term latent variable. These correspond to Eq. (11.50):

CO LX 14; 4ð Þ ¼ LX 2; 1ð Þ�LX
6, 2�
CO LX 15; 4ð Þ ¼ LX 3; 1ð Þ�LX
7, 2�
CO LX 16; 4ð Þ ¼ LX 4; 1ð Þ�LX
8, 2�

The constraint on the variance of the interaction latent variable corresponds to

Eq. (11.52) as follows:

CO PH 4; 4ð Þ ¼ PH 1; 1ð Þ�PH 2; 2ð Þ þ PH 2; 1ð Þ��2
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The mean of the latent interaction variable corresponds to Eq. (11.56) as follows:

CO KA 4ð Þ ¼ PH 2; 1ð Þ
Finally, according to Eq. (11.51), the variances of the measurement errors

corresponding to the four products used as indicators of the interaction latent

construct are specified as follows:

CO TD 13; 13ð Þ ¼ PH 1; 1ð Þ�TD
5, 5�þ PH 2; 2ð Þ�TD
1, 1�þ TD 1; 1ð Þ�TD
5, 5�
CO TD 14; 14ð Þ ¼ LX 2; 1ð Þ��2�PH 1; 1ð Þ�TD
6, 6�þ LX 6; 2ð Þ��2�PH 2; 2ð Þ�TD
2, 2�þ TD 2; 2ð Þ�TD
6, 6�
CO TD 15; 15ð Þ ¼ LX 3; 1ð Þ��2�PH 1; 1ð Þ�TD
7, 7�þ LX 7; 2ð Þ��2�PH 2; 2ð Þ�TD
3, 3�þ TD 3; 3ð Þ�TD
7, 7�
CO TD 16; 16ð Þ ¼ LX 4; 1ð Þ��2�PH 1; 1ð Þ�TD
8, 8�þ LX 8; 2ð Þ��2�PH 2; 2ð Þ�TD
4, 4�þ TD 4; 4ð Þ�TD
8, 8�

The results are shown in the LISREL output reproduced in Fig. 11.48.

The model fits the data matrix very well, providing a nonsignificant chi-square of

145.245. The results are displayed graphically in Fig. 11.49.

Fig. 11.47 LISREL input for model of interactions between latent variables—Constrained

(Examp11-10.ls8)
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As shown in the output tables (Fig. 11.48) and graph (Fig. 11.49), the interaction

latent variable is positive (i.e., 0.37), which is consistent with the moderating effect

of XI2 on the effect of XI1 on the dependent variable Y.

It has also been suggested that the model could be estimated without specifying

these constraints (Kelava, Moosbrugger, Dimitruk, & Schermelleh-Engel, 2008).

The unconstrained model specification is shown in Fig. 11.50.

Fig. 11.48 LISREL output for model of interactions between latent variables—Constrained

(Examp11-10.out)
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It should be noted that, while there is no constraint imposed on the covariances,

it is important to maintain the constraints on the factor loadings and on the mean of

the latent product term. The output of the estimation of such a model is shown in

Fig. 11.51.

Fig. 11.48 (continued)
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Fig. 11.48 (continued)
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Fig. 11.48 (continued)
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This results in very similar parameter estimates with a chi-square that is slightly

smaller (with five more parameters estimated leading to 132 degrees of freedom

vs. 137 for the constrained estimation). The structural relationships are shown in

Fig. 11.52.

These results are consistent and almost identical to those obtained with the

constrained estimation.

Fig. 11.48 (continued)
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To illustrate the use of STATA with such models, we will take two different

approaches. It should be noted that the LISREL example used above estimates

simultaneously the measurement and the structural parameters. However, as

discussed in Chap. 10, it is more appropriate not to trade off measurement fit with

structural tests. Consequently, we concluded that an appropriate procedure consists

in estimating the measurement model parameters first. In a second stage, the

structural parameters can be estimated fixing the measurement model parameters

estimated via a confirmatory factor analysis. This means that, in the presence of

interactions, the constraints presented above for the interaction components are

known. The factor loading of the product of two items is the product of the

estimated parameters of these items taken individually. Also, the variance of the

product term construct can be set to the estimated value of the covariance of the two

relevant constructs. These being the most critical constraints and the variances

being fully specified by these values, a simple STATA model can be defined as

provided in Fig. 11.53.

The values defined for the factor loadings are those obtained from a prior

confirmatory factor analysis. The loadings of the interaction items are the products

of the respective loadings of each component item; for example, the loading of

x2x6 is the product of the loading of x2 on XI1 (i.e., 0.944) and the loading of x6 on

Fig. 11.49 LISREL output graph for model of interactions between latent variables—Constrained

(Examp11-10.pth)
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XI2 (i.e., 0.913), which gives 0.944 � 0.913 ¼ 0.8619. The means of the exoge-

nous latent variables are set to a value of 0, except for the interaction latent

construct that is constrained to equal the covariance of the latent variables XI1

and XI2 (i.e., �0.0504738, as per the output of the confirmatory factor analysis—

not shown here). In complex models, it is often necessary to provide initial values in

order to prevent non-concavity and endless iterations of the optimization routine.

This is done by indicating starting values for the structural parameters to be

estimated in the structural equation specifications. The commands highlighted in

grey, “init(value)” in Fig. 11.53, are for that purpose. The specific values can be

taken from a different model estimation, for example as suggested below using least

square estimation methods with factor scores or unweighted composite scales.

The results, as seen in Fig. 11.54, show values of the structural parameters

similar to those obtained via LISREL above. The constraint on the variance of

the latent product construct can also be added at the end of the option line:

“, var(e.y@0) means(XI1@0 XI2@0 XI3@0 XI1xXI2@-0.0504738) var

(XI1xXI2@1.3032)”

Fig. 11.50 LISREL input for model of interactions between latent variables—Partially

constrained (Examp11-11.ls8)
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Fig. 11.51 LISREL output for model of interactions between latent variables—Partially

constrained (Examp11-11.out)
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where “1.3032” corresponds to Eq. (11.52), in our case 1.3032 ¼ 1.03 � 1.0179

+ (�0.504738)2. The results of these alternative commands are not shown since

they are essentially identical to those reported in Fig. 11.54.

Fig. 11.51 (continued)
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Fig. 11.51 (continued)
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The structural coefficients are highlighted in grey in Fig. 11.54 with values of

0.33, �0.47, 0.12, and 0.45, respectively, for the impact of XI1, XI2, XI3, and the

interaction XI1xXI2.

Yet another solution would be to compute the factor scores corresponding to the

confirmatory factor analysis. As mentioned earlier, when the factor loadings are

fixed, the problem is equivalent to estimating the structural parameters where the

endogenous and exogenous variables are derived from the factor loadings. As

shown in Chap. 3, it is possible to go from factor loadings to the linear combination

(weighted composite scale) of the observed variables. Therefore, by using the factor

Fig. 11.51 (continued)
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Fig. 11.52 LISREL output graph for model of interactions between latent variables—Partially

constrained

Fig. 11.53 STATA input for model of interactions between latent variables—Constrained

(Examp11-11.do)
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Fig. 11.54 STATA output for model of interactions between latent variables—Constrained

(Examp11-11.log)
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Fig. 11.54 (continued)
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scores from a confirmatory factor analysis, least square methods can be used to

estimate the structural parameters. Depending on the nature of the model, ordinary

least squares, seemingly related regression, and two- or three-stage least squares

can be used. The conditions for which estimation is appropriate are presented in

Chap. 6. A simple example is shown with the STATA input file in Fig. 11.55.

We first generate the interaction term of the factor scores corresponding to the

moderation effect. Then, in this example, we use simple multiple regression

(regress) because there is a single endogenous variable. When there are multiple

endogenous variables, seemingly unrelated regression (“sureg” in STATA) or

three-stage least squares (“reg3” in STATA) is used instead to take into account

the contemporaneous correlations of the error terms of each equation. The results

are shown in Fig. 11.56.

Fig. 11.54 (continued)

Fig. 11.55 STATA input for model of interactions using factor scores (Examp11-12.do)

442 11 Testing Mediation and Moderation Effects

http://dx.doi.org/10.1007/978-1-4614-8594-0_6


As can be seen, the results are almost identical to those obtained with the

structural equation model estimations. The estimates are exactly the same with

two digits after the decimal point for the effects of xi1, xi2, xi3, and the interaction

of, respectively, 0.33, �0.47, 0.12, and 0.45. If mediating variables are involved, it

is then possible to use the bootstrapping procedure described earlier combined with

the seemingly unrelated regression estimation.

11.4 Testing Moderated Mediation Effects

We do not discuss here the case of mediated moderation because, as discussed in

Sect. 11.1.3, this leads to a system of recursive multiple equations and we refer the

researcher to Chap. 6 to simultaneously estimate all the relevant paths. Here we

consider models of moderated mediation effects. The two cases schematized in

Fig. 11.3 are more formally represented in Fig. 11.57.

In Fig. 11.57 the independent variable is noted by X, the dependent variable

by Y, and the mediating variable by M. The two moderating variables are noted by

W and Z, respectively, for the moderation of the mediating equation (from X to M)

and for the dependent variable equation (from M to Y). Note that the variables W

and Z could represent the same variable, but here we use different symbols to

provide the more general case where they correspond to different conditions. As

indicated earlier in this chapter, W illustrates a case of stage-one moderated

Fig. 11.56 STATA output for model of interactions using factor scores (Examp11-12.log)

X M Y

W ZFig. 11.57 Formalization

of model with one mediator

and two moderators
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mediation and Z illustrates a case of stage-two moderated mediation. These two

effects are represented algebraically in Eqs. (11.60) and (11.61):

mi ¼ a0 þ a1 þ a2wið Þxi þ umi (11.60)

yi ¼ b0 þ b1 þ b2zið Þmi þ uyi (11.61)

Similar to the derivations in Sect. 11.2.4.1 with nonlinear effects, the marginal

indirect effect theta is the partial derivative that makes use of the chain rule so that

f θ
��w, z
 � ¼ a1 þ a2wð Þ b1 þ b2zð Þ (11.62)

θ is a function of the two moderators. Therefore, the indirect effect is not fixed but

depends on the values taken by these moderator variables. Consequently, just as in

the case of nonlinear effects, the researcher must evaluate the indirect effects over a

range of values of the moderators.

Therefore, conceptually, these models of moderated mediation do not require

any new analytical treatment. The same problems as identified above for testing

mediation arise here as well. The bootstrapping method provides once more a

solution to the estimation of the product terms shown in Eq. (11.62). Preacher,

Rucker, and Hayes (2007) provide an algorithm in SPSS to provide a distribution of

this product term for different levels of the moderators. In addition to providing the

confidence intervals for the standard � 1σz, it is possible to request the estimation

at a particular value of the moderators from the minimum to the maximum values

in the data. The procedure proposed earlier in this chapter in STATA (Fig. 11.10)

can easily be adapted to the system of equations illustrated in Fig. 11.57: the use of

the procedure “sureg” (seemingly unrelated regression) takes into account the

correlations of error terms across equations and can include all the relevant product

terms implied by the moderated effects, as discussed in the previous section of this

chapter. Such a procedure is illustrated by the example in Fig. 11.58, which

represents a more complex model with two mediator variables where variable x2

acts as a moderator of the effect of x3 on the second mediator (m2).

The STATA subroutine for performing a bootstrap estimation is shown in

Fig. 11.59.

In this example, the variables are all mean centered, so constant terms are not

estimated. The interaction term x3x2 has been generated as a variable introduced in

Fig. 11.58 Example of

stage-one moderated

mediation
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the data set. Here, indirect1 and indirect2 are the estimates of the indirect effect at

minus one standard deviation (1 in this case because the moderator variable has

been standardized) and plus one standard deviation from the mean of the moderator

variable x2. The value 1 can easily be replaced by any other value, for example at

the extreme values of the range of the moderator variable.

Figure 11.60 gives the STATA code for doing the estimation on a specific

data set.

The STATA output is identical to the one shown earlier in this chapter with the

mean and confidence intervals of these indirect effects.

Just as we discussed the possibility of estimating moderated effects with struc-

tural equation models that take into account measurement errors, the same methods

can be applied in the case of moderated mediation models. If the moderator variable

is a nominal variable, multiple-group analysis can be performed to test the equality

of the structural coefficients across groups (i.e., levels of the moderator variable).

Note that the practice of dichotomizing a continuous moderator variable for group

analysis is indeed one way to deal with moderated mediation models but note also

that this reflects a loss of information and is not generally recommended. As

discussed in Chap. 5, tests of equality of coefficients or pooling tests allow us to

first perform a joint test of the overall equality of structural parameters. If the joint

test fails, the null hypothesis of no moderated effect cannot be rejected. If signifi-

cant, further tests can be performed about the source of the moderation to discrimi-

nate between first-stage, second-stage, and direct-moderated mediation if these

possibilities all have theoretical meaning.

When the moderator variable is continuous, the models of moderated mediation

are no different from any structural equation models with interactions. Therefore,

the estimation methods presented in the section on testing moderation effects are

perfectly appropriate and do not require any particular adaptation.

Fig. 11.59 STATA example of bootstrap subroutine

Fig. 11.60 STATA example of bootstrap estimation of indirect effects in moderated mediation
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11.5 Stating Mediation and Moderation Effect Hypotheses

In this section, we raise several issues that appear when developing and presenting

hypotheses involving mediation and moderation.

11.5.1 Stating Hypotheses About Mediation

We have discussed the issue raised by the fact that a mediation process could be

significant, even if the direct relationship between an independent variable and a

dependent variable may not be significant. This was due to the possibility of

missing factors, especially missing mediation explanations that work in parallel

with the central explanation being tested. In spite of this, the theory development

process rarely starts with an explanatory mechanism in search of relationships

between variables to be explained. More commonly, it is the observation of a

phenomenon that occurs regularly that raises the question of why this phenomenon

may be occurring. At times, the relationship between x and y has been established

and the research is only about testing the explanation. It does occur, however, that

both the effect of x on y and the explanatory mechanism are to be demonstrated

together. In such cases, it is more effective to hypothesize an effect of x on y before
an explanatory mechanism is advanced.

Another critical issue when considering mediation hypotheses concerns the

discriminant validity of the variables under investigation. M should not be just an

operational measurement of X or the manipulation levels of X.

11.5.2 Stating Hypotheses About Moderation

It may appear logical to first state a general hypothesis before introducing

moderating effects for that effect. However, this may not always make sense.

If an effect (in a particular direction) dominates over the range of a moderator

variable, then there is no issue in stating such a “main effect” hypothesis. However,

if the sign of the effect depends on the level of the moderator, stating a general

positive (or negative) effect first does not make sense, since it is contradicted by the

moderating hypothesis.

Consequently, if a moderating process is hypothesized, it appears more logical to

start with the development of the complete theory, including the moderation effects,

and state the moderating hypothesis first. The effects for particular levels of the

moderator or throughout ranges of values may then be described as additional

hypotheses.

Regardless, the test for the existence of a moderation effect should always come

first. The reason for this precedence is that estimates obtained from a model that

would ignore moderator effects when they would be significant are biased (since the

interactions are generally correlated with the model’s components).
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11.6 Assignment

Using either the data from the SURVEY or from the INDUP and PANEL files

(described in Chap. 14), develop and test hypotheses where a mediation process is

involved as well as conditional hypotheses that you can investigate with tests of

moderation. The variables corresponding to the various files are described in

Appendix C (Chap. 14). Figure 5.4 in Chap. 5 shows how to read and merge the

data that are in the INDUP and PANEL files. Figure 11.61 provides an example of

an input file in SAS for a mediation test using the data in the SURVEY file.
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Chapter 12

Cluster Analysis

The objective of cluster analysis is to group observations (e.g., individuals) in such

a way that the groups formed are as homogeneous as possible within each group and

as different as possible across groups.

These criteria remind us of those for discriminant analysis where the objective is

to derive a linear combination of the variables such that this transformed linear

combination would exhibit the largest difference between centroids but the smallest

variance within groups. However, in discriminant analysis, the groups are known a

priori. The purpose of cluster analysis is to form such groups. These groups are

called “clusters.”

This type of analysis is particularly relevant in market research where market

segments are sought out in order to address, from a practical point of view, the

heterogeneity of consumers. This technique is generally most useful in any situation

where the analyst needs to reduce the heterogeneity of observations by forming a

manageable number of groups that should reflect the diversity of these

observations.

12.1 The Clustering Methods

The clustering solutions are found by applying an algorithm that determines the

rules by which observations are aggregated. A number of algorithms can be found

in the literature. They are more or less complicated procedures based on “rules” that

lead to reasonable solutions, although these procedures are clearly not grounded in

statistical theory, and different algorithms often lead to different solutions. For this

reason, it is particularly critical to understand the specific “rules” used in each

method and to identify the specific method used in reporting the clustering solution

found.

Algorithms can be classified into two groups: hierarchical methods and nonhier-

archical methods.
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Hierarchical algorithms are the most common methods of cluster analysis. In

such algorithms, observations are added to each other one by one in a treelike

fashion. Such a tree can be graphed to form a dendrogram showing the aggregation

process from the N groups made up of the N individuals to any level of K groups.

In nonhierarchical algorithms, the number of groups K is known (or assumed) a

priori, and each observation is assigned one of the K groups according to its

distance to the group centroid and keeps being relocated until a stopping rule

criterion is verified.

12.1.1 Similarity Measures

Any of these methods requires the proximity of the observations to be measured.

These proximity measures can take multiple forms although, given the multivariate

description of the observations through P variates, the Euclidean distance or related

measures come immediately to mind. The squared distance between objects i and
j is therefore

d2ij ¼
XP
p¼1

xpi � xpj
� �2 ¼ xi

P�1
�xj

� �0

xi � xj
� �

(12.1)

where xpi ¼ value of observation i on variate p.
It is clear from this expression in Eq. (12.1) that the scale of each variable can

have a large impact on the distance measure. Therefore, the question of

standardization of the variable is a pertinent one. Unfortunately, there is no obvious

response to that question. It is therefore important to compare results using Euclid-

ean distances with those using standardized measures of similarity. The

standardized Euclidean distance is given by Eq. (12.2):

d2ij ¼ xi � xj
� �0

D�1 xi � xj
� �

(12.2)

where the diagonal matrix D contains the variances of the variables across

observations σ2p . The more general Mahalanobis’ ellipse measure considers the

correlations between the variables, represented in the off-diagonal elements of the

covariance matrix Σ in Eq. (12.3):

d2ij ¼ xi � xj
� �0

Σ�1 xi � xj
� �

(12.3)

12.1.2 The Centroid Method

The centroid is the average value of each variate across the observations in a group.

The algorithm of the centroid method starts by bringing together into the first group
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observations that exhibit the smallest distance from each other. These two

observations that are the closest form the first group. In a second step, the centroid

formed by this group is computed. The observations that have not yet been assigned

to the group are then assessed based on their distances from each other as well as

their distance to the centroid of the first group formed. The observations or group

corresponding to the smallest distance of all combinations are grouped together.

That is, if the smallest distance formed by a pair of observations is not yet part of a

group, then a new group is formed. Otherwise, the observation with the smallest

distance to the centroid of an existing group joins this group. We then continue the

process of step 2 until all observations fall within a single group.

We now illustrate the centroid method using a small sample data set.

Let us consider the data in Table 12.1 where six individuals are characterized by

two variables, variable 1 and variable 2.

Step 1 (s ¼ 1): Calculate the Euclidean distances between all pairs of observations
according to Eq. (12.1). These calculations lead to the matrix of similarities

between each of the six individuals as shown in Table 12.2.

Taking the smallest distance indicates that we should group individuals 2 and

6, as they are the closest together with a distance of only 4.

Step 2 (s ¼ 2): In this step, we need to first compute the means (centroids) of the

variates for the first cluster (2,6), with the value of the variates for the other

individuals remaining and the value of the variable of each individual since, at

this stage, each individual constitutes its own cluster. This forms the N � 1 cluster

solution (i.e., five clusters in our example). Then, the new distance matrix can be

computed between this first cluster and each of the other individuals.

(i) Compute centroids of N � 1 ¼ 5 clusters.

The averages lead to the new table of data shown in Table 12.3. The average

value on variable 1 for cluster (2,6) is the average of the values of that variable

Table 12.1 Sample data Individual Variable 1 Variable 2

1 15 12

2 10 20

3 14 18

4 10 14

5 16 15

6 8 20

Table 12.2 Dissimilarity

measures based on Euclidean

distances (only the upper half

of the symmetric matrix is

shown)

Individuals 1 2 3 4 5 6

1 0 89 37 29 10 113

2 0 20 36 61 4

3 0 32 13 40

4 0 37 40

5 0 89

6 0
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for individuals 2 and 6, i.e., (10 + 8)/2 ¼ 9. The same calculation is made for

variable 2, which results in a value of 20.

(ii) Compute Euclidean distances between each group centroid.

The Euclidean distance between each of these five groups is computed using

Eq. (12.1) applied to the data in Table 12.3. This results in the new dissimilarity

matrix shown in Table 12.4 between the first cluster (2,6) and each of the other

individuals.

The smallest distance is between individuals 1 and 5 with a distance of 10.00,

leading to grouping individuals 1 and 5 into a new cluster for an N � 2 or a 4-

cluster solution.

Step 3 (s ¼ 3): Step 2 is now repeated with N � 2 data points.

(i) Compute centroids of N � 2 ¼ 4 clusters.

First we compute the average values of each variate for the two clusters found,

with the values of the other individuals remaining unchanged. This gives the

new data matrix as shown in Table 12.5. For example, the average value of

variate 1 for cluster (1,5) is (15 + 16)/2 ¼ 15.5.

(ii) Compute Euclidean distances between each group centroid.

We can then compute the dissimilarity matrix, which results in Table 12.6.

The smallest distance is now between individual 3 and cluster (1,5), leading to a

change in one cluster from two individuals (1,5) to three individuals (1,3,5).

Table 12.4 Five-cluster

dissimilarity matrix
Individuals

(clusters) (2,6) 1 3 4 5

(2,6) 0 100.00 29.00 37.00 74.00

1 0 37.00 29.00 10.00

3 0 32.00 13.00

4 0 40.00

5 0

Table 12.3 Centroids

for 5-cluster solution
Individuals (clusters) Variable 1 Variable 2

(2,6) 9.0 20.0

1 15.0 12.0

3 14.0 18.0

4 10.0 14.0

5 16.0 15.0

Table 12.5 Centroids for

4-cluster solution
Individuals (clusters) Variable 1 Variable 2

(2,6) 9.0 20.0

(1,5) 15.5 13.5

3 14.0 18.0

4 10.0 14.0
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Therefore, we now have three clusters (N � 3) composed of cluster 1 ¼ (2,6),

cluster 2 ¼ (1,3,5), and cluster 3 ¼ (4). This is the 3-cluster solution.

Step 4 (s ¼ 4): We now perform the same procedure for the N � 3 ¼ 3 clusters.

(i) Compute centroids of N � 3 clusters. This is done in Table 12.7.

(ii) Compute Euclidean distances between each group. The results of these

computations are shown in Table 12.8.

The clusters (1,3,5) and individual 4 are the least dissimilar with a distance of

26.00, which leads to forming a single cluster composed of these four individuals:

1, 3, 4, and 5. This gives us the 2-cluster solution: (2,6) and (1,3,4,5).

This is the last step that occurs when only two clusters remain (value of step

s when N � s + 1 ¼ 2), since only one way is left for them to be grouped together.

The dendrogram illustrated in Fig. 12.1 summarizes the results of the full process.

The individuals are represented on the x-axis without reflecting any scale but simply

in the order in which they enter the clustering hierarchy. The y-axis represents the
Euclidean distance (on standardized variables in the figure) between each cluster for

any solution of (N � s + 1) clusters (where s is the step of group formation).

12.1.3 Ward’s Method

The criterion used in Ward’s algorithm to add observations to a group is the within-

clusters sum of squares (Eq. (12.5) gives the formal formula of the sum of squares

measure). Therefore, at each step, the within-clusters sum of squares is computed

for all possible combinations remaining.

Table 12.7 Centroids for

3-cluster solution
Individuals (clusters) Variable 1 Variable 2

(2,6) 9.0 20.0

(1,3,5) 15.0 15.0

4 10.0 14.0

Table 12.8 Three-cluster

dissimilarity matrix
Individuals (clusters) (2,6) (1,3,5) 4

(2,6) 0 61.00 37.00

(1,3,5) 0 26.00

4 0

Table 12.6 Four-cluster

dissimilarity matrix
Individuals (clusters) (2,6) (1,5) 3 4

(2,6) 0 84.50 29.00 37.00

(1,5) 0 22.50 30.50

3 0 32.00

4 0
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For the first step, all the possible combinations of pairs of observations are

considered as potentially forming the first cluster, with each of the remaining

observations forming each one of the N � 2 remaining clusters. The sum of squares

of each of these pairs of observations is obtained by taking the deviations from the

cluster mean, squaring it, and summing it over the P variates. In that first step, only

the pairs of observations in the first potential cluster count since the other clusters

have a single observation, showing zero deviation from that centroid.

Therefore the pair means or centroids are first computed according to Eq. (12.4):

x p i; jð Þ ¼ 1

2
xpi þ xpj
� �

(12.4)

where i and j are the indices for the two individual observations.

p is the index for the variable or the variate.

xpi is the coordinate or the value of observation i on variate p.
x p i; jð Þ is the mean of variate p for observations i and j.

The squared deviations from the centroid can then be computed as

d i; jð Þ ¼
XP
p¼1

xpi � x p i; jð Þ� �2 þ xpj � x p i; jð Þ� �2n o
(12.5)

Fig. 12.1 Dendrogram for centroid method on illustrative sample
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The combination that provides the smallest value d(i,j) is chosen for the first

cluster. As indicated above, the other N � 2 clusters are composed of the single

remaining observations.

For the subsequent steps, all combinations for grouping two of the first-step

clusters together are considered. These steps consist of adding to cluster 1 any

observations not already in it, as well as considering grouping this observation with

any of the other N � 2 clusters made up of single observations. The sum of squares

is then computed for any such combination. More generally, at any step s, we
will be considering (N � s) clusters. A number of alternative combinations are

then possible; let us index any of these alternatives by a. We designate the combi-

nation of a particular cluster formed within that alternative a as Ck(a), where
k ¼ 1,. . .(N � s) and which contains a number of observations in the cluster,

i.e., Ck(a) ¼ {i,j,. . .}. We first compute the centroid of the cluster made of the

subset of observations Ck(a):

x p Ck að Þð Þ ¼ 1

nCk að Þ

X
j∈Ck að Þ

xpj (12.6)

where p is the variate index and nCk að Þ is the number of observations in subset Ck(a).

The squared deviations from the centroid are then

d Ck að Þð Þ ¼
XP
p¼1

X
j∈Ck að Þ

xpj � x p Ck að Þð Þ� �2
(12.7)

The sum of squares of a particular alternative a is the sum over the number of

clusters at step s (i.e., N � s) of the deviations within each cluster. Therefore,

d að Þ ¼
XN�s

k¼1

d Ck að Þð Þ (12.8)

The alternative that provides the smallest value d(a) is then chosen for the

next step.

In step 2, this choice could result in an observation being added to the two

observations constituting cluster 1 or to any other observation, thus forming another

cluster with more than one observation. The process continues until all observations

are allocated to a cluster. Therefore, this procedure takes N � 1 steps.

We illustrate the process of Ward’s method with the same data as used previ-

ously for the centroid method (Table 12.1).

Step 1: In this step, we consider all the alternatives for classifying the six

individuals (observations) into five groups or clusters. We then select the alternative

that provides the smallest sum of squares.

Assign to cluster 1 all possible combinations of pairs among the six indivi-

duals (C6
2 ¼ 15 combinations) and the remaining observations to each of the
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remaining clusters. These various alternatives can be considered by developing the

6-by-6 matrix (displayed in Table 12.9), where only the upper half needs to be

considered because the bottom half represents the identical combinations.

To complete the example, we can represent the full set of alternatives with all the

elements composing each of the five clusters as shown in Table 12.10.

Compute within-cluster sums of squares for each combination and pick the combi-

nation with the smallest sum of squares (ties are broken by picking one randomly).

These sums of squares for each combination are calculated and displayed in the

last column of Table 12.10. The smallest value is for the combination where

individuals 2 and 6 are grouped together to form cluster 1. Therefore, this cluster

(2,6) becomes the first step in the hierarchy. We are now ready for step 2.

Step 2: We now consider all the alternative 4-cluster solutions given that cluster

1 contains individuals 2 and 6. These are represented in Table 12.11.

The full description of each alternative at this stage is shown in Table 12.12 with

the computed values of the within-clusters sums of squares for each alternative.

The smallest within sum of squares indicates that a second cluster should be formed

with individuals 1 and 5. At this stage, this gives us two clusters of two individuals

(2,6) and (1,5) and two clusters with a single individual, i.e., individuals 3 and 4.

Table 12.9 Possible

alternatives of 2-individual

clusters in step 1

Individuals 1 2 3 4 5 6

1 – (1,2) (1,3) (1,4) (1,5) (1,6)

2 – (2,3) (2,4) (2,5) (2,6)

3 – (3,4) (3,5) (3,6)

4 – (4,5) (4,6)

5 – (5,6)

6 –

Table 12.10 Composition

of all possible groups of five

clusters and corresponding

sum of squares

Alternative

Cluster composition Sum of

squaresCL1 CL2 CL3 CL4 CL5

1 (1,2) 3 4 5 6 44.50

2 (1,3) 2 4 5 6 18.50

3 (1,4) 2 3 5 6 15.00

4 (1,5) 2 3 4 6 5.00

5 (1,6) 2 3 4 5 56.50

6 (2,3) 1 4 5 6 10.00

7 (2,4) 1 3 5 6 18.00

8 (2,5) 1 3 4 6 30.50

9 (2,6) 1 3 4 5 2.00

10 (3,4) 1 2 5 6 16.00

11 (3,5) 1 2 4 6 6.50

12 (3,6) 1 2 4 5 20.00

13 (4,5) 1 2 3 6 18.50

14 (4,6) 1 2 3 5 20.00

15 (5,6) 1 2 3 4 44.50
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Step 3: We now consider all alternatives that would make three clusters. These

combinations can be found in Table 12.13.

The complete description of each alternative is shown in Table 12.14 as well as

the sum of squares for each alternative.

Based on the sum of squares, we now add individual 3 to cluster 2, so it is now

composed of individuals 1, 5, and 3, while cluster 1 remains unchanged and cluster

3 contains a single observation, individual 4.

Table 12.11 Possible

alternatives in step 2
Individuals (2,6) 1 3 4 5

(2,6) – (2,6,1) (2,6,3) (2,6,4) (2,6,5)

1 – (1,3) (1,4) (1,5)

3 – (3,4) (3,5)

4 – (4,5)

5 –

Table 12.12 Composition

of all possible groups of four

clusters and corresponding

sum of squares

Alternative

Cluster composition

Sum of squaresCL1 CL2 CL3 CL4

1 (2,6,1) 3 4 5 68.67

2 (2,6,3) 1 4 5 21.34

3 (2,6,4) 1 3 5 34.67

4 (2,6,5) 1 3 4 227.12

5 (2,6) (1,3) 4 5 20.50

6 (2,6) (1,4) 3 5 17.00

7 (2,6) (1,5) 3 4 7.00

8 (2,6) (3,4) 5 6 18.00

9 (2,6) (3,5) 1 4 8.50

10 (2,6) (4,5) 1 3 20.50

Table 12.13 Possible

alternatives in step 3
Individuals (2,6) (1,5) 3 4

(2,6) – (2,6,1,5) (2,6,3) (2,6,4)

(1,5) – (1,5,3) (1,5,4)

3 – (3,4)

4 –

Table 12.14 Composition

of all possible groups of three

clusters and corresponding

sum of squares

Alternative

Cluster composition

Sum of squaresCL1 CL2 CL3

1 (2,6,1,5) 3 4 116.48

2 (2,6,3) (1,5) 4 26.35

3 (2,6,4) (1,5) 3 39.67

4 (2,6) (1,5,3) 4 22.00

5 (2,6) (1,5,4) 3 27.34

6 (2,6) (1,5) (3,4) 23.00
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Step 4: In the final step where only two clusters are considered, we identify the

alternative combinations of two clusters as shown in Table 12.15.

The complete description of each alternative in this step is shown in Table 12.16

as well as the sum of squares for each alternative.

This step finalizes the process, and the best alternative combination results in two

clusters, one composed of individuals 2 and 6 and one of individuals 1, 3, 4, and 5.

We can follow each step of this process using the dendrogram as shown in

Fig. 12.2.

12.1.4 Nonhierarchical Clustering: K-Means Method

In a nonhierarchical clustering algorithm, the solution is conditional on a

predetermined number of clusters selected a priori. If K is the number of groups

or clusters, the algorithm follows the four basic steps described below:

Step 1: Assign each of the first K observations to the K clusters as the initial

centroids (other assignment rules, such as random selection, offer variants of this

method).

Step 2: Compute the distance from each of the other N � K observations to the

initial K cluster centroids and assign each observation to the cluster that has the

shortest distance (a variant may consist in using a different distance measure). The

commands “Kmeans” in STATA and “FASTCLUS” in SAS use the shortest

distance between an observation and each of the elements contained in a cluster,

instead of the distance to the centroid.

Step 3: Compute the centroids of the K clusters and recompute the distance of each

observation not yet assigned to a cluster. Assign that observation to the cluster that

has the shortest distance (a variant consists in recomputing the centroid after each

observation is assigned).

Table 12.15 Possible

alternatives in step 4
Individuals (2,6) (1,5,3) 4

(2,6) – (2,6,1,5,3) (2,6,4)

(1,5,3) – (1,5,3,4)

4 –

Table 12.16 Composition

of all possible groups of two

clusters and corresponding

sum of squares

Alternative

Cluster composition

Sum of squaresCL1 CL2

1 (2,6,1,5,3) 4 95.20

2 (2,6,4) (1,5,3) 54.67

3 (2,6) (1,5,3,4) 41.48
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Step 4: Repeat step three until the changes in centroids are smaller than a minimum

amount (used as a stopping rule) or the maximum number of iterations has been

reached.

12.2 Examples

We now illustrate the methods described above. We show how to perform such

analyses with both SAS and STATA, using the same data for each. These data

concern the assessment of innovations according to a number of variables reflecting

different types of innovation characteristics.

12.2.1 Example of Clustering with the Centroid Method

The commands for performing cluster analysis are similar across methods whether

in SAS or STATA. Figure 12.3 shows the SAS commands for the centroid method.

The SAS procedure “cluster” is used and the “method¼centroid” command simply

determines the method used. The dendrogram is requested as an output with the

“out¼tree” command. The observations classified are identified with the id for

variable prod (individual product number contained in the variable named “prod”).

Fig. 12.2 Dendrogram for Ward’s method on illustrative sample
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The variables used for the clustering are listed after the key word “var” and include all

the product characteristics it1 through it9.

The observations (products) are sorted by cluster as determined from the results

of the cluster analysis and the dendrogram, which is shown in Fig. 12.5.

However, before describing those results, the equivalent input file in STATA is

shown in Fig. 12.4.

The centroid method of clustering is specified by the “centroidlinkage” com-

mand followed by the list of variables to use to measure distances. The results are

saved in a variable using the “ClusterCentroid” name; this chosen name is inserted

in the parentheses following the “name” option of the cluster command. Groups are

then generated; here two groups are requested to track with the results with two

groups. Finally, the means of the nine product characteristics by cluster are

computed.

Fig. 12.3 SAS commands for centroid method (examp12-1.sas)

Fig. 12.4 STATA commands for centroid method (examp12-1.do)
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We now consider the results of running these input files, comparing the SAS and

the STATA outputs. The results from SAS are shown in Fig. 12.5, and those from

STATA in Fig. 12.6.

The STATA output is listed in Fig. 12.6.

After providing standard statistics of the variables used for the classification

analysis, each step at each level of the hierarchy is shown. For example, at the first

step (i.e., when eight clusters are considered as shown in the output with the value

8 in the NCL column), products 7 and 12 are the least dissimilar and are placed

together in a cluster called CL8. In the next step, when seven clusters are

Fig. 12.6 STATA output of cluster analysis using the centroid method (examp12-1.log)
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considered, product number 3 is the most similar to the newly formed cluster CL8.

This process continues until only two clusters are formed.

The dendrogram corresponding to this analysis (SAS output) is shown in

Fig. 12.7, where the entire hierarchy appears.

Products identified by numbers 1, 4, 5, and 6 appear as dots on the graph and

were not classified because values were missing for some of the variables on these

products. This final classification and the corresponding data are printed in the

output sorted by cluster, and the same data can be found in the SAS work file

“clus2” by clicking in the SAS menu bar on “solutions/Analysis/Interactive Data

Analysis” and then by selecting the SAS library “WORK” and the SAS Data Set

clus2 (the name indicated in the SAS command to create that file). That file is

shown in Fig. 12.8. Note that it is possible to print the file using the File/Print menu

option.

The STATA-generated dendrogram is identical (Fig. 12.9), except for the

observations with missing data that were deleted from the analysis and that conse-

quently do not appear on the graph.

It remains to interpret the grouping found statistically. For that purpose, it is useful

to calculate the means of the variables by cluster, i.e., the values of the centroids at the

final solution of two clusters. This was requested in the last line of the STATA input

commands “mean it1-it9, over(ClusterGroupC)” in Fig. 12.4. In SAS, this can be done

easily by adding the commands that appear at the bottom of Fig. 12.10.

The presentation of the results is somewhat different in SAS, as shown in

Fig. 12.11. The means of all the variables are listed for cluster 1 first and then for

cluster 2.

Fig. 12.7 Dendrogram of cluster analysis using the centroid method—SAS (examp12-1)
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Fig. 12.8 Example of 2-cluster solution with centroid method—SAS (examp12-1)

Fig. 12.9 Dendrogram of cluster analysis using the centroid method—STATA (examp12-1)

Fig. 12.10 Commands for calculating means of clustering variables by cluster—SAS
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The variables that show the largest differences can help interpret the meaning of

the groups. In that sense, cluster analysis is purely exploratory as there is no a priori

theory needed to discover how the observations can be grouped by similarity to

each other.

12.2.2 Example of Clustering with Ward’s Method

The commands in SAS for Ward’s method are the same as in the previous example,

except for replacing “method¼centroid” with “method¼ward” in the proc cluster

command line. An example is shown in Fig. 12.12.

Similarly, the commands in STATA are shown in Fig. 12.13. The commands are

identical, except for the name “wardslinkage” that specifies the Ward method.

The output of the Ward’s method example is given in Fig. 12.14. After the basic

statistics for the variables used in the cluster analysis have been listed, the forma-

tion of the clusters at each step is shown and the final solution is given with the

values of the variables for each observation listed by cluster. The centroids, i.e., the

mean of each variable for each cluster, are then given with the standard deviation

(as well as the minimum and the maximum).

The STATA output is shown in Fig. 12.15.

Finally, the dendrogram is shown in Fig. 12.16 with up to two clusters, as

instructed in the input commands on the proc tree line.

Fig. 12.12 SAS commands for cluster analysis using Ward’s method (examp12-2.sas)
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As for the centroid method, the STATA dendrogram is identical (Fig. 12.17),

except for the observations with missing values that have been deleted.

12.2.3 Examples of K-Means Analysis

Finally, we present examples of K-means analysis using the “FASTCLUS” proce-

dure in SAS and “Kmeans” in STATA.

The “FASTCLUS” procedure is illustrated with input commands in SAS in

Fig. 12.18. The SAS command is “proc fastclus” and the maximum number of

clusters is chosen with the “maxclusters¼2” command. In this particular example,

the observations with missing values have been deleted.

The equivalent analysis in STATA is requested in Fig. 12.19.

The method is specified by the “cluster kmeans” command, followed by the

variables to be used. The number of clusters is indicated by the “k(2)” command.

The variable “ClusterKmeans” contains the cluster assignment of the observations.

Figure 12.20 lists the output. The results indicate the composition of the two

clusters and the cluster means on each of the variables used, similar to the output

from the other methods.

The STATA output of the K-means method is listed in Fig. 12.21.

12.3 Evaluation and Interpretation of Clustering Results

Because cluster analysis techniques are exploratory and are not founded on statisti-

cal theory, authors reporting any cluster solution or the reader of cluster analyses

found in the literature should evaluate very carefully the method used. A number of

issues should be addressed in such reports.

Fig. 12.13 STATA commands for cluster analysis using Ward’s method (examp12-2.do)
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12.3.1 Determining the Number of Clusters

The determination of the number of clusters is a critical choice that, unfortunately,

cannot be inferred from the analysis. In hierarchical methods, the stopping rule is

fairly ad hoc and in the nonhierarchical method presented in this chapter, the choice

must be done a priori. Although we can consider some guiding measures, these are

not without problems and the best argument for the choice of the number of clusters

is probably the one based on the interpretability of the resulting clusters.

Fig. 12.15 STATA output of cluster analysis using Ward’s method (examp12-2.log)
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Fig. 12.16 Dendrogram from Ward’s method—SAS

Fig. 12.17 Dendrogram from Ward’s method—STATA
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12.3.2 Size, Density, and Separation of Clusters

One criterion to assess the quality of a solution is that each cluster must contain a

sufficient number of observations. A lone observation is more probably an outlier

and it may be difficult to describe it based on theory-based distinguishing features.

In general, a balance in the size of clusters may be ideal, although it is by no means

a necessary condition for a meaningful grouping of observations.

In principle, the density and separation of the clusters are more critical because

this discrimination is the reason for choosing cluster analysis. Density refers to how

similar the observations within a group are (i.e., the within-group variance).

Separation refers to the spread or how different observations across groups are

(i.e., the between-group variance). Consequently, the least we would anticipate

from a cluster solution is that the groups are statistically different on the variables

Fig. 12.18 SAS commands for cluster analysis using “FASTCLUS” (examp12-3.sas)

Fig. 12.19 STATA commands for cluster analysis using “Kmeans” (examp12-3.do)

478 12 Cluster Analysis



F
ig
.
1
2
.2
0

S
A
S
o
u
tp
u
t
fo
r
cl
u
st
er

an
al
y
si
s
u
si
n
g
F
A
S
T
C
L
U
S
(e
x
am

p
1
2
-3
.l
st
)

12.3 Evaluation and Interpretation of Clustering Results 479



F
ig
.
1
2
.2
0

(c
o
n
ti
n
u
ed
)

480 12 Cluster Analysis



F
ig
.
1
2
.2
0

(c
o
n
ti
n
u
ed
)

12.3 Evaluation and Interpretation of Clustering Results 481



used to perform the cluster analysis. In practice, although it is not a bad idea to

perform such an analysis using a MANOVA, the results tend to be highly significant

and the diagnostic value is small. Moreover, the results from a MANOVA can be

misleading because it does not indicate whether the distribution of any variable

used for clustering is bimodal or multimodal. In fact, for example, a variable

distributed according to a normal distribution may lead to the formation of two

groups (low and high) when clustering the observations on that variable. The means

of the two groups are likely to be significantly different from each other. Neverthe-

less, this does not mean that the observations in each group are sampled from a

different distribution.

Fig. 12.21 STATA output for cluster analysis using K-means method (examp12-3.log)
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12.3.3 Tests of Significance on Variables Other than Those
Used to Create Clusters

The best method for “validating” the clustering solution consists in verifying that

the clusters differ on variables that are not used in the clustering process. These

variables typically concern differences the researcher expects from such groups but

do not characterize the groups per se, i.e., they do not contribute to their definition.

For example, consumers can be segmented on the basis of demographics and

psychographics, and once groups are formed based on these descriptive variables,

it can be verified whether each group differs in terms of specific purchase behavior.

In order to run a MANOVA in SAS on variables that are not used in the cluster

analysis using the clusters to define groups, you need to create an id variable for the

observations and sort the cluster output file by that id before merging the cluster

variable with all the data.

This can be done by the following:

1. Inserting a line to create an id variable in the data set that you read/input. After

the input statement, insert a line.

idobs¼_N_;

This creates a variable called “idobs” that will take a value of 1 to

300 corresponding to each respondent in the sample.

2. Before running a MANOVA, sort the cluster file and merge the two data sets.

For example, if “clus2” is the name you have assigned to the cluster output

using the “out¼clus2” command:

proc sort data¼clus2;

by idobs;

Data merged; (“merged” is the name of the new combined data set)

merge old clus2; (“old” is the name of the data set you created for the input data)

Once this is done, you can specify a MANOVA with any variables from the data

that were originally read.

The commands are straightforward in STATA, combining the clustering

commands shown in this chapter with the MANOVA commands explained in

Chap. 2:

cluster kmeans it1-it6, k(2) measure(L2) name(ClusterKmeans) start(krandom)

mean it1-it6, over(ClusterKmeans)

manova it7-it9¼ClusterKmeans

mean it7-it9, over(ClusterKmeans)
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12.3.4 Stability of Results

Given that the results of a cluster analysis are rather exploratory and could vary

depending on the method, it is best to verify the stability of the results. This can be

done with a split sample procedure where the analysis is performed on the two

subsamples and the researcher can check that the interpretation of the clusters

remains the same, i.e., that the results are stable. Also, because it is difficult to

justify one method versus another on theoretical grounds, it is reasonable to

perform the analysis using different procedures so that the biases inherent in each

method (e.g., tendency to cluster around seed points) can be better evaluated.

Performing such an analysis is good practice since it demonstrates the necessary

stability of the results; however, it does not guarantee that the clustering solution

corresponds to “real” groups that present “real” differences.

12.4 Assignment

Perform a cluster analysis using the data contained in the survey (SURVEY.ASC)

described in Appendix C (Chap. 14). You should identify an appropriate segmenta-

tion scheme for that sample of individuals so that these individuals are grouped with

relatively homogeneous psychographic profiles.

Bibliography

Basic Technical Readings

Sugar, C. A., & James, G. M. (2003). Finding the number of clusters in a data set: An information-

theoretic approach. Journal of the American Statistical Association, 98(463), 750–763.
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the

American Statistical Association, 58, 236–244.

Application Readings

Askegaard, S., & Madsen, T. K. (1998). The local and the global: Exploring traits of homogeneity

and heterogeneity in European food cultures. International Business Review, 7(6), 549–568.
Calantone, R. J., & Di Benedetto, C. A. (2007). Clustering product launches by price and launch

strategy. The Journal of Business and Industrial Marketing, 22(1), 4–19.
DeSarbo, W. S., & De Soete, G. (1984). On the use of hierarchical clustering for the analysis of

nonsymmetric proximities. Journal of Consumer Research, 11(1), 601–610.
Hall, E. H., Jr., & St. John, C. H. (1994). A methodological note on diversity measurement.

Strategic Management Journal, 15(2), 153–168.

484 12 Cluster Analysis

http://dx.doi.org/10.1007/978-1-4614-8594-0_14


Helsen, K., & Green, P. E. (1991). A computational study of replicated clustering with an

application to market segmentation. Decision Sciences, 22, 1124–1141.
Helsen, K., Jedidi, K., & DeSarbo, W. S. (1993). A new approach to country segmentation

utilizing multinational diffusion patterns. Journal of Marketing, 57(4), 60–71.
Hultink, E. J., Griffin, A., Robben, H. S. J., & Hart, S. (1998). In search of generic launch strategies

for new products. International Journal of Research in Marketing, 15, 269–285.
Kale, S. H. (1995). Grouping euroconsumers: A culture-based clustering approach. Journal of

International Marketing, 3(3), 35–48.
Kumar, V., Ganesh, J., & Echambadi, R. (1998). Cross-national diffusion research: What do we

know and how certain are we? Journal of Product Innovation Management, 15(3), 255–268.
Oliver, R. L., & Anderson, E. (1995). Behavior- and outcome-based sales control systems:

Evidence and consequences of pure-form and hybrid governance. Journal of Personal Selling
& Sales Management, 15(4), 1–15.

Sethi, S. P. (1971). Comparative cluster analysis for world markets. Journal of Marketing
Research, 8(3), 348–354.

Sexton, D. E., Jr. (1974). A cluster analytic approach to market response functions. Journal of
Marketing Research, 11(1), 109–114.

Srivatsava, R. K., Leone, R. P., & Shocker, A. D. (1981). Market structure analysis: Hierarchical

clustering of products based on substitution in use. Journal of Marketing, 45(3), 38–48.
Steenkamp, J.-B. E. M. (2001). The role of national culture in international marketing research.

International Marketing Review, 18(1), 30–44.
Vandermerwe, S., & L’Huillier, M.-A. (1989). Euro-consumers in 1992. Business Horizons, 32(1),

34–40.

Völckner, F., & Sattler, H. (2007). Empirical generalizability of consumer evaluations of brand

extensions. International Journal of Research in Marketing, 24, 149–162.

Bibliography 485



Chapter 13

Analysis of Similarity and Preference Data

Similarity data in management research are typically collected in order to understand

the underlying dimensions determining perceptions of stimuli such as brands or

companies. One advantage of such data is that it is cognitively easier for respondents

to provide subjective assessments of the similarity between objects than to rate these

objects on a number of attributes that they may not even be aware of. Furthermore,

when asking respondents to rate objects on attributes, the selection of the attributes

proposedmay influence the results while, in fact, it is not clear that these attributes are

the relevant ones. In multidimensional scaling, the methodology allows you to infer

the structure of perceptions. In particular, the researcher is able to make inferences

regarding the number of dimensions that are necessary to fit the similarity data. In this

chapter, we first describe the type of data collected to perform multidimensional

scaling and we then present metric and nonmetric methods of multidimensional

scaling. Multidimensional scaling explains the similarity of objects such as brands.

We then turn to the analysis of preference data, where the objective is to model and

explain preferences for objects. These explanations are based on the underlying

dimensions of preferences that are discovered through the methodology.

13.1 Proximity Matrices

The input data for multidimensional scaling correspond to proximity or distance

measures. Several types of measures exist, especially metric versus nonmetric and

conditional versus unconditional.

13.1.1 Metric Versus Nonmetric Data

The data that serve as input to similarity analysis can be metric or nonmetric. Metric

measures of proximity are ratio scales where zero indicates perfect similarity of two

H. Gatignon, Statistical Analysis of Management Data,
DOI 10.1007/978-1-4614-8594-0_13, © Springer Science+Business Media New York 2014
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objects. The scale measures the extent to which the objects differ from each other.

This measure of dissimilarity between objects is used as input to the method that

consists in finding the underlying dimensions that discriminate between the objects

to reproduce the dissimilarities (or similarities) between objects. In effect, these

measures are distance measures (dissimilarity) or proximity measures (similarity),

and the objective is to generate a map that shows the underlying distances between

the objects.

Nonmetric data also reflect these proximity measures; however, only informa-

tion about the rank order of the distances is available. As discussed in Chap. 1,

special care must be taken with such data because most standard statistics such as

means, standard deviations, and correlations are inappropriate.

13.1.2 Unconditional Versus Conditional Data

With unconditional data, all entries in the rows and columns are comparable, i.e.,

each stimulus is ranked relative to all other stimuli in the matrix (a number from

1 to n(n � 1)/2 for nonmetric data).

If only the entries within a particular row are comparable, i.e., each of the

n column stimuli is ranked relative to one row stimulus (a number from 1 to n for

nonmetric data), the data are said to be conditional. In this case, the data matrix

consists of n � 1 objects ranked in terms of similarity relative to the row stimulus.

Unconditional data are frequent, even though it is less cognitively complex for

respondents to provide conditional data.

13.1.3 Derived Measures of Proximity

It should be noted that it may be possible to derive distance measures from data

consisting of the evaluation of stimuli on attributes. However, it is not clear what

attributes should be used and why other relevant ones may be missing. Furthermore,

if the objective is to assess the underlying dimensions behind these attributes,

multidimensional scaling will use the computed proximities as input and will ignore

some of the information contained in the original attribute-level information.

Consequently, information is lost when using such a procedure as compared to

other procedures, for example principal component analysis. We, therefore, recom-

mend that you reserve multidimensional scaling for direct measures of similarity

rather than similarity measures derived from attribute-level data.
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13.1.4 Alternative Proximity Matrices

Apart from the different categories of proximity data discussed in

Sects. 13.1.1–13.1.3, the data matrix can take several specific forms.

13.1.4.1 Symmetric (Half) Matrix � Missing Diagonal (¼0)

When dealing with distance measures, it is clear that the distance between objects

A and B is the same as the distance between objects B and A. Therefore, when
concerned with pure distance or proximity data, the full data are contained in half of

the matrix, where the rows and the columns denote the objects and the cells

represent the distance between these two objects. This matrix is symmetric. Fur-

thermore, the diagonal represents the distance between an object and itself and,

consequently, the elements of the diagonal are zeros (often they are not even

included in the input).

13.1.4.2 Nonsymmetric Matrix � Missing Diagonal (¼0)

In some cases, the matrix may not be symmetric. This is the case with confusion

data, which consists in having each cell represent the frequency with which object

i is matched with object j (for example with Morse codes, the percentage of times

that a code of a particular letter is understood to be some other letter) or 1 minus that

percentage. The greater the confusion, the greater the similarity between the two

objects.

13.1.4.3 Nonsymmetric Matrix � Diagonal Present ( 6¼0)

In the case of confusion data, the diagonal may not be zeros because a particular

stimulus (e.g., a letter) may not be recognized all the time.

13.2 Problem Definition

In defining the problem, we consider nonmetric dissimilarity measures among

N stimuli. We follow the definitions used in the KYST algorithm.

Let the table or matrix of dissimilarity (input data) be represented by

Δ
N�N

¼ δ j; kð Þf g (13.1)

where δ(j,k) is the dissimilarity between objects j and k, Δ is symmetric, and the

diagonal cells are zero (δ (j, j) ¼ 0, for all j’s).
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Although we do not know the dimensions of perceptions underlying these

distance measures, let us assume that there are r such dimensions and that the stimuli

are rated on these dimensions. Let xj
rx1

be the vector of coordinates of object j in the

r-dimensional space. If, indeed, we knew these values xj
rx1

and r, then we would be

able to compute the Euclidean distance between each pair of objects j and k:

d2
1�1

j; kð Þ ¼ xj � xk
� �0

xj � xk
� � ¼ Σ

r

l¼1
xjl � xkl
� �2

(13.2)

The problem is then defined as finding the xj’s such that the computed distances

d2(j,k)’s for all pairs are the closest to the actual dissimilarities δ (j, k)’s.

13.2.1 Objective Function

Because the input data about the dissimilarities are not metric, the basic concept

used here is to transform the rank-ordered dissimilarities through a monotonic

function

f δjk
� � ¼ djk (13.3)

To reproduce the original dissimilarity data, the calculated Euclidean distance

should lead to a rank order of these similarities as close as possible to the original

or, equivalently, there should be a monotonic transformation of the rank-ordered

dissimilarities that are as similar as possible to the computed distances. The

differences between the monotonic transformation of the rank-ordered

dissimilarities and the calculated dissimilarities are the error in the fit for each

pair i,j:

f δjk
� �� djk (13.4)

which, for all the pairs, gives the function to minimize:

Σ
j
Σ
k

f δjk
� �� djk

� �2
(13.5)

This quantity in Eq. (13.5) is divided by a scaling factor, usually Σj Σk djk
2

� �
, in

order to interpret the objective function relative to the distance values:

Σj Σk f δjk
� �� djk

� �2
scale factor

(13.6)
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13.2.2 Stress as an Index of Fit

Equation (13.6) provides the basis of the measure or index of fit of the model at the

optimal level. This measure is called the stress and is obtained as:

Stress ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ
MM

M¼1
DIST Mð Þ � DHAT Mð Þ½ �2

Σ
MM

M¼1
DIST Mð Þ � DBAR½ �2

vuuuut (13.7)

whereM ¼ index for each object pair from 1 toMM (¼N2), DIST(M ) ¼ computed

distances from the solution of xj’s, DHAT ¼ predicted distances obtained from the

monotonic regression of DIST on the rank-ordered dissimilarity data, DBAR ¼
arithmetic average of the values of variable DIST.

The denominator enables the comparison across solutions with a different

number of dimensions r.
Equation (13.7) can be rewritten as

Stress ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ
MM

M¼1
dM � d̂ M

� �2
Σ
MM

M¼1
dM � d
� �2

vuuuut (13.8)

where dM ¼ DIST(M )

d̂ M ¼ β̂ 0 þ β̂ 1δM (13.9)

d ¼ 1

MM

XMM

M

dM (13.10)

It is clear from Eqs. (13.7) and (13.8) that a stress of 0 indicates a perfect fit.

13.2.3 Metric

The discussion in Sects. 13.2.1 and 13.2.2 assumed Euclidean distance measures:

dij ¼ Σ
r

k¼1
xik � xjk
� �2� �1=2

(13.11)

This is the most commonly used metric. However, it is also possible to use the

Minkowski p-metric:

13.2 Problem Definition 491



dij pð Þ ¼ Σ
r

k¼1
xik � xjk
		 		p� �1

p p�1=
(13.12)

The easiest case to interpret is for p ¼ 1, which represents the city block metric.

For p ¼ 2, it is the Euclidean distance.

These different distance measures correspond to different ways of combining the

information across the dimensions. They reflect differences in how perceptions are

processed on individual dimensions to arrive at the perceived similarities/

dissimilarities.

13.2.4 Minimum Number of Stimuli

A minimum number of data points (distances) are needed to be able to derive a

space that can reproduce the distances. This number has been empirically assessed

to be between four and six objects per dimension. Even though the researcher does

not know a priori the number of dimensions, this means that a significant number of

objects are needed to implement the methodology successfully. However, because

the most typical solutions involve two or three dimensions, 12–18 objects should be

sufficient in most cases.

13.2.5 Dimensionality

Because the number of dimensions r is not known a priori and because the solution
for the xj’s depends on the number of dimensions, the dimensionality must be

inferred from the results obtained for different values of r. Three criteria can be

used together: the stress levels under different dimensionality assumptions, the

stability of the results, and the interpretability of these solutions.

The goodness of fit or stress values can be plotted as a function of the number of

dimensions (scree plot) to identify the elbow where adding dimensions produces

little marginal gain in stress levels:

# of dimensions

elbow

Stress
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The stability of the results is typically assessed by splitting the sample into two

and verifying that the results are similar for each subsample.

The interpretability of the results concerns the meaning of the dimensions of

perception uncovered by the procedure. Although subjective, the ability to interpret

the dimensions is essential for the research to be meaningful.

13.2.6 Interpretation of MDS Solution

The interpretation of the dimensions is mostly the fruit of the researcher’s expertise.

However, this expertise can benefit from a complementary data analysis when the

objects have also been rated on a number of attributes (although this does consider-

ably lengthen the task for the respondents). This analysis consists of property

(attribute) fitting procedures. Three possible analyses are available:

(a) Maximum r procedure: This is based on the bivariate correlation coefficient of

each attribute with a particular dimension. A high value of the correlation

indicates a strong linear relationship between that attribute and the dimension.

Consequently, this attribute would contribute significantly to the identification

of the dimension.

(b) Monotone multiple regressions: A combination of attributes can explain the

dimension in a nonlinear fashion. The R2’s provide a measure of the explana-

tory power.

(c) Property Fitting (PROFIT): This analysis provides for the possibility of

non-monotonous relationships. The objective is to obtain a fit so that the

stimulus projections are correlated with the scale.

13.2.7 The KYST Algorithm

Finding a solution, as described above, involves finding an initial configuration

from which to start an iterative process and then determining the process by which

to move from one iteration to the next.

Step 1: Finding initial configuration

Assume that the coordinates xj’s are centered at the origin (the means are zero).

Let the n objects be identified by their coordinates in the p-dimensional space:

X
r�n

¼ x1, x2, � � �xj, � � �xn
� �

(13.13)
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¼
x
0
1x1 x

0
1x2 � � � x

0
1xn

⋮ ⋱
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0
nx1 � � � � � � x

0
nxn

2
4

3
5 (13.15)

x
0
jxk ¼

Xγ

l¼1

xjlxkl (13.16)

The principal component decomposition of Δ can provide the initial configura-

tion with r eigenvectors or orthogonal dimensions.

Step 2: Improving configuration

In this step, the gradient of the stress provides the direction in which the solution

should be changed to improve its value. For that purpose, the disparities between

the actual dissimilarities and the predicted dissimilarities computed from the

current iteration solution are calculated and the stress S is computed according to

Eqs. (13.7) or (13.8). The gradient is computed from the changes in the stress from

one iteration to the next relative to the changes in the coordinate values from the

prior to the current iteration:

∂S
∂xtn

for t ¼ 1 . . . r (13.17)

The coordinate values xtj’s are then modified in the direction of the gradient.

13.3 Individual Differences in Similarity Judgments

One way to recognize individual differences in perceptions is to allow allm subjects

to share a common space, but to permit each individual to weight differently the

dimensions of this space (which corresponds to the stretching and shrinking of the

axes). This assumption is reflected in the INDSCAL algorithm.

Consequently, we denote the matrix of dissimilarities between objects for

individual i as

Δ ið Þ ¼ δ 1ð Þ j; kð Þ
n o

for i ¼ 1 . . .m (13.18)

where m is the number of individuals.
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Each individual has a different weight for each dimension. These weights are

represented by the diagonal matrix.

Let

W ið Þ
r�r

¼ diag w
ið Þ
t

n o
(13.19)

The problem consists now in finding not only the coordinates of points in the

common space but also the weights of each dimension for each individual so as to

reproduce as much as possible the original dissimilarities:

δ ið Þ2 j; kð Þ � xj � xk
� �0

W ið Þ xj � xk
� �

(13.20)

Wold’s nonlinear iterative least squares procedure is used where, at each itera-

tion, either x or Wi) is fixed to the last iteration estimate.

13.4 Analysis of Preference Data

In this section we no longer refer to modeling for the purpose of understanding

the underlying dimensions of perceptions. Now the objective is to represent

preferences for some stimuli over others.

Preferences follow from two basic models. One model predicts that more of any

dimension is always preferred to less. This is the vector model of preferences. The

other model assumes that “the more the better” is true only up to a certain point,

after which too much is as bad as not enough. This assumption corresponds to the

ideal point model of preferences.

13.4.1 Vector Model of Preferences

MDPREF is a model that derives the space where stimuli are represented in terms of

preferences, as well as the individual differences in preference. Individuals are

represented in a preference space by different vectors. Each vector is defined so that

the projections of the stimuli (brands) on this vector correspond to this individual’s

preferences such that the more the projection falls in the direction of the vector, the

more the stimulus is preferred. The stimuli are represented in the space by points

such that the projections on the individual vector correspond as closely as possible

to the stated preferences. In MDPREF, both the individual vectors and the stimuli

points are inferred simultaneously from the preference data.
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13.4.2 Ideal Point Model of Preferences

PREFMAP differs in two major ways from MDPREF. First, in MDPREF the

individual vectors of preferences and the stimuli points are derived simultaneously

from the preference data, but this is not the case in PREFMAP, where the stimuli

configuration is provided externally. This configuration is obtained from the

methods to derive a perceptual map from similarity data, which we described in

Sects. 13.2 and 13.3. The results of KYST or INDSCAL can be used as input into

this analysis of preferences.

The second way PREFMAP differs fromMDPREF is that PREFMAP offers two

models of preferences, a vector model as well as ideal point models. The vector

model is similar to the model described above in the context of MDPREF. How-

ever, as already noted, the difference is that the stimuli points are externally

supplied. The interpretation of the individual vectors is also similar to what is

described above. However, the interpretation of the stimuli configuration is more

easily accomplished, since the configuration corresponds to perceptions and not

preferences. The joint space for representing perceptions and preferences also

facilitates the interpretation of the individual vectors, since the dimensions are

those derived from the perceptual analysis.

The ideal point model of preferences with PREFMAP is such that preferences

for an individual are also represented as a point in the perceptual space. The

preferences for stimuli are such that the most preferred are the stimuli that are

the closest in that space to the point representing the individual ideal preference.

The further away the stimuli are from the ideal point, the less preferred they are.

PREFMAP derives the ideal point for each individual that best represents that

person’s preference. It should be noted that the vector model is a particular case

of the ideal point model where the ideal point is located at infinity.

13.5 Examples

Examples of the various algorithms described above are now given using the

PC-MDS software.

13.5.1 Example of KYST

Rank-ordered measures of dissimilarity between brands are the major input of

KYST. The example input file is shown in Fig. 13.1.

The first line of the input file contains three numbers. The first number is the

number of stimuli (here, 10 brands). The second number and the third number are

for the number of replications and the number of groups (usually 1 each).

496 13 Analysis of Similarity and Preference Data



The second line is the format (Fortran-style) in which the data will be read.

The data matrix is then shown with 9 rows and 9 columns from the bottom half

of a symmetric matrix without the diagonal (assumed to be zeros).

Finally, the stimuli (here, brands) labels are written on separate lines.

The output of KYST with this particular problem is shown in Fig. 13.2.

A two-dimensional solution was requested during the interactive dialog while

running the software by indicating a minimum and a maximum number of

dimensions of 2. The output shows the results by providing the stress obtained

from that solution (a stress value of 0.266) and the coordinates in that

two-dimensional space for the ten brands. The Shepard diagram represents the

plot of the pairs of brands with the actual dissimilarity data on the y axis and the

computed distances (before and after transformation through monotone regression).

This shows how well the model replicates each of the pairs of stimuli. The plot of

the brands in the two-dimensional space is shown, where the brands are numbered

in the order of input. The interpretation can be inferred from the knowledge about

the brands according to the attributes that appear to discriminate among these

brands along the two dimensions found (here, an economy and a performance

dimension). An example of PROFIT analysis to help interpret the meaning of the

dimensions is shown next.

Nonmetric multidimensional scaling can be performed using STATA with the

command “mdsmat” with specific parameters. The same data (ranking dissimilarity

matrix) as above are read from the Excel spreadsheet Examp13-1.xlsx. The

commands are shown in Fig. 13.3.

The data matrix is entered as a full symmetric matrix with “0” on the diagonal.

Number 1 represents the pair that is the least dissimilar and so on. This matrix is

shown in Fig. 13.4, although other options to input the matrix data are possible. The

option “shape(x)” is used where x could be, for example, “upper” to indicate a row

or column vector of dimension n(n + 1)/2 for the half-matrix cells, including the

Fig. 13.1 Example of PC-MDS input file for KYST (examp13-1.dat)
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Fig. 13.2 PC-MDS output of KYST (examp13-1.out)
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Fig. 13.2 (continued)
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diagonals, or “uupper” to indicate a row or column vector of dimension n(n � 1)/2 for

the half-matrix cells excluding the diagonals. Note that “upper” and “uupper” would

be replaced by “lower” and “llower” to indicate that the entries correspond to the lower

half rather than the upper half of the matrix.

Fig. 13.2 (continued)

Fig. 13.3 STATA commands for nonmetric MDS (examp13-1_Mac.do)
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The command “mkmat A-J , matrix(disimdata)” converts the variables A

through J into a matrix that will be called “disimdata.” The “pause” command is

used in order to save the graph before another one is produced. Typing “q” on the

STATA command line and pressing the return key resumes the progress of the

analysis.

The options “loss(stress) transform(monotonic)” correspond to the specification

of nonmetric MDS. An alternative is to replace these two options by “method

(nonmetric)” so that the full command line is equivalent: “mdsmat disimdata, shape

(full) names(sama salt semi self sibi siro sono sold suli susi) method(nonmetric)

config.”

The option “names (namelist)” provides labels for the items being compared in

the matrix. The name list should contain the same number of labels as the dimen-

sion of the matrix, separated by spaces.

Figure 13.5 displays the Shepard diagram.

The map with the configuration solution is shown in Fig. 13.6.

The log of the analysis is shown in Fig. 13.7 with the numerical values of the

coordinates of each object (the ten brands analyzed as plotted in Fig. 13.6). These

coordinates can then be added to a data set on evaluations of the objects on a

number of variables (attributes) in order to calculate their correlations. These

correlations provide important input for interpreting the meaning of the dimensions

inferred from the MDS analysis.

13.5.2 Example of INDSCAL

In INDSCAL, the data for several individuals are analyzed. The input file of an

example is shown in Fig. 13.8.

Fig. 13.4 Dissimilarity

rank data for nonmetric

MDS in examp13-1.xlsx

13.5 Examples 501



The first line of the input file contains the following information:

– Number of ways of the data (3-way data: # of brands x # of brands x # of

subjects, indicating that the # of brands x # of brands matrix is repeated as many

times as there are subjects)

Fig. 13.6 STATA configuration map for nonmetric MDS

Fig. 13.5 STATA Shepard diagram for nonmetric MDS
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– Maximum number of dimensions (2 in this example)

– Minimum number of dimensions (2 in this example)

– Type of input data (a value of 2 means a lower-half dissimilarity matrix without

diagonal; other possibilities include a value of 1 for a lower-half similarity

matrix without diagonal)

– Maximum number of iterations (25 were defined in this example)

The remaining codes on this first line correspond to more advanced options.

The second line contains a number for each way (brands and subjects). The first

number indicates the number of subjects and the other two numbers give the

number of stimuli.

The third line shows the format (Fortran-style) in which the data will be inputted.

The dissimilarity data are then shown for each individual (it is good practice to

show the subject number first, although, as indicated by the format statement, this

number is not read in).

Finally, the objects labels (brand names) are listed, one per line.

The results of INDSCAL are shown in Fig. 13.9.

The output, under the title “History of Computation,” shows the fit measure at

each iteration. Because INDSCAL is a metric model, the fit measure is the correla-

tion between the input dissimilarity data and the predicted dissimilarity from the

model parameter values at that iteration. The value of 0.999 obtained in the

example is excellent.

Fig. 13.7 STATA nonmetric MDS results
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Under the title “Normalized A Matrices,” matrix 1 lists the individual weights

for each of the four individuals. Matrix 2 lists the coordinates of the objects in the

common object space.

The individual weights shown in matrix 1 are plotted along the two dimensions

in the first plot. Plot no. 2 represents the brands corresponding to the coordinates

listed in matrix 2.

Metric MDS is now illustrated using STATA. The data from each of the four

individuals analyzed above have been entered in a separate spreadsheet for each

individual. Therefore, the data from one individual are represented by a full

symmetric dissimilarity matrix such as the one shown in Fig. 13.10.

Fig. 13.8 Example of PC-MDS input file for INDSCAL (examp13-2.dat)
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The STATA commands for running a metric MDS are shown in Fig. 13.11.

The results contain the coordinates of the objects on the two dimensions, as

shown in Fig. 13.12.

The perceptual map of the brands is displayed in a graph reproduced in

Fig. 13.13.

Fig. 13.9 Output example for INDSCAL (examp13-2.out)
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Fig. 13.9 (continued)

506 13 Analysis of Similarity and Preference Data



Fig. 13.9 (continued)
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13.5.3 Example of PROFIT (Property Fitting) Analysis

In the example shown in Fig. 13.14, we use the configuration (coordinates) obtained

from the KYST analysis described earlier in Sect. 13.5.1. (It is possible to use the

output configuration of other models such as INDSCAL) . The relationships of the

two dimensions corresponding to these perceptions of the ten brands with five

characteristics of the brands (i.e., weight, design, volume, maximum frequency,

and power) are analyzed in this run of PROFIT. Therefore, the ratings of these

brands on these characteristics are matched as well as possible with the ratings

obtained from the KYST configuration. Each characteristic is represented in the

perceptual space by a vector so that the fit with the perceptions of the brands is

maximized. For rating data on the properties (brand characteristics), the correlation

between these ratings and the projection of the brand perceptions on that vector is

maximized.

The input file shown in Fig. 13.14 provides the information needed to run the

program. The first line of input indicates the basic parameters of the problem. The

first number (1 in Fig. 13.14) indicates that a linear relationship between properties

and perceptions will be evaluated. The second number (10 in Fig. 13.14) indicates

Fig. 13.9 (continued)
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Fig. 13.9 (continued)
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the number of stimuli (brands). The third number (2 in Fig. 13.14) shows the

number of dimensions in the perceptual space used as input. The fourth number

(5 in Fig. 13.14) is the number of properties to be analyzed. The other numbers

correspond to more advanced options.

Fig. 13.10 Data example for metric MDS in STATA (examp13-2-02.xlsx)

Fig. 13.11 STATA commands for metric MDS (examp13-2.do)

Fig. 13.12 STATA output for metric MDS (examp13-2.log)
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Fig. 13.13 Perceptual map from metric MDS

Fig. 13.14 Example of PC-MDS input file for PROFIT (examp13-3.dat)
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The second line is the format (Fortran-style) in which the data for the stimuli

(brands) coordinates are read. Then follow the perception coordinates, one line for

each stimulus (brand). In this example, the stimulus number (1 � 10) is shown in

order to better visualize the input, but this information is not read by the program,

since the format above indicates that the first two columns are skipped (“2X”). After

the perceptual coordinates, the data on the properties are shown. First, the format in

which the data are to be read is indicated in the usual Fortran-style format. Then, for

each of the properties, the label of the property is shown on one line and on a

separate line the values of the property on all ten stimuli are shown. The first

number indicates the property number but is not used, as shown by the format of the

input, which, as noted above, skips the first two columns of data. Finally, the last ten

lines correspond to the labels of the ten stimuli, in this case the names of the brands.

Figure 13.15 shows the output of the PROFIT analysis. First, for each property,

the correlations between the original and the fitted vectors are shown, followed by

the corresponding plot of the stimuli.

The last graph in Fig. 13.15 shows the perceptions of the stimuli (the ten brands)

numbered from 1 to 9, plus the letter A to represent the tenth brand. The points

labeled B to F represent the end points of the property vectors that maximize the

correlation with the projections of the brands on this vector with the original

property values. Note that the vectors have been added in the figure and do not

appear on the original computer output. B represents the weight property, C the

design, D the volume, E the maximum frequency, and F the power of the brands.

Fig. 13.15 Output example of PROFIT analysis (examp13-3.out)
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Fig. 13.15 (continued)
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This graph indicates that the Y dimension (dimension 2) is closely related to

Weight and Power and also, although not as strongly, to Design (the higher the

values of the properties, the lower the perceptions on that dimension). The

X dimension (dimension 1) reflects more the volume, which appears to be nega-

tively correlated with the maximum frequency. Therefore, in general, the higher the

perceptual value on dimension 1, the higher the volume but the lower the maximum

frequency. It should be noted that these correlations can be used to help the

Fig. 13.15 (continued)
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interpretation of the dimensions. However, the dimensions and the properties do not

coincide perfectly. For example, although the vectors B and F are particularly close

to axis Y, axis X is not very close to either vector D or E. Consequently, the property

fitting analysis will not be as useful in interpreting the X axis as it will be for the

Y axis.

Similar information can be obtained with STATA. First, a spreadsheet should be

created containing the information on the properties and the coordinates on the

Fig. 13.15 (continued)
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dimensions from the configuration obtained from MDS. Figure 13.16 shows such a

file.

Figure 13.17 provides the commands to compute the correlations among the

dimensions obtained from the nonmetric MDS and the five vectors of properties.

The correlations that result from this analysis are shown in Fig. 13.18, as well as

a plot for one of the dimension-attribute combinations (i.e., Dim1-Weight).

Fig. 13.15 (continued)
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13.5.4 Example of MDPREF

The first row in the input file shown in Fig. 13.19 defines:

– The number of rows in the data matrix, or number of subjects (here, 5)

– The number of columns in the data matrix, or number of stimuli (here,

10 brands)

Fig. 13.15 (continued)
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– Number of dimensions (here, 2)

– Number of dimensions to be plotted (here, 2)

– A code to normalize by subtracting the row mean (¼1) or to normalize and

divide by the standard deviation (¼2)

– A dummy code to normalize subject vectors (¼1; 0 otherwise)

The second line defines the format in which the preference data are read,

followed by the data themselves. The first number of each row is the subject

number, which is not read by the program, as indicated by the format statement

starting with “2X.” For each row (subject), the ten numbers indicate the values

given by the subject to each of the ten brands.

The lines in Fig. 13.19 are used for the labels of the subjects and then of the

stimuli.

In Fig. 13.20, the first graph in the output file maps the subject vectors starting at

the origin with the end point at the location of the number corresponding to the

subject. The second graph maps the stimuli according to the subjects’ preferences,

while the third graph shows both the subject vectors and the stimuli points at the

same time. This plot of the brands should be carefully interpreted, given that it does

not correspond to perceptual data but is derived solely from input on preferences.

In the graphs shown in Fig. 13.20, the vectors have been added to the original

output. The projections of the stimuli on a particular subject vector indicate the

preferences of that individual subject. For example, subject 1 (indicated by the

letter B in the figure) has a preference for brands 3 (SEMI) and 7 (SONO). Subject

Fig. 13.15 (continued)
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Fig. 13.16 Data in Excel for correlation analysis for use in STATA (examp13-3.xlsx)

Fig. 13.15 (continued)

13.5 Examples 519



5 (letter F in the figure) prefers brand 10 (SUSI; indicated by the letter A) and then

brands 1 (SAMA) and 6 (SIRO), both confounded on the map and represented by

the “#” sign. The least preferred brands for this subject are brands 2 (SALT),

8 (SOLD), and 9 (SULI), these last two brands being confounded on the map and

represented by the # sign in the lower right quadrant.

Fig. 13.17 STATA Commands for correlation analysis and plots (examp13-3.do)

. correlate Dim1-Power
(obs=10)

|     Dim1     Dim2   Weight   Design   Volume  MaxFreq    Power
-------------+--------------------------------------------------------------- 

Dim1 |   1.0000
Dim2 |  -0.0000   1.0000

Weight |  -0.7767   0.3692   1.0000
Design |  -0.4462   0.3721   0.2789   1.0000
Volume |   0.1487  -0.3152   0.1066  -0.7417   1.0000
MaxFreq |  -0.1323   0.4635   0.5635   0.1880   0.1914   1.0000
Power |  -0.3272   0.2501   0.6686  -0.1777   0.6746   0.4063   1.0000

Fig. 13.18 STATA output for correlation analysis and plots
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Preference analysis using the MDPREF model can also be done using XLSTAT.

Because the data and command structures are similar for MDPREF and PREFMAP,

we present the use of XLSTAT after the illustration of a PREFMAP analysis using

PC-MDS.

Fig. 13.19 Example of PC-MDS input file for MDPREF (examp13-4.dat)

Fig. 13.20 Output example for MDPREF (examp13-4.out)
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Fig. 13.20 (continued)
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Fig. 13.20 (continued)
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13.5.5 Example of PREFMAP

In the example provided in Fig. 13.21, the external source of the perceptual space

configuration has been taken from the INDSCAL run. The first line of input in that

file allows the user to define the various parameters concerning the data and the

analysis to be done:

– The number of stimuli (here, 10 brands)

– The number of dimensions of the externally supplied perceptual space (here, 2)

– The number of subjects for which preferences are being modeled (here, 5)

– A code to indicate that the higher the score of a brand in the data, the higher

the preference for that brand (code ¼ 1) or that the higher the score, the lower

the preference (code ¼ 0); in the example, preferences are decreasing with the

ratings and, therefore, a code 0 has been entered

Fig. 13.20 (continued)
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Fig. 13.20 (continued)
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Fig. 13.20 (continued)

Fig. 13.21 Example of PC-MDS input file for PREFMAP (examp13-5.dat)
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These numbers are followed by additional codes corresponding to advanced

setting options.

The second line of input gives the format in which the coordinates in the

perceptual space will be read. Then follow these coordinates for the ten stimuli

(brands). Note that, given the format provided, the stimulus number (the first

number on each of the lines for the coordinates) is not read by the program.

Then follows the format in which the preference data will be read. These

preference data correspond to those described for the input of MDPREF. Therefore,

the preference ratings of the ten brands are shown for each of the four subjects

studied. Finally, the stimuli labels (brand names) are indicated.

Running the file contained in Fig. 13.21 leads to the results shown in Fig. 13.22.

Phase 1 corresponds to the general unfolding model where the axes may be rotated

differently for each subject and where each subject can weight each axis differently.

Although the different rotation of the axes makes this model difficult to visualize, it

is in fact the most versatile. It should be noted that there is one more point for

subjects than there are subjects. This last point corresponds to the average prefer-

ence (average ratings) across all the subjects.

Phase 2 corresponds to the weighted unfolding model wherein all subjects share

the same configuration without rotation but each subject is allowed to weight each

dimension differently. The preferences of each subject are shown by the person’s

ideal point in that common perceptual space.

In Phase 3, each subject uses the same perceptual space configuration with no

axis rotation and no differential weighting of the dimensions.

Finally, Phase 4 corresponds to the vector model of preferences, similar to

MDPREF, except for the fact that the perceptual configuration is externally

provided. The figure here shows an example from the INDSCAL analysis.

The plot resulting from the analysis of Phase 3 provides the ideal points of the

five subjects, as well as that of the average subject. This plot shows that subject

4 (represented by the letter D) prefers brands 2 (SALT), 3 (SEMI), 8 (SOLD), and

9 (SULI) (the closest to the subject’s ideal brand). This fits the preference data used

as input, where these brands have a low score value (most preferred).

For the vector model of preferences, the last graph shows the end points of the

individual vectors. The vectors drawn in Fig. 13.22 have been added to the original

output, showing the differences in preferences across individuals according to the

projections of the stimuli on their respective vectors. For example, the projections

of the brands on the vectors of subjects 2 (C) and 5 (F) indicate that brands

1 (SAMA), 6 (SIRO), and 10 (SUSI; indicated by the letter A on the plot) are the

Fig. 13.22 Output example for PREFMAP (examp13-5.out)
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Fig. 13.22 (continued)
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Fig. 13.22 (continued)
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Fig. 13.22 (continued)
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Fig. 13.22 (continued)
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Fig. 13.22 (continued)
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preferred ones. These correspond indeed to the lowest scores (most preferred) in the

input data.

We now illustrate the use of these analyses with XLSTAT. The spreadsheet

containing the data should be composed of two worksheets, one (sheet 1) containing

the preference data and the other (sheet 2) containing the perceptual coordinates in

the space configuration obtained from preliminary MDS analysis. Fig. 13.23 shows

the preference data for the ten brands (rows). The columns correspond to the

responses of individuals or segments of individuals (in this example, we use

consumer segments). When there are many individuals, it is best to group them

into subgroups that have similar patterns of preferences. The analysis is then done at

the cluster or segment level. Consequently, the data matrix should have N rows for

the N groups (individuals or clusters) and J columns for the J alternatives (brands)

that are being evaluated in terms of preferences.

Fig. 13.22 (continued)
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Fig. 13.22 (continued)
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Fig. 13.22 (continued)
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Fig. 13.22 (continued)
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As noted above, the perception coordinates should be on sheet 2 of this same

spreadsheet. The coordinates of the perceptions of each object (alternative) are

entered in the rows, and the columns correspond to the number of perceptual

dimensions needed. Figure 13.24 shows the coordinates that were found as a

solution to reflect the dissimilarities obtained from the MDS analysis. These

could be obtained more directly from the principal component analysis of

perceptions on a number of attributes. Therefore, the number of rows here in

sheet 2 corresponds precisely to the number of rows in the preference data entered

in sheet 1.

Figure 13.25 shows the XLSTAT dialog box for defining the problem

parameters corresponding to PREFMAP or MDPREF.

Although “Quadratic” has been selected as the “model” in the dialog box shown

in Fig. 13.25, the program also analyzes the vector model, and based on the

assessment of both models, it reports out on the best option for each segment or

individual. A mixture of vector and ideal point preference models can result when

some segments’ preferences are best represented by a vector model and other

segments are best represented by a quadratic model. In this particular example,

Fig. 13.22 (continued)

Fig. 13.23 Preference data in Excel worksheet for MDPREF analysis in XLSTAT (examp13-4.

xlsx, sheet 1)
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however, it is the vector model that best fits each of the five segments, as can be

seen from the partial output displayed in Fig. 13.26.

The lines in Fig. 13.26 correspond to the vector of preference for each segment.

This map of perceptions and preferences shows, for example, that segments 2 and

5 have similar preferences for “susi,” “self,” “sama,” and “semi.” In contrast,

segments 1, 3, and 4 prefer brands “siro” and “sono.” The order of preferences

for each segment is also provided in the output shown in the top part of the figure

(i.e., in the table above the map).

Fig. 13.24 Perceptual data

in Excel worksheet for

MDPREF analysis in

XLSTAT (examp13-4.xlsx,

sheet 2)

Fig. 13.25 XLSTAT dialog box for MDPREF
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Fig. 13.26 XLSTAT output of preference analysis (examp13-4, “PREFMAP” sheet)
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Fig. 13.26 (continued)
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13.6 Assignment

Collect proximity data about a set of brands of your choice (limit the number of

brands to ten maximum) and determine the dimensions used in the perception of

these brands. Gather data about characteristics of these brands to help you interpret

the underlying perceptual dimensions. For these same brands, obtain preferences of

the respondents in order to develop a map of subject preferences and stimuli.

Fig. 13.26 (continued)
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Chapter 14

Appendices

14.1 Appendix A: Rules in Matrix Algebra

14.1.1 Vector and Matrix Differentiation

∂a0v
∂v

¼ a (14.1)

∂v0Av
∂v

¼ Aþ A0ð Þv (14.2)

14.1.2 Kronecker Products

A� B (14.3)

A ¼ a11 a12
a21 a22

� �
(14.4)

A� B ¼ a11B a12B
a21B a22B

� �
(14.5)

A� Bð Þ�1 ¼ A�1 � B�1 (14.6)

14.1.3 Determinants

Aj j ¼
YP
i¼1

λi (14.7)
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where λi represents the eigenvalues of matrix A and P the dimensionality of that

matrix.

Aj j ¼ Aj j Bj j (14.8)

14.1.4 Trace

tr ABCð Þ ¼ tr ACBð Þ ¼ tr CABð Þ ¼ tr BCAð Þ ¼ tr CBAð Þ (14.9)

14.2 Appendix B: Statistical Tables

14.2.1 Cumulative Normal Distribution

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.05 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9027 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

(continued)
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

14.2.2 Chi-Square Distribution

ν 0.005 0.010 0.025 0.050 0.100 0.250 0.500 0.750 0.900 0.950 0.975 0.990 0.995

1 0.00004 0.0002 0.001 0.004 0.02 0.10 0.45 1.32 2.71 3.84 5.02 6.63 7.88

2 0.01 0.02 0.05 0.10 0.21 0.58 1.39 2.77 4.61 5.99 7.38 9.21 10.60

3 0.07 0.11 0.22 0.35 0.58 1.21 2.37 4.11 6.25 7.81 9.35 11.34 12.84

4 0.21 0.30 0.48 0.71 1.06 1.92 3.36 5.39 7.78 9.49 11.14 13.28 14.86

5 0.41 0.55 0.83 1.15 1.61 2.67 4.35 6.63 9.24 11.07 12.83 15.09 16.75

6 0.68 0.87 1.24 1.64 2.20 3.45 5.35 7.84 10.64 12.59 14.45 16.81 18.55

7 0.99 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.02 14.07 16.01 18.48 20.28

8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.22 13.36 15.51 17.53 20.09 21.95

9 1.73 2.09 2.70 3.33 4.17 5.90 8.34 11.39 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.55 15.99 18.31 20.48 23.21 25.19

11 2.60 3.05 3.82 4.57 5.58 7.58 10.34 13.70 17.28 19.68 21.92 24.72 26.76

12 3.07 3.57 4.40 5.23 6.30 8.44 11.34 14.85 18.55 21.03 23.34 26.22 28.30

13 3.57 4.11 5.01 5.89 7.04 9.30 12.34 15.98 19.81 22.36 24.74 27.69 29.82

14 4.07 4.66 5.63 6.57 7.79 10.17 13.34 17.12 21.06 23.68 26.12 29.14 31.32

15 4.60 5.23 6.26 7.26 8.55 11.04 14.34 18.25 22.31 25.00 27.49 30.58 32.80

16 5.14 5.81 6.91 7.96 9.31 11.91 15.34 19.37 23.54 26.30 28.85 32.00 34.27

17 5.70 6.41 7.56 8.67 10.09 12.79 16.34 20.49 24.77 27.59 30.19 33.41 35.72

18 6.26 7.01 8.23 9.39 10.86 13.68 17.34 21.60 25.99 28.87 31.53 34.81 37.16

19 6.84 7.63 8.91 10.12 11.65 14.56 18.34 22.72 27.20 30.14 32.85 36.19 38.58

20 7.43 8.26 9.59 10.85 12.44 15.45 19.34 23.83 28.41 31.41 34.17 37.57 40.00

21 8.03 8.90 10.28 11.59 13.24 16.34 20.34 24.93 29.62 32.67 35.48 38.93 41.40

22 8.64 9.54 10.98 12.34 14.04 17.24 21.34 26.04 30.81 33.92 36.78 40.29 42.80

23 9.26 10.20 11.69 13.09 14.85 18.14 22.34 27.14 32.01 35.17 38.08 41.64 44.18

24 9.89 10.86 12.40 13.85 15.66 19.04 23.34 28.24 33.20 36.42 39.36 42.98 45.56

25 10.52 11.52 13.12 14.61 16.47 19.94 24.34 29.34 34.38 37.65 40.65 44.31 46.93

30 13.79 14.95 16.79 18.49 20.60 24.48 29.34 34.80 40.26 43.77 46.98 50.89 53.67

35 17.19 18.51 20.57 22.47 24.80 29.05 34.34 40.22 46.06 49.80 53.20 57.34 60.27

40 20.71 22.16 24.43 26.51 28.05 33.66 39.34 45.62 51.81 55.76 59.34 63.69 66.77

45 24.31 25.90 28.37 30.61 33.35 38.29 44.64 50.98 57.51 61.66 65.41 69.96 73.17

50 27.99 29.71 32.36 34.76 37.69 42.94 49.33 56.33 63.17 67.50 71.42 76.15 79.49
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14.2.3 F Distribution

ν1 ¼ Degrees of freedom for the numerator

ν2 1 2 3 4 5 6 7 8 9

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97

1 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88

ν1 ¼ Degrees of freedom for the numerator

ν2 10 12 15 20 30 40 50 60 1
1 241.88 243.91 245.95 248.01 250.10 251.14 252.20 252.20 254.19

2 19.40 19.41 19.43 19.45 19.46 19.47 19.48 19.48 19.49

3 8.79 8.74 8.70 8.66 8.62 8.59 8.57 8.57 8.53

4 5.96 5.91 5.86 5.80 5.75 5.72 5.69 5.69 5.63

5 4.74 4.68 4.62 4.56 4.50 4.46 4.43 4.43 4.37

6 4.06 4.00 3.94 3.87 3.81 3.77 3.74 3.74 3.67

7 3.64 3.57 3.51 3.44 3.38 3.34 3.30 3.30 3.23

8 3.35 3.28 3.22 3.15 3.08 3.04 3.01 3.01 2.93

9 3.14 3.07 3.01 2.94 2.86 2.83 2.79 2.79 2.71

10 2.98 2.91 2.85 2.77 2.70 2.66 2.62 2.62 2.54

15 2.54 2.48 2.40 2.33 2.25 2.20 2.16 2.16 2.07

20 2.35 2.28 2.20 2.12 2.04 1.99 1.95 1.95 1.85

25 2.24 2.16 2.09 2.01 1.92 1.87 1.82 1.82 1.72

30 2.16 2.09 2.01 1.93 1.84 1.79 1.74 1.74 1.63

40 2.08 2.00 1.92 1.84 1.74 1.69 1.64 1.64 1.52

50 2.03 1.95 1.87 1.78 1.69 1.63 1.58 1.58 1.45

70 1.97 1.89 1.81 1.72 1.62 1.57 1.50 1.50 1.36

100 1.93 1.85 1.77 1.68 1.57 1.52 1.45 1.45 1.30

1 1.83 1.75 1.67 1.57 1.46 1.39 1.34 1.31 1.30
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14.3 Appendix C: Description of Data Sets

The data sets described below can be downloaded from the Web at http://faculty.

insead.edu/hubert-gatignon

Three different kinds of information, which correspond to typically available

data about markets, are provided for analysis: industry, panel, and survey data. In

addition, scanner data is provided for a product category in the form typically

available in actual practice.

The industry data set includes aggregate product and market data for all of the

brands sold in each time period. This type of information is often provided by

market research services, trade and business publications, and trade associations to

all of the firms competing in an industry. The other two data sets contain informa-

tion collected from a sample of consumers. The first, panel data, is gathered from a

group of consumers who have agreed to periodically record their brand perceptions,

preferences, and purchase behavior. This information is often purchased by

advertisers from syndicated research services and is useful for tracking changes

in consumer behavior over time. The second, survey data, is collected by question-

naire or personal interview from a large group of consumers. Surveys are often

conducted by advertising agencies (such as DDB NeedhamWorldwide, N. W Ayer,

and others), by survey research companies, and by the advertisers themselves.

These surveys typically measure a broad range of consumer characteristics, includ-

ing attitudes, interests, values, and lifestyles. This information is especially useful

for selecting target audiences and designing creative appeals.

The MARKSTRAT® market simulation program was used to create the industry

and panel data sets. The survey data set was developed separately to conform to this

environment. We first describe the MARKSTRAT® environment and the

characteristics of the industry. We then present the three types of data provided

with this book and discuss the contents of each data set.

14.3.1 The MARKSTRAT® Environment

To understand the industry in which competing firms operate, the reader must be

familiar with two general dimensions of the MARKSTRAT® environment: (1) the

structure of the industry in terms of the products, competition, and market

characteristics, and (2) the marketing decisions that each firm can make over

time. The discussion that follows concentrates on those aspects that are most

relevant to advertising planning decisions.
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14.3.1.1 Competition and Market Structure

In the MARKSTRAT® environment, five firms compete in a single market with a

number of brands. Each firm starts out with a set of brands and has the ability to

initiate research and development (R&D) projects to create new brands. If an R&D

project is successful, then the sponsoring firm has the option of bringing the new

product to the market. The firm can then modify the product marketed under a given

brand name (i.e., a product improvement) or a new product can be introduced with a

new brand name.

Product Characteristics

The generic products in this industry are consumer durable goods comparable to

electronic entertainment products. They are called Sonites. Because these products

are durable, each customer will usually purchase only one unit over a long period of

time. Consequently, there are no issues of repeat purchase, brand loyalty, or brand

switching in this market.

The products are characterized by five physical attributes: (1) weight

(in kilograms), (2) design (measured on a relative scale), (3) volume (in cubic

decimeters), (4) maximum frequency (in kilohertz), and (5) power (in watts). Not

all attributes are equally important to consumers. Different consumer segments

have different preferences for these product characteristics, although the

preferences are expressed in terms of brand image rather than purely physical

characteristics. Industry research has shown that consumers’ brand evaluations in

this market are a function of their perceptions of the brands on three general

dimensions, related to some degree to the five physical characteristics listed

above that define the product. The first and most important characteristic is the

perceived price of the product. Next, consumers consider the product’s power

(wattage). Finally, they evaluate the product’s design (aesthetic value). Although

less important than the other dimensions, the product’s design helps consumers to

differentiate among the various competing brands. The design attribute is measured

on a scale from 1 to 10 by expert judges, although consumers’ perceptions may vary

from these “rational” expert evaluations. To form an overall evaluation of each

brand, consumers compare their brand’s performance on each dimension with their

preferences for a certain “ideal level” on each of these dimensions.

Because of the durability of the Sonite product and the importance of the

purchase, the consumer decision process tends to follow a “high involvement”

hierarchy. Measures of brand awareness, perceptions, preferences, and purchase

intentions are, therefore, particularly relevant to the advertising decisions.
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Consumer Segments

The consumer market for Sonites is composed of five segments with distinguishable

preferences. Segment 1 consists of the “buffs,” or experts in the product category.

They are innovators and have high standards and requirements in terms of the

technical quality of the product. Segment 2 is composed of “singles” who are

relatively knowledgeable about the product but somewhat price sensitive.

“Professionals” are found in segment 3. They are demanding in terms of product

quality and are willing to pay a premium price for that quality. “High earners”

constitute segment 4, exclusive of “professionals.” These individuals are also

relatively price insensitive. However, in general, they are not as educated as the

professionals, and are not particularly knowledgeable about the product category.

They buy the product mostly to enhance their social status. The fifth and last

segment covers all consumers who cannot be grouped with any of the other four

segments. They have used the product less than consumers in other segments and

are considered to be late adopters of this product category. Given that this group is

defined as a residual, it is difficult to characterize the members in terms of

demographics or lifestyle.

Although the preferences of the five consumer segments may change over time,

the composition of each segment does not. Consequently, the survey data collected

in the eighth time period (described in Sect. 3.3 below) also describe consumers

during the previous seven periods.

Distribution Structure

Sonites are sold through three different distribution channels. The three channels

vary in terms of the proportion of the product that they sell (relative to their total

product sales) and the types of clientele that they attract. Each channel carries all

brands of Sonites, but the potential number of distributors within each channel and

the characteristics of that channel are different. Channel 1 is made up of 3,000

specialty retail stores. These stores provide specialized services to customers, and

the bulk of their sales comes from Sonites. Channel 2 consists of 35,000 electric

appliance stores. These stores carry Sonite products only as an addition to their

main product lines. Channel 3 represents the 4,000 department stores that exist in

the MARKSTRAT® world. These stores sell a broad range of products, including

clothing, furniture, housewares, and appliances.

14.3.2 Marketing Mix Decisions

A product’s marketing mix reflects the marketing strategy for the brand. A brand’s

attributes will influence how the brand is positioned and to whom it is marketed. Its

price will affect the advertising budget and the brand image. Its distribution will
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determine where the brand is advertised, and so on. In this section we review the

four main marketing mix variables—price, sales force, advertising, and product—

that characterize brands in the MARKSTRAT® environment.

14.3.2.1 Price

Each brand of Sonite has a recommended retail price. These prices are generally

accepted by the distribution channels and are passed on to consumers. The different

consumer segments defined in the earlier section are more or less sensitive to price

differences across brands. A segment’s price sensitivity (price “elasticity”) also

depends on the selection of products offered to that segment and on the other

marketing mix variables.

14.3.2.2 Sales Force

The two most important aspects of a firm’s sales force are its size and its assignment

to the three channels of distribution. Each salesperson carries the entire line of

brands produced by his or her company. When a firm changes the number of

salespeople it assigns to a particular channel, this is likely to affect the availability

or distribution coverage of the firm’s brands.

14.3.2.3 Advertising

Each brand of Sonite is advertised individually. Firms in this industry do not

practice umbrella or generic (product category) advertising. However, advertising

of specific brands can increase the total market demand for Sonites or affect Sonite

demand in one or more segments.

Advertising can serve a number of communication purposes. It can be used to

increase top-of-mind brand awareness and inform consumers about a brand’s

characteristics. Research has revealed that advertising expenditures are strongly

positively related to brand awareness. Advertising can also have a substantial

persuasive effect on consumers. Advertising can be used to position or reposition

a brand so that the brand’s image is more closely aligned with consumers’ needs.

In addition, it is clear that advertising plays an important competitive role. One

cannot consider a brand’s advertising in isolation. Instead, the relative “share of

voice”—the ratio of a brand’s advertising expenditures to the total industry’s

advertising expenditures—is a better predictor of consumers’ purchase behavior

than absolute advertising expenditures.
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14.3.2.4 Products

The database reports information on all of the brands of Sonites that were marketed

by firms during an 8-year time period. The names of the brands sold during this

period are listed in Table 14.1. This table also lists the periods during which each

brand was available. Note that some of the brands were introduced after the first

time period and/or were discontinued before the last (eighth) period.

The brands of Sonites are named to facilitate identification of the marketing firm.

The second letter of each brand name is a vowel that corresponds to one of the five

competing firms. All the brands sold by Firm I have an “A” as the second letter of

the name, such as SAMA. “E” corresponds to firm 2, “I” to firm 3, “O” to firm

4, and “U” to firm 5.

During the eight time periods, each firm has the opportunity to design new

products and market a portfolio of different brands. In response to consumer or

market pressures, companies may change the physical characteristics of each brand

over time. Information about brands and their attributes is provided in the industry

data set, as described in Table 14.1.

14.3.3 Survey

A mail survey of a group of 300 consumers was conducted in the eighth (last and

most recent) time period. The survey collected a variety of consumer information

including demographic data, psychographics, information on product and brand

purchase behavior, decision processes, and media habits. These data are

Table 14.1 Names of brands

marketed during each period
Firm Brand Period of availability

1 SALT 0–6

1 SAMA 0–6

2 SELF 0–5a

2 SELT 3–6

2 SEMA 4–6

2 SEMI 0–6

2 SEMU 4–6

3 SIBI 0–6

3 SICK 4–6

3 SIRO 0–3a

3 SIRT 4–6

4 SODA 2–6

4 SOLD 0–6

4 SONO 0–5a

5 SULI 0–6

5 SUSI 0–6
aIndicates a discontinued brand
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particularly useful for segmentation analysis, which is an important precursor to

selecting a target market, generating advertising copy appeals, and media selection.

A list of the variables from the questionnaire and the coding scheme for the items

are provided in Tables 14.2 and 14.3, respectively.

14.3.4 Indup

The industry data set provides two types of performance information for each brand

and time period: sales figures (in units and dollars) and market share (based on unit

and dollar sales). The data set also includes information on the values of the

marketing mix variables for each competing brand. The data describe each brand’s

price, advertising expenditures, sales force size (for each channel of distribution),

and physical characteristics (i.e., the four Ps). Finally, the data set reports the

variable cost of each brand in each time period. Note that this cost is not the actual

current production cost, as this information is typically not available for each

competing brand. The reported cost figures reflect the basic cost of production

that can be estimated for a given first batch of 100,000 units at the time the brand

was introduced. A list of the variables in the industry data set is given in Table 14.4.

14.3.5 Panel

The panel data set provides information that, in many ways, complements the data

in the industry data set. Panel data are available at the level of the individual market

segment rather than at the total market level. The panel data set includes informa-

tion on the size of each segment (in unit sales of Sonites) and the market share for

each brand with each segment. The data set also provides the results of a panel

questionnaire with items related to advertising communication such as brand

awareness and brand perceptions, and preferences. Specific variables for each

consumer segment include the extent of brand name awareness, preferences in

terms of the ideal levels of the three most important attributes (price, power, and

design), brand perceptions on the same three attributes, and brand purchase

intentions. Finally, the data set reports the shopping habits of each segment in the

three channels of distribution. A summary of these variables is provided in

Table 14.5.

14.3.6 Scan

The SCAN.DAT file contains a simulated sample of scanner data, similar to the

refrigerated orange juice data set used in Fader and Lattin (1993); Fader, Lattin, and
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Table 14.2 Survey questionnaire and scale type

Number Abbreviation Question Scale

Demographics

1 Age Age Continuous

2 Marital Marital status Categorical

3 Income Total household income Categorical

4 Education Education Categorical

5 HHSize Household size Continuous

6 Occupation Occupation Categorical

7 Location Geographic location of household Categorical

Psychographics

8 TryHairdo I often try the latest hair styles. Likerta

9 LatestStyle I usually have one or more pieces of clothing that

are of the latest fashion.

Likert

10 DressSmart An important part of my life and activities is

dressing smartly.

Likert

11 BlondsFun I really do believe that blondes have more fun. Likert

12 LookDif I want to look a little different from others. Likert

13 LookAftract Looking attractive is important in keeping your

wife/husband.

liked

14 GrocShop I like shopping. Likert

15 LikeCooking I love to cook and frequently do. Likert

16 ClothesFresh Clothes should be dried outdoors in the fresh air. Likert

17 WashHands It is very important for people to wash their hands

before each meal.

Likert

18 Sporting I would rather go to a sporting event than a dance. Likert

19 LikeColors I like bright, splashy colors. Likert

20 FeelAffract I like to feel attractive. Likert

21 TooMuchSex There is too much emphasis on sex today. Likert

22 Social I do more things socially than do most of my

friends.

Likert

23 LikeMaid I would like to have a maid to do the housework. Likert

24 ServDinners I like to serve unusual dinners. Likert

25 SaveItems I save items from newspapers and magazines. Likert

26 LivingRoom The living room is my favorite room. Likert

27 LoveEat I love to eat. Likert

28 SpiritualVal Spiritual values are more important than material

things.

Likert

29 Mother If it was good enough for my parents, it is good

enough for me.

Likert

30 ClassicMusic Classical music is more interesting than popular

music.

Likert

31 Children I try to arrange my home for my children’s

convenience.

Likert

32 Appliances I enjoy having the latest technology. Likert

33 CloseFamily Our family is a close-knit group. Likert

34 LoveFamily There is a lot of love in our family Likert

35 TalkChildren I spend a lot of time with my children talking about

their activities, friends, and problems.

Likert

(continued)
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Table 14.2 (continued)

Number Abbreviation Question Scale

36 Exercise Everyone should take walks, bicycle, garden, or

otherwise exercise several times a week.

Likert

37 LikeMyself I like what I see when I look in the mirror. Likert

38 PersonalAppear I care about my personal appearance. Likert

39 MedCheckup You should have a medical checkup at least once

a year.

Likert

40 EveningHome I would rather spend a quiet evening at home than

go out to a party.

Likert

41 TripWorld I would like to take a trip around the world. Likert

42 Homebody I am a homebody. Likert

43 LondonParis I would like to spend a year in London or Paris. Likert

44 Comfort I furnish my home for comfort, not for style. Likert

45 Ballet I like classical ballet. Likert

46 Parties I like parties where there is lots of music and talk. Likert

47 FoulLanguage People should not use foul language in public. Likert

48 BrightFun I like things that are bright, fun, and exciting. Likert

49 Seasoning I enjoy spicy foods. Likert

50 ThreeDTV If I had to choose, I would rather have a 3D televi-

sion than a new computer.

Likert

51 Sloppy If I look sloppy, I do not feel good about myself. Likert

Purchase behavior

52 Smoke How often do you smoke? 0–7

53 Gasoline How much gasoline do you use? 0–7

54 Headache How often do you use headache remedies? 0–7

55 Whiskey How much whiskey do you drink? 0–7

56 Bourbon How much bourbon do you drink? 0–7

57 FastFood How often do you eat at fast-food restaurants? 0–7

58 Restaurants How often do you eat at restaurants with table

service?

0–7

59 OutForDinner How often do you go out for dinner? 0–7

60 OutForLunch How often do you go out for lunch? 0–7

61 RentVideo How often do you rent movies? 0–7

62 Catsup How often do you use catsup? 0–7

Purchase decision process

63 KnowledgeSon How much do you know about the product category

of Sonites?

Likert

64 PerceiveDif How large a difference do you perceive between

various brands of Sonites?

Likert

65 BrandTrust When purchasing (or considering purchasing) a

Sonite, do you prefer to buy a brand that you

know and trust or to try a new brand?

Likert

66 CategMotiv What is your primary reason or motivation for

purchasing (or considering purchasing) a Sonite

(any brand in the product category)?

Categorical

67 BrandMotiv What is your primary reason or motivation for

purchasing (or considering purchasing) a par-

ticular brand of Sonite?

Categorical

(continued)
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Table 14.2 (continued)

Number Abbreviation Question Scale

68 OwnSonite Do you currently own a Sonite? 0/1

69 NecessSonite Do you feel that owning a Sonite is a necessity? 0/1

70 Otherinflnc If you were to purchase a Sonite, would you make

the decision about which brand to purchase by

yourself or with the help of others?

Categorical

71 DecisionTime If you were to purchase a Sonite, would you make

the decision about which brand to purchase

before going to the retail store, or would you

wait until you were in the store to decide?

Categorical

Media habits

72 ReadWomen I read women’s magazines. 0/1

73 ReadDoItYourself I read do-it-yourself magazines. 0/1

74 ReadFashion I read fashion magazines. 0/1

75 ReadMenMag I read men’s magazines. 0/1

76 ReadBusMag I read business and financial magazines. 0/1

77 ReadNewsMag I read news magazines. 0/1

78 ReadGIMag I read general interest magazines. 0/1

79 ReadYouthMag I read youth magazines. 0/1

80 ReadNwspaper I read the newspaper. 0/1

81 WtchDayTV I watch television during the day time. 0/1

82 WtchEveTV I watch television early evening news. 0/1

83 WtchPrmTV I watch television during prime time. 0/1

84 WtchLateTV I watch late-night television. 0/1

85 WtchWkEndTV I or my children watch children’s programs on

television during the weekend.

0/1

86 WtchModFamTV I watch Modern Family regularly. 0/1

87 WtchBigBangTV I watch The Big Bang Theory regularly. 0/1

88 WtchMeetMotherTV I watch How I Met Your Mother regularly. 0/1

89 WtchSimpsonsTV I watch The Simpsons regularly. 0/1

90 WtchNCISTV I watch NCIS (Naval Criminal Investigative Ser-

vice) regularly.

0/1

91 WtchGreyTV I watch Grey’s Anatomy regularly. 0/1

92 WtchMadMenTV I watch Mad Men regularly. 0/1

93 WtchDancingTV I watch Dancing with the Stars regularly. 0/1

94 WtchAbbeyTV I watch Downton Abbey regularly. 0/1

95 WtchBowlTV I watch the Super Bowl each year. 0/1
aLikert items are scaled from 1 ¼ Disagree to 7 ¼ Agree
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Table 14.3 Coding of variables

Variable Category Code

Question #2

Marital status Married 1

Widowed 2

Divorced 3

Separated 4

Single 5

Question #3

Household income Less than $20,000 1

$20,000–$39,999 2

$40,000–$59,999 3

$60,000–$79,999 4

$80,000–$99,999 5

$100,000–$119,999 6

$120,000–$139,999 7

$140,000–$159,999 8

$160,000–$179,999 9

$180,000–$199,999 10

$200,000–$219,999 11

$220,000 and over 12

Question #4

Education level Did not attend school 1

Graduated from elementary school 2

Went to secondary school for less than 4 years 3

Graduated from secondary school or trade school 4

Some college, Jr. college, or technical school 5

Graduated from college 6

Have postgraduate degree 7

Question #6

Occupation Legislators, senior officials, and managers 1

Professionals 2

Technicians and associate professionals 3

Clerks 4

Service workers and shop and market sales workers 5

Skilled agricultural and fishery workers 6

Craft and related trade workers 7

Plant and machine operators and assemblers 8

Elementary occupations 9

Armed forces 0

Question #7

Location New York City 1

Los Angeles 2

Chicago 3

Philadelphia 4

San Francisco 5

Boston 6

Detroit 7

(continued)
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Table 14.3 (continued)

Variable Category Code

Dallas 8

Washington, DC 9

Houston 10

Cleveland 11

Atlanta 12

Pittsburgh 13

Miami 14

Minneapolis–St. Paul 15

Seattle–Tacoma 16

Tampa–St. Petersburg 17

St. Louis 18

Denver 19

Sacramento–Stockton 20

Question #66

Category purchase motivation To solve (remove) a problem 1

To avoid having a problem 2

To replace another Sonite 3

For sensory stimulation 4

For intellectual stimulation 5

For social approval 6

To enhance my self-esteem 7

Question #67

Brand purchase motivation To solve (remove) a problem 1

To avoid having a problem 2

Because of dissatisfaction with my current brand 3

For sensory stimulation 4

For intellectual stimulation 5

For social approval 6

To enhance my self-esteem 7

Question #70

Decision making By myself (individually) 1

With the help of others (as a group) 2

Question #71

Decision timing Before going to the store 1

In the store 2

Coding for other variables

Questions Scale

8–51 Disagree 1 2 3 4 5 6 7 Agree

63–65

52–62 Never/none 0 1 2 3 4 5 6

7 Very often/a lot

68 and 69 0 ¼ No; 1 ¼ Yes

72–95
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Table 14.4 Variables in industry-level database

Abbreviation Variable

Period Period number

Firm Firm number

Brand Brand name

Price Price

Adver Advertising expenditures

Char0l Product characteristic #1: Weight (kg)

Char02 Product characteristic #2: Design (Index)

Char03 Product characteristic #3: Volume (dM3)

Char04 Product characteristic #4: Maximum frequency (kHz)

Char05 Product characteristic #5: Power (W)

Salesmenl Number of salesmen-channel 1

Salesmen2 Number of salesmen-channel 2

Salesmen3 Number of salesmen-channel 3

Cost Average unit cost of initial batch

Dist0l Number of distributors-channel 1

Dist02 Number of distributors-channel 2

Dist03 Number of distributors-channel 3

UnitSales Total sales in units

DolSales Total sales in dollars

UnitShare Market share (based on units)

DolShare Market share (based on dollars)

AdShare Advertising share (share of voice)

RelPrice Relative price (price relative to average market price)

Table 14.5 Variables in panel database

Abbreviation Variable

Period Period number

Segment Segment number

SegSize Segment size (unit sales in segment)

Ideal01 Ideal value of price (for each segment)

ldeaI02 Ideal value of power (for each segment)

IdeaI03 Ideal value of design (for each segment)

Brand Brand name

Awareness Percentage of segment aware of the brand

Intent Purchase intent (for each brand and segment)

Shop01 Percentage of segment shopping in channel 1

Shop02 Percentage of segment shopping in channel 2

Shop03 Percentage of segment shopping in channel 3

Perc01 Perception of price (for each brand)

Perc02 Perception of power (for each brand)

Perc03 Perception of design (for each brand)

Dev01 Deviation from ideal price (for each brand in each segment)

Dev02 Deviation from ideal power (for each brand in each segment)

Dev03 Deviation from ideal design (for each brand in each segment)

Share Segment share (for each brand)
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Little (1992); and Hardie, Johnson, and Fader (1992). These articles (listed in the

Bibliography section of Chap. 8) give a full description of a similar data set. The six

brands along with their brand id codes are as follows:

1 Brand 1

2 Brand 2

3 Brand 3

4 Brand 4

5 Brand 5

6 Brand 6

This “SCAN.DAT” data file is set up for the estimation of the standard Guadagni

and Little (G&L, 1983) multinomial logit (MNL) model of brand choice, including

their “loyalty” variable. The value of the smoothing constant used to calculate the

loyalty variable is set to 0.8, and the loyalty variable is initialized using purchase

information for weeks 1 through 52.

In this data set, the number of choice alternatives varies over time (due to

shopping at different stores, stock-outs, etc.). Rather than having a single record

per purchase occasion, we have as many records as they are choice alternatives at

one purchase occasion of a consumer.

The format of SCAN.DAT is as follows:

– Panelist id

– Week of purchase

– A dummy variable indicating whether this record is associated with the brand

chosen

– The number of brands available (records) associated with this purchase occasion

– The brand id of this record

– Regular shelf price for this brand

– Any price reduction for this brand on this purchase occasion (price paid ¼ price

� price cut)

– A dummy variable indicating the presence of a feature ad for this brand

– The value of the Guadagny and Little loyalty variable for this brand (on this

purchase occasion)

– A brand-specific constant/dummy for brand 1

– A brand-specific constant/dummy for brand 2

– A brand-specific constant/dummy for brand 3

– A brand-specific constant/dummy for brand 5

– A brand-specific constant/dummy for brand 6

Therefore, given that there is no dummy variable for brand 4 (a private label),

this brand becomes the reference brand.

The LIMDEP file “examp8-2.lim”and the STATA file “examp8-2.do” in

Chap. 8 contain sample commands for reading this data set with LIMDEP and

STATA, respectively.
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